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Preface

This book is intended to serve as the textbook a first-year graduate course in econometrics.
Students are assumed to have an understanding of multivariate calculus, probability theory,

linear algebra, and mathematical statistics. A prior course in undergraduate econometrics would
be helpful, but not required. Two excellent undergraduate textbooks are Wooldridge (2015) and
Stock and Watson (2014).

For reference, the basic tools of matrix algebra and probability inequalites are reviewed in the
Appendix.

For students wishing to deepen their knowledge of matrix algebra in relation to their study of
econometrics, I recommend Matrix Algebra by Abadir and Magnus (2005).

An excellent introduction to probability and statistics is Statistical Inference by Casella and
Berger (2002). For those wanting a deeper foundation in probability, I recommend Ash (1972)
or Billingsley (1995). For more advanced statistical theory, I recommend Lehmann and Casella
(1998), van der Vaart (1998), Shao (2003), and Lehmann and Romano (2005). Probability and sta-
tistics textbooks written by econometricians include Ramanathan (1993), Amemiya (1994), Gallant
(1997), and Linton (2017).

For further study in econometrics beyond this text, I recommend White (1984) and Davidson
(1994) for asymptotic theory, Hamilton (1994) and Kilian and Lütkepohl (2017) for time series
methods, Cameron and Trivedi (2005) and Wooldridge (2010) for panel data and discrete response
models, and Li and Racine (2007) for nonparametrics and semiparametric econometrics. Beyond
these texts, the Handbook of Econometrics series provides advanced summaries of contemporary
econometric methods and theory.

Alternative PhD-level econometrics textbooks include Theil (1971), Amemiya (1985), Judge,
Griffi ths, Hill, Lütkepohl, and Lee (1985), Goldberger (1991), Davidson and MacKinnon (1993),
Johnston and DiNardo (1997), Davidson (2000), Hayashi (2000), Ruud (2000), Davidson and MacK-
innon (2004), Greene (2017) and Magnus (2017). For a focus on applied methods see Angrist and
Pischke (2009).

The end-of-chapter exercises are important parts of the text and are meant to help teach students
of econometrics. Answers are not provided, and this is intentional.

I would like to thank Ying-Ying Lee and Wooyoung Kim for providing research assistance in
preparing some of the numerical analysis, graphics, and empirical examples presented in the text.

This is a manuscript in progress. Parts I-III are near complete. Parts IV and V are incomplete,
in particular Chapters 15, 16, and 21.
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Chapter 1

Introduction

1.1 What is Econometrics?

The term “econometrics” is believed to have been crafted by Ragnar Frisch (1895-1973) of
Norway, one of the three principal founders of the Econometric Society, first editor of the journal
Econometrica, and co-winner of the first Nobel Memorial Prize in Economic Sciences in 1969. It
is therefore fitting that we turn to Frisch’s own words in the introduction to the first issue of
Econometrica to describe the discipline.

A word of explanation regarding the term econometrics may be in order. Its defini-
tion is implied in the statement of the scope of the [Econometric] Society, in Section I
of the Constitution, which reads: “The Econometric Society is an international society
for the advancement of economic theory in its relation to statistics and mathematics....
Its main object shall be to promote studies that aim at a unification of the theoretical-
quantitative and the empirical-quantitative approach to economic problems....”
But there are several aspects of the quantitative approach to economics, and no single

one of these aspects, taken by itself, should be confounded with econometrics. Thus,
econometrics is by no means the same as economic statistics. Nor is it identical with
what we call general economic theory, although a considerable portion of this theory has
a defininitely quantitative character. Nor should econometrics be taken as synonomous
with the application of mathematics to economics. Experience has shown that each
of these three view-points, that of statistics, economic theory, and mathematics, is
a necessary, but not by itself a suffi cient, condition for a real understanding of the
quantitative relations in modern economic life. It is the unification of all three that is
powerful. And it is this unification that constitutes econometrics.

Ragnar Frisch, Econometrica, (1933), 1, pp. 1-2.

This definition remains valid today, although some terms have evolved somewhat in their usage.
Today, we would say that econometrics is the unified study of economic models, mathematical
statistics, and economic data.

Within the field of econometrics there are sub-divisions and specializations. Econometric the-
ory concerns the development of tools and methods, and the study of the properties of econometric
methods. Applied econometrics is a term describing the development of quantitative economic
models and the application of econometric methods to these models using economic data.

1.2 The Probability Approach to Econometrics

The unifying methodology of modern econometrics was articulated by Trygve Haavelmo (1911-
1999) of Norway, winner of the 1989 Nobel Memorial Prize in Economic Sciences, in his seminal

1
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paper “The probability approach in econometrics” (1944). Haavelmo argued that quantitative
economic models must necessarily be probability models (by which today we would mean stochas-
tic). Deterministic models are blatently inconsistent with observed economic quantities, and it
is incoherent to apply deterministic models to non-deterministic data. Economic models should
be explicitly designed to incorporate randomness; stochastic errors should not be simply added to
deterministic models to make them random. Once we acknowledge that an economic model is a
probability model, it follows naturally that an appropriate tool way to quantify, estimate, and con-
duct inferences about the economy is through the powerful theory of mathematical statistics. The
appropriate method for a quantitative economic analysis follows from the probabilistic construction
of the economic model.

Haavelmo’s probability approach was quickly embraced by the economics profession. Today no
quantitative work in economics shuns its fundamental vision.

While all economists embrace the probability approach, there has been some evolution in its
implementation.

The structural approach is the closest to Haavelmo’s original idea. A probabilistic economic
model is specified, and the quantitative analysis performed under the assumption that the economic
model is correctly specified. Researchers often describe this as “taking their model seriously”Ṫhe
structural approach typically leads to likelihood-based analysis, including maximum likelihood and
Bayesian estimation.

A criticism of the structural approach is that it is misleading to treat an economic model
as correctly specified. Rather, it is more accurate to view a model as a useful abstraction or
approximation. In this case, how should we interpret structural econometric analysis? The quasi-
structural approach to inference views a structural economic model as an approximation rather
than the truth. This theory has led to the concepts of the pseudo-true value (the parameter value
defined by the estimation problem), the quasi-likelihood function, quasi-MLE, and quasi-likelihood
inference.

Closely related is the semiparametric approach. A probabilistic economic model is partially
specified but some features are left unspecified. This approach typically leads to estimation methods
such as least-squares and the Generalized Method of Moments. The semiparametric approach
dominates contemporary econometrics, and is the main focus of this textbook.

Another branch of quantitative structural economics is the calibration approach. Similar
to the quasi-structural approach, the calibration approach interprets structural models as approx-
imations and hence inherently false. The difference is that the calibrationist literature rejects
mathematical statistics (deeming classical theory as inappropriate for approximate models) and
instead selects parameters by matching model and data moments using non-statistical ad hoc1

methods.

Trygve Haavelmo

The founding ideas of the field of econometrics are largely due to the Nor-
weigen econometrician Trygve Haavelmo (1911-1999). His advocacy of prob-
ability models revolutionized the field, and his use of formal mathematical
reasoning laid the foundation for subsequent generations. He was awarded
the Nobel Memorial Prize in Economic Sciences in 1989.

1Ad hoc means “for this purpose”—a method designed for a specific problem —and not based on a generalizable
principle.



CHAPTER 1. INTRODUCTION 3

1.3 Econometric Terms and Notation

In a typical application, an econometrician has a set of repeated measurements on a set of vari-
ables. For example, in a labor application the variables could include weekly earnings, educational
attainment, age, and other descriptive characteristics. We call this information the data, dataset,
or sample.

We use the term observations to refer to the distinct repeated measurements on the variables.
An individual observation often corresponds to a specific economic unit, such as a person, household,
corporation, firm, organization, country, state, city or other geographical region. An individual
observation could also be a measurement at a point in time, such as quarterly GDP or a daily
interest rate.

Economists typically denote variables by the italicized roman characters y, x, and/or z. The
convention in econometrics is to use the character y to denote the variable to be explained, while
the characters x and z are used to denote the conditioning (explaining) variables.

Following mathematical convention, real numbers (elements of the real line R, also called
scalars) are written using lower case italics such as y, and vectors (elements of Rk) by lower
case bold italics such as x, e.g.

x =


x1

x2
...
xk

 .

Upper case bold italics such as X are used for matrices.
We denote the number of observations by the natural number n, and subscript the variables by

the index i to denote the individual observation, e.g. yi, xi and zi. In some contexts we use indices
other than i, such as in time series applications where the index t is common. In panel studies we
typically use the double index it to refer to individual i at a time period t

The ith observation is the set (yi,xi, zi). The sample is the set
{(yi,xi, zi) : i = 1, ..., n}.

It is proper mathematical practice to use upper case X for random variables and lower case x for
realizations or specific values. Since we use upper case to denote matrices, the distinction between
random variables and their realizations is not rigorously followed in econometric notation. Thus the
notation yi will in some places refer to a random variable, and in other places a specific realization.
This is undesirable but there is little to be done about it without terrifically complicating the
notation. Hopefully there will be no confusion as the use should be evident from the context.

We typically use Greek letters such as β, θ and σ2 to denote unknown parameters of an econo-
metric model, and will use boldface, e.g. β or θ, when these are vector-valued. Estimators are
typically denoted by putting a hat “^”, tilde “~”or bar “-”over the corresponding letter, e.g. β̂
and β̃ are estimators of β.

The covariance matrix of an econometric estimator will typically be written using the capital

boldface V , often with a subscript to denote the estimator, e.g. V
β̂

= var
(
β̂
)
as the covariance

matrix for β̂. Hopefully without causing confusion, we will use the notation V β = avar(β̂) to denote

the asymptotic covariance matrix of
√
n
(
β̂ − β

)
(the variance of the asymptotic distribution).

Estimators will be denoted by appending hats or tildes, e.g. V̂ β is an estimator of V β.
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1.4 Observational Data

A common econometric question is to quantify the causal impact of one set of variables on
another variable. For example, a concern in labor economics is the returns to schooling — the
change in earnings induced by increasing a worker’s education, holding other variables constant.
Another issue of interest is the earnings gap between men and women.

Ideally, we would use experimental data to answer these questions. To measure the returns
to schooling, an experiment might randomly divide children into groups, mandate different levels
of education to the different groups, and then follow the children’s wage path after they mature
and enter the labor force. The differences between the groups would be direct measurements of
the effects of different levels of education. However, experiments such as this would be widely
condemned as immoral! Consequently, in economics non-laboratory experimental data sets are
typically narrow in scope.

Instead, most economic data is observational. To continue the above example, through data
collection we can record the level of a person’s education and their wage. With such data we
can measure the joint distribution of these variables, and assess the joint dependence. But from
observational data it is diffi cult to infer causality, as we are not able to manipulate one variable to
see the direct effect on the other. For example, a person’s level of education is (at least partially)
determined by that person’s choices. These factors are likely to be affected by their personal abilities
and attitudes towards work. The fact that a person is highly educated suggests a high level of ability,
which suggests a high relative wage. This is an alternative explanation for an observed positive
correlation between educational levels and wages. High ability individuals do better in school,
and therefore choose to attain higher levels of education, and their high ability is the fundamental
reason for their high wages. The point is that multiple explanations are consistent with a positive
correlation between schooling levels and education. Knowledge of the joint distribution alone may
not be able to distinguish between these explanations.

Most economic data sets are observational, not experimental. This means
that all variables must be treated as random and possibly jointly deter-
mined.

This discussion means that it is diffi cult to infer causality from observational data alone. Causal
inference requires identification, and this is based on strong assumptions. We will discuss these
issues on occasion throughout the text.

1.5 Standard Data Structures

There are five major types of economic data sets: cross-sectional, time series, panel, clustered,
and spatial. They are distinguished by the dependence structure across observations.

Cross-sectional data sets have one observation per individual. Surveys and administrative
records are a typical source for cross-sectional data. In typical applications, the individuals surveyed
are persons, households, firms or other economic agents. In many contemporary econometric cross-
section studies the sample size n is quite large. It is conventional to assume that cross-sectional
observations are mutually independent. Most of this text is devoted to the study of cross-section
data.

Time series data are indexed by time. Typical examples include macroeconomic aggregates,
prices and interest rates. This type of data is characterized by serial dependence. Most aggregate
economic data is only available at a low frequency (annual, quarterly or perhaps monthly) so the
sample size is typically much smaller than in cross-section studies. An exception is financial data
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where data are available at a high frequency (weekly, daily, hourly, or by transaction) so sample
sizes can be quite large.

Panel data combines elements of cross-section and time series. These data sets consist of a set
of individuals (typically persons, households, or corporations) measured repeatedly over time. The
common modeling assumption is that the individuals are mutually independent of one another,
but a given individual’s observations are mutually dependent. In some panel data contexts, the
number of time series observations T per individual is small while the number of individuals n is
large. In other panel data contexts (for example when countries or states are taken as the unit of
measurement) the number of individuals n can be small while the number of time series observations
T can be moderately large. An important issue in econometric panel data is the treatment of error
components.

Clustered samples are increasing popular in applied economics, and is related to panel data.
In clustered sampling, the observations are grouped into “clusters”which are treated as mutually
independent, yet allowed to be dependent within the cluster. The major difference with panel data
is that clustered sampling typically does not explicitly model error component structures, nor the
dependence within clusters, but rather is concerned with inference which is robust to arbitrary
forms of within-cluster correlation.

Spatial dependence is another model of interdependence. The observations are treated as mutu-
ally dependent according to a spatial measure (for example, geographic proximity). Unlike cluster-
ing, spatial models allow all observations to be mutually dependent, and typically rely on explicit
modeling of the dependence relationships. Spatial dependence can also be viewed as a generalization
of time series dependence.

Data Structures

• Cross-section

• Time-series

• Panel

• Clustered

• Spatial

As we mentioned above, most of this text will be devoted to cross-sectional data under the
assumption of mutually independent observations. By mutual independence we mean that the ith

observation (yi,xi, zi) is independent of the jth observation (yj ,xj , zj) for i 6= j. (Sometimes the
label “independent”is misconstrued. It is a statement about the relationship between observations
i and j, not a statement about the relationship between yi and xi and/or zi.) In this case we say
that the data are independently distributed.

Furthermore, if the data is randomly gathered, it is reasonable to model each observation as
a draw from the same probability distribution. In this case we say that the data are identically
distributed. If the observations are mutually independent and identically distributed, we say that
the observations are independent and identically distributed, i.i.d., or a random sample.
For most of this text we will assume that our observations come from a random sample.

Definition 1.1 The observations (yi,xi, zi) are a sample from the dis-
tribution F if they are identically distributed across i = 1, ..., n with joint
distribution F .
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Definition 1.2 The observations (yi,xi, zi) are a random sample if they
are mutually independent and identically distributed (i.i.d.) across i =
1, ..., n.

In the random sampling framework, we think of an individual observation (yi,xi, zi) as a re-
alization from a joint probability distribution F (y,x, z) which we can call the population. This
“population” is infinitely large. This abstraction can be a source of confusion as it does not cor-
respond to a physical population in the real world. It is an abstraction since the distribution F
is unknown, and the goal of statistical inference is to learn about features of F from the sample.
The assumption of random sampling provides the mathematical foundation for treating economic
statistics with the tools of mathematical statistics.

The random sampling framework was a major intellectual breakthrough of the late 19th century,
allowing the application of mathematical statistics to the social sciences. Before this conceptual
development, methods from mathematical statistics had not been applied to economic data as the
latter was viewed as non-random. The random sampling framework enabled economic samples to
be treated as random, a necessary precondition for the application of statistical methods.

1.6 Econometric Software

Economists use a variety of econometric, statistical, and programming software.
Stata (www.stata.com) is a powerful statistical program with a broad set of pre-programmed

econometric and statistical tools. It is quite popular among economists, and is continuously being
updated with new methods. It is an excellent package for most econometric analysis, but is limited
when you want to use new or less-common econometric methods which have not yet been programed.
At many points in this textbook specific Stata estimation methods and commands are described.
These commands are valid for Stata version 15.

MATLAB (www.mathworks.com), GAUSS (www.aptech.com), and OxMetrics (www.oxmetrics.net)
are high-level matrix programming languages with a wide variety of built-in statistical functions.
Many econometric methods have been programed in these languages and are available on the web.
The advantage of these packages is that you are in complete control of your analysis, and it is easier
to program new methods than in Stata. Some disadvantages are that you have to do much of the
programming yourself, programming complicated procedures takes significant time, and program-
ming errors are hard to prevent and diffi cult to detect and eliminate. Of these languages, GAUSS
used to be quite popular among econometricians, but currently MATLAB is more popular.

An intermediate choice is R (www.r-project.org). R has the capabilities of the above high-
level matrix programming languages, but also has many built-in statistical environments which
can replicate much of the functionality of Stata. R is the dominate programming language in the
statistic field, so methods developed in that arena are most commonly available in R. Uniquely, R
is open-source, user-contributed, and best of all, completely free! A smaller but growing group of
econometricians are enthusiastic fans of R.

For highly-intensive computational tasks, some economists write their programs in a standard
programming language such as Fortran or C. This can lead to major gains in computational speed,
at the cost of increased time in programming and debugging.

There are many other packages which are used by econometricians, include Eviews, Gretl,
PcGive, Python, RATS, SAS.

As the packages described above have distinct advantages, many empirical economists end up
using more than one package. As a student of econometrics, you will learn at least one of these
packages, and probably more than one. My advice is that all students of econometrics should
develop a basic level of familiarity with Stata, and either Matlab or R (or all three).
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1.7 Replication

Scientific research needs to be documented and replicable. For social science research using
observational data, this requires careful documentation and archiving of the research methods,
data manipulations, and coding.

The best practice is as follows. Accompanying each published paper an author should create
a complete replication package (set of data files, documentation, and program code files). This
package should contain the source (raw) data used for analysis, and code which executes the em-
pirical analysis and other numerical work reported in the paper. In most cases this is a set of
programs, which may need to be executed sequentially. (For example, there may be an initial pro-
gram which “cleans”and manipulates the data, and then a second set of programs which estimate
the reported models.) The ideal is full documentation and clarity. This package should be posted
on the author(s) website, and posted at the journal website when that is an option.

A complicating factor is that many current economic data sets have restricted access and cannot
be shared without permission. In these cases the data cannot be posted nor shared. The computed
code, however, can and should be posted.

Most journals in economics require authors of published papers to make their datasets generally
available. For example:
Econometrica states:

Econometrica has the policy that all empirical, experimental and simulation results must
be replicable. Therefore, authors of accepted papers must submit data sets, programs,
and information on empirical analysis, experiments and simulations that are needed for
replication and some limited sensitivity analysis.

The American Economic Review states:

All data used in analysis must be made available to any researcher for purposes of
replication.

The Journal of Political Economy states:

It is the policy of the Journal of Political Economy to publish papers only if the data
used in the analysis are clearly and precisely documented and are readily available to
any researcher for purposes of replication.

If you are interested in using the data from a published paper, first check the journal’s website,
as many journals archive data and replication programs online. Second, check the website(s) of
the paper’s author(s). Most academic economists maintain webpages, and some make available
replication files complete with data and programs. If these investigations fail, email the author(s),
politely requesting the data. You may need to be persistent.

As a matter of professional etiquette, all authors absolutely have the obligation to make their
data and programs available. Unfortunately, many fail to do so, and typically for poor reasons.
The irony of the situation is that it is typically in the best interests of a scholar to make as much of
their work (including all data and programs) freely available, as this only increases the likelihood
of their work being cited and having an impact.

Keep this in mind as you start your own empirical project. Remember that as part of your end
product, you will need (and want) to provide all data and programs to the community of scholars.
The greatest form of flattery is to learn that another scholar has read your paper, wants to extend
your work, or wants to use your empirical methods. In addition, public openness provides a healthy
incentive for transparency and integrity in empirical analysis.
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1.8 Data Files for Textbook

On the textbook webpage http://www.ssc.wisc.edu/~bhansen/econometrics/ there are posted
a number of files containing data sets which are used in this textbook both for illustration and
for end-of-chapter empirical exercises. For each data sets there are four files: (1) Description (pdf
format); (2) Excel data file; (3) Text data file; (4) Stata data file. The three data files are identical
in content, the observations and variables are listed in the same order in each, all have variable
labels.

For example, the text makes frequent reference to a wage data set extracted from the Current
Population Survey. This data set is named cps09mar, and is represented by the files cps09mar_description.pdf,
cps09mar.xlsx, cps09mar.txt, and cps09mar.dta.

The data sets currently included are

• AB1991

—Data file from Arellano and Bond (1991)

• AJR2001

—Data file from Acemoglu, Johnson and Robinson (2001)

• AK1991

—Data file from Angrist and Krueger (1991)

• AL1999

—Data file from Angrist and Lavy (1999)

• cps09mar

— household survey data extracted from the March 2009 Current Population Survey

• Card1995

—Data file from Card (1995)

• CHJ2004

—Data file from Cox, Hansen and Jimenez (2004)

• DDK2011

—Data file from Duflo, Dupas and Kremer (2011)

• FRED-MD and FRED-QD

—U.S. monthly and quarterly macroeconomic databases from McCracken and Ng (2015)

• Invest1993

—Data file from Hall and Hall (1993)

• MRW1992
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—Data file from Mankiw, Romer and Weil (1992)

• Nerlove1963

—Data file from Nerlov (1963)

• RR2010

—Data file from Reinhard and Rogoff (2010)

1.9 Reading the Manuscript

I have endeavored to use a unified notation and nomenclature. The development of the material
is cumulative, with later chapters building on the earlier ones. Nevertheless, every attempt has been
made to make each chapter self-contained, so readers can pick and choose topics according to their
interests.

To fully understand econometric methods, it is necessary to have a mathematical understanding
of its mechanics, and this includes the mathematical proofs of the main results. Consequently, this
text is self-contained, with nearly all results proved with full mathematical rigor. The mathematical
development and proofs aim at brevity and conciseness (sometimes described as mathematical
elegance), but also at pedagogy. To understand a mathematical proof, it is not suffi cient to simply
read the proof, you need to follow it, and re-create it for yourself.

Nevertheless, many readers will not be interested in each mathematical detail, explanation, or
proof. This is okay. To use a method it may not be necessary to understand the mathematical
details. Accordingly I have placed the more technical mathematical proofs and details in chapter
appendices. These appendices and other technical sections are marked with an asterisk (*). These
sections can be skipped without any loss in exposition.
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1.10 Common Symbols

y scalar
x vector
X matrix
R real line
Rk Euclidean k space
E (y) mathematical expectation
var (y) variance
cov (x, y) covariance
var (x) covariance matrix
corr(x, y) correlation
P probability
−→ limit
p−→ convergence in probability
d−→ convergence in distribution

plimn→∞ probability limit
N(0, 1) standard normal distribution
N(µ, σ2) normal distribution with mean µ and variance σ2

χ2
k chi-square distribution with k degrees of freedom
In n× n identity matrix
1n n× 1 vector of ones
trA trace
A′ matrix transpose
A−1 matrix inverse
A > 0 positive definite
A ≥ 0 positive semi-definite
‖a‖ Euclidean norm
‖A‖ matrix (Frobinius or spectral) norm
1 (a) indicator function (1 if a is true, else 0)
' approximate equality
def
= definitional equality
∼ is distributed as
log natural logarithm
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Chapter 2

Conditional Expectation and
Projection

2.1 Introduction

The most commonly applied econometric tool is least-squares estimation, also known as regres-
sion. As we will see, least-squares is a tool to estimate an approximate conditional mean of one
variable (the dependent variable) given another set of variables (the regressors, conditioning
variables, or covariates).

In this chapter we abstract from estimation, and focus on the probabilistic foundation of the
conditional expectation model and its projection approximation.

2.2 The Distribution of Wages

Suppose that we are interested in wage rates in the United States. Since wage rates vary across
workers, we cannot describe wage rates by a single number. Instead, we can describe wages using a
probability distribution. Formally, we view the wage of an individual worker as a random variable
wage with the probability distribution

F (u) = P(wage ≤ u).

When we say that a person’s wage is random we mean that we do not know their wage before it is
measured, and we treat observed wage rates as realizations from the distribution F. Treating un-
observed wages as random variables and observed wages as realizations is a powerful mathematical
abstraction which allows us to use the tools of mathematical probability.

A useful thought experiment is to imagine dialing a telephone number selected at random, and
then asking the person who responds to tell us their wage rate. (Assume for simplicity that all
workers have equal access to telephones, and that the person who answers your call will respond
honestly.) In this thought experiment, the wage of the person you have called is a single draw from
the distribution F of wages in the population. By making many such phone calls we can learn the
distribution F of the entire population.

When a distribution function F is differentiable we define the probability density function

f(u) =
d

du
F (u).

The density contains the same information as the distribution function, but the density is typically
easier to visually interpret.

12
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Figure 2.1: Wage Distribution and Density. All Full-time U.S. Workers

In Figure 2.1 we display estimates1 of the probability distribution function (on the left) and
density function (on the right) of U.S. wage rates in 2009. We see that the density is peaked around
$15, and most of the probability mass appears to lie between $10 and $40. These are ranges for
typical wage rates in the U.S. population.

Important measures of central tendency are the median and the mean. The median m of a
continuous2 distribution F is the unique solution to

F (m) =
1

2
.

The median U.S. wage ($19.23) is indicated in the left panel of Figure 2.1 by the arrow. The median
is a robust3 measure of central tendency, but it is tricky to use for many calculations as it is not a
linear operator.

The expectation or mean of a random variable y with density f is

µ = E (y) =

∫ ∞
−∞

uf(u)du.

Here we have used the common and convenient convention of using the single character y to denote
a random variable, rather than the more cumbersome label wage. A general definition of the mean
is presented in Section 2.31. The mean U.S. wage ($23.90) is indicated in the right panel of Figure
2.1 by the arrow.

We sometimes use the notation Ey instead of E (y) when the variable whose expectation is being
taken is clear from the context. There is no distinction in meaning.

The mean is a convenient measure of central tendency because it is a linear operator and
arises naturally in many economic models. A disadvantage of the mean is that it is not robust4

especially in the presence of substantial skewness or thick tails, which are both features of the wage
distribution as can be seen easily in the right panel of Figure 2.1. Another way of viewing this
is that 64% of workers earn less that the mean wage of $23.90, suggesting that it is incorrect to
describe the mean as a “typical”wage rate.

1The distribution and density are estimated nonparametrically from the sample of 50,742 full-time non-military
wage-earners reported in the March 2009 Current Population Survey. The wage rate is constructed as annual indi-
vidual wage and salary earnings divided by hours worked.

2 If F is not continuous the definition is m = inf{u : F (u) ≥ 1

2
}

3The median is not sensitive to pertubations in the tails of the distribution.
4The mean is sensitive to pertubations in the tails of the distribution.
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Figure 2.2: Log Wage Density

In this context it is useful to transform the data by taking the natural logarithm5. Figure 2.2
shows the density of log hourly wages log(wage) for the same population, with its mean 2.95 drawn
in with the arrow. The density of log wages is much less skewed and fat-tailed than the density of
the level of wages, so its mean

E (log(wage)) = 2.95

is a much better (more robust) measure6 of central tendency of the distribution. For this reason,
wage regressions typically use log wages as a dependent variable rather than the level of wages.

Another useful way to summarize the probability distribution F (u) is in terms of its quantiles.
For any α ∈ (0, 1), the αth quantile of the continuous7 distribution F is the real number qα which
satisfies

F (qα) = α.

The quantile function qα, viewed as a function of α, is the inverse of the distribution function F.
The most commonly used quantile is the median, that is, q0.5 = m.We sometimes refer to quantiles
by the percentile representation of α, and in this case they are often called percentiles, e.g. the
median is the 50th percentile.

2.3 Conditional Expectation

We saw in Figure 2.2 the density of log wages. Is this distribution the same for all workers, or
does the wage distribution vary across subpopulations? To answer this question, we can compare
wage distributions for different groups — for example, men and women. The plot on the left in
Figure 2.3 displays the densities of log wages for U.S. men and women with their means (3.05 and

5Throughout the text, we will use log(y) or log y to denote the natural logarithm of y.
6More precisely, the geometric mean exp (E (logw)) = $19.11 is a robust measure of central tendency.
7 If F is not continuous the definition is qα = inf{u : F (u) ≥ α}
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2.81) indicated by the arrows. We can see that the two wage densities take similar shapes but the
density for men is somewhat shifted to the right with a higher mean.
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Figure 2.3: Log Wage Density by Sex and Race

The values 3.05 and 2.81 are the mean log wages in the subpopulations of men and women
workers. They are called the conditional means (or conditional expectations) of log wages
given sex. We can write their specific values as

E (log(wage) | sex = man) = 3.05

E (log(wage) | sex = woman) = 2.81.

We call these means conditional as they are conditioning on a fixed value of the variable sex.
While you might not think of a person’s sex as a random variable, it is random from the viewpoint
of econometric analysis. If you randomly select an individual, the sex of the individual is unknown
and thus random. (In the population of U.S. workers, the probability that a worker is a woman
happens to be 43%.) In observational data, it is most appropriate to view all measurements as
random variables, and the means of subpopulations are then conditional means.

As the two densities in Figure 2.3 appear similar, a hasty inference might be that there is not
a meaningful difference between the wage distributions of men and women. Before jumping to
this conclusion let us examine the differences in the distributions more carefully. As we mentioned
above, the primary difference between the two densities appears to be their means. This difference
equals

E (log(wage) | sex = man)− E (log(wage) | sex = woman) = 3.05− 2.81

= 0.24.

A difference in expected log wages of 0.24 implies an average 24% difference between the wages
of men and women, which is quite substantial. (For an explanation of logarithmic and percentage
differences see Section 2.4.)

Consider further splitting the men and women subpopulations by race, dividing the population
into whites, blacks, and other races. We display the log wage density functions of four of these
groups on the right in Figure 2.3. Again we see that the primary difference between the four density
functions is their central tendency.
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Focusing on the means of these distributions, Table 2.1 reports the mean log wage for each of
the six sub-populations.

Table 2.1: Mean Log Wages by Sex and Race

men women
white 3.07 2.82
black 2.86 2.73
other 3.03 2.86

The entries in Table 2.1 are the conditional means of log(wage) given sex and race. For example

E (log(wage) | sex = man, race = white) = 3.07

and
E (log(wage) | sex = woman, race = black) = 2.73.

One benefit of focusing on conditional means is that they reduce complicated distributions
to a single summary measure, and thereby facilitate comparisons across groups. Because of this
simplifying property, conditional means are the primary interest of regression analysis and are a
major focus in econometrics.

Table 2.1 allows us to easily calculate average wage differences between groups. For example,
we can see that the wage gap between men and women continues after disaggregation by race, as
the average gap between white men and white women is 25%, and that between black men and
black women is 13%. We also can see that there is a race gap, as the average wages of blacks are
substantially less than the other race categories. In particular, the average wage gap between white
men and black men is 21%, and that between white women and black women is 9%.

2.4 Log Differences*

A useful approximation for the natural logarithm for small x is

log (1 + x) ≈ x. (2.1)

This can be derived from the infinite series expansion of log (1 + x) :

log (1 + x) = x− x2

2
+
x3

3
− x4

4
+ · · ·

= x+O(x2).

The symbol O(x2) means that the remainder is bounded by Ax2 as x→ 0 for some A <∞. A plot
of log (1 + x) and the linear approximation x is shown in Figure 2.4. We can see that log (1 + x)
and the linear approximation x are very close for |x| ≤ 0.1, and reasonably close for |x| ≤ 0.2, but
the difference increases with |x|.

Now, if y∗ is c% greater than y, then

y∗ = (1 + c/100)y.

Taking natural logarithms,
log y∗ = log y + log(1 + c/100)

or
log y∗ − log y = log(1 + c/100) ≈ c

100

where the approximation is (2.1). This shows that 100 multiplied by the difference in logarithms
is approximately the percentage difference between y and y∗, and this approximation is quite good
for |c| ≤ 10.
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Figure 2.4: log(1 + x)

2.5 Conditional Expectation Function

An important determinant of wage levels is education. In many empirical studies economists
measure educational attainment by the number of years8 of schooling, and we will write this variable
as education.

The conditional mean of log wages given sex, race, and education is a single number for each
category. For example

E (log(wage) | sex = man, race = white, education = 12) = 2.84.

We display in Figure 2.5 the conditional means of log(wage) for white men and white women as a
function of education. The plot is quite revealing. We see that the conditional mean is increasing in
years of education, but at a different rate for schooling levels above and below nine years. Another
striking feature of Figure 2.5 is that the gap between men and women is roughly constant for all
education levels. As the variables are measured in logs this implies a constant average percentage
gap between men and women regardless of educational attainment.

In many cases it is convenient to simplify the notation by writing variables using single charac-
ters, typically y, x and/or z. It is conventional in econometrics to denote the dependent variable
(e.g. log(wage)) by the letter y, a conditioning variable (such as sex ) by the letter x, and multiple
conditioning variables (such as race, education and sex ) by the subscripted letters x1, x2, ..., xk.

Conditional expectations can be written with the generic notation

E (y | x1, x2, ..., xk) = m(x1, x2, ..., xk).

8Here, education is defined as years of schooling beyond kindergarten. A high school graduate has education=12,
a college graduate has education=16, a Master’s degree has education=18, and a professional degree (medical, law or
PhD) has education=20.
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Figure 2.5: Mean Log Wage as a Function of Years of Education

We call this the conditional expectation function (CEF). The CEF is a function of (x1, x2, ..., xk)
as it varies with the variables. For example, the conditional expectation of y = log(wage) given
(x1, x2) = (sex , race) is given by the six entries of Table 2.1. The CEF is a function of (sex , race)
as it varies across the entries.

For greater compactness, we will typically write the conditioning variables as a vector in Rk:

x =


x1

x2
...
xk

 . (2.2)

Here we follow the convention of using lower case bold italics x to denote a vector. Given this
notation, the CEF can be compactly written as

E (y | x) = m (x) .

The CEF E (y | x) is a random variable as it is a function of the random variable x. It is
also sometimes useful to view the CEF as a function of x. In this case we can write m (u) =
E (y | x = u), which is a function of the argument u. The expression E (y | x = u) is the conditional
expectation of y, given that we know that the random variable x equals the specific value u.
However, sometimes in econometrics we take a notational shortcut and use E (y | x) to refer to this
function. Hopefully, the use of E (y | x) should be apparent from the context.

2.6 Continuous Variables

In the previous sections, we implicitly assumed that the conditioning variables are discrete.
However, many conditioning variables are continuous. In this section, we take up this case and
assume that the variables (y,x) are continuously distributed with a joint density function f(y,x).
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As an example, take y = log(wage) and x = experience, the number of years of potential labor
market experience9. The contours of their joint density are plotted on the left side of Figure 2.6
for the population of white men with 12 years of education.
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Figure 2.6: White Men with High School Degree

Given the joint density f(y,x) the variable x has the marginal density

fx(x) =

∫ ∞
−∞

f(y,x)dy.

For any x such that fx(x) > 0 the conditional density of y given x is defined as

fy|x (y | x) =
f(y,x)

fx(x)
. (2.3)

The conditional density is a (renormalized) slice of the joint density f(y,x) holding x fixed. The
slice is renormalized (divided by fx(x) so that it integrates to one and is thus a density.) We can
visualize this by slicing the joint density function at a specific value of x parallel with the y-axis.
For example, take the density contours on the left side of Figure 2.6 and slice through the contour
plot at a specific value of experience, and then renormalize the slice so that it is a proper density.
This gives us the conditional density of log(wage) for white men with 12 years of education and
this level of experience. We do this for four levels of experience (5, 10, 25, and 40 years), and plot
these densities on the right side of Figure 2.6. We can see that the distribution of wages shifts to
the right and becomes more diffuse as experience increases from 5 to 10 years, and from 10 to 25
years, but there is little change from 25 to 40 years experience.

The CEF of y given x is the mean of the conditional density (2.3)

m (x) = E (y | x) =

∫ ∞
−∞

yfy|x (y | x) dy. (2.4)

Intuitively, m (x) is the mean of y for the idealized subpopulation where the conditioning variables
are fixed at x. This is idealized since x is continuously distributed so this subpopulation is infinitely
small.

9Here, experience is defined as potential labor market experience, equal to age− education− 6
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This definition (2.4) is appropriate when the conditional density (2.3) is well defined. However,
the conditional mean m(x) exists quite generally. In Theorem 2.13 in Section 2.34 we show that
m(x) exists so long as E |y| <∞.

In Figure 2.6 the CEF of log(wage) given experience is plotted as the solid line. We can see
that the CEF is a smooth but nonlinear function. The CEF is initially increasing in experience,
flattens out around experience = 30, and then decreases for high levels of experience.

2.7 Law of Iterated Expectations

An extremely useful tool from probability theory is the law of iterated expectations. An
important special case is the known as the Simple Law.

Theorem 2.1 Simple Law of Iterated Expectations
If E |y| <∞ then for any random vector x,

E (E (y | x)) = E (y) .

The simple law states that the expectation of the conditional expectation is the unconditional
expectation. In other words, the average of the conditional averages is the unconditional average.
When x is discrete

E (E (y | x)) =

∞∑
j=1

E (y | xj)P (x = xj)

and when x is continuous

E (E (y | x)) =

∫
Rk
E (y | x) fx(x)dx.

Going back to our investigation of average log wages for men and women, the simple law states
that

E (log(wage) | sex = man)P (sex = man)

+ E (log(wage) | sex = woman)P (sex = woman)

= E (log(wage)) .

Or numerically,
3.05× 0.57 + 2.79× 0.43 = 2.92.

The general law of iterated expectations allows two sets of conditioning variables.

Theorem 2.2 Law of Iterated Expectations
If E |y| <∞ then for any random vectors x1 and x2,

E (E (y | x1,x2) | x1) = E (y | x1) .

Notice the way the law is applied. The inner expectation conditions on x1 and x2, while
the outer expectation conditions only on x1. The iterated expectation yields the simple answer
E (y | x1) , the expectation conditional on x1 alone. Sometimes we phrase this as: “The smaller
information set wins.”
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As an example

E (log(wage) | sex = man, race = white)P (race = white|sex = man)

+ E (log(wage) | sex = man, race = black)P (race = black|sex = man)

+ E (log(wage) | sex = man, race = other)P (race = other|sex = man)

= E (log(wage) | sex = man)

or numerically
3.07× 0.84 + 2.86× 0.08 + 3.03× 0.08 = 3.05.

A property of conditional expectations is that when you condition on a random vector x you
can effectively treat it as if it is constant. For example, E (x | x) = x and E (g (x) | x) = g (x) for
any function g(·). The general property is known as the Conditioning Theorem.

Theorem 2.3 Conditioning Theorem
If E |y| <∞ then

E (g (x) y | x) = g (x)E (y | x) . (2.5)

If in addition E |g (x) y| <∞ then

E (g (x) y) = E (g (x)E (y | x)) . (2.6)

The proofs of Theorems 2.1, 2.2 and 2.3 are given in Section 2.36.

2.8 CEF Error

The CEF error e is defined as the difference between y and the CEF evaluated at the random
vector x:

e = y −m(x).

By construction, this yields the formula

y = m(x) + e. (2.7)

In (2.7) it is useful to understand that the error e is derived from the joint distribution of (y,x),
and so its properties are derived from this construction.

Many authors in econometrics denote the CEF error using the Greek letter ε (epsilon). I do
not follow this convention since the error e is a random variable similar to y and x, and typically
use Latin characters for random variables.

A key property of the CEF error is that it has a conditional mean of zero. To see this, by the
linearity of expectations, the definition m(x) = E (y | x) and the Conditioning Theorem

E (e | x) = E ((y −m(x)) | x)

= E (y | x)− E (m(x) | x)

= m(x)−m(x)

= 0.

This fact can be combined with the law of iterated expectations to show that the unconditional
mean is also zero.

E (e) = E (E (e | x)) = E (0) = 0.

We state this and some other results formally.
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Theorem 2.4 Properties of the CEF error
If E |y| <∞ then

1. E (e | x) = 0.

2. E (e) = 0.

3. If E |y|r <∞ for r ≥ 1 then E |e|r <∞.

4. For any function h (x) such that E |h (x) e| <∞ then E (h (x) e) = 0.

The proof of the third result is deferred to Section 2.36.
The fourth result, whose proof is left to Exercise 2.3, implies that e is uncorrelated with any

function of the regressors.
The equations

y = m(x) + e

E (e | x) = 0

together imply that m(x) is the CEF of y given x. It is important to understand that this is not
a restriction. These equations hold true by definition.

The condition E (e | x) = 0 is implied by the definition of e as the difference between y and the
CEF m (x) . The equation E (e | x) = 0 is sometimes called a conditional mean restriction, since
the conditional mean of the error e is restricted to equal zero. The property is also sometimes called
mean independence, for the conditional mean of e is 0 and thus independent of x. However,
it does not imply that the distribution of e is independent of x. Sometimes the assumption “e is
independent of x”is added as a convenient simplification, but it is not generic feature of the con-
ditional mean. Typically and generally, e and x are jointly dependent, even though the conditional
mean of e is zero.

As an example, the contours of the joint density of e and experience are plotted in Figure 2.7
for the same population as Figure 2.6. Notice that the shape of the conditional distribution varies
with the level of experience.

As a simple example of a case where x and e are mean independent yet dependent, let e = xε
where x and ε are independent N(0, 1). Then conditional on x, the error e has the distribution
N(0, x2). Thus E (e | x) = 0 and e is mean independent of x, yet e is not fully independent of x.
Mean independence does not imply full independence.

2.9 Intercept-Only Model

A special case of the regression model is when there are no regressors x. In this case m(x) =
E (y) = µ, the unconditional mean of y. We can still write an equation for y in the regression
format:

y = µ+ e

E (e) = 0.

This is useful for it unifies the notation.

2.10 Regression Variance

An important measure of the dispersion about the CEF function is the unconditional variance
of the CEF error e. We write this as

σ2 = var (e) = E
(

(e− Ee)2
)

= E
(
e2
)
.
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Figure 2.7: Joint Density of Error e and Experience for white men with High School Education

Theorem 2.4.3 implies the following simple but useful result.

Theorem 2.5 If E
(
y2
)
<∞ then σ2 <∞.

We can call σ2 the regression variance or the variance of the regression error. The magnitude
of σ2 measures the amount of variation in y which is not “explained” or accounted for in the
conditional mean E (y | x) .

The regression variance depends on the regressors x. Consider two regressions

y = E (y | x1) + e1

y = E (y | x1,x2) + e2.

We write the two errors distinctly as e1 and e2 as they are different —changing the conditioning
information changes the conditional mean and therefore the regression error as well.

In our discussion of iterated expectations, we have seen that by increasing the conditioning
set, the conditional expectation reveals greater detail about the distribution of y. What is the
implication for the regression error?

It turns out that there is a simple relationship. We can think of the conditional mean E (y | x)
as the “explained portion”of y. The remainder e = y−E (y | x) is the “unexplained portion”. The
simple relationship we now derive shows that the variance of this unexplained portion decreases
when we condition on more variables. This relationship is monotonic in the sense that increasing
the amont of information always decreases the variance of the unexplained portion.
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Theorem 2.6 If E
(
y2
)
<∞ then

var (y) ≥ var (y − E (y | x1)) ≥ var (y − E (y | x1,x2)) .

Theorem 2.6 says that the variance of the difference between y and its conditional mean (weakly)
decreases whenever an additional variable is added to the conditioning information.

The proof of Theorem 2.6 is given in Section 2.36.

2.11 Best Predictor

Suppose that given a realized value of x, we want to create a prediction or forecast of y.We can
write any predictor as a function g (x) of x. The prediction error is the realized difference y−g(x).
A non-stochastic measure of the magnitude of the prediction error is the expectation of its square

E
(

(y − g (x))2
)
. (2.8)

We can define the best predictor as the function g (x) which minimizes (2.8). What function
is the best predictor? It turns out that the answer is the CEF m(x). This holds regardless of the
joint distribution of (y,x).

To see this, note that the mean squared error of a predictor g (x) is

E
(

(y − g (x))2
)

= E
(

(e+m (x)− g (x))2
)

= E
(
e2
)

+ 2E (e (m (x)− g (x))) + E
(

(m (x)− g (x))2
)

= E
(
e2
)

+ E
(

(m (x)− g (x))2
)

≥ E
(
e2
)

= E
(

(y −m (x))2
)

where the first equality makes the substitution y = m(x) + e and the third equality uses Theorem
2.4.4. The right-hand-side after the third equality is minimized by setting g (x) = m (x), yielding
the inequality in the fourth line. The minimum is finite under the assumption E

(
y2
)
<∞ as shown

by Theorem 2.5.
We state this formally in the following result.

Theorem 2.7 Conditional Mean as Best Predictor
If E

(
y2
)
<∞, then for any predictor g (x),

E
(

(y − g (x))2
)
≥ E

(
(y −m (x))2

)
where m (x) = E (y | x).

It may be helpful to consider this result in the context of the intercept-only model

y = µ+ e

E(e) = 0.

Theorem 2.7 shows that the best predictor for y (in the class of constants) is the unconditional
mean µ = E(y), in the sense that the mean minimizes the mean squared prediction error.
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2.12 Conditional Variance

While the conditional mean is a good measure of the location of a conditional distribution,
it does not provide information about the spread of the distribution. A common measure of the
dispersion is the conditional variance. We first give the general definition of the conditional
variance of a random variable w.

Definition 2.1 If E
(
w2
)
< ∞, the conditional variance of w given x

is
var (w | x) = E

(
(w − E (w | x))2 | x

)
.

Notice that the conditional variance is the conditional second moment, centered around the
conditional first moment. Given this definition, we define the conditional variance of the regression
error.

Definition 2.2 If E
(
e2
)
< ∞, the conditional variance of the regres-

sion error e is
σ2(x) = var (e | x) = E

(
e2 | x

)
.

Generally, σ2 (x) is a non-trivial function of x and can take any form subject to the restriction
that it is non-negative. One way to think about σ2(x) is that it is the conditional mean of e2

given x. Notice as well that σ2(x) = var (y | x) so it is equivalently the conditional variance of the
dependent variable.

The variance is in a different unit of measurement than the original variable. To convert the
variance back to the same unit of measure we define the conditional standard deviation as its
square root σ(x) =

√
σ2(x).

As an example of how the conditional variance depends on observables, compare the conditional
log wage densities for men and women displayed in Figure 2.3. The difference between the densities
is not purely a location shift, but is also a difference in spread. Specifically, we can see that the
density for men’s log wages is somewhat more spread out than that for women, while the density
for women’s wages is somewhat more peaked. Indeed, the conditional standard deviation for men’s
wages is 3.05 and that for women is 2.81. So while men have higher average wages, they are also
somewhat more dispersed.

The unconditional error variance and the conditional variance are related by the law of iterated
expectations

σ2 = E
(
e2
)

= E
(
E
(
e2 | x

))
= E

(
σ2(x)

)
.

That is, the unconditional error variance is the average conditional variance.
Given the conditional variance, we can define a rescaled error

ε =
e

σ(x)
. (2.9)

We can calculate that since σ(x) is a function of x

E (ε | x) = E
(

e

σ(x)

∣∣∣∣ x) =
1

σ(x)
E (e | x) = 0
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and

var (ε | x) = E
(
ε2 | x

)
= E

(
e2

σ2(x)

∣∣∣∣ x) =
1

σ2(x)
E
(
e2 | x

)
=
σ2(x)

σ2(x)
= 1.

Thus ε has a conditional mean of zero, and a conditional variance of 1.
Notice that (2.9) can be rewritten as

e = σ(x)ε.

and substituting this for e in the CEF equation (2.7), we find that

y = m(x) + σ(x)ε.

This is an alternative (mean-variance) representation of the CEF equation.
Many econometric studies focus on the conditional mean m(x) and either ignore the condi-

tional variance σ2(x), treat it as a constant σ2(x) = σ2, or treat it as a nuisance parameter (a
parameter not of primary interest). This is appropriate when the primary variation in the condi-
tional distribution is in the mean, but can be short-sighted in other cases. Dispersion is relevant
to many economic topics, including income and wealth distribution, economic inequality, and price
dispersion. Conditional dispersion (variance) can be a fruitful subject for investigation.

The perverse consequences of a narrow-minded focus on the mean has been parodied in a classic
joke:

An economist was standing with one foot in a bucket of boiling water
and the other foot in a bucket of ice. When asked how he felt, he
replied, “On average I feel just fine.”

Clearly, the economist in question ignored variance!

2.13 Homoskedasticity and Heteroskedasticity

An important special case obtains when the conditional variance σ2(x) is a constant and inde-
pendent of x. This is called homoskedasticity.

Definition 2.3 The error is homoskedastic if E
(
e2 | x

)
= σ2 does

not depend on x.

In the general case where σ2(x) depends on x we say that the error e is heteroskedastic.

Definition 2.4 The error is heteroskedastic if E
(
e2 | x

)
= σ2(x)

depends on x.

It is helpful to understand that the concepts homoskedasticity and heteroskedasticity concern
the conditional variance, not the unconditional variance. By definition, the unconditional variance
σ2 is a constant and independent of the regressors x. So when we talk about the variance as a
function of the regressors, we are talking about the conditional variance σ2(x).
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Some older or introductory textbooks describe heteroskedasticity as the case where “the vari-
ance of e varies across observations”. This is a poor and confusing definition. It is more constructive
to understand that heteroskedasticity means that the conditional variance σ2 (x) depends on ob-
servables.

Older textbooks also tend to describe homoskedasticity as a component of a correct regression
specification, and describe heteroskedasticity as an exception or deviance. This description has
influenced many generations of economists, but it is unfortunately backwards. The correct view
is that heteroskedasticity is generic and “standard”, while homoskedasticity is unusual and excep-
tional. The default in empirical work should be to assume that the errors are heteroskedastic, not
the converse.

In apparent contradiction to the above statement, we will still frequently impose the ho-
moskedasticity assumption when making theoretical investigations into the properties of estimation
and inference methods. The reason is that in many cases homoskedasticity greatly simplifies the
theoretical calculations, and it is therefore quite advantageous for teaching and learning. It should
always be remembered, however, that homoskedasticity is never imposed because it is believed to
be a correct feature of an empirical model, but rather because of its simplicity.

Heteroskedastic or Heteroscedastic?

The spelling of the words homoskedastic and heteroskedastic have
been somewhat controversial. Early econometrics textbooks were
split, with some using a “c”as in heteroscedastic and some “k”as in
heteroskedastic. McCulloch (1985) pointed out that the word is de-
rived from Greek roots. oµoιoς means “same”. ετερo means “other”
or “different”. σκεδαννυµι means “to scatter”. Since the proper
transliteration of the Greek letter κ in σκεδαννυµι is “k”, this im-
plies that the correct English spelling of the two words is with a “k”
as in homoskedastic and heteroskedastic.

2.14 Regression Derivative

One way to interpret the CEF m(x) = E (y | x) is in terms of how marginal changes in the
regressors x imply changes in the conditional mean of the response variable y. It is typical to
consider marginal changes in a single regressor, say x1, holding the remainder fixed. When a
regressor x1 is continuously distributed, we define the marginal effect of a change in x1, holding
the variables x2, ..., xk fixed, as the partial derivative of the CEF

∂

∂x1
m(x1, ..., xk).

When x1 is discrete we define the marginal effect as a discrete difference. For example, if x1 is
binary, then the marginal effect of x1 on the CEF is

m(1, x2, ..., xk)−m(0, x2, ..., xk).

We can unify the continuous and discrete cases with the notation

∇1m(x) =


∂

∂x1
m(x1, ..., xk), if x1 is continuous

m(1, x2, ..., xk)−m(0, x2, ..., xk), if x1 is binary.
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Collecting the k effects into one k× 1 vector, we define the regression derivative with respect to
x :

∇m(x) =


∇1m(x)
∇2m(x)

...
∇km(x)

 .
When all elements of x are continuous, then we have the simplification ∇m(x) =

∂

∂x
m(x), the

vector of partial derivatives.
There are two important points to remember concerning our definition of the regression deriv-

ative.
First, the effect of each variable is calculated holding the other variables constant. This is the

ceteris paribus concept commonly used in economics. But in the case of a regression derivative,
the conditional mean does not literally hold all else constant. It only holds constant the variables
included in the conditional mean. This means that the regression derivative depends on which
regressors are included. For example, in a regression of wages on education, experience, race and
sex, the regression derivative with respect to education shows the marginal effect of education on
mean wages, holding constant experience, race and sex. But it does not hold constant an individual’s
unobservable characteristics (such as ability), nor variables not included in the regression (such as
the quality of education).

Second, the regression derivative is the change in the conditional expectation of y, not the
change in the actual value of y for an individual. It is tempting to think of the regression derivative
as the change in the actual value of y, but this is not a correct interpretation. The regression
derivative ∇m(x) is the change in the actual value of y only if the error e is unaffected by the
change in the regressor x. We return to a discussion of causal effects in Section 2.30.

2.15 Linear CEF

An important special case is when the CEF m (x) = E (y | x) is linear in x. In this case we can
write the mean equation as

m(x) = x1β1 + x2β2 + · · ·+ xkβk + βk+1.

Notationally it is convenient to write this as a simple function of the vector x. An easy way to do
so is to augment the regressor vector x by listing the number “1”as an element. We call this the
“constant” and the corresponding coeffi cient is called the “intercept”. Equivalently, specify that
the final element10 of the vector x is xk = 1. Thus (2.2) has been redefined as the k × 1 vector

x =


x1

x2
...

xk−1

1

 . (2.10)

With this redefinition, the CEF is

m(x) = x1β1 + x2β2 + · · ·+ βk = x′β (2.11)

where

β =

 β1
...
βk


10The order doesn’t matter. It could be any element.
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is a k × 1 coeffi cient vector. This is the linear CEF model. It is also often called the linear
regression model, or the regression of y on x.

In the linear CEF model, the regression derivative is simply the coeffi cient vector. That is

∇m(x) = β.

This is one of the appealing features of the linear CEF model. The coeffi cients have simple and
natural interpretations as the marginal effects of changing one variable, holding the others constant.

Linear CEF Model

y = x′β + e

E (e | x) = 0

If in addition the error is homoskedastic, we call this the homoskedastic linear CEF model.

Homoskedastic Linear CEF Model

y = x′β + e

E (e | x) = 0

E
(
e2 | x

)
= σ2

2.16 Linear CEF with Nonlinear Effects

The linear CEF model of the previous section is less restrictive than it might appear, as we can
include as regressors nonlinear transformations of the original variables. In this sense, the linear
CEF framework is flexible and can capture many nonlinear effects.

For example, suppose we have two scalar variables x1 and x2. The CEF could take the quadratic
form

m(x1, x2) = x1β1 + x2β2 + x2
1β3 + x2

2β4 + x1x2β5 + β6. (2.12)

This equation is quadratic in the regressors (x1, x2) yet linear in the coeffi cients β = (β1, ..., β6)′.
We will descriptively call (2.12) a quadratic CEF, and yet (2.12) is also a linear CEF in the sense
of being linear in the coeffi cients. The key is to understand that (2.12) is quadratic in the variables
(x1, x2) yet linear in the coeffi cients β.

To simplify the expression, we define the transformations x3 = x2
1, x4 = x2

2, x5 = x1x2, and
x6 = 1, and redefine the regressor vector as x = (x1, ..., x6)′. With this redefinition,

m(x1, x2) = x′β

which is linear in β. For most econometric purposes (estimation and inference on β) the linearity
in β is all that is important.
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An exception is in the analysis of regression derivatives. In nonlinear equations such as (2.12),
the regression derivative should be defined with respect to the original variables, not with respect
to the transformed variables. Thus

∂

∂x1
m(x1, x2) = β1 + 2x1β3 + x2β5

∂

∂x2
m(x1, x2) = β2 + 2x2β4 + x1β5.

We see that in the model (2.12), the regression derivatives are not a simple coeffi cient, but are
functions of several coeffi cients plus the levels of (x1,x2). Consequently it is diffi cult to interpret
the coeffi cients individually. It is more useful to interpret them as a group.

We typically call β5 the interaction effect. Notice that it appears in both regression derivative
equations, and has a symmetric interpretation in each. If β5 > 0 then the regression derivative
with respect to x1 is increasing in the level of x2 (and the regression derivative with respect to x2

is increasing in the level of x1), while if β5 < 0 the reverse is true.

2.17 Linear CEF with Dummy Variables

When all regressors take a finite set of values, it turns out the CEF can be written as a linear
function of regressors.

This simplest example is a binary variable, which takes only two distinct values. For example,
in most data sets the variable sex takes only the values man and woman (or male and female).
Binary variables are extremely common in econometric applications, and are alternatively called
dummy variables or indicator variables.

Consider the simple case of a single binary regressor. In this case, the conditional mean can
only take two distinct values. For example,

E (y | sex) =


µ0 if sex=man

µ1 if sex=woman
.

To facilitate a mathematical treatment, we typically record dummy variables with the values {0, 1}.
For example

x1 =

{
0 if sex=man
1 if sex=woman

. (2.13)

Given this notation we can write the conditional mean as a linear function of the dummy variable
x1, that is

E (y | x1) = β1x1 + β2

where β1 = µ1 − µ0 and β2 = µ0. In this simple regression equation the intercept β2 is equal to
the conditional mean of y for the x1 = 0 subpopulation (men) and the slope β1 is equal to the
difference in the conditional means between the two subpopulations.

Equivalently, we could have defined x1 as

x1 =

{
1 if sex=man
0 if sex=woman

. (2.14)

In this case, the regression intercept is the mean for women (rather than for men) and the regression
slope has switched signs. The two regressions are equivalent but the interpretation of the coeffi cients
has changed. Therefore it is always important to understand the precise definitions of the variables,
and illuminating labels are helpful. For example, labelling x1 as “sex”does not help distinguish
between definitions (2.13) and (2.14). Instead, it is better to label x1 as “women”or “female” if
definition (2.13) is used, or as “men”or “male”if (2.14) is used.
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Now suppose we have two dummy variables x1 and x2. For example, x2 = 1 if the person is
married, else x2 = 0. The conditional mean given x1 and x2 takes at most four possible values:

E (y | x1, x2) =


µ00 if x1 = 0 and x2 = 0 (unmarried men)
µ01 if x1 = 0 and x2 = 1 (married men)
µ10 if x1 = 1 and x2 = 0 (unmarried women)
µ11 if x1 = 1 and x2 = 1 (married women)

.

In this case we can write the conditional mean as a linear function of x1, x2 and their product
x1x2 :

E (y | x1, x2) = β1x1 + β2x2 + β3x1x2 + β4

where β1 = µ10 − µ00, β2 = µ01 − µ00, β3 = µ11 − µ10 − µ01 + µ00, and β4 = µ00.
We can view the coeffi cient β1 as the effect of sex on expected log wages for unmarried wage

earners, the coeffi cient β2 as the effect of marriage on expected log wages for men wage earners, and
the coeffi cient β3 as the difference between the effects of marriage on expected log wages among
women and among men. Alternatively, it can also be interpreted as the difference between the effects
of sex on expected log wages among married and non-married wage earners. Both interpretations
are equally valid. We often describe β3 as measuring the interaction between the two dummy
variables, or the interaction effect, and describe β3 = 0 as the case when the interaction effect is
zero.

In this setting we can see that the CEF is linear in the three variables (x1, x2, x1x2). Thus to
put the model in the framework of Section 2.15, we would define the regressor x3 = x1x2 and the
regressor vector as

x =


x1

x2

x3

1

 .

So even though we started with only 2 dummy variables, the number of regressors (including the
intercept) is 4.

If there are 3 dummy variables x1, x2, x3, then E (y | x1, x2, x3) takes at most 23 = 8 distinct
values and can be written as the linear function

E (y | x1, x2, x3) = β1x1 + β2x2 + β3x3 + β4x1x2 + β5x1x3 + β6x2x3 + β7x1x2x3 + β8

which has eight regressors including the intercept.
In general, if there are p dummy variables x1, ..., xp then the CEF E (y | x1, x2, ..., xp) takes

at most 2p distinct values, and can be written as a linear function of the 2p regressors including
x1, x2, ..., xp and all cross-products. This might be excessive in practice if p is modestly large. In
the next section we will discuss projection approximations which yield more parsimonious parame-
terizations.

We started this section by saying that the conditional mean is linear whenever all regressors
take only a finite number of possible values. How can we see this? Take a categorical variable,
such as race. For example, we earlier divided race into three categories. We can record categorical
variables using numbers to indicate each category, for example

x3 =


1 if white
2 if black
3 if other

.

When doing so, the values of x3 have no meaning in terms of magnitude, they simply indicate the
relevant category.
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When the regressor is categorical the conditional mean of y given x3 takes a distinct value for
each possibility:

E (y | x3) =


µ1 if x3 = 1
µ2 if x3 = 2
µ3 if x3 = 3

.

This is not a linear function of x3 itself, but it can be made a linear function by constructing
dummy variables for two of the three categories. For example

x4 =

{
1 if black
0 if not black

x5 =

{
1 if other
0 if not other

.

In this case, the categorical variable x3 is equivalent to the pair of dummy variables (x4, x5). The
explicit relationship is

x3 =


1 if x4 = 0 and x5 = 0
2 if x4 = 1 and x5 = 0
3 if x4 = 0 and x5 = 1

.

Given these transformations, we can write the conditional mean of y as a linear function of x4 and
x5

E (y | x3) = E (y | x4, x5) = β1x4 + β2x5 + β3.

We can write the CEF as either E (y | x3) or E (y | x4, x5) (they are equivalent), but it is only linear
as a function of x4 and x5.

This setting is similar to the case of two dummy variables, with the difference that we have not
included the interaction term x4x5. This is because the event {x4 = 1 and x5 = 1} is empty by
construction, so x4x5 = 0 by definition.

2.18 Best Linear Predictor

While the conditional mean m(x) = E (y | x) is the best predictor of y among all functions
of x, its functional form is typically unknown. In particular, the linear CEF model is empirically
unlikely to be accurate unless x is discrete and low-dimensional so all interactions are included.
Consequently in most cases it is more realistic to view the linear specification (2.11) as an approx-
imation. In this section we derive a specific approximation with a simple interpretation.

Theorem 2.7 showed that the conditional meanm (x) is the best predictor in the sense that it has
the lowest mean squared error among all predictors. By extension, we can define an approximation
to the CEF by the linear function with the lowest mean squared error among all linear predictors.

For this derivation we require the following regularity condition.

Assumption 2.1

1. E
(
y2
)
<∞.

2. E ‖x‖2 <∞.

3. Qxx = E (xx′) is positive definite.



CHAPTER 2. CONDITIONAL EXPECTATION AND PROJECTION 33

In Assumption 2.1.2 we use the notation ‖x‖ = (x′x)1/2 to denote the Euclidean length of the
vector x.

The first two parts of Assumption 2.1 imply that the variables y and x have finite means,
variances, and covariances. The third part of the assumption is more technical, and its role will
become apparent shortly. It is equivalent to imposing that the columns of the matrixQxx = E (xx′)
are linearly independent, or that the matrix is invertible.

A linear predictor for y is a function of the form x′β for some β ∈ Rk. The mean squared
prediction error is

S(β) = E
((
y − x′β

)2)
. (2.15)

The best linear predictor of y given x, written P(y | x), is found by selecting the vector β to
minimize S(β).

Definition 2.5 The Best Linear Predictor of y given x is

P(y | x) = x′β

where β minimizes the mean squared prediction error

S(β) = E
((
y − x′β

)2)
.

The minimizer
β = argmin

b∈Rk
S(b) (2.16)

is called the Linear Projection Coeffi cient.

We now calculate an explicit expression for its value. The mean squared prediction error (2.15)
can be written out as a quadratic function of β :

S(β) = E
(
y2
)
− 2β′E (xy) + β′E

(
xx′

)
β. (2.17)

The quadratic structure of S(β) means that we can solve explicitly for the minimizer. The first-
order condition for minimization (from Appendix A.20) is

0 =
∂

∂β
S(β) = −2E (xy) + 2E

(
xx′
)
β. (2.18)

Rewriting (2.18) as
2E (xy) = 2E

(
xx′
)
β

and dividing by 2, this equation takes the form

Qxy = Qxxβ (2.19)

where Qxy = E (xy) is k × 1 and Qxx = E (xx′) is k × k. The solution is found by inverting the
matrix Qxx, and is written

β = Q−1
xxQxy

or
β =

(
E
(
xx′
))−1 E (xy) . (2.20)

It is worth taking the time to understand the notation involved in the expression (2.20). Qxx is a
k × k matrix and Qxy is a k × 1 column vector. Therefore, alternative expressions such as E(xy)

E(xx′)
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or E (xy) (E (xx′))−1 are incoherent and incorrect. We also can now see the role of Assumption
2.1.3. It is equivalent to assuming that Qxx has an inverse Q

−1
xx which is necessary for the normal

equations (2.19) to have a solution or equivalently for (2.20) to be uniquely defined. In the absence
of Assumption 2.1.3 there could be multiple solutions to the equation (2.19).

We now have an explicit expression for the best linear predictor:

P(y | x) = x′
(
E
(
xx′
))−1 E (xy) .

This expression is also referred to as the linear projection of y on x.
The projection error is

e = y − x′β. (2.21)

This equals the error (2.7) from the regression equation when (and only when) the conditional
mean is linear in x, otherwise they are distinct.

Rewriting, we obtain a decomposition of y into linear predictor and error

y = x′β + e. (2.22)

In general we call equation (2.22) or x′β the best linear predictor of y given x, or the linear
projection of y on x. Equation (2.22) is also often called the regression of y on x but this can
sometimes be confusing as economists use the term regression in many contexts. (Recall that we
said in Section 2.15 that the linear CEF model is also called the linear regression model.)

An important property of the projection error e is

E (xe) = 0. (2.23)

To see this, using the definitions (2.21) and (2.20) and the matrix properties AA−1 = I and
Ia = a,

E (xe) = E
(
x
(
y − x′β

))
= E (xy)− E

(
xx′
) (
E
(
xx′
))−1 E (xy)

= 0 (2.24)

as claimed.
Equation (2.23) is a set of k equations, one for each regressor. In other words, (2.23) is equivalent

to
E (xje) = 0 (2.25)

for j = 1, ..., k. As in (2.10), the regressor vector x typically contains a constant, e.g. xk = 1. In
this case (2.25) for j = k is the same as

E (e) = 0. (2.26)

Thus the projection error has a mean of zero when the regressor vector contains a constant. (When
x does not have a constant, (2.26) is not guaranteed. As it is desirable for e to have a zero mean,
this is a good reason to always include a constant in any regression model.)

It is also useful to observe that since cov(xj , e) = E (xje) − E (xj)E (e) , then (2.25)-(2.26)
together imply that the variables xj and e are uncorrelated.

This completes the derivation of the model. We summarize some of the most important prop-
erties.
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Theorem 2.8 Properties of Linear Projection Model
Under Assumption 2.1,

1. The moments E (xx′) and E (xy) exist with finite elements.

2. The Linear Projection Coeffi cient (2.16) exists, is unique, and equals

β =
(
E
(
xx′
))−1 E (xy) .

3. The best linear predictor of y given x is

P(y | x) = x′
(
E
(
xx′
))−1 E (xy) .

4. The projection error e = y − x′β exists and satisfies

E
(
e2
)
<∞

and
E (xe) = 0.

5. If x contains an constant, then

E (e) = 0.

6. If E |y|r <∞ and E ‖x‖r <∞ for r ≥ 2 then E |e|r <∞.

A complete proof of Theorem 2.8 is given in Section 2.36.
It is useful to reflect on the generality of Theorem 2.8. The only restriction is Assumption 2.1.

Thus for any random variables (y,x) with finite variances we can define a linear equation (2.22)
with the properties listed in Theorem 2.8. Stronger assumptions (such as the linear CEF model) are
not necessary. In this sense the linear model (2.22) exists quite generally. However, it is important
not to misinterpret the generality of this statement. The linear equation (2.22) is defined as the
best linear predictor. It is not necessarily a conditional mean, nor a parameter of a structural or
causal economic model.

Linear Projection Model

y = x′β + e.

E (xe) = 0

β =
(
E
(
xx′
))−1 E (xy)
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Invertibility and Identification

The linear projection coeffi cient β = (E (xx′))−1 E (xy) exists and is
unique as long as the k×k matrix Qxx = E (xx′) is invertible. The matrix
Qxx is sometimes called the design matrix, as in experimental settings
the researcher is able to control Qxx by manipulating the distribution of
the regressors x.

Observe that for any non-zero α ∈ Rk,

α′Qxxα = E
(
α′xx′α

)
= E

(
α′x

)2 ≥ 0

so Qxx by construction is positive semi-definite, conventionally written as
Qxx ≥ 0. The assumption that it is positive definite means that this is a
strict inequality, E (α′x)2 > 0. This is conventionally written as Qxx > 0.
This condition means that there is no non-zero vector α such that α′x = 0
identically. Positive definite matrices are invertible. Thus when Qxx > 0
then β = (E (xx′))−1 E (xy) exists and is uniquely defined. In other words,
if we can exclude the possibility that a linear function of x is degenerate,
then β is uniquely defined.

Theorem 2.5 shows that the linear projection coeffi cient β is identified
(uniquely determined) under Assumption 2.1. The key is invertibility of
Qxx. Otherwise, there is no unique solution to the equation

Qxxβ = Qxy. (2.27)

When Qxx is not invertible there are multiple solutions to (2.27). In this
case the coeffi cient β is not identified as it does not have a unique value.
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Minimization

The mean squared prediction error (2.17) is a function with vector
argument of the form

f(x) = a− 2b′x+ x′Cx

where C > 0. For any function of this form, the unique minimizer is

x = C−1b. (2.28)

To see that this is the unique minimizer we present two proofs. The first
uses matrix calculus. From Appendix A.20

∂

∂x

(
b′x
)

= b (2.29)

∂

∂x

(
x′Cx

)
= 2Cx (2.30)

∂2

∂x∂x′
(
x′Cx

)
= 2C. (2.31)

Using (2.29) and (2.30), we find

∂

∂x
f(x) = −2b+ 2Cx.

The first-order condition for minimization sets this derivative equal to zero.
Thus the solution satisfies −2b + 2Cx = 0. Solving for x we find (2.28).
Using (2.31) we also find

∂2

∂x∂x′
f(x) = 2C > 0

which is the second-order condition for minimization. This shows that
(2.28) is the unique minimizer of f(x).
Our second proof is algebraic. Re-write f(x) as

f(x) =
(
a− b′C−1b

)
+
(
x−C−1b

)′
C
(
x−C−1b

)
.

The first term does not depend on x so does not affect the minimizer. The
second term is a quadratic form in a positive definite matrix. This means
that for any non-zero α, α′Cα > 0. Thus for x 6= C−1b, the second-term
is strictly positive, yet for x = C−1b this term equals zero. It is therefore
minimized at x = C−1b as claimed.

2.19 Illustrations of Best Linear Predictor

We illustrate the best linear predictor (projection) using three log wage equations introduced
in earlier sections.

For our first example, we consider a model with the two dummy variables for sex and race
similar to Table 2.1. As we learned in Section 2.17, the entries in this table can be equivalently
expressed by a linear CEF. For simplicity, let’s consider the CEF of log(wage) as a function of
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Black and Female.

E(log(wage) | Black, Female) = −0.20Black− 0.24Female+ 0.10Black×Female+ 3.06. (2.32)

This is a CEF as the variables are binary and all interactions are included.
Now consider a simpler model omitting the interaction effect. This is the linear projection on

the variables Black and Female

P(log(wage) | Black, Female) = −0.15Black − 0.23Female+ 3.06. (2.33)

What is the difference? The full CEF (2.32) shows that the race gap is differentiated by sex: it
is 20% for black men (relative to non-black men) and 10% for black women (relative to non-black
women). The projection model (2.33) simplifies this analysis, calculating an average 15% wage gap
for blacks, ignoring the role of sex. Notice that this is despite the fact that the sex variable is
included in (2.33).
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Figure 2.8: Projections of log(wage) onto Education

For our second example we consider the CEF of log wages as a function of years of education
for white men which was illustrated in Figure 2.5 and is repeated in Figure 2.8. Superimposed on
the figure are two projections. The first (given by the dashed line) is the linear projection of log
wages on years of education

P(log(wage) | Education) = 0.11Education+ 1.5.

This simple equation indicates an average 11% increase in wages for every year of education. An
inspection of the Figure shows that this approximation works well for education≥ 9, but under-
predicts for individuals with lower levels of education. To correct this imbalance we use a linear
spline equation which allows different rates of return above and below 9 years of education:

P (log(wage) | Education, (Education− 9)× 1 (Education > 9))

= 0.02Education+ 0.10× (Education− 9)× 1 (Education > 9) + 2.3.
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This equation is displayed in Figure 2.8 using the solid line, and appears to fit much better. It
indicates a 2% increase in mean wages for every year of education below 9, and a 12% increase in
mean wages for every year of education above 9. It is still an approximation to the conditional
mean but it appears to be fairly reasonable.
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Figure 2.9: Linear and Quadratic Projections of log(wage) onto Experience

For our third example we take the CEF of log wages as a function of years of experience for
white men with 12 years of education, which was illustrated in Figure 2.6 and is repeated as the
solid line in Figure 2.9. Superimposed on the figure are two projections. The first (given by the
dot-dashed line) is the linear projection on experience

P(log(wage) | Experience) = 0.011Experience+ 2.5

and the second (given by the dashed line) is the linear projection on experience and its square

P(log(wage) | Experience) = 0.046Experience− 0.0007Experience2 + 2.3.

It is fairly clear from an examination of Figure 2.9 that the first linear projection is a poor approx-
imation. It over-predicts wages for young and old workers, and under-predicts for the rest. Most
importantly, it misses the strong downturn in expected wages for older wage-earners. The second
projection fits much better. We can call this equation a quadratic projection since the function
is quadratic in experience.

2.20 Linear Predictor Error Variance

As in the CEF model, we define the error variance as

σ2 = E
(
e2
)
.
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Setting Qyy = E
(
y2
)
and Qyx = E (yx′) we can write σ2 as

σ2 = E
((
y − x′β

)2)
= E

(
y2
)
− 2E

(
yx′
)
β + β′E

(
xx′
)
β

= Qyy − 2QyxQ
−1
xxQxy +QyxQ

−1
xxQxxQ

−1
xxQxy

= Qyy −QyxQ
−1
xxQxy

def
= Qyy·x. (2.34)

One useful feature of this formula is that it shows that Qyy·x = Qyy − QyxQ
−1
xxQxy equals the

variance of the error from the linear projection of y on x.

2.21 Regression Coeffi cients

Sometimes it is useful to separate the constant from the other regressors, and write the linear
projection equation in the format

y = x′β + α+ e (2.35)

where α is the intercept and x does not contain a constant.
Taking expectations of this equation, we find

E (y) = E
(
x′β

)
+ E (α) + E (e)

or
µy = µ′xβ + α

where µy = E (y) and µx = E (x) , since E (e) = 0 from (2.26). (While x does not contain a
constant, the equation does so (2.26) still applies.) Rearranging, we find

α = µy − µ′xβ.

Subtracting this equation from (2.35) we find

y − µy = (x− µx)′ β + e, (2.36)

a linear equation between the centered variables y − µy and x − µx. (They are centered at their
means, so are mean-zero random variables.) Because x− µx is uncorrelated with e, (2.36) is also
a linear projection, thus by the formula for the linear projection model,

β =
(
E
(
(x− µx) (x− µx)′

))−1 E ((x− µx) (y − µy))
= var (x)−1 cov (x, y)

a function only of the covariances11 of x and y.

Theorem 2.9 In the linear projection model

y = x′β + α+ e,

then
α = µy − µ′xβ (2.37)

and
β = var (x)−1 cov (x, y) . (2.38)

11The covariance matrix between vectors x and z is cov (x,z) = E
(
(x− Ex) (z − Ez)′

)
. The (co)variance

matrix of the vector x is var (x) = cov (x,x) = E
(
(x− Ex) (x− Ex)′

)
.
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2.22 Regression Sub-Vectors

Let the regressors be partitioned as

x =

(
x1

x2

)
. (2.39)

We can write the projection of y on x as

y = x′β + e

= x′1β1 + x′2β2 + e (2.40)

E (xe) = 0.

In this section we derive formula for the sub-vectors β1 and β2.
Partition Qxx conformably with x

Qxx =

[
Q11 Q12

Q21 Q22

]
=

[
E (x1x

′
1) E (x1x

′
2)

E (x2x
′
1) E (x2x

′
2)

]
and similarly Qxy

Qxy =

[
Q1y

Q2y

]
=

[
E (x1y)
E (x2y)

]
.

By the partitioned matrix inversion formula (A.3)

Q−1
xx =

[
Q11 Q12

Q21 Q22

]−1
def
=

[
Q11 Q12

Q21 Q22

]
=

[
Q−1

11·2 −Q−1
11·2Q12Q

−1
22

−Q−1
22·1Q21Q

−1
11 Q−1

22·1

]
. (2.41)

where Q11·2
def
= Q11 −Q12Q

−1
22 Q21 and Q22·1

def
= Q22 −Q21Q

−1
11 Q12. Thus

β =

(
β1

β2

)
=

[
Q−1

11·2 −Q−1
11·2Q12Q

−1
22

−Q−1
22·1Q21Q

−1
11 Q−1

22·1

] [
Q1y

Q2y

]
=

(
Q−1

11·2
(
Q1y −Q12Q

−1
22 Q2y

)
Q−1

22·1
(
Q2y −Q21Q

−1
11 Q1y

) )
=

(
Q−1

11·2Q1y·2
Q−1

22·1Q2y·1

)
.

We have shown that

β1 = Q−1
11·2Q1y·2

β2 = Q−1
22·1Q2y·1.

2.23 Coeffi cient Decomposition

In the previous section we derived formulae for the coeffi cient sub-vectors β1 and β2.We now use
these formulae to give a useful interpretation of the coeffi cients in terms of an iterated projection.

Take equation (2.40) for the case dim(x1) = 1 so that β1 ∈ R.

y = x1β1 + x′2β2 + e. (2.42)
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Now consider the projection of x1 on x2 :

x1 = x′2γ2 + u1

E (x2u1) = 0.

From (2.20) and (2.34), γ2 = Q−1
22 Q21 and Eu2

1 = Q11·2 = Q11−Q12Q
−1
22 Q21.We can also calculate

that

E (u1y) = E
((
x1 − γ ′2x2

)
y
)

= E (x1y)− γ ′2E (x2y) = Q1y −Q12Q
−1
22 Q2y = Q1y·2.

We have found that

β1 = Q−1
11·2Q1y·2 =

E (u1y)

E
(
u2

1

)
the coeffi cient from the simple regression of y on u1.

What this means is that in the multivariate projection equation (2.42), the coeffi cient β1 equals
the projection coeffi cient from a regression of y on u1, the error from a projection of x1 on the
other regressors x2. The error u1 can be thought of as the component of x1 which is not linearly
explained by the other regressors. Thus the coeffi cient β1 equals the linear effect of x1 on y, after
stripping out the effects of the other variables.

There was nothing special in the choice of the variable x1. This derivation applies symmetrically
to all coeffi cients in a linear projection. Each coeffi cient equals the simple regression of y on the
error from a projection of that regressor on all the other regressors. Each coeffi cient equals the
linear effect of that variable on y, after linearly controlling for all the other regressors.

2.24 Omitted Variable Bias

Again, let the regressors be partitioned as in (2.39). Consider the projection of y on x1 only.
Perhaps this is done because the variables x2 are not observed. This is the equation

y = x′1γ1 + u (2.43)

E (x1u) = 0.

Notice that we have written the coeffi cient on x1 as γ1 rather than β1 and the error as u rather
than e. This is because (2.43) is different than (2.40). Goldberger (1991) introduced the catchy
labels long regression for (2.40) and short regression for (2.43) to emphasize the distinction.

Typically, β1 6= γ1, except in special cases. To see this, we calculate

γ1 =
(
E
(
x1x

′
1

))−1 E (x1y)

=
(
E
(
x1x

′
1

))−1 E
(
x1

(
x′1β1 + x′2β2 + e

))
= β1 +

(
E
(
x1x

′
1

))−1 E
(
x1x

′
2

)
β2

= β1 + Γ12β2

where Γ12 = Q−1
11 Q12 is the coeffi cient matrix from a projection of x2 on x1, where we use the

notation from Section 2.22.
Observe that γ1 = β1 + Γ12β2 6= β1 unless Γ12 = 0 or β2 = 0. Thus the short and long

regressions have different coeffi cients on x1. They are the same only under one of two conditions.
First, if the projection of x2 on x1 yields a set of zero coeffi cients (they are uncorrelated), or second,
if the coeffi cient on x2 in (2.40) is zero. In general, the coeffi cient in (2.43) is γ1 rather than β1.
The difference Γ12β2 between γ1 and β1 is known as omitted variable bias. It is the consequence
of omission of a relevant correlated variable.

To avoid omitted variables bias the standard advice is to include all potentially relevant variables
in estimated models. By construction, the general model will be free of such bias. Unfortunately
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in many cases it is not feasible to completely follow this advice as many desired variables are
not observed. In this case, the possibility of omitted variables bias should be acknowledged and
discussed in the course of an empirical investigation.

For example, suppose y is log wages, x1 is education, and x2 is intellectual ability. It seems
reasonable to suppose that education and intellectual ability are positively correlated (highly able
individuals attain higher levels of education) which means Γ12 > 0. It also seems reasonable to
suppose that conditional on education, individuals with higher intelligence will earn higher wages
on average, so that β2 > 0. This implies that Γ12β2 > 0 and γ1 = β1 + Γ12β2 > β1. Therefore,
it seems reasonable to expect that in a regression of wages on education with ability omitted, the
coeffi cient on education is higher than in a regression where ability is included. In other words,
in this context the omitted variable biases the regression coeffi cient upwards. It is possible, for
example, that β1 = 0 so that education has no direct effect on wages yet γ1 = Γ12β2 > 0 meaning
that the regression coeffi cient on education alone is positive, but is a consequence of the unmodeled
correlation between education and intellectual ability.

Unfortunately the above simple characterization of omitted variable bias does not immediately
carry over to more complicated settings, as discovered by Luca, Magnus, and Peracchi (2018). For
example, suppose we compare three nested projections

y = x′1γ1 + u1

y = x′1δ1 + x′2δ2 + u2

y = x′1β1 + x′2β2 + x′3β3 + e.

We can call them the short, medium, and long regressions. Suppose that the parameter of interest
is β1 in the long regression. We are interested in the consequences of omitting x3 when estimating
the medium regression, and of omitting both x2 and x3 when estimating the short regression. In
particular we are interested in the question: Is it better to estimate the short or medium regression,
given that both omit x3? Intuition suggests that the medium regression should be “less biased”
but it is worth investigating in greater detail. By similar calculations to those above, we find that

γ1 = β1 + Γ12β2 + Γ13β3

δ1 = β1 + Γ13·2β3

where Γ13·2 = Q−1
11·2Q13·2 using the notation from Section 2.22.

We see that the bias in the short regression coeffi cient is Γ12β2 + Γ13β3 which depends on both
β2 and β3, while that for the medium regression coeffi cient is Γ13·2β3 which only depends on β3.
So the bias for the medium regression is less complicated, and intuitively seems more likely to be
smaller than that of the short regression. However it is impossible to strictly rank the two. It is
quite possible that γ1 is less biased than δ1. Thus as a general rule it is strictly impossible to state
that estimation of the medium regression will be less biased than estimation of the short regression.

2.25 Best Linear Approximation

There are alternative ways we could construct a linear approximation x′β to the conditional
mean m(x). In this section we show that one alternative approach turns out to yield the same
answer as the best linear predictor.

We start by defining the mean-square approximation error of x′β to m(x) as the expected
squared difference between x′β and the conditional mean m(x)

d(β) = E
((
m(x)− x′β

)2)
.

The function d(β) is a measure of the deviation of x′β from m(x). If the two functions are identical
then d(β) = 0, otherwise d(β) > 0.We can also view the mean-square difference d(β) as a density-
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weighted average of the function (m(x)− x′β)2 , since

d(β) =

∫
Rk

(
m(x)− x′β

)2
fx(x)dx

where fx(x) is the marginal density of x.
We can then define the best linear approximation to the conditional m(x) as the function x′β

obtained by selecting β to minimize d(β) :

β = argmin
b∈Rk

d(b). (2.44)

Similar to the best linear predictor we are measuring accuracy by expected squared error. The
difference is that the best linear predictor (2.16) selects β to minimize the expected squared predic-
tion error, while the best linear approximation (2.44) selects β to minimize the expected squared
approximation error.

Despite the different definitions, it turns out that the best linear predictor and the best linear
approximation are identical. By the same steps as in (2.18) plus an application of conditional
expectations we can find that

β =
(
E
(
xx′
))−1 E (xm(x)) (2.45)

=
(
E
(
xx′
))−1 E (xy) (2.46)

(see Exercise 2.19). Thus (2.44) equals (2.16). We conclude that the definition (2.44) can be viewed
as an alternative motivation for the linear projection coeffi cient.

2.26 Regression to the Mean

The term regression originated in an influential paper by Francis Galton (1886), where he
examined the joint distribution of the stature (height) of parents and children. Effectively, he was
estimating the conditional mean of children’s height given their parent’s height. Galton discovered
that this conditional mean was approximately linear with a slope of 2/3. This implies that on
average a child’s height is more mediocre (average) than his or her parent’s height. Galton called
this phenomenon regression to the mean, and the label regression has stuck to this day to
describe most conditional relationships.

One of Galton’s fundamental insights was to recognize that if the marginal distributions of y
and x are the same (e.g. the heights of children and parents in a stable environment) then the
regression slope in a linear projection is always less than one.

To be more precise, take the simple linear projection

y = xβ + α+ e (2.47)

where y equals the height of the child and x equals the height of the parent. Assume that y and x
have the same mean, so that µy = µx = µ. Then from (2.37)

α = (1− β)µ

so we can write the linear projection (2.47) as

P (y | x) = (1− β)µ+ xβ.

This shows that the projected height of the child is a weighted average of the population average
height µ and the parent’s height x, with the weight equal to the regression slope β. When the
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height distribution is stable across generations, so that var(y) = var(x), then this slope is the
simple correlation of y and x. Using (2.38)

β =
cov (x, y)

var(x)
= corr(x, y).

By the Cauchy-Schwarz inequality (B.29), −1 ≤ corr(x, y) ≤ 1, with corr(x, y) = 1 only in the
degenerate case y = x. Thus if we exclude degeneracy, β is strictly less than 1.

This means that on average a child’s height is more mediocre (closer to the population average)
than the parent’s.

Sir Francis Galton

Sir Francis Galton (1822-1911) of England was one of the leading figures in
late 19th century statistics. In addition to inventing the concept of regres-
sion, he is credited with introducing the concepts of correlation, the standard
deviation, and the bivariate normal distribution. His work on heredity made
a significant intellectual advance by examing the joint distributions of ob-
servables, allowing the application of the tools of mathematical statistics to
the social sciences.

A common error —known as the regression fallacy —is to infer from β < 1 that the population
is converging, meaning that its variance is declining towards zero. This is a fallacy because we
derived the implication β < 1 under the assumption of constant means and variances. So certainly
β < 1 does not imply that the variance y is less than than the variance of x.

Another way of seeing this is to examine the conditions for convergence in the context of equation
(2.47). Since x and e are uncorrelated, it follows that

var(y) = β2 var(x) + var(e).

Then var(y) < var(x) if and only if

β2 < 1− var(e)

var(x)

which is not implied by the simple condition |β| < 1.
The regression fallacy arises in related empirical situations. Suppose you sort families into groups

by the heights of the parents, and then plot the average heights of each subsequent generation over
time. If the population is stable, the regression property implies that the plots lines will converge
—children’s height will be more average than their parents. The regression fallacy is to incorrectly
conclude that the population is converging. A message to be learned from this example is that such
plots are misleading for inferences about convergence.

The regression fallacy is subtle. It is easy for intelligent economists to succumb to its temptation.
A famous example is The Triumph of Mediocrity in Business by Horace Secrist, published in 1933.
In this book, Secrist carefully and with great detail documented that in a sample of department
stores over 1920-1930, when he divided the stores into groups based on 1920-1921 profits, and
plotted the average profits of these groups for the subsequent 10 years, he found clear and persuasive
evidence for convergence “toward mediocrity”. Of course, there was no discovery —regression to
the mean is a necessary feature of stable distributions.
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2.27 Reverse Regression

Galton noticed another interesting feature of the bivariate distribution. There is nothing special
about a regression of y on x. We can also regress x on y. (In his heredity example this is the best
linear predictor of the height of parents given the height of their children.) This regression takes
the form

x = yβ∗ + α∗ + e∗. (2.48)

This is sometimes called the reverse regression. In this equation, the coeffi cients α∗, β∗ and
error e∗ are defined by linear projection. In a stable population we find that

β∗ = corr(x, y) = β

α∗ = (1− β)µ = α

which are exactly the same as in the projection of y on x! The intercept and slope have exactly the
same values in the forward and reverse projections!

While this algebraic discovery is quite simple, it is counter-intuitive. Instead, a common yet
mistaken guess for the form of the reverse regression is to take the equation (2.47), divide through
by β and rewrite to find the equation

x = y
1

β
− α

β
− 1

β
e (2.49)

suggesting that the projection of x on y should have a slope coeffi cient of 1/β instead of β, and
intercept of −α/β rather than α. What went wrong? Equation (2.49) is perfectly valid, because
it is a simple manipulation of the valid equation (2.47). The trouble is that (2.49) is neither a
CEF nor a linear projection. Inverting a projection (or CEF) does not yield a projection (or CEF).
Instead, (2.48) is a valid projection, not (2.49).

In any event, Galton’s finding was that when the variables are standardized, the slope in both
projections (y on x, and x and y) equals the correlation, and both equations exhibit regression to
the mean. It is not a causal relation, but a natural feature of all joint distributions.

2.28 Limitations of the Best Linear Projection

Let’s compare the linear projection and linear CEF models.
From Theorem 2.4.4 we know that the CEF error has the property E (xe) = 0. Thus a linear

CEF is the best linear projection. However, the converse is not true as the projection error does not
necessarily satisfy E (e | x) = 0. Furthermore, the linear projection may be a poor approximation
to the CEF.

To see these points in a simple example, suppose that the true process is y = x + x2 with
x ∼ N(0, 1). In this case the true CEF is m(x) = x + x2 and there is no error. Now consider the
linear projection of y on x and a constant, namely the model y = βx + α + u. Since x ∼ N(0, 1)
then x and x2 are uncorrelated and the linear projection takes the form P (y | x) = x+ 1. This is
quite different from the true CEF m(x) = x+ x2. The projection error equals e = x2 − 1, which is
a deterministic function of x, yet is uncorrelated with x. We see in this example that a projection
error need not be a CEF error, and a linear projection can be a poor approximation to the CEF.

Another defect of linear projection is that it is sensitive to the marginal distribution of the
regressors when the conditional mean is non-linear. We illustrate the issue in Figure 2.10 for a
constructed12 joint distribution of y and x. The solid line is the non-linear CEF of y given x. The
data are divided in two groups —Group 1 and Group 2 —which have different marginal distributions

12The x in Group 1 are N(2, 1) and those in Group 2 are N(4, 1), and the conditional distribution of y given x is
N(m(x), 1) where m(x) = 2x− x2/6.
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Figure 2.10: Conditional Mean and Two Linear Projections

for the regressor x, and Group 1 has a lower mean value of x than Group 2. The separate linear
projections of y on x for these two groups are displayed in the Figure by the dashed lines. These
two projections are distinct approximations to the CEF. A defect with linear projection is that it
leads to the incorrect conclusion that the effect of x on y is different for individuals in the two
groups. This conclusion is incorrect because in fact there is no difference in the conditional mean
function. The apparent difference is a by-product of a linear approximation to a nonlinear mean,
combined with different marginal distributions for the conditioning variables.

2.29 Random Coeffi cient Model

A model which is notationally similar to but conceptually distinct from the linear CEF model
is the linear random coeffi cient model. It takes the form

y = x′η

where the individual-specific coeffi cient η is random and independent of x. For example, if x is
years of schooling and y is log wages, then η is the individual-specific returns to schooling. If
a person obtains an extra year of schooling, η is the actual change in their wage. The random
coeffi cient model allows the returns to schooling to vary in the population. Some individuals might
have a high return to education (a high η) and others a low return, possibly 0, or even negative.

In the linear CEF model the regressor coeffi cient equals the regression derivative —the change
in the conditional mean due to a change in the regressors, β = ∇m(x). This is not the effect on a
given individual, it is the effect on the population average. In contrast, in the random coeffi cient
model, the random vector η = ∇ (x′η) is the true causal effect —the change in the response variable
y itself due to a change in the regressors.
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It is interesting, however, to discover that the linear random coeffi cient model implies a linear
CEF. To see this, let β and Σ denote the mean and covariance matrix of η :

β = E(η)

Σ = var (η)

and then decompose the random coeffi cient as

η = β + u

where u is distributed independently of x with mean zero and covariance matrix Σ. Then we can
write

E(y | x) = x′E(η | x) = x′E(η) = x′β

so the CEF is linear in x, and the coeffi cients β equal the mean of the random coeffi cient η.
We can thus write the equation as a linear CEF

y = x′β + e

where e = x′u and u = η − β. The error is conditionally mean zero:

E(e | x) = 0.

Furthermore

var (e | x) = x′ var (η)x

= x′Σx

so the error is conditionally heteroskedastic with its variance a quadratic function of x.

Theorem 2.10 In the linear random coeffi cient model y = x′η with η
independent of x, E ‖x‖2 <∞, and E ‖η‖2 <∞, then

E (y | x) = x′β

var (y | x) = x′Σx

where β = E(η) and Σ = var (η).

2.30 Causal Effects

So far we have avoided the concept of causality, yet often the underlying goal of an econometric
analysis is to uncover a causal relationship between variables. It is often of great interest to
understand the causes and effects of decisions, actions, and policies. For example, we may be
interested in the effect of class sizes on test scores, police expenditures on crime rates, climate
change on economic activity, years of schooling on wages, institutional structure on growth, the
effectiveness of rewards on behavior, the consequences of medical procedures for health outcomes,
or any variety of possible causal relationships. In each case, the goal is to understand what is the
actual effect on the outcome y due to a change in the input x. We are not just interested in the
conditional mean or linear projection, we would like to know the actual change.

Two inherent barriers are that the causal effect is typically specific to an individual and that it
is unobserved.
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Consider the effect of schooling on wages. The causal effect is the actual difference a person
would receive in wages if we could change their level of education holding all else constant. This
is specific to each individual as their employment outcomes in these two distinct situations is
individual. The causal effect is unobserved because the most we can observe is their actual level
of education and their actual wage, but not the counterfactual wage if their education had been
different.

To be even more specific, suppose that there are two individuals, Jennifer and George, and
both have the possibility of being high-school graduates or college graduates, but both would have
received different wages given their choices. For example, suppose that Jennifer would have earned
$10 an hour as a high-school graduate and $20 an hour as a college graduate while George would
have earned $8 as a high-school graduate and $12 as a college graduate. In this example the causal
effect of schooling is $10 a hour for Jennifer and $4 an hour for George. The causal effects are
specific to the individual and neither causal effect is observed.

A variable x1 can be said to have a causal effect on the response variable y if the latter changes
when all other inputs are held constant. To make this precise we need a mathematical formulation.
We can write a full model for the response variable y as

y = h (x1,x2,u) (2.50)

where x1 and x2 are the observed variables, u is an ` × 1 unobserved random factor, and h is a
functional relationship. This framework, called the potential outcomes framework, includes as
a special case the random coeffi cient model (2.29) studied earlier. We define the causal effect of x1

within this model as the change in y due to a change in x1 holding the other variables x2 and u
constant.

Definition 2.6 In the model (2.50) the causal effect of x1 on y is

C(x1,x2,u) = ∇1h (x1,x2,u) , (2.51)

the change in y due to a change in x1, holding x2 and u constant.

To understand this concept, imagine taking a single individual. As far as our structural model is
concerned, this person is described by their observables x1 and x2 and their unobservables u. In a
wage regression the unobservables would include characteristics such as the person’s abilities, skills,
work ethic, interpersonal connections, and preferences. The causal effect of x1 (say, education) is
the change in the wage as x1 changes, holding constant all other observables and unobservables.

It may be helpful to understand that (2.51) is a definition, and does not necessarily describe
causality in a fundamental or experimental sense. Perhaps it would be more appropriate to label
(2.51) as a structural effect (the effect within the structural model).

Sometimes it is useful to write this relationship as a potential outcome function

y(x1) = h (x1,x2,u)

where the notation implies that y(x1) is holding x2 and u constant.
A popular example arises in the analysis of treatment effects with a binary regressor x1. Let x1 =

1 indicate treatment (e.g. a medical procedure) and x1 = 0 indicate non-treatment. In this case
y(x1) can be written

y(0) = h (0,x2,u)

y(1) = h (1,x2,u) .



CHAPTER 2. CONDITIONAL EXPECTATION AND PROJECTION 50

In the literature on treatment effects, it is common to refer to y(0) and y(1) as the latent outcomes
associated with non-treatment and treatment, respectively. That is, for a given individual, y(0) is
the health outcome if there is no treatment, and y(1) is the health outcome if there is treatment.
The causal effect of treatment for the individual is the change in their health outcome due to
treatment —the change in y as we hold both x2 and u constant:

C (x2,u) = y(1)− y(0).

This is random (a function of x2 and u) as both potential outcomes y(0) and y(1) are different
across individuals.

In a sample, we cannot observe both outcomes from the same individual, we only observe the
realized value

y =


y(0) if x1 = 0

y(1) if x1 = 1.

As the causal effect varies across individuals and is not observable, it cannot be measured on
the individual level. We therefore focus on aggregate causal effects, in particular what is known as
the average causal effect.

Definition 2.7 In the model (2.50) the average causal effect of x1 on
y conditional on x2 is

ACE(x1,x2) = E (C(x1,x2,u) | x1,x2)

=

∫
R`
∇1h (x1,x2,u) f(u | x1,x2)du

where f(u | x1,x2) is the conditional density of u given x1,x2.

We can think of the average causal effect ACE(x1,x2) as the average effect in the general
population. In our Jennifer & George schooling example given earlier, supposing that half of the
population are Jennifer’s and the other half George’s, then the average causal effect of college is
(10+4)/2 = $7 an hour. This is not the individual causal effect, it is the average of the causal effect
across all individuals in the population. Given data on only educational attainment and wages, the
ACE of $7 is the best we can hope to learn.

When we conduct a regression analysis (that is, consider the regression of observed wages
on educational attainment) we might hope that the regression reveals the average causal effect.
Technically, that the regression derivative (the coeffi cient on education) equals the ACE. Is this the
case? In other words, what is the relationship between the average causal effect ACE(x1,x2) and
the regression derivative ∇1m (x1,x2)? Equation (2.50) implies that the CEF is

m(x1,x2) = E (h (x1,x2,u) | x1,x2)

=

∫
R`
h (x1,x2,u) f(u | x1,x2)du,

the average causal equation, averaged over the conditional distribution of the unobserved component
u.
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Applying the marginal effect operator, the regression derivative is

∇1m(x1,x2) =

∫
R`
∇1h (x1,x2,u) f(u | x1,x2)du

+

∫
R`
h (x1,x2,u)∇1f(u|x1,x2)du

= ACE(x1,x2) +

∫
R`
h (x1,x2,u)∇1f(u | x1,x2)du. (2.52)

Equation (2.52) shows that in general, the regression derivative does not equal the average
causal effect. The difference is the second term on the right-hand-side of (2.52). The regression
derivative and ACE equal in the special case when this term equals zero, which occurs when
∇1f(u | x1,x2) = 0, that is, when the conditional density of u given (x1,x2) does not depend on
x1. When this condition holds then the regression derivative equals the ACE, which means that
regression analysis can be interpreted causally, in the sense that it uncovers average causal effects.

The condition is suffi ciently important that it has a special name in the treatment effects
literature.

Definition 2.8 Conditional Independence Assumption (CIA).
Conditional on x2, the random variables x1 and u are statistically inde-
pendent.

The CIA implies f(u | x1,x2) = f(u | x2) does not depend on x1, and thus ∇1f(u | x1,x2) = 0.
Thus the CIA implies that∇1m(x1,x2) = ACE(x1,x2), the regression derivative equals the average
causal effect.

Theorem 2.11 In the structural model (2.50), the Conditional Indepen-
dence Assumption implies

∇1m(x1,x2) = ACE(x1,x2)

the regression derivative equals the average causal effect for x1 on y condi-
tional on x2.

This is a fascinating result. It shows that whenever the unobservable is independent of the
treatment variable (after conditioning on appropriate regressors) the regression derivative equals the
average causal effect. In this case, the CEF has causal economic meaning, giving strong justification
to estimation of the CEF. Our derivation also shows the critical role of the CIA. If CIA fails, then
the equality of the regression derivative and ACE fails.

This theorem is quite general. It applies equally to the treatment-effects model where x1 is
binary or to more general settings where x1 is continuous.

It is also helpful to understand that the CIA is weaker than full independence of u from the
regressors (x1,x2). The CIA was introduced precisely as a minimal suffi cient condition to obtain
the desired result. Full independence implies the CIA and implies that each regression derivative
equals that variable’s average causal effect, but full independence is not necessary in order to
causally interpret a subset of the regressors.

To illustrate, let’s return to our education example involving a population with equal numbers
of Jennifer’s and George’s. Recall that Jennifer earns $10 as a high-school graduate and $20 as a
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Table 2.2: Example Distribution

$8 $10 $12 $20 Mean
High-School Graduate 10 6 0 0 $8.75
College Graduate 0 0 6 10 $17.00

college graduate (and so has a causal effect of $10) while George earns $8 as a high-school graduate
and $12 as a college graduate (so has a causal effect of $4). Given this information, the average
causal effect of college is $7, which is what we hope to learn from a regression analysis.

Now suppose that while in high school all students take an aptitude test, and if a student gets
a high (H) score he or she goes to college with probability 3/4, and if a student gets a low (L)
score he or she goes to college with probability 1/4. Suppose further that Jennifer’s get an aptitude
score of H with probability 3/4, while George’s get a score of H with probability 1/4. Given this
situation, 62.5% of Jennifer’s will go to college13, while 37.5% of George’s will go to college14.

An econometrician who randomly samples 32 individuals and collects data on educational at-
tainment and wages will find the wage distribution in Table 2.2.

Let college denote a dummy variable taking the value of 1 for a college graduate, otherwise 0.
Thus the regression of wages on college attendance takes the form

E (wage | college) = 8.25college+ 8.75.

The coeffi cient on the college dummy, $8.25, is the regression derivative, and the implied wage effect
of college attendance. But $8.25 overstates the average causal effect of $7. The reason is because
the CIA fails. In this model the unobservable u is the individual’s type (Jennifer or George) which
is not independent of the regressor x1 (education), since Jennifer is more likely to go to college than
George. Since Jennifer’s causal effect is higher than George’s, the regression derivative overstates
the ACE. The coeffi cient $8.25 is not the average benefit of college attendance, rather it is the
observed difference in realized wages in a population whose decision to attend college is correlated
with their individual causal effect. At the risk of repeating myself, in this example, $8.25 is the true
regression derivative, it is the difference in average wages between those with a college education and
those without. It is not, however, the average causal effect of college education in the population.

This does not mean that it is impossible to estimate the ACE. The key is conditioning on the
appropriate variables. The CIA says that we need to find a variable x2 such that conditional on
x2, u and x1 (type and education) are independent. In this example a variable which will achieve
this is the aptitude test score. The decision to attend college was based on the test score, not on
an individual’s type. Thus educational attainment and type are independent once we condition on
the test score.

This also alters the ACE. Notice that Definition 2.7 is a function of x2 (the test score). Among
the students who receive a high test score, 3/4 are Jennifer’s and 1/4 are George’s. Thus the ACE
for students with a score of H is (3/4)× 10 + (1/4)× 4 = $8.50. Among the students who receive a
low test score, 1/4 are Jennifer’s and 3/4 are George’s. Thus the ACE for students with a score of
L is (1/4) × 10 + (3/4) × 4 = $5.50. The ACE varies between these two observable groups (those
with high test scores and those with low test scores). Again, we would hope to be able to learn the
ACE from a regression analysis, this time from a regression of wages on education and test scores.

To see this in the wage distribution, suppose that the econometrician collects data on the
aptitude test score as well as education and wages. Given a random sample of 32 individuals we
would expect to find the wage distribution in Table 2.3.

Define the dummy variable highscore which takes the value 1 for students who received a
high test score, else zero. The regression of wages on college attendance and test scores (with

13P (College|Jennifer) = P (College|H)P (H|Jennifer) + P (College|L)P (L|Jennifer) = (3/4)2 + (1/4)2
14P (College|George) = P (College|H)P (H|George) + P (College|L)P (L|George) = (3/4)(1/4) + (1/4)(3/4)
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Table 2.3: Example Distribution 2

$8 $10 $12 $20 Mean
High-School Graduate + High Test Score 1 3 0 0 $9.50
College Graduate + High Test Score 0 0 3 9 $18.00
High-School Graduate + Low Test Score 9 3 0 0 $8.50
College Graduate + Low Test Score 0 0 3 1 $14.00

interactions) takes the form

E (wage | college, highscore) = 1.00highscore+ 5.50college+ 3.00highscore× college+ 8.50.

The coeffi cient on college, $5.50, is the regression derivative of college attendance for those with low
test scores, and the sum of this coeffi cient with the interaction coeffi cient, $8.50, is the regression
derivative for college attendance for those with high test scores. These equal the average causal
effect as calculated above. Furthermore, since 1/2 of the population achieves a high test score and
1/2 achieve a low test score, the measured average causal effect in the entire population is $7, which
precisely equals the true value.

In this example, by conditioning on the aptitude test score, the average causal effect of education
on wages can be learned from a regression analysis. What this shows is that by conditioning on the
proper variables, it may be possible to achieve the CIA, in which case regression analysis measures
average causal effects.

2.31 Expectation: Mathematical Details*

We define the mean or expectation E (y) of a random variable y as follows. If y is discrete
on the set {τ1, τ2, ...} then

E (y) =
∞∑
j=1

τjP (y = τj) ,

and if y is continuous with density f then

E (y) =

∫ ∞
−∞

yf(y)dy.

We can unify these definitions by writing the expectation as the Lebesgue integral with respect to
the distribution function F

E (y) =

∫ ∞
−∞

ydF (y).

In the event that the above integral is not finite, separately evaluate the two integrals

I1 =

∫ ∞
0

ydF (y) (2.53)

I2 = −
∫ 0

−∞
ydF (y). (2.54)

If I1 =∞ and I2 <∞ then it is typical to define E (y) =∞. If I1 <∞ and I2 =∞ then we define
E (y) = −∞. However, if both I1 =∞ and I2 =∞ then E (y) is undefined. If

E |y| =
∫ ∞
−∞
|y| dF (y) = I1 + I2 <∞

then E (y) exists and is finite. In this case it is common to say that the mean E (y) is “well-defined”.
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More generally, y has a finite rth moment if

E |y|r <∞. (2.55)

By Liapunov’s Inequality (B.32), (2.55) implies E |y|s <∞ for all 1 ≤ s ≤ r. Thus, for example, if
the fourth moment is finite then the first, second and third moments are also finite, and so is the
3.9th moment.

It is common in econometric theory to assume that the variables, or certain transformations of
the variables, have finite moments of a certain order. How should we interpret this assumption?
How restrictive is it?

One way to visualize the importance is to consider the class of Pareto densities given by

f(y) = ay−a−1, y > 1.

The parameter a of the Pareto distribution indexes the rate of decay of the tail of the density.
Larger a means that the tail declines to zero more quickly. See Figure 2.11 below where we plot
the Pareto density for a = 1 and a = 2. The parameter a also determines which moments are finite.
We can calculate that

E |y|r =


a
∫∞

1 yr−a−1dy =
a

a− r if r < a

∞ if r ≥ a.

This shows that if y is Pareto distributed with parameter a, then the rth moment of y is finite if
and only if r < a. Higher a means higher finite moments. Equivalently, the faster the tail of the
density declines to zero, the more moments are finite.
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Figure 2.11: Pareto Densities, a = 1 and a = 2

This connection between tail decay and finite moments is not limited to the Pareto distribution.
We can make a similar analysis using a tail bound. Suppose that y has density f(y) which satisfies
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the bound f(y) ≤ A |y|−a−1 for some A <∞ and a > 0. Since f(y) is bounded below a scale of a
Pareto density, its tail behavior is similarly bounded. This means that for r < a

E |y|r =

∫ ∞
−∞
|y|r f(y)dy ≤

∫ 1

−1
f(y)dy + 2A

∫ ∞
1

yr−a−1dy ≤ 1 +
2A

a− r <∞.

Thus if the tail of the density declines at the rate |y|−a−1 or faster, then y has finite moments up
to (but not including) a. Broadly speaking, the restriction that y has a finite rth moment means
that the tail of y’s density declines to zero faster than y−r−1. The faster decline of the tail means
that the probability of observing an extreme value of y is a more rare event.

We complete this section by adding an alternative representation of expectation in terms of the
distribution function.

Theorem 2.12 For any non-negative random variable y

E (y) =

∫ ∞
0
P (y > u) du

Proof of Theorem 2.12: Let F ∗(x) = P (y > x) = 1 − F (x), where F (x) is the distribution
function. By integration by parts

E (y) =

∫ ∞
0

ydF (y) = −
∫ ∞

0
ydF ∗(y) = − [yF ∗(y)]∞0 +

∫ ∞
0

F ∗(y)dy =

∫ ∞
0
P (y > u) du

as stated. �

2.32 Moment Generating and Characteristic Functions*

For a random variable y with distribution F its moment generating function (MGF) is

M(t) = E (exp (ty)) =

∫
exp(ty)dF (y). (2.56)

This is also known as the Laplace transformation of the density of y. The MGF is a function of
the argument t, and is an alternative representation of the distribution F . It is called the moment
generating function since the rth derivative evaluated at zero is the rth uncentered moment. Indeed,

M (r)(t) = E
(
dr

dtr
exp(ty)

)
= E (yr exp (ty))

and thus the rth derivative at t = 0 is

M (r)(0) = E (yr) .

A major limitation with the MGF is that it does not exist for many random variables. Essen-
tially, existence of the integral (2.56) requires the tail of the density of y to decline exponentially.
This excludes thick-tailed distributions such as the Pareto.

This limitation is removed if we consider the characteristic function (CF) of y, which is
defined as

C(t) = E (exp (ity)) =

∫
exp(ity)dF (y)



CHAPTER 2. CONDITIONAL EXPECTATION AND PROJECTION 56

where i =
√
−1. Like the MGF, the CF is a function of its argument t and is a representation of

the distribution function F . The CF is also known as the Fourier transformation of the density
of y. Unlike the MGF, the CF exists for all random variables and all values of t since exp (ity) =
cos (ty) + i sin (ty) is bounded.

Similarly to the MGF, the rth derivative of the characteristic function evaluated at zero takes
the simple form

C(r)(0) = irE (yr)

when such expectations exist. A further connection is that the rth moment is finite if and only if
C(r)(t) is continuous at zero.

For random vectors y with distribution F we define the multivariate MGF as

M(t) = E
(
exp

(
t′y
))

=

∫
exp(t′y)dF (y)

when it exists. Similarly, we define the multivariate CF as

C(t) = E
(
exp

(
it′y
))

=

∫
exp(it′y)dF (y).

2.33 Moments and Cumulants*

For a random variable y it is common to define its rth moment as

µ′r = E (yr) .

For example, the mean is the 1st moment, µ = µ′1. As described in Section 2.32, the moments can
be expressed in terms of the derivatives of the moment generating function, that is µ′r = M (r)(0).

We define the rth central moment as

µr = E (y − E (y))r .

Note σ2 = µ2.
The cumulant generating function is the natural log of the moment generating function

K(t) = logM(t).

Since M(0) = 1 we see K(0) = 0. Expanding as a power series we obtain

K(t) =

∞∑
r=1

κr
tr

r!

where
κr = K(r)(0)

is the rth derivative of K(t), evaluated at t = 0. The constants κr are known as the cumulants of
the distribution of y.

The cumulants are related to the central moments. We can calculate that

K(1)(t) =
M (1)(t)

M(t)

K(2)(t) =
M (2)(t)

M(t)
−
(
M (1)(t)

M(t)

)2
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so κ1 = µ and κ2 = µ′2 − µ2 = µ2. The first six cumulants are as follows.

κ1 = µ

κ2 = µ2

κ3 = µ3

κ4 = µ4 − 3µ2
2

κ5 = µ5 − 10µ3µ2

κ6 = µ6 − 15µ4µ2 − 10µ2
3 + 30µ3

2.

We see that the first three cumulants correspond to the central moments, but higher cumulants are
polynomial functions of the central moments.

Inverting, we can also express the central moments in terms of the cumulants, for example, the
4th through 6th are as follows.

µ4 = κ4 + 3κ2
2

µ5 = κ5 + 10κ3κ2

µ6 = κ6 + 15κ4κ2 + 10κ2
3 + 15κ3

2.

2.34 Existence and Uniqueness of the Conditional Expectation*

In Sections 2.3 and 2.6 we defined the conditional mean when the conditioning variables x are
discrete and when the variables (y,x) have a joint density. We have explored these cases because
these are the situations where the conditional mean is easiest to describe and understand. However,
the conditional mean exists quite generally without appealing to the properties of either discrete
or continuous random variables.

To justify this claim we now present a deep result from probability theory. What it says is that
the conditional mean exists for all joint distributions (y,x) for which y has a finite mean.

Theorem 2.13 Existence of the Conditional Mean
If E |y| <∞ then there exists a function m(x) such that for all sets X for
which P (x ∈ X ) is defined,

E (1 (x ∈ X ) y) = E (1 (x ∈ X )m(x)) . (2.57)

The function m(x) is almost everywhere unique, in the sense that if h(x)
satisfies (2.57), then there is a set S such that P(S) = 1 and m(x) = h(x)
for x ∈ S. The function m(x) is called the conditional mean and is
written m(x) = E (y | x) .

See, for example, Ash (1972), Theorem 6.3.3.

The conditional mean m(x) defined by (2.57) specializes to (2.4) when (y,x) have a joint
density. The usefulness of definition (2.57) is that Theorem 2.13 shows that the conditional mean
m(x) exists for all finite-mean distributions. This definition allows y to be discrete or continuous,
for x to be scalar or vector-valued, and for the components of x to be discrete or continuously
distributed.

You may have noticed that Theorem 2.13 applies only to sets X for which P (x ∈ X ) is defined.
This is a technical issue —measurability — which we largely side-step in this textbook. Formal
probability theory only applies to sets which are measurable —for which probabilities are defined —
as it turns out that not all sets satisfy measurability. This is not a practical concern for applications,
so we defer such distinctions for formal theoretical treatments.
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2.35 Identification*

A critical and important issue in structural econometric modeling is identification, meaning that
a parameter is uniquely determined by the distribution of the observed variables. It is relatively
straightforward in the context of the unconditional and conditional mean, but it is worthwhile to
introduce and explore the concept at this point for clarity.

Let F denote the distribution of the observed data, for example the distribution of the pair
(y, x). Let F be a collection of distributions F. Let θ be a parameter of interest (for example, the
mean E (y)).

Definition 2.9 A parameter θ ∈ R is identified on F if for all F ∈ F ,
there is a uniquely determined value of θ.

Equivalently, θ is identified if we can write it as a mapping θ = g(F ) on the set F . The restriction
to the set F is important. Most parameters are identified only on a strict subset of the space of all
distributions.

Take, for example, the mean µ = E (y) . It is uniquely determined if E |y| < ∞, so it is clear
that µ is identified for the set F =

{
F :

∫∞
−∞ |y| dF (y) <∞

}
. However, µ is also well defined when

it is either positive or negative infinity. Hence, defining I1 and I2 as in (2.53) and (2.54), we can
deduce that µ is identified on the set F = {F : {I1 <∞} ∪ {I2 <∞}} .

Next, consider the conditional mean. Theorem 2.13 demonstrates that E |y| <∞ is a suffi cient
condition for identification.

Theorem 2.14 Identification of the Conditional Mean
If E |y| < ∞, the conditional mean m(x) = E (y | x) is identified almost
everywhere.

It might seem as if identification is a general property for parameters, so long as we exclude
degenerate cases. This is true for moments of observed data, but not necessarily for more compli-
cated models. As a case in point, consider the context of censoring. Let y be a random variable
with distribution F. Instead of observing y, we observe y∗ defined by the censoring rule

y∗ =

{
y if y ≤ τ
τ if y > τ

.

That is, y∗ is capped at the value τ. A common example is income surveys, where income responses
are “top-coded”, meaning that incomes above the top code τ are recorded as the top code. The
observed variable y∗ has distribution

F ∗(u) =

{
F (u) for u ≤ τ

1 for u ≥ τ.

We are interested in features of the distribution F not the censored distribution F ∗. For example,
we are interested in the mean wage µ = E (y) . The diffi culty is that we cannot calculate µ from
F ∗ except in the trivial case where there is no censoring P (y ≥ τ) = 0. Thus the mean µ is not
generically identified from the censored distribution.

A typical solution to the identification problem is to assume a parametric distribution. For
example, let F be the set of normal distributions y ∼ N(µ, σ2). It is possible to show that the
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parameters (µ, σ2) are identified for all F ∈ F . That is, if we know that the uncensored distribution
is normal, we can uniquely determine the parameters from the censored distribution. This is often
called parametric identification as identification is restricted to a parametric class of distribu-
tions. In modern econometrics this is generally viewed as a second-best solution, as identification
has been achieved only through the use of an arbitrary and unverifiable parametric assumption.

A pessimistic conclusion might be that it is impossible to identify parameters of interest from
censored data without parametric assumptions. Interestingly, this pessimism is unwarranted. It
turns out that we can identify the quantiles qα of F for α ≤ P (y ≤ τ) . For example, if 20%
of the distribution is censored, we can identify all quantiles for α ∈ (0, 0.8). This is often called
nonparametric identification as the parameters are identified without restriction to a parametric
class.

What we have learned from this little exercise is that in the context of censored data, moments
can only be parametrically identified, while non-censored quantiles are nonparametrically identified.
Part of the message is that a study of identification can help focus attention on what can be learned
from the data distributions available.

2.36 Technical Proofs*

Proof of Theorem 2.1: For convenience, assume that the variables have a joint density f (y,x).
Since E (y | x) is a function of the random vector x only, to calculate its expectation we integrate
with respect to the density fx (x) of x, that is

E (E (y | x)) =

∫
Rk
E (y | x) fx (x) dx.

Substituting in (2.4) and noting that fy|x (y|x) fx (x) = f (y,x) , we find that the above expression
equals ∫

Rk

(∫
R
yfy|x (y|x) dy

)
fx (x) dx =

∫
Rk

∫
R
yf (y,x) dydx = E (y)

the unconditional mean of y. �

Proof of Theorem 2.2: Again assume that the variables have a joint density. It is useful to
observe that

f (y|x1,x2) f (x2|x1) =
f (y,x1,x2)

f (x1,x2)

f (x1,x2)

f (x1)
= f (y,x2|x1) , (2.58)

the density of (y,x2) given x1. Here, we have abused notation and used a single symbol f to denote
the various unconditional and conditional densities to reduce notational clutter.

Note that

E (y | x1,x2) =

∫
R
yf (y|x1,x2) dy. (2.59)

Integrating (2.59) with respect to the conditional density of x2 given x1, and applying (2.58) we
find that

E (E (y | x1,x2) | x1) =

∫
Rk2

E (y | x1,x2) f (x2|x1) dx2

=

∫
Rk2

(∫
R
yf (y|x1,x2) dy

)
f (x2|x1) dx2

=

∫
Rk2

∫
R
yf (y|x1,x2) f (x2|x1) dydx2

=

∫
Rk2

∫
R
yf (y,x2|x1) dydx2

= E (y | x1)
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as stated. �

Proof of Theorem 2.3:

E (g (x) y | x) =

∫
R
g (x) yfy|x (y|x) dy = g (x)

∫
R
yfy|x (y|x) dy = g (x)E (y | x)

This is (2.5). Equation (2.6) follows by applying the Simple Law of Iterated Expectations to (2.5).
�

Proof of Theorem 2.4. Applying Minkowski’s Inequality (B.31) to e = y −m(x),

(E |e|r)1/r = (E |y −m(x)|r)1/r ≤ (E |y|r)1/r + (E |m(x)|r)1/r <∞,

where the two parts on the right-hand are finite since E |y|r <∞ by assumption and E |m(x)|r <∞
by the Conditional Expectation Inequality (B.26). The fact that (E |e|r)1/r < ∞ implies E |e|r <
∞. �

Proof of Theorem 2.6: The assumption that E
(
y2
)
<∞ implies that all the conditional expec-

tations below exist.
Using the law of iterated expectations E(y | x1) = E(E(y | x1,x2) | x1) and the conditional

Jensen’s inequality (B.25),

(E(y | x1))2 = (E(E(y | x1,x2) | x1))2 ≤ E
(

(E(y | x1,x2))2 | x1

)
.

Taking unconditional expectations, this implies

E
(

(E(y | x1))2
)
≤ E

(
(E(y | x1,x2))2

)
.

Similarly,

(E (y))2 ≤ E
(

(E(y | x1))2
)
≤ E

(
(E(y | x1,x2))2

)
. (2.60)

The variables y, E(y | x1) and E(y | x1,x2) all have the same mean E (y) , so the inequality
(2.60) implies that the variances are ranked monotonically:

0 ≤ var (E(y | x1)) ≤ var (E(y | x1,x2)) . (2.61)

Define e = y − E(y | x) and u = E(y | x)− µ so that we have the decomposition

y − µ = e+ u.

Notice E(e | x) = 0 and u is a function of x. Thus by the Conditioning Theorem, E(eu) = 0 so e
and u are uncorrelated. It follows that

var (y) = var (e) + var (u) = var (y − E(y | x)) + var (E(y | x)) . (2.62)

The monotonicity of the variances of the conditional mean (2.61) applied to the variance decom-
position (2.62) implies the reverse monotonicity of the variances of the differences, completing the
proof. �

Proof of Theorem 2.8. For part 1, by the Expectation Inequality (B.27), (A.16) and Assumption
2.1, ∥∥E (xx′)∥∥ ≤ E∥∥xx′∥∥ = E

(
‖x‖2

)
<∞.
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Similarly, using the Expectation Inequality (B.27), the Cauchy-Schwarz Inequality (B.29) and As-
sumption 2.1,

‖E (xy)‖ ≤ E ‖xy‖ ≤
(
E
(
‖x‖2

))1/2 (
E
(
y2
))1/2

<∞.

Thus the moments E (xy) and E (xx′) are finite and well defined.
For part 2, the coeffi cient β = (E (xx′))−1 E (xy) is well defined since (E (xx′))−1 exists under

Assumption 2.1.
Part 3 follows from Definition 2.5 and part 2.
For part 4, first note that

E
(
e2
)

= E
((
y − x′β

)2)
= E

(
y2
)
− 2E

(
yx′
)
β + β′E

(
xx′
)
β

= E
(
y2
)
− 2E

(
yx′
) (
E
(
xx′
))−1 E (xy)

≤ E
(
y2
)

<∞.

The first inequality holds because E (yx′) (E (xx′))−1 E (xy) is a quadratic form and therefore neces-
sarily non-negative. Second, by the Expectation Inequality (B.27), the Cauchy-Schwarz Inequality
(B.29) and Assumption 2.1,

‖E (xe)‖ ≤ E ‖xe‖ =
(
E
(
‖x‖2

))1/2 (
E
(
e2
))1/2

<∞.

It follows that the expectation E (xe) is finite, and is zero by the calculation (2.24).
For part 6, Applying Minkowski’s Inequality (B.31) to e = y − x′β,

(E |e|r)1/r =
(
E
∣∣y − x′β∣∣r)1/r

≤ (E |y|r)1/r +
(
E
∣∣x′β∣∣r)1/r

≤ (E |y|r)1/r + (E ‖x‖r)1/r ‖β‖
<∞,

the final inequality by assumption. �
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Exercises

Exercise 2.1 Find E (E (E (y | x1,x2,x3) | x1,x2) | x1) .

Exercise 2.2 If E (y | x) = a+ bx, find E (yx) as a function of moments of x.

Exercise 2.3 Prove Theorem 2.4.4 using the law of iterated expectations.

Exercise 2.4 Suppose that the random variables y and x only take the values 0 and 1, and have
the following joint probability distribution

x = 0 x = 1

y = 0 .1 .2
y = 1 .4 .3

Find E (y | x) , E
(
y2 | x

)
and var (y | x) for x = 0 and x = 1.

Exercise 2.5 Show that σ2(x) is the best predictor of e2 given x:

(a) Write down the mean-squared error of a predictor h(x) for e2.

(b) What does it mean to be predicting e2?

(c) Show that σ2(x) minimizes the mean-squared error and is thus the best predictor.

Exercise 2.6 Use y = m(x) + e to show that

var (y) = var (m(x)) + σ2

Exercise 2.7 Show that the conditional variance can be written as

σ2(x) = E
(
y2 | x

)
− (E (y | x))2 .

Exercise 2.8 Suppose that y is discrete-valued, taking values only on the non-negative integers,
and the conditional distribution of y given x is Poisson:

P (y = j | x) =
exp (−x′β) (x′β)j

j!
, j = 0, 1, 2, ...

Compute E (y | x) and var (y | x) . Does this justify a linear regression model of the form y =
x′β + e?

Hint: If P (y = j) = exp(−λ)λj

j! , then E (y) = λ and var(y) = λ.

Exercise 2.9 Suppose you have two regressors: x1 is binary (takes values 0 and 1) and x2 is
categorical with 3 categories (A,B,C). Write E (y | x1, x2) as a linear regression.

Exercise 2.10 True or False. If y = xβ + e, x ∈ R, and E (e | x) = 0, then E
(
x2e
)

= 0.

Exercise 2.11 True or False. If y = xβ + e, x ∈ R, and E (xe) = 0, then E
(
x2e
)

= 0.

Exercise 2.12 True or False. If y = x′β + e and E (e | x) = 0, then e is independent of x.

Exercise 2.13 True or False. If y = x′β + e and E(xe) = 0, then E (e | x) = 0.
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Exercise 2.14 True or False. If y = x′β + e, E (e | x) = 0, and E
(
e2 | x

)
= σ2, a constant, then

e is independent of x.

Exercise 2.15 Consider the intercept-only model y = α + e defined as the best linear predictor.
Show that α = E(y).

Exercise 2.16 Let x and y have the joint density f (x, y) = 3
2

(
x2 + y2

)
on 0 ≤ x ≤ 1, 0 ≤ y ≤ 1.

Compute the coeffi cients of the best linear predictor y = α+βx+e. Compute the conditional mean
m(x) = E (y | x) . Are the best linear predictor and conditional mean different?

Exercise 2.17 Let x be a random variable with µ = E (x) and σ2 = var(x). Define

g
(
x | µ, σ2

)
=

(
x− µ

(x− µ)2 − σ2

)
.

Show that Eg (x | m, s) = 0 if and only if m = µ and s = σ2.

Exercise 2.18 Suppose that

x =

 1
x2

x3


and x3 = α1 + α2x2 is a linear function of x2.

(a) Show that Qxx = E (xx′) is not invertible.

(b) Use a linear transformation of x to find an expression for the best linear predictor of y given
x. (Be explicit, do not just use the generalized inverse formula.)

Exercise 2.19 Show (2.45)-(2.46), namely that for

d(β) = E
(
m(x)− x′β

)2
then

β = argmin
b∈Rk

d(b)

=
(
E
(
xx′
))−1 E (xm(x))

=
(
E
(
xx′
))−1 E (xy) .

Hint: To show E (xm(x)) = E (xy) use the law of iterated expectations.

Exercise 2.20 Verify that (2.57) holds with m(x) defined in (2.4) when (y,x) have a joint density
f(y,x).

Exercise 2.21 Consider the short and long projections

y = xγ1 + e

y = xβ1 + x2β2 + u

(a) Under what condition does γ1 = β1?

(b) Now suppose the long projection is

y = xθ1 + x3θ2 + v

Is there a similar condition under which γ1 = θ1?
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Exercise 2.22 Take the homoskedastic model

y = x′1β1 + x′2β2 + e

E (e | x1,x2) = 0

E
(
e2 | x1,x2

)
= σ2

E (x2 | x1) = Γx1

Γ 6= 0

Suppose the parameter β1 is of interest. We know that the exclusion of x2 creates omited variable
bias in the projection coeffi cient on x2. It also changes the equation error. Our question is: what
is the effect on the homoskedasticity property of the induced equation error? Does the exclusion of
x2 induce heteroskedasticity or not? Be specific.



Chapter 3

The Algebra of Least Squares

3.1 Introduction

In this chapter we introduce the popular least-squares estimator. Most of the discussion will be
algebraic, with questions of distribution and inference deferred to later chapters.

3.2 Samples

In Section 2.18 we derived and discussed the best linear predictor of y given x for a pair of
random variables (y,x) ∈ R×Rk, and called this the linear projection model. We are now interested
in estimating the parameters of this model, in particular the projection coeffi cient

β =
(
E
(
xx′
))−1 E (xy) . (3.1)

We can estimate β from observational data which includes joint measurements on the variables
(y,x) . For example, supposing we are interested in estimating a wage equation, we would use
a dataset with observations on wages (or weekly earnings), education, experience (or age), and
demographic characteristics (gender, race, location). One possible dataset is the Current Popula-
tion Survey (CPS), a survey of U.S. households which includes questions on employment, income,
education, and demographic characteristics.

Notationally we wish to distinguish observations from the underlying random variables. The
convention in econometrics is to denote observations by appending a subscript i which runs from
1 to n, thus the ith observation is (yi,xi), and n denotes the sample size. The dataset is then
{(yi,xi); i = 1, ..., n}. We call this the sample or the observations.

From the viewpoint of empirical analysis, a dataset is an array of numbers often organized as
a table, where the columns of the table correspond to distinct variables and the rows correspond
to distinct observations. For empirical analysis, the dataset and observations are fixed in the sense
that they are numbers presented to the researcher. For statistical analysis we need to view the
dataset as random, or more precisely as a realization of a random process.

In order for the coeffi cient β defined in (3.1) to make sense as defined, the expectations over the
random variables (x, y) need to be common across the observations. The most elegant approach to
ensure this is to assume that the observations are draws from an identical underlying population
F. This is the standard assumption that the observations are identically distributed:

Assumption 3.1 The observations {(y1,x1), ..., (yi,xi), ..., (yn,xn)} are iden-
tically distributed; they are draws from a common distribution F .

65
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This assumption does not need to be viewed as literally true, rather it is a useful modeling
device so that parameters such as β are well defined. This assumption should be interpreted as
how we view an observation a priori, before we actually observe it. If I tell you that we have
a sample with n = 59 observations set in no particular order, then it makes sense to view two
observations, say 17 and 58, as draws from the same distribution. We have no reason to expect
anything special about either observation.

In econometric theory, we refer to the underlying common distribution F as the population.
Some authors prefer the label the data-generating-process (DGP). You can think of it as a the-
oretical concept or an infinitely-large potential population. In contrast we refer to the observations
available to us {(yi,xi); i = 1, ..., n} as the sample or dataset. In some contexts the dataset con-
sists of all potential observations, for example administrative tax records may contain every single
taxpayer in a political unit. Even in this case we view the observations as if they are random draws
from an underlying infinitely-large population, as this will allow us to apply the tools of statistical
theory.

The linear projection model applies to the random observations (yi,xi) . This means that the
probability model for the observations is the same as that described in Section 2.18. We can write
the model as

yi = x′iβ + ei (3.2)

where the linear projection coeffi cient β is defined as

β = argmin
b∈Rk

S(b), (3.3)

the minimizer of the expected squared error

S(β) = E
((
yi − x′iβ

)2)
, (3.4)

and has the explicit solution
β =

(
E
(
xix

′
i

))−1 E (xiyi) . (3.5)

3.3 Moment Estimators

We want to estimate the coeffi cient β defined in (3.5) from the sample of observations. Notice
that β is written as a function of certain population expectations. In this context an appropriate
estimator is the same function of the sample moments. Let’s explain this in detail.

To start, suppose that we are interested in the population mean µ of a random variable yi with
distribution function F

µ = E(yi) =

∫ ∞
−∞

ydF (y). (3.6)

The mean µ is a function of the distribution F as written in (3.6). To estimate µ given a sample
{y1, ..., yn} a natural estimator is the sample mean

µ̂ = y =
1

n

n∑
i=1

yi.

Notice that we have written this using two pieces of notation. The notation y with the bar on top
is conventional for a sample mean. The notation µ̂ with the hat “^”is conventional in econometrics
to denote an estimator of the parameter µ. In this case y is the estimator of µ, so µ̂ and y are
the same. The sample mean y can be viewed as the natural analog of the population mean (3.6)
because y equals the expectation (3.6) with respect to the empirical distribution — the discrete
distribution which puts weight 1/n on each observation yi. There are many other justifications
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for y as an estimator for µ, we will defer these discussions for now. Suffi ce it to say that it is the
conventional estimator in the lack of other information about µ or the distribution of yi.

Now suppose that we are interested in a set of population means of possibly non-linear functions
of a random vector y, say µ = E(h(yi)). For example, we may be interested in the first two moments
of yi, E(yi) and E(y2

i ). In this case the natural estimator is the vector of sample means,

µ̂ =
1

n

n∑
i=1

h(yi).

For example, µ̂1 =
1

n

∑n
i=1 yi and µ̂2 =

1

n

∑n
i=1 y

2
i . This is not really a substantive change. We call

µ̂ the moment estimator for µ.
Now suppose that we are interested in a nonlinear function of a set of moments. For example,

consider the variance of y
σ2 = var (yi) = E(y2

i )− (E(yi))
2 .

In general, many parameters of interest, say β, can be written as a function of moments of y.
Notationally,

β = g(µ)

µ = E(h(yi)).

Here, yi are the random variables, h(yi) are functions (transformations) of the random variables,
and µ is the mean (expectation) of these functions. β is the parameter of interest, and is the
(nonlinear) function g(·) of these means.

In this context a natural estimator of β is obtained by replacing µ with µ̂.

β̂ = g(µ̂)

µ̂ =
1

n

n∑
i=1

h(yi).

The estimator β̂ is sometimes called a “plug-in”estimator, and sometimes a “substitution”estima-
tor. We typically call β̂ a moment, or moment-based, estimator of β, since it is a natural extension
of the moment estimator µ̂.

Take the example of the variance σ2 = var (yi). Its moment estimator is

σ̂2 = µ̂2 − µ̂2
1 =

1

n

n∑
i=1

y2
i −

(
1

n

n∑
i=1

yi

)2

.

This is not the only possible estimator for σ2 (there is the well-known bias-corrected version ap-
propriate for independent observations) but it a straightforward and simple choice.

3.4 Least Squares Estimator

The linear projection coeffi cient β is defined in (3.3) as the minimizer of the expected squared
error S(β) defined in (3.4). For given β, the expected squared error is the expectation of the
squared error (yi − x′iβ)2 . The moment estimator of S(β) is the sample average:

Ŝ(β) =
1

n

n∑
i=1

(
yi − x′iβ

)2 (3.7)

=
1

n
SSE(β)
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where

SSE(β) =
n∑
i=1

(
yi − x′iβ

)2
is called the sum-of-squared-errors function.

Since Ŝ(β) is a sample average, we can interpret it as an estimator of the expected squared
error S(β). Examining Ŝ(β) as a function of β is informative about how S(β) varies with β. Since
the projection coeffi cient minimizes S(β), an analog estimator minimizes (3.7).

Definition 3.1 The least-squares estimator β̂ is

β̂ = argmin
β∈Rk

Ŝ(β)

where

Ŝ(β) =
1

n

n∑
i=1

(
yi − x′iβ

)2

Alternatively, as Ŝ(β) is a scale multiple of SSE(β), we may equivalently define β̂ as the
minimizer of SSE(β). Hence β̂ is commonly called the least-squares (LS) estimator of β. The
estimator is also commonly refered to as the ordinary least-squares (OLS) estimator. For the
origin of this label see the historical discussion on Adrien-Marie Legendre below. Here, as is common
in econometrics, we put a hat “^”over the parameter β to indicate that β̂ is a sample estimate
of β. This is a helpful convention. Just by seeing the symbol β̂ we can immediately interpret it
as an estimator (because of the hat) of the parameter β. Sometimes when we want to be explicit
about the estimation method, we will write β̂ols to signify that it is the OLS estimator. It is also
common to see the notation β̂n, where the subscript “n”indicates that the estimator depends on
the sample size n.

It is important to understand the distinction between population parameters such as β and
sample estimators such as β̂. The population parameter β is a non-random feature of the population
while the sample estimator β̂ is a random feature of a random sample. β is fixed, while β̂ varies
across samples.

3.5 Solving for Least Squares with One Regressor

For simplicity, we start by considering the case k = 1 so that there is a scalar regressor xi and
a scalar coeffi cient β. To illustrate, Figure 3.1 displays a scatter plot1 of 20 pairs (yi, xi).

The sum of squared errors SSE(β) is a function of β. Given β we calculate the “error”yi−xiβ
by taking the vertical distance between yi and xiβ. This can be seen in Figure 3.1 by the vertical
lines which connect the observations to the straight line. These vertical lines are the errors yi−xiβ.
The sum of squared errors is the sum of the 20 squared lengths shown in Figure 3.1.

The sum of squared errors is the function

SSE(β) =

n∑
i=1

(yi − xiβ)2

=

(
n∑
i=1

y2
i

)
− 2β

(
n∑
i=1

xiyi

)
+ β2

(
n∑
i=1

x2
i

)
.

1The observations were generated by simulation as xi ∼ U [0, 1], ei ∼ N[0, 1], and yi = 3xi + ei.
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Figure 3.1: Measuring Errors as Deviations from a Fitted Line

This is a quadratic function of β. For example, for the sample displayed in Figure 3.1, the sum
of squared error function is displayed in Figure 3.2 over the range [2, 4]. The coeffi cient β ranges
along the x-axis. The sum-of-squared errors SSE(β) as a function of β is displayed on the y-axis.

The OLS estimator β̂ minimizes this function. From elementary algebra we know that the
minimizer of the quadratic function a− 2bx+ cx2 is x = b/c. Thus the minimizer of SSE(β) is

β̂ =

∑n
i=1 xiyi∑n
i=1 x

2
i

. (3.8)

For example, the minimizer of the sum of squared error function displayed in Figure 3.2 is β̂ = 3.07,
and is marked on the x-axis.

The intercept-only model is the special case xi = 1. In this case we find

β̂ =

∑n
i=1 1yi∑n
i=1 12

=
1

n

n∑
i=1

yi = y, (3.9)

the sample mean of yi. Here, as is common, we put a bar “−”over y to indicate that the quantity
is a sample mean. This calculation shows that the OLS estimator in the intercept-only model is
the sample mean.

Technically, the estimator β̂ in (3.8) only exists if the denominator is non-zero. Since it is a
sum of squares it is necessarily non-negative. Thus β̂ exists if

∑n
i=1 x

2
i > 0.

3.6 Solving for Least Squares with Multiple Regressors

We now consider the case with k > 1 so that the coeffi cient β is a vector.
To illustrate, Figure 3.3 displays a scatter plot of 100 triples (yi, x1i, x2i). The regression function

x′β = x1β1 + x2β2 is a 2-dimensional surface, and is shown as the plane in Figure 3.3.
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Figure 3.2: Sum of Squared Error Function for One Regressor

The sum of squared errors SSE(β) is a function of the vector β. For any β the error yi − x′iβ
is the vertical distance between yi and x′iβ. This can be seen in Figure 3.3 by the vertical lines
which connect the observations to the plane. As in the single regressor case, these vertical lines are
the errors ei = yi − x′iβ. The sum of squared errors is the sum of the 100 squared lengths shown
in Figure 3.3.

The sum of squared errors can be written as

SSE(β) =
n∑
i=1

y2
i − 2β′

n∑
i=1

xiyi + β′
n∑
i=1

xix
′
iβ.

As in the single regressor case, this is a quadratic function in β. The difference is that in the
multiple regressor case this is a vector-valued quadratic function. To visualize the sum of squared
errors function, Figure 3.4 displays SSE(β) for the data shown in Figure 3.3. Another way to
visualize a 3-dimensional surface is by a contour plot. A contour plot of the same SSE(β) function
is shown in Figure 3.5. The contour lines are points in the (β1, β2) space where SSE(β) takes the
same value. The contour lines are elliptical.

The least-squares estimator β̂ minimizes SSE(β). A simple way to find the minimum is by
solving the first-order conditions. The latter are

0 =
∂

∂β
SSE(β̂) = −2

n∑
i=1

xiyi + 2

n∑
i=1

xix
′
iβ̂. (3.10)

We have written this using a single expression, but it is actually a system of k equations with k
unknowns (the elements of β̂).

The solution for β̂ may be found by solving the system of k equations in (3.10). We can write
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Figure 3.3: Scatter Plot and Regression Plane

this solution compactly using matrix algebra. Dividing (3.10) by 2 we obtain

n∑
i=1

xix
′
iβ̂ =

n∑
i=1

xiyi. (3.11)

This is a system of equations of the form Ab = c where A is k × k and b and c are k × 1. The
solution is b = A−1c, and can be obtained by pre-multiplying Ab = c by A−1 and using the matrix
inverse property A−1A = Ik. Applied to (3.11) we find an explicit formula for the least-squares
estimator

β̂ =

(
n∑
i=1

xix
′
i

)−1( n∑
i=1

xiyi

)
. (3.12)

This is the natural estimator of the best linear projection coeffi cient β defined in (3.3), and can
also be called the linear projection estimator.

Recall that we claim that β̂ in (3.12) is the minimizer of SSE(β), and we found this by
solving the first-order conditions. To be complete we should verify the second-order conditions. We
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Figure 3.4: Sum-of-Squared Errors Function

calculate that
∂2

∂β∂β′
SSE(β) = 2

n∑
i=1

xix
′
i > 0

which is a positive definite matrix. This shows that the second-order condition for minimization is
satisfied, so β̂ is indeed the unique minimizer of SSE(β).

Returning to the example sum-of-squared errors function SSE(β) displayed in Figures 3.4 and
3.5, the least-squares estimator β̂ is the the pair (β̂1, β̂2) which minimize this function; visually it
is the low spot in the 3-dimensional graph, and is marked in Figure 3.5 as the center point of the
contour plots.

Returning to equation (3.12) suppose that k = 1. In this case xi is scalar so xix′i = x2
i . Then

(3.12) simplifies to the expression (3.8) previously derived. The expression (3.12) is a notationally
simple generalization but requires a careful attention to vector and matrix manipulations.

Alternatively, equation (3.5) writes the projection coeffi cient β as an explicit function of the
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population moments Qxy and Qxx. Their moment estimators are the sample moments

Q̂xy =
1

n

n∑
i=1

xiyi

Q̂xx =
1

n

n∑
i=1

xix
′
i.

The moment estimator of β replaces the population moments in (3.5) with the sample moments:

β̂ = Q̂
−1

xxQ̂xy

=

(
1

n

n∑
i=1

xix
′
i

)−1(
1

n

n∑
i=1

xiyi

)

=

(
n∑
i=1

xix
′
i

)−1( n∑
i=1

xiyi

)

which is identical with (3.12).
Technically, the estimator β̂ in (3.12) exists and is unique only if the inverted matrix is actually

invertible, which holds if (and only if) this matrix is positive definite. This excludes the case that
xi contains redundant regressors or regressors with no sample variation. This will be discussed
further in Section 3.24.
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Theorem 3.1 If
∑n

i=1 xix
′
i > 0, the least squares estimator equals

β̂ =

(
n∑
i=1

xix
′
i

)−1( n∑
i=1

xiyi

)
.

Adrien-Marie Legendre

The method of least-squares was first published in 1805 by the French math-
ematician Adrien-Marie Legendre (1752-1833). Legendre proposed least-
squares as a solution to the algebraic problem of solving a system of equa-
tions when the number of equations exceeded the number of unknowns. This
was a vexing and common problem in astronomical measurement. As viewed
by Legendre, (3.2) is a set of n equations with k unknowns. As the equations
cannot be solved exactly, Legendre’s goal was to select β to make the set of
errors as small as possible. He proposed the sum of squared error criterion,
and derived the algebraic solution presented above. As he noted, the first-
order conditions (3.10) is a system of k equations with k unknowns, which
can be solved by “ordinary”methods. Hence the method became known
as Ordinary Least Squares and to this day we still use the abbreviation
OLS to refer to Legendre’s estimation method.

3.7 Illustration

We illustrate the least-squares estimator in practice with the data set used to calculate the
estimates reported in Chapter 2. This is the March 2009 Current Population Survey, which has
extensive information on the U.S. population. This data set is described in more detail in Section
3.22. For this illustration, we use the sub-sample of married (spouse present) black female wage
earners with 12 years potential work experience. This sub-sample has 20 observations.

In Table 3.1 we display the observations for reference. Each row is an individual observation,
which are the data for an individual person. The columns correspond to the variables (measure-
ments) for the individuals. The second column is the reported wage (total annual earnings divided
by hours worked). The third column is the natural logarithm of the wage. The fourth column is
years of education. The fifth and six columns are further transformations, specifically the square
of education and the product of education and log(wage). The bottom row are the sums of the
elements in that column.

Putting the variables into the standard regression notation, let yi be log wages and xi be years
of education and an intercept. Then from the column sums in Table 3.1 we have

n∑
i=1

xiyi =

(
995.86
62.64

)
and

n∑
i=1

xix
′
i =

(
5010 314
314 20

)
.
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Table 3.1: Observations From CPS Data Set

Observation Wage log(Wage) Education Education2 Education*log(Wage)
1 37.93 3.64 18 324 65.44
2 40.87 3.71 18 324 66.79
3 14.18 2.65 13 169 34.48
4 16.83 2.82 16 256 45.17
5 33.17 3.50 16 256 56.03
6 29.81 3.39 18 324 61.11
7 54.62 4.00 16 256 64.00
8 43.08 3.76 18 324 67.73
9 14.42 2.67 12 144 32.03
10 14.90 2.70 16 256 43.23
11 21.63 3.07 18 324 55.44
12 11.09 2.41 16 256 38.50
13 10.00 2.30 13 169 29.93
14 31.73 3.46 14 196 48.40
15 11.06 2.40 12 144 28.84
16 18.75 2.93 16 256 46.90
17 27.35 3.31 14 196 46.32
18 24.04 3.18 16 256 50.76
19 36.06 3.59 18 324 64.53
20 23.08 3.14 16 256 50.22

Sum 62.64 314 5010 995.86

Taking the inverse we obtain(
n∑
i=1

xix
′
i

)−1

=

(
0.0125 −0.196
−0.196 3.124

)
.

Thus by matrix multiplication

β̂ =

(
0.0125 −0.196
−0.196 3.124

)(
995.86
62.64

)

=

(
0.155
0.698

)
.

In practice, the regression estimates β̂ are computed by computer software without the user
taking the explict steps listed above. However, it is useful to understand that the least-squares
estimator can be calculated by simple algebraic operations. If your data is in a spreadsheet similar
to Table 3.1, then the listed transformations (logarithm, squares and cross-products, column sums)
can be computed by spreadsheet operations. β̂ could then be calculated by matrix inversion and
multiplication. One again, this is rarely done by applied economists since computer software is
available to ease the process.

We often write the estimated equation using the format

̂log(Wage) = 0.155 education+ 0.698. (3.13)

An interpretation of the estimated equation is that each year of education is associated with a 16%
increase in mean wages.
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Equation (3.13) is called a bivariate regression as there are two variables. It is also called a
simple regression as there is a single regressor. A multiple regression has two or more regres-
sors, and allows a more detailed investigation. Let’s take an example similar to (3.13) but include
all levels of experience. This time, we use the sub-sample of single (never married) Asian men,
which has 268 observations. Including as regressors years of potential work experience (experience)
and its square (experience2/100) (we divide by 100 to simplify reporting), we obtain the estimates

̂log(Wage) = 0.143 education+ 0.036 experience− 0.071 experience2/100 + 0.575. (3.14)

These estimates suggest a 14% increase in mean wages per year of education, holding experience
constant.

3.8 Least Squares Residuals

As a by-product of estimation, we define the fitted value

ŷi = x′iβ̂

and the residual
êi = yi − ŷi = yi − x′iβ̂. (3.15)

Sometimes ŷi is called the predicted value, but this is a misleading label. The fitted value ŷi is a
function of the entire sample, including yi, and thus cannot be interpreted as a valid prediction of
yi. It is thus more accurate to describe ŷi as a fitted rather than a predicted value.

Note that yi = ŷi + êi and
yi = x′iβ̂ + êi. (3.16)

We make a distinction between the error ei and the residual êi. The error ei is unobservable while
the residual êi is a by-product of estimation. These two variables are frequently mislabeled, which
can cause confusion.

Equation (3.10) implies that
n∑
i=1

xiêi = 0. (3.17)

To see this by a direct calculation, using (3.15) and (3.12),

n∑
i=1

xiêi =
n∑
i=1

xi

(
yi − x′iβ̂

)
=

n∑
i=1

xiyi −
n∑
i=1

xix
′
iβ̂

=

n∑
i=1

xiyi −
n∑
i=1

xix
′
i

(
n∑
i=1

xix
′
i

)−1( n∑
i=1

xiyi

)

=

n∑
i=1

xiyi −
n∑
i=1

xiyi

= 0.

When xi contains a constant, an implication of (3.17) is

1

n

n∑
i=1

êi = 0. (3.18)

Thus the residuals have a sample mean of zero and the sample correlation between the regressors
and the residual is zero. These are algebraic results, and hold true for all linear regression estimates.
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3.9 Demeaned Regressors

Sometimes it is useful to separate the constant from the other regressors, and write the linear
projection equation in the format

yi = x′iβ + α+ ei

where α is the intercept and xi does not contain a constant. The least-squares estimates and
residuals can be written as

yi = x′iβ̂ + α̂+ êi.

In this case (3.17) can be written as the equation system

n∑
i=1

(
yi − x′iβ̂ − α̂

)
= 0

n∑
i=1

xi

(
yi − x′iβ̂ − α̂

)
= 0.

The first equation implies
α̂ = y − x′β̂.

Subtracting from the second we obtain

n∑
i=1

xi

(
(yi − y)− (xi − x)′ β̂

)
= 0.

Solving for β̂ we find

β̂ =

(
n∑
i=1

xi (xi − x)′
)−1( n∑

i=1

xi (yi − y)

)

=

(
n∑
i=1

(xi − x) (xi − x)′
)−1( n∑

i=1

(xi − x) (yi − y)

)
. (3.19)

Thus the OLS estimator for the slope coeffi cients is a regression with demeaned data.
The representation (3.19) is known as the demeaned formula for the least-squares estimator.

3.10 Model in Matrix Notation

For many purposes, including computation, it is convenient to write the model and statistics in
matrix notation. The linear equation (2.22) is a system of n equations, one for each observation.
We can stack these n equations together as

y1 = x′1β + e1

y2 = x′2β + e2

...

yn = x′nβ + en.

Now define

y =


y1

y2
...
yn

 , X =


x′1
x′2
...
x′n

 , e =


e1

e2
...
en

 .
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Observe that y and e are n× 1 vectors, and X is an n× k matrix. Then the system of n equations
can be compactly written in the single equation

y = Xβ + e. (3.20)

Sample sums can be written in matrix notation. For example

n∑
i=1

xix
′
i = X ′X

n∑
i=1

xiyi = X ′y.

Therefore the least-squares estimator can be written as

β̂ =
(
X ′X

)−1 (
X ′y

)
.

The matrix version of (3.16) and estimated version of (3.20) is

y = Xβ̂ + ê,

or equivalently the residual vector is
ê = y −Xβ̂.

Using the residual vector, we can write (3.17) as

X ′ê = 0.

It can also be useful to write the sum-of-squared error criterion as

SSE (β) = (y −Xβ)′ (y −Xβ) .

Using matrix notation we have simple expressions for most estimators. This is particularly
convenient for computer programming, as most languages allow matrix notation and manipulation.

Theorem 3.2 Important Matrix Expressions

β̂ =
(
X ′X

)−1 (
X ′y

)
ê = y −Xβ̂

X ′ê = 0.

Early Use of Matrices

The earliest known treatment of the use of matrix methods
to solve simultaneous systems is found in Chapter 8 of the
Chinese text The Nine Chapters on the Mathematical Art,
written by several generations of scholars from the 10th to
2nd century BCE.
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3.11 Projection Matrix

Define the matrix
P = X

(
X ′X

)−1
X ′.

Observe that
PX = X

(
X ′X

)−1
X ′X = X.

This is a property of a projection matrix. More generally, for any matrix Z which can be written
as Z = XΓ for some matrix Γ (we say that Z lies in the range space of X), then

PZ = PXΓ = X
(
X ′X

)−1
X ′XΓ = XΓ = Z.

As an important example, if we partition the matrix X into two matrices X1 and X2 so that

X = [X1 X2] ,

then PX1 = X1. (See Exercise 3.7.)
The projection matrix P has the algebraic property that it is an idempotent matrix PP = P .

See Theorem 3.3.2 below. For the general properties of projection matrices see Section A.11.
The matrix P creates the fitted values in a least-squares regression:

Py = X
(
X ′X

)−1
X ′y = Xβ̂ = ŷ.

Because of this property, P is also known as the “hat matrix”.
A special example of a projection matrix occurs when X = 1n is an n-vector of ones. Then

P = 1n
(
1′n1n

)−1
1′n

=
1

n
1n1

′
n.

Note that in this case

Py = 1n
(
1′n1n

)−1
1′ny

= 1ny

creates an n-vector whose elements are the sample mean y of yi.
The projection matrix P appears frequently in algebraic manipulations in least squares regres-

sion. The matrix has the following important properties.

Theorem 3.3 The projection matrix P = X (X ′X)
−1
X ′ for any n × k

X with n ≥ k has the following algebraic properties

1. P is symmetric (P ′ = P ).

2. P is idempotent (PP = P ).

3. trP = k.

4. The eigenvalues of P are 1 and 0. There are k eigenvalues equalling
1 and n− k equalling 0.

5. rank (P ) = k.
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We close this section by proving the claims in Theorem 3.3. Part 1 holds since

P ′ =
(
X
(
X ′X

)−1
X ′
)′

=
(
X ′
)′ ((

X ′X
)−1
)′

(X)′

= X
((
X ′X

)′)−1
X ′

= X
(

(X)′
(
X ′
)′)−1

X ′

= P .

To establish part 2, the fact that PX = X implies that

PP = PX
(
X ′X

)−1
X ′

= X
(
X ′X

)−1
X ′

= P

as claimed.
For part 3,

trP = tr
(
X
(
X ′X

)−1
X ′
)

= tr
((
X ′X

)−1
X ′X

)
= tr (Ik)

= k.

See Appendix A.5 for definition and properties of the trace operator.
For part 4, it is shown in Appendix A.11 that the eigenvalues λi of an idempotent matrix are

all 1 and 0. Since trP equals the sum of the n eigenvalues and trP = k by part 3, it follows that
there are k eigenvalues equalling 1 and the remainder (n− k) equalling n− k.

For part 5, observe that P is positive semi-definite since its eigenvalues are all non-negative.
By Theorem A.4.5, its rank equals the number of positive eigenvalues, which is k as claimed.

3.12 Orthogonal Projection

Define

M = In − P

= In −X
(
X ′X

)−1
X ′

where In is the n× n identity matrix. Note that

MX = (In − P )X = X − PX = X −X = 0. (3.22)

ThusM andX are orthogonal. We callM an orthogonal projection matrix, or more colorfully
an annihilator matrix, due to the property that for any matrix Z in the range space of X then

MZ = Z − PZ = 0.

For example,MX1 = 0 for any subcomponent X1 of X, andMP = 0 (see Exercise 3.7).
The orthogonal projection matrixM has similar properties with P , including thatM is sym-

metric (M ′ = M) and idempotent (MM = M). Similarly to Theorem 3.3.3 we can calculate

trM = n− k. (3.23)
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(See Exercise 3.9.) One implication is that the rank ofM is n− k.
While P creates fitted values,M creates least-squares residuals:

My = y − Py = y −Xβ̂ = ê. (3.24)

As discussed in the previous section, a special example of a projection matrix occurs when
X = 1n is an n-vector of ones, so that P = 1n (1′n1n)−1 1′n. In this case the orthogonal projection
matrix is

M = In − P

= In − 1n
(
1′n1n

)−1
1′n.

While P creates a vector of sample means,M creates demeaned values:

My = y − 1ny.

For simplicity we will often write the right-hand-side as y − y. The ith element is yi − y, the
demeaned value of yi.

We can also use (3.24) to write an alternative expression for the residual vector. Substituting
y = Xβ + e into ê = My and usingMX = 0 we find

ê = My = M (Xβ + e) = Me (3.25)

which is free of dependence on the regression coeffi cient β.

3.13 Estimation of Error Variance

The error variance σ2 = E
(
e2
i

)
is a moment, so a natural estimator is a moment estimator. If

ei were observed we would estimate σ2 by

σ̃2 =
1

n

n∑
i=1

e2
i . (3.26)

However, this is infeasible as ei is not observed. In this case it is common to take a two-step
approach to estimation. The residuals êi are calculated in the first step, and then we substitute êi
for ei in expression (3.26) to obtain the feasible estimator

σ̂2 =
1

n

n∑
i=1

ê2
i . (3.27)

In matrix notation, we can write (3.26) and (3.27) as

σ̃2 = n−1e′e

and
σ̂2 = n−1ê′ê. (3.28)

Recall the expressions ê = My = Me from (3.24) and (3.25). Applied to (3.28) we find

σ̂2 = n−1ê′ê

= n−1y′MMy

= n−1y′My

= n−1e′Me (3.29)
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the third equality sinceMM = M .
An interesting implication is that

σ̃2 − σ̂2 = n−1e′e− n−1e′Me

= n−1e′Pe

≥ 0.

The final inequality holds because P is positive semi-definite and e′Pe is a quadratic form. This
shows that the feasible estimator σ̂2 is numerically smaller than the idealized estimator (3.26).

3.14 Analysis of Variance

Another way of writing (3.24) is

y = Py +My = ŷ + ê. (3.30)

This decomposition is orthogonal, that is

ŷ′ê = (Py)′ (My) = y′PMy = 0. (3.31)

It follows that
y′y = ŷ′ŷ + 2ŷ′ê+ ê′ê = ŷ′ŷ + ê′ê

or
n∑
i=1

y2
i =

n∑
i=1

ŷ2
i +

n∑
i=1

ê2
i .

Subtracting ȳ from both sizes of (3.30) we obtain

y − 1ny = ŷ − 1ny + ê.

This decomposition is also orthogonal when X contains a constant, as

(ŷ − 1ny)′ ê = ŷ′ê− y1′nê = 0

under (3.18). It follows that

(y − 1ny)′ (y − 1ny) = (ŷ − 1ny)′ (ŷ − 1ny) + ê′ê

or
n∑
i=1

(yi − y)2 =

n∑
i=1

(ŷi − y)2 +

n∑
i=1

ê2
i .

This is commonly called the analysis-of-variance formula for least squares regression.
A commonly reported statistic is the coeffi cient of determination or R-squared:

R2 =

∑n
i=1 (ŷi − y)2∑n
i=1 (yi − y)2 = 1−

∑n
i=1 ê

2
i∑n

i=1 (yi − y)2 .

It is often described as the fraction of the sample variance of yi which is explained by the least-
squares fit. R2 is a crude measure of regression fit. We have better measures of fit, but these require
a statistical (not just algebraic) analysis and we will return to these issues later. One deficiency
with R2 is that it increases when regressors are added to a regression (see Exercise 3.16) so the
“fit”can be always increased by increasing the number of regressors.

The coeffi cient of determination was introduced by Wright (1921).
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3.15 Projections

One way to visualize least squares fitting is as a projection operation.
Write the regressor matrix asX = [X1 X2 ... Xk] whereXj is the jth column ofX. The range

space R(X) of X is the space consisting of all linear combinations of the columns X1,X2,...,Xk.
R(X) is a k dimensional surface contained in Rn. If k = 2 then R(X) is a plane. The operator
P = X (X ′X)

−1
X ′ projects vectors onto the R(X). In particular, the fitted values ŷ = Py are

the projection of y onto R(X).
To visualize, examine Figure 3.6. This displays the case n = 3 and k = 2. Displayed are three

vectors y, X1, and X2, which are each elements of R3. The plane which is created by X1 and
X2 is the range space R(X). Regression fitted values must be linear combinations of X1 and X2,
and so lie on this plane. The fitted value ŷ is the vector on this plane which is closest to y. The
residual ê = y − ŷ is the difference between the two. The angle between the vectors ŷ and ê must
be 90◦, and therefore are orthogonal as shown.

X1

X2

X1

X2

y

X1

X2

ê

y

X1

X2

ê

y

X1

X2

ê

y

X1

X2

ê

y

ŷ

X1

X2

ê

y

ŷ

X1

X2

ê

y

ŷ

X1

Figure 3.6: Projection of y onto X1 and X2
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3.16 Regression Components

Partition
X = [X1 X2]

and

β =

(
β1

β2

)
.

Then the regression model can be rewritten as

y = X1β1 +X2β2 + e. (3.32)

The OLS estimator of β = (β′1,β
′
2)′ is obtained by regression of y on X = [X1 X2] and can be

written as
y = Xβ̂ + ê = X1β̂1 +X2β̂2 + ê. (3.33)

We are interested in algebraic expressions for β̂1 and β̂2.
Let’s focus on finding an algebraic expression for β̂1. The least-squares estimator by definition

is found by the joint minimization(
β̂1, β̂2

)
= argmin

β1,β2

SSE (β1,β2) (3.34)

where
SSE (β1,β2) = (y −X1β1 −X2β2)′ (y −X1β1 −X2β2) .

An equivalent expression for β̂1 can be obtained by concentation. The solution (3.34) can be
written as

β̂1 = argmin
β1

(
min
β2

SSE (β1,β2)

)
. (3.35)

The inner expression minβ2 SSE (β1,β2) minimizes over β2 while holding β1 fixed. It is the lowest
possible sum of squared errors given β1. The outer minimization argminβ1 finds the coeffi cient

β1 which minimizes the “lowest possible sum of squared errors given β1”. This means that β̂1 as
defined in (3.34) and (3.35) are algebraically identical.

Examine the inner minimization problem in (3.35). This is simply the least squares regression
of y −X1β1 on X2. This has solution

argmin
β2

SSE (β1,β2) =
(
X ′2X2

)−1 (
X ′2 (y −X1β1)

)
with residuals

y −X1β1 −X2

(
X ′2X2

)−1 (
X ′2 (y −X1β1)

)
= (M2y −M2X1β1)

= M2 (y −X1β1)

where
M2 = In −X2

(
X ′2X2

)−1
X ′2 (3.36)

is the orthogonal projection matrix forX2. This means that the inner minimization problem (3.35)
has minimized value

min
β2

SSE (β1,β2) = (y −X1β1)′M2M2 (y −X1β1)

= (y −X1β1)′M2 (y −X1β1)
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where the second equality holds sinceM2 is idempotent. Substituting this into (3.35) we find

β̂1 = argmin
β1

(y −X1β1)′M2 (y −X1β1)

=
(
X ′1M2X1

)−1 (
X ′1M2y

)
.

By a similar argument we can find

β̂2 =
(
X ′2M1X2

)−1 (
X ′2M1y

)
where

M1 = In −X1

(
X ′1X1

)−1
X ′1 (3.37)

is the orthogonal projection matrix for X1.

Theorem 3.4 The least-squares estimator
(
β̂1, β̂2

)
for (3.33) has the al-

gebraic solution

β̂1 =
(
X ′1M2X1

)−1 (
X ′1M2y

)
(3.38)

β̂2 =
(
X ′2M1X2

)−1 (
X ′2M1y

)
(3.39)

whereM1 andM2 are defined in (3.37) and (3.36), respectively.

3.17 Regression Components (Alternative Derivation)*

An alternative proof of Theorem 3.4 uses an algebraic argument which is identical to that for
the population coeffi cients as presented in Section 2.22. Since this is a classic derivation we present
it here for completeness.

Partition Q̂xx as

Q̂xx =

 Q̂11 Q̂12

Q̂21 Q̂22

 =


1

n
X ′1X1

1

n
X ′1X2

1

n
X ′2X1

1

n
X ′2X2


and similarly Q̂xy as

Q̂xy =

 Q̂1y

Q̂2y

 =


1

n
X ′1y

1

n
X ′2y

 .
By the partitioned matrix inversion formula (A.3)

Q̂
−1

xx =

 Q̂11 Q̂12

Q̂21 Q̂22

−1

def
=

 Q̂
11

Q̂
12

Q̂
21

Q̂
22

 =

 Q̂
−1

11·2 −Q̂−1

11·2Q̂12Q̂
−1

22

−Q̂−1

22·1Q̂21Q̂
−1

11 Q̂
−1

22·1

 (3.40)
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where Q̂11·2 = Q̂11 − Q̂12Q̂
−1

22 Q̂21 and Q̂22·1 = Q̂22 − Q̂21Q̂
−1

11 Q̂12. Thus

β̂ =

(
β̂1

β̂2

)

=

[
Q̂
−1

11·2 −Q̂−1

11·2Q̂12Q̂
−1

22

−Q̂−1

22·1Q̂21Q̂
−1

11 Q̂
−1

22·1

][
Q̂1y

Q̂2y

]

=

(
Q̂
−1

11·2Q̂1y·2

Q̂
−1

22·1Q̂2y·1

)
.

Now

Q̂11·2 = Q̂11 − Q̂12Q̂
−1

22 Q̂21

=
1

n
X ′1X1 −

1

n
X ′1X2

(
1

n
X ′2X2

)−1 1

n
X ′2X1

=
1

n
X ′1M2X1

and

Q̂1y·2 = Q̂1y − Q̂12Q̂
−1

22 Q̂2y

=
1

n
X ′1y −

1

n
X ′1X2

(
1

n
X ′2X2

)−1 1

n
X ′2y

=
1

n
X ′1M2y.

Equation (3.39) follows.

Similarly to the calculation for Q̂11·2 and Q̂1y·2 you can show that Q̂2y·1 =
1

n
X ′2M1y and

Q̂22·1 =
1

n
X ′2M1X2. This establishes (3.38). Together, this is Theorem 3.4.

3.18 Residual Regression

As first recognized by Frisch and Waugh (1933) and extended by Lovell (1963), expressions
(3.38) and (3.39) can be used to show that the least-squares estimators β̂1 and β̂2 can be found by
a two-step regression procedure.

Take (3.39). SinceM1 is idempotent,M1 = M1M1 and thus

β̂2 =
(
X ′2M1X2

)−1 (
X ′2M1y

)
=
(
X ′2M1M1X2

)−1 (
X ′2M1M1y

)
=
(
X̃
′
2X̃2

)−1 (
X̃
′
2ẽ1

)
where

X̃2 = M1X2

and
ẽ1 = M1y.

Thus the coeffi cient estimate β̂2 is algebraically equal to the least-squares regression of ẽ1 on
X̃2. Notice that these two are y and X2, respectively, premultiplied by M1. But we know that
multiplication by M1 is equivalent to creating least-squares residuals. Therefore ẽ1 is simply the
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least-squares residual from a regression of y on X1, and the columns of X̃2 are the least-squares
residuals from the regressions of the columns of X2 on X1.

We have proven the following theorem.

Theorem 3.5 Frisch-Waugh-Lovell (FWL)
In the model (3.32), the OLS estimator of β2 and the OLS residuals ê may
be equivalently computed by either the OLS regression (3.33) or via the
following algorithm:

1. Regress y on X1, obtain residuals ẽ1;

2. Regress X2 on X1, obtain residuals X̃2;

3. Regress ẽ1 on X̃2, obtain OLS estimates β̂2 and residuals ê.

In some contexts (such as panel data models, to be introduced in Chapter 17), the FWL theorem
can be used to greatly speed computation.

The FWL theorem is a direct analogy of the coeffi cient representation obtained in Section
2.23. The result obtained in that section concerned the population projection coeffi cients, the
result obtained here concern the least-squares estimates. The key message is the same. In the
least-squares regression (3.33), the estimated coeffi cient β̂2 numerically equals the regression of y
on the regressors X2, only after the regressors X1 have been linearly projected out. Similarly,
the coeffi cient estimate β̂1 numerically equals the regression of y on the regressors X1, after the
regressorsX2 have been linearly projected out. This result can be very insightful when interpreting
regression coeffi cients.

A common application of the FWL theorem is the demeaning formula for regression obtained in
(3.19). Partition X = [X1 X2] where X1 = 1n is a vector of ones and X2 is a matrix of observed
regressors. In this case,

M1 = In − 1n
(
1′n1n

)−1
1′n.

Observe that
X̃2 = M1X2 = X2 −X2

and
M1y = y − y

are the “demeaned”variables. The FWL theorem says that β̂2 is the OLS estimate from a regression
of yi − y on x2i − x2 :

β̂2 =

(
n∑
i=1

(x2i − x2) (x2i − x2)′
)−1( n∑

i=1

(x2i − x2) (yi − y)

)
.

This is (3.19).

Ragnar Frisch
Ragnar Frisch (1895-1973) was co-winner with Jan Tinbergen of the first
Nobel Memorial Prize in Economic Sciences in 1969 for their work in devel-
oping and applying dynamic models for the analysis of economic problems.
Frisch made a number of foundational contributions to modern economics
beyond the Frisch-Waugh-Lovell Theorem, including formalizing consumer
theory, production theory, and business cycle theory.
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3.19 Leverage Values

The leverage values for the regressor matrix X are the diagonal elements of the projection
matrix P = X (X ′X)

−1
X ′ . There are n leverage values, and are typically written as hii for

i = 1, ..., n. Since

P =


x′1
x′2
...
x′n

(X ′X)−1 (
x1 x2 · · · xn

)
they are

hii = x′i
(
X ′X

)−1
xi. (3.41)

The leverage value hii is a normalized length of the observed regressor vector xi. They appear
frequently in the algebraic and statistical analysis of least-squares regression, including leave-one-
out regression, influential observations, robust covariance matrix estimation, and cross-validation.

A few properties of the leverage values are now listed.

Theorem 3.6

1. 0 ≤ hii ≤ 1.

2. hii ≥ 1/n if X includes an intercept.

3.
∑n

i=1 hii = k.

We prove Theorem 3.6 below.
The leverage values hii measure how unusual the ith observation xi is relative to the other

values in the sample. A large hii occurs when xi is quite different from the other sample values. A
measure of overall unusualness is the maximum leverage value

h = max
1≤i≤n

hii. (3.42)

It is common to say that a regression design is balanced when the leverage values are all
roughly equal to one another. From Theorem 3.6.3 we can deduce that complete balance implies
hii = h = k/n. An example where complete balance occurs is when the regressors are all orthogonal
dummy variables, each of which have equal occurrance of 0’s and 1’s.

A regression design is unbalanced if some leverage values are highly unequal from the others.
The most extreme case is h = 1. An example where this occurs is when there is a dummy regressor
which takes the value 1 for only one observation in the sample.

The maximal leverage value (3.42) will change depending on the choice of regressors. For
example, consider equation (3.14), the wage regression for single asian men which has n = 268
observations. This regression has h = 0.33. If the squared experience regressor is omitted, the
leverage drops to h = 0.10. If a cubic in experience is added, it increases to h = 0.76. And if a
fourth and fifth power are added, it increases to h = 0.99.

In general, there is no reason to check the leverage values, as in general there is no problem
if the leverage values are balanced, unbalanced, or every highly unbalanced. However, the fact
that leverage values can easily be large and close to one suggests that we should take this into
consideration when examining procedures (such as robust covariance matrix estimation and cross-
validation) which make use of leverage values. We will return to these issues later when leverage
values arise.
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We now prove Theorem 3.6. For part 1, let si be an n × 1 unit vector with a 1 in the ith

place and zeros elsewhere, so that hii = s′iPsi. Then applying the Quadratic Inequality (B.16) and
Theorem 3.3.4,

hii = s′iPsi ≤ s′isiλmax (P ) = 1

as claimed.
For part 2, partition xi = (1, z′i)

′. Without loss of generality we can replace zi with the
demeaned values z∗i = zi − z. Then since z∗i and the intercept are orthgonal,

hii = (1, z∗′i )

[
n 0
0 Z∗′Z∗

]−1(
1
z∗i

)
=

1

n
+ z∗′i

(
Z∗′Z∗

)−1
z∗i

≥ 1

n
.

For part 3,
∑n

i=1 hii = trP = k where the second equality is Theorem 3.3.3.

3.20 Leave-One-Out Regression

There are a number of statistical procedures —residual analysis, jackknife variance estimation,
cross-validation, two-step estimation, hold-out sample evaluation —which make use of estimators
constructed on sub-samples. Of particular importance is the case where we exclude a single obser-
vation and then repeat this for all observations. This is called leave-one-out (LOO) regression.

Specifically, the leave-one-out least-squares estimator of the regression coeffi cient β is the least-
squares estimator constructed using the full sample excluding a single observation i. This can be
written as

β̂(−i) =

∑
j 6=i
xjx

′
j

−1∑
j 6=i
xjyj


=
(
X ′X − xix′i

)−1 (
X ′y − xiyi

)
=
(
X ′(−i)X(−i)

)−1
X ′(−i)y(−i). (3.43)

Here, X(−i) and y(−i) are the data matrices omitting the i
th row. The notation β̂(−i) or β̂−i is

commonly used to denote an estimator with the ith observation omitted.
There is a leave-one-out estimator for each observation, i = 1, ..., n, so we have n such estimators.
The leave-one-out predicted value for yi is

ỹi = x′iβ̂(−i).

This is the predicted value obtained by estimating β on the sample without observation i, and then
using the covariate vector xi to predict yi. Notice that ỹi is an authentic prediction as yi is not
used to construct ỹi. This is in contrast to the fitted values ŷi which are functions of yi.

The leave-one-out residual, prediction error, or prediction residual is

ẽi = yi − ỹi.

The prediction errors may be used as estimates of the errors instead of the residuals. The prediction
errors are better estimates than the residuals, since the former are based on authentic predictions.

The leave-one-out formula (3.43) gives the unfortunate impression that the leave-one-out coeffi -
cients and errors are computationally cumbersome, requiring n separate regressions. In the context
of linear regression this is fortunately not the case. There are simple linear expressions for β̂(−i)
and ẽi.
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Theorem 3.7 The leave-one-out least-squares estimator and prediction
error can be calculated as

β̂(−i) = β̂ −
(
X ′X

)−1
xiẽi (3.44)

and
ẽi = (1− hii)−1 êi (3.45)

where hii are the leverage values as defined in (3.41).

We prove Theorem 3.7 at the end of the section.
Equation (3.44) shows that the leave-one-out coeffi cients can be calculated by a simple linear

operation and do not need to be calculated using n separate regressions. Equation (3.45) for the
prediction error is particularly convenient. It shows that the leave-one-out residuals are a simple
scaling of the standard least-squares residuals.

Equations (3.44) and (3.45) both show the usefulness of the leverage values hii.
Another interesting feature of equation (3.45) is that the prediction errors ẽi are a simple scaling

of the residuals êi, with the scaling depending on the leverage values hii. If hii is small then ẽi ' êi.
However if hii is large then ẽi can be quite different from êi. Thus the difference between the
residuals and predicted values depends on the leverage values, that is, how unusual xi is relative
to the other observations.

To write (3.45) in vector notation, define

M∗ = (In − diag{h11, .., hnn})−1

= diag{(1− h11)−1 , .., (1− hnn)−1}.

Then (3.45) is equivalent to
ẽ = M∗ê. (3.46)

One use of the prediction errors is to estimate the out-of-sample mean squared error. The
natural estimator is

σ̃2 =
1

n

n∑
i=1

ẽ2
i =

1

n

n∑
i=1

(1− hii)−2 ê2
i . (3.47)

This is also known as the sample mean squared prediction error. Its square root σ̃ =
√
σ̃2 is

the prediction standard error.
We complete the section by presenting a proof of Theorem 3.7. The leave-one-out estimator

(3.43) can be written as
β̂(−i) =

(
X ′X − xix′i

)−1 (
X ′y − xiyi

)
. (3.48)

Multiply (3.48) by (X ′X)
−1

(X ′X − xix′i). We obtain

β̂(−i) −
(
X ′X

)−1
xix

′
iβ̂(−i) =

(
X ′X

)−1 (
X ′y − xiyi

)
= β̂ −

(
X ′X

)−1
xiyi.

Rewriting

β̂(−i) = β̂ −
(
X ′X

)−1
xi

(
yi − x′iβ̂(−i)

)
= β̂ −

(
X ′X

)−1
xiẽi

which is (3.44). Premultiplying this expression by x′i and using definition (3.41) we obtain

x′iβ̂(−i) = x′iβ̂ − x′i
(
X ′X

)−1
xiẽi = x′iβ̂ − hiiẽi.

Using the definitions for êi and ẽi we obtain ẽi = êi − hiiẽi. Re-writing we obtain (3.45).
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3.21 Influential Observations

Another use of the leave-one-out estimator is to investigate the impact of influential obser-
vations, sometimes called outliers. We say that observation i is influential if its omission from
the sample induces a substantial change in a parameter estimate of interest.

For illustration, consider Figure 3.7 which shows a scatter plot of random variables (yi, xi).
The 25 observations shown with the open circles are generated by xi ∼ U [1, 10] and yi ∼ N(xi, 4).
The 26th observation shown with the filled circle is x26 = 9, y26 = 0. (Imagine that y26 = 0 was
incorrectly recorded due to a mistaken key entry.) The figure shows both the least-squares fitted
line from the full sample and that obtained after deletion of the 26th observation from the sample.
In this example we can see how the 26th observation (the “outlier”) greatly tilts the least-squares
fitted line towards the 26th observation. In fact, the slope coeffi cient decreases from 0.97 (which
is close to the true value of 1.00) to 0.56, which is substantially reduced. Neither y26 nor x26 are
unusual values relative to their marginal distributions, so this outlier would not have been detected
from examination of the marginal distributions of the data. The change in the slope coeffi cient of
−0.41 is meaningful and should raise concern to an applied economist.
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Figure 3.7: Impact of an Influential Observation on the Least-Squares Estimator

From (3.44) we know that
β̂ − β̂(−i) =

(
X ′X

)−1
xiẽi. (3.49)

By direct calculation of this quantity for each observation i, we can directly discover if a specific
observation i is influential for a coeffi cient estimate of interest.

For a general assessment, we can focus on the predicted values. The difference between the
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full-sample and leave-one-out predicted values is

ŷi − ỹi = x′iβ̂ − x′iβ̂(−i)

= x′i
(
X ′X

)−1
xiẽi

= hiiẽi

which is a simple function of the leverage values hii and prediction errors ẽi. Observation i is
influential for the predicted value if |hiiẽi| is large, which requires that both hii and |ẽi| are large.

One way to think about this is that a large leverage value hii gives the potential for observation
i to be influential. A large hii means that observation i is unusual in the sense that the regressor xi
is far from its sample mean. We call an observation with large hii a leverage point. A leverage
point is not necessarily influential as the latter also requires that the prediction error ẽi is large.

To determine if any individual observations are influential in this sense, several diagnostics have
been proposed (some names include DFITS, Cook’s Distance, and Welsch Distance). Unfortunately,
from a statistical perspective it is diffi cult to recommend these diagnostics for applications as they
are not based on statistical theory. Probably the most relevant measure is the change in the
coeffi cient estimates given in (3.49). The ratio of these changes to the coeffi cient’s standard error
is called its DFBETA, and is a postestimation diagnostic available in Stata. While there is no
magic threshold, the concern is whether or not an individual observation meaningfully changes an
estimated coeffi cient of interest. A simple diagnostic for influential observations is to calculate

Influence = max
1≤i≤n

|ŷi − ỹi| = max
1≤i≤n

|hiiẽi| .

This is the largest (absolute) change in the predicted value due to a single observation. If this diag-
nostic is large relative to the distribution of yi, it may indicate that that observation is influential.

If an observation is determined to be influential, what should be done? As a common cause
of influential observations is data entry error, the influential observations should be examined for
evidence that the observation was mis-recorded. Perhaps the observation falls outside of permitted
ranges, or some observables are inconsistent (for example, a person is listed as having a job but
receives earnings of $0). If it is determined that an observation is incorrectly recorded, then the
observation is typically deleted from the sample. This process is often called “cleaning the data”.
The decisions made in this process involve a fair amount of individual judgment. [When this is
done the proper practice is to retain the source data in its original form and create a program
file which executes all cleaning operations (for example deletion of individual observations). The
cleaned data file can be saved at this point, and then used for the subsequent statistical analysis.
The point of retaining the source data and a specific program file which cleans the data is twofold:
so that all decisions are documented, and so that modifications can be made in revisions and future
research.] It is also possible that an observation is correctly measured, but unusual and influential.
In this case it is unclear how to proceed. Some researchers will try to alter the specification to
properly model the influential observation. Other researchers will delete the observation from the
sample. The motivation for this choice is to prevent the results from being skewed or determined
by individual observations, but this practice is viewed skeptically by many researchers who believe
it reduces the integrity of reported empirical results.

For an empirical illustration, consider the log wage regression (3.14) for single Asian males. This
regression, which has 268 observations, has Influence = 0.29. This means that the most influential
observation, when deleted, changes the predicted (fitted) value of the dependent variable log(Wage)
by 0.29, or equivalently the wage by 29%. This is a meaningful change and suggests further
investigation. We examine the influential observation, and find that its leverage hii is 0.33, which is
the maximum in the sample as described in Section 3.19. It is a rather large leverage value, meaning
that the regressor xi is unusual. Examining further, we find that this individual is 65 years old with
8 years education, so that his potential experience is 51 years. This is the highest experience in the
subsample —the next highest is 41 years. The large leverage is due to his unusual characteristics
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(very low education and very high experience) within this sample. Essentially, regression (3.14)
is attempting to estimate the conditional mean at experience= 51 with only one observation, so
it is not surprising that this observation determines the fit and is thus influential. A reasonable
conclusion is the regression function can only be estimated over a smaller range of experience. We
restrict the sample to individuals with less than 45 years experience, re-estimate, and obtain the
following estimates.

̂log(Wage) = 0.144 education+ 0.043 experience− 0.095 experience2/100 + 0.531. (3.50)

For this regression, we calculate that Influence = 0.11, which is greatly reduced relative to the
regression (3.14). Comparing (3.50) with (3.14), the slope coeffi cient for education is essentially
unchanged, but the coeffi cients in experience and its square have slightly increased.

By eliminating the influential observation, equation (3.50) can be viewed as a more robust
estimate of the conditional mean for most levels of experience. Whether to report (3.14) or (3.50)
in an application is largely a matter of judgment.

3.22 CPS Data Set

In this section we describe the data set used in the empirical illustrations.
The Current Population Survey (CPS) is a monthly survey of about 57,000 U.S. households

conducted by the Bureau of the Census of the Bureau of Labor Statistics. The CPS is the primary
source of information on the labor force characteristics of the U.S. population. The survey covers
employment, earnings, educational attainment, income, poverty, health insurance coverage, job
experience, voting and registration, computer usage, veteran status, and other variables. Details
can be found at www.census.gov/cps and dataferrett.census.gov.

From the March 2009 survey we extracted the individuals with non-allocated variables who
were full-time employed (defined as those who had worked at least 36 hours per week for at least
48 weeks the past year), and excluded those in the military. This sample has 50,742 individ-
uals. We extracted 14 variables from the CPS on these individuals and created the data files
cps09mar.dta (Stata format), cps09mar.xlsx (Excel format) and cps09mar.txt (text format).
The variables are described in the file cps09mar_description.pdf All data files are available at
http://www.ssc.wisc.edu/~bhansen/econometrics/

3.23 Numerical Computation

Modern econometric estimation involves large samples and many covariates. Consequently
calculation of even simple statistics such as the least squares estimator requires a large number
(millions) of arithmetic operations. In practice most economists don’t need to think much about
this as it is done swiftly and effortlessly on our personal computers. Nevertheless it is useful
to understand the underlying calculation methods as occassionally choices can make substantive
differences.

While today nearly all statistical computations are made using statistical software running on
personal computers, this was not always the case. In the nineteenth and early twentieth centures,
“computer”was a job label for workers who made computations by hand. Computers were employed
by astronomers and statistical laboratories to execute numerical calculations. This fascinating job
(and the fact that most computers employed in laboratories were women) has entered popular
culture. For example the lives of several computers who worked for the early U.S. space program
is described in the book and popular movie Hidden Figures, and the life of computer/astromer
Henrietta Swan Leavitt is dramatized in the moving play Silent Sky.

Until programmable electronic computers became available in the 1960s, economics graduate
students were routinely employed as computers. Sample sizes were considerably smaller than those
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seen today, but still the effort required to calculate by hand (for example) a regression with n = 100
observations and k = 5 variables is considerable! If you are a current graduate student, you should
feel fortunate that the profession has moved on from the era of human computers! (Now research
assistants do more elevated tasks such as writing Stata and Matlab code.)

To obtain the least squares estimator β̂ = (X ′X)
−1

(X ′y) we need to either invert X ′X or
solve a system of equations. To be specific, let A = X ′X and c = X ′y so that the least squares
estimator can be written as either the solution to

Aβ̂ = c (3.51)

or as
β̂ = A−1c. (3.52)

The equations (3.51) and (3.51) are algebraically identical, but they suggest two distinct numerical
approaches to obtain β̂. (3.51) suggests solving a system of k equations. (3.52) suggests finding
A−1 and then multiplying by c. While the two expressions are algebraically identical, the implied
numerical approaches are different.

In a nutshell, solving the system of equations (3.51) is numerically preferred to the matrix
inversion problem (3.52). Directly solving (3.51) is faster and produces a solution with a higher
degree of numerical accuracy. Thus (3.51) is generally recommended over (3.52). However, in most
practical applications the choice will not make any practical difference. Contexts where the choice
may make a difference is when the matrix A is ill-conditioned (to be discussed in Section 3.24) or
extremely large.

Numerical methods to solve the system of equations (3.51) and calculate A−1 are discussed in
Sections A.18 and A.19, respectively.

Statistical packages use a variety of matrix to solve (3.51). Stata uses the sweep algorithm, which
is a variant of the Gauss-Jordan algorithm discussed in Section A.18. (For the sweep algorithm
see Goodnight (1979).) In R, solve(A,b) uses the QR decomposition. In Matlab, A\b uses the
Cholesky decomposition when A is positive definite and the QR decomposition otherwise.

3.24 Collinearity Errors

For the least squares estimator to be uniquely defined the regressors cannot be linearly de-
pendent. However, it is quite easy to attempt to calculate a regression with linearly dependent
regressors. This can occur for many reasons, including the following.

1. Including the same regressor twice.

2. Including regressors which are a linear combination of one another, such as education, experi-
ence and age in the CPS data set example (recall, experience is defined as age-education-6 ).

3. Including a dummy variable and its square.

4. Estimating a regression on a sub-sample for which a dummy variable is either all zeros or all
ones.

5. Including a dummy variable interaction which yields all zeros.

6. Including more regressors than observations.

In any of the above cases the regressors are linearly dependent so X ′X is singular and the
least squares estimator is not defined. If you attempt to estimate the regression, you are likely
to encounter an error message. (A possible exception is Matlab using “A\b”, as discussed below.)
The message may be that “system is exactly singular”, “system is computationally singular”, a
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variable is “omitted because of collinearity”, or a coeffi cient is listed as “NA”. In some cases (such
as estimation in R using explicit matrix computation or Matlab using the regress command) the
program will stop execution. In other cases the program will continue to run. In Stata (and in the
lm package in R), a regression will be reported but one or more variables will be omitted to achieve
non-singularity.

If any of these warnings or error messages appear, the correct response is to stop and examine the
regression coding and data. Did you make an unintended mistake? Have you included a linearly
dependent regressor? Are you estimating on a subsample for which the variables (in particular
dummy variables) have no variation? If can determine that one of these scenarios caused the
error, the solution is immediately apparent. You need to respecify your model (either sample or
regressors) so that the redundancy is eliminated. All empirical researchers encounter this error in
the course of empirical work. You should not, however, simply accept output if the package has
selected variables for omission. It is the researcher’s job to understand the underlying cause and
enact a suitable remedy.

There is also a possibility that the statistical package will not detect and report the matrix
singularity. If you compute in Matlab using explicit matrix operations and use the recommended
A\b command to compute the least squares estimator, Matlab may return a numerical solution
without an error message even when the regressors are algebraically dependent. It is therefore
recommended that you perform a numerical check for matrix singularity when using explicit matrix
operations in Matlab.

How can we numerically check if a matrixA is singular? A standard diagnostic is the reciprocal
condition number

C =
λmin (A)

λmax (A)
.

If C = 0 then A is singular. If C = 1 then A is perfectly balanced. If C is extremely small we
say that A is ill-conditioned. The reciprocal condition number can be calculated in Matlab or
R by the rcond command. Unfortunately, there is no accepted tolerance for how small C should
be before regarding A as numerically singular, in part since rcond(A) can return a positive (but
small) result even if A is algebraically singular. However, in double precision (which is typically
used for computation) numerical accuracy is bounded by 2−52 ' 2.2e-16, suggesting the minimum
bound C ≥ 1e-16.

Checking for numerical singularity is complicated by the fact that low values of C can also be
caused by unbalanced or highly correlated regressors.

To illustrate, consider a wage regression using the sample from (3.14) on powers of experience
x from 1 through k (e.g. x, x2, x3, ..., xk). We calculated the reciprocal condition number C for
each k, and found that C is decreasing as k increases, indicating increasing ill-conditioning. Indeed,
for k = 5, we find C = 6e-17, which is lower than double precision accuracy. This means that a
regression on (x, x2, x3, x4, x5) is ill-conditioned. The regressor matrix, however, is not singular.
The low value of C is not due to algebraic singularity, but rather is due to a lack of balance and
high collinearity.

Ill-conditioned regressors have the potential problem that the numerical results (the reported
coeffi cient estimates) will be inaccurate. It is not a major concern, as this only occurs in extreme
cases, and because high numerical accuracy it typically not a goal in econometric estimation.
Nevertheless, we should try and avoid ill-conditioned regressions when possible.

There are strategies which can reduce or even eliminate ill-conditioning. Often it is suffi cient to
rescale the regressors. A simple rescaling which often works for non-negative regressors is to divide
each by its sample mean, thus replace xji with xji/xj . In the above example with the powers of
experience, this means replacing x2

i with x
2
i /
(
n−1

∑n
i=1 x

2
i

)
, etc. Doing so dramatically reduces the

ill-conditioning. With this scaling, regressions for k ≤ 11 satisfy the bound C ≥ 1e-15. A rescaling
specific to a regression with powers is to first rescale the regressor to lie in [−1, 1] before taking
powers. With this scaling, regressions for k ≤ 16 satisfy the bound C ≥ 1e-15. A simpler version is
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to first rescale the regressor to lie in [0, 1] before taking powers. With this scaling, regressions for
k ≤ 9 satisfy the bound C ≥ 1e-15. This is often suffi cient for applications.

Ill-conditioning can often be completely eliminated by orthogonalization of the regressors. This
is achieved by sequentially regressing each variable (each column in X) on the preceeding variables
(each preceeding column), taking the residual, and then rescaling to have a unit variance. This will
produce regressors which algebraically satisfy X ′X = nIn and have a condition number of C = 1.
If we apply this method to the above example, we obtain a condition number close to 1 for k ≤ 20.

What this shows is that when a regression has a small condition number it is important to
examine the specification carefully. It is possible that the regressors are linearly dependent in
which case one or more regressors will need to be omitted. It is also possible that the regressors
are badly scaled, in which case it may be useful to rescale some of the regressors. It is also possible
that the variables are highly collinear, in which case a possible solution is orthogonalization. These
choices should be made by the researcher, not by an automated software program.

3.25 Programming

Most packages allow both interactive programming (where you enter commands one-by-one) and
batch programming (where you run a pre-written sequence of commands from a file). Interactive
programming can be useful for exploratory analysis, but eventually all work should be executed in
batch mode. This is the best way to control and document your work.

Batch programs are text files where each line executes a single command. For Stata, this file
needs to have the filename extension “.do”, and for MATLAB “.m”. For R there is no specific
naming requirements, though it is typical to use the extension “.r”. When writing batch files, it
is useful to include comments for documentation and readability. To execute a program file, you
type a command within the program.

Stata: do chapter3 executes the file chapter3.do
MATLAB: run chapter3 executes the file chapter3.m
R: source(“chapter3.r”) or source(‘chapter3.r’) executes the file chapter3.r
There are other similarities and differences between the commands used in these packages. For

example:

1. Different symbols are used to create comments. * in Stata, # in R, and % in Matlab.

2. Matlab uses the symbol ; to separate lines. Stata and R use a hard return.

3. Stata uses ln() to compute natural logarithms. R and Matlab use log().

4. The symbol = is used to define a variable. R prefers <-. Double equality == is used to test
equality.

We now illustrate programming files for Stata, R, and MATLAB, which execute a portion of
the empirical illustrations from Sections 3.7 and 3.21. For the R and Matlab code we illustrate
using explicit matrix operations. Alternatively, R and Matlab have packages which implement least
squares regression without the need for explicit matrix operations. In R, the standard package is lm.
In Matlab the standard command is regress. The advantage of using explicit matrix operations
as shown below is that you know exactly what computations are done, and it is easier to go “out
of the box”to execute new procedures. The advantage of using built-in packages and commands
is that coding is simplified.
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Stata do File

* Clear memory and load the data
clear
use cps09mar.dta
* Generate transformations
gen wage = ln(earnings/(hours*week))
gen experience = age - education - 6
gen exp2 = (experience^2)/100
* Create indicator for subsamples
gen mbf = (race == 2) & (marital <= 2) & (female == 1)
gen mbf12 = (mbf == 1) & (experience == 12)
gen sam = (race == 4) & (marital == 7) & (female == 0)
* Regressions
reg wage education if mbf12 == 1
reg wage education experience exp2 if sam == 1
* Leverage and influence
predict leverage, hat
predict e, residual
gen d=e*leverage/(1-leverage)
summarize d if sam ==1
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R Program File

# Load the data and create subsamples
dat <- read.table("cps09mar.txt")
experience <- dat[,1]-dat[,4]-6
mbf <- (dat[,11]==2)&(dat[,12]<=2)&(dat[,2]==1)&(experience==12)
sam <- (dat[,11]==4)&(dat[,12]==7)&(dat[,2]==0)
dat1 <- dat[mbf,]
dat2 <- dat[sam,]
# First regression
y <- as.matrix(log(dat1[,5]/(dat1[,6]*dat1[,7])))
x <- cbind(dat1[,4],matrix(1,nrow(dat1),1))
xx <- t(x)%*%x
xy <- t(x)%*%y
beta <- solve(xx,xy)
print(beta)
# Second regression
y <- as.matrix(log(dat2[,5]/(dat2[,6]*dat2[,7])))
experience <- dat2[,1]-dat2[,4]-6
exp2 <- (experience^2)/100
x <- cbind(dat2[,4],experience,exp2,matrix(1,nrow(dat2),1))
xx <- t(x)%*%x
xy <- t(x)%*%y
beta <- solve(xx,xy)
print(beta)
# Create leverage and influence
e <- y-x%*%beta
xxi <- solve(xx)
leverage <- rowSums(x*(x%*%xxi))
r <- e/(1-leverage)
d <- leverage*e/(1-leverage)
print(max(abs(d)))
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MATLAB Program File

% Load the data and create subsamples
dat = load cps09mar.txt;
# An alternative to load the data from an excel file is
# dat = xlsread(’cps09mar.xlsx’);
experience = dat(:,1)-dat(:,4)-6;
mbf = (dat(:,11)==2)&(dat(:,12)<=2)&(dat(:,2)==1)&(experience==12);
sam = (dat(:,11)==4)&(dat(:,12)==7)&(dat(:,2)==0);
dat1 = dat(mbf,:);
dat2 = dat(sam,:);
% First regression
y = log(dat1(:,5)./(dat1(:,6).*dat1(:,7)));
x = [dat1(:,4),ones(length(dat1),1)];
xx = x’*x
xy = x’*y
beta = xx\xy;
display(beta);
% Second regression
y = log(dat2(:,5)./(dat2(:,6).*dat2(:,7)));
experience = dat2(:,1)-dat2(:,4)-6;
exp2 = (experience.^2)/100;
x = [dat2(:,4),experience,exp2,ones(length(dat2),1)];
xx = x’*x
xy = x’*y
beta = xx\xy;
display(beta);
% Create leverage and influence
e = y-x*beta;
xxi = inv(xx)
leverage = sum((x.*(x*xxi))’)’;
d = leverage.*e./(1-leverage);
influence = max(abs(d));
display(influence);
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Exercises

Exercise 3.1 Let y be a random variable with µ = E (y) and σ2 = var(y). Define

g
(
y, µ, σ2

)
=

(
y − µ

(y − µ)2 − σ2

)
.

Let (µ̂, σ̂2) be the values such that gn(µ̂, σ̂2) = 0 where gn(m, s) = n−1
∑n

i=1 g (yi,m, s) . Show that
µ̂ and σ̂2 are the sample mean and variance.

Exercise 3.2 Consider the OLS regression of the n× 1 vector y on the n× k matrix X. Consider
an alternative set of regressors Z = XC, where C is a k × k non-singular matrix. Thus, each
column of Z is a mixture of some of the columns of X. Compare the OLS estimates and residuals
from the regression of y on X to the OLS estimates from the regression of y on Z.

Exercise 3.3 Using matrix algebra, show X ′ê = 0.

Exercise 3.4 Let ê be the OLS residual from a regression of y on X = [X1 X2]. Find X ′2ê.

Exercise 3.5 Let ê be the OLS residual from a regression of y on X. Find the OLS coeffi cient
from a regression of ê on X.

Exercise 3.6 Let ŷ = X(X ′X)−1X ′y. Find the OLS coeffi cient from a regression of ŷ on X.

Exercise 3.7 Show that if X = [X1 X2] then PX1 = X1 andMX1 = 0.

Exercise 3.8 Show thatM is idempotent: MM = M .

Exercise 3.9 Show that trM = n− k.

Exercise 3.10 Show that if X = [X1 X2] and X ′1X2 = 0 then P = P 1 + P 2.

Exercise 3.11 Show that when X contains a constant,
1

n

∑n
i=1 ŷi = y.

Exercise 3.12 A dummy variable takes on only the values 0 and 1. It is used for categorical
data, such as an individual’s gender. Let d1 and d2 be vectors of 1’s and 0’s, with the ith element
of d1 equaling 1 and that of d2 equaling 0 if the person is a man, and the reverse if the person is a
woman. Suppose that there are n1 men and n2 women in the sample. Consider fitting the following
three equations by OLS

y = µ+ d1α1 + d2α2 + e (3.53)

y = d1α1 + d2α2 + e (3.54)

y = µ+ d1φ+ e (3.55)

Can all three equations (3.53), (3.54), and (3.55) be estimated by OLS? Explain if not.

(a) Compare regressions (3.54) and (3.55). Is one more general than the other? Explain the
relationship between the parameters in (3.54) and (3.55).

(b) Compute 1′nd1 and 1′nd2, where 1n is an n× 1 vector of ones.

(c) Letting α = (α1 α2)′, write equation (3.54) as y = Xα+e. Consider the assumption E(xiei) =
0. Is there any content to this assumption in this setting?
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Exercise 3.13 Let d1 and d2 be defined as in the previous exercise.

(a) In the OLS regression
y = d1γ̂1 + d2γ̂2 + û,

show that γ̂1 is the sample mean of the dependent variable among the men of the sample
(y1), and that γ̂2 is the sample mean among the women (y2).

(b) Let X (n× k) be an additional matrix of regressors. Describe in words the transformations

y∗ = y − d1y1 − d2y2

X∗ = X − d1x
′
1 − d2x

′
2

where x1 and x2 are the k × 1 means of the regressors for men and women, respectively.

(c) Compare β̃ from the OLS regression

y∗ = X∗β̃ + ẽ

with β̂ from the OLS regression

y = d1α̂1 + d2α̂2 +Xβ̂ + ê.

Exercise 3.14 Let β̂n = (X ′nXn)
−1
X ′nyn denote the OLS estimate when yn is n× 1 and Xn is

n× k. A new observation (yn+1,xn+1) becomes available. Prove that the OLS estimate computed
using this additional observation is

β̂n+1 = β̂n +
1

1 + x′n+1 (X ′nXn)
−1
xn+1

(
X ′nXn

)−1
xn+1

(
yn+1 − x′n+1β̂n

)
.

Exercise 3.15 Prove that R2 is the square of the sample correlation between y and ŷ.

Exercise 3.16 Consider two least-squares regressions

y = X1β̃1 + ẽ

and
y = X1β̂1 +X2β̂2 + ê.

Let R2
1 and R

2
2 be the R-squared from the two regressions. Show that R2

2 ≥ R2
1. Is there a case

(explain) when there is equality R2
2 = R2

1?

Exercise 3.17 For σ̃2 defined in (3.47), show that σ̃2 ≥ σ̂2. Is equality possible?

Exercise 3.18 For which observations will β̂(−i) = β̂?

Exercise 3.19 For the intercept-only model yi = β + ei, show that the leave-one-out prediction
error is

ẽi =

(
n

n− 1

)
(yi − y) .

Exercise 3.20 Define the leave-one-out estimator of σ2,

σ̂2
(−i) =

1

n− 1

∑
j 6=i

(
yj − x′jβ̂(−i)

)2
.

This is the estimator obtained from the sample with observation i omitted. Show that

σ̂2
(−i) =

n

n− 1
σ̂2 − ê2

i

(n− 1) (1− hii)
.
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Exercise 3.21 Consider the least-squares regression estimators

yi = x1iβ̂1 + x2iβ̂2 + êi

and the “one regressor at a time”regression estimators

yi = β̃1x1i + ẽ1i yi = β̃2x2i + ẽ2i

Under what condition does β̃1 = β̂1 and β̃2 = β̂2?

Exercise 3.22 You estimate a least-squares regression

yi = x′1iβ̃1 + ũi

and then regress the residuals on another set of regressors

ũi = x′2iβ̃2 + ẽi

Does this second regression give you the same estimated coeffi cients as from estimation of a least-
squares regression on both set of regressors?

yi = x′1iβ̂1 + x′2iβ̂2 + êi

In other words, is it true that β̃2 = β̂2? Explain your reasoning.

Exercise 3.23 The data matrix is (y,X) with X = [X1,X2] , and consider the transformed
regressor matrix Z = [X1,X2 −X1] . Suppose you do a least-squares regression of y on X, and a
least-squares regression of y on Z. Let σ̂2 and σ̃2 denote the residual variance estimates from the
two regressions. Give a formula relating σ̂2 and σ̃2? (Explain your reasoning.)

Exercise 3.24 Use the data set from Section 3.22 and the sub-sample used for equation (3.50)
(see Section 3.25) for data construction)

(a) Estimate equation (3.50) and compute the equation R2 and sum of squared errors.

(b) Re-estimate the slope on education using the residual regression approach. Regress log(Wage)
on experience and its square, regress education on experience and its square, and the residuals
on the residuals. Report the estimates from this final regression, along with the equation R2

and sum of squared errors. Does the slope coeffi cient equal the value in (3.50)? Explain.

(c) Are the R2 and sum-of-squared errors from parts (a) and (b) equal? Explain.

Exercise 3.25 Estimate equation (3.50) as in part (a) of the previous question. Let êi be the
OLS residual, ŷi the predicted value from the regression, x1i be education and x2i be experience.
Numerically calculate the following:

(a)
∑n

i=1 êi

(b)
∑n

i=1 x1iêi

(c)
∑n

i=1 x2iêi

(d)
∑n

i=1 x
2
1iêi

(e)
∑n

i=1 x
2
2iêi

(f)
∑n

i=1 ŷiêi
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(g)
∑n

i=1 ê
2
i

Are these calculations consistent with the theoretical properties of OLS? Explain.

Exercise 3.26 Use the data set from Section 3.22.

(a) Estimate a log wage regression for the subsample of white male Hispanics. In addition to
education, experience, and its square, include a set of binary variables for regions and marital
status. For regions, you create dummy variables for Northeast, South and West so that
Midwest is the excluded group. For marital status, create variables for married, widowed or
divorced, and separated, so that single (never married) is the excluded group.

(b) Repeat this estimation using a different econometric package. Compare your results. Do they
agree?



Chapter 4

Least Squares Regression

4.1 Introduction

In this chapter we investigate some finite-sample properties of the least-squares estimator in the
linear regression model. In particular, we calculate the finite-sample mean and covariance matrix
and propose standard errors for the coeffi cient estimates.

4.2 Random Sampling

Assumption 3.1 specified that the observations have identical distributions. To derive the finite-
sample properties of the estimators we will need to additionally specify the dependence structure
across the observations.

The simplest context is when the observations are mutually independent, in which case we say
that they are independent and identically distributed, or i.i.d. It is also common to describe
i.i.d. observations as a random sample. Traditionally, random sampling has been the default
assumption in cross-section (e.g. survey) contexts. It is quite conveneint as i.i.d. sampling leads to
straightforward expressions for estimation variance. The assumption seems appropriate (meaning
that it should be approximately valid) when samples are small and relatively dispersed. That
is, if you randomly sample 1000 people from a large country such as the United States it seems
reasonable to model their responses as mutually independent.

Assumption 4.1 The observations {(y1,x1), ..., (yi,xi), ..., (yn,xn)} are inde-
pendent and identically distributed.

For most of this chapter, we will use Assumption 4.1 to derive properties of the OLS estimator.
Assumption 4.1 means that if you take any two individuals i 6= j in a sample, the values (yi,xi)

are independent of the values (yj ,xj) yet have the same distribution. Independence means that
the decisions and choices of individual i do not affect the decisions of individual j, and conversely.

This assumption may be violated if individuals in the sample are connected in some way, for
example if they are neighbors, members of the same village, classmates at a school, or even firms
within a specific industry. In this case, it seems plausible that decisions may be inter-connected
and thus mutually dependent rather than independent. Allowing for such interactions complicates
inference and requires specialized treatment. A currently popular approach which allows for mutual
dependence is known as clustered dependence, which assumes that that observations are grouped
into “clusters”(for example, schools). We will discuss clustering in more detail in Section 4.21.

104



CHAPTER 4. LEAST SQUARES REGRESSION 105

4.3 Sample Mean

To start with the simplest setting, we first consider the intercept-only model

yi = µ+ ei

E (ei) = 0.

which is equivalent to the regression model with k = 1 and xi = 1. In the intercept model, µ = E (yi)
is the mean of yi. (See Exercise 2.15.) The least-squares estimator µ̂ = y equals the sample mean
as shown in equation (3.9).

We now calculate the mean and variance of the estimator y. Since the sample mean is a linear
function of the observations, its expectation is simple to calculate

E (y) = E

(
1

n

n∑
i=1

yi

)
=

1

n

n∑
i=1

E (yi) = µ.

This shows that the expected value of the least-squares estimator (the sample mean) equals the
projection coeffi cient (the population mean). An estimator with the property that its expectation
equals the parameter it is estimating is called unbiased.

Definition 4.1 An estimator θ̂ for θ is unbiased if E
(
θ̂
)

= θ.

We next calculate the variance of the estimator y under Assumption 4.1. Making the substitu-
tion yi = µ+ ei we find

y − µ =
1

n

n∑
i=1

ei.

Then

var (y) = E (y − µ)2

= E

( 1

n

n∑
i=1

ei

) 1

n

n∑
j=1

ej


=

1

n2

n∑
i=1

n∑
j=1

E (eiej)

=
1

n2

n∑
i=1

σ2

=
1

n
σ2.

The second-to-last inequality is because E (eiej) = σ2 for i = j yet E (eiej) = 0 for i 6= j due to
independence.

We have shown that var (y) = 1
nσ

2. This is the familiar formula for the variance of the sample
mean.
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4.4 Linear Regression Model

We now consider the linear regression model. Throughout this chapter we maintain the follow-
ing.

Assumption 4.2 Linear Regression Model
The observations (yi,xi) satisfy the linear regression equation

yi = x′iβ + ei (4.1)

E (ei | xi) = 0. (4.2)

The variables have finite second moments

E
(
y2
i

)
<∞,

E ‖xi‖2 <∞,

and an invertible design matrix

Qxx = E
(
xix

′
i

)
> 0.

We will consider both the general case of heteroskedastic regression, where the conditional
variance

E
(
e2
i | xi

)
= σ2(xi) = σ2

i

is unrestricted, and the specialized case of homoskedastic regression, where the conditional variance
is constant. In the latter case we add the following assumption.

Assumption 4.3 Homoskedastic Linear Regression Model
In addition to Assumption 4.2,

E
(
e2
i | xi

)
= σ2(xi) = σ2 (4.3)

is independent of xi.

4.5 Mean of Least-Squares Estimator

In this section we show that the OLS estimator is unbiased in the linear regression model. This
calculation can be done using either summation notation or matrix notation. We will use both.

First take summation notation. Observe that under (4.1)-(4.2)

E (yi |X) = E (yi | xi) = x′iβ. (4.4)

The first equality states that the conditional expectation of yi given {x1, ...,xn} only depends on
xi, since the observations are independent across i. The second equality is the assumption of a
linear conditional mean.



CHAPTER 4. LEAST SQUARES REGRESSION 107

Using definition (3.12), the conditioning theorem, the linearity of expectations, (4.4), and prop-
erties of the matrix inverse,

E
(
β̂ |X

)
= E

( n∑
i=1

xix
′
i

)−1( n∑
i=1

xiyi

)
|X


=

(
n∑
i=1

xix
′
i

)−1

E

((
n∑
i=1

xiyi

)
|X
)

=

(
n∑
i=1

xix
′
i

)−1 n∑
i=1

E (xiyi |X)

=

(
n∑
i=1

xix
′
i

)−1 n∑
i=1

xiE (yi |X)

=

(
n∑
i=1

xix
′
i

)−1 n∑
i=1

xix
′
iβ

= β.

Now let’s show the same result using matrix notation. (4.4) implies

E (y |X) =


...

E (yi |X)
...

 =


...
x′iβ
...

 = Xβ. (4.5)

Similarly

E (e |X) =


...

E (ei |X)
...

 =


...

E (ei | xi)
...

 = 0.

Using β̂ = (X ′X)
−1

(X ′y), the conditioning theorem, the linearity of expectations, (4.5), and
the properties of the matrix inverse,

E
(
β̂ |X

)
= E

((
X ′X

)−1
X ′y |X

)
=
(
X ′X

)−1
X ′E (y |X)

=
(
X ′X

)−1
X ′Xβ

= β.

At the risk of belaboring the derivation, another way to calculate the same result is as follows.
Insert y = Xβ + e into the formula for β̂ to obtain

β̂ =
(
X ′X

)−1 (
X ′ (Xβ + e)

)
=
(
X ′X

)−1
X ′Xβ +

(
X ′X

)−1 (
X ′e

)
= β +

(
X ′X

)−1
X ′e. (4.6)

This is a useful linear decomposition of the estimator β̂ into the true parameter β and the stochastic
component (X ′X)

−1
X ′e. Once again, we can calculate that

E
(
β̂ − β |X

)
= E

((
X ′X

)−1
X ′e |X

)
=
(
X ′X

)−1
X ′E (e |X)

= 0.
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Regardless of the method, we have shown that E
(
β̂ |X

)
= β.

We have shown the following theorem.

Theorem 4.1 Mean of Least-Squares Estimator
In the linear regression model (Assumption 4.2) and i.i.d. sampling
(Assumption 4.1)

E
(
β̂ |X

)
= β. (4.7)

Equation (4.7) says that the estimator β̂ is unbiased for β, conditional on X. This means
that the conditional distribution of β̂ is centered at β. By “conditional on X”this means that the
distribution is unbiased (centered at β) for any realization of the regressor matrixX. In conditional
models, we simply refer to this as saying “β̂ is unbiased for β”.

4.6 Variance of Least Squares Estimator

In this section we calculate the conditional variance of the OLS estimator.
For any r × 1 random vector Z define the r × r covariance matrix

var(Z) = E
(
(Z − E (Z)) (Z − E (Z))′

)
= E

(
ZZ ′

)
− (E (Z)) (E (Z))′

and for any pair (Z,X) define the conditional covariance matrix

var(Z |X) = E
(
(Z − E (Z |X)) (Z − E (Z |X))′ |X

)
.

We define
V
β̂

def
= var

(
β̂ |X

)
as the conditional covariance matrix of the regression coeffi cient estimates. We now derive its form.

The conditional covariance matrix of the n× 1 regression error e is the n× n matrix

var(e |X) = E
(
ee′ |X

) def
= D.

The ith diagonal element of D is

E
(
e2
i |X

)
= E

(
e2
i | xi

)
= σ2

i

while the ijth off-diagonal element of D is

E (eiej |X) = E (ei | xi)E (ej | xj) = 0

where the first equality uses independence of the observations (Assumption 4.1) and the second is
(4.2). Thus D is a diagonal matrix with ith diagonal element σ2

i :

D = diag
(
σ2

1, ..., σ
2
n

)
=


σ2

1 0 · · · 0
0 σ2

2 · · · 0
...

...
. . .

...
0 0 · · · σ2

n

 . (4.8)
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In the special case of the linear homoskedastic regression model (4.3), then

E
(
e2
i | xi

)
= σ2

i = σ2

and we have the simplification
D = Inσ

2.

In general, however, D need not necessarily take this simplified form.
For any n× r matrix A = A(X),

var(A′y |X) = var(A′e |X) = A′DA. (4.9)

In particular, we can write β̂ = A′y where A = X (X ′X)
−1 and thus

V
β̂

= var(β̂ |X) = A′DA =
(
X ′X

)−1
X ′DX

(
X ′X

)−1
.

It is useful to note that

X ′DX =

n∑
i=1

xix
′
iσ

2
i ,

a weighted version of X ′X.
In the special case of the linear homoskedastic regression model, D = Inσ

2, so X ′DX =
X ′Xσ2, and the variance matrix simplifies to

V
β̂

=
(
X ′X

)−1
σ2.

Theorem 4.2 Variance of Least-Squares Estimator
In the linear regression model (Assumption 4.2) and i.i.d. sampling (As-
sumption 4.1)

V
β̂

= var
(
β̂ |X

)
=
(
X ′X

)−1 (
X ′DX

) (
X ′X

)−1 (4.10)

where D is defined in (4.8).
In the homoskedastic linear regression model (Assumption 4.3) and i.i.d.
sampling (Assumption 4.1)

V
β̂

= σ2
(
X ′X

)−1
.

4.7 Unconditional Moments

The previous sections derived the form of the conditional mean and variance of least-squares
estimator, where we conditioned on the regressor matrix X. What about the unconditional mean
and variance?

Many authors and textbooks present unconditional results by either assuming or treating the
regressor matrix X as “fixed”. Statistically, this is appropriate when the values of the regressors
are determined by the experiment and the only randomness is through the realizations of y. Fixed
regressors is not appropriate for observational data. Thus econometric results for fixed regressors
are better interpreted as conditional result.
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The core question is to state conditions under which the unconditional moments of the estimator

are finite. For example, if it determined that E
∥∥∥β̂∥∥∥ < ∞, then applying the law of iterated

expectations, we find that the unconditional mean of β̂ is also β

E
(
β̂
)

= E
(
E
(
β̂ |X

))
= β.

A challenge is that β̂ may not have finite moments. Take the case of a single dummy variable
regressor di with no intercept. Assume P (di = 1) = p < 1. Then

β̂ =

∑n
i=1 diyi∑n
i=1 di

is well defined if
∑n

i=1 di > 0. However, P (
∑n

i=1 di = 0) = (1− p)n > 0. This means that with
positive (but small) probability, β̂ does not exist. Consequently β̂ has no finite moments! We ignore
this complication in practice but it does pose a conundrum for theory. This existence problem arises
whenever there are discrete regressors.

A solution can be obtained when the regressors have continuous distributions. A particularly
clean statement was obtained by Kinal (1980) under the assumption of normal regressors and
errors. While we introduce the normal regression model in Chapter 5 we present this result here
for convenience.

Theorem 4.3 (Kinal, 1980) In the linear regression model, if in addition

(xi,ei) have a joint normal distribution then for any r, E
∥∥∥β̂∥∥∥r <∞ if and

only if r < n− k + 1.

This shows that when the errors and regressors are normally distributed that the least-squares
estimator posses all moments up to n − k, which includes all moments of practical interest. The
normality assumption is not particularly critical for this result. What is key is the assumption that
the regressors are continuously distributed.

4.8 Gauss-Markov Theorem

Now consider the class of estimators of β which are linear functions of the vector y, and thus
can be written as

β̃ = A′y

where A is an n× k function of X. As noted before, the least-squares estimator is the special case
obtained by setting A = X(X ′X)−1. What is the best choice of A? The Gauss-Markov theorem1,
which we now present, says that the least-squares estimator is the best choice among linear unbiased
estimators when the errors are homoskedastic, in the sense that the least-squares estimator has the
smallest variance among all unbiased linear estimators.

To see this, since E (y |X) = Xβ, then for any linear estimator β̃ = A′y we have

E
(
β̃ |X

)
= A′E (y |X) = A′Xβ,

so β̃ is unbiased if (and only if) A′X = Ik. Furthermore, we saw in (4.9) that

var
(
β̃ |X

)
= var

(
A′y |X

)
= A′DA = A′Aσ2

1Named after the mathematicians Carl Friedrich Gauss and Andrey Markov.
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the last equality using the homoskedasticity assumption D = Inσ
2 . The “best”unbiased linear

estimator is obtained by finding the matrix A0 satisfying A′0X = Ik such that A′0A0 is minimized
in the positive definite sense, in that for any other matrixA satisfyingA′X = Ik, thenA′A−A′0A0

is positive semi-definite.

Theorem 4.4 Gauss-Markov. In the homoskedastic linear regression
model (Assumption 4.3) and i.i.d. sampling (Assumption 4.1), if β̃ is a
linear unbiased estimator of β then

var
(
β̃ |X

)
≥ σ2

(
X ′X

)−1
.

The Gauss-Markov theorem provides a lower bound on the variance matrix of unbiased linear
estimators under the assumption of homoskedasticity. It says that no unbiased linear estimator
can have a variance matrix smaller (in the positive definite sense) than σ2 (X ′X)

−1. Since the
variance of the OLS estimator is exactly equal to this bound, this means that the OLS estimator
is effi cient in the class of linear unbiased estimator. This gives rise to the description of OLS as
BLUE, standing for “best linear unbiased estimator”. This is an effi ciency justification for the
least-squares estimator. The justification is limited because the class of models is restricted to
homoskedastic linear regression and the class of potential estimators is restricted to linear unbiased
estimators. This latter restriction is particularly unsatisfactory as the theorem leaves open the
possibility that a non-linear or biased estimator could have lower mean squared error than the
least-squares estimator.

We complete this section with a proof of the Gauss-Markov theorem.
Let A be any n×k function ofX such that A′X = Ik. The estimator A′y is unbiased for β and

has variance A′Aσ2. Since the least-squares estimator is unbiased and has variance (X ′X)
−1
σ2,

it is suffi cient to show that the difference in the two variance matrices is positive semi-definite, or

A′A−
(
X ′X

)−1
> 0. (4.11)

Set C = A−X (X ′X)
−1
. Note that X ′C = 0. Then we calculate that

A′A−
(
X ′X

)−1
=
(
C +X

(
X ′X

)−1
)′ (

C +X
(
X ′X

)−1
)
−
(
X ′X

)−1

= C ′C +C ′X
(
X ′X

)−1
+
(
X ′X

)−1
X ′C

+
(
X ′X

)−1
X ′X

(
X ′X

)−1 −
(
X ′X

)−1

= C ′C

> 0.

The final inequality states that the matrix C ′C is positive semi-definite, which is a property of
quadratic forms (see Appendix A.10). We have shown (4.11) as requred.

4.9 Generalized Least Squares

Take the linear regression model in matrix format

y = Xβ + e. (4.12)
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Consider a generalized situation where the observation errors are possibly correlated and/or het-
eroskedastic. Specifically, suppose that

E (e |X) = 0 (4.13)

var(e |X) = Ω (4.14)

for some n × n covariance matrix Ω, possibly a function of X. This includes the i.i.d. sampling
framework where Ω = D as defined in (4.8) but allows for non-diagonal covariance matrices as
well. As a covariance matrix, Ω is necessarily symmetric and positive semi-definite.

Under these assumptions, by similar arguments we can calculate the mean and variance of the
OLS estimator:

E
(
β̂ |X

)
= β (4.15)

var(β̂ |X) =
(
X ′X

)−1 (
X ′ΩX

) (
X ′X

)−1 (4.16)

(see Exercise 4.5).
We have an analog of the Gauss-Markov Theorem.

Theorem 4.5 If (4.13)-(4.14) hold and if β̃ is a linear unbiased estimator
of β then

var
(
β̃ |X

)
≥
(
X ′Ω−1X

)−1
.

We leave the proof for Exercise 4.6.
The theorem provides a lower bound on the variance matrix of unbiased linear estimators. The

bound is different from the variance matrix of the OLS estimator as stated in (4.16) except when
Ω = Inσ

2. This suggests that we may be able to improve on the OLS estimator.
This is indeed the case when Ω is known up to scale. That is, suppose that Ω = c2Σ where

c2 > 0 is real and Σ is n× n and known. Take the linear model (4.12) and pre-multiply by Σ−1/2.
This produces the equation

ỹ = X̃β + ẽ

where ỹ = Σ−1/2y, X̃ = Σ−1/2X, and ẽ = Σ−1/2e. Consider OLS estimation of β in this equation.

β̃gls =
(
X̃
′
X̃
)−1

X̃
′
ỹ

=

((
Σ−1/2X

)′ (
Σ−1/2X

))−1 (
Σ−1/2X

)′ (
Σ−1/2y

)
=
(
X ′Σ−1X

)−1
X ′Σ−1y. (4.17)

This is called the Generalized Least Squares (GLS) estimator of β and was introduced by
Aitken (1935).

You can calculate that
E
(
β̃gls |X

)
= β (4.18)

var(β̃gls |X) =
(
X ′Ω−1X

)−1
. (4.19)

This shows that the GLS estimator is unbiased, and has a covariance matrix which equals the lower
bound from Theorem 4.5. This shows that the lower bound is sharp when Σ is known. GLS is thus
effi cient in the class of linear unbiased estimators.
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In the linear regression model with independent observations and known conditional variances,
so that Ω = Σ = D = diag

(
σ2

1, ..., σ
2
n

)
, the GLS estimator takes the form

β̃gls =
(
X ′D−1X

)−1
X ′D−1y

=

(
n∑
i=1

σ−2
i xix

′
i

)−1( n∑
i=1

σ−2
i xiyi

)
.

In practice, the covariance matrix Ω is unknown, so the GLS estimator as presented here is
not feasible. However, the form of the GLS estimator motivates feasible versions, effectively by
replacing Ω with an estimator. We do not pursue this here, as it is not common in current applied
econometric practice.

4.10 Residuals

What are some properties of the residuals êi = yi−x′iβ̂ and prediction errors ẽi = yi−x′iβ̂(−i),
at least in the context of the linear regression model?

Recall from (3.25) that we can write the residuals in vector notation as ê = Me where M =
In − X (X ′X)

−1
X ′ is the orthogonal projection matrix. Using the properties of conditional

expectation
E (ê |X) = E (Me |X) = ME (e |X) = 0

and
var (ê |X) = var (Me |X) = M var (e |X)M = MDM (4.20)

where D is defined in (4.8).
We can simplify this expression under the assumption of conditional homoskedasticity

E
(
e2
i | xi

)
= σ2.

In this case (4.20) simplifies to
var (ê |X) = Mσ2. (4.21)

In particular, for a single observation i, we can find the (conditional) variance of êi by taking the
ith diagonal element of (4.21). Since the ith diagonal element of M is 1 − hii as defined in (3.41)
we obtain

var (êi |X) = E
(
ê2
i |X

)
= (1− hii)σ2. (4.22)

As this variance is a function of hii and hence xi, the residuals êi are heteroskedastic even if the
errors ei are homoskedastic. Notice as well that (4.22) implies ê2

i is a biased estimator of σ
2.

Similarly, recall from (3.46) that the prediction errors ẽi = (1− hii)−1 êi can be written in
vector notation as ẽ = M∗ê whereM∗ is a diagonal matrix with ith diagonal element (1− hii)−1 .
Thus ẽ = M∗Me. We can calculate that

E (ẽ |X) = M∗ME (e |X) = 0

and
var (ẽ |X) = M∗M var (e |X)MM∗ = M∗MDMM∗

which simplifies under homoskedasticity to

var (ẽ |X) = M∗MMM∗σ2

= M∗MM∗σ2.
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The variance of the ith prediction error is then

var (ẽi |X) = E
(
ẽ2
i |X

)
= (1− hii)−1 (1− hii) (1− hii)−1 σ2

= (1− hii)−1 σ2.

A residual with constant conditional variance can be obtained by rescaling. The standardized
residuals are

ēi = (1− hii)−1/2 êi, (4.23)

and in vector notation
ē = (ē1, ..., ēn)′ = M∗1/2Me. (4.24)

From our above calculations, under homoskedasticity,

var (ē |X) = M∗1/2MM∗1/2σ2

and
var (ēi |X) = E

(
ē2
i |X

)
= σ2

and thus these standardized residuals have the same bias and variance as the original errors when
the latter are homoskedastic.

4.11 Estimation of Error Variance

The error variance σ2 = E
(
e2
i

)
can be a parameter of interest even in a heteroskedastic regression

or a projection model. σ2 measures the variation in the “unexplained”part of the regression. Its
method of moments estimator (MME) is the sample average of the squared residuals:

σ̂2 =
1

n

n∑
i=1

ê2
i .

In the linear regression model we can calculate the mean of σ̂2. From (3.29) and the properties
of the trace operator, observe that

σ̂2 =
1

n
e′Me =

1

n
tr
(
e′Me

)
=

1

n
tr
(
Mee′

)
.

Then

E
(
σ̂2 |X

)
=

1

n
tr
(
E
(
Mee′ |X

))
=

1

n
tr
(
ME

(
ee′ |X

))
=

1

n
tr (MD) . (4.25)

Adding the assumption of conditional homoskedasticity E
(
e2
i | xi

)
= σ2, so that D = Inσ

2, then
(4.25) simplifies to

E
(
σ̂2 |X

)
=

1

n
tr
(
Mσ2

)
= σ2

(
n− k
n

)
,
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the final equality by (3.23). This calculation shows that σ̂2 is biased towards zero. The order of
the bias depends on k/n, the ratio of the number of estimated coeffi cients to the sample size.

Another way to see this is to use (4.22). Note that

E
(
σ̂2 |X

)
=

1

n

n∑
i=1

E
(
ê2
i |X

)
=

1

n

n∑
i=1

(1− hii)σ2

=

(
n− k
n

)
σ2

the last equality using Theorem 3.6.
Since the bias takes a scale form, a classic method to obtain an unbiased estimator is by rescaling

the estimator. Define

s2 =
1

n− k

n∑
i=1

ê2
i . (4.26)

By the above calculation,
E
(
s2 |X

)
= σ2

and
E
(
s2
)

= σ2.

Hence the estimator s2 is unbiased for σ2. Consequently, s2 is known as the “bias-corrected esti-
mator”for σ2 and in empirical practice s2 is the most widely used estimator for σ2.

Interestingly, this is not the only method to construct an unbiased estimator for σ2. An esti-
mator constructed with the standardized residuals ēi from (4.23) is

σ2 =
1

n

n∑
i=1

ē2
i =

1

n

n∑
i=1

(1− hii)−1 ê2
i .

You can show (see Exercise 4.9) that

E
(
σ2 |X

)
= σ2 (4.27)

and thus σ2 is unbiased for σ2 (in the homoskedastic linear regression model).
When k/n is small (typically, this occurs when n is large), the estimators σ̂2, s2 and σ2 are

likely to be similar to one another. However, if k/n is large then s2 and σ2 are generally preferred
to σ̂2. Consequently it is best to use one of the bias-corrected variance estimators in applications.

4.12 Mean-Square Forecast Error

One use of an estimated regression is to predict out-of-sample values. Consider an out-of-sample
observation (yn+1,xn+1) where xn+1 is observed but not yn+1. Given the coeffi cient estimate β̂
the standard point estimate of E (yn+1 | xn+1) = x′n+1β is ỹn+1 = x′n+1β̂. The forecast error is
the difference between the actual value yn+1 and the point forecast ỹn+1. This is the forecast error
ẽn+1 = yn+1 − ỹn+1. The mean-squared forecast error (MSFE) is its expected squared value

MSFEn = E
(
ẽ2
n+1

)
.

In the linear regression model, ẽn+1 = en+1 − x′n+1

(
β̂ − β

)
, so

MSFEn = E
(
e2
n+1

)
− 2E

(
en+1x

′
n+1

(
β̂ − β

))
(4.28)

+ E
(
x′n+1

(
β̂ − β

)(
β̂ − β

)′
xn+1

)
.
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The first term in (4.28) is σ2. The second term in (4.28) is zero since en+1x
′
n+1 is independent

of β̂ − β and both are mean zero. Using the properties of the trace operator, the third term in
(4.28) is

tr

(
E
(
xn+1x

′
n+1

)
E
((
β̂ − β

)(
β̂ − β

)′))
= tr

(
E
(
xn+1x

′
n+1

)
E
(
E
((
β̂ − β

)(
β̂ − β

)′
|X
)))

= tr
(
E
(
xn+1x

′
n+1

)
E
(
V
β̂

))
= E tr

((
xn+1x

′
n+1

)
V
β̂

)
= E

(
x′n+1V β̂

xn+1

)
(4.29)

where we use the fact that xn+1 is independent of β̂, the definition V β̂
= E

((
β̂ − β

)(
β̂ − β

)′
|X
)

and the fact that xn+1 is independent of V β̂
. Thus

MSFEn = σ2 + E
(
x′n+1V β̂

xn+1

)
.

Under conditional homoskedasticity, this simplifies to

MSFEn = σ2
(

1 + E
(
x′n+1

(
X ′X

)−1
xn+1

))
.

A simple estimator for the MSFE is obtained by averaging the squared prediction errors (3.47)

σ̃2 =
1

n

n∑
i=1

ẽ2
i

where ẽi = yi − x′iβ̂(−i) = êi(1− hii)−1. Indeed, we can calculate that

E
(
σ̃2
)

= E
(
ẽ2
i

)
= E

(
ei − x′i

(
β̂(−i) − β

))2

= σ2 + E
(
x′i

(
β̂(−i) − β

)(
β̂(−i) − β

)′
xi

)
.

By a similar calculation as in (4.29) we find

E
(
σ̃2
)

= σ2 + E
(
x′iV β̂(−i)

xi

)
= MSFEn−1.

This is the MSFE based on a sample of size n− 1, rather than size n. The difference arises because
the in-sample prediction errors ẽi for i ≤ n are calculated using an effective sample size of n−1, while
the out-of sample prediction error ẽn+1 is calculated from a sample with the full n observations.
Unless n is very small we should expect MSFEn−1 (the MSFE based on n − 1 observations) to
be close to MSFEn (the MSFE based on n observations). Thus σ̃2 is a reasonable estimator for
MSFEn.
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Theorem 4.6 MSFE
In the linear regression model (Assumption 4.2) and i.i.d. sampling (As-
sumption 4.1)

MSFEn = E
(
ẽ2
n+1

)
= σ2 + E

(
x′n+1V β̂

xn+1

)
where V

β̂
= var

(
β̂ |X

)
. Furthermore, σ̃2 defined in (3.47) is an unbiased

estimator of MSFEn−1 :

E
(
σ̃2
)

= MSFEn−1.

4.13 Covariance Matrix Estimation Under Homoskedasticity

For inference, we need an estimator of the covariance matrix V
β̂
of the least-squares estimator.

In this section we consider the homoskedastic regression model (Assumption 4.3).
Under homoskedasticity, the covariance matrix takes the relatively simple form

V 0
β̂

=
(
X ′X

)−1
σ2

which is known up to the unknown scale σ2. In Section 4.11 we discussed three estimators of σ2.
The most commonly used choice is s2, leading to the classic covariance matrix estimator

V̂
0

β̂ =
(
X ′X

)−1
s2. (4.30)

Since s2 is conditionally unbiased for σ2, it is simple to calculate that V̂
0

β̂ is conditionally
unbiased for V

β̂
under the assumption of homoskedasticity:

E
(
V̂

0

β̂ |X
)

=
(
X ′X

)−1 E
(
s2 |X

)
=
(
X ′X

)−1
σ2

= V
β̂
.

This was the dominant covariance matrix estimator in applied econometrics for many years,
and is still the default method in most regression packages. For example, Stata uses the covariance
matrix estimator (4.30) by default in linear regression unless an alternative is specified.

If the estimator (4.30) is used, but the regression error is heteroskedastic, it is possible for V̂
0

β̂ to

be quite biased for the correct covariance matrix V
β̂

= (X ′X)
−1

(X ′DX) (X ′X)
−1
. For example,

suppose k = 1 and σ2
i = x2

i with E (xi) = 0. The ratio of the true variance of the least-squares
estimator to the expectation of the variance estimator is

V
β̂

E
(
V̂

0

β̂ |X
) =

∑n
i=1 x

4
i

σ2
∑n

i=1 x
2
i

'
E
(
x4
i

)(
E
(
x2
i

))2 def
= κ.

(Notice that we use the fact that σ2
i = x2

i implies σ
2 = E

(
σ2
i

)
= E

(
x2
i

)
.) The constant κ is the

standardized fourth moment (or kurtosis) of the regressor xi, and can be any number greater than
one. For example, if xi ∼ N

(
0, σ2

)
then κ = 3, so the true variance V

β̂
is three times larger

than the expected homoskedastic estimator V̂
0

β̂. But κ can be much larger. Suppose, for example,
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that xi ∼ χ2
1 − 1. In this case κ = 15, so that the true variance V

β̂
is fifteen times larger than

the expected homoskedastic estimator V̂
0

β̂. While this is an extreme and constructed example,
the point is that the classic covariance matrix estimator (4.30) may be quite biased when the
homoskedasticity assumption fails.

4.14 Covariance Matrix Estimation Under Heteroskedasticity

In the previous section we showed that that the classic covariance matrix estimator can be
highly biased if homoskedasticity fails. In this section we show how to construct covariance matrix
estimators which do not require homoskedasticity.

Recall that the general form for the covariance matrix is

V
β̂

=
(
X ′X

)−1 (
X ′DX

) (
X ′X

)−1
.

with D defined in (4.8). This depends on the unknown matrix D which we can write as

D = diag
(
σ2

1, ..., σ
2
n

)
= E

(
ee′ |X

)
= E

(
D̃ |X

)
where D̃ = diag

(
e2

1, ..., e
2
n

)
. Thus D̃ is a conditionally unbiased estimator for D. If the squared

errors e2
i were observable, we could construct an unbiased estimator for V β̂

as

V̂
ideal

β̂ =
(
X ′X

)−1
(
X ′D̃X

) (
X ′X

)−1

=
(
X ′X

)−1

(
n∑
i=1

xix
′
ie

2
i

)(
X ′X

)−1
.

Indeed,

E
(
V̂

ideal

β̂ |X
)

=
(
X ′X

)−1

(
n∑
i=1

xix
′
iE
(
e2
i |X

)) (
X ′X

)−1

=
(
X ′X

)−1

(
n∑
i=1

xix
′
iσ

2
i

)(
X ′X

)−1

=
(
X ′X

)−1 (
X ′DX

) (
X ′X

)−1

= V
β̂

verifying that V̂
ideal

β̂ is unbiased for V
β̂
.

Since the errors e2
i are unobserved, V̂

ideal

β̂ is not a feasible estimator. However, we can replace
the errors ei with the least-squares residuals êi. Making this substitution we obtain the estimator

V̂
HC0

β̂ =
(
X ′X

)−1

(
n∑
i=1

xix
′
iê

2
i

)(
X ′X

)−1
. (4.31)

The label “HC”refers to “heteroskedasticity-consistent”. The label “HC0”refers to this being the
baseline heteroskedasticity-consistent covariance matrix estimator.

We know, however, that ê2
i is biased towards zero (recall equation (4.22)). To estimate the

variance σ2 the unbiased estimator s2 scales the moment estimator σ̂2 by n/(n− k) . Making the
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same adjustment we obtain the estimator

V̂
HC1

β̂ =

(
n

n− k

)(
X ′X

)−1

(
n∑
i=1

xix
′
iê

2
i

)(
X ′X

)−1
. (4.32)

While the scaling by n/(n − k) is ad hoc, HC1 is often recommended over the unscaled HC0
estimator.

Alternatively, we could use the standardized residuals ēi or the prediction errors ẽi, yielding the
estimators

V̂
HC2

β̂ =
(
X ′X

)−1

(
n∑
i=1

xix
′
iē

2
i

)(
X ′X

)−1

=
(
X ′X

)−1

(
n∑
i=1

(1− hii)−1 xix
′
iê

2
i

)(
X ′X

)−1 (4.33)

and

V̂
HC3

β̂ =
(
X ′X

)−1

(
n∑
i=1

xix
′
iẽ

2
i

)(
X ′X

)−1

=
(
X ′X

)−1

(
n∑
i=1

(1− hii)−2 xix
′
iê

2
i

)(
X ′X

)−1
. (4.34)

These are often called the “HC2”and “HC3”estimators, as labeled.
The four estimators HC0, HC1, HC2 and HC3 are collectively called robust, heteroskedasticity-

consistent, or heteroskedasticity-robust covariance matrix estimators. The HC0 estimator was
first developed by Eicker (1963) and introduced to econometrics by White (1980), and is sometimes
called the Eicker-White or White covariance matrix estimator. The degree-of-freedom adjust-
ment in HC1 was recommended by Hinkley (1977), and is the default robust covariance matrix
estimator implemented in Stata. It is implement by the “,r” option, for example by a regression
executed with the command “reg y x, r”. In applied econometric practice, this is the currently
most popular covariance matrix estimator. The HC2 estimator was introduced by Horn, Horn and
Duncan (1975) (and is implemented using the vce(hc2) option in Stata). The HC3 estimator was
derived by MacKinnon and White (1985) from the jackknife principle (see Section 10.3), and by
Andrews (1991a) based on the principle of leave-one-out cross-validation (and is implemented using
the vce(hc3) option in Stata).

Since (1− hii)−2 > (1− hii)−1 > 1 it is straightforward to show that

V̂
HC0

β̂ < V̂
HC2

β̂ < V̂
HC3

β̂ (4.35)

(See Exercise 4.10). The inequality A < B when applied to matrices means that the matrix B−A
is positive definite.

In general, the bias of the covariance matrix estimators is quite complicated, but they greatly
simplify under the assumption of homoskedasticity (4.3). For example, using (4.22),

E
(
V̂

HC0

β̂ |X
)

=
(
X ′X

)−1

(
n∑
i=1

xix
′
iE
(
ê2
i |X

)) (
X ′X

)−1

=
(
X ′X

)−1

(
n∑
i=1

xix
′
i (1− hii)σ2

)(
X ′X

)−1

=
(
X ′X

)−1
σ2 −

(
X ′X

)−1

(
n∑
i=1

xix
′
ihii

)(
X ′X

)−1
σ2

<
(
X ′X

)−1
σ2

= V
β̂
.
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This calculation shows that V̂
HC0

β̂ is biased towards zero.
By a similar calculation (again under homoskedasticity) we can calculate that the HC2 estimator

is unbiased
E
(
V̂

HC2

β̂ |X
)

=
(
X ′X

)−1
σ2. (4.36)

(See Exercise 4.11.)
It might seem rather odd to compare the bias of heteroskedasticity-robust estimators under the

assumption of homoskedasticity, but it does give us a baseline for comparison.
Another interesting calculation shows that in general (that is, without assuming homoskedas-

ticity) the HC3 estimator is biased away from zero. Indeed, using the definition of the prediction
errors (3.45)

ẽi = yi − x′iβ̂(−i) = ei − x′i
(
β̂(−i) − β

)
so

ẽ2
i = e2

i − 2x′i

(
β̂(−i) − β

)
ei +

(
x′i

(
β̂(−i) − β

))2
.

Note that ei and β̂(−i) are functions of non-overlapping observations and are thus independent.

Hence E
((
β̂(−i) − β

)
ei |X

)
= 0 and

E
(
ẽ2
i |X

)
= E

(
e2
i |X

)
− 2x′iE

((
β̂(−i) − β

)
ei |X

)
+ E

((
x′i

(
β̂(−i) − β

))2
|X
)

= σ2
i + E

((
x′i

(
β̂(−i) − β

))2
|X
)

≥ σ2
i .

It follows that

E
(
V̂

HC3

β̂ |X
)

=
(
X ′X

)−1

(
n∑
i=1

xix
′
iE
(
ẽ2
i |X

)) (
X ′X

)−1

≥
(
X ′X

)−1

(
n∑
i=1

xix
′
iσ

2
i

)(
X ′X

)−1

= V
β̂
.

This means that the HC3 estimator is conservative in the sense that it is weakly larger (in expec-
tation) than the correct variance for any realization of X.

We have introduced five covariance matrix estimators, including the homoskedastic estimator

V̂
0

β̂ and the four HC estimators. Which should you use? The classic estimator V̂
0

β̂ is typically
a poor choice, as it is only valid under the unlikely homoskedasticity restriction. For this reason
it is not typically used in contemporary econometric research. Unfortunately, standard regression

packages set their default choice as V̂
0

β̂, so users must intentionally select a robust covariance matrix
estimator.

Of the four robust estimators, HC1 is the most commonly used as it is the default robust
covariance matrix option in Stata. However, HC2 and HC3 are preferred. HC2 is unbiased (under
homoskedasticity) and HC3 is conservative for any X. In most applications HC1, HC2 and HC3
will be very similar so this choice will not matter. The context where the estimators can differ
substantially is when the sample has a large leverage value hii for some observation (or multiple
large leverage values). You can see this by comparing the formulas (4.32), (4.33) and (4.34), and
noting that the only difference is the scaling by the leverage values hii. If there is an observation
with hii close to one, then (1− hii)−1 and (1− hii)−2 will be large, giving this observation much
greater weight for construction of the covariance matrix estimator.
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Halbert L. White

Hal White (1950-2012) of the United States was an influential econometrician
of recent years. His 1980 paper on heteroskedasticity-consistent covariance
matrix estimation for many years was the most cited paper in economics.
His research was central to the movement to view econometric models as
approximations, and to the drive for increased mathematical rigor in the
discipline. In addition to being a highly prolific and influential scholar, he
also co-founded the economic consulting firm Bates White.

4.15 Standard Errors

A variance estimator such as V̂
β̂
is an estimator of the variance of the distribution of β̂. A

more easily interpretable measure of spread is its square root —the standard deviation. This is so
important when discussing the distribution of parameter estimators, we have a special name for
estimates of their standard deviation.

Definition 4.2 A standard error s(β̂) for a real-valued estimator β̂ is
an estimator of the standard deviation of the distribution of β̂.

When β is a vector with estimator β̂ and covariance matrix estimator V̂
β̂
, standard errors for

individual elements are the square roots of the diagonal elements of V̂
β̂
. That is,

s(β̂j) =
√
V̂ β̂j

=

√[
V̂
β̂

]
jj
.

When the classical covariance matrix estimator (4.30) is used, the standard error takes the partic-
ularly simple form

s(β̂j) = s

√[
(X ′X)

−1
]
jj
. (4.37)

As we discussed in the previous section, there are multiple possible covariance matrix estimators,
so standard errors are not unique. It is therefore important to understand what formula and method
is used by an author when studying their work. It is also important to understand that a particular
standard error may be relevant under one set of model assumptions, but not under another set of
assumptions.

To illustrate, we return to the log wage regression (3.13) of Section 3.7. We calculate that
s2 = 0.160. Therefore the homoskedastic covariance matrix estimate is

V̂
0

β̂ =

(
5010 314
314 20

)−1

0.160 =

(
0.002 −0.031
−0.031 0.499

)
.

We also calculate that

n∑
i=1

(1− hii)−1 xix
′
iê

2
i =

(
763.26 48.513
48.513 3.1078

)
.
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Therefore the HC2 covariance matrix estimate is

V̂
HC2

β̂ =

(
5010 314
314 20

)−1(
763.26 48.513
48.513 3.1078

)(
5010 314
314 20

)−1

=

(
0.001 −0.015
−0.015 0.243

)
. (4.38)

The standard errors are the square roots of the diagonal elements of these matrices. A conventional
format to write the estimated equation with standard errors is

̂log(Wage) = 0.155
(0.031)

Education+ 0.698
(0.493)

. (4.39)

Alternatively, standard errors could be calculated using the other formulae. We report the
different standard errors in the following table.

Table 4.1: Standard Errors

Education Intercept
Homoskedastic (4.30) 0.045 0.707
HC0 (4.31) 0.029 0.461
HC1 (4.32) 0.030 0.486
HC2 (4.33) 0.031 0.493
HC3 (4.34) 0.033 0.527

The homoskedastic standard errors are noticeably different (larger, in this case) than the others.
The robust standard errors are reasonably close to one another, though the jackknife standard errors
are meaningfully larger than the others.

4.16 CovarianceMatrix Estimation with Sparse DummyVariables

The heteroskedasticity-robust covariance matrix estimators can be quite imprecise in some con-
texts. One is in the presence of sparse dummy variables —when a dummy variable only takes
the value 1 or 0 for very few observations. In these contexts one component of the variance matrix
is estimated on just those few observations and will be imprecise. This is effectively hidden from
the user.

To see the problem, let d1i be a dummy variable (takes on the values 1 and 0) and consider the
dummy variable regression

yi = β1di + β2 + ei. (4.40)

The number of observations for which di = 1 is n1 =
∑n

i=1 di. The number of observations for
which di = 0 is n2 = n− n1. We say the design is sparse if n1 is small.

To simplify our analysis, we take the most extreme case where n1 = 1. The ideas extend to the
case of n1 small, though with less extreme effets.

In the regression model (4.40), we can calculate that the true covariance matrix of the least-
squares estimator for the coeffi cients in (4.40) under the simplifying assumption of conditional
homoskedasticity is

V
β̂

= σ2
(
X ′X

)−1
= σ2

(
1 1
1 n

)−1

=
σ2

n− 1

(
n −1
−1 1

)
.
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In particular, the variance of the estimator for the coeffi cient on the dummy variable is

V
β̂1

= σ2 n

n− 1
.

Essentially, the coeffi cient β1 is estimated from a single observation so its variance is roughly
unaffected by sample size.

Now let’s examine the standard HC1 covariance matrix estimator (4.32). The regression has
perfect fit for the observation for which di = 1 so the corresponding residual is êi = 0. It follows
that diêi = 0 for all i (either di = 0 or êi = 0). Hence

n∑
i=1

xix
′
iê

2
i =

(
0 0
0
∑n

i=1 ê
2
i

)
=

(
0 0
0 (n− 2)s2

)
where s2 = (n− 2)−1

∑n
i=1 ê

2
i is the bias-corrected estimator of σ

2. Together we find that

V̂
HC1

β̂ =

(
n

n− 2

)
1

(n− 1)2

(
n −1
−1 1

)(
0 0
0 (n− 2)s2

)(
n −1
−1 1

)
= s2 n

(n− 1)2

(
1 −1
−1 1

)
.

In particular, the estimator for V
β̂1
is

V̂ HC1
β̂1

= s2 n

(n− 1)2 .

It has expectation

E
(
V̂ HC1
β̂1

)
= σ2 n

(n− 1)2 =
V
β̂1

n− 1
<< V

β̂1
.

The variance estimator V̂ HC1
β̂1

is extremely biased for V
β̂1
. It is too small by a multiple of n! The

reported variance —and standard error —is misleadingly small. The variance estimate erroneously
mis-states the precision of β̂1.

The fact that V̂ HC1
β̂1

is biased is unlikely to be noticed by the applied researcher. Nothing in the

reported output will alert a researcher to the problem.
Another way to see the issue is to consider the estimator θ̂ = β̂1 + β̂2 for the sum of the

coeffi cients θ = β1 + β2. This estimator has true variance σ2. The variance estimator, however is

V̂
HC1

θ̂ = 0! (It equals the sum of the four elements in V̂
HC1

β̂ ). Clearly, the estimator “0”is biased
for the true value σ2.

Another insight is to examine the leverage values. For the observation with di = 1 we can
calculate that

hii =
1

n− 1

(
1 1

)( n −1
−1 1

)(
1
1

)
= 1.

This is an extreme leverage value.
The general solution is to replace the biased covariance matrix estimator V̂ HC1

β̂1
with the unbi-

ased estimator V̂ HC2
β̂1

(unbiased under homoskedasticity) or the conservative estimator V̂ HC3
β̂1

. This

excludes the extreme sparse case n1 = 1 (for V̂ HC2
β̂1

and V̂ HC3
β̂1

cannot be calculated if hii = 1 for

any observation) but applies otherwise. When hii = 1 for some observation, then V̂ HC2
β̂1

and V̂ HC3
β̂1

cannot be calculated. In this case, unbiased covariance matrix estimation appears to be impossible
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4.17 Computation

We illustrate methods to compute standard errors for equation (3.14) extending the code of
Section 3.25.

Stata do File (continued)

* Homoskedastic formula (4.30):
reg wage education experience exp2 if (mnwf == 1)
* HC1 formula (4.32):
reg wage education experience exp2 if (mnwf == 1), r
* HC2 formula (4.33):
reg wage education experience exp2 if (mnwf == 1), vce(hc2)
* HC3 formula (4.34):
reg wage education experience exp2 if (mnwf == 1), vce(hc3)

R Program File (continued)

n <- nrow(y)
k <- ncol(x)
a <- n/(n-k)
sig2 <- (t(e) %*% e)/(n-k)
u1 <- x*(e%*%matrix(1,1,k))
u2 <- x*((e/sqrt(1-leverage))%*%matrix(1,1,k))
u3 <- x*((e/(1-leverage))%*%matrix(1,1,k))
v0 <- xx*sig2
xx <- solve(t(x)%*%x)
v1 <- xx %*% (t(u1)%*%u1) %*% xx
v1a <- a * xx %*% (t(u1)%*%u1) %*% xx
v2 <- xx %*% (t(u2)%*%u2) %*% xx
v3 <- xx %*% (t(u3)%*%u3) %*% xx
s0 <- sqrt(diag(v0)) # Homoskedastic formula
s1 <- sqrt(diag(v1)) # HC0
s1a <- sqrt(diag(v1a)) # HC1
s2 <- sqrt(diag(v2)) # HC2
s3 <- sqrt(diag(v3)) # HC3
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MATLAB Program File (continued)

[n,k]=size(x);
a=n/(n-k);
sig2=(e’*e)/(n-k);
u1=x.*(e*ones(1,k));u2=x.*((e./sqrt(1-leverage))*ones(1,k));
u3=x.*((e./(1-leverage))*ones(1,k));xx=inv(x’*x);
v0=xx*sig2;
v1=xx*(u1’*u1)*xx;
v1a=a*xx*(u1’*u1)*xx;
v2=xx*(u2’*u2)*xx;
v3=xx*(u3’*u3)*xx;
s0=sqrt(diag(v0)); # Homoskedastic formula
s1=sqrt(diag(v1)); # HC0 formula
s1a=sqrt(diag(v1a)); # HC1 formula
s2=sqrt(diag(v2)); # HC2 formula
s3=sqrt(diag(v3)); # HC3 formula

4.18 Measures of Fit

As we described in the previous chapter, a commonly reported measure of regression fit is the
regression R2 defined as

R2 = 1−
∑n

i=1 ê
2
i∑n

i=1 (yi − y)2 = 1− σ̂2

σ̂2
y

.

where σ̂2
y = n−1

∑n
i=1 (yi − y)2 . R2 can be viewed as an estimator of the population parameter

ρ2 =
var (x′iβ)

var(yi)
= 1− σ2

σ2
y

.

However, σ̂2 and σ̂2
y are biased estimators. Theil (1961) proposed replacing these by the unbi-

ased versions s2 and σ̃2
y = (n − 1)−1

∑n
i=1 (yi − y)2 yielding what is known as R-bar-squared or

adjusted R-squared:

R
2

= 1− s2

σ̃2
y

= 1− (n− 1)
∑n

i=1 ê
2
i

(n− k)
∑n

i=1 (yi − y)2 .

While R
2
is an improvement on R2, a much better improvement is

R̃2 = 1−
∑n

i=1 ẽ
2
i∑n

i=1 (yi − y)2 = 1− σ̃2

σ̂2
y

where ẽi are the prediction errors (3.45) and σ̃2 is the MSPE from (3.47). As described in Section
(4.12), σ̃2 is a good estimator of the out-of-sample mean-squared forecast error, so R̃2 is a good
estimator of the percentage of the forecast variance which is explained by the regression forecast.
In this sense, R̃2 is a good measure of fit.

One problem with R2, which is partially corrected by R
2
and fully corrected by R̃2, is that R2

necessarily increases when regressors are added to a regression model. This occurs because R2 is a
negative function of the sum of squared residuals which cannot increase when a regressor is added.
In contrast, R

2
and R̃2 are non-monotonic in the number of regressors. R̃2 can even be negative,

which occurs when an estimated model predicts worse than a constant-only model.
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In the statistical literature the MSPE σ̃2 is known as the leave-one-out cross validation
criterion, and is popular for model comparison and selection, especially in high-dimensional (non-
parametric) contexts. It is equivalent to use R̃2 or σ̃2 to compare and select models. Models with
high R̃2 (or low σ̃2) are better models in terms of expected out of sample squared error. In contrast,
R2 cannot be used for model selection, as it necessarily increases when regressors are added to a
regression model. R

2
is also an inappropriate choice for model selection (it tends to select models

with too many parameters), though a justification of this assertion requires a study of the theory
of model selection. Unfortunately, R

2
is routinely used by some economists, possibly as a hold-over

from previous generations.
In summary, it is recommended to omit R2 and R

2
. If a measure of fit is desired, report R̃2 or

σ̃2.

Henri Theil

Henri Theil (1924-2000) of the Netherlands invented R
2
and two-stage least

squares, both of which are routinely seen in applied econometrics. He also
wrote an early influential advanced textbook on econometrics (Theil, 1971).

4.19 Empirical Example

We again return to our wage equation, but use a much larger sample of all individuals with at
least 12 years of education. For regressors we include years of education, potential work experience,
experience squared, and dummy variable indicators for the following: female, female union member,
male union member, married female2, married male, formerly married female3, formerly married
male, Hispanic, black, American Indian, Asian, and mixed race4 . The available sample is 46,943
so the parameter estimates are quite precise and reported in Table 4.2. For standard errors we use
the unbiased Horn-Horn-Duncan formula.

Table 4.2 displays the parameter estimates in a standard tabular format. Parameter estimates
and standard errors are reported for all coeffi cients. In addition to the coeffi cient estimates, the
table also reports the estimated error standard deviation and the sample size. These are useful
summary measures of fit which aid readers.

As a general rule, it is advisable to always report standard errors along with parameter estimates.
This allows readers to assess the precision of the parameter estimates, and as we will discuss in
later chapters, form confidence intervals and t-tests for individual coeffi cients if desired.

The results in Table 4.2 confirm our earlier findings that the return to a year of education is
approximately 12%, the return to experience is concave, that single women earn approximately
10% less then single men, and blacks earn about 10% less than whites. In addition, we see that
Hispanics earn about 11% less than whites, American Indians 14% less, and Asians and Mixed races
about 4% less. We also see there are wage premiums for men who are members of a labor union
(about 10%), married (about 21%) or formerly married (about 8%), but no similar premiums are
apparent for women.

2Defining “married”as marital code 1, 2, or 3.
3Defining “formerly married”as marital code 4, 5, or 6.
4Race code 6 or higher.
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Table 4.2: OLS Estimates of Linear Equation for Log(Wage)

β̂ s(β̂)
Education 0.117 0.001
Experience 0.033 0.001
Experience2/100 -0.056 0.002
Female -0.098 0.011
Female Union Member 0.023 0.020
Male Union Member 0.095 0.020
Married Female 0.016 0.010
Married Male 0.211 0.010
Formerly Married Female -0.006 0.012
Formerly Married Male 0.083 0.015
Hispanic -0.108 0.008
Black -0.096 0.008
American Indian -0.137 0.027
Asian -0.038 0.013
Mixed Race -0.041 0.021
Intercept 0.909 0.021
σ̂ 0.565
Sample Size 46,943

Standard errors are heteroskedasticity-consistent (Horn-Horn-Duncan formula).

4.20 Multicollinearity

As discussed in Section 3.24, if X ′X is singular, then (X ′X)
−1 and β̂ are not defined. This

situation is called strict multicollinearity, as the columns ofX are linearly dependent, i.e., there
is some α 6= 0 such that Xα = 0. Most commonly, this arises when sets of regressors are included
which are identically related. In Section 3.24 we discussed possible causes of strict multicollinearity,
and discussed the related problem of ill-conditioning, which can cause numerical inaccuracies in
severe cases. These situations are not commonly encountered in applied econometric analysis.

A more common situation is near multicollinearity, which is often called “multicollinearity”
for brevity. This is the situation when the regressors are highly correlated. An implication of near
multicollinearity is that individual coeffi cient estimates will be imprecise. This is not necessarily a
problem for econometric analysis as the imprecision will be reflected in the standard errors, but it
is still important to understand how highly correlated regressors can result in a lack of precision of
individual coeffi cient estimates.

We can see this most simply in a homoskedastic linear regression model with two regressors

yi = x1iβ1 + x2iβ2 + ei,

and
1

n
X ′X =

(
1 ρ
ρ 1

)
.

In this case

var
(
β̂ |X

)
=
σ2

n

(
1 ρ
ρ 1

)−1

=
σ2

n (1− ρ2)

(
1 −ρ
−ρ 1

)
.

The correlation ρ indexes collinearity, since as ρ approaches 1 the matrix becomes singular. We
can see the effect of collinearity on precision by observing that the variance of a coeffi cient esti-
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mate σ2
[
n
(
1− ρ2

)]−1 approaches infinity as ρ approaches 1. Thus the more “collinear” are the
regressors, the worse the precision of the individual coeffi cient estimates.

What is happening is that when the regressors are highly dependent, it is statistically diffi cult to
disentangle the impact of β1 from that of β2. As a consequence, the precision of individual estimates
are reduced. The imprecision, however, will be reflected by large standard errors, so there is no
distortion in inference.

Some earlier textbooks overemphasized a concern about multicollinearity. A very amusing
parody of these texts appeared in Chapter 23.3 of Goldberger’s A Course in Econometrics (1991),
which is reprinted below. To understand his basic point, you should notice how the estimation
variance σ2

[
n
(
1− ρ2

)]−1 depends equally and symmetrically on the correlation ρ and the sample
size n. Goldberger was pointing out that the only statistical implication of multicollinearity is a
lack of precision, and low sample sizes have the exact same implication.

Arthur S. Goldberger

Art Goldberger (1930-2009) was one of the most distinguished members
of the Department of Economics at the University of Wisconsin. His PhD
thesis developed an early macroeconometric forecasting model (known as the
Klein-Goldberger model) but most of his career focused on microeconometric
issues. He was the leading pioneer of what has been called the Wisconsin
Tradition of empirical work —a combination of formal econometric theory
with a careful critical analysis of empirical work. Goldberger wrote a series of
highly regarded and influential graduate econometric textbooks, including
Econometric Theory (1964), Topics in Regression Analysis (1968), and A
Course in Econometrics (1991).
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Micronumerosity
Arthur S. Goldberger

A Course in Econometrics (1991), Chapter 23.3

Econometrics texts devote many pages to the problem of multicollinearity in
multiple regression, but they say little about the closely analogous problem of
small sample size in estimating a univariate mean. Perhaps that imbalance is
attributable to the lack of an exotic polysyllabic name for “small sample size.”If
so, we can remove that impediment by introducing the term micronumerosity.

Suppose an econometrician set out to write a chapter about small sample size
in sampling from a univariate population. Judging from what is now written about
multicollinearity, the chapter might look like this:

1. Micronumerosity

The extreme case, “exact micronumerosity,”arises when n = 0, in which case
the sample estimate of µ is not unique. (Technically, there is a violation of
the rank condition n > 0 : the matrix 0 is singular.) The extreme case is
easy enough to recognize. “Near micronumerosity” is more subtle, and yet
very serious. It arises when the rank condition n > 0 is barely satisfied. Near
micronumerosity is very prevalent in empirical economics.

2. Consequences of micronumerosity

The consequences of micronumerosity are serious. Precision of estimation is
reduced. There are two aspects of this reduction: estimates of µ may have
large errors, and not only that, but Vȳ will be large.

Investigators will sometimes be led to accept the hypothesis µ = 0 because
ȳ/σ̂ȳ is small, even though the true situation may be not that µ = 0 but
simply that the sample data have not enabled us to pick µ up.

The estimate of µ will be very sensitive to sample data, and the addition of
a few more observations can sometimes produce drastic shifts in the sample
mean.

The true µ may be suffi ciently large for the null hypothesis µ = 0 to be
rejected, even though Vȳ = σ2/n is large because of micronumerosity. But if
the true µ is small (although nonzero) the hypothesis µ = 0 may mistakenly
be accepted.
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3. Testing for micronumerosity

Tests for the presence of micronumerosity require the judicious use
of various fingers. Some researchers prefer a single finger, others use
their toes, still others let their thumbs rule.

A generally reliable guide may be obtained by counting the number
of observations. Most of the time in econometric analysis, when n is
close to zero, it is also far from infinity.

Several test procedures develop critical values n∗, such that micron-
umerosity is a problem only if n is smaller than n∗. But those proce-
dures are questionable.

4. Remedies for micronumerosity

If micronumerosity proves serious in the sense that the estimate of µ
has an unsatisfactorily low degree of precision, we are in the statistical
position of not being able to make bricks without straw. The remedy
lies essentially in the acquisition, if possible, of larger samples from
the same population.

But more data are no remedy for micronumerosity if the additional
data are simply “more of the same.”So obtaining lots of small samples
from the same population will not help.

4.21 Clustered Sampling

In Section 4.2 we briefly mentioned clustered sampling as an alternative to the assumption of
random sampling. We now introduce the framework in more detail and extend the primary results
of this chapter to encompass clustered dependence.

It might be easiest to understand the idea of clusters by considering a concrete example. Duflo,
Dupas and Kremer (2011) investigate the impact of tracking (assigning students based on initial
test score) on educational attainment in a randomized experiment. An extract of their data set is
available on the textbook webpage in the file DDK2011.

In 2005, 140 primary schools in Kenya received funding to hire an extra first grade teacher to
reduce class sizes. In half of the schools (selected randomly), students were assigned to classrooms
based on an initial test score (“tracking”); in the remaining schools the students were randomly
assigned to classrooms. For their analysis, the authors restricted attention to the 121 schools which
initially had a single first-grade class.

The key regression5 in the paper is

TestScoreig = −0.071 + 0.138Trackingg + eig (4.41)

where TestScoreig is the standardized test score (normalized to have mean 0 and variance 1) of
student i in school g, and Trackingg is a dummy equal to 1 if school g was tracking. The OLS
estimates indicate that schools which tracked the students had an overall increase in test scores by
about 0.14 standard deviations, which is quite meaningful. More general versions of this regression
are estimated, many of which take the form

TestScoreig = α+ γTrackingg + x′igβ + eig (4.42)

5Table 2, column (1). Duflo, Dupas and Kremer (2011) report a coeffi cient estimate of 0.139, perhaps due to a
slightly different calculation to standardize the test score.
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where xig is a set of controls specific to the student (including age, sex and initial test score).
A diffi culty with applying the classical regression framework is that student achievement is likely

to be correlated within a given school. Student achievement may be affected by local demographics,
individual teachers, and classmates, all of which imply dependence. These concerns, however, do
not suggest that achievement will be correlated across schools, so it seems reasonable to model
achievement across schools as mutually independent.

In clustering contexts it is convenient to double index the observations as (yig,xig) where
g = 1, ..., G indexes the cluster and i = 1, ..., ng indexes the individual within the gth cluster.
The number of observations per cluster ng may vary across clusters. The number of clusters is G.
The total number of observations is n =

∑G
g=1 ng. In the Kenyan schooling example, the number

of clusters (schools) in the estimation sample is G = 121, the number of students per school varies
from 19 to 62, and the total number of observations is n = 5795.

While it is typical to write the observations using the double index notation (yig,xig), it is also
useful to use cluster-level notation. Let yg = (y1g, ..., yngg)

′ and Xg = (x1g, ...,xngg)
′ denote the

ng × 1 vector of dependent variables and ng × k matrix of regressors for the gth cluster. A linear
regression model can be written for the individual observations as

yig = x′igβ + eig

and using cluster notation as
yg = Xgβ + eg (4.43)

where eg = (e1g, ..., engg)
′ is a ng × 1 error vector. We can also stack the observations into full

sample matrices and write the model as

y = Xβ + e.

Using this notation we can write the sums over the observations using the double sum
∑G

g=1

∑ng
i=1.

This is the sum across clusters of the sum across observations within each cluster. The OLS esti-
mator can be written as

β̂ =

 G∑
g=1

ng∑
i=1

xigx
′
ig

−1 G∑
g=1

ng∑
i=1

xigyig


=

 G∑
g=1

X ′gXg

−1 G∑
g=1

X ′gyg

 (4.44)

=
(
X ′X

)−1 (
X ′y

)
.

The OLS residuals are êig = yig − x′igβ̂ in individual level notation and êg = yg −Xgβ̂ in cluster
level notation.

The standard clustering assumption is that the clusters are known to the researcher and that
the observations are independent across clusters.

Assumption 4.4 The clusters (yg,Xg) are mutually independent across clus-
ters g.

In our example, clusters are schools. In other common applications, cluster dependence has
been assumed within individual classrooms, families, villages, regions, and within larger units such
as industries and states. This choice is up to the researcher, though the justification will depend on
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the context, the nature of the data, and will reflect information and assumptions on the dependence
structure across observations.

The model is a linear regression under the assumption

E (eg |Xg) = 0. (4.45)

This is the same as assuming that the individual errors are conditionally mean zero

E (eig |Xg) = 0

or that the conditional mean of yg given Xg is linear. As in the independent case, equation (4.45)
means that the linear regression model is correctly specified. In the clustered regression model, this
requires that all all interaction effects within clusters have been accounted for in the specification
of the individual regressors xig.

In the regression (4.41), the conditional mean is necessarily linear and satisfies (4.45) since the
regressor Trackingg is a dummy variable at the cluster level. In the regression (4.42) with individual
controls, (4.45) requires that the achievement of any student is unaffected by the individual controls
(e.g. age, sex and initial test score) of other students within the same school.

Given (4.45), we can calculate the mean of the OLS estimator. Substituting (4.43) into (4.44)
we find

β̂ − β =

 G∑
g=1

X ′gXg

−1 G∑
g=1

X ′geg

 .

The mean of β̂ − β conditioning on all the regressors is

E
(
β̂ − β |X

)
=

 G∑
g=1

X ′gXg

−1 G∑
g=1

X ′gE (eg |X)


=

 G∑
g=1

X ′gXg

−1 G∑
g=1

X ′gE (eg |Xg)


= 0.

The first equality holds by linearity, the second by Assumption 4.4 and the third by (4.45).
This shows that OLS is unbiased under clustering if the conditional mean is linear.

Theorem 4.7 In the clustered linear regression model (Assump-
tion 4.4 and (4.45))

E
(
β̂ |X

)
= β.

Now consider the covariance matrix of β̂. Let

Σg = E
(
ege
′
g |Xg

)
denote the ng × ng conditional covariance matrix of the errors within the gth cluster. Since the
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observations are independent across clusters,

var

 G∑
g=1

X ′geg

 |X
 =

G∑
g=1

var
(
X ′geg |Xg

)
=

G∑
g=1

X ′gE
(
ege
′
g |Xg

)
Xg

=

G∑
g=1

X ′gΣgXg

def
= Ωn. (4.46)

It follows that

V
β̂

= var
(
β̂ |X

)
=
(
X ′X

)−1
Ωn

(
X ′X

)−1
. (4.47)

This differs from the formula in the independent case due to the correlation between observations
within clusters. The magnitude of the difference depends on the degree of correlation between
observations within clusters and the number of observations within clusters. To see this, suppose

that all clusters have the same number of observations ng = N , E
(
e2
ig | xg

)
= σ2, E (eige`g | xg) =

σ2ρ for i 6= `, and the regressors xig do not vary within a cluster. In this case the exact variance
of the OLS estimator equals (after some calculations)

V
β̂

=
(
X ′X

)−1
σ2 (1 + ρ (N − 1)) .

If ρ > 0, this shows that the actual variance is appropriately a multiple ρN of the conventional
formula. In the Kenyan school example, the average cluster size is 48, so if the correlation between
students is ρ = 0.25 the actual variance exceeds the conventional formula by a factor of about
twelve. In this case the correct standard errors (the square root of the variance) should be a
multiple of about three times the conventional formula. This is a substantial difference, and should
not be neglected.

The solution proposed by Arellano (1987) which is now standard is to use a covariance matrix
estimate which extends the robust White formula to allow for general correlation within clusters.
Recall that the insight of the White covariance estimator is that the squared error e2

i is unbiased for
E
(
e2
i | xi

)
= σ2

i . Similarly with cluster dependence the matrix ege
′
g is unbiased for E

(
ege
′
g |Xg

)
=

Σg. This means that an unbiased estimate for (4.46) is Ω̃n =
∑G

g=1X
′
gege

′
gXg. This is not feasible,

but we can replace the unknown errors by the OLS residuals to obtain Arellano’s estimator

Ω̂n =

G∑
g=1

X ′gêgê
′
gXg

=
G∑
g=1

ng∑
i=1

ng∑
`=1

xigx
′
`g êig ê`g

=

G∑
g=1

( ng∑
i=1

xig êig

)( ng∑
`=1

x`g ê`g

)′
.

The three expressions in (4.46) give three equivalent formula which could be used to calculate Ω̂n.
The final expression writes Ω̂n in terms of the cluster sums

∑ng
`=1 x`g ê`g which is basis for our

example R and MATLAB codes shown below.
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Given the expressions (4.46)-(4.47), a natural cluster covariance matrix estimator takes the form

V̂
β̂

= an
(
X ′X

)−1
Ω̂n

(
X ′X

)−1 (4.48)

where the term an is a possible finite-sample adjustment. The Stata cluster command uses

an =

(
n− 1

n− k

)(
G

G− 1

)
.

The factor G/(G − 1) was derived by Chris Hansen (2007) in the context of equal-sized clusters
to improve performance when the number of clusters G is small. The factor (n− 1)/(n− k) is an
ad hoc generalization which nests the adjustment used in (4.32), since when G = n we have the
simplification an = n/(n− k).

Alternative cluster-robust covariance matrix estimators can be constructed using cluster-level
prediction errors such as

ẽg = yg −Xgβ̂(−g)

where β̂(−g) is the least-squares estimator omitting cluster g. Similarly as in Section 3.20, we can
show that

ẽg =
(
Ing −Xg

(
X ′X

)−1
X ′g

)−1
êg (4.49)

and
β̂(−g) = β̂ −

(
X ′X

)−1
X ′gẽg. (4.50)

We then have the robust covariance matrix estimator

V̂
CR3

β̂ =
(
X ′X

)−1

 G∑
g=1

X ′gẽgẽ
′
gXg

(X ′X)−1
. (4.51)

The label “CR”refers to “cluster-robust”and “CR3”refers to the analogous formula for the HC3
esitmator.

Similarly to the heteroskedastic-robust case, you can show that CR3 is a conservative estimator

for V
β̂
in the sense that the conditional expectation of V̂

CR3

β̂ exceeds V
β̂
. This covariance matrix

estimator may be more cumbersome to implement, however, as the cluster-level prediction errors
(4.49) cannot be calculated in a simple linear operation, and appear to require a loop (across
clusters) to calculate.

To illustrate in the context of the Kenyan schooling example, we present the regression of
student test scores on the school-level tracking dummy, with two standard errors displayed. The
first (in parenthesis) is the conventional robust standard error. The second [in square brackets] is
the clustered standard error, where clustering is at the level of the school.

TestScoreig = − 0.071
(0.019)
[0.054]

+ 0.138
(0.026)
[0.078]

Trackingg + eig. (4.52)

We can see that the cluster-robust standard errors are roughly three times the conventional
robust standard errors. Consequently, confidence intervals for the coeffi cients are greatly affected
by the choice.

For illustration, we list here the commands needed to produce the regression results with clus-
tered standard errors in Stata, R, and MATLAB.
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Stata do File

* Load data:
use "DDK2011.dta"
* Standard the test score variable to have mean zero and unit variance:
egen testscore = std(totalscore)
* Regression with standard errors clustered at the school level:
reg testscore tracking, cluster(schoolid)

You can see that clustered standard errors are simple to calculate in Stata.

R Program File

# Load the data and create variables
data <- read.table("DDK2011.txt",header=TRUE,sep="\ t")
y <- scale(as.matrix(data$totalscore))
n <- nrow(y)
x <- cbind(as.matrix(data$tracking),matrix(1,n,1))
schoolid <- as.matrix(data$schoolid)
k <- ncol(x)
xx <- t(x)%*%x
invx <- solve(xx)
beta <- solve(xx,t(x)%*%y)
xe <- x*rep(y-x%*%beta,times=k)
# Clustered robust standard error
xe_sum <- rowsum(xe,schoolid)
G <- nrow(xe_sum)
omega <- t(xe_sum)%*%xe_sum
scale <- G/(G-1)*(n-1)/(n-k)
V_clustered <- scale*invx%*%omega%*%invx
se_clustered <- sqrt(diag(V_clustered))
print(beta)
print(se_clustered)

Programming clustered standard errors in R is also relatively easy due to the convenient rowsum
command, which sums variables within clusters.
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MATLAB Program File

% Load the data and create variables
data = xlsread(’DDK2011.xlsx’);
schoolid = data(:,2);
tracking = data(:,7);
totalscore = data(:,62);
y = (totalscore - mean(totalscore))./std(totalscore);
x = [tracking,ones(size(y,1),1)];
[n,k] = size(x);
xx = x’*x;
invx = inv(xx);
beta = xx\(x’*y);
e = y - x*beta;
% Clustered robust standard error
[schools,~,schoolidx] = unique(schoolid);
G = size(schools,1);
cluster_sums = zeros(G,k);
for j = 1:k
cluster_sums(:,j) = accumarray(schoolidx,x(:,j).*e);end
omega = cluster_sums’*cluster_sums;
scale = G/(G-1)*(n-1)/(n-k);
V_clustered = scale*invx*omega*invx;
se_clustered = sqrt(diag(V_clustered));
display(beta);
display(se_clustered);

Here we see that programming clustered standard errors in MATLAB is less convenient than
the other packages, but still can be executed with just a few lines of code. This example uses the
accumarray command, which is similar to the rowsum command in R, but only can be applied to
vectors (hence the loop across the regressors) and works best if the clusterid variable are indices
(which is why the original schoolid variable is transformed into indices in schoolidx. Application of
these commands requires care and attention.

4.22 Inference with Clustered Samples

In this section we give some cautionary remarks and general advice about cluster-robust in-
ference in econometric practice. There has been remarkably little theoretical research about the
properties of cluster-robust methods —until quite recently —so these remarks may become dated
rather quickly.

In many respects cluster-robust inference should be viewed similarly to heteroskedaticity-robust
inference, where a “cluster”in the cluster-robust case is interpreted similarly to an “observation”in
the heteroskedasticity-robust case. In particular, the effective sample size should be viewed as the
number of clusters, not the “sample size”n. This is because the cluster-robust covariance matrix
estimator effectively treats each cluster as a single observation, and estimates the covariance matrix
based on the variation across cluster means. Hence if there are onlyG = 50 clusters, inference should
be viewed as (at best) similar to heteroskedasticity-robust inference with n = 50 observations. This
is a bit unsettling, for if the number of regressors is large (say k = 20), then the covariance matrix
will be estimated quite imprecisely.

Furthermore, most cluster-robust theory (for example, the work of Chris Hansen (2007)) as-
sumes that the clusters are homogeneous, including the assumption that the cluster sizes are all
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identical. This turns out to be a very important simplication. When this is violated —when, for ex-
ample, cluster sizes are highly heterogeneous —the regression should be viewed as roughly equivalent
to the heteroskedasticity-robust case with an extremely high degree of heteroskedasticity. Cluster
sums have variances which are proportional to the cluster sizes, so if the latter is heterogeneous so
will be the variances of the cluster sums. This also has a large effect on finite sample inference.
When clusters are heterogeneous then cluster-robust inference is similar to heteroskedasticity-robust
inference with highly heteroskedastic observations.

Put together, if the number of clusters G is small and the number of observations per cluster
is highly varied, then we should interpret inferential statements with a great degree of caution.
Unfortunately, small G with heterogeneous cluster sizes is commonplace. Many empirical studies
on U.S. data cluster at the “state” level, meaning that there are 50 or 51 clusters (the District of
Columbia is typically treated as a state). The number of observations vary considerably across states
since the populations are highly unequal. Thus when you read empirical papers with individual-
level data but clustered at the “state”level you should be very cautious, and recognize that this is
equivalent to inference with a small number of extremely heterogeneous observations.

A further complication occurs when we are interested in treatment, as in the tracking example
given in the previous section. In many cases (including Duflo, Dupas and Kremer (2011)) the
interest is in the effect of a specific treatment which is applied at the cluster level (in their case,
treatment applies to schools). In many cases (not, however, Duflo, Dupas and Kremer (2011)),
the number of treated clusters is small relative to the total number of clusters; in an extreme case
there is just a single treated cluster. Based on the reasoning given above, these applications should
be interpreted as equivalent to heteroskedasticity-robust inference with a sparse dummy variable
as discussed in Section 4.16. As discussed there, standard error estimates can be erroneously
small. In the extreme of a single treated cluster (in the example, if only a single school was
tracked) then the estimated coeffi cient on tracking will be very imprecisely estimated, yet will
have a misleadingly small cluster standard error. In general, reported standard errors will greatly
understate the imprecision of parameter estimates.

4.23 At What Level to Cluster?

A practical question which arises in the context of cluster-robust inference is “At what level
should we cluster?” In some examples you could cluster at a very fine level, such as families or
classrooms, or at higher levels of aggregation, such as neighborhoods, schools, towns, counties, or
states. What is the correct level at which to cluster? Rules of thumb have been advocated by
practitioners, but at present there is little formal analysis to provide useful guidance. What do we
know?

First, suppose cluster dependence is ignored or imposed at too fine a level (e.g. clustering by
households instead of villages). Then variance estimators will be biased as they will omit covariance
terms. As correlation is typically positive, this suggests that standard errors will be too small, giving
rise to spurious indications of significance and precision.

Second, suppose cluster dependence is imposed at too aggregate a measure (e.g. clustering by
states rather than villages). This does not cause bias. But the variance estimators will contain
many extra components, so the precision of the covariance matrix estimator will be poor. This
means that reported standard errors will be imprecise —more random —than if clustering had been
less aggregate.

These considerations show that there is a trade-off between bias and variance in the estimation
of the covariance matrix by cluster-robust methods. It is not at all clear —based on current theory
—what to do. I state this emphatically. We really do not know what is the “correct”level at which
to do cluster-robust inference. This is a very interesting question and should certainly be explored
by econometric research.

One challenge is that in empirical practice, many people have observed: “Clustering is impor-
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tant. Standard errors change a lot whether or not we properly cluster. Therefore we should only
report clustered standard errors.”The flaw in this reasoning is that we do not know why in a specific
empirical example the standard errors change under clustering. One possibility is that clustering
reduces bias and thus is more accurate. The other possibility is that clustering adds sampling noise
and is thus less accurate. In reality it is likely that both factors are present.

In any event a researcher should be aware of the number of clusters used in the reported
calculations and should treat the number of clusters as the effective sample size for assessing
inference. If the number of clusters is, say, G = 20, this should be treated as a very small sample.

To illustrate the thought experiment, consider the empirical example of Duflo, Dupas and
Kremer (2011). They reported standard errors clustered at the school level, and the application
uses 111 schools. Thus G = 111 which we can treat as the effective sample size. The number of
observations (students) ranges from 19 to 62, which is reasonably homogeneous. This seems like a
well balanced application of clustered variance estimation. However, one could imagine clustering
at a different level of aggregation. In some applications we might consider clustering at a less
aggregate level such as the classroom level. This is not relevant in this particular application as
there was only one classroom per school. We might consider consider clustering at a more aggregate
level. The data set contains information on the school district, division, and zone. However, there
are only 2 districts, 7 divisions, and 9 zones. Thus if we cluster by zone, G = 9 is the effective
sample size which would lead to imprecise standard errors. In this particular example, clustering
at the school level (as done by the authors) is indeed the prudent choice.
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Exercises

Exercise 4.1 For some integer k, set µk = E(yk).

(a) Construct an estimator µ̂k for µk.

(b) Show that µ̂k is unbiased for µk.

(c) Calculate the variance of µ̂k, say var(µ̂k). What assumption is needed for var(µ̂k) to be finite?

(d) Propose an estimator of var(µ̂k).

Exercise 4.2 Calculate E((y − µ)3), the skewness of y. Under what condition is it zero?

Exercise 4.3 Explain the difference between y and µ. Explain the difference between n−1
∑n

i=1 xix
′
i

and E (xix
′
i).

Exercise 4.4 True or False. If yi = xiβ + ei, xi ∈ R, E(ei | xi) = 0, and êi is the OLS residual
from the regression of yi on xi, then

∑n
i=1 x

2
i êi = 0.

Exercise 4.5 Prove (4.15) and (4.16)

Exercise 4.6 Prove Theorem 4.5.

Exercise 4.7 Let β̃ be the GLS estimator (4.17) under the assumptions (4.13) and (4.14). Assume
that Ω = c2Σ with Σ known and c2 unknown. Define the residual vector ẽ = y −Xβ̃, and an
estimator for c2

c̃2 =
1

n− k ẽ
′Σ−1ẽ.

(a) Show (4.18).

(b) Show (4.19).

(c) Prove that ẽ = M1e, whereM1 = I −X
(
X ′Σ−1X

)−1
X ′Σ−1.

(d) Prove thatM ′
1Σ
−1M1 = Σ−1 −Σ−1X

(
X ′Σ−1X

)−1
X ′Σ−1.

(e) Find E
(
c̃2 |X

)
.

(f) Is c̃2 a reasonable estimator for c2?

Exercise 4.8 Let (yi,xi) be a random sample with E(y | X) = Xβ. Consider the Weighted
Least Squares (WLS) estimator of β

β̃wls =
(
X ′WX

)−1 (
X ′Wy

)
where W = diag (w1, ..., wn) and wi = x−2

ji , where xji is one of the xi.

(a) In which contexts would β̃wls be a good estimator?

(b) Using your intuition, in which situations would you expect that β̃wls would perform better
than OLS?

Exercise 4.9 Show (4.27) in the homoskedastic regression model.
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Exercise 4.10 Prove (4.35).

Exercise 4.11 Show (4.36) in the homoskedastic regression model.

Exercise 4.12 Let µ = E (yi) , σ
2 = E

(
(yi − µ)2

)
and µ3 = E

(
(yi − µ)3

)
and consider the sample

mean y = 1
n

∑n
i=1 yi. Find E

(
(y − µ)3

)
as a function of µ, σ2, µ3 and n.

Exercise 4.13 Take the simple regression model yi = xiβ + ei, xi ∈ R, E(ei | xi) = 0. Define

σ2
i = E(e2

i | xi) and µ3i = E(e3
i | xi) and consider the OLS coeffi cient β̂. Find E

((
β̂ − β

)3
|X
)
.

Exercise 4.14 Take a regression model with i.i.d. observations (yi, xi) and scalar xi

yi = xiβ + ei

E(ei | xi) = 0

The parameter of interest is θ = β2. Consider the OLS estimates β̂ and θ̂ = β̂2.

(a) Find E(θ̂|X) using our knowledge of E(β̂|X) and V
β̂

= var(β̂|X). Is θ̂ biased for θ?

(b) Suggest an (approximate) biased-corrected estimator θ̂∗ using an estimator V̂
β̂
for V

β̂
.

(c) For θ̂∗ to be potentially unbiased, which estimator of V
β̂
is most appropriate?

Under which conditions is θ̂∗ unbiased?

Exercise 4.15 Consider an iid sample {yi,xi} i = 1, ..., n where xi is k × 1. Assume the linear
conditional expectation model

yi = x′iβ + ei

E (ei | xi) = 0

Assume that n−1X ′X = Ik (orthonormal regressors). Consider the OLS estimator β̂ for β.

(a) Find V
β̂

= var(β̂)

(b) In general, are β̂j and β̂` for j 6= ` correlated or uncorrelated?

(c) Find a suffi cient condition so that β̂j and β̂` for j 6= ` are uncorrelated.

Exercise 4.16 Take the linear homoskedastic CEF

y∗i = x′iβ + ei (4.53)

E(ei|xi) = 0

E(e2
i |xi) = σ2

and suppose that y∗i is measured with error. Instead of y
∗
i , we observe yi which satisfies

yi = y∗i + ui

where ui is measurement error. Suppose that ei and ui are independent and

E(ui|xi) = 0

E(u2
i |xi) = σ2

u(xi)
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(a) Derive an equation for yi as a function of xi. Be explicit to write the error term as a function
of the structural errors ei and ui. What is the effect of this measurement error on the model
(4.53)?

(b) Describe the effect of this measurement error on OLS estimation of β in the feasible regression
of the observed yi on xi.

(c) Describe the effect (if any) of this measurement error on appropriate standard error calculation
for β̂.

Exercise 4.17 Suppose that for a pair of observables (yi, xi) with xi > 0 that an economic model
implies

E (yi | xi) = (γ + θxi)
1/2 . (4.54)

A friend suggests that (given an iid sample) you estimate γ and θ by the linear regression of y2
i on

xi, that is, to estimate the equation

y2
i = α+ βxi + ei. (4.55)

(a) Investigate your friend’s suggestion. Define ui = yi − (γ + θxi)
1/2 . Show that E (ui | xi) = 0

is implied by (4.54).

(b) Use yi = (γ + θxi)
1/2 + ui to calculate E

(
y2
i | xi

)
. What does this tell you about the implied

equation (4.55)?

(c) Can you recover either γ and/or θ from estimation of (4.55)? Are additional assumptions
required?

(d) Is this a reasonable suggestion?

Exercise 4.18 Take the model

yi = x′1iβ1 + x′2iβ2 + ei

E (ei | xi) = 0

E
(
e2
i | xi

)
= σ2

where xi = (x1i,x2i), with x1i k1 × 1 and x2i k2 × 1. Consider the short regression

yi = x′1iβ̂1 + êi

and define the error variance estimator

s2 =
1

n− k1

n∑
i=1

ê2
i .

Find E
(
s2 |X

)
Exercise 4.19 Let y be n × 1, X be n × k, and X∗ = XC where C is k × k and full-rank. Let
β̂ be the least-squares estimator from the regression of y on X, and let V̂ be the estimate of its
asymptotic covariance matrix. Let β̂

∗
and V̂

∗
be those from the regression of y on X∗. Derive an

expression for V̂
∗
as a function of V̂ .
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Exercise 4.20 Take the model

y = Xβ + e

E (e |X) = 0

E
(
ee′ |X

)
= Ω

Assume for simplicity thatΩ is known. Consider the OLS and GLS estimators β̂ = (X ′X)
−1

(X ′y)

and β̃ =
(
X ′Ω−1X

)−1 (
X ′Ω−1y

)
. Compute the (conditional) covariance between β̂ and β̃ :

E
((
β̂ − β

)(
β̃ − β

)′
|X
)

Find the (conditional) covariance matrix for β̂ − β̃ :

E
((
β̂ − β̃

)(
β̂ − β̃

)′
|X
)

Exercise 4.21 The model is

yi = x′iβ + ei

E (ei | xi) = 0

E
(
e2
i | xi

)
= σ2

i

Ω = diag(σ2
1, ..., σ

2
n).

The parameter β is estimated both by OLS β̂ = (X ′X)
−1
X ′y and GLS β̃ =

(
X ′Ω−1X

)−1

X ′Ω−1y. Let ê = y − Xβ̂ and ẽ = y − Xβ̃ denote the residuals. Let R̂2 = 1 − ê′ê/(y∗′y∗)
and R̃2 = 1 − ẽ′ẽ/(y∗′y∗) denote the equation R2 where y∗ = y − y. If the error ei is truly
heteroskedastic will R̂2 or R̃2 be smaller?

Exercise 4.22 An economist friend tells you that the assumption that the observations (yi,xi)
are i.i.d. implies that the regression yi = x′iβ+ei is homoskedastic. Do you agree with your friend?
How would you explain your position?

Exercise 4.23 Take the linear regression model with E (y |X) = Xβ. Define the ridge regression
estimator

β̂ =
(
X ′X + Ikλ

)−1
X ′y

where λ > 0 is a fixed constant. Find E
(
β̂ |X

)
. Is β̂ biased for β?

Exercise 4.24 Continue the empirical analysis in Exercise 3.24.

(a) Calculate standard errors using the homoskedasticity formula and using the four covariance
matrices from Section 4.14.

(b) Repeat in your second programming language. Are they identical?

Exercise 4.25 Continue the empirical analysis in Exercise 3.26. Calculate standard errors using
the HC3 method. Repeat in your second programming language. Are they identical?

Exercise 4.26 Extend the empirical analysis reported in Section 4.21. Do a regression of stan-
dardized test score (totalscore normalized to have zero mean and variance 1) on tracking, age, sex,
being assigned to the contract teacher, and student’s percentile in the initial distribution. (The
sample size will be smaller as some observations have missing variables.) Calculate standard errors
using both the conventional robust formula, and clustering based on the school.
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(a) Compare the two sets of standard errors. Which standard error changes the most by cluster-
ing? Which changes the least?

(b) How does the coeffi cient on tracking change by inclusion of the individual controls (in com-
parison to the results from (4.52))?



Chapter 5

Normal Regression and Maximum
Likelihood

5.1 Introduction

This chapter introduces the normal regression model and the method of maximum likelihood.
The normal regression model is a special case of the linear regression model. It is important as
normality allows precise distributional characterizations and sharp inferences. It also provides a
baseline for comparison with alternative inference methods, such as asymptotic approximations and
the bootstrap.

The method of maximum likelihood is a powerful statistical method for parametric models (such
as the normal regression model) and is widely used in econometric practice.

5.2 The Normal Distribution

We say that a random variable X has the standard normal distribution, or Gaussian,
written X ∼ N (0, 1) , if it has the density

φ(x) =
1√
2π

exp

(
−x

2

2

)
, −∞ < x <∞.

The standard normal density is typically written with the symbol φ (x) and the corresponding
distribution function by Φ(x). It is a valid density function by the following result.

Theorem 5.1 ∫ ∞
0

exp
(
−x2/2

)
dx =

√
π

2
. (5.1)

The proof is presented in Section 5.20.
Plots of the standard normal density function φ(x) and distribution function Φ(x) are displayed

in Figure 5.1.
All moments of the normal distribution are finite. Since the density is symmetric about zero

all odd moments are zero. By integration by parts, you can show (see Exercises 5.2 and 5.3) that
E
(
X2
)

= 1 and E
(
X4
)

= 3. In fact, for any positive integer m,

E
(
X2m

)
= (2m− 1)!! = (2m− 1) · (2m− 3) · · · 1.

144
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Figure 5.1: Standard Normal Density and Distribution

The notation k!! = k · (k − 2) · · · 1 is known as the double factorial. For example, E
(
X6
)

= 15,
E
(
X8
)

= 105, and E
(
X10

)
= 945.

We say that X has a univariate normal distribution, written X ∼ N
(
µ, σ2

)
, for µ ∈ R and

σ2 > 0, if it has the density

f(x) =
1√

2πσ2
exp

(
−(x− µ)2

2σ2

)
, −∞ < x <∞.

The mean and variance of X are µ and σ2, respectively.
We say that the k-vector X has a multivariate standard normal distribution, written

X ∼ N (0, Ik) , if it has the joint density

f(x) =
1

(2π)k/2
exp

(
−x
′x

2

)
, x ∈ Rk.

The mean and covariance matrix of X are 0 and Ik, respectively. Since this joint density factors,
you can check that the elements of X are independent standard normal random variables.

We say that the k-vectorX has amultivariate normal distribution, writtenX ∼ N (µ,Σ) ,
for µ ∈ Rk and Σ > 0, if it has the joint density

f(x) =
1

(2π)k/2 det (Σ)1/2
exp

(
−(x− µ)′Σ−1 (x− µ)

2

)
, x ∈ Rk.

The mean and covariance matrix of X are µ and Σ, respectively. By setting k = 1 you can check
that the multivariate normal simplifies to the univariate normal.

For technical purposes it is useful to know the form of the moment generating and characteristic
functions.
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Theorem 5.2 If X ∼ N (µ,Σ) then its moment generating funtion is

M(t) = E
(
exp

(
t′X

))
= exp

(
t′µ+

1

2
t′Σt

)
(see Exercise 5.9) and its characteristic function is

C(t) = E
(
exp

(
it′X

))
= exp

(
iµ′λ− 1

2
t′Σt

)
(see Exercise 5.10).

Our definitions of the univariate and multivariate normal distributions require non-singularity
(σ2 > 0 and Σ > 0) but in some cases it is useful for the definitions to be extended to the singular
case. For example, if σ2 = 0 then X ∼ N (µ, 0) = µ with probability one. This extension can be
made easily by re-defining the multivariate normal distribution by the moment generating function
M(t) = exp

(
t′µ+ 1

2t
′Σt
)
. This allows for both non-singular and singular covariance matrices.

An important property of normal random vectors is that affi ne functions are also multivariate
normal.

Theorem 5.3 If X ∼ N (µ,Σ) and Y = a + BX, then Y ∼
N (a+Bµ,BΣB′) .

The proof is presented in Section 5.20.
One simple implication of Theorem 5.3 is that ifX is multivariate normal, then each component

of X is univariate normal.
Another useful property of the multivariate normal distribution is that uncorrelatedness is

the same as independence. That is, if a vector is multivariate normal, subsets of variables are
independent if and only if they are uncorrelated.

Theorem 5.4 If X = (X ′1,X
′
2)′ is multivariate normal, X1 and X2 are

uncorrelated if and only if they are independent.

The proof is presented in Section 5.20.
The normal distribution is frequently used for inference to calculate critical values and p-values.

This involves evaluating the normal cdf Φ(x) and its inverse. Since the cdf Φ(x) is not available
in closed form, statistical textbooks have traditionally provided tables for this purpose. Such
tables are not used currently as now these calculations are embedded in statistical software. For
convenience, we list the appropriate commands in MATLAB and R to compute the cumulative
distribution function of commonly used statistical distributions.
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Numerical Cumulative Distribution Function
To calculate P(X ≤ x) for given x

MATLAB R Stata
N (0, 1) normcdf(x) pnorm(x) normal(x)
χ2
r chi2cdf(x,r) pchisq(x,r) chi2(r,x)
tr tcdf(x,r) pt(x,r) 1-ttail(r,x)
Fr,k fcdf(x,r,k) pf(x,r,k) F(r,k,x)
χ2
r(d) ncx2cdf(x,r,d) pchisq(x,r,d) nchi2(r,d,x)
Fr,k(d) ncfcdf(x,r,k,d) pf(x,r,k,d) 1-nFtail(r,k,d,x)

Here we list the appropriate commands to compute the inverse probabilities (quantiles) of the
same distributions.

Numerical Quantile Function
To calculate x which solves p = P(X ≤ x) for given p

MATLAB R Stata
N (0, 1) norminv(p) qnorm(p) invnormal(p)
χ2
r chi2inv(p,r) qchisq(p,r) invchi2(r,p)
tr tinv(p,r) qt(p,r) invttail(r,1-p)
Fr,k finv(p,r,k) qf(p,r,k) invF(r,k,p)
χ2
r(d) ncx2inv(p,r,d) qchisq(p,r,d) invnchi2(r,d,p)
Fr,k(d) ncfinv(p,r,k,d) qf(p,r,k,d) invnFtail(r,k,d,1-p)

5.3 Chi-Square Distribution

Many important distributions can be derived as transformation of multivariate normal random
vectors, including the chi-square, the student t, and the F . In this section we introduce the chi-
square distribution.

Let X ∼ N (0, Ir) be multivariate standard normal and define Q = X ′X. The distribution of
Q is called chi-square with r degrees of freedom, written as Q ∼ χ2

r .
The mean and variance of Q ∼ χ2

r are r and 2r, respectively. (See Exercise 5.11.)
The chi-square distribution function is frequently used for inference (critical values and p-

values). In practice these calculations are performed numerically by statistical software, but for
completeness we provide the density function.

Theorem 5.5 The density of χ2
r is

f(x) =
1

2r/2Γ
(
r
2

)xr/2−1e−x/2, x > 0 (5.2)

where Γ(t) =
∫∞

0 ut−1e−udu is the gamma function (Section 5.19).

The proof is presented in Section 5.20.
Plots of the chi-square density function for r = 2, 3, 4, and 6 are displayed in Figure 5.2
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Figure 5.2: Chi-Square Density

5.4 Student t Distribution

Let Z ∼ N (0, 1) and Q ∼ χ2
r be independent, and define T = Z/

√
Q/r. The distribution of T

is called the student t with r degrees of freedom, and is written T ∼ tr. Like the chi-square, the
distribution only depends on the degree of freedom parameter r.

Theorem 5.6 The density of T is

f (x) =
Γ
(
r+1

2

)
√
rπΓ

(
r
2

) (1 +
x2

r

)−( r+12 )
, −∞ < x <∞.

The proof is presented in Section 5.20.
Plots of the student t density function are displayed in Figure 5.3 for r = 1, 2, 5 and ∞. The

density function of the student t is bell-shaped like the normal density function, but the t has
thicker tails. The t distribution has the property that moments below r are finite, but absolute
moments greater than or equal to r are infinite.

The student t can also be seen as a generalization of the standard normal, for the latter is
obtained as the limiting case where r is taken to infinity.

Theorem 5.7 Let fr(x) be the student t density. As r → ∞, fr(x) →
φ(x).
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Figure 5.3: Student t Density

The proof is presented in Section 5.20.
This means that the t∞ distribution equals the standard normal distribution.
Another special case of the student t distribution occurs when r = 1 and is known as the

Cauchy distribution. The Cauchy density function is

f (x) =
1

π (1 + x2)
, −∞ < x <∞.

A Cauchy random variable T = Z1/Z2 can also be derived as the ratio of two independent
N (0, 1) variables. The Cauchy has the property that it has no finite integer moments.

William Gosset

William S. Gosset (1876-1937) of England is most famous for his derivation
of the student’s t distribution, published in the paper “The probable error
of a mean”in 1908. At the time, Gosset worked at Guiness Brewery, which
prohibited its employees from publishing in order to prevent the possible
loss of trade secrets. To circumvent this barrier, Gosset published under the
pseudonym “Student”. Consequently, this famous distribution is known as
the student t rather than Gosset’s t!

5.5 F Distribution

Let Qm ∼ χ2
m and Qr ∼ χ2

r be independent. The distribution of F = (Qm/m) / (Qr/r) is called
the F distribution with degree of freedom parameters m and r, and we write F ∼ Fm,r.
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Theorem 5.8 The density of Fm,r is

f(x) =

(
m
r

)m/2
xm/2−1Γ

(
m+r

2

)
Γ
(
m
2

)
Γ
(
r
2

) (
1 + m

r x
)(m+r)/2

, x > 0.

The proof is presented in Section 5.20.
Plots of the Fm,r density for m = 2, 3, 6, 8, and r = 10 are displayed in Figure 5.4.
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Figure 5.4: F Density

Ifm = 1 then we can write Q1 = Z2 where Z ∼ N(0, 1), and F = Z2/ (Qr/r) =
(
Z/
√
Qr/r

)2
=

T 2, the square of a student t with r degree of freedom. Thus the F distribution with m = 1 is
equal to the squared student t distribution. In this sense the F distribution is a generalization of
the student t.

As a limiting case, as r → ∞ the F distribution simplifies to F → Qm/m, a normalized χ2
m.

Thus the F distribution is also a generalization of the χ2
m distribution.

Theorem 5.9 Let fm,r(x) be the density of mF . As r → ∞, fm,r(x) →
fm(x), the density of χ2

m.

The proof is presented in Section 5.20.
The F distribution was tabulated by Snedecor (1934). He introduced the notation F as the

distribution is related to Sir Ronald Fisher’s work on the analysis of variance.
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5.6 Non-Central Chi-Square and F Distributions

For some theoretical applications, including the study of the power of statistical tests, it is useful
to define a non-central version of the chi-square distribution. When X ∼ N (µ, Ir) is multivariate
normal, we say that Q = X ′X has a non-central chi-square distribution, with r degrees of
freedom and non-centrality parameter λ = µ′µ, and is written as Q ∼ χ2

r(λ). The non-central
chi-square simplifies to the central (conventional) chi-square when λ = 0, so that χ2

r(0) = χ2
r .

Theorem 5.10 The density of χ2
r(λ) is

f(x) =
∞∑
i=0

e−λ/2

i!

(
λ

2

)i
fr+2i(x), x > 0 (5.3)

where fr+2i(x) is the χ2
r+2i density function (5.2).

The proof is presented in Section 5.20.
Plots of the χ2

3(λ) density for λ = 0, 2, 4, and 6 are displayed in Figure 5.5.
Interestingly, as can be seen from the formula (5.3), the distribution of χ2

r(λ) only depends on
the scalar non-centrality parameter λ, not the entire mean vector µ.
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Figure 5.5: Non-Central Chi-Square Density

A useful fact about the central and non-central chi-square distributions is that they also can be
derived from multivariate normal distributions with general covariance matrices.
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Theorem 5.11 If X ∼ N(µ,A) with A > 0, r × r, then X ′A−1X ∼
χ2
r(λ), where λ = µ′A−1µ.

The proof is presented in Section 5.20.
In particular, Theorem 5.11 applies to the central chi-squared distribution, so if X ∼ N(0,A)

then X ′A−1X ∼ χ2
r .

Similarly with the non-central chi-square we define the non-central F distribution. If Qm ∼
χ2
m(λ) and Qr ∼ χ2

r are independent, then F = (Qm/m) / (Qr/r) is called a non-central F with
degree of freedom parameters m and r and non-centrality parameter λ.

5.7 Joint Normality and Linear Regression

Suppose the variables (y,x) are jointly normally distributed. Consider the best linear predictor
of y given x

y = x′β + α+ e.

By the properties of the best linear predictor, E (xe) = 0 and E (e) = 0, so x and e are uncorre-
lated. Since (e,x) is an affi ne transformation of the normal vector (y,x), it follows that (e,x) is
jointly normal (Theorem 5.3). Since (e,x) is jointly normal and uncorrelated they are independent
(Theorem 5.4). Independence implies that

E (e | x) = E (e) = 0

and
E
(
e2 | x

)
= E

(
e2
)

= σ2

which are properties of a homoskedastic linear CEF.
We have shown that when (y,x) are jointly normally distributed, they satisfy a normal linear

CEF
y = x′β + α+ e

where
e ∼ N(0, σ2)

is independent of x.
This is a classical motivation for the linear regression model.

5.8 Normal Regression Model

The normal regression model is the linear regression model with an independent normal error

y = x′β + e (5.4)

e ∼ N(0, σ2).

As we learned in Section 5.7, the normal regression model holds when (y,x) are jointly normally
distributed. Normal regression, however, does not require joint normality. All that is required is
that the conditional distribution of y given x is normal (the marginal distribution of x is unre-
stricted). In this sense the normal regression model is broader than joint normality. Notice that
for notational convenience we have written (5.4) so that x contains the intercept.

Normal regression is a parametric model, where likelihood methods can be used for estimation,
testing, and distribution theory. The likelihood is the name for the joint probability density of the
data, evaluated at the observed sample, and viewed as a function of the parameters. The maximum
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likelihood estimator is the value which maximizes this likelihood function. Let us now derive the
likelihood of the normal regression model.

First, observe that model (5.4) is equivalent to the statement that the conditional density of y
given x takes the form

f (y | x) =
1

(2πσ2)1/2
exp

(
− 1

2σ2

(
y − x′β

)2)
.

Under the assumption that the observations are mutually independent, this implies that the con-
ditional density of (y1, ..., yn) given (x1, ...,xn) is

f (y1, ..., yn | x1, ...,xn) =
n∏
i=1

f (yi | xi)

=
n∏
i=1

1

(2πσ2)1/2
exp

(
− 1

2σ2

(
yi − x′iβ

)2)

=
1

(2πσ2)n/2
exp

(
− 1

2σ2

n∑
i=1

(
yi − x′iβ

)2)
def
= L(β, σ2)

and is called the likelihood function.
For convenience, it is typical to work with the natural logarithm

log f (y1, ..., yn | x1, ...,xn) = −n
2

log(2πσ2)− 1

2σ2

n∑
i=1

(
yi − x′iβ

)2
def
= logL(β, σ2) (5.5)

which is called the log-likelihood function.
The maximum likelihood estimator (MLE) (β̂mle, σ̂

2
mle) is the value which maximizes the

log-likelihood. (It is equivalent to maximize the likelihood or the log-likelihood. See Exercise 5.16.)
We can write the maximization problem as

(β̂mle, σ̂
2
mle) = argmax

β∈Rk, σ2>0

logL(β, σ2). (5.6)

In most applications of maximum likelihood, the MLE must be found by numerical methods.
However, in the case of the normal regression model we can find an explicit expression for β̂mle and
σ̂2

mle as functions of the data.
The maximizers (β̂mle, σ̂

2
mle) of (5.6) jointly solve the first-order conditions (FOC)

0 =
∂

∂β
logL(β, σ2)

∣∣∣∣
β=β̂mle,σ

2=σ̂2mle

=
1

σ̂2
mle

n∑
i=1

xi

(
yi − x′iβ̂mle

)
(5.7)

0 =
∂

∂σ2
logL(β, σ2)

∣∣∣∣
β=β̂mle,σ

2=σ̂2mle

= − n

2σ̂2
mle

+
1

σ̂4
mle

n∑
i=1

(
yi − x′iβ̂mle

)2
. (5.8)

The first FOC (5.7) is proportional to the first-order conditions for the least-squares minimization
problem of Section 3.6. It follows that the MLE satisfies

β̂mle =

(
n∑
i=1

xix
′
i

)−1( n∑
i=1

xiyi

)
= β̂ols.
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That is, the MLE for β is algebraically identical to the OLS estimator.
Solving the second FOC (5.8) for σ̂2

mle we find

σ̂2
mle =

1

n

n∑
i=1

(
yi − x′iβ̂mle

)2
=

1

n

n∑
i=1

(
yi − x′iβ̂ols

)2
=

1

n

n∑
i=1

ê2
i = σ̂2

ols.

Thus the MLE for σ2 is identical to the OLS/moment estimator from (3.27).
Since the OLS estimator and MLE under normality are equivalent, β̂ is described by some

authors as the maximum likelihood estimator, and by other authors as the least-squares estimator.
It is important to remember, however, that β̂ is only the MLE when the error e has a known normal
distribution, and not otherwise.

Plugging the estimators into (5.5) we obtain the maximized log-likelihood

logL
(
β̂mle, σ̂

2
mle

)
= −n

2
log
(
2πσ̂2

mle

)
− n

2
. (5.9)

The log-likelihood is typically reported as a measure of fit.
It may seem surprising that the MLE β̂mle is numerically equal to the OLS estimator, despite

emerging from quite different motivations. It is not completely accidental. The least-squares
estimator minimizes a particular sample loss function —the sum of squared error criterion —and
most loss functions are equivalent to the likelihood of a specific parametric distribution, in this case
the normal regression model. In this sense it is not surprising that the least-squares estimator can
be motivated as either the minimizer of a sample loss function or as the maximizer of a likelihood
function.

Carl Friedrich Gauss

The mathematician Carl Friedrich Gauss (1777-1855) proposed the normal
regression model, and derived the least squares estimator as the maximum
likelihood estimator for this model. He claimed to have discovered the
method in 1795 at the age of eighteen, but did not publish the result until
1809. Interest in Gauss’s approach was reinforced by Laplace’s simultane-
ous discovery of the central limit theorem, which provided a justification for
viewing random disturbances as approximately normal.

5.9 Distribution of OLS Coeffi cient Vector

In the normal linear regression model we can derive exact sampling distributions for the
OLS/MLE estimator, residuals, and variance estimator. In this section we derive the distribu-
tion of the OLS coeffi cient estimator.

The normality assumption ei | xi ∼ N
(
0, σ2

)
combined with independence of the observations

has the multivariate implication
e |X ∼ N

(
0, Inσ

2
)
.

That is, the error vector e is independent of X and is normally distributed.
Recall that the OLS estimator satisfies

β̂ − β =
(
X ′X

)−1
X ′e
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which is a linear function of e. Since linear functions of normals are also normal (Theorem 5.3),
this implies that conditional on X,

β̂ − β
∣∣∣
X
∼
(
X ′X

)−1
X ′N

(
0, Inσ

2
)

∼ N
(

0, σ2
(
X ′X

)−1
X ′X

(
X ′X

)−1
)

= N
(

0, σ2
(
X ′X

)−1
)
.

An alternative way of writing this is

β̂
∣∣∣
X
∼ N

(
β, σ2

(
X ′X

)−1
)
.

This shows that under the assumption of normal errors, the OLS estimator has an exact normal
distribution.

Theorem 5.12 In the linear regression model,

β̂
∣∣∣
X
∼ N

(
β, σ2

(
X ′X

)−1
)
.

Theorems 5.3 and 5.12 imply that any affi ne function of the OLS estimator is also normally
distributed, including individual components. Letting βj and β̂j denote the jth elements of β and
β̂, we have

β̂j

∣∣∣
X
∼ N

(
βj , σ

2
[(
X ′X

)−1
]
jj

)
. (5.10)

Theorem 5.12 is a statement about the conditional distribution. What about the unconditional
distribution? In Section 4.7 we presented Kinal’s theorem about the existence of moments for the
joint normal regression model. We re-state the result here.

Theorem 5.13 (Kinal, 1980) If y,x are jointly normal, then for any r,

E
∥∥∥β̂∥∥∥r <∞ if and only if r < n− k + 1.

5.10 Distribution of OLS Residual Vector

Now consider the OLS residual vector. Recall from (3.25) that ê = Me where M = In −
X (X ′X)

−1
X ′. This shows that ê is linear in e. So conditional on X,

ê = Me|X ∼ N
(
0, σ2MM

)
= N

(
0, σ2M

)
the final equality since M is idempotent (see Section 3.12). This shows that the residual vector
has an exact normal distribution.

Furthermore, it is useful to understand the joint distribution of β̂ and ê. This is easiest done
by writing the two as a stacked linear function of the error e. Indeed,(

β̂ − β
ê

)
=

(
(X ′X)

−1
X ′e

Me

)
=

(
(X ′X)

−1
X ′

M

)
e
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which is is a linear function of e. The vector thus has a joint normal distribution with covariance
matrix (

σ2 (X ′X)
−1

0
0 σ2M

)
.

The off-diagonal block is zero because X ′M = 0 from (3.22). Since this is zero, it follows that β̂
and ê are statistically independent (Theorem 5.4).

Theorem 5.14 In the linear regression model, ê|X ∼ N
(
0, σ2M

)
and is

independent of β̂.

The fact that β̂ and ê are independent implies that β̂ is independent of any function of the
residual vector, including individual residuals êi and the variance estimate s2 and σ̂2.

5.11 Distribution of Variance Estimate

Next, consider the variance estimator s2 from (4.26). Using (3.29), it satisfies (n− k) s2 = ê′ê =
e′Me. The spectral decomposition of M (see equation (A.4)) is M = HΛH ′ where H ′H = In
and Λ is diagonal with the eigenvalues of M on the diagonal. Since M is idempotent with rank
n− k (see Section 3.12) it has n− k eigenvalues equalling 1 and k eigenvalues equalling 0, so

Λ =

[
In−k 0

0 0k

]
.

Let u = H ′e ∼ N
(
0, Inσ

2
)
(see Exercise 5.14) and partition u = (u′1,u

′
2)′ where u1 ∼ N

(
0, In−kσ

2
)
.

Then

(n− k) s2 = e′Me

= e′H

[
In−k 0

0 0

]
H ′e

= u′
[
In−k 0

0 0

]
u

= u′1u1

∼ σ2χ2
n−k.

We see that in the normal regression model the exact distribution of s2 is a scaled chi-square.
Since ê is independent of β̂ it follows that s2 is independent of β̂ as well.

Theorem 5.15 In the linear regression model,

(n− k) s2

σ2
∼ χ2

n−k

and is independent of β̂.
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5.12 t-statistic

An alternative way of writing (5.10) is

β̂j − βj√
σ2
[
(X ′X)

−1
]
jj

∼ N (0, 1) .

This is sometimes called a standardized statistic, as the distribution is the standard normal.
Now take the standardized statistic and replace the unknown variance σ2 with its estimator s2.

We call this a t-ratio or t-statistic

T =
β̂j − βj√

s2
[
(X ′X)

−1
]
jj

=
β̂j − βj
s(β̂j)

where s(β̂j) is the classical (homoskedastic) standard error for β̂j from (4.37). We will sometimes
write the t-statistic as T (βj) to explicitly indicate its dependence on the parameter value βj , and
sometimes will simplify notation and write the t-statistic as T when the dependence is clear from
the context.

By some algebraic re-scaling we can write the t-statistic as the ratio of the standardized statistic
and the square root of the scaled variance estimator. Since the distributions of these two components
are normal and chi-square, respectively, and independent, then we can deduce that the t-statistic
has the distribution

T =
β̂j − βj√

σ2
[
(X ′X)

−1
]
jj

/√
(n− k)s2

σ2

/
(n− k)

∼ N (0, 1)√
χ2
n−k
/

(n− k)

∼ tn−k

a student t distribution with n− k degrees of freedom.
This derivation shows that the t-ratio has a sampling distribution which depends only on the

quantity n−k. The distribution does not depend on any other features of the data. In this context,
we say that the distribution of the t-ratio is pivotal, meaning that it does not depend on unknowns.

The trick behind this result is scaling the centered coeffi cient by its standard error, and recog-
nizing that each depends on the unknown σ only through scale. Thus the ratio of the two does not
depend on σ. This trick (scaling to eliminate dependence on unknowns) is known as studentiza-
tion.

Theorem 5.16 In the normal regression model, T ∼ tn−k.

An important caveat about Theorem 5.16 is that it only applies to the t-statistic constructed
with the homoskedastic (old-fashioned) standard error estimator. It does not apply to a t-statistic
constructed with any of the robust standard error estimators. In fact, the robust t-statistics can
have finite sample distributions which deviate considerably from tn−k even when the regression
errors are independent N(0, σ2). Thus the distributional result in Theorem 5.16, and the use of
the t distribution in finite samples, should only be applied to classical t-statistics.
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5.13 Confidence Intervals for Regression Coeffi cients

The OLS estimator β̂ is a point estimator for a coeffi cient β. A broader concept is a set or
interval estimator which takes the form Ĉ = [L̂, Û ]. The goal of an interval estimator Ĉ is to
contain the true value, e.g. β ∈ Ĉ, with high probability.

The interval estimator Ĉ is a function of the data and hence is random.
An interval estimator Ĉ is called a 1 − α confidence interval when P(β ∈ Ĉ) = 1 − α for a

selected value of α. The value 1 − α is called the coverage probability. Typical choices for the
coverage probability 1− α are 0.95 or 0.90.

The probability calculation P(β ∈ Ĉ) is easily mis-interpreted as treating β as random and Ĉ
as fixed. (The probability that β is in Ĉ.) This is not the appropriate interpretation. Instead, the
correct interpretation is that the probability P(β ∈ Ĉ) treats the point β as fixed and the set Ĉ as
random. It is the probability that the random set Ĉ covers (or contains) the fixed true coeffi cient
β.

There is not a unique method to construct confidence intervals. For example, one simple (yet
silly) interval is

Ĉ =

{
R with probability 1− α{
β̂
}

with probability α
.

If β̂ has a continuous distribution, then by construction P(β ∈ Ĉ) = 1 − α, so this confidence
interval has perfect coverage. However, Ĉ is uninformative about β̂ and is therefore not useful.

Instead, a good choice for a confidence interval for the regression coeffi cient β is obtained by
adding and subtracting from the estimator β̂ a fixed multiple of its standard error:

Ĉ =
[
β̂ − c · s(β̂), β̂ + c · s(β̂)

]
(5.11)

where c > 0 is a pre-specified constant. This confidence interval is symmetric about the point
estimator β̂, and its length is proportional to the standard error s(β̂).

Equivalently, Ĉ is the set of parameter values for β such that the t-statistic T (β) is smaller (in
absolute value) than c, that is

Ĉ = {β : |T (β)| ≤ c} =

{
β : −c ≤ β̂ − β

s(β̂)
≤ c
}
.

The coverage probability of this confidence interval is

P
(
β ∈ Ĉ

)
= P (|T (β)| ≤ c)

= P (−c ≤ T (β) ≤ c) . (5.12)

Since the t-statistic T (β) has the tn−k distribution, (5.12) equals F (c)− F (−c), where F (u) is the
student t distribution function with n−k degrees of freedom. Since F (−c) = 1−F (c) (see Exercise
5.20) we can write (5.12) as

P
(
β ∈ Ĉ

)
= 2F (c)− 1.

This is the coverage probability of the interval Ĉ, and only depends on the constant c.
As we mentioned before, a confidence interval has the coverage probability 1−α. This requires

selecting the constant c so that F (c) = 1− α/2. This holds if c equals the 1− α/2 quantile of the
tn−k distribution. As there is no closed form expression for these quantiles, we compute their values
numerically. For example, by tinv(1-alpha/2,n-k) in MATLAB. With this choice the confidence
interval (5.11) has exact coverage probability 1 − α. By default, Stata reports 95% confidence
intervals Ĉ for each estimated regression coeffi cient using the same formula.
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Theorem 5.17 In the normal regression model, (5.11) with c = F−1(1−
α/2) has coverage probability P

(
β ∈ Ĉ

)
= 1− α.

When the degree of freedom is large the distinction between the student t and the normal
distribution is negligible. In particular, for n− k ≥ 61 we have c ≤ 2.00 for a 95% interval. Using
this value we obtain the most commonly used confidence interval in applied econometric practice:

Ĉ =
[
β̂ − 2s(β̂), β̂ + 2s(β̂)

]
. (5.13)

This is a useful rule-of-thumb. This 95% confidence interval Ĉ is simple to compute and can be
easily calculated from coeffi cient estimates and standard errors.

Theorem 5.18 In the normal regression model, if n− k ≥ 61 then (5.13)

has coverage probability P
(
β ∈ Ĉ

)
≥ 0.95.

Confidence intervals are a simple yet effective tool to assess estimation uncertainty. When
reading a set of empirical results, look at the estimated coeffi cient estimates and the standard
errors. For a parameter of interest, compute the confidence interval Ĉ and consider the meaning of
the spread of the suggested values. If the range of values in the confidence interval are too wide to
learn about β, then do not jump to a conclusion about β based on the point estimate alone.

5.14 Confidence Intervals for Error Variance

We can also construct a confidence interval for the regression error variance σ2 using the sam-
pling distribution of s2 from Theorem 5.15, which states that in the normal regression model

(n− k) s2

σ2
∼ χ2

n−k. (5.14)

Let F (u) denote the χ2
n−k distribution function, and for some α set c1 = F−1(α/2) and c2 =

F−1(1 − α/2) (the α/2 and 1 − α/2 quantiles of the χ2
n−k distribution). Equation (5.14) implies

that

P
(
c1 ≤

(n− k) s2

σ2
≤ c2

)
= F (c2)− F (c1) = 1− α.

Rewriting the inequalities we find

P
(
(n− k) s2/c2 ≤ σ2 ≤ (n− k) s2/c1

)
= 1− α.

This shows that an exact 1− α confidence interval for σ2 is

C =

[
(n− k) s2

c2
,

(n− k) s2

c1

]
. (5.15)

Theorem 5.19 In the normal regression model, (5.15) has coverage prob-
ability P

(
σ2 ∈ C

)
= 1− α.

The confidence interval (5.15) for σ2 is asymmetric about the point estimate s2, due to the
latter’s asymmetric sampling distribution.
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5.15 t Test

A typical goal in an econometric exercise is to assess whether or not coeffi cient β equals a
specific value β0. Often the specific value to be tested is β0 = 0 but this is not essential. This is
called hypothesis testing, a subject which will be explored in detail in Chapter 9. In this section
and the following we give a short introduction specific to the normal regression model.

For simplicity write the coeffi cient to be tested as β. The null hypothesis is

H0 : β = β0. (5.16)

This states that the hypothesis is that the true value of the coeffi cient β equals the hypothesized
value β0.

The alternative hypothesis is the complement of H0, and is written as

H1 : β 6= β0.

This states that the true value of β does not equal the hypothesized value.
We are interested in testing H0 against H1. The method is to design a statistic which is

informative about H1. If the observed value of the statistic is consistent with random variation
under the assumption that H0 is true, then we deduce that there is no evidence against H0 and
consequently do not reject H0. However, if the statistic takes a value which is unlikely to occur
under the assumption that H0 is true, then we deduce that there is evidence against H0, and
consequently we reject H0 in favor of H1. The main steps are to design a test statistic and to
characterize its sampling distribution.

The standard statistic to test H0 against H1 is the absolute value of the t-statistic

|T | =
∣∣∣∣∣ β̂ − β0

s(β̂)

∣∣∣∣∣ . (5.17)

If H0 is true, then we expect |T | to be small, but if H1 is true then we would expect |T | to be large.
Hence the standard rule is to reject H0 in favor of H1 for large values of the t-statistic |T |, and
otherwise fail to reject H0. Thus the hypothesis test takes the form

Reject H0 if |T | > c.

The constant c which appears in the statement of the test is called the critical value. Its value
is selected to control the probability of false rejections. When the null hypothesis is true, |T | has
an exact student t distribution (with n − k degrees of freedom) in the normal regression model.
Thus for a given value of c the probability of false rejection is

P (Reject H0 | H0) = P (|T | > c | H0)

= P (T > c | H0) + P (T < −c | H0)

= 1− F (c) + F (−c)
= 2(1− F (c))

where F (u) is the tn−k distribution function. This is the probability of false rejection, and is
decreasing in the critical value c. We select the value c so that this probability equals a pre-selected
value called the significance level, which is typically written as α. It is conventional to set
α = 0.05, though this is not a hard rule. We then select c so that F (c) = 1−α/2, which means that
c is the 1 − α/2 quantile (inverse CDF) of the tn−k distribution, the same as used for confidence
intervals. With this choice, the decision rule “Reject H0 if |T | > c”has a significance level (false
rejection probability) of α.
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Theorem 5.20 In the normal regression model, if the null hypothesis
(5.16) is true, then for |T | defined in (5.17), |T | ∼ tn−k. If c is set so
that P (|tn−k| ≥ c) = α , then the test “Reject H0 in favor of H1 if |T | > c”
has significance level α.

To report the result of a hypothesis test we need to pre-determine the significance level α in
order to calculate the critical value c. This can be inconvenient and arbitrary. A simplification is
to report what is known as the p-value of the test. In general, when a test takes the form “Reject
H0 if S > c”and S has null distribution G(u), then the p-value of the test is p = 1 − G(S). A
test with significance level α can be restated as “Reject H0 if p < α”. It is suffi cient to report the
p-value p, and we can interpret the value of p as indexing the test’s strength of rejection of the null
hypothesis. Thus a p-value of 0.07 might be interpreted as “nearly significant”, 0.05 as “borderline
significant”, and 0.001 as “highly significant”. In the context of the normal regression model, the
p-value of a t-statistic |T | is p = 2(1 − Fn−k(|T |)) where Fn−k is the CDF of the student t with
n− k degrees of freedom. For example, in MATLAB the calculation is 2*(1-tcdf(abs(t),n-k)).
In Stata, the default is that for any estimated regression, t-statistics for each estimated coeffi cient
are reported along with their p-values calculated using this same formula. These t-statistics test
the hypotheses that each coeffi cient is zero.

A p-value reports the strength of evidence against H0 but is not itself a probability. A common
misunderstanding is that the p-value is the “probability that the null hypothesis is true”. This is
an incorrect interpretation. It is a statistic, and is random, and is a measure of the evidence against
H0, nothing more.

5.16 Likelihood Ratio Test

In the previous section we described the t-test as the standard method to test a hypothesis on
a single coeffi cient in a regression. In many contexts, however, we want to simultaneously assess
a set of coeffi cients. In the normal regression model, this can be done by an F test, which can be
derived from the likelihood ratio test.

Partition the regressors as xi = (x′1i,x
′
2i) and similarly partition the coeffi cient vector as β =

(β′1,β
′
2)′. Then the regression model can be written as

yi = x′1iβ1 + x′2iβ2 + ei. (5.18)

Let k = dim(xi), k1 = dim(x1i), and q = dim(x2i), so that k = k1 + q. Partition the variables so
that the hypothesis is that the second set of coeffi cients are zero, or

H0 : β2 = 0. (5.19)

If H0 is true, then the regressors x2i can be omitted from the regression. In this case we can write
(5.18) as

yi = x′1iβ1 + ei. (5.20)

We call (5.20) the null model. The alternative hypothesis is that at least one element of β2 is
non-zero and is written as

H1 : β2 6= 0.

When models are estimated by maximum likelihood, a well-accepted testing procedure is to
reject H0 in favor of H1 for large values of the Likelihood Ratio — the ratio of the maximized
likelihood function under H1 and H0, respectively. We now construct this statistic in the normal
regression model. Recall from (5.9) that the maximized log-likelihood equals

logL(β̂, σ̂2) = −n
2

log
(
2πσ̂2

)
− n

2
.
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We similarly need to calculate the maximized log-likelihood for the constrained model (5.20). By
the same steps for derivation of the unconstrained MLE, we can find that the MLE for (5.20) is
OLS of yi on x1i. We can write this estimator as

β̃1 =
(
X ′1X1

)−1
X ′1y

with residual
ẽi = yi − x′1iβ̃1

and error variance estimate

σ̃2 =
1

n

n∑
i=1

ẽ2
i .

We use the tildes “~” rather than the hats “^” above the constrained estimates to distinguish
them from the unconstrained estimates. You can calculate similar to (5.9) that the maximized
constrained log-likelihood is

logL(β̃1, σ̃
2) = −n

2
log
(
2πσ̃2

)
− n

2
.

A classic testing procedure is to reject H0 for large values of the ratio of the maximized likeli-
hoods. Equivalently, the test rejects H0 for large values of twice the difference in the log-likelihood
functions. (Multiplying the likelihood difference by two turns out to be a useful scaling.) This
equals

LR = 2
((
−n

2
log
(
2πσ̂2

)
− n

2

)
−
(
−n

2
log
(
2πσ̃2

)
− n

2

))
= n log

(
σ̃2

σ̂2

)
. (5.21)

The likelihood ratio test rejects for large values of LR, or equivalently (see Exercise 5.22), for large
values of

F =

(
σ̃2 − σ̂2

)
/q

σ̂2/(n− k)
. (5.22)

This is known as the F statistic for the test of hypothesis H0 against H1.
To develop an appropriate critical value, we need the null distribution of F . Recall from

(3.29) that nσ̂2 = e′Me where M = In − P with P = X (X ′X)
−1
X ′. Similarly, under H0,

nσ̃2 = e′M1e where M = In − P 1 with P 1 = X1 (X ′1X1)
−1
X ′1. You can calculate that

M1 −M = P − P 1 is idempotent with rank q. Furthermore, (M1 −M)M = 0. It follows
that e′ (M1 −M) e ∼ χ2

q and is independent of e
′Me. Hence

F =
e′ (M1 −M) e/q

e′Me/(n− k)
∼

χ2
q/q

χ2
n−k/(n− k)

∼ Fq,n−k

an exact F distribution with degrees of freedom q and n − k, respectively. Thus under H0, the F
statistic has an exact F distribution.

The critical values are selected from the upper tail of the F distribution. For a given significance
level α (typically α = 0.05) we select the critical value c so that P (Fq,n−k ≥ c) = α. (For example,
in MATLAB the expression is finv(1-α,q,n-k).) The test rejects H0 in favor of H1 if F > c and
does not reject H0 otherwise. The p-value of the test is p = 1−Gq,n−k (F ) where Gq,n−k (u) is the
Fq,n−k distribution function. (In MATLAB, the p-value is computed as 1-fcdf(f,q,n-k).) It is
equivalent to reject H0 if F > c or p < α.

In Stata, the command to test multiple coeffi cients takes the form ‘test X1 X2’where X1 and
X2 are the names of the variables whose coeffi cients are tested. Stata then reports the F statistic
for the hypothesis that the coeffi cients are jointly zero along with the p-value calculated using the
F distribution.
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Theorem 5.21 In the normal regression model, if the null hypothesis
(5.19) is true, then for F defined in (5.22), F ∼ Fq,n−k. If c is set so
that P (Fq,n−k ≥ c) = α , then the test “Reject H0 in favor of H1 if F > c”
has significance level α.

Theorem 5.21 justifies the F test in the normal regression model with critical values taken from
the F distribution.

5.17 Likelihood Properties

In this section we present some general properties of the likelihood which hold broadly —not
just in normal regression.

Suppose that a random vector y has the conditional density f (y | x,θ) where the function f
is known, and the parameter vector θ takes values in a parameter space Θ. The log-likelihood
function for a random sample {yi | xi : i = 1, ..., n} takes the form

logL(θ) =
n∑
i=1

log f (yi | xi,θ) .

A key property is that the expected log-likelihood is maximized at the true value of the parame-
ter vector. At this point it is useful to make a notational distinction between a generic parameter
value θ and its true value θ0. Set X = (x1, ...,xn).

Theorem 5.22 θ0 = argmaxθ∈Θ E (logL(θ) |X)

The proof is presented in Section 5.20.
This motivates estimating θ by finding the value which maximizes the log-likelihood function.

This is the maximum likelihood estimator (MLE):

θ̂ = argmax
θ∈Θ

logL(θ).

The score of the likelihood function is the vector of partial derivatives with respect to the
parameters, evaluated at the true values,

∂

∂θ
logL(θ)

∣∣∣∣
θ=θ0

=
n∑
i=1

∂

∂θ
log f (yi | xi,θ)

∣∣∣∣
θ=θ0

.

The covariance matrix of the score is known as the Fisher information:

I = var

(
∂

∂θ
logL(θ0) |X

)
.

Some important properties of the score and information are now presented.
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Theorem 5.23 If log f (y | x,θ) is second differentiable and the support
of y does not depend on θ then

1. E
(

∂
∂θ logL(θ)

∣∣
θ=θ0

|X
)

= 0

2. I =
n∑
i=1
E
(
∂
∂θ log f (yi | xi,θ0) ∂

∂θ log f (yi | xi,θ0)′ | xi
)

= −E
(

∂2

∂θ∂θ′
logL(θ0) |X

)

The proof is presented in Section 5.20.
The first result says that the score is mean zero. The second result shows that the variance of

the score equals the negative expectation of the second derivative matrix. This is known as the
Information Matrix Equality.

We now establish the famous Cramér-Rao Lower Bound.

Theorem 5.24 (Cramér-Rao) Under the assumptions of Theorem 5.23, if

θ̃ is an unbiased estimator of θ, then var
(
θ̃ |X

)
≥ I−1.

The proof is presented in Section 5.20.
Theorem 5.24 shows that the inverse of the information matrix is a lower bound for the covari-

ance matrix of unbiased estimators. This result is similar to the Gauss-Markov Theorem which
established a lower bound for unbiased estimators in homoskedastic linear regression.

Sir Ronald A. Fisher

The British statistician Ronald Fisher (1890-1962) is one of the core founders
of modern statistical theory. His contributions include p-values, the concept
of Fisher information, and that of suffi cient statistics.

5.18 Information Bound for Normal Regression

Recall the normal regression log-likelihood which has the parameters β and σ2. The likelihood
scores for this model are

∂

∂β
logL(β, σ2) =

1

σ2

n∑
i=1

xi
(
yi − x′iβ

)
=

1

σ2

n∑
i=1

xiei
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and

∂

∂σ2
logL(β, σ2) = − n

2σ2
+

1

2σ4

n∑
i=1

(
yi − x′iβ

)2
=

1

2σ4

n∑
i=1

(
e2
i − σ2

)
.

It follows that the information matrix is

I = var

( ∂
∂β logL(β, σ2)
∂
∂σ2

logL(β, σ2)
|X
)

=

(
1
σ2
X ′X 0
0 n

2σ4

)
(5.23)

(see Exercise 5.23). The Cramér-Rao Lower Bound is

I−1 =

(
σ2 (X ′X)

−1
0

0 2σ4

n

)
.

This shows that the lower bound for estimation of β is σ2 (X ′X)
−1 and the lower bound for σ2 is

2σ4/n.
Since in the homoskedastic linear regression model the OLS estimator is unbiased and has

variance σ2 (X ′X)
−1, it follows that OLS is Cramér-Rao effi cient in the normal regression model,

in the sense that no unbiased estimator has a lower variance matrix. This expands on the Gauss-
Markov theorem, which stated that no linear unbiased estimator has a lower variance matrix in the
homoskedastic regression model. Notice that that the results are complementary. Gauss-Markov
effi ciency concerns a more narrow class of estimators (linear) but allows a broader model class
(linear homoskedastic rather than normal regression). The Cramér-Rao effi ciency result is more
powerful in that it does not restrict the class of estimators (beyond unbiasedness) but is more
restrictive in the class of models allowed (normal regression).

In contrast, the unbiased estimator s2 of σ2 has variance 2σ4/(n− k) (see Exercise 5.24) which
is larger than the Cramér-Rao lower bound 2σ4/n. Thus in contrast to the coeffi cient estimator,
the variance estimator is not Cramér-Rao effi cient.

5.19 Gamma Function*

The normal and related distributions make frequent use of the what is known as the gamma
function. For α > 0 it is defined as

Γ(α) =

∫ ∞
0

xα−1 exp (−x) dx. (5.24)

While it appears quite simple, it has some advanced properties. One is that Γ(α) does not have
a close-form solution (except for special values of α). Thus it is typically represented using the
symbol Γ(α) and implemented computationally using numerical methods.

Special values include

Γ (1) =

∫ ∞
0

exp (−x) dx = 1 (5.25)

and

Γ

(
1

2

)
=
√
π.

The latter holds by making the change of variables x = u2/2 in (5.24) and applying (5.1).
By integration by parts you can show that it satisfies the property

Γ(1 + α) = Γ(α)α.
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Combined with (5.25) we find that for positive integers n,

Γ(n) = (n− 1)!

This shows that the gamma function is a continuous version of the factorial.
A useful fact is ∫ ∞

0
ya−1 exp (−by) dy = b−aΓ(a) (5.26)

which can be found by applying change-of-variables to the definition (5.24).
Another useful fact is for for α ∈ R

lim
n→∞

Γ (n+ α)

Γ (n)nα
= 1. (5.27)

5.20 Technical Proofs*

Proof of Theorem 5.1. Squaring expression (5.1)(∫ ∞
0

exp
(
−x2/2

)
dx

)2

=

∫ ∞
0

exp
(
−x2/2

)
dx

∫ ∞
0

exp
(
−u2/2

)
du

=

∫ ∞
0

∫ ∞
0

exp
(
−
(
x2 + u2

)
/2
)
dxdu

=

∫ ∞
0

∫ π/2

0
r exp

(
−r2/2

)
dθdr

=
π

2

∫ ∞
0

r exp
(
−r2/2

)
dr

=
π

2
.

The third equality is the key. It makes the change-of-variables to polar coordinates x = r cos θ and
u = r sin θ so that x2 +u2 = r2. The Jacobian of this transformation is r. The region of integration
in the (x, u) units is the positive orthont (upper-right region), which corresponds to integrating θ
from 0 to π/2 in polar coordinates. The final two equalities are simple integration. Taking the
square root we obtain (5.1). �

Proof of Theorem 5.3. Let Mx(t) = exp
(
t′µ+ 1

2t
′Σt
)
be the moment generating function of X

by Theorem 5.2. Then the MGF of Y is

E
(
exp

(
s′Y

))
= E exp

(
s′ (a+BX)

)
= exp

(
s′a
)
E exp

(
s′BX

)
= exp

(
s′a
)
Mx(B′s)

= exp
(
s′a
)

exp

(
s′Bµ+

1

2
s′BΣB′s

)
= exp

(
s′ (a+Bµ) +

1

2
s′
(
BΣB′

)
s

)
which is the MGF of N (a+Bµ,BΣB′). Thus Y ∼ N (a+Bµ,BΣB′) as claimed. �

Proof of Theorem 5.4. Let k1 and k2 denote the dimensions of X1 and X2 and set k = k1 + k2.
If the components are uncorrelated then the covariance matrix for X takes the form

Σ =

[
Σ1 0
0 Σ2

]
.
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In this case the joint density function of X equals

f(x1,x2) =
1

(2π)k/2 (det (Σ1) det (Σ2))1/2

· exp

(
−(x1 − µ1)′Σ−1

1 (x1 − µ1) + (x2 − µ2)′Σ−1
2 (x2 − µ2)

2

)
=

1

(2π)k1/2 (det (Σ1))1/2
exp

(
−(x1 − µ1)′Σ−1

1 (x1 − µ1)

2

)
· 1

(2π)k2/2 (det (Σ2))1/2
exp

(
−(x2 − µ2)′Σ−1

2 (x2 − µ2)

2

)
.

This is the product of two multivariate normal densities in x1 and x2. Joint densities factor if (and
only if) the components are independent. This shows that uncorrelatedness implies independence.

The converse (that independence implies uncorrelatedness) holds generally. �

Proof of Theorem 5.5. We demonstrate that Q = X ′X has density function (5.2) by verifying
that both have the same moment generating function (MGF). First, the MGF of X ′X is

E
(
exp

(
tX ′X

))
=

∫
Rr

exp
(
tx′x

) 1

(2π)r/2
exp

(
−x
′x

2

)
dx

=

∫
Rr

1

(2π)r/2
exp

(
−x
′x

2
(1− 2t)

)
dx

= (1− 2t)−r/2
∫
Rr

1

(2π)k/2
exp

(
−u

′u

2

)
du

= (1− 2t)−r/2 . (5.28)

The fourth equality uses the change of variables u = (1− 2t)1/2 x and the final equality is the
normal probability integral. Second, the MGF of the density (5.2) is

∫ ∞
0

exp (tq) f(q)dq =

∫ ∞
0

exp (tq)
1

Γ
(
r
2

)
2r/2

qr/2−1 exp (−q/2) dq

=

∫ ∞
0

1

Γ
(
r
2

)
2r/2

qr/2−1 exp (−q (1/2− t)) dq

=
1

Γ
(
r
2

)
2r/2

(1/2− t)−r/2 Γ
(r

2

)
= (1− 2t)−r/2 , (5.29)

the third equality using the gamma integral (5.26). The MGFs (5.28) and (5.29) are equal, verifying
that (5.2) is the density of Q as claimed. �
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Proof of Theorem 5.6. Using the simple law of iterated expectations, T has density

f (x) =
d

dx
P

(
Z√
Q/r

≤ x
)

=
d

dx
E

{
Z ≤ x

√
Q

r

}

=
d

dx
E

[
P

(
Z ≤ x

√
Q

r
| Q
)]

= E
d

dx
Φ

(
x

√
Q

r

)

= E

(
φ

(
x

√
Q

r

)√
Q

r

)

=

∫ ∞
0

(
1√
2π

exp

(
−qx

2

2r

))√
q

r

(
1

Γ
(
r
2

)
2r/2

qr/2−1 exp (−q/2)

)
dq

=
Γ
(
r+1

2

)
√
rπΓ

(
r
2

) (1 +
x2

r

)−( r+12 )

using the gamma integral (5.26). �

Proof of Theorem 5.7. Notice that for large r, by the properties of the logarithm

log

((
1 +

x2

r

)−( r+12 )
)

= −
(
r + 1

2

)
log

(
1 +

x2

r

)
' −

(
r + 1

2

)
x2

r
→ −x

2

2
,

the limit as r →∞, and thus

lim
r→∞

(
1 +

x2

r

)−( r+12 )
= exp

(
−x

2

2

)
. (5.30)

Using a property of the gamma function (5.27)

lim
n→∞

Γ (n+ α)

Γ (n)nα
= 1

with n = r/2 and α = 1/2 we find

lim
r→∞

Γ
(
r+1

2

)
√
rπΓ

(
r
2

) (1 +
x2

r

)−( r+12 )
=

1√
2π

exp

(
−x

2

2

)
= φ(x).

�

Proof of Theorem 5.8. Let U ∼ χ2
m and V ∼ χ2

r be independent and set S = U/V . Let fm(u) be
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the χ2
m density. By a similar argument as in the proof of Theorem 5.6, S has the density function

fS(s) = E (fm (sV )V )

=

∫ ∞
0

fm(sv)vfr(v)dv

=
1

2(m+r)/2Γ
(
m
2

)
Γ
(
r
2

) ∫ ∞
0

(sv)m/2−1 e−sv/2vr/2e−v/2dv

=
sm/2−1

2(m+r)/2Γ
(
m
2

)
Γ
(
r
2

) ∫ ∞
0

v(m+r)/2−1e−(s+1)v/2dv

=
sm/2−1

Γ
(
m
2

)
Γ
(
r
2

)
(1 + s)(m+r)/2

∫ ∞
0

t(m+r)/2−1e−tdt

=
sm/2−1Γ

(
m+r

2

)
Γ
(
m
2

)
Γ
(
r
2

)
(1 + s)(m+r)/2

.

The fifth equality make the change-of variables v = 2t/(1 + s), and the sixth uses the definition of
the Gamma function Γ(x) =

∫∞
0 tx−1e−tdt. Making the change-of-variables x = sr/m, we obtain

the density as stated. �

Proof of Theorem 5.9. Applying change-of-variables to the density in Theorem 5.8, the density
of mF is

xm/2−1Γ
(
m+r

2

)
rm/2Γ

(
m
2

)
Γ
(
r
2

) (
1 + x

r

)(m+r)/2
. (5.31)

Using (5.27) with n = r/2 and α = m/2 we have

lim
r→∞

Γ
(
m+r

2

)
rm/2Γ

(
r
2

) = 2−m/2

and similarly to (5.30) we have

lim
r→∞

(
1 +

x

r

)−(m+r2 )
= exp

(
−x

2

)
.

Together, (5.31) tends to
xm/2−1 exp

(
−x

2

)
2m/2Γ

(
m
2

)
which is the χ2

m density. �

Proof of Theorem 5.10. As in the proof of Theorem 5.5 we verify that the MGF of Q = X ′X
when X ∼ N (µ, Ir) is equal to the MGF of the density function (5.3).

First, we calculate the MGF of Q = X ′X when X ∼ N (µ, Ir). Construct an orthogonal r × r
matrix H = [h1,H2] whose first column equals h1 = µ (µ′µ)−1/2 . Note that h′1µ = λ1/2 and
H ′2µ = 0. Define Z = H ′X ∼ N(µ∗, Iq) where

µ∗ = H ′µ =

(
h′1µ
H ′2µ

)
=

(
λ1/2

0

)
1

r − 1
.

It follows that Q = X ′X = Z ′Z = Z2
1 + Z ′2Z2 where Z1 ∼ N

(
λ1/2, 1

)
and Z2 ∼ N (0, Ir−1) are
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independent. Notice that Z ′2Z2 ∼ χ2
r−1 so has MGF (1− 2t)−(r−1)/2 by (5.29). The MGF of Z2

1 is

E
(
exp

(
tZ2

1

))
=

∫ ∞
−∞

exp
(
tx2
) 1√

2π
exp

(
−1

2

(
x−
√
λ
)2
)
dx

=

∫ ∞
−∞

1√
2π

exp

(
−1

2

(
x2 (1− 2t)− 2x

√
λ+ λ

))
dx

= (1− 2t)−1/2 exp

(
−λ

2

)∫ ∞
−∞

1√
2π

exp

(
−1

2

(
u2 − 2u

√
λ

1− 2t

))
du

= (1− 2t)−1/2 exp

(
− λt

1− 2t

)∫ ∞
−∞

1√
2π

exp

−1

2

(
u−

√
λ

1− 2t

)2
 du

= (1− 2t)−1/2 exp

(
− λt

1− 2t

)
where the third equality uses the change of variables u = (1− 2t)1/2 x. Thus the MGF of Q =
Z2

1 +Z ′2Z2 is

E (exp (tQ)) = E
(
exp

(
t
(
Z2

1 +Z ′2Z2

)))
= E

(
exp

(
tZ2

1

))
E
(
exp

(
tZ ′2Z2

))
= (1− 2t)−r/2 exp

(
− λt

1− 2t

)
. (5.32)

Second, we calculate the MGF of (5.3). It equals∫ ∞
0

exp (tx)

∞∑
i=0

e−λ/2

i!

(
λ

2

)i
fr+2i(x)dx

=

∞∑
i=0

e−λ/2

i!

(
λ

2

)i ∫ ∞
0

exp (tx) fr+2i(x)dx

=

∞∑
i=0

e−λ/2

i!

(
λ

2

)i
(1− 2t)−(r+2i)/2

= e−λ/2 (1− 2t)−r/2
∞∑
i=0

1

i!

(
λ

2 (1− 2t)

)i
= e−λ/2 (1− 2t)−r/2 exp

(
λ

2 (1− 2t)

)
= (1− 2t)−r/2 exp

(
λt

1− 2t

)
(5.33)

where the second equality uses (5.29), and the fourth uses exp(x) =
∑∞

i=0
ai

i! . We can see that
(5.32) equals (5.33), verifying that (5.3) is the density of Q as stated. �

Proof of Theorem 5.11. The fact that A > 0 means that we can write A = CC ′ where C is
non-singular (see Section A.10). Then A−1 = C−1′C−1 and by Theorem 5.3

C−1X ∼ N
(
C−1µ,C−1AC−1′) = N

(
C−1µ,C−1CC ′C−1′) = N (µ∗, Ir)

where µ∗ = C−1µ. Thus by the definition of the non-central chi-square

X ′A−1X = X ′C−1′C−1X =
(
C−1X

)′ (
C−1X

)
∼ χ2

r

(
µ∗′µ∗

)
.
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Since
µ∗′µ∗ = µ′C−1′C−1µ = µ′A−1µ = λ,

this equals χ2
r (λ) as claimed. �

Proof of Theorem 5.22. Since log(u) is concave we apply Jensen’s inequality (B.24), take expec-
tations are with respect to the true density f (y | x,θ0), and note that the density f (yi | xi,θ),
integrates to 1 for any θ ∈ Θ, to find that

E
(

log
L(θ)

L(θ0)
|X
)
≤ logE

(
L(θ)

L(θ0)
|X
)

= log

∫
· · ·
∫ 

n∏
i=1

f (yi | xi,θ)

n∏
i=1

f (yi | xi,θ0)

 n∏
i=1

f (yi | xi,θ0) dy1 · · · dyn

= log

∫
· · ·
∫ n∏

i=1

f (yi | xi,θ) dy1 · · · dyn

= log 1

= 0.

This implies for any θ ∈ Θ, E (logL(θ)) ≤ E (logL(θ0)). Hence θ0 maximizes E (logL(θ)) as
claimed. �

Proof of Theorem 5.23. For part 1, since the support of y does not depend on θ we can exchange
integration and differentiation:

E

(
∂

∂θ
logL(θ)

∣∣∣∣
θ=θ0

|X
)

=
∂

∂θ
E
(

logL(θ)|θ=θ0
|X
)
.

Theorem 5.22 showed that E (logL(θ)) is maximized at θ0, which has the first-order condition

∂

∂θ
E
(

logL(θ)|θ=θ0
|X
)

= 0

as needed.
For part 2, using part 1 and the fact the observations are independent

I = var

(
∂

∂θ
logL(θ0) |X

)
= E

((
∂

∂θ
logL(θ0)

)(
∂

∂θ
logL(θ0)

)′
|X
)

=
n∑
i=1

E
((

∂

∂θ
log f (yi | xi,θ0)

)(
∂

∂θ
log f (yi | xi,θ0)

)′
| xi
)

which is the first equality.
For the second, observe that

∂

∂θ
log f (y | x,θ) =

∂
∂θf (y | x,θ)

f (y | x,θ)

and

∂2

∂θ∂θ′
log f (y | x,θ) =

∂2

∂θ∂θ′
f (y | x,θ)

f (y | x,θ)
−

∂
∂θf (y | x,θ) ∂

∂θf (y | x,θ)′

f (y | x,θ)2

=
∂2

∂θ∂θ′
f (y | x,θ)

f (y | x,θ)
− ∂

∂θ
log f (y | x,θ)

∂

∂θ
log f (y | x,θ)′ .
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It follows that

I =
n∑
i=1

E
((

∂

∂θ
log f (yi | xi,θ0)

)(
∂

∂θ
log f (yi | xi,θ0)

)′
| xi
)

= −
n∑
i=1

E
(

∂2

∂θ∂θ′
f (yi | xi,θ0) | xi

)
+

n∑
i=1

E

(
∂2

∂θ∂θ′
f (yi | xi,θ0)

f (yi | xi,θ0)
| xi

)
.

However, by exchanging integration and differentiation we can check that the second term is zero:

E

(
∂2

∂θ∂θ′
f (yi | xi,θ0)

f (yi | xi,θ0)
| xi

)
=

∫  ∂2

∂θ∂θ′
f (y | xi,θ0)

∣∣∣
θ=θ0

f (y | xi,θ0)

 f (y|θ0) dy

=

∫
∂2

∂θ∂θ′
f (y | xi,θ0)

∣∣∣∣
θ=θ0

dy

=
∂2

∂θ∂θ′

∫
f (y | xi,θ0) dy|θ=θ0

=
∂2

∂θ∂θ′
1

= 0

This establishes the second inequality. �

Proof of Theorem 5.24 Let Y = (y1, ...,yn) be the sample, let f (Y ,θ) =
n∏
i=1

f (yi,θ) denote

the joint density of the sample, and note logL(θ) = log f (Y ,θ). Set

S =
∂

∂θ
logL(θ0)

which by Theorem (5.23) has mean zero and variance I conditional on X. Write the estimator
θ̃ = θ̃ (Y ) as a function of the data. Since θ̃ is unbiased, for any θ,

θ = E
(
θ̃ |X

)
=

∫
θ̃ (Y ) f (Y ,θ) dY .

Differentiating with respect to θ

In =

∫
θ̃ (Y )

∂

∂θ′
f (Y ,θ) dY

=

∫
θ̃ (Y )

∂

∂θ′
log f (Y ,θ) f (Y ,θ) dY .

Evaluating at θ0 yields

In = E
(
θ̃S′ |X

)
= E

((
θ̃ − θ0

)
S′ |X

)
(5.34)

the second equality since E (S |X) = 0.
By the matrix Cauchy-Schwarz inequality (B.30), (5.34), and var (S |X) = E (SS′ |X) = I,

var
(
θ̃ |X

)
= E

((
θ̃ − θ0

)(
θ̃ − θ0

)′
|X
)

≥ E
((
θ̃ − θ0

)
S′ |X

) (
E
(
SS′ |X

))−1 E
(
S
(
θ̃ − θ0

)′
|X
)

=
(
E
(
SS′ |X

))−1

= I−1

as stated. �
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Exercises

Exercise 5.1 For the standard normal density φ(x), show that φ′(x) = −xφ(x).

Exercise 5.2 Use the result in Exercise 5.1 and integration by parts to show that for X ∼ N (0, 1),
EX2 = 1.

Exercise 5.3 Use the results in Exercises 5.1 and 5.2, plus integration by parts, to show that for
X ∼ N (0, 1), EX4 = 3.

Exercise 5.4 Show that the moment generating function (mgf) ofX ∼ N (0, 1) ism(t) = E (exp (tX)) =
exp

(
t2/2

)
. (For the definition of the mgf see Section 2.32).

Exercise 5.5 Show that the moment generating function (mgf) of X ∼ N
(
µ, σ2

)
is m(t) =

E (exp (tX)) = exp
(
tµ+ t2σ2/2

)
.

Hint: Write X = µ+ σZ where Z ∼ N (0, 1).

Exercise 5.6 Use the mgf from Exercise 5.4 to verify that for X ∼ N (0, 1), E
(
X2
)

= m′′(0) = 1

and E
(
X4
)

= m(4)(0) = 3.

Exercise 5.7 Write the multivariate N (0, Ik) density as the product of N (0, 1) density functions.
That is, show that

1

(2π)k/2
exp

(
−x
′x

2

)
= φ(x1) · · ·φ(xk).

Exercise 5.8 Show that the mgf of X ∼ N (0, Ik) is E (exp (t′X)) = exp
(

1
2t
′t
)
.

Hint: Use Exercise 5.4 and the fact that the elements of X are independent.

Exercise 5.9 Show that the mgf of X ∼ N (µ,Σ) is

M(t) = E
(
exp

(
t′X

))
= exp

(
t′µ+

1

2
t′Σt

)
.

Hint: Write X = µ+ Σ1/2Z where Z ∼ N (0, Ik).

Exercise 5.10 Show that the characteristic function of X ∼ N (µ,Σ) is

C(t) = E
(
exp

(
it′X

))
= exp

(
iµ′λ− 1

2
t′Σt

)
.

For the definition of the characteristic function see Section 2.32.
Hint: For X ∼ N (0, 1), establish E (exp (itX)) = exp

(
−1

2 t
2
)
by integration. Then generalize

to X ∼ N (µ,Σ) using the same steps as in Exercises 5.8 and 5.9.

Exercise 5.11 Show that if Q ∼ χ2
r , then E (Q) = r and var (Q) = 2r.

Hint: Use the representation Q =
∑n

i=1X
2
i with Xi independent N (0, 1) .

Exercise 5.12 Show that if Q ∼ χ2
k(λ), then E (Q) = k + λ.

Exercise 5.13 Suppose Xi are independent N
(
µi, σ

2
i

)
. Find the distribution of the weighted sum∑n

i=1wiXi.

Exercise 5.14 Show that if e ∼ N
(
0, Inσ

2
)
and H ′H = In then u = H ′e ∼ N

(
0, Inσ

2
)
.

Exercise 5.15 Show that if e ∼ N (0,Σ) and Σ = AA′ then u = A−1e ∼ N (0, In) .
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Exercise 5.16 Show that θ̂ = argmaxθ∈Θ logL(θ) = argmaxθ∈Θ L(θ).

Exercise 5.17 For the regression in-sample predicted values ŷi show that ŷi|X ∼ N
(
x′iβ, σ

2hii
)

where hii are the leverage values (3.41).

Exercise 5.18 In the normal regression model, show that the leave-one out prediction errors ẽi
and the standardized residuals ēi are independent of β̂ , conditional on X.

Hint: Use (3.46) and (4.24).

Exercise 5.19 In the normal regression model, show that the robust covariance matrices V̂
HC0

β̂ ,

V̂
HC1

β̂ , V̂
HC2

β̂ , and V̂
HC3

β̂ are independent of the OLS estimator β̂, conditional on X.

Exercise 5.20 Let F (u) be the distribution function of a random variable X whose density is
symmetric about zero. (This includes the standard normal and the student t.) Show that F (−u) =
1− F (u).

Exercise 5.21 Let Cβ = [L,U ] be a 1−α confidence interval for β, and consider the transformation
θ = g(β) where g(·) is monotonically increasing. Consider the confidence interval Cθ = [g(L), g(U)]
for θ. Show that P (θ ∈ Cθ) = P (β ∈ Cβ) . Use this result to develop a confidence interval for σ.

Exercise 5.22 Show that the test “Reject H0 if LR ≥ c1”for LR defined in (5.21), and the test
“Reject H0 if F ≥ c2”for F defined in (5.22), yield the same decisions if c2 = (exp(c1/n)− 1) (n−
k)/q. Why does this mean that the two tests are equivalent?

Exercise 5.23 Show (5.23).

Exercise 5.24 In the normal regression model, let s2 be the unbiased estimator of the error vari-
ance σ2 from (4.26).

(a) Show that var
(
s2
)

= 2σ4/(n− k).

(b) Show that var
(
s2
)
is strictly larger than the Cramér-Rao Lower Bound for σ2.
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Chapter 6

An Introduction to Large Sample
Asymptotics

6.1 Introduction

For inference (confidence intervals and hypothesis testing) on unknown parameters we need
sampling distributions, either exact or approximate, of estimates and other statistics.

In Chapter 4 we derived the mean and variance of the least-squares estimator in the context of
the linear regression model, but this is not a complete description of the sampling distribution and
is thus not suffi cient for inference. Furthermore, the theory does not apply in the context of the
linear projection model, which is more relevant for empirical applications.

In Chapter 5 we derived the exact sampling distribution of the OLS estimator, t-statistics,
and F-statistics for the normal regression model, allowing for inference. But these results are
narrowly confined to the normal regression model, which requires the unrealistic assumption that
the regression error is normally distributed and independent of the regressors. Perhaps we can
view these results as some sort of approximation to the sampling distributions without requiring
the assumption of normality, but how can we be precise about this?

To illustrate the situation with an example, let yi and xi be drawn from the joint density

f(x, y) =
1

2πxy
exp

(
−1

2
(log y − log x)2

)
exp

(
−1

2
(log x)2

)
and let β̂ be the slope coeffi cient estimate from a least-squares regression of yi on xi and a constant.
Using simulation methods, the density function of β̂ was computed and plotted in Figure 6.1 for
sample sizes of n = 25, n = 100 and n = 800. The vertical line marks the true projection coeffi cient.

From the figure we can see that the density functions are dispersed and highly non-normal. As
the sample size increases the density becomes more concentrated about the population coeffi cient.
Is there a simple way to characterize the sampling distribution of β̂?

In principle the sampling distribution of β̂ is a function of the joint distribution of (yi, xi)
and the sample size n, but in practice this function is extremely complicated so it is not feasible to
analytically calculate the exact distribution of β̂ except in very special cases. Therefore we typically
rely on approximation methods.

In this chapter we introduce asymptotic theory, which approximates by taking the limit of the
finite sample distribution as the sample size n tends to infinity. It is important to understand that
this is an approximation technique, as the asymptotic distributions are used to assess the finite
sample distributions of our estimators in actual practical samples. The primary tools of asymptotic
theory are the weak law of large numbers (WLLN), central limit theorem (CLT), and continuous
mapping theorem (CMT). With these tools we can approximate the sampling distributions of most
econometric estimators.
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Figure 6.1: Sampling Density of β̂

In this chapter we provide a concise summary. Some of the material is quite advanced, and
provided for a complete reference.

6.2 Asymptotic Limits

“Asymptotic analysis”is a method of approximation obtained by taking a suitable limit. There
is more than one method to take limits, but the most common is to take the limit of the sequence
of sampling distributions as the sample size tends to positive infinity, written “as n → ∞.” It is
not meant to be interpreted literally, but rather as an approximating device.

The first building block for asymptotic analysis is the concept of a limit of a sequence.

Definition 6.1 A sequence an has the limit a, written an −→ a as n →
∞, or alternatively as limn→∞ an = a, if for all δ > 0 there is some nδ <∞
such that for all n ≥ nδ, |an − a| ≤ δ.

In words, an has the limit a if the sequence gets closer and closer to a as n gets larger. If a
sequence has a limit, that limit is unique (a sequence cannot have two distinct limits). If an has
the limit a, we also say that an converges to a as n→∞.

Not all sequences have limits. For example, the sequence {1, 2, 1, 2, 1, 2, ...} does not have a
limit. It is sometimes useful to have a more general definition of limits which always exist, and
these are the limit superior and limit inferior of a sequence.
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Definition 6.2 lim infn→∞ an
def
= limn→∞ infm≥n am

Definition 6.3 lim supn→∞ an
def
= limn→∞ supm≥n am

The limit inferior and limit superior always exist (including ±∞ as possibilities), and equal
when the limit exists. In the example given earlier, the limit inferior of {1, 2, 1, 2, 1, 2, ...} is 1, and
the limit superior is 2.

6.3 Convergence in Probability

A sequence of numbers may converge to a limit, but what about a sequence of random variables?
For example, consider a sample mean y = n−1

∑n
i=1 yi based on an random sample of n observations.

As n increases, the distribution of y changes. In what sense can we describe the “limit”of y? In
what sense does it converge?

Since y is a random variable, we cannot directly apply the deterministic concept of a sequence of
numbers. Instead, we require a definition of convergence which is appropriate for random variables.
There are more than one such definition, but the most commonly used is called convergence in
probability.

Definition 6.4 A random variable zn ∈ R converges in probability to
z as n → ∞, denoted zn

p−→ z, or alternatively plimn→∞ zn = z, if for all
δ > 0,

lim
n→∞

P (|zn − z| ≤ δ) = 1. (6.1)

We call z the probability limit (or plim) of zn.

The definition looks quite abstract, but it formalizes the concept of a sequence of random
variables concentrating about a point. The event {|zn − z| ≤ δ} occurs when zn is within δ of
the point z. P (|zn − z| ≤ δ) is the probability of this event — that zn is within δ of the point
z. Equation (6.1) states that this probability approaches 1 as the sample size n increases. The
definition of convergence in probability requires that this holds for any δ. So for any small interval
about z the distribution of zn concentrates within this interval for large n.

You may notice that the definition concerns the distribution of the random variables zn, not
their realizations. Furthermore, notice that the definition uses the concept of a conventional (deter-
ministic) limit, but the latter is applied to a sequence of probabilities, not directly to the random
variables zn or their realizations.

Two comments about the notation are worth mentioning. First, it is conventional to write the
convergence symbol as

p−→ where the “p”above the arrow indicates that the convergence is “in
probability”. You should try and adhere to this notation, and not simply write zn −→ z. Second,
it is important to include the phrase “as n→∞”to be specific about how the limit is obtained.

A common mistake is to confuse convergence in probability with convergence in expectation:

E (zn) −→ E (z) . (6.2)

They are related but distinct concepts. Neither (6.1) nor (6.2) implies the other.
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To see the distinction it might be helpful to think through a stylized example. Consider a
discrete random variable zn which takes the value 0 with probability 1− n−1 and the value an 6= 0
with probability n−1, or

P (zn = 0) = 1− 1

n
(6.3)

P (zn = an) =
1

n
.

In this example the probability distribution of zn concentrates at zero as n increases, regardless of
the sequence an. You can check that zn

p−→ 0 as n→∞.
In this example we can also calculate that the expectation of zn is

E (zn) =
an
n
.

Despite the fact that zn converges in probability to zero, its expectation will not decrease to zero
unless an/n → 0. If an diverges to infinity at a rate equal to n (or faster) then E (zn) will not
converge to zero. For example, if an = n, then E (zn) = 1 for all n, even though zn

p−→ 0.
This example might seem a bit artificial, but the point is that the concepts of convergence in

probability and convergence in expectation are distinct, so it is important not to confuse one with
the other.

Another common source of confusion with the notation surrounding probability limits is that
the expression to the right of the arrow “

p−→”must be free of dependence on the sample size n.
Thus expressions of the form “zn

p−→ cn”are notationally meaningless and should not be used.

6.4 Weak Law of Large Numbers

In large samples we expect parameter estimates to be close to the population values. For
example, in Section 4.3 we saw that the sample mean y is unbiased for µ = E (y) and has variance
σ2/n. As n gets large its variance decreases and thus the distribution of y concentrates about the
population mean µ. It turns out that this implies that the sample mean converges in probability
to the population mean.

When y has a finite variance there is a fairly straightforward proof by applying Chebyshev’s
inequality.

Theorem 6.1 Chebyshev’s Inequality. For any random variable zn
and constant δ > 0

P (|zn − E (zn)| ≥ δ) ≤ var(zn)

δ2
.

Chebyshev’s inequality is terrifically important in asymptotic theory. While its proof is a
technical exercise in probability theory, it is quite simple so we discuss it forthwith. Let Fn(u)
denote the distribution of zn − E (zn) . Then

P (|zn − E (zn)| ≥ δ) = P
(

(zn − E (zn))2 ≥ δ2
)

=

∫
{u2≥δ2}

dFn(u).

The integral is over the event
{
u2 ≥ δ2

}
, so that the inequality 1 ≤ u2

δ2
holds throughout. Thus∫

{u2≥δ2}
dFn(u) ≤

∫
{u2≥δ2}

u2

δ2
dFn(u) ≤

∫
u2

δ2
dFn(u) =

E (zn − E (zn))2

δ2
=

var(zn)

δ2
,
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which establishes the desired inequality.
Applied to the sample mean y which has variance σ2/n , Chebyshev’s inequality shows that for

any δ > 0

P (|y − E (y)| ≥ δ) ≤ σ2/n

δ2
.

For fixed σ2 and δ, the bound on the right-hand-side shrinks to zero as n→∞. (Specifically, for any
ε > 0 set n ≥ σ2/

(
δ2ε
)
. Then the right-hand-side is less than or equal to ε.) Thus the probability

that y is within δ of E (y) = µ approaches 1 as n gets large, or

lim
n→∞

P (|y − µ| < δ) = 1.

This means that y converges in probability to µ as n→∞.
This result is called the weak law of large numbers. Our derivation assumed that y has a

finite variance, but with a more careful derivation all that is necessary is a finite mean.

Theorem 6.2 Weak Law of Large Numbers (WLLN)
If yi are independent and identically distributed and E |y| < ∞, then as
n→∞

y =
1

n

n∑
i=1

yi
p−→ E(y).

The proof of Theorem 6.2 is presented in Section 6.26. Technically, the assumption that yi
are identically distributed can be replaced by the assumption that yi is uniformly integrable —see
Section 6.19 for the definition —but i.i.d. is suffi cient for most applications.

The WLLN shows that the estimator y converges in probability to the true population mean µ.
In general, an estimator which converges in probability to the population value is called consistent.

Definition 6.5 An estimator θ̂ of a parameter θ is consistent if θ̂
p−→ θ

as n→∞.

Theorem 6.3 If yi are independent and identically distributed and E |y| <
∞, then µ̂ = y is consistent for the population mean µ.

Consistency is a good property for an estimator to possess. It means that for any given data
distribution, there is a sample size n suffi ciently large such that the estimator θ̂ will be arbitrarily
close to the true value θ with high probability. The theorem does not tell us, however, how large
this n has to be. Thus the theorem does not give practical guidance for empirical practice. Still,
it is a minimal property for an estimator to be considered a “good” estimator, and provides a
foundation for more useful approximations.
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6.5 Almost Sure Convergence and the Strong Law*

Convergence in probability is sometimes called weak convergence. A related concept is
almost sure convergence, also known as strong convergence. (In probability theory the term
“almost sure”means “with probability equal to one”. An event which is random but occurs with
probability equal to one is said to be almost sure.)

Definition 6.6 A random variable zn ∈ R converges almost surely to
z as n→∞, denoted zn

a.s.−→ z, if for every δ > 0

P
(

lim
n→∞

|zn − z| ≤ δ
)

= 1. (6.4)

The convergence (6.4) is stronger than (6.1) because it computes the probability of a limit
rather than the limit of a probability. Almost sure convergence is stronger than convergence in
probability in the sense that zn

a.s.−→ z implies zn
p−→ z.

In the example (6.3) of Section 6.3, the sequence zn converges in probability to zero for any
sequence an, but this is not suffi cient for zn to converge almost surely. In order for zn to converge
to zero almost surely, it is necessary that an → 0.

In the random sampling context the sample mean can be shown to converge almost surely to
the population mean. This is called the strong law of large numbers.

Theorem 6.4 Strong Law of Large Numbers (SLLN)
If yi are independent and identically distributed and E |y| < ∞, then as
n→∞,

y =
1

n

n∑
i=1

yi
a.s.−→ E(y).

The proof of the SLLN is technically quite advanced so is not presented here. For a proof see
Billingsley (1995, Theorem 22.1) or Ash (1972, Theorem 7.2.5).

The WLLN is suffi cient for most purposes in econometrics, so we will not use the SLLN in this
text.

6.6 Vector-Valued Moments

Our preceding discussion focused on the case where y is real-valued (a scalar), but nothing
important changes if we generalize to the case where y ∈ Rm is a vector. To fix notation, the
elements of y are

y =


y1

y2
...
ym

 .

The population mean of y is just the vector of marginal means

µ = E(y) =


E (y1)
E (y2)
...

E (ym)

 .
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When working with random vectors y it is convenient to measure their magnitude by their
Euclidean length or Euclidean norm

‖y‖ =
(
y2

1 + · · ·+ y2
m

)1/2
.

In vector notation we have
‖y‖2 = y′y.

It turns out that it is equivalent to describe finiteness of moments in terms of the Euclidean
norm of a vector or all individual components.

Theorem 6.5 For y ∈ Rm, E ‖y‖ < ∞ if and only if E |yj | < ∞ for
j = 1, ...,m.

The m×m variance matrix of y is

V = var (y) = E
(
(y − µ) (y − µ)′

)
.

V is often called a variance-covariance matrix. You can show that the elements of V are finite if
E
(
‖y‖2

)
<∞.

A random sample {y1, ...,yn} consists of n observations of independent and identically distrib-
uted draws from the distribution of y. (Each draw is an m-vector.) The vector sample mean

y =
1

n

n∑
i=1

yi =


y1

y2
...
ym


is the vector of sample means of the individual variables.

Convergence in probability of a vector can be defined as convergence in probability of all ele-
ments in the vector. Thus y

p−→ µ if and only if yj
p−→ µj for j = 1, ...,m. Since the latter holds

if E |yj | <∞ for j = 1, ...,m, or equivalently E ‖y‖ <∞, we can state this formally as follows.

Theorem 6.6 WLLN for random vectors
If yi are independent and identically distributed and E ‖y‖ < ∞, then as
n→∞,

y =
1

n

n∑
i=1

yi
p−→ E(y).
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6.7 Convergence in Distribution

The WLLN is a useful first step, but does not give an approximation to the distribution of an
estimator. A large-sample or asymptotic approximation can be obtained using the concept of
convergence in distribution.

We say that a sequence of random vectors zn converges in distribution if the sequence of
distribution functions Fn(u) = P (zn ≤ u) converges to a limit distribution function.

Definition 6.7 Let zn be a random vector with distribution Fn(u) =
P (zn ≤ u) . We say that zn converges in distribution to z as n →∞,
denoted zn

d−→ z, if for all u at which F (u) = P (z ≤ u) is continuous,
Fn(u)→ F (u) as n→∞.

Under these conditions, it is also said that Fn converges weakly to F . It is common to refer
to z and its distribution F (u) as the asymptotic distribution, large sample distribution, or
limit distribution of zn.

When the limit distribution z is degenerate (that is, P (z = c) = 1 for some c) we can write the

convergence as zn
d−→ c, which is equivalent to convergence in probability, zn

p−→ c.
The remainder of this Section is more technical than required for most students, and can be

skipped if desired.
Our definition of convergence in distribution is pointwise, in the sense that it is stated for each

u. It turns out that the convergence is also uniform over u when F (u) is continuous.

Theorem 6.7 If zn
d−→ z and F (u) is continuous then

sup
−∞<u<∞

|Fn(u)− F (u)| −→ 0

as n→∞.

We present a proof in Section 6.26.
Technically, in most cases of interest it is diffi cult to establish the limit distributions of sample

statistics zn by working directly with their distribution function. It turns out that in most cases it
is easier to use alternative yet equivalent characterizations. One is the following.

Theorem 6.8 zn
d−→ z if and only if E (f (zn)) → E (f (z)) for all

bounded, continuous functions f.

The proof is rather technical so is not presented here. See Van der Vaart (1998) Lemma 2.2.
A further specialization of the above theorem focuses on the characteristic function Cn(λ) =

E
(
exp

(
iλ′zn

))
, which is a transformation of the distribution. (See Section 2.32 for the definition.)

The characteristic function Cn(t) completely describes the distribution of zn. It therefore seems
reasonable to expect that if Cn(t) converges to a limit function C(t), then the the distribution of
zn converges as well. This turns out to be true, and is known as Lévy’s continuity theorem.
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Theorem 6.9 Lévy’s Continuity Theorem. zn
d−→ z if and only if

E (exp (it′zn))→ E (exp (it′z)) for every t ∈ Rk.

While this result seems quite intuitive, a rigorous proof is quite advanced and so is not presented
here. See Van der Vaart (1998) Theorem 2.13.

Finally, we mention a standard trick which is commonly used to establish multivariate conver-
gence results.

Theorem 6.10 Cramér-Wold Device. zn
d−→ z if and only if λ′zn

d−→
λ′z for every λ ∈ Rk with λ′λ = 1.

We present a proof in Section 6.26 which is a simple application of Lévy’s continuity theorem.

6.8 Central Limit Theorem

We would like to obtain a distributional approximation to the sample mean y. We start un-
der the random sampling assumption so that the observations are independent and identically
distributed, and have a finite mean µ = E (y) and variance σ2 = var (y).

Let’s start by finding the asymptotic distribution of y, in the sense that y d−→ z for some random
variable z. From the WLLN we know that y

p−→ µ. Since convergence in probability to a constant

is the same as convergence in distribution, this means that y d−→ µ as well. This is not a useful
distributional result as the limit distribution is a constant. To obtain a non-degenerate distribution
we need to rescale y. Recall that var (y − µ) = σ2/n, which means that var (

√
n (y − µ)) = σ2.

This suggests renormalizing the statistic as

zn =
√
n (y − µ) .

Notice that E(zn) = 0 and var (zn) = σ2. This shows that the mean and variance have been
stabilized. We now seek to determine the asymptotic distribution of zn.

The answer is provided by the central limit theorem (CLT) which states that standardized
sample averages converge in distribution to normal random vectors. There are several versions
of the CLT. The most basic is the case where the observations are independent and identically
distributed.

Theorem 6.11 Lindeberg-Lévy Central Limit Theorem. If yi are
independent and identically distributed and E

(
y2
i

)
<∞, then as n→∞

√
n (y − µ)

d−→ N
(
0, σ2

)
where µ = E (y) and σ2 = E(yi − µ)2.

The proof of the CLT is rather technical (so is presented in Section 6.26) but at the core is a
quadratic approximation of the log of the characteristic function.
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As we discussed above, in finite samples the standardized sum zn =
√
n (yn − µ) has mean zero

and variance σ2. What the CLT adds is that zn is also approximately normally distributed, and
that the normal approximation improves as n increases.

The CLT is one of the most powerful and mysterious results in statistical theory. It shows that
the simple process of averaging induces normality. The first version of the CLT (for the number of
heads resulting from many tosses of a fair coin) was established by the French mathematician Abra-
ham de Moivre in a private manuscript circulated in 1733. The most general statements are credited
to work by the Russian mathematician Aleksandr Lyapunov (1901) and the Finnish mathematician
Jarl Waldemar Lindeberg. The above statement is known as the classic (or Lindeberg-Lévy) CLT
due to contributions by Lindeberg and the French mathematician Paul Pierre Lévy.

The remainder of this Section is more technical than required for most students, and can be
skipped if desired.

A more general version which allows heterogeneous distributions was provided by Lindeberg
(1922). The following is the most general statement, known as the Lindeberg CLT or the Lindeberg-
Feller CLT.

Theorem 6.12 Lindeberg Central Limit Theorem. Suppose for each
n, yni, i = 1, ..., rn are independent but not necessarily identically distrib-
uted with means E (yni) = 0 and variances σ2

ni = E(y2
ni). Set σ

2
n =

∑rn
i=1 σ

2
ni.

If σ2
n > 0 and for all ε > 0

lim
n→∞

1

σ2
n

rn∑
i=1

E
(
y2
ni1
(
y2
ni ≥ εσ2

n

))
= 0 (6.5)

then as n→∞ ∑rn
i=1 yni
σn

d−→ N (0, 1) .

The proof of the Lindeberg CLT is substantially more technical, so we do not present it here.
See Billingsley (1995, Theorem 27.2).

The Lindeberg CLT is quite general as it puts minimal conditions on the sequence of means
and variances. The key assumption is equation (6.5) which is known as Lindeberg’s Condition.
In its raw form it is diffi cult to interpret. The intuition for (6.5) is that it excludes any single
observation from dominating the asymptotic distribution. Since (6.5) is quite abstract, in many
contexts we use more elementary conditions which are simpler to interpret. All of the following
assume rn = n.

One such alternative is called Lyapunov’s condition: For some δ > 0

lim
n→∞

1

σ2+δ
n

n∑
i=1

E
(
|yni|2+δ

)
= 0. (6.6)

Lyapunov’s condition implies Lindeberg’s condition, and hence the CLT. Indeed, the left-side of
(6.5) is bounded by

lim
n→∞

1

σ2
n

n∑
i=1

E

(
|yni|2+δ

|yni|δ
1
(
y2
ni ≥ εσ2

n

))

≤ lim
n→∞

1

εδ/2σ2+δ
n

n∑
i=1

E
(
|yni|2+δ

)
= 0
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by (6.6).
Lyapunov’s condition is still awkward to interpret. A still simpler condition is a uniform moment

bound: For some δ > 0
sup
n,i
E |yni|2+δ <∞. (6.7)

This is typically combined with the lower variance bound

lim inf
n→∞

σ2
n

n
> 0. (6.8)

These bounds together imply Lyapunov’s condition. To see this, (6.7) and (6.8) imply there is some
C < ∞ such that supn,i E |yni|2+δ ≤ C and lim infn→∞ n−1σ2

n ≥ C−1. Without loss of generality
assume µni = 0. Then the left side of (6.6) is bounded by

lim
n→∞

C2+δ/2

nδ/2
= 0,

so Lyapunov’s condition holds and hence the CLT.
An alternative to (6.8) is to assume that the average variance converges to a constant, that is,

σ2
n

n
= n−1

n∑
i=1

σ2
ni → σ2 <∞. (6.9)

This assumption is reasonable in many applications.
We now state the simplest and most commonly used version of a heterogeneous CLT based on

the Lindeberg CLT.

Theorem 6.13 Suppose yni are independent but not necessarily identi-
cally distributed. If (6.7) and (6.9) hold, then as n→∞

√
n (y − E (y))

d−→ N
(
0, σ2

)
.

For a proof see Section 6.26.
One advantage of Theorem 6.13 is that it allows σ2 = 0 (unlike Theorem 6.12).

6.9 Higher Moments

As we discussed at the beginning of the previous section, the normalized sample mean zn =√
n (y − µ) has mean E (zn) = 0 and second moment E

(
z2
n

)
= σ2 which are the same as those of

Z ∼ N
(
0, σ2

)
. In this section we extend this analysis to higher moments. We find expressions for

the finite sample third through sixth moments of zn, and show that they converge to those of Z as
n diverges. This can provide some intuition for the CLT, and can be useful for some other purposes
as well. For these results we assume that any stated moment exists. Define the central moments
µr = E (yi − µ)r.

For simplicity and without loss of generality assume µ = 0. The third moment of zn is

E
(
z3
n

)
=

1

n3/2

n∑
i=1

n∑
j=1

n∑
k=1

E (yiyjyk) .

Note that

E (yiyjyk) =

{
E
(
y3
i

)
= µ3 if i = j = k, (n instances)

0 otherwise.
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Thus
E
(
z3
n

)
=

µ3

n1/2
. (6.10)

This shows that the third moment of the normalized sample mean zn is a scale of the third
central moment of the observations. If yi is skewed, then zn will have skew in the same direction.
However, the third moment of zn is proportion to n−1/2, so converges to zero as n → ∞. This
means that the skewness in the distribution of zn diminishes with n.

The fourth moment of zn (again assuming µ = 0) is

E
(
z4
n

)
=

1

n2

n∑
i=1

n∑
j=1

n∑
k=1

n∑
`=1

E (yiyjyky`) .

Note that

E (yiyjyky`) =



E
(
y4
i

)
= µ4 if i = j = k = `, (n instances)

E
(
y2
i

)
E
(
y2
k

)
= σ4 if i = j 6= k = `, (n(n− 1) instances)

E
(
y2
i

)
E
(
y2
j

)
= σ4 if i = k 6= j = `, (n(n− 1) instances)

E
(
y2
i

)
E
(
y2
j

)
= σ4 if i = ` 6= j = k, (n(n− 1) instances)

0 otherwise.

Thus

E
(
z4
n

)
=
µ4

n
+ 3σ4

(
n− 1

n

)
= 3σ4 +

κ4

n
(6.11)

where κ4 = µ4−3σ4 is the 4th cumulant of the distribution of yi (see Section 2.33 for the definition
of the cumulants). Recall that the fourth central moment of Z ∼ N

(
0, σ2

)
is 3σ4. Thus the fourth

moment of zn is close to that of the normal distribution, with a deviation depending on the fourth
cumulant of yi. The deviation diminishes as n increases.

For higher moments we can make similar direct yet tedious calculations. A simpler though
less intuitive method calculates the moments of zn using the cumulant generating function K(t) =
log (M(t)) where M(t) is the moment generating function of yi (see Section 2.33). Since the
observations are independent, the cumulant generating function of Sn =

∑n
i=1 yi is log (M(t)n) =

nK(t). It follows that the rth cumulant of Sn is nK(r)(0) = nκr where κr = K(r)(0) is the rth

cumulant of yi. Rescaling, we find that the rth cumulant of zn =
√
n (y − µ) is κr/nr/2−1. Using

the relations between central moments and cumulants described in Section 2.33, we deduce that
the 3rd through 6th moments of zn are

E
(
z3
n

)
= κ3/n

1/2 (6.12)

E
(
z4
n

)
= κ4/n+ 3κ2

E
(
z5
n

)
= κ5/n

3/2 − 10κ3κ2/n
1/2

E
(
z6
n

)
= κ6/n

2 +
(
15κ4κ2 + 10κ2

3

)
/n+ 15κ3

2. (6.13)

Since κ2 = σ2 and µ3 = κ3, the first two expressions are identical to (6.10) and (6.11). The last
two also give the exact fifth and sixth moments of zn, expressed in terms of the cumulants of yi
and the sample size n.

This technique can be used to calculate any non-negative integer moment of zn. For odd r the
moments take the form

E (zrn) =

(r−3)/2∑
j=0

arjn
−1/2−j

and for even r

E (zrn) = (r − 1)!!σ2r +

(r−2)/2∑
j=1

brjn
−j
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where arj and brj are the sum of constants multiplied by the products of cumulants whose indices
sum to r. (Recall, the double factorial is k!! = k · (k − 2) · · · 1.)

These are the exact (finite sample) moments of zn. We can take the limit to find the asymptotic
moments. As n→∞, for any odd r for which E |yi|r <∞

E (zrn) −→ 0

and for any even r for which E |yi|r <∞

E (zrn) −→ (r − 1)!!σ2r.

The limits are the moments of Z ∼ N
(
0, σ2

)
.

We have shown that when yi has a finite rth moment, the asymptotic rth moment of the
standardized mean matches that of the normal distribution. This may provide some intuition as
to why the standardized mean converges to the normal distribution.

6.10 Multivariate Central Limit Theorem

Multivariate central limit theory applies when we consider vector-valued observations yi and
sample averages y. In the i.i.d. case we know that the mean of y is the mean vector µ = E (y)
and its variance is n−1V where V = E

(
(y − µ) (y − µ)′

)
. Again we wish to transform y so that

its mean and variance do not depend on n. We do this again by centering and scaling, by setting
zn =

√
n (yn − µ). This has mean 0 and variance V , which are independent of n as desired.

To develop a distributional approximation for zn we use a multivariate central limit theorem.
We present three such results, corresponding to the three univariate results from the previous
section. Each is derived from the univariate theory by the Cramér-Wold device (Theorem 6.10).

We first present the multivariate version of Theorem 6.11.

Theorem 6.14 Multivariate Lindeberg—Lévy Central Limit The-
orem. If yi ∈ Rk are independent and identically distributed and
E ‖yi‖2 <∞, then as n→∞

√
n (y − µ)

d−→ N (0,V )

where µ = E (y) and V = E
(
(y − µ) (y − µ)′

)
.

For a proof see Section 6.26.
We next present a multivariate version of Theorem 6.12.

Theorem 6.15 Multivariate Lindeberg CLT. Suppose that for all n,
yni ∈ Rk, i = 1, ..., rn, are independent but not necessarily identically
distributed with mean E (yni) = 0 and variance matrices V ni = E (yniy

′
ni) .

Set V n =
∑n

i=1 V ni and ν2
n = λmin(V n). If ν2

n > 0 and for all ε > 0

lim
n→∞

1

ν2
n

rn∑
i=1

E
(
‖yni‖2 1

(
‖yni‖2 ≥ εν2

n

))
= 0 (6.14)

then as n→∞
V
−1/2
n

rn∑
i=1

yni
d−→ N (0, Ik) .
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For a proof see Section 6.26.
We finally present a multivariate version of Theorem 6.13.

Theorem 6.16 Suppose yni ∈ Rk are independent but not necessarily
identically distributed with means E (yni) = 0 and variance matrices V ni =
E (yniy

′
ni) . Set V n = n−1

∑n
i=1 V ni . If

V n → V > 0

and for some δ > 0
sup
n,i
E ‖yni‖2+δ <∞ (6.15)

then as n→∞ √
ny

d−→ N (0,V ) .

For a proof see Section 6.26.
Similarly to Theorem 6.13, an advantage of Theorem 6.16 is that it allows the variance matrix

V to be singular.

6.11 Moments of Transformations

Often we want to estimate a parameter µ which is the expected value of a transformation of a
random vector y. That is, µ can be written as

µ = E (h (y))

for some function h : Rm → Rk. For example, the second moment of y is E
(
y2
)
, the rth is E (yr) ,

the moment generating function is E (exp (ty)) , and the distribution function is E (1 {y ≤ x}) .
Estimating parameters of this form fits into our previous analysis by defining the random

variable z = h (y). Then µ = E (z) is just a simple moment of z. This suggests the moment
estimator

µ̂ =
1

n

n∑
i=1

zi =
1

n

n∑
i=1

h (yi) .

For example, the moment estimator of E (yr) is n−1
∑n

i=1 y
r
i , the moment estimator of the mo-

ment generating function is n−1
∑n

i=1 exp (tyi) , and the estimator of the distribution function is
n−1

∑n
i=1 1 {yi ≤ x}.

Since µ̂ is a sample average, and transformations of i.i.d. variables are also i.i.d., the asymptotic
results of the previous sections immediately apply.

Theorem 6.17 If yi are independent and identically distributed, µ =
E (h (y)) , and E ‖h (y)‖ < ∞, then for µ̂ = 1

n

∑n
i=1 h (yi) , as n → ∞,

µ̂
p−→ µ.
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Theorem 6.18 If yi are independent and identically distributed, µ =

E (h (y)) , and E
(
‖h (y)‖2

)
<∞, then for µ̂ = 1

n

∑n
i=1 h (yi) , as n→∞,

√
n (µ̂− µ)

d−→ N (0,V )

where V = E
(
(h (y)− µ) (h (y)− µ)′

)
.

Theorems 6.17 and 6.18 show that the estimator µ̂ is consistent for µ and asymptotically
normally distributed, so long as the stated moment conditions hold.

A word of caution. Theorems 6.17 and 6.18 give the impression that it is possible to estimate
any moment of y. Technically this is the case so long as that moment is finite. What is hidden
by the notation, however, is that estimates of high order moments can be quite imprecise. For
example, consider the sample 8th moment µ̂8 = 1

n

∑n
i=1 y

8
i , and suppose for simplicity that y is

N(0, 1). Then we can calculate1 that var (µ̂8) = n−12, 016, 000, which is immense, even for large n!
In general, higher-order moments are challenging to estimate because their variance depends upon
even higher moments which can be quite large.

6.12 Smooth Function Model

We now expand our investigation and consider estimation of parameters which can be written as
a continuous function of µ = E (h (y)). That is, we consider cases where the parameter of interest
can be written as

θ = g (µ) = g (E (h (y))) (6.16)

for some functions g : Rk → R` and h : Rm → Rk. This is generally known as the smooth
function model, and encompasses a wide variety of econometric estimators.

As one example, the geometric mean of wages w is

γ = exp (E (log (w))) . (6.17)

This is (6.16) with g(u) = exp (u) and h(w) = log(w).
Another simple yet common example is the variance

σ2 = E (w − E (w))2

= E
(
w2
)
− (E (w))2 .

This is (6.16) with

h(w) =

(
w
w2

)
and

g (µ1, µ2) = µ2 − µ2
1.

Similarly, the skewness of the wage distribution is

sk =
E
(

(w − E (w))3
)

(
E
(

(w − E (w))2
))3/2

.

1By the formula for the variance of a mean var (µ̂8) = n−1
(
E
(
y16
)
−
(
E
(
y8
))2)

. Since y is N(0, 1), E
(
y16
)
=

15!! = 2, 027, 025 and E
(
y8
)
= 7!! = 105 where k!! is the double factorial.
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This is (6.16) with

h(w) =

 w
w2

w3


and

g (µ1, µ2, µ3) =
µ3 − 3µ2µ1 + 2µ3

1(
µ2 − µ2

1

)3/2 . (6.18)

The parameter θ = g (µ) is not a population moment, so it does not have a direct moment
estimator. Instead, it is common to use a plug-in estimator formed by replacing the unknown µ
with its point estimator µ̂ and then “plugging”this into the expression for θ. The first step is

µ̂ =
1

n

n∑
i=1

h (yi)

and the second step is
θ̂ = g (µ̂) .

Again, the hat “^”indicates that θ̂ is a sample estimator of θ.
For example, the plug-in estimate of the geometric mean γ of the wage distribution from (6.17)

is
γ̂ = exp(µ̂)

with

µ̂ =
1

n

n∑
i=1

log (wi) .

The plug-in estimator of the variance is

σ̂2 =
1

n

n∑
i=1

w2
i −

(
1

n

n∑
i=1

wi

)2

=
1

n

n∑
i=1

(wi − w)2 .

The estimator for the skewness is

ŝk =
µ̂3 − 3µ̂2µ̂1 + 2µ̂3

1(
µ̂2 − µ̂2

1

)3/2
=

1
n

∑n
i=1 (wi − w)3(

1
n

∑n
i=1 (wi − w)2

)3/2

where

µ̂j =
1

n

n∑
i=1

wji .

In the next three sections we present a large-sample theory for the plug-in estimator for the
smooth function model.
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6.13 Continuous Mapping Theorem

Continuous functions are limit-preserving.

Theorem 6.19 Continuous Mapping Theorem (CMT). If zn
p−→ c

as n→∞ and g (·) is continuous at c, then g(zn)
p−→ g(c) as n→∞.

The proof of Theorem 6.19 is given in Section 6.26.
For example, if zn

p−→ c as n→∞ then

zn + a
p−→ c+ a

azn
p−→ ac

z2
n

p−→ c2

as the functions g (u) = u+ a, g (u) = au, and g (u) = u2 are continuous. Also

a

zn

p−→ a

c

if c 6= 0. The condition c 6= 0 is important as the function g(u) = a/u is not continuous at u = 0.
If yi are independent and identically distributed, µ = E (h (y)) , and E ‖h (y)‖ < ∞, then for

µ̂ = 1
n

∑n
i=1 h (yi) , as n→∞, µ̂

p−→ µ. Applying the CMT, θ̂ = g (µ̂)
p−→ g (µ) = θ.

Theorem 6.20 If yi are i.i.d., θ = g (E (h (y))) , E ‖h (y)‖ < ∞, and
g (u) is continuous at u = µ, for θ̂ = g (µ̂) with µ̂ = 1

n

∑n
i=1 h (yi) , then

θ̂
p−→ θ as n→∞.

To apply Theorem 6.20 it is necessary to check if the function g is continuous at µ. In our
first example g(u) = exp (u) is continuous everywhere. It therefore follows from Theorem 6.6 and
Theorem 6.20 that if E |log (w)| <∞ then as n→∞, γ̂ p−→ γ.

In the example of the variance, g is continuous for all µ. Thus if E
(
w2
)
<∞ then as n→∞,

σ̂2 p−→ σ2.
In our third example g defined in (6.18) is continuous for all µ such that var(w) = µ2−µ2

1 > 0,
which holds unless w has a degenerate distribution. Thus if E |w|3 < ∞ and var(w) > 0 then as
n→∞, ŝk p−→ sk.

6.14 Delta Method

In this section we introduce two tools —an extended version of the CMT and the Delta Method
—which allow us to calculate the asymptotic distribution of the plug-in estimator θ̂.

We first present an extended version of the continuous mapping theorem which allows conver-
gence in distribution.
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Theorem 6.21 Continuous Mapping Theorem
If zn

d−→ z as n→∞ and g : Rm → Rk has the set of discontinuity points
Dg such that P (z ∈ Dg) = 0, then g(zn)

d−→ g(z) as n→∞.

For a proof of Theorem 6.21 see Theorem 2.3 of van der Vaart (1998). It was first proved by
Mann and Wald (1943) and is therefore sometimes referred to as the Mann-Wald Theorem.

Theorem 6.21 allows the function g to be discontinuous only if the probability at being at a
discontinuity point is zero. For example, the function g(u) = u−1 is discontinuous at u = 0, but if

zn
d−→ z ∼ N (0, 1) then P (z = 0) = 0 so z−1

n
d−→ z−1.

A special case of the Continuous Mapping Theorem is known as Slutsky’s Theorem.

Theorem 6.22 Slutsky’s Theorem
If zn

d−→ z and cn
p−→ c as n→∞, then

1. zn + cn
d−→ z + c

2. zncn
d−→ zc

3.
zn
cn

d−→ z

c
if c 6= 0.

Even though Slutsky’s Theorem is a special case of the CMT, it is a useful statement as it
focuses on the most common applications —addition, multiplication, and division.

Despite the fact that the plug-in estimator θ̂ is a function of µ̂ for which we have an asymptotic
distribution, Theorem 6.21 does not directly give us an asymptotic distribution for θ̂. This is
because θ̂ = g (µ̂) is written as a function of µ̂, not of the standardized sequence

√
n (µ̂− µ) .

We need an intermediate step —a first order Taylor series expansion. This step is so critical to
statistical theory that it has its own name —The Delta Method.

Theorem 6.23 Delta Method:
If
√
n (µ̂− µ)

d−→ ξ, where g(u) is continuously differentiable in a neigh-
borhood of µ then as n→∞

√
n (g (µ̂)− g(µ))

d−→ G′ξ (6.19)

where G(u) = ∂
∂ug(u)′ and G = G(µ). In particular, if ξ ∼ N (0,V ) then

as n→∞ √
n (g (µ̂)− g(µ))

d−→ N
(
0,G′V G

)
. (6.20)

A proof is presented in Section 6.26.
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6.15 Asymptotic Distribution for Smooth Function Model

The Delta Method allows us to complete our derivation of the asymptotic distribution of the
plug-in estimator θ̂ of θ in the smooth function model. By combining Theorems 6.18 and 6.23 we
find the following.

Theorem 6.24 If yi are independent and identically distributed, µ =

E (h (y)), θ = g (µ) , E ‖h (y)‖2 <∞, and G (u) =
∂

∂u
g (u)′ is continuous

in a neighborhood of µ, for θ̂ = g (µ̂) with µ̂ = 1
n

∑n
i=1 h (yi) , then as

n→∞ √
n
(
θ̂ − θ

)
d−→ N (0,V θ)

where V θ = G′V G, V = E
(
(h (y)− µ) (h (y)− µ)′

)
and G = G (µ) .

Theorem 6.20 established the consistency of θ̂ for θ, and Theorem 6.24 established its asymptotic
normality. It is instructive to compare the conditions required for these results. Consistency
required that h (y) have a finite mean, while asymptotic normality requires that this variable have
a finite variance. Consistency required that g(u) be continuous, while our proof of asymptotic
normality used the assumption that g(u) is continuously differentiable.

6.16 Covariance Matrix Estimation

To use asymptotic distribution in Theorem 6.24 we need an estimator of the asymptotic variance
matrix V θ = G′V G. The natural plug-in estimator is

V̂ θ = Ĝ
′
V̂ Ĝ

Ĝ = G (µ̂)

V̂ =
1

n

n∑
i=1

(h (yi)− µ̂) (h (yi)− µ̂)′ .

Under the assumptions of Theorem 6.24, the WLLN implies µ̂
p−→ µ, and V̂

p−→ V . The
CMT implies Ĝ

p−→ G and with a second application, V̂ θ = Ĝ
′
V̂ Ĝ

p−→ G′V G = V θ. We have
established that V̂ θ is consistent for V θ.

Theorem 6.25 Under the assumptions of Theorem 6.24, V̂ θ
p−→ V θ as

n→∞.

6.17 t-ratios

When ` = 1 we can combine Theorems 6.24 and 6.25 to obtain the asymptotic distribution of
the studentized statistic

T =

√
n
(
θ̂ − θ

)
√
V̂θ

d−→ N (0, Vθ)√
Vθ

∼ N (0, 1) .
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The final equality is by the property that affi ne functions of normal random variables are normally
distributed (Theorem 5.3).

Theorem 6.26 Under the assumptions of Theorem 6.24, T d−→ N (0, 1)
as n→∞.

6.18 Stochastic Order Symbols

It is convenient to have simple symbols for random variables and vectors which converge in
probability to zero or are stochastically bounded. In this section we introduce some of the most
commonly found notation.

It might be useful to review the common notation for non-random convergence and boundedness.
Let xn and an, n = 1, 2, ..., be non-random sequences. The notation

xn = o(1)

(pronounced “small oh-one”) is equivalent to xn → 0 as n→∞. The notation

xn = o(an)

is equivalent to a−1
n xn → 0 as n→∞. The notation

xn = O(1)

(pronounced “big oh-one”) means that xn is bounded uniformly in n —there exists anM <∞ such
that |xn| ≤M for all n. The notation

xn = O(an)

is equivalent to a−1
n xn = O(1).

We now introduce similar concepts for sequences of random variables. Let zn and an, n = 1, 2, ...
be sequences of random variables. (In most applications, an is non-random.) The notation

zn = op(1)

(“small oh-P-one”) means that zn
p−→ 0 as n → ∞. For example, for any consistent estimator θ̂

for θ we can write
θ̂ = θ + op(1).

We also write
zn = op(an)

if a−1
n zn = op(1).
Similarly, the notation zn = Op(1) (“big oh-P-one”) means that zn is bounded in probability.

Precisely, for any ε > 0 there is a constant Mε <∞ such that

lim sup
n→∞

P (|zn| > Mε) ≤ ε.

Furthermore, we write
zn = Op(an)

if a−1
n zn = Op(1).
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Op(1) is weaker than op(1) in the sense that zn = op(1) implies zn = Op(1) but not the reverse.
However, if zn = Op(an) then zn = op(bn) for any bn such that an/bn → 0.

If a random vector converges in distribution zn
d−→ z (for example, if z ∼ N (0,V )) then

zn = Op(1). It follows that for estimators θ̂ which satisfy the convergence of Theorem 6.24 then
we can write

θ̂ = θ +Op(n
−1/2).

In words, this statement says that the estimator θ̂ equals the true coeffi cient θ plus a random
component which is bounded when scaled by n1/2. Equivalently, we can write

n1/2
(
θ̂ − θ

)
= Op(1).

Another useful observation is that a random sequence with a bounded moment is stochastically
bounded.

Theorem 6.27 If zn is a random vector which satisfies

E ‖zn‖δ = O (an)

for some sequence an and δ > 0, then

zn = Op(a
1/δ
n ).

Similarly, E ‖zn‖δ = o (an) implies zn = op(a
1/δ
n ).

This can be shown using Markov’s inequality (B.33). The assumptions imply that there is some

M <∞ such that E ‖zn‖δ ≤Man for all n. For any ε set B =

(
M

ε

)1/δ

. Then

P
(
a−1/δ
n ‖zn‖ > B

)
= P

(
‖zn‖δ >

Man
ε

)
≤ ε

Man
E ‖zn‖δ ≤ ε

as required.
There are many simple rules for manipulating op(1) and Op(1) sequences which can be deduced

from the continuous mapping theorem or Slutsky’s Theorem. For example,

op(1) + op(1) = op(1)

op(1) +Op(1) = Op(1)

Op(1) +Op(1) = Op(1)

op(1)op(1) = op(1)

op(1)Op(1) = op(1)

Op(1)Op(1) = Op(1).

6.19 Convergence of Moments*

Sometimes we are interested in moments (often the mean and variance) of a statistic zn. When
zn is a normalized sample mean we have direct expressions for the integer moments of zn (as
presented in Section 6.9). But for other statistics, such as nonlinear functions of the sample mean,
such expressions are not available.
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The statement zn
d−→ z means that we can approximate the distribution of zn with that of

z. In this case we may approximate the moments of zn with those of z. This can be rigorously
justified if the moments of zn converge to the corresponding moments of z. In this section we
explore conditions under which this holds.

We first give a suffi cient condition for the existence of the mean of the asymptotic distribution.

Theorem 6.28 If zn
d−→ z and E ‖zn‖ ≤ C then E ‖z‖ ≤ C.

A corollary is that E (‖zn‖r) ≤ C implies E (‖z‖r) ≤ ∞.
To prove Theorem 6.28, let Fn(u) and F (u) be the distribution functions of ‖zn‖ and ‖z‖. Using

Theorem 2.12, Definition 6.7, Fatou’s Lemma, again Theorem 2.12, and the bound E ‖zn‖ ≤ C,

E ‖z‖ =

∫ ∞
0

(1− F (x)) dx

=

∫ ∞
0

lim
n→∞

(1− Fn(x)) dx

≤ lim inf
n→∞

∫ ∞
0

(1− Fn(x)) dx

= lim inf
n→∞

E ‖zn‖ ≤ C

as required.
We next consider conditions under which E (zn) converges to E (z). One might guess that the

conditions of Theorem 6.28 would be suffi cient, but a counter-example demonstrates that this is
incorrect. Let zn be a random variable which equals n with probability 1/n and equals 0 with

probability 1 − 1/n. Then zn
d−→ z where P (z = 0) = 1. We can also calculate that E (zn) = 1.

Thus the assumptions of Theorem 6.28 are satisfied. However, E (zn) = 1 does not converge to
E (z) = 0. Thus the boundedness of moments E |zn| ≤ C < ∞ is not suffi cient to ensure the
convergence of moments.

The problem is due to a lack of what is called “tightness”of the sequence of distributions. The
culprit is the small probability mass which “escapes to infinity”.

The solution is to strengthen the assumption of boundedness of moments (integrability) to what
is called uniform integrability. Recall that a random variable z is integrable if E |z| =

∫∞
−∞ |z| dF <

∞, or equivalently if

lim
M→∞

E (|z|1 (|z| > M)) = lim
M→∞

∫ M

−M
|z| dF = 0.

We say that a sequence of random variables is uniformly integrable if the limit is zero uniformly
over the sequence.

Definition 6.8 The random vector zn is uniformly integrable as n →
∞ if

lim
M→∞

lim sup
n→∞

E (‖zn‖1 (‖zn‖ > M)) = 0.

Uniform integrability is stronger than uniformly bounded moments. Indeed, the condition in the
definition holds if for any ε > 0 there is anM suffi ciently large such that E (‖zN‖1 (‖zN‖ > M)) ≤ ε
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for all N ≥ n. This means E ‖zN‖ ≤ M + ε so the moments are uniformly bounded. Uniform
integrability is stronger than the uniform bound, as the example given previously does not satisfy
uniform integrability. Specifically, take an as given previously. For any M < ∞ set n = M + 1.
Then E (|an| 1 (|an| > M)) = 1 so does not limit to zero.

We can apply uniform integrability to powers of random variables. In particular we say zn is
uniformly square integrable if ‖zn‖2 is uniformly integrable, thus if

lim
M→∞

lim sup
n→∞

E
(
‖zn‖2 1

(
‖zn‖2 > M

))
= 0. (6.21)

Uniform square integrability is similar (but slightly stronger) to the Lindeberg condition (6.5) when
σ2
n ≥ δ > 0. To see this, assume (6.21) holds for zn = yni. Then for any ε > 0 there is an M large
enough so that lim supn→∞ E

(
z2
n1
(
z2
n > M

))
≤ εδ. Since εnσ2

n →∞, we have

1

nσ2
n

n∑
i=1

E
(
y2
ni1
(
y2
ni ≥ εnσ2

n

))
≤ εδ

σ2
n

≤ ε

which implies (6.5).
Uniform integrability is also implied by a bounded 1 + δ moment for some δ > 0.

Theorem 6.29 If for some δ > 0, E ‖zn‖1+δ ≤ C < ∞, then zn is uni-
formly integrable.

A corollary is that E ‖zn‖r ≤ C <∞ implies ‖zn‖s is uniformly integrable for any s < r.
To prove this theorem, fix ε and set M ≥ (C/ε)1/δ. Then

E (‖zn‖1 (‖zn‖ > M)) = E

(
‖zn‖1+δ

‖zn‖δ
1 (‖zn‖ > M)

)

≤
E
(
‖zn‖1+δ 1 (‖zn‖ > M)

)
M δ

≤ E ‖zn‖
1+δ

M δ

≤ C

M δ

≤ ε.

Uniform integrability is the key condition which allows us to establish the convergence of mo-
ments.

Theorem 6.30 If zn
d−→ z and zn is uniformly integrable then E (zn) −→

E (z) .

A corollary is that if zrn is uniformly integrable then E (zrn) −→ E (zr).
We now prove Theorem 6.30. Without loss of generality assume zn is scalar and zn ≥ 0. Let

a ∧ b = min(a, b). Fix ε > 0. By Theorem 6.28 z is integrable, and by assumption zn is uniformly
integrable. Thus we can find an M <∞ such that for all large n,

E (z − z ∧M) = E ((z −M) 1 (z > M)) ≤ E (z1 (z > M)) ≤ ε
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and
E (zn − zn ∧M) = E ((zn −M) 1 (zn > M)) ≤ E (zn1 (zn > M)) ≤ ε.

The function (zn ∧M) is continuous and bounded. Since zn
d−→ z, Theorem 6.8 implies E (zn ∧M) −→

E (z ∧M). Thus for n suffi ciently large

|E ((zn ∧M)− (z ∧M))| ≤ ε.

Applying the Triangle inequality and the above three inequalities we find

|E (zn − z)| ≤ |E (zn − (zn ∧M))|+ |E ((zn ∧M)− (z ∧M))|+ |E (z − (z ∧M))| ≤ 3ε.

Since ε is arbitrary we conclude |E (zn − z)| −→ 0 as required.
We complete this section by giving conditions under which moments of zn =

√
n (y − E (y))

converge to those of the normal distribution. In Section 6.9 we presented exact expressions for the
integer moments of zn. We now consider non-integer moments as well.

Theorem 6.31 If yni satisfies the conditions of Theorem 6.13, and
supn,i E |yni|r <∞ for some r > 2, then for any 0 < s < r, E (zsn) −→ E (zs)
where z ∼ N

(
0, σ2

)
.

We now prove this result. Theorem 6.13 establishes zn
d−→ z, and the CMT establishes

zsn
d−→ zs. We now establish that zsn is uniformly integrable. By Liapunov’s inequality (B.32)

and Minkowski’s inequality (B.31), and supn,i E |yni|r = B <∞(
E |yni − E (yni)|2

)1/2
≤ (E |yni − E (yni)|r)1/r ≤ 2 (E |yni|r)1/r ≤ 2B1/r. (6.22)

The Rosenthal inequality (B.39) establishes that there is a constant Ar <∞ such that

E |zn|r =
1

nr/2
E

(∣∣∣∣∣
n∑
i=1

(yni − E (yni))

∣∣∣∣∣
r)

≤ 1

nr/2
Ar


(

n∑
i=1

E |yni − E (yni)|2
)r/2

+

n∑
i=1

E |yni − E (yni)|r


≤ 1

nr/2
Ar

{(
n4B2/r

)r/2
+ n2rB

}
≤ 2r+1ArB.

The second inequality is (6.22). This shows that E |zn|r is uniformly bounded, so zsn is uniformly
integrable for any s < r by Theorem 6.29. Since zsn

d−→ zs and zsn is uniformly integrable, by
Theorem 6.30, we conclude that E (zsn) −→ E (zs) as stated.

6.20 Edgeworth Expansion for the Sample Mean*

The central limit theorem shows that normalized estimators are approximately normally dis-
tributed if the sample size n is suffi ciently large. In practice, how good is this approximation? One
way to measure the discrepancy between the actual distribution and the asymptotic distribution is
by higher-order expansions. Higher-order expansions of the distribution function are known as
Edgeworth expansions.
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Let Gn(x) be the distribution function of the normalized mean zn =
√
n (yn − µ) /σ where

yn = n−1
∑n

i=1 yi is the sample mean of i.i.d. random variables. An Edgeworth expansion is a
series representation for Gn(x) expressed as powers of n−1/2. It equals

Gn(x) = Φ(x)− n−1/2κ3

6
He2(x)φ(x)− n−1

(
κ4

24
He3(x) +

κ2
3

72
He5(x)

)
φ(x) + o

(
n−1

)
(6.23)

where Φ(x) and φ(x) are the standard normal distribution and density functions, κ3 and κ4 are the
third and fourth cumulants of yi, and

Hej(x) = (−1)j
φ(j)(x)

φ(x)

is the jth Hermite polynomial. In particular, He2(x) = x2 − 1, He3(x) = x3 − 3x, and He5(x) =
x5 − 10x3 + 15x.

Below we give a justification for (6.23).
The expansion (6.23) may not be convergent. It is interpreted as an asymptotic series, meaning

that the remainder is of a smaller order than the last included term. Suffi cient regularity conditions
for the validity of the expansion (6.23) are E

(
y4
i

)
<∞ and that the characteristic function of y is

bounded below one. This latter —known as Cramer’s condition —requires y to have an absolutely
continuous distribution.

The expression (6.23) shows that the exact distribution Gn(x) can be written as the sum of the
normal distribution, a n−1/2 correction for the main effect of skewness, and a n−1 correction for
the main effect of kurtosis and the seconary effect of skewness. The n−1/2 skewness correction is an
even function2 of x which means that it changes the distribution function symmetrically about zero.
This means that this term captures skewness in the distribution function Gn(x). The n−1 correction
is an odd function3 of x which means that this term moves probability mass symmetrically either
away from, or towards, the center. This term captures kurtosis in the distribution of zn.

We now derive (6.23) using the moment generating funtion. For a more rigorous argument the
characteristic funtion could be used with minimal change in details. Let Cn(t) = E exp (tzn) be the
moment generating function of the normalized mean zn. For simplicity assume µ = 0 and σ2 = 1.
In the proof of the central limit theorem (Theorem 6.11) we showed that

Cn(t) = exp

(
nK

(
t√
n

))
where K (t) = log (E exp (tyi)) is the cumulant generating function of yi (see Section 2.33). By
a series expansion about t = 0, the facts K(0) = K(1)(0) = 0, K(2)(0) = 1, K(3)(0) = κ3 and
K(4)(0) = κ4, this equals

Cn(t) = exp

(
t2

2
+ n−1/2κ3

6
t3 + n−1κ4

24
t4 + o

(
n−1

))
= exp

(
t2/2

)
+ n−1/2 exp

(
t2/2

) κ3

6
t3 + n−1 exp

(
t2/2

)(κ4

24
t4 +

κ2
3

72
t6
)

+ o
(
n−1

)
. (6.24)

The second line holds by taking a second-order expansion of the exponential function.
The Hermite polynomials satisfy

d

dx
(Hej(x)φ(x)) = −Hej+1(x)φ(x). (6.25)

2A function f(x) is even if f(−x) = f(x).
3A function f(x) is odd if f(−x) = −f(x).
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By the formula for the normal MGF, the fact He0(x) = 1, and repeated integration by parts
applying (6.25), we find

exp
(
t2/2

)
=

∫ ∞
−∞

etxφ(x)dx

=

∫ ∞
−∞

etxHe0(x)φ(x)dx

= t−1

∫ ∞
−∞

etxHe1(x)φ(x)dx

= t−2

∫ ∞
−∞

etxHe2(x)φ(x)dx

...

= t−j
∫ ∞
−∞

etxHej(x)φ(x)dx.

This implies that for any j ≥ 0,

exp
(
t2/2

)
tj =

∫ ∞
−∞

etxHej(x)φ(x)dx.

Substituting into (6.24) we find

n(t) =

∫ ∞
−∞

etxφ(x)dx+ n−1/2κ3

6

∫ ∞
−∞

etxHe3(x)φ(x)dx

+ n−1

(
κ4

24

∫ ∞
−∞

etxHe4(x)φ(x)dx+
κ2

3

72

∫ ∞
−∞

etxHe6(x)φ(x)dx

)
+ o

(
n−1

)
=

∫ ∞
−∞

etx
(
φ(x) + n−1/2κ3

6
He3(x)φ(x) + n−1

(
κ4

24
He4(x)φ(x) +

κ2
3

72
He6(x)φ(x)

))
dx

=

∫ ∞
−∞

etxd

(
Φ(x)− n−1/2κ3

6
He2(x)φ(x)− n−1

(
κ4

24
He3(x) +

κ2
3

72
He5(x)

)
φ(x)

)
where the third equality uses (6.25). The final line shows that this is the MGF of the distribution
in brackets which is (6.23). We have shown that the MGF expansion of zn equals that of (6.23), so
they are identical as claimed.

Francis Edgeworth

Francis Ysidro Edgeworth (1845-1926) of Ireland, founding editor of the Eco-
nomic Journal, was a profound economic and statistical theorist, developing
the theories of indifference curves and asymptotic expansions. He also could
be viewed as the first econometrician due to his early use of mathematical
statistics in the study of economic data.

6.21 Edgeworth Expansion for Smooth Function Model*

Most applications of Edgeworth expansions concern statistics which are more complicated than
sample means. The following result applies to general smooth functions of means, which includes
most estimators. This result includes that of the previous section as a special case.
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Theorem 6.32 If yi are independent and identically distributed, µ =
E (h (y)), E ‖h (y)‖4 <∞, g (u) has four continuous derivatives in a neigh-
borhood of µ, and E (exp (t ‖h (y)‖)) ≤ B < 1, for µ̂ = 1

n

∑n
i=1 h (yi) ,

V = E
(
(h (y)− µ) (h (y)− µ)′

)
and G = G (µ), as n→∞

P
(√

n (g (µ̂)− g (µ))√
G′V G

≤ x
)

= Φ(x) + n−1/2p1(x)φ(x)

+ n−1p2(x)φ(x) + o
(
n−1

)
uniformly in x, where p1(x) is an even polynomial of order 2, and p2(x) is
an odd polynomial of degree 5, with coeffi cients depending on the moments
of h (y) up to order 4.

For a proof see Theorem 2.2 of Hall (1992).
This Edgeworth expansion is identical in form to (6.23) derived in the previous section for the

sample mean. The only difference is in the coeffi cients of the polynomials.
We are also interested in expansions for studentized statistics such as the t-ratio. Theorem

6.32 applies to such cases as well, so long as the variance estimator can be written as a function of
sample means.

Theorem 6.33 Under the asssumptions of Theorem 6.32, if in addition
E ‖h (y)‖8 <∞, g (u) has five continuous derivatives in a neighborhood of

µ, G′V G > 0, and E
(

exp
(
t ‖h (y)‖2

))
≤ B < 1, for T and Ĝ

′
V̂ Ĝ as

defined in Section 6.16, as n→∞

P (T ≤ x) = Φ(x) + n−1/2p1(x)φ(x) + n−1p2(x)φ(x) + o
(
n−1

)
uniformly in x, where p1(x) is an even polynomial of order 2, and p2(x) is
an odd polynomial of degree 5, with coeffi cients depending on the moments
of h (y) up to order 8.

Again this Edgeworth expansion is identical in form to the others presented, with the only
difference appearing in the coeffi cients of the polynomials.

To see that Theorem 6.32 implies Theorem 6.33, define

h (yi) =

(
h (yi)

vec
(
h (yi)h (yi)

′) )

µ =
1

n

n∑
i=1

h (yi) =

(
µ̂

1
n

∑n
i=1 vec

(
h (yi)h (yi)

′) ) .
Notice g (µ̂), Ĝ = G (µ̂) and V̂ = 1

n

∑n
i=1 h (yi)h (yi)

′ − µ̂µ̂′ are all functions of µ. We apply
Theorem 6.32 to

√
ng (µ) where

g (µ) =
g (µ̂)− g (µ)√

Ĝ
′
V̂ Ĝ

.

The assumption E ‖h (y)‖8 <∞ implies E
∥∥h (y)

∥∥4
<∞, and the assumptions that g (u) has five

continuous derivatives and G′V G > 0 imply that g (u) has four continuous derivatives. Thus the
conditions of Theorem 6.32 are satisfied.
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Theorem 6.33 is an Edgeworth expansion for a standard t-ratio. One implication is that when
the normal distribution Φ(x) is used as an approximation to the actual distribution P (T ≤ x), the
error is O

(
n−1/2

)
P (T ≤ x)− Φ(x) = n−1/2p1(x)φ(x) +O

(
n−1

)
= O

(
n−1/2

)
.

Sometimes we are interested in the distribution of the absolute value of the t-ratio |T |. It has
the distribution

P (|T | ≤ x) = P (−x ≤ T ≤ x) = P (T ≤ x)− P (T < x) .

From Theorem 6.33 we find that this equals

Φ(x) + n−1/2p1(x)φ(x) + n−1p2(x)φ(x)

−
(

Φ(−x) + n−1/2p1(−x)φ(−x) + n−1p2(−x)φ(−x)
)

+ o
(
n−1

)
= 2Φ(x)− 1 + n−12p2(x)φ(x) + o

(
n−1

)
where the equality holds since Φ(−x) = 1 − Φ(x), φ(−x) = φ(x), p1(−x) = p1(x) (since φ and p1

are even functions) and p2(−x) = −p2(x) (since p2 is an odd function). Thus when the normal
distribution 2Φ(x)− 1 is used as an approximation to the actual distribution P (|T | ≤ x), the error
is O

(
n−1

)
P (|T | ≤ x)− (2Φ(x)− 1) = n−12p2(x)φ(x) + o

(
n−1

)
= O

(
n−1

)
.

What is occurring is that the O
(
n−1/2

)
skewness term affects the two distributional tails equally

and offsetting. One tail has extra probability and the other has too little (relative to the normal
approximation) so they offset. On the other hand the O

(
n−1

)
kurtosis term affects the two tails

equally with the same sign, so the effect doubles (either both tails have too much probability, or
both have too little probability, relative to the normal).

There is also a version of the Delta Method for Edgeworth expansions. Essentially, if two
random variables differ by Op(an) then they have the same Edgeworth expansions up to O(an).

Theorem 6.34 Suppose the distribution of a random variable T has the
Edgeworth expansion

P (T ≤ x) = Φ(x) + a−1
n p1(x)φ(x) + o

(
a−1
n

)
and a random variable X satisfies X = T + op

(
a−1
n

)
. Then X has the

Edgeworth expansion

P (X ≤ x) = Φ(x) + a−1
n p1(x)φ(x) + o

(
a−1
n

)
.

To prove this result, the assumption X = T + op
(
a−1
n

)
means that for any ε > 0 there is n

suffi ciently large such that P
(
|X − T | > a−1

n ε
)
≤ ε. Then

P (X ≤ x) ≤ P
(
X ≤ x, |X − T | ≤ a−1

n ε
)

+ ε

≤ P
(
T ≤ x+ a−1

n ε
)

+ ε

= Φ(x+ a−1
n ε) + a−1

n p1(x+ a−1
n ε)φ(x+ a−1

n ε) + ε+ o
(
a−1
n

)
≤ Φ(x) + a−1

n p1(x)φ(x) +
a−1
n ε√
2π

+ ε+ o
(
a−1
n

)
≤ Φ(x) + a−1

n p1(x)φ(x) + o
(
a−1
n

)
the last inequality since ε is arbitrary. Similarly, P (X ≤ x) ≥ Φ(x) + n−1/2p1(x)φ(x) + o

(
a−1
n

)
.
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6.22 Cornish-Fisher Expansions*

The previous two sections described expansions for distribution functions. For some purposes
it is useful to have similar expansions for the inverse of the distribution function, which are the
quantiles of the distribution. Such expansions are known as Cornish-Fisher expansions. Recall, the
αth quantile of a continuous distribution F (u) is the solution to F (q) = α. Suppose that a statistic
T has distribution Gn(x) = P (T ≤ x). For any α ∈ (0, 1) its αth quantile qα is the solution to
Gn(qα) = α. Let zα be the αth quantile of the standard normal, e.g. Φ(zα) = α.

Theorem 6.35 Suppose the distribution of a random variable T has the
Edgeworth expansion

Gn(x) = P (T ≤ x) = Φ(x) + n−1/2p1(x)φ(x) + n−1p2(x)φ(x) + o
(
n−1

)
uniformly in x. For any α ∈ (0, 1) let qα and zα be the αth quantile of
Gn(u) and Φ(u), that is the solutions to Gn(qα) = α and Φ(zα) = α. Then

qα = zα + n−1/2p11(zα) + n−1p21(zα) + o(n−1) (6.26)

where

p11(x) = −p1(x) (6.27)

p21(x) = −p2(x) + p1(x)p′1(x)− 1

2
xp1(x)2. (6.28)

Under the conditions of Theorem 6.33, the functions p11(x) and p21(x) are even and odd func-
tions of x with coeffi cients depending on the moments of h (y) up to order 4.

Theorem 6.35 can be derived from the Edgeworth expansion using Taylor expansions. Evalu-
ating the Edgeworth expansion at qα, substituting in (6.26), we have

α = Gn(qα)

= Φ(qα) + n−1/2p1(qα)φ(qα) + n−1p2(qα)φ(qα) + o
(
n−1

)
= Φ

(
zα + n−1/2p11(zα) + n−1p21(zα)

)
+ n−1/2p1(zα + n−1/2p11(zα))φ(zα + n−1/2p11(zα))

+ n−1p21(zα) + o(n−1).

Next, expand Φ (x) in a second-order Taylor expansion and p1(x) and φ(x) in first-order expansions,
both about zα. We obtain that the above expression equals

Φ(za) + n−1/2φ(zα) (p11(zα) + p1(zα))

+ n−1φ(zα)

(
p21(zα)− zαp1(zα)2

2
+ p′1(zα)p11(zα)− zαp1(zα)p11(zα) + p2(zα)

)
+ o(n−1).

For this to equal α, we deduce that p11(x) and p21(x) must take the values given in (6.27)-(6.28).

6.23 Uniform Stochastic Bounds*

For some applications it can be useful to obtain the stochastic order of the random variable

max
1≤i≤n

|yi| .
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This is the magnitude of the largest observation in the sample {y1, ..., yn}. If the support of the
distribution of yi is unbounded, then as the sample size n increases, the largest observation will
also tend to increase. It turns out that there is a simple characterization.

Theorem 6.36 If |yi|r is uniformly integrable, then as n→∞

n−1/r max
1≤i≤n

|yi|
p−→ 0. (6.29)

Furthermore, if exp(tyi) is uniformly integrable for some t > 0, then for
any η > 0

(log n)−(1+η) max
1≤i≤n

|yi|
p−→ 0. (6.30)

The proof of Theorem 6.36 is presented in Section 6.26.
Equivalently, (6.29) can be written as

max
1≤i≤n

|yi| = op(n
1/r) (6.31)

and (6.30) as
max

1≤i≤n
|yi| = op(log n). (6.32)

Equation (6.31) says that if y has r finite moments, then the largest observation will diverge
at a rate slower than n1/r. As r increases this rate decreases. Equation (6.32) shows that if we
strengthen this to y having all finite moments and a finite moment generating function (for example,
if y is normally distributed) then the largest observation will diverge slower than log n. Thus the
higher the moments, the slower the rate of divergence.

To simplify the notation, we may write (6.31) as yi = op(n
1/r) uniformly in 1 ≤ i ≤ n. It is

important to understand when the Op or op symbols are applied to subscript i random variables
whether the convergence is pointwise in i, or is uniform in i in the sense of (6.31)-(6.32).

Theorem 6.36 applies to random vectors. For example, if E ‖y‖r <∞ then

max
1≤i≤n

‖yi‖ = op(n
1/r).

6.24 Marcinkiewicz Weak Law of Large Numbers*

Theorem 6.37 If yi are independent and uniformly integrable, then for
any r > 1, as n→∞

n−r
n∑
i=1

|yi|r
p−→ 0.

To see an interesting implication of Theorem 6.37, recall that the sample mean y has variance
var (y) = σ2/n which has the natural estimator v̂ar (y) = σ̂2/n where σ̂2 = n−1

∑n
i=1 (yi − y)2

is the sample variance. Theorem 6.37 with r = 2 implies that if the observations are i.i.d. and
E |y| <∞ then

v̂ar (y) = n−2
n∑
i=1

(yi − y)2 ≤ n−2
n∑
i=1

y2
i

p−→ 0.
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This is notable because it only requires that the first moment of the distribution is finite (E |y| <∞).
The result holds even if the true variance is infinite (E

(
y2
)

=∞). Thus the estimator of the variance
of y converges in probability to zero, even when the true variance is infinite.

We will not use the Marcinkiewicz weak law for our standard asymptotic theory, but will find
it useful in our study of bootstrap asymptotic theory in Chapter 10.

We close this section by providing a proof of Theorem 6.37:

n−r
n∑
i=1

|yi|r ≤
(
n−1 max

1≤i≤n
|yi|
)r−1 1

n

n∑
i=1

|yi| = op(1)Op(1)
p−→ 0

by Theorems 6.2 and 6.36, and r > 1.

6.25 Semiparametric Effi ciency*

In this section we argue that the sample mean µ̂ and plug-in estimator θ̂ = g (µ̂) are effi cient
estimators of the parameters µ and θ. Our demonstration is based on the rich but technically
challenging theory of semiparametric effi ciency bounds. An excellent accessible review has been
provided by Newey (1990). We will also appeal to the asymptotic theory of maximum likelihood
estimation (see Chapter 5).

We start by examining the sample mean µ̂, for the asymptotic effi ciency of θ̂ will follow from
that of µ̂.

Recall, we know that if E ‖y‖2 < ∞ then the sample mean has the asymptotic distribution
√
n (µ̂− µ)

d−→ N (0,V ) .We want to know if µ̂ is the best feasible estimator, or if there is another
estimator with a smaller asymptotic variance. While it seems intuitively unlikely that another
estimator could have a smaller asymptotic variance, how do we know that this is not the case?

When we ask if µ̂ is the best estimator, we need to be clear about the class of models —the class
of permissible distributions. For estimation of the mean µ of the distribution of y the broadest
conceivable class is L1 = {F : E ‖y‖ <∞} . This class is too broad for our current purposes, as µ̂
is not asymptotically N (0,V ) for all F ∈ L1. A more realistic choice is L2 =

{
F : E ‖y‖2 <∞

}
—the class of finite-variance distributions. When we seek an effi cient estimator of the mean µ in
the class of models L2 what we are seeking is the best estimator, given that all we know is that
F ∈ L2.

To show that the answer is not immediately obvious, it might be helpful to review a set-
ting where the sample mean is ineffi cient. Suppose that y ∈ R has the double exponential den-
sity f (y | µ) = 2−1/2 exp

(
− |y − µ|

√
2
)
. Since var (y) = 1 we see that the sample mean satis-

fies
√
n (µ̃− µ)

d−→ N (0, 1). In this model the maximum likelihood estimator (MLE) µ̃ for µ
is the sample median. Recall from the theory of maximum likelihood that the MLE satisfies
√
n (µ̃− µ)

d−→ N
(

0,
(
E
(
S2
))−1

)
where S = ∂

∂µ log f (y | µ) = −
√

2 sgn (y − µ) is the score. We

can calculate that E
(
S2
)

= 2 and thus conclude that
√
n (µ̃− µ)

d−→ N (0, 1/2) . The asymptotic
variance of the MLE is one-half that of the sample mean. Thus when the true density is known to
be double exponential the sample mean is ineffi cient.

But the estimator which achieves this improved effi ciency —the sample median —is not generi-
cally consistent for the population mean. It is inconsistent if the density is asymmetric or skewed.
So the improvement comes at a great cost. Another way of looking at this is that the sample
median is effi cient in the class of densities

{
f (y | µ) = 2−1/2 exp

(
− |y − µ|

√
2
)}
but unless it is

known that this is the correct distribution class this knowledge is not very useful.
The relevant question is whether or not the sample mean is effi cient when the form of the

distribution is unknown. We call this setting semiparametric as the parameter of interest (the
mean) is finite dimensional while the remaining features of the distribution are unspecified. In the
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semiparametric context an estimator is called semiparametrically effi cient if it has the smallest
asymptotic variance among all semiparametric estimators.

The mathematical trick is to reduce the semiparametric model to a set of parametric “submod-
els”. The Cramer-Rao variance bound can be found for each parametric submodel. The variance
bound for the semiparametric model (the union of the submodels) is then defined as the supremum
of the individual variance bounds.

Formally, suppose that the true density of y is the unknown function f(y) with mean µ =
E (y) =

∫
yf(y)dy. A parametric submodel η for f(y) is a density fη (y | θ) which is a smooth

function of a parameter θ, and there is a true value θ0 such that fη (y | θ0) = f(y). The index
η indicates the submodels. The equality fη (y | θ0) = f(y) means that the submodel class passes
through the true density, so the submodel is a true model. The class of submodels η and parameter
θ0 depend on the true density f. In the submodel fη (y | θ) , the mean is µη(θ) =

∫
yfη (y | θ) dy

which varies with the parameter θ. Let η ∈ ℵ be the class of all submodels for f.
Since each submodel η is parametric we can calculate the effi ciency bound for estimation of µ

within this submodel. Specifically, given the density fη (y | θ) its likelihood score is

Sη =
∂

∂θ
log fη (y | θ0) ,

so the Cramer-Rao lower bound for estimation of θ is
(
E
(
SηS

′
η

))−1
. DefiningMη = ∂

∂θµη(θ0)′,

by Theorem 5.24 the Cramer-Rao lower bound for estimation of µ within the submodel η is V η =

M ′
η

(
E
(
SηS

′
η

))−1
Mη.

As V η is the effi ciency bound for the submodel class fη (y | θ) , no estimator can have an
asymptotic variance smaller than V η for any density fη (y | θ) in the submodel class, including the
true density f . This is true for all submodels η. Thus the asymptotic variance of any semiparametric
estimator cannot be smaller than V η for any conceivable submodel. Taking the supremum of the
Cramer-Rao bounds from all conceivable submodels we define4

V = sup
η∈ℵ

V η.

The asymptotic variance of any semiparametric estimator cannot be smaller than V , since it cannot
be smaller than any individual V η.We call V the semiparametric asymptotic variance bound
or semiparametric effi ciency bound for estimation of µ, as it is a lower bound on the asymptotic
variance for any semiparametric estimator. If the asymptotic variance of a specific semiparametric
estimator equals the bound V we say that the estimator is semiparametrically effi cient.

For many statistical problems it is quite challenging to calculate the semiparametric variance
bound. However, in some cases there is a simple method to find the solution. Suppose that we can
find a submodel η0 whose Cramer-Rao lower bound satisfies V η0 = V µ where V µ is the asymptotic
variance of a known semiparametric estimator. In this case, we can deduce that V = V η0 = V µ.
Otherwise (that is, if V η0 is not the effi ciency bound) there would exist another submodel η1 whose
Cramer-Rao lower bound satisfies V η0 < V η1 (because V η0 is not the supremum). This would
imply V µ < V η1 which contradicts the Cramer-Rao Theorem (since when submodel η1 is true
then no estimator can have a lower variance than V η1).

We now find this submodel for the sample mean µ̂. Our goal is to find a parametric submodel
whose Cramer-Rao bound for µ is V . This can be done by creating a tilted version of the true
density. Consider the parametric submodel

fη (y | θ) = f(y)
(
1 + θ′V −1 (y − µ)

)
(6.33)

4 It is not obvious that this supremum exists, as V η is a matrix so there is not a unique ordering of matrices.
However, in many cases (including the ones we study) the supremum exists and is unique.
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where f(y) is the true density and µ = E (y) . Note that∫
fη (y | θ) dy =

∫
f(y)dy + θ′V −1

∫
f(y) (y − µ) dy = 1

and for all θ close to zero fη (y | θ) ≥ 0. Thus fη (y | θ) is a valid density function. It is a parametric
submodel since fη (y | θ0) = f(y) when θ0 = 0. This parametric submodel has the mean

µ(θ) =

∫
yfη (y | θ) dy

=

∫
yf(y)dy +

∫
f(y)y (y − µ)′ V −1θdy

= µ+ θ

which is a smooth function of θ.
Since

∂

∂θ
log fη (y | θ) =

∂

∂θ
log
(
1 + θ′V −1 (y − µ)

)
=

V −1 (y − µ)

1 + θ′V −1 (y − µ)

it follows that the score function for θ is

Sη =
∂

∂θ
log fη (y | θ0) = V −1 (y − µ) .

By Theorem 5.24 the Cramer-Rao lower bound for θ is(
E
(
SηS

′
η

))−1
=
(
V −1E

(
(y − µ) (y − µ)′

)
V −1

)−1
= V .

The Cramer-Rao lower bound for µ(θ) = µ+ θ is also V , and this equals the asymptotic variance
of the moment estimator µ̂. This was what we set out to show.

In summary, we have shown that in the submodel (6.33) the Cramer-Rao lower bound for
estimation of µ is V which equals the asymptotic variance of the sample mean. This establishes
the following result.

Proposition 6.1 In the class of distributions F ∈ L2, the semiparametric
variance bound for estimation of µ is V = var(yi), and the sample mean
µ̂ is a semiparametrically effi cient estimator of the population mean µ.

We call this result a proposition rather than a theorem as we have not attended to the regularity
conditions.

It is a simple matter to extend this result to the plug-in estimator θ̂ = g (µ̂). We know from

Theorem 6.24 that if E
(
‖y‖2

)
<∞ and g (u) is continuously differentiable at u = µ then the plug-

in estimator has the asymptotic distribution
√
n
(
θ̂ − θ

)
d−→ N (0,G′V G) . We therefore consider

the class of distributions

L2(g) =
{
F : E

(
‖y‖2

)
<∞, g (u) is continuously differentiable at u = E (y)

}
.

For example, if θ = µ1/µ2 where µ1 = E (y1) and µ2 = E (y2) then

L2(g) =
{
F : E

(
y2

1

)
<∞, E

(
y2

2

)
<∞, and E (y2) 6= 0

}
.

For any submodel η the Cramer-Rao lower bound for estimation of θ = g (µ) is G′V ηG. For
the submodel (6.33) this bound is G′V G which equals the asymptotic variance of θ̂ from Theorem
6.24. Thus θ̂ is semiparametrically effi cient.
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Proposition 6.2 In the class of distributions F ∈ L2(g) the semiparamet-
ric variance bound for estimation of θ = g (µ) is G′V G, and the plug-in
estimator θ̂ = g (µ̂) is a semiparametrically effi cient estimator of θ.

The result in Proposition 6.2 is quite general. Smooth functions of sample moments are effi cient
estimators for their population counterparts. This is a very powerful result, as most econometric
estimators can be written (or approximated) as smooth functions of sample means.

6.26 Technical Proofs*

In this section we provide proofs of some of the more technical points in the chapter. These
proofs may only be of interest to more mathematically inclined students.

Proof of Theorem 6.2: Without loss of generality, we can assume E(yi) = 0 by recentering yi on
its expectation.

We need to show that for all δ > 0 and η > 0 there is some N < ∞ so that for all n ≥ N,
P (|y| > δ) ≤ η. Fix δ and η. Set ε = δη/3. Pick C <∞ large enough so that

E (|yi|1 (|yi| > C)) ≤ ε (6.34)

which is possible since yi is uniformly integrable (or if yi is i.i.d. and E |yi| < ∞). Define the
random variables

wi = yi1 (|yi| ≤ C)− E (yi1 (|yi| ≤ C))

zi = yi1 (|yi| > C)− E (yi1 (|yi| > C))

so that
y = w + z

and
E |y| ≤ E |w|+ E |z| . (6.35)

We now show that sum of the expectations on the right-hand-side can be bounded below 3ε.
First, by the Triangle Inequality (B.14) and the Expectation Inequality (B.27),

E |zi| = E |yi1 (|yi| > C)− E (yi1 (|yi| > C))|
≤ E |yi1 (|yi| > C)|+ |E (yi1 (|yi| > C))|
≤ 2E |yi1 (|yi| > C)|
≤ 2ε, (6.36)

and thus by the Triangle Inequality (B.14) and (6.36)

E |z| = E

∣∣∣∣∣ 1n
n∑
i=1

zi

∣∣∣∣∣ ≤ 1

n

n∑
i=1

E |zi| ≤ 2ε. (6.37)

Second, by a similar argument

|wi| = |yi1 (|yi| ≤ C)− E (yi1 (|yi| ≤ C))|
≤ |yi1 (|yi| ≤ C)|+ |E (yi1 (|yi| ≤ C))|
≤ 2 |yi1 (|yi| ≤ C)|
≤ 2C (6.38)
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where the final inequality is (6.34). Then by Jensen’s Inequality (B.24), the fact that the wi are
iid and mean zero, and (6.38),

(E |w|)2 ≤ E
(
|w|2

)
=
E
(
w2
i

)
n

≤ 4C2

n
≤ ε2 (6.39)

the final inequality holding for n ≥ 4C2/ε2 = 36C2/δ2η2. Equations (6.35), (6.37) and (6.39)
together show that

E |y| ≤ 3ε (6.40)

as desired.
Finally, by Markov’s Inequality (B.33) and (6.40),

P (|y| > δ) ≤ E |y|
δ
≤ 3ε

δ
= η,

the final equality by the definition of ε. We have shown that for any δ > 0 and η > 0 then for all
n ≥ 36C2/δ2η2, P (|y| > δ) ≤ η, as needed. �

Proof of Theorem 6.5: Assume E |yj | ≤ C <∞ for j = 1, ...,m. Applying the triangle inequality
(B.7)

E ‖y‖ ≤
m∑
j=1

E |yj | ≤ mC <∞.

For the reverse inequality, the Euclidean norm of a vector is larger than the length of any individual
component, so for any j, |yj | ≤ ‖y‖ . Thus, if E ‖y‖ <∞, then E |yj | <∞ for j = 1, ...,m. �

Proof of Theorem 6.7: We present a case for the one-dimensional case. Fix ε > 0 and set
J = 1/ε. By the continuity of F (u) we can find points u0 < u1 < · · · < uJ with F (uj) = j/J = jε.

Since zn
d−→ z and J is fixed there is an n suffi ciently large such that

max
j≤J
|Fn(uj)− F (uj)| ≤ ε. (6.41)

Since both Fn(u) and F (u) are monotonically increasing, for any u satisfying uj−1 ≤ u ≤ uj

Fn(u)− F (u) ≤ Fn(uj)− F (uj−1) = Fn(uj)− F (uj) + ε ≤ 2ε

where the final inequality is (6.41). Similarly,

Fn(u)− F (u) ≥ Fn(uj−1)− F (uj) = Fn(uj−1)− F (uj−1)− ε ≥ −2ε.

We have shown that for any u, |Fn(u)− F (u)| ≤ 2ε. Since ε is arbitrary this shows supu |Fn(u)− F (u)| −→
0 as n→∞. �

Proof of Theorem 6.10: By Lévy’s Continuity Theorem (Theorem 6.9), zn
d−→ z if and only if

E (exp (is′zn)) → E (exp (is′z)) for every s ∈ Rk. We can write s = tλ where t ∈ R and λ ∈ Rk
with λ′λ = 1. Thus the convergence holds if and only if E

(
exp

(
itλ′zn

))
→ E

(
exp

(
itλ′z

))
for

every t ∈ R and λ ∈ Rk with λ′λ = 1. Again by Lévy’s Continuity Theorem, this holds if and only

if λ′zn
d−→ λ′z for every λ ∈ Rk and with λ′λ = 1. �

Proof of Theorem 6.11: The moment bound E
(
y2
i

)
< ∞ is suffi cient to guarantee that µ and

σ2 are well defined and finite. Without loss of generality, it is suffi cient to consider the case µ = 0.
Our proof method is to calculate the moment generating function of

√
nyn and show that it

converges pointwise to exp
(
t2σ2/2

)
, the MGF function of N

(
0, σ2

)
. With a slight increase of
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notation this extends to the characteristic function. By Lévy’s Continuity Theorem (Theorem 6.9)

this implies
√
nyn

d−→ N
(
0, σ2

)
.

Let K (t) = log (E exp (tyi)) denote the the cumulant generating function of yi (see Section
2.33). From the results in Section 2.33 we know K(0) = 0, K(1)(0) = µ = 0 and K(2)(0) = σ2.
Since the second moment of yi is finite, K(2)(t) is continuous at t = 0. Thus we can apply a second
order Taylor series expansion about 0 to find that for t suffi ciently small

K(t) = K(0) +K(1)(0)t+
1

2
K(2)(t∗)t2

=
1

2
K(2)(t∗)t2 (6.42)

where t∗ lies on the line segment joining 0 and t, and K(2)(t∗) approaches σ2 as t→ 0.
We now compute Cn(t) = E exp (t

√
nyn) , the MGF of

√
nyn. By the properties of the expo-

nential function, the independence of the yi, and the definition of K(t)

logCn(t) = logE

(
exp

(
1√
n

n∑
i=1

tyi

))

= logE

(
n∏
i=1

exp

(
1√
n
tyi

))

= log

n∏
i=1

E
(

exp

(
1√
n
tyi

))

=
n∑
i=1

logE
(

exp

(
1√
n
tyi

))
= nK

(
t√
n

)
=

1

2
K(2)(tn)t2

where the final equality is (6.42) with tn → 0 as n → ∞. Since tn is bounded we deduce that
K(2) (tn)→ K(2)(0) = σ2. Hence, as n→∞,

logCn(t)→ 1

2
σ2t2

and

Cn(t)→ exp

(
1

2
σ2t2

)
which is the MGF of the N

(
0, σ2

)
distribution, as shown in Exercise 5.5. This completes the

proof. �

Proof of Theorem 6.13: Suppose that σ2 = 0. Then var (
√
n (y − E (y))) = σ2

n → σ2 = 0 so
√
n (y − E (y))

p−→ 0 and hence
√
n (y − E (y))

d−→ 0. The random variable N
(
0, σ2

)
= N (0, 0) is

0 with probability 1, so this is
√
n (y − E (y))

d−→ N
(
0, σ2

)
as stated.

Now suppose that σ2 > 0. This implies (6.8). Together with (6.7) this implies Lyapunov’s
condition, and hence Lindeberg’s condition, and hence Theorem 6.12, which states

√
n (y − E (y))

σ
1/2
n

d−→ N (0, 1) .

Combined with (6.9) we deduce
√
n (y − E (y))

d−→ N
(
0, σ2

)
as stated. �
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Proof of Theorem 6.14: Set λ ∈ Rk with λ′λ = 1 and define ui = λ′ (yi − µ) . The ui are i.i.d.
with E

(
u2
i

)
= λ′V λ <∞. By Theorem 6.11,

λ′
√
n (y − µ) =

1√
n

n∑
i=1

ui
d−→ N

(
0,λ′V λ

)
Notice that if z ∼ N (0,V ) then λ′z ∼ N

(
0,λ′V λ

)
. Thus

λ′
√
n (y − µ)

d−→ λ′z.

Since this holds for all λ, the conditions of Theorem 6.10 are satisfied and we deduce that

√
n (y − µ)

d−→ z ∼ N (0,V )

as stated. �

Proof of Theorem 6.15: Set λ ∈ Rk with with λ′λ = 1 and define uni = λ′V
−1/2
n yni. Notice

that uni are independent and has variance σ2
ni = λ′V

−1/2
n V niV

−1/2
n λ and σ2

n =
∑rn

i=1 σ
2
ni = 1. It

is suffi cient to verify (6.5). By the Cauchy-Schwarz inequality,

u2
ni =

(
λ′V

−1/2
n yni

)2

≤ λ′V −1
n λ ‖yni‖

2

≤ ‖yni‖2

λmin

(
V n

)
=
‖yni‖2

ν2
n

.

Then

1

σ2
n

rn∑
i=1

E
(
u2
ni1
(
u2
ni ≥ εσ2

n

))
=

rn∑
i=1

E
(
u2
ni1
(
u2
ni ≥ ε

))
≤ 1

ν2
n

rn∑
i=1

E
(
‖yni‖2 1

(
‖yni‖2 ≥ εν2

n

))
→ 0

by (6.14). This establishes (6.5). We deduce from Theorem 6.12 that

rn∑
i=1

uni = λ′V
−1/2
n

rn∑
i=1

yni
d−→ N (0, 1) = λ′z

where z ∼ N (0, Ik). Since this holds for all λ, the conditions of Theorem 6.10 are satisfied and we
deduce that

V
−1/2
n

rn∑
i=1

yni
d−→ N (0, Ik)

as stated. �

Proof of Theorem 6.16: Set λ ∈ Rk with λ′λ = 1 and define uni = λ′yni. Using the triangle
inequality and (6.15) we obtain

sup
n,i
E
(
|uni|2+δ

)
≤ sup

n,i
E
(
‖yni‖2+δ

)
<∞
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which is (6.7). Notice that

1

n

n∑
i=1

E
(
u2
ni

)
= λ′

1

n

n∑
i=1

V niλ = λ′V nλ→ λ′V λ

which is (6.9). Since the uni are independent, by Theorem 6.14,

λ′
√
ny =

1√
n

n∑
i=1

uni
d−→ N

(
0,λ′V λ

)
= λ′z

where z ∼ N (0,V ). Since this holds for all λ, the conditions of Theorem 6.10 are satisfied and we
deduce that √

ny
d−→ N (0,V )

as stated. �

Proof of Theorem 6.19: Fix ε > 0. Continuity of g(u) at c means that there exists δ > 0 such
that ‖u− c‖ ≤ δ implies ‖g(u)− g(c)‖ ≤ ε. Evaluated at u = zn we find

P (‖g(zn)− g(c)‖ ≤ ε) ≥ P (‖zn − c‖ ≤ ε) −→ 0

where the final convergence holds as n → ∞ by the assumption that zn
p−→ c. This implies

g(zn)
p−→ g(c). �

Proof of Theorem 6.23: By a vector Taylor series expansion, for each element of g,

gj(θn) = gj(θ) + gjθ(θ∗jn) (θn − θ)

where θ∗nj lies on the line segment between θn and θ and therefore converges in probability to θ.

It follows that ajn = gjθ(θ∗jn)− gjθ
p−→ 0. Stacking across elements of g, we find

√
n (g (θn)− g(θ)) = (G+ an)′

√
n (θn − θ)

d−→ G′ξ. (6.43)

The convergence is by Theorem 6.21, as G + an
d−→ G,

√
n (θn − θ)

d−→ ξ, and their product is
continuous. This establishes (6.19)

When ξ ∼ N (0,V ) , the right-hand-side of (6.43) equals

G′ξ = G′N (0,V ) = N
(
0,G′V G

)
establishing (6.20). �

Proof of Theorem 6.36: First consider (6.29). Take any δ > 0. The event
{

max1≤i≤n |yi| > δn1/r
}

means that at least one of the |yi| exceeds δn1/r, which is the same as the event
⋃n
i=1

{
|yi| > δn1/r

}
or equivalently

⋃n
i=1 {|yi|

r > δrn} . Since the probability of the union of events is smaller than the
sum of the probabilities,

P
(
n−1/r max

1≤i≤n
|yi| > δ

)
= P

(
n⋃
i=1

{|yi|r > δrn}
)

≤
n∑
i=1

P (|yi|r > nδr)

≤ 1

nδr

n∑
i=1

E (|yi|r 1 (|yi|r > nδr))

=
1

δr
max
i≤n

E (|yi|r 1 (|yi|r > nδr))
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where the second inequality is the strong form of Markov’s inequality (Theorem B.34) and the
final equality is since the yi have identical distributions. Since |yi|r is uniformly integrable, this
converges to zero as nδr →∞ . This establishes (6.29).

Now consider (6.30). Take any δ > 0 and pick n large enough so that (log n)η tδ ≥ 1. By a
similar calculation

P
(

(log n)−(1+η) max
1≤i≤n

|yi| > δ

)
= P

(
n⋃
i=1

{
exp |tyi| > exp

(
(log n)1+η tδ

)})

≤
n∑
i=1

P (exp |tyi| > n)

≤ max
i≤n

E (exp |tyi|1 (exp |tyi| > n))

where the second line uses exp
(

(log n)1+η tδ
)
≥ exp (log n) = n. Since exp |tyi| is uniformly inte-

grable, this converges to zero as n→∞ .This establishes (6.30). �
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Exercises

Exercise 6.1 For the following sequences, show an → 0 as n→∞

(a) an = 1/n

(b) an =
1

n
sin
(π

2
n
)

Exercise 6.2 Does the sequence an = sin
(π

2
n
)
converge? Find the liminf and limsup as n→∞.

Exercise 6.3 A weighted sample mean takes the form y∗ = 1
n

∑n
i=1wiyi for some non-negative

constants wi satisfying 1
n

∑n
i=1wi = 1. Assume yi is iid.

(a) Show that y∗ is unbiased for µ = E (yi) .

(b) Calculate var(y∗).

(c) Show that a suffi cient condition for y∗
p−→ µ is that 1

n2
∑n

i=1w
2
i −→ 0.

(d) Show that a suffi cient condition for the condition in part 3 is maxi≤nwi = o(n).

Exercise 6.4 Consider a random variable Xn with the probability distribution

Xn =


−n with probability 1/n
0 with probability 1− 2/n
n with probability 1/n

(a) Does Xn →p 0 as n→∞?

(b) Calculate E(Xn)

(c) Calculate var(Xn)

(d) Now suppose the distribution is

Xn =

{
0 with probability 1− n
n with probability 1/n

Calculate E(Xn)

(e) Conclude that Xn →p 0 as n→∞ and E(Xn)→ 0 are unrelated.

Exercise 6.5 A weighted sample mean takes the form y∗ = 1
n

∑n
i=1wiyi for some non-negative

constants wi satisfying 1
n

∑n
i=1wi = 1. Assume yi is iid.

(a) Show that y∗ is unbiased for µ = E (yi) .

(b) Calculate var(y∗).

(c) Show that a suffi cient condition for y∗
p−→ µ is that 1

n2
∑n

i=1w
2
i −→ 0.

(d) Show that a suffi cient condition for the condition in part c is maxi≤nwi/n→ 0.

Exercise 6.6 Take a random sample {y1, ..., yn}. Which statistics converge in probability by the
weak law of large numbers and continuous mapping theorem, assuming the moment exists?

(a) 1
n

∑n
i=1 y

2
i .
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(b) 1
n

∑n
i=1 y

3
i .

(c) maxi≤n yi.

(d) 1
n

∑n
i=1 y

2
i −

(
1
n

∑n
i=1 yi

)2
.

(e)
∑n
i=1 y

2
i∑n

i=1 yi
assuming E (yi) > 0.

(f) 1
(

1
n

∑n
i=1 yi > 0

)
where 1(a) is the indicator function.

Exercise 6.7 Take a random sample {X1, ..., Xn} where X > 0. Consider the sample geometric
mean

µ̂ =

(
n∏
i=1

Xi

)1/n

and population geometric mean
µ = exp (E (logX))

Assuming µ is finite, show that µ̂→p µ as n→∞.

Exercise 6.8 Take a random variable Z such that E (Z) = 0 and var(Z) = 1. Use Chebyshev’s
inequality to find a δ such that P (|Z| > δ) ≤ 0.05. Contrast this with the exact δ which solves
P (|Z| > δ) = 0.05 when Z ∼ N (0, 1) . Comment on the difference.

Exercise 6.9 Find the moment estimator µ̂3 of µ3 = E
(
y3
i

)
and show that

√
n (µ̂3 − µ3)

d−→
N
(
0, v2

)
for some v2. Write v2 as a function of the moments of yi.

Exercise 6.10 Suppose zn
p−→ c as n → ∞. Show that z2

n
p−→ c2 as n → ∞ using the definition

of convergence in probability, but not appealing to the CMT.

Exercise 6.11 Let µk = E
(
yk
)
for some integer k ≥ 1.

(a) Write down the natural moment estimator µ̂k of µk.

(b) Find the asymptotic distribution of
√
n (µ̂k − µk) as n→∞. (Assume E

(
X2k

)
<∞.)

Exercise 6.12 Let mk =
(
E
(
yk
))1/k

for some integer k ≥ 1.

(a) Write down an estimator m̂k of mk.

(b) Find the asymptotic distribution of
√
n (m̂k −mk) as n→∞.

Exercise 6.13 Suppose
√
n (µ̂− µ)

d−→ N
(
0, v2

)
and set β = µ2 and β̂ = µ̂2.

(a) Use the Delta Method to obtain an asymptotic distribution for
√
n
(
β̂ − β

)
.

(b) Now suppose µ = 0. Describe what happens to the asymptotic distribution from the previous
part.

(c) Improve on the previous answer. Under the assumption µ = 0, find the asymptotic distribu-
tion for nβ̂ = nµ̂2.

(d) Comment on the differences between the answers in parts 1 and 3.

Exercise 6.14 Let y be distributed Bernoulli P (y = 1) = p and P (y = 0) = 1 − p for some
unknown 0 < p < 1.
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(a) Show that p = E (y).

(b) Write down the natural moment estimator p̂ of p.

(c) Find var (p̂).

(d) Find the asymptotic distribution of
√
n (p̂− p) as n→∞.



Chapter 7

Asymptotic Theory for Least Squares

7.1 Introduction

It turns out that the asymptotic theory of least-squares estimation applies equally to the pro-
jection model and the linear CEF model, and therefore the results in this chapter will be stated for
the broader projection model described in Section 2.18. Recall that the model is

yi = x′iβ + ei

for i = 1, ..., n, where the linear projection coeffi cient β is

β =
(
E
(
xix

′
i

))−1 E (xiyi) .

Maintained assumptions in this chapter will be random sampling (Assumption 1.2) and finite
second moments (Assumption 2.1). We restate these conditions here for clarity.

Assumption 7.1

1. The observations (yi,xi), i = 1, ..., n, are independent and identically
distributed.

2. E
(
y2
)
<∞.

3. E
(
‖x‖2

)
<∞.

4. Qxx = E (xx′) is positive definite.

The distributional results will require a strengthening of these assumptions to finite fourth
moments. We discuss the specific conditions in Section 7.3.

7.2 Consistency of Least-Squares Estimator

In this section we use the weak law of large numbers (WLLN, Theorem 6.2 and Theorem 6.6)
and continuous mapping theorem (CMT, Theorem 6.19) to show that the least-squares estimator
β̂ is consistent for the projection coeffi cient β.

This derivation is based on three key components. First, the OLS estimator can be written as
a continuous function of a set of sample moments. Second, the WLLN shows that sample moments

218
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converge in probability to population moments. And third, the CMT states that continuous func-
tions preserve convergence in probability. We now explain each step in brief and then in greater
detail.

First, observe that the OLS estimator

β̂ =

(
1

n

n∑
i=1

xix
′
i

)−1(
1

n

n∑
i=1

xiyi

)
= Q̂

−1

xxQ̂xy

is a function of the sample moments Q̂xx = 1
n

∑n
i=1 xix

′
i and Q̂xy = 1

n

∑n
i=1 xiyi.

Second, by an application of the WLLN these sample moments converge in probability to the
population moments. Specifically, the fact that (yi,xi) are mutually independent and identically
distributed implies that any function of (yi,xi) is iid, including xix′i and xiyi. These variables also
have finite expectations under Assumption 7.1. Under these conditions, the WLLN (Theorem 6.6)
implies that as n→∞,

Q̂xx =
1

n

n∑
i=1

xix
′
i

p−→ E
(
xix

′
i

)
= Qxx (7.1)

and

Q̂xy =
1

n

n∑
i=1

xiyi
p−→ E (xiyi) = Qxy.

Third, the CMT ( Theorem 6.19) allows us to combine these equations to show that β̂ converges
in probability to β. Specifically, as n→∞,

β̂ = Q̂
−1

xxQ̂xy
p−→ Q−1

xxQxy

= β. (7.2)

We have shown that β̂
p−→ β, as n→∞. In words, the OLS estimator converges in probability to

the projection coeffi cient vector β as the sample size n gets large.
To fully understand the application of the CMT we walk through it in detail. We can write

β̂ = g
(
Q̂xx, Q̂xy

)
where g (A, b) = A−1b is a function of A and b. The function g (A, b) is a continuous function of
A and b at all values of the arguments such that A−1 exists. Assumption 7.1 specifies that Q−1

xx

exists and thus g (A, b) is continuous at A = Qxx. This justifies the application of the CMT in
(7.2).

For a slightly different demonstration of (7.2), recall that (4.6) implies that

β̂ − β = Q̂
−1

xxQ̂xe (7.3)

where

Q̂xe =
1

n

n∑
i=1

xiei.

The WLLN and (2.23) imply
Q̂xe

p−→ E (xiei) = 0.

Therefore

β̂ − β = Q̂
−1

xxQ̂xe
p−→ Q−1

xx0

= 0
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which is the same as β̂
p−→ β.

Theorem 7.1 Consistency of Least-Squares
Under Assumption 7.1, Q̂xx

p−→ Qxx, Q̂xy
p−→ Qxy, Q̂

−1

xx
p−→ Q−1

xx,

Q̂xe
p−→ 0, and β̂

p−→ β as n→∞.

Theorem 7.1 states that the OLS estimator β̂ converges in probability to β as n increases,
and thus β̂ is consistent for β. In the stochastic order notation, Theorem 7.1 can be equivalently
written as

β̂ = β + op(1). (7.4)

To illustrate the effect of sample size on the least-squares estimator consider the least-squares
regression

ln(Wagei) = β1Educationi + β2Experiencei + β3Experience
2
i + β4 + ei.

We use the sample of 24,344 white men from the March 2009 CPS. Randomly sorting the observa-
tions, and sequentially estimating the model by least-squares, starting with the first 5 observations,
and continuing until the full sample is used, the sequence of estimates are displayed in Figure 7.1.
You can see how the least-squares estimate changes with the sample size, but as the number of
observations increases it settles down to the full-sample estimate β̂1 = 0.114.
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Figure 7.1: The Least-Squares Estimator β̂1 as a Function of Sample Size n
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7.3 Asymptotic Normality

We started this chapter discussing the need for an approximation to the distribution of the OLS
estimator β̂. In Section 7.2 we showed that β̂ converges in probability to β. Consistency is a good
first step, but in itself does not describe the distribution of the estimator. In this section we derive
an approximation typically called the asymptotic distribution.

The derivation starts by writing the estimator as a function of sample moments. One of the
moments must be written as a sum of zero-mean random vectors and normalized so that the central
limit theorem can be applied. The steps are as follows.

Take equation (7.3) and multiply it by
√
n. This yields the expression

√
n
(
β̂ − β

)
=

(
1

n

n∑
i=1

xix
′
i

)−1(
1√
n

n∑
i=1

xiei

)
. (7.5)

This shows that the normalized and centered estimator
√
n
(
β̂ − β

)
is a function of the sample

average 1
n

∑n
i=1 xix

′
i and the normalized sample average

1√
n

∑n
i=1 xiei. Furthermore, the latter has

mean zero so the central limit theorem (CLT, Theorem 6.11) applies.
The product xiei is i.i.d. (since the observations (yi,xi) are i.i.d.) and mean zero (since

E (xiei) = 0). Define the k × k covariance matrix

Ω = E
(
xix

′
ie

2
i

)
.

The CLT requires the elements of Ω to be finite, written Ω < ∞. This requires a strengthing of
Assumption 7.1. We state the required conditions here.

Assumption 7.2

1. The observations (yi,xi), i = 1, ..., n, are independent and identically
distributed.

2. E
(
y4
)
<∞.

3. E
(
‖x‖4

)
<∞.

4. Qxx = E (xx′) is positive definite.

Assumption 7.2 implies that Ω <∞. To see this, take the j`th element of Ω, E
(
xjix`ie

2
i

)
. By

the Expectation Inequality (B.27), the j`th element of Ω is bounded by∣∣E (xjix`ie2
i

)∣∣ ≤ E ∣∣xjix`ie2
i

∣∣ = E
(
|xji| |x`i| e2

i

)
.

By two applications of the Cauchy-Schwarz Inequality (B.29), this is smaller than(
E
(
x2
jix

2
`i

))1/2 (E (e4
i

))1/2 ≤ (E (x4
ji

))1/4 (E (x4
`i

))1/4 (E (e4
i

))1/2
<∞

where the finiteness holds under Assumption 7.2.2 and 7.2.3. Thus Ω <∞.
An alternative way to show that the elements of Ω are finite is by using a matrix norm ‖·‖

(See Appendix A.23). Then by the Expectation Inequality, the Cauchy-Schwarz Inequality, and
Assumption 7.2

‖Ω‖ ≤ E
∥∥xix′ie2

i

∥∥ = E
(
‖xi‖2 e2

i

)
≤
(
E ‖xi‖4

)1/2 (
E
(
e4
i

))1/2
<∞.
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This is a more compact argument (often described as more elegant) but such manipulations should
not be done without understanding the notation and the applicability of each step of the argument.

Regardless, the finiteness of the covariance matrix means that we can then apply the multivariate
CLT (Theorem 6.14).

Theorem 7.2 Under Assumption 7.2,

Ω <∞ (7.6)

and
1√
n

n∑
i=1

xiei
d−→ N (0,Ω) (7.7)

as n→∞.

Putting together (7.1), (7.5), and (7.7),

√
n
(
β̂ − β

)
d−→ Q−1

xxN (0,Ω)

= N
(
0,Q−1

xxΩQ−1
xx

)
as n → ∞, where the final equality follows from the property that linear combinations of normal
vectors are also normal (Theorem 5.3).

We have derived the asymptotic normal approximation to the distribution of the least-squares
estimator.

Theorem 7.3 Asymptotic Normality of Least-Squares Estimator
Under Assumption 7.2, as n→∞

√
n
(
β̂ − β

)
d−→ N (0,V β)

where
V β = Q−1

xxΩQ−1
xx, (7.8)

Qxx = E (xix
′
i) , and Ω = E

(
xix

′
ie

2
i

)
.

In the stochastic order notation, Theorem 7.3 implies that

β̂ = β +Op(n
−1/2)

which is stronger than (7.4).

The matrix V β = Q−1
xxΩQ−1

xx is the variance of the asymptotic distribution of
√
n
(
β̂ − β

)
.

Consequently, V β is often referred to as the asymptotic covariance matrix of β̂. The expression
V β = Q−1

xxΩQ−1
xx is called a sandwich form, as the matrix Ω is sandwiched between two copies of

Q−1
xx.
It is useful to compare the variance of the asymptotic distribution given in (7.8) and the finite-

sample conditional variance in the CEF model as given in (4.10):

V
β̂

= var
(
β̂ |X

)
=
(
X ′X

)−1 (
X ′DX

) (
X ′X

)−1
. (7.9)
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Notice that V
β̂
is the exact conditional variance of β̂ and V β is the asymptotic variance of

√
n
(
β̂ − β

)
. Thus V β should be (roughly) n times as large as V β̂

, or V β ≈ nV
β̂
. Indeed,

multiplying (7.9) by n and distributing, we find

nV
β̂

=

(
1

n
X ′X

)−1( 1

n
X ′DX

)(
1

n
X ′X

)−1

which looks like an estimator of V β. Indeed, as n→∞

nV
β̂

p−→ V β.

The expression V
β̂
is useful for practical inference (such as computation of standard errors and

tests) since it is the variance of the estimator β̂ , while V β is useful for asymptotic theory as it
is well defined in the limit as n goes to infinity. We will make use of both symbols and it will be
advisable to adhere to this convention.

There is a special case where Ω and V β simplify. Suppose that

cov(xix
′
i, e

2
i ) = 0. (7.10)

Condition (7.10) holds in the homoskedastic linear regression model, but is somewhat broader.
Under (7.10) the asymptotic variance formulae simplify as

Ω = E
(
xix

′
i

)
E
(
e2
i

)
= Qxxσ

2

V β = Q−1
xxΩQ−1

xx = Q−1
xxσ

2 ≡ V 0
β. (7.11)

In (7.11) we define V 0
β = Q−1

xxσ
2 whether (7.10) is true or false. When (7.10) is true then V β = V 0

β,

otherwise V β 6= V 0
β. We call V

0
β the homoskedastic asymptotic covariance matrix.

Theorem 7.3 states that the sampling distribution of the least-squares estimator, after rescaling,
is approximately normal when the sample size n is suffi ciently large. This holds true for all joint
distributions of (yi,xi) which satisfy the conditions of Assumption 7.2, and is therefore broadly
applicable. Consequently, asymptotic normality is routinely used to approximate the finite sample

distribution of
√
n
(
β̂ − β

)
.

A diffi culty is that for any fixed n the sampling distribution of β̂ can be arbitrarily far from the
normal distribution. In Figure 6.1 we have already seen a simple example where the least-squares
estimate is quite asymmetric and non-normal even for reasonably large sample sizes. The normal
approximation improves as n increases, but how large should n be in order for the approximation
to be useful? Unfortunately, there is no simple answer to this reasonable question. The trouble
is that no matter how large is the sample size, the normal approximation is arbitrarily poor for
some data distribution satisfying the assumptions. We illustrate this problem using a simulation.
Let yi = β1xi + β2 + ei where xi is N (0, 1) , and ei is independent of xi with the Double Pareto
density f(e) = α

2 |e|
−α−1 , |e| ≥ 1. If α > 2 the error ei has zero mean and variance α/(α − 2).

As α approaches 2, however, its variance diverges to infinity. In this context the normalized least-

squares slope estimator
√
nα−2

α

(
β̂1 − β1

)
has the N(0, 1) asymptotic distribution for any α > 2.

In Figure 7.2 we display the finite sample densities of the normalized estimator
√
nα−2

α

(
β̂1 − β1

)
,

setting n = 100 and varying the parameter α. For α = 3.0 the density is very close to the N(0, 1)
density. As α diminishes the density changes significantly, concentrating most of the probability
mass around zero.

Another example is shown in Figure 7.3. Here the model is yi = β + ei where

ei =
uri − E (uri )(

E
(
u2r
i

)
− (E (uri ))

2
)1/2

(7.12)
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Figure 7.2: Density of Normalized OLS Estimator with Double Pareto Error

and ui ∼ N(0, 1) and some integer r ≥ 1.We show the sampling distribution of
√
n
(
β̂ − β

)
setting

n = 100, for r = 1, 4, 6 and 8. As r increases, the sampling distribution becomes highly skewed
and non-normal. The lesson from Figures 7.2 and 7.3 is that the N(0, 1) asymptotic approximation
is never guaranteed to be accurate.

7.4 Joint Distribution

Theorem 7.3 gives the joint asymptotic distribution of the coeffi cient estimators. We can use
the result to study the covariance between the coeffi cient estimators. For simplicity, suppose k = 2
with no intercept, both regressors are mean zero and the error is homoskedastic. Let σ2

1 and σ
2
2 be

the variances of x1i and x2i, and ρ be their correlation. Then using the formula for inversion of a
2× 2 matrix,

V 0
β = σ2Q−1

xx =
σ2

σ2
1σ

2
2 (1− ρ2)

[
σ2

2 −ρσ1σ2

−ρσ1σ2 σ2
1

]
.

Thus if x1i and x2i are positively correlated (ρ > 0) then β̂1 and β̂2 are negatively correlated (and
vice-versa).

For illustration, Figure 7.4 displays the probability contours of the joint asymptotic distribution
of β̂1−β1 and β̂2−β2 when β1 = β2 = 0, σ2

1 = σ2
2 = σ2 = 1, and ρ = 0.5. The coeffi cient estimators

are negatively correlated since the regressors are positively correlated. This means that if β̂1 is
unusually negative, it is likely that β̂2 is unusually positive, or conversely. It is also unlikely that
we will observe both β̂1 and β̂2 unusually large and of the same sign.

This finding that the correlation of the regressors is of opposite sign of the correlation of the coef-
ficient estimates is sensitive to the assumption of homoskedasticity. If the errors are heteroskedastic
then this relationship is not guaranteed.
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Figure 7.3: Density of Normalized OLS Estimator with Error Process (7.12)

This can be seen through a simple constructed example. Suppose that x1i and x2i only
take the values {−1,+1}, symmetrically, with P (x1i = x2i = 1) = P (x1i = x2i = −1) = 3/8, and
P (x1i = 1, x2i = −1) = P (x1i = −1, x2i = 1) = 1/8. You can check that the regressors are mean
zero, unit variance and correlation 0.5, which is identical with the setting displayed in Figure 7.4.

Now suppose that the error is heteroskedastic. Specifically, suppose that E
(
e2
i | x1i = x2i

)
=

5

4
and E

(
e2
i | x1i 6= x2i

)
=

1

4
. You can check that E

(
e2
i

)
= 1, E

(
x2

1ie
2
i

)
= E

(
x2

2ie
2
i

)
= 1 and

E
(
x1ix2ie

2
i

)
=

7

8
. Therefore

V β = Q−1
xxΩQ−1

xx

=
9

16

 1 −1

2

−1

2
1


 1

7

8
7

8
1


 1 −1

2

−1

2
1



=
4

3

 1
1

4
1

4
1

 .
Thus the coeffi cient estimators β̂1 and β̂2 are positively correlated (their correlation is 1/4.) The
joint probability contours of their asymptotic distribution is displayed in Figure 7.5. We can see
how the two estimators are positively associated.

What we found through this example is that in the presence of heteroskedasticity there is no
simple relationship between the correlation of the regressors and the correlation of the parameter
estimators.
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Figure 7.4: Contours of Joint Distribution of (β̂1, β̂2), Homoskedastic Case

We can extend the above analysis to study the covariance between coeffi cient sub-vectors. For
example, partitioning x′i = (x′1i,x

′
2i) and β

′ =
(
β′1,β

′
2

)
, we can write the general model as

yi = x′1iβ1 + x′2iβ2 + ei

and the coeffi cient estimates as β̂
′
=
(
β̂
′
1, β̂

′
2

)
. Make the partitions

Qxx =

[
Q11 Q12

Q21 Q22

]
, Ω =

[
Ω11 Ω12

Ω21 Ω22

]
.

From (2.41)

Q−1
xx =

[
Q−1

11·2 −Q−1
11·2Q12Q

−1
22

−Q−1
22·1Q21Q

−1
11 Q−1

22·1

]
where Q11·2 = Q11 − Q12Q

−1
22 Q21 and Q22·1 = Q22 − Q21Q

−1
11 Q12. Thus when the error is ho-

moskedastic,

cov
(
β̂1, β̂2

)
= −σ2Q−1

11·2Q12Q
−1
22

which is a matrix generalization of the two-regressor case.
In the general case, you can show that (Exercise 7.5)

V β =

[
V 11 V 12

V 21 V 22

]
(7.13)

where

V 11 = Q−1
11·2

(
Ω11 −Q12Q

−1
22 Ω21 −Ω12Q

−1
22 Q21 +Q12Q

−1
22 Ω22Q

−1
22 Q21

)
Q−1

11·2 (7.14)

V 21 = Q−1
22·1

(
Ω21 −Q21Q

−1
11 Ω11 −Ω22Q

−1
22 Q21 +Q21Q

−1
11 Ω12Q

−1
22 Q21

)
Q−1

11·2 (7.15)

V 22 = Q−1
22·1

(
Ω22 −Q21Q

−1
11 Ω12 −Ω21Q

−1
11 Q12 +Q21Q

−1
11 Ω11Q

−1
11 Q12

)
Q−1

22·1 (7.16)

Unfortunately, these expressions are not easily interpretable.
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Figure 7.5: Contours of Joint Distribution of β̂1 and β̂2, Heteroskedastic Case

7.5 Consistency of Error Variance Estimators

Using the methods of Section 7.2 we can show that the estimators σ̂2 = 1
n

∑n
i=1 ê

2
i and s

2 =
1

n−k
∑n

i=1 ê
2
i are consistent for σ

2.
The trick is to write the residual êi as equal to the error ei plus a deviation term

êi = yi − x′iβ̂
= ei + x′iβ − x′iβ̂

= ei − x′i
(
β̂ − β

)
.

Thus the squared residual equals the squared error plus a deviation

ê2
i = e2

i − 2eix
′
i

(
β̂ − β

)
+
(
β̂ − β

)′
xix

′
i

(
β̂ − β

)
. (7.17)

So when we take the average of the squared residuals we obtain the average of the squared errors,
plus two terms which are (hopefully) asymptotically negligible.

σ̂2 =
1

n

n∑
i=1

e2
i − 2

(
1

n

n∑
i=1

eix
′
i

)(
β̂ − β

)
(7.18)

+
(
β̂ − β

)′( 1

n

n∑
i=1

xix
′
i

)(
β̂ − β

)
.
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Indeed, the WLLN shows that

1

n

n∑
i=1

e2
i

p−→ σ2

1

n

n∑
i=1

eix
′
i

p−→ E
(
eix
′
i

)
= 0

1

n

n∑
i=1

xix
′
i

p−→ E
(
xix

′
i

)
= Qxx

and Theorem 7.1 shows that β̂
p−→ β. Hence (7.18) converges in probability to σ2, as desired.

Finally, since n/(n− k)→ 1 as n→∞, it follows that

s2 =

(
n

n− k

)
σ̂2 p−→ σ2.

Thus both estimators are consistent.

Theorem 7.4 Under Assumption 7.1, σ̂2 p−→ σ2 and s2 p−→ σ2 as n→∞.

7.6 Homoskedastic Covariance Matrix Estimation

Theorem 7.3 shows that
√
n
(
β̂ − β

)
is asymptotically normal with asymptotic covariance ma-

trix V β. For asymptotic inference (confidence intervals and tests) we need a consistent estimator
of V β. Under homoskedasticity, V β simplifies to V 0

β = Q−1
xxσ

2, and in this section we consider the
simplified problem of estimating V 0

β.

The standard moment estimator of Qxx is Q̂xx defined in (7.1), and thus an estimator for Q
−1
xx

is Q̂
−1

xx. Also, the standard estimator of σ
2 is the unbiased estimator s2 defined in (4.26). Thus a

natural plug-in estimator for V 0
β = Q−1

xxσ
2 is V̂

0

β = Q̂
−1

xxs
2.

Consistency of V̂
0

β for V
0
β follows from consistency of the moment estimators Q̂xx and s2,

and an application of the continuous mapping theorem. Specifically, Theorem 7.1 established that
Q̂xx

p−→ Qxx, and Theorem 7.4 established s2 p−→ σ2. The function V 0
β = Q−1

xxσ
2 is a continuous

function of Qxx and σ
2 so long as Qxx > 0, which holds true under Assumption 7.1.4. It follows

by the CMT that

V̂
0

β = Q̂
−1

xxs
2 p−→ Q−1

xxσ
2 = V 0

β

so that V̂
0

β is consistent for V
0
β, as desired.

Theorem 7.5 Under Assumption 7.1, V̂
0

β
p−→ V 0

β as n→∞.

It is instructive to notice that Theorem 7.5 does not require the assumption of homoskedasticity.

That is, V̂
0

β is consistent for V
0
β regardless if the regression is homoskedastic or heteroskedastic.

However, V 0
β = V β = avar(β̂) only under homoskedasticity. Thus in the general case, V̂

0

β is
consistent for a well-defined but non-useful object.
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7.7 Heteroskedastic Covariance Matrix Estimation

Theorems 7.3 established that the asymptotic covariance matrix of
√
n
(
β̂ − β

)
is V β =

Q−1
xxΩQ−1

xx.We now consider estimation of this covariance matrix without imposing homoskedastic-
ity. The standard approach is to use a plug-in estimator which replaces the unknowns with sample
moments.

As described in the previous section, a natural estimator for Q−1
xx is Q̂

−1

xx, where Q̂xx defined
in (7.1).

The moment estimator for Ω is

Ω̂ =
1

n

n∑
i=1

xix
′
iê

2
i ,

leading to the plug-in covariance matrix estimator

V̂
HC0

β = Q̂
−1

xxΩ̂Q̂
−1

xx. (7.19)

You can check that V̂
HC0

β = nV̂
HC0

β̂ where V̂
HC0

β̂ is the HC0 covariance matrix estimator introduced
in (4.31).

As shown in Theorem 7.1, Q̂
−1

xx
p−→ Q−1

xx , so we just need to verify the consistency of Ω̂. The
key is to replace the squared residual ê2

i with the squared error e
2
i , and then show that the difference

is asymptotically negligible.
Specifically, observe that

Ω̂ =
1

n

n∑
i=1

xix
′
iê

2
i

=
1

n

n∑
i=1

xix
′
ie

2
i +

1

n

n∑
i=1

xix
′
i

(
ê2
i − e2

i

)
.

The first term is an average of the i.i.d. random variables xix′ie
2
i , and therefore by the WLLN

converges in probability to its expectation, namely,

1

n

n∑
i=1

xix
′
ie

2
i

p−→ E
(
xix

′
ie

2
i

)
= Ω.

Technically, this requires that Ω has finite elements, which was shown in (7.6).
So to establish that Ω̂ is consistent for Ω it remains to show that

1

n

n∑
i=1

xix
′
i

(
ê2
i − e2

i

) p−→ 0. (7.20)

There are multiple ways to do this. A reasonable straightforward yet slightly tedious derivation is
to start by applying the Triangle Inequality (B.14) using a matrix norm:∥∥∥∥∥ 1

n

n∑
i=1

xix
′
i

(
ê2
i − e2

i

)∥∥∥∥∥ ≤ 1

n

n∑
i=1

∥∥xix′i (ê2
i − e2

i

)∥∥
=

1

n

n∑
i=1

‖xi‖2
∣∣ê2
i − e2

i

∣∣ . (7.21)
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Then recalling the expression for the squared residual (7.17), apply the Triangle Inequality and
then the Schwarz Inequality (B.10) twice∣∣ê2

i − e2
i

∣∣ ≤ 2
∣∣∣eix′i (β̂ − β)∣∣∣+

(
β̂ − β

)′
xix

′
i

(
β̂ − β

)
= 2 |ei|

∣∣∣x′i (β̂ − β)∣∣∣+

∣∣∣∣(β̂ − β)′ xi∣∣∣∣2
≤ 2 |ei| ‖xi‖

∥∥∥β̂ − β∥∥∥+ ‖xi‖2
∥∥∥β̂ − β∥∥∥2

. (7.22)

Combining (7.21) and (7.22), we find∥∥∥∥∥ 1

n

n∑
i=1

xix
′
i

(
ê2
i − e2

i

)∥∥∥∥∥ ≤ 2

(
1

n

n∑
i=1

‖xi‖3 |ei|
)∥∥∥β̂ − β∥∥∥

+

(
1

n

n∑
i=1

‖xi‖4
)∥∥∥β̂ − β∥∥∥2

= op(1). (7.23)

The expression is op(1) because
∥∥∥β̂ − β∥∥∥ p−→ 0 and both averages in parenthesis are averages of

random variables with finite mean under Assumption 7.2 (and are thus Op(1)). Indeed, by Hölder’s
Inequality (B.28)

E
(
‖xi‖3 |ei|

)
≤
(
E
(
‖xi‖3

)4/3
)3/4 (

E
(
e4
i

))1/4
=
(
E
(
‖xi‖4

))3/4 (
E
(
e4
i

))1/4
<∞.

We have established (7.20), as desired.

Theorem 7.6 Under Assumption 7.2, as n→∞, Ω̂ p−→ Ω and V̂
HC0

β
p−→

V β.

For an alternative proof of this result, see Section 7.22.

7.8 Summary of Covariance Matrix Notation

The notation we have introduced may be somewhat confusing so it is helpful to write it down in
one place. The exact variance of β̂ (under the assumptions of the linear regression model) and the

asymptotic variance of
√
n
(
β̂ − β

)
(under the more general assumptions of the linear projection

model) are

V
β̂

= var
(
β̂ |X

)
=
(
X ′X

)−1 (
X ′DX

) (
X ′X

)−1

V β = avar
(√

n
(
β̂ − β

))
= Q−1

xxΩQ−1
xx.

The HC0 estimators of these two covariance matrices are

V̂
HC0

β̂ =
(
X ′X

)−1

(
n∑
i=1

xix
′
iê

2
i

)(
X ′X

)−1

V̂
HC0

β = Q̂
−1

xxΩ̂Q̂
−1

xx
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and satisfy the simple relationship

V̂
HC0

β = nV̂
HC0

β̂ .

Similarly, under the assumption of homoskedasticity the exact and asymptotic variances simplify
to

V 0
β̂

=
(
X ′X

)−1
σ2

V 0
β = Q−1

xxσ
2

and their standard estimators are

V̂
0

β̂ =
(
X ′X

)−1
s2

V̂
0

β = Q̂
−1

xxs
2

which also satisfy the relationship

V̂
0

β = nV̂
0

β̂.

The exact formula and estimates are useful when constructing test statistics and standard errors.
However, for theoretical purposes the asymptotic formula (variances and their estimates) are more
useful, as these retain non-generate limits as the sample sizes diverge. That is why both sets of
notation are useful.

7.9 Alternative Covariance Matrix Estimators*

In Section 7.7 we introduced V̂
HC0

β as an estimator of V β. V̂
HC0

β is a scaled version of V̂
HC0

β̂

from Section 4.14, where we also introduced the alternative HC1, HC2 and HC3 heteroskedasticity-
robust covariance matrix estimators.We now discuss the consistency properties of these estimators.

To do so we introduce their scaled versions, e.g. V̂
HC1

β = nV̂
HC1

β̂ , V̂
HC2

β = nV̂
HC2

β̂ , and

V̂
HC3

β = nV̂
HC3

β̂ . These are (alternative) estimators of the asymptotic covariance matrix V β.

First, consider V̂
HC1

β . Notice that V̂
HC1

β = nV̂
HC1

β̂ = n
n−k V̂

HC0

β where V̂
HC0

β was defined in
(7.19) and shown consistent for V β in Theorem 7.6. If k is fixed as n → ∞, then n

n−k → 1 and
thus

V̂
HC1

β = (1 + o(1))V̂
HC0

β
p−→ V β.

Thus V̂
HC1

β is consistent for V β.

The alternative estimators V̂
HC2

β and V̂
HC3

β take the form (7.19) but with Ω̂ replaced by

Ω̃ =
1

n

n∑
i=1

(1− hii)−2 xix
′
iê

2
i

and

Ω =
1

n

n∑
i=1

(1− hii)−1 xix
′
iê

2
i ,

respectively. To show that these estimators also consistent for V β, given Ω̂
p−→ Ω, it is suffi cient

to show that the differences Ω̃− Ω̂ and Ω− Ω̂ converge in probability to zero as n→∞.
The trick is to use the fact that the leverage values are asymptotically negligible:

h∗n = max
1≤i≤n

hii = op(1). (7.24)
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(See Theorem 7.18 in Section 7.23).) Then using the Triangle Inequality∥∥∥Ω− Ω̂
∥∥∥ ≤ 1

n

n∑
i=1

∥∥xix′i∥∥ ê2
i

∣∣∣(1− hii)−1 − 1
∣∣∣

≤
(

1

n

n∑
i=1

‖xi‖2 ê2
i

)∣∣∣(1− h∗n)−1 − 1
∣∣∣ .

The sum in parenthesis can be shown to be Op(1) under Assumption 7.2 by the same argument as in

in the proof of Theorem 7.6. (In fact, it can be shown to converge in probability to E
(
‖xi‖2 e2

i

)
.)

The term in absolute values is op(1) by (7.24). Thus the product is op(1), which means that
Ω = Ω̂ + op(1) −→ Ω.

Similarly, ∥∥∥Ω̃− Ω̂
∥∥∥ ≤ 1

n

n∑
i=1

∥∥xix′i∥∥ ê2
i

∣∣∣(1− hii)−2 − 1
∣∣∣

≤
(

1

n

n∑
i=1

‖xi‖2 ê2
i

)∣∣∣(1− h∗n)−2 − 1
∣∣∣

= op(1).

Theorem 7.7 Under Assumption 7.2, as n → ∞, Ω̃
p−→ Ω, Ω

p−→ Ω,

V̂
HC1

β
p−→ V β, V̂

HC2

β
p−→ V β, and V̂

HC3

β
p−→ V β.

Theorem 7.7 shows that the alternative covariance matrix estimators are also consistent for the
asymptotic covariance matrix.

To simplify notation, for the remainder of the chapter we will use the notation V̂ β and V̂ β̂
to

refer to any of the heteroskedasticity-consistent covariance matrix estimators HC0, HC1, HC2 and
HC3, since they all have the same asymptotic limits.

7.10 Functions of Parameters

In most serious applications the researcher is actually interested in a specific transformation
of the coeffi cient vector β = (β1, ..., βk). For example, he or she may be interested in a single
coeffi cient βj or a ratio βj/βl. More generally, interest may focus on a quantity such as consumer
surplus which could be a complicated function of the coeffi cients. In any of these cases we can
write the parameter of interest θ as a function of the coeffi cients, e.g. θ = r(β) for some function
r : Rk → Rq. The estimate of θ is

θ̂ = r(β̂).

By the continuous mapping theorem (Theorem 6.19) and the fact β̂
p−→ β we can deduce that

θ̂ is consistent for θ (if the function r(·) is continuous).

Theorem 7.8 Under Assumption 7.1, if r(β) is continuous at the true
value of β, then as n→∞, θ̂ p−→ θ.
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Furthermore, if the transformation is suffi ciently smooth, by the Delta Method (Theorem 6.23)
we can show that θ̂ is asymptotically normal.

Assumption 7.3 r(β) : Rk → Rq is continuously differentiable at the
true value of β and R = ∂

∂βr(β)′ has rank q.

Theorem 7.9 Asymptotic Distribution of Functions of Parame-
ters
Under Assumptions 7.2 and 7.3, as n→∞,

√
n
(
θ̂ − θ

)
d−→ N (0,V θ) (7.25)

where
V θ = R′VβR.

In many cases, the function r(β) is linear:

r(β) = R′β

for some k × q matrix R. In particular, if R is a “selector matrix”

R =

(
I
0

)
then we can partition β = (β′1,β

′
2)′ so that R′β = β1 for β = (β′1,β

′
2)′. Then

V θ =
(
I 0

)
V β

(
I
0

)
= V 11,

the upper-left sub-matrix of V 11 given in (7.14). In this case (7.25) states that

√
n
(
β̂1 − β1

)
d−→ N (0,V 11) .

That is, subsets of β̂ are approximately normal with variances given by the conformable subcom-
ponents of V .

To illustrate the case of a nonlinear transformation, take the example θ = βj/βl for j 6= l. Then

R =
∂

∂β
r(β) =



∂
∂β1

(βj/βl)
...

∂
∂βj

(βj/βl)
...

∂
∂β`

(βj/βl)
...

∂
∂βk

(βj/βl)


=



0
...

1/βl
...

−βj/β2
l

...
0


(7.26)
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so
V θ = V jj/β

2
l + V llβ

2
j /β

4
l − 2V jlβj/β

3
l

where V ab denotes the abth element of V β.
For inference we need an estimator of the asymptotic variance matrix V θ = R′VβR, and for

this it is typical to use a plug-in estimator. The natural estimator of R is the derivative evaluated
at the point estimator

R̂ =
∂

∂β
r(β̂)′. (7.27)

The derivative in (7.27) may be calculated analytically or numerically. By analytically, we mean
working out for the formula for the derivative and replacing the unknowns by point estimates. For
example, if θ = βj/βl, then ∂

∂βr(β) is (7.26). However in some cases the function r(β) may be
extremely complicated and a formula for the analytic derivative may not be easily available. In
this case calculation by numerical differentiation may be preferable. Let δl = (0 · · · 1 · · · 0)′ be
the unit vector with the “1”in the lth place. Then the jlth element of a numerical derivative R̂ is

R̂jl =
rj(β̂ + δlε)− rj(β̂)

ε

for some small ε.
The estimator of V θ is

V̂ θ = R̂
′
V̂ βR̂. (7.28)

Alternatively, the homoskedastic covariance matrix estimator could be used, leading to a ho-
moskedastic covariance matrix estimator for θ.

V̂
0

θ = R̂
′
V̂ 0
βR̂ = R̂

′
Q̂
−1

xxR̂s
2. (7.29)

Given (7.27), (7.28) and (7.29) are simple to calculate using matrix operations.
As the primary justification for V̂ θ is the asymptotic approximation (7.25), V̂ θ is often called

an asymptotic covariance matrix estimator.
The estimator V̂ θ is consistent for V θ under the conditions of Theorem 7.9 since V̂ β

p−→ Vβ
by Theorem 7.6, and

R̂ =
∂

∂β
r(β̂)′

p−→ ∂

∂β
r(β)′ = R

since β̂
p−→ β and the function ∂

∂βr(β)′ is continuous in β.

Theorem 7.10 Under Assumptions 7.2 and 7.3, as n→∞,

V̂ θ
p−→ V θ.

Theorem 7.10 shows that V̂ θ is consistent for V θ and thus may be used for asymptotic inference.
In practice, we may set

V̂
θ̂

= R̂
′
V̂ β̂R̂ = n−1R̂

′
V̂ βR̂ (7.30)

as an estimator of the variance of θ̂.
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7.11 Asymptotic Standard Errors

As described in Section 4.15, a standard error is an estimator of the standard deviation of
the distribution of an estimator. Thus if V̂

β̂
is an estimator of the covariance matrix of β̂, then

standard errors are the square roots of the diagonal elements of this matrix. These take the form

s(β̂j) =
√
V̂
β̂j

=

√[
V̂
β̂

]
jj
.

Standard errors for θ̂ are constructed similarly. Supposing that θ = h(β) is real-valued then the
standard error for θ̂ is the square root of (7.30)

s(θ̂) =

√
R̂
′
V̂
β̂
R̂ =

√
n−1R̂

′
V̂ βR̂.

When the justification is based on asymptotic theory we call s(β̂j) or s(θ̂) an asymptotic standard
error for β̂j or θ̂. When reporting your results, it is good practice to report standard errors for each
reported estimate, and this includes functions and transformations of your parameter estimates.
This helps users of the work (including yourself) assess the estimation precision.

We illustrate using the log wage regression

log(Wage) = β1 education+ β2 experience+ β3 experience
2/100 + β4 + e.

Consider the following three parameters of interest.

1. Percentage return to education:
θ1 = 100β1

(100 times the partial derivative of the conditional expectation of log wages with respect to
education.)

2. Percentage return to experience for individuals with 10 years of experience:

θ2 = 100β2 + 20β3

(100 times the partial derivative of the conditional expectation of log wages with respect to
experience, evaluated at experience = 10.)

3. Experience level which maximizes expected log wages:

θ3 = −50β2/β3

(The level of experience at which the partial derivative of the conditional expectation of log
wages with respect to experience equals 0.)

The 4× 1 vector R for these three parameters is

R =


100
0
0
0

 ,


0

100
20
0

 ,


0

−50/β3

50β2/β
2
3

0

 ,

respectively.
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We use the subsample of married black women (all experience levels), which has 982 observa-
tions. The point estimates and standard errors are

̂log(Wage) = 0.118
(0.008)

education+ 0.016
(0.006)

experience− 0.022
(0.012)

experience2/100 + 0.947
(0.157)

.

(7.31)
The standard errors are the square roots of the Horn-Horn-Duncan covariance matrix estimate

V
β̂

=


0.632 0.131 −0.143 −11.1
0.131 0.390 −0.731 −6.25
−0.143 −0.731 1.48 9.43
−11.1 −6.25 9.43 246

× 10−4. (7.32)

We calculate that

θ̂1 = 100β̂1

= 100× 0.118

= 11.8

s(θ̂1) =
√

1002 × 0.632× 10−4

= 0.8

θ̂2 = 100β̂2 + 20β̂3

= 100× 0.016− 20× 0.022

= 1.16

s(θ̂2) =

√(
100 20

)( 0.390 −0.731
−0.731 1.48

)(
100
20

)
× 10−4

= 0.55

θ̂3 = −50β̂2/β̂3

= 50× 0.016/0.022

= 35.2

s(θ̂3) =

√√√√( −50/β̂3 50β̂2/β̂2
3

)( 0.390 −0.731
−0.731 1.48

)(
−50/β̂3

50β̂2/β̂2
3

)
× 10−4

= 7.0.

The calculations show that the estimate of the percentage return to education (for married
black women) is about 12% per year, with a standard error of 0.8. The estimate of the percentage
return to experience for those with 10 years of experience is 1.2% per year, with a standard error
of 0.6. And the estimate of the experience level which maximizes expected log wages is 35 years,
with a standard error of 7.

In Stata, the nlcom command can be used after estimation to perform the same calculations.
To illustrate, after estimation of (7.31) using the same covariance matrix option, use the commands
given below. In each case, Stata reports the coeffi cient estimate, asymptotic standard error and
95% confidence intervals.
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Stata Commands

nlcom 100*_b[education]
nlcom 100*_b[experience]+20*_b[exp2]
nlcom -50*_b[experience]/_b[exp2]

7.12 t-statistic

Let θ = r(β) : Rk → R be a parameter of interest, θ̂ its estimator and s(θ̂) its asymptotic
standard error. Consider the statistic

T (θ) =
θ̂ − θ
s(θ̂)

. (7.33)

Different writers have called (7.33) a t-statistic, a t-ratio, a z-statistic or a studentized sta-
tistic, sometimes using the different labels to distinguish between finite-sample and asymptotic
inference. As the statistics themselves are always (7.33) we won’t make this distinction, and will
simply refer to T (θ) as a t-statistic or a t-ratio. We also often suppress the parameter dependence,
writing it as T. The t-statistic is a simple function of the estimate, its standard error, and the
parameter.

By Theorems 7.9 and 7.10,
√
n
(
θ̂ − θ

)
d−→ N (0, Vθ) and V̂θ

p−→ Vθ. Thus

T (θ) =
θ̂ − θ
s(θ̂)

=

√
n
(
θ̂ − θ

)
√
V̂θ

d−→ N (0, Vθ)√
Vθ

= Z ∼ N (0, 1) .

The last equality is by the property that affi ne functions of normal distributions are normal (The-
orem 5.3).

This calculation also requires that Vθ > 0, otherwise the continuous mapping theorem cannot
be employed. This seems like an innocuous requirement, as it only excludes degenerate sampling
distributions. Formally we add the following assumption.

Assumption 7.4 V θ = R′VβR > 0.

Assumption 7.4 states that V θ is positive definite. Since R is full rank under Assumption 7.3,
a suffi cient condition is that Vβ > 0, and since Qxx > 0 a suffi cient condition is Ω > 0. Thus
Assumption 7.4 could be replaced by the assumption Ω > 0. Assumption 7.4 is weaker so this is
what we use.

Thus the asymptotic distribution of the t-ratio T (θ) is the standard normal. Since this distrib-
ution does not depend on the parameters, we say that T (θ) is asymptotically pivotal. In finite
samples T (θ) is not necessarily pivotal (as in the normal regression model) but the property means
that the dependence on unknowns diminishes as n increases.
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As we will see in the next section, it is also useful to consider the distribution of the absolute
t-ratio |T (θ)| . Since T (θ)

d−→ Z, the continuous mapping theorem yields |T (θ)| d−→ |Z| . Letting
Φ(u) = P (Z ≤ u) denote the standard normal distribution function, we can calculate that the
distribution function of |Z| is

P (|Z| ≤ u) = P (−u ≤ Z ≤ u)

= P (Z ≤ u)− P (Z < −u)

= Φ(u)− Φ(−u)

= 2Φ(u)− 1. (7.34)

Theorem 7.11 Under Assumptions 7.2, 7.3 and 7.4, T (θ)
d−→ Z ∼ N (0, 1)

and |tn(θ)| d−→ |Z| .

The asymptotic normality of Theorem 7.11 is used to justify confidence intervals and tests for
the parameters.

7.13 Confidence Intervals

The estimator θ̂ is a point estimator for θ, meaning that θ̂ is a single value in Rq. A broader
concept is a set estimator Ĉ which is a collection of values in Rq. When the parameter θ is
real-valued then it is common to focus on sets of the form Ĉ = [L̂, Û ] which is called an interval
estimator for θ.

An interval estimate Ĉ is a function of the data and hence is random. The coverage proba-
bility of the interval Ĉ = [L̂, Û ] is P(θ ∈ Ĉ). The randomness comes from Ĉ as the parameter θ is
treated as fixed. In Section 5.13 we introduced confidence intervals for the normal regression model,
which used the finite sample distribution of the t-statistic to construct exact confidence intervals
for the regression coeffi cients. When we are outside the normal regression model we cannot rely
on the exact normal distribution theory, but instead use asymptotic approximations. A benefit is
that we can construct confidence intervals for general parameters of interest θ, not just regression
coeffi cients.

An interval estimator Ĉ is called a confidence interval when the goal is to set the coverage
probability to equal a pre-specified target such as 90% or 95%. Ĉ is called a 1 − α confidence
interval if infθ Pθ(θ ∈ Ĉ) = 1− α.

When θ̂ is asymptotically normal with standard error s(θ̂), the conventional confidence interval
for θ takes the form

Ĉ =
[
θ̂ − c · s(θ̂), θ̂ + c · s(θ̂)

]
(7.35)

where c equals the 1 − α quantile of the distribution of |Z|. Using (7.34) we calculate that c is
equivalently the 1− α/2 quantile of the standard normal distribution. Thus, c solves

2Φ(c)− 1 = 1− α.

This can be computed by, for example, norminv(1-α/2) in MATLAB. The confidence interval
(7.35) is symmetric about the point estimator θ̂, and its length is proportional to the standard
error s(θ̂).
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Equivalently, (7.35) is the set of parameter values for θ such that the t-statistic T (θ) is smaller
(in absolute value) than c, that is

Ĉ = {θ : |T (θ)| ≤ c} =

{
θ : −c ≤ θ̂ − θ

s(θ̂)
≤ c
}
.

The coverage probability of this confidence interval is

P
(
θ ∈ Ĉ

)
= P (|T (θ)| ≤ c)→ P (|Z| ≤ c) = 1− α

where the limit is taken as n→∞, and holds since T (θ) is asymptotically |Z| by Theorem 7.11. We
call the limit the asymptotic coverage probability, and call Ĉ an asymptotic 1−α% confidence
interval for θ. Since the t-ratio is asymptotically pivotal, the asymptotic coverage probability is
independent of the parameter θ.

It is useful to contrast the confidence interval (7.35) with (5.11) for the normal regression
model. They are similar, but there are differences. The normal regression interval (5.11) only
applies to regression coeffi cients β, not to functions θ of the coeffi cients. The normal interval
(5.11) also is constructed with the homoskedastic standard error, while (7.35) can be constructed
with a heteroskedastic-robust standard error. Furthermore, the constants c in (5.11) are calculated
using the student t distribution, while c in (7.35) are calculated using the normal distribution. The
difference between the student t and normal values are typically small in practice (since sample sizes
are large in typical economic applications). However, since the student t values are larger, it results
in slightly larger confidence intervals, which is probably reasonable. (A practical rule of thumb is
that if the sample sizes are suffi ciently small that it makes a difference, then probably neither (5.11)
nor (7.35) should be trusted.) Despite these differences, the coincidence of the intervals means that
inference on regression coeffi cients is generally robust to using either the exact normal sampling
assumption or the asymptotic large sample approximation, at least in large samples.

In Stata, by default the program reports 95% confidence intervals for each coeffi cient where
the critical values c are calculated using the tn−k distribution. This is done for all standard error
methods even though it is only justified for homoskedastic standard errors and under normality.

The standard coverage probability for confidence intervals is 95%, leading to the choice c = 1.96
for the constant in (7.35). Rounding 1.96 to 2, we obtain what might be the most commonly used
confidence interval in applied econometric practice

Ĉ =
[
θ̂ − 2s(θ̂), θ̂ + 2s(θ̂)

]
.

This is a useful rule-of thumb. This asymptotic 95% confidence interval Ĉ is simple to compute and
can be roughly calculated from tables of coeffi cient estimates and standard errors. (Technically, it
is an asymptotic 95.4% interval, due to the substitution of 2.0 for 1.96, but this distinction is overly
precise.)

Theorem 7.12 Under Assumptions 7.2, 7.3 and 7.4, for Ĉ defined in

(7.35), with c = Φ−1(1 − α/2), P
(
θ ∈ Ĉ

)
−→ 1 − α. For c = 1.96,

P
(
θ ∈ Ĉ

)
−→ 0.95.

Confidence intervals are a simple yet effective tool to assess estimation uncertainty. When
reading a set of empirical results, look at the estimated coeffi cient estimates and the standard
errors. For a parameter of interest, compute the confidence interval Cn and consider the meaning
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of the spread of the suggested values. If the range of values in the confidence interval are too wide
to learn about θ, then do not jump to a conclusion about θ based on the point estimate alone.

For illustration, consider the three examples presented in Section 7.11 based on the log wage
regression for married black women.

Percentage return to education. A 95% asymptotic confidence interval is 11.8±1.96×0.8 = [10.2,
13.3].

Percentage return to experience for individuals with 10 years experience. A 90% asymptotic
confidence interval is 1.1± 1.645× 0.4 = [0.5, 1.8].

Experience level which maximizes expected log wages. An 80% asymptotic confidence interval
is 35± 1.28× 7 = [26, 44].

7.14 Regression Intervals

In the linear regression model the conditional mean of yi given xi = x is

m(x) = E (yi | xi = x) = x′β.

In some cases, we want to estimate m(x) at a particular point x. Notice that this is a linear
function of β. Letting r(β) = x′β and θ = r(β), we see that m̂(x) = θ̂ = x′β̂ and R = x, so

s(θ̂) =
√
x′V̂ β̂x. Thus an asymptotic 95% confidence interval for m(x) is[

x′β̂ ± 1.96
√
x′V̂ β̂x

]
.

It is interesting to observe that if this is viewed as a function of x, the width of the confidence
interval is dependent on x.

To illustrate, we return to the log wage regression (3.13) of Section 3.7. The estimated regression
equation is

̂log(Wage) = x′β̂ = 0.155x+ 0.698

where x = education. The covariance matrix estimate from (4.38) is

V̂
β̂

=

(
0.001 −0.015
−0.015 0.243

)
.

Thus the 95% confidence interval for the regression is

0.155x+ 0.698± 1.96
√

0.001x2 − 0.030x+ 0.243.

The estimated regression and 95% intervals are shown in Figure 7.6. Notice that the confidence
bands take a hyperbolic shape. This means that the regression line is less precisely estimated for
very large and very small values of education.

Plots of the estimated regression line and confidence intervals are especially useful when the
regression includes nonlinear terms. To illustrate, consider the log wage regression (7.31) which
includes experience and its square, with covariance matrix (7.32). We are interested in plotting
the regression estimate and regression intervals as a function of experience. Since the regression
also includes education, to plot the estimates in a simple graph we need to fix education at a
specific value. We select education=12. This only affects the level of the estimated regression, since
education enters without an interaction. Define the points of evaluation

z(x) =


12
x

x2/100
1
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Figure 7.6: Wage on Education Regression Intervals

where x =experience.
Thus the 95% regression interval for education=12, as a function of x =experience is

0.118× 12 + 0.016 x− 0.022 x2/100 + 0.947

± 1.96

√√√√√√√z(x)′


0.632 0.131 −0.143 −11.1
0.131 0.390 −0.731 −6.25
−0.143 −0.731 1.48 9.43
−11.1 −6.25 9.43 246

 z(x)× 10−4

= 0.016 x− .00022 x2 + 2.36

± 0.0196
√

70.608− 9.356 x+ 0.54428 x2 − 0.01462 x3 + 0.000148 x4.

The estimated regression and 95% intervals are shown in Figure 7.7. The regression interval
widens greatly for small and large values of experience, indicating considerable uncertainty about
the effect of experience on mean wages for this population. The confidence bands take a more
complicated shape than in Figure 7.6 due to the nonlinear specification.

7.15 Forecast Intervals

Suppose we are given a value of the regressor vector xn+1 for an individual outside the sample,
and we want to forecast (guess) yn+1 for this individual. This is equivalent to forecasting yn+1

given xn+1 = x, which will generally be a function of x. A reasonable forecasting rule is the condi-
tional mean m(x) as it is the mean-square-minimizing forecast. A point forecast is the estimated
conditional mean m̂(x) = x′β̂. We would also like a measure of uncertainty for the forecast.

The forecast error is ên+1 = yn+1− m̂(x) = en+1−x′
(
β̂ − β

)
. As the out-of-sample error en+1
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Figure 7.7: Wage on Experience Regression Intervals

is independent of the in-sample estimate β̂, this has conditional variance

E
(
ê2
n+1|xn+1 = x

)
= E

(
e2
n+1 − 2x′

(
β̂ − β

)
en+1 + x′

(
β̂ − β

)(
β̂ − β

)′
x|xn+1 = x

)
= E

(
e2
n+1 | xn+1 = x

)
+ x′E

(
β̂ − β

)(
β̂ − β

)′
x

= σ2(x) + x′Vβ̂x. (7.36)

Under homoskedasticity E
(
e2
n+1 | xn+1

)
= σ2. In this case a simple estimator of (7.36) is σ̂2 +

x′V̂ β̂x, so a standard error for the forecast is ŝ(x) =
√
σ̂2 + x′V̂ β̂x. Notice that this is different

from the standard error for the conditional mean.
The conventional 95% forecast interval for yn+1 uses a normal approximation and sets[

x′β̂ ± 2ŝ(x)
]
.

It is diffi cult, however, to fully justify this choice. It would be correct if we have a normal approx-
imation to the ratio

en+1 − x′
(
β̂ − β

)
ŝ(x)

.

The diffi culty is that the equation error en+1 is generally non-normal, and asymptotic theory cannot
be applied to a single observation. The only special exception is the case where en+1 has the exact
distribution N(0, σ2), which is generally invalid.

To get an accurate forecast interval, we need to estimate the conditional distribution of en+1

given xn+1 = x, which is a much more diffi cult task. Perhaps due to this diffi culty, many applied

forecasters use the simple approximate interval
[
x′β̂ ± 2ŝ(x)

]
despite the lack of a convincing

justification.
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7.16 Wald Statistic

Let θ = r(β) : Rk → Rq be any parameter vector of interest, θ̂ its estimator and V̂
θ̂
its

covariance matrix estimator. Consider the quadratic form

W (θ) =
(
θ̂ − θ

)′
V̂
−1

θ̂

(
θ̂ − θ

)
= n

(
θ̂ − θ

)′
V̂
−1

θ

(
θ̂ − θ

)
. (7.37)

where V̂ θ = nV̂
θ̂
.When q = 1, then W (θ) = T (θ)2 is the square of the t-ratio. When q > 1, W (θ)

is typically called a Wald statistic as it was proposed by Wald (1943). We are interested in its
sampling distribution.

The asymptotic distribution of W (θ) is simple to derive given Theorem 7.9 and Theorem 7.10,
which show that √

n
(
θ̂ − θ

)
d−→ Z ∼ N (0,V θ)

and
V̂ θ

p−→ V θ.

It follows that
W (θ) =

√
n
(
θ̂ − θ

)′
V̂
−1

θ

√
n
(
θ̂ − θ

)
d−→ Z′V −1

θ Z

a quadratic in the normal random vector Z. As shown in Theorem 5.11, the distribution of this
quadratic form is χ2

q , a chi-square random variable with q degrees of freedom.

Theorem 7.13 Under Assumptions 7.2, 7.3 and 7.4, as n→∞,

W (θ)
d−→ χ2

q .

Theorem 7.13 is used to justify multivariate confidence regions and multivariate hypothesis
tests.

7.17 Homoskedastic Wald Statistic

Under the conditional homoskedasticity assumption E
(
e2
i | xi

)
= σ2 we can construct the Wald

statistic using the homoskedastic covariance matrix estimator V̂
0

θ defined in (7.29). This yields a
homoskedastic Wald statistic

W 0(θ) =
(
θ̂ − θ

)′ (
V̂

0

θ̂

)−1 (
θ̂ − θ

)
= n

(
θ̂ − θ

)′ (
V̂

0

θ

)−1 (
θ̂ − θ

)
. (7.38)

Under the additional assumption of conditional homoskedasticity, it has the same asymptotic
distribution as W (θ).

Theorem 7.14 Under Assumptions 7.2, 7.3, and E
(
e2
i | xi

)
= σ2 > 0, as

n→∞,
W 0(θ)

d−→ χ2
q .
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7.18 Confidence Regions

A confidence region Ĉ is a set estimator for θ ∈ Rq when q > 1. A confidence region Ĉ is a set
in Rq intended to cover the true parameter value with a pre-selected probability 1 − α. Thus an
ideal confidence region has the coverage probability P(θ ∈ Ĉ) = 1−α. In practice it is typically not
possible to construct a region with exact coverage, but we can calculate its asymptotic coverage.

When the parameter estimator satisfies the conditions of Theorem 7.13, a good choice for a
confidence region is the ellipse

Ĉ = {θ : W (θ) ≤ c1−α}

with c1−α the 1− α quantile of the χ2
q distribution. (Thus Fq(c1−α) = 1− α.) It can be computed

by, for example, chi2inv(1-α,q)in MATLAB.
Theorem 7.13 implies

P
(
θ ∈ Ĉ

)
→ P

(
χ2
q ≤ c1−α

)
= 1− α

which shows that Ĉ has asymptotic coverage 1− α.
To illustrate the construction of a confidence region, consider the estimated regression (7.31) of

the model

̂log(Wage) = β1 education+ β2 experience+ β3 experience
2/100 + β4.

Suppose that the two parameters of interest are the percentage return to education θ1 = 100β1 and
the percentage return to experience for individuals with 10 years experience θ2 = 100β2 + 20β3.
These two parameters are a linear transformation of the regression parameters with point estimates

θ̂ =

(
100 0 0 0
0 100 20 0

)
β̂ =

(
11.8
1.2

)
,

and have the covariance matrix estimate

V̂
θ̂

=

(
0 100 0 0
0 0 100 20

)
V̂
β̂


0 0

100 0
0 100
0 20


=

(
0.632 0.103
0.103 0.157

)
with inverse

V̂
−1

θ̂ =

(
1.77 −1.16
−1.16 7.13

)
.

Thus the Wald statistic is

W (θ) =
(
θ̂ − θ

)′
V̂
−1

θ̂

(
θ̂ − θ

)
=

(
11.8− θ1

1.2− θ2

)′(
1.77 −1.16
−1.16 7.13

)(
11.8− θ1

1.2− θ2

)
= 1.77 (11.8− θ1)2 − 2.32 (11.8− θ1) (1.2− θ2) + 7.13 (1.2− θ2)2 .

The 90% quantile of the χ2
2 distribution is 4.605 (we use the χ

2
2 distribution as the dimension

of θ is two), so an asymptotic 90% confidence region for the two parameters is the interior of the
ellipse W (θ) = 4.605 which is displayed in Figure 7.8. Since the estimated correlation of the two
coeffi cient estimates is modest (about 0.3) the region is modestly elliptical.
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Figure 7.8: Confidence Region for Return to Experience and Return to Education

7.19 Edgeworth Expansion*

Theorem 7.11 showed that the t-ratio T (θ) is asymptotically normal. In practice this means
that we use the normal distribution to approximate the finite sample distribution of T . How good is
this approximation? Some insight into the accuracy of the normal approximation can be obtained
by an Edgeworth expansion, which is a higher-order approximation to the distribution of T . The
following result is an application of Theorem 6.32.

Theorem 7.15 Under Assumptions 7.2, 7.3 and Ω > 0, E ‖e‖16 < ∞,
E ‖x‖16 <∞, g (u) has five continuous derivatives in a neighborhood of β,

and E
(

exp
(
t
(
‖e‖4 + ‖x‖4

)))
≤ B < 1, as n→∞

P (T (θ) ≤ x) = Φ(x) + n−1/2p1(x)φ(x) + n−1p2(x)φ(x) + o
(
n−1

)
uniformly in x, where p1(x) is an even polynomial of order 2, and p2(x) is
an odd polynomial of degree 5, with coeffi cients depending on the moments
of e and x up to order 16.

Theorem 7.15 shows that the finite sample distribution of the t-ratio can be approximated up
to o(n−1) by the sum of three terms, the first being the standard normal distribution, the second
a O

(
n−1/2

)
adjustment and the third a O

(
n−1

)
adjustment.
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Consider a one-sided confidence interval C =
[
θ̂ − z1−αs(θ̂),∞

)
where z1−α is the 1 − αth

quantile of Z ∼ N (0, 1), thus Φ(z1−α)− 1− α. Then

P (θ ∈ C) = P (T (θ) ≤ z1−α)

= Φ(z1−α) + n−1/2p1(z1−α)φ(z1−α) +O
(
n−1

)
= 1− α+O

(
n−1/2

)
.

This means that the actual coverage is within O
(
n−1/2

)
of the desired 1− α level.

Now consider a two-sided interval C =
[
θ̂ − z1−α/2s(θ̂), θ̂ + z1−α/2s(θ̂)

]
. It has coverage

P (θ ∈ C) = P
(
|T (θ)| ≤ z1−α/2

)
= 2Φ(z1−α/2)− 1 + n−12p2(z1−α/2)φ(z1−α/2) + o

(
n−1

)
= 1− α+O

(
n−1

)
.

This means that the actual coverage is within O
(
n−1

)
of the desired 1 − α level. The accuracy

is better than the one-sided interval because the O
(
n−1/2

)
term in the Edgeworth expansion has

offsetting effects in the two tails of the distribution.

7.20 Semiparametric Effi ciency in the Projection Model*

In Section 4.8 we presented the Gauss-Markov theorem, which stated that in the homoskedastic
CEF model, in the class of linear unbiased estimators the one with the smallest variance is least-
squares. As we noted in that section, the restriction to linear unbiased estimators is unsatisfactory
as it leaves open the possibility that an alternative (non-linear) estimator could have a smaller
asymptotic variance. In addition, the restriction to the homoskedastic CEF model is also unsatis-
factory as the projection model is more relevant for empirical application. The question remains:
what is the most effi cient estimator of the projection coeffi cient β (or functions θ = h(β)) in the
projection model?

It turns out that it is straightforward to show that the projection model falls in the estimator
class considered in Proposition 6.2. It follows that the least-squares estimator is semiparametrically
effi cient in the sense that it has the smallest asymptotic variance in the class of semiparametric
estimators of β. This is a more powerful and interesting result than the Gauss-Markov theorem.

To see this, it is worth rephrasing Proposition 6.2 with amended notation. Suppose that a
parameter of interest is θ = g(µ) where µ = E (zi) , for which the moment estimators are µ̂ =
1
n

∑n
i=1 zi and θ̂ = g(µ̂). Let

L2(g) =
{
F : E ‖z‖2 <∞, g (u) is continuously differentiable at u = E (z)

}
be the set of distributions for which θ̂ satisfies the central limit theorem.

Proposition 7.1 In the class of distributions F ∈ L2(g), θ̂ is semipara-
metrically effi cient for θ in the sense that its asymptotic variance equals
the semiparametric effi ciency bound.

Proposition 7.1 says that under the minimal conditions in which θ̂ is asymptotically normal,
then no semiparametric estimator can have a smaller asymptotic variance than θ̂.
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To show that an estimator is semiparametrically effi cient it is suffi cient to show that it falls in
the class covered by this Proposition. To show that the projection model falls in this class, we write
β = Q−1

xxQxy = g (µ) where µ = E (zi) and zi = (xix
′
i,xiyi) . The class L2(g) equals the class of

distributions
L4(β) =

{
F : E

(
y4
)
<∞, E ‖x‖4 <∞, E

(
xix

′
i

)
> 0
}
.

Proposition 7.2 In the class of distributions F ∈ L4(β), the least-squares
estimator β̂ is semiparametrically effi cient for β.

The least-squares estimator is an asymptotically effi cient estimator of the projection coeffi cient
because the latter is a smooth function of sample moments and the model implies no further
restrictions. However, if the class of permissible distributions is restricted to a strict subset of L4(β)
then least-squares can be ineffi cient. For example, the linear CEF model with heteroskedastic errors
is a strict subset of L4(β), and the GLS estimator has a smaller asymptotic variance than OLS. In
this case, the knowledge that true conditional mean is linear allows for more effi cient estimation of
the unknown parameter.

From Proposition 7.1 we can also deduce that plug-in estimators θ̂ = h(β̂) are semiparamet-
rically effi cient estimators of θ = h(β) when h is continuously differentiable. We can also deduce
that other parameters estimators are semiparametrically effi cient, such as σ̂2 for σ2. To see this,
note that we can write

σ2 = E
((
yi − x′iβ

)2)
= E

(
y2
i

)
− 2E

(
yix
′
i

)
β + β′E

(
xix

′
i

)
β

= Qyy −QyxQ
−1
xxQxy

which is a smooth function of the moments Qyy, Qyx and Qxx. Similarly the estimator σ̂
2 equals

σ̂2 =
1

n

n∑
i=1

ê2
i

= Q̂yy − Q̂yxQ̂
−1

xxQ̂xy.

Since the variables y2
i , yix

′
i and xix

′
i all have finite variances when F ∈ L4(β), the conditions of

Proposition 7.1 are satisfied. We conclude:

Proposition 7.3 In the class of distributions F ∈ L4(β), σ̂2 is semipara-
metrically effi cient for σ2.

7.21 Semiparametric Effi ciency in the Homoskedastic Regression
Model*

In Section 7.20 we showed that the OLS estimator is semiparametrically effi cient in the projec-
tion model. What if we restrict attention to the classical homoskedastic regression model? Is OLS
still effi cient in this class? In this section we derive the asymptotic semiparametric effi ciency bound
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for this model, and show that it is the same as that obtained by the OLS estimator. Therefore it
turns out that least-squares is effi cient in this class as well.

Recall that in the homoskedastic regression model the asymptotic variance of the OLS estimator
β̂ for β is V 0

β = Q−1
xxσ

2. Therefore, as described in Section 6.25, it is suffi cient to find a parametric
submodel whose Cramer-Rao bound for estimation of β is V 0

β. This would establish that V
0
β is

the semiparametric variance bound and the OLS estimator β̂ is semiparametrically effi cient for β.
Let the joint density of y and x be written as f (y,x) = f1 (y | x) f2 (x) , the product of the

conditional density of y given x and the marginal density of x. Now consider the parametric
submodel

f (y,x | θ) = f1 (y | x)
(
1 +

(
y − x′β

) (
x′θ
)
/σ2
)
f2 (x) . (7.39)

You can check that in this submodel the marginal density of x is f2 (x) and the conditional density
of y given x is f1 (y | x)

(
1 + (y − x′β) (x′θ) /σ2

)
. To see that the latter is a valid conditional

density, observe that the regression assumption implies that
∫
yf1 (y | x) dy = x′β and therefore∫

f1 (y | x)
(
1 +

(
y − x′β

) (
x′θ
)
/σ2
)
dy

=

∫
f1 (y | x) dy +

∫
f1 (y | x)

(
y − x′β

)
dy
(
x′θ
)
/σ2

= 1.

In this parametric submodel the conditional mean of y given x is

Eθ (y | x) =

∫
yf1 (y | x)

(
1 +

(
y − x′β

) (
x′θ
)
/σ2
)
dy

=

∫
yf1 (y | x) dy +

∫
yf1 (y | x)

(
y − x′β

) (
x′θ
)
/σ2dy

=

∫
yf1 (y | x) dy +

∫ (
y − x′β

)2
f1 (y | x)

(
x′θ
)
/σ2dy

+

∫ (
y − x′β

)
f1 (y | x) dy

(
x′β

) (
x′θ
)
/σ2

= x′ (β + θ) ,

using the homoskedasticity assumption
∫

(y − x′β)2 f1 (y | x) dy = σ2. This means that in this
parametric submodel, the conditional mean is linear in x and the regression coeffi cient is β (θ) =
β + θ.

We now calculate the score for estimation of θ. Since

∂

∂θ
log f (y,x | θ) =

∂

∂θ
log
(
1 +

(
y − x′β

) (
x′θ
)
/σ2
)

=
x (y − x′β) /σ2

1 + (y − x′β) (x′θ) /σ2

the score is

s =
∂

∂θ
log f (y,x | θ0) = xe/σ2.

The Cramer-Rao bound for estimation of θ (and therefore β (θ) as well) is(
E
(
ss′
))−1

=
(
σ−4E

(
(xe) (xe)′

))−1
= σ2Q−1

xx = V 0
β.

We have shown that there is a parametric submodel (7.39) whose Cramer-Rao bound for estimation
of β is identical to the asymptotic variance of the least-squares estimator, which therefore is the
semiparametric variance bound.
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Theorem 7.16 In the homoskedastic regression model, the semiparamet-
ric variance bound for estimation of β is V 0 = σ2Q−1

xx and the OLS esti-
mator is semiparametrically effi cient.

This result is similar to the Gauss-Markov theorem, in that it asserts the effi ciency of the least-
squares estimator in the context of the homoskedastic regression model. The difference is that the
Gauss-Markov theorem states that OLS has the smallest variance among the set of unbiased linear
estimators, while Theorem 7.16 states that OLS has the smallest asymptotic variance among all
regular estimators. This is a much more powerful statement.

7.22 Uniformly Consistent Residuals*

It seems natural to view the residuals êi as estimators of the unknown errors ei. Are they
consistent? In this section we develop an appropriate convergence result. This is not a widely-used
technique, and can safely be skipped by most readers.

Notice that we can write the residual as

êi = yi − x′iβ̂
= ei + x′iβ − x′iβ̂

= ei − x′i
(
β̂ − β

)
. (7.40)

Since β̂ − β p−→ 0 it seems reasonable to guess that êi will be close to ei if n is large.
We can bound the difference in (7.40) using the Schwarz inequality (B.10) to find

|êi − ei| =
∣∣∣x′i (β̂ − β)∣∣∣ ≤ ‖xi‖ ∥∥∥β̂ − β∥∥∥ . (7.41)

To bound (7.41) we can use
∥∥∥β̂ − β∥∥∥ = Op(n

−1/2) from Theorem 7.3, but we also need to bound

the random variable ‖xi‖. If the regressor is bounded, that is, ‖xi‖ ≤ B < ∞, then |êi − ei| ≤
B
∥∥∥β̂ − β∥∥∥ = Op(n

−1/2). However if the regressor does not have bounded support then we have to

be more careful.
The key is Theorem 6.36 which shows that E ‖xi‖r <∞ implies xi = op

(
n1/r

)
uniformly in i,

or
n−1/r max

1≤i≤n
‖xi‖

p−→ 0.

Applied to (7.41) we obtain

max
1≤i≤n

|êi − ei| ≤ max
1≤i≤n

‖xi‖
∥∥∥β̂ − β∥∥∥

= op(n
−1/2+1/r).

We have shown the following.

Theorem 7.17 Under Assumption 7.2 and E ‖xi‖r < ∞, then uniformly
in 1 ≤ i ≤ n

êi = ei + op(n
−1/2+1/r). (7.42)
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The rate of convergence in (7.42) depends on r. Assumption 7.2 requires r ≥ 4, so the rate
of convergence is at least op(n−1/4). As r increases, the rate improves. As a limiting case, from

Theorem 6.36 we see that if E (exp(t′xi)) <∞ for some t 6= 0 then xi = op

(
(log n)1+η

)
uniformly

in i, and thus êi = ei + op

(
n−1/2 (log n)1+η

)
.

We mentioned in Section 7.7 that there are multiple ways to prove the consistency of the
covariance matrix estimator Ω̂. We now show that Theorem 7.17 provides one simple method to
establish (7.23) and thus Theorem 7.6. Let qn = max1≤i≤n |êi − ei| = op(n

−1/4). Since

ê2
i − e2

i = 2ei (êi − ei) + (êi − ei)2 ,

then

∥∥∥∥∥ 1

n

n∑
i=1

xix
′
i

(
ê2
i − e2

i

)∥∥∥∥∥ ≤ 1

n

n∑
i=1

∥∥xix′i∥∥ ∣∣ê2
i − e2

i

∣∣
≤ 2

n

n∑
i=1

‖xi‖2 |ei| |êi − ei|+
1

n

n∑
i=1

‖xi‖2 |êi − ei|2

≤ 2

n

n∑
i=1

‖xi‖2 |ei| qn +
1

n

n∑
i=1

‖xi‖2 q2
n

≤ op(n−1/4).

7.23 Asymptotic Leverage*

Recall the definition of leverage from (3.41)

hii = x′i
(
X ′X

)−1
xi.

These are the diagonal elements of the projection matrix P and appear in the formula for leave-
one-out prediction errors and HC2 and HC3 covariance matrix estimators. We can show that under
i.i.d. sampling the leverage values are uniformly asymptotically small.

Let λmin(A) and λmax(A) denote the smallest and largest eigenvalues of a symmetric square
matrix A, and note that λmax(A−1) = (λmin(A))−1 .

Since 1
nX

′X
p−→ Qxx > 0 then by the CMT, λmin

(
1
nX

′X
) p−→ λmin (Qxx) > 0. (The latter

is positive since Qxx is positive definite and thus all its eigenvalues are positive.) Then by the
Quadratic Inequality (B.16)

hii = x′i
(
X ′X

)−1
xi

≤ λmax

((
X ′X

)−1
) (
x′ixi

)
=

(
λmin

(
1

n
X ′X

))−1 1

n
‖xi‖2

≤ (λmin (Qxx) + op(1))−1 1

n
max

1≤i≤n
‖xi‖2 . (7.43)

Theorem 6.36 shows that E (‖xi‖r) < ∞ implies max1≤i≤n ‖xi‖2 = (max1≤i≤n ‖xi‖)2 = op
(
n2/r

)
and thus (7.43) is op

(
n2/r−1

)
.

Theorem 7.18 If xi is i.i.d., Qxx > 0, and E (‖xi‖r) <∞ for some r ≥ 2,
then uniformly in 1 ≤ i ≤ n, hii = op

(
n2/r−1

)
.
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For any r ≥ 2 then hii = op (1) (uniformly in i ≤ n). Larger r implies a stronger rate of
convergence, for example r = 4 implies hii = op

(
n−1/2

)
.

Theorem (7.18) implies that under random sampling with finite variances and large samples,
no individual observation should have a large leverage value. Consequently individual observations
should not be influential, unless one of these conditions is violated.
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Exercises

Exercise 7.1 Take the model yi = x′1iβ1 + x′2iβ2 + ei with E (xiei) = 0. Suppose that β1 is
estimated by regressing yi on x1i only. Find the probability limit of this estimator. In general, is
it consistent for β1? If not, under what conditions is this estimator consistent for β1?

Exercise 7.2 Let y be n×1, X be n×k (rank k). y = Xβ+e with E(xiei) = 0. Define the ridge
regression estimator

β̂ =

(
n∑
i=1

xix
′
i + λIk

)−1( n∑
i=1

xiyi

)
(7.44)

here λ > 0 is a fixed constant. Find the probability limit of β̂ as n→∞. Is β̂ consistent for β?

Exercise 7.3 For the ridge regression estimator (7.44), set λ = cn where c > 0 is fixed as n→∞.
Find the probability limit of β̂ as n→∞.

Exercise 7.4 Verify some of the calculations reported in Section 7.4. Specifically, suppose that
x1i and x2i only take the values {−1,+1}, symmetrically, with

P (x1i = x2i = 1) = P (x1i = x2i = −1) = 3/8

P (x1i = 1, x2i = −1) = P (x1i = −1, x2i = 1) = 1/8

E
(
e2
i | x1i = x2i

)
=

5

4

E
(
e2
i | x1i 6= x2i

)
=

1

4
.

Verify the following:

(a) E (x1i) = 0

(b) E
(
x2

1i

)
= 1

(c) E (x1ix2i) =
1

2

(d) E
(
e2
i

)
= 1

(e) E
(
x2

1ie
2
i

)
= 1

(f) E
(
x1ix2ie

2
i

)
=

7

8
.

Exercise 7.5 Show (7.13)-(7.16).

Exercise 7.6 The model is

yi = x′iβ + ei

E (xiei) = 0

Ω = E
(
xix

′
ie

2
i

)
.

Find the method of moments estimators (β̂, Ω̂) for (β,Ω) .

(a) In this model, are (β̂, Ω̂) effi cient estimators of (β,Ω)?

(b) If so, in what sense are they effi cient?
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Exercise 7.7 Of the variables (y∗i , yi,xi) only the pair (yi,xi) are observed. In this case, we say
that y∗i is a latent variable. Suppose

y∗i = x′iβ + ei

E (xiei) = 0

yi = y∗i + ui

where ui is a measurement error satisfying

E (xiui) = 0

E (y∗i ui) = 0

Let β̂ denote the OLS coeffi cient from the regression of yi on xi.

(a) Is β the coeffi cient from the linear projection of yi on xi?

(b) Is β̂ consistent for β as n→∞?

(c) Find the asymptotic distribution of
√
n
(
β̂ − β

)
as n→∞.

Exercise 7.8 Find the asymptotic distribution of
√
n
(
σ̂2 − σ2

)
as n→∞.

Exercise 7.9 The model is

yi = xiβ + ei

E (ei | xi) = 0

where xi ∈ R. Consider the two estimators

β̂ =

∑n
i=1 xiyi∑n
i=1 x

2
i

β̃ =
1

n

n∑
i=1

yi
xi
.

(a) Under the stated assumptions, are both estimators consistent for β?

(b) Are there conditions under which either estimator is effi cient?

Exercise 7.10 In the homoskedastic regression model y = Xβ + e with E(ei | xi) = 0 and
E(e2

i | xi) = σ2, suppose β̂ is the OLS estimator of β with covariance matrix estimator V̂
β̂
, based

on a sample of size n. Let σ̂2 be the estimator of σ2. You wish to forecast an out-of-sample value
of yn+1 given that xn+1 = x. Thus the available information is the sample (y,X), the estimates
(β̂, V̂

β̂
, σ̂2), the residuals ê, and the out-of-sample value of the regressors, xn+1.

(a) Find a point forecast of yn+1.

(b) Find an estimator of the variance of this forecast.

Exercise 7.11 Take a regression model with i.i.d. observations (yi, xi) and scalar xi

yi = xiβ + ei

E(ei | xi) = 0

Ω = E
(
x2
i e

2
i

)
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Let β̂ be the OLS estimator of β with residuals êi = yi − xiβ̂. Consider the estimators of Ω

Ω̃ =
1

n

n∑
i=1

x2
i e

2
i

Ω̂ =
1

n

n∑
i=1

x2
i ê

2
i

(a) Find the asymptotic distribution of
√
n
(

Ω̃− Ω
)
as n→∞.

(b) Find the asymptotic distribution of
√
n
(

Ω̂− Ω
)
as n→∞.

(c) How do you use the regression assumption E(ei | xi) = 0 in your answer to (b)?

Exercise 7.12 Consider the model

yi = α+ βxi + ei

E (ei) = 0

E (xiei) = 0

with both yi and xi scalar. Assuming α > 0 and β < 0, suppose the parameter of interest is the
area under the regression curve (e.g. consumer surplus), which is A = −α2/2β.

Let θ̂ = (α̂, β̂)′ be the least-squares estimators of θ = (α, β)′ so that
√
n
(
θ̂ − θ

)
→d N(0,V θ)

and let V̂ θ be a standard consistent estimator for V θ.

(a) Given the above, describe an estimator of A.

(b) Construct an asymptotic (1− η) confidence interval for A.

Exercise 7.13 Consider an i.i.d. sample {yi, xi} i = 1, ..., n where yi and xi are scalar. Consider
the reverse projection model

xi = yiγ + ui

E (yiui) = 0

and define the parameter of interest as θ = 1/γ

(a) Propose an estimator γ̂ of γ.

(b) Propose an estimator θ̂ of θ.

(c) Find the asymptotic distribution of θ̂.

(d) Find an asymptotic standard error for θ̂.

Exercise 7.14 Take the model

yi = x1iβ1 + x2iβ2 + ei

E (xiei) = 0

with both β1 ∈ R and β2 ∈ R, and define the parameter

θ = β1β2
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(a) What is the appropriate estimator θ̂ for θ?

(b) Find the asymptotic distribution of θ̂ under standard regularity conditions.

(c) Show how to calculate an asymptotic 95% confidence interval for θ.

Exercise 7.15 Take the linear model

yi = xiβ + ei

E (ei | xi) = 0

with n observations and xi is scalar (real-valued). Consider the estimator

β̂ =

∑n
i=1 x

3
i yi∑n

i=1 x
4
i

Find the asymptotic distribution of
√
n
(
β̂ − β

)
as n→∞.

Exercise 7.16 Out of an i.i.d. sample (yi,xi) of size n, you randomly take half the observations
and estimate the least-squares regression of yi on xi using only this sub-sample.

yi = x′iβ̂ + êi

Is the estimated slope coeffi cient β̂ consistent for the population projection coeffi cient? Explain
your reasoning.

Exercise 7.17 An economist reports a set of parameter estimates, including the coeffi cient esti-
mates β̂1 = 1.0, β̂2 = 0.8, and standard errors s(β̂1) = 0.07 and s(β̂2) = 0.07. The author writes
“The estimates show that β1 is larger than β2.”

(a) Write down the formula for an asymptotic 95% confidence interval for θ = β1−β2, expressed
as a function of β̂1, β̂2, s(β̂1), s(β̂2) and ρ̂, where ρ̂ is the estimated correlation between β̂1

and β̂2.

(b) Can ρ̂ be calculated from the reported information?

(c) Is the author correct? Does the reported information support the author’s claim?

Exercise 7.18 Suppose an economic model suggests

g(x) = E (yi | xi = x) = β0 + β1x+ β2x
2

where xi ∈ R. You have a random sample (yi, xi), i = 1, ..., n.

(a) Describe how to estimate g(x) at a given value x.

(b) Describe (be specific) an appropriate confidence interval for g(x).

Exercise 7.19 Take the model

yi = x′iβ + ei

E (xiei) = 0

and suppose you have observations i = 1, ..., 2n. (The number of observations is 2n.) You ran-
domly split the sample in half, (each has n observations), calculate β̂1 by least-squares on the first
sample, and β̂2 by least-squares on the second sample. What is the asymptotic distribution of√
n
(
β̂1 − β̂2

)
?
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Exercise 7.20 The data {yi,xi, wi} is from a random sample, i = 1, ..., n. The parameter β is
estimated by minimizing the criterion function

S(β) =

n∑
i=1

wi
(
yi − x′iβ

)2
That is β̂ = argminβ S(β).

(a) Find an explicit expression for β̂.

(b) What population parameter β is β̂ estimating? (Be explicit about any assumptions you need
to impose. But don’t make more assumptions than necessary.)

(c) Find the probability limit for β̂ as n→∞.

(d) Find the asymptotic distribution of
√
n
(
β̂ − β

)
as n→∞.

Exercise 7.21 Take the model

yi = x′iβ + ei

E (ei | xi) = 0

E
(
e2
i | xi

)
= σ2

i = z′iγ

where zi is a (vector) function of xi. The sample is i = 1, ..., n with i.i.d. observations. For
simplicity, assume that z′iγ > 0 for all zi. Suppose you are interested in forecasting yn+1 given
xn+1 = x and zn+1 = z for some out-of-sample observation n+1. Describe how you would construct
a point forecast and a forecast interval for yn+1.

Exercise 7.22 Take the model

yi = x′iβ + ei

E (ei | xi) = 0

zi =
(
x′iβ

)
γ + ui

E (ui | xi) = 0

Your goal is to estimate γ. (Note that γ is scalar.) You use a two-step estimator:

• Estimate β̂ by least-squares of yi on xi.

• Estimate γ̂ by least-squares of zi on x′iβ̂.

(a) Show that γ̂ is consistent for γ.

(b) Find the asymptotic distribution of γ̂ when γ = 0.

Exercise 7.23 The model is

yi = xiβ + ei

E (ei | xi) = 0

where xi ∈ R. Consider the the estimator

β̃ =
1

n

n∑
i=1

yi
xi
.

Find conditions under which β̃ is consistent for β as n→∞.
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Exercise 7.24 Of the random variables (y∗i , yi,xi) only the pair (yi,xi) are observed. (In this
case, we say that y∗i is a latent variable.) Suppose E (y∗i | xi) = x′iβ and y = y∗i + ui, where ui
is a measurement error satisfying E (ui | y∗i ,xi) = 0. Let β̂ denote the OLS coeffi cient from the
regression of yi on xi.

(a) Find E (yi | xi) .

(b) Is β̂ consistent for β as n→∞?

(c) Find the asymptotic distribution of
√
n
(
β̂ − β

)
as n→∞.

Exercise 7.25 The parameter β is defined in the model

yi = x∗iβ + ei

where ei is independent of x∗i , E (ei) = 0, E
(
e2
i

)
= σ2. The observables are (yi, xi) where

xi = x∗i vi

and vi > 0 is random measurement error. Assume that vi is independent of x∗i and ei. Also assume
that xi and x∗i are non-negative and real-valued. Consider the least-squares estimator β̂ for β.

(a) Find the plim of β̂, expressed in terms of β and moments of (xi, vi, ei).

(b) Can you find a non-trivial condition under which β̂ is consisent for β? (By non-trivial, we
mean something other than vi = 1.)

Exercise 7.26 Take the standard model

yi = x′iβ + ei

E (xiei) = 0

For a positive function w(x), let wi = w(xi). Consider the estimator

β̃ =

(
n∑
i=1

wixix
′
i

)−1( n∑
i=1

wixiyi

)
.

Find the probability limit (as n→∞) of β̃. (Do you need to add an assumption?) Is β̃ consistent
for β̃? If not, under what assumption is β̃ consistent for β?

Exercise 7.27 Take the regression model

yi = x′iβ + ei

E (ei | xi) = 0

E
(
e2
i | xi

)
= σ2

i

with xi ∈ Rk. Assume that P (ei = 0) = 0. Consider the infeasible estimator

β̃ =

(
n∑
i=1

e−2
i xix

′
i

)−1( n∑
i=1

e−2
i xiyi

)
.

This is a WLS estimator using the weights e−2
i .

(a) Find the asymptotic distribution of β̃.



CHAPTER 7. ASYMPTOTIC THEORY FOR LEAST SQUARES 258

(b) Contrast your result with the asymptotic distribution of infeasible GLS.

Exercise 7.28 The model is

yi = x′iβ + ei

E (ei | xi) = 0.

An econometrician is worried about the impact of some unusually large values of the regressors.
The model is thus estimated on the subsample for which |xi| ≤ c, for some fixed c. Let β̃ denote
the OLS estimator on this subsample. It equals

β̃ =

(
n∑
i=1

xix
′
i1 (|xi| ≤ c)

)−1( n∑
i=1

xiyi1 (|xi| ≤ c)
)

where 1 (·) denotes the indicator function.

(a) Show that β̃ →p β.

(b) Find the asymptotic distribution of
√
n
(
β̃ − β

)
.

Exercise 7.29 As in Exercise 3.26, use the CPS dataset and the subsample of white male Hispan-
ics. Estimate the regression

̂log(Wage) = β1 education+ β2 experience+ β3 experience
2/100 + β4.

(a) Report the coeffi cients and robust standard errors.

(b) Let θ be the ratio of the return to one year of education to the return to one year of experi-
ence. Write θ as a function of the regression coeffi cients and variables. Compute θ̂ from the
estimated model.

(c) Write out the formula for the asymptotic standard error for θ̂ as a function of the covariance
matrix for β̂. Compute ŝ(θ̂) from the estimated model.

(d) Construct a 90% asymptotic confidence interval for θ from the estimated model.

(e) Compute the regression function at edu = 12 and experience=20. Compute a 95% confidence
interval for the regression function at this point.

(f) Consider an out-of-sample individual with 16 years of education and 5 years experience.
Construct an 80% forecast interval for their log wage and wage. [To obtain the forecast
interval for the wage, apply the exponential function to both endpoints.]



Chapter 8

Restricted Estimation

8.1 Introduction

In the linear projection model

yi = x′iβ + ei

E (xiei) = 0

a common task is to impose a constraint on the coeffi cient vector β. For example, partitioning
x′i = (x′1i,x

′
2i) and β

′ =
(
β′1,β

′
2

)
, a typical constraint is an exclusion restriction of the form

β2 = 0. In this case the constrained model is

yi = x′1iβ1 + ei

E (xiei) = 0.

At first glance this appears the same as the linear projection model, but there is one important
difference: the error ei is uncorrelated with the entire regressor vector x′i = (x′1i,x

′
2i) not just the

included regressor x1i.
In general, a set of q linear constraints on β takes the form

R′β = c (8.1)

where R is k × q, rank(R) = q < k and c is q × 1. The assumption that R is full rank means that
the constraints are linearly independent (there are no redundant or contradictory constraints). We
can define the restricted parameter space BR as the set of values of β which satisfy (8.1), that is

BR =
{
β : R′β = c

}
.

Sometimes we will call (8.1) a constraint and sometimes a restriction. They are the same
thing. Similarly sometimes we will call estimators which satisfy (8.1) constrained estimators
and sometimes restricted estimators. Again, they mean the same thing.

The constraint β2 = 0 discussed above is a special case of the constraint (8.1) with

R =

(
0
Ik2

)
, (8.2)

a selector matrix, and c = 0.
Another common restriction is that a set of coeffi cients sum to a known constant, i.e. β1 +β2 =

1. For example, this constraint arises in a constant-return-to-scale production function. Other
common restrictions include the equality of coeffi cients β1 = β2, and equal and offsetting coeffi cients
β1 = −β2.

259
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A typical reason to impose a constraint is that we believe (or have information) that the con-
straint is true. By imposing the constraint we hope to improve estimation effi ciency. The goal is
to obtain consistent estimates with reduced variance relative to the unconstrained estimator.

The questions then arise: How should we estimate the coeffi cient vector β imposing the linear
restriction (8.1)? If we impose such constraints, what is the sampling distribution of the resulting
estimator? How should we calculate standard errors? These are the questions explored in this
chapter.

8.2 Constrained Least Squares

An intuitively appealing method to estimate a constrained linear projection is to minimize the
least-squares criterion subject to the constraint R′β = c.

The constrained least-squares estimator is

β̃cls = argmin
R′β=c

SSE(β) (8.3)

where

SSE(β) =
n∑
i=1

(
yi − x′iβ

)2
= y′y − 2y′Xβ + β′X ′Xβ. (8.4)

The estimator β̃cls minimizes the sum of squared errors over all β such that β ∈ BR, or equivalently
such that the restriction (8.1) holds. We call β̃cls the constrained least-squares (CLS) estimator.
We follow the convention of using a tilde “~”rather than a hat “^”to indicate that β̃cls is a restricted
estimator in contrast to the unrestricted least-squares estimator β̂, and write it as β̃cls to be clear
that the estimation method is CLS.

One method to find the solution to (8.3) uses the technique of Lagrange multipliers. The
problem (8.3) is equivalent to the minimization of the Lagrangian

L(β,λ) =
1

2
SSE(β) + λ′

(
R′β − c

)
(8.5)

over (β,λ), where λ is an s × 1 vector of Lagrange multipliers. The first-order conditions for
minimization of (8.5) are

∂

∂β
L(β̃cls, λ̃cls) = −X ′y +X ′Xβ̃cls +Rλ̃cls = 0 (8.6)

and
∂

∂λ
L(β̃cls, λ̃cls) = R′β̃ − c = 0. (8.7)

Premultiplying (8.6) by R′ (X ′X)
−1 we obtain

−R′β̂ +R′β̃cls +R′
(
X ′X

)−1
Rλ̃cls = 0

where β̂ = (X ′X)
−1
X ′y is the unrestricted least-squares estimator. Imposing R′β̃cls−c = 0 from

(8.7) and solving for λ̃cls we find

λ̃cls =
[
R′
(
X ′X

)−1
R
]−1 (

R′β̂ − c
)
.

Notice that (X ′X)
−1

> 0 and R full rank imply that R′ (X ′X)
−1
R > 0 and is hence invertible.

(See Section A.10.)
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Substituting this expression into (8.6) and solving for β̃cls we find the solution to the constrained
minimization problem (8.3)

β̃cls = β̂ols −
(
X ′X

)−1
R
[
R′
(
X ′X

)−1
R
]−1 (

R′β̂ols − c
)
. (8.8)

(See Exercise 8.5 to verify that (8.8) satisfies (8.1).)
This is a general formula for the CLS estimator. It also can be written as

β̃cls = β̂ols − Q̂
−1

xxR
(
R′Q̂

−1

xxR
)−1 (

R′β̂ols − c
)
. (8.9)

The CLS residuals are
ẽi = yi − x′iβ̃cls

and the n× 1 vector of residuals are written in vector notation as ẽ.
To illustrate, we generated a random sample of 100 observations for the variables (yi, x1i, x2i)

and calculated the sum of squared errors function for the regression of yi on x1i and x2i. Figure
8.1 displays contour plots of the sum of squared errors function. The center of the contour plots
is the least squares minimizer β̂ols = (0.33, 0.26)′. Suppose it is desired to estimate the coeffi cients
subject to the constraint β1 + β2 = 1. This constraint is displayed in the figure by the straight
line. The constrained least squares estimator is the point on this straight line which yields the
smallest sum of squared errors, which is the point which intersects with the lowest contour plot.
The solution is the point where a contour plot is tangent to the constraint line, and marked as
β̃cls = (0.52, 0.48)′.

β1

β 2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0
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● β̂ols

● β~cls

Figure 8.1: Imposing a Constraint on the Least Squares Criterion

In Stata, constrained least squares is implemented using the cnsreg command.
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8.3 Exclusion Restriction

While (8.8) is a general formula for the CLS estimator, in most cases the estimator can be
found by applying least-squares to a reparameterized equation. To illustrate, let us return to the
first example presented at the beginning of the chapter —a simple exclusion restriction. Recall the
unconstrained model is

yi = x′1iβ1 + x′2iβ2 + ei (8.10)

the exclusion restriction is β2 = 0, and the constrained equation is

yi = x′1iβ1 + ei. (8.11)

In this setting the CLS estimator is OLS of yi on x1i. (See Exercise 8.1.) We can write this as

β̃1 =

(
n∑
i=1

x1ix
′
1i

)−1( n∑
i=1

x1iyi

)
. (8.12)

The CLS estimator of the entire vector β′ =
(
β′1,β

′
2

)
is

β̃ =

(
β̃1

0

)
. (8.13)

It is not immediately obvious, but (8.8) and (8.13) are algebraically (and numerically) equivalent.
To see this, the first component of (8.8) with (8.2) is

β̃1 =
(
Ik2 0

) [
β̂ − Q̂−1

xx

(
0
Ik2

)[(
0 Ik2

)
Q̂
−1

xx

(
0
Ik2

)]−1 (
0 Ik2

)
β̂

]
.

Using (3.40) this equals

β̃1 = β̂1 − Q̂
12
(
Q̂

22
)−1

β̂2

= β̂1 + Q̂
−1

11·2Q̂12Q̂
−1

22 Q̂22·1β̂2

= Q̂
−1

11·2

(
Q̂1y − Q̂12Q̂

−1

22 Q̂2y

)
+ Q̂

−1

11·2Q̂12Q̂
−1

22 Q̂22·1Q̂
−1

22·1

(
Q̂2y − Q̂21Q̂

−1

11 Q̂1y

)
= Q̂

−1

11·2

(
Q̂1y − Q̂12Q̂

−1

22 Q̂21Q̂
−1

11 Q̂1y

)
= Q̂

−1

11·2

(
Q̂11 − Q̂12Q̂

−1

22 Q̂21

)
Q̂
−1

11 Q̂1y

= Q̂
−1

11 Q̂1y

which is (8.13) as originally claimed.

8.4 Finite Sample Properties

In this section we explore some of the properties of the CLS estimator in the linear regression
model

yi = x′iβ + ei (8.14)

E (ei | xi) = 0. (8.15)

First, it is useful to write the estimator and the residuals as linear functions of the error vector.
These are algebraic relationships and do not rely on the linear regression assumptions.
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Theorem 8.1 Define P = X (X ′X)
−1
X ′ and

A =
(
X ′X

)−1
R
(
R′
(
X ′X

)−1
R
)−1

R′
(
X ′X

)−1
.

Then

1. R′β̂ − c = R′ (X ′X)
−1
X ′e

2. β̃cls − β =
(

(X ′X)
−1
X ′ −AX ′

)
e

3. ẽ = (I − P +XAX ′) e

4. In − P +XAX is symmetric and idempotent

5. tr (In − P +XAX) = n− k + q.

For a proof, see Exercise 8.6.
Given the linearity of Theorem 8.1.2, it is not hard to show that the CLS estimator is unbiased

for β

Theorem 8.2 In the linear regression model (8.14)-(8.15) under (8.1),
E
(
β̃cls |X

)
= β.

For a proof, see Exercise 8.7.
Given the linearity we can also calculate the variance matrix of β̃cls. For this we will add the

assumption of conditional homoskedasticity to simplify the expression.

Theorem 8.3 In the homoskedastic linear regression model (8.14)-(8.15)
with E

(
e2
i | xi

)
= σ2, under (8.1),

V 0
β̃

= var
(
β̃cls |X

)
=

((
X ′X

)−1 −
(
X ′X

)−1
R
(
R′
(
X ′X

)−1
R
)−1

R′
(
X ′X

)−1
)
σ2.

For a proof, see Exercise 8.8.
We use the V 0

β̃
notation to emphasize that this is the variance matrix under the assumption of

conditional homoskedasticity.
For inference we need an estimate of V 0

β̃
. A natural estimator is

V̂
0

β̃ =

((
X ′X

)−1 −
(
X ′X

)−1
R
(
R′
(
X ′X

)−1
R
)−1

R′
(
X ′X

)−1
)
s2

cls

where

s2
cls =

1

n− k + q

n∑
i=1

ẽ2
i (8.16)
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is a biased-corrected estimator of σ2. Standard errors for the components of β are then found by
taking the squares roots of the diagonal elements of V̂

β̃
, for example

s(β̂j) =

√[
V̂

0

β̃

]
jj
.

The estimator (8.16) has the property that it is unbiased for σ2 under conditional homoskedas-
ticity. To see this, using the properties of Theorem 8.1,

(n− k + q) s2
cls = ẽ′ẽ

= e′
(
In − P +XAX ′

) (
In − P +XAX ′

)
e

= e′
(
In − P +XAX ′

)
e. (8.17)

We defer the remainder of the proof to Exercise 8.9.

Theorem 8.4 In the homoskedastic linear regression model (8.14)-(8.15)
with E

(
e2
i | xi

)
= σ2, under (8.1), E

(
s2

cls |X
)

= σ2 and E
(
V̂

0

β̃ |X
)

=

V 0
β̃
.

Now consider the distributional properties in the normal regression model

yi = x′iβ + ei

ei ∼ N(0, σ2).

By the linearity of Theorem 8.1.2, conditional on X, β̃cls − β is normal. Given Theorems 8.2
and 8.3, we deduce that β̃cls ∼ N(β,V 0

β̃
).

Similarly, from Exericise 8.1 we know ẽ = (In − P +XAX ′) e is linear in e so is also condi-

tionally normal. Furthermore, since (In − P +XAX ′)
(
X (X ′X)

−1 −XA
)

= 0, ẽ and β̃cls are

uncorrelated and thus independent. Thus s2
cls and β̃cls are independent.

From (8.17) and the fact that In − P +XAX ′ is idempotent with rank n − k + q, it follows
that

s2
cls ∼ σ2χ2

n−k+q/ (n− k + q) .

It follows that the t-statistic has the exact distribution

T =
β̂j − βj
s(β̂j)

∼ N (0, 1)√
χ2
n−k+q

/
(n− k + q)

∼ tn−k+q

a student t distribution with n− k + q degrees of freedom.
The relevance of this calculation is that the “degrees of freedom”for a CLS regression problem

equal n−k+q rather than n−k as in the OLS regression problem. Essentially, the model has k−q
free parameters instead of k. Another way of thinking about this is that estimation of a model
with k coeffi cients and q restrictions is equivalent to estimation with k − q coeffi cients.

We summarize the properties of the normal regression model.
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Theorem 8.5 In the normal linear regression model linear regression
model (8.14)-(8.15), under (8.1),

β̃cls ∼ N(β,V 0
β̃

)

(n− k + q) s2
cls

σ2
∼ χ2

n−k+q

T ∼ tn−k+q

An interesting relationship is that in the homoskedastic regression model(
β̂ols − β̃cls, β̃cls

)
= E

((
β̂ols − β̃cls

)(
β̃cls − β

)′)
= E

((
AX ′

) (
X
(
X ′X

)−1 −XA
))

σ2 = 0

so β̂ols − β̃cls and β̃cls are uncorrelated and hence independent. One corollary is

cov
(
β̂ols, β̃cls

)
= var

(
β̃cls

)
.

A second corollary is

var
(
β̂ols − β̃cls

)
= var

(
β̂ols

)
− var

(
β̃cls

)
(8.18)

=
(
X ′X

)−1
R
(
R′
(
X ′X

)−1
R
)−1

R′
(
X ′X

)−1
σ2.

This also shows us the difference between the CLS and OLS variances

var
(
β̂ols

)
− var

(
β̃cls

)
=
(
X ′X

)−1
R
(
R′
(
X ′X

)−1
R
)−1

R′
(
X ′X

)−1
σ2 ≥ 0

the final equality meaning positive semi-definite. It follows that var
(
β̂ols

)
≥ var

(
β̃cls

)
in the

positive definite sense, and thus CLS is more effi cient than OLS. Both estimators are unbiased (in
the linear regression model), and CLS has a lower variance matrix (in the linear homoskedastic
regression model).

The relationship (8.18) is rather interesting and will appear again. The expression says that the
variance of the difference between the estimators is equal to the difference between the variances.
This is rather special. It occurs (generically) when we are comparing an effi cient and an ineffi cient
estimator. We call (8.18) the Hausmann Equality as it was first pointed out in econometrics by
Hausman (1978).

8.5 Minimum Distance

The previous section explored the finite sample distribution theory under the assumptions of
the linear regression model, homoskedastic regression model, and normal regression model. We
now return to the general projection model where we do not impose linearity, homoskedasticity,
nor normality. We are interested in the question: Can we do better than CLS in this setting?

A minimum distance estimator tries to find a parameter value which satisfies the constraint
which is as close as possible to the unconstrained estimate. Let β̂ be the unconstrained least-
squares estimator, and for some k × k positive definite weight matrix Ŵ > 0 define the quadratic
criterion function

J (β) = n
(
β̂ − β

)′
Ŵ
(
β̂ − β

)
. (8.19)
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This is a (squared) weighted Euclidean distance between β̂ and β. J (β) is small if β is close to β̂,
and is minimized at zero only if β = β̂. A minimum distance estimator β̃md for β minimizes
J (β) subject to the constraint (8.1), that is,

β̃md = argmin
R′β=c

J (β) .

The CLS estimator is the special case when Ŵ = Q̂xx, and we write this criterion function as

J0 (β) = n
(
β̂ − β

)′
Q̂xx

(
β̂ − β

)
. (8.20)

To see the equality of CLS and minimum distance, rewrite the least-squares criterion as follows.
Substitute the unconstrained least-squares fitted equation yi = x′iβ̂ + êi into SSE(β) to obtain

SSE(β) =

n∑
i=1

(
yi − x′iβ

)2
=

n∑
i=1

(
x′iβ̂ + êi − x′iβ

)2

=

n∑
i=1

ê2
i +

(
β̂ − β

)′( n∑
i=1

xix
′
i

)(
β̂ − β

)
= nσ̂2 + J0 (β) (8.21)

where the third equality uses the fact that
∑n

i=1 xiêi = 0, and the last line uses
∑n

i=1 xix
′
i = nQ̂xx.

The expression (8.21) only depends on β through J0 (β) . Thus minimization of SSE(β) and J0 (β)

are equivalent, and hence β̃md = β̃cls when Ŵ = Q̂xx.
We can solve for β̃md explicitly by the method of Lagrange multipliers. The Lagrangian is

L(β,λ) =
1

2
J
(
β, Ŵ

)
+ λ′

(
R′β − c

)
which is minimized over (β,λ). The solution is

λ̃md = n
(
R′Ŵ

−1
R
)−1 (

R′β̂ − c
)

(8.22)

β̃md = β̂ − Ŵ
−1
R
(
R′Ŵ

−1
R
)−1 (

R′β̂ − c
)
. (8.23)

(See Exercise 8.10.) Comparing (8.23) with (8.9) we can see that β̃md specializes to β̃cls when we
set Ŵ = Q̂xx.

An obvious question is which weight matrix Ŵ is best. We will address this question after we
derive the asymptotic distribution for a general weight matrix.

8.6 Asymptotic Distribution

We first show that the class of minimum distance estimators are consistent for the population
parameters when the constraints are valid.

Assumption 8.1 R′β = c where R is k × q with rank(R) = q.
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Assumption 8.2 Ŵ
p−→W > 0.

Theorem 8.6 Consistency
Under Assumptions 7.1, 8.1, and 8.2, β̃md

p−→ β as n→∞.

For a proof, see Exercise 8.11.
Theorem 8.6 shows that consistency holds for any weight matrix with a positive definite limit,

so the result includes the CLS estimator.
Similarly, the constrained estimators are asymptotically normally distributed.

Theorem 8.7 Asymptotic Normality
Under Assumptions 7.2, 8.1, and 8.2,

√
n
(
β̃md − β

)
d−→ N (0,V β(W ))

as n→∞, where

V β(W ) = V β −W−1R
(
R′W−1R

)−1
R′V β

−V βR
(
R′W−1R

)−1
R′W−1

+W−1R
(
R′W−1R

)−1
R′V βR

(
R′W−1R

)−1
R′W−1 (8.24)

and V β = Q−1
xxΩQ−1

xx.

For a proof, see Exercise 8.12.
Theorem 8.7 shows that the minimum distance estimator is asymptotically normal for all posi-

tive definite weight matrices. The asymptotic variance depends on W . The theorem includes the
CLS estimator as a special case by setting W = Qxx.

Theorem 8.8 Asymptotic Distribution of CLS Estimator
Under Assumptions 7.2 and 8.1, as n→∞

√
n
(
β̃cls − β

)
d−→ N (0,V cls)

where

V cls = V β −Q−1
xxR

(
R′Q−1

xxR
)−1

R′V β

− V βR
(
R′Q−1

xxR
)−1

R′Q−1
xx

+Q−1
xxR

(
R′Q−1

xxR
)−1

R′V βR
(
R′Q−1

xxR
)−1

R′Q−1
xx.

For a proof, see Exercise 8.13.
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8.7 Variance Estimation and Standard Errors

Earlier we introduced the covariance matrix estimator under the assumption of conditional
homoskedasticity. We now introduce an estimator which does not impose homoskedasticity.

The asymptotic covariance matrix V cls may be estimated by replacing V β with a consistent
estimator such as V̂ β. A more effi cient estimator is obtained by using the restricted coeffi cient
estimator. Given the constrained least-squares squares residuals ẽi = yi − x′iβ̃cls we can estimate
the matrix Ω = E

(
xix

′
ie

2
i

)
by

Ω̃ =
1

n− k + q

n∑
i=1

xix
′
iẽ

2
i .

Notice that we have defined Ω̃ using an adjusted degrees of freedom. This is an ad hoc adjustment
designed to mimic that used for estimation of the error variance σ2. Given Ω̃ the moment estimator
of V β is

Ṽ β = Q̂
−1

xx Ω̃Q̂
−1

xx

and that for V cls is

Ṽ cls = Ṽ β − Q̂
−1

xxR
(
R′Q̂

−1

xxR
)−1

R′Ṽ β

− Ṽ βR
(
R′Q̂

−1

xxR
)−1

R′Q̂
−1

xx

+ Q̂
−1

xxR
(
R′Q̂

−1

xxR
)−1

R′Ṽ βR
(
R′Q̂

−1

xxR
)−1

R′Q̂
−1

xx .

We can calculate standard errors for any linear combination h′β̃cls so long as h does not lie in
the range space of R. A standard error for h′β̃ is

s(h′β̃cls) =
(
n−1h′Ṽ clsh

)1/2
.

8.8 Effi cient Minimum Distance Estimator

Theorem 8.7 shows that minimum distance estimators, which include CLS as a special case,
are asymptotically normal with an asymptotic covariance matrix which depends on the weight
matrix W . The asymptotically optimal weight matrix is the one which minimizes the asymptotic
variance V β(W ). This turns out to beW = V −1

β as is shown in Theorem 8.9 below. Since V −1
β is

unknown this weight matrix cannot be used for a feasible estimator, but we can replace V −1
β with

a consistent estimate V̂
−1

β and the asymptotic distribution (and effi ciency) are unchanged. We call

the minimum distance estimator setting Ŵ = V̂
−1

β the effi cient minimum distance estimator
and takes the form

β̃emd = β̂ − V̂ βR
(
R′V̂ βR

)−1 (
R′β̂ − c

)
. (8.25)

The asymptotic distribution of (8.25) can be deduced from Theorem 8.7. (See Exercises 8.14 and
8.15, and the proof in Section 8.16.)



CHAPTER 8. RESTRICTED ESTIMATION 269

Theorem 8.9 Effi cient Minimum Distance Estimator
Under Assumptions 7.2 and 8.1,

√
n
(
β̃emd − β

)
d−→ N (0,V β,emd)

as n→∞, where

V β,emd = V β − V βR
(
R′V βR

)−1
R′V β. (8.26)

Since
V β,emd ≤ V β (8.27)

the estimator (8.25) has lower asymptotic variance than the unrestricted
estimator. Furthermore, for any W ,

V β,emd ≤ V β(W ) (8.28)

so (8.25) is asymptotically effi cient in the class of minimum distance esti-
mators.

Theorem 8.9 shows that the minimum distance estimator with the smallest asymptotic variance
is (8.25). One implication is that the constrained least squares estimator is generally ineffi cient.
The interesting exception is the case of conditional homoskedasticity, in which case the optimal
weight matrix is W =

(
V 0
β

)−1
so in this case CLS is an effi cient minimum distance estimator.

Otherwise when the error is conditionally heteroskedastic, there are asymptotic effi ciency gains by
using minimum distance rather than least squares.

The fact that CLS is generally ineffi cient is counter-intuitive and requires some reflection to
understand. Standard intuition suggests to apply the same estimation method (least squares) to
the unconstrained and constrained models, and this is the most common empirical practice. But
Theorem 8.9 shows that this is not the effi cient estimation method. Instead, the effi cient minimum
distance estimator has a smaller asymptotic variance. Why? The reason is that the least-squares
estimator does not make use of the regressor x2i. It ignores the information E (x2iei) = 0. This
information is relevant when the error is heteroskedastic and the excluded regressors are correlated
with the included regressors.

Inequality (8.27) shows that the effi cient minimum distance estimator β̃emd has a smaller asymp-
totic variance than the unrestricted least squares estimator β̂. This means that effi cient estimation
is attained by imposing correct restrictions when we use the minimum distance method.

8.9 Exclusion Restriction Revisited

We return to the example of estimation with a simple exclusion restriction. The model is

yi = x′1iβ1 + x′2iβ2 + ei

with the exclusion restriction β2 = 0. We have introduced three estimators of β1. The first is
unconstrained least-squares applied to (8.10), which can be written as

β̂1 = Q̂
−1

11·2Q̂1y·2.

From Theorem 7.25 and equation (7.14) its asymptotic variance is

avar(β̂1) = Q−1
11·2

(
Ω11 −Q12Q

−1
22 Ω21 −Ω12Q

−1
22 Q21 +Q12Q

−1
22 Ω22Q

−1
22 Q21

)
Q−1

11·2.
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The second estimator of β1 is the CLS estimator, which can be written as

β̃1 = Q̂
−1

11 Q̂1y.

Its asymptotic variance can be deduced from Theorem 8.8, but it is simpler to apply the CLT
directly to show that

avar(β̃1) = Q−1
11 Ω11Q

−1
11 . (8.29)

The third estimator of β1 is the effi cient minimum distance estimator. Applying (8.25), it equals

β1 = β̂1 − V̂ 12V̂
−1

22 β̂2 (8.30)

where we have partitioned

V̂ β =

[
V̂ 11 V̂ 12

V̂ 21 V̂ 22

]
.

From Theorem 8.9 its asymptotic variance is

avar(β1) = V 11 − V 12V
−1
22 V 21. (8.31)

See Exercise 8.16 to verify equations (8.29), (8.30), and (8.31).
In general, the three estimators are different, and they have different asymptotic variances.

It is instructive to compare the variances to assess whether or not the constrained estimator is
necessarily more effi cient than the unconstrained estimator.

First, consider the case of conditional homoskedasticity. In this case the two covariance matrices
simplify to

avar(β̂1) = σ2Q−1
11·2

and
avar(β̃1) = σ2Q−1

11 .

If Q12 = 0 (so x1i and x2i are orthogonal) then these two variance matrices are equal and the
two estimators have equal asymptotic effi ciency. Otherwise, since Q12Q

−1
22 Q21 ≥ 0, then Q11 ≥

Q11 −Q12Q
−1
22 Q21, and consequently

Q−1
11 σ

2 ≤
(
Q11 −Q12Q

−1
22 Q21

)−1
σ2.

This means that under conditional homoskedasticity, β̃1 has a lower asymptotic variance matrix
than β̂1. Therefore in this context, constrained least-squares is more effi cient than unconstrained
least-squares. This is consistent with our intuition that imposing a correct restriction (excluding
an irrelevant regressor) improves estimation effi ciency.

However, in the general case of conditional heteroskedasticity this ranking is not guaranteed.
In fact what is really amazing is that the variance ranking can be reversed. The CLS estimator
can have a larger asymptotic variance than the unconstrained least squares estimator.

To see this let’s use the simple heteroskedastic example from Section 7.4. In that example,

Q11 = Q22 = 1, Q12 =
1

2
, Ω11 = Ω22 = 1, and Ω12 =

7

8
. We can calculate (see Exercise 8.17) that

Q11·2 =
3

4
and

avar(β̂1) =
2

3
(8.32)

avar(β̃1) = 1 (8.33)

avar(β1) =
5

8
. (8.34)
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Thus the restricted least-squares estimator β̃1 has a larger variance than the unrestricted least-
squares estimator β̂1! The minimum distance estimator has the smallest variance of the three, as
expected.

What we have found is that when the estimation method is least-squares, deleting the irrelevant
variable x2i can actually increase estimation variance, or equivalently, adding an irrelevant variable
can decrease the estimation variance.

To repeat this unexpected finding, we have shown in a very simple example that it is possible
for least-squares applied to the short regression (8.11) to be less effi cient for estimation of β1 than
least-squares applied to the long regression (8.10), even though the constraint β2 = 0 is valid!
This result is strongly counter-intuitive. It seems to contradict our initial motivation for pursuing
constrained estimation —to improve estimation effi ciency.

It turns out that a more refined answer is appropriate. Constrained estimation is desirable,
but not constrained least-squares estimation. While least-squares is asymptotically effi cient for
estimation of the unconstrained projection model, it is not an effi cient estimator of the constrained
projection model.

8.10 Variance and Standard Error Estimation

We have discussed covariance matrix estimation for the CLS estimator, but not yet for the
EMD estimator.

The asymptotic covariance matrix (8.26) may be estimated by replacing V β with a consistent
estimate. It is best to construct the variance estimate using β̃emd. The EMD residuals are ẽi =
yi − x′iβ̃emd. Using these we can estimate the matrix Ω = E

(
xix

′
ie

2
i

)
by

Ω̃ =
1

n− k + q

n∑
i=1

xix
′
iẽ

2
i .

Following the formula for CLS we recommend an adjusted degrees of freedom. Given Ω̃ the moment
estimator of V β is

Ṽ β = Q̂
−1

xx Ω̃Q̂
−1

xx

Given this, we construct the variance estimator

Ṽ β,emd = Ṽ β − Ṽ βR
(
R′Ṽ βR

)−1
R′Ṽ β. (8.35)

A standard error for h′β̃ is then

s(h′β̃) =
(
n−1h′Ṽ β,emdh

)1/2
. (8.36)

8.11 Hausman Equality

Form (8.25) we have

√
n
(
β̂ols − β̃emd

)
= V̂ βR

(
R′V̂ βR

)−1√
n
(
R′β̂ols − c

)
d−→ N

(
0,V βR

(
R′V βR

)−1
R′V β

)
.

It follows that the asymptotic variances of the estimators satisfy the relationship

avar
(
β̂ols − β̃emd

)
= avar

(
β̂ols

)
− avar

(
β̃emd

)
. (8.37)

We call (8.37) the Hausman Equality: the asymptotic variance of the difference between an effi cient
and ineffi cient estimator is the difference in the asymptotic variances.
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8.12 Example: Mankiw, Romer and Weil (1992)

We illustrate the methods by replicating some of the estimates reported in a well-known paper
by Mankiw, Romer, and Weil (1992). The paper investigates the implications of the Solow growth
model using cross-country regressions. A key equation in their paper regresses the change between
1960 and 1985 in log GDP per capita on (1) log GDP in 1960, (2) the log of the ratio of aggregate
investment to GDP, (3) the log of the sum of the population growth rate n, the technological
growth rate g, and the rate of depreciation δ, and (4) the log of the percentage of the working-age
population that is in secondary schoool (School), the latter a proxy for human-capital accumulation.

Table 8.1: Estimates of Solow Growth Model

β̂ols β̂cls β̂emd

logGDP1960 −0.29
(0.05)

−0.30
(0.05)

−0.30
(0.05)

log I
GDP 0.52

(0.11)
0.50

(0.09)
0.46

(0.08)

log (n+ g + δ) −0.51
(0.24)

−0.74
(0.08)

−0.71
(0.07)

logSchool 0.23
(0.07)

0.24
(0.07)

0.25
(0.06)

Intercept 3.02
(0.74)

2.46
(0.44)

2.48
(0.44)

Standard errors are heteroskedasticity-consistent

The data is available on the textbook webpage in the file MRW1992.
The sample is 98 non-oil-producing countries, and the data was reported in the published paper.

As g and δ were unknown the authors set g + δ = 0.05. We report least-squares estimates in the
first column of Table 8.1. The estimates are consistent with the Solow theory due to the positive
coeffi cients on investment and human capital and negative coeffi cient for population growth. The
estimates are also consistent with the convergence hypothesis (that income levels tend towards a
common mean over time) as the coeffi cient on intial GDP is negative.

The authors show that in the Solow model the 2nd, 3rd and 4th coeffi cients sum to zero. They
reestimated the equation imposing this contraint. We present constrained least-squares estimates
in the second column of Table 8.1, and effi cient minimum distance estimates in the third column.
Most of the coeffi cients and standard errors only exhibit small changes by imposing the constraint.
The one exception is the coeffi cient on log population growth, which increases in magnitude and
its standard error decreases substantially. The differences between the CLS and EMD estimates
are modest.

We now present Stata, R and MATLAB code which implements these estimates.
You may notice that the Stata code has a section which uses the Mata matrix programming

language. This is used because Stata does not implement the effi cient minimum distance estimator,
so needs to be separately programmed. As illustrated here, the Mata language allows a Stata user
to implement methods using commands which are quite similar to MATLAB.
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Stata do File

use "MRW1992.dta", clear
gen lndY = log(Y85)-log(Y60)
gen lnY60 = log(Y60)
gen lnI = log(invest/100)
gen lnG = log(pop_growth/100+0.05)
gen lnS = log(school/100)
// Unrestricted regression
reg lndY lnY60 lnI lnG lnS if N==1, r
// Store result for effi cient minimum distance
mat b = e(b)’
scalar k = e(rank)
mat V = e(V)
// Constrained regression
constraint define 1 lnI+lnG+lnS=0
cnsreg lndY lnY60 lnI lnG lnS if N==1, constraints(1) r
// Effi cient minimum distance
mata{

data = st_data(.,("lnY60","lnI","lnG","lnS","lndY","N"))
data_select = select(data,data[.,6]:==1)
y = data_select[.,5]
n = rows(y)
x = (data_select[.,1..4],J(n,1,1))
k = cols(x)
invx = invsym(x’*x)
b_ols = st_matrix("b")
V_ols = st_matrix("V")
R = (0 \ 1 \ 1 \ 1 \ 0)
b_emd = b_ols-V_ols*R*invsym(R’*V_ols*R)*R’*b_ols
e_emd = J(1,k,y-x*b_emd)
xe_emd = x:*e_emd
xe_emd’*xe_emd
V2 = (n/(n-k+1))*invx*(xe_emd’*xe_emd)*invx
V_emd = V2 - V2*R*invsym(R’*V2*R)*R’*V2
se_emd = diagonal(sqrt(V_emd))
st_matrix("b_emd",b_emd)
st_matrix("se_emd",se_emd)}

mat list b_emd
mat list se_emd
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R Program File

data <- read.table("MRW1992.txt",header=TRUE)
N <- matrix(data$N,ncol=1)
lndY <- matrix(log(data$Y85)-log(data$Y60),ncol=1)
lnY60 <- matrix(log(data$Y60),ncol=1)
lnI <- matrix(log(data$invest/100),ncol=1)
lnG <- matrix(log(data$pop_growth/100+0.05),ncol=1)
lnS <- matrix(log(data$school/100),ncol=1)
xx <- as.matrix(cbind(lnY60,lnI,lnG,lnS,matrix(1,nrow(lndY),1)))
x <- xx[N==1,]
y <- lndY[N==1]
n <- nrow(x)
k <- ncol(x)
# Unrestricted regression
invx <-solve(t(x)%*%x)
b_ols <- solve((t(x)%*%x),(t(x)%*%y))
e_ols <- rep((y-x%*%beta_ols),times=k)
xe_ols <- x*e_ols
V_ols <- (n/(n-k))*invx%*%(t(xe_ols)%*%xe_ols)%*%invx
se_ols <- sqrt(diag(V_ols))
print(beta_ols)
print(se_ols)
# Constrained regression
R <- c(0,1,1,1,0)
iR <- invx%*%R%*%solve(t(R)%*%invx%*%R)%*%t(R)
b_cls <- b_ols - iR%*%b_ols
e_cls <- rep((y-x%*%b_cls),times=k)
xe_cls <- x*e_cls
V_tilde <- (n/(n-k+1))*invx%*%(t(xe_cls)%*%xe_cls)%*%invx
V_cls <- V_tilde - iR%*%V_tilde - V_tilde%*%t(iR)
+iR%*%V_tilde%*%t(iR)
print(b_cls)print(se_cls)
# Effi cient minimum distance
Vr <- V_ols%*%R%*%solve(t(R)%*%V_ols%*%R)%*%t(R)
b_emd <- b_ols - Vr%*%b_ols
e_emd <- rep((y-x%*%b_emd),times=k)
xe_emd <- x*e_emd
V2 <- (n/(n-k+1))*invx%*%(t(xe_emd)%*%xe_emd)%*%invx
V_emd <- V2 - V2%*%R%*%solve(t(R)%*%V2%*%R)%*%t(R)%*%V2
se_emd <- sqrt(diag(V_emd))
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MATLAB Program File

data = xlsread(’MRW1992.xlsx’);
N = data(:,1);
Y60 = data(:,4);
Y85 = data(:,5);
pop_growth = data(:,7);
invest = data(:,8);
school = data(:,9);
lndY = log(Y85)-log(Y60);
lnY60 = log(Y60);
lnI = log(invest/100);
lnG = log(pop_growth/100+0.05);
lnS = log(school/100);
xx = [lnY60,lnI,lnG,lnS,ones(size(lndY,1),1)];
x = xx(N==1,:);
y = lndY(N==1);
[n,k] = size(x);
% Unrestricted regression
invx = inv(x’*x);
beta_ols = (x’*x)\(x’*y);
e_ols = repmat((y-x*beta_ols),1,k);
xe_ols = x.*e_ols;
V_ols = (n/(n-k))*invx*(xe_ols’*xe_ols)*invx;
se_ols = sqrt(diag(V_ols));
display(beta_ols);
display(se_ols);
% Constrained regression
R = [0;1;1;1;0];
iR = invx*R*inv(R’*invx*R)*R’;
beta_cls = beta_ols - iR*beta_ols;
e_cls = repmat((y-x*beta_cls),1,k);
xe_cls = x.*e_cls;
V_tilde = (n/(n-k+1))*invx*(xe_cls’*xe_cls)*invx;
V_cls = V_tilde - iR*V_tilde - V_tilde*(iR’)...
+ iR*V_tilde*(iR’);
se_cls = sqrt(diag(V_cls));
display(beta_cls);
display(se_cls);
% Effi cient minimum distance
beta_emd = beta_ols-V_ols*R*inv(R’*V_ols*R)*R’*beta_ols;
e_emd = repmat((y-x*beta_emd),1,k);
xe_emd = x.*e_emd;
V2 = (n/(n-k+1))*invx*(xe_emd’*xe_emd)*invx;
V_emd = V2 - V2*R*inv(R’*V2*R)*R’*V2;
se_emd = sqrt(diag(V_emd));
display(beta_emd);
display(se_emd);
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8.13 Misspecification

What are the consequences for a constrained estimator β̃ if the constraint (8.1) is incorrect?
To be specific, suppose that the truth is

R′β = c∗

where c∗ is not necessarily equal to c.
This situation is a generalization of the analysis of “omitted variable bias” from Section 2.24,

where we found that the short regression (e.g. (8.12)) is estimating a different projection coeffi cient
than the long regression (e.g. (8.10)).

One mechanical answer is that we can use the formula (8.23) for the minimum distance estimator
to find that

β̃md
p−→ β∗md = β −W−1R

(
R′W−1R

)−1
(c∗ − c) . (8.38)

The second term,W−1R
(
R′W−1R

)−1
(c∗ − c), shows that imposing an incorrect constraint leads

to inconsistency —an asymptotic bias. We can call the limiting value β∗md the minimum-distance
projection coeffi cient or the pseudo-true value implied by the restriction.

However, we can say more.
For example, we can describe some characteristics of the approximating projections. The CLS

estimator projection coeffi cient has the representation

β∗cls = argmin
R′β=c

E
(
yi − x′iβ

)2
,

the best linear predictor subject to the constraint (8.1). The minimum distance estimator converges
in probability to

β∗md = argmin
R′β=c

(β − β0)′W (β − β0)

where β0 is the true coeffi cient. That is, β
∗
md is the coeffi cient vector satisfying (8.1) closest to

the true value in the weighted Euclidean norm. These calculations show that the constrained
estimators are still reasonable in the sense that they produce good approximations to the true
coeffi cient, conditional on being required to satisfy the constraint.

We can also show that β̃md has an asymptotic normal distribution. The trick is to define the
pseudo-true value

β∗n = β − Ŵ
−1
R
(
R′Ŵ

−1
R
)−1

(c∗ − c) . (8.39)

(Note that (8.38) and (8.39) are different!) Then

√
n
(
β̃md − β∗n

)
=
√
n
(
β̂ − β

)
− Ŵ

−1
R
(
R′Ŵ

−1
R
)−1√

n
(
R′β̂ − c∗

)
=

(
I − Ŵ

−1
R
(
R′Ŵ

−1
R
)−1

R′
)√

n
(
β̂ − β

)
d−→
(
I −W−1R

(
R′W−1R

)−1
R′
)

N (0,V β)

= N (0,V β(W )) . (8.40)

In particular √
n
(
β̃emd − β∗n

)
d−→ N

(
0,V ∗β

)
.

This means that even when the constraint (8.1) is misspecified, the conventional covariance matrix
estimator (8.35) and standard errors (8.36) are appropriate measures of the sampling variance,
though the distributions are centered at the pseudo-true values (projections) β∗n rather than β.
The fact that the estimators are biased is an unavoidable consequence of misspecification.
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An alternative approach to the asymptotic distribution theory under misspecification uses the
concept of local alternatives. It is a technical device which might seem a bit artificial, but it is a
powerful method to derive useful distributional approximations in a wide variety of contexts. The
idea is to index the true coeffi cient βn by n via the relationship

R′βn = c+ δn−1/2. (8.41)

Equation (8.41) specifies that βn violates (8.1) and thus the constraint is misspecified. However,
the constraint is “close”to correct, as the difference R′βn−c = δn−1/2 is “small”in the sense that
it decreases with the sample size n. We call (8.41) local misspecification.

The asymptotic theory is then derived as n→∞ under the sequence of probability distributions
with the coeffi cients βn. The way to think about this is that the true value of the parameter is
βn, and it is “close”to satisfying (8.1). The reason why the deviation is proportional to n

−1/2 is
because this is the only choice under which the localizing parameter δ appears in the asymptotic
distribution but does not dominate it. The best way to see this is to work through the asymptotic
approximation.

Since βn is the true coeffi cient value, then yi = x′iβn+ei and we have the standard representation
for the unconstrained estimator, namely

√
n
(
β̂ − βn

)
=

(
1

n

n∑
i=1

xix
′
i

)−1(
1√
n

n∑
i=1

xiei

)
d−→ N (0,V β) . (8.42)

There is no difference under fixed (classical) or local asymptotics, since the right-hand-side is
independent of the coeffi cient βn.

A difference arises for the constrained estimator. Using (8.41), c = R′βn − δn−1/2, so

R′β̂ − c = R′
(
β̂ − βn

)
+ δn−1/2

and

β̃md = β̂ − Ŵ
−1
R
(
R′Ŵ

−1
R
)−1 (

R′β̂ − c
)

= β̂ − Ŵ
−1
R
(
R′Ŵ

−1
R
)−1

R′
(
β̂ − βn

)
+ Ŵ

−1
R
(
R′Ŵ

−1
R
)−1

δn−1/2.

It follows that

√
n
(
β̃md − βn

)
=

(
I − Ŵ

−1
R
(
R′Ŵ

−1
R
)−1

R′
)√

n
(
β̂ − βn

)
+ Ŵ

−1
R
(
R′Ŵ

−1
R
)−1

δ.

The first term is asymptotically normal (from 8.42)). The second term converges in probability to
a constant. This is because the n−1/2 local scaling in (8.41) is exactly balanced by the

√
n scaling

of the estimator. No alternative rate would have produced this result.
Consequently, we find that the asymptotic distribution equals

√
n
(
β̃md − βn

)
d−→ N (0,V β) +W−1R

(
R′W−1R

)−1
δ

= N (δ∗,V β(W )) (8.43)

where
δ∗ = W−1R

(
R′W−1R

)−1
δ.
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The asymptotic distribution (8.43) is an approximation of the sampling distribution of the
restricted estimator under misspecification. The distribution (8.43) contains an asymptotic bias
component δ∗. The approximation is not fundamentally different from (8.40) —they both have the
same asymptotic variances, and both reflect the bias due to misspecification. The difference is that
(8.40) puts the bias on the left-side of the convergence arrow, while (8.43) has the bias on the
right-side. There is no substantive difference between the two, but (8.43) is more convenient for
some purposes, such as the analysis of the power of tests, as we will explore in the next chapter.

8.14 Nonlinear Constraints

In some cases it is desirable to impose nonlinear constraints on the parameter vector β. They
can be written as

r(β) = 0 (8.44)

where r : Rk → Rq. This includes the linear constraints (8.1) as a special case. An example of
(8.44) which cannot be written as (8.1) is β1β2 = 1, which is (8.44) with r(β) = β1β2 − 1.

The constrained least-squares and minimum distance estimators of β subject to (8.44) solve the
minimization problems

β̃cls = argmin
r(β)=0

SSE(β) (8.45)

β̃md = argmin
r(β)=0

J (β) (8.46)

where SSE(β) and J (β) are defined in (8.4) and (8.19), respectively. The solutions minimize the
Lagrangians

L(β,λ) =
1

2
SSE(β) + λ′r(β)

or
L(β,λ) =

1

2
J (β) + λ′r(β) (8.47)

over (β,λ).
Computationally, there is no general closed-form solution for the estimator so they must be

found numerically. Algorithms to numerically solve (8.45) and (8.46) are known as constrained
optimization methods, and are available in programming languages including MATLAB, GAUSS
and R.

Assumption 8.3 r(β) = 0, r(β) is continuously differentiable at the true

β, and rank(R) = q, where R =
∂

∂β
r(β)′.

The asymptotic distribution is a simple generalization of the case of a linear constraint, but the
proof is more delicate.
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Theorem 8.10 Under Assumptions 7.2, 8.2, and 8.3, for β̃ = β̃md and
β̃ = β̃cls defined in (8.45) and (8.46),

√
n
(
β̃ − β

)
d−→ N (0,V β(W ))

as n → ∞, where V β(W ) is defined in (8.24). For β̃cls, W = Qxx and
V β(W ) = V cls as defined in Theorem 8.8. V β(W ) is minimized with
W = V −1

β , in which case the asymptotic variance is

V ∗β = V β − V βR
(
R′V βR

)−1
R′V β.

The asymptotic variance matrix for the effi cient minimum distance estimator can be estimated
by

V̂
∗
β = V̂ β − V̂ βR̂

(
R̂
′
V̂ βR̂

)−1
R̂
′
V̂ β

where

R̂ =
∂

∂β
r(β̃md)′. (8.48)

Standard errors for the elements of β̃md are the square roots of the diagonal elements of V̂
∗
β̃ =

n−1V̂
∗
β.

8.15 Inequality Restrictions

Inequality constraints on the parameter vector β take the form

r(β) ≥ 0 (8.49)

for some function r : Rk → Rq. The most common example is a non-negative constraint

β1 ≥ 0.

The constrained least-squares and minimum distance estimators can be written as

β̃cls = argmin
r(β)≥0

SSE(β) (8.50)

and
β̃md = argmin

r(β)≥0
J (β) . (8.51)

Except in special cases the constrained estimators do not have simple algebraic solutions. An
important exception is when there is a single non-negativity constraint, e.g. β1 ≥ 0 with q = 1.
In this case the constrained estimator can be found by two-step approach. First compute the
uncontrained estimator β̂. If β̂1 ≥ 0 then β̃ = β̂. Second, if β̂1 < 0 then impose β1 = 0 (eliminate
the regressor X1) and re-estimate. This yields the constrained least-squares estimator. While this
method works when there is a single non-negativity constraint, it does not immediately generalize
to other contexts.

The computational problems (8.50) and (8.51) are examples of quadratic programming
problems. Quick and easy computer algorithms are available in programming languages including
MATLAB, GAUSS and R.
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Inference on inequality-constrained estimators is unfortunately quite challenging. The conven-
tional asymptotic theory gives rise to the following dichotomy. If the true parameter satisfies the
strict inequality r(β) > 0, then asymptotically the estimator is not subject to the constraint and the
inequality-constrained estimator has an asymptotic distribution equal to the unconstrained case.
However if the true parameter is on the boundary, e.g. r(β) = 0, then the estimator has a trun-
cated structure. This is easiest to see in the one-dimensional case. If we have an estimator β̂ which

satisfies
√
n
(
β̂ − β

)
d−→ Z = N (0, Vβ) and β = 0, then the constrained estimator β̃ = max[β̂, 0]

will have the asymptotic distribution
√
nβ̃

d−→ max[Z, 0], a “half-normal”distribution.

8.16 Technical Proofs*

Proof of Theorem 8.9, Equation (8.28). Let R⊥ be a full rank k × (k − q) matrix satisfying
R′⊥V βR = 0 and then set C = [R,R⊥] which is full rank and invertible. Then we can calculate
that

C ′V ∗βC =

[
R′V ∗βR R′V ∗βR⊥
R′⊥V

∗
βR R′⊥V

∗
βR⊥

]
=

[
0 0
0 R′⊥V βR⊥

]
and

C ′V β(W )C

=

[
R′V ∗β(W )R R′V ∗β(W )R⊥
R′⊥V

∗
β(W )R R′⊥V

∗
β(W )R⊥

]
=

[
0 0

0 R′⊥V βR⊥ +R′⊥WR (R′WR)
−1
R′V βR (R′WR)

−1
R′WR⊥

]
.

Thus

C ′
(
V β(W )− V ∗β

)
C

= C ′V β(W )C −C ′V ∗βC

=

[
0 0

0 R′⊥WR (R′WR)
−1
R′V βR (R′WR)

−1
R′WR⊥

]
≥ 0

Since C is invertible it follows that V β(W )− V ∗β ≥ 0 which is (8.28). �

Proof of Theorem 8.10. We show the result for the minimum distance estimator β̃ = β̃md, as
the proof for the constrained least-squares estimator is similar. For simplicity we assume that the
constrained estimator is consistent β̃

p−→ β. This can be shown with more effort, but requires a
deeper treatment than appropriate for this textbook.

For each element rj(β) of the q-vector r(β), by the mean value theorem there exists a β∗j on

the line segment joining β̃ and β such that

rj(β̃) = rj(β) +
∂

∂β
rj(β

∗
j )
′
(
β̃ − β

)
. (8.52)

Let R∗n be the k × q matrix

R∗ =

[
∂

∂β
r1(β∗1)

∂

∂β
r2(β∗2) · · · ∂

∂β
rq(β

∗
q)

]
.
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Since β̃
p−→ β it follows that β∗j

p−→ β, and by the CMT, R∗
p−→ R. Stacking the (8.52), we obtain

r(β̃) = r(β) +R∗′
(
β̃ − β

)
.

Since r(β̃) = 0 by construction and r(β) = 0 by Assumption 8.1, this implies

0 = R∗′
(
β̃ − β

)
. (8.53)

The first-order condition for (8.47) is

Ŵ
(
β̂ − β̃

)
= R̂λ̃.

where R̂ is defined in (8.48).

Premultiplying by R∗′Ŵ
−1
, inverting, and using (8.53), we find

λ̃ =
(
R∗′Ŵ

−1
R̂
)−1

R∗′
(
β̂ − β̃

)
=
(
R∗′Ŵ

−1
R̂
)−1

R∗′
(
β̂ − β

)
.

Thus

β̃ − β =

(
I − Ŵ

−1
R̂
(
R∗′n Ŵ

−1
R̂
)−1

R∗′n

)(
β̂ − β

)
. (8.54)

From Theorem 7.3 and Theorem 7.6 we find

√
n
(
β̃ − β

)
=

(
I − Ŵ

−1
R̂
(
R∗′n Ŵ

−1
R̃
)−1

R∗′n

)√
n
(
β̂ − β

)
d−→
(
I −W−1R

(
R′W−1R

)−1
R′
)

N (0,V β)

= N (0,V β(W )) .

�
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Exercises

Exercise 8.1 In the model y = X1β1 +X2β2 + e, show directly from definition (8.3) that the
CLS estimate of β = (β1,β2) subject to the constraint that β2 = 0 is the OLS regression of y on
X1.

Exercise 8.2 In the model y = X1β1 +X2β2 + e, show directly from definition (8.3) that the
CLS estimate of β = (β1,β2), subject to the constraint that β1 = c (where c is some given vector)
is the OLS regression of y −X1c on X2.

Exercise 8.3 In the model y = X1β1 +X2β2 + e, with X1 and X2 each n × k, find the CLS
estimate of β = (β1,β2), subject to the constraint that β1 = −β2.

Exercise 8.4 In the linear projection model yi = α+ x′iβ + ei, consider the restriction β = 0.

(a) Find the constrained least-squares (CLS) estimator of α under the restriction β = 0.

(b) Find an expression for the effi cient minimum distance estimator of α under the restriction
β = 0.

Exercise 8.5 Verify that for β̃cls defined in (8.8) that R
′β̃cls = c.

Exercise 8.6 Prove Theorem 8.1.

Exercise 8.7 Prove Theorem 8.2, that is, E
(
β̃cls |X

)
= β, under the assumptions of the linear

regression regression model and (8.1).
Hint: Use Theorem 8.1.

Exercise 8.8 Prove Theorem 8.3.

Exercise 8.9 Prove Theorem 8.4, that is, E
(
s2

cls |X
)

= σ2, under the assumptions of the ho-
moskedastic regression model and (8.1).

Exercise 8.10 Verify (8.22) and (8.23), and that the minimum distance estimator β̃md with Ŵ =
Q̂xx equals the CLS estimator.

Exercise 8.11 Prove Theorem 8.6.

Exercise 8.12 Prove Theorem 8.7.

Exercise 8.13 Prove Theorem 8.8. (Hint: Use that CLS is a special case of Theorem 8.7.)

Exercise 8.14 Verify that (8.26) is V β(W ) with W = V −1
β .

Exercise 8.15 Prove (8.27). Hint: Use (8.26).

Exercise 8.16 Verify (8.29), (8.30) and (8.31).

Exercise 8.17 Verify (8.32), (8.33), and (8.34).
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Exercise 8.18 Suppose you have two independent samples

y1i = x′1iβ1 + e1i

and
y2i = x′2iβ2 + e2i

both of sample size n, and both x1i and x2i are k × 1. You estimate β1 and β2 by OLS on each
sample, β̂1 and β̂2, say, with asymptotic covariance matrix estimators V̂ β1 and V̂ β2 (which are
consistent for the asymptotic covariance matrices V β1 and V β2). Consider effi cient minimimum
distance estimation under the restriction β1 = β2.

(a) Find the estimator β̃ of β = β1 = β2.

(b) Find the asymptotic distribution of β̃.

(c) How would you approach the problem if the sample sizes are different, say n1 and n2?

Exercise 8.19 As in Exercise 7.29 and 3.26, use the CPS dataset and the subsample of white male
Hispanics.

(a) Estimate the regression

̂log(Wage) = β1 education+ β2 experience+ β3 experience
2/100 + β4Married1

+ β5Married2 + β6Married3 + β7Widowed+ β8Divorced+ β9Separated+ β10

where Married1, Married2, and Married3 are the first three marital status codes as listed
in Section 3.22.

(b) Estimate the equation using constrained least-squares, imposing the constraints β4 = β7 and
β8 = β9, and report the estimates and standard errors.

(c) Estimate the equation using effi cient minimum distance, imposing the same constraints, and
report the estimates and standard errors.

(d) Under what constraint on the coeffi cients is the wage equation non-decreasing in experience
for experience up to 50?

(e) Estimate the equation imposing β4 = β7, β8 = β9, and the inequality from part (d).

Exercise 8.20 Take the model

yi = m(xi) + ei

m(x) = β0 + β1x+ β2x
2 + · · ·+ βpx

p

E (ziei) = 0

zi = (1, xi, ..., x
p
i )
′

g(x) =
d

dx
m(x)

with i.i.d. observations (yi, xi), i = 1, ..., n. The order of the polynomial p is known.

(a) How should we interpret the function m(x) given the projection assumption? How should we
interpret g(x)? (Briefly)

(b) Describe an estimator ĝ(x) of g(x).
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(c) Find the asymptotic distribution of
√
n (ĝ(x)− g(x)) as n→∞.

(d) Show how to construct an asymptotic 95% confidence interval for g(x) (for a single x).

(e) Assume p = 2. Describe how to estimate g(x) imposing the constraint that m(x) is concave.

(f) Assume p = 2. Describe how to estimate g(x) imposing the constraint that m(u) is increasing
on the region u ∈ [xL, xU ].

Exercise 8.21 Take the linear model with restrictions

yi = x′iβ + ei

E (xiei) = 0

R′β = c

with n observations. Consider three estimators for β

• β̂, the unconstrained least squares estimator

• β̃, the constrained least squares estimator

• β, the constrained effi cient minimum distance estimator

For each estimator, define the residuals êi = yi−x′iβ̂, ẽi = yi−x′iβ̃, ei = yi−x′iβ, and variance
estimators σ̂2 =

1

n

∑n
i=1 ê

2
i , σ̃

2 =
1

n

∑n
i=1 ẽ

2
i , and σ

2 =
1

n

∑n
i=1 e

2
i .

(a) As β is the most effi cient estimator and β̂ the least, do you expect that σ2 < σ̃2 < σ̂2, in
large samples?

(b) Consider the statistic

Tn = σ̂−2
n∑
i=1

(êi − ẽi)2 .

Find the asymptotic distribution for Tn when R′β = c is true.

(c) Does the result of the previous question simplify when the error ei is homoskedastic?

Exercise 8.22 Take the linear model

yi = x1iβ1 + x2iβ2 + ei

E (xiei) = 0

with n observations. Consider the restriction

β1

β2
= 2.

(a) Find an explicit expression for the constrained least-squares (CLS) estimator β̃ = (β̃1, β̃2) of
β = (β1, β2) under the restriction. Your answer should be specific to the restriction, it should
not be a generic formula for an abstract general restriction.

(b) Derive the asymptotic distribution of β̃1 under the assumption that the restriction is true.



Chapter 9

Hypothesis Testing

In Chapter 5 we briefly introduced hypothesis testing in the context of the normal regression
model. In this chapter we explore hypothesis testing in greater detail, with a particular emphasis
on asymptotic inference.

9.1 Hypotheses

In Chapter 8 we discussed estimation subject to restrictions, including linear restrictions (8.1),
nonlinear restrictions (8.44), and inequality restrictions (8.49). In this chapter we discuss tests of
such restrictions.

Hypothesis tests attempt to assess whether there is evidence to contradict a proposed parametric
restriction. Let

θ = r(β)

be a q × 1 parameter of interest where r : Rk → Θ ⊂ Rq is some transformation. For example, θ
may be a single coeffi cient, e.g. θ = βj , the difference between two coeffi cients, e.g. θ = βj − β`, or
the ratio of two coeffi cients, e.g. θ = βj/β`.

A point hypothesis concerning θ is a proposed restriction such as

θ = θ0 (9.1)

where θ0 is a hypothesized (known) value.
More generally, letting β ∈ B ⊂ Rk be the parameter space, a hypothesis is a restriction β ∈ B0

where B0 is a proper subset of B. This specializes to (9.1) by setting B0 = {β ∈ B : r(β) = θ0} .
In this chapter we will focus exclusively on point hypotheses of the form (9.1) as they are the

most common and relatively simple to handle.
The hypothesis to be tested is called the null hypothesis.

Definition 9.1 The null hypothesis, written H0, is the restriction θ =
θ0 or β ∈ B0.

We often write the null hypothesis as H0 : θ = θ0 or H0 : r(β) = θ0.
The complement of the null hypothesis (the collection of parameter values which do not satisfy

the null hypothesis) is called the alternative hypothesis.

Definition 9.2 The alternative hypothesis, written H1, is the set
{θ ∈ Θ : θ 6= θ0} or {β ∈ B : β /∈ B0} .

285
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We often write the alternative hypothesis as H1 : θ 6= θ0 or H1 : r(β) 6= θ0. For simplicity, we
often refer to the hypotheses as “the null”and “the alternative”.

In hypothesis testing, we assume that there is a true (but unknown) value of θ and this value
either satisfies H0 or does not satisfy H0. The goal of hypothesis testing is to assess whether or not
H0 is true, by asking if H0 is consistent with the observed data.

To be specific, take our example of wage determination and consider the question: Does union
membership affect wages? We can turn this into a hypothesis test by specifying the null as the
restriction that a coeffi cient on union membership is zero in a wage regression. Consider, for
example, the estimates reported in Table 4.1. The coeffi cient for “Male Union Member”is 0.095 (a
wage premium of 9.5%) and the coeffi cient for “Female Union Member”is 0.022 (a wage premium of
2.2%). These are estimates, not the true values. The question is: Are the true coeffi cients zero? To
answer this question, the testing method asks the question: Are the observed estimates compatible
with the hypothesis, in the sense that the deviation from the hypothesis can be reasonably explained
by stochastic variation? Or are the observed estimates incompatible with the hypothesis, in the
sense that that the observed estimates would be highly unlikely if the hypothesis were true?

9.2 Acceptance and Rejection

A hypothesis test either accepts the null hypothesis or rejects the null hypothesis in favor of
the alternative hypothesis. We can describe these two decisions as “Accept H0”and “Reject H0”.
In the example given in the previous section, the decision would be either to accept the hypothesis
that union membership does not affect wages, or to reject the hypothesis in favor of the alternative
that union membership does affect wages.

The decision is based on the data, and so is a mapping from the sample space to the decision
set. This splits the sample space into two regions S0 and S1 such that if the observed sample
falls into S0 we accept H0, while if the sample falls into S1 we reject H0. The set S0 is called the
acceptance region and the set S1 the rejection or critical region.

It is convenient to express this mapping as a real-valued function called a test statistic

T = T ((y1,x1) , ..., (yn,xn))

relative to a critical value c. The hypothesis test then consists of the decision rule

1. Accept H0 if T ≤ c.

2. Reject H0 if T > c.

A test statistic T should be designed so that small values are likely when H0 is true and large
values are likely when H1 is true. There is a well developed statistical theory concerning the design
of optimal tests. We will not review that theory here, but instead refer the reader to Lehmann
and Romano (2005). In this chapter we will summarize the main approaches to the design of test
statistics.

The most commonly used test statistic is the absolute value of the t-statistic

T = |T (θ0)| (9.2)

where

T (θ) =
θ̂ − θ
s(θ̂)

(9.3)

is the t-statistic from (7.33), θ̂ is a point estimate, and s(θ̂) its standard error. T is an appropriate
statistic when testing hypotheses on individual coeffi cients or real-valued parameters θ = h(β)
and θ0 is the hypothesized value. Quite typically, θ0 = 0, as interest focuses on whether or not
a coeffi cient equals zero, but this is not the only possibility. For example, interest may focus on
whether an elasticity θ equals 1, in which case we may wish to test H0 : θ = 1.
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9.3 Type I Error

A false rejection of the null hypothesis H0 (rejecting H0 when H0 is true) is called a Type I
error. The probability of a Type I error is

P (Reject H0 | H0 true) = P (T > c | H0 true) . (9.4)

The finite sample size of the test is defined as the supremum of (9.4) across all data distributions
which satisfy H0. A primary goal of test construction is to limit the incidence of Type I error by
bounding the size of the test.

For the reasons discussed in Chapter 7, in typical econometric models the exact sampling
distributions of estimators and test statistics are unknown and hence we cannot explicitly calculate
(9.4). Instead, we typically rely on asymptotic approximations. Suppose that the test statistic has
an asymptotic distribution under H0. That is, when H0 is true

T
d−→ ξ (9.5)

as n→∞ for some continuously-distributed random variable ξ. This is not a substantive restriction
as most conventional econometric tests satisfy (9.5). Let G(u) = P (ξ ≤ u) denote the distribution
of ξ. We call ξ (or G) the asymptotic null distribution.

It is generally desirable to design test statistics T whose asymptotic null distribution G is
known and does not depend on unknown parameters. In this case we say that the statistic T is
asymptotically pivotal.

For example, if the test statistic equals the absolute t-statistic from (9.2), then we know from

Theorem 7.11 that if θ = θ0 (that is, the null hypothesis holds), then T
d−→ |Z| as n → ∞ where

Z ∼ N(0, 1). This means that G(u) = P (|Z| ≤ u) = 2Φ(u) − 1, the distribution of the absolute
value of the standard normal as shown in (7.34). This distribution does not depend on unknowns
and is pivotal.

We define the asymptotic size of the test as the asymptotic probability of a Type I error:

lim
n→∞

P (T > c | H0 true) = P (ξ > c)

= 1−G(c).

We see that the asymptotic size of the test is a simple function of the asymptotic null distribution G
and the critical value c. For example, the asymptotic size of a test based on the absolute t-statistic
with critical value c is 2 (1− Φ(c)) .

In the dominant approach to hypothesis testing, the researcher pre-selects a significance level
α ∈ (0, 1) and then selects c so that the (asymptotic) size is no larger than α.When the asymptotic
null distribution G is pivotal, we can accomplish this by setting c equal to the 1 − α quantile of
the distribution G. (If the distribution G is not pivotal, more complicated methods must be used,
pointing out the great convenience of using asymptotically pivotal test statistics.) We call c the
asymptotic critical value because it has been selected from the asymptotic null distribution.
For example, since 2 (1− Φ(1.96)) = 0.05, it follows that the 5% asymptotic critical value for
the absolute t-statistic is c = 1.96. Calculation of normal critical values is done numerically in
statistical software. For example, in MATLAB the command is norminv(1-α/2).

9.4 t tests

As we mentioned earlier, the most common test of the one-dimensional hypothesis

H0 : θ = θ0
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against the alternative
H1 : θ 6= θ0

is the absolute value of the t-statistic (9.3). We now formally state its asymptotic null distribution,
which is a simple application of Theorem 7.11.

Theorem 9.1 Under Assumptions 7.2, 7.3, and H0 : θ = θ0,

T (θ0)
d−→ Z.

For c satisfying α = 2 (1− Φ(c)) ,

P (|T (θ0)| > c | H0) −→ α,

and the test “Reject H0 if |T (θ0)| > c”has asymptotic size α.

The theorem shows that asymptotic critical values can be taken from the normal distribution.
As in our discussion of asymptotic confidence intervals (Section 7.13), the critical value could
alternatively be taken from the student t distribution, which would be the exact test in the normal
regression model (Section 5.15). Indeed, t critical values are the default in packages such as Stata.
Since the critical values from the student t distribution are (slightly) larger than those from the
normal distribution, using student t critical values decreases the rejection probability of the test.
In practical applications the difference is typically unimportant unless the sample size is quite small
(in which case the asymptotic approximation should be questioned as well).

The alternative hypothesis θ 6= θ0 is sometimes called a “two-sided”alternative. In contrast,
sometimes we are interested in testing for one-sided alternatives such as

H1 : θ > θ0

or
H1 : θ < θ0.

Tests of θ = θ0 against θ > θ0 or θ < θ0 are based on the signed t-statistic T = T (θ0). The
hypothesis θ = θ0 is rejected in favor of θ > θ0 if T > c where c satisfies α = 1 − Φ(c). Negative
values of T are not taken as evidence against H0, as point estimates θ̂ less than θ0 do not point to
θ > θ0. Since the critical values are taken from the single tail of the normal distribution, they are
smaller than for two-sided tests. Specifically, the asymptotic 5% critical value is c = 1.645. Thus,
we reject θ = θ0 in favor of θ > θ0 if T > 1.645.

Conversely, tests of θ = θ0 against θ < θ0 reject H0 for negative t-statistics, e.g. if T ≤ −c.
For this alternative large positive values of T are not evidence against H0. An asymptotic 5% test
rejects if T < −1.645.

There seems to be an ambiguity. Should we use the two-sided critical value 1.96 or the one-sided
critical value 1.645? The answer is that in most cases the two-sided critical value is appropriate.
We should use the one-sided critical values only when the parameter space is known to satisfy a
one-sided restriction such as θ ≥ θ0. This is when the test of θ = θ0 against θ > θ0 makes sense. If
the restriction θ ≥ θ0 is not known a priori, then imposing this restriction to test θ = θ0 against
θ > θ0 does not makes sense. Since linear regression coeffi cients typically do not have a priori sign
restrictions, the standard convention is to use two-sided critical values.

This may seem contrary to the way testing is presented in statistical textbooks, which often
focus on one-sided alternative hypotheses. The latter focus is primarily for pedagogy, as the one-
sided theoretical problem is cleaner and easier to understand.
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9.5 Type II Error and Power

A false acceptance of the null hypothesis H0 (accepting H0 when H1 is true) is called a Type II
error. The rejection probability under the alternative hypothesis is called the power of the test,
and equals 1 minus the probability of a Type II error:

π(θ) = P (Reject H0 | H1 true) = P (T > c | H1 true) .

We call π(θ) the power function and is written as a function of θ to indicate its dependence on
the true value of the parameter θ.

In the dominant approach to hypothesis testing, the goal of test construction is to have high
power subject to the constraint that the size of the test is lower than the pre-specified significance
level. Generally, the power of a test depends on the true value of the parameter θ, and for a well
behaved test the power is increasing both as θ moves away from the null hypothesis θ0 and as the
sample size n increases.

Given the two possible states of the world (H0 or H1) and the two possible decisions (Accept
H0 or Reject H0), there are four possible pairings of states and decisions as is depicted in Table 9.1.

Table 9.1: Hypothesis Testing Decisions

Accept H0 Reject H0

H0 true Correct Decision Type I Error
H1 true Type II Error Correct Decision

Given a test statistic T , increasing the critical value c increases the acceptance region S0 while
decreasing the rejection region S1. This decreases the likelihood of a Type I error (decreases the
size) but increases the likelihood of a Type II error (decreases the power). Thus the choice of c
involves a trade-off between size and the power. This is why the significance level α of the test
cannot be set arbitrarily small. (Otherwise the test will not have meaningful power.)

It is important to consider the power of a test when interpreting hypothesis tests, as an overly
narrow focus on size can lead to poor decisions. For example, it is easy to design a test which has
perfect size yet has trivial power. Specifically, for any hypothesis we can use the following test:
Generate a random variable U ∼ U [0, 1] and reject H0 if U < α. This test has exact size of α. Yet
the test also has power precisely equal to α. When the power of a test equals the size, we say that
the test has trivial power. Nothing is learned from such a test.

9.6 Statistical Significance

Testing requires a pre-selected choice of significance level α, yet there is no objective scientific
basis for choice of α. Nevertheless the common practice is to set α = 0.05 (5%). Alternative values
are α = 0.10 (10%) and α = 0.01 (1%). These choices are somewhat the by-product of traditional
tables of critical values and statistical software.

The informal reasoning behind the choice of a 5% critical value is to ensure that Type I errors
should be relatively unlikely —that the decision “Reject H0”has scientific strength —yet the test
retains power against reasonable alternatives. The decision “Reject H0”means that the evidence
is inconsistent with the null hypothesis, in the sense that it is relatively unlikely (1 in 20) that data
generated by the null hypothesis would yield the observed test result.

In contrast, the decision “Accept H0” is not a strong statement. It does not mean that the
evidence supports H0, only that there is insuffi cient evidence to reject H0. Because of this, it is
more accurate to use the label “Do not Reject H0”instead of “Accept H0”.

When a test rejects H0 at the 5% significance level it is common to say that the statistic is
statistically significant and if the test accepts H0 it is common to say that the statistic is not
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statistically significant or that it is statistically insignificant. It is helpful to remember that
this is simply a compact way of saying “Using the statistic T , the hypothesis H0 can [cannot] be
rejected at the asymptotic 5% level.”Furthermore, when the null hypothesis H0 : θ = 0 is rejected
it is common to say that the coeffi cient θ is statistically significant, because the test has rejected
the hypothesis that the coeffi cient is equal to zero.

Let us return to the example about the union wage premium as measured in Table 4.1. The
absolute t-statistic for the coeffi cient on “Male Union Member” is 0.095/0.020 = 4.7, which is
greater than the 5% asymptotic critical value of 1.96. Therefore we reject the hypothesis that
union membership does not affect wages for men. In this case, we can say that union membership
is statistically significant for men. However, the absolute t-statistic for the coeffi cient on “Female
Union Member” is 0.023/0.020 = 1.2, which is less than 1.96 and therefore we do not reject the
hypothesis that union membership does not affect wages for women. In this case we find that
membership for women is not statistically significant.

When a test accepts a null hypothesis (when a test is not statistically significant) a common
misinterpretation is that this is evidence that the null hypothesis is true. This is incorrect. Failure
to reject is by itself not evidence. Without an analysis of power, we do not know the likelihood of
making a Type II error, and thus are uncertain. In our wage example, it would be a mistake to
write that “the regression finds that female union membership has no effect on wages”. This is an
incorrect and most unfortunate interpretation. The test has failed to reject the hypothesis that the
coeffi cient is zero, but that does not mean that the coeffi cient is actually zero.

When a test rejects a null hypothesis (when a test is statistically significant) it is strong evi-
dence against the hypothesis (since if the hypothesis were true then rejection is an unlikely event).
Rejection should be taken as evidence against the null hypothesis. However, we can never conclude
that the null hypothesis is indeed false, as we cannot exclude the possibility that we are making a
Type I error.

Perhaps more importantly, there is an important distinction between statistical and economic
significance. If we correctly reject the hypothesis H0 : θ = 0 it means that the true value of θ is
non-zero. This includes the possibility that θ may be non-zero but close to zero in magnitude. This
only makes sense if we interpret the parameters in the context of their relevant models. In our
wage regression example, we might consider wage effects of 1% magnitude or less as being “close
to zero”. In a log wage regression this corresponds to a dummy variable with a coeffi cient less
than 0.01. If the standard error is suffi ciently small (less than 0.005) then a coeffi cient estimate
of 0.01 will be statistically significant but not economically significant. This occurs frequently in
applications with very large sample sizes where standard errors can be quite small.

The solution is to focus whenever possible on confidence intervals and the economic meaning of
the coeffi cients. For example, if the coeffi cient estimate is 0.005 with a standard error of 0.002 then
a 95% confidence interval would be [0.001, 0.009] indicating that the true effect is likely between
0% and 1%, and hence is slightly positive but small. This is much more informative than the
misleading statement “the effect is statistically positive”.

9.7 P-Values

Continuing with the wage regression estimates reported in Table 4.1, consider another question:
Does marriage status affect wages? To test the hypothesis that marriage status has no effect on
wages, we examine the t-statistics for the coeffi cients on “Married Male”and “Married Female”in
Table 4.1, which are 0.211/0.010 = 22 and 0.016/0.010 = 1.7, respectively. The first exceeds the
asymptotic 5% critical value of 1.96, so we reject the hypothesis for men. The second is smaller
than 1.96, so we fail to reject the hypothesis for women. Taking a second look at the statistics, we
see that the statistic for men (22) is exceptionally high, and that for women (1.7) is only slightly
below the critical value. Suppose that the t-statistic for women were slightly increased to 2.0. This
is larger than the critical value so would lead to the decision “Reject H0” rather than “Accept
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H0”. Should we really be making a different decision if the t-statistic is 2.0 rather than 1.7? The
difference in values is small, shouldn’t the difference in the decision be also small? Thinking through
these examples it seems unsatisfactory to simply report “Accept H0”or “Reject H0”. These two
decisions do not summarize the evidence. Instead, the magnitude of the statistic T suggests a
“degree of evidence”against H0. How can we take this into account?

The answer is to report what is known as the asymptotic p-value

p = 1−G(T ).

Since the distribution function G is monotonically increasing, the p-value is a monotonically de-
creasing function of T and is an equivalent test statistic. Instead of rejecting H0 at the significance
level α if T > c, we can reject H0 if p < α. Thus it is suffi cient to report p, and let the reader
decide. In practice, the p-value is calculated numerically. For example, in MATLAB the command
is 2*(1-normalcdf(abs(t))).

In is instructive to interpret p as the marginal significance level: the smallest value of α for
which the test T “rejects” the null hypothesis. That is, p = 0.11 means that T rejects H0 for all
significance levels greater than 0.11, but fails to reject H0 for significance levels less than 0.11.

Furthermore, the asymptotic p-value has a very convenient asymptotic null distribution. Since

T
d−→ ξ under H0, then p = 1−G(T )

d−→ 1−G(ξ), which has the distribution

P (1−G(ξ) ≤ u) = P (1− u ≤ G(ξ))

= 1− P
(
ξ ≤ G−1(1− u)

)
= 1−G

(
G−1(1− u)

)
= 1− (1− u)

= u,

which is the uniform distribution on [0, 1]. (This calculation assumes that G(u) is strictly increasing

which is true for conventional asymptotic distributions such as the normal.) Thus p d−→ U[0, 1].
This means that the “unusualness”of p is easier to interpret than the “unusualness”of T.

An important caveat is that the p-value p should not be interpreted as the probability that
either hypothesis is true. A common mis-interpretation is that p is the probability “that the null
hypothesis is true.”This is incorrect. Rather, p is the marginal significance level —a measure of
the strength of information against the null hypothesis.

For a t-statistic, the p-value can be calculated either using the normal distribution or the student
t distribution, the latter presented in Section 5.15. p-values calculated using the student t will be
slightly larger, though the difference is small when the sample size is large.

Returning to our empirical example, for the test that the coeffi cient on “Married Male”is zero,
the p-value is 0.000. This means that it would be nearly impossible to observe a t-statistic as large
as 22 when the true value of the coeffi cient is zero. When presented with such evidence we can say
that we “strongly reject”the null hypothesis, that the test is “highly significant”, or that “the test
rejects at any conventional critical value”. In contrast, the p-value for the coeffi cient on “Married
Female”is 0.094. In this context it is typical to say that the test is “close to significant”, meaning
that the p-value is larger than 0.05, but not too much larger.

A related (but inferior) empirical practice is to append asterisks (*) to coeffi cient estimates or
test statistics to indicate the level of significance. A common practice to to append a single asterisk
(*) for an estimate or test statistic which exceeds the 10% critical value (i.e., is significant at the
10% level), append a double asterisk (**) for a test which exceeds the 5% critical value, and append
a triple asterisk (***) for a test which exceeds the 1% critical value. Such a practice can be better
than a table of raw test statistics as the asterisks permit a quick interpretation of significance. On
the other hand, asterisks are inferior to p-values, which are also easy and quick to interpret. The
goal is essentially the same; it seems wiser to report p-values whenever possible and avoid the use
of asterisks.
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Our recommendation is that the best empirical practice is to compute and report the asymptotic
p-value p rather than simply the test statistic T , the binary decision Accept/Reject, or appending
asterisks. The p-value is a simple statistic, easy to interpret, and contains more information than
the other choices.

We now summarize the main features of hypothesis testing.

1. Select a significance level α.

2. Select a test statistic T with asymptotic distribution T d−→ ξ under H0.

3. Set the asymptotic critical value c so that 1−G(c) = α, where G is the distribution function
of ξ.

4. Calculate the asymptotic p-value p = 1−G(T ).

5. Reject H0 if T > c, or equivalently p < α.

6. Accept H0 if T ≤ c, or equivalently p ≥ α.

7. Report p to summarize the evidence concerning H0 versus H1.

9.8 t-ratios and the Abuse of Testing

In Section 4.19, we argued that a good applied practice is to report coeffi cient estimates θ̂ and
standard errors s(θ̂) for all coeffi cients of interest in estimated models. With θ̂ and s(θ̂) the reader

can easily construct confidence intervals [θ̂ ± 2s(θ̂)] and t-statistics
(
θ̂ − θ0

)
/s(θ̂) for hypotheses

of interest.
Some applied papers (especially older ones) report t-ratios T = θ̂/s(θ̂) instead of standard errors.

This is poor econometric practice. While the same information is being reported (you can back out
standard errors by division, e.g. s(θ̂) = θ̂/T ), standard errors are generally more helpful to readers
than t-ratios. Standard errors help the reader focus on the estimation precision and confidence
intervals, while t-ratios focus attention on statistical significance. While statistical significance
is important, it is less important that the parameter estimates themselves and their confidence
intervals. The focus should be on the meaning of the parameter estimates, their magnitudes, and
their interpretation, not on listing which variables have significant (e.g. non-zero) coeffi cients.
In many modern applications, sample sizes are very large so standard errors can be very small.
Consequently t-ratios can be large even if the coeffi cient estimates are economically small. In
such contexts it may not be interesting to announce “The coeffi cient is non-zero!”Instead, what is
interesting to announce is that “The coeffi cient estimate is economically interesting!”

In particular, some applied papers report coeffi cient estimates and t-ratios, and limit their
discussion of the results to describing which variables are “significant”(meaning that their t-ratios
exceed 2) and the signs of the coeffi cient estimates. This is very poor empirical work, and should be
studiously avoided. It is also a recipe for banishment of your work to lower tier economics journals.

Fundamentally, the common t-ratio is a test for the hypothesis that a coeffi cient equals zero.
This should be reported and discussed when this is an interesting economic hypothesis of interest.
But if this is not the case, it is distracting.

One problem is that standard packages, such as Stata, by default report t-statistics and p-values
for every estimated coeffi cient. While this can be useful (as a user doesn’t need to explicitly ask
to test a desired coeffi cient) it can be misleading as it may unintentionally suggest that the entire
list of t-statistics and p-values are important. Instead, a user should focus on tests of scientifically
motivated hypotheses.

In general, when a coeffi cient θ is of interest, it is constructive to focus on the point estimate,
its standard error, and its confidence interval. The point estimate gives our “best guess” for the
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value. The standard error is a measure of precision. The confidence interval gives us the range
of values consistent with the data. If the standard error is large then the point estimate is not
a good summary about θ. The endpoints of the confidence interval describe the bounds on the
likely possibilities. If the confidence interval embraces too broad a set of values for θ, then the
dataset is not suffi ciently informative to render useful inferences about θ. On the other hand if
the confidence interval is tight, then the data have produced an accurate estimate, and the focus
should be on the value and interpretation of this estimate. In contrast, the statement “the t-ratio
is highly significant”has little interpretive value.

The above discussion requires that the researcher knows what the coeffi cient θ means (in terms
of the economic problem) and can interpret values and magnitudes, not just signs. This is critical
for good applied econometric practice.

For example, consider the question about the effect of marriage status on mean log wages. We
had found that the effect is “highly significant”for men and “close to significant”for women. Now,
let’s construct asymptotic 95% confidence intervals for the coeffi cients. The one for men is [0.19,
0.23] and that for women is [−0.00, 0.03]. This shows that average wages for married men are
about 19-23% higher than for unmarried men, which is substantial, while the difference for women
is about 0-3%, which is small. These magnitudes are more informative than the results of the
hypothesis tests.

9.9 Wald Tests

The t-test is appropriate when the null hypothesis is a real-valued restriction. More generally,
there may be multiple restrictions on the coeffi cient vector β. Suppose that we have q > 1 restric-
tions which can be written in the form (9.1). It is natural to estimate θ = r(β) by the plug-in
estimator θ̂ = r(β̂). To test H0 : θ = θ0 against H1 : θ 6= θ0 one approach is to measure the
magnitude of the discrepancy θ̂ − θ0. As this is a vector, there is more than one measure of its
length. One simple measure is the weighted quadratic form known as theWald statistic. This is
(7.37) evaluated at the null hypothesis

W = W (θ0) =
(
θ̂ − θ0

)′
V̂
−1

θ̂

(
θ̂ − θ0

)
(9.6)

where V̂
θ̂

= R̂
′
V̂
β̂
R̂ is an estimator of V

θ̂
and R̂ =

∂

∂β
r(β̂)′. Notice that we can write W

alternatively as

W = n
(
θ̂ − θ0

)′
V̂
−1

θ

(
θ̂ − θ0

)
using the asymptotic variance estimator V̂ θ, or we can write it directly as a function of β̂ as

W =
(
r(β̂)− θ0

)′ (
R̂
′
V̂
β̂
R̂
)−1 (

r(β̂)− θ0

)
.

Also, when r(β) = R′β is a linear function of β, then the Wald statistic simplifies to

W =
(
R′β̂ − θ0

)′ (
R′V̂

β̂
R
)−1 (

R′β̂ − θ0

)
.

The Wald statistic W is a weighted Euclidean measure of the length of the vector θ̂−θ0.When
q = 1 then W = T 2, the square of the t-statistic, so hypothesis tests based on W and |T | are
equivalent. The Wald statistic (9.6) is a generalization of the t-statistic to the case of multiple
restrictions. As the Wald statistic is symmetric in the argument θ̂ − θ0 it treats positive and
negative alternatives symmetrically. Thus the inherent alternative is always two-sided.

As shown in Theorem 7.13, when β satisfies r(β) = θ0 then W
d−→ χ2

q , a chi-square random
variable with q degrees of freedom. Let Gq(u) denote the χ2

q distribution function. For a given
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significance level α, the asymptotic critical value c satisfies α = 1 − Gq(c). For example, the 5%
critical values for q = 1, q = 2, and q = 3 are 3.84, 5.99, and 7.82, respectively, and in general
the level α critical value can be calculated in MATLAB as chi2inv(1-α,q). An asymptotic test
rejects H0 in favor of H1 if W > c. As with t-tests, it is conventional to describe a Wald test as
“significant”if W exceeds the 5% asymptotic critical value.

Theorem 9.2 Under Assumptions 7.2, 7.3, 7.4, and H0 : θ = θ0, then

W
d−→ χ2

q ,

and for c satisfying α = 1−Gq(c),

P (W > c | H0) −→ α

so the test “Reject H0 if W > c”has asymptotic size α.

Notice that the asymptotic distribution in Theorem 9.2 depends solely on q, the number of
restrictions being tested. It does not depend on k, the number of parameters estimated.

The asymptotic p-value for W is p = 1 − Gq(W ), and this is particularly useful when testing
multiple restrictions. For example, if you write that a Wald test on eight restrictions (q = 8) has
the value W = 11.2, it is diffi cult for a reader to assess the magnitude of this statistic unless they
have quick access to a statistical table or software. Instead, if you write that the p-value is p = 0.19
(as is the case for W = 11.2 and q = 8) then it is simple for a reader to interpret its magnitude
as “insignificant”. To calculate the asymptotic p-value for a Wald statistic in MATLAB, use the
command 1-chi2cdf(w,q).

Some packages (including Stata) and papers report F versions of Wald statistics. That is, for
any Wald statistic W which tests a q-dimensional restriction, the F version of the test is

F = W/q.

When F is reported, it is conventional to use Fq,n−k critical values and p-values rather than χ2
q

values. The connection between Wald and F statistics is demonstrated in Section 9.14 we show
that when Wald statistics are calculated using a homoskedastic covariance matrix, then F = W/q
is identicial to the F statistic of (5.22). While there is no formal justification to using the Fq,n−k
distribution for non-homoskedastic covariance matrices, the Fq,n−k distribution provides continuity
with the exact distribution theory under normality and is a bit more conservative than the χ2

q

distribution. (Furthermore, the difference is small when n− k is moderately large.)
To implement a test of zero restrictions in Stata, an easy method is to use the command “test

X1 X2”where X1 and X2 are the names of the variables whose coeffi cients are hypothesized to equal
zero. This command should be executed after executing a regression command. The F version of
the Wald statistic is reported, using the covariance matrix calculated using the method specified
in the regression command. A p-value is reported, calculated using the Fq,n−k distribution.

To illustrate, consider the empirical results presented in Table 4.1. The hypothesis “Union
membership does not affect wages” is the joint restriction that both coeffi cients on “Male Union
Member” and “Female Union Member” are zero. We calculate the Wald statistic for this joint
hypothesis and find W = 23 (or F = 12.5) with a p-value of p = 0.000. Thus we reject the null
hypothesis in favor of the alternative that at least one of the coeffi cients is non-zero. This does not
mean that both coeffi cients are non-zero, just that one of the two is non-zero. Therefore examining
both the joint Wald statistic and the individual t-statistics is useful for interpretation.

As a second example from the same regression, take the hypothesis that married status has
no effect on mean wages for women. This is the joint restriction that the coeffi cients on “Married
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Female”and “Formerly Married Female”are zero. The Wald statistic for this hypothesis isW = 6.4
(F = 3.2) with a p-value of 0.04. Such a p-value is typically called “marginally significant”, in the
sense that it is slightly smaller than 0.05.

The Wald statistic was proposed by Wald (1943).

Abraham Wald

The Hungarian mathematician/statistician/econometrician Abraham Wald
(1902-1950) developed an optimality property for the Wald test in terms of
weighted average power. He also developed the field of sequential testing
and the design of experiments.

9.10 Homoskedastic Wald Tests

If the error is known to be homoskedastic, then it is appropriate to use the homoskedastic Wald

statistic (7.38) which replaces V̂
θ̂
with the homoskedastic estimator V̂

0

θ̂. This statistic equals

W 0 =
(
θ̂ − θ0

)′ (
V̂

0

θ̂

)−1 (
θ̂ − θ0

)
=
(
r(β̂)− θ0

)′ (
R′
(
X ′X

)−1
R̂
)−1 (

r(β̂)− θ0

)
/s2.

In the case of linear hypotheses H0 : R′β = θ0 we can write this as

W 0 =
(
R′β̂ − θ0

)′ (
R′
(
X ′X

)−1
R
)−1 (

R′β̂ − θ0

)
/s2. (9.7)

We call either a homoskedastic Wald statistic as it is an appropriate test when the errors are
conditionally homoskedastic.

As for W, when q = 1 then W 0 = T 2, the square of the t-statistic where the latter is computed
with a homoskedastic standard error.

Theorem 9.3 Under Assumptions 7.2 and 7.3, E
(
e2
i | xi

)
= σ2 > 0, and

H0 : θ = θ0, then

W 0 d−→ χ2
q ,

and for c satisfying α = 1−Gq(c),

P
(
W 0 > c | H0

)
−→ α

so the test “Reject H0 if W 0 > c”has asymptotic size α.
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9.11 Criterion-Based Tests

The Wald statistic is based on the length of the vector θ̂ − θ0: the discrepancy between the
estimate θ̂ = r(β̂) and the hypothesized value θ0. An alternative class of tests is based on the
discrepancy between the criterion function minimized with and without the restriction.

Criterion-based testing applies when we have a criterion function, say J(β) with β ∈ B, which
is minimized for estimation, and the goal is to test H0 : β ∈ B0 versus H1 : β /∈ B0 where
B0 ⊂ B. Minimizing the criterion function overB andB0 we obtain the unrestricted and restricted
estimators

β̂ = argmin
β∈B

J (β)

β̃ = argmin
β∈B0

J (β) .

The criterion-based statistic for H0 versus H1 is proportional to

J = min
β∈B0

J (β)− min
β∈B

J (β)

= J(β̃)− J(β̂).

The criterion-based statistic J is sometimes called a distance statistic, a minimum-distance
statistic, or a likelihood-ratio-like statistic.

Since B0 is a subset of B, J(β̃) ≥ J(β̂) and thus J ≥ 0. The statistic J measures the cost (on
the criterion) of imposing the null restriction β ∈ B0.

9.12 Minimum Distance Tests

The minimum distance test is a criterion-based test where J (β) is the minimum distance
criterion (8.19)

J (β) = n
(
β̂ − β

)′
Ŵ
(
β̂ − β

)
(9.8)

with β̂ the unrestricted (LS) estimator. The restricted estimator β̃md minimizes (9.8) subject to
β ∈ B0. Observing that J(β̂) = 0, the minimum distance statistic simplifies to

J = J(β̃md) = n
(
β̂ − β̃md

)′
Ŵ
(
β̂ − β̃md

)
. (9.9)

The effi cient minimum distance estimator β̃emd is obtained by setting Ŵ = V̂
−1

β in (9.8) and
(9.9). The effi cient minimum distance statistic for H0 : β ∈ B0 is therefore

J∗ = n
(
β̂ − β̃emd

)′
V̂
−1

β

(
β̂ − β̃emd

)
. (9.10)

Consider the class of linear hypotheses H0 : R′β = θ0. In this case we know from (8.25) that
the effi cient minimum distance estimator β̃emd subject to the constraint R

′β = θ0 is

β̃emd = β̂ − V̂ βR
(
R′V̂ βR

)−1 (
R′β̂ − θ0

)
and thus

β̂ − β̃emd = V̂ βR
(
R′V̂ βR

)−1 (
R′β̂ − θ0

)
.
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Substituting into (9.10) we find

J∗ = n
(
R′β̂ − θ0

)′ (
R′V̂ βR

)−1
R′V̂ βV̂

−1

β V̂ βR
(
R′V̂ βR

)−1 (
R′β̂ − θ0

)
= n

(
R′β̂ − θ0

)′ (
R′V̂ βR

)−1 (
R′β̂ − θ0

)
= W,

which is the Wald statistic (9.6).
Thus for linear hypotheses H0 : R′β = θ0, the effi cient minimum distance statistic J∗ is identical

to the Wald statistic (9.6). For non-linear hypotheses, however, the Wald and minimum distance
statistics are different.

Newey and West (1987a) established the asymptotic null distribution of J∗ for linear and non-
linear hypotheses.

Theorem 9.4 Under Assumptions 7.2, 7.3, 7.4, and H0 : θ = θ0, then

J∗
d−→ χ2

q .

Testing using the minimum distance statistic J∗ is similar to testing using the Wald statisticW .
Critical values and p-values are computed using the χ2

q distribution. H0 is rejected in favor of H1

if J∗ exceeds the level α critical value, which can be calculated in MATLAB as chi2inv(1-α,q).
The asymptotic p-value is p = 1−Gq(J∗). In MATLAB, use the command 1-chi2cdf(J,q).

We now demonstrate Theorem 9.4. The conditions of Theorem 8.10 hold, since H0 implies
Assumption 8.1. From (8.54) with Ŵ = V̂ β, we see that

√
n
(
β̂ − β̃emd

)
= V̂ βR̂

(
R∗′n V̂ βR̂

)−1
R∗′n
√
n
(
β̂ − β

)
d−→ V βR

(
R′V βR

)−1
R′N(0,V β)

= V βR Z

where Z ∼ N(0, (R′V βR)
−1

). Thus

J∗ = n
(
β̂ − β̃emd

)′
V̂
−1

β

(
β̂ − β̃emd

)
d−→ Z′R′V βV

−1
β V βR Z

= Z′
(
R′V βR

)
Z = χ2

q

as claimed.

9.13 Minimum Distance Tests Under Homoskedasticity

If we set Ŵ = Q̂xx/s
2 in (9.8) we obtain the criterion (8.20)

J0 (β) = n
(
β̂ − β

)′
Q̂xx

(
β̂ − β

)
/s2.

A minimum distance statistic for H0 : β ∈ B0 is

J0 = min
β∈B0

J0 (β) .
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Equation (8.21) showed that

SSE(β) = nσ̂2 + s2J0 (β)

and so the minimizers of SSE(β) and J0 (β) are identical. Thus the constrained minimizer of
J0 (β) is constrained least-squares

β̃cls = argmin
β∈B0

J0 (β) = argmin
β∈B0

SSE(β) (9.11)

and therefore

J0
n = J0

n(β̃cls)

= n
(
β̂ − β̃cls

)′
Q̂xx

(
β̂ − β̃cls

)
/s2.

In the special case of linear hypotheses H0 : R′β = θ0, the constrained least-squares estimator
subject to R′β = θ0 has the solution (8.9)

β̃cls = β̂ − Q̂−1

xxR
(
R′Q̂

−1

xxR
)−1 (

R′β̂ − θ0

)
and solving we find

J0 = n
(
R′β̂ − θ0

)′ (
R′Q̂

−1

xxR
)−1 (

R′β̂ − θ0

)
/s2 = W 0.

This is the homoskedastic Wald statistic (9.7). Thus for testing linear hypotheses, homoskedastic
minimum distance and Wald statistics agree.

For nonlinear hypotheses they disagree, but have the same null asymptotic distribution.

Theorem 9.5 Under Assumptions 7.2 and 7.3, E
(
e2
i | xi

)
= σ2 > 0, and

H0 : θ = θ0, then J0 d−→ χ2
q .

9.14 F Tests

In Section 5.16 we introduced the F test for exclusion restrictions in the normal regression
model. More generally, the F statistic for testing H0 : β ∈ B0 is

F =

(
σ̃2 − σ̂2

)
/q

σ̂2/(n− k)
(9.12)

where

σ̂2 =
1

n

n∑
i=1

(
yi − x′iβ̂

)2

and β̂ are the unconstrained estimators of β and σ2,

σ̃2 =
1

n

n∑
i=1

(
yi − x′iβ̃cls

)2

and β̃cls are the constrained least-squares estimators from (9.11), q is the number of restrictions,
and k is the number of unconstrained coeffi cients.
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We can alternatively write

F =
SSE(β̃cls)− SSE(β̂)

qs2
(9.13)

where

SSE(β) =
n∑
i=1

(
yi − x′iβ

)2
is the sum-of-squared errors. Thus F is a criterion-based statistic. Using (8.21) we can also write

F = J0/q,

so the F statistic is identical to the homoskedastic minimum distance statistic divided by the
number of restrictions q.

As we discussed in the previous section, in the special case of linear hypotheses H0 : R′β = θ0,
J0 = W 0. It follows that in this case F = W 0/q. Thus for linear restrictions the F statistic equals
the homoskedastic Wald statistic divided by q. It follows that they are equivalent tests for H0

against H1.

Theorem 9.6 For tests of linear hypotheses H0 : R′β = θ0,

F = W 0/q

the F statistic equals the homoskedastic Wald statistic divided by the de-
grees of freedom. Thus under 7.2, E

(
e2
i | xi

)
= σ2 > 0, and H0 : θ = θ0,

then
F

d−→ χ2
q/q.

When using an F statistic, it is conventional to use the Fq,n−k distribution for critical val-
ues and p-values. Critical values are given in MATLAB by finv(1-α,q,n-k), and p-values by
1-fcdf(F,q,n-k). Alternatively, the χ2

q/q distribution can be used, using chi2inv(1-α,q)/q and
1-chi2cdf(F*q,q), respectively. Using the Fq,n−k distribution is a prudent small sample adjust-
ment which yields exact answers if the errors are normal, and otherwise slightly increasing the
critical values and p-values relative to the asymptotic approximation. Once again, if the sample
size is small enough that the choice makes a difference, then probably we shouldn’t be trusting the
asymptotic approximation anyway!

An elegant feature about (9.12) or (9.13) is that they are directly computable from the standard
output from two simple OLS regressions, as the sum of squared errors (or regression variance) is
a typical printed output from statistical packages, and is often reported in applied tables. Thus
F can be calculated by hand from standard reported statistics even if you don’t have the original
data (or if you are sitting in a seminar and listening to a presentation!).

If you are presented with an F statistic (or a Wald statistic, as you can just divide by q) but
don’t have access to critical values, a useful rule of thumb is to know that for large n, the 5%
asymptotic critical value is decreasing as q increases, and is less than 2 for q ≥ 7.

A word of warning: In many statistical packages, when an OLS regression is estimated an
“F -statistic” is automatically reported, even though no hypothesis test was requested. What the
package is reporting is an F statistic of the hypothesis that all slope coeffi cients1 are zero. This was
a popular statistic in the early days of econometric reporting when sample sizes were very small
and researchers wanted to know if there was “any explanatory power”to their regression. This is
rarely an issue today, as sample sizes are typically suffi ciently large that this F statistic is nearly
always highly significant. While there are special cases where this F statistic is useful, these cases
are not typical. As a general rule, there is no reason to report this F statistic.

1All coeffi cients except the intercept.
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9.15 Hausman Tests

Hausman (1978) introduced a general idea about how to test a hypothesis H0. If you have
two estimators, one which is effi cient under H0 but inconsistent under H1, and another which is
consistent under H1, then construct a test as a quadratic form in the differences of the estimators.
In the case of testing a hypothesis H0 : r(β) = θ0 let β̂ols denote the unconstrained least-squares
estimator and let β̃emd denote the effi cient minimum distance estimator which imposes r(β) = θ0.
Both estimators are consistent under H0, but β̃emd is asymptotically effi cient. Under H1, β̂ols is
consistent for β but β̃emd is inconsistent. The difference has the asymptotic distribution

√
n
(
β̂ols − β̃emd

)
d−→ N

(
0,V βR

(
R′V βR

)−1
R′V β

)
.

Let A− denote the Moore-Penrose generalized inverse. The Hausman statistic for H0 is

H =
(
β̂ols − β̃emd

)′
âvar

(
β̂ols − β̃emd

)− (
β̂ols − β̃emd

)
= n

(
β̂ols − β̃emd

)′(
V̂ βR̂

(
R̂
′
V̂ βR̂

)−1
R̂
′
V̂ β

)− (
β̂ols − β̃emd

)
.

The matrix V̂
1/2

β R̂
(
R̂
′
V̂ βR̂

)−1
R̂
′
V̂

1/2

β idempotent so its generalized inverse is itself. (See Section

A.11.) It follows that(
V̂ βR̂

(
R̂
′
V̂ βR̂

)−1
R̂
′
V̂ β

)−
= V̂

−1/2

β

(
V̂

1/2

β R̂
(
R̂
′
V̂ βR̂

)−1
R̂
′
V̂

1/2

β

)−
V̂
−1/2

β

= V̂
−1/2

β V̂
1/2

β R̂
(
R̂
′
V̂ βR̂

)−1
R̂
′
V̂

1/2

β V̂
−1/2

β

= R̂
(
R̂
′
V̂ βR̂

)−1
R̂
′
.

Thus the Hausman statistic is

H = n
(
β̂ols − β̃emd

)′
R̂
(
R̂
′
V̂ βR̂

)−1
R̂
′ (
β̂ols − β̃emd

)
.

In the context of linear restrictions, R̂ = R and R′β̃ = θ0 so the statistic takes the form

H = n
(
R′β̂ols − θ0

)′
R̂
(
R′V̂ βR

)−1 (
R′β̂ols − θ0

)
,

which is precisely the Wald statistic. With nonlinear restrictions W and H can differ.
In either case we see that that the asymptotic null distribution of the Hausman statistic H is

χ2
q , so the appropriate test is to reject H0 in favor of H1 if H > c where c is a critical value taken
from the χ2

q distribution.

Theorem 9.7 For general hypotheses the Hausman test statistic is

H = n
(
β̂ols − β̃emd

)′
R̂
(
R̂
′
V̂ βR̂

)−1
R̂
′ (
β̂ols − β̃emd

)
.

Under Assumptions 7.2, 7.3, 7.4, and H0 : r(β) = θ0,

H
d−→ χ2

q .
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9.16 Score Tests

Score tests are traditionally derived in likelihood analysis, but can more generally be constructed
from first-order conditions evaluated at restricted estimates. We focus on the likelihood derivation.

Given the log likelihood function logL(β, σ2), a restriction H0 : r (β) = θ0, and restricted
estimators β̃ and σ̃2, the score statistic for H0 is defined as

S =

(
∂

∂β
logL(β̃, σ̃2)

)′(
− ∂2

∂β∂β′
logL(β̃, σ̃2)

)−1(
∂

∂β
logL(β̃, σ̃2)

)
.

The idea is that if the restriction is true, then the restricted estimators should be close to the
maximum of the log-likelihood where the derivative should be small. However if the restriction is
false then the restricted estimators should be distant from the maximum and the derivative should
be large. Hence small values of S are expected under H0 and large values under H1. Tests of H0

thus reject for large values of S.
We explore the score statistic in the context of the normal regression model and linear hypotheses

r (β) = R′β. Recall that in the normal regression log-likelihood function is

logL(β, σ2) = −n
2

log(2πσ2)− 1

2σ2

n∑
i=1

(
yi − x′iβ

)2
.

The constrained MLE under linear hypotheses is constrained least squares

β̃ = β̂ −
(
X ′X

)−1
R
[
R′
(
X ′X

)−1
R
]−1 (

R′β̂ − c
)

ẽi = yi − x′iβ̃

σ̃2 =
1

n

n∑
i=1

ẽ2
i .

We can calculate that the derivative and Hessian are

∂

∂β
logL(β̃, σ̃2) =

1

σ̃2

n∑
i=1

xi

(
yi − x′iβ̃

)
=

1

σ̃2
X ′ẽ

− ∂2

∂β∂β′
logL(β̃, σ̃2) =

1

σ̃2

n∑
i=1

xix
′
i =

1

σ̃2
X ′X.

Since ẽ = y −Xβ̃ we can further calculate that

∂

∂β
logL(β̃, σ̃2) =

1

σ̃2

(
X ′X

) ((
X ′X

)−1
X ′y −

(
X ′X

)−1
X ′Xβ̃

)
=

1

σ̃2

(
X ′X

) (
β̂ − β̃

)
=

1

σ̃2
R
[
R′
(
X ′X

)−1
R
]−1 (

R′β̂ − c
)
.

Together we find that

S =
(
R′β̂ − c

)′ (
R′
(
X ′X

)−1
R
)−1 (

R′β̂ − c
)
/σ̃2.

This is identical to the homoskedastic Wald statistic, with s2 replaced by σ̃2. We can also write
S as a monotonic transformation of the F statistic, since

S = n

(
σ̃2 − σ̂2

)
σ̃2

= n

(
1− σ̂2

σ̃2

)
= n

(
1− 1

1 + q
n−kF

)
.
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The test “Reject H0 for large values of S” is identical to the test “Reject H0 for large values of
F”, so they are identical tests. Since for the normal regression model the exact distribution of F
is known, it is better to use the F statistic with F p-values.

In more complicated settings a potential advantage of score tests is that they are calculated
using the restricted parameter estimates β̃ rather than the unrestricted estimates β̂. Thus when
β̃ is relatively easy to calculate there can be a preference for score statistics. This is not a concern
for linear restrictions.

More generally, score and score-like statistics can be constructed from first-order conditions
evaluated at restricted parameter estimates. Also, when test statistics are constructed using co-
variance matrix estimators which are calculated using restricted parameter estimates (e.g. restricted
residuals) then these are often described as score tests.

An example of the latter is the Wald-type statistic

W =
(
r(β̂)− θ0

)′ (
R̂
′
Ṽ
β̂
R̂
)−1 (

r(β̂)− θ0

)
where the covariance matrix estimate Ṽ

β̂
is calculated using the restricted residuals ẽi = yi−x′iβ̃.

This may be done when β and θ are high-dimensional, so there is worry that the estimator V̂
β̂
is

imprecise.

9.17 Problems with Tests of Nonlinear Hypotheses

While the t and Wald tests work well when the hypothesis is a linear restriction on β, they
can work quite poorly when the restrictions are nonlinear. This can be seen by a simple example
introduced by Lafontaine and White (1986). Take the model

yi = β + ei

ei ∼ N(0, σ2)

and consider the hypothesis
H0 : β = 1.

Let β̂ and σ̂2 be the sample mean and variance of yi. The standard Wald test for H0 is

W = n

(
β̂ − 1

)2

σ̂2
.

Now notice that H0 is equivalent to the hypothesis

H0(s) : βs = 1

for any positive integer s. Letting r(β) = βs, and noting R = sβs−1, we find that the standard
Wald test for H0(s) is

W (s) = n

(
β̂s − 1

)2

σ̂2s2β̂2s−2
.

While the hypothesis βs = 1 is unaffected by the choice of s, the statistic W (s) varies with s. This
is an unfortunate feature of the Wald statistic.

To demonstrate this effect, we have plotted in Figure 9.1 the Wald statistic W (s) as a function
of s, setting n/σ̂2 = 10. The increasing solid line is for the case β̂ = 0.8. The decreasing dashed
line is for the case β̂ = 1.6. It is easy to see that in each case there are values of s for which the
test statistic is significant relative to asymptotic critical values, while there are other values of s
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Figure 9.1: Wald Statistic as a Function of s

for which the test statistic is insignificant. This is distressing since the choice of s is arbitrary and
irrelevant to the actual hypothesis.

Our first-order asymptotic theory is not useful to help pick s, as W (s)
d−→ χ2

1 under H0 for any
s. This is a context where Monte Carlo simulation can be quite useful as a tool to study and
compare the exact distributions of statistical procedures in finite samples. The method uses random
simulation to create artificial datasets, to which we apply the statistical tools of interest. This
produces random draws from the statistic’s sampling distribution. Through repetition, features of
this distribution can be calculated.

In the present context of the Wald statistic, one feature of importance is the Type I error
of the test using the asymptotic 5% critical value 3.84 — the probability of a false rejection,
P (W (s) > 3.84 | β = 1) . Given the simplicity of the model, this probability depends only on s,
n, and σ2. In Table 9.2 we report the results of a Monte Carlo simulation where we vary these three
parameters. The value of s is varied from 1 to 10, n is varied among 20, 100 and 500, and σ is
varied among 1 and 3. The Table reports the simulation estimate of the Type I error probability
from 50,000 random samples. Each row of the table corresponds to a different value of s —and thus
corresponds to a particular choice of test statistic. The second through seventh columns contain the
Type I error probabilities for different combinations of n and σ. These probabilities are calculated
as the percentage of the 50,000 simulated Wald statistics W (s) which are larger than 3.84. The
null hypothesis βs = 1 is true, so these probabilities are Type I error.

To interpret the table, remember that the ideal Type I error probability is 5% (.05) with devia-
tions indicating distortion. Type I error rates between 3% and 8% are considered reasonable. Error
rates above 10% are considered excessive. Rates above 20% are unacceptable. When comparing
statistical procedures, we compare the rates row by row, looking for tests for which rejection rates
are close to 5% and rarely fall outside of the 3%-8% range. For this particular example the only
test which meets this criterion is the conventional W = W (1) test. Any other choice of s leads to
a test with unacceptable Type I error probabilities.
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Table 9.2: Type I Error Probability of Asymptotic 5% W (s) Test

s σ = 1 σ = 3
n = 20 n = 100 n = 500 n = 20 n = 100 n = 500

1 0.05 0.05 0.05 0.05 0.05 0.05
2 0.07 0.06 0.05 0.14 0.08 0.06
3 0.09 0.06 0.05 0.21 0.12 0.07
4 0.12 0.07 0.05 0.25 0.15 0.08
5 0.14 0.08 0.06 0.27 0.18 0.10
6 0.16 0.09 0.06 0.30 0.20 0.12
7 0.18 0.10 0.06 0.32 0.22 0.13
8 0.20 0.12 0.07 0.33 0.24 0.14
9 0.21 0.13 0.07 0.34 0.25 0.16
10 0.23 0.14 0.08 0.35 0.26 0.17

Rejection frequencies from 50,000 simulated random samples.

In Table 9.2 you can also see the impact of variation in sample size. In each case, the Type I
error probability improves towards 5% as the sample size n increases. There is, however, no magic
choice of n for which all tests perform uniformly well. Test performance deteriorates as s increases,
which is not surprising given the dependence of W (s) on s as shown in Figure 9.1.

In this example it is not surprising that the choice s = 1 yields the best test statistic. Other
choices are arbitrary and would not be used in practice. While this is clear in this particular
example, in other examples natural choices are not always obvious and the best choices may in fact
appear counter-intuitive at first.

This point can be illustrated through another example which is similar to one developed in
Gregory and Veall (1985). Take the model

yi = β0 + x1iβ1 + x2iβ2 + ei (9.14)

E (xiei) = 0

and the hypothesis

H0 :
β1

β2
= θ0

where θ0 is a known constant. Equivalently, define θ = β1/β2, so the hypothesis can be stated as
H0 : θ = θ0.

Let β̂ = (β̂0, β̂1, β̂2) be the least-squares estimator of (9.14), let V̂ β̂ be an estimator of the

covariance matrix for β̂ and set θ̂ = β̂1/β̂2. Define

R̂1 =



0

1

β̂2

− β̂1

β̂2
2


so that the standard error for θ̂ is s(θ̂) =

(
R̂
′
1V̂ β̂R̂1

)1/2
. In this case a t-statistic for H0 is

T1 =

(
β̂1
β̂2
− θ0

)
s(θ̂)

.
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An alternative statistic can be constructed through reformulating the null hypothesis as

H0 : β1 − θ0β2 = 0.

A t-statistic based on this formulation of the hypothesis is

T2 =
β̂1 − θ0β̂2(
R′2V̂ β̂R2

)1/2

where

R2 =

 0
1
−θ0

 .

To compare T1 and T2 we perform another simple Monte Carlo simulation. We let x1i and x2i

be mutually independent N(0, 1) variables, ei be an independent N(0, σ2) draw with σ = 3, and
normalize β0 = 0 and β1 = 1. This leaves β2 as a free parameter, along with sample size n.We vary
β2 among .1, .25, .50, .75, and 1.0 and n among 100 and 500.

Table 9.3: Type I Error Probability of Asymptotic 5% t-tests

β2 n = 100 n = 500
P (T < −1.645) P (T > 1.645) P (T < −1.645) P (T > 1.645)
T1 T2 T1 T2 T1 T2 T1 T2

0.10 0.47 0.05 0.00 0.05 0.28 0.05 0.00 0.05
0.25 0.27 0.05 0.00 0.05 0.16 0.05 0.00 0.05
0.50 0.14 0.05 0.00 0.05 0.12 0.05 0.00 0.05
0.75 0.03 0.05 0.00 0.05 0.08 0.05 0.01 0.05
1.00 0.00 0.05 0.00 0.05 0.03 0.05 0.03 0.05

Rejection frequencies from 50,000 simulated random samples.

The one-sided Type I error probabilities P (T < −1.645) and P (T > 1.645) are calculated from
50,000 simulated samples. The results are presented in Table 9.3. Ideally, the entries in the table
should be 0.05. However, the rejection rates for the T1 statistic diverge greatly from this value,
especially for small values of β2. The left tail probabilities P (T1 < −1.645) greatly exceed 5%, while
the right tail probabilities P (T1 > 1.645) are close to zero in most cases. In contrast, the rejection
rates for the linear T2 statistic are invariant to the value of β2, and equal 5% for both sample sizes.
The implication of Table 9.3 is that the two t-ratios have dramatically different sampling behavior.

The common message from both examples is that Wald statistics are sensitive to the algebraic
formulation of the null hypothesis.

A simple solution is to use the minimum distance statistic J , which equals W with r = 1 in the
first example, and |T2| in the second example. The minimum distance statistic is invariant to the
algebraic formulation of the null hypothesis, so is immune to this problem. Whenever possible, the
Wald statistic should not be used to test nonlinear hypotheses.

Theoretical investigations of these issues include Park and Phillips (1988) and Dufour (1997).

9.18 Monte Carlo Simulation

In Section 9.17 we introduced the method of Monte Carlo simulation to illustrate the small
sample problems with tests of nonlinear hypotheses. In this section we describe the method in
more detail.
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Recall, our data consist of observations (yi,xi) which are random draws from a population
distribution F. Let θ be a parameter and let T = T ((y1,x1) , ..., (yn,xn) ,θ) be a statistic of
interest, for example an estimator θ̂ or a t-statistic (θ̂ − θ)/s(θ̂). The exact distribution of T is

G(u, F ) = P (T ≤ u | F ) .

While the asymptotic distribution of T might be known, the exact (finite sample) distribution G
is generally unknown.

Monte Carlo simulation uses numerical simulation to compute G(u, F ) for selected choices of F.
This is useful to investigate the performance of the statistic T in reasonable situations and sample
sizes. The basic idea is that for any given F, the distribution function G(u, F ) can be calculated
numerically through simulation. The name Monte Carlo derives from the famous Mediterranean
gambling resort where games of chance are played.

The method of Monte Carlo is quite simple to describe. The researcher chooses F (the dis-
tribution of the data) and the sample size n. A “true” value of θ is implied by this choice, or
equivalently the value θ is selected directly by the researcher which implies restrictions on F .

Then the following experiment is conducted by computer simulation:

1. n independent random pairs (y∗i ,x
∗
i ) , i = 1, ..., n, are drawn from the distribution F using

the computer’s random number generator.

2. The statistic T = T ((y∗1,x
∗
1) , ..., (y∗n,x

∗
n) ,θ) is calculated on this pseudo data.

For step 1, computer packages have built-in random number procedures including U[0, 1] and
N(0, 1). From these most random variables can be constructed. (For example, a chi-square can be
generated by sums of squares of normals.)

For step 2, it is important that the statistic be evaluated at the “true”value of θ corresponding
to the choice of F.

The above experiment creates one random draw from the distribution G(u, F ). This is one
observation from an unknown distribution. Clearly, from one observation very little can be said.
So the researcher repeats the experiment B times, where B is a large number. Typically, we set
B = 1000 or B = 5000. We will discuss this choice later.

Notationally, let the bth experiment result in the draw Tb, b = 1, ..., B. These results are stored.
After all B experiments have been calculated, these results constitute a random sample of size B
from the distribution of G(u, F ) = P (Tb ≤ u) = P (T ≤ u | F ) .

From a random sample, we can estimate any feature of interest using (typically) a method of
moments estimator. We now describe some specific examples.

Suppose we are interested in the bias, mean-squared error (MSE), and/or variance of the dis-
tribution of θ̂ − θ. We then set T = θ̂ − θ, run the above experiment, and calculate

B̂ias(θ̂) =
1

B

B∑
b=1

Tb =
1

B

B∑
b=1

θ̂b − θ

M̂SE(θ̂) =
1

B

B∑
b=1

(Tb)
2 =

1

B

B∑
b=1

(
θ̂b − θ

)2

v̂ar(θ̂) = M̂SE(θ̂)−
(
B̂ias(θ̂)

)2

Suppose we are interested in the Type I error associated with an asymptotic 5% two-sided t-test.

We would then set T =
∣∣∣θ̂ − θ∣∣∣ /s(θ̂) and calculate

P̂ =
1

B

B∑
b=1

1 (Tb ≥ 1.96) , (9.15)
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the percentage of the simulated t-ratios which exceed the asymptotic 5% critical value.

Suppose we are interested in the 5% and 95% quantile of T = θ̂ or T =
(
θ̂ − θ

)
/s(θ̂). We then

compute the 5% and 95% sample quantiles of the sample {Tb}. The α sample quantile is a number
qα such that 100α% of the sample are less than qα. A simple way to compute sample quantiles is
to sort the sample {Tb} from low to high. Then qα is the N th number in this ordered sequence,
where N = Bα. For example, if we set B = 1000, then the 5% sample quantile is 50th sorted value
and the 95% sample quantile is the 950th sorted value.

The typical purpose of a Monte Carlo simulation is to investigate the performance of a statistical
procedure in realistic settings. Generally, the performance will depend on n and F. In many cases,
an estimator or test may perform wonderfully for some values, and poorly for others. It is therefore
useful to conduct a variety of experiments, for a selection of choices of n and F.

As discussed above, the researcher must select the number of experiments, B. Often this is
called the number of replications. Quite simply, a larger B results in more precise estimates of
the features of interest of G, but requires more computational time. In practice, therefore, the
choice of B is often guided by the computational demands of the statistical procedure. Since the
results of a Monte Carlo experiment are estimates computed from a random sample of size B, it
is straightforward to calculate standard errors for any quantity of interest. If the standard error is
too large to make a reliable inference, then B will have to be increased.

In particular, it is simple to make inferences about rejection probabilities from statistical tests,
such as the percentage estimate reported in (9.15). The random variable 1 (Tb ≥ 1.96) is i.i.d.
Bernoulli, equalling 1 with probability p = E (1 (Tb ≥ 1.96)) . The average (9.15) is therefore an
unbiased estimator of p with standard error s (p̂) =

√
p (1− p) /B. As p is unknown, this may be

approximated by replacing p with p̂ or with an hypothesized value. For example, if we are assessing
an asymptotic 5% test, then we can set s (p̂) =

√
(.05) (.95) /B ' .22/

√
B. Hence, standard errors

for B = 100, 1000, and 5000, are, respectively, s (p̂) = .022, .007, and .003.
Most papers in econometric methods and some empirical papers include the results of Monte

Carlo simulations to illustrate the performance of their methods. When extending existing results,
it is good practice to start by replicating existing (published) results. This is not exactly possible
in the case of simulation results, as they are inherently random. For example suppose a paper
investigates a statistical test, and reports a simulated rejection probability of 0.07 based on a
simulation with B = 100 replications. Suppose you attempt to replicate this result, and find a
rejection probability of 0.03 (again using B = 100 simulation replications). Should you conclude
that you have failed in your attempt? Absolutely not! Under the hypothesis that both simulations
are identical, you have two independent estimates, p̂1 = 0.07 and p̂2 = 0.03, of a common probability

p. The asymptotic (as B →∞) distribution of their difference is
√
B (p̂1 − p̂2)

d−→ N(0, 2p(1−p)), so
a standard error for p̂1− p̂2 = 0.04 is ŝ =

√
2p(1− p)/B ' 0.03, using the estimate p = (p̂1 + p̂2)/2.

Since the t-ratio 0.04/0.03 = 1.3 is not statistically significant, it is incorrect to reject the null
hypothesis that the two simulations are identical. The difference between the results p̂1 = 0.07 and
p̂2 = 0.03 is consistent with random variation.

What should be done? The first mistake was to copy the previous paper’s choice of B = 100.
Instead, suppose you set B = 10, 000. Suppose you now obtain p̂2 = 0.04. Then p̂1 − p̂2 = 0.03 and
a standard error is ŝ =

√
p(1− p) (1/100 + 1/10000) ' 0.02. Still we cannot reject the hypothesis

that the two simulations are different. Even though the estimates (0.07 and 0.04) appear to be
quite different, the diffi culty is that the original simulation used a very small number of replications
(B = 100) so the reported estimate is quite imprecise. In this case, it is appropriate to conclude
that your results “replicate” the previous study, as there is no statistical evidence to reject the
hypothesis that they are equivalent.

Most journals have policies requiring authors to make available their data sets and computer
programs required for empirical results. They do not have similar policies regarding simulations.
Nevertheless, it is good professional practice to make your simulations available. The best practice
is to post your simulation code on your webpage. This invites others to build on and use your
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results, leading to possible collaboration, citation, and/or advancement.

9.19 Confidence Intervals by Test Inversion

There is a close relationship between hypothesis tests and confidence intervals. We observed in
Section 7.13 that the standard 95% asymptotic confidence interval for a parameter θ is

Ĉ =
[
θ̂ − 1.96 · s(θ̂), θ̂ + 1.96 · s(θ̂)

]
(9.16)

= {θ : |T (θ)| ≤ 1.96} .

That is, we can describe Ĉ as “The point estimate plus or minus 2 standard errors”or “The set of
parameter values not rejected by a two-sided t-test.”The second definition, known as test statistic
inversion, is a general method for finding confidence intervals, and typically produces confidence
intervals with excellent properties.

Given a test statistic T (θ) and critical value c, the acceptance region “Accept if T (θ) ≤ c”
is identical to the confidence interval Ĉ = {θ : T (θ) ≤ c}. Since the regions are identical, the

probability of coverage P
(
θ ∈ Ĉ

)
equals the probability of correct acceptance P (Accept|θ) which

is exactly 1 minus the Type I error probability. Thus inverting a test with good Type I error
probabilities yields a confidence interval with good coverage probabilities.

Now suppose that the parameter of interest θ = r(β) is a nonlinear function of the coeffi cient
vector β. In this case the standard confidence interval for θ is the set Ĉ as in (9.16) where θ̂ = r(β̂)

is the point estimator and s(θ̂) =
√
R̂
′
V̂
β̂
R̂ is the delta method standard error. This confidence

interval is inverting the t-test based on the nonlinear hypothesis r(β) = θ. The trouble is that in
Section 9.17 we learned that there is no unique t-statistic for tests of nonlinear hypotheses and that
the choice of parameterization matters greatly.

For example, if θ = β1/β2 then the coverage probability of the standard interval (9.16) is 1
minus the probability of the Type I error, which as shown in Table 8.2 can be far from the nominal
5%.

In this example a good solution is the same as discussed in Section 9.17 — to rewrite the
hypothesis as a linear restriction. The hypothesis θ = β1/β2 is the same as θβ2 = β1. The t-
statistic for this restriction is

T (θ) =
β̂1 − β̂2θ(
R′V̂

β̂
R
)1/2

where

R =

(
1
−θ

)
and V̂

β̂
is the covariance matrix for (β̂1 β̂2). A 95% confidence interval for θ = β1/β2 is the set of

values of θ such that |T (θ)| ≤ 1.96. Since T (θ) is a non-linear function of θ one method to find the
confidence set is by grid search over θ.

For example, in the wage equation

log(Wage) = β1Experience+ β2Experience
2/100 + · · ·

the highest expected wage occurs at Experience = −50β1/β2. From Table 4.1 we have the point
estimate θ̂ = 29.8 and we can calculate the standard error s(θ̂) = 0.022 for a 95% confidence interval
[29.8, 29.9]. However, if we instead invert the linear form of the test we can numerically find the
interval [29.1, 30.6] which is much larger. From the evidence presented in Section 9.17 we know the
first interval can be quite inaccurate and the second interval is greatly preferred.
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9.20 Multiple Tests and Bonferroni Corrections

In most applications, economists examine a large number of estimates, test statistics, and p-
values. What does it mean (or does it mean anything) if one statistic appears to be “significant”
after examining a large number of statistics? This is known as the problem of multiple testing
or multiple comparisons.

To be specific, suppose we examine a set of k coeffi cients, standard errors and t-ratios, and
consider the “significance”of each statistic. Based on conventional reasoning, for each coeffi cient
we would reject the hypothesis that the coeffi cient is zero with asymptotic size α if the absolute t-
statistic exceeds the 1−α critical value of the normal distribution, or equivalently if the p-value for
the t-statistic is smaller than α. If we observe that one of the k statistics is “significant”based on
this criteria, that means that one of the p-values is smaller than α, or equivalently, that the smallest
p-value is smaller than α. We can then rephrase the question: Under the joint hypothesis that a set
of k hypotheses are all true, what is the probability that the smallest p-value is smaller than α? In
general, we cannot provide a precise answer to this quesion, but the Bonferroni correction bounds
this probability by αk. The Bonferroni method furthermore suggests that if we want the familywise
error probability (the probability that one of the tests falsely rejects) to be bounded below α, then
an appropriate rule is to reject only if the smallest p-value is smaller than α/k. Equivalently, the
Bonferroni familywise p-value is kminj≤k pj .

Formally, suppose we have k hypotheses Hj , j = 1, ..., k. For each we have a test and associated
p-value pj with the property that when Hj is true limn→∞ P (pj < α) = α. We then observe that
among the k tests, one of the k will appear “significant”if minj≤k pj < α. This event can be written
as {

min
j≤k

pj < α

}
=

k⋃
j=1

{pj < α} .

Boole’s inequality states that for any k events Aj , P

 k⋃
j=1

Aj

 ≤∑k
j=1 P (Ak). Thus

P
(

min
j≤k

pj < α

)
≤

k∑
j=1

P (pj < α) −→ kα

as stated. This demonstates that the familywise rejection probability is at most k times the
individual rejection probability.

Furthermore,

P
(

min
j≤k

pj <
α

k

)
≤

k∑
j=1

P
(
pj <

α

k

)
−→ α.

This demonstrates that the family rejection probability can be controlled (bounded below α) if
each individual test is subjected to the stricter standard that a p-value must be smaller than α/k
to be labeled as “significant.”

To illustrate, suppose we have two coeffi cient estimates, with individual p-values 0.04 and
0.15. Based on a conventional 5% level, the standard individual tests would suggest that the first
coeffi cient estimate is “significant”but not the second. A Bonferroni 5% test, however, does not
reject as it would require that the smallest p-value be smaller than 0.025, which is not the case in
this example. Alternatively, the Bonferroni familywise p-value is 0.08, which is not significant at
the 5% level.

In contrast, if the two p-values are 0.01 and 0.15, then the Bonferroni familywise p-value is 0.02,
which is significant at the 5% level.
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9.21 Power and Test Consistency

The power of a test is the probability of rejecting H0 when H1 is true.
For simplicity suppose that yi is i.i.d. N(θ, σ2) with σ2 known, consider the t-statistic T (θ) =√

n (ȳ − θ) /σ, and tests of H0 : θ = 0 against H1 : θ > 0. We reject H0 if T = T (0) > c. Note that

T = T (θ) +
√
nθ/σ

and T (θ) has an exact N(0, 1) distribution. This is because T (θ) is centered at the true mean θ,
while the test statistic T (0) is centered at the (false) hypothesized mean of 0.

The power of the test is

P (T > c | θ) = P
(
Z +
√
nθ/σ > c

)
= 1− Φ

(
c−
√
nθ/σ

)
.

This function is monotonically increasing in µ and n, and decreasing in σ and c.
Notice that for any c and θ 6= 0, the power increases to 1 as n→∞. This means that for θ ∈ H1,

the test will reject H0 with probability approaching 1 as the sample size gets large. We call this
property test consistency.

Definition 9.3 A test of H0 : θ ∈ Θ0 is consistent against fixed al-
ternatives if for all θ ∈ Θ1, P (Reject H0 | θ)→ 1 as n→∞.

For tests of the form “Reject H0 if T > c”, a suffi cient condition for test consistency is that the
T diverges to positive infinity with probability one for all θ ∈ Θ1.

Definition 9.4 We say that T
p−→ ∞ as n → ∞ if for all M < ∞,

P (T ≤M)→ 0 as n→∞. Similarly, we say that T p−→ −∞ as n→∞ if
for all M <∞, P (T ≥ −M)→ 0 as n→∞.

In general, t-tests and Wald tests are consistent against fixed alternatives. Take a t-statistic for
a test of H0 : θ = θ0

T =
θ̂ − θ0

s(θ̂)

where θ0 is a known value and s(θ̂) =

√
n−1V̂θ . Note that

T =
θ̂ − θ
s(θ̂)

+

√
n (θ − θ0)√

V̂θ

.

The first term on the right-hand-side converges in distribution to N(0, 1). The second term on the
right-hand-side equals zero if θ = θ0, converges in probability to +∞ if θ > θ0, and converges
in probability to −∞ if θ < θ0. Thus the two-sided t-test is consistent against H1 : θ 6= θ0, and
one-sided t-tests are consistent against the alternatives for which they are designed.

Theorem 9.8 Under Assumptions 7.2, 7.3, and 7.4, for θ = r(β) 6= θ0

and q = 1, then |T | p−→∞, so for any c <∞ the test “Reject H0 if |T | > c”
is consistent against fixed alternatives.
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The Wald statistic for H0 : θ = r(β) = θ0 against H1 : θ 6= θ0 is

W = n
(
θ̂ − θ0

)′
V̂
−1

θ

(
θ̂ − θ0

)
.

Under H1, θ̂
p−→ θ 6= θ0. Thus

(
θ̂ − θ0

)′
V̂
−1

θ

(
θ̂ − θ0

)
p−→ (θ − θ0)′ V −1

θ (θ − θ0) > 0. Hence

under H1, W
p−→∞. Again, this implies that Wald tests are consistent tests.

Theorem 9.9 Under Assumptions 7.2, 7.3, and 7.4, for θ = r(β) 6= θ0,

then W
p−→ ∞, so for any c < ∞ the test “Reject H0 if W > c” is

consistent against fixed alternatives.

9.22 Asymptotic Local Power

Consistency is a good property for a test, but does not give a useful approximation to the power
of a test. To approximate the power function we need a distributional approximation.

The standard asymptotic method for power analysis uses what are called local alternatives.
This is similar to our analysis of restriction estimation under misspecification (Section 8.13). The
technique is to index the parameter by sample size so that the asymptotic distribution of the
statistic is continuous in a localizing parameter. In this section we consider t-tests on real-valued
parameters and in the next section consider Wald tests. Specifically, we consider parameter vectors
βn which are indexed by sample size n and satisfy the real-valued relationship

θn = r(βn) = θ0 + n−1/2h (9.17)

where the scalar h is called a localizing parameter. We index βn and θn by sample size to
indicate their dependence on n. The way to think of (9.17) is that the true value of the parameters
are βn and θn. The parameter θn is close to the hypothesized value θ0, with deviation n−1/2h.

The specification (9.17) states that for any fixed h, θn approaches θ0 as n gets large. Thus θn
is “close”or “local”to θ0. The concept of a localizing sequence (9.17) might seem odd since in the
actual world the sample size cannot mechanically affect the value of the parameter. Thus (9.17)
should not be interpreted literally. Instead, it should be interpreted as a technical device which
allows the asymptotic distribution to be continuous in the alternative hypothesis.

To evaluate the asymptotic distribution of the test statistic we start by examining the scaled
estimate centered at the hypothesized value θ0. Breaking it into a term centered at the true value
θn and a remainder we find

√
n
(
θ̂ − θ0

)
=
√
n
(
θ̂ − θn

)
+
√
n (θn − θ0)

=
√
n
(
θ̂ − θn

)
+ h

where the second equality is (9.17). The first term is asymptotically normal:

√
n
(
θ̂ − θn

)
d−→
√
VθZ

where Z ∼ N(0, 1). Therefore

√
n
(
θ̂ − θ0

)
d−→
√
VθZ + h ∼ N(h, Vθ).
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This asymptotic distribution depends continuously on the localizing parameter h.
Applied to the t statistic we find

T =
θ̂ − θ0

s(θ̂)

d−→
√
VθZ + h√
Vθ

∼ Z + δ (9.18)

where δ = h/
√
Vθ. This generalizes Theorem 9.1 (which assumes H0 is true) to allow for local

alternatives of the form (9.17).
Consider a t-test of H0 against the one-sided alternative H1 : θ > θ0 which rejects H0 for T > c

where Φ(c) = 1 − α. The asymptotic local power of this test is the limit (as the sample size
diverges) of the rejection probability under the local alternative (9.17)

lim
n→∞

P (Reject H0) = lim
n→∞

P (T > c)

= P (Z + δ > c)

= 1− Φ (c− δ)
= Φ (δ − c)
def
= π(δ).

We call π(δ) the asymptotic local power function.
In Figure 9.2 we plot the local power function π(δ) as a function of δ ∈ [−1, 4] for tests of

asymptotic size α = 0.10, α = 0.05, and α = 0.01. δ = 0 corresponds to the null hypothesis so
π(δ) = α. The power functions are monotonically increasing in δ. Note that the power is lower
than α for δ < 0 due to the one-sided nature of the test.

We can see that the three power functions are ranked by α so that the test with α = 0.10 has
higher power than the test with α = 0.01. This is the inherent trade-off between size and power.
Decreasing size induces a decrease in power, and conversely.

The coeffi cient δ can be interpreted as the parameter deviation measured as a multiple of the

standard error s(θ̂). To see this, recall that s(θ̂) = n−1/2

√
V̂θ ' n−1/2

√
Vθ and then note that

δ =
h√
Vθ
' n−1/2h

s(θ̂)
=
θn − θ0

s(θ̂)
.

Thus δ approximately equals the deviation θn−θ0 expressed as multiples of the standard error s(θ̂).
Thus as we examine Figure 9.2, we can interpret the power function at δ = 1 (e.g. 26% for a 5% size
test) as the power when the parameter θn is one standard error above the hypothesized value. For
example, from Table 4.1 the standard error for the coeffi cient on “Married Female”is 0.010. Thus
in this example, δ = 1 corresponds to θn = 0.010 or an 1.0% wage premium for married females.
Our calculations show that the asymptotic power of a one-sided 5% test against this alternative is
about 26%.

The difference between power functions can be measured either vertically or horizontally. For
example, in Figure 9.2 there is a vertical dotted line at δ = 1, showing that the asymptotic local
power function π(δ) equals 39% for α = 0.10, equals 26% for α = 0.05 and equals 9% for α = 0.01.
This is the difference in power across tests of differing size, holding fixed the parameter in the
alternative.

A horizontal comparison can also be illuminating. To illustrate, in Figure 9.2 there is a hori-
zontal dotted line at 50% power. 50% power is a useful benchmark, as it is the point where the
test has equal odds of rejection and acceptance. The dotted line crosses the three power curves at
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Figure 9.2: Asymptotic Local Power Function of One-Sided t Test

δ = 1.29 (α = 0.10), δ = 1.65 (α = 0.05), and δ = 2.33 (α = 0.01). This means that the parameter
θ must be at least 1.65 standard errors above the hypothesized value for a one-sided 5% test to
have 50% (approximate) power.

The ratio of these values (e.g. 1.65/1.29 = 1.28 for the asymptotic 5% versus 10% tests)
measures the relative parameter magnitude needed to achieve the same power. (Thus, for a 5% size
test to achieve 50% power, the parameter must be 28% larger than for a 10% size test.) Even more
interesting, the square of this ratio (e.g. (1.65/1.29)2 = 1.64) can be interpreted as the increase
in sample size needed to achieve the same power under fixed parameters. That is, to achieve 50%
power, a 5% size test needs 64% more observations than a 10% size test. This interpretation follows
by the following informal argument. By definition and (9.17) δ = h/

√
Vθ =

√
n (θn − θ0) /

√
Vθ. Thus

holding θ and Vθ fixed, δ2 is proportional to n.
The analysis of a two-sided t test is similar. (9.18) implies that

T =

∣∣∣∣∣ θ̂ − θ0

s(θ̂)

∣∣∣∣∣ d−→ |Z + δ|

and thus the local power of a two-sided t test is

lim
n→∞

P (Reject H0) = lim
n→∞

P (T > c)

= P (|Z + δ| > c)

= Φ (δ − c) + Φ (−δ − c)

which is monotonically increasing in |δ|.
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Theorem 9.10 Under Assumptions 7.2, 7.3, 7.4, and θn = r(βn) = r0 +
n−1/2h, then

T (θ0) =
θ̂ − θ0

s(θ̂)

d−→ Z + δ

where Z ∼ N(0, 1) and δ = h/
√
Vθ. For c such that Φ(c) = 1− α,

P (T (θ0) > c) −→ Φ (δ − c) .

Furthermore, for c such that Φ(c) = 1− α/2,

P (|T (θ0)| > c) −→ Φ (δ − c) + Φ (−δ − c) .

9.23 Asymptotic Local Power, Vector Case

In this section we extend the local power analysis of the previous section to the case of vector-
valued alternatives. We generalize (9.17) to allow θn to be vector-valued. The local parameteriza-
tion takes the form

θn = r(βn) = θ0 + n−1/2h (9.19)

where h is q × 1.
Under (9.19),

√
n
(
θ̂ − θ0

)
=
√
n
(
θ̂ − θn

)
+ h

d−→ Zh ∼ N(h,V θ),

a normal random vector with mean h and variance matrix V θ.
Applied to the Wald statistic we find

W = n
(
θ̂ − θ0

)′
V̂
−1

θ

(
θ̂ − θ0

)
d−→ Z′hV

−1
θ Zh ∼ χ2

q(λ) (9.20)

where λ = h′V −1h. χ2
q(λ) is a non-central chi-square random variable with non-centrality para-

meter λ. (See Section 5.3 and Theorem 5.11.)

The convergence (9.20) shows that under the local alternatives (9.19), W d−→ χ2
q(λ). This

generalizes the null asymptotic distribution which obtains as the special case λ = 0. We can
use this result to obtain a continuous asymptotic approximation to the power function. For any
significance level α > 0 set the asymptotic critical value c so that P

(
χ2
q > c

)
= α. Then as n→∞,

P (W > c) −→ P
(
χ2
q(λ) > c

) def
= π(λ).

The asymptotic local power function π(λ) depends only on α, q, and λ.

Theorem 9.11 Under Assumptions 7.2, 7.3, 7.4, and θn = r(βn) = θ0 +
n−1/2h, then

W
d−→ χ2

q(λ)

where λ = h′V −1
θ h. Furthermore, for c such that P

(
χ2
q > c

)
= α,

P (W > c) −→ P
(
χ2
q(λ) > c

)
.
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Figure 9.3: Asymptotic Local Power Function, Varying q

Figure 9.3 plots π(λ) as a function of λ for q = 1, q = 2, and q = 3, and α = 0.05. The
asymptotic power functions are monotonically increasing in λ and asymptote to one.

Figure 9.3 also shows the power loss for fixed non-centrality parameter λ as the dimensionality
of the test increases. The power curves shift to the right as q increases, resulting in a decrease
in power. This is illustrated by the dotted line at 50% power. The dotted line crosses the three
power curves at λ = 3.85 (q = 1), λ = 4.96 (q = 2), and λ = 5.77 (q = 3). The ratio of these λ
values correspond to the relative sample sizes needed to obtain the same power. Thus increasing
the dimension of the test from q = 1 to q = 2 requires a 28% increase in sample size, or an increase
from q = 1 to q = 3 requires a 50% increase in sample size, to obtain a test with 50% power.
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Exercises

Exercise 9.1 Prove that if an additional regressor Xk+1 is added to X, Theil’s adjusted R
2

increases if and only if |Tk+1| > 1, where Tk+1 = β̂k+1/s(β̂k+1) is the t-ratio for β̂k+1 and

s(β̂k+1) =
(
s2[(X ′X)−1]k+1,k+1

)1/2
is the homoskedasticity-formula standard error.

Exercise 9.2 You have two independent samples (y1,X1) and (y2,X2) which satisfy y1 = X1β1+
e1 and y2 = X2β2 + e2, where E (x1ie1i) = 0 and E (x2ie2i) = 0, and both X1 and X2 have k
columns. Let β̂1 and β̂2 be the OLS estimates of β1 and β2. For simplicity, you may assume that
both samples have the same number of observations n.

(a) Find the asymptotic distribution of
√
n
((
β̂2 − β̂1

)
− (β2 − β1)

)
as n→∞.

(b) Find an appropriate test statistic for H0 : β2 = β1.

(c) Find the asymptotic distribution of this statistic under H0.

Exercise 9.3 Let T be a t-statistic for H0 : θ = 0 versus H1 : θ 6= 0. Since |T | →d |Z| under H0,
someone suggests the test “Reject H0 if |T | < c1 or |T | > c2, where c1 is the α/2 quantile of |Z|
and c2 is the 1− α/2 quantile of |Z|.

(a) Show that the asymptotic size of the test is α.

(b) Is this a good test of H0 versus H1? Why or why not?

Exercise 9.4 Let W be a Wald statistic for H0 : θ = 0 versus H1 : θ 6= 0, where θ is q × 1. Since
W →d χ

2
q under H0, someone suggests the test “Reject H0 if W < c1 or W > c2, where c1 is the

α/2 quantile of χ2
q and c2 is the 1− α/2 quantile of χ2

q .

(a) Show that the asymptotic size of the test is α.

(b) Is this a good test of H0 versus H1? Why or why not?

Exercise 9.5 Take the linear model

yi = x′1iβ1 + x′2iβ2 + ei

E (xiei) = 0

where both x1i and x2i are q × 1. Show how to test the hypotheses H0 : β1 = β2 against
H1 : β1 6= β2.

Exercise 9.6 Suppose a researcher wants to know which of a set of 20 regressors has an effect on a
variable testscore. He regresses testscore on the 20 regressors and reports the results. One of the 20
regressors (studytime) has a large t-ratio (about 2.5), while other t-ratios are insignificant (smaller
than 2 in absolute value). He argues that the data show that studytime is the key predictor for
testscore. Do you agree with this conclusion? Is there a deficiency in his reasoning?

Exercise 9.7 Take the model

yi = xiβ1 + x2
iβ2 + ei

E (ei | xi) = 0

where yi is wages (dollars per hour) and xi is age. Describe how you would test the hypothesis that
the expected wage for a 40-year-old worker is $20 an hour.
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Exercise 9.8 You want to test H0 : β2 = 0 against H1 : β2 6= 0 in the model

yi = x′1iβ1 + x′2iβ2 + ei

E (xiei) = 0

You read a paper which estimates model

yi = x′1iγ̂1 + (x2i − x1i)
′ γ̂2 + êi

and reports a test of H0 : γ2 = 0 against H1 : γ2 6= 0. Is this related to the test you wanted to
conduct?

Exercise 9.9 Suppose a researcher uses one dataset to test a specific hypothesis H0 against H1,
and finds that he can reject H0. A second researcher gathers a similar but independent dataset, uses
similar methods and finds that she cannot reject H0. How should we (as interested professionals)
interpret these mixed results?

Exercise 9.10 In Exercise 7.8, you showed that
√
n
(
σ̂2 − σ2

)
→d N (0, V ) as n→∞ for some V .

Let V̂ be an estimator of V .

(a) Using this result, construct a t-statistic for H0 : σ2 = 1 against H1 : σ2 6= 1.

(b) Using the Delta Method, find the asymptotic distribution of
√
n (σ̂ − σ).

(c) Use the previous result to construct a t-statistic for H0 : σ = 1 against H1 : σ 6= 1.

(d) Are the null hypotheses in (a) and (c) the same or are they different? Are the tests in (a)
and (c) the same or are they different? If they are different, describe a context in which the
two tests would give contradictory results.

Exercise 9.11 Consider a regression such as Table 4.1 where both experience and its square are
included. A researcher wants to test the hypothesis that experience does not affect mean wages,
and does this by computing the t-statistic for experience. Is this the correct approach? If not, what
is the appropriate testing method?

Exercise 9.12 A researcher estimates a regression and computes a test of H0 against H1 and finds
a p-value of p = 0.08, or “not significant”. She says “I need more data. If I had a larger sample
the test will have more power and then the test will reject.”Is this interpretation correct?

Exercise 9.13 A common view is that “If the sample size is large enough, any hypothesis will be
rejected.”What does this mean? Interpret and comment.

Exercise 9.14 Take the model

yi = x′iβ + ei

E(xiei) = 0

with parameter of interest θ = R′β with R k× 1. Let β̂ be the least-squares estimator and V̂
β̂
its

variance estimator.

(a) Write down Ĉ, the 95% asymptotic confidence interval for θ, in terms of β̂, V̂
β̂
, R, and

z = 1.96 (the 97.5% quantile of N(0, 1)).

(b) Show that the decision “Reject H0 if θ0 /∈ Ĉ”is an asymptotic 5% test of H0 : θ = θ0.
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Exercise 9.15 You are at a seminar where a colleague presents a simulation study of a test of
a hypothesis H0 with nominal size 5%. Based on B = 100 simulation replications under H0 the
estimated size is 7%. Your colleague says: “Unfortunately the test over-rejects.”

(a) Do you agree or disagree with your colleague? Explain. Hint: Use an asymptotic (large B)
approximation.

(b) Suppose the number of simulation replications were B = 1000 yet the estimated size is still
7%. Does your answer change?

Exercise 9.16 You have n i.i.d. observations (yi, x1i, x2i), and consider two alternative regression
models

yi = x′1iβ1 + e1i (9.21)

E (x1ie1i) = 0

yi = x′2iβ2 + e2i (9.22)

E (x2ie2i) = 0

where x1i and x2i have at least some different regressors. (For example, (9.21) is a wage regression
on geographic variables and (2) is a wage regression on personal appearance measurements.) You
want to know if model (9.21) or model (9.22) fits the data better. Define σ2

1 = E
(
e2

1i

)
and

σ2
2 = E

(
e2

2i

)
. You decide that the model with the smaller variance fit (e.g., model (9.21) fits better

if σ2
1 < σ2

2.) You decide to test for this by testing the hypothesis of equal fit H0 : σ2
1 = σ2

2 against
the alternative of unequal fit H1 : σ2

1 6= σ2
2. For simplicity, suppose that e1i and e2i are observed.

(a) Construct an estimator θ̂ of θ = σ2
1 − σ2

2.

(b) Find the asymptotic distribution of
√
n
(
θ̂ − θ

)
as n→∞.

(c) Find an estimator of the asymptotic variance of θ̂.

(d) Propose a test of asymptotic size α of H0 against H1.

(e) Suppose the test accepts H0. Briefly, what is your interpretation?

Exercise 9.17 You have two regressors x1 and x2, and estimate a regression with all quadratic
terms

yi = α+ β1x1i + β2x2i + β3x
2
1i + β4x

2
2i + β5x1ix2i + ei

One of your advisors asks: Can we exclude the variable x2i from this regression?
How do you translate this question into a statistical test? When answering these questions, be

specific, not general.

(a) What is the relevant null and alternative hypotheses?

(b) What is an appropriate test statistic? Be specific.

(c) What is the appropriate asymptotic distribution for the statistic? Be specific.

(d) What is the rule for acceptance/rejection of the null hypothesis?



CHAPTER 9. HYPOTHESIS TESTING 319

Exercise 9.18 The observed data is {yi,xi, zi} ∈ R × Rk × R`, k > 1 and ` > 1, i = 1, ..., n. An
econometrician first estimates

yi = x′iβ̂ + êi

by least squares. The econometrician next regresses the residual êi on zi, which can be written as

êi = z′iγ̃ + ũi.

(a) Define the population parameter γ being estimated in this second regression.

(b) Find the probability limit for γ̃.

(c) Suppose the econometrician constructs a Wald statistic Wn for H0 : γ = 0 from the second
regression, ignoring the regression. Write down the formula for Wn.

(d) Assuming E(zix
′
i) = 0, find the asymptotic distribution for Wn under H0 : γ = 0.

(e) If E(zix
′
i) 6= 0 will your answer to (d) change?

Exercise 9.19 An economist estimates yi = x1iβ1 + x2iβ2 + ei by least-squares and tests the
hypothesis H0 : β2 = 0 against H1 : β2 6= 0. She obtains a Wald statistic Wn = 0.34. The sample
size is n = 500.

(a) What is the correct degrees of freedom for the χ2 distribution to evaluate the significance of
the Wald statistic?

(b) The Wald statisticWn is very small. Indeed, is it less than the 1% quantile of the appropriate
χ2 distribution? If so, should you reject H0? Explain your reasoning.

Exercise 9.20 You are reading a paper, and it reports the results from two nested OLS regressions:

yi = x′1iβ̃1 + ẽi

yi = x′1iβ̂1 + x′2iβ̂2 + êi

Some summary statistics are reported:

Short Regression Long Regression
R2 = .20 R2 = .26∑n

i=1 ẽ
2
i = 106

∑n
i=1 ê

2
i = 100

# of coeffi cients=5 # of coeffi cients=8
n = 50 n = 50

You are curious if the estimate β̂2 is statistically different from the zero vector. Is there a way to
determine an answer from this information? Do you have to make any assumptions (beyond the
standard regularity conditions) to justify your answer?

Exercise 9.21 Take the model

yi = x1iβ1 + x2iβ2 + x3iβ3 + x4iβ4 + ei

E (xiei) = 0

Describe how you would test

H0 :
β1

β2
=
β3

β4

against

H1 :
β1

β2
6= β3

β4
.
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Exercise 9.22 You have a random sample from the model

yi = xiβ1 + x2
iβ2 + ei

E (ei | xi) = 0

where yi is wages (dollars per hour) and xi is age. Describe how you would test the hypothesis that
the expected wage for a 40-year-old worker is $20 an hour.

Exercise 9.23 Let Tn be a test statistic such that under H0, Tn →d χ
2
3. Since P

(
χ2

3 > 7.815
)

=
0.05, an asymptotic 5% test of H0 rejects when Tn > 7.815. An econometrician is interested in the
Type I error of this test when n = 100 and the data structure is well specified. She performs the
following Monte Carlo experiment.

• B = 200 samples of size n = 100 are generated from a distribution satisfying H0.

• On each sample, the test statistic Tnb is calculated.

• She calculates p̂ = 1
B

∑B
b=1 1 (Tnb > 7.815) = 0.070

• The econometrician concludes that the test Tn is oversized in this context — it rejects too
frequently under H0.

Is her conclusion correct, incorrect, or incomplete? Be specific in your answer.

Exercise 9.24 Do a Monte Carlo simulation. Take the model

yi = α+ xiβ + ei

E (xiei) = 0

where the parameter of interest is θ = exp(β). Your data generating process (DGP) for the
simulation is: xi is U [0, 1], ei is independent of xi and N(0, 1), n = 50. Set α = 0 and β = 1.
Generate B = 1000 independent samples with α. On each, estimate the regression by least-squares,
calculate the covariance matrix using a standard (heteroskedasticity-robust) formula, and similarly

estimate θ and its standard error. For each replication, store β̂, θ̂, tβ =
(
β̂ − β

)
/s
(
β̂
)
, and

tθ =
(
θ̂ − θ

)
/s
(
θ̂
)

(a) Does the value of α matter? Explain why the described statistics are invariant to α and
thus setting α = 0 is irrelevant.

(b) From the 1000 replications estimate E
(
β̂
)
and E

(
θ̂
)
. Discuss if you see evidence if either

estimator is biased or unbiased.

(c) From the 1000 replications estimate P (tβ > 1.645) and P (tθ > 1.645). What does asymptotic
theory predict these probabilities should be in large samples? What do your simulation results
indicate?

Exercise 9.25 The data set Invest1993 on the textbook website contains data on 1962 U.S. firms
extracted from Compustat and assembled by Bronwyn Hall. This particular dataset was used in
Hall and Hall (1993).

The variables we use in this exercise are

• year year of the observation

• inva Investment to Capital Ratio
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• vala Total Market Value to Asset Ratio (Tobin’s Q)

• cfa Cash Flow to Asset Ratio

• debta Long Term Debt to Asset Ratio

The flow variables are annual sums. The stock variables are beginning of year.

(a) Extract the sub-sample of observations for 1987. There should be 1028 observations. Esti-
mate a linear regression of I (investment to capital ratio) on the other variables. Calculate
appropriate standard errors.

(b) Calculate asymptotic confidence intervals for the coeffi cients.

(c) This regression is related to Tobin’s q theory of investment, which suggests that investment
should be predicted solely by Q (Tobin’s Q). This theory predicts that the coeffi cient on Q
should be positive and the others should be zero. Test the joint hypothesis that the coeffi cients
on cash flow (C) and debt (D) are zero. Test the hypothesis that the coeffi cient on Q is zero.
Are the results consistent with the predictions of the theory?

(d) Now try a non-linear (quadratic) specification. Regress I on Q, C, D, Q2, C2, D2, QC, QD,
CD. Test the joint hypothesis that the six interaction and quadratic coeffi cients are zero.

Exercise 9.26 In a paper in 1963, Marc Nerlove analyzed a cost function for 145 American electric
companies. His data set Nerlove1963 is on the textbook website. The variables are

• C Total cost

• Q Output

• PL Unit price of labor

• PK Unit price of capital

• PF Unit price of fuel

Nerlov was interested in estimating a cost function: C = f(Q,PL, PF, PK).

(a) First estimate an unrestricted Cobb-Douglass specification

logCi = β1 + β2 logQi + β3 logPLi + β4 logPKi + β5 logPFi + ei. (9.23)

Report parameter estimates and standard errors.

(b) What is the economic meaning of the restriction H0 : β3 + β4 + β5 = 1?

(c) Estimate (9.23) by constrained least-squares imposing β3+β4+β5 = 1. Report your parameter
estimates and standard errors.

(d) Estimate (9.23) by effi cient minimum distance imposing β3 + β4 + β5 = 1. Report your
parameter estimates and standard errors.

(e) Test H0 : β3 + β4 + β5 = 1 using a Wald statistic.

(f) Test H0 : β3 + β4 + β5 = 1 using a minimum distance statistic.
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Exercise 9.27 In Section 8.12 we report estimates from Mankiw, Romer and Weil (1992). We
reported estimation both by unrestricted least-squares and by constrained estimation, imposing
the constraint that three coeffi cients (2nd, 3rd and 4th coeffi cients) sum to zero, as implied by the
Solow growth theory. Using the same dataset MRW1992 estimate the unrestricted model and test
the hypothesis that the three coeffi cients sum to zero.

Exercise 9.28 Using the CPS dataset and the subsample of non-hispanic blacks (race code = 2),
test the hypothesis that marriage status does not affect mean wages.

(a) Take the regression reported in Table 4.1. Which variables will need to be omitted to estimate
a regression for the subsample of blacks?

(b) Express the hypothesis “marriage status does not affect mean wages”as a restriction on the
coeffi cients. How many restrictions is this?

(c) Find the Wald (or F) statistic for this hypothesis. What is the appropriate distribution for
the test statistic? Calculate the p-value of the test.

(d) What do you conclude?

Exercise 9.29 Using the CPS dataset and the subsample of non-hispanic blacks (race code = 2)
and whites (race code = 1), test the hypothesis that the returns to education is common across
groups.

(a) Allow the return to education to vary across the four groups (white male, white female, black
male, black female) by interacting dummy variables with education. Estimate an appropriate
version of the regression reported in Table 4.1.

(b) Find the Wald (or F) statistic for this hypothessis. What is the appropriate distribution for
the test statistic? Calculate the p-value of the test.

(c) What do you conclude?



Chapter 10

Resampling Methods

10.1 Introduction

So far in this textbook we have discussed two approaches to inference: exact and asymptotic.
Both have their strengths and weaknesses. In this chapter we introduce a set of alternative approx-
imation methods which are based around the concept of resampling —which means using sampling
information extracted from the empirical distribution of the data. These are powerful methods,
widely applicable, and often more accurate than exact or asymptotic approximations. Two dis-
advantages, however, are (1) resampling methods typically require more computation power; and
(2) the theory is considerably more challenging. A consequence of the computation requirement
is that most empirical researchers use asymptotic approximations for routine calculations, while
resampling approximations are more typically used for final reporting.

We will discuss two categories of resampling methods used in statistical and econometric prac-
tice: jackknife and bootstrap. Most of our attention will be given to the bootstrap as it is the most
commonly used resampling method in econometric practice.

The jackknife is the distribution obtained from the n leave-one-out estimators (see Section
3.20). The jackknife is most commonly used for variance estimation.

The bootstrap is the distribution obtained by estimation on samples created by i.i.d. sampling
with replacement from the dataset. (There are other variants of bootstrap sampling, including para-
metric sampling and residual sampling.) The bootstrap is commonly used for variance estimation,
confidence interval construction, and hypothesis testing.

There is a third category of resampling methods known as sub-sampling which we will not
cover in this textbook. Sub-sampling is the distribution obtained by estimation on sub-samples
(sampling without replacement) of the dataset. Sub-sampling can be used for most of same purposes
as the bootstrap. See the excellent monograph by Politis, Romano and Wolf (1999).

10.2 Example

To motivate our discussion we focus on the application presented in Section 3.7, which is a
bivariate regression applied to the CPS subsample of married black female wage earners with 12
years potential work experience and displayed in Table 3.1. The regression equation is

log(Wage) = β1education+ β2 + e.

323
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The estimates as reported in (4.39) are

log(Wage) = 0.155
(0.031)

education+ 0.698
(0.493)

+ ê

σ̂2 = 0.144
(0.043)

n = 20.

We focus on four estimates constructed from this regression. The first two are the coeffi cient
estimates β̂1 and β̂2. The third is the variance estimate σ̂2. The fourth is an estimate of the
expected level of wages for an individual with 16 years of education (a college graduate), which
turns out to be a nonlinear function of the parameters. Under the simplifying assumption that the
error e is independent of the level of education we find that the expected level of wages is

µ = E (Wage|Education = 16)

= E exp (16β1 + β2 + e)

= exp (16β1 + β2)E (exp(e))

= exp
(
16β1 + β2 + σ2/2

)
.

The final equality holds under the further simplifying assumption that e ∼ N
(
0, σ2

)
. (In this case,

E (exp(e)) = exp
(
σ2/2

)
can be obtained from the moment generating function.) The parameter µ

is a nonlinear function of the coeffi cients. The natural estimate of µ replaces the unknowns by the
point estimates. Thus

µ̂ = exp
(

16β̂1 + β̂2 + σ̂2/2
)

= 25.80
(2.29)

The standard error for µ̂ can be found by extending Exercise 7.8 to find the joint asymptotic
distribution of σ̂2 and the slope estimates, and then applying the delta method.

We are interested in calculating standard errors for the four estimates described above and
constructing confidence intervals for the parameters. We are interested in going beyond exact and
asymptotic approximations, especially given the small sample, the use of robust covariance matrix
estimates, and the non-linear transformations. One of the challenges is that standard packages,
such as Stata, provide standard errors for the coeffi cient estimates β̂1 and β̂2 and smooth nonlinear
functions of the coeffi cient estimates, but not for the variance estimate σ̂2 nor functionals of it such
as µ̂.

10.3 Jackknife Estimation of Variance

The jackknife estimates moments of estimators using the distribution of the leave-one-out es-
timators. The jackknife estimator of bias was introduced by Quenouille (1949) and extended by
Tukey (1958) to the jackknife estimator of variance. The idea was expanded further in the mono-
graphs of Efron (1982) and Shao and Tu (1995).

Let θ̂ be any estimator of a vector-valued parameter θ which is a function of a random sample
of size n. Let V

θ̂
= var(θ̂) be the variance of θ̂. Define the leave-one-out estimators θ̂(−i) which are

computed using the formula for θ̂ except that observation i is deleted. Tukey’s jackknife estimator
for V

θ̂
is defined as a scale of the sample variance of the leave-one-out estimators:

V̂
jack

θ̂ =
n− 1

n

n∑
i=1

(
θ̂(−i) − θ

)(
θ̂(−i) − θ

)′
(10.1)
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where θ is the sample mean of the leave-one-out estimators

θ =
1

n

n∑
i=1

θ̂(−i).

For scalar estimators θ̂ the jackknife standard error is the square root of (10.1).

sjack

θ̂
=

√
V̂

jack

θ̂

A convenient feature of the jackknife estimator V̂
jack

θ̂ is that the formula (10.1) is quite general
and does not require any technical (exact or asymptotic) calculations. A downside is that can
require n separate estimations, which in some cases can be computationally costly.

In most cases V̂
jack

θ̂ will be similar to a robust asymptotic variance matrix estimator. Thus the
main attractions of the jackknife estimator are that it can be used when an explicit asymptotic
variance formula is not available, and that it can be used as a check on the reliability of an
asymptotic formula.

The formula (10.1) is not immediately intuitive, so may benefit from some motivation. We start
by examining the case of the sample mean y = 1

n

∑n
i=1 yi. The leave-one-out estimator is

y(−i) =
1

n− 1

∑
j 6=i
yj =

n

n− 1
y − 1

n− 1
yi. (10.2)

The sample mean of the leave-one-out estimators is

1

n

n∑
i=1

y(−i) =
n

n− 1
y − 1

n− 1
y = y.

The difference is
y(−i) − y =

1

n− 1
(y − yi) .

The jackknife estimate of variance (10.1) is then

V̂
jack

y =
n− 1

n

n∑
i=1

(
1

n− 1

)2

(y − yi) (y − yi)′

=
1

n

(
1

n− 1

) n∑
i=1

(y − yi) (y − yi)′ . (10.3)

This is identical to the conventional estimator for the variance of y. Indeed, Tukey proposed the

(n−1)/n scaling in (10.1) so that V̂
jack

y precisely equals the conventional estimator. This calculation
shows that for the sample mean, the jackknife estimate of variance is identical to the conventional
estimator.

We next examine the case of least-squares regression coeffi cient estimates. Recall from (3.44)
that the leave-one-out OLS estimator equals

β̂(−i) = β̂ −
(
X ′X

)−1
xiẽi (10.4)

where ẽi = (1− hii)−1 êi and hii = x′i (X ′X)
−1
xi. The sample mean of the leave-one-out estima-

tors is
β = β̂ −

(
X ′X

)−1
µ̃

where µ̃ = n−1
∑n

i=1 xiẽi. Thus

β̂(−i) − β = −
(
X ′X

)−1
(xiẽi − µ̃) .
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The jackknife estimate of variance for β̂ is

V̂
jack

β̂ =
n− 1

n

n∑
i=1

(
β̂(−i) − β

)(
β̂(−i) − β

)′
=
n− 1

n

(
X ′X

)−1

(
n∑
i=1

xix
′
iẽ

2
i − nµ̃µ̃′

)(
X ′X

)−1

=
n− 1

n
V̂

HC3

β̂ − (n− 1)
(
X ′X

)−1
µ̃µ̃′

(
X ′X

)−1 (10.5)

where V̂
HC3

β̂ is the HC3 covariance estimator (4.34) based on prediction errors. The second term

in (10.5) is typically quite small since µ̃ is typically small in magnitude. Thus V̂
jack

β̂ ' Ṽ
β̂
. Indeed

(4.34) was originally motivated as a simplification of the jackknife estimator. This shows that
for regression coeffi cients the jackknife estimator of variance is similar to a conventional robust
estimator. This is accomplished without the user “knowing”the form of the asymptotic covariance
matrix. This is further confirmation that the jackknife is making a reasonable calculation.

Third, we examine the jackknife estimator for a function θ̂ = r(β̂) of a least-squares estimator.
The leave-one-out estimator of θ is

θ̂(−i) = r(β̂(−i))

= r
(
β̂ −

(
X ′X

)−1
xiẽi

)
' θ̂ − R̂′

(
X ′X

)−1
xiẽi.

The second equality is (10.4). The final approximation is obtained by a mean-value expansion,
using r(β̂) = θ̂ and setting R̂ = (∂/∂β) r(β̂)′. This approximation holds in large samples since
β̂(−i) are uniformly consistent for β. The jackknife variance estimator for θ̂ thus equals

V̂
jack

θ̂ =
n− 1

n

n∑
i=1

(
θ̂(−i) − θ

)(
θ̂(−i) − θ

)′
' n− 1

n
R̂
′ (
X ′X

)−1

(
n∑
i=1

xix
′
iẽ

2
i − nµ̃µ̃′

)(
X ′X

)−1
R̂

= R̂
′
V̂

jack

β̂ R̂

' R̂′Ṽ
β̂
R̂.

The final line equals a delta-method estimator for the variance of θ̂ constructed with the covariance
estimator (4.34). This shows that the jackknife estimator of variance for θ̂ is approximately an
asymptotic delta-method estimator. While this is an asymptotic approximation, it again shows that
the jackknife produces an estimator which is asymptotically similar to one produced by asymptotic
methods. This is despite the fact that the jackknife estimator is calculated without reference to
asymptotic theory and does not require calculation of the derivatives of r(β).

This argument extends directly to any “smooth function” estimator. Most of the estimators
discussed so far in this textbook take the form θ̂ = g (w) where w = n−1

∑n
i=1wi and wi is some

vector-valued function of the data. For any such estimator θ̂, the leave-one-out estimator equals
θ̂(−i) = g

(
w(−i)

)
and its jackknife estimator of variance is (10.1). Using (10.2) and a mean-value
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expansion, we have the large-sample approximation

θ̂(−i) = g
(
w(−i)

)
= g

(
n

n− 1
w − 1

n− 1
wi

)
' g (w)− 1

n− 1
G (w)′wi

where G (w) = (∂/∂w) g (w)′. Thus

θ̂(−i) − θ ' −
1

n− 1
G (w)′ (wi −w)

and the jackknife estimator of the variance of θ̂ approximately equals

V̂
jack

θ̂ =
n− 1

n

n∑
i=1

(
θ̂(−i) − θ̂(·)

)(
θ̂(−i) − θ̂(·)

)′
' n− 1

n
G (w)′

(
1

(n− 1)2

n∑
i=1

(wi −w) (wi −w)′
)
G (w)

= G (w)′ V̂
jack

w G (w)

where V̂
jack

w as defined in (10.3) is the conventional (and jackknife) estimator for the variance of

w. Thus V̂
jack

θ̂ is approximately the delta-method estimator. Once again, we see that the jackknife
estimator automatically calculates what is effectively the delta-method variance estimator, but
without requiring the user to explicitly calculate the derivative of g (w).

10.4 Example

We illustrate by reporting the asymptotic and jackknife standard errors for the four parameters
given earlier. In Table 10.1 we report the actual values of the leave-one-out estimates for each of
the twenty observations in the sample. The jackknife standard errors are calculated as the scaled
square roots of the sample variances of these leave-one-out estimates, and are reported in the
second-to-last row. For comparison the asymptotic standard errors are reported in the final row.

For all estimators the jackknife and asymptotic standard errors are quite similar. This reinforces
the credibility of both standard error estimates. The largest differences arise for β̂2 and µ̂, whose
jackknife standard errors are about 5% larger than the asymptotic standard errors.

The take-away from our presentation is that the jackknife is a simple and flexible method
for variance and standard error calculation. Circumventing technical asymptotic and exact cal-
culations, the jackknife produces estimates which in many cases are very similar to asymptotic
delta-method counterparts. The jackknife is especially appealing in cases where asymptotic stan-
dard errors are not available or are diffi cult to calculate. They can also be used as a double-check
on the reasonability of asymptotic delta-method calculations.

In Stata, jackknife standard errors for coeffi cient estimates in many models are simply obtained
by the vce(jackknife) option. For nonlinear functions of the coeffi cients or other estimators,
the jackknife command can be combined with any other command to obtain jackknife standard
errors.

To illustrate, below we list the Stata commands which will calculate the jackknife standard
errors listed above. The first line is least squares estimation with standard errors calculated by the
jackknife. The second line calculates the error variance estimate σ̂2 with a jackknife standard error.
The third line does the same for the estimate µ̂.
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Table 10.1: Leave-one-out Estimators and Jackknife Standard Errors

Observation β̂1(−i) β̂2(−i) σ̂2
(−i) µ̂(−i)

1 0.150 0.764 0.150 25.63
2 0.148 0.798 0.149 25.48
3 0.153 0.739 0.151 25.97
4 0.156 0.695 0.144 26.31
5 0.154 0.701 0.146 25.38
6 0.158 0.655 0.151 26.05
7 0.152 0.705 0.114 24.32
8 0.146 0.822 0.147 25.37
9 0.162 0.588 0.151 25.75
10 0.157 0.693 0.139 26.40
11 0.168 0.510 0.141 26.40
12 0.158 0.691 0.118 26.48
13 0.139 0.974 0.141 26.56
14 0.169 0.451 0.131 26.26
15 0.146 0.852 0.150 24.93
16 0.156 0.696 0.148 26.06
17 0.165 0.513 0.140 25.22
18 0.155 0.698 0.151 25.90
19 0.152 0.742 0.151 25.73
20 0.155 0.697 0.151 25.95
sjack 0.032 0.514 0.046 2.39
sasy 0.031 0.493 0.043 2.29

Stata Commands

reg wage education if mbf12 == 1, vce(jackknife)
jackknife (e(rss)/e(N)): reg wage education if mbf12 == 1
jackknife exp(16*_b[education]+_b[_cons]+e(rss)/e(N)/2): ///

reg wage education if mbf12 == 1

10.5 Jackknife for Clustered Observations

In Section 4.21 we introduced the clustered regression model, cluster-robust variance estimators,
and cluster-robust standard errors. Jackknife variance estimation can also be used for clustered
samples, but with some natural modifications. Recall that the least-squares estimator in the clus-
tered sample context can be written as

β̂ =

 G∑
g=1

X ′gXg

−1 G∑
g=1

X ′gyg


where g = 1, ..., G indexes the cluster. Instead of leave-one-out estimators, it is natural to use
delete-cluster estimators, which delete one cluster at a time. They take the form (4.50):

β̂(−g) = β̂ −
(
X ′X

)−1
X ′g ẽg
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where

ẽg =
(
Ing −Xg

(
X ′X

)−1
X ′g

)−1
êg

êg = yg −Xgβ̂.

The delete-cluster jackknife estimator of the variance of β̂ is

V̂
jack

β̂ =
G− 1

G

G∑
g=1

(
β̂(−g) − β

)(
β̂(−g) − β

)′
β =

1

G

G∑
g=1

β̂(−g).

We can also call V̂
jack

β̂ a cluster-robust jackknife estimator of variance.
Using the same approximations as the previous section, we can show that the delete-cluster

jackknife estimator is asymptotically equivalent to the cluster-robust covariance matrix estimator
(4.51) calculated with the delete-cluster prediction errors. This verifies that the delete-cluster
jackknife is the appropriate jackknife approach for clustered dependence.

For parameters which are functions θ̂ = r(β̂) of the least-squares estimator, the delete-cluster
jackknife estimator of the variance of θ̂ is

V̂
jack

θ̂ =
G− 1

G

G∑
g=1

(
θ̂(−g) − θ

)(
θ̂(−g) − θ

)′
θ̂(−i) = r(β̂(−g))

θ =
1

G

G∑
g=1

θ̂(−g).

Using a mean-value expansion, we can show that this estimator is asymptotically equivalent to
the delta-method cluster-robust covariance matrix estimator for θ̂. This shows that the jackknife
estimator is appropriate for covariance matrix estimation.

As in the context of i.i.d. samples, one advantage of the jackknife covariance matrix estimators
is that they do not require the user to make a technical calculation of the asymptotic distribution.
A downside is an increase in computation cost, as G separate regressions are effectively estimated.

In Stata, jackknife standard errors for coeffi cient estimates with clustered observations are
obtained by using the options cluster(id) vce(jackknife) where id denotes the cluster variable.

10.6 Empirical Distribution Function

Recall that the distribution function of a random variable y is F (u) = P (y ≤ u) = E (1 (y ≤ u)).
Given a sample {y1, ..., yn} of observations from F , the method of moments estimator for F (u) is
the fraction of observations less than or equal to u.

Fn(u) =
1

n

n∑
i=1

1 (yi ≤ u) .

The function Fn(u) is called the empirical distribution function (EDF).
For any sample, the EDF is a valid distribution function. (It is non-decreasing, right-continuous,

and limits to 0 and 1.) It is the discrete distribution which puts probability mass 1/n on each
observation. It is a nonparametric estimator, as it uses no prior information about the distribution
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function F (u). Note that while F (u) may be either discrete or continuous, Fn(u) is by construction
a step function.

The distribution function of a random vector y is F (u) = P (y ≤ u) = E (1 (y ≤ u)), where the
inequalities apply to all elements of the vector. The EDF for a sample {y1, ...,yn} is

Fn (u) =
1

n

n∑
i=1

1 (yi ≤ u) .

As for scalar variables, the multivariate EDF is a valid distribution function, and is the probability
distribution which puts probability mass 1/n at each observation.

The EDF Fn(u) is a consistent estimator of the distribution function F (u). To see this, note
that for any u, 1 (yi ≤ u) is a bounded i.i.d. random variable with expectation F (u). Thus by the
WLLN (Theorem 6.2), Fn (u)

p−→ F (u) . Furthermore, it is consistent uniformly over u.

Theorem 10.1 (Glivenko-Cantelli) If yi are i.i.d., as n→∞

sup
u
|Fn(u)− F (u)| p−→ 0.

The proof is presented in Section 10.33.
Theorem 10.1 is a famous example of functional convergence. You can view Fn(·) as a

functional estimate of F (·), and then ask in which sense does Fn converge to F . Theorem 10.1
shows that it converges in the uniform metric. Specifically, the uniform metric is the largest
discrepancy between two functions:

ρ(f, g) = sup
u
|f(u)− g(u)| .

Theorem 10.1 shows that ρ(Fn, F )
p−→ 0. The Glivenko-Cantelli Theorem was the first case of func-

tional convergence established in the statistics literature. This is the foundation for an important
class of convergence concepts known as empirical process theory and Donsker classes.

10.7 Quantiles

Quantiles are a useful representation of a distribution.

Definition 10.1 For any α ∈ (0, 1] the αth quantile of a distribution F (u)
is qα = inf {u : F (u) ≥ α}.

When F (u) is strictly increasing then qα satisfies F (qα) = α, and is thus the “inverse”of the
distribution function. In this case we can write qα = F−1(α).

One way to think about a quantile is that it is the point which splits the probabilty mass so
that 100α% of the distribution is to the left of qα and 100(1− α)% is to the right of qα.

Only univariate quantiles are defined; there is not a multivariate version.
A related concept are percentiles, which are expressed in terms of percentages. For any α, the

αth quantile and 100αth percentile are identical.
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The empirical analog of qα given a univariate sample {y1, ..., yn} is the empirical quantile,
which is obtained by replacing F (u) with the empirical distribution function Fn(u). Thus

q̂α = inf {u : Fn(u) ≥ α} .

It turns out that this can be written as a simple order statistic. (The order statistics of the
sample are the observations arranged in increasing order y(1) ≤ y(2) ≤ · · · ≤ y(n).) Note that
Fn(y(j)) ≥ j/n (with equality if the sample values are unique.) Set j = dnαe, the value nα rounded
up to the nearest integer (also known as the ceiling function). Thus Fn(y(j)) ≥ j/n ≥ α. For any
u < y(j), Fn(u) ≤ (j − 1)/n < α. Thus y(j) is the αth empirical quantile.

Theorem 10.2 q̂α = y(j), where j = dnαe.

To illustrate, consider estimation of the median wage from the dataset reported in Table 3.1. In
this example, n = 20 and α = 0.5. Thus nα = 10 is an integer. The 10th order statistic for the wage
(the 10th smallest observed wage) is wage(10) = 23.08. This is the empirical median q̂0.5 = 23.08.
To estimate the 0.66 quantile of this distribution, nα = 13.2, so we round up to 14. The 14th order
statistic (and empirical 0.66 quantile) is q̂06 = 31.73.

A useful property of quantiles and sample quantiles is that they are equivariant to monotone
transformations. Specifically, let h(·) : R → R be nondecreasing and set w = h(y). Let qyα and
qwα be the quantile functions of y and w. The equivariance property is q

w
α = h(qyα). That is, the

quantiles of w are the transformations of the quantiles of y. For example, the αth quantile of log(y)
is the log of the αth quantile of y.

To illustrate with our empirical example, the log of the median wage is log(q̂0.5) = log(23.08) =
3.14. This equals the 10th order statistic of the log(Wage) observations. The two are identical
because of the equivariance property.

The quantile estimator is consistent for qα when F (u) is strictly increasing.

Theorem 10.3 If yi are i.i.d. and F (u) is strictly increasing at qα then
q̂α

p−→ qα as n→∞.

Theorem 10.3 is a special case of Theorem 10.4 presented below, so its proof is omitted. The
assumption that F (u) is strictly increasing at qα excludes discrete distributions and those with flat
sections.

For most users, the above information is suffi cient to understand and work with quantiles.
However, for completeness we now give a few more details.

While Defintion 10.1 is convenient because it defines quantiles uniquely, it may be more insightful
to define the quantile interval as the set of solutions to α = F (qα). To handle this rigorously
it is useful to define the left limit version of the probability function, F+(q) = P (y < u). We can
then define the αth quantile interval as the set of numbers q which satisfy F+(q) ≤ α ≤ F (q).
This equals [qα, q

+
α ] where qα is from Definition 10.1 and q+

α = sup {u : F+(u) ≤ α}. We have the
equality q+

α = qα when F (u) is strictly increasing (in both directions) at qα.
We can similarly extend the definition of the empirical quantile. The empirical analog of the

interval [qα, q
+
α ] is the empirical quantile interval [q̂α, q̂

+
α ] where q̂α is the empirical quantile defined

earlier and q̂+
α = sup {u : F+

n (u) ≤ α} where F+
n (u) = 1

n

∑n
i=1 1 (yi < u). We can calculate that

when nα is an integer then q̂+
α = y(j+1) where j = dnαe but otherwise q̂+

α = y(j). Thus when nα is
an integer the empirical quantile interval is [y(j), y(j+1)], and otherwise is the unique value y(j).



CHAPTER 10. RESAMPLING METHODS 332

A number of estimators for qα have been proposed and been implemented in standard soft-
ware. We will describe four of these estimators, using the labeling system expressed in the R
documentation.

The Type 1 estimator is the empirical quantile, q̂1
α = q̂α.

The Type 2 estimator takes the midpoint of the empirical quantile interval [q̂α, q̂
+
α ]. Thus the

estimateoris q̂2
α = (y(j) + y(j+1))/2 when nα is an integer, and y(j) otherwise. This is the method

implemented in Stata. Quantiles can be obtained by the summarize, detail, xtile, pctile, and
_pctile commands.

The Type 5 estimator definesm = nα+0.5, ` = int(m) (integer part), and r = m−` (remainder).
It then sets q̂5

α as a weighted average of y(`) and y(`+1), using the interpolating weights 1 − r and
r, respectively. This is the method implemented in Matlab, and can be obtained by the quantile
command.

The Type 7 estimator defines m = nα+ 1− α, ` = int(m), and r = m− `. It then sets q̂7
α as a

weighted average of y(`) and y(`+1), using the interpolating weights 1−r and r, respectively. This is
the default method implemented in R, and can be obtained by the quantile command. The other
methods (including Types 1, 2, and 5) can be obtained in R by specifying the Type as an option.

The Type 5 and 7 estimators may not be immediately intuitive. What they implement is to
first smooth the empirical distribution function by interpolation, thus creating a strictly increasing
estimator, and then inverting the interpolated EDF to obtain the corresponding quantile. The two
methods differ in terms of how they implement interpolation. The estimates lie in the interval
[y(j−1), y(j+1)] where j = dnαe, but do not necessarily lie in the empirical quantile interval [q̂α, q̂

+
α ].

To illustrate, consider again estimation of the median wage from Table 3.1. The 10th and 11th

order statistics are 23.08 and 24.04, respectively, and nα = 10 is an integer, so the empirical quantile
interval for the median is [23.08, 24.04]. The point estimates are q̂1

α = 23.08 and q̂2
α = q̂5

α = q̂7
α =

23.56.
Consider the 0.66 quantile. The point estimates are q̂1

α = q̂2
α = 31.73, q̂5

α = 31.15, and q̂7
α =

30.85. Note that the latter two are smaller than the empirical quantile 31.73.
The differences can be greatest at the extreme quantiles. Consider the 0.95 quantile. The

empirical quantile is the 19th order statistic q̂1
α = 43.08. q̂2

α = q̂5
α = 48.85 is average of the 19th and

20th order statistics, and q̂7
α = 43.65.

The differences between the methods diminish in large samples. However, it is useful to know
that the packages implement distinct estimates when comparing results across packages.

Theorem 10.3 can be generalized to allow for interval-valued quantiles. To do so we need a
convergence concept for interval-valued parameters.

Definition 10.2 We say that a random variable zn converges in prob-
ability to the interval [a, b] with a ≤ b, as n→∞, denoted zn

p−→ [a, b], if
for all ε > 0

P (a− ε ≤ zn ≤ b+ ε)
p−→ 1.

This the natural extension of the concept of convergence in probability to interval-valued para-
metrs. It says that the variable zn lies within ε of the interval [a, b] with probability approaching
one.

The following result includes the quantile estimators described above (Types 1, 2, 5, and 7.)

Theorem 10.4 Let q̂α be any estimator satisfying y(j−1) ≤ q̂α ≤ y(j+1)

where j = dnαe. If yi are i.i.d. and 0 < α < 1, then q̂α
p−→ [qα, q

+
α ] as

n→∞.
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The proof is presented in Section 10.33. Theorem 10.4 applies to all distribution functions,
including continuous and discrete.

10.8 The Bootstrap Algorithm

The bootstrap is a powerful approach to inference, and is due to the pioneering work of Efron
(1979). There are many textbook and monograph treatments of the bootstrap, including Efron
(1982), Hall (1992), Efron and Tibshirani (1993), Shao and Tu (1995), and Davison and Hinkley
(1997). Reviews for econometricians are provided by Hall (1994) and Horowitz (2001)

There are several ways to describe or define the bootstrap, and there are several forms of the
bootstrap. We start in this section by describing the basic nonparametric bootstrap algorithm.
In subsequent sections we give more formal definitions of the bootstrap as well as theoretical
justifications.

Briefly, the bootstrap distribution is obtained by estimation on independent samples created by
i.i.d. sampling (sampling with replacement) from the original dataset.

To understand this, it is useful to start with the concept of sampling with replacement from
the dataset. To continue the empirical example used earlier in the chapter, we focus on the dataset
displayed in Table 3.1, which has n = 20 observations. Sampling from this distribution means
randomly selecting one row from this table. Mathematically this is the same as randomly selecting
an integer from the set {1, 2, ..., 20}. To illustrate, Matlab has a random integer generator (the
function randi), and using the random number seed of 13 (an arbitrary choice) we obtain the
random draw 16. This means that we draw observation number 16 from Table 3.1. Examining the
table, we can see that this is an individual with wage $18.75 and education of 16 years. We repeat
by drawing another random integer on the set {1, 2, ..., 20} and this time obtain 5. This means we
take observation 5 from Table 3.1, which is an individual with wage $33.17 and education of 16
years. We continue until we have n = 20 such draws. This random set of observations are {16, 5,
17, 20, 20, 10, 13, 16, 13, 15, 1, 6, 2, 18, 8, 14, 6, 7, 1, 8}. We call this the bootstrap sample.

Notice that the observations 1, 6, 8, 13, 16, 20 each appear twice in the bootstrap sample, and
the observations 3, 4, 9, 11, 12, 19 do not appear at all. That is okay. In fact, it is necessary for the
bootstrap to work. This is because we are drawing with replacement. (If we instead made draws
without replacement, then the constructed dataset would have exactly the same observations as in
Table 3.1, only in different order.) We can also ask the question “What is the probability that an
individual observation will appear at least once in the bootstrap sample? The answer is

P (Observation in Bootstrap Sample) = 1−
(

1− 1

n

)n
(10.6)

−→ 1− e−1

' 0.632.

The limit holds as n→∞. The approximation 0.632 is excellent even for small n. Indeed, for our
example with n = 20 the probability (10.6) is 0.641. These calculations show that an individual
observation is in the bootstrap sample with probability near 2/3, and is not in the bootstrap sample
with probability near 1/3.

Once again, the bootstrap sample is the constructed dataset with the 20 observations drawn
randomly from the original sample. Notationally, we write the ith bootstrap observation as (y∗i ,x

∗
i )

and the bootstrap sample as {(y∗1,x∗1) , ..., (y∗n,x
∗
n)}. In our present example with y denoting the

log wage, {(y∗1,x∗1) , ..., (y∗n,x
∗
n)} = {(2.93, 16) , (3.50, 16) ..., (3.76, 18)}. The bootstrap estimate β̂∗

is then obtained applying the least-squares estimation formula to the bootstrap sample. Thus we
regress y∗i on x∗i . The other bootstrap estimates, in our example σ̂

2∗ and µ̂∗, are obtained by

applying the estimation formula to the bootstrap sample as well. Writing θ̂
∗

=
(
β̂∗1 , β̂

∗
2 , σ̂
∗2, µ̂∗

)′
we have the bootstrap estimate of the parameter vector θ =

(
β1, β2, σ

2, µ
)′. In our example (the
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bootstrap sample described above) θ̂
∗

= (0.195, 0.113, 0.107, 26.7)′. This is one draw from the
bootstrap distribution of the estimates.

The estimate θ̂
∗
as described is one random draw from the distribution of estimates obtained

by i.i.d. sampling from the original data. With one draw we can say relatively little. But we
can repeat this exercise to obtain multiple draws from this bootstrap distribution. To distinguish
between these draws we index the bootstrap samples by b = 1, ..., B, and write the bootstrap
estimates as θ̂

∗
b or θ̂

∗
(b).

To continue our illustration, we draw 20 more random integers {19, 5, 7, 19, 1, 2, 13, 18, 1, 15,
17, 2, 14, 11, 10, 20, 1, 5, 15, 7} and construct a second bootstrap sample. On this sample we again
estimate the parameters, and obtain θ̂

∗
(2) = (0.175, 0.52, 0.124, 29.3)′. This is a second random

draw from the distribution of θ̂
∗
. We repeat this B times, storing the parameter estimates θ̂

∗
(b).

We have thus created a new dataset of bootstrap draws
{
θ̂
∗
(b) : b = 1, ..., B

}
. By construction,

the draws are independent across b and identically distributed.
The number of bootstrap draws, B, is often called the “number of bootstrap replications”.

Typical choices for B are 1000, 5000, and 10,000. We discuss selecting B later, but roughly
speaking, larger B results in a more precise estimate at an increased computation cost. For our
application we set B = 10, 000.

To illustrate, Figure 13.1 displays the densities of the distributions of the bootstrap estimates
β̂∗1 and µ̂

∗ across 10,000 draws. The dotted lines show the point estimate. You can notice that the
density for β̂∗1 is slightly skewed to the left.
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Figure 10.1: Bootstrap Distributions of β̂∗1 and µ̂
∗

10.9 Bootstrap Variance and Standard Errors

Given the bootstrap draws we can estimate features of the bootstrap distribution. The boot-
strap estimator of variance of an estimator θ̂ is the sample variance across the bootstrap draws
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θ̂
∗
(b). It equals

V̂
boot

θ̂ =
1

B − 1

B∑
b=1

(
θ̂
∗
(b)− θ∗

)(
θ̂
∗
(b)− θ∗

)′
(10.7)

θ
∗

=
1

B

B∑
b=1

θ̂
∗
(b).

For a scalar estimator θ̂ the bootstrap standard error is the square root of the bootstrap
estimator of variance:

sboot
θ̂

=

√
V̂

boot

θ̂ .

This is a very simple statistic to calculate, and is the most common use of the bootstrap in applied
econometric practice. A caveat (discussed in more detail in Section 10.17) is that in many cases it
is better to use a trimmed estimator.

Standard errors are conventionally reported to convey the precision of the estimator. They are
also commonly used to construct confidence intervals. Bootstrap standard errors can be used for
this purpose. The normal-approximation bootstrap confidence interval is

Cnb =
[
θ̂ − z1−α/2s

boot
θ̂

, θ̂ + z1−α/2s
boot
θ̂

]
where z1−α/2 is the 1 − α/2 quantile of the N (0, 1) distribution. This interval Cnb is identical
in format to an asymptotic confidence interval, but with the bootstrap standard error replacing
the asymptotic standard error. Cnb is the default confidence interval reported by Stata when
the bootstrap has been used to calculate standard errors. However, the normal-approximation
interval is in general a poor choice for confidence interval construction as it relies on the normal
approximation to the t-ratio which can be inaccurate in finite samples. There are other methods —
such as the bias-corrected percentile method to be discussed in Section 10.19 —which are just as
simple to compute but have better performance. In general, bootstrap standard errors should be
used as estimates of precision rather than as tools to construct confidence intervals.

Since B is finite, all bootstrap statistics, such as V̂
boot

θ̂ , are estimates and hence random. Their
values will vary across different choices for B and simulation runs (depending on how the simulation
seed is set). Thus you should not expect to obtain the exact same bootstrap standard errors as
other researchers when replicating their results. They should be similar (up to simulation sampling
error) but not precisely the same.

In Table 10.2 we report the four parameter estimates introduced in Section 10.2, along with
asymptotic, jackknife and bootstrap standard errors. We also report four bootstrap confidence
intervals which will be introduced in subsequent sections.

For these four estimators, we can see that the bootstrap standard errors are quite similar to the
asymptotic and jackknife standard errors. The most noticable difference arises for β̂2, where the
bootstrap standard error is about 10% larger than the asymptotic standard error.

In Stata, bootstrap standard errors for coeffi cient estimates in many models are simply obtained
by the vce(bootstrap, reps(#)) option, where # is the number of bootstrap replications. For
nonlinear functions of the coeffi cients or other estimators, the bootstrap command can be combined
with any other command to obtain bootstrap standard errors. Synonyms for bootstrap are bstrap
and bs.

To illustrate, below we list the Stata commands which will calculate1 the bootstrap standard
errors listed above.

1They will not precisely replicate the standard errors, since those in Table 10.2 were produced in Matlab, which
uses a different random number sequence.
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Table 10.2: Comparison of Methods

β̂1 β̂2 σ̂2 µ̂
Estimate 0.155 0.698 0.144 25.80
Asymptotic s.e. (0.031) (0.493) (0.043) (2.29)
Jackknife s.e. (0.032) (0.514) (0.046) (2.39)
Bootstrap s.e. (0.034) (0.548) (0.041) (2.38)
95% Percentile Interval [0.08, 0.21] [−0.27, 1.91] [0.06, 0.22] [21.4, 30.7]
95% BC Percentile Interval [0.08, 0.21] [−0.25, 1.93] [0.09, 0.28] [22.0, 31.5]
95% BCa Percentile Interval [0.08, 0.21] [−0.25, 1.93] [0.09, 0.28] [22.0, 31.5]
95% Percentile-t Interval [0.09, 0.21] [−0.20, 1.81] [0.08, 0.34] [21.6, 32.2]

Stata Commands

reg wage education if mbf12 == 1, vce(bootstrap, reps(10000))
bs (e(rss)/e(N)), reps(10000): reg wage education if mbf12 == 1
bs (exp(16*_b[education]+_b[_cons]+e(rss)/e(N)/2)), reps(10000): ///

reg wage education if mbf12 == 1

10.10 Percentile Interval

The second most common use of bootstrap methods is for confidence intervals. There are
multiple bootstrap methods to form confidence intervals. A popular and simple method is called
the percentile interval. It is based on the quantiles of the bootstrap distribution.

In Section 10.8 we described the bootstrap algorithm, which creates an i.i.d. sample of bootstrap

estimates
{
θ̂∗1, θ̂

∗
2, ..., θ̂

∗
B

}
corresponding to an estimator θ̂ of a parameter θ. We focus on the case

of a scalar parameter θ.
For any 0 < α < 1 we can calculate the empirical quantile q∗α of these bootstrap estimates.

This is the number such that nα bootstrap estimates are smaller than q∗α, and typically calculated
by taking the nαth order statistic of the θ̂∗b . See Section 10.7 for a precise discussion of empirical
quantiles and common quantile estimators.

The percentile bootstrap 100(1− α)% confidence interval is

Cpc =
[
q∗α/2, q∗1−α/2

]
. (10.8)

For example, if B = 1000, α = 0.05, and the empirical quantile estimator is used, then Cpc =[
θ̂∗(25), θ̂∗(975)

]
.

To illustrate, the 0.025 and 0.975 quantiles of the bootstrap distributions of β̂∗1 and µ̂∗ are
indicated in Figure 13.1 by the arrows. The intervals between the arrows are the 95% percentile
interval.

The percentile interval has the convenience that it does not require calculation of a standard
error. This is particularly convenient in contexts where asymptotic standard error calculation is
complicated, burdensome, or unknown. Cpc is a simple by-product of the bootstrap algorithm
and does not require meaningful computational cost above that required to calculate the bootstrap
standard error.

The percentile interval has the useful property that it is transformation-respecting. The
percentile interval for any monotone parameter transformation φ = m(θ) is simply the percentile
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interval for θ mapped by m(θ). That is, if
[
q∗α/2, q∗1−α/2

]
is the percentile interval for θ, then[

m
(
q∗α/2

)
, m

(
q∗1−α/2

)]
is the percentile interval for φ. This property follows directly from the

equivariance property of sample quantiles. Many confidence-interval methods, such as the delta-
method asymptotic interval and the normal-approximation interval Cnb, do not share this property.

To illustrate the usefulness of the transformation-respecting property, consider the variance
σ2. In some cases it is useful to report the variance σ2, and in other cases it is useful to report
the standard deviation σ. Thus we may be interested in confidence intervals for σ2 or σ. To
illustrate, the asymptotic 95% normal confidence interval for σ2 which we calculate from Table 13.2
is [0.060, 0.228]. Taking square roots we obtain an interval for σ of [0.244, 0.477]. Alternatively, the
delta method standard error for σ̂ = 0.379 is 0.057, leading to an asymptotic 95% confidence interval
for σ of [0.265, 0.493] which is different. This shows that the delta method is not transformation-
respecting. In contrast, the 95% percentile interval for σ2 is [0.062, 0.220] and that for σ is [0.249,
0.469] which is identical to the square roots of the interval for σ2.

The bootstrap percentile intervals for the four estimators are reported in Table 13.2.
In Stata, percentile confidence intervals can be obtained by using the command estat bootstrap,

percentile or the command estat bootstrap, all after an estimation command which calcu-
lates standard errors via the bootstrap.

10.11 The Bootstrap Distribution

For applications, it is often suffi cient if one understands the bootstrap as an algorithm. However,
for theory it is more useful to view the bootstrap as a specific estimator of the sampling distribution.
For this, it is useful to introduce some additional notation.

The key is that the distribution of any estimator or statistic is determined by the distribution
of the data. While the latter is unknown it can be estimated by the empirical distribution of the
data. This is what the bootstrap does.

To fix notation, let F denote the distribution of an individual observation w. (In regression, w
is the pair (y,x).) Let Gn(u, F ) denote the distribution of an estimator θ̂. That is,

Gn(u, F ) = P(θ̂ ≤ u | F ).

We write the distribution Gn as a function of n and F since they (generally) affect the distribution
of θ̂. We are interested in the distribution Gn. For example, we want to know its variance to
calculate a standard error, or its quantiles to calculate a percentile interval.

In principle, if we knew the distribution F we should be able to determine the distribution of
Gn. In practice there are two barriers to implementation. The first barrier is that the calculation of
Gn(u, F ) is generally infeasible except in certain special cases such as the normal regression model.
The second barrier is that in general we do not know F .

The bootstrap simultaneously circumvents these two barriers by two clever ideas. First, the
bootstrap proposes estimation of F by the empirical distribution Fn, which is the simplest non-
parametric estimator of the joint distribution of the observations. Replacing F with Fn we obtain
the ideal bootstrap estimator of the distribution of θ̂

G∗n(u) = Gn(u, Fn). (10.9)

G∗n is an estimator of Gn. It is unknown in practice. The bootstrap proposes estimation of G
∗
n by

simulation. This is the bootstrap algorithm described in the previous sections. The essential idea
is that simulation from Fn is sampling with replacement from the original data, and this is com-
putationally very simple. Applying the estimation formula for θ̂, we thus obtain i.i.d. draws from
the distribution G∗n(u). By making a large number B of such draws, we can estimate any feature
of G∗n of interest. The bootstrap combines these two ideas: (1) estimate Gn(u, F ) by Gn(u, Fn);
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(2) estimate Gn(u, Fn) by simulation. These ideas are intertwined since only by considering these
steps together do we obtain a feasible inference method.

The way to think about the connection betweenGn andG∗n is as follows. Gn is the distribution of
the estimator θ̂ obtained when the observations are sampled i.i.d. from the population distribution
F . G∗n is the distribution of the same statistic, denoted θ̂

∗
, obtained when the observations are

sampled i.i.d. from the empirical distribution Fn. It is useful to conceptualize the “universe”
which separately generates the dataset and the bootstrap sample. The “sampling universe”is the
population distribution F . In this universe, the true parameter is θ. The “bootstrap universe”
is the empircal distribution Fn. When drawing from the bootstrap universe we are treating Fn
as if it is the true distribution. Thus anything which is true about Fn should be treated as true
in the bootstrap universe. In the bootstrap universe, the “true” value of the parameter θ is the
value determined by the EDF Fn. In most cases this is the estimate θ̂. It is the true value of the
coeffi cient when the true distribution is Fn.

We now carefully explain the connection with the bootstrap algorithm as previously described.
First, observe that sampling with replacement from the sample {y1, ...,yn} is identical to sam-

pling from the EDF Fn. This is because the EDF is the probability distribution which puts
probability mass 1/n on each observation. Thus sampling from Fn means sampling an observation
with probability 1/n, which is sampling with replacement.

Second, observe that the bootstrap estimator θ̂
∗
described here is identical to the bootstrap

algorithm described in Section 10.8. That is, θ̂
∗
is the random vector generated by applying the

estimator formula θ̂ to samples obtained by random sampling from Fn.
Third, observe that the distribution of these bootstrap estimators is the bootstrap distribution

(10.9). This is a precise equality. That is, the bootstrap algorithm generates i.i.d. samples from
Fn, and when the estimators are applied we obtain random variables θ̂

∗
with the distribution G∗n.

Fourth, observe that the bootstrap statistics described earlier —bootstrap variance, standard
error, and quantiles — are estimators of the corresponding features of the bootstrap distribution
G∗n.

This discussion is meant to carefully describe why the notation G∗n(u) is useful to help under-
stand the properties of the bootstrap algorithm. Since Fn is the natural nonparametric estimator
of the unknown distribution F , G∗n(u) = Gn(u, Fn) is the natural plug-in estimator of the unknown
Gn(u, F ). Furthermore, since Fn is uniformly consistent for F by Theorem 10.1, we also can ex-
pect G∗n(u) to be consistent for Gn(u). Making this precise it a bit challenging since Fn and Gn
are functions. In the next several sections we develop an asymptotic distribution theory for the
bootstrap distribution based on extending classical asymptotic theory to the case of conditional
distributions.

10.12 The Distribution of the Bootstrap Observations

Let y∗ be a random draw from the sample {y1, ...,yn}. What is the distribution of y∗?
Since we are fixing the observations, the correct question is: What is the conditional distribution

of y∗, conditional on the observed data? The empirical distribution function Fn summarizes the
information in the sample, so equivalently we are talking about the distribution conditional on Fn.
Consequently we will write the bootstrap probability function and expectation as

P∗ (y∗ ≤ x) = P (y∗ ≤ x|Fn)

E∗ (y∗) = E (y∗|Fn) .

Notationally, the starred distribution and expectation are conditional given the data.
The (conditional) distribution of y∗ is the empirical distribution function Fn, which is a discrete

distribution with mass points 1/n on each observation yi. Thus even if the original data come from
a continuous distribution, the bootstrap data distribution is necessarily discrete.
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The (conditional) mean and variance of y∗ are calculated from the EDF, and equal the sample
mean and variance of the data. The mean is

E∗ (y∗) =
n∑
i=1

yiP∗ (y∗ = yi)

=
n∑
i=1

yi
1

n

= y (10.10)

and the variance is

var∗ (y∗) = E∗
(
y∗y∗′

)
− (E∗ (y∗)) (E∗ (y∗))′

=
n∑
i=1

yiy
′
iP∗ (y∗ = yi)− yy′

=
n∑
i=1

yiy
′
i

1

n
− yy′

= Σ̂. (10.11)

To summarize, the conditional distribution of y∗, given Fn, is the discrete distribution on {y1, ...,yn},
with mean y and variance matrix Σ̂.

We can extend this analysis to any integer moment r. Assume yi is scalar. The rth moment of
y∗ is

µ∗′r = E∗ (y∗)r =

n∑
i=1

yri P∗ (y∗ = yi) =
1

n

n∑
i=1

yri = µ̂′r,

the rth sample moment. The rth central moment of y∗ is

µ∗r = E∗ (y∗ − y)r =
1

n

n∑
i=1

(yi − y)r = µ̂r,

the rth central sample moment. Similarly, the rth cumulant of y∗ is κ∗r = κ̂r, the rth sample
cumulant.

10.13 The Distribution of the Bootstrap Sample Mean

The bootstrap sample mean is

y∗ =
1

n

n∑
i=1

y∗i .

We can calculate its (conditional) mean and variance. The mean is

E∗ (y∗) = E∗
(

1

n

n∑
i=1

y∗i

)
=

1

n

n∑
i=1

E∗ (y∗i ) =
1

n

n∑
i=1

y = y. (10.12)

using (10.10). Thus the bootstrap sample mean y∗ has a distribution centered at the sample mean
y. This is because the bootstrap observations y∗i are drawn from the bootstrap universe, which
treats the EDF as the truth, and the mean of the latter distribution is y.

The (conditional) variance of the bootstrap sample mean is

var∗ (y∗) = var∗

(
1

n

n∑
i=1

y∗i

)
=

1

n2

n∑
i=1

var∗ (y∗i ) =
1

n2

n∑
i=1

Σ̂ =
1

n
Σ̂ (10.13)
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using (10.11). In the scalar case, var∗ (y∗) = σ̂2/n. This shows that the bootstrap variance of y∗ is
precisely described by the sample variance of the original observations. Again, this is because the
bootstrap observations y∗i are drawn from the bootstrap universe.

We can extend this to any integer moment r. Assume yi is scalar. Define the normalized
bootstrap sample mean z∗n =

√
n (y∗ − y). Using expressions (6.12)-(6.13), the 3rd through 6th

conditional moments of z∗n are

E∗ (z∗n)3 = κ̂3/n
1/2

E∗ (z∗n)4 = κ̂4/n+ 3κ̂2
2 (10.14)

E∗ (z∗n)5 = κ̂5/n
3/2 + 10κ̂3κ̂2/n

1/2

E∗ (z∗n)6 = κ̂6/n
2 +

(
15κ̂4κ2 + 10κ̂2

3

)
/n+ 15κ̂3

2

where κ̂r is the rth sample cumulant. Similar expressions can be derived for higher moments.
The moments (10.14) are exact, not approximations.

10.14 Bootstrap Asymptotics

The bootstrap mean y∗ is a sample average over n i.i.d. random variables, so we might expect
it to converge in probability to its expectation. Indeed, this is the case, but we have to be a bit
careful since the bootstrap mean has a conditional distribution (given the data) so we need to define
convergence in probability for conditional distributions.

Definition 10.3 We say that a random vector z∗n converges in boot-

strap probability to z as n→∞, denoted z∗n
p∗−→ z, if for all ε > 0

P∗ (‖z∗n − z‖ > ε)
p−→ 0.

To understand this definition recall that conventional convergence in probability zn
p−→ z

means that for a suffi ciently large sample size n, the probability is high that zn is arbitrarily close

to its limit z. In contrast, Definition 10.3 says z∗n
p∗−→ z means that for a suffi ciently large n, the

probability is high that the conditional probability that z∗n is close to its limit z is high. Note that
there are two uses of probability —both unconditional and conditional.

Our label “convergence in bootstrap probability”is a bit unusual. The label used in much of the
statistical literature is “convergence in probability, in probability”but that seems like a mouthful.
That literature more often focuses on the related concept of “convergence in probability, almost
surely”which holds if we replace the “

p−→”convergence with almost sure convergence. We do not
use this concept in this chapter as it is an unnecessary complication.

While we have stated Definition 10.3 for the specific conditional probability distribution P∗, the
idea is more general and can be used for any conditional distribution and any sequence of random
vectors.

The following may seem obvious, but it is useful to state for clarity, and its proof is given in
Section 10.33.

Theorem 10.5 If zn
p−→ z as n→∞ then zn

p∗−→ z.
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Given Definition 10.3, we can establish a law of large numbers for the bootstrap sample mean.

Theorem 10.6 Bootstrap WLLN. If yi are independent and uniformly

integrable then y∗ − y p∗−→ 0 and y∗
p∗−→ µ = E (yi) as n→∞.

The proof (presented in Section 10.33) is somewhat different from the classical case, as it is
based on the Marcinkiewicz WLLN (Theorem 6.37).

Notice that the conditions for the bootstrap WLLN are the same for the conventional WLLN.
Notice as well that we state two related but slightly different results. The first is that the difference
between the bootstrap sample mean y∗ and the sample mean y diminishes as the sample size
diverges. The second result is that the bootstrap sample mean converges to the population mean
µ. The latter is not surprising (since the sample mean y converges in probability to µ) but it is
constructive to be precise since we are dealing with a new convergence concept.

Theorem 10.7 Bootstrap Continuous Mapping Theorem. If

z∗n
p∗−→ c as n → ∞ and g (·) is continuous at c, then g(z∗n)

p∗−→ g(c)
as n→∞.

The proof is essentially identical to that of Theorem 6.19, so is omitted.
We next would like to show that the bootstrap sample mean is asymptotically normally distrib-

uted, but for that we need a definition of convergence for conditional distributions.

Definition 10.4 Let z∗n be a random vector with conditional distribu-
tion G∗n(u) = P∗ (z∗n ≤ u) . We say that z∗n converges in bootstrap

distribution to z as n → ∞, denoted z∗n
d∗−→ z, if for all u at which

G(u) = P (z ≤ u) is continuous, G∗n(u)
p−→ G(u) as n→∞.

The difference with the conventional definition is that Definition 10.4 treats the conditional
distribution as random. An alternative label for Definition 10.4 is “convergence in distribution, in
probability”.

We now state a CLT for the bootstrap sample mean, with a proof given in Section 10.33.

Theorem 10.8 Bootstrap CLT. If yi are independent, ‖yi‖2 is uni-
formly integrable, and Σ = var (y) > 0 then

√
n (y∗ − y)

d∗−→ N (0,Σ)

as n→∞.
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Theorem 10.8 shows that the normalized bootstrap sample mean has the same asymptotic
distribution as the sample mean. Thus the bootstrap distribution is asymptotically the same as
the sampling distribution. A notable difference, however, is that the bootstrap sample mean is
normalized by centering at the sample mean, not at the population mean. This is because y is the
true mean in the bootstrap universe.

We next state the distributional form of the continuous mapping theorem for bootstrap distri-
butions and the Bootstrap Delta Method.

Theorem 10.9 Bootstrap Continuous Mapping Theorem
If z∗n

d∗−→ z as n→∞ and g : Rm → Rk has the set of discontinuity points
Dg such that P∗ (z∗ ∈ Dg) = 0, then g(z∗n)

d∗−→ g(z) as n→∞.

Theorem 10.10 Bootstrap Delta Method:
If µ̂

p−→ µ,
√
n (µ̂∗ − µ̂)

d∗−→ ξ, and g(u) is continuously differentiable in
a neighborhood of µ, then as n→∞

√
n (g (µ̂∗)− g(µ̂))

d∗−→ G′ξ

where G(u) = ∂
∂ug(u)′ and G = G(µ). In particular, if ξ ∼ N (0,V ) then

as n→∞ √
n (g (µ̂∗)− g(µ̂))

d∗−→ N
(
0,G′V G

)
.

For a proof, see Exercise 10.8.
We state an analog of Theorem 6.24, which presented the asymptotic distribution for general

smooth functions of sample means, which covers most econometric estimators.

Theorem 10.11 Under the assumptions of Theorem 6.24, that is, if yi is

i.i.d., µ = E (h (y)), θ = g (µ) , E ‖h (y)‖2 <∞, and G (u) =
∂

∂u
g (u)′ is

continuous in a neighborhood of µ, for θ̂ = g (µ̂) with µ̂ = 1
n

∑n
i=1 h (yi)

and θ̂
∗

= g (µ̂∗) with µ̂∗ = 1
n

∑n
i=1 h (y∗i ), as n→∞

√
n
(
θ̂
∗ − θ̂

)
d∗−→ N (0,V θ)

where V θ = G′V G , V = E
(
(h (y)− µ) (h (y)− µ)′

)
and G = G (µ) .

For a proof, see Exercise 10.9.
Theorem 10.11 shows that the asymptotic distribution of the bootstrap estimator θ̂

∗
is identical

to that of the sample estimator θ̂. This means that we can learn the distribution of θ̂ from the
bootstrap distribution, and hence perform asymptotically correct inference.
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For some bootstrap applications we use bootstrap estimates of variance. From Section 6.16 we
know that the plug-in estimator of V θ is V̂ θ = Ĝ

′
V̂ Ĝ where Ĝ = G (µ̂) and V̂ = 1

n

∑n
i=1 (h (yi)− µ̂) (h (yi)− µ̂)′.

The bootstrap version is

V̂
∗
θ = Ĝ

∗′
V̂
∗
Ĝ
∗

Ĝ
∗

= G (µ̂∗)

V̂
∗

=
1

n

n∑
i=1

(h (y∗i )− µ̂∗) (h (y∗i )− µ̂∗)
′ .

Application of the bootstrap WLLN and bootstrap CMT show that V̂
∗
θ is consistent for V θ.

Theorem 10.12 Under the assumptions of Theorem 10.11, V̂
∗
θ

p∗−→ V θ

as n→∞.

For a proof, see Exercise 10.10.

10.15 Consistency of the Bootstrap Estimate of Variance

Recall the definition (10.7) of the bootstrap estimator of variance V̂
boot

θ̂ of an estimator θ̂. In

this section we explore conditions under which V̂
boot

θ̂ is consistent for the asymptotic variance of
θ̂.

To do so, it is useful to focus on a normalized version of the estimator so that the asymptotic
variance is not degenerate. Suppose that for some sequence an we have

zn = an

(
θ̂ − θ

)
d−→ ξ (10.15)

and
z∗n = an

(
θ̂
∗ − θ̂

)
d∗−→ ξ (10.16)

for some limit distribution ξ. That is, for some normalization, both θ̂ and θ̂
∗
have the same

asymptotic distribution. This is quite general as it includes the smooth function model. The
conventional bootstrap estimator of the variance of zn is the sample variance of the bootstrap draws
{z∗n(b) : b = 1, ..., B}. This equals the estimator (10.7) multiplied by a2

n. Thus it is equivalent (up
to scale) whether we discuss estimating the variance of θ̂ or zn.

The bootstrap estimator of variance of zn is

V̂
boot,B

θ =
1

B − 1

B∑
b=1

(z∗n(b)− z∗n) (z∗n(b)− z∗n)′

z∗n =
1

B

B∑
b=1

z∗n(b).

Notice that we index the estimator by the number of bootstrap replications B.
Since z∗n converges in bootstrap distribution to the same asymptotic distribution as zn, it seems

reasonable to guess that the variance of z∗n will converge to that of ξ. However, we learned in
Section 6.19 that convergence in distribution is not suffi cient for convergence in moments. For the
variance to converge it is also necessary for the sequence z∗n to be uniformly square integrable.
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Theorem 10.13 If (10.15) and (10.16) hold for some sequence an, and
‖z∗n‖

2 is uniformly integrable, then as B →∞

V̂
boot,B

θ
p∗−→ V̂

boot

θ = var (z∗n) ,

and as n→∞
V̂

boot

θ
p∗−→ V θ = var (ξ) .

This raises the question: Is the normalized sequence zn uniformly integrable? We spend the
remainder of this section exploring this question, and then turn in the next section to trimmed
variance estimators which do not require uniform integrability.

This condition is reasonably straightforward to verify for the case of a scalar sample mean
with a finite variance. That is, suppose z∗n =

√
n (y∗ − y) and assume E

(
y2
)
< ∞. In (10.14) we

calculated the exact fourth central moment of z∗n:

E∗ (z∗n)4 =
κ̂4

n
+ 3σ̂4 =

µ̂4 − 3σ̂4

n
+ 3σ̂4

where σ̂2 = n−1
∑n

i=1 (yi − y)2 and µ̂4 = n−1
∑n

i=1 (yi − y)4. The assumption E
(
y2
)
< ∞ implies

that E
(
σ̂2
)

= O(1) so σ̂2 = Op(1). Furthermore, n−1µ̂4 = n−2
∑n

i=1 (yi − y)4 = op(1) by the
Marcinkiewicz WLLN (Theorem 6.37). It follows that

E∗ (z∗n)4 = n2E∗ (y∗ − y)4 = Op(1). (10.17)

Theorem 6.29 shows that this implies that z∗2n is uniformly integrable. Thus if yi has a finite
variance, the normalized bootstrap sample mean is uniformly square integrable, and the bootstrap
estimate of variance is consistent by Theorem 10.13.

Now consider the smooth function model of Theorem 10.11. We can establish the following
result.

Theorem 10.14 In the smooth function model of Theorem 10.11, if for
some p ≥ 1 the pth-order derivatives of g(u) are bounded, then z∗n =
√
n
(
θ̂
∗ − θ̂

)
is uniformly square integrable and the bootstrap estimator of

variance is consistent as in Theorem 10.13.

For a proof see Section 10.33.
This shows that the bootstrap estimate of variance is consistent for a reasonably broad class of

estimators. The class of functions g(u) covered by this result includes all pth-order polynomials.

10.16 Trimmed Estimator of Bootstrap Variance

Theorem 10.14 showed that the bootstrap estimate of variance is consistent for smooth functions
with a bounded pth order derivative. This is a fairly broad class, but excludes many important
applications. As a leading example, consider θ = µ1/µ2 where µ1 = E (y1) and µ2 = E (y2). This
function does not have a bounded derivative (unless µ2 is bounded away from zero) so is not covered
by Theorem 10.14.

This is more than a technical issue. When (y1i, y2i) are jointly normally distributed, then it is
known that the estimator θ̂ = y1/y2 does not possess a finite variance. Consequently we cannot
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expect the bootstrap estimator of variance to perform well. (It is attempting to estimate the
variance of θ̂, which is infinity.)

In these cases it is preferred to use a trimmed estimator of bootstrap variance. Let τn →∞ be
a sequence of positive trimming numbers satisfying τn = O

(
en/8

)
. Define the trimmed statistic

z∗∗n = z∗n1 (‖z∗n‖ ≤ τn) .

The trimmed bootstrap estimator of variance is

V̂
boot,B,τ

θ =
1

B − 1

B∑
b=1

(z∗∗n (b)− z∗∗n ) (z∗∗n (b)− z∗∗n )′

z∗∗n =
1

B

B∑
b=1

z∗∗n (b).

We first examine the behavior of V̂
boot,B

θ as the number of bootstrap replications B grows to
infinity. It is a sample variance of independent bounded random vectors. Thus by the bootstrap

WLLN (Theorem 10.6) V̂
boot,B,τ

β converges in bootstrap probability to the variance of z∗∗n .

Theorem 10.15 As B →∞, V̂ boot,B,τ

θ
p∗−→ V̂

boot,τ

θ = var (z∗∗n ) .

We next examine the behavior of the bootstrap estimator V̂
boot,τ

θ as n grows to infinity. We focus

on the smooth function model of Theorem 10.11, which showed that z∗n =
√
n
(
θ̂
∗ − θ̂

)
d∗−→ Z ∼

N (0,V θ). Since the trimming is asymptotically negligible, it follows that z∗∗n
d∗−→ Z. If we can show

that z∗∗n is uniformly square integrable, Theorem 10.13 will show that var (z∗∗n ) −→ var (Z) = V θ

as n→∞. This is shown in the following result, whose proof is presented in Section 10.33.

Theorem 10.16 Under the assumptions of Theorem 10.11, V̂
boot,τ

θ
p∗−→

V θ.

Theorems 10.15 and 10.16 show that the trimmed bootstrap estimator of variance is consis-
tent for the asymptotic variance in the smooth function model, which includes most econometric
estimators. This justifies bootstrap standard errors as consistent estimators for the asymptotic
distribution.

An important caveat is that these results critically rely on the use of the trimmed variance
estimator rather than the standard untrimmed version. This is a critical caveat as conventional
statistical packages (e.g. Stata) calculate bootstrap standard errors using the untrimmed estimator
(10.7). Thus there is no guarantee that the reported standard errors are consistent. The untrimmed
variance estimator works in the context of Theorem 10.14 and whenever the bootstrap statistic is
uniformly square integrable, but not necessarily in general applications.

In practice, it may be diffi cult to know how to select the trimming sequence τn. The rule
τn = O

(
en/8

)
does not provide practical guidance. Instead, it may be useful to think about

trimming in terms of percentages of the bootstrap draws. Thus we can set τn so that a given small
percentage γn is trimmed. For theoretical interpretation we would set γn → 0 as n → ∞. In
practice we might set γn = 1%.
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10.17 Unreliability of Untrimmed Bootstrap Standard Errors

In the previous section we presented a trimmed bootstrap variance estimator which should
be used to form bootstrap standard errors for nonlinear estimators. Otherwise, the standard
untrimmed estimator is potentially unreliable.

This is an unfortunate situation, because reporting of bootstrap standard errors is very common-
place in contemporary applied econometric practice, and standard applications (including Stata)
use the untrimmed estimator.

To illustrate the seriousness of the problem, we use the simple wage regression (7.31) which
we repeat here. This is the subsample of married black women with 982 observations. The point
estimates and standard errors are

̂log(Wage) = 0.118
(0.008)

education+ 0.016
(0.006)

experience− 0.022
(0.012)

experience2/100 + 0.947
(0.157)

.

We are interested in the experience level which maximizes expected log wages θ3 = −50β2/β3. The
point estimate and standard errors calculated with different methods are reported in Table 10.3.3
below.

The point estimate of the experience level with maximum earnings is θ̂3 = 35. The asymptotic
and jackknife standard errors are about 7. The bootstrap standard error, however, is 825! Confused
by this unusual value we rerun the bootstrap again and obtain a standard error of 544. Both were
computed with 10,000 bootstrap replications. The fact that the two bootstrap standard errors
are considerably different when recomputed (with different starting seeds) is indicative of moment
failure. When there is an enormous discrepancy like this between the asymptotic and bootstrap
standard error, and between bootstrap runs, it is a signal that there may be moment failure and
consequently bootstrap standard errors are unreliable.

A trimmed bootstrap with τ = 25 (set to slightly exceed three asymptotic standard errors)
produces a more reasonable standard error of 10.

One message from this application is that when different methods produce very different stan-
dard errors we should be cautious about trusting any single method. The large discrepancies indi-
cate poor asymptotic approximations, rendering all methods inaccurate. Another message is to be
cautious about reporting conventional bootstrap standard errors. Trimmed versions are preferred,
especially for nonlinear functions of estimated coeffi cients.

Table 10.3: Experience Level Which Maximizes Expected log Wages

Estimate 35.2
Asymptotic s.e. (7.0)
Jackknife s.e. (7.0)
Bootstrap s.e. (standard) (825)
Bootstrap s.e. (repeat) (544)
Bootstrap s.e. (trimmed) (10.1)

10.18 Consistency of the Percentile Interval

Recall the percentile interval (10.8). We now provide conditions under which it has asymptoti-
cally correct coverage.
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Theorem 10.17 Assume that for some sequence an

an

(
θ̂ − θ

)
d−→ ξ (10.18)

and
an

(
θ̂∗ − θ̂

)
d∗−→ ξ (10.19)

where ξ is continuously distributed and symmetric about zero. Then

P (θ ∈ Cpc) −→ 1− α

as n→∞.

The assumptions (10.18)-(10.19) hold for the smooth function model of Theorem 10.11, so this
result incorporates many applications. The beauty of Theorem 10.17 is that the very simple con-
fidence interval Cpc —which does not require technical calculation of asymptotic standard errors
—has asymptotically valid coverage for any estimator which falls in the smooth function class, as
well as any other estimator satisfying the convergence results (10.18)-(10.19) with ξ symmetrically
distributed. The conditions are weaker than those required for consistent bootstrap variance esti-
mation (and normal-approximation confidence intervals) because it is not necessary to verify that
θ̂∗ is uniformly integrable, nor necessary to employ trimming.

The proof of Theorem 10.11 is not diffi cult. The convergence assumption (10.19) implies that the

αth quantile of an
(
θ̂∗ − θ̂

)
, which is an

(
q∗α − θ̂

)
by quantile equivariance, converges in probability

to the αth quantile of ξ, which we can denote as qα. Thus

an

(
q∗α − θ̂

)
p−→ qα. (10.20)

Let H(x) = P (ξ ≤ x) be the distribution function of ξ. The assumption of symmetry implies
H(−x) = 1−H(x). Then the percentile interval has coverage

P (θ ∈ Cpc) = P
(
q∗α/2 ≤ θ ≤ q

∗
1−α/2

)
= P

(
−an

(
q∗α/2 − θ̂

)
≥ an

(
θ̂ − θ

)
≥ −an

(
q∗1−α/2 − θ̂

))
−→ P

(
−qα/2 ≥ ξ ≥ −q1−α/2

)
= H

(
−qα/2

)
−H

(
−q1−α/2

)
= H

(
q1−α/2

)
−H

(
qα/2

)
= 1− α.

The convergence holds by (10.18) and (10.20). The following equality uses the definition of H, the
next-to-last is the symmetry of H, and the final equality is the definition of qα. This establishes
Theorem 10.17.

Theorem 10.17 seems quite general, but it critically rests on the assumption that the asymptotic
distribution ξ is symmetrically distributed about zero. This may seem innocuous, since conventional
asymptotic distributions are normal and hence symmetric, but it bears further scrutiny. It is not
merely a technical assumption —an examination of the steps in the preceeding argument isolate
quite clearly that if the symmetry assumption is violated, then the asymptotic coverage will not
be 1− α. While Theorem 10.17 does show that the percentile interval is asymptotically valid for a
conventional asymptotically normal estimator, the reliance on symmetry in the argument suggests
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that the percentile method will work poorly when the finite sample distribution is asymmetric.
This turns out to be the case, and will lead us to consider alternative methods in the following
sections.

It is also worthwhile to investigate a finite sample justification for the percentile interval, based
on a heuristic analogy due to Efron.

Assume that there exists an unknown but strictly increasing transformation ψ(θ) such that
ψ(θ̂)−ψ(θ) has a pivotal distribution H(u) (does not vary with θ) which is symmetric about zero.
For example, if θ̂ ∼ N(θ, σ2) we can set ψ(θ) = θ/σ. Alternatively, if θ̂ = exp (µ̂) and µ̂ ∼ N(µ, σ2)
then we can set ψ(θ) = log(θ)/σ.

To assess the coverage of the percentile interval, observe that since the distribution H is pivotal
the bootstrap distribution ψ(θ̂∗)−ψ(θ̂) also has distribution H(u). Let qα be the α

th quantile of the
distribution H. Since q∗α is the α

th quantile of the distribution of θ̂∗, and ψ(θ̂∗)−ψ(θ̂) is a monotonic
transformation of θ̂∗, by the quantile equivariance property we deduce that qα+ψ(θ̂) = ψ(q∗α). The
percentile interval has coverage

P (θ ∈ Cpc) = P
(
q∗α/2 ≤ θ ≤ q

∗
1−α/2

)
= P

(
ψ(q∗α/2) ≤ ψ (θ) ≤ ψ(q∗1−α/2)

)
= P

(
ψ(θ̂)− ψ(q∗α/2) ≥ ψ(θ̂)− ψ (θ) ≥ ψ

(
θ̂
)
− ψ(q∗1−α/2)

)
= P

(
−qα/2 ≥ ψ(θ̂)− ψ (θ) ≥ −q1−α/2

)
= H

(
−qα/2

)
−H

(
−q1−α/2

)
= H

(
q1−α/2

)
−H

(
qα/2

)
= 1− α.

The second equality applies the monotonic transformation ψ(u) to all elements. The fourth uses
the relationship qα+ψ(θ̂) = ψ(q∗α). The fifth uses the defintion of H. The sixth uses the symmetry
property of H, and the final is by the definition of qα as the α

th quantile of H.
This calculation shows that under these assumptions the percentile interval has exact coverage

1−α. The nice thing about this argument is the introduction of the unknown transformation ψ(u)
for which the percentile interval automatically adapts. The unpleasant feature is the assumption
of symmetry. Similar to the asymptotic argument, the calculation strongly relies on the symmetry
of the distribution H(x). Without symmetry the coverage will be incorrect.

Intuitively, we expect that when the assumptions are approximately true, then the percentile
interval will have approximately correct coverage. Thus so long as there is a transformation ψ(u)
such that ψ(θ̂) − ψ(θ) is approximately pivotal and symmetric about zero, then the percentile
interval should work well.

This argument has the following application. Suppose that the parameter of interest is θ =
exp(µ) where µ = E (y) and suppose y has a pivotal symmetric distribution about µ. Then even
though θ̂ = exp(y) does not have a symmetric distribution, the percentile interval applied to θ̂ will

have the correct coverage, because the monotonic transformation log
(
θ̂
)
has a pivotal symmetric

distribution.

10.19 Bias-Corrected Percentile Interval

The accuracy of the percentile interval depends critically upon the assumption that the sampling
distribution is approximately symmetrically distributed. This excludes finite sample bias, for an
estimator which is biased cannot be symmetrically distributed. Many contexts in which we want to
apply bootstrap methods (rather than asymptotic) are when the parameter of interest is a nonlinear
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function of the original estimates, and nonlinearity typically induces estimation bias. Consequently
it is diffi cult to expect the percentile method to generally have accurate coverage.

To remove the bias problem, Efron (1982) introduced the bias-corrected (BC) percentile
interval. The justification is heuristic, but there is considerable evidence that the bias-corrected
method is an important improvement on the percentile interval.

The construction is based on the assumption is that there is a an unknown but strictly increasing
transformation ψ(θ) and unknown constant z0 such that

Z = ψ(θ̂)− ψ(θ) + z0 ∼ N(0, 1). (10.21)

(The assumption that Z is normal is not critical. It could be replaced by any known symmetric
and invertible distribution.) Let Φ(x) denote the normal distribution function, Φ−1(p) its quantile
function, and zα = Φ−1(α) the normal critical values. Then the BC interval can be constructed
from the bootstrap estimators θ̂∗b and bootstrap quantiles q

∗
α as follows. Set

p∗ =
1

B

B∑
b=1

1
(
θ̂∗b ≤ θ̂

)
(10.22)

and
z∗0 = Φ−1(p∗). (10.23)

p∗ is a measure of median bias, and z0 is p∗ transformed into normal units. If the bias of θ̂ is zero
then p∗ = 0.5 and z∗0 = 0. If θ̂ is upwards biased then p∗ < 0.5 and z∗0 < 0. Conversely if θ̂ is
dowward biased then p∗ > 0.5 and z∗0 > 0. Define for any α an adjusted version

x(α) = Φ(zα + 2z0). (10.24)

If z0 = 0 then x(α) = α. If z0 > 0 then x(α) > α, and conversely when x(α) < 0. The BC
percentile interval is

Cbc =
[
q∗x(α/2), q∗x(1−α/2)

]
. (10.25)

Essentially, rather than going from the 2.5% to 97.5% quantile, the BC interval uses adjusted
quantiles, with the degree of adjustment depending on the extent of the bias.

The construction of the BC interval is not intuitive. We now show that assumption (10.21)
implies that the BC interval has exact coverage. (10.21) implies that

P
(
ψ(θ̂)− ψ(θ) + z0 ≤ x

)
= Φ(x).

Since the distribution is pivotal the result carries over to the bootstrap distribution

P∗
(
ψ(θ̂∗)− ψ(θ̂) + z0 ≤ x

)
= Φ(x). (10.26)

Evaluating (10.26) at x = z0 we find P∗
(
ψ(θ̂∗)− ψ(θ̂) ≤ 0

)
= Φ(z0) which implies P∗

(
θ̂∗ ≤ θ̂

)
=

Φ(z0). Inverting, we obtain

z0 = Φ−1
(
P∗
(
θ̂∗ ≤ θ̂

))
(10.27)

which is the probability limit of (10.23) as B → ∞. Thus the unknown z0 is recoved by (10.23),
and we can treat z0 as if it were known.

From (10.26) we deduce that

x(α) = Φ(zα + 2z0)

= P∗
(
ψ(θ̂∗)− ψ(θ̂) ≤ zα + z0)

)
= P∗

(
θ̂∗ ≤ ψ−1

(
ψ(θ̂) + z0 + zα

))
.
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This equation shows that ψ−1
(
ψ(θ̂) + z0 + zα

)
equals the x(α)th bootstrap quantile. That is,

q∗x(α) = ψ−1
(
ψ(θ̂) + z0 + zα

)
. Hence we can write (10.25) as

Cbc =
[
ψ−1

(
ψ(θ̂) + z0 + zα/2

)
, ψ−1

(
ψ(θ̂) + z0 + z1−α/2

)]
.

It has coverage probability

P
(
θ ∈ Cbc

)
= P

(
ψ−1

(
ψ(θ̂) + z0 + zα/2

)
≤ θ ≤ ψ−1

(
ψ(θ̂) + z0 + z1−α/2

))
= P

(
ψ(θ̂) + z0 + zα/2 ≤ ψ(θ) ≤ ψ(θ̂) + z0 + z1−α/2

)
= P

(
−zα/2 ≥ ψ(θ̂)− ψ(θ) + z0 ≥ −z1−α/2

)
= P

(
z1−α/2 ≥ Z ≥ zα/2

)
= Φ

(
z1−α/2

)
− Φ

(
zα/2

)
= 1− α.

The second equality applies the transformation ψ(θ). The fourth equality uses the model (10.21)
and the fact zα = −z1−α. This shows that the BC interval (10.25) has exact coverage under the
assumption (10.21).

Furthermore, under the assumptions of Theorem 10.17, the BC interval has asymptotic coverage
probability 1− α, since the bias correction is asymptotically negligible.

An important property of the BC percentile interval is that it is transformation-respecting
(like the percentile interval). To see this, observe that p∗ is invariant to transformations since it
is a probability, and thus z∗0 and x(α) are invariant. Since the interval is constructed from the
x(α/2) and x(1 − α/2) quantiles, the quantile equivariance property shows that the interval is
transformation-respecting.

The bootstrap BC percentile intervals for the four estimators are reported in Table 13.2. They
are generally similar to the percentile intervals, though the intervals for σ2 and µ are somewhat
shifted to the right.

In Stata, BC percentile confidence intervals can be obtained by using the command estat
bootstrap after an estimation command which calculates standard errors via the bootstrap.

10.20 BCa Percentile Interval

A further improvement on the BC interval was made by Efron (1987) to account for the skewness
in the sampling distribution, which can be modeled by specifying that the variance of the estimator
depends on the parameter. The resulting bootstrap accelerated bias-corrected percentile
interval (BCa) has improved performance on the BC interval, but requires a bit more computation
and is less intuitive to understand.

The construction is a generalization of that for the BC intervals. The assumption is that there
is an unknown but strictly increasing transformation ψ(θ), and unknown constants a and z0 such
that

Z =
ψ(θ̂)− ψ(θ)

1 + aψ(θ)
+ z0 ∼ N(0, 1). (10.28)

(As before, the assumption that Z is normal could be replaced by any known symmetric and
invertible distribution.)

The constant z0 is estimated by (10.23) just as for the BC interval. There are several possible
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estimators of a. Efron’s suggestion is a scaled jackknife estimator of the skewness of θ̂:

â =

∑n
i=1

(
θ − θ̂(−i)

)3

6

(∑n
i=1

(
θ − θ̂(−i)

)2
)3/2

θ =
1

n

n∑
i=1

θ̂(−i).

The jackknife estimator of â makes the BCa interval more computationally costly than the other
intervals.

Define for any α the adjusted version

x(α) = Φ

(
z0 +

zα + z0

1− a (zα + z0)

)
.

The BCa percentile interval is

Cbca =
[
q∗x(α/2), q∗x(1−α/2)

]
.

Note that x(α) simplifies to (10.24) and Cbca simplies to Cbc when a = 0. While Cbc improves on
Cpc by correcting the median bias, Cbca makes a further correction for skewness.

The BCa interval is only well-defined for values of α such that a (zα + z0) < 1. (Or equivalently,
if α < Φ

(
a−1 − z0

)
for a > 0 and α > Φ

(
a−1 − z0

)
for a < 0.)

The BCa interval, like the BC and percentile intervals, is transformation-respecting. Thus if[
q∗x(α/2), q∗x(1−α/2)

]
is the BCa interval for θ, then

[
m
(
q∗x(α/2)

)
, m

(
q∗x(1−α/2)

)]
is the BCα

interval for φ = m(θ) when m(θ) is monotone.
We now give a justification for the BCa interval. The most diffi cult feature to understand is

the estimator â for a. This involves higher-order approximations which are too advanced for our
treatment, so we instead refer readers to Chapter 4.1.4 of Shao and Tu (1995), and simply assume
that a is known.

We now show that assumption (10.28) with a known implies that Cbca has exact coverage. The
argument is essentially the same as that given in the previous section. Assumption (10.28) implies
that the bootstrap distribution satisfies

P∗
(
ψ(θ̂∗)− ψ(θ̂)

1 + aψ(θ̂)
+ z0 ≤ x

)
= Φ(x). (10.29)

Evaluating at x = z0 and inverting we obtain (10.27) which is the same as for the BC interval.
Thus the estimator (10.23) is consistent as B →∞, and we can treat z0 as if it were known.

From (10.29) we deduce that

x(α) = P∗
(
ψ(θ̂∗)− ψ(θ̂)

1 + aψ(θ̂)
≤ zα + z0

1− a (zα + z0)

)

= P∗
(
θ̂∗ ≤ ψ−1

(
ψ(θ̂) + zα + z0

1− a (zα + z0)

))
.

This shows that ψ−1
(
ψ(θ̂)+zα+z0
1−a(zα+z0)

)
equals the x(α)th bootstrap quantile. Hence we can write Cbca

as

Cbca =

[
ψ−1

(
ψ(θ̂) + zα/2 + z0

1− a
(
zα/2 + z0

)) , ψ−1

(
ψ(θ̂) + z1−α/2 + z0

1− a
(
z1−α/2 + z0

))] .



CHAPTER 10. RESAMPLING METHODS 352

It has coverage probability

P
(
θ ∈ Cbca

)
= P

(
ψ−1

(
ψ(θ̂) + zα/2 + z0

1− a
(
zα/2 + z0

)) ≤ θ ≤ ψ−1

(
ψ(θ̂) + z1−α/2 + z0

1− a
(
z1−α/2 + z0

)))

= P

(
ψ(θ̂) + zα/2 + z0

1− a
(
zα/2 + z0

) ≤ ψ(θ) ≤
ψ(θ̂) + z1−α/2 + z0

1− a
(
z1−α/2 + z0

))

= P

(
−zα/2 ≥

ψ(θ̂)− ψ(θ)

1 + aψ(θ)
+ z0 ≥ −z1−α/2

)
=P
(
z1−α/2 ≥ Z ≥ zα/2

)
= 1− α.

The second equality applies the transformation ψ(θ). The fourth equality uses the model (10.28)
and the fact zα = −z1−α. This shows that the BCa interval Cbca has exact coverage under the
assumption (10.28) with a known.

The bootstrap BCa percentile intervals for the four estimators are reported in Table 13.2. They
are generally similar to the BC intervals, though the intervals for σ2 and µ are slightly shifted to
the right.

In Stata, BCa intervals can be obtained by using the command estat bootstrap, bca or the
command estat bootstrap, all after an estimation command which calculates standard errors
via the bootstrap using the bca option.

10.21 Percentile-t Interval

In many cases we can obtain improvement in accuracy by bootstrapping a studentized statistic
such as a t-ratio. Let θ̂ be an estimator of a scalar parameter θ and s(θ̂) a standard error. The
sample t-ratio is

T =
θ̂ − θ
s(θ̂)

.

The bootstrap t-ratio is

T ∗ =
θ̂∗ − θ̂
s(θ̂∗)

where s(θ̂∗) is the standard error calculated on the bootstrap sample. Notice that the bootstrap t-
ratio is centered at the parameter estimate θ̂. This is because θ̂ is the “true value”in the bootstrap
universe.

The percentile-t interval is formed using the distribution of T ∗. This can be calculated via the
bootstrap algorithm. On each bootstrap sample the estimator θ̂∗ and its standard error s(θ̂∗) are

calculated, and the t-ratio T ∗ =
(
θ̂∗ − θ̂

)
/s(θ̂∗) calculated and stored. This is repeated B times.

The αth quantile q∗α is estimated by the α
th empirical quantile (or any quantile estimator) from the

B bootstrap draws of T ∗.
The bootstrap percentile-t confidence interval is then defined as

Cpt =
[
θ̂ − s(θ̂)q∗1−α/2, θ̂ − s(θ̂)q∗α/2

]
.

The form may appear unusual when compared with the percentile-type intervals. The left endpoint
is determined by the upper quantile of the distribution of T ∗, and the right endpoint is determined
by the lower quantile. As we show below, this construction is important for the interval to have
correct coverage when the distribution is not symmetric.
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When the estimator is asymptotically normal and the standard error a reliable estimator of the
standard deviation of the distribution, we would expect the t-ratio T to be roughly approximated
by the normal distribution. In this case we would expect q∗0.975 ≈ −q∗0.025 ≈ 2. Departures from this
baseline occur as the distribution becomes skewed or fat-tailed. If the bootstrap quantiles depart
substantially from this baseline it is evidence of substantial departure from normality. (It may also
indicate a programming error, so in these cases it is wise to triple-check!)

The percentile-t has the following advantages. First, when the standard error s(θ̂) is reasonably
reliable, the percentile-t bootstrap makes use of the information in the standard error, thereby
reducing the role of the bootstrap. This can improve the precision of the method relative to other
methods. Second, as we show later, the percentile-t intervals achieve higher-order accuracy than
the percentile and BC percentile intervals. Third, the percentile-t intervals correspond to the set
of parameter values “not rejected”by one-sided t-tests using bootstrap critical values (bootstrap
tests are presented in Section 10.23).

The percentile-t interval has the following disadvantages. First, they may be infeasible when
standard error formula are unknown. Second, they may be practically infeasible when standard
error calculations are computationally costly (since the standard error calculation needs to be
performed on each bootstrap sample). Third, the percentile-t may be unreliable if the standard
errors s(θ̂) are unreliable and thus add more noise than clarity. Fourth, the percentile-t interval is
not translation preserving, unlike the percentile, BC percentile, and BCa percentile intervals.

It is typical to calculate percentile-t interval with t-ratios constructed with conventional asymp-
totic standard errors. But this is not the only possible implementation. The percentile-t interval
can be constructed with any data-dependent measure of scale. For example, if θ̂ is a two-step es-
timator for which it is unclear how to construct a correct asymptotic standard error, but we know
how to calculate a standard error s(θ̂) appropriate for the second step alone, then s(θ̂) can be used
for a percentile-t-type interval as described above. It will not possess the higher-order accuracy
properties of the following section, but it will satisfy the conditions for first-order validity.

Furthermore, percentile-t intervals can be constructed using bootstrap standard errors. That
is, the statistics T and T ∗ can be computed using bootstrap standard errors sboot

θ̂
. This is com-

putationally costly, as it requires is called a nested bootstrap. Specifically, for each bootstrap
replication, a random sample is drawn, the bootstrap estimate θ̂∗ computed, and then B additional
bootstrap sub-samples drawn from the bootstrap sample to compute the bootstrap standard error
for the bootstrap estimate θ̂∗. Effectively B2 bootstrap samples are drawn and estimated, which
increases the computational requirement by an order of magnitude.

We now describe the distribution theory for first-order validity of the percentile-t bootstrap.

First, consider the smooth function model, where θ̂ = g (µ̂) and s(θ̂) =

√
1
nĜ
′
V̂ Ĝ with boot-

strap analogs θ̂∗ = g (µ̂∗) and s(θ̂∗) =

√
1
nĜ
∗′
V̂
∗
Ĝ
∗
. From Theorems 6.24, 6.25, 10.11 and 10.12

T =

√
n
(
θ̂ − θ

)
√
Ĝ
′
V̂ Ĝ

d−→ Z

and

T ∗ =

√
n
(
θ̂∗ − θ̂

)
√
Ĝ
∗′
V̂
∗
Ĝ
∗

d∗−→ Z

where Z ∼ N(0, 1). This shows that the sample and bootstrap t-ratios have the same asymptotic
distribution.

This motivates considering the broader situation where the sample and bootstrap t-ratios have
the same asymptotic distribution, but not necessarily normal. Thus assume that

T
d−→ ξ (10.30)
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T ∗
d∗−→ ξ (10.31)

for some continuous distribution ξ. (10.31) implies that the quantiles of T ∗ converge in probability
to those of ξ, that is q∗α

p−→ qα where qα is the αth quantile of ξ. This and (10.30) imply

P
(
θ ∈ Cpt

)
= P

(
θ̂ − s(θ̂)q∗1−α/2 ≤ θ ≤ θ̂ − s(θ̂)q

∗
α/2

)
= P

(
q∗α/2 ≤ T ≤ q

∗
1−α/2

)
−→ P

(
qα/2 ≤ ξ ≤ q1−α/2

)
= 1− α.

Thus the percentile-t is asymptotically valid.

Theorem 10.18 If (10.30) and (10.31) hold where ξ is continuously dis-
tributed, then

P
(
θ ∈ Cpt

)
−→ 1− α

as n→∞.

The bootstrap percentile-t intervals for the four estimators are reported in Table 13.2. They are
similar but somewhat different from the percentile-type intervals, and generally wider. The largest
difference arises with the interval for σ2, which is noticably wider than the other intervals.

10.22 Percentile-t Asymptotic Refinement

The percentile-t interval can be viewed as the intersection of two one-sided confidence intervals.
In our discussion of Edgeworth expansions for the coverage probability of one-sided asymptotic
confidence intervals (following Theorem 7.15 in the context of functions of regression coeffi cients)
we found that one-sided asymptotic confidence intervals have accuracy to order O

(
n−1/2

)
. We now

show that the percentile-t interval has improved accuracy.
Theorems 6.33 and 6.35 showed that the Cornish-Fisher expansion for the quantile qα of a

t-ratio T in the smooth function model takes the form

qα = zα + n−1/2p11(zα) +O
(
n−1

)
where p11 (x) is an even polynomial of order 2 with coeffi cients depending on the moments of h(y)
up to order 8. The bootstrap quantile q∗α has a similar Cornish-Fisher expansion

q∗α = zα + n−1/2p∗11(zα) +Op
(
n−1

)
where p∗11 (x) is the same as p11(x) except that the moments of h(y) are replaced by the corre-
sponding sample moments. Sample moments are estimated at the rate n−1/2. Thus we can replace
p∗11 with p11 without affecting the order of this expansion:

q∗α = zα + n−1/2p11(zα) +Op
(
n−1

)
= qα +Op

(
n−1

)
.

This shows that the bootstrap quantiles q∗α of the studentized t-ratio are within Op
(
n−1

)
of the

exact quantiles qα.
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By the Edgeworth expansion Delta method (Theorem 6.34), T and T+(qα−q∗α) = T+Op
(
n−1

)
have the same Edgeworth expansion to order O(n−1). Thus

P (T ≤ q∗α) = P (T + (qα − q∗α) ≤ qα)

= P (T ≤ qα) +O(n−1)

= α+O(n−1).

Thus the coverage of the percentile-t interval is

P
(
θ ∈ Cpt

)
= P

(
q∗α/2 ≤ T ≤ q

∗
1−α/2

)
= P

(
qα/2 ≤ T ≤ q1−α/2

)
+O(n−1)

= 1− α+O(n−1).

This is an improved rate of convergence relative to the one-sided asymptotic confidence interval.

Theorem 10.19 Under the assumptions of Theorem 6.33,

P
(
θ ∈ Cpt

)
= 1− α+O(n−1).

The following definition of the accuracy of a confidence interval is useful.

Definition 10.5 A confidence set C for θ is kth-order accurate if

P (θ ∈ C) = 1− α+O
(
n−k/2

)
.

Examining our results, we find that one-sided asymptotic confidence intervals are first-order
accurate, but percentile-t intervals are second-order accurate. When a bootstrap confidence interval
(or test) achieves high-order accuracy than the analogous asymptotic interval (or test), we say
that the bootstrap method achieves an asymptotic refinement. Here, we have shown that the
percentile-t interval achieves an asymptotic refinement.

In order to achieve this asymptotic refinement, it is important that the t-ratio T (and its boot-
strap counter-part T ∗) are constructed with asymptotically valid standard errors. This is because
the first term in the Edgeworth expansion is the standard normal distribution, and this requires
that the t-ratio is asymptotically normal. This also has the practical finite-sample implication that
the accuracy of the percentile-t interval in practice depends on the accuracy of the standard errors
used to construct the t-ratio.

We do not go through the details, but normal-approximation bootstrap intervals, percentile
bootstrap intervals, and bias-corrected percentile bootstrap intervals are all first-order accurate,
and do not achieve an asymptotic refinement.

The BCa interval, however, can be shown to be asymptotically equivalent to the percentile-t
interval, and thus achieves an asymptotic refinement. We do not make this demonstration here as
it is too advanced. For a demonstration see Section 3.10.4 of Hall (1992).
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Peter Hall

Peter Gavin Hall (1951-2016) of Australia was one of the most influential
and prolific theoretical statisticians in history. He made wide-ranging con-
tributions. Some of the most relevant for econometrics are theoretical inves-
tigations of bootstrap methods and nonparametric kernel methods.

10.23 Bootstrap Hypothesis Tests

To test the hypothesis H0 : θ = θ0 against H1 : θ 6= θ0 the most common approach is a t-test.
We reject H0 in favor of H1 for large absolute values of the t-statistic

T =
θ̂ − θ0

s(θ̂)
,

where θ̂ is an estimator of θ and s(θ̂) is a standard error for θ̂. For a bootstrap test we use the
bootstrap algorithm to calculate the critical value.

The bootstrap algorithm samples with replacement from the dataset. Given a bootstrap sample
the bootstrap estimator θ̂∗ and standard error s(θ̂∗) are calculated. Given these values the bootstrap
t-statistic is

T ∗ =
θ̂∗ − θ̂
s(θ̂∗)

.

There are two important features about the bootstrap t-statistic. First, T ∗ is centered at the
sample estimate θ̂, not at the hypothesized value θ0. This is done because θ̂ is the true value in
the bootstrap universe, and the distribution of the t-statistic must be centered at the true value
within the bootstrap sampling framework. Second, T ∗ is calculated using the bootstrap standard
error s(θ̂∗). This allows the bootstrap to incorporate the randomness in standard error estimation.

The failure to properly center the bootstrap statistic at θ̂ is a common error in applications.
Often this is because the hypothesis to be tested is H0 : θ = 0, so the test statistic is T = θ̂/s(θ̂).
This intuitively suggests the bootstrap statistic T ∗ = θ̂∗/s(θ̂∗), but this is wrong. The correct

bootstrap statistic is T ∗ =
(
θ̂∗ − θ̂

)
/s(θ̂∗).

The bootstrap algorithm creates B draws T ∗(b) =
(
θ̂∗(b)− θ̂

)
/s(θ̂∗(b)), b = 1, ..., B. The

bootstrap 100α% critical value is q∗1−α, where q
∗
α is the α

th quantile of the absolute values of the
bootstrap t-ratios |T ∗(b)|. For a 100α% test we reject H0 : θ = θ0 in favor of H1 : θ 6= θ0 if
|T | > q∗1−α and fail to reject if |T | ≤ q∗1−α.

It is generally better to report p-values rather than critical values. Recall that a p-value is
p = 1−Gn(|T |) where Gn(u) is the null distribution of the statistic |T |. The bootstrap p-value is
defined as p∗ = 1 − G∗n(|T |), where G∗n(u) is the bootstrap distribution of |T ∗|. This is estimated
from the bootstrap algorithm as

p∗ =
1

B

B∑
b=1

1 (|T ∗(b)| > |T |) ,

the percentage of bootstrap t-statistics that are larger than the observed t-statistic. Intuitively,
we want to know how “unusual”is the observed statistic T when the null hypothesis is true. The
bootstrap algorithm generates a large number of independent draws from the distribution T ∗ (which
is an approximation to the unknown distribution of T ). If the percentage of the |T ∗| that exceed |T |
is very small (say 1%) this tells us that |T | is an unusually large value. However, if the percentage
is larger, say 15%, then we cannot interpret |T | as unusually large.
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If desired, the bootstrap test can be implemented as a one-sided test. In this case the statistic
is the signed version of the t-ratio, and bootstrap critical values are calculated from the upper
tail of the distribution for the alternative H1 : θ > θ0, and from the lower tail for the alternative
H1 : θ < θ0. There is a connection between the one-sided tests and the percentile-t confidence
interval. The latter is the set of parameter values θ which are not rejected by either one-sided
100α/2% bootstrap t-test.

Bootstrap tests can also be conducted with other statistics. When standard errors are not
available or are not reliable, we can use the non-studentized statistic T = θ̂ − θ0. The bootstrap

version is T ∗ = θ̂∗− θ̂. Let q∗α be the αth quantile of the bootstrap statistics
∣∣∣θ̂∗(b)− θ̂∣∣∣. A bootstrap

100α% test rejects H0 : θ = θ0 if
∣∣∣θ̂ − θ0

∣∣∣ > q∗1−α. The bootstrap p-value is

p∗ =
1

B

B∑
b=1

1
(∣∣∣θ̂∗(b)− θ̂∣∣∣ > ∣∣∣θ̂ − θ0

∣∣∣) .

Theorem 10.20 If (10.30) and (10.31) hold where ξ is continuously dis-
tributed, then the bootstrap critical value satisfies

q∗1−α
p−→ q1−α

where q1−α is the 1−αth quantile of |ξ|. The bootstrap test “Reject H0 in
favor of H1 if |T | > q∗1−α”has asymptotic size α:

P
(
|T | > q∗1−α|H0

)
−→ α

as n→∞.

In the smooth function model the t-test (with correct standard errors) has the following per-
formance.

Theorem 10.21 Under the assumptions of Theorem 6.33,

q∗1−α = z1−α + op
(
n−1

)
where zα = Φ−1 ((1 + α)/2) is the αth quantile of |Z|. The asymptotic test
“Reject H0 in favor of H1 if |T | > z1−α”has accuracy

P (|T | > z1−α|H0) = 1− α+O
(
n−1

)
and the bootstrap test “Reject H0 in favor of H1 if |T | > q∗1−α”has accuracy

P
(
|T | > q∗1−α|H0

)
= 1− α+ o

(
n−1

)
.

This shows that the bootstrap test achieves a refinement relative to the asymptotic test.
The reasoning is as follows. We have shown that the Edgeworth expansion for the absolute

t-ratio takes the form

P (|T | ≤ x) = 2Φ(x)− 1 + n−12p2(x) + o(n−1).
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This means the asymptotic test has accuracy of order O(n−1).
Given the Edgeworth expansion, the Cornish-Fisher expansion for the αth quantile qα of the

distribution of |T | takes the form

qα = zα + n−1p21(zα) + o
(
n−1

)
.

The bootstrap quantile q∗α has the Cornish-Fisher expansion

q∗α = zα + n−1p∗21(zα) + o
(
n−1

)
= zα + n−1p21(zα) + op

(
n−1

)
= qα + op

(
n−1

)
where p∗21 (x) is the same as p21(x) except that the moments of h(y) are replaced by the correspond-
ing sample moments. The bootstrap test has rejection probability, using the Edgeworth expansion
Delta method (Theorem 6.34)

P
(
|T | > q∗1−α|H0

)
= P

(
|T |+ (q1−α − q∗1−α) > q1−α

)
= P (|T | > q1−α) + o(n−1)

= 1− α+ o(n−1)

as claimed.

10.24 Wald-Type Bootstrap Tests

If θ is a vector, then to test H0 : θ = θ0 against H1 : θ 6= θ0 at size α, a common test is based
on the Wald statistic

W =
(
θ̂ − θ0

)′
V̂
−1

θ̂

(
θ̂ − θ0

)
where θ̂ is an estimator of θ and V̂

θ̂
is a covariance matrix estimator. For a bootstrap test we use

the bootstrap algorithm to calculate the critical value.
The bootstrap algorithm samples with replacement from the dataset. Given a bootstrap sample

the bootstrap estimator θ̂
∗
and covariance matrix estimator V̂

∗
θ̂ are calculated. Given these values

the bootstrap Wald statistic is

W ∗ =
(
θ̂
∗ − θ̂

)′
V̂
∗−1

θ̂

(
θ̂
∗ − θ̂

)
.

As for the t-test, it is essential that the bootstrap Wald statistic W ∗ is centered at the sample
estimator θ̂ instead of the hypothesized value θ0. This is because θ̂ is the true value in the
bootstrap universe.

Based on B bootstrap replications we calculate the αth quantile q∗α of the distribution of the
bootstrap Wald statistics W ∗. The bootstrap test rejects H0 in favor of H1 if W > q∗1−α. More
commonly, we calculate a bootstrap p-value. This is

p∗ =
1

B

B∑
b=1

1 (W ∗(b) > W ) .

The asymptotic performance of the Wald test mimics that of the t-test. In general, the bootstrap
Wald test is first-order correct (achieves the correct size asymptotically), and under conditions for
which an Edgeworth expansion exists, has accuracy

P
(
W > q∗1−α|H0

)
= 1− α+ o(n−1)
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and thus achieves a refinement relative to the asymptotic Wald test.
If a reliable covariance matrix estimator V̂

θ̂
is not available, a Wald-type test can be imple-

mented with any positive-definite weight matrix instead of V̂
θ̂
. This includes simple choices such as

the identity matrix. The bootstrap algorithm can be used to calculate critical values and p-values
for the test. So long as the estimator θ̂ has an asymptotic distribution, this bootstrap test will be
asymptotically first-order valid. The test will not achieve an asymptotic refinement but provides a
simple method to test hypotheses when covariance matrix estimates are not available.

10.25 Criterion-Based Bootstrap Tests

A criterion-based estimator takes the form

β̂ = argmin
β

J (β)

for some criterion function J (β). This includes least-squares, maximum likelihood, minimum
distance, and GMM. Given a hypothesis H0 : θ = θ0 where θ = r (β), the restricted estimator
which satisfies H0 is

β̃ = argmin
r(β)=θ0

J (β) .

A criterion-based statistic to test H0 is

J = min
r(β)=θ0

J (β)−min
β

J (β)

= J(β̃)− J(β̂).

A criterion-based test rejects H0 for large values of J . A bootstrap test uses the bootstrap algorithm
to calculate the critical value.

In this context we need to be a bit thoughtful about how to construct bootstrap versions of
J . It might seem natural to construct the exact same statistic on the bootstrap samples as on
the original sample, but this is incorrect. It makes the same error as calculating a t-ratio or Wald
statistic centered at the hypothesized value. In the bootstrap universe, the true value of θ is not

θ0, rather it is θ̂ = r
(
β̂
)
. Thus when using the nonparametric bootstrap, we want to impose the

constraint r (β) = r
(
β̂
)

= θ̂ to obtain the bootstrap version of J .

Thus, the correct way to calculate a bootstrap version of J is as follows. Generate a bootstrap
sample by random sampling from the dataset. Let J∗ (β) be the the bootstrap version of the
criterion. On a bootstrap sample calculate the unrestricted estimator

β̂
∗

= argmin
β

J∗ (β)

and the restricted version
β̃
∗

= argmin
r(β)=θ̂

J∗ (β)

where θ̂ = r
(
β̂
)
. The bootstrap statistic is

J∗ = min
r(β)=θ̂

J∗ (β)−min
β

J∗ (β)

= J∗(β̃
∗
)− J∗(β̂∗).
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Calculate J∗ on each bootstrap sample. Take the 1 − αth quantile q∗1−α. The bootstrap test
rejects H0 in favor of H1 if J > q∗1−α. The bootstrap p-value is

p∗ =
1

B

B∑
b=1

1 (J∗(b) > J) .

Special cases of criterion-based tests are minimum distanace tests, F tests, and likelihood ratio
tests.

Take the F test for a linear hypothesis R′β = θ0. The F statistic is

F =

(
σ̃2 − σ̂2

)
/q

σ̂2/(n− k)

where σ̂2 is the unrestricted estimator of the error variance, σ̃2 is the restricted estimator, q is the
number of restrictions and k is the number of estimated coeffi cients. The bootstrap version of the
F statistic is

F ∗ =

(
σ̃∗2 − σ̂∗2

)
/q

σ̂∗2/(n− k)

where σ̂∗2 is the unrestricted estimator on the bootstrap sample, and σ̃∗2 is the restricted estimator
which imposes the restriction R′β = θ̂ = R′β̂.

Take the likelihood ratio (LR) test for the hypothesis r (β) = θ0. The LR test statistic is

LR = 2
(

logL
(
β̂
)
− logL

(
β̃
))

where β̂ is the unrestricted MLE and β̃ is the restricted MLE (imposing r (β) = θ0). The bootstrap
version is

LR∗ = 2
(

logL∗
(
β̂
∗)− logL∗

(
β̃
∗))

where logL∗(β) is the log-likelihood function calculated on the bootstrap sample, β̂
∗
is the unre-

stricted maximizer, and β̃
∗
is the restricted maximizer imposing the restriction r (β) = r

(
β̂
)
.

10.26 Parametric Bootstrap

Throughout this chapter we have described the most popular form of the bootstrap known as the
nonparametric bootstrap. However there are other forms of the bootstrap algorithm including the
parametric bootstrap. This is appropriate when there is a full parametric model for the distribution,
as in likelihood estimation.

First, consider the context where the model specifies the full distribution of the random vector
y, e.g. y ∼ F (y | β) where the distribution function F is known but the parameter β is unknown.
Let β̂ be an estimator of β, such as the maximum likelihood estimator. The parametric bootstrap
algorithm generates bootstrap observations y∗i by drawing random vectors from the distribution
function F (y | β̂). When this is done, the true value of β in the bootstrap universe is β̂. Everything
which has been discussed in the chapter can be applied using this bootstrap algorithm.

Second, consider the context where the model specifies the conditional distribution of the ran-
dom vector y given the random vector x, e.g. y | x ∼ F (y | x,β). An example is the normal linear
regression model, where y | x ∼ N

(
x′β, σ2

)
. In this context we can hold the regressors xi fixed

and then draw the bootstrap observations y∗i from the conditional distribution F (y | xi, β̂). In the
example of the normal regression model this is equivalent to drawing a normal error e∗i ∼ N

(
0, σ̂2

)
and then setting y∗i = x′iβ̂ + e∗i . Again, in this algorithm the true value of β is β̂ and everything
which is discussed in this chapter can be applied as before.
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Third, consider tests of the hypothesis r (β) = θ0. In this context we can also construct a

restricted estimator β̃ (for example the restricted MLE) which satisfies the hypothesis r
(
β̃
)

= θ0.

Then we can alternatively generate bootstrap samples by simulating from the distribution y∗i ∼
F (y | β̃) , or in the conditional context from y∗i ∼ F (y | xi, β̃). When this is done, the true value
of β in the bootstrap is β̃ which satisfies the hypothesis. So in this context the correct values of
the bootstrap statistics are

T ∗ =
θ̂∗ − θ0

s(θ̂∗)

W ∗ =
(
θ̂
∗ − θ0

)′
V̂
∗−1

θ̂

(
θ̂
∗ − θ0

)
J∗ = min

r(β)=θ0
J∗ (β)−min

β
J∗ (β)

LR∗ = 2

(
max
β

logL∗ (β)− max
r(β)=θ0

logL∗ (β)

)
and

F ∗ =

(
σ̃∗2 − σ̂∗2

)
/q

σ̂∗2/(n− k)

where σ̂∗2 is the unrestricted estimator on the bootstrap sample, and σ̃∗2 is the restricted estimator
which imposes the restriction R′β = θ0.

The primary advantage of the parametric bootstrap (relative to the nonparametric bootstrap)
is that it will be more accurate when the parametric model is correct. This may be quite important
in small samples. The primary disadvantage of the parameric bootstrap is that it can be inaccurate
when the parametric model is incorrect.

10.27 How Many Bootstrap Replications?

How many bootstrap replications should be used? There is no universally correct answer as
there is a trade-off between accuracy and computation cost. Computation cost is essentially linear
in B. Accuracy (either standard errors or p-values) is proportional to B−1/2. Improved accuracy
can be obtained but only at a higher computational cost.

In most empirical research, most calculations are quick and investigatory, not requiring full
accuracy. But final results (those going into the final version of the paper) should be accurate.
Thus it seems reasonable to use asymptotic and/or bootstrap methods with a modest number of
replications for daily calculations, but use a much larger B for the final version.

In particular, for final calculations, B = 10, 000 is desired, with B = 1000 a minimal choice. In
contrast, for daily quick calculations values as low as B = 100 may be suffi cient for rough estimates.

A useful way to think about the accuracy of bootstrap methods stems from the calculation
of p-values. The bootstrap p-value p∗ is an average of B Bernoulli draws. The variance of the
simulation estimator of p∗ is p∗(1− p∗)/B, which is bounded below 1/4B. To calculate the p-value
within, say, 0.01 of the true value with 95% probability requires a standard error below 0.005.
This is ensured if B ≥ 10, 000.

Stata by default sets B = 50. This is useful for verification that a program runs, but is a poor
choice for empirical reporting. Make sure that you set B to the value you want.

10.28 Setting the Bootstrap Seed

Computers do not generate true random numbers, but rather pseudo-random numbers generated
by a deterministic algorithm. The algorithms generate sequences which are indistinguishable from
random sequences, so this is not a worry for bootstrap applications.
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The methods, however, necessarily require a starting value known as a “seed”. Most packages
implement this with a default seed which is reset each time the statistical package is started. This
means if you start the package fresh, run a bootstrap program (e.g. a do file in Stata), exit the
package, restart the package and then rerun the bootstrap program, you should obtain exactly the
same results. If you instead run the bootstrap program (e.g. do file) twice sequentially without
restarting the package, the seed is not reset so a different set of pseudo-random numbers will be
generated, and the results from the two runs will be different.

Packages allow users to set their own seed. (In Stata, the command is set seed # where # is a
number. In Matlab the command is rng(#).) If the seed is set to a specific number at the start of a
file, then the exact same pseudo-random numbers will be generated each time the program is run.
If this is the case, the results of a bootstrap calculation (standard error or test) will be identical
across computer runs.

The fact that the bootstrap results can be fixed by setting the seed in the replication file has
motivated many researchers to follow this choice. They set the seed at the start of the replication
file so that repeated executions result in the same numerical findings.

Fixing seeds, however, should be done cautiously. It may be a wise choice for a final calculation
(when a paper is finished) but is an unwise choice for daily calculations. If you use a small number
of replications, say B = 100, in your preliminary work, the bootstrap calculations will be quite
inaccurate. But as you run your results again and again (as is typical in empirical projects) you
will find the same numerical standard errors and test results, giving you a false sense of stability
and accuracy. If instead a different seed is used each time the program is run then the bootstrap
results will vary across runs, and you will observe that the results vary across these runs, giving
you important and meaningful information about the (lack of) accuracy in your results. One way
to ensure this in Matlab is to use the command rng(‘shuffle’) which sets the seed according to
the current clock.

These considerations lead to a recommended hybrid approach. For daily empirical investiga-
tions, do not fix the bootstrap set in your program, unless you have it set by the clock. For your
final calculations set the seed to a specific arbitrary choice, and also set B = 10, 000 so that the
results are insensitive to the seed.

10.29 Bootstrap Regression

A major focus of this textbook has been on the least-squares estimator β̂ in the projection
model. The bootstrap can be used to calculate standard errors and confidence intervals for smooth
functions of the coeffi cient estimates.

The nonparametric bootstrap algorithm, as described before, samples observations randomly
with replacement from the dataset, creating the bootstrap sample {(y∗1,x∗1) , ..., (y∗n,x

∗
n)}, or in

matrix notation (y∗,X∗) It is important to recognize that entire observations (pairs of yi and xi)
are sampled. This is often called the pairs bootstrap.

Given this bootstrap sample, we calculate the regression estimator

β̂
∗

=
(
X∗′X∗

)−1 (
X∗′y∗

)
. (10.32)

This is repeated B times. The bootstrap standard errors are the standard deviations across the
draws, and confidence intervals are constructed from the empirical quantiles across the draws.

What is the nature of the bootstrap distribution of β̂
∗
? It is useful to start with the distribution

of the bootstrap observations (y∗i ,x
∗
i ), which is the discrete distribution which puts mass 1/n on

each observation pair (yi,xi). The bootstrap universe can be thought of as the empirical scatter
plot of the observations. The true value of the projection coeffi cient in this bootstrap universe is

(
E∗
(
x∗ix

∗′
i

))−1
(E∗ (x∗i y

∗
i )) =

(
1

n

n∑
i=1

xix
′
i

)−1(
1

n

n∑
i=1

xiyi

)
= β̂.
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We see that the true value in the bootstrap distribution is the least-squares estimate β̂.
The bootstrap observations satisfy the projection equation

y∗i = x∗′i β̂ + e∗i (10.33)

E∗ (x∗i e
∗
i ) = 0.

For each bootstrap pair (y∗i ,x
∗
i ) = (yj ,xj) the true error e∗i = êj equals the least-squares residual

from the original dataset. This is because each bootstrap pair corresponds to an actual observation.
A technical problem (which is typically ignored) is that it is possible for X∗′X∗ to be singular

in a simulated bootstrap sample, in which case the least-squares estimator β̂
∗
cannot be defined.

Indeed, the probability is always positive that X∗′X∗ is singular. For example, the probability
that a bootstrap sample consists entirely of one observation repeated n times is n−(n−1). This is a
small probability, but positive. A more significant example is sparse dummy variable designs where
it is possible to draw an entire sample with only one observed value for the dummy variable. For
example, if a sample has n = 20 observations with a dummy variable with treatment (equals 1) for
only three of the 20 observations, the probability is 4% that a bootstrap sample contains entirely
non-treated values (all 0’s). 4% is quite high!

The standard approach to circumvent this problem is to compute β̂
∗
only if X∗′X∗ is non-

singular as defined by a conventional numerical tolerance and treat it as missing otherwise. A
better solution is to define a tolerance which bounds X∗′X∗ away from non-singularity. Define the
ratio of the smallest eigenvalue of the bootstrap design matrix to that of the data design matrix

λ∗ =
λmin (X∗′X∗)

λmin (X ′X)
.

If, in a given bootstrap replication, λ∗ < τ is smaller than a given tolerance (Shao and Tu (1995,
p. 291) recommend τ = 1/2) then the estimator can be treated as missing, or we can define the
trimming rule

β̂
∗

=


β̂
∗

if λ∗ ≥ τ

β̂ if λ∗ < τ.

(10.34)

This ensures that the bootstrap estimator β̂
∗
will be well behaved.

10.30 Bootstrap Regression Asymptotic Theory

Define the least-squares estimator β̂, its bootstrap version β̂
∗
as in (10.32), and the transfor-

mations θ̂ = g(β̂) and θ̂
∗

= r(β̂
∗
) for some smooth transformation r. Let V̂ β and V̂ θ denote

heteroskedasticity-robust covariance matrix estimators for β̂ and θ̂, and let V̂
∗
β and V̂

∗
θ be their

bootstrap versions. When θ is scalar define the standard errors s(θ̂) =

√
n−1V̂ θ and s(θ̂∗) =√

n−1V̂ θ∗ . Define the t-ratios T =
(
θ̂ − θ

)
/s(θ̂) and bootstrap version T ∗ =

(
θ̂∗ − θ̂

)
/s(θ̂∗). We

are interested in the asymptotic distributions of β̂
∗
, θ̂
∗
and T ∗.

Since the bootstrap observations satisfy the model (10.33), we see by standard calculations that

√
n
(
β̂
∗ − β̂

)
=

(
1

n

n∑
i=1

x∗ix
∗′
i

)−1(
1√
n

n∑
i=1

x∗i e
∗
i

)
.

By the bootstrap WLLN
1

n

n∑
i=1

x∗ix
∗′
i

p∗−→ E
(
xix

′
i

)
= Q
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and by the bootstrap CLT
1√
n

n∑
i=1

x∗i e
∗
i

d∗−→ N (0,Ω)

where Ω = E
(
xix

′
ie

2
i

)
. Again applying the bootstrap WLLN we obtain

V̂ β
p∗−→ V β = Q−1ΩQ−1

and
V̂ θ

p∗−→ V θ = R′V βR

where R = R (β) .
Combining with the bootstrap CMT and delta method we establish the asymptotic distribution

of the bootstrap regression estimator.

Theorem 10.22 Under Assumption 7.2, as n→∞
√
n
(
β̂
∗ − β̂

)
d∗−→ N (0,V β) .

If Assumption 7.3 also holds then

√
n
(
θ̂
∗ − θ̂

)
d∗−→ N (0,V θ) .

If Assumption 7.4 also holds then

T ∗
d∗−→ N (0, 1) .

This means that the bootstrap confidence interval and testing methods all apply for inference
on β and θ. This includes the percentile, BC percentile, BCa, and percentile-t intervals, and
hypothesis tests based on t-tests, Wald tests, MD tests, LR tests and F tests.

To justify the use of bootstrap standard errors we also need to verify the uniform square inte-
grability of β̂

∗
and θ̂

∗
. This is technically challenging because the least-squares estimator involves

division (matrix inversion) which is not a globally continuous function. A partial solution is to use
the trimmed estimator (10.34). This bounds the moments of β̂

∗
by those of n−1

∑n
i=1 x

∗
i e
∗
i . Since

this is a sample mean, Theorem 10.14 applies and V̂
∗
β is bootstrap consistent for V β. However, this

does not ensure that V̂
∗
θ will be consistent for V̂ θ unless the function r (u) satisfies the conditions

of Theorem 10.14. For general applications we should use a trimmed estimator for the bootstrap
variance. For some τn = O

(
en/8

)
define

z∗n =
√
n
(
θ̂
∗ − θ̂

)
z∗∗ = z∗1 (‖z∗n‖ ≤ τn)

z∗∗ =
1

B

B∑
b=1

z∗∗(b)

V̂
boot,τ

θ =
1

B − 1

B∑
b=1

(z∗∗(b)− z∗∗) (z∗∗(b)− z∗∗)′ .
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The matrix V̂
boot

θ is a trimmed bootstrap estimator of the variance of zn =
√
n
(
θ̂ − θ

)
. The

associated bootstrap standard error for θ̂ (in the scalar case) is s(θ̂) =

√
n−1V̂

boot

θ .

By an application of Theorems 10.15 and 10.16, we find that this estimator V̂
boot

θ is consistent
for the asymptotic variance.

Theorem 10.23 Under Assumption 7.2 and 7.3, as n→∞

V̂
boot,τ

θ
p∗−→ V θ.

Programs such as Stata use the untrimmed estimator V̂
boot

θ rather than the trimmed estimator

V̂
boot,τ

θ . This means that we should be cautious about interpreting reported bootstrap standard
errors especially for nonlinear functions such as ratios.

10.31 Wild Bootstrap

Take the linear regression model

yi = x′iβ + ei

E (ei | xi) = 0.

What is special about this model is the conditional mean restriction. The nonparametric bootstrap
(which samples the pairs (y∗i ,x

∗
i ) i.i.d. from the original observations) does not make use of this

restriction. Consequently the bootstrap distribution for (y∗i ,x
∗
i ) does not satisfy the conditional

mean restriction, and therefore does not satisfy the linear regression assumption. To improve the
precision of the bootstrap method it seems reasonable to impose the conditional mean restriction
on the bootstrap distribution.

A natural approach is to hold the regressors xi fixed and then draw the errors e∗i in some
way which imposes a conditional mean of zero. The simplest approach is to draw the errors
independent from the regressors, perhaps from the empirical distribution of the residuals. This
procedure is known a the residual bootstrap. However, this imposes independence of the errors
from the regressors, which is much stronger than the conditional mean assumption. This is generally
undesirable.

A method which imposes the conditional mean restriction while allowing general heteroskedas-
ticity is the wild bootstrap. It was proposed by Liu (1988) and extended by Mammon (1993).
The method uses auxiliary random variables ξ∗i which are i.i.d., mean zero, and variance 1. The
bootstrap observations are then generated as

y∗i = x′iβ̂ + e∗i
e∗i = êiξ

∗
i

where the regressors xi are held fixed at their sample values, β̂ is the sample least-squares estimator,
and êi are the least-squares residuals, which are also held fixed at their sample values.

This algorithm generates bootstrap errors e∗i which are conditionally mean zero. Thus the
bootstrap pairs (y∗i ,xi) satisfy a linear regression, with the “true”coeffi cient of β̂. The conditional
variance of the wild bootstrap errors e∗i are

E∗
(
e∗2i | xi

)
= ê2

i .
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This means that the conditional variance of the bootstrap estimator β̂
∗
is

E∗
((
β̂
∗ − β̂

)(
β̂
∗ − β̂

)′
|X
)

=
(
X ′X

)−1

(
n∑
i=1

xix
′
iê

2
i

)(
X ′X

)−1

which is the White estimator of the variance of β̂. Thus the wild bootstrap replicates the appro-
priate first and second moments of the distribution.

Two distributions have been proposed for the auxilary variables ξ∗i both of which are two-point
discrete distributions. The first are Rademacher random variables, which satisfy

P (ξ∗i = 1) =
1

2

P (ξ∗i = −1) =
1

2
.

The second is the Mammen (1993) two-point distribution

P

(
ξ∗i =

1 +
√

5

2

)
=

√
5− 1

2
√

5

P

(
ξ∗i =

1−
√

5

2

)
=

√
5 + 1

2
√

5
.

The reasoning behind the Mammen distribution is that this choice implies E
(
ξ∗3i
)

= 1, which

implies that the third central moment of β̂
∗
matches the natural nonparametric estimator of the

third central moment of β̂. Since the wild bootstrap matches the first three moments, the percentile-
t interval and one-sided t-tests can be shown to achieve asymptotic refinements.

The reasoning behind the Rademacher distribution is that this choice implies E
(
ξ∗4i
)

= 1,

which implies that the fourth central moment of β̂
∗
matches the natural nonparametric estimator

of the fourth central moment of β̂. If the regression errors ei are symmetrically distributed (so the
third moment is zero) then the first four moments are matched. In this case the wild bootstrap
should have even better performance, and additionally two-sided t-tests can be shown to achieve an
asymptotic refinement. When the regression error is not symmetrically distributed these asymp-
totic refinements are not achieved. However, simulation evidence for one-sided t-tests presented in
Davidson and Flachaire (2008) suggest that the Rademacher distribution (used with the restricted
wild bootstrap) overall has the best performance and is the preferred choice.

For hypothesis testing improved precision can be obtained by the restricted wild bootstrap.
Consider tests of the hypothesis

H0 : r (β) = 0.

Let β̃ be a CLS or EMD estimator of β subject to the restriction r
(
β̃
)

= 0. Let ẽi = yi −x′iβ̃ be
the constrained residuals. The restricted wild bootstrap algorithm generates observations as

y∗i = x′iβ̃ + e∗i
e∗i = ẽiξ

∗
i .

With this modification, β̃ is the true value in the bootstrap universe, so the null hypothesis H0

holds. Thus bootstrap tests are constructed the same as for the parametric bootstrap using a
restricted parameter estimator.
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10.32 Bootstrap for Clustered Observations

Bootstrap methods can also be applied in the context of clustered observations, though the
methodological literature is relatively thin. Here we review methods discussed in Cameron, Gelbach
and Miller (2008).

Let yg = (y1g, ..., yngg)
′ andXg = (x1g, ...,xngg)

′ denote the ng×1 vector of dependent variables
and ng×k matrix of regressors for the gth cluster. A linear regression model using cluster notation
is

yg = Xgβ + eg

where eg = (e1g, ..., engg)
′ is a ng × 1 error vector. The sample has G cluster pairs (yg,Xg).

The pairs cluster bootstrap samples G cluster pairs (yg,Xg) to create the bootstrap sample.
Least-squares is applied to the bootstrap sample to obtain the coeffi cient estimators. By repeatingB
times, bootstrap standard errors for coeffi cients estimates, or functions of the coeffi cient estimates,
can be calculated. Percentile, BC percentile, and BCa confidence intervals can be calculated.

The BCa interval requires an estimator of the acceleration coeffi cient a which is a scaled jackknife
estimate of the third moment of the estimator. In the context of clustered observations the delete-
cluster jackknife should be used for estimation of a.

Furthermore, on each bootstrap sample the cluster-robust standard errors can be calculated and
used to compute bootstrap t-ratios, from which percentile-t confidence intervals can be calculated.

The wild cluster bootstrap fixes the clusters and regressors, and generates the bootstrap
observations as

y∗g = Xgβ̂ + e∗g

e∗g = êiξ
∗
g

where ξ∗g is a scalar auxilary random variable as described in the previous section. Notice that
ξ∗g is interacted with the entire vector of residuals from cluster g. Cameron, Gelbach and Miller
(2008) follow the recommendation of Davidson and Flachaire (2008) and use Rademacher random
variables for ξ∗g .

For hypothesis testing, Cameron, Gelbach and Miller (2008) recommend the restricted wild
cluster bootstrap. For tests of

H0 : r (β) = 0

let β̃ be a CLS or EMD estimator of β subject to the restriction r
(
β̃
)

= 0. Let ẽg = yg−Xgβ̃ be

the constrained cluster-level residuals. The restricted wild cluster bootstrap algorithm generates
observations as

y∗g = Xgβ̃ + e∗g

e∗g = ẽiξ
∗
g .

On each bootstrap sample the test statistic for H0 (t-ratio, Wald, LR, or F) is applied. Since the
bootstrap algorithm satisfies H0 these statistics are centered at the hypothesized value. p-values
are then calculated conventionally and used to assess the significance of the test statistic.

There are several reasons why conventional asymptotic approximations may work poorly with
clustered observations. First, while the sample size n may be large, the effective sample size is
the number of clusters G. This is because when the dependence structure within each cluster is
unconstrained, the central limit theorem effectively treats each cluster as a single observation. Thus,
if G is small we should treat inference as a small sample problem. Second, cluster-robust covariance
matrix estimation explicitly treats each cluster as a single observation. Consequently the accuracy
of normal approximations to t-ratios and Wald statistics is more accurately viewed as a small
sample distribution problem. Third, when cluster sizes ng are heterogeneous, this means that the
estimation problems just described also involve heterogeneous variances. Specifically, heterogeneous
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cluster sizes induces a high degree of effective heteroskedasticity (since the variance of a within-
cluster sum is proportional to ng). When G is small this means that cluster-robust inference
is similar to finite-sample inference with a small heteroskedastic sample. Fourth, interest often
concerns treatment which is applied at the level of a cluster (such as the effect of tracking discussed
in Section 4.21). If the number of treated clusters is small, this is equivalent to estimation with
a highly sparse dummy variable design, in which case cluster-robust covariance matrix estimation
can be unreliable.

These concerns suggest that conventional normal approximations may be poor in the context
of clustered observations with a small number of groups G, motivating instead the use of boot-
strap methods. However, these concerns also can cause challenges with the accuracy of bootstrap
approximations. When the number of clusters G is small, the cluster sizes ng heterogeneous, or
the number of treated clusters small, bootstrap methods may also be inaccurate. In such cases
inference should proceed cautiously.

To illustrate the use of the pairs cluster bootstrap, Table 10.4 reports the estimates of the
example from Section 4.21 of the effect of tracking on testscores from Duflo, Dupas and Kremer
(2011). In addition to the asymptotic cluster standard error, we report the cluster jackknife and
cluster bootstrap standard errors, as well as three percentile-type confidence intervals and using
10,000 bootstrap replications. In this example the asymptotic, jackknife, and cluster bootstrap
standard errors are identical, which reflects the good balance of this particular regression design.

Table 10.4: Comparison of Methods for Estimate of Effect of Tracking

Coeffi cient on Tracking 0.138
Asymptotic cluster s.e. (0.078)
Jackknife cluster s.e. (0.078)
Cluster Bootstrap s.e. (0.078)
95% Percentile Interval [−0.013, 0.291]
95% BC Percentile Interval [−0.015, 0.289]
95% BCa Percentile Interval [−0.018, 0.286]

In Stata, to obtain cluster bootstrap standard errors and confidence intervals use the options
cluster(id) vce(bootstrap, reps(#)), where id is the cluster variable and # is the number of
bootstrap replications.

10.33 Technical Proofs*

Proof of Theorem 10.1: We present a case for the one-dimensional case. Fix ε > 0 and set
J = 1/ε. Define the left-limits F (u−) = lim

t↑u
F (u) = E (1 (y < u)). We can find points −∞ = u0 <

u1 < · · · < uJ =∞ such that
F (uj−)− F (uj−1) ≤ ε. (10.35)

By the WLLN and J is fixed there is an n suffi ciently large such that with probability exceeding
1− ε,

max
j≤J
|Fn(uj−)− F (uj−)| = max

j≤J

∣∣∣∣∣ 1n
n∑
i=1

(1 (yi < uj)− E (1 (y < uj)))

∣∣∣∣∣ ≤ ε (10.36)

and

max
j≤J
|Fn(uj)− F (uj)| = max

j≤J

∣∣∣∣∣ 1n
n∑
i=1

(1 (yi ≤ uj)− E (1 (y ≤ uj)))
∣∣∣∣∣ ≤ ε. (10.37)

Since both Fn(u) and F (u) are weakly monotonically increasing, for any u satisfying uj−1 ≤ u < uj

Fn(u)− F (u) ≤ Fn(uj−)− F (uj−1) ≤ Fn(uj−)− F (uj−) + ε ≤ 2ε.
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The second inequality is (10.35) and the final inequality holds on the event (10.36).
Similarly, on the event (10.37)

Fn(u)− F (u) ≥ Fn(uj−1)− F (uj−) ≥ Fn(uj−1)− F (uj−1)− ε ≥ −2ε.

We have shown that for any u, |Fn(u)− F (u)| ≤ 2ε with probability exceeding 1 − ε. Since ε
is arbitrary this shows supu |Fn(u)− F (u)| p−→ 0 as n→∞. �

Proof of Theorem 10.4: Fix ε > 0.
Set δ1 = F (qα) − F (qα − ε). Note that δ1 > 0 by the definition of qα and the assumption

α = F (qα) > 0. The WLLN implies that

Fn(qα − ε)− F (qα − ε) =
1

n

n∑
i=1

1 (yi ≤ qα − ε)− E (1 (y ≤ qα − ε))
p−→ 0

which means that there is a n1 <∞ such that for all n ≥ n1

P (|F (qα − ε)− Fn(qα − ε)| > δ1/2) ≤ ε.

Assume as well that n1 > 2/δ1. The inequality q̂α ≥ y(j−1) means that q̂α < qα − ε implies

Fn(qα − ε) ≥ (j − 1) /n ≥ α− 1/n.

Thus for all n ≥ n1

P (q̂α < qα − ε) ≤ P (Fn(qα − ε) ≥ α− 1/n)

= P (Fn(qα − ε)− F (qα − ε) ≥ δ1 − 1/n)

≤ P (|Fn(qα − ε)− F (qα − ε)| > δ1/2) ≤ ε.

Now set δ2 = F+(q+
α +ε)−F+(q+

α ). Note that δ2 > 0 by the definition of q+
α and the assumption

α = F+(q+
α ) < 1. The WLLN implies that

F+
n (qα + ε)− F+(qα + ε) =

1

n

n∑
i=1

1 (yi < qα + ε)− E (1 (y < qα + ε))
p−→ 0

which means that there is a n2 <∞ such that for all n ≥ n2

P
(∣∣F+

n (qα + ε)− F+(qα + ε)
∣∣ > δ2/2

)
≤ ε.

Again assume that n2 > 2/δ2. The inequality q̂α ≤ y(j+1) means that q̂α > q+
α + ε implies

F+
n (q+

α + ε) ≤ j/n ≤ α+ 1/n.

Thus for all n ≥ n2

P
(
q̂α > q+

α + ε
)
≤ P

(
F+
n (q+

α + ε) ≤ α+ 1/n
)

≤ P
(
F+(q+

α + ε)− F+
n (q+

α + ε) > δ2/2
)

≤ P
(∣∣F+

n (qα + ε)− F+(qα + ε)
∣∣ > δ2/2

)
≤ ε.

We have shown that for all n ≥ max[n1, n2]

P
(
qα − ε ≤ q̂α ≤ q+

α + ε
)
≥ 1− 2ε

which establishes the result. �
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Proof of Theorem 10.5: Fix ε > 0. Since zn
p−→ z there is an n suffi ciently large such that

P (‖zn − z‖ > ε) < ε.

Since the event ‖zn − z‖ > ε is non-random under the conditional probability P∗, for such n,

P∗ (‖zn − z‖ > ε) =

{
0 with probability exceeding 1− ε
1 with probability less than ε

.

Since ε is arbitrary we conclude P∗ (‖zn − z‖ > ε)
p−→ 0 as required. �

Proof of Theorem 10.6: Fix ε > 0. By Markov’s inequality, the facts (10.12) and (10.13), and
finally the Marcinkiewicz WLLN (Theorem 6.37) with r = 2 and yi = ‖yi‖,

P∗ (‖y∗ − y‖ > ε) ≤ ε−2E∗ ‖y∗ − y‖2

= ε−2 tr (var∗ (y∗))

= ε−2 tr

(
1

n
Σ̂

)
≤ ε−2n−2

n∑
i=1

y′iyi

p−→ 0.

This establishes that y∗ − y p∗−→ 0.

Since y−µ p−→ 0 by the WLLN, y−µ p∗−→ 0 by Theorem 10.5. Since y∗−µ = y∗−y+y−µ,
we deduce that y∗ − µ p∗−→ 0. �

Proof of Theorem 10.8: We verify conditions for the multivariate Lindeberg CLT (Theorem
6.15). (We cannot use the Lindeberg—Lévy CLT since the conditional distribution depends on n.)
Conditional on Fn, the bootstrap draws y∗i − y are i.i.d. with mean 0 and variance matrix Σ̂. Set
ν2
n = λmin(Σ̂). Note that by the WLLN, ν2

n
p−→ ν2 = λmin(Σ) > 0. Thus for n suffi ciently large,

ν2
n > 0 with high probability. Fix ε > 0. Equation (6.14) equals

1

nν2
n

n∑
i=1

E∗
(
‖y∗i − y‖

2 1
(
‖y∗i − y‖

2 ≥ εnν2
n

))
=

1

ν2
n

E∗
(
‖y∗i − y‖

2 1
(
‖y∗i − y‖

2 ≥ εnν2
n

))
≤ 1

εnν4
n

E∗ ‖y∗i − y‖
4

≤ 24

εnν4
n

E∗ ‖y∗i ‖
4

=
24

εn2ν4
n

n∑
i=1

‖yi‖4

p−→ 0.

The second inequality uses Minkowski’s inequality, Liapunov’s inequality and the cr inequality. The
following equality is E∗ ‖y∗i ‖

4 = n−1
∑n

i=1 ‖yi‖
4, which is similar to (10.10). The final convergence

holds by the Marcinkiewicz WLLN (Theorem 6.37) with r = 2 and yi = ‖yi‖2. The conditions for
Theorem 6.15 hold and we conclude

Σ̂
−1/2√

n (y∗ − y)
d∗−→ N (0, I) .

Since Σ̂
p∗−→ Σ we deduce that √

n (y∗ − y)
d∗−→ N (0,Σ)
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as claimed. �

Proof of Theorem 10.14: For notational simplicity assume θ and µ are scalar. Set hi = h(yi).
The assumption that the pth derivative of g(u) is bounded implies

∣∣g(p) (u)
∣∣ ≤ C for some C <∞.

Taking a pth order Taylor series expansion

θ̂∗ − θ̂ = g(h
∗
)− g(h) =

p−1∑
j=1

g(j)
(
h
)

j!

(
h
∗ − h

)j
+
g(p) (ζ∗n)

p!

(
h
∗ − h

)p
where ζ∗n lies between h

∗
and h. This implies

|z∗n| =
√
n
∣∣∣θ̂∗ − θ̂∣∣∣ ≤ √n p∑

j=1

cj

∣∣∣h∗ − h∣∣∣j
where cj =

∣∣g(j)
(
h
)∣∣ /j! for j < p and cp = C/p!. We find that the fourth central moment of the

normalized bootstrap estimator z∗n =
√
n
(
θ̂∗ − θ̂

)
satisfies the bound

E∗ (z∗n)4 ≤
4p∑
r=4

arn
2E∗

∣∣∣h∗ − h∣∣∣r (10.38)

where the coeffi cients ar are products of the coeffi cients cj and hence each Op(1). We see that

E∗ (z∗n)4 = Op(1) if n2E∗
∣∣∣h∗ − h∣∣∣r = Op(1) for r = 4, ..., 4p.

We show this holds for any r ≥ 4 using Rosenthal’s inequality (B.39), which states that for each
r there is a constant Ar <∞ such that

n2E∗
∣∣∣h∗ − h∣∣∣r = n2−rE∗

∣∣∣∣∣
n∑
i=1

(
h∗i − h

)∣∣∣∣∣
r

≤ n2−rAr

{(
nE∗

(
h∗i − h

)2)r/2
+ nE∗

∣∣h∗i − h∣∣r}
= Ar

{
n2−r/2σ̂r +

1

nr−2

n∑
i=1

∣∣hi − h∣∣r} . (10.39)

Since E
(
h2
i

)
< ∞, σ̂2 = Op(1), so the first term in (10.39) is Op(1). Also, by the Marcinkiewicz

WLLN, n−r/2
∑n

i=1

∣∣hi − h∣∣r = op(1) for any r ≥ 1, so the second term in (10.39) is op(1) for r ≥ 4.
Thus for all r ≥ 4, (10.39) is Op(1) and thus (10.38) is Op(1). We deduce that z∗n is uniformly
square integrable, and the bootstrap estimate of variance is consistent.

This argument can be extended to vector-valued means and estimates. �

Proof of Theorem 10.16: We show that E∗ ‖z∗∗n ‖
4 = Op(1). By Theorem 6.29 this implies

that z∗∗n is uniformly square integrable. Since z∗∗n
d∗−→ Z, Theorem 6.30 implies that var (z∗∗n ) −→

var (Z) = V β as stated.

Set hi = h (yi). Since G (u) =
∂

∂u
g (u)′ is continuous in a neighborhood of µ, there exists

η > 0 and M < ∞ such that ‖u− µ‖ ≤ 2η implies tr
(
G (u)′G (u)

)
≤ M . By the WLLN and

bootstrap WLLN there is an n suffi ciently large such that
∥∥hn − µ∥∥ ≤ η and ∥∥∥h∗n − hn∥∥∥ ≤ η with

probability exceeding 1 − η. On this event,
∥∥u− hn∥∥ ≤ η implies tr

(
G (u)′G (u)

)
≤ M . Using
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the mean-value theorem at a point ζ∗n intermediate between h
∗
n and hn

‖z∗∗n ‖
4 1
(∥∥∥h∗n − hn∥∥∥ ≤ η) ≤ n2

∥∥∥g (h∗n)− g (hn)∥∥∥4
1
(∥∥∥h∗n − hn∥∥∥ ≤ η)

≤ n2
∥∥∥G (ζ∗n)′

(
h
∗
n − hn

)∥∥∥4

≤M2n2
∥∥∥h∗n − hn∥∥∥4

.

Then

E∗ ‖z∗∗n ‖
4 ≤ E∗

(
‖z∗∗n ‖

4 1
(∥∥∥h∗n − hn∥∥∥ ≤ η))+ τ4

nE∗
(
1
(∥∥∥h∗n − hn∥∥∥ > η

))
≤M2n2E∗

∥∥∥h∗n − hn∥∥∥4
+ τ4

nP∗
(∥∥∥h∗n − hn∥∥∥ > η

)
. (10.40)

In (10.17) we showed that the first term in (10.40) is Op(1) in the scalar case. The vector case
follows by element-by-element expansion.

Now take the second term in (10.40). We apply Bernstein’s inequality for vectors (B.37). Note
that h

∗
n − hn = n−1

∑n
i=1 u

∗
i with u

∗
i = h∗i − hn with jth element u∗ji = h∗ji − hjn. The u∗i are

i.i.d., mean zero, E∗
(
u∗2ji

)
= σ̂2

j = Op(1), and satisfy the bound
∣∣∣u∗ji∣∣∣ ≤ 2 maxi,j |hji| = Bn, say.

Bernstein’s inequality states that

P∗
(∥∥∥h∗n − hn∥∥∥ > η

)
≤ 2m exp

(
−n1/2 η2

2m2n−1/2 maxj σ̂2
j + 2mn−1/2Bnη/3

)
. (10.41)

Theorem (6.29) shows that n−1/2Bn = op(1). Thus the expression in the denominator of the
parentheses in (10.41) is op(1) as n → ∞, . It follows that for n suffi ciently large (10.41) is
Op
(
exp

(
−n1/2

))
. Hence the second term in (10.40) is Op

(
exp

(
−n1/2

))
op
(
exp

(
−n1/2

))
= op (1)

by the assumption on τn.
We have shown that the two terms in (10.40) are each Op(1). This completes the proof. �
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Exercises

Exercise 10.1 Find the jackknife estimator of variance of the estimator µ̂r = n−1
∑n

i=1 y
r
i for

µr = E (yri ).

Exercise 10.2 Show that if the jackknife estimator of variance of β̂ is V̂
jack

β̂ , then the jackknife

estimator of variance of θ̂ = a+ Cβ̂ is V̂
jack

θ̂ = CV̂
jack

β̂ C ′.

Exercise 10.3 A two-step estimator such as (12.51) is β̂ =
(∑n

i=1 ŵiŵ
′
i

)−1
(
∑n

i=1 ŵiyi) where

ŵi = Â
′
zi and Â = (Z ′Z)

−1
Z ′X. Describe how to construct the jackknife estimator of variance

of β̂.

Exercise 10.4 Let F̂ (x) denote the EDF of a random sample. Show that

√
n
(
F̂ (x)− F (x)

)
d−→ N (0, F (x) (1− F (x))) .

Exercise 10.5 Show that if the boostrap estimator of variance of β̂ is V̂
boot

β̂ , then the bootstrap

estimator of variance of θ̂ = a+ Cβ̂ is V̂
boot

θ̂ = CV̂
boot

β̂ C ′.

Exercise 10.6 Show that if the percentile interval for β is [L,U ] then the percentile interval for
a+ cβ is [a+ cL, a+ cU ].

Exercise 10.7 Consider the following bootstrap procedure. Using the non-parametric bootstrap,
generate bootstrap samples, calculate the estimate θ̂∗ on these samples and then calculate

T ∗ = (θ̂∗ − θ̂)/s(θ̂),

where s(θ̂) is the standard error in the original data. Let q∗α/2 and q
∗
1−α/2 denote the α/2

th and

1− α/2th quantiles of T ∗, and define the bootstrap confidence interval

C =
[
θ̂ + s(θ̂)q∗α/2, θ̂ + s(θ̂)q∗1−α/2

]
.

Show that C exactly equals the percentile interval.

Exercise 10.8 Prove Theorem 10.10.

Exercise 10.9 Prove Theorem 10.11.

Exercise 10.10 Prove Theorem 10.12.

Exercise 10.11 Let yi be i.i.d., µ = E (yi) > 0, and θ = µ−1. Let µ̂ = Y n be the sample mean
and θ̂ = µ̂−1.

(a) Is θ̂ unbiased for θ?

(b) If θ̂ is biased, can you determine the direction of the bias E
(
θ̂ − θ

)
(up or down)?

(c) Is the percentile interval appropriate in this context for confidence interval construction?

Exercise 10.12 Consider the following bootstrap procedure for a regression of yi on xi. Let β̂
denote the OLS estimator from the regression of y on X, and ê = y −Xβ̂ the OLS residuals.
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(a) Draw a random vector (x∗, e∗) from the pair {(xi, êi) : i = 1, ..., n} . That is, draw a random
integer i′ from [1, 2, ..., n], and set x∗ = xi′ and e∗ = êi′ . Set y∗ = x∗′β̂ + e∗. Draw (with
replacement) n such vectors, creating a random bootstrap data set (y∗,X∗).

(b) Regress y∗ on X∗, yielding OLS estimates β̂
∗
and any other statistic of interest.

Show that this bootstrap procedure is (numerically) identical to the non-parametric bootstrap.

Exercise 10.13 Take p∗ as defined in (10.22) for the BC percentile interval. Show that it is
invariant to replacing θ with g(θ) for any strictly monotonically increasing transformation g(θ).
Does this extend to z∗0 as defined in (10.23)?

Exercise 10.14 Show that if the percentile-t interval for β is [L,U ] then the percentile-t interval
for a+ cβ is [a+ bL, a+ bU ].

Exercise 10.15 You want to test H0 : θ = 0 against H1 : θ > 0. The test for H0 is to reject
if Tn = θ̂/s(θ̂) > c where c is picked so that Type I error is α. You do this as follows. Using
the nonparametric bootstrap, you generate bootstrap samples, calculate the estimates θ̂∗ on these
samples and then calculate

T ∗ = θ̂∗/s(θ̂∗).

Let q∗1−α denote the 1 − αth quantile of T ∗. You replace c with q∗1−α, and thus reject H0 if Tn =

θ̂/s(θ̂) > q∗1−α. What is wrong with this procedure?

Exercise 10.16 Suppose that in an application, θ̂ = 1.2 and s(θ̂) = .2. Using the nonparametric
bootstrap, 1000 samples are generated from the bootstrap distribution, and θ̂∗ is calculated on
each sample. The θ̂∗ are sorted, and the 0.025th and 0.975th quantiles of the θ̂∗ are .75 and 1.3,
respectively.

(a) Report the 95% percentile interval for θ.

(c) With the given information, can you calculate the 95% BC percentile interval or percentile-t
interval for θ?

Exercise 10.17 Take the normal regression model

yi = x′iβ + ei

ei|xi ∼ N(0, σ2)

where we know the MLE are the least-squares estimators β̂ and σ̂2.

(a) Describe the parametric regression bootstrap for this model. Show that the conditional
distribution of the bootstrap observations is y∗i |Fn ∼ N(x′iβ̂, σ̂

2).

(b) Show that the distribution of the bootstrap least-squares estimator is β̂
∗|Fn ∼ N(β̂, (X ′X)

−1
σ̂2).

(c) (optional) Show that the distribution of the bootstrap t-ratio with a homoskedastic standard
error is T ∗ ∼ tn−k.

Exercise 10.18 Consider the model

yi = x′iβ + ei

E (ei|xi) = 0

with yi scalar and xi a k vector. You have a random sample (yi,xi : i = 1, ..., n). You are interested
in estimating the regression function m(x) = E (yi|xi = x) at a fixed vector x and constructing a
95% confidence interval.
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(a) Write down the standard estimator and asymptotic confidence interval for m(x).

(b) Describe the percentile bootstrap confidence interval for m(x).

(c) Describe the percentile-t bootstrap confidence interval for m(x).

Exercise 10.19 The observed data is {yi, xi} ∈ R× Rk, k > 1, i = 1, ..., n. Take the model

yi = x′iβ + ei

E (xiei) = 0

µ3 = E
(
e3
i

)
(a) Write down an estimator for µ3.

(b) Explain how to use the percentile method to construct a 90% confidence interval for µ3 in
this specific model.

Exercise 10.20 Take the model

yi = x′iβ + ei

E (xiei) = 0

E
(
e2
i

)
= σ2

Describe the bootstrap percentile confidence interval for σ2.

Exercise 10.21 The model is

yi = x′1iβ1 + x′2iβ2 + ei

E (xiei) = 0

with x2i scalar. Describe how to test H0 : β2 = 0 against H1 : β2 6= 0 using the nonparametric
bootstrap.

Exercise 10.22 The model is

yi = x′1iβ1 + x2iβ2 + ei

E (xiei) = 0

with both x1i and x1i k × 1. Describe how to test H0 : β1 = β2 against H1 : β1 6= β2 using the
nonparametric bootstrap.

Exercise 10.23 Suppose a PhD student has a sample (yi, xi, zi : i = 1, ..., n) and estimates by
OLS the equation

yi = ziα̂+ x′iβ̂ + êi

where α is the coeffi cient of interest and she is interested in testing H0 : α = 0 against H1 :
α 6= 0. She obtains α̂ = 2.0 with standard error s(α̂) = 1.0 so the value of the t-ratio for H0 is
T = α̂/s(α̂) = 2.0. To assess significance, the student decides to use the bootstrap. She uses the
following algorithm

1. Samples (y∗i , x
∗
i , z
∗
i ) randomly from the observations. (Random sampling with replacement).

Creates a random sample with n observations.
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2. On this pseudo-sample, estimates the equation

y∗i = z∗i α̂
∗ + x∗′i β̂

∗ + ê∗i

by OLS and computes standard errors, including s(α̂∗). The t-ratio for H0, T
∗ = α̂∗/s(α̂∗) is

computed and stored.

3. This is repeated B = 10, 000 times.

4. The 0.95th empirical quantile q∗.95 of the bootstrap absolute t-ratios |T ∗| is computed. It is
q∗.95 = 3.5.

5. The student notes that while |T | = 2 > 1.96 (and thus an asymptotic 5% size test rejects
H0), |T | = 2 < q∗.95 = 3.5 and thus the bootstrap test does not reject H0. As the bootstrap is
more reliable, the student concludes that H0 cannot be rejected in favor of H1.

Question: Do you agree with the student’s method and reasoning? Do you see an error in her
method?

Exercise 10.24 Take the model

yi = x1iβ1 + x2iβ2 + ei

E (xiei) = 0

The parameter of interest is θ = β1β2. Show how to construct a confidence interval for θ using the
following three methods.

(a) Asymptotic Theory.

(b) Percentile Bootstrap.

(c) Percentile-t Bootstrap.

Your answer should be specific to this problem, not general.

Exercise 10.25 Take the model

yi = x1iβ1 + x2iβ2 + ei

E (xiei) = 0

θ =
β1

β2
.

Assume that the observations (yi, x1i, x2i) are i.i.d. across i = 1, ..., n. Describe how you would
construct the percentile-t bootstrap confidence interval for θ.

Exercise 10.26 The model is i.i.d. data, i = 1, ..., n,

yi = x′iβ + ei

E (ei | xi) = 0.

Does the presence of conditional heteroskedasticity invalidate the application of the nonparametric
bootstrap? Explain.
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Exercise 10.27 The RESET specification test for nonlinearity in a random sample (due to Ramsey
(1969)) is the following.

The null hypothesis is a linear regression

yi = x′iβ + ei

E (ei | xi) = 0.

The parameter β is estimated by OLS yielding predicted values ŷi. Then a second-stage least-
squares regression is estimated including both xi and ŷi

yi = x′iβ̃ + (ŷi)
2 γ̃ + ẽi

The RESET test statistic R is the squared t-ratio on γ̃.
A colleague suggests obtaining the critical value for the test using the bootstrap. He proposes

the following bootstrap implementation.

• Draw n observations (y∗i ,x
∗
i ) randomly from the observed sample pairs (yi,xi) to create a

bootstrap sample.

• Compute the statistic R∗ on this bootstrap sample as described above.

• Repeat this B times. Sort the bootstrap statistics R∗, take the 0.95th quantile and use this
as the critical value.

• Reject the null hypothesis if R exceeds this critical value, otherwise do not reject.

Is this procedure a correct implementation of the bootstrap in this context? If not, propose a
modified bootstrap.

Exercise 10.28 The model is

yi = x′iβ + ei

E (xiei) 6= 0,

so the regressor xi is endogenous. We know that in this case, the least-squares estimator is biased
for the parameter β. We also know that the nonparametric BC percentile interval is (generally)
a good method for confidence interval construction in the presence of bias. Explain whether or
not you expect the BC percentile interval applied to the least-squares estimator will have accurate
coverage in the presence of endogeneity.

Exercise 10.29 In Exercise 9.26 you estimated a cost function for 145 electric companies and
tested the restriction θ = β3 + β4 + β5 = 1.

(a) Estimate the regression by unrestricted least-squares, and report standard errors calculated
by asymptotic, jackknife and the bootstrap.

(b) Estimate θ = β3 + β4 + β5, and report standard errors calculated by asymptotic, jackknife
and the bootstrap.

(c) Report confidence intervals for θ using the percentile and BCa methods

Exercise 10.30 In Exercise 9.27 you estimated the Mankiw, Romer, and Weil (1992) unrestricted
regression. Let θ be the sum of the second, third and fourth coeffi cients.

(a) Estimate the regression by unrestricted least-squares, and report standard errors calculated
by asymptotic, jackknife and the bootstrap.
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(b) Estimate θ and report standard errors calculated by asymptotic, jackknife and the bootstrap.

(c) Report confidence intervals for θ using the percentile and BC methods.

Exercise 10.31 In Exercise 7.29 you estimated a wage regression with the CPS dataset and the
subsample of white Male Hispanics. Further restrict the sample to those never-married and live in
the Midwest region. (This sample has 99 observations.) As in subquestion (b), let θ be the ratio
of the return to one year of education to the return of one year of experience.

(a) Estimate θ and report standard errors calculated by asymptotic, jackknife and the bootstrap.

(b) Explain the discrepancy between the standard errors.

(c) Report confidence intervals for θ using the BC percentile method.

Exercise 10.32 In Exercise 4.26 you extended the work from Duflo, Dupas and Kremer (2011).
Repeat that regression, now calculating the standard error as well by cluster bootstrap. Report a
BCa confidence interval for each coeffi cient.
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Chapter 11

Multivariate Regression

11.1 Introduction

Multivariate regression is a system of regression equations. Multivariate regression is used
as reduced form models for instrumental variable estimation (explored in Chaper 12), vector au-
toregressions (explored in Chapter 15), demand systems (demand for multiple goods), and other
contexts.

Multivariate regression is also called by the name systems of regression equations. Closely
related is the method of Seemingly Unrelated Regressions (SUR) which we introduce in Section
11.7.

Most of the tools of single equation regression generalize naturally to multivariate regression.
A major difference is a new set of notation to handle matrix estimates.

11.2 Regression Systems

A system of linear regressions takes the form

yji = x′jiβj + eji (11.1)

for variables j = 1, ...,m and observations i = 1, ..., n, where the regressor vectors xji are kj × 1
and eji is an error. The coeffi cient vectors βj are kj × 1. The total number of coeffi cients are
k =

∑n
j=1 kj . The regression system specializes to univariate regression when m = 1.

It is typical to treat the observations as independent across observations i but correlated across
variables j. As an example, the observations yji could be expenditures by household i on good j.
The standard assumptions are that households are mutually independent, but expenditures by an
individual household are correlated across goods.

To describe the dependence between the dependent variables, we can define the m × 1 error
vector ei = (e1i, ..., emi)

′ and its m×m variance matrix

Σ = E
(
eie
′
i

)
.

The diagonal elements are the variances of the errors eji, and the off-diagonals are the covariances
across variables. It is typical to allow Σ to be unconstrained.

We can group the m equations (11.1) into a single equation as follows. Let yi = (y1i, ..., ymi)
′

be the m× 1 vector of dependent variables, define the m× k matrix of regressors

Xi =

 x′1i 0 · · · 0
... x′2i

...
0 0 · · · x′mi

 ,

380
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and define the k × 1 stacked coeffi cient vector

β =

 β1
...
βm

 .

Then the m regression equations can jointly be written as

yi = Xiβ + ei. (11.2)

The entire system can be written in matrix notation by stacking the variables. Define

y =

 y1
...
yn

 , e =

 e1
...
en

 , X =

 X1
...
Xn


which are mn× 1, mn× 1, and mn× k, respectively. The system can be written as

y = Xβ + e.

In many applications the regressor vectors xji are common across the variables j, so xji = xi
and kj = k. By this we mean that the same variables enter each equation with no exclusion
restrictions. Several important simplifications occur in this context. One is that we can write
(11.2) using the notation

yi = B′xi + ei (11.3)

where B = (β1,β2, · · · ,βm) is k×m. Another is that we can write the system in the n×m matrix
notation

Y = XB +E

where

Y =

 y′1
...
y′n

 , E =

 e′1
...
e′n

 , X =

 x′1
...
x′n

 .

Another convenient implication of common regressors is that we have the simplification

Xi =


x′i 0 · · · 0
0 x′i 0
...

...
...

0 0 · · · x′i

 = Im ⊗ x′i

where ⊗ is the Kronecker product (see Appendix A.21).

11.3 Least-Squares Estimator

Consider estimating each equation (11.1) by least-squares. This takes the form

β̂j =

(
n∑
i=1

xjix
′
ji

)−1( n∑
i=1

xjiyji

)
.

The combined estimate of β is the stacked vector

β̂ =

 β̂1
...
β̂m

 .
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It turns that we can write this estimator using the systems notation

β̂ =
(
X
′
X
)−1 (

X
′
y
)

=

(
n∑
i=1

X
′
iXi

)−1( n∑
i=1

X
′
iyi

)
. (11.4)

To see this, observe that

X
′
X =

(
X
′
1 · · · X

′
n

) X1
...
Xn


=

n∑
i=1

X
′
iXi

=

n∑
i=1

 x1i 0 · · · 0
... x2i

...
0 0 · · · xmi


 x′1i 0 · · · 0

... x′2i
...

0 0 · · · x′mi


=


∑n

i=1 x1ix
′
1i 0 · · · 0

...
∑n

i=1 x2ix
′
2i

...
0 0 · · ·

∑n
i=1 xmix

′
mi


and

X
′
y =

(
X
′
1 · · · X

′
n

) y1
...
yn


=

n∑
i=1

X
′
iyi

=
n∑
i=1

 x1i 0 · · · 0
... x2i

...
0 0 · · · xmi


 y1i

...
ymi


=


∑n

i=1 x1iy1i
...∑n

i=1 xmiymi

 .

Hence

(
X
′
X
)−1 (

X
′
y
)

=

(
n∑
i=1

XiX
′
i

)−1( n∑
i=1

Xiyi

)

=

 (
∑n

i=1 x1ix
′
1i)
−1 (

∑n
i=1 x1iy1i)

...
(
∑n

i=1 xmix
′
mi)
−1 (

∑n
i=1 xmiymi)


= β̂

as claimed.
The m× 1 residual vector for the ith observation is

êi = yi −X
′
iβ̂



CHAPTER 11. MULTIVARIATE REGRESSION 383

and the least-squares estimator of the m×m error variance matrix is

Σ̂ =
1

n

n∑
i=1

êiê
′
i. (11.5)

In the case of common regressors, observe that

β̂j =

(
n∑
i=1

xix
′
i

)−1( n∑
i=1

xiyji

)

and
B̂ =

(
β̂1, β̂2, · · · , β̂m

)
=
(
X ′X

)−1 (
X ′Y

)
. (11.6)

In Stata, multivariate regression can be implemented using the mvreg command.

11.4 Mean and Variance of Systems Least-Squares

We can calculate the finite-sample mean and variance of β̂ under the conditional mean assump-
tion

E (ei | xi) = 0 (11.7)

where xi is the union of the regressors xji. Equation (11.7) is equivalent to E (yji | xi) = x′jiβj , or
that the regression model is correctly specified.

We can center the estimator as

β̂ − β =
(
X
′
X
)−1 (

X
′
e
)

=

(
n∑
i=1

X
′
iXi

)−1( n∑
i=1

X
′
iei

)
.

Taking conditional expectations, we find E
(
β̂ |X

)
= β. Consequently, systems least-squares is

unbiased under correct specification.
To compute the variance of the estimator, define the conditional covariance matrix of the errors

of the ith observation
E
(
eie
′
i | xi

)
= Σi

which in general is unrestricted. Observe that if the observations are mutually independent, then

E
(
ee′ |X

)
= E


 e1e1 e1e2 · · · e1en

...
. . .

...
ene1 ene2 · · · enen

 |X


=

 Σ1 0 · · · 0
...

. . .
...

0 0 · · · Σn

 .

Also, by independence across observations,

var

(
n∑
i=1

X
′
iei |X

)
=

n∑
i=1

var
(
X
′
iei | xi

)
=

n∑
i=1

X
′
iΣiXi.

It follows that

var
(
β̂ |X

)
=
(
X
′
X
)−1

(
n∑
i=1

X
′
iΣiXi

)(
X
′
X
)−1

.
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When the regressors are common so that Xi = Im ⊗ x′i then the covariance matrix can be
written as

var
(
β̂ |X

)
=
(
Im ⊗

(
X ′X

)−1
)( n∑

i=1

(
Σi ⊗ xix′i

))(
Im ⊗

(
X ′X

)−1
)
.

Alternatively, if the errors are conditionally homoskedastic

E
(
eie
′
i | xi

)
= Σ (11.8)

then the covariance matrix takes the form

var
(
β̂ |X

)
=
(
X
′
X
)−1

(
n∑
i=1

X
′
iΣXi

)(
X
′
X
)−1

.

If both simplifications (common regressors and conditional homoskedasticity) hold then we have
the considerable simplication

var
(
β̂ |X

)
= Σ⊗

(
X ′X

)−1
.

11.5 Asymptotic Distribution

For an asymptotic distribution it is suffi cient to consider the equation-by-equation projection
model in which case

E (xjieji) = 0. (11.9)

First, consider consistency. Since β̂j are the standard least-squares estimators, they are consis-
tent for the projection coeffi cients βj .

Second, consider the asymptotic distribution. Again by our single equation theory it is immedi-
ate that the β̂j are asymptotically normally distributed. But our previous theory does not provide

a joint distribution of the β̂j across j. For this we need a joint theory for the stacked estimates β̂,
which we now provide.

Since the vector

X
′
iei =

 x1ie1i
...

xmiemi


is i.i.d. across i and mean zero under (11.9), the central limit theorem implies(

1√
n

n∑
i=1

X
′
iei

)
d−→ N (0,Ω)

where
Ω = E

(
X
′
ieie

′
iXi

)
= E

(
X
′
iΣiXi

)
.

The matrixΩ is the covariance matrix of the variables xjieji across equations. Under conditional
homoskedasticity (11.8) the matrix Ω simplifies to

Ω = E
(
X
′
iΣXi

)
(11.10)

(see Exercise 11.1). When the regressors are common then it simplies to

Ω = E
(
eie
′
i ⊗ xix′i

)
(11.11)
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(see Exercise 11.2) and under both conditions (homoskedasticity and common regressors) it sim-
plifies to

Ω = Σ⊗ E
(
xix

′
i

)
(11.12)

(see Exercise 11.3).
Applied to the centered and normalized estimator we obtain the asymptotic distribution.

Theorem 11.1 Under Assumption 7.2,

√
n
(
β̂ − β

)
d−→ N (0,V β)

where

V β = Q−1ΩQ−1

Q = E
(
X
′
iXi

)
=

 E (x1ix
′
1i) 0 · · · 0

...
. . .

...
0 0 · · · E (xnix

′
ni)

 .

For a proof, see Exercise 11.4.
When the regressors are common then the matrix Q simplies as

Q = Im ⊗ E
(
xix

′
i

)
(11.13)

(See Exercise 11.5).
If both the regressors are common and the errors are conditionally homoskedastic (11.8) then

we have the simplification
V β = Σ⊗

(
E
(
xix

′
i

))−1 (11.14)

(see Exercise 11.6).
Sometimes we are interested in parameters θ = r(β1, ...,βm) = r(β) which are functions of the

coeffi cients from multiple equations. In this case the least-squares estimate of θ is θ̂ = r(β̂). The
asymptotic distribution of θ̂ can be obtained from Theorem 11.1 by the delta method.

Theorem 11.2 Under Assumptions 7.2 and 7.3,

√
n
(
θ̂ − θ

)
d−→ N (0,V θ)

where

V θ = R′V βR

R =
∂

∂β
r (β)′ .

For a proof, see Exercise 11.7.
Theorem 11.2 is an example where multivariate regression is fundamentally distinct from uni-

variate regression. Only by treating the least-squares estimates as a joint estimator can we obtain
a distributional theory for an estimator θ̂ which is a function of estimates from multiple equations
and thereby construct standard errors, confidence intervals, and hypothesis tests.
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11.6 Covariance Matrix Estimation

From the finite sample and asymptotic theory we can construct appropriate estimators for the
variance of β̂. In the general case we have

V̂
β̂

=
(
X
′
X
)−1

(
n∑
i=1

X
′
iêiê

′
iXi

)(
X
′
X
)−1

.

Under conditional homoskedasticity (11.8) an appropriate estimator is

V̂
0

β̂ =
(
X
′
X
)−1

(
n∑
i=1

X
′
iΣ̂Xi

)(
X
′
X
)−1

.

When the regressors are common then these estimators equal

V̂
β̂

=
(
Im ⊗

(
X ′X

)−1
)( n∑

i=1

(
êiê
′
i ⊗ xix′i

))(
Im ⊗

(
X ′X

)−1
)

and
V̂

0

β̂ = Σ̂⊗
(
X ′X

)−1
,

respectively.
Covariance matrix estimators for θ̂ are found as

V̂
θ̂

= R̂
′
V̂
β̂
R̂

V̂
0

θ̂ = R̂
′
V̂

0

β̂R̂

R̂ =
∂

∂β
r
(
β̂
)′
.

Theorem 11.3 Under Assumption 7.2,

nV̂
β̂

p−→ V β

and
nV̂

0

β̂
p−→ V 0

β.

For a proof, see Exercise 11.8.

11.7 Seemingly Unrelated Regression

Consider the systems regression model under the conditional mean and conditional homoskedas-
ticity assumptions

yi = Xiβ + ei (11.15)

E (ei | xi) = 0

E
(
eie
′
i | xi

)
= Σ
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Since the errors are correlated across equations we can consider estimation by Generalized Least
Squares (GLS). To derive the estimator, premultiply (11.15) by Σ−1/2 so that the transformed error
vector is i.i.d. with covariance matrix Im. Then apply least-squares and rearrange to find

β̂gls =

(
n∑
i=1

X
′
iΣ
−1Xi

)−1( n∑
i=1

X
′
iΣ
−1yi

)
. (11.16)

(see Exercise 11.9). Another approach is to take the vector representation

y = Xβ + e

and calculate that the equation error e has variance E (ee′) = In ⊗Σ. Premultiply the equation
by In⊗Σ−1/2 so that the transformed error has variance matrix Inm and then apply least-squares
to find

β̂gls =
(
X
′ (
In ⊗Σ−1

)
X
)−1 (

X
′ (
In ⊗Σ−1

)
y
)

(11.17)

(see Exercise 11.10).
Expressions (11.16) and (11.17) are algebraically equivalent. To see the equivalence, observe

that

X
′ (
In ⊗Σ−1

)
X =

(
X
′
1 · · · X

′
n

) Σ−1 0 · · · 0
... Σ−1 ...
0 0 · · · Σ−1


 X1

...
Xn


=

n∑
i=1

X
′
iΣ
−1Xi

and

X
′ (
In ⊗Σ−1

)
y =

(
X
′
1 · · · X

′
n

) Σ−1 0 · · · 0
... Σ−1 ...
0 0 · · · Σ−1


 y1

...
yn


=

n∑
i=1

X
′
iΣ
−1yi.

Since Σ is unknown it must be replaced by an estimator. Using Σ̂ from (11.5) we obtain a
feasible GLS estimator.

β̂sur =

(
n∑
i=1

X
′
iΣ̂
−1
Xi

)−1( n∑
i=1

X
′
iΣ̂
−1
yi

)

=
(
X
′ (
In ⊗ Σ̂

−1
)
X
)−1 (

X
′ (
In ⊗ Σ̂

−1
)
y
)
. (11.18)

This is known as the Seemingly Unrelated Regression (SUR) estimator, and was introduced
by Zellner (1962).

The estimator Σ̂ can be updated by calculating the SUR residuals êi = yi −X
′
iβ̂sur and the

covariance matrix estimate Σ̂ = 1
n

∑n
i=1 êiê

′
i. Substituted into (11.18) we find an iterated SUR

estimator, and this can be iterated until convergence.
Under conditional homoskedasticity (11.8) we can derive its asymptotic distribution.
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Theorem 11.4 Under Assumption 7.2 and (11.8)

√
n
(
β̂sur − β

)
d−→ N

(
0,V ∗β

)
where

V ∗β =
(
E
(
X
′
iΣ
−1Xi

))−1
.

For a proof, see Exercise 11.11.
Under these assumptions (in particular conditional homoskedasticity), SUR is more effi cient

than least-squares.

Theorem 11.5 Under Assumption 7.2 and (11.8)

V ∗β =
(
E
(
X
′
iΣ
−1Xi

))−1

≤
(
E
(
X
′
iXi

))−1
E
(
X
′
iΣXi

)(
E
(
X
′
iXi

))−1

= V β

and thus β̂sur is asymptotically more effi cient than β̂ols.

For a proof, see Exercise 11.12.
An appropriate estimator of the variance of β̂sur is

V̂
β̂

=

(
n∑
i=1

X
′
iΣ̂
−1
Xi

)−1

.

Theorem 11.6 Under Assumption 7.2 and (11.8)

nV̂
β̂

p−→ V β.

For a proof, see Exercise 11.13.
In Stata, the seemingly unrelated regressions estimator is implemented using the sureg com-

mand.

Arnold Zellner

Arnold Zellner (1927-2000) of the United States was a founding father of the
econometrics field. He was a pioneer in Bayesian econometrics. One of his
core contributions was the method of Seemingly Unrelated Regressions.
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11.8 Equivalence of SUR and Least-Squares

When the regressors are common across equations xji = xi it turns out that the SUR estimator
simplifies to least-squares.

To see this, recall that when regressors are common this implies that Xi = Im ⊗ x′i. Then

X
′
iΣ̂
−1

= (Im ⊗ xi) Σ̂
−1

= Σ̂
−1 ⊗ xi

=
(
Σ̂
−1 ⊗ Ik

)
(Im ⊗ xi)

=
(
Σ̂
−1 ⊗ Ik

)
X
′
i.

Thus

β̂sur =

(
n∑
i=1

X
′
iΣ̂
−1
Xi

)−1( n∑
i=1

X
′
iΣ̂
−1
yi

)

=

((
Σ̂
−1 ⊗ Ik

) n∑
i=1

X
′
iXi

)−1((
Σ̂
−1 ⊗ Ik

) n∑
i=1

X
′
iyi

)

=

(
n∑
i=1

X
′
iXi

)−1( n∑
i=1

X
′
iyi

)
= β̂ols.

A model where regressors are not common across equations is nested within a model with the
union of all regressors included in all equations. Thus the model with regressors common across
equations is a fully unrestricted model, and a model where the regressors differ across equations is
a restricted model. Thus the above result shows that the SUR estimator reduces to least-squares
in the absence of restrictions, but SUR can differ from least-squares otherwise.

11.9 Maximum Likelihood Estimator

Take the linear model under the assumption that the error is independent of the regressors and
multivariate normally distributed. Thus

yi = Xiβ + ei

ei ∼ N (0,Σ) .

In this case we can consider the maximum likelihood estimator (MLE) of the coeffi cients.
It is convenient to reparameterize the covariance matrix in terms of its inverse, thus S = Σ−1.

With this reparameterization, the conditional denstiy of yi given Xi equals

f (yi|Xi) =
det (S)1/2

(2π)m/2
exp

(
−1

2
(yi −Xiβ)′ S (yi −Xiβ)

)
.

The log-likelihood function for the sample is

logL(β,S) = −nm
2

log (2π) +
n

2
log det (S)− 1

2

n∑
i=1

(
yi −Xiβ

)′
S
(
yi −Xiβ

)
.
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The maximum likelihood estimator
(
β̂mle, Ŝmle

)
maximizes the log-likelihood function. The

first order conditions are

0 =
∂

∂β
logL(β,S)

∣∣∣∣
β=β̂,S=Ŝ

=
n∑
i=1

XiŜ
(
yi −Xiβ̂

)
and

0 =
∂

∂S
logL(β,Σ)

∣∣∣∣
β=β̂,S=Ŝ

=
n

2
Ŝ
−1 − 1

2
tr

(
n∑
i=1

(
yi −Xiβ̂

)(
yi −Xiβ̂

)′)
.

The second equation uses the matrix results ∂
∂S log det (S) = S−1 and ∂

∂B tr (AB) = A′ from
Appendix A.20.

Solving and making the substitution Σ̂ = Ŝ
−1
we obtain

β̂mle =

(
n∑
i=1

X
′
iΣ̂
−1
Xi

)−1( n∑
i=1

X
′
iΣ̂
−1
yi

)

Σ̂mle =
1

n

n∑
i=1

(
yi −Xiβ̂

)(
yi −Xiβ̂

)′
.

Notice that each equation refers to the other. Hence these are not closed-form expressions, but can
be solved via iteration. The solution is identical to the iterated SUR estimator. Thus the SUR
estimator (iterated) is identical to the MLE under normality.

Recall that the SUR estimator simplifies to OLS when the regressors are common across equa-
tions. The same occurs for the MLE. Thus when Xi = Im ⊗ x′i we find that β̂mle = β̂ols and
Σ̂mle = Σ̂ols.

11.10 Restricted Estimation

In many multivariate regression applications it is desired to impose restrictions on the coef-
ficients. In particular, cross-equation restrictions (for example, imposing Slutsky symmetry on a
demand system) can be quite important, and can only be imposed by a multivariate estimation
method. Estimation subject to restrictions can be done by minimum distance, maximum likelihood,
or the generalized method of moments.

Minimum distance is a straightforward application of the methods of Chapter 8 to the estimators
presented in this chapter, since such methods apply to any asymptotically normal unrestricted
estimator.

Imposing restrictions on maximum likelihood is also straightforward. The likelihood is max-
imized subject to the imposed restrictions. One important example is explored in detail in the
following section.

Generalized method of moments estimation of multivariate regression subject to restrictions
will be explored in Section 13.18. This is a particularly simple and straightforward way to estimate
restricted multivariate regression models, and is our generally preferred approach.
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11.11 Reduced Rank Regression

One context where systems estimation is important is when it is desired to impose or test
restrictions across equations. Restricted systems are commonly estimated by maximum likelihood
under normality. In this section we explore one important special case of restricted multivariate
regression known as reduced rank regression. The model was originally proposed by Anderson
(1951) and extended by Johansen (1995).

The unrestricted model is

yi = B′xi +C ′zi + ei (11.19)

E
(
eie
′
i | xi, zi

)
= Σ

where B is k ×m, C is `×m, and xi and zi are regressors. We separate the regressors xi and zi
because the coeffi cient matrix B will be restricted while C will be unrestricted.

The matrix B is full rank if
rank (B) = min(k,m).

The reduced rank restriction is that

rank (B) = r < min(k,m)

for some known r.
The reduced rank restriction implies that we can write the coeffi cient matrix B in the factored

form
B = GA′

where A is m × r and G is k × r. This representation is not unique (as we can replace G with
GQ and A with AQ−1′ for any invertible Q and the same relation holds). Identification therefore
requires a normalization of the coeffi cients. A conventional normalization is

G′DG = Ir

for given D.
Equivalently, the reduced rank restriction can be imposed by requiring that B satisfy the

restriction BA⊥ = GA′A⊥ = 0 for some m× (m− r) coeffi cient matrix A⊥. Since G is full rank
this requires that A′A⊥ = 0, hence A⊥ is the orthogonal complement to A. Note that A⊥ is not
unique as it can be replaced by A⊥Q for any (m− r)× (m− r) invertible Q. Thus if A⊥ is to be
estimated it requires a normalization.

We discuss methods for estimation ofG, A, Σ, C, andA⊥. The standard approach is maximum
likelihood under the assumption that ei ∼ N (0,Σ). The log-likelihood function for the sample is

logL(G,A,C,Σ) = −nm
2

log (2π)− n

2
log det (Σ)

− 1

2

n∑
i=1

(
yi −AG′xi −C ′zi

)′
Σ−1

(
yi −AG′xi −C ′zi

)
.

Anderson (1951) derived the MLE by imposing the constraint BA⊥ = 0 via the method of
Lagrange multipliers. This turns out to be algebraically cumbersome.

Johansen (1995) instead proposed a concentration method which turns out to be relatively
straightforward. The method is as follows. First, treat G as if it is known. Then maximize the
log-likelihood with respect to the other parameters. Resubstituting these estimates, we obtain the
concentrated log-likelihood function with respect to G. This can be maximized to find the MLE for
G. The other parameter estimates are then obtain by substitution. We now describe these steps
in detail.



CHAPTER 11. MULTIVARIATE REGRESSION 392

Given G, the likelihood is a normal multivariate regression in the variables G′xi and zi, so
the MLE for A, C and Σ are least-squares. In particular, using the Frisch-Waugh-Lovell residual
regression formula, we can write the estimators for A and Σ as

Â(G) =
(
Ỹ
′
X̃G

)(
G′X̃

′
X̃G

)−1

and

Σ̂(G) =
1

n

(
Ỹ
′
Ỹ − Ỹ ′X̃G

(
G′X̃

′
X̃G

)−1
G′X̃

′
Ỹ

)
where

Ỹ = Y −Z
(
Z ′Z

)−1
Z ′Y

X̃ = X −Z
(
Z ′Z

)−1
Z ′X.

Substituting these estimators into the log-likelihood function, we obtain the concentrated like-
lihood function, which is a function of G only

log L̃(G) = logL
(
G, Â(G), Ĉ(G), Σ̂(G)

)
=
m

2
(n log (2π)− 1)− n

2
log det

(
Ỹ
′
Ỹ − Ỹ ′X̃G

(
G′X̃

′
X̃G

)−1
G′X̃

′
Ỹ

)

=
m

2
(n log (2π)− 1)− n

2
log det

(
Ỹ
′
Ỹ
) det

(
G′
(
X̃
′
X̃ − X̃

′
Ỹ
(
Ỹ
′
Ỹ
)−1

Y ′X̃

)
G

)
det
(
G′X̃

′
X̃G

) .

The third equality uses Theorem A.1.8. The MLE Ĝ for G is the maximizer of log L̃(G), or
equivalently equals

Ĝ = argmin
G

det

(
G′
(
X̃
′
X̃ − X̃

′
Ỹ
(
Ỹ
′
Ỹ
)−1

Y ′X̃

)
G

)
det
(
G′X̃

′
X̃G

) (11.20)

= argmax
G

det

(
G′X̃

′
Ỹ
(
Ỹ
′
Ỹ
)−1

Y ′X̃G

)
det
(
G′X̃

′
X̃G

)
= {v1, ...,vr}

which are the generalized eigenvectors of X̃
′
Ỹ
(
Ỹ
′
Ỹ
)−1

Y ′X̃ with respect to X̃
′
X̃ corresponding

to the r largest generalized eigenvalues. (Generalized eigenvalues and eigenvectors are discussed in

Section A.14.) The estimator satisfies the normalization Ĝ
′
X̃
′
X̃Ĝ = Ir. Letting v∗j denote the

eigenvectors of (11.20), we can also express Ĝ =
{
v∗m, ...,v

∗
m−r+1

}
.

This is computationally straightforward. In MATLAB, for example, the generalized eigenvalues
and eigenvectors of a matrix A with respect to B are found using the command eig(A,B).

Given Ĝ, the MLE Â, Ĉ, Σ̂ are found by least-squares regression of yi on Ĝ
′
xi and zi. In

particular, Â = Ĝ
′
X̃
′
Ỹ since Ĝ

′
X̃
′
X̃Ĝ = Ir.

We now discuss the estimator Â⊥ of A⊥. It turns out that

Â⊥ = argmax
A

det

(
A′
(
Ỹ
′
Ỹ − Ỹ ′X̃

(
X̃
′
X̃
)−1

X̃
′
Ỹ

)
A

)
det
(
A′Ỹ

′
Ỹ A

) (11.21)

= {w1, ...,wm−r}
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the eigenvectors of Ỹ
′
Ỹ − Ỹ ′X̃

(
X̃
′
X̃
)−1

X̃
′
Ỹ with respect to Ỹ

′
Ỹ associated with the largest

m− r eigenvalues.
By the dual eigenvalue relation (Theorem A.5), the eigenvalue problems in equations (11.20) and

(11.21) have the same non-unit eigenvalues λj , and the associated eigenvectors v∗j and wj satisfy

the relationship wj = λ
−1/2
j

(
Ỹ
′
Ỹ
)−1

Ỹ
′
X̃v∗j . Letting Λ = diag{λm, ..., λm−r+1} this implies

{wm, ...,wm−r+1} =
(
Ỹ
′
Ỹ
)−1

Ỹ
′
X̃
{
v∗m, ...,v

∗
m−r+1

}
Λ

=
(
Ỹ
′
Ỹ
)−1

ÂΛ.

The second equality holds since Ĝ =
{
v∗m, ...,v

∗
m−r+1

}
and Â = Ỹ

′
X̃Ĝ. Since the eigenvectors

wj satisfy the orthogonality property w′jỸ
′
Ỹ w` = 0 for j 6= `, it follows that

0 = Â
′
⊥Ỹ

′
Ỹ {wm, ...,wm−r+1} = Â

′
⊥ÂΛ.

Since Λ > 0 we conclude that Â
′
⊥Â = 0 as desired.

The solution Â⊥ in (11.21) can be represented several ways. One which is computationally
convenient is to observe that

Ỹ
′
Ỹ − Ỹ ′X̃

(
X̃
′
X̃
)−1

Ỹ
′
X̃ = Y ′MX,ZY = ẽ′ẽ

whereMX,Z = In− (X,Z)
(
(X,Z)′ (X,Z)

)−1
(X,Z)′ and ẽ = MX,ZY is the residual from the

unrestricted least-squares regression of Y on X and Z. The first equality follows by the Frisch-
Waugh-Lovell theorem. This shows that Â⊥ are the generalized eigenvectors of ẽ

′ẽ with respect
to Ỹ

′
Ỹ corresponding to the m − r largest eigenvalues. In MATLAB, for example, these can be

computed using the eig(A,B) command.
Another representation is to writeMZ = In −Z (Z ′Z)

−1
Z ′ so that

Â⊥ = argmax
A

det (A′Y ′MX,ZY A)

det (A′Y ′MZY A)
= argmin

A

det (A′Y ′MZY A)

det (A′Y ′MX,ZY A)

We summarize our findings.

Theorem 11.7 The MLE for the reduced rank model (11.19) under ei ∼ N (0,Σ) is given as

follows. Ĝmle = {v1, ...,vr} , the generalized eigenvectors of X̃
′
Ỹ
(
Ỹ
′
Ỹ
)−1

Y ′X̃ with respect

to X̃
′
X̃ corresponding to the r largest eigenvalues. Âmle, Ĉmle and Σ̂mle are obtained by the

least-squares regression

yi = ÂmleĜ
′
mlexi + Ĉ

′
mlezi + êi

Σ̂mle =
1

n

n∑
i=1

êiê
′
i.

Â⊥ equals the generalized eigenvectors of ẽ
′ẽ with respect to Ỹ

′
Ỹ corresponding to the m − r

smallest eigenvalues.
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Exercises

Exercise 11.1 Show (11.10) when the errors are conditionally homoskedastic (11.8).

Exercise 11.2 Show (11.11) when the regressors are common across equations xji = xi .

Exercise 11.3 Show (11.12) when the regressors are common across equations xji = xi and the
errors are conditionally homoskedastic (11.8).

Exercise 11.4 Prove Theorem 11.1.

Exercise 11.5 Show (11.13) when the regressors are common across equations xji = xi.

Exercise 11.6 Show (11.14) when the regressors are common across equations xji = xi and the
errors are conditionally homoskedastic (11.8).

Exercise 11.7 Prove Theorem 11.2.

Exercise 11.8 Prove Theorem 11.3.

Exercise 11.9 Show that (11.16) follows from the steps described.

Exercise 11.10 Show that (11.17) follows from the steps described.

Exercise 11.11 Prove Theorem 11.4.

Exercise 11.12 Prove Theorem 11.5.
Hint: First, show that it is suffi cient to show that

E
(
X
′
iXi

)(
E
(
X
′
iΣ
−1Xi

))−1
E
(
X
′
iXi

)
≤ E

(
X
′
iΣXi

)
.

Second, rewrite this equation using the transformations U i = Σ1/2Xi and V i = Σ1/2Xi, and then
apply the matrix Cauchy-Schwarz inequality (B.30).

Exercise 11.13 Prove Theorem 11.6.

Exercise 11.14 Take the model

yi = π′iβ + ei

πi = E (xi | zi) = Γ′zi

E (ei | zi) = 0

where yi, is scalar, xi is a k vector and zi is an ` vector. β and πi are k × 1 and Γ is `× k. The
sample is (yi,xi, zi : i = 1, ..., n) with πi unobserved.

Consider the estimator β̂ for β by OLS of yi on π̂i = Γ̂
′
zi where Γ̂ is the OLS coeffi cient from

the multivariate regression of xi on zi

(a) Show that β̂ is consistent for β.

(b) Find the asymptotic distribution
√
n
(
β̂ − β

)
as n→∞ assuming that β = 0.

(c) Why is the assumption β = 0 an important simplifying condition in part (b)?

(d) Using the result in (c), construct an appropriate asymptotic test for the hypothesisH0 : β = 0.
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Exercise 11.15 The observations are i.i.d., (y1i, y2i,xi : i = 1, ..., n). The dependent variables y1i

and y2i are real-valued. The regressor xi is a k-vector. The model is the two-equation system

y1i = x′iβ1 + e1i

E (xie1i) = 0

y2i = x′iβ2 + e2i

E (xie2i) = 0.

(a) What are the appropriate estimators β̂1 and β̂2 for β1 and β2?

(b) Find the joint asymptotic distribution of β̂1 and β̂2.

(c) Describe a test for H0 : β1 = β2.



Chapter 12

Instrumental Variables

12.1 Introduction

The concepts of endogeneity and instrumental variable are fundamental to econometrics,
and mark a substantial departure from other branches of statistics. The ideas of endogeneity
arise natural in economics from models of simultaneous equations, most notably the classic sup-
ply/demand model of price determination.

The identification problem in simultaneous equations dates back to Philip Wright (1915) and
Working (1927). The method of instrumental variables first appears in an Appendix of a 1928 book
by Philip Wright, though the authorship is sometimes credited to his son Sewell Wright. The label
“instrumental variables”was introduced by Reiersøl (1945). An excellent review of the history of
instrumental variables and this controvery in particular is Stock and Trebbi (2003).

12.2 Overview

We say that there is endogeneity in the linear model

yi = x′iβ + ei (12.1)

if β is the parameter of interest and
E(xiei) 6= 0. (12.2)

This is a core problem in econometrics and largely differentiates econometrics from many branches
of statistics. To distinguish (12.1) from the regression and projection models, we will call (12.1)
a structural equation and β a structural parameter. When (12.2) holds, it is typical to say
that xi is endogenous for β.

Endogeneity cannot happen if the coeffi cient is defined by linear projection. Indeed, we can
define the linear projection coeffi cient β∗ = E (xix

′
i)
−1 E (xiyi) and linear projection equation

yi = x′iβ
∗ + e∗i

E(xie
∗
i ) = 0.

However, under endogeneity (12.2) the projection coeffi cient β∗ does not equal the structural pa-
rameter. Indeed,

β∗ =
(
E
(
xix

′
i

))−1 E (xiyi)

=
(
E
(
xix

′
i

))−1 E
(
xi
(
x′iβ + ei

))
= β +

(
E
(
xix

′
i

))−1 E (xiei)

6= β

396
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the final relation since E (xiei) 6= 0.
Thus endogeneity requires that the coeffi cient be defined differently than projection. We de-

scribe such definitions as structural. We will present three examples in the following section.
Endogeneity implies that the least-squares estimator is inconsistent for the structural parameter.

Indeed, under i.i.d. sampling, least-squares is consistent for the projection coeffi cient, and thus is
inconsistent for β.

β̂
p−→
(
E
(
xix

′
i

))−1 E (xiyi) = β∗ 6= β.

The inconsistency of least-squares is typically referred to as endogeneity bias or estimation
bias due to endogeneity. (This is an imperfect label as the actual issue is inconsistency, not bias.)

As the structural parameter β is the parameter of interest, endogeneity requires the development
of alternative estimation methods. We discuss those in later sections.

12.3 Examples

The concept of endogeneity may be easiest to understand by example. We discuss three dis-
tinct examples. In each case it is important to see how the structural parameter β is defined
independently from the linear projection model.

Example: Measurement error in the regressor. Suppose that (yi, zi) are joint random
variables, E(yi | zi) = z′iβ is linear, β is the structural parameter, and zi is not observed. Instead
we observe xi = zi + ui where ui is a k × 1 measurement error, independent of ei and zi. This
is an example of a latent variable model, where “latent” refers to a structural variable which is
unobserved.

The model xi = zi + ui with zi and ui independent and E(ui) = 0 is known as classical
measurement error. This means that xi is a noisy but unbiased measure of zi.

By substitution we can express yi as a function of the observed variable xi.

yi = z′iβ + ei

= (xi − ui)′ β + ei

= x′iβ + vi

where vi = ei − u′iβ. This means that (yi,xi) satisfy the linear equation

yi = x′iβ + vi

with an error vi. But this error is not a projection error. Indeed,

E (xivi) = E
[
(zi + ui)

(
ei − u′iβ

)]
= −E

(
uiu

′
i

)
β 6= 0

if β 6= 0 and E (uiu
′
i) 6= 0. As we learned in the previous section, if E (xivi) 6= 0 then least-squares

estimation will be inconsistent.
We can calculate the form of the projection coeffi cient (which is consistently estimated by

least-squares). For simplicity suppose that k = 1. We find

β∗ = β +
E (xivi)

E
(
x2
i

) = β

(
1−

E
(
u2
i

)
E
(
x2
i

)) .
Since E

(
u2
i

)
/E
(
x2
i

)
< 1 the projection coeffi cient shrinks the structural parameter β towards zero.

This is called measurement error bias or attenuation bias.

Example: Supply and Demand. The variables qi and pi (quantity and price) are determined
jointly by the demand equation

qi = −β1pi + e1i
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and the supply equation
qi = β2pi + e2i.

Assume that ei =

(
e1i

e2i

)
is i.i.d., E (ei) = 0 and E (eie

′
i) = I2 (the latter for simplicity). The

question is: if we regress qi on pi, what happens?
It is helpful to solve for qi and pi in terms of the errors. In matrix notation,[

1 β1

1 −β2

](
qi
pi

)
=

(
e1i

e2i

)
so (

qi
pi

)
=

[
1 β1

1 −β2

]−1(
e1i

e2i

)
=

[
β2 β1

1 −1

](
e1i

e2i

)(
1

β1 + β2

)
=

(
(β2e1i + β1e2i) /(β1 + β2)

(e1i − e2i) /(β1 + β2)

)
.

The projection of qi on pi yields

qi = β∗pi + e∗i
E (pie

∗
i ) = 0

where

β∗ =
E (piqi)

E
(
p2
i

) =
β2 − β1

2
.

Thus the projection coeffi cient β∗ equals neither the demand slope β1 nor the supply slope β2, but
equals an average of the two. (The fact that it is a simple average is an artifact of the simple
covariance structure.)

Hence the OLS estimate satisfies β̂
p−→ β∗, and the limit does not equal either β1 or β2. The

fact that the limit is neither the supply nor demand slope is called simultaneous equations bias.
This occurs generally when yi and xi are jointly determined, as in a market equilibrium.

Generally, when both the dependent variable and a regressor are simultaneously determined,
then the variables should be treated as endogenous.

Example: Choice Variables as Regressors. Take the classic wage equation

log (wage) = βeducation+ e

with β the average causal effect of education on wages. If wages are affected by unobserved ability,
and individuals with high ability self-select into higher education, then e contains unobserved
ability, so education and e will be positively correlated. Hence education is endogenous. The
positive correlation means that the linear projection coeffi cient β∗ will be upward biased relative
to the structural coeffi cient β. Thus least-squares (which is estimating the projection coeffi cient)
will tend to over-estimate the causal effect of education on wages.

This type of endogeneity occurs generally when y and x are both choices made by an economic
agent, even if they are made at different points in time.

Generally, when both the dependent variable and a regressor are choice variables made by the
same agent, the variables should be treated as endogenous.
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12.4 Instruments

We have defined endogeneity as the context where the regressor is correlated with the equation
error. In most applications we only treat a subset of the regressors as endogenous; most of the
regressors will be treated as exogenous, meaning that they are assumed uncorrelated with the
equation error. To be specific, we make the partition

xi =

(
x1i

x2i

)
k1

k2
(12.3)

and similarly

β =

(
β1

β2

)
k1

k2

so that the structural equation is

yi = x′iβ + ei (12.4)

= x′1iβ1 + x′2iβ2 + ei.

The regressors are assumed to satisfy

E(x1iei) = 0

E(x2iei) 6= 0.

We call x1i exogenous and x2i endogenous for the structural parameter β. As the dependent
variable yi is also endogenous, we sometimes differentiate x2i by calling x2i the endogenous
right-hand-side variables.

In matrix notation we can write (12.4) as

y = Xβ + e

= X1β1 +X2β2 + e.

The endogenous regressors x2i are the critical variables discussed in the examples of the previous
section —simultaneous variables, choice variables, mis-measured regressors —that are potentially
correlated with the equation error ei. In most applications the number k2 of variables treated as
endogenous is small (1 or 2). The exogenous variables x1i are the remaining regressors (including
the equation intercept) and can be low or high dimensional.

To consistently estimate β we require additional information. One type of information which
is commonly used in economic applications are what we call instruments.

Definition 12.1 The `×1 random vector zi is an instrumental variable
for (12.4) if

E (ziei) = 0 (12.5)

E
(
ziz
′
i

)
> 0 (12.6)

rank
(
E
(
zix

′
i

))
= k. (12.7)

There are three components to the definition as given. The first (12.5) is that the instruments
are uncorrelated with the regression error. The second (12.6) is a normalization which excludes
linearly redundant instruments. The third (12.7) is often called the relevance condition and is
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essential for the identification of the model, as we discuss later. A necessary condition for (12.7) is
that ` ≥ k.

Condition (12.5) — that the instruments are uncorrelated with the equation error, is often
described as that they are exogenous in the sense that they are determined outside the model for
yi.

Notice that the regressors x1i satisfy condition (12.5) and thus should be included as instru-
mental variables. It is thus a subset of the variables zi. Notationally we make the partition

zi =

(
z1i

z2i

)
=

(
x1i

z2i

)
k1

`2
. (12.8)

Here, x1i = z1i are the included exogenous variables, and z2i are the excluded exogenous
variables. That is, z2i are variables which could be included in the equation for yi (in the sense
that they are uncorrelated with ei) yet can be excluded, as they would have true zero coeffi cients
in the equation.

Many authors simply label x1i as the “exogenous variables”, x2i as the “endogenous variables”,
and z2i as the “instrumental variables”.

We say that the model is just-identified if ` = k (and `2 = k2) and over-identified if ` > k
(and `2 > k2).

What variables can be used as instrumental variables? From the definition E (ziei) = 0 we see
that the instrument must be uncorrelated with the equation error, meaning that it is excluded from
the structural equation as mentioned above. From the rank condition (12.7) it is also important
that the instrumental variable be correlated with the endogenous variables x2i after controlling for
the other exogenous variables x1i. These two requirements are typically interpreted as requiring
that the instruments be determined outside the system for (yi,x2i), causally determine x2i, but do
not causally determine yi except through x2i.

Let’s take the three examples given above.
Measurement error in the regressor. When xi is a mis-measured version of zi, a common

choice for an instrument z2i is an alternative measurement of zi. For this z2i to satisfy the property
of an instrumental variable the measurement error in z2i must be independent of that in xi.

Supply and Demand. An appropriate instrument for price pi in a demand equation is a
variable z2i which influences supply but not demand. Such a variable affects the equilibrium values
of pi and qi but does not directly affect price except through quantity. Variables which affect supply
but not demand are typically related to production costs.

An appropriate instrument for price in a supply equation is a variable which influences demand
but not supply. Such a variable affects the equilibrium values of price and quantity but only affects
price through quantity.

Choice Variable as Regressor. An ideal instrument affects the choice of the regressor
(education) but does not directly influence the dependent variable (wages) except through the
indirect effect on the regressor. We will discuss an example in the next section.

12.5 Example: College Proximity

In a influential paper, David Card (1995) suggested if a potential student lives close to a college,
this reduces the cost of attendence and thereby raises the likelihood that the student will attend
college. However, college proximity does not directly affect a student’s skills or abilities, so should
not have a direct effect on his or her market wage. These considerations suggest that college
proximity can be used as an instrument for education in a wage regression. We use the simplest
model reported in Card’s paper to illustrate the concepts of instrumental variables throughout the
chapter.

Card used data from the National Longitudinal Survey of Young Men (NLSYM) for 1976. A
baseline least-squares wage regression for his data set is reported in the first column of Table
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12.1. The dependent variable is the log of weekly earnings. The regressors are education (years
of schooling), experience (years of work experience, calculated as age (years) less education+6 ),
experience2/100, black, south (an indicator for residence in the southern region of the U.S.), and
urban (an indicator for residence in a standard metropolitan statistical area). We drop observations
for which wage is missing. The remaining sample has 3,010 observations. His data is the file
Card1995 on the textbook website.

The point estimate obtained by least-squares suggests an 8% increase in earnings for each year
of education.

Table 12.1: Instrumental Variable Wage Regressions

OLS IV(a) IV(b) 2SLS(a) 2SLS(b) LIML
education 0.074 0.132 0.133 0.161 0.160 0.164

(0.004) (0.049) (0.051) (0.040) (0.041) (0.042)
experience 0.084 0.107 0.056 0.119 0.047 0.120

(0.007) (0.021) (0.026) (0.018) (0.025) (0.019)
experience2/100 −0.224 −0.228 −0.080 −0.231 −0.032 −0.231

(0.032) (0.035) (0.133) (0.037) (0.127) (0.037)
black −0.190 −0.131 −0.103 −0.102 −0.064 −0.099

(0.017) (0.051) (0.075) (0.044) (0.061) (0.045)
south −0.125 −0.105 −0.098 −0.095 −0.086 −0.094

(0.015) (0.023) (0.0284) (0.022) (0.026) (0.022)
urban 0.161 0.131 0.108 0.116 0.083 0.115

(0.015) (0.030) (0.049) (0.026) (0.041) (0.027)
Sargan 0.82 0.52 0.82
p-value 0.37 0.47 0.37

Notes:

1. IV(a) uses college as an instrument for education.

2. IV(b) uses college, age, and age2/100 as instruments for education, experience, and experience2/100.

3. 2SLS(a) uses public and private as instruments for education.

4. 2SLS(b) uses public, private, age, and age2 as instruments for education, experience, and
experience2/100.

5. LIML uses public and private as instruments for education.

As discussed in the previous sections, it is reasonable to view years of education as a choice
made by an individual, and thus is likely endogenous for the structural return to education. This
means that least-squares is an estimate of a linear projection, but is inconsistent for coeffi cient
of a structural equation representing the causal impact of years of education on expected wages.
Labor economics predicts that ability, education, and wages will be positively correlated. This
suggests that the population projection coeffi cient estimated by least-squares will be higher than
the structural parameter (and hence upwards biased). However, the sign of the bias is uncertain
since there are multiple regressors and there are other potential sources of endogeneity.

To instrument for the endogeneity of education, Card suggested that a reasonable instrument
is a dummy variable indicating if the individual grew up near a college. We will consider three
measures:

college Grew up in same county as a 4-year college
public Grew up in same county as a 4-year public college
private Grew up in same county as a 4-year private college.
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12.6 Reduced Form

The reduced form is the relationship between the regressors xi and the instruments zi. A linear
reduced form model for xi is

xi = Γ′zi + ui. (12.9)

This is a multivariate regression as introduced in Chapter 11. The ` × k coeffi cient matrix Γ can
be defined by linear projection. Thus

Γ = E
(
ziz
′
i

)−1 E
(
zix

′
i

)
(12.10)

so that
E
(
ziu

′
i

)
= 0.

In matrix notation, we can write (12.9) as

X = ZΓ +U

where U is n × k. Notice that the projection coeffi cient (12.10) is well defined and unique under
(12.6).

Since zi and xi have the common variables x1i, we can focus on the reduced form for the the
endogenous regressors x2i. Recalling the partitions (12.3) and (12.8) we can partition Γ conformably
as

Γ =
k1 k2[

Γ11 Γ12

Γ21 Γ22

]
`1
`2

=

[
Ik1 Γ12

0 Γ22

]
(12.11)

and similarly partition ui. Then (12.9) can be rewritten as two equation systems

x1i = z1i (12.12)

x2i = Γ′12z1i + Γ′22z2i + u2i. (12.13)

The first equation (12.12) is a tautology. The second equation (12.13) is the primary reduced form
equation of interest. It is a multivariate linear regression for x2i as a function of the included and
excluded exogeneous variables z1i and z2i.

We can also construct a reduced form equation for yi. Substituting (12.9) into (12.4), we find

yi =
(
Γ′zi + ui

)′
β + ei

= z′iλ+ vi (12.14)

where
λ = Γβ (12.15)

and
vi = u′iβ + ei.

Observe that
E (zivi) = E

(
ziu

′
i

)
β + E (ziei) = 0.

Thus (12.14) is a projection equation. It is the reduced form for yi, as it expresses yi as a function
of exogeneous variables only. Since it is a projection equation we can write the reduced form
coeffi cient as

λ = E
(
ziz
′
i

)−1 E (ziyi)
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which is well defined under (12.6).
Alternatively, we can substitute (12.13) into (12.4) and use x1i = z1i to obtain

yi = x′1iβ1 +
(
Γ′12z1i + Γ′22z2i + u2i

)′
β2 + ei

= z′1iλ1 + z′2iλ2 + vi (12.16)

where

λ1 = β1 + Γ12β2 (12.17)

λ2 = Γ22β2. (12.18)

which is an alternative (and equivalent) expression of (12.15) given (12.11).
(12.9) and (12.14) together (or (12.13) and (12.16) together) are the reduced form equations

for the system

yi = z′iλ+ vi

xi = Γ′zi + ui.

The relationships (12.15) and (12.17)-(12.18) are critically important for understanding the
identification of the structural parameters β1 and β2, as we discuss below. These equations show
the tight relationship between the parameters of the structural equations (β1 and β2) and those of
the reduced form equations (λ1, λ2, Γ12 and Γ22).

12.7 Reduced Form Estimation

The reduced form equations are projections, so the coeffi cient matrices may be estimated by
least-squares (see Chapter 11). The least-squares estimate of (12.9) is

Γ̂ =

(
n∑
i=1

ziz
′
i

)−1( n∑
i=1

zix
′
i

)
. (12.19)

The estimates of equation (12.9) can be written as

xi = Γ̂
′
zi + ûi. (12.20)

In matrix notation, these can be written as

Γ̂ =
(
Z ′Z

)−1 (
Z ′X

)
and

X = ZΓ̂ + Û .

Since X and Z have a common sub-matrix, we have the partition

Γ̂ =

[
Ik1 Γ̂12

0 Γ̂22

]
.

The reduced form estimates of equation (12.13) can be written as

x2i = Γ̂
′
12z1i + Γ̂

′
22z2i + û2i

or in matrix notation as
X2 = Z1Γ̂12 +Z2Γ̂22 + Û2.
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We can write the submatrix estimates as[
Γ̂12

Γ̂22

]
=

(
n∑
i=1

ziz
′
i

)−1( n∑
i=1

zix
′
2i

)
=
(
Z ′Z

)−1 (
Z ′X2

)
.

The reduced form estimate of equation (12.14) is

λ̂ =

(
n∑
i=1

ziz
′
i

)−1( n∑
i=1

ziyi

)
yi = z′iλ̂+ v̂i

= z′1iλ̂1 + z′2iλ̂2 + v̂i

or in matrix notation

λ̂ =
(
Z ′Z

)−1 (
Z ′y

)
y = Zλ̂+ v̂

= Z1λ̂1 +Z2λ̂2 + v̂.

12.8 Identification

A parameter is identified if it is a unique function of the probability distribution of the ob-
servables. One way to show that a parameter is identified is to write it as an explicit function of
population moments. For example, the reduced form coeffi cient matrices Γ and λ are identified
since they can be written as explicit functions of the moments of the observables (yi,xi, zi). That
is,

Γ = E
(
ziz
′
i

)−1 E
(
zix

′
i

)
(12.21)

λ = E
(
ziz
′
i

)−1 E (ziyi) . (12.22)

These are uniquely determined by the probability distribution of (yi,xi, zi) if Definition 12.1 holds,
since this includes the requirement that E (ziz

′
i) is invertible.

We are interested in the structural parameter β. It relates to (λ,Γ) through (12.15), or

λ = Γβ. (12.23)

It is identified if it uniquely determined by this relation. This is a set of ` equations with k unknowns
with ` ≥ k. From standard linear algebra we know that there is a unique solution if and only if Γ
has full rank k.

rank (Γ) = k. (12.24)

Under (12.24), β can be uniquely solved from the linear system λ = Γβ. On the other hand if
rank (Γ) < k then λ = Γβ has fewer mutually independent linear equations than coeffi cients so
there is not a unique solution.

From the definitions (12.21)-(12.22) the identification equation (12.23) is the same as

E (ziyi) = E
(
zix

′
i

)
β

which is again a set of ` equations with k unknowns. This has a unique solution if (and only if)

rank
(
E
(
zix

′
i

))
= k (12.25)

which was listed in (12.7) as a conditions of Definition 12.1. (Indeed, this is why it was listed as part
of the definition.) We can also see that (12.24) and (12.25) are equivalent ways of expressing the
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same requirement. If this condition fails then β will not be identified. The condition (12.24)-(12.25)
is called the relevance condition.

It is useful to have explicit expressions for the solution β. The easiest case is when ` = k. Then
(12.24) implies Γ is invertible, so the structural parameter equals β = Γ−1λ. It is a unique solution
because Γ and λ are unique and Γ is invertible.

When ` > k we can solve for β by applying least-squares to the system of equations λ = Γβ .
This is ` equations with k unknowns and no error. The least-squares solution is β = (Γ′Γ)

−1
Γ′λ.

Under (12.24) the matrix Γ′Γ is invertible so the solution is unique.
β is identified if rank(Γ) = k, which is true if and only if rank(Γ22) = k2 (by the upper-diagonal

structure of Γ). Thus the key to identification of the model rests on the `2 × k2 matrix Γ22 in
(12.13). To see this, recall the reduced form relationships (12.17)-(12.18). We can see that β2 is
identified from (12.18) alone, and the necessary and suffi cient condition is rank(Γ22) = k2. If this
is satisfied then the solution can be written as β2 = (Γ′22Γ22)

−1
Γ′22λ2 . Then β1 is identified from

this and (12.17), with the explicit solution β1 = λ1 − Γ12 (Γ′22Γ22)
−1

Γ′22λ2. In the just-identified
case (`2 = k2) these equations simplify to take the form β2 = Γ−1

22 λ2 and β1 = λ1 − Γ12Γ
−1
22 λ2.

12.9 Instrumental Variables Estimator

In this section we consider the special case where the model is just-identified, so that ` = k.
The assumption that zi is an instrumental variable implies that

E (ziei) = 0.

Making the substitution ei = yi − x′iβ we find

E
(
zi
(
yi − x′iβ

))
= 0.

Expanding,
E (ziyi)− E

(
zix

′
i

)
β = 0.

This is a system of ` = k equations and k unknowns. Solving for β we find

β =
(
E
(
zix

′
i

))−1 E (ziyi) .

This solution assumes that the matrix E (zix
′
i) is invertible, which holds under (12.7) or equivalently

(12.24).
The instrumental variables (IV) estimator β replaces the population moments by their

sample versions. We find

β̂iv =

(
1

n

n∑
i=1

zix
′
i

)−1(
1

n

n∑
i=1

ziyi

)

=

(
n∑
i=1

zix
′
i

)−1( n∑
i=1

ziyi

)
=
(
Z ′X

)−1 (
Z ′y

)
. (12.26)

More generally, it is common to refer to any estimator of the form

β̂iv =
(
W ′X

)−1 (
W ′y

)
given an n× k matrix W as an IV estimator for β using the instrument W .
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Alternatively, recall that when ` = k the structural parameter can be written as a function of
the reduced form parameters as β = Γ−1λ. Replacing Γ and λ by their least-squares estimates we
can construct what is called the Indirect Least Squares (ILS) estimator:

β̂ils = Γ̂
−1
λ̂

=
((
Z ′Z

)−1 (
Z ′X

))−1 ((
Z ′Z

)−1 (
Z ′y

))
=
(
Z ′X

)−1 (
Z ′Z

) (
Z ′Z

)−1 (
Z ′y

)
=
(
Z ′X

)−1 (
Z ′y

)
.

We see that this equals the IV estimator (12.26). Thus the ILS and IV estimators are identical.
Given the IV estimator we define the residual vector

ê = y −Xβ̂iv

which satisfies
Z ′ê = Z ′y −Z ′X

(
Z ′X

)−1 (
Z ′y

)
= 0. (12.27)

Since Z includes an intercept, this means that the residuals sum to zero, and are uncorrelated with
the included and excluded instruments.

To illustrate, we estimate the reduced form equations corresponding to the college proximity
example of Table 12.1, now treating education as endogenous and using college as an instrumental
variable. The reduced form equations for log(wage) and education are reported in the first and
second columns of Table 12.2.

Table 12.2: Reduced Form Regressions

log(wage) education education experience experience2/100 education
experience 0.053 −0.410 −0.413

(0.007) (0.032) (0.032)
experience2/100 −0.219 0.073 0.093

(0.033) (0.170) (0.171)
black −0.264 −1.006 −1.468 1.468 0.282 −1.006

(0.018) (0.088) (0.115) (0.115) (0.026) (0.088)
south −0.143 −0.291 −0.460 0.460 0.112 −0.267

(0.017) (0.078) (0.103) (0.103) (0.022) (0.079)
urban 0.185 0.404 0.835 −0.835 −0.176 0.400

(0.017) (0.085) (0.112) (0.112) (0.025) (0.085)
college 0.045 0.337 0.347 −0.347 −0.073

(0.016) (0.081) (0.109) (0.109) (0.023)
public 0.430

(0.086)
private 0.123

(0.101)
age 1.061 −0.061 −0.555

(0.296) (0.296) (0.065)
age2/100 −1.876 1.876 1.313

(0.516) (0.516) (0.116)
F 17.51 8.22 1581 1112 13.87

Of particular interest is the equation for the endogenous regressor (education), and the coef-
ficients for the excluded instruments —in this case college. The estimated coeffi cient equals 0.347
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with a small standard error. This implies that growing up near a 4-year college increases average
educational attainment by 0.3 years. This seems to be a reasonable magnitude.

Since the structural equation is just-identified with one right-hand-side endogenous variable,
we can calculate the ILS/IV estimate for the education coeffi cient as the ratio of the coeffi cient
estimates for the instrument college in the two equations, e.g. 0.045/0.347 = 0.13, implying a 13%
return to each year of education. This is substantially greater than the 7% least-squares estimate
from the first column of Table 12.1.

The IV estimates of the full equation are reported in the second column of Table 12.1.
Card (1995) also points out that if education is endogenous, then so is our measure of experience,

since it is calculated by subtracting education from age. He suggests that we can use the variables
age and age2 as instruments for experience and experience2, as they are clearly exogeneous and yet
highly correlated with experience and experience2. Notice that this approach treats experience2 as
a variable separate from experience. Indeed, this is the correct approach.

Following this recommendation we now have three endogenous regressors and three instruments.
We present the three reduced form equations for the three endogenous regressors in the third
through fifth columns of Table 12.2. It is interesting to compare the equations for education and
experience. The two sets of coeffi cients are simply the sign change of the other, with the exception
of the coeffi cient on age. Indeed this must be the case, because the three variables are linearly
related. Does this cause a problem for 2SLS? Fortunately, no. The fact that the coeffi cient on age
is not simply a sign change means that the equations are not linearly singular. Hence Assumption
(12.24) is not violated.

The IV estimates using the three instruments college, age and age2 for the endogenous regressors
education, experience and experience2 is presented in the third column of Table 12.1. The estimate
of the returns to schooling is not affected by this change in the instrument set, but the estimated
return to experience profile flattens (the quadratic effect diminishes).

The IV estimator may be calculated in Stata using the ivregress 2sls command.

12.10 Demeaned Representation

Does the well-known demeaned representation for linear regression (3.19) carry over to the IV
estimator? To see this, write the linear projection equation in the format

yi = x′iβ + α+ ei

where α is the intercept and xi does not contain a constant. Similarly, partition the instrument as
(1, zi) where zi does not contain an intercept. We can write the IV estimates as

yi = x′iβ̂iv + α̂iv + êi.

The orthogonality (12.27) implies the two-equation system

n∑
i=1

(
yi − x′iβ̂iv − α̂iv

)
= 0

n∑
i=1

zi

(
yi − x′iβ̂iv − α̂iv

)
= 0.

The first equation implies
α̂iv = y − x′β̂iv.

Substituting into the second equation

n∑
i=1

zi

(
(yi − y)− (xi − x)′ β̂iv

)
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and solving for β̂iv we find

β̂iv =

(
n∑
i=1

zi (xi − x)′
)−1( n∑

i=1

zi (yi − y)

)

=

(
n∑
i=1

(zi − z) (xi − x)′
)−1( n∑

i=1

(zi − z) (yi − y)

)
. (12.28)

Thus the demeaning equations for least-squares carry over to the IV estimator. The coeffi cient
estimate β̂iv is a function only of the demeaned data.

12.11 Wald Estimator

In many cases, including the Card proximity example, the excluded instrument is a binary
(dummy) variable. Let’s focus on that case, and suppose that the model has just one endogenous
regressor and no other regressors beyond the intercept. Thus the model can be written as

yi = xiβ + α+ ei

E (ei | zi) = 0

with zi binary.
Notice that if we take expectations of the structural equation given zi = 1 and zi = 0, respec-

tively, we obtain

E (yi | zi = 1) = E (xi | zi = 1)β + α

E (yi | zi = 0) = E (xi | zi = 0)β + α.

Subtracting and dividing, we obtain an expression for the slope coeffi cient β

β =
E (yi | zi = 1)− E (yi | zi = 0)

E (xi | zi = 1)− E (xi | zi = 0)
. (12.29)

The natural moment estimator for β replaces the expectations by the averages within the
“grouped data”where zi = 1 and zi = 0, respectively. That is, define the group means

y1 =

∑n
i=1 ziyi∑n
i=1 zi

, y0 =

∑n
i=1 (1− zi) yi∑n
i=1 (1− zi)

x1 =

∑n
i=1 zixi∑n
i=1 zi

, x0 =

∑n
i=1 (1− zi)xi∑n
i=1 (1− zi)

and the moment estimator
β̂ =

y1 − y0

x1 − x0
. (12.30)

This is known as the “Wald estimator”as it was proposed by Wald (1940).
These expressions are rather insightful. (12.29) shows that the structural slope coeffi cient is the

expected change in yi due to changing the instrument divided by the expected change in xi due to
changing the instrument. Informally, it is the change in y (due to z) over the change in x (due to
z). Equation (12.30) shows that the slope coeffi cient can be estimated by a simple ratio in means.

The expression (12.30) may appear like a distinct estimator from the IV estimator β̂iv, but it
turns out that they are the same. That is, β̂ = β̂iv. To see this, use (12.28) to find

β̂iv =

∑n
i=1 zi (yi − y)∑n
i=1 zi (xi − x)

=
y1 − y
x1 − x

.
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Then notice

y1 − y = y1 −
(

1

n

n∑
i=1

ziy1 +
1

n

n∑
i=1

(1− zi) y0

)
=

1

n

n∑
i=1

(1− zi) (y1 − y0)

and similarly

x1 − x =
1

n

n∑
i=1

(1− zi) (x1 − x0)

and hence

β̂iv =
1
n

∑n
i=1 (1− zi) (y1 − y0)

1
n

∑n
i=1 (1− zi) (x1 − x0)

= β̂

as defined in (12.30). Thus the Wald estimator equals the IV estimator.
We can illustrate using the Card proximity example. If we estimate a simple IV model with

no covariates we obtain the estimate β̂iv = 0.19. If we estimate the group-mean log wages and
education levels based on the instrument college, we find

near college not near college
log(wage) 6.311 6.156
education 13.527 12.698

Based on these estimates theWald estimator of the slope coeffi cient is (6.311− 6.156) / (13.527− 12.698) =
0.19, the same as the IV estimator.

12.12 Two-Stage Least Squares

The IV estimator described in the previous section presumed ` = k. Now we allow the general
case of ` ≥ k. Examining the reduced-form equation (12.14) we see

yi = z′iΓβ + vi

E (zivi) = 0.

Defining wi = Γ′zi we can write this as

yi = w′iβ + vi

E (wivi) = 0.

Suppose that Γ were known. Then we would estimate β by least-squares of yi on wi = Γ′zi

β̂ =
(
W ′W

)−1 (
W ′y

)
=
(
Γ′Z ′ZΓ

)−1 (
Γ′Z ′y

)
.

While this is infeasible, we can estimate Γ from the reduced form regression. Replacing Γ with its
estimate Γ̂ = (Z ′Z)

−1
(Z ′X) we obtain

β̂2sls =
(
Γ̂
′
Z ′ZΓ̂

)−1 (
Γ̂
′
Z ′y

)
=
(
X ′Z

(
Z ′Z

)−1
Z ′Z

(
Z′Z

)−1
Z
′
X
)−1

X ′Z
(
Z ′Z

)−1
Z ′y

=
(
X ′Z

(
Z ′Z

)−1
Z ′X

)−1
X ′Z

(
Z ′Z

)−1
Z ′y. (12.31)

This is called the two-stage-least squares (2SLS) estimator. It was originally proposed by Theil
(1953) and Basmann (1957), and is a standard estimator for linear equations with instruments.
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If the model is just-identified, so that k = `, then 2SLS simplifies to the IV estimator of the
previous section. Since the matrices X ′Z and Z ′X are square, we can factor(

X ′Z
(
Z ′Z

)−1
Z ′X

)−1
=
(
Z ′X

)−1
((
Z ′Z

)−1
)−1 (

X ′Z
)−1

=
(
Z ′X

)−1 (
Z ′Z

) (
X ′Z

)−1
.

(Once again, this only works when k = `.) Then

β̂2sls =
(
X ′Z

(
Z ′Z

)−1
Z ′X

)−1
X ′Z

(
Z ′Z

)−1
Z ′y

=
(
Z ′X

)−1 (
Z ′Z

) (
X ′Z

)−1
X ′Z

(
Z ′Z

)−1
Z ′y

=
(
Z ′X

)−1 (
Z ′Z

) (
Z ′Z

)−1
Z ′y

=
(
Z ′X

)−1
Z ′y

= β̂iv

as claimed. This shows that the 2SLS estimator as defined in (12.31) is a generalization of the IV
estimator defined in (12.26).

There are several alternative representations of the 2SLS estimator which we now describe.
First, defining the projection matrix

PZ = Z
(
Z ′Z

)−1
Z ′ (12.32)

we can write the 2SLS estimator more compactly as

β̂2sls =
(
X ′PZX

)−1
X ′PZy. (12.33)

This is useful for representation and derivations, but is not useful for computation as the n × n
matrix PZ is too large to compute when n is large.

Second, define the fitted values for X from the reduced form

X̂ = PZX = ZΓ̂.

Then the 2SLS estimator can be written as

β̂2sls =
(
X̂
′
X
)−1

X̂
′
y.

This is an IV estimator as defined in the previous section using X̂ as the instrument.
Third, since PZ is idempotent, we can also write the 2SLS estimator as

β̂2sls =
(
X ′PZPZX

)−1
X ′PZy

=
(
X̂
′
X̂
)−1

X̂
′
y

which is the least-squares estimator obtained by regressing y on the fitted values X̂.
This is the source of the “two-stage”name is since it can be computed as follows.

• First regress X on Z, vis., Γ̂ = (Z ′Z)
−1

(Z ′X) and X̂ = ZΓ̂ = PZX.

• Second, regress y on X̂, vis., β̂2sls =
(
X̂
′
X̂
)−1

X̂
′
y.
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It is useful to scrutinize the projection X̂. Recall, X = [X1,X2] and Z = [X1,Z2]. Notice
X̂1 = PZX1 = X1 since X1 lies in the span of Z. Then

X̂ =
[
X̂1, X̂2

]
=
[
X1, X̂2

]
.

Thus in the second stage, we regress y on X1 and X̂2. So only the endogenous variables X2 are
replaced by their fitted values:

X̂2 = X1Γ̂12 +Z2Γ̂22.

This least squares estimator can be written as

y = X1β̂1 + X̂2β̂2 + ε̂.

A fourth representation of 2SLS can be obtained from the previous representation for β̂2. Set
P 1 = X1 (X ′1X1)

−1
X ′1. Applying the FWL theorem we obtain

β̂2 =
(
X̂
′
2 (In − P 1) X̂2

)−1 (
X̂
′
2 (In − P 1)y

)
=
(
X ′2PZ (In − P 1)PZX2

)−1 (
X ′2PZ (In − P 1)y

)
=
(
X ′2 (PZ − P 1)X2

)−1 (
X ′2 (PZ − P 1)y

)
since PZP 1 = P 1.

A fifth representation can be obtained by a further projection. The projection matrix PZ can
be replaced by the projection onto the pair [X1, Z̃2] where Z̃2 = (In − P 1)Z2 is Z2 projected

orthogonal toX1. SinceX1 and Z̃2 are orthogonal, PZ = P 1+P 2 where P 2 = Z̃2

(
Z̃
′
2Z̃2

)−1
Z̃
′
2.

Thus PZ − P 1 = P 2 and

β̂2 =
(
X ′2P 2X2

)−1 (
X ′2P 2y

)
=

(
X ′2Z̃2

(
Z̃
′
2Z̃2

)−1
Z̃
′
2X2

)−1(
X ′2Z̃2

(
Z̃
′
2Z̃2

)−1
Z̃
′
2y

)
. (12.34)

Given the 2SLS estimator we define the residual vector

ê = y −Xβ̂2sls.

When the model is overidentified, the instruments and residuals are not orthogonal. That is

Z ′ê 6= 0.

It does, however, satisfy

X̂
′
ê = Γ̂

′
Z ′ê

= X ′Z
(
Z ′Z

)−1
Z ′ê

= X ′Z
(
Z ′Z

)−1
Z ′y −X ′Z

(
Z ′Z

)−1
Z ′Xβ̂2sls

= 0.

Returning to Card’s college proximity example, suppose that we treat experience as exogeneous,
but that instead of using the single instrument college (grew up near a 4-year college) we use the
two instruments (public, private) (grew up near a public/private 4-year college, respectively). In
this case we have one endogenous variable (education) and two instruments (public, private). The
estimated reduced form equation for education is presented in the sixth column of Table 12.2. In
this specification, the coeffi cient on public —growing up near a public 4-year college — is larger
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than that found for the variable college in the previous specification (column 2). Furthermore, the
coeffi cient on private —growing up near a private 4-year college —is much smaller. This indicates
that the key impact of proximity on education is via public colleges rather than private colleges.

The 2SLS estimates obtained using these two instruments are presented in the fourth column
of Table 12.1. The coeffi cient on education increases to 0.161, indicating a 16% return to a year
of education. This is roughly twice as large as the estimate obtained by least-squares in the first
column.

Additionally, if we follow Card and treat experience as endogenous and use age as an instru-
ment, we now have three endogenous variables (education, experience, experience2/100) and four
instruments (public, private, age, age2). We present the 2SLS estimates using this specification in
the fifth column of Table 12.1. The estimate of the return to education remains about 16%, but
again the return to experience flattens.

You might wonder if we could use all three instruments — college, public, and private. The
answer is no. This is because college = public + private so the three variables are colinear. Since
the instruments are linearly related, the three together would violate the full-rank condition (12.6).

The 2SLS estimator may be calculated in Stata using the ivregress 2sls command.

12.13 Limited Information Maximum Likelihood

An alternative method to estimate the parameters of the structural equation is by maximum
likelihood. Anderson and Rubin (1949) derived the maximum likelihood estimator for the joint
distribution of (yi,x2i). The estimator is known as limited information maximum likelihood,
or LIML.

This estimator is called “limited information” because it is based on the structural equation
for yi combined with the reduced form equation for x2i. If maximum likelihood is derived based
on a structural equation for x2i as well, then this leads to what is known as full information
maximum likelihood (FIML). The advantage of the LIML approach relative to FIML is that the
former does not require a structural model for x2i, and thus allows the researcher to focus on the
structural equation of interest —that for yi. We do not describe the FIML estimator here as it is
not commonly used in applied econometric practice.

While the LIML estimator is less widely used among economists than 2SLS, it has received a
resurgence of attention from econometric theorists.

To derive the LIML estimator, start by writing the joint reduced form equations (12.16) and
(12.13) as

yi =

(
yi
x2i

)
=

[
λ′1 λ′2
Γ′12 Γ′22

](
z1i

z2i

)
+

(
vi
u2i

)
= Π′1z1i + Π′2z2i + ai (12.35)

where Π1 =
[
λ1 Γ12

]
, Π2 =

[
λ2 Γ22

]
and a′i =

[
vi u′2i

]
. The LIML estimator is derived

under the assumption that ai is multivariate normal.
Define γ ′ =

[
1 −β′2

]
. From (12.18) we find

Π2γ = λ2 − Γ22β2 = 0.

Thus the `2× (k2 + 1) coeffi cient matrix Π2 in (12.35) has deficient rank. Indeed, its rank must be
k2, since Γ22 has full rank.

This means that the model (12.35) is precisely the reduced rank regression model of Section
11.11. Theorem 11.7 presents the maximum likelihood estimators for the reduced rank parameters.
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In particular, the MLE for γ is

γ̂ = argmin
γ

γ ′Y ′M1Y γ

γ ′Y ′MZY γ
(12.36)

where Y = [y,X2] is the n× (1 + k2) matrix of the stacked endogenous variables y′i =
(
yi x′2i

)
,

M1 = In−Z1 (Z ′1Z1)
−1
Z ′1 andMZ = In−Z (Z ′Z)

−1
Z ′. The minimization (12.36) is sometimes

called the “least variance ratio”problem.
The minimization problem (12.36) is invariant to the scale of γ (that is, γ̂c is equivalently the

argmin for any c) so a normalization is required. For estimation of the structural parameters a
convenient normalization is γ ′ =

[
1 −β′2

]
. Another is to set γ ′Y ′MZY γ = 1. Using the second

normalization and the theory of the minimum of quadratic forms (Section A.15) γ̂ is the generalized
eigenvector of Y ′M1Y with respect to Y ′MZY associated with the smalled generalized eigenvalue.
(See Section A.14 for the definition of generalized eigenvalues and eigenvectors.) Computationally
this is straightforward. For example, in MATLAB, the generalized eigenvalues and eigenvectors of
the matrix A with respect to B is found by the command eig(A,B). Once this γ̂ is found, any
other normalization can be obtained by rescaling. For example, to obtain the MLE for β2 make
the partition γ̂ ′ =

[
γ̂1 γ̂ ′2

]
and set β̂2 = −γ̂2/γ̂1.

To obtain the MLE for β1, recall the structural equation yi = x′1iβ1 + x′2iβ2 + ei. Replacing
β2 with the MLE β̂2 and then apply regression. Thus

β̂1 =
(
X ′1X1

)−1
X ′1

(
y −X2β̂2

)
. (12.37)

These solutions are the MLE (known as the LIML estimator) for the structural parameters β1 and
β2.

Many previous econometrics textbooks do not present a derivation of the LIML estimator as
the original derivation by Anderson and Rubin (1949) is lengthy and not particularly insightful. In
contrast, the derivation given here based on reduced rank regression is relatively simple.

There is an alternative (and traditional) expression for the LIML estimator. Define the minimum
obtained in (12.36)

κ̂ = min
γ

γ ′Y ′M1Y γ

γ ′Y ′MZY γ
(12.38)

which is the smallest generalized eigenvalue of Y ′M1Y with respect to Y ′MZY . The LIML
estimator then can be written as

β̂liml =
(
X ′ (In − κ̂MZ)X

)−1 (
X ′ (In − κ̂MZ)y

)
. (12.39)

We defer the derivation of (12.39) until the end of this section. Expression (12.39) does not simplify
computation (since κ̂ requires solving the same eigenvector problem that yields β̂2). However
(12.39) is important for the distribution theory and to reveal the algebraic connection between
LIML, least-squares, and 2SLS.

The estimator (12.39) with arbitrary κ is known as a k class estimator of β. While the LIML
estimator obtains by setting κ = κ̂, the least-squares estimator is obtained by setting κ = 0 and
2SLS is obtained by setting κ = 1. It is worth observing that the LIML solution to (12.38) satisfies
κ̂ ≥ 1.

When the model is just-identified, the LIML estimator is identical to the IV and 2SLS estimators.
They are only different in the over-identified setting. (One corollary is that under just-identification
the IV estimator is MLE under normality.)

For inference, it is useful to observe that (12.39) shows that β̂liml can be written as an IV
estimator

β̂liml =
(
X̃
′
X
)−1 (

X̃
′
y
)
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using the instrument

X̃ = (In − κ̂MZ)X =

(
X1

X2 − κ̂Û2

)
where Û2 = MZX2 are the (reduced-form) residuals from the multivariate regression of the en-
dogenous regressors x2i on the instruments zi. Expressing LIML using this IV formula is useful
for variance estimation.

Asymptotically the LIML estimator has the same distribution as 2SLS. However, they can have
quite different behaviors in finite samples. There is considerable evidence that the LIML estimator
has superior finite sample bias relative to 2SLS when there are many instruments or the reduced
form is weak. (We review these cases in the following sections.) However, on the other hand LIML
has wider finite sample dispersion.

We now derive the expression (12.39). Use the normaliaation γ ′ =
[

1 −β′2
]
to write (12.36)

as

β̂2 = argmin
β2

(y −X2β2)′M1 (y −X2β2)

(y −X2β2)′MZ (y −X2β2)
.

The first-order-condition for minimization is 2/
(
y −X2β̂2

)′
MZ

(
y −X2β̂2

)
times

0 = X ′2M1

(
y −X2β̂2

)
−

(
y −X2β̂2

)′
M1

(
y −X2β̂2

)
(
y −X2β̂2

)′
MZ

(
y −X2β̂2

)X ′2MZ

(
y −X2β̂2

)
= X ′2M1

(
y −X2β̂2

)
− κ̂X ′2MZ

(
y −X2β̂2

)
using definition (12.38). Rewriting,

X ′2 (M1 − κ̂MZ)X2β̂2 = X ′2 (M1 − κ̂MZ)y. (12.40)

Equation (12.39) is the same as the two equation system

X ′1X1β̂1 +X ′1X2β̂2 = X ′1y

X ′2X1β̂1 +
(
X ′2 (In − κ̂MZ)X2

)
β̂2 = X ′2 (In − κ̂MZ)y.

The first equation is (12.37). Using (12.37), the second is

X ′2X1

(
X ′1X1

)−1
X ′1

(
Y −X2β̂2

)
+
(
X ′2 (In − κ̂MZ)X2

)
β̂2 = X ′2 (In − κ̂MZ)y

which is (12.40) when rearranged. We have thus shown that (12.39) is equivalent to (12.37) and
(12.40) and is thus a valid expression for the LIML estimator.

Returning to the Card college proximity example, we now present the LIML estimates of the
equation with the two instruments (public, private). They are reported in the final column of Table
12.1. They are quite similar to the 2SLS estimates in this application.

The LIML estimator may be calculated in Stata using the ivregress liml command.

Theodore Anderson

Theodore (Ted) Anderson (1918-2016) was a American statistician and
econometrician, who made fundamental contributions to multivariate sta-
tistical theory. Important contributions include the Anderson-Darling dis-
tribution test, the Anderson-Rubin statistic, the method of reduced rank
regression, and his most famous econometrics contribution —the LIML es-
timator. He continued working throughout his long life, even publishing
theoretical work at the age of 97!
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12.14 JIVE

The ideal instrument for estimation of β is wi = Γ′zi. We can write this ideal estimator as

β̂ideal =

(
n∑
i=1

wix
′
i

)−1( n∑
i=1

wiyi

)
.

This estimator is not feasible since Γ is unknown. The 2SLS estimator replaces Γ with the mul-
tivariate least-squares estimator Γ̂ and wi with ŵi = Γ̂

′
zi leading to the following representation

for 2SLS

β̂2sls =

(
n∑
i=1

ŵix
′
i

)−1( n∑
i=1

ŵiyi

)
.

Since Γ̂ is estimated on the full sample including observation i it is a function of the reduced
form error ui which is correlated with the structural error ei. It follows that ŵi and ei are correlated,
which means that β̂2sls is biased for β. This correlation and bias disappears asymptotically but it
can be important in applications.

A solution to this problem is to replace ŵi with a predicted value which is uncorrelated with
the error ei. This can be obtained by a standard leave-one-out estimator for Γ. Specifically, let

Γ̂(−i) =
(
Z ′Z − ziz′i

)−1 (
Z ′X − zix′i

)
be the least-squares leave-one-out estimator of the reduced form matrix Γ, and let w̃i = Γ̂

′
(−i)zi be

the reduced form predicted values. Using w̃i as an instrument we obtain the estimator

β̂jive1 =

(
n∑
i=1

w̃ix
′
i

)−1( n∑
i=1

w̃iyi

)

=

(
n∑
i=1

Γ̂
′
(−i)zix

′
i

)−1( n∑
i=1

Γ̂
′
(−i)ziyi

)
.

This was called the jackknife instrumental variables (JIVE1) estimator by Angrist, Imbens, and
Krueger (1999). It first appeared in Phillips and Hale (1977).

Angrist, Imbens, and Krueger (1999) pointed out that a somewhat simpler adjustment also
removes the correlation and bias. Define the estimator and predicted value

Γ(−i) =
(
Z ′Z

)−1 (
Z ′X − zix′i

)
wi = Γ

′
(−i)zi

which only adjusts the Z ′X component. Their JIVE2 estimator is

β̂jive2 =

(
n∑
i=1

wix
′
i

)−1( n∑
i=1

wiyi

)

=

(
n∑
i=1

Γ
′
(−i)zix

′
i

)−1( n∑
i=1

Γ
′
(−i)ziyi

)
.

Using the formula for leave-one-out estimators (Theorem 3.7), the JIVE1 and JIVE2 estimators
use two linear operations: the first to create the predicted values w̃i or wi, and the second to
calculate the IV estimator. Thus the estimators do not require significantly more computation
than 2SLS.

An asymptotic distribution theory for the JIVE1 and JIVE2 estimators was developed by Chao,
Swanson, Hausman, Newey, and Woutersen (2012).

The JIVE1 and JIVE2 estimators may be calculated in Stata using the jive command. It is
not a part of the standard package but can be easily added.
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12.15 Consistency of 2SLS

We now present a demonstration of the consistency of the 2SLS estimate for the structural
parameter. The following is a set of regularity conditions.

Assumption 12.1

1. The observations (yi,xi, zi), i = 1, ..., n, are independent and identi-
cally distributed.

2. E
(
y2
)
<∞.

3. E ‖x‖2 <∞.

4. E ‖z‖2 <∞.

5. E (zz′) is positive definite.

6. E (zx′) has full rank k.

7. E (ze) = 0.

Assumptions 12.1.2-4 state that all variables have finite variances. Assumption 12.1.5 states
that the instrument vector has an invertible design matrix, which is identical to the core assump-
tion about regressors in the linear regression model. This excludes linearly redundant instruments.
Assumptions 12.1.6 and 12.1.7 are the key identification conditions for instrumental variables. As-
sumption 12.1.6 states that the instruments and regressors have a full-rank cross-moment matrix.
This is often called the relevance condition. Assumption 12.1.7 states that the instrumental vari-
ables and structural error are uncorrelated. Assumptions 12.1.5-7 are identical to Definition 12.1.

Theorem 12.1 Under Assumption 12.1, β̂2sls
p−→ β as n→∞.

The proof of the theorem is provided below.
This theorem shows that the 2SLS estimator is consistent for the structural coeffi cient β under

similar moment conditions as the least-squares estimator. The key differences are the instrumental
variables assumption E (ze) = 0 and the identification assumption rank (E (zx′)) = k.

The result includes the IV estimator (when ` = k) as a special case.
The proof of this consistency result is similar to that for the least-squares estimator. Take the

structural equation y = Xβ + e in matrix format and substitute it into the expression for the
estimator. We obtain

β̂2sls =
(
X ′Z

(
Z ′Z

)−1
Z ′X

)−1
X ′Z

(
Z ′Z

)−1
Z ′ (Xβ + e)

= β +
(
X ′Z

(
Z ′Z

)−1
Z ′X

)−1
X ′Z

(
Z ′Z

)−1
Z ′e. (12.41)

This separates out the stochastic component. Re-writing and applying the WLLN and CMT

β̂2sls − β =

((
1

n
X ′Z

)(
1

n
Z ′Z

)−1( 1

n
Z ′X

))−1

·
(

1

n
X ′Z

)(
1

n
Z ′Z

)−1( 1

n
Z ′e

)
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p−→
(
QxzQ

−1
zzQzx

)−1
QxzQ

−1
zzE (ziei) = 0

where

Qxz = E
(
xiz

′
i

)
Qzz = E

(
ziz
′
i

)
Qzx = E

(
zix

′
i

)
.

The WLLN holds under the i.i.d. Assumption 12.1.1 and the finite second moment Assumptions
12.1.2-4. The continuous mapping theorem applies if the matrices Qzz and QxzQ

−1
zzQzx are

invertible, which hold under the identification Assumptions 12.1.5 and 12.1.6. The final equality
uses Assumption 12.1.7.

12.16 Asymptotic Distribution of 2SLS

We now show that the 2SLS estimator satisfies a central limit theorem. We first state a set of
suffi cient regularity conditions.

Assumption 12.2 In addition to Assumption 12.1,

1. E
(
y4
)
<∞.

2. E ‖z‖4 <∞.

3. Ω = E
(
zz′e2

)
is positive definite.

Assumption 12.2 strengthens Assumption 12.1 by requiring that the dependent variable and
instruments have finite fourth moments. This is used to establish the central limit theorem.

Theorem 12.2 Under Assumption 12.2, as n→∞.
√
n
(
β̂2sls − β

)
d−→ N (0,V β)

where

V β =
(
QxzQ

−1
zzQzx

)−1 (
QxzQ

−1
zzΩQ−1

zzQzx
) (
QxzQ

−1
zzQzx

)−1
.

This shows that the 2SLS estimator converges at a
√
n rate to a normal random vector. It

shows as well the form of the covariance matrix. The latter takes a substantially more complicated
form than the least-squares estimator.

As in the case of least-squares estimation, the asymptotic variance simplifies under a conditional
homoskedasticity condition. For 2SLS the simplification occurs when E

(
e2
i | zi

)
= σ2. This holds

when zi and ei are independent. It may be reasonable in some contexts to conceive that the error ei
is independent of the excluded instruments z2i, since by assumption the impact of z2i on yi is only
through xi, but there is no reason to expect ei to be independent of the included exogenous variables
x1i. Hence heteroskedasticity should be equally expected in 2SLS and least-squares regression.
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Nevertheless, under the homoskedasticity condition then we have the simplifications Ω = Qzzσ
2

and V β = V 0
β
def
=
(
QxzQ

−1
zzQzx

)−1
σ2.

The derivation of the asymptotic distribution builds on the proof of consistency. Using equation
(12.41) we have

√
n
(
β̂2sls − β

)
=

((
1

n
X ′Z

)(
1

n
Z ′Z

)−1( 1

n
Z ′X

))−1

·
(

1

n
X ′Z

)(
1

n
Z ′Z

)−1( 1√
n
Z ′e

)
.

We apply the WLLN and CMT for the moment matrices involving X and Z the same as in the
proof of consistency. In addition, by the CLT for i.i.d. observations

1√
n
Z ′e =

1√
n

n∑
i=1

ziei
d−→ N (0,Ω)

because the vector ziei is i.i.d. and mean zero under Assumptions 12.1.1 and 12.1.7, and has a
finite second moment as we verify below.

We obtain

√
n
(
β̂2sls − β

)
=

((
1

n
X ′Z

)(
1

n
Z ′Z

)−1( 1

n
Z ′X

))−1

·
(

1

n
X ′Z

)(
1

n
Z ′Z

)−1( 1√
n
Z ′e

)
d−→
(
QxzQ

−1
zzQzx

)−1
QxzQ

−1
zzN (0,Ω) = N (0,V β)

as stated.
For completeness, we demonstrate that ziei has a finite second moment under Assumption 12.2.

To see this, note that by Minkowski’s inequality(
E
(
e4
))1/4

=
(
E
((
y − x′β

)4))1/4

≤
(
E
(
y4
))1/4

+ ‖β‖
(
E ‖x‖4

)1/4
<∞

under Assumptions 12.2.1 and 12.2.2. Then by the Cauchy-Schwarz inequality

E ‖ze‖2 ≤
(
E ‖z‖4

)1/2 (
E
(
e4
))1/2

<∞

using Assumptions 12.2.3.

12.17 Determinants of 2SLS Variance

It is instructive to examine the asymptotic variance of the 2SLS estimator to understand the
factors which determine the precision (or lack thereof) of the estimator. As in the least-squares
case, it is more transparent to examine the variance under the assumption of homoskedasticity. In
this case the asymptotic variance takes the form

V 0
β =

(
QxzQ

−1
zzQzx

)−1
σ2

=
(
E
(
xiz

′
i

) (
E
(
ziz
′
i

))−1 E
(
zix

′
i

))−1
E
(
e2
i

)
.
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As in the least-squares case, we can see that the variance is increasing in the variance of the error
ei, and decreasing in the variance of xi. What is different is that the variance is decreasing in the
(matrix-valued) correlation between xi and zi.

It is also useful to observe that the variance expression is not affected by the variance structure
of zi. Indeed, V 0

β is invariant to rotations of zi (if you replace zi with Czi for invertible C the
expression does not change). This means that the variance expression is not affected by the scaling
of zi, and is not directly affected by correlation among the zi.

We can also use this expression to examine the impact of increasing the instrument set. Suppose
we partition zi = (zai, zbi) where dim(zai) ≥ k so we can construct the 2SLS estimator using zai.
Let β̂a and β̂ denote the 2SLS estimators constructed using the instrument sets zai and (zai, zbi),
respectively. Without loss of generality we can assume that zai and zbi are uncorrelated (if not,
replace zbi with the projection error after projecting onto zai). In this case both E (ziz

′
i) and

(E (ziz
′
i))
−1 are block diagonal, so

avar
(
β̂
)

=
(
E
(
xiz

′
i

) (
E
(
ziz
′
i

))−1 E
(
zix

′
i

))−1
σ2

=
(
E
(
xiz

′
ai

) (
E
(
zaiz

′
ai

))−1 E
(
zaix

′
i

)
+ E

(
xiz

′
bi

) (
E
(
zbiz

′
bi

))−1 E
(
zbix

′
i

))−1
σ2

≤
(
E
(
xiz

′
ai

) (
E
(
zaiz

′
ai

))−1 E
(
zaix

′
i

))−1
σ2

= avar
(
β̂a

)
with strict inequality if E (xiz

′
bi) 6= 0. Thus the 2SLS estimator with the full instrument set has a

smaller asymptotic variance than the estimator with the smaller instrument set.
What we have shown is that the asymptotic variance of the 2SLS estimator is decreasing as the

number of instruments increases. From the viewpoint of asymptotic effi ciency, this means that it is
better to use more instruments (when they are available and are all known to be valid instruments)
rather than less.

Unfortunately, there is always a catch. In this case it turns out that the finite sample bias of the
2SLS estimator (which cannot be calculated exactly, but can be approximated using asymptotic
expansions) is generically increasing linearily as the number of instruments increases. We will see
some calculations illustrating this phenomenon in Section 12.37. Thus the choice of instruments in
practice induces a trade-off between bias and variance.

12.18 Covariance Matrix Estimation

Estimation of the asymptotic variance matrix V β is done using similar techniques as for least-
squares estimation. The estimator is constructed by replacing the population moment matrices by
sample counterparts. Thus

V̂ β =
(
Q̂xzQ̂

−1

zz Q̂zx

)−1 (
Q̂xzQ̂

−1

zz Ω̂Q̂
−1

zz Q̂zx

)(
Q̂xzQ̂

−1

zz Q̂zx

)−1
(12.42)

where

Q̂zz =
1

n

n∑
i=1

ziz
′
i =

1

n
Z ′Z

Q̂xz =
1

n

n∑
i=1

xiz
′
i =

1

n
X ′Z

Ω̂ =
1

n

n∑
i=1

ziz
′
iê

2
i

êi = yi − x′iβ̂2sls.
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The homoskedastic variance matrix can be estimated by

V̂
0

β =
(
Q̂xzQ̂

−1

zz Q̂zx

)−1
σ̂2

σ̂2 =
1

n

n∑
i=1

ê2
i .

Standard errors for the coeffi cients are obtained as the square roots of the diagonal elements of
n−1V̂ β. Confidence intervals, t-tests, and Wald tests may all be constructed from the coeffi cient
estimates and covariance matrix estimate exactly as for least-squares regression.

In Stata, the ivregress command by default calculates the covariance matrix estimator using
the homoskedastic variance matrix. To obtain covariance matrix estimation and standard errors
with the robust estimator V̂ β, use the “,r”option.

Theorem 12.3 Under Assumption 12.2, as n→∞,

V̂
0

β
p−→ V 0

β

V̂ β
p−→ V β.

To prove Theorem 12.3 the key is to show Ω̂
p−→ Ω as the other convergence results were

established in the proof of consistency. We defer this to Exercise 12.6.
It is important that the covariance matrix be constructed using the correct residual formula

êi = yi − x′iβ̂2sls. This is different than what would be obtained if the “two-stage” computation
method is used. To see this, let’s walk through the two-stage method. First, we estimate the
reduced form

xi = Γ̂
′
zi + ûi

to obtain the predicted values x̂i = Γ̂
′
zi. Second, we regress yi on x̂i to obtain the 2SLS estimator

β̂2sls. This latter regression takes the form

yi = x̂′iβ̂2sls + v̂i (12.43)

where v̂i are least-squares residuals. The covariance matrix (and standard errors) reported by this
regression are constructed using the residual v̂i. For example, the homoskedastic formula is

V̂ β =

(
1

n
X̂
′
X̂

)−1

σ̂2
v =

(
Q̂xzQ̂

−1

zz Q̂zx

)−1
σ̂2
v

σ̂2
v =

1

n

n∑
i=1

v̂2
i

which is proportional to the variance estimate σ̂2
v rather than σ̂

2. This is important because the
residual v̂i differs from êi. We can see this because the regression (12.43) uses the regressor x̂i
rather than xi. Indeed, we can calculate that

v̂i = yi − x′iβ̂2sls + (xi − x̂i)′ β̂2sls

= êi + û′iβ̂2sls

6= êi.

This means that standard errors reported by the regression (12.43) will be incorrect.
This problem is avoided if the 2SLS estimator is constructed directly and the standard errors

calculated with the correct formula rather than taking the “two-step”shortcut.
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12.19 LIML Asymptotic Distribution

In this section we show that the LIML estimator is asymptotically equivalent to the 2SLS
estimator. We recommend, however, a different covariance matrix estimator based on the IV
representation.

We start by deriving the asymptotic distribution. Recall that the LIML estimator has several
representations, including

β̂liml =
(
X ′ (In − κ̂MZ)X

)−1 (
X ′ (In − κ̂MZ)y

)
where

κ̂ = min
γ

γ ′Y ′M1Y γ

γ ′Y ′MZY γ
.

For the distribution theory, it is useful to rewrite this as

β̂liml =
(
X ′PZX − µ̂X ′MZX

)−1 (
X ′PZy − µ̂X ′MZy

)
where

µ̂ = κ̂− 1 = min
γ

γ ′Y ′M1Z2 (Z ′2M1Z2)
−1
Z ′2M1Y γ

γ ′Y ′MZY γ
.

This second equality holds since the span of Z = [Z1,Z2] equals the span of [Z1,M1Z2]. This
implies

PZ = Z
(
Z ′Z

)−1
Z ′

= Z1

(
Z ′1Z1

)−1
Z ′1 +M1Z2

(
Z ′2M1Z2

)−1
Z ′2M1.

We now show that nµ̂ = Op(1). The reduced form (12.35) implies that

Y = Z1Π1 +Z2Π2 + a.

It will be important to note that

Π2 = [λ2,Γ22] = [Γ22β2,Γ22]

using (12.18). It follows that Π2γ = 0 for γ = (1,−β′2)′. Note uγ = e. ThenMZY γ = MZe and
M1Y γ = M1e. Hence

nµ̂ = min
γ

γ ′Y ′M1Z2 (Z ′2M1Z2)
−1
Z ′2M1Y γ

γ ′ 1nY
′MZY γ

≤

(
1√
n
e′M1Z2

) (
1
nZ
′
2M1Z2

)−1
(

1√
n
Z ′2M1e

)
1
ne
′MZe

= Op(1).

It follows that

√
n
(
β̂liml − β

)
=

(
1

n
X ′PZX − µ̂

1

n
X ′MZX

)−1( 1√
n
X ′PZe−

√
nµ̂

1

n
X ′MZe

)
=

(
1

n
X ′PZX − op(1)

)−1( 1√
n
X ′PZe− op(1)

)
=
√
n
(
β̂2sls − β

)
+ op(1)

which means that LIML and 2SLS have the same asymptotic distribution. This holds under the
same assumptions as for 2SLS, and in particular does not require normality of the errors.
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Consequently, one method to obtain an asymptotically valid covariance estimate for LIML is
to use the same formula as for 2SLS. However, this is not the best choice. Rather, consider the IV
representation for LIML

β̂liml =
(
X̃
′
X
)−1 (

X̃
′
y
)

where

X̃ =

(
X1

X2 − κ̂Û2

)
and Û2 = MZX2. The asymptotic covariance matrix formula for an IV estimator is

V̂ β =

(
1

n
X̃
′
X

)−1

Ω̂

(
1

n
X ′X̃

)−1

(12.44)

where

Ω̂ =
1

n

n∑
i=1

x̃ix̃iê
2
i

êi = yi − x′iβ̂liml.

This simplifies to the 2SLS formula when κ̂ = 1 but otherwise differs. The estimator (12.44) is a
better choice than the 2SLS formula for covariance matrix estimation as it takes advantage of the
LIML estimator structure.

12.20 Functions of Parameters

Given the distribution theory in Theorems 12.2 and 12.3 it is straightforward to derive the
asymptotic distribution of smooth nonlinear functions of the coeffi cients.

Specifically, given a function r (β) : Rk → Θ ⊂ Rq we define the parameter

θ = r (β) .

Given β̂2sls a natural estimator of θ is θ̂2sls = r
(
β̂2sls

)
.

Consistency follows from Theorem 12.1 and the continuous mapping theorem.

Theorem 12.4 Under Assumptions 12.1 and 7.3, as n→∞, θ̂2sls
p−→ θ.

If r (β) is differentiable then an estimator of the asymptotic covariance matrix for θ̂ is

V̂ θ = R̂
′
V̂ βR̂

R̂ =
∂

∂β
r(β̂2sls)

′.

We similarly define the homoskedastic variance estimator as

V̂
0

θ = R̂
′
V̂

0

βR̂.

The asymptotic distribution theory follows from Theorems 12.2 and 12.3 and the delta method.
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Theorem 12.5 Under Assumptions 12.2 and 7.3, as n→∞,
√
n
(
θ̂2sls − θ

)
d−→ N (0,V θ)

where

V θ = R′V βR

R =
∂

∂β
r(β)′

and
V̂ θ

p−→ V θ.

When q = 1, a standard error for θ̂2sls is s(θ̂2sls) =

√
n−1V̂ θ .

For example, let’s take the parameter estimates from the fifth column of Table 12.1, which are
the 2SLS estimates with three endogenous regressors and four excluded instruments. Suppose we
are interested in the return to experience, which depends on the level of experience. The estimated
return at experience = 10 is 0.047 − 0.032 ∗ 2 ∗ 10/100 = 0.041 and its standard error is 0.003.
This implies a 4% increase in wages per year of experience and is precisely estimated. Or suppose
we are interested in the level of experience at which the function maximizes. The estimate is
50 ∗ 0.047/0.032 = 73. This has a standard error of 249. The large standard error implies that the
estimate (73 years of experience) is without precision and is thus uninformative.

12.21 Hypothesis Tests

As in the previous section, for a given function r (β) : Rk → Θ ⊂ Rq we define the parameter
θ = r (β) and consider tests of hypotheses of the form

H0 : θ = θ0

against
H1 : θ 6= θ0.

The Wald statistic for H0 is

W = n
(
θ̂ − θ0

)′
V̂
−1

θ̂

(
θ̂ − θ0

)
.

From Theorem 12.5 we deduce that W is asymptotically chi-square distributed. Let Gq(u) denote
the χ2

q distribution function.

Theorem 12.6 Under Assumptions 12.2 and 7.3 and H0 holds, then as
n→∞,

W
d−→ χ2

q .

For c satisfying α = 1−Gq(c),

P (W > c | H0) −→ α

so the test “Reject H0 if W > c”has asymptotic size α.
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In linear regression we often report the F version of the Wald statistic (by dividing by degrees
of freedom) and use the F distribution for inference, as this is justified in the normal sampling
model. For 2SLS estimation, however, this is not done as there is no finite sample F justification
for the F version of the Wald statistic.

To illustrate, once again let’s take the parameter estimates from the fifth column of Table 12.1
and again consider the return to experience which is determined by the coeffi cients on experience
and experience2/100. Neither coeffi cient is statisticially signficant at the 5% level and it is unclear
if the overall effect is statistically significant. We can assess this by testing the joint hypothesis
that both coeffi cients are zero. The Wald statistic for this hypothesis is W = 244, which is highly
significant with an asymptotic p-value of 0.0000. Thus by examining the joint test in contrast to
the individual tests is quite clear that experience has a non-zero effect.

12.22 Finite Sample Theory

In Chapter 5 we reviewed the rich exact distribution available for the linear regression model
under the assumption of normal innovations. There was a similarly rich literature in econometrics
which developed a distribution theory for IV, 2SLS and LIML estimators. An excellent review of
the theory, mostly developed in the 1970s and early 1980s, is reviewed by Peter Phillips (1983).

This theory was developed under the assumption that the structural error vector e and reduced
form error u2 are multivariate normally distributed. Even though the errors are normal, IV-type
estimators are are non-linear functions of these errors and are thus the estimators non-normally
distributed. Formulae for the exact distributions have been derived, but are unfortunately functions
of model parameters and hence are not directly useful for finite sample inference.

One important implication of this literature is that it is quite clear that even in this optimal
context of exact normal innovations, the finite sample distributions of the IV estimators are non-
normal and the finite sample distributions of test statistics are not chi-squared. The normal and chi-
squared approximations hold asymptotically, but there is no reason to expect these approximations
to be accurate in finite samples.

A second important result is that under the assumption of normal errors, most of the estimators
do not have finite moments in any finite sample. A clean statement concerning the existence of
moments for the 2SLS estimator was obtained by Kinal (1980) for the case of joint normality. Let
β̂2sls,2 be the 2SLS estimators of the coeffi cients on the endogeneous regressors.

Theorem 12.7 If (yi,xi, zi) are jointly normal, then for any r,

E
∥∥∥β̂2sls,2

∥∥∥r <∞ if and only if r < `2 − k2 + 1.

This result states that in the just-identified case the IV estimator does not have any finite
order integer moments. In the over-identified case the number of finite moments corresponds to the
number of overidentifying restrictions (`2− k2). Thus if there is one over-identifying restriction the
2SLS estimator has a finite mean, and if there are two over-identifying restrictions then the 2SLS
estimator has a finite variance.

The LIML estimator has a more severe moment problem, as it has no finite integer moments
(Mariano, 1982) regardless of the number of over-identifying restrictions. Due to this lack of
moments, Fuller (1977) proposed the following modification of LIML. Instead of (12.39), Fuller’s
estimator is

β̂Fuller =
(
X ′ (In −KMZ)X

)−1 (
X ′ (In −KMZ)y

)
K = κ̂− C

n− k
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for some C ≥ 1. Fuller showed that his estimator has all moments finite under suitable conditions.
Hausman, Newey, Woutersen, Chao and Swanson (2012) propose an estimator they call HFUL

which combines the ideas of JIVE and Fuller which has excellent finite sample properties.

12.23 Bootstrap for 2SLS

The standard bootstrap algorithm for IV, 2SLS and GMM generates bootstrap samples by
sampling the triplets (y∗i ,x

∗
i , z
∗
i ) independently and with replacement from the original sample

{(yi,xi, zi) : i = 1, ..., n}. Sampling n such observations and stacking into observation matrices
(y∗,X∗,Z∗), the bootstrap 2SLS estimator is

β̂
∗
2sls =

(
X∗′Z∗

(
Z∗′Z∗

)−1
Z∗′X∗

)−1
X∗′Z∗

(
Z∗′Z∗

)−1
Z∗′y∗.

This is repeated B times to create a sample of B bootstrap draws. Given these draws, bootstrap
statistics can be calculated. This includes the bootstrap estimate of variance, standard errors, and
confidence intervals, including percentile, BC percentile, BCa and percentile-t.

We now show that the bootstrap estimator has the same asymptotic distribution as the sample
estimator. For overidentified cases this demonstration requires a bit of extra care. This was first
shown by Hahn (1996).

The sample observations satisfy the model

yi = x′iβ + ei

E (ziei) = 0.

The true value of β in the population can be written as

β =
(
E
(
xiz

′
i

)
E
(
ziz
′
i

)−1 E
(
zix

′
i

))−1
E
(
xiz

′
i

)
E
(
ziz
′
i

)−1 E (ziyi) .

The true value in the bootstrap universe is obtained by replacing the population moments by the
sample moments, which equals the 2SLS estimator(

E∗
(
x∗i z

∗′
i

)
E∗
(
z∗i z

∗′
i

)−1 E∗
(
z∗ix

∗′
i

))−1
E∗
(
x∗i z

∗′
i

)
E∗
(
z∗i z

∗′
i

)−1 E∗ (z∗i y
∗
i )

=

((
1

n
X ′Z

)(
1

n
Z ′Z

)−1( 1

n
Z ′X

))−1(
1

n
X ′Z

)(
1

n
Z ′Z

)−1 [ 1

n
Z ′y

]
= β̂2sls.

The bootstrap observations thus satisfy the equation

y∗i = x∗′i β̂2sls + e∗i .

In matrix notation
y∗ = X∗′β̂2sls + e∗. (12.45)

Given a bootstrap triple (y∗i ,x
∗
i , z
∗
i ) = (yj ,xj , zj) for some observation j, the true bootstrap error

is
e∗i = yj − x′jβ̂2sls = êj .

It follows that
E∗ (z∗i e

∗
i ) = n−1Z ′ê. (12.46)

This is generally not equal to zero in the over-identified case.
This an an important complication. In over-identified models the true observations satisfy the

population condition E (ziei) = 0 but in the bootstrap sample E∗ (z∗i e
∗
i ) 6= 0. This means that to
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apply the central limit theorem to the bootstrap estimator we will first have to recenter the moment
condition. That is, (12.46) and the bootstrap CLT imply

1√
n

(
Z∗′e∗ −Z ′ê

)
=

1√
n

n∑
i=1

(z∗i e
∗
i − E∗ (z∗i e

∗
i ))

d∗−→ N (0,Ω) (12.47)

where
Ω = E

(
ziz
′
ie

2
i

)
.

Using (12.45) we can normalize the bootstrap estimator as

√
n
(
β̂
∗
2sls − β̂2sls

)
=
√
n
(
X∗′Z∗

(
Z∗′Z∗

)−1
Z∗′X∗

)−1
X∗′Z∗

(
Z∗′Z∗

)−1
Z∗′e∗

=

((
1

n
X∗′Z∗

)(
1

n
Z∗′Z∗

)−1( 1

n
Z∗′X∗

))−1

·
(

1

n
X∗′Z∗

)(
1

n
Z∗′Z∗

)−1 1√
n

(
Z∗′e∗ −Z ′ê

)
(12.48)

+

((
1

n
X∗′Z∗

)(
1

n
Z∗′Z∗

)−1( 1

n
Z∗′X∗

))−1

·
(

1

n
X∗′Z∗

)(
1

n
Z∗′Z∗

)−1( 1√
n
Z ′ê

)
. (12.49)

Using the bootstrap WLLN,

1

n
X∗′Z∗ =

1

n
X ′Z + op(1)

1

n
Z∗′Z∗ =

1

n
Z ′Z + op(1).

This implies (12.49) is equal to

√
n
(
X ′Z

(
Z ′Z

)−1 (
Z ′X

))−1
X ′Z

(
Z ′Z

)−1
Z ′ê+ op(1) = 0 + op(1).

The equality holds because the 2SLS first-order condition implies X ′Z (Z ′Z)
−1
Z ′ê = 0. Also,

combined with (12.47) we see that (12.48) converges in bootstrap distribution to(
QxzQ

−1
zzQzx

)−1
QxzQ

−1
zzN (0,Ω) = N (0,V β)

where V β is the 2SLS asymptotic variance from Theorem 12.2. This is the asymptotic distribution

of
√
n
(
β̂
∗
2sls − β̂2sls

)
.

By standard calculations we can also show that bootstrap t-ratios are asymptotically normal.

Theorem 12.8 Under Assumption 12.2, as n→∞
√
n
(
β̂
∗
2sls − β̂2sls

)
d∗−→ N (0,V β)

where V β is the 2SLS asymptotic variance from Theorem 12.2. Further-
more,

T ∗ =

√
n
(
β̂
∗
2sls − β̂2sls

)
s
(
β̂
∗
2sls

) d∗−→ N (0, 1) .
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This shows that percentile-type and percentile-t confidence intervals are asymptotically valid.
One might expect that the asymptotic refinement arguments extend to the BCa and percentile-t

methods, but this does not appear to be the case. While
√
n
(
β̂
∗
2sls − β̂2sls

)
and

√
n
(
β̂2sls − β

)
have the same asymptotic distribution, they differ in finite samples by an Op

(
n−1/2

)
term. This

means that they have distinct Edgeworth expansions. Consequently, unadjusted bootstrap methods
will not achieve an asymptotic refinement.

An alternative suggested by Hall and Horowitz (1996) is to recenter the bootstrap 2SLS esti-
mator so that it satisfies the correct orthogonality condition. Define

β̂
∗∗
2sls =

(
X∗′Z∗

(
Z∗′Z∗

)−1
Z∗′X∗

)−1
X∗′Z∗

(
Z∗′Z∗

)−1 (
Z∗′y∗ −Z ′ê

)
.

We can see that

√
n
(
β̂
∗∗
2sls − β̂2sls

)
=

(
1

n
X∗′Z∗

(
1

n
Z∗′Z∗

)−1 1

n
Z∗′X∗

)−1

·
(

1

n
X∗′Z∗

)(
1

n
Z∗′Z∗

)−1
(

1√
n

n∑
i=1

(z∗i e
∗
i − E∗ (z∗i e

∗
i ))

)

which directly converges to the N (0,V β) distribution without special handling. Hall and Horowitz

(1996) show that percentile-t methods applied to β̂
∗∗
2sls achieve an asymptotic refinement and are

thus preferred to the unadjusted bootstrap estimator.
This recentered estimator, however, is not the standard implementation of the bootstrap for

2SLS as used in empirical practice.

12.24 The Peril of Bootstrap 2SLS Standard Errors

It is tempting to use the bootstrap algorithm to estimate variance matrices and standard errors
for the 2SLS estimator. In fact this is one of the most common use of bootstrap methods in current
econometric practice. Unfortunately this is an unjustified and ill-conceived idea and should not be
done. In finite samples the 2SLS estimator may not have a finite second moment, meaning that
bootstrap variance estimates are unstable and unreliable.

Theorem 12.7 shows that under jointly normality the 2SLS estimator will have a finite variance
if and only if the number of overidentifying restrictions is two or larger. Thus for just-identified IV,
and 2SLS with one degree of overidentification, the finite sample variance is infinite. The bootstrap
will be attempting to estimate this value —infinity —and will yield nonsensical answers. When the
observations are not jointly normal there is no finite sample theory (so it is possible that the finite
sample variance is actually finite) but this is unknown and unverifiable.

In overidentified settings when the number of overidentifying restrictions is two or larger the
bootstrap can be applied for standard error estimation. However this is not the most common
application of IV methods in econometric practice and thus should be viewed as the exception
rather than the norm.

To understand what is going on, consider the simplest case of a just-identified model with a
single endogeneous regressor and no included exogeneous regressors. In this case the estimator can
be written as a ratio of means

β̂iv − β =

∑n
i=1 ziei∑n
i=1 zixi

.

Under joint normality of (ei, xi), this has a Cauchy-like distribution which does not possess any
finite integer moments. The trouble is that the denominator can be either positive or negative, and
arbitrarily close to zero. This means that the ratio can take arbitrarily large values.
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To illustrate let us return to the basic Card IV wage regression from column 2 of Table 12.1
which uses college as an instrument for education. Estimate this equation for the subsample of black
men, which has n = 703 observations. We focus on the coeffi cient for the return to education. The
coeffi cient estimate is reported in Table 12.3, along with asymptotic, jackknife, and two bootstrap
standard errors each calculated with 10,000 bootstrap replications.

Table 12.3: Instrumental Variable Return to Education for Black Men

Estimate 0.11
Asymptotic s.e. (0.11)
Jackknife s.e. (0.11)
Bootstrap s.e. (standard) (1.42)
Bootstrap s.e. (repeat) (4.79)

The bootstrap standard errors are an order of magnitude larger than the asymptotic standard
errors, and vary substantially across the bootstrap runs despite using 10,000 bootstrap replications.
This indicates moment failure and unreliability of the bootstrap standard errors.

This is a strong message that bootstrap standard errors should not be computed for
IV estimators. Instead, report percentile-type confidence intervals.

12.25 Clustered Dependence

In Section 4.21 we introduced clustered dependence. We can also use the methods of clustered
dependence for 2SLS estimation. Recall, the gth cluster has the observations yg = (y1g, ..., yngg)

′,
Xg = (x1g, ...,xngg)

′, and Zg = (z1g, ...,zngg)
′. The structural equation for the gth cluster can be

written as the matrix system
yg = Xgβ + eg.

Using this notation the centere 2SLS estimator can be written as

β̂2sls − β =
(
X ′Z

(
Z ′Z

)−1
Z ′X

)−1
X ′Z

(
Z ′Z

)−1
Z ′e

=
(
X ′Z

(
Z ′Z

)−1
Z ′X

)−1
X ′Z

(
Z ′Z

)−1

 G∑
g=1

Z ′geg

 .

The cluster-robust covariance matrix estimator for β̂2sls thus takes the form

V̂ β =
(
X ′Z

(
Z ′Z

)−1
Z ′X

)−1
X ′Z

(
Z ′Z

)−1
Ŝ
(
Z ′Z

)−1
Z ′X

(
X ′Z

(
Z ′Z

)−1
Z ′X

)−1

with

Ŝ =

G∑
g=1

Z ′gêgê
′
gZg

and the clustered residuals
êg = yg −Xgβ̂2sls.

The difference between the heteroskedasticity-robust estimator and the cluster-robust estimator
is the covariance estimator Ŝ.
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12.26 Generated Regressors

The “two-stage” form of the 2SLS estimator is an example of what is called “estimation with
generated regressors”. We say a regressor is a generated if it is an estimate of an idealized
regressor, or if it is a function of estimated parameters. Typically, a generated regressor ŵi is an
estimate of an unobserved ideal regressor wi. As an estimate, ŵi is a function of the sample, not
just observation i. Hence it is not “i.i.d.”as it is dependent across observations, which invalidates
the conventional regression assumptions. Consequently, the sampling distribution of regression
estimates is affected. Unless this is incorporated into our inference methods, covariance matrix
estimates and standard errors will be incorrect.

The econometric theory of generated regressors was developed by Pagan (1984) for linear mod-
els, and extended to non-linear models and more general two-step estimators by Pagan (1986).
Independently, similar results were obtained by Murphy and Topel (1985). Here we focus on the
linear model:

yi = w′iβ + vi (12.50)

wi = A′zi

E (zivi) = 0.

The observables are (yi, zi). We also have an estimate Â of A.

Given Â we construct the estimate ŵi = Â
′
zi of wi, replace wi in (12.50) with ŵi, and then

estimate β by least-squares, resulting in the estimator

β̂ =

(
n∑
i=1

ŵiŵ
′
i

)−1( n∑
i=1

ŵiyi

)
. (12.51)

The regressors ŵi are called generated regressors. The properties of β̂ are different than least-
squares with i.i.d. observations, since the generated regressors are themselves estimates.

This framework includes the 2SLS estimator as well as other common estimators. The 2SLS
model can be written as (12.50) by looking at the reduced form equation (12.14), with wi = Γ′zi,
A = Γ, and Â = Γ̂ is (12.19).

The examples which motivated Pagan (1984) and Murphy and Topel (1985) emerged from the
macroeconomics literature, in particular the work of Barro (1977) which examined the impact
of inflation expectations and expectation errors on economic output. For example, let πi denote
realized inflation and zi be the information available to economic agents. A model of inflation
expectations sets wi = E (πi|zi) = γ ′zi and a model of expectation error sets wi = πi −E (πi|zi) =
πi − γ ′zi. Since expectations and errors are not observed they are replaced in applications with
the fitted values ŵi = γ̂ ′zi or residuals ŵi = πi − γ̂ ′zi where γ̂ is a coeffi cient estimate from a
regression of πi on zi.

The generated regressor framework includes all of these examples.
The goal is to obtain a distributional approximation for β̂ in order to construct standard errors,

confidence intervals and conduct tests. Start by substituting equation (12.50) into (12.51). We
obtain

β̂ =

(
n∑
i=1

ŵiŵ
′
i

)−1( n∑
i=1

ŵi

(
w′iβ + vi

))
.

Next, substitute w′iβ = ŵ′iβ + (wi − ŵi)
′ β. We obtain

β̂ − β =

(
n∑
i=1

ŵiŵ
′
i

)−1( n∑
i=1

ŵi

(
(wi − ŵi)

′ β + vi
))

. (12.52)
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Effectively, this shows that the distribution of β̂−β has two random components, one due to the con-
ventional regression component ŵivi, and the second due to the generated regressor (wi − ŵi)

′ β.
Conventional variance estimators do not address this second component and thus will be biased.

Interestingly, the distribution in (12.52) dramatically simplifies in the special case that the
“generated regressor term” (wi − ŵi)

′ β disappears. This occurs when the slope coeffi cients on
the generated regressors are zero. To be specific, partition wi = (w1i,w2i), ŵi = (w1i, ŵ2i) ,
and β = (β1,β2) so that w1i are the conventional observed regressors and ŵ2i are the generated
regressors. Then (wi − ŵi)

′ β = (w2i − ŵ2i)
′ β2. Thus if β2 = 0 this term disappears. In this case

(12.52) equals

β̂ − β̂ =

(
n∑
i=1

ŵiŵ
′
i

)−1( n∑
i=1

ŵivi

)
.

This is a dramatic simplification.
Furthermore, since ŵi = Â

′
zi we can write the estimator as a function of sample moments:

√
n
(
β̂ − β

)
=

(
Â
′
(

1

n

n∑
i=1

ziz
′
i

)
Â

)−1

Â
′
(

1√
n

n∑
i=1

zivi

)
.

If Â
p−→ A we find from standard manipulations that

√
n
(
β̂ − β

)
d−→ N (0,V β)

where
V β =

(
A′E

(
ziz
′
i

)
A
)−1 (

A′E
(
ziz
′
iv

2
i

)
A
) (
A′E

(
ziz
′
i

)
A
)−1

. (12.53)

The conventional asymptotic covariance matrix estimator for β̂ takes the form

V̂ β =

(
1

n

n∑
i=1

ŵiŵ
′
i

)−1(
1

n

n∑
i=1

ŵiŵ
′
iv̂

2
i

)(
1

n

n∑
i=1

ŵiŵ
′
i

)−1

(12.54)

where v̂i = yi − ŵ′iβ̂. Under the given assumptions, V̂ β
p−→ V β. Thus inference using V̂ β is

asymptotically valid. This is useful when we are interested in tests of β2 = 0 . Often this is of
major interest in applications.

To test H0 : β2 = 0 we partition β̂ =
(
β̂1, β̂2

)
and construct a conventional Wald statistic

W = nβ̂
′
2

([
V̂ β

]
22

)−1
β̂2.
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Theorem 12.9 Take model (12.50) with E
(
y4
i

)
< ∞, E ‖zi‖4 < ∞,

A′E (ziz
′
i)A > 0, Â

p−→ A and ŵi = (w1i, ŵ2i). Under H0 : β2 = 0,
then as n→∞, √

n
(
β̂ − β

)
d−→ N (0,V β)

where V β is given in (12.53). For V̂ β given in (12.54),

V̂ β
p−→ V β.

Furthermore,

W
d−→ χ2

q

where q = dim(β2). For c satisfying α = 1−Gq(c)

P (W > c | H0) −→ α

so the test “Reject H0 if W > c”has asymptotic size α.

In the special case that Â = A (X,Z) and vi|xi, zi ∼ N
(
0, σ2

)
then there is a finite sample

version of the previous result. Let W 0 be the Wald statistic constructed with a homoskedastic
variance matrix estimator, and let

F = W/q (12.55)

be the the F statistic, where q = dim(β2).

Theorem 12.10 Take model (12.50) with Â = A (X,Z), vi|xi, zi ∼
N
(
0, σ2

)
and ŵi = (w1i, ŵ2i). Under H0 : β2 = 0, t-statistics have ex-

act N (0, 1) distributions, and the F statistic (12.55) has an exact Fq,n−k
distribution, where q = dim(β2) and k = dim(β).

To summarize, in the model yi = w′1iβ1 +w′2iβ2 + vi where w2i is not observed but replaced
with an estimate ŵ2i, conventional significance tests for H0 : β2 = 0 are asymptotically valid
without adjustment.

While this theory allows tests of H0 : β2 = 0, it unfortunately does just justify conventional
standard errors or confidence intervals. For this, we need to work out the distribution without
imposing the simplification β2 = 0. This often needs to be worked out case-by-case, or by using
methods based on the generalized method of moments to be introduced in Chapter 13. However,
in some important set of examples it is straightforward to work out the asymptotic distribution.

For the remainder of this section we examine the setting where the estimators Â take a least-
squares form, so for some X can be written as Â = (Z ′Z)

−1
(Z ′X). Such estimators correspond

to the multivariate projection model

xi = A′zi + ui (12.56)

E
(
ziu

′
i

)
= 0.
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This class of estimators directly includes 2SLS and the expectation model described above. We can
write the matrix of generated regressors as Ŵ = ZÂ and then (12.52) as

β̂ − β =
(
Ŵ
′
Ŵ
)−1 (

Ŵ
′ ((

W − Ŵ
)
β + v

))
=
(
Â
′
Z ′ZÂ

)−1 (
Â
′
Z ′
(
−Z

(
Z ′Z

)−1 (
Z ′U

)
β + v

))
=
(
Â
′
Z ′ZÂ

)−1 (
Â
′
Z ′ (−Uβ + v)

)
=
(
Â
′
Z ′ZÂ

)−1 (
Â
′
Z ′e

)
where

ei = vi − u′iβ = yi − x′iβ. (12.57)

This estimator has the asymptotic distribution

√
n
(
β̂ − β

)
d−→ N (0,V β)

where
V β =

(
A′E

(
ziz
′
i

)
A
)−1 (

A′E
(
ziz
′
ie

2
i

)
A
) (
A′E

(
ziz
′
i

)
A
)−1

. (12.58)

Under conditional homoskedasticity the covariance matrix simplifies to

V β =
(
A′E

(
ziz
′
i

)
A
)−1 E

(
e2
i

)
.

An appropriate estimator of V β is

V̂ β =

(
1

n
Ŵ
′
Ŵ

)−1
(

1

n

n∑
i=1

ŵiŵ
′
iê

2
i

)(
1

n
Ŵ
′
Ŵ

)−1

(12.59)

êi = yi − x′iβ̂.

Under the assumption of conditional homoskedasticity this can be simplified as usual.
This appears to be the usual covariance matrix estimator, but it is not, because the least-squares

residuals v̂i = yi − ŵ′iβ̂ have been replaced with êi = yi − x′iβ̂. This is exactly the substitution
made by the 2SLS covariance matrix formula. Indeed, the covariance matrix estimator V̂ β precisely
equals the estimator (12.42).

Theorem 12.11 Take model (12.50) and (12.56) with E
(
y4
i

)
< ∞,

E ‖zi‖4 <∞, A′E (ziz
′
i)A > 0, and Â = (Z ′Z)

−1
(Z ′X). As n→∞,

√
n
(
β̂ − β

)
d−→ N (0,V β)

where V β is given in (12.58) with ei defined in (12.57). For V̂ β given in
(12.59),

V̂ β
p−→ V β.

Since the parameter estimates are asymptotically normal and the covariance matrix is consis-
tently estimated, standard errors and test statistics constructed from V̂ β are asymptotically valid
with conventional interpretations.
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We now summarize the results of this section. In general, care needs to be exercised when
estimating models with generated regressors. As a general rule, generated regressors and two-
step estimation affects sampling distributions and variance matrices. An important simplication
occurs for tests that the generated regressors have zero slopes. In this case conventional tests have
conventional distributions, both asymptotically and in finite samples. Another important special
case occurs when the generated regressors are least-squares fitted values. In this case the asymptotic
distribution takes a conventional form, but the conventional residual needs to be replaced by one
constructed with the forecasted variable. With this one modification asymptotic inference using
the generated regressors is conventional.

12.27 Regression with Expectation Errors

In this section we examine a generated regressor model which includes expectation errors in the
regression. This is an important class of generated regressor models, and is relatively straightfor-
ward to characterize.

The model is

yi = w′iβ + u′iα+ vi

wi = A′zi

xi = wi + ui

E (ziεi) = 0

E (uiεi) = 0

E
(
ziu

′
i

)
= 0.

The observables are (yi,xi, zi). This model states thatwi is the expectation of xi (or more generally,
the projection of xi on zi) and ui is its expectation error. The model allows for exogenous regressors
as in the standard IV model if they are listed in wi, xi and zi. This model is used, for example, to
decompose the effect of expectations from expectation errors. In some cases it is desired to include
only the expecation error ui, not the expecation wi. This does not change the results described
here.

The model is estimated as follows. First, A is estimated by multivariate least-squares of xi
on zi, Â = (Z ′Z)

−1
(Z ′X), which yields as by-products the fitted values Ŵ = ZÂ and residuals

Û = X̂ − Ŵ . Second, the coeffi cients are estimated by least-squares of yi on the fitted values ŵi

and residuals ûi
yi = ŵ′iβ̂ + û′iα̂+ v̂i.

We now examine the asymptotic distributions of these estimates.
By the first-step regression Z ′Û = 0, Ŵ

′
Û = 0 and W ′Û = 0. This means that β̂ and α̂ can

be computed separately. Notice that

β̂ =
(
Ŵ
′
Ŵ
)−1

Ŵ
′
y

and
y = Ŵβ +Uα+

(
W − Ŵ

)
β + v.

Substituting, using Ŵ
′
Û = 0 and W − Ŵ = −Z (Z ′Z)

−1
Z ′U we find

β̂ − β =
(
Ŵ
′
Ŵ
)−1

Ŵ
′ (
Uα+

(
W − Ŵ

)
β + v

)
=
(
Â
′
Z ′ZÂ

)−1
Â
′
Z ′ (Uα−Uβ + v)

=
(
Â
′
Z ′ZÂ

)−1
Â
′
Z ′e
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where
ei = vi + u′i (α− β) = yi − x′iβ.

We also find
α̂ =

(
Û
′
Û
)−1

Û
′
y.

Since Û
′
W = 0, U − Û = Z (Z ′Z)

−1
Z ′U and Û

′
Z = 0 then

α̂−α =
(
Û
′
Û
)−1

Û
′ (
Wβ +

(
U − Û

)
α+ v

)
=
(
Û
′
Û
)−1

Û
′
v.

Together, we establish the following distributional result.

Theorem 12.12 For the model and estimates described in this section,
with E

(
y4
i

)
< ∞, E ‖zi‖4 < ∞, E ‖xi‖4 < ∞, A′E (ziz

′
i)A > 0, and

E (uiu
′
i) > 0, as n→∞

√
n

(
β̂ − β
α̂−α

)
d−→ N (0,V ) (12.60)

where

V =

(
V ββ V βα

V αβ V αα

)
and

V ββ =
(
A′E

(
ziz
′
i

)
A
)−1 (

A′E
(
ziz
′
ie

2
i

)
A
) (
A′E

(
ziz
′
i

)
A
)−1

V αβ =
(
E
(
uiu

′
i

))−1 (E (uiz′ieivi)A) (A′E (ziz′i)A)−1

V αα =
(
E
(
uiu

′
i

))−1 E
(
uiu

′
iv

2
i

) (
E
(
uiu

′
i

))−1
.

The asymptotic covariance matrix is estimated by

V̂ ββ =

(
1

n
Ŵ
′
Ŵ

)−1
(

1

n

n∑
i=1

ŵiŵ
′
iê

2
i

)(
1

n
Ŵ
′
Ŵ

)−1

V̂ αβ =

(
1

n
Û
′
Û

)−1
(

1

n

n∑
i=1

ûiŵ
′
iêiv̂i

)(
1

n
Ŵ
′
Ŵ

)−1

V̂ αα =

(
1

n
Û
′
Û

)−1
(

1

n

n∑
i=1

ûiû
′
iv̂

2
i

)(
1

n
Û
′
Û

)−1

where

ŵi = Â
′
zi

ûi = x̂i − ŵi

êi = yi − x′iβ̂
v̂i = yi − ŵ′iβ̂ − û′iα̂.
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Under conditional homoskedasticity, specifically

E
((

e2
i eivi

eivi v2
i

)
|zi
)

= C

then V αβ = 0 and the coeffi cient estimates β̂ and α̂ are asymptotically independent. The variance
components also simplify to

V ββ =
(
A′E

(
ziz
′
i

)
A
)−1 E

(
e2
i

)
V αα =

(
E
(
uiu

′
i

))−1 E
(
v2
i

)
.

In this case we have the covariance matrix estimators

V̂
0

ββ =

(
1

n
Ŵ
′
Ŵ

)−1
(

1

n

n∑
i=1

ê2
i

)

V̂
0

αα =

(
1

n
Û
′
Û

)−1
(

1

n

n∑
i=1

v̂2
i

)

and V̂
0

αβ = 0.

12.28 Control Function Regression

In this section we present an alternative way of computing the 2SLS estimator by least squares.
It is useful in more complicated nonlinear contexts, and also in the linear model to construct tests
for endogeneity.

The structural and reduced form equations for the standard IV model are

yi = x′1iβ1 + x′2iβ2 + ei

x2i = Γ′12z1i + Γ′22z2i + u2i.

Since the instrumental variable assumption specifies that E (ziei) = 0, x2i is endogenous (correlated
with ei) if and only if u2i and ei are correlated. We can therefore consider the linear projection of
ei on u2i

ei = u′2iα+ εi

α =
(
E
(
u2iu

′
2i

))−1 E (u2iei)

E (u2iεi) = 0.

Substituting this into the structural form equation we find

yi = x′1iβ1 + x′2iβ2 + u′2iα+ εi (12.61)

E (x1iεi) = 0

E (x2iεi) = 0

E (u2iεi) = 0.

Notice that x2i is uncorrelated with εi. This is because x2i is correlated with ei only through u2i,
and εi is the error after ei has been projected orthogonal to u2i.

If u2i were observed we could then estimate (12.61) by least-squares. While it is not observed,
we can estimate u2i by the reduced-form residual

û2i = x2i − Γ̂
′
12z1i − Γ̂

′
22z2i
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as defined in (12.20). Then the coeffi cients (β1,β2,α) can be estimated by least-squares of yi on
(x1i,x2i, û2i). We can write this as

yi = x′iβ̂ + û′2iα̂+ ε̂i (12.62)

or in matrix notation as
y = Xβ̂ + Û2α̂+ ε̂.

This turns out to be an alternative algebraic expression for the 2SLS estimator.
Indeed, we now show that β̂ = β̂2sls. First, note that the reduced form residual can be written

as
Û2 = (In − PZ)X2

where PZ is defined in (12.32). By the FWL representation

β̂ =
(
X̃
′
X̃
)−1 (

X̃
′
y
)

(12.63)

where X̃ =
[
X̃1, X̃2

]
, with

X̃1 = X1 − Û2

(
Û
′
2Û2

)−1
Û
′
2X1 = X1

(since Û
′
2X1 = 0) and

X̃2 = X2 − Û2

(
Û
′
2Û2

)−1
Û
′
2X2

= X2 − Û2

(
X ′2 (In − PZ)X2

)−1
X ′2 (In − PZ)X2

= X2 − Û2

= PZX2.

Thus X̃ = [X1,PZX2] = PZX. Substituted into (12.63) we find

β̂ =
(
X ′PZX

)−1 (
X ′PZy

)
= β̂2sls

which is (12.33) as claimed.
Again, what we have found is that OLS estimation of equation (12.62) yields algebraically the

2SLS estimator β̂2sls.
We now consider the distribution of the control function estimates. It is a generated regression

model, and in fact is covered by the model examined in Section 12.27 after a slight reparametriza-
tion. Let wi = Γ′zi and ui = xi−Γ′zi = (0′,u′2i)

′. Then the main equation (12.61) can be written
as

yi = w′iβ + u′2iγ + εi

where γ = α+ β2. This is the model in Section 12.27.
Set γ̂ = α̂+ β̂2 It follows from (12.60) that as n→∞ we have the joint distribution

√
n

(
β̂2 − β2

γ̂ − γ

)
d−→ N (0,V )

where

V =

(
V 22 V 2γ

V γ2 V γγ

)
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V 22 =
[(

Γ′E
(
ziz
′
i

)
Γ
)−1 (

Γ′E
(
ziz
′
ie

2
iΓ
)) (

Γ′E
(
ziz
′
i

)
Γ
)−1
]

22

V γ2 =
[(
E
(
u2iu

′
2i

))−1 (E (uiz′ieiεi)Γ
) (

Γ′E
(
ziz
′
i

)
Γ
)−1
]
·2

V γγ =
(
E
(
u2iu

′
2i

))−1 E
(
u2iu

′
2iε

2
i

) (
E
(
u2iu

′
2i

))−1

ei = yi − x′iβ.

The asymptotic distribution of γ̂ = α̂− β̂2 can then be deduced.

Theorem 12.13 If E
(
y4
i

)
< ∞, E ‖zi‖4 < ∞, E ‖xi‖4 < ∞,

A′E (ziz
′
i)A > 0, and E (uiu

′
i) > 0, as n→∞

√
n (α̂−α)

d−→ N (0,V α)

where
V α = V 22 + V γγ − V γ2 − V ′γ2.

Under conditional homoskedasticity we have the important simplifications

V 22 =
[(

Γ′E
(
ziz
′
i

)
Γ
)−1
]

22
E
(
e2
i

)
V γγ =

(
E
(
u2iu

′
2i

))−1 E
(
ε2
i

)
V γ2 = 0

V α = V 22 + V γγ .

An estimator for V α in the general case is

V̂ α = V̂ 22 + V̂ γγ − V̂ γ2 − V̂
′
γ2 (12.64)

where

V̂ 22 =

[
1

n

(
X ′PZX

)−1
X ′Z

(
Z ′Z

)−1

(
n∑
i=1

ziz
′
iê

2
i

)(
Z ′Z

)−1
Z ′X

(
X ′PZX

)−1

]
22

V̂ γ2 =

[
1

n

(
Û
′
Û
)−1

(
n∑
i=1

ûiŵ
′
iêiε̂i

)(
X ′PZX

)−1

]
·2

êi = yi − x′iβ̂
ε̂i = yi − x′iβ̂ − û′2iα̂.

Under the assumption of conditional homoskedasticity we have the estimator

V̂
0

α = V̂
0

ββ + V̂
0

γγ

V̂ ββ =
[(
X ′PZX

)−1
]

22

(
n∑
i=1

ê2
i

)

V̂ γγ =
(
Û
′
Û
)−1

(
n∑
i=1

ε̂2
i

)
.
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12.29 Endogeneity Tests

The 2SLS estimator allows the regressor x2i to be endogenous, meaning that x2i is correlated
with the structural error ei. If this correlation is zero, then x2i is exogenous and the structural
equation can be estimated by least-squares. This is a testable restriction. Effectively, the null
hypothesis is

H0 : E(x2iei) = 0

with the alternative
H1 : E(x2iei) 6= 0.

The maintained hypothesis is E(ziei) = 0. Since x1i is a component of zi, this implies E(x1iei) = 0.
Consequently we could alternatively write the null as H0 : E(xiei) = 0 (and some authors do so).

Recall the control function regression (12.61)

yi = x′1iβ1 + x′2iβ2 + u′2iα+ εi

α =
(
E
(
u2iu

′
2i

))−1 E (u2iei) .

Notice that E(x2iei) = 0 if and only if E (u2iei) = 0, so the hypothesis can be restated as H0 : α = 0
against H1 : α 6= 0. Thus a natural test is based on the Wald statistic W for α = 0 in the control
function regression (12.28). Under Theorem 12.9 and Theorem 12.10, underH0, W is asymptotically
chi-square with k2 degrees of freedom. In addition, under the normal regression assumptions the
F statistic has an exact F (k2, n− k1− 2k2) distribution. We accept the null hypothesis that x2i is
exogenous if W (or F ) is smaller than the critical value, and reject in favor of the hypothesis that
x2i is endogenous if the statistic is larger than the critical value.

Specifically, estimate the reduced form by least squares

x2i = Γ̂
′
12z1i + Γ̂

′
22z2i + û2i

to obtain the residuals. Then estimate the control function by least squares

yi = x′iβ̂ + û′2iα̂+ ε̂i. (12.65)

LetW ,W 0 and F = W 0/k2 denote the Wald statistic, homoskedastic Wald statistic, and F statistic
for α = 0.

Theorem 12.14 Under H0, W
d−→ χ2

k2
. Let c1−α solve P

(
χ2
k2
≤ c1−α

)
=

1− α. The test “Reject H0 if W > c1−α”has asymptotic size α.

Theorem 12.15 Suppose ei|xi, zi ∼ N
(
0, σ2

)
. Under H0, F ∼ F (k2, n−

k1− 2k2). Let c1−α solve P (F (k2, n− k1 − 2k2) ≤ c1−α) = 1−α. The test
“Reject H0 if F > c1−α”has exact size α.

Since in general we do not want to impose homoskedasticity, these results suggest that the
most appropriate test is the Wald statistic constructed with the robust heteroskedastic covariance
matrix. This can be computed in Stata using the command estat endogenous after ivregress
when the latter uses a robust covariance option. Stata reports the Wald statistic in F form (and
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thus uses the F distribution to calculate the p-value) as “Robust regression F”. Using the F rather
than the χ2 distribution is not formally justified but is a reasonable finite sample adjustment. If
the command estat endogenous is applied after ivregress without a robust covariance option,
Stata reports the F statistic as “Wu-Hausman F”.

There is an alternative (and traditional) way to derive a test for endogeneity. Under H0, both
OLS and 2SLS are consistent estimators. But under H1, they converge to different values. Thus
the difference between the OLS and 2SLS estimators is a valid test statistic for endogeneity. It also
measures what we often care most about —the impact of endogeneity on the parameter estimates.
This literature was developed under the assumption of conditional homoskedasticity (and it is
important for these results) so we assume this condition for the development of the statistics.

Let β̂ =
(
β̂1, β̂2

)
be the OLS estimator and let β̃ =

(
β̃1, β̃2

)
be the 2SLS estimator. Under H0

(and homoskedasticity) the OLS estimator is Gauss-Markov effi cient, so by the Hausman equality

var
(
β̂2 − β̃2

)
= var

(
β̃2

)
− var

(
β̂2

)
=
((
X ′2 (PZ − P 1)X2

)−1 −
(
X ′2M1X2

)−1
)
σ2

where PZ = Z (Z ′Z)
−1
Z ′, P 1 = X1 (X ′1X1)

−1
X ′1, and M1 = In − P 1. Thus a valid test

statistic for H0 is

T =

(
β̂2 − β̃2

)′ (
(X ′2 (PZ − P 1)X2)

−1 − (X ′2M1X2)
−1
)−1 (

β̂2 − β̃2

)
σ̂2

(12.66)

for some estimate σ̂2 of σ2. Durbin (1954) first proposed T as a test for endogeneity in the context
of IV estimation, setting σ̂2 to be the least-squares estimate of σ2. Wu (1973) proposed T as a
test for endogeneity in the context of 2SLS estimation, considering a set of possible estimates σ̂2 ,
including the regression estimate from (12.65). Hausman (1978) proposed a version of T based on
the full contrast β̂ − β̃, and observed that it equals the regression Wald statistic W 0 described
earlier. In fact, when σ̂2 is the regression estimate from (12.65), the statistic (12.66) algebraically
equals both W 0 and the version of (12.66) based on the full contrast β̂ − β̃ . We show these
equalities below. Thus these three approaches yield exactly the same statistic except for possible
differences regarding the choice of σ̂2. Since the regression F test described earlier has an exact
F distribution in the normal sampling model, and thus can exactly control test size, this is the
preferred version of the test. The general class of tests are called Durbin-Wu-Hausman tests,
Wu-Hausman tests, or Hausman tests, depending on the author.

When k2 = 1 (there is one right-hand-side endogenous variable) which is quite common in
applications, the endogeneity test can be equivalently expressed at the t-statistic for α̂ in the
estimated control function. Thus it is suffi cient to estimate the control function regression and
check the t-statistic for α̂. If |α̂| > 2 then we can reject the hypothesis that x2i is exogenous for β.

We illustrate using the Card proximity example using the two instruments public and private.
We first estimate the reduced form for education, obtain the residual, and then estimate the control
function regression. The residual has a coeffi cient −0.088 with a standard error of 0.037 and a
t-statistic of 2.4. Since the latter exceeds the 5% critical value (its p-value is 0.017) we reject
exogeneity. This means that the 2SLS estimates are statistically different from the least-squares
estimates of the structural equation and supports our decision to treat education as an endogenous
variable. (Alternatively, the F statistic is 2.42 = 5.7 with the same p-value).

We now show the equality of the various statistics.
We first show that the statistic (12.66) is not altered if based on the full contrast β̂− β̃. Indeed,

β̂1− β̃1 is a linear function of β̂2− β̃2, so there is no extra information in the full contrast. To see
this, observe that given β̂2, we can solve by least-squares to find

β̂1 =
(
X ′1X1

)−1
(
X ′1

(
y −X2β̂2

))
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and similarly

β̃1 =
(
X ′1X1

)−1
(
X ′1

(
y − PZX2β̃

))
=
(
X ′1X1

)−1
(
X ′1

(
y −X2β̃

))
the second equality since PZX1 = X1. Thus

β̂1 − β̃1 =
(
X ′1X1

)−1
X ′1

(
y −X2β̂2

)
−
(
X ′1X1

)−1
X ′1

(
y − PZX2β̃

)
=
(
X ′1X1

)−1
X ′1X2

(
β̃2 − β̂2

)
as claimed.

We next show that T in (12.66) equals the homoskedastic Wald statistic W 0 for α̂ from the
regression (12.65). Consider the latter regression. Since X2 is contained in X, the coeffi cient esti-
mate α̂ is invariant to replacing Û2 = X2−X̂2 with −X̂2 = −PZX2. By the FWL representation,
settingMX = In −X (X ′X)

−1
X ′

α̂ = −
(
X̂
′
2MXX̂2

)−1
X̂
′
2MXy

= −
(
X ′2PZMXPZX2

)−1
X ′2PZMXy.

It follows that

W 0 =
y′MXPZX2 (X ′2PZMXPZX2)

−1
X ′2PZMXy

σ̂2
.

Our goal is to show that T = W 0. Define X̃2 = (In − P 1)X2 so β̂2 =
(
X̃
′
2X̃2

)−1
X̃
′
2y. Then

defining using (PZ − P 1) (In − P 1) = (PZ − P 1) and defining Q = X̃2

(
X̃
′
2X̃2

)−1
X̃
′
2

∆
def
=
(
X ′2 (PZ − P 1)X2

) (
β̃2 − β̂2

)
= X ′2 (PZ − P 1)y −

(
X ′2 (PZ − P 1)X2

) (
X̃
′
2X̃2

)−1
X̃
′
2y

= X ′2 (PZ − P 1) (In −Q)y

= X ′2 (PZ − P 1 − PZQ)y

= X ′2PZ (In − P 1 −Q)y

= X ′2PZMXy.

The third-to-last equality is P 1Q = 0 and the final uses MX = In − P 1 −Q. We also calculate
that

Q∗
def
=
(
X ′2 (PZ − P 1)X2

) ((
X ′2 (PZ − P 1)X2

)−1 −
(
X ′2M1X2

)−1
)

·
(
X ′2 (PZ − P 1)X2

)
= X ′2 (PZ − P 1 − (PZ − P 1)Q (PZ − P 1))X2

= X ′2 (PZ − P 1 − PZQPZ)X2

= X ′2PZMXPZX2.

Thus

T =
∆′Q∗−1∆

σ̂2

=
y′MXPZX2 (X ′2PZMXPZX2)

−1
X ′2PZMXy

σ̂2

= W 0

as claimed.
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12.30 Subset Endogeneity Tests

In some cases we may only wish to test the endogeneity of a subset of the variables. In the Card
proximity example, we may wish test the exogeneity of education separately from experience and
its square. To execute a subset endogeneity test it is useful to partition the regressors into three
groups, so that the structural model is

yi = x′1iβ1 + x′2iβ2 + x′3iβ3 + ei

E (ziei) = 0.

As before, the instrument vector zi includes x1i. The variables x3i is treated as endogenous, and
x2i is treated as potentially endogenous. The hypothesis to test is that x2i is exogenous, or

H0 : E(x2iei) = 0

against
H1 : E(x2iei) 6= 0.

Under homoskedasticity, a straightfoward test can be constructed by the Durbin-Wu-Hausman
principle. Under H0, the appropriate estimator is 2SLS using the instruments (zi,x2i). Let this
estimator of β2 be denoted β̂2. Under H1, the appropriate estimator is 2SLS using the smaller
instrument set zi. Let this estimator of β2 be denoted β̃2. A Durbin-Wu-Hausman-type test of H0

against H1 is

T =
(
β̂2 − β̃2

)′ (
v̂ar
(
β̃2

)
− v̂ar

(
β̂2

))−1 (
β̂2 − β̃2

)
.

The asymptotic distribution under H0 is χ2
k2
where k2 = dim(x2i), so we reject the hypothesis that

the variables x2i are exogenous if T exceeds an upper critical value from the χ2
k2
distribution.

Instead of using the Wald statistic, one could use the F version of the test by dividing by k2

and using the F distribution for critical values. There is no finite sample justification for this
modification, however, since x3i is endogenous under the null hypothesis.

In Stata, the command estat endogenous (adding the variable name to specify which variable
to test for exogeneity) after ivregress without a robust covariance option reports the F version
of this statistic as “Wu-Hausman F”. For example, in the Card proximity example using the four
instruments public, private, age and age2, if we estimate the equation by 2SLS with a non-robust
covariance matrix, and then compute the endogeneity test for education, we find F = 272 with a
p-value of 0.0000, but if we compute the test for experience and its square we find F = 2.98 with
a p-value of 0.051. In this equation, education is clearly endogenous but the experience variables
are unclear.

A heteroskedasticity or cluster-robust test cannot be constructed easily by the Durbin-Wu-
Hausman approach, since the covariance matrix does not take a simple form. Instead, we can
use the regression approach if we account for the generated regressor problem. The ideal control
function regression takes the form

yi = x′iβ + u′2iα2 + u′3iα3 + εi

where u2i and u3i are the reduced-form errors from the projections of x2i and x3i on the instruments
zi. The coeffi cients α2 and α3 solve the equations(

E(u2iu
′
2i) E(u2iu

′
3i)

E(u3iu
′
2i) E(u3iu

′
3i)

)(
α2

α3

)
=

(
E(u2iei)
E(u3iei)

)
.

The null hypothesis E(x2iei) = 0 is equivalent to E(u2iei) = 0. This implies

Ψ′
(
α2

α3

)
= 0 (12.67)
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where

Ψ =

(
E(u2iu

′
2i)

E(u3iu
′
2i)

)
.

This suggests that an appropriate regression-based test of H0 versus H1 is to construct a Wald
statistic for the restriction (12.67) in the control function regression

yi = x′iβ̂ + û′2iα̂2 + û′3iα̂3 + ε̂i (12.68)

where û2i and û3i are the least-squares residuals from the regressions of x2i and x3i on the instru-
ments zi, respectively, and Ψ is estimated by

Ψ̂ =

(
1
n

∑n
i=1 û2iû

′
2i)

1
n

∑n
i=1 û3iû

′
2i

)
.

A complication is that the regression (12.68) has generated regressors which have non-zero coef-
ficients under H0. The solution is to use the control-function-robust covariance matrix estimator
(12.64) for (α̂2, α̂3). This yields a valid Wald statistic for H0 versus H1. The asymptotic dis-
tribution of the statistic under H0 is χ2

k2
where k2 = dim(x2i), so the null hypothesis that x2i is

exogenous is rejected if the Wald statistic exceeds the upper critical value from the χ2
k2
distribution.

Heteroskedasticity-robust and cluster-robust subset endogeneity tests are not currently imple-
mented in Stata.

12.31 OverIdentification Tests

When ` > k the model is overidentified meaning that there are more moments than free
parameters. This is a restriction and is testable. Such tests are callled overidentification tests.

The instrumental variables model specifies that

E (ziei) = 0.

Equivalently, since ei = yi − x′iβ, this is the same as

E (ziyi)− E
(
zix

′
i

)
β = 0.

This is an `× 1 vector of restrictions on the moment matrices E (ziyi) and E (zix
′
i). Yet since β is

of dimension k which is less than `, it is not certain if indeed such a β exists.
To make things a bit more concrete, suppose there is a single endogenous regressor x2i, no x1i,

and two instruments z1i and z2i. Then the model specifies that

E(z1iyi) = E(z1ix2i)β

and
E(z2iyi) = E(z2ix2i)β.

Thus β solves both equations. This is rather special.
Another way of thinking about this is that in this context we could solve for β using either

one equation or the other. In terms of estimation, this is equivalent to estimating by IV using just
the instrument z1 or instead just using the instrument z2. These two estimators (in finite samples)
will be different. But if the overidentification hypothesis is correct, both are estimating the same
parameter, and both are consistent for β (if the instruments are relevant). In contrast, if the
overidentification hypothesis is false, then the two estimators will converge to different probability
limits and it is unclear if either probability limit is interesting.

For example, take the 2SLS estimates in the fourth column of Table 12.1, which use public
and private as instruments for education. Suppose we instead estimate by IV, using just public
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as an instrument, and then repeat using private. The IV coeffi cient for education in the first case
is 0.16, and in the second case 0.27. These appear to be quite different. However, the second
estimate has quite a large standard error (0.16) so perhaps the difference is sampling variation. An
overidentification test addresses this question formally.

For a general overidentification test, the null and alternative hypotheses are

H0 : E(ziei) = 0

H1 : E(ziei) 6= 0.

We will also add the conditional homoskedasticity assumption

E(e2
i |zi) = σ2. (12.69)

To avoid imposing (12.69), it is best to take a GMM approach, which we defer until Chapter 13.
To implement a test of H0, consider a linear regression of the error ei on the instruments zi

ei = z′iα+ εi (12.70)

with
α =

(
E(ziz

′
i)
)−1 E(ziei).

We can rewrite H0 as α = 0. While ei is not observed we can replace it with the 2SLS residual êi,
and estimate α by least-squares regression

α̂ =
(
Z ′Z

)−1
Z ′ê.

Sargan (1958) proposed testing H0 via a score test, which takes the form

S = α̂′ (v̂ar (α̂))− α̂ =
ê′Z (Z ′Z)

−1
Z ′ê

σ̂2
. (12.71)

where σ̂2 = 1
n ê
′ê. Basmann (1960) independently proposed a Wald statistic for H0, which is S

with σ̂2 replaced with σ̃2 = n−1ε̂′ε̂ where ε̂ = ê−Zα̂. By the equivalence of homoskedastic score
and Wald tests (see Section 9.16), Basmann’s statistic is a monotonic function of Sargan’s statistic
and hence they yield equivalent tests. Sargan’s version is more typically reported.

The Sargan test rejects H0 in favor of H1 if S > c for some critical value c. An asymptotic
test sets c as the 1 − α quantile of the χ2

`−k distribution. This is justified by the asymptotic null
distribution of S which we now derive.

Theorem 12.16 Under Assumption 12.2 and E(e2
i |zi) = σ2, then as n→

∞
S

d−→ χ2
`−k.

For c satisfying α = 1−G`−k(c),

P (S > c | H0) −→ α

so the test “Reject H0 if S > c”has asymptotic size α.

We prove Theorem 12.16 below.
The Sargan statistic S is an asymptotic test of the overidentifying restrictions under the as-

sumption of conditional homoskedasticity. It has some limitations. First, it is an asymptotic test,
and does not have a finite sample (e.g. F ) counterpart. Simulation evidence suggests that the test
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can be oversized (reject too frequently) in small and moderate sample sizes. Consequently, p-values
should be interpreted cautiously. Second, the assumption of conditional homoskedasticity is unre-
alistic in applications. The best way to generalize the Sargan statistic to allow heteroskedasticity
is to use the GMM overidentification statistic —which we will examine in Chapter 13. For 2SLS,
Wooldrige (1995) suggested a robust score test, but Baum, Schaffer and Stillman (2003) point out
that it is numerically equivalent to the GMM overidentification statistic. Hence the bottom line
appears to be that to allow heteroskedasticity or clustering, it is best to use a GMM approach.

In overidentified applications, it is always prudent to report an overidentification test. If the
test is insignificant it means that the overidentifying restrictions are not rejected, supporting the
estimated model. If the overidentifying test statistic is highly significant (if the p-value is very
small) this is evidence that the overidentifying restrictions are violated. In this case we should be
concerned that the model is misspecified and interpreting the parameter estimates should be done
cautiously.

When reporting the results of an overidentification test, it seems reasonable to focus on very
small sigificance levels, such as 1%. This means that we should only treat a model as “rejected”if
the Sargan p-value is very small, e.g. less than 0.01. The reason to focus on very small significance
levels is because it is very diffi cult to interpret the result “The model is rejected”. Stepping back
a bit, it does not seem credible that any overidentified model is literally true, rather what seems
potentially credible is that an overidentified model is a reasonable approximation. A test is asking
the question “Is there evidence that a model is not true”when we really want to know the answer
to “Is there evidence that the model is a poor approximation”. Consequently it seems reasonable
to require strong evidence to lead to the conclusion “Let’s reject this model”. The recommendation
is that mild rejections (p-values between 1% and 5%) should be viewed as mildly worrisome, but
not critical evidence against a model. The results of an overidentification test should be integrated
with other information before making a strong decision.

We illustrate the methods with the Card college proximity example. We have estimated two
overidentified models by 2SLS, in columns 4 & 5 of Table 12.1. In each case, the number of overi-
dentifying restrictions is 1. We report the Sargan statistic and its asymptotic p-value (calculated
using the χ2

1 distribution) in the table. Both p-values (0.37 and 0.47) are far from significant,
indicating that there is no evidence that the models are misspecified.

We now prove Theorem 12.16. The statistic S is invariant to rotations of Z (replacing Z with

ZC) so without loss of generality we assume E (ziz
′
i) = I`. As n → ∞, n−1/2Z ′e

d−→ σZ where
Z ∼ N (0, I`). Also 1

nZ
′Z

p−→ I` and 1
nZ
′X

p−→ Q, say. Then

n−1/2Z ′ê =

(
I` −

(
1

n
Z ′X

)(
1

n
X ′PZX

)−1( 1

n
X ′Z

)(
1

n
Z ′Z

)−1
)
n−1/2Z ′e

d−→ σ
(
I` −Q

(
Q′Q

)−1
Q′
)

Z.

Since σ̂2 p−→ σ2 it follows that

S
d−→ Z′

(
I` −Q

(
Q′Q

)−1
Q′
)

Z ∼ χ2
`−k.

The distribution is χ2
`−k since I` −Q (Q′Q)

−1
Q′ is idempotent with rank `− k.

The Sargan statistic test can be implemented in Stata using the command estat overid after
ivregress 2sls or ivregres liml if a standard (non-robust) covariance matrix has been specified
(that is, without the ‘,r’option), or by the command estat overid, forcenonrobust otherwise.
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Denis Sargan

The British econometrician John Denis Sargan (1924-1996) was a pioneer in
the field of econometrics. He made a range of fundamental contributions,
including the overidentification test, Edgeworth expansions, and unit root
theory. He was also influential in British econometrics as the dissertation
advisor for many inflluential econometricians.

12.32 Subset OverIdentification Tests

Tests ofH0 : E(ziei) = 0 are typically interpreted as tests of model specification. The alternative
H1 : E(ziei) 6= 0 means that at least one element of zi is correlated with the error ei and is thus
an invalid instrumental variable. In some cases it may be reasonable to test only a subset of the
moment conditions.

As in the previous section we restrict attention to the homoskedasticity case E(e2
i |zi) = σ2.

Partition zi = (zai, zbi) with dimensions `a and `b, respectively, where zai contains the instru-
ments which are believed to be uncorrelated with ei, and zbi contains the instruments which may be
correlated with ei. It is necessary to select this partition so that `a > k, or equivalently `b < `− k.
This means that the model with just the instruments zai is over-identified, or that `b is smaller
than the number of overidentifying restrictions. (If `a = k then the tests described here exist but
reduce to the Sargan test so are not interesting.) Hence the tests require that `− k > 1, that the
number of overidentifying restrictions exceeds one.

Given this partition, the maintained hypothesis is that E(zaiei) = 0. The null and alternative
hypotheses are

H0 : E(zbiei) = 0

H1 : E(zbiei) 6= 0.

That is, the null hypothesis is that the full set of moment conditions are valid, while the alternative
hypothesis is that the instrument subset zbi is correlated with ei and thus an invalid instrument.
Rejection of H0 in favor of H1 is then interpreted as evidence that zbi is misspecified as an instru-
ment.

Based on the same reasoning as described in the previous section, to test H0 against H1 we
consider a partitioned version of the regression (12.70)

ei = z′aiαa + z′biαb + εi

but now focus on the coeffi cient αb. Given E(zaiei) = 0, H0 is equivalent to αb = 0. The equation
is estimated by least-squares, replacing the unobseved ei with the 2SLS residual êi. The estimate
of αb is

α̂b =
(
Z ′bMaZb

)−1
Z ′bMaê

where Ma = In − Za (Z ′aZa)
−1
Z ′a. Newey (1985) showed that an optimal (asymptotically most

powerful) test of H0 against H1 is to reject for large values of the score statistic

N = α̂′b

(
̂var (α̂b)

)−
α̂b

=

ê′R

(
R′R−R′X̂

(
X̂
′
X̂
)−1

X̂
′
R

)−1

R′ê

σ̂2

where X̂ = PX, P = Z (Z ′Z)
−1
Z ′, R = MaZb, and σ̂2 = 1

n ê
′ê.
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Independently from Newey (1985), Eichenbaum, Hansen, and Singleton (1988) proposed a test
based on the difference of Sargan statistics. Letting S be the Sargan test statistic (12.71) based
on the full instrument set and Sa be the Sargan test based on the instrument set zai, the Sargan
difference statistic is

C = S − Sa.

Specifically, let β̃2sls be the 2SLS estimator using the instruments zai only, set ẽi = yi − x′iβ̃2sls,
and set σ̃2 = 1

n ẽ
′ẽ. Then

Sa =
ẽ′Za (Z ′aZa)

−1
Z ′aẽ

σ̃2
.

An advantage of the C statistic is that it is quite simple to calculate from the standard regression
output.

At this point it is useful to reflect on our stated requirement that `a > k. Indeed, if `a < k
then zai fails the order condition for identification and β̃2sls cannot be calculated. Thus `a ≥ k is
necessary to compute Sa and hence S. Furthermore, if `a = k then zai is just identified so while
β̃2sls can be calculated, the statistic Sa = 0 so C = S. Thus when `a = k the subset test equals the
full overidentification test so there is no gain from considering subset tests.

The C statistic Sa is asymptotically equivalent to replacing σ̃2 in Sa with σ̂2, yielding the
statistic

C∗ =
ê′Z (Z ′Z)

−1
Z ′ê

σ̂2
− ẽ

′Za (Z ′aZa)
−1
Z ′aẽ

σ̂2
.

It turns out that this is Newey’s statistic N . These tests have chi-square asymptotic distributions.
Let c satisfy α = 1−G`b(c).

Theorem 12.17 Algebraically, N = C∗. Under Assumption 12.2 and

E(e2
i |zi) = σ2, as n→∞, N d−→ χ2

`b
and C d−→ χ2

`b
. Thus the tests “Reject

H0 if N > c”and “Reject H0 if C > c”are asymptotically equivalent and
have asymptotic size α.

Theorem 12.17 shows that N and C∗ are identical, and are near equivalents to the convenient
statistic C∗, and the appropriate asymptotic distribution is χ2

`b
. Computationally, the easiest

method to implement a subset overidentification test is to estimate the model twice by 2SLS, first
using the full instrument set zi and the second using the partial instrument set zai. Compute
the Sargan statistics for both 2SLS regressions, and compute C as the difference in the Sargan
statistics. In Stata, for example, this is simple to implement with a few lines of code.

We illustrate using the Card college proximity example. Our reported 2SLS estimates have
`−k = 1 so there is no role for a subset overidentification test. (Recall, the number of overidentifying
restrictions must exceed one.) To illustrate we consider adding extra instruments to the estimates
in column 5 of Table 12.1 (the 2SLS estimates using public, private, age, and age2 as instruments
for education, experience, and experience2/100). We add two instruments: the years of education
of the father and the mother of the worker. These variables had been used in the earlier labor
economics literature as instruments, but Card did not. (He used them as regression controls in some
specifications.) The motivation for using parent’s education as instruments is the hypothesis that
parental education influences children’s educational attainment, but does not directly influence
their ability. The more modern labor economics literature has disputed this idea, arguing that
children are educated in part at home, and thus parent’s education has a direct impact on the skill
attainment of children (and not just an indirect impact via educational attainment). The older
view was that parent’s education is a valid instrument, the modern view is that it is not valid. We
can test this dispute using a overidentification subset test.
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We do this by estimating the wage equation by 2SLS using public, private, age, age2, father,
and mother, as instruments for education, experience, and experience2/100). We do not report
the parameter estimates here, but observe that this model is overidentified with 3 overidentifying
restrictions. We calculate the Sargan overidentification statistic. It is 7.9 with an asymptotic
p-value (calculated using χ2

3) of 0.048. This is a mild rejection of the null hypothesis of correct
specification. As we argued in the previous section, this by itself is not reason to reject the model.
Now we consider a subset overidentification test. We are interested in testing the validity of the
two instruments father and mother, not the instruments public, private, age, age2. To test the
hypothesis that these two instruments are uncorrelated with the structural error, we compute the
difference in Sargan statistic, C = 7.9 − 0.5 = 7.4, which has a p-value (calculated using χ2

2) of
0.025. This is marginally statistically significant, meaning that there is evidence that father and
mother are not valid instruments for the wage equation. Since the p-value is not smaller than 1%,
it is not overwhelming evidence, but it still supports Card’s decision to not use parental education
as instruments for the wage equation.

We now prove the results in Theorem 12.17.
We first show that N = C∗. Define P a = Za (Z ′aZa)

−1
Z ′a and PR = R (R′R)

−1
R′. Since

[Za,R] span Z we find P = PR + P a and PRP a = 0. It will be useful to note that

PRX̂ = PRPX = PRX

X̂
′
X̂ − X̂

′
PRX̂ = X ′ (P − PR)X = X ′P aX.

The fact that X ′P ê = X̂
′
ê = 0 implies X ′PRê = −X ′P aê. Finally, since y = Xβ̂ + ê,

ẽ =
(
In −X

(
X ′P aX

)−1
X ′P a

)
ê

so
ẽ′P aẽ = ê′

(
P a − P aX

(
X ′P aX

)−1
X ′P a

)
ê.

Applying the Woodbury matrix equality to the definition of N , and the above algebraic rela-
tionships,

N =
ê′PRê+ ê′PRX̂

(
X̂
′
X̂ − X̂

′
PRX̂

)−1
X̂
′
PRê

σ̂2

=
ê′P ê− ê′P aê+ ê′P aX (X ′P aX)

−1
X ′P aê

σ̂2

=
ê′P ê− ẽ′P aẽ

σ̂2

= C∗

as claimed.
We next establish the asymptotic distribution. Since Za is a subset of Z, PMa = MaP , thus

PR = R and R′X = R′X̂. Consequently

1√
n
R′ê =

1√
n
R′
(
y −Xβ̂

)
=

1√
n
R′
(
In −X

(
X̂
′
X̂
)−1

X̂
′
)
e

=
1√
n
R′
(
In − X̂

(
X̂
′
X̂
)−1

X̂
′
)
e

d−→ N (0,V 2)
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where

V 2 = plim
n→∞

(
1

n
R′R− 1

n
R′X̂

(
1

n
X̂
′
X̂

)−1 1

n
X̂
′
R

)
.

It follows that N = C∗
d−→ χ2

`b
as claimed. Since C = C∗ + op(1) it has the same limiting

distribution.

12.33 Bootstrap Overidentification Tests

The bootstrap for 2SLS (Section 12.23) can be used for overidentification tests, but the bootstrap
version of the overidentification statistic must be adjusted. This is because in the bootstrap universe
the overidentified moment conditions are not satisfied. One solution is to center the moment
conditions.

For the 2SLS estimator the standard overidentification test is based on the Sargan statistic

S = n
ê′Z (Z ′Z)

−1
Z ′ê

ê′ê

ê = y −Xβ̂2sls.

The recentered bootstrap analog is

S∗∗ = n

(
ê∗′Z∗ −Z ′ê

)
(Z∗′Z∗)−1

(Z∗′ê∗ −Z ′ê)

ê∗′ê∗

ê∗ = y∗ −X∗β̂∗2sls.

On each bootstrap sample S∗∗(b) is calculated and stored. The bootstrap p-value is

p∗ =
1

B

B∑
b=1

1 (S∗∗(b) > S) .

This bootstrap p-value is asymtpotically valid because the statistic S∗∗ satisfies the overidenti-
fied moment conditions.

12.34 Local Average Treatment Effects

In a pair of influential papers, Imbens and Angrist (1994) and Angrist, Imbens and Rubin
(1996) proposed an new interpretation of the instrumental variables estimator using the potential
outcomes model introduced in Section 2.30.

We will restrict attention to the case that the endogenous regressor x and excluded instrument
z are binary variables. We write the model as a pair of potential outcome functions. The dependent
variable y is a function of the regressor and an unobservable vector u

y = h (x,u)

and the endogenous regressor x is a function of the instrument z and u

x = g (z,u) .

By specifying u as a vector there is no loss of generality in letting both equations depend on u.
In this framework, the outcomes are determined by the random vector u and the exogenous

instrument z. This determines x, which determines y. To put this in the context of the college prox-
imity example, the variable u is everything specific about an individual. Given college proximity
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z, the person decides to attend college or not. The person’s wage is determined by the individual
attributes u as well as college attendence x, but is not directly affected by college proximity z.

We can omit the random variable u from the notation as follows. An individual i has a re-
alization ui. We then set yi(x) = h (x,ui) and xi(z) = g (z,ui). Also, given a realization zi the
observables are xi = xi(zi) and yi = yi(xi).

In this model the causal effect of college for individual i is

Ci = yi(1)− yi(0).

As discussed in Section 2.30, in general this is individual-specific.
We would like to learn about the distribution of the causal effects, or at least features of the

distribution. A common feature of interest is the average treatment effect (ATE)

ATE = E (Ci) = E (yi(1)− yi(0)) .

This, however, it typically not feasible to estimate allowing for endogenous x without strong as-
sumptions (such as that the causal effect Ci is constant across individuals). The treatment effect
literature has explored what features of the distribution of Ci can be estimated.

One particular feature of interest, and emphasized by Imbens and Angrist (1994), is known as the
local average treatment effect (LATE), and is roughly the average effect upon those effected by the
instrumental variable. To understand LATE, it is helpful to consider the college proximity example
using the potential outcomes framework. In this framework, each person is fully characterized by
their individual unobservable ui. Given ui, their decision to attend college is a function of the
proximity indicator zi. For some students, proximity has no effect on their decision. For other
students, it has an effect in the specific sense that given zi = 1 they choose to attend college while
if zi = 0 they choose to not attend. We can summarize the possibilites with the following chart,
which is based on labels developed by Angrist, Imbens and Rubin (1996).

x(0) = 0 x(0) = 1
x(1) = 0 Never Takers Deniers
x(1) = 1 Compliers Always Takers

The columns indicate the college attendence decision given z = 0. The rows indicate the college
attendence decision given z = 1. The four entries are labels for the four types of individuals based
on these decisions. The upper-left entry are the individuals who do not attend college regardless of
z. They are called “Never Takers”. The lower-right entry are the individuals who conversely attend
college regardless of z. They are called “Always Takers”. The bottom left are the individuals who
only attend college if they live close to one. They are called “Compliers”. The upper right entry
is a bit of a challenge. These are individuals who attend college only if they do not live close to
one. They are called “Deniers”. Imbens and Angrist discovered that to identify the parameters
of interest we need to assume that there are no Deniers, or equivalently that x(1) ≥ x(0), which
they label as a “monotonicity” condition —that increasing the instrument cannot decrease x for
any individual.

We can distinguish the types in the table by the relative values of x(1)−x(0). For Never-Takers
and Always-Takers, x(1)− x(0) = 0, while for Compliers, x(1)− x(0) = 1.

We are interested in the causal effect Ci = h(1,u) − h(0,u) of college attendence on wages.
Consider the average causal effect among the different types. Among Never-Takers and Always-
Takers, x(1) = x(0) so

E (yi(1)− yi(0)|x(1) = x(0)) .

Suppose we try and estimate its average value, conditional for each the three types of individuals:
Never-Takers, Always-Takers, and Compliers. It would impossible for the Never-Takers and Always-
Takers. For the former, none attend college so it would be impossible to ascertain the effect of college
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attendence, and similarly for the latter since they all attend college. Thus the only group for which
we can estimate a causal effect are the Compliers. This is

LATE = E (yi(1)− yi(0)|xi(1) > xi(0)) .

Imbens and Angrist called this the local average treatment effect (LATE) as it is the
average treatment effect for the sub-population whose endogenous regressor is affected by changes
in the instrumental variable.

Interestingly, we show below that

LATE =
E (yi | zi = 1)− E (yi | zi = 0)

E (xi | zi = 1)− E (xi | zi = 0)
. (12.72)

That is, LATE equals the Wald expression (12.29) for the slope coeffi cient in the IV regression
model. This means that the standard IV estimator is an estimator of LATE. Thus when treatment
effects are potentially heterogeneous, we can interpret IV as an estimator of LATE. The equality
(12.72) occurs under the following conditions.

Assumption 12.3 ui and zi are independent; and P (xi(1)− xi(0) < 0) =
0.

One interesting feature about LATE is that its value can depend on the instrument zi and the
distribution of causal effects Ci in the population. To make this concrete, suppose that instead
of the Card proximity instrument, we consider an instrument based on the financial cost of local
college attendence. It is reasonable to expect that while the set of students affected by these two
instruments are similar, the two sets of students will not be the same. That is, some students may
be responsive to proximity but not finances, and conversely. If the causal effect Ci has a different
average in these two groups of students, then LATE will be different when calculated with these
two instruments. Thus LATE can vary by the choice of instrument.

How can that be? How can a well-defined parameter depend on the choice of instrument?
Doesn’t this contradict the basic IV regression model? The answer is that the basic IV regression
model is more restrictive — it specifies that the causal effect β is common across all individuals.
Thus its value is the same regardless of the choice of specific instrument (so long as it satisfies
the instrumental variables assumptions). In contrast, the potential outcomes framework is more
general, allowing for the causal effect to vary across individuals. What this analysis shows us is
that in this context is quite possible for the LATE coeffi cient to vary by instrument. This occurs
when causal effects are heterogeneous.

One implication of the LATE framework is that IV estimates should be interpreted as causal
effects only for the population of compliers. Interpretation should focus on the population of
potential compliers and extension to other populations should be done with caution. For example,
in the Card proximity model, the IV estimates of the causal return to schooling presented in Table
12.1 should be interpreted as applying to the population of students who are incentivized to attend
college by the presence of a college within their home county. The estimates should not be applied
to other students.

Formally, the analysis of this section examined the case of a binary instrument and endogenous
regressor. How does this generalize? Suppose that the regressor x is discrete, taking J + 1 discrete
values. We can then rewrite the model as one with J binary endogenous regressors. If we then have
J binary instruments, we are back in the Imbens-Angrist framework (assuming the instruments have
a monotonic impact on the endogenous regressors). A benefit is that with a larger set of instruments
it is plausible that the set of compliers in the population is expanded.
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We close this section by showing (12.72) under Assumption 12.3. The realized value of xi can
be written as

xi = (1− zi)xi(0) + zixi(1) = xi(0) + zi (xi(1)− xi(0)) .

Similarly
yi = yi(0) + xi (yi(1)− yi(0)) = yi(0) + xiCi.

Combining,
yi = yi(0) + xi(0)Ci + zi (xi(1)− xi(0))Ci.

The independence of ui and zi implies independence of (yi(0), yi(1), xi(0), xi(1), Ci) and zi. Thus

E (yi|zi = 1) = E (yi(0)) + E (xi(0)Ci) + E ((xi(1)− xi(0))Ci)

and
E (yi|zi = 0) = E (yi(0)) + E (xi(0)Ci) .

Subtracting we obtain

E (yi|zi = 1)− E (yi|zi = 0) = E ((xi(1)− xi(0))Ci)

= 1 · E (Ci|xi(1)− xi(0) = 1)P (xi(1)− xi(0) = 1)

+ 0 · E (Ci|xi(1)− xi(0) = 0)P (xi(1)− xi(0) = 0)

+ (−1) · E (Ci|xi(1)− xi(0) = −1)P (xi(1)− xi(0) = −1)

= E (Ci|xi(1)− xi(0) = 1) (E (xi | zi = 1)− E (xi | zi = 0))

where the final equality uses P (xi(1)− xi(0) < 0) = 0 and

P (xi(1)− xi(0) = 1) = E (xi(1)− xi(0)) = E (xi | zi = 1)− E (xi | zi = 0) .

Rearranging

LATE = E (Ci|xi(1)− xi(0) = 1) =
E (yi|zi = 1)− E (yi|zi = 0)

E (xi | zi = 1)− E (xi | zi = 0)

as claimed.

12.35 Identification Failure

Recall the reduced form equation

x2i = Γ′12z1i + Γ′22z2i + u2i.

The parameter β fails to be identified if Γ22 has deficient rank. The consequences of identification
failure for inference are quite severe.

Take the simplest case where k1 = 0 and k2 = `2 = 1. Then the model may be written as

yi = xiβ + ei (12.73)

xi = ziγ + ui

and Γ22 = γ = E (zixi) /E
(
z2
i

)
. We see that β is identified if and only if γ 6= 0, which occurs

when E (xizi) 6= 0. Thus identification hinges on the existence of correlation between the excluded
exogenous variable and the included endogenous variable.

Suppose this condition fails. In this case γ = 0 and E (xizi) = 0.We now analyze the distribution
of the least-squares and IV estimators of β. For simplicity we assume conditional homoskedasticity
and normalize the variances to unity. Thus

var

((
ei
ui

)
| zi
)

=

(
1 ρ
ρ 1

)
. (12.74)
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The errors have non-zero correlation ρ 6= 0 which occurs when the variables are endogenous.
By the CLT we have the joint convergence

1√
n

n∑
i=1

(
ziei
ziui

)
d−→
(
ξ1

ξ2

)
∼ N

(
0,

(
1 ρ
ρ 1

))
.

It is convenient to define ξ0 = ξ1 − ρξ2 which is normal and independent of ξ2.
As a benchmark, it is useful to observe that the least-squares estimator of β satisfies

β̂ols − β =
n−1

∑n
i=1 uiei

n−1
∑n

i=1 u
2
i

p−→ ρ 6= 0

so endogeneity causes β̂ols to be inconsistent for β.
Under identification failure γ = 0 the asymptotic distribution of the IV estimator is

β̂iv − β =

1√
n

∑n
i=1 ziei

1√
n

∑n
i=1 zixi

d−→ ξ1

ξ2
= ρ+

ξ0

ξ2
.

This asymptotic convergence result uses the continuous mapping theorem, which applies since the
function ξ1/ξ2 is continuous everywhere except at ξ2 = 0, which occurs with probability equal to
zero.

This limiting distribution has several notable features.
First, β̂iv does not converge in probability to a limit, rather it converges in distribution to a

random variable. Thus the IV estimator is inconsistent. Indeed, it is not possible to consistently
estimate an unidentified parameter and β is not identified when γ = 0.

Second, the ratio ξ0/ξ2 is symmetrically distributed about zero, so the median of the limiting
distribution of β̂iv is β + ρ. This means that the IV estimator is median biased under endogeneity.
Thus under identification failure the IV estimator does not correct the centering (median bias) of
least-squares.

Third, the ratio ξ0/ξ2 of two independent normal random variables is Cauchy distributed. This
is particularly nasty, as the Cauchy distribution does not have a finite mean. The distribution
has thick tails meaning that extreme values occur with higher frequency than the normal, and
inferences based on the normal distribution can be quite incorrect.

Together, these results show that γ = 0 renders the IV estimator particularly poorly behaved —
it is inconsistent, median biased, and non-normally distributed.

We can also examine the behavior of the t-statistic. For simplicity consider the classical (ho-
moskedastic) t-statistic. The error variance estimate has the asymptotic distribution

σ̂2 =
1

n

n∑
i=1

(
yi − xiβ̂iv

)2

=
1

n

n∑
i=1

e2
i −

2

n

n∑
i=1

eixi

(
β̂iv − β

)
+

1

n

n∑
i=1

x2
i

(
β̂iv − β

)2

d−→ 1− 2ρ
ξ1

ξ2
+

(
ξ1

ξ2

)2

.

Thus the t-statistic has the asymptotic distribution

T =
β̂iv − β√

σ̂2
∑n

i=1 z
2
i / |
∑n

i=1 zixi|
d−→ ξ1/ξ2√

1− 2ρ ξ1ξ2 +
(
ξ1
ξ2

)2
.

The limiting distribution is non-normal, meaning that inference using the normal distribution will
be (considerably) incorrect. This distribution depends on the correlation ρ. The distortion is
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increasing in ρ. Indeed as ρ → 1 we have ξ1/ξ2 →p 1 and the unexpected finding σ̂2 →p 0. The
latter means that the conventional standard error s(β̂iv) for β̂iv also converges in probability to
zero. This implies that the t-statistic diverges in the sense |T | →p ∞. In this situations users may
incorrectly interpret estimates as precise, despite the fact that they are useless.

12.36 Weak Instruments

In the previous section we examined the extreme consequences of full identification failure.
Similar problems occur when identification is weak in the sense that the reduced form coeffi cients
are of small magnitude. In this section we derive an asymptotic distribution of the OLS, 2SLS,
and LIML estimators when the reduced form coeffi cients are treated as weak. We show that the
estimators are inconsistent, and the 2SLS and LIML estimators remain random in large samples.

To simplify the exposition we assume that there are no included exogenous variables (no x1) so
we write x2, z2 and β2 simply as x, z and β. Thus the model is

yi = x′iβ + ei

xi = Γ′zi + u2i.

Define the reduced form error vector ai = (vi,u2i) and its variance matrix

E
(
aia

′
i

)
= Σ =

[
Σ11 Σ12

Σ21 Σ22

]
.

Recall that the structural error is ei = vi − β′u2i = γ ′ui where γ = (1,−β), which has variance
E
(
e2
i |zi

)
= γ ′Σγ. Also define the covariance Σ2e = E (u2iei|zi) = Σ21 −Σ22β.

In Section 12.35 we assumed complete identification failure in the sense that Γ = 0. We now
want to assume that identification does not completely fail, but is weak in the sense that Γ is small.
A rich asymptotic distribution theory has been developed to understand this setting by modeling Γ
as “local-to-zero”. The seminal contribution is Staiger and Stock (1997). The theory was extended
to nonlinear GMM estimation by Stock and Wright (2000).

The technical device introduced by Staiger and Stock (1997) is to assume that the reduced form
parameter is local-to-zero, specifically

Γ = n−1/2C (12.75)

where C is a free matrix. The n−1/2 scaling is picked because it provides just the right balance to
allow a useful distribution theory. The local-to-zero assumption (12.75) is not meant to be taken
literally but rather is meant to be a useful distributional approximation. The parameter C indexes
the degree of identification. Larger ‖C‖ implies stronger identification; smaller ‖C‖ implies weaker
identification.

We now derive the asymptotic distribution of the least-squares, 2SLS and LIML estimators
under the local-to-unity assumption (12.75).

The least-squares estimator satisfies

β̂ols − β =
(
n−1X ′X

)−1 (
n−1X ′e

)
=
(
n−1U ′2U2

)−1 (
n−1U ′2e

)
+ op(1)

p−→ Σ−1
22 Σ2e.

Thus the least-squares estimator is inconsistent for β.
To examine the 2SLS estimator, by the central limit theorem

1√
n

n∑
i=1

zia
′
i

d−→ ξ = [ξ1, ξ2]
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where
vec (ξ) ∼ N

(
0,E

(
aia

′
i ⊗ ziz′i

))
.

This implies
1√
n
Z ′e

d−→ ξe = ξγ.

We also find that
1√
n
Z ′X =

1

n
Z ′ZC +

1√
n
Z ′U2

d−→ QzC + ξ2.

Thus

X ′PZX =

(
1√
n
X ′Z

)(
1

n
Z ′Z

)−1( 1√
n
Z ′X

)
d−→ (QzC + ξ2)′Q−1

z (QzC + ξ2)

and

X ′PZe =

(
1√
n
X ′Z

)(
1

n
Z ′Z

)−1( 1√
n
Z ′e

)
d−→ (QzC + ξ2)′Q−1

z ξe.

We find that the 2SLS estimator has the asymptotic distribution

β̂2sls − β =
(
X ′PZX

)−1 (
X ′PZe

)
d−→
(
(QzC + ξ2)′Q−1

z (QzC + ξ2)
)−1

(QzC + ξ2)′Q−1
z ξe. (12.76)

As in the case of complete identification failure, we find that β̂2sls is inconsistent for β, it is
asymptotically random, and its asymptotic distribution is non-normal. The distortion is affected
by the coeffi cient C. As ‖C‖ → ∞ the distribution in (12.76) converges in probability to zero,
suggesting that β̂2sls is consistent for β. This corresponds to the classic “strong identification”
context.

Now consider the LIML estimator. The reduced form is Y = ZΠ+a. This impliesMZY = MZa
and by standard asymptotic theory

1

n
Y ′MZY =

1

n
a′MZa

p−→ Σ = E
(
aia

′
i

)
.

Define β = [β, Ik] so that the reduced form coeffi cients equal Π = [Γβ,Γ] = n−1/2Cβ. Then

1√
n
Z ′Y =

1

n
Z ′ZCβ +

1√
n
Z ′U

d−→ QzCβ + ξ

and
Y ′Z

(
Z ′Z

)−1
Z ′Y

d−→
(
QzCβ + ξ

)′
Q−1
z

(
QzCβ + ξ

)
.

This allows us to calculate that by the continuous mapping theorem

nµ̂ = min
γ

γ ′Y ′Z (Z ′Z)
−1
Z ′Y γ

γ ′ 1nY
′MZY γ

d−→ min
γ

γ ′
(
QzCβ + ξ

)′
Q−1
z

(
QzCβ + ξ

)
γ

γ ′Σγ

= µ∗
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say, which is a function of ξ and thus random. We deduce that the asymptotic distribution of the
LIML estimator is

β̂liml − β =

(
X ′PZX − nµ̂

1

n
X ′MZX

)−1(
X ′PZe− nµ̂

1

n
X ′MZe

)
d−→
(
(QzC + ξ2)′Q−1

z (QzC + ξ2)− µ∗Σ22

)−1 (
(QzC + ξ2)′Q−1

z ξe − µ∗Σ2e

)
.

Similarly to 2SLS, the LIML estimator is inconsistent for β, is asymptotically random, and non-
normally distributed.

We summarize.

Theorem 12.18 Under (12.75),

β̂ols − β
p−→ Σ−1

22 Σ2e

β̂2sls − β
d−→
(
(QzC + ξ2)′Q−1

z (QzC + ξ2)
)−1

(QzC + ξ2)′Q−1
z ξe

and

β̂liml − β
d−→
(
(QzC + ξ2)′Q−1

z (QzC + ξ2)− µ∗Σ22

)−1

·
(
(QzC + ξ2)′Q−1

z ξe − µ∗Σ2e

)
where

µ∗ = min
γ

γ ′
(
QzCβ + ξ

)′
Q−1
z

(
QzCβ + ξ

)
γ

γ ′Σγ
.

All three estimators are inconsistent. The 2SLS and LIML estimators are asymptotically ran-
dom with non-standard distributions, similar to the asymptotic distribution of the IV estimator
under complete identification failure explored in the previous section. The difference under weak
identification is the presence of the coeffi cient matrix C.

12.37 Many Instruments

Some applications have available a large number ` of instruments. If they are all valid, using a
large number should reduce the asymptotic variance relative to estimation with a smaller number
of instruments. Is it then good practice to use many instruments? Or is there a cost to this
practice? Bekker (1994) initiated a large literature investigating this question by formalizing the
idea of “many instruments”. Bekker proposed an asymptotic approximation which treats the
number of instruments ` as proportional to the sample size, that is ` = αn, or equivalently that
`/N → α ∈ [0, 1). The distributional theory obtained is similar in many respects to the weak
instrument theory outlined in the previous section. Consequently the impact of “weak”and “many”
instruments is similar.

Again for simplicity we assume that there are no included exogenous regressors so that the
model is

yi = x′iβ + ei (12.77)

xi = Γ′zi + u2i



CHAPTER 12. INSTRUMENTAL VARIABLES 456

with zi ` × 1. We also make the simplifying assumption that the errors are conditionally ho-
moskedastic. Specifically, for ai = (vi,u2i)

E
(
aia

′
i|zi
)

= Σ =

[
Σ11 Σ12

Σ21 Σ22

]
. (12.78)

In addition we assume that the conditional fourth moments are bounded

E
(
‖ai‖4 | zi

)
≤ B <∞. (12.79)

The idea that there are “many instruments”is formalized by the assumption that the number
of instruments is increasing proportionately with the sample size

`

n
−→ α. (12.80)

The best way to think about this is to view α as the ratio of ` to n in a given sample. Thus if an
application has n = 100 observations and ` = 10 instruments, then we should treat α = 0.10.

Suppose that there is a single endogenous regressors xi. Calculate its variance using the reduced
form: var (xi) = var (z′iΓ) + var (ui). Suppose as well that var (xi) and var (ui) are unchanging as `
increases. This implies that var (z′iΓ) is unchanging, even though the dimension ` is increasing. This
is a useful assumption, as it implies that the population R2 of the reduced form is not changing with
`. We don’t need this exact condition, rather we simply assume that the sample version converges
in probability to a fixed constant. Specifically, we assume that

1

n

n∑
i=1

Γ′ziz
′
iΓ

p−→H (12.81)

for some matrix H > 0. Again, this essentially implies that the R2 of the reduced form regressions
for each regressor in xi converge to constants.

As a baseline it is useful to examine the behavior of the least-squares estimator of β. First,
observe that the variance of vec

(
n−1

∑n
i=1 Γ′ziu

′
i

)
, conditional on Z, is

Σ⊗ n−2
n∑
i=1

Γ′ziz
′
iΓ

p−→ 0

by (12.81). Thus it converges in probability to zero:

n−1
n∑
i=1

Γ′zia
′
i

p−→ 0. (12.82)

Combined with (12.81) and the WLLN we find

1

n

n∑
i=1

xiei =
1

n

n∑
i=1

Γ′ziei +
1

n

n∑
i=1

u2iei
p−→ Σ2e

and

1

n

n∑
i=1

xix
′
i =

1

n

n∑
i=1

Γ′ziz
′
iΓ +

1

n

n∑
i=1

Γ′ziu
′
2i +

1

n

n∑
i=1

u2iz
′
iΓ +

1

n

n∑
i=1

u2iu
′
2i

p−→H + Σ22.
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Hence

β̂ols = β +

(
1

n

n∑
i=1

xix
′
i

)−1(
1

n

n∑
i=1

xiei

)
p−→ β + (H + Σ22)−1 Σ2e.

Thus least-squares is inconsistent for β.
Now consider the 2SLS estimator. In matrix notation, setting PZ = Z (Z ′Z)

−1
Z ′,

β̂2sls − β =

(
1

n
X ′PZX

)−1( 1

n
X ′PZe

)
=

(
1

n
Γ′Z ′ZΓ +

1

n
Γ′Z ′u2 +

1

n
u′2ZΓ +

1

n
u′2PZu2

)−1( 1

n
Γ′Z ′e+

1

n
u′2PZe

)
. (12.83)

In the expression on the right-side of (12.83), several of the components have been examined in
(12.81) and (12.82). We now examine the remaining components 1

nu
′
2PZe and

1
nu
′
2PZu2 which

are sub-components of the matrix 1
na
′PZa. Take the jkth element 1

na
′
jPZak.

First, take its expectation. We have (given under the conditional homoskedasticity assumption
(12.78))

E
(

1

n
a′jPZak

∣∣∣∣Z) =
1

n
trE

(
PZaka

′
j

∣∣Z) =
1

n
tr (P ) Σjk =

`

n
Σjk (12.84)

the final equality since tr (PZ) = `.
Second, we calculate its variance, which is a more cumbersome exercise. Let Pim = z′i (Z ′Z)

−1
zm

be the imth element of PZ . Then a′jPak =
∑n

i=1

∑n
m=1 ajiakmPim. The matrix PZ is idempo-

tent. It therefore has the properties
∑n

i=1 Pii = tr (PZ) = ` and 0 ≤ Pii ≤ 1. The property
PZPZ = PZ also implies

∑n
m=1 P

2
im = Pii. Then

var

(
1

n
a′jPZak

∣∣∣∣Z) =
1

n2
E

(
n∑
i=1

n∑
m=1

(ajiakm − E (ajiakm) 1 (i = m))Pim

∣∣∣∣∣Z
)2

=
1

n2
E

 n∑
i=1

n∑
m=1

n∑
q=1

n∑
r=1

(ajiakm − Σjk1 (i = m))Pim (ajqakr − Σjk1 (q = r))Pqr


=

1

n2

n∑
i=1

E
(

(ajiaki − Σjk)
2
)
P 2
ii

+
1

n2

n∑
i=1

∑
m6=i

E
(
a2
jia

2
km

)
P 2
im +

1

n2

n∑
i=1

∑
m6=i

E (ajiakmajmaki)P
2
im

≤ B

n2

(
n∑
i=1

P 2
ii + 2

n∑
i=1

n∑
m=1

P 2
im

)

≤ 3B

n2

n∑
i=1

Pii

= 3B
`

n2
−→ 0.

The third equality holds because the remaining cross-products have zero expectation since the
observations are independent and the errors have zero mean. The first inequality is (12.79). The
second uses P 2

ii ≤ Pii and
∑n

m=1 P
2
im = Pii. The final equality is

∑n
i=1 Pii = `. Together, we have

shown that

var

(
1

n
a′jPZak

)
−→ 0.



CHAPTER 12. INSTRUMENTAL VARIABLES 458

Using (12.80), (12.84), Markov’s inequality, and combining across all j and k we deduce that

1

n
a′PZa

p−→ αΣ. (12.85)

Returning to the 2SLS estimator (12.83) and combining (12.81), (12.82), and (12.85), we find

β̂2sls − β
p−→ (H + αΣ22)−1 αΣ2e.

Thus 2SLS is also inconsistent for β. The limit, however, depends on the magnitude of α.
We finally examine the LIML estimator. (12.85) implies

1

n
Y ′MZY =

1

n
a′a− 1

n
a′PZa

p−→ (1− α) Σ.

Similarly

1

n
Y ′Z

(
Z ′Z

)−1
Z ′Y = β

′
Γ′
(

1

n
Z ′Z

)
Γβ + β

′
Γ′
(

1

n
Z ′a

)
+

(
1

n
a′Z

)
Γβ +

1

n
a′PZa

d−→ β
′
Hβ + αΣ.

Hence

µ̂ = min
γ

γ ′Y ′Z (Z ′Z)
−1
Z ′Y γ

γ ′Y ′MZY γ

d−→ min
γ

γ ′
(
β
′
Hβ + αΣ

)
γ

γ ′ (1− α) Σγ

=
α

1− α

and

β̂liml − β =

(
1

n
X ′PZX − µ̂

1

n
X ′MZX

)−1( 1

n
X ′PZe− µ̂

1

n
X ′MZe

)
d−→
(
H + αΣ22 −

α

1− α (1− α) Σ22

)−1(
αΣ2e −

α

1− α (1− α) Σ2e

)
= H−10

= 0.

Thus LIML is consistent for β, unlike 2SLS.
We state these results formally.

Theorem 12.19 In model (12.77), under assumptions (12.78), (12.79) and
(12.80), then as n→∞.

β̂ols
p−→ β + (H + Σ22)−1 Σ2e

β̂2sls
p−→ β + (H + αΣ22)−1 αΣ2e

β̂liml
p−→ β.
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This result is quite insightful. It shows that while endogeneity (Σ2e 6= 0) renders the least-
squares estimator inconsistent, the 2SLS estimator is also inconsistent if the number of instruments
diverges proportionately with n. The limit in Theorem 12.19 shows a continuity between least-
squares and 2SLS. The probability limit of the 2SLS estimator is continuous in α, with the extreme
case (α = 1) implying that 2SLS and least-squares have the same probability limit. The general
implication is that the inconsistency of 2SLS is increasing in α.

The theorem also shows that unlike 2SLS, the LIML estimator is consistent under the many
instruments assumption. Effectively, LIML makes a bias-correction.

Theorems 12.18 (weak instruments) and 12.19 (many instruments) tell a cautionary tale. They
show that when instruments are weak and/or many, that the 2SLS estimator is inconsistent. The
degree of inconsistency depends on the weakness of the instruments (the magnitude of the matrix
C in Theorem 12.18) and the degree of overidentification (the ratio α in Theorem 12.19). The
Theorems also show that the LIML estimator is inconsistent under the weak instrument assumption
but with a bias-correction, and is consistent under the many instrument assumption. This suggests
that LIML is more robust than 2SLS to weak and many instruments.

An important limitation of the results in Theorem 12.19 is the assumption of conditional ho-
moskedasticity. It appears likely that the consistency of LIML may fail in the many instrument
setting if the errors are heteroskedastic.

In an application, users should be aware of the potential consequences of the many instrument
framework. It many be useful to calculate the “many instrument ratio”α = `/n. Unfortunately
there is no known rule-of-thumb for α which should lead to acceptable inference, but a minimum
criterion is that if α ≥ 0.05 you should be seriously concerned about the many-instrument problem.
In general, when α is large it seems preferable to use LIML instead of 2SLS.

12.38 Testing for Weak Instruments

In the previous sections we have found that weak instruments results in non-standard asymptotic
distributions for the 2SLS and LIML esitmators. In practice how do we know if this is a problem?
Is there a way to test if the instruments are weak?

This question was addressed in an influential paper by Stock and Yogo (2005) as an extension of
Staiger and Stock (1997). Stock-Yogo focus on two implications of weak instruments: (1) estimation
bias and (2) inference distortion. The show how to test the hypothesis that these distortions are
not “too big”. These tests are simply F tests for the excluded instruments in the reduced form
regressions, but with non-standard critical values. In particular, when there is one endogenous
regressor and a single instrument, the Stock-Yogo test rejects the null of weak instruments when
this F statistic exceeds 10. While Stock and Yogo explore two types of distortions, we focus
exclusively on inference as that is the more challenging problem. In this section we describe the
Stock-Yogo theory and tests for the case of a single endogenous regressor (k2 = 1), and in the
following section describe their methods for the case of multiple endogeneous regressors.

While the theory in Stock and Yogo allows for an arbitrary number of exogenous regressors and
instruments, for the sake of clear exposition we will focus on the very simple case of no included
exogenous variables (k1 = 0) and just one exogenous instrument (`2 = 1), which is model (12.73)
from Section 12.35

yi = xiβ + ei

xi = ziΓ + ui.

Furthermore, as in Section 12.35 we assume conditional homoskedasticity and normalize the vari-
ances as in (12.74). Since the model is just-identified the 2SLS, LIML and IV estimators are all
equivalent.

The question of primary interest is to determine conditions on the reduced form under which
the IV estimator of the structural equation is well behaved, and secondly, what statistical tests can
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be used to learn if these conditions are satisfied. As in Section 12.36 we assume that the reduced
form coeffi cient Γ is local-to-zero, specifically

Γ = n−1/2µ.

The asymptotic distribution of the IV estimator is presented in Theorem 12.18. Given the simpli-
fying assumptions the result is

β̂iv − β
d−→ ξe

µ+ ξ2

where (ξe, ξ2) are bivariate normal. For inference we also examine the behavior of the classical
(homoskedastic) t-statistic for the IV estimator. Note

σ̂2 =
1

n

n∑
i=1

(
yi − xiβ̂iv

)2

=
1

n

n∑
i=1

e2
i −

2

n

n∑
i=1

eixi

(
β̂iv − β

)
+

1

n

n∑
i=1

x2
i

(
β̂iv − β

)2

d−→ 1− 2ρ
ξe

µ+ ξ2
+

(
ξe

µ+ ξ2

)2

.

Thus

T =
β̂iv − β√

σ̂2
∑n

i=1 z
2
i / |
∑n

i=1 zixi|
d−→ ξ1√

1− 2ρ ξ1
µ+ξ2

+
(

ξ1
µ+ξ2

)2

def
= S. (12.86)

In general, S is non-normal, and its distribution depends on the parameters ρ and µ.
Can we use the distribution S for inference on β? The distribution depends on two unknown

parameters, and neither is consistently estimable. (Thus we cannot simply use the distribution in
(12.86) with ρ and µ replaced with estimates.) To eliminate the dependence on ρ one possibility
is to use the “worst case”value, which turns out to be ρ = 1. By worst-case we mean that value
which causes the greatest distortion away from normal critical values. Setting ρ = 1 we have the
considerable simplification

S = S1 = ξ

∣∣∣∣1 +
ξ

µ

∣∣∣∣ (12.87)

where ξ ∼ N(0, 1). When the model is strongly identified (so |µ| is very large) then S1 ≈ ξ is
standard normal, consistent with classical theory. However when |µ| is very small (but non-zero)
|S1| ≈ ξ2/µ (in the sense that this term dominates), which is a scaled χ2

1 and quite far from normal.
As |µ| → 0 we find the extreme case |S1| →p ∞.

While (12.87) is a convenient simplification it does not yield a useful approximation for inference
since the distribution in (12.87) is highly dependent on the unknown µ. If we try to take the worst-
case value of µ, which is µ = 0, we find that |S1| diverges and all distributional approximations
fail.

To break this impasse, Stock and Yogo (2005) recommended a constructive alternative. Rather
than using the worst-case µ, they suggested finding a threshold such that if µ exceeds this threshold
then the distribution (12.87) is not “too badly”distorted from the normal distribution.

Specifically, the Stock-Yogo recommendation can be summarized by two steps. First, the dis-
tribution result (12.87) can be used to find a threshold value τ2 such that if µ2 ≥ τ2 then the
size of the nominal1 5% test “Reject if |T | ≥ 1.96” has asymptotic size P (|S1| ≥ 1.96) ≤ 0.15.
This means that while the goal is to obtain a test with size 5%, we recognize that there may be

1The term “nominal size”of a test is the offi cial intended size —the size which would obtain under ideal circum-
stances. In this context the test “Reject if |T | ≥ 1.96”has nominal size 0.05 as this would be the asymptotic rejection
probability in the ideal context of strong instruments.
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size distortion due to weak instruments and are willing to tolerate a specific size distortion, for
example 10% distortion (allow for actual size up to 15%, or more generally r). Second, they use the
asymptotic distribution of the reduced-form (first stage) F statistic to test if the actual unknown
value of µ2 exceeds the threshold τ2. These two steps together give rise to the rule-of-thumb that
the first-stage F statistic should exceed 10 in order to achieve reliable IV inference. (This is for
the case of one instrumental variable. If there is more than one instrument then the rule-of-thumb
changes.) We now describe the steps behind this reasoning in more detail.

The first step is to use the distribution (12.86) to determine the threshold τ2. Formally, the
goal is to find the value of τ2 = µ2 at which the asymptotic size of a nominal 5% test is actually r
(e.g. r = 0.15)

P (|S1| ≥ 1.96) ≤ r.
By some algebra and using the quadratic formula the event |ξ (1 + ξ/µ)| < x is the same as

µ2

4
− xµ <

(
ξ +

µ

2

)2
<
µ2

4
+ xµ.

The random variable between the inequalities is distributed χ2
1(µ2/4), a noncentral chi-square with

one degree of freedom and noncentrality parameter µ2/4. Thus

P (|S1| ≥ x) = P
(
χ2

1

(
µ2

4

)
≥ µ2

4
+ xµ

)
+ P

(
χ2

1

(
µ2

4

)
≤ µ2

4
− xµ

)
= 1−G

(
µ2

4
+ xµ,

µ2

4

)
+G

(
µ2

4
− xµ, µ

2

4

)
(12.88)

where G (u, λ) is the distribution function of χ2
1(λ). Hence the desired threshold τ2 solves

1−G
(
τ2

4
+ 1.96τ,

τ2

4

)
+G

(
τ2

4
− 1.96τ,

τ2

4

)
= r

or effectively

G

(
τ2

4
+ 1.96τ,

τ2

4

)
= 1− r

since τ2/4 − 1.96τ < 0 for relevant values of τ . The numerical solution (computed with the non-
central chi-square distribution function, e.g. ncx2cdf in MATLAB) is τ2 = 1.70 when r = 0.15.
(That is, the command ncx2cdf(1.7/4+1.96*sqrt(1.7),1,1.7/4) yields the answer 0.8500.
Stock and Yogo (2005) approximate the same calculation using simulation methods and report
τ2 = 1.82.)

This calculation means that if the true reduced form coeffi cient satisfies µ2 ≥ 1.7, or equivalently
if Γ2 ≥ 1.7/n, then the (asymptotic) size of a nominal 5% test on the structural parameter is no
larger than 15%.

To summarize the Stock-Yogo first step, we calculate the minimum value τ2 for µ2 suffi cient to
ensure that the asymptotic size of a nominal 5% t-test does not exceed r, and find that τ2 = 1.70
for r = 0.15.

The Stock-Yogo second step is to find a critical value for the first-stage F statistic suffi cient to
reject the hypothesis that H0 : µ2 = τ2 against H1 : µ2 > τ2. We now describe this procedure.

They suggest testing H0 : µ2 = τ2 at the 5% size using the first stage F statistic. If the F
statistic is small so that the test does not reject then we should be worried that the true value of
µ2 is small and there is a weak instrument problem. On the other hand if the F statistic is large
so that the test rejects then we can have some confidence that the true value of µ2 is suffi ciently
large that the weak instrument problem is not too severe.

To implement the test we need to calculate an appropriate critical value. It should be calculated
under the null hypothesis H0 : µ2 = τ2. This is different from a conventional F test (which has the
null hypothesis H0 : µ2 = 0).
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We start by calculating the asymptotic distribution of F . Since there is just one regressor and
one instrument in our simplified setting, the first-stage F statistic is the squared t-statistic from
the reduced form, and given our previous calculations has the asymptotic distribution

F =
γ̂2

s (γ̂)2 =
(
∑n

i=1 zixi)
2(∑n

i=1 x
2
i

)
σ̂2
u

d−→ (µ+ ξ2)2 ∼ χ2
1

(
µ2
)
.

This is a non-central chi-square distribution with one degree of freedom and non-centrality para-
meter µ2. The distribution function of the latter is G(u, µ2).

To test H0 : µ2 = τ2 against H1 : µ2 > τ2 we reject for F ≥ c where c is selected so that the
asymptotic rejection probability

P (F ≥ c)→ P
(
χ2

1

(
µ2
)
≥ c
)

= 1−G
(
c, µ2

)
equals 0.05 under H0 : µ2 = τ2, or equivalently

G
(
c, τ2

)
= G (c, 1.7) = 0.95.

This can be found using the non-central chi-square quantile function, e.g. the function Q(p, d)
which solves G(Q(p, d), d) = p. We find that

c = Q (0.95, 1.7) = 8.7.

In MATLAB, this can be computed by ncx2inv(.95,1.7). (Stock and Yogo (2005) report c = 9.0
since they used τ2 = 1.82.)

This means that if F > 8.7 we can reject H0 : µ2 = 1.7 against H1 : µ2 > 1.7 with an asymptotic
5% test. In this context we should expect the IV estimate and tests to be reasonably well behaved.
However, if F < 8.7 then we should be cautious about the IV estimator, confidence intervals, and
tests. This finding led Staiger and Stock (1997) to propose the informal “rule of thumb”that the
first stage F statistic should exceed 10. Notice that F exceeding 8.7 (or 10) is equivalent to the
reduced form t-statistic exceeding 2.94 (or 3.16), which is considerably larger than a conventional
check if the t-statistic is “significant”. Equivalently, the recommended rule-of-thumb for the case
of a single instrument is to estimate the reduced form and verify that the t-statistic for exclusion
of the instrumental variable exceeds 3 in absolute value.

Does the proposed procedure control the asymptotic size of a 2SLS test? The first step has
asymptotic size bounded below r (e.g. 15%). The second step has asymptotic size 5%. By the
Bonferroni bound (see Section 9.20) the two steps together have asymptotic size bounded below
r + 0.05 (e.g. 20%). We can thus call the Stock-Yogo procedure a rigorous test with asymptotic
size r + 0.05 (or 20%).

Our analysis has been confined to the case k2 = `2 = 1. Stock and Yogo (2005) also examine
the case of `2 > 1 (which requires numerical simulation to solve), and both the 2SLS and LIML
estimators. They show that the F statistic critical values depend on the number of instruments `2
as well as the estimator. We report their calculations in Table 12.4.

One striking feature about these critical values is that those for the 2SLS estimator are strongly
increasing in `2 while those for the LIML estimator are decreasing in `2. This means that when the
number of instruments `2 is large, 2SLS requires a much stronger reduced form (larger µ2) in order
for inference to be reliable, but this is not the case for LIML. This is direct evidence that inference
is less sensitive to weak instruments when estimation is by LIML rather than 2SLS. This makes a
strong case for using LIML rather than 2SLS, especially when `2 is large or the instruments are
potentially weak.

We now summarize the recommended Staiger-Stock/Stock-Yogo procedure for k1 ≥ 1, k2 = 1,
and `2 ≥ 1. The structural equation and reduced form equations are

yi = x′1iβ1 + x2iβ2 + ei

x2i = x′1iγ1 + z′2iγ2 + ui.
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Table 12.4: 5% Critical Value for Weak Instruments, k2 = 1

Maximal Size r
2SLS LIML

`2 0.10 0.15 0.20 0.25 0.10 0.15 0.20 0.25
1 16.4 9.0 6.7 5.5 16.4 9.0 6.7 5.5
2 19.9 11.6 8.7 7.2 8.7 5.3 4.4 3.9
3 22.3 12.8 9.5 7.8 6.5 4.4 3.7 3.3
4 24.6 14.0 10.3 8.3 5.4 3.9 3.3 3.0
5 26.9 15.1 11.0 8.8 4.8 3.6 3.0 2.8
6 29.2 16.2 11.7 9.4 4.4 3.3 2.9 2.6
7 31.5 17.4 12.5 9.9 4.2 3.2 2.7 2.5
8 33.8 18.5 13.2 10.5 4.0 3.0 2.6 2.4
9 36.2 19.7 14.0 11.1 3.8 2.9 2.5 2.3
10 38.5 20.9 14.8 11.6 3.7 2.8 2.5 2.2
15 50.4 26.8 18.7 12.2 3.3 2.5 2.2 2.0
20 62.3 32.8 22.7 17.6 3.2 2.3 2.1 1.9
25 74.2 38.8 26.7 20.6 3.8 2.2 2.0 1.8
30 86.2 44.8 30.7 23.6 3.9 2.2 1.9 1.7

The reduced form is estimated by least-squares

x2i = x′1iγ̂1 + z′2iγ̂2 + ûi

and the structural equation by either 2SLS or LIML:

yi = x′1iβ̂1 + x2iβ̂2 + êi.

Let F be the F statistic for H0 : γ2 = 0 in the reduced form equation. Let s(β̂2) be a standard
error for β2 in the structural equation. The procedure is:

1. Compare F with the critical values c in the above table, with the row selected to match the
number of excluded instruments `2, and the columns to match the estimation method (2SLS
or LIML) and the desired size r.

2. If F > c then report the 2SLS or LIML estimates with conventional inference.

The Stock-Yogo test can be implemented in Stata using the command estat firststage after
ivregress 2sls or ivregres liml if a standard (non-robust) covariance matrix has been specified
(that is, without the ‘,r’option).

There are possible extensions to the Stock-Yogo procedure.
One modest extension is to use the information to convey the degree of confidence in the

accuracy of a confidence interval. Suppose in an application you have `2 = 5 excluded instruments
and have estimated your equation by 2SLS. Now suppose that your reduced form F statistic equals
12. You check the Stock-Yogo table, and find that F = 12 is significant with r = 0.20. Thus we
can interpret the conventional 2SLS confidence interval as having coverage of 80% (or 75% if we
make the Bonferroni correction). On the other hand if F = 27 we would conclude that the test
for weak instruments is significant with r = 0.10, meaning that the conventional 2SLS confidence
interval can be interpreted as having coverage of 90% (or 85% after Bonferroni correction).

A more substantive extension, which we now discuss, reverses the steps. Unfortunately this
discussion will be limited to the case `2 = 1, where 2SLS and LIML are equivalent. First, use the
reduced form F statistic to find a one-sided confidence interval for µ2 of the form [µ2

L,∞). Second,
use the lower bound µ2

L to calculate a critical value c for S1 such that the 2SLS test has asymptotic
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size bounded below 0.05. This produces better size control than the Stock-Yogo procedure and
produces more informative confidence intervals for β2. We now describe the steps in detail.

The first goal is to find a one-sided confidence interval for µ2. This is found by test inversion.
As we described earlier, for any τ2 we reject H0 : µ2 = τ2 in favor of H1 : µ2 > τ2 if F > c
where G(c, τ2) = 0.95. Equivalently, we reject if G(F, τ2) > 0.95. By the test inversion principle,
an asymptotic 95% confidence interval [µ2

L,∞) can be formed as the set of all values of τ2 which
are not rejected by this test. Since G(F, τ2) ≥ 0.95 for all τ2 in this set, the lower bound µ2

L

satisfies G(F, µ2
L) = 0.95. The lower bound is found from this equation. Since this solution is not

generally programmed, it needs to be found numerically. In MATLAB, the solution is mu2 when
ncx2cdf(F,1,mu2) returns 0.95.

The second goal is to find the critical value c such that P (|S1| ≥ c) = 0.05 when µ2 = µ2
L. From

(12.88), this is achieved when

1−G
(
µ2
L

4
+ cµL,

µ2
L

4

)
+G

(
µ2
L

4
− cµL,

µ2
L

4

)
= 0.05. (12.89)

This can be solved as

G

(
µ2
L

4
+ cµL,

µ2
L

4

)
= 0.95.

(The third term on the left-hand-side of (12.89) is zero for all solutions so can be ignored.) Using
the non-central chi-square quantile function Q(p, d), this C equals

c =
Q
(

0.95,
µ2L
4

)
− µ2L

4

µL
.

For example, in MATLAB this is found as c=(ncx2inv(.95,1,mu2/4)-mu2/4)/sqrt(mu2). 95%
confidence intervals for β2 are then calculated as

β̂IV ± cs(β̂iv).

We can also calculate a p-value for the t-statistic T for β2. These are

p = 1−G
(
µ2
L

4
+ |T |µL,

µ2
L

4

)
+G

(
µ2
L

4
− |T |µL,

µ2
L

4

)
where the third term equals zero if |T | ≥ µL/4. In MATLAB, for example, this can be calculated
by the commands

T1 = mu2/4+ abs(T) ∗ sqrt(mu2);
T2 = mu2/4− abs(T) ∗ sqrt(mu2);
p = −ncx2cdf(T1, 1, mu2/4) + ncx2cdf(T2, 1, mu2/4);
These confidence intervals and p-values will be larger than the conventional intervals and p-

values, reflecting the incorporation of information about the strength of the instruments through
the first-stage F statistic. Also, by the Bonferroni bound these tests have asymptotic size bounded
below 10% and the confidence intervals have asymptotic converage exceeding 90%, unlike the Stock-
Yogo method which has size of 20% and coverage of 80%.

The augmented procedure suggested here, only for the `2 = 1 case, is

1. Find µ2
L which solvesG

(
F, µ2

L

)
= 0.95 . In MATLAB, the solution is mu2 when ncx2cdf(F,1,mu2)

returns 0.95.

2. Find c which solves G
(
µ2
L/4 + cµL, µ

2
L/4
)

= 0.95. In MATLAB, the command is

c=(ncx2inv(.95,1,mu2/4)-mu2/4)/sqrt(mu2)

3. Report the confidence interval β̂2 ± cs(β̂2) for β2.
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4. For the t statistic T =
(
β̂2 − β2

)
/s(β̂2) the asymptotic p-value is

p = 1−G
(
µ2
L

4
+ |T |µL,

µ2
L

4

)
+G

(
µ2
L

4
− |T |µL,

µ2
L

4

)
which is computed in MATLAB by T1=mu2/4+abs(T)*sqrt(mu2); T2=mu2/4-abs(T)*sqrt(mu2);
and p=1-ncx2cdf(T1,1,mu2/4)+ncx2cdf(T2,1,mu2/4).

We have described an extension to the Stock-Yogo procedure for the case of one instrumental
variable `2 = 1. This restriction was due to the use of the analytic formula (12.89) for the asymptotic
distribution, which is only available when `2 = 1. In principle the procedure could be extended using
simulation or bootstrap methods, but this has not been done to my knowledge.

To illustrate the Stock-Yogo and extended procedures, let us return to the Card proximity
example. First, let’s take the IV estimates reported in the second column of Table 12.1 which used
college proximity as a single instrument. The reduced form estimates for the endogenous variable
education is reported in the second column of Table 12.2. The excluded instrument college has a
t-ratio of 4.2 which implies an F statistic of 17.8. The F statistic exceeds the rule-of thumb of 10, so
the structural estimates pass the Stock-Yogo threshold. Based on the Stock-Yogo recommendation,
this means that we can interpret the estimates conventionally. However, the conventional confidence
interval, e.g. for the returns to education, 0.132 ± 0.049 ∗ 1.96 = [0.04, 0.23] has an asymptotic
coverage of 80%, rather than the nominal 95% rate.

Now consider the extended procedure. Given F = 17.8 we can calculate the lower bound
µ2
L = 6.6. This implies a critical value of C = 2.7. Hence an improved confidence interval for the
returns to education in this equation is 0.132± 0.049 ∗ 2.7 = [0.01, 0.26]. This is a wider confidence
interval, but has improved asymptotic coverage of 90%. The p-value for β2 = 0 is p = 0.012.

Next, let’s take the 2SLS estimates reported in the fourth column of Table 11.1 which use the
two instruments public and private. The reduced form equation is reported in column six of Table
12.2. An F statistic for exclusion of the two instruments is F = 13.9, which exceeds the 15% size
threshold for 2SLS and all thresholds for LIML, indicating that the structural estimates pass the
Stock-Yogo threshold test and can be interpreted conventionally.

The weak instrument methods described here are important for applied econometrics as they
discipline researchers to assess the quality of their reduced form relationships before reporting
structural estimates. The theory, however, has limitations and shortcomings. A major limitation
is that the theory requires the strong assumption of conditional homoskedasticity. Despite this
theoretical limitation, in practice researchers apply the Stock-Yogo recommendations to estimates
computed with heteroskedasticity-robust standard errors as it is the currently the best known
approach. This is an active area of research so the recommended methods may change in the years
ahead.

12.39 Weak Instruments with k2 > 1

When there are more than one endogenous regressor (k2 > 1) it is better to examine the reduced
form as a system. Staiger and Stock (1997) and Stock and Yogo (2005) provided an analysis of
this case and constructed a test for weak instruments. The theory is considerably more involved
than the k2 = 1 case, so we briefly summarize it here excluding many details, emphasizing their
suggested methods.

The structural equation and reduced form equations are

yi = x′1iβ1 + x′2iβ2 + ei

x2i = Γ′12z1i + Γ′22z2i + u2i.

As in the previous section we assume that the errors are conditionally homoskedastic.
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Identification of β2 requires the matrix Γ22 to be full rank. A necessary condition is that each
row of Γ′22 is non-zero, but this is not suffi cient.

We focus on the size performance of the homoskedastic Wald statistic for the 2SLS estimator
of β2. For simplicity assume that the variance of ei is known and normalized to one. Using
representation (12.34), the Wald statistic can be written as

W = e′Z̃2

(
Z̃
′
2Z̃2

)−1
Z̃
′
2X2

(
X ′2Z̃2

(
Z̃
′
2Z̃2

)−1
Z̃
′
2X2

)−1(
X ′2Z̃2

(
Z̃
′
2Z̃2

)−1
Z̃
′
2e

)
where Z̃2 = (In − P 1)Z2 and P 1 = X1 (X ′1X1)

−1
X ′1.

Recall from Section 12.36 that Stock and Staiger model the excluded instruments z2i as weak by
setting Γ22 = n−1/2C for some matrix C. In this framework we have the asymptotic distribution
results

1

n
Z̃
′
2Z̃2

p−→ Q = E(z2iz
′
2i)− E(z2iz

′
1i)
(
E(z1iz

′
1i)
)−1 E(z1iz

′
2i)

and
1√
n
Z̃
′
2e

d−→ Q1/2ξ0

where ξ0 is a matrix normal variate whose columns are independent N(0, I). Furthermore, setting
Σ = E(u2iu

′
2i) and C = Q1/2CΣ−1/2,

1√
n
Z̃
′
2X2 =

1

n
Z̃
′
2Z̃2 C+

1√
n
Z̃
′
2U2

d−→ Q1/2CΣ1/2 +Q1/2ξ2Σ
1/2

where ξ2 is a matrix normal variates whose columns are independent N(0, I). The variables ξ0 and
ξ2 are correlated. Together we obtain the asymptotic distribution of the Wald statistic

W
d−→ S = ξ′0

(
C + ξ2

) (
C
′
C
)−1 (

C + ξ2

)′
ξ0.

Using the spectral decomposition, C
′
C = H ′ΛH where H ′H = I and Λ is diagonal. Thus we

can write
S = ξ′0ξ2Λ

−1ξ
′
2ξ0

where ξ2 = CH ′ + ξ2H
′. The matrix ξ∗ = (ξ0, ξ2) is multivariate normal, so ξ∗′ξ∗ has what is

called a non-central Wishart distribution. It only depends on the matrix C throughHC
′
CH ′ = Λ,

which are the eigenvalues of C
′
C. Since S is a function of ξ∗ only through ξ

′
2ξ0 we conclude that

S is a function of C only through these eigenvalues.
This is a very quick derivation of a rather involved derivation, but the conclusion drawn by Stock

and Yogo is that the asymptotic distribution of the Wald statistic is non-standard, and a function
of the model parameters only through the eigenvalues of C

′
C and the correlations between the

normal variates ξ0 and ξ2. The worst-case can be summarized by the maximal correlation between
ξ0 and ξ2 and the smallest eigenvalue of C

′
C. For convenience, they rescale the latter by dividing

by the number of endogenous variables. Define

G = C
′
C/k2 = Σ−1/2C ′QCΣ−1/2/k2

and
g = λmin (G) = λmin

(
Σ−1/2C ′QCΣ−1/2

)
/k2.

This can be estimated from the reduced-form regression

x2i = Γ̂
′
12z1i + Γ̂

′
22z2i + û2i.
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The estimator is

Ĝ = Σ̂
−1/2

Γ̂
′
22

(
Z̃
′
2Z̃2

)
Γ̂22Σ̂

−1/2
/k2

= Σ̂
−1/2

(
X ′2Z̃2

(
Z̃
′
2Z̃2

)−1
Z̃
′
2X2

)
Σ̂
−1/2

/k2

Σ̂ =
1

n− k

n∑
i=1

û2iû
′
2i

ĝ = λmin

(
Ĝ
)
.

Ĝ is a matrix F -type statistic for the coeffi cient matrix Γ̂22.
The statistic ĝ was proposed by Craig and Donald (1993) as a test for underidentification. Stock

and Yogo (2005) use it as a test for weak instruments. Using simulation methods, they determined
critical values for ĝ similar to those for the k2 = 1 case. For given size r > 0.05, there is a critical
value c (reported in the table below) such that if ĝ > c, then the 2SLS (or LIML) Wald statistic
W for β̂2 has asymptotic size bounded below r. On the other hand, if ĝ ≤ c then we cannot bound
the asymptotic size below r and we cannot reject the hypothesis of weak instruments.

The Stock-Yogo critical values for k2 = 2 are presented in Table 12.5. The methods and theory
applies to the cases k2 > 2 as well, but those critical values have not been calculated. As for the
k2 = 1 case, the critical values for 2SLS are dramatically increasing in `2. Thus when the model is
over-identified, we need quite a large value of ĝ to reject the hypothesis of weak instruments. This
is a strong cautionary message to check the ĝ statistic in applications. Furthermore, the critical
values for LIML are generally decreasing in `2 (except for r = 0.10, where the critical values are
increasing for large `2). This means that for over-identified models, LIML inference is much less
sensitive to weak instruments than 2SLS, and may be the preferred estimation method.

The Stock-Yogo test can be implemented in Stata using the command estat firststage after
ivregress 2sls or ivregres liml if a standard (non-robust) covariance matrix has been specified
(that is, without the ‘,r’option). Critical values which control for size are only available for for
k2 ≤ 2. For for k2 > 2 critical values which control for relative bias are reported.

Robust versions of the test have been proposed by Kleibergen and Paap (2006). These can be
implemented in Stata using the downloadable command ivreg2.

Table 12.5: 5% Critical Value for Weak Instruments, k2 = 2

Maximal Size r
2SLS LIML

`2 0.10 0.15 0.20 0.25 0.10 0.15 0.20 0.25
2 7.0 4.6 3.9 3.6 7.0 4.6 3.9 3.6
3 13.4 8.2 6.4 5.4 5.4 3.8 3.3 3.1
4 16.9 9.9 7.5 6.3 4.7 3.4 3.0 2.8
5 19.4 11.2 8.4 6.9 4.3 3.1 2.8 2.6
6 21.7 12.3 9.1 7.4 4.1 2.9 2.6 2.5
7 23.7 13.3 9.8 7.9 3.9 2.8 2.5 2.4
8 25.6 14.3 10.4 8.4 3.8 2.7 2.4 2.3
9 27.5 15.2 11.0 8.8 3.7 2.7 2.4 2.2
10 29.3 16.2 11.6 9.3 3.6 2.6 2.3 2.1
15 38.0 20.6 14.6 11.6 3.5 2.4 2.1 2.0
20 46.6 25.0 17.6 13.8 3.6 2.4 2.0 1.9
25 55.1 29.3 20.6 16.1 3.6 2.4 1.97 1.8
30 63.5 33.6 23.5 18.3 4.1 2.4 1.95 1.7
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12.40 Example: Acemoglu, Johnson and Robinson (2001)

One particularly well-cited instrumental variable regression is in Acemoglu, Johnson and Robin-
son (2001) with additional details published in (2012). They are interested in the effect of political
institutions on economic performance. The theory is that good institutions (rule-of-law, property
rights) should result in a country having higher long-term economic output than if the same country
had poor institutions. To investigate this question, they focus on a sample of 64 former European
colonies. Their data is in the file AJR2001 on the textbook website.

The authors’ premise is that modern political institutions will have been influenced by the
colonizing country. In particular, they argue that colonizing countries tended to set up colonies
as either an “extractive state” or as a “migrant colony”. An extractive state was used by the
colonizer to extract resources for the colonizing country, but was not largely settled by the European
colonists. In this case the colonists would have had no incentive to set up good political institutions.
In contrast, if a colony was set up as a “migrant colony”, then large numbers of European settlers
migrated to the colony to live. These settlers would have desired institutions similar to those in their
home country, and hence would have had a positive incentive to set up good political institutions.
The nature of institutions is quite persistent over time, so these 19th-century foundations would
affect the nature of modern institutions. The authors conclude that the 19th-century nature of
the colony should be predictive of the nature of modern institutions, and hence modern economic
growth.

To start the investigation they report an OLS regression of log GDP per capita in 1995 on a
measure of political institutions they call “risk”, which is a measure of the protection against expro-
priation risk. This variable ranges from 0 to 10, with 0 the lowest protection against appropriation,
and 10 the highest. For each country the authors take the average value of the index over 1985 to
1995 (the mean is 6.5 with a standard deviation of 1.5). Their reported OLS estimates (intercept
omitted) are

̂log(GDP per Capita) = 0.52
(0.06)

risk. (12.90)

These estimates imply a 52% difference in GDP between countries with a 1-unit difference in risk.
The authors argue that the risk is likely endogenous, since economic output influences political

institutions, and because the variable risk is undoubtedly measured with error. These issues induce
least-square bias in different directions and thus the overall bias effect is unclear.

To correct for the endogeneity bias the authors argue the need for an instrumental variable which
does not directly affect economic performance yet is associated with political institutions. Their
innovative suggestion was to use the mortality rate which faced potential European settlers in the
19th century. Colonies with high expected mortality would have been less attractive to European
setters, resulting in lower levels of European migrants. As a consequence the authors expect such
colonies to have been more likely structured as an extractive state rather than a migrant colony.
To measure the expected mortality rate the authors use estimates provided by historical research
of the annualized deaths per 1000 soldiers, labeled mortality. (They used military mortality rates
as the military maintained high-quality records.) The first-stage regression is

risk = −0.61
(0.13)

log(mortality) + û. (12.91)

These estimates confirm that 19th-century high settler mortality rates are associated with countries
with lower quality modern institutions. Using log(mortality) as an instrument for risk, they
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estimate the structural equation using 2SLS and report

̂log(GDP per Capita) = 0.94
(0.16)

risk. (12.92)

This estimate is much higher than the OLS estimate from (12.90). The estimate is consistent with
a near doubling of GDP due to a 1-unit difference in the risk index.

These are simple regressions involving just one right-hand-side variable. The authors considered
a range of other models. Included in these results are a reversal of a traditional finding. In a
conventional (least-squares) regression two relevant varibles for output are latitude (distance from
the equator) and africa (a dummy variable for countries from Africa), both of which are diffi cult
to interpret causally. But in the proposed instrumental variables regression the variables latitude
and africa have much smaller —and statistically insignificant —coeffi cients.

To assess the specification, we can use the Stock-Yogo and endogeneity tests. The Stock-Yogo
test is from the reduced form (12.91). The instrument has a t-ratio of 4.8 (or F = 23) which
exceeds the Stock-Yogo critical value and hence can be treated as strong. For an endogeneity test,
we take the least-squares residual û from this equation and include it in the structural equation and
estimate by least-squares. We find a coeffi cient on û of −0.57 with a t-ratio of 4.7, which is highly
significant. We conclude that the least-squares and 2SLS estimates are statistically different, and
reject the hypothesis that the variable risk is exogenous for the GDP structural equation.

In Exercise 12.23 you will replicate and extend these results using the authors’data.
This paper is a creative and careful use of the instrumental variables method. The creativity

stems from the historical analysis which lead to the focus on mortality as a potential predictor of
migration choices. The care comes in the implementation, as the authors needed to gather country-
level data on political institutions and mortality from distinct sources. Putting these pieces together
is the art of the project.

12.41 Example: Angrist and Krueger (1991)

Another influential instrument variable regression is in Angrist and Krueger (1991). Their
concern, similar to Card (1995), is estimation of the structural returns to education while treating
educational attainment as endogenous. Like Card, their goal is to find an instrument which is
exogenous for wages yet has an impact on educational attainment. A subset of their data in the
file AK1991 on the textbook website.

Their creative suggestion was to focus on compulsory school attendance policies and their
interaction with birthdates. Compulsory schooling laws vary across states in the United States, but
typically require that youth remain in school until their sixteenth or seventeenth birthday. Angrist
and Krueger argue that compulsory schooling has a causal effect on wages —youth who would have
chosen to drop out of school stay in school for more years —and thus have more education which
causally impacts their earnings as adults.

Angrist and Krueger next observe that these policies have differential impact on youth who
are born early or late in the school year. Students who are born early in the calendar year are
typically older when they enter school. Consequently when they attain the legal dropout age they
have attended less school than those born near the end of the year. This means that birthdate
(early in the calendar year versus late) exogenously impacts educational attainment, and thus wages
through education. Yet birthdate must be exogenous for the structural wage equation, as there is
no reason to believe that birthdate itself has a causal impact on a person’s ability or wages. These
considerations together suggest that birthdate is a valid instrumental variable for education in a
causal wage equation.

Typical wage datasets include age, but not birthdates. To obtain information on birthdate,
Angrist and Krueger used U.S. Census data which includes an individual’s quarter of birth (January-
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March, April-June, etc.). They use this variable to construct 2SLS estimates of the return to
education.

Their paper carefully documents that educational attainment varies by quarter of birth (as
predicted by the above discussion), and reports a large set of least-squares and 2SLS estimates.
We focus on two estimates at the core of their analysis, reported in column (6) of their Tables
V and VII. This involves data from the 1980 census with men born in 1930-1939, with 329,509
observations. The first equation is

̂log(wage) = 0.081
(0.016)

edu− 0.230
(0.026)

black + 0.158
(0.017)

urban+ 0.244
(0.005)

married (12.93)

where edu years of education, and black, urban, and married are dummy variables indicating race
(1 if black, 0 otherwise), lives in a metropolitan area, and if married. In addition to the reported
coeffi cients, the equation also includes as regressors nine year-of-birth dummies and eight region-
of-residence dummies. The equation is estimated by 2SLS. The instrumental variables are the 30
interactions of three quarter-of-birth times ten year-of-birth dummy variables.

This equation indicates an 8% increase in wages due to each year of education.
Angrist and Krueger observe that the effect of compulsory education laws are likely to vary

across states, so expand the instrument set to include interactions with state-of-birth. They esti-
mate the following equation by 2SLS

̂log(wage) = 0.083
(0.009)

edu− 0.233
(0.011)

black + 0.151
(0.009)

urban+ 0.244
(0.004)

married. (12.94)

This equation also adds fifty state-of-birth dummy variables as regressors. The instrumental vari-
ables are the 180 interactions of quarter-of-birth times year-of-birth dummy variables, plus quarter-
of-birth times state-of-birth interactions.

This equation shows a similar estimated causal effect of education on wages as in (12.93). More
notably, the standard error is smaller in (12.94), suggesting improved precision by the expanded
instrumental variable set.

However, these estimates seem excellent candidates for weak instruments and many instru-
ments. Indeed, this paper (published in 1991) helped spark these two literatures. We can use the
Stock-Yogo tools to explore the instrument strength and the implications for the Angrist-Krueger
estimates.

We first take equation (12.93). Using the original Angrist-Krueger data, we estimate the cor-
reponding reduced form, and calculate the F statistic for the 30 excluded instruments. We find
F = 4.8. It has an asymptotic p-value of 0.000, suggesting that we can reject (at any significance
level) the hypothesis that the coeffi cients on the excluded instruments are zero. Thus Angrist and
Krueger appear to be correct that quarter of birth helps to explain educational attainment and are
thus a valid instrumental variable set. However, using the Stock-Yogo test, F = 4.8 is not high
enough to reject the hypothesis that the instruments are weak. Specifically, for `2 = 30 the critical
value for the F statistic is 45 (if we want to bound size below 15%). The actual value of 4.8 is
far below 45. Since we cannot reject that the instruments are weak, this indicates that we cannot
interpret the 2SLS estimates and test statistics in (12.93) as reliable.

Second, take (12.94) with the expanded regressor and instrument set. Estimating the corre-
sponding reduced form, we find the F statistic for the 180 excluded instruments is F = 2.43 which
also has an asymptotic p-value of 0.000 indicating that we can reject at any significance level the
hypothesis that the excluded instruments have no effect on educational attainment. However, using
the Stock-Yogo test we also cannot reject the hypothesis that the instruments are weak. While
Stock and Yogo did not calculate the critical values for `2 = 180, the 2SLS critical values are
increasing in `2 so we we can use those for `2 = 30 as a lower bound. Hence the observed value of
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F = 2.43 is far below the level needed for significance. Consequently the results in (12.94) cannot
be viewed as reliable. In particular, the observation that the standard errors in (12.94) are smaller
than those in (12.93) should not be interpreted as evidence of greater precision. Rather, they should
be viewed as evidence of unreliability due to weak instruments.

When instruments are weak, one constructive suggestion is to use LIML estimation rather than
2SLS. Another constructive suggestion is to alter the instrument set. While Angrist and Krueger
used a large number of instrumental variables, we can consider using a smaller set. Take equation
(12.93). Rather than estimating it using the 30 interaction instruments, consider using only the
three quarter-of-birth dummy variables. We report the reduced form estimates here:

êdu = − 1.57
(0.02)

black+ 1.05
(0.01)

urban+ 0.225
(0.016)

married+ 0.050
(0.016)

Q2+ 0.101
(0.016)

Q3+ 0.142
(0.016)

Q4

(12.95)
where Q2, Q3 and Q4 are dummy variables for birth in the 2nd, 3rd, and 4th quarter. The regression
also includes nine year-of-birth and eight region-of-residence dummy variables.

The reduced form coeffi cients in (12.95) on the quarter-of-birth dummies are quite instructive.
The coeffi cients are positive and increasing, consistent with the Angrist-Krueger hypothesis that
individuals born later in the year achieve higher average education. Focusing on the weak instru-
ment problem, the F test for exclusion of these three variables is F = 31. The Stock-Yogo critical
value is 12.8 for `2 = 3 and a size of 15%, and is 22.3 for a size of 10%. Since F = 31 exceeds
both these thresholds we can reject the hypothesis that this reduced form is weak. Estimating the
model by 2SLS with these three instruments we find

̂log(wage) = 0.099
(0.021)

edu− 0.201
(0.033)

black + 0.139
(0.022)

urban+ 0.240
(0.006)

married. (12.96)

These estimates indicate a slightly larger (10%) causal impact of education on wages, but with
a larger standard error. The Stock-Yogo analysis indicates that we can interpret the confidence
intervals from these estimates as having asymptotic coverge 85%.

While the original Angrist-Krueger estimates suffer due to weak instruments, their paper is a
very creative and thoughtful application of the natural experiment methodology. They discov-
ered a completely exogenous variation present in the world —birthdate —and showed how this has
a small but measurable effect on educational attainment, and thereby on earnings. Their crafting
of this natural experiment regression is extremely clever and demonstrates a style of analysis which
can successfully underlie an effective instrumental variables empirical analysis.

12.42 Programming

We now present Stata code for some of the empirical work reported in this chapter.
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Stata do File for Card Example

use Card1995.dta, clear
set more off
gen exp = age76 - ed76 - 6
gen exp2 = (exp^2)/100
* Drop observations with missing wage
drop if lwage76==.
* Table 12.1 regressions
reg lwage76 ed76 exp exp2 black reg76r smsa76r, r
ivregress 2sls lwage76 exp exp2 black reg76r smsa76r (ed76=nearc4), r
ivregress 2sls lwage76 black reg76r smsa76r (ed76 exp exp2 = nearc4 age76
age2), r perfect
ivregress 2sls lwage76 exp exp2 black reg76r smsa76r (ed76=nearc4a
nearc4b), r
ivregress 2sls lwage76 black reg76r smsa76r (ed76 exp exp2 = nearc4a
nearc4b age76 age2), r perfect
ivregress liml lwage76 exp exp2 black reg76r smsa76r (ed76=nearc4a
nearc4b), r
* Table 12.2 regressions
reg lwage76 exp exp2 black reg76r smsa76r nearc4, r
reg ed76 exp exp2 black reg76r smsa76r nearc4, r
reg ed76 black reg76r smsa76r nearc4 age76 age2, r
reg exp black reg76r smsa76r nearc4 age76 age2, r
reg exp2 black reg76r smsa76r nearc4 age76 age2, r
reg ed76 exp exp2 black reg76r smsa76r nearc4a nearc4b, r
reg lwage76 ed76 exp exp2 smsa76r reg76r, r
reg lwage76 nearc4 exp exp2 smsa76r reg76r, r
reg ed76 nearc4 exp exp2 smsa76r reg76r, r

Stata do File for Acemoglu-Johnson-Robinson Example

use AJR2001.dta, clear
reg loggdp risk
reg risk logmort0
predict u, residual
ivregress 2sls loggdp (risk=logmort0)
reg loggdp risk u
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Stata do File for Angrist-Krueger Example

use AK1991.dta, clear
ivregress 2sls logwage black smsa married i.yob i.region (edu = i.qob#i.yob)
ivregress 2sls logwage black smsa married i.yob i.region i.state (edu =
i.qob#i.yob i.qob#i.state)
reg edu black smsa married i.yob i.region i.qob#i.yob
testparm i.qob#i.yob
reg edu black smsa married i.yob i.region i.state i.qob#i.yob i.qob#i.state
testparm i.qob#i.yob i.qob#i.state
reg edu black smsa married i.yob i.region i.qob
testparm i.qob
ivregress 2sls logwage black smsa married i.yob i.region (edu = i.qob)
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Exercises

Exercise 12.1 Consider the single equation model

yi = ziβ + ei,

where yi and zi are both real-valued (1 × 1). Let β̂ denote the IV estimator of β using as an
instrument a dummy variable di (takes only the values 0 and 1). Find a simple expression for the
IV estimator in this context.

Exercise 12.2 In the linear model

yi = x′iβ + ei

E (ei | xi) = 0

suppose σ2
i = E

(
e2
i | xi

)
is known. Show that the GLS estimator of β can be written as an IV

estimator using some instrument zi. (Find an expression for zi.)

Exercise 12.3 Take the linear model

y = Xβ + e.

Let the OLS estimator for β be β̂ and the OLS residual be ê = y −Xβ̂.
Let the IV estimator for β using some instrument Z be β̃ and the IV residual be ẽ = y−Xβ̃.

If X is indeed endogenous, will IV “fit”better than OLS, in the sense that ẽ′ẽ < ê′ê, at least in
large samples?

Exercise 12.4 The reduced form between the regressors xi and instruments zi takes the form

xi = Γ′zi + ui

or
X = ZΓ +U

where xi is k× 1, zi is l× 1, X is n× k, Z is n× l, U is n× k, and Γ is l× k. The parameter Γ is
defined by the population moment condition

E
(
ziu

′
i

)
= 0.

Show that the method of moments estimator for Γ is Γ̂ = (Z ′Z)
−1

(Z ′X) .

Exercise 12.5 In the structural model

y = Xβ + e

X = ZΓ +U

with Γ l × k, l ≥ k, we claim that β is identified (can be recovered from the reduced form) if
rank(Γ) = k. Explain why this is true. That is, show that if rank(Γ) < k then β cannot be
identified.

Exercise 12.6 For Theorem 12.3, establish that V̂ β
p−→ V β.

Exercise 12.7 Take the linear model

yi = xiβ + ei

E (ei | xi) = 0.

where xi and β are 1× 1.
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(a) Show that E (xiei) = 0 and E
(
x2
i ei
)

= 0. Is zi = (xi x2
i )
′ a valid instrumental variable for

estimation of β?

(b) Define the 2SLS estimator of β, using zi as an instrument for xi. How does this differ from
OLS?

Exercise 12.8 Suppose that price and quantity are determined by the intersection of the linear
demand and supply curves

Demand : Q = a0 + a1P + a2Y + e1

Supply : Q = b0 + b1P + b2W + e2

where income (Y ) and wage (W ) are determined outside the market. In this model, are the
parameters identified?

Exercise 12.9 Consider the model

yi = x′iβ + ei

E (ei|zi) = 0

with yi scalar and xi and zi each a k vector. You have a random sample (yi,xi, zi : i = 1, ..., n).

(a) Suppose that xi is exogeneous in the sense that E (ei|zi,xi) = 0. Is the IV estimator β̂iv

unbiased for β?

(b) Continuing to assume that xi is exogeneous, find the variance matrix for β̂iv, var
(
β̂iv|X,Z

)
.

Exercise 12.10 Consider the model

yi = x′iβ + ei

xi = Γ′zi + ui

E (ziei) = 0

E
(
ziu

′
i

)
= 0

with yi scalar and xi and zi each a k vector. You have a random sample (yi,xi, zi : i = 1, ..., n).
Take the control function equation

ei = u′iγ + εi

E (uiεi) = 0

and assume for simplicity that ui is observed. Inserting into the structural equation we find

yi = z′iβ + u′iγ + εi.

The control function estimator (β̂, γ̂) is OLS estimation of this equation.

(a) Show that E (xiεi) = 0 (algebraically).

(b) Derive the asymptotic distribution of (β̂, γ̂) .

Exercise 12.11 Consider the structural equation

yi = β0 + β1xi + β2x
2
i + ei (12.97)

with xi treated as endogenous so that E (xiei) 6= 0. Assume yi and xi are scalar. Suppose we also
have a scalar instructment zi which satisfies

E (ei|zi) = 0

so in particular E (ei) = 0 , E (ziei) = 0 and E
(
z2
i ei
)

= 0.
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(a) Should x2
i be treated as endogenous or exogenous?

(b) Suppose we have a scalar instrument zi which satisfies

xi = γ0 + γ1zi + ui (12.98)

with ui independent of zi and mean zero.

Consider using (1, zi, z
2
i ) as instruments. Is this a suffi cient number of instruments? (Would

this be just-identified, over-identified, or under-identified)?

(c) Write out the reduced form equation for x2
i . Under what condition on the reduced form

parameters (12.98) are the parameters in (12.97) identified?

Exercise 12.12 Consider the structural equation and reduced form

yi = βx2
i + ei

xi = γzi + ui

E (ziei) = 0

E (ziui) = 0

with x2
i treated as endogenous so that E

(
x2
i ei
)
6= 0. For simplicity assume no intercepts. yi, zi,

and xi are scalar. Assume γ 6= 0. Consider the following estimator. First, estimate γ by OLS of xi
on zi and construct the fitted values x̂i = γ̂zi. Second, estimate β by OLS of yi on x̂2

i .

(a) Write out this estimator β̂ explicitly as a function of the sample.

(b) Find its probability limit as n→∞

(c) In general, is β̂ consistent for β? Is there a reasonable condition under which β̂ is consistent?

Exercise 12.13 Consider the structural equation

yi = x′1iβ1 + x′2iβ2 + ei

E (ziei) = 0

where x2i is k2×1 and treated as endogenous. The variables zi = (x1i, z2i) are treated as exogenous,
where z2i is `2 × 1 and `2 ≥ k2. You are interested in testing the hypothesis

H0 : β2 = 0.

Consider the reduced form equation for yi

yi = x′1iλ1 + z′2iλ2 + vi. (12.99)

Show how to test H0 using only the OLS estimates of (12.99).
Hint: This will require an analysis of the reduced form equations and their relation to the

structural equation.

Exercise 12.14 Take the linear instrumental variables equation

yi = x′1iβ1 + x′2iβ2 + ei

E (ziei) = 0

where x1i is k1×1, x2i is k2×1, and zi is `×1, with ` ≥ k = k1 +k2. The sample size is n. Assume
that Qzz = E (ziz

′
i) > 0 and Qzx = E (zix

′
i) has full rank k.

Suppose that only (yi,x1i, zi) are available, and x2i is missing from the dataset.
Consider the 2SLS estimator β̂1 of β1 obtained from the misspecified IV regression, by regressing

yi on x1i only, using zi as an instrument for x1i.
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(a) Find a stochastic decomposition β̂1 = β1 + b1n + r1n where r1n depends on the error ei, and
b1n does not depend on the error ei.

(b) Show that r1n →p 0 as n→∞.

(c) Find the probability limit of b1n and β̂1 as n→∞.

(d) Does β̂1 suffer from “omitted variables bias”? Explain. Under what conditions is there no
omitted variables bias?

(e) Find the asymptotic distribution as n→∞ of

√
n
(
β̂1 − β1 − b1n

)
.

Exercise 12.15 Take the linear instrumental variables equation

yi = xiβ1 + ziβ2 + ei

E (ei|zi) = 0

where for simplicity both xi and zi are scalar 1× 1.

(a) Can the coeffi cients (β1, β2) be estimated by 2SLS using zi as an instrument for xi?

Why or why not?

(b) Can the coeffi cients (β1, β2) be estimated by 2SLS using zi and z2
i as instruments?

(c) For the 2SLS estimator suggested in (b), what is the implicit exclusion restriction?

(d) In (b), what is the implicit assumption about instrument relevance?

[Hint: Write down the implied reduced form equation for xi.]

(e) In a generic application, would you be comfortable with the assumptions in (c) and (d)?

Exercise 12.16 Take a linear equation with endogeneity and a just-identified linear reduced form

yi = xiβ + ei

xi = γzi + ui

where both xi and zi are scalar 1× 1. Assume that

E(ziei) = 0

E(ziui) = 0.

(a) Derive the reduced form equation
yi = ziλ+ vi.

Show that β = λ/γ if γ 6= 0, and that E(zivi) = 0.

(b) Let λ̂ denote the OLS estimate from linear regression of Y on Z, and let γ̂ denote the OLS
estimate from linear regression of X on Z. Write θ = (λ, γ)′ and let θ̂ = (λ̂, γ̂)′. Define the

error vector ξi =

(
vi
ui

)
. Write

√
n
(
θ̂ − θ

)
using a single expression as a function of the

error ξi.

(c) Show that E(ziξi) = 0.
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(d) Derive the joint asymptotic distribution of
√
n
(
θ̂ − θ

)
as n → ∞. Hint: Define Ωξ =

E
(
z2
i ξiξ

′
i

)
(e) Using the previous result and the Delta Method, find the asymptotic distribution of the

Indirect Least Squares estimator β̂ = λ̂/γ̂.

(f) Is the answer in (e) the same as the asymptotic distribution of the 2SLS estimator in Theorem
12.2?

Hint: Show that
(

1 −β
)
ξi = ei and

(
1 −β

)
Ωξ

(
1
−β

)
= E

(
z2
i e

2
i

)
.

Exercise 12.17 Take the model

yi = x′iβ + ei

E (ziei) = 0

and consider the two-stage least-squares estimator. The first-stage estimate is

X̂ = ZΓ̂

Γ̂ =
(
Z ′Z

)−1
Z ′X

and the second-stage is least-squares of yi on x̂i :

β̂ =
(
X̂
′
X̂
)−1

X̂
′
y

with least-squares residuals
ê = y − X̂β̂.

Consider σ̂2 =
1

n
ê′ê as an estimator for σ2 = E

(
e2
i

)
. Is this appropriate? If not, propose an

alternative estimator.

Exercise 12.18 You have two independent iid samples (y1i,x1i, z1i : i = 1, ..., n) and (y2i,x2i, z2i :
i = 1, ..., n). The dependent variables y1i and y2i are real-valued. The regressors x1i and x2i and
instruments z1i and z2i are k-vectors. The model is standard just-identified linear instrumental
variables

y1i = x′1iβ1 + e1i

E (z1ie1i) = 0

y2i = x′2iβ2 + e2i

E (z2ie2i) = 0.

For concreteness, sample 1 are women and sample 2 are men. You want to test H0 : β1 = β2,
that the two samples have the same coeffi cients.

(a) Develop a test statistic for H0.

(b) Derive the asymptotic distribution of the test statistic.

(c) Describe (in brief) the testing procedure.

Exercise 12.19 To estimate β in the model yi = xiβ + ei with xi scalar and endogenous, with
household level data, you want to use as an the instrument the state of residence.

(a) What are the assumptions needed to justify this choice of instrument?
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(b) Is the model just identified or overidentified?

Exercise 12.20 The model is

yi = x′iβ + ei

E (ziei) = 0.

An economist wants to obtain the 2SLS estimates and standard errors for β. He uses the following
steps

• Regresses xi on zi, obtains the predicted values x̂i.

• Regresses yi on x̂i, obtains the coeffi cient estimate β̂ and standard error s(β̂) from this
regression.

Is this correct? Does this produce the 2SLS estimates and standard errors?

Exercise 12.21 Let
yi = x′1iβ1 + x′2iβ2 + ei.

Let (β̂1, β̂2) denote the 2SLS estimates of (β1,β2) when z2i is used as an instrument for x2i and
they are the same dimension (so the model is just identified). Let (λ̂1, λ̂2) be the OLS estimates
from the regression

yi = x′1iλ̂1 + z′2iλ̂2 + ei.

Show that β̂1 = λ̂1.

Exercise 12.22 In the linear model
yi = xiβ + ei

suppose σ2
i = E

(
e2
i | xi

)
is known. Show that the GLS estimator of β can be written as an

instrumental variables estimator using some instrument zi. (Find an expression for zi.)

Exercise 12.23 You will replicate and extend the work reported in Acemoglu, Johnson and Robin-
son (2001). The authors provided an expanded set of controls when they published their 2012
extension and posted the data on the AER website. This dataset is AJR2001 on the textbook
website.

(a) Estimate the OLS regression (12.90), the reduced form regression (12.91) and the 2SLS re-
gression (12.92). (Which point estimate is different by 0.01 from the reported values? This
is a common phenomenon in empirical replication).

(b) For the above estimates, calculate both homoskedastic and heteroskedastic-robust standard
errors. Which were used by the authors (as reported in (12.90)-(12.91)-(12.92)?)

(c) Calculate the 2SLS estimates by the Indirect Least Squares formula. Are they the same?

(d) Calculate the 2SLS estimates by the two-stage approach. Are they the same?

(e) Calculate the 2SLS estimates by the control variable approach. Are they the same?

(f) Acemoglu, Johnson and Robinson (2001) reported many specifications including alternative
regressor controls, for example latitude and africa. Estimate by least-squares the equation for
logGDP adding latitude and africa as regressors. Does this regression suggest that latitude
and africa are predictive of the level of GDP?
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(g) Now estimate the same equation as in (f) but by 2SLS using log mortality as an instrument
for risk. How does the interpretation of the effect of latitude and africa change?

(h) Return to our baseline model (without including latitude and africa ). The authors’reduced
form equation uses log(mortality) as the instrument, rather than, say, the level of mortality.
Estimate the reduced form for risk with mortality as the instrument. (This variable is not
provided in the dataset, so you need to take the exponential of the mortality variable.) Can
you explain why the authors preferred the equation with log(mortality)?

(i) Try an alternative reduced form, including both log(mortality) and the square of log(mortality).
Interpret the results. Re-estimate the structural equation by 2SLS using both log(mortality)
and its square as instruments. How do the results change?

(j) For the estimates in (i), are the instruments strong or weak using the Stock-Yogo test?

(k) Calculate and interpret a test for exogeneity of the instruments.

(l) Estimate the equation by LIML, using the instruments log(mortality) and the square of
log(mortality).

Exercise 12.24 In Exercise 12.23 you extended the reported in Acemoglu, Johnson and Robinson
(2001). Consider the 2SLS regression (12.92). Compute the standard errors both by the asymptotic
formula and by the bootstrap using a large number (10,000) of bootstrap replications. Re-calculate
the bootstrap standard errors. Comment on the reliability of bootstrap standard errors for IV
regression.

Exercise 12.25 You will replicate and extend the work reported in the chapter relating to Card
(1995). The data is from the author’s website, and is posted as Card1995. The model we focus
on is labeled 2SLS(a) in Table 12.1, which uses public and private as instruments for Edu. The
variables you will need for this exercise include lwage76, ed76 , age76, smsa76r, reg76r, nearc2,
nearc4, nearc4a, nearc4b. See the description file for definitions.

log(Wage) = β0 + β1Edu+ β2Exp+ β3Exp
2/100 + β4South+ β5Black + e

where Edu = Education (Years), Exp = Experience (Years), and South and Black are regional
and racial dummy variables. The variables Exp = Age − Edu − 6 and Exp2/100 are not in the
dataset, they need to be generated.

(a) First, replicate the reduced form regression presented in the final column of Table 12.2, and
the 2SLS regression described above (using public and private as instruments for Edu) to
verify that you have the same variable defintions.

(b) Now try a different reduced form model. The variable nearc2 means “grew up near a 2-year
college”. See if adding it to the reduced form equation is useful.

(c) Now try more interactions in the reduced form. Create the interactions nearc4a*age76 and
nearc4a*age76 2/100, and add them to the reduced form equation. Estimate this by least-
squares. Interpret the coeffi cients on the two new variables.

(d) Estimate the structural equation by 2SLS using the expanded instrument set

{nearc4a, nearc4b, nearc4a*age76, nearc4a*age76 2/100}.

What is the impact on the structural estimate of the return to schooling?

(e) Using the Stock-Yogo test, are the instruments strong or weak?

(f) Test the hypothesis that Edu is exogenous for the structural return to schooling.
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(g) Re-estimate the last equation by LIML. Do the results change meaningfully?

Exercise 12.26 In Exercise 12.25 you extended the work reported in Card (1995). Now, estimate
the IV equation corresponding to the IV(a) column of Table 12.1, which is the baseline specification
considered in Card. Use the bootstrap to calculate a BC percentile confidence interval. In this
example, should we also report the bootstrap standard error?

Exercise 12.27 You will extend Angrist and Krueger (1991). In their Table VIII, they report
their estimates of an analog of (12.94) for the subsample of 26,913 black men. Use this sub-sample
for the following analysis.

(a) Start by considering estimation of an equation which is identical in form to (12.94), with
the same additional regressors (year-of-birth, region-of-residence, and state-of-birth dummy
variables) and 180 excluded instrumental variables (the interactions of quarter-of-birth times
year-of-birth dummy variables, and quarter-of-birth times state-of-birth interactions). But
now, it is estimated on the subsample of black men. One regressor must be omitted to achieve
identification. Which variable is this?

(b) Estimate the reduced form for the above equation by least-squares. Calculate the F statistic
for the excluded instruments. What do you conclude about the strength of the instruments?

(c) Repeat, now estimating the reduced form for the analog of (12.93) which has 30 excluded
instrumental variables, and does not include the state-of-birth dummy variables in the regres-
sion. What do you conclude about the strength of the instruments?

(d) Repeat, now estimating the reduced form for the analog of (12.96) which has only 3 excluded
instrumental variables. Are the instruments suffi ciently strong for 2SLS estimation? For
LIML estimation?

(e) Estimate the structural wage equation using what you believe is the most appropriate set of
regressors, instruments, and the most appropriate estimation method. What is the estimated
return to education (for the subsample of black men) and its standard error? Without doing
a formal hypothesis test, do these results (or in which way?) appear meaningfully different
from the results for the full sample?

Exercise 12.28 In Exercise 12.27 you extended the work reported in Angrist and Krueger (1991)
by estimating wage equations for the subsample of black men. Re-estimate equation (12.96) for
this group, which uses as instruments only the three quarter-of-birth dummy variables. Calculate
the standard error for the return to education by asymptotic and bootstrap methods, and a BC
percentile interval. In this application of 2SLS, is it appropriate to report a bootstrap standard
error?



Chapter 13

Generalized Method of Moments

13.1 Introduction

One of the most popular estimation methods in applied econometrics is the Generalized Method
of Moments (GMM). GMM generalizes the classical method of moments estimator by allowing for
models that have more equations than unknown parameters and are thus overidentified. GMM
includes as special cases OLS, IV, multivariate regression, and 2SLS. It includes both linear and
nonlinear models. In this chapter we focus primarily on linear models.

The GMM label and methods were introduced to econometrics in a seminal paper by Lars
Hansen (1982). The ideas and methods build on the work of Amemiya (1974, 1977), Gallant
(1977), and Gallant and Jorgenson (1979). The ideas are closely related to the contemporeneous
work of Halbert White (1980, 1982) and White and Domowitz (1984). The methods are also related
to what are called estimating equations in the statistics literature. For a review of the later see
Godambe (1991).

13.2 Moment Equation Models

All of the models that have been introduced so far can be written as moment equation
models, where the population parameters solve a system of moment equations. Moment equation
models are much broader than the models so far considered, and understanding their common
structure opens up straightforward techniques to handle new econometric models.

Moment equation models take the following form. Let gi(β) be a known ` × 1 function of the
ith observation and a k× 1 parameter β. A moment equation model is summarized by the moment
equations

E (gi(β)) = 0 (13.1)

and a parameter space β ∈ B. For example, in the instrumental variables model gi (β) =
zi (yi − x′iβ).

In general, we say that a parameter β is identified if there is a unique mapping from the
data distribution to β. In the context of the model (13.1) this means that there is a unique β
satisfying (13.1). Since (13.1) is a system of ` equations with k unknowns, then it is necessary
that ` ≥ k for there to be a unique solution. If ` = k we say that the model is just identified,
meaning that there is just enough information to identify the parameters. If ` > k we say that the
model is overidentified, meaning that there is excess information (which can improve estimation
effi ciency). If ` < k we say that the model is underidentified, meaning that there is insuffi cient
information to identify the parameters. In general, we assume that ` ≥ k so the model is either
just identified or overidentified.

482
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13.3 Method of Moments Estimators

In this section we consider the just-identified case ` = k.
Define the sample analog of (13.5)

gn(β) =
1

n

n∑
i=1

gi(β). (13.2)

Themethod of moments estimator (MME) β̂mm for β is defined as the parameter value which
sets gn(β) = 0. Thus

gn(β̂mm) =
1

n

n∑
i=1

gi(β̂mm) = 0. (13.3)

The equations (13.3) are known as the estimating equations as they are the equations which
determine the estimator β̂mm.

In some contexts (such as those discussed in the examples below), there is an explicit solution
for β̂mm. In other cases the solution must be found numerically.

We now show how most of the estimators discussed so far in the textbook can be written as
method of moments estimators.

Mean: Set gi (µ) = yi − µ. The MME is µ̂ = 1
n

∑n
i=1 yi.

Mean and Variance: Set

gi
(
µ, σ2

)
=

(
yi − µ

(yi − µ)2 − σ2

)
.

The MME are µ̂ = 1
n

∑n
i=1 yi and σ̂

2 = 1
n

∑n
i=1 (yi − µ̂)2 .

OLS: Set gi (β) = xi (yi − x′iβ). The MME is β̂ = (X ′X)
−1

(X ′y).

OLS and Variance: Set

gi
(
β, σ2

)
=

(
xi (yi − x′iβ)

(yi − x′iβ)2 − σ2

)
.

The MME is β̂ = (X ′X)
−1

(X ′y) and σ̂2 = 1
n

∑n
i=1

(
yi − x′iβ̂

)2
.

Multivariate Least Squares, vector form: Set gi (β) = Xi (yi −X ′iβ). The MME is β̂ =
(
∑n

i=1XiX
′
i)
−1

(
∑n

i=1Xiyi) which is (11.4).

Multivariate Least Squares, matrix form: Set gi (B) = vec (xi (y′i − x′iB)). The MME is
B̂ = (

∑n
i=1 xix

′
i)
−1 (

∑n
i=1 xiy

′
i) which is (11.6).

Seemingly Unrelated Regression: Set

gi (β,Σ) =

(
XiΣ

−1 (yi −X ′iβ)

vec
(
Σ− (yi −X ′iβ) (yi −X ′iβ)

′
) ) .

The MME is β̂ =
(∑n

i=1XiΣ̂
−1
X ′i

)−1 (∑n
i=1XiΣ̂

−1
yi

)
and Σ̂ = n−1

∑n
i=1

(
yi −X ′iβ̂

)(
yi −X ′iβ̂

)′
.

IV: Set gi (β) = zi (yi − x′iβ). The MME is β̂ = (
∑n

i=1 zix
′
i)
−1 (

∑n
i=1 ziyi).
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Generated Regressors: Set

gi (β,A) =

(
A′zi (yi − z′iAβ)

vec (zi (x′i − z′iA))

)
.

The MME is Â = (
∑n

i=1 ziz
′
i)
−1 (

∑n
i=1 zix

′
i) and β̂ =

(
Â
′∑n

i=1 ziz
′
iÂ
)−1 (

Â
′∑n

i=1 ziyi

)
.

A common feature unifying these examples is that the estimator can be written as the solution to
a set of estimating equations (13.3). This provides a common framework which enables a convenient
development of a unified distribution theory.

13.4 Overidentified Moment Equations

In the instrumental variables model gi(β) = zi (yi − x′iβ). Thus (13.2) is

gn(β) =
1

n

n∑
i=1

gi(β) =
1

n

n∑
i=1

zi
(
yi − x′iβ

)
=

1

n

(
Z ′y −Z ′Xβ

)
. (13.4)

We have defined the method of moments estimator for β as the parameter value which sets gn(β) =
0. However, when the model is overidentified (if ` > k) then this is generally impossible as there
are more equations than free parameters. Equivalently, there is no choice of β which sets (13.4) to
zero. Thus the method of moments estimator is not defined for the overidentified case.

While we cannot find an estimator which sets gn(β) equal to zero, we can try to find an estimator
which makes gn(β) as close to zero as possible.

One way to think about this is to define the vector µ = Z ′y, the matrix G = Z ′X and the
“error”η = µ−Gβ. Then we can write (13.4) as

µ = Gβ + η.

This looks like a regression equation with the `×1 dependent variable µ, the `×k regressor matrix
G, and the `× 1 error vector η. Recall, the goal is to make the error vector η as small as possible.
Recalling our knowledge about least-squares, we know that a simple method is to use least-squares
regression of µ on G, which minimzes the sum-of-squares η′η. This is certainly one way to make
η “small”. This least-squares solution is β̂ = (G′G)

−1
(G′µ).

More generally, we know that when errors are non-homogeneous it can be more effi cient to
estimate by weighted least squares. Thus for some weight matrix W , consider the estimator

β̂ =
(
G′WG

)−1 (
G′Wµ

)
=
(
X ′ZWZ ′X

)−1 (
X ′ZWZ ′y

)
.

This minimizes the weighted sum of squares η′Wη. This solution is known as the generalized
method of moments (GMM).

The estimator is typically defined as follows. Given a set of moment equations (13.2) and an
`× ` weight matrix W > 0, the GMM criterion function is defined as

J(β) = n · gn(β)′W gn(β).

The factor “n” is not important for the definition of the estimator, but is convenient for the
distribution theory. The criterion J(β) is the weighted sum of squared moment equation errors.
When W = I`, then J(β) = n · gn(β)′gn(β) = n · ‖gn(β)‖2 , the square of the Euclidean length.
Since we restrict attention to positive definite weight matrices W , the criterion J(β) is always
non-negative.

The Generalized Method of Moments (GMM) estimator is defined as the minimizer of
the GMM criterion J(β).
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Definition 13.1 The Generalized Method of Moments estimator is
β̂gmm = argmin

β
Jn (β) .

Recall that in the just-identified case k = `, the method of moments estimator β̂mm solves

gn(β̂mm) = 0. Hence in this case Jn
(
β̂mm

)
= 0 which means that β̂mm minimizes Jn (β) and

equals β̂gmm = β̂mm. This means that GMM includes MME as a special case. This implies that
all of our results for GMM will apply to any method of moments estimators.

In the over-identified case the GMM estimator will depend on the choice of weight matrix W
and so this is an important focus of the theory. In the just-identified case, the GMM estimator
simplifies to the MME which does not depend on W .

The method and theory of the generalized method of moments was developed in an influential
paper by Lars Hansen (1982). This paper introduced the method, its asymptotic distribution, the
form of the effi cient weight matrix, and tests for overidentification.

13.5 Linear Moment Models

One of the great advantages of the moment equation framework is that it allows both linear
and nonlinear models. However, when the moment equations are linear in the parameters then
we have explicit solutions for the estimates and a straightforward asymptotic distribution theory.
Hence we start by confining attention to linear moment equations, and return to nonlinear moment
equations later. In the examples listed earlier, the estimators which have linear moment equations
include the sample mean, OLS, multivariate least squares, IV, and 2SLS. The estimates which have
non-linear moment equations include the sample variance, SUR, and generated regressors.

In particular, we focus on the overidentified IV model

gi(β) = zi(yi − x′iβ) (13.5)

where zi is `× 1 and xi is k × 1.

13.6 GMM Estimator

Given (13.5) the sample moment equations are (13.4). The GMM criterion can be written as

J(β) = n
(
Z ′y −Z ′Xβ

)′
W
(
Z ′y −Z ′Xβ

)
.

The GMM estimator minimizes J(β). The first order conditions are

0 =
∂

∂β
J(β̂)

= 2
∂

∂β
gn(β̂)′Wgn(β̂)

= −2

(
1

n
X ′Z

)
W

(
1

n
Z ′
(
y −Xβ̂

))
.

The solution is given as follows.

Theorem 13.1 For the overidentified IV model

β̂gmm =
(
X ′ZWZ ′X

)−1 (
X ′ZWZ ′y

)
. (13.6)



CHAPTER 13. GENERALIZED METHOD OF MOMENTS 486

While the estimator depends on W , the dependence is only up to scale. This is because if W
is replaced by cW for some c > 0, β̂gmm does not change.

When W is fixed by the user, we call β̂gmm a one-step GMM estimator.
The GMM estimator (13.6) resembles the 2SLS estimator (12.31). In fact they are equal when

W = (Z ′Z)
−1. This means that the 2SLS estimator is a one-step GMM estimator for the linear

model. In the just-identified case it also simplifies to the IV estimator (12.26).

Theorem 13.2 If W = (Z ′Z)
−1 then β̂gmm = β̂2sls.

Furthermore, if k = ` then β̂gmm = β̂iv.

13.7 Distribution of GMM Estimator

Let
Q = E

(
zix

′
i

)
and

Ω = E
(
ziz
′
ie

2
i

)
= E

(
gig
′
i

)
where gi = ziei. Then (

1

n
X ′Z

)
W

(
1

n
Z ′X

)
p−→ Q′WQ

and (
1

n
X ′Z

)
W

(
1√
n
Z ′e

)
d−→ Q′W ·N (0,Ω) .

We conclude:

Theorem 13.3 Asymptotic Distribution of GMM Estimator. Un-
der Assumption 12.2, as n→∞

√
n
(
β̂ − β

)
d−→ N (0,V β)

where
V β =

(
Q′WQ

)−1 (
Q′WΩWQ

) (
Q′WQ

)−1
. (13.7)

We find that the GMM estimator is asymptotically normal with a “sandwich form”asymptotic
variance.

Our derivation treated the weight matrix W as if it is non-random, but Theorem 13.3 carries
over to the case where the weight matrix Ŵ is random so long as it converges in probability to
some positive definite limitW . This may require scaling the weight matrix, for example replacing
Ŵ = (Z ′Z)

−1 with Ŵ =
(
n−1Z ′Z

)−1. Since rescaling the weight matrix does not affect the
estimator this is ignored in implementation.
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13.8 Effi cient GMM

The asymptotic distribution of the GMM estimator β̂gmm depends on the weight matrix W
through the asymptotic variance V β. The asymptotically optimal weight matrixW 0 is one which
minimizes V β. This turns out to be W 0 = Ω−1. The proof is left to Exercise 13.4.

When the GMM estimator β̂ is constructed with W = W 0 = Ω−1 (or a weight matrix which
is a consistent estimator of W 0) we call it the Effi cient GMM estimator:

β̂gmm =
(
X ′ZΩ−1Z ′X

)−1 (
X ′ZΩ−1Z ′y

)
.

Its asymptotic distribution takes a simpler form than in Theorem 13.3. By substituting W =
W 0 = Ω−1 into (13.7) we find

V β =
(
Q′Ω−1Q

)−1 (
Q′Ω−1ΩΩ−1Q

) (
Q′Ω−1Q

)−1
=
(
Q′Ω−1Q

)−1
.

This is the asymptotic variance of the effi cient GMM estimator.

Theorem 13.4 Asymptotic Distribution of GMM with Effi cient
Weight Matrix. Under Assumption 12.2 and W = Ω−1, as n→∞

√
n
(
β̂gmm − β

)
d−→ N (0,V β)

where
V β =

(
Q′Ω−1Q

)−1
.

Theorem 13.5 Effi cient GMM. Under Assumption 12.2, for any W >
0, (

Q′WQ
)−1 (

Q′WΩWQ
) (
Q′WQ

)−1 −
(
Q′Ω−1Q

)−1
> 0.

Thus if β̂gmm is the effi cient GMM estimator and β̃gmm is another GMM
estimator, then

avar
(
β̂gmm

)
≤ avar

(
β̃gmm

)
.

For a proof, see Exercise 13.4.
This means that the smallest possible GMM covariance matrix (in the positive definite sense)

is achieved by the effi cient GMM weight matrix.
W 0 = Ω−1 is not known in practice but it can be estimated consistently as we discuss in

Section 13.10. For any Ŵ
p−→ W 0, the asymptotic distribution in Theorem 13.4 is unaffected.

Consequently we still call any β̂gmm constructed with an estimate of the effi cient weight matrix an
effi cient GMM estimator.

By “effi cient”, we mean that this estimator has the smallest asymptotic variance in the class
of GMM estimators with this set of moment conditions. This is a weak concept of optimality,
as we are only considering alternative weight matrices Ŵ . However, it turns out that the GMM
estimator is semiparametrically effi cient as shown by Gary Chamberlain (1987). If it is known
that E (g(wi,β)) = 0, and this is all that is known, this is a semi-parametric problem as the
distribution of the data is unknown. Chamberlain showed that in this context no semiparametric
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estimator (one which is consistent globally for the class of models considered) can have a smaller

asymptotic variance than
(
G′Ω−1G

)−1
where G = E

(
∂
∂β′
gi(β)

)
. Since the GMM estimator has

this asymptotic variance, it is semiparametrically effi cient.
The results in this section show that in the linear model no estimator has better asymptotic

effi ciency than the effi cient linear GMM estimator. No estimator can do better (in this first-order
asymptotic sense), without imposing additional assumptions.

13.9 Effi cient GMM versus 2SLS

For the linear model we introduced the 2SLS estimator as a standard estimator for β. Now
we have introduced the GMM estimator which includes 2SLS as a special case. Is there a context
where 2SLS is effi cient?

To answer this question, recall that the 2SLS estimator is GMM given the weight matrix Ŵ =
(Z ′Z)

−1 or equivalently Ŵ =
(
n−1Z ′Z

)−1 since scaling doesn’t matter. Since Ŵ
p−→ (E (ziz

′
i))
−1,

this is asymptotically equivalent to using the weight matrix W = (E (ziz
′
i))
−1. In contrast, the

effi cient weight matrix takes the form
(
E
(
ziz
′
ie

2
i

))−1. Now suppose that the structural equation
error ei is conditionally homoskedastic in the sense that E

(
e2
i | zi

)
= σ2. Then the effi cient weight

matrix equals W = (E (ziz
′
i))
−1 σ−2, or equivalently W = (E (ziz

′
i))
−1 since scaling doesn’t

matter. The latter weight matrix is the same as the 2SLS asymptotic weight matrix. This shows
that the 2SLS weight matrix is the effi cient weight matrix under conditional homoskedasticity.

Theorem 13.6 Under Assumption 12.2 and E
(
e2
i | zi

)
= σ2 then β̂2sls is

effi cient GMM.

This shows that 2SLS is effi cient under homoskedasticity. When homoskedasticity holds, there
is no reason to use effi cient GMM over 2SLS. More broadly, when homoskedasticity is a reasonable
approximation then 2SLS will be a reasonable estimator. However, this result also shows that in
the general case where the error is conditionally heteroskedastic, then 2SLS is generically ineffi cient
relative to effi cient GMM.

13.10 Estimation of the Effi cient Weight Matrix

To construct the effi cient GMM estimator we need a consistent estimator Ŵ of W 0 = Ω−1.
The convention is to form an estimate Ω̂ of Ω and then set Ŵ = Ω̂

−1
.

The two-step GMM estimator proceeds by using a one-step consistent estimate of β to
construct the weight matrix estimator Ŵ . In the linear model the natural one-step estimator for
β is the 2SLS estimator β̂2sls. Set ẽi = yi − x′iβ̂2sls, g̃i = gi(β̃) = ziẽi and gn = n−1

∑n
i=1 g̃i. Two

moment estimators of Ω are then

Ω̂ =
1

n

n∑
i=1

g̃ig̃
′
i (13.8)

and

Ω̂
∗

=
1

n

n∑
i=1

(g̃i − gn) (g̃i − gn)′ . (13.9)

The estimator (13.8) is an uncentered covariance matrix estimator while the estimator (13.9)
is a centered version. Either estimator is consistent when E (ziei) = 0 which holds under correct
specification. However under misspecification we may have E (ziei) 6= 0. In the latter context Ω̂

∗
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may be viewed as a robust estimator. For some testing problems it turns out to be preferable to
use a covariance matrix estimator which is robust to the alternative hypothesis. For these reasons
estimator (13.9) is generally preferred. Unfortunately, estimator (13.8) is more commonly seen in
practice since it is the default choice by most packages. It is also worth observing that when the
model is just identified then gn = 0 so the two are algebraically identical.

Given the choice of covariance matrix estimator we set Ŵ = Ω̂
−1
or Ŵ = Ω̂

∗−1
. Given this

weight matrix, we then construct the two-step GMM estimator as (13.6) using the weight
matrix Ŵ .

Since the 2SLS estimator is consistent for β, by arguments nearly identical to those used for
covariance matrix estimation, we can show that Ω̂ and Ω̂

∗
are consistent for Ω and thus Ŵ is

consistent for Ω−1. See Exercise 13.3.
This also means that the two-step GMM estimator satisfies the conditions for Theorem 13.4.

We have established.

Theorem 13.7 Under Assumption 12.2 and Ω > 0, if Ŵ = Ω̂
−1
or Ŵ =

Ω̂
∗−1

where the latter are defined in (13.8) and (13.9) then as n→∞
√
n
(
β̂gmm − β

)
d−→ N (0,V β)

where
V β =

(
Q′Ω−1Q

)−1
.

This shows that the two-step GMM estimator is asymptotically effi cient.
The two-step GMM estimator of the IV regression equation can be computed in Stata using

the ivregress gmm command. By default it uses formula (13.8). The centered version (13.9) may
be selected using the center option.

13.11 Iterated GMM

The asymptotic distribution of the two-step GMM estimator does not depend on the choice of
the preliminary one-step estimator. However, the actual value of the estimator depends on this
choice, and so will the finite sample distribution. This is undesirable and likely ineffi cient. To
remove this dependence we can iterate the estimation sequence. Specifically, given β̂gmm we can

construct an updated weight matrix estimate Ŵ and then re-estimate β̂gmm. This updating can be
iterated until convergence1. The result is called the iterated GMM estimator and is a common
implementation of effi cient GMM.

Interestingly, B. Hansen and Lee (2018) show that the iterated GMM estimator is unaffected
if the weight matrix is computed with or without centering. Standard errors and test statistics,
however, will be affected by the choice.

The iterated GMM estimator of the IV regression equation can be computed in Stata using the
ivregress gmm command using the igmm option.

1 In practice, “convergence” obtains when the difference between the estimates obtained at subsequent steps is
smaller than a pre-specified tolerance. A suffi cient condition for convergence is that the sequence is a contraction
mapping. Indeed, B. Hansen and Lee (2018) have shown that the iterated GMM estimator generally satisfies this
condition in large samples.
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13.12 Covariance Matrix Estimation

An estimator of the asymptotic variance of β̂gmm can be obtained by replacing the matrices in
the asymptotic variance formula by consistent estimates.

For the one-step or two-step GMM estimator the covariance matrix estimator is

V̂ β =
(
Q̂
′
Ŵ Q̂

)−1 (
Q̂
′
Ŵ Ω̂Ŵ Q̂

)(
Q̂
′
Ŵ Q̂

)−1
(13.10)

where

Q̂ =
1

n

n∑
i=1

zix
′
i

and using either the uncentered estimator (13.8) or centered estimator (13.9) with the residuals
êi = yi − x′iβ̂gmm.

For the effi cient iterated gmm estimator the covariance matrix estimator is

V̂ β =
(
Q̂
′
Ω̂
−1
Q̂
)−1

=

((
1

n
X ′Z

)
Ω̂
−1
(

1

n
Z ′X

))−1

. (13.11)

Ω̂ can be computed using either the uncentered estimator (13.8) or centered estimator (13.9).
Based on the asymptotic approximation the estimator (13.11) can be used as well for the two-step
estimator but should use the final residuals êi = yi − x′iβ̂gmm.

Asymptotic standard errors are given by the square roots of the diagonal elements of n−1V̂ β.
In Stata, the default covariance matrix estimation method is determined by the choice of weight

matrix. Thus if the centered estimator (13.9) is used for the weight matrix, it is also used for the
covariance matrix estimator.

13.13 Clustered Dependence

In Section 4.21 we introduced clustered dependence and in Section 12.25 described covariance
matrix estimation for 2SLS. The methods extend naturally to GMM, but with the additional
complication of potentially altering weight matrix calculation.

As before, the structural equation for the gth cluster can be written as the matrix system

yg = Xgβ + eg.

Using this notation the centered GMM estimator with weight matrix W can be written as

β̂gmm =
(
X ′ZWZ ′X

)−1
X ′ZW

 G∑
g=1

Z ′geg

 .

The cluster-robust covariance matrix estimator for β̂gmm is then

V̂ β =
(
X ′ZWZ ′X

)−1
X ′ZWŜWZ ′X

(
X ′ZWZ ′X

)−1 (13.12)

with

Ŝ =
G∑
g=1

Z ′gêgê
′
gZg (13.13)

and the clustered residuals
êg = yg −Xgβ̂gmm. (13.14)
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The cluster-robust estimator (13.12) is appropriate for the one-step or two-step GMM estimator.
It is also appropriate for the iterated estimator when the latter uses a conventional (non-clustered)
effi cient weight matrix. However in the clustering context it is more natural to use a cluster-robust

weight matrix such as W = Ŝ
−1
where Ŝ is a cluster-robust covariance estimator as in (13.13)

based on a one-step or iterated residual. This gives rise to the cluster-robust GMM estimator

β̂gmm =
(
X ′ZŜ

−1
Z ′X

)−1
X ′ZŜ

−1
Z ′y. (13.15)

For this estimator (especially when iterated) an appropriate cluster-robust covariance matrix esti-
mator is

V̂ β =
(
X ′ZŜ

−1
Z ′X

)−1

where Ŝ is calculated using the final residuals.
To implement a cluster-robust weight matrix, use the 2SLS estimator for first step. Compute

the cluster residuals (13.14) and covariance matrix (13.13). Then (13.15) is the two-step GMM
estimator. Updating the residuals and covariance matrix, we can iterate the sequence to obtain the
iterated GMM estimator.

In Stata, using the ivregress gmm command with the cluster option implements the two-
step GMM estimator using the cluster-robust weight matrix and cluster-robust covariance matrix
estimator. To use the centered covariance matrix use the center option, and to implement the
iterated GMM estimator use the igmm option. Alternatively, you can use the wmatrix and vce
options to separately specify the weight matrix and covariance matrix estimation methods.

13.14 Wald Test

For a given function r (β) : Rk → Θ ⊂ Rq we define the parameter θ = r (β). The GMM esti-

mator of θ is θ̂gmm = r
(
β̂gmm

)
. By the delta method it is asymptotically normal with covariance

matrix

V θ = R′V βR

R =
∂

∂β
r(β)′.

An estimator of the asymptotic covariance matrix is

V̂ θ = R̂
′
V̂ βR̂

R̂ =
∂

∂β
r(β̂gmm)′.

When θ is scalar then an asymptotic standard error for θ̂gmm is formed as
√
n−1V̂ θ.

A standard test of the hypothesis

H0 : θ = θ0

against
H1 : θ 6= θ0

is based on the Wald statistic

W = n
(
θ̂ − θ0

)′
V̂
−1

θ̂

(
θ̂ − θ0

)
.

Let Gq(u) denote the χ2
q distribution function.
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Theorem 13.8 Under Assumptions 12.2 and 7.3, and H0 holds, as n →
∞,

W
d−→ χ2

q .

For c satisfying α = 1−Gq(c),

P (W > c | H0) −→ α

so the test “Reject H0 if W > c”has asymptotic size α.

For a proof see Exercise 13.5.
In Stata, the commands test and testparm can be used after ivregress gmm to implement

Wald tests of linear hypotheses. The commands nlcom and testnl can be used after ivregress
gmm to implement Wald tests of nonlinear hypotheses.

13.15 Restricted GMM

It is often desirable to impose restrictions on the coeffi cients. In this section we consider
estimation subject to the linear constraints R′β = c. In the following section we consider nonlinear
constraints.

The constrained GMM estimator minimizes the GMM criterion subject to the constraint. It is
defined as

β̂cgmm = argmin
R′β=c

J(β).

This is the parameter vector which makes the estimating equations as close to zero as possible with
respect to the weighted quadratic distance while imposing the restriction on the parameters.

Suppose the weight matrixW is fixed. Using the methods of Chapter 8 it is straightforward to
derive that the constrained GMM estimator is

β̂cgmm = β̂gmm −
(
X ′ZWZ ′X

)−1
R
(
R′
(
X ′ZWZ ′X

)−1
R
)−1 (

R′β̂gmm − c
)
. (13.16)

(For details, see Exercise 13.6.)
We derive the asymptotic distribution under the assumption that the restriction is true. Make

the substitution c = R′β in (13.16) and reorganize to find

√
n
(
β̂cgmm − β

)
=

(
Ik −

(
X ′ZWZ ′X

)−1
R
(
R′
(
X ′ZWZ ′X

)−1
R
)−1

R′
)√

n
(
β̂gmm − β

)
.

(13.17)

This is a linear function of
√
n
(
β̂gmm − β

)
. Since the asymptotic distribution of the latter is

known, the asymptotic distribution of
√
n
(
β̂cgmm − β

)
is a linear function of the former.
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Theorem 13.9 Under Assumptions 12.2 and 8.3, for the constrained
GMM estimator (13.16),

√
n
(
β̂cgmm − β

)
d−→ N (0,V cgmm)

as n→∞, where

V cgmm = V β −
(
Q′WQ

)−1
R
(
R′
(
Q′WQ

)−1
R
)−1

R′V β (13.18)

− V βR
(
R′
(
Q′WQ

)−1
R
)−1

R′
(
Q′WQ

)−1

+
(
Q′WQ

)−1
R
(
R′
(
Q′WQ

)−1
R
)−1

R′V βR
(
R′
(
Q′WQ

)−1
R
)−1

R′
(
Q′WQ

)−1

For a proof, see Exercise 13.8. Unfortunately the asymptotic covariance matrix formula (13.18)
is quite tedious!

Now suppose that the the weight matrix is set as W = Ω̂
−1
, the effi cient weight matrix from

unconstrained estimation. In this case the constrained GMM estimator can be written as

β̂cgmm = β̂gmm − V̂ βR
(
R′V̂ βR

)−1 (
R′β̂gmm − c

)
(13.19)

which is the same formula (8.25) as effi cient minimum distance. (For details, see Exercise 13.7.)
We also find that the asymptotic covariance matrix simplifies considerably.

Theorem 13.10 Under Assumptions 12.2 and 8.3, for the effi cient con-
strained GMM estimator (13.19),

√
n
(
β̂cgmm − β

)
d−→ N (0,V cgmm)

as n→∞, where

V cgmm = V β − V βR
(
R′V βR

)−1
R′V β. (13.20)

For a proof, see Exercise 13.9.
The asymptotic covariance matrix (13.20) can be estimated by

V̂ cgmm = Ṽ β − Ṽ βR
(
R′Ṽ βR

)−1
R′Ṽ β. (13.21)

Ṽ β =
(
Q̂
′
Ω̃
−1
Q̂
)−1

Ω̃ =
1

n

n∑
i=1

ziz
′
iẽ

2
i (13.22)

ẽi = yi − x′iβ̂cgmm.

The covariance matrix (13.18) can be estimated similarly, though using (13.10) to estimate V β.
The covariance matrix estimator Ω̃ can also be replaced with a centered version.
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A constrained iterated GMM estimator can be implemented by setting W = Ω̃
−1
where Ω̃ is

defined in (13.22), and then iterating until convergence. This is a natural estimator, as it is the
appropriate implementation of the idea of iterated GMM.

Since both Ω̂ and Ω̃ converge to the same limit Ω (under the assumption that the constraint
is true), the constrained iterated GMM estimator has the same asymptotic distribution as given in
Theorem 13.10.

13.16 Nonlinear Restricted GMM

Nonlinear constraints on the parameters can be written as r (β) = 0 for some function where
r : Rk → Rq. Least-squares estimation subject to nonlinear constraints was explored in Section 8.14.
In this section we introduce GMM estimation subject to nonlinear constraints. The constraint is
nonlinear if r (β) cannot be written as a linear function of β.

The constrained GMM estimator minimizes the GMM criterion subject to the constraint. It is
defined as

β̂cgmm = argmin
r(β)=0

J(β). (13.23)

This is the parameter vector which makes the estimating equations as close to zero as possible with
respect to the weighted quadratic distance while imposing the restriction on the parameters.

In general there is no explicit solution for β̂cgmm. Instead, the solution needs to be found
numerically. Fortunately there are excellent nonlinear constrained optimization solvers which make
the task quite feasible. We do not review these here, but can be found in any numerical software
system.

For the asymptotic distribution assume that the restriction r (β) = 0 is true. Then, using the
same methods as in the proof of Theorem 8.10 we can show that (13.17) approximately holds, in
the sense that

√
n
(
β̂cgmm − β

)
=

(
Ik −

(
X ′ZWZ ′X

)−1
R
(
R′
(
X ′ZWZ ′X

)−1
R
)−1

R′
)√

n
(
β̂gmm − β

)
+op(1)

where R = ∂
∂βr (β)′. Thus the asymptotic distribution of the constrained estimator takes the same

form as in the linear case.

Theorem 13.11 Under Assumptions 12.2 and 8.3, for the constrained
GMM estimator (13.23)

√
n
(
β̂cgmm − β

)
d−→ N (0,V cgmm)

as n→∞, where V cgmm equals (13.18). If W = Ω̂
−1
, then V cgmm equals

(13.20).
V cgmm = V β − V βR

(
R′V βR

)−1
R′V β.

The asymptotic covariance matrix in the effi cient case is estimated by (13.21) with R replaced
with

R̂ =
∂

∂β
r
(
β̂cgmm

)′
.

The asymptotic covariance matrix (13.18) in the general case is estimated similarly.

To implement an iterated restricted GMM estimator, the weight matrix may be set asW = Ω̃
−1

where Ω̃ is defined in (13.22), and then iterated until convergence.
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13.17 Constrained Regression

Take the conventional projection model

yi = x′iβ + ei

E (xiei) = 0.

We can view this as a very special case of GMM. It is model (13.5) with zi = xi. This is just-
identified GMM and the estimator is least-squares β̂gmm = β̂ols.

In Chapter 8 we discussed estimation of the projection model subject to linear constraints
R′β = c, which includes exclusion restrictions. Since the projection model is a special case of
GMM, the constrained projection model is also constrained GMM. From the results of Section
13.15 we find that the effi cient constrained GMM estimator is

β̂cgmm = β̂ols − V̂ βR
(
R′V̂ βR

)−1 (
R′β̂ols − c

)
= β̂emd,

the effi cient minimum distance estimator. Thus for linear constraints on the linear projection model,
effi cient GMM equals effi cient minimum distance. Thus one convenient method to implement
effi cient minimum distance is by using GMM.

13.18 Multivariate Regression

GMM methods can simplify estimation and inference for multivariate regressions such as those
introduced in Chapter 11.

The general multivariate regression (projection) model is

yji = x′jiβj + eji

E (xjieji) = 0

for j = 1, ...,m. Using the notation from Section 11.2 the equations can be written jointly as

yi = Xiβ + ei

and for the full sample as
y = Xβ + e.

The k moment conditions are

E
(
X
′
i

(
yi −Xiβ

))
= 0. (13.24)

Given a k × k weight matrix W the GMM criterion is

J(β) = n
(
y −Xβ

)′
XWX

′ (
y −Xβ

)
.

The GMM estimator β̂gmm minimizes J(β). Since this is a just-identified model the estimator
solves the sample equations

X
′ (
y −Xβ̂gmm

)
= 0.

The solution is

β̂gmm =

(
n∑
i=1

X
′
iXi

)−1( n∑
i=1

X
′
iyi

)

=
(
X
′
X
)−1 (

X
′
y
)

= β̂ols,
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the least-squares estimator.
Thus the unconstrained GMM estimator of the multivariate regression model is least-squares.

The estimator does not depend on the weight matrix since the model is just-identified.
A important advantage of the GMM framework is to incorporate constraints. Consider the class

of restrictions R′β = c. Minimization of the GMM criterion subject to this restrition has solutions
as described in (13.15). The restricted GMM estimator is

β̂gmm = β̂ols −
(
X
′
XWX

′
X
)−1

R

(
R′
(
X
′
XWX

′
X
)−1

R

)−1 (
R′β̂ols − c

)
.

This estimator depends on the weight matrix because it is over-identified.
A simple choice for weight matrix is W = X

′
X. This leads to the one-step estimator

β̂1 = β̂ols −
(
X
′
X
)−1

R

(
R′
(
X
′
X
)−1

R

)−1 (
R′β̂ols − c

)
.

The asymptotically effi cient choice sets W = Ω̂
−1

where Ω̂ = n−1
∑n

i=1X
′
iêiê

′
iXi and êi =

yi −Xiβ̂1. This leads to the two-step estimator

β̂2 = β̂ols −
(
X
′
XΩ̂

−1
X
′
X
)−1

R

(
R′
(
X
′
XΩ̂

−1
X
′
X
)−1

R

)−1 (
R′β̂ols − c

)
.

When the regressors xi are common across all equations, then the multivariate regression model
can be written conveniently as in (11.3)

yi = B′xi + ei

E
(
xie
′
i

)
= 0.

The moment restrictions can be written as the matrix system

E
(
xi
(
y′i − x′iB

))
= 0.

Written as a vector system this is (13.24) and thus leads to the same restricted GMM estimators.
These are general formula for imposing restrictions. In specific cases (such as an exclusion

restriction) direct methods may be more convenient. In all cases, the solution is found by mini-
mization of the GMM criterion J(β) subject to the restriction.

13.19 Distance Test

In Section 13.14 we introduced Wald tests of the hypothesis H0 : θ = θ0 where θ = r (β)
for a given function r (β) : Rk → Θ ⊂ Rq. When r (β) is non-linear, an alternative is to use
a criterion-based statistic. This is sometimes called the GMM Distance statistic and sometimes
called a LR-like statistic (the LR is for likelihood-ratio). The idea was first put forward by Newey
and West (1987a).

The idea is to compare the unrestricted and restricted estimators by contrasting the criterion
functions. The unrestricted estimator takes the form

β̂gmm = argmin
β

J(β)

where
Ĵ(β) = n · gn(β)′Ω̂

−1
gn(β)

is the unrestricted GMM criterion with an effi cient weight matrix estimate Ω̂. The minimized value
of the criterion is

Ĵ = Ĵ(β̂gmm).
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As in Section 13.15, the estimator subject to r (β) = θ0 is

β̂cgmm = argmin
r(β)=θ0

J̃(β)

where
J̃(β) = n · gn(β)′Ω̃

−1
gn(β)

which depends on an effi cient weight matrix estimate, either Ω̂ (the same as the unrestricted
estimator), or Ω̃ (the iterated weight matrix from constrained estimation). The minimized value
of the criterion is

J̃ = J̃(β̂cgmm).

The GMM distance (or LR-like) statistic is the difference in the criterion functions.

D = J̃ − Ĵ .

The distance test shares the useful feature of LR tests in that it is a natural by-product of the
computation of alternative models.

The test has the following large sample distribution.

Theorem 13.12 Under Assumptions 12.2 and 7.3, and H0 holds, then as
n→∞,

D
d−→ χ2

q .

For c satisfying α = 1−Gq(c),

P (D > c | H0) −→ α

so the test “Reject H0 if D > c”has asymptotic size α.

The proof is given in Section 13.28.
Theorem 13.12 shows that the distance statistic has the same asymptotic distribution as Wald

and likelihood ratio statistics, and can be interpreted similarly. Small values of D mean that
imposing the restriction does not result in a large value of the moment equations. Hence the
restriction appears to be compatible with the data. On the other hand, large values of D mean
that imposing the restriction results in a much larger value of the moment equations, implying that
the restriction is not compatible with the data. The finding that the asymptotic distribution is
chi-squared allows the calculation of asymptotic critical values and p-values.

We now discuss the choice of weight matrix. As mentioned above, one simple choice is to set
Ω̃ = Ω̂. In this case we have the following result.

Theorem 13.13 If Ω̃ = Ω̂ then D ≥ 0. Furthermore, if r is linear in β,
then D equals the Wald statistic.

The statement that Ω̃ = Ω̂ implies D ≥ 0 follows from the fact that in this case the criterion
functions Ĵ(β) = J̃(β) are identical, so the constrained minimum cannot be smaller than the
unconstrained. The statement that linear hypotheses and Ω̃ = Ω̂ implies D = W follows from
applying the expression for the constrained GMM estimator (13.19) and using the variance matrix
formula (13.11).
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This result shows some advantages to using the same weight matrix to estimate both β̂gmm and

β̂cgmm. In particular, the non-negativity finding motivated Newey and West (1987a) to recommend

using Ω̃ = Ω̂. However, this is not an important advantage. Setting Ω̃ to be the constrained
effi cient weight matrix is natural for effi cient estimation of β̂cgmm. In the event that D < 0 the test
simply fails to reject H0 at any significance level.

As discussed in Section 9.17, for tests of nonlinear hypotheses the Wald statistic can work quite
poorly. In particular, the Wald statistic is affected by how the hypothesis r (β) is formulated. In
contrast, the distance statistic D is not affected by the algebraic formulation of the hypothesis.
Current evidence suggests that the D statistic appears to have good sampling properties, and is
a preferred test statistic relative to the Wald statistic for nonlinear hypotheses. (See B. Hansen
(2006).)

In Stata, the command estat overid after ivregress gmm can be used to report the value of
the GMM criterion J . By estimating the two nested GMM regressions the values Ĵ and J̃ can be
obtained and D computed.

13.20 Continuously-Updated GMM

An alternative to the two-step GMM estimator can be constructed by letting the weight matrix
be an explicit function of β. These leads to the criterion function

J(β) = n · gn(β)′

(
1

n

n∑
i=1

g(wi,β)g(wi,β)′

)−1

gn(β).

The β̂ which minimizes this function is called the continuously-updated GMM (CU-GMM)
estimator, and was introduced by L. Hansen, Heaton and Yaron (1996).

A complication is that the continuously-updated criterion J(β) is not quadratic in β. This
means that minimization requires numerical methods. It may appear that the CU-GMM estimator
is the same as the iterated GMM estimator, but this is not the case at all. They solve distinct
first-order conditions, and can be quite different in applications.

Relative to traditional GMM, the CU-GMM estimator has lower bias but thicker distributional
tails. While it has received considerable theoretical attention, it is not used commonly in applica-
tions.

13.21 OverIdentification Test

In Section 12.31 we introduced the Sargan (1958) overidentification test for the 2SLS estimator
under the assumption of homoskedasticity. L. Hansen (1982) generalized the test to cover the GMM
estimator allowing for general heteroskedasticity.

Recall, overidentified models (` > k) are special in the sense that there may not be a parameter
value β such that the moment condition

H0 : E (ziei) = 0

holds. Thus the model —the overidentifying restrictions —are testable.
For example, take the linear model yi = β′1x1i+β

′
2x2i+ei with E (x1iei) = 0 and E (x2iei) = 0.

It is possible that β2 = 0, so that the linear equation may be written as yi = β′1x1i + ei. However,
it is possible that β2 6= 0, and in this case it would be impossible to find a value of β1 so that
both E (x1i (yi − x′1iβ1)) = 0 and E (x2i (yi − x′1iβ1)) = 0 hold simultaneously. In this sense an
exclusion restriction can be seen as an overidentifying restriction.
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Note that gn
p−→ E (ziei) , and thus gn can be used to assess whether or not the hypothesis

that E (ziei) = 0 is true or not. Assuming that an effi cient weight matrix estimate is used, the
criterion function at the parameter estimates is

J = J(β̂gmm) = n g′nΩ̂
−1
gn.

This is a quadratic form in gn, and is thus a natural test statistic for H0 : E (ziei) = 0. Note that
we assume that the criterion function is constructed with an effi cient weight matrix estimate. This
is important for the distribution theory.

Theorem 13.14 Under Assumption 12.2, then as n→∞,

J = J(β̂gmm)
d−→ χ2

`−k.

For c satisfying α = 1−G`−k(c),

P (J > c | H0) −→ α

so the test “Reject H0 if J > c”has asymptotic size α.

The proof of the theorem is left to Exercise 13.13.
The degrees of freedom of the asymptotic distribution are the number of overidentifying restric-

tions. If the statistic J exceeds the chi-square critical value, we can reject the model. Based on
this information alone it is unclear what is wrong, but it is typically cause for concern. The GMM
overidentification test is a very useful by-product of the GMM methodology, and it is advisable to
report the statistic J whenever GMM is the estimation method. When over-identified models are
estimated by GMM, it is customary to report the J statistic as a general test of model adequacy.

In Stata, the command estat overid afer ivregress gmm can be used to implement the overi-
dentification test. The GMM criterion J and its asymptotic p-value using the χ2

`−k distribution are
reported.

13.22 Subset OverIdentification Tests

In Section 12.32 we introduced subset overidentification tests for the 2SLS estimator under the
assumption of homoskedasticity. In this section we describe how to construct analogous tests for
the GMM estimator under general heteroskedasticity.

Recall, subset overidentification tests are used when it is desired to focus attention on a subset
of instruments whose validity is questioned. Partition zi = (zai, zbi) with dimensions `a and `b,
respectively, where zai contains the instruments which are believed to be uncorrelated with ei, and
zbi contains the instruments which may be correlated with ei. It is necessary to select this partition
so that `a > k, so that the instruments zai alone identify the parameters. The instruments zbi are
potentially valid additional instruments.

Given this partition, the maintained hypothesis is that E(zaiei) = 0. The null and alternative
hypotheses are

H0 : E(zbiei) = 0

H1 : E(zbiei) 6= 0.

The GMM test is constructed as follows. First, estimate the model by effi cient GMM with only
the smaller set zai of instruments. Let J̃ denote the resulting GMM criterion. Second, estimate the
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model by effi cient GMM with the full set zi = (zai, zbi) of instruments. Let Ĵ denote the resulting
GMM criterion. The test statistic is the difference in the criterion functions:

C = Ĵ − J̃ .

This is similar in form to the GMM distance statistic presented in Section 13.19. The difference is
that the distance statistic compares models which differ based on the parameter restrictions, while
the C statistic compares models based on different instrument sets.

Typically, the model with the greater instrument set will produce a larger value for J so that
C ≥ 0. However negative values can algebraically occur. That is okay for this simply leads to a
non-rejection of H0.

If the smaller instrument set zai is just-identified so that `a = k then J̃ = 0 so C = Ĵ is simply
the standard overidentification test. This is why we have restricted attention to the case `a > k.

The test has the following large sample distribution.

Theorem 13.15 Under Assumption 12.2 and E (zaix
′
i) has full rank k,

then as n→∞,
C

d−→ χ2
`b
.

For c satisfying α = 1−G`b(c),

P (C > c | H0) −→ α

so the test “Reject H0 if C > c”has asymptotic size α.

The proof of Theorem 13.15 is presented in Section 13.28.
In Stata, the command estat overid zb afer ivregress gmm can be used to implement a

subset overidentification test, where zb is the name(s) of the instruments(s) tested for validity. The
statistic C and its asymptotic p-value using the χ2

`2
distribution are reported.

13.23 Endogeneity Test

In Section 12.29 we introduced tests for endogeneity in the context of 2SLS estimation. Endo-
geneity tests are simple to implement in the GMM framework as a subset overidentification test.
The model is

yi = x′1iβ1 + x′2iβ2 + ei

where the maintained assumption is that the regressors x1i and excluded instruments z2i are
exogenous so that E(x1iei) = 0 and E(z2iei) = 0. The question is whether or not x2i is endogenous.
Thus the null hypothesis is

H0 : E(x2iei) = 0

with the alternative
H1 : E(x2iei) 6= 0.

The GMM test is constructed as follows. First, estimate the model by effi cient GMM using
(x1i, z2i) as instruments for (x1i,x2i). Let J̃ denote the resulting GMM criterion. Second, estimate
the model by effi cient GMM using (x1i,x2i, z2i) as instruments for (x1i,x2i). Let Ĵ denote the
resulting GMM criterion. The test statistic is the difference in the criterion functions:

C = Ĵ − J̃ .

The distribution theory for the test is a special case of the theory of overidentification testing.
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Theorem 13.16 Under Assumption 12.2 and E (z2ix
′
2i) has full rank k2,

then as n→∞,
C

d−→ χ2
k2 .

For c satisfying α = 1−Gk2(c),

P (C > c | H0) −→ α

so the test “Reject H0 if C > c”has asymptotic size α.

In Stata, the command estat endogenous afer ivregress gmm can be used to implement the
test for endogeneity. The statistic C and its asymptotic p-value using the χ2

k2
distribution are

reported.

13.24 Subset Endogeneity Test

In Section 12.30 we introduced subset endogeneity tests for 2SLS estimation. GMM tests are
simple to implement as subset overidentification tests. The model is

yi = x′1iβ1 + x′2iβ2 + x′3iβ3 + ei

E (ziei) = 0

where the instrument vector is zi = (x1i, z2i). The k3 × 1 variables x3i are treated as endogenous,
and the k2 × 1 variables x2i are treated as potentially endogenous. The hypothesis to test is that
x2i is exogenous, or

H0 : E(x2iei) = 0

against
H1 : E(x2iei) 6= 0.

The test requires that `2 ≥ (k2 + k3) so that the model can be estimated under H1.
The GMM test is constructed as follows. First, estimate the model by effi cient GMM using

(x1i, z2i) as instruments for (x1i,x2i,x3i). Let J̃ denote the resulting GMM criterion. Second,
estimate the model by effi cient GMM using (x1i,x2i, z2i) as instruments for (x1i,x2i,x3i). Let Ĵ
denote the resulting GMM criterion. The test statistic is the difference in the criterion functions:

C = Ĵ − J̃ .

The distribution theory for the test is a special case of the theory of overidentification testing.

Theorem 13.17 Under Assumption 12.2 and E (z2i (x′2i,x
′
3i)) has full

rank k2 + k3, then as n→∞,

C
d−→ χ2

k2 .

For c satisfying α = 1−Gk2(c),

P (C > c | H0) −→ α

so the test “Reject H0 if C > c”has asymptotic size α.
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In Stata, the command estat endogenous x2 afer ivregress gmm can be used to implement
the test for endogeneity, where x2 is the name(s) of the variable(s) tested for endogeneity. The
statistic C and its asymptotic p-value using the χ2

k2
distribution are reported.

13.25 Nonlinear GMM

GMM applies whenever an economic or statistical model implies the `× 1 moment condition

E (gi(β)) = 0.

where gi(β) is a possibly nonlinear function of the parameters β. Often, this is all that is known.
Identification requires ` ≥ k = dim(β). The GMM estimator minimizes

J(β) = n · gn(β)′Ŵ gn(β)

for some weight matrix Ŵ , where

gn(β) =
1

n

n∑
i=1

gi(β).

The effi cient GMM estimator can be constructed by setting

Ŵ =

(
1

n

n∑
i=1

ĝiĝ
′
i − gng′n

)−1

,

with ĝi = g(wi, β̃) constructed using a preliminary consistent estimator β̃, perhaps obtained by
first setting Ŵ = I`.

As in the case of the linear model, the weight matrix can be iterated until convergence to obtain
the iterated GMM estimator.

Proposition 13.1 Distribution of Nonlinear GMM Estimator
Under general regularity conditions,

√
n
(
β̂gmm − β

)
d−→ N (0,V β)

where
V β =

(
Q′WQ

)−1 (
Q′WΩWQ

) (
Q′WQ

)−1

with
Ω = E

(
gig
′
i

)
and

Q = E
(

∂

∂β′
gi(β)

)
.

If the effi cient weight matrix is used then

V β =
(
Q′Ω−1Q

)−1
.

The proof of this result is omitted as it uses more advanced techniques.
The asymptotic covariance matrices can be estimated by sample counterparts of the population

matrices. For the case of a general weight matrix,

V̂ β =
(
Q̂
′
Ŵ Q̂

)−1 (
Q̂
′
Ŵ Ω̂Ŵ Q̂

)(
Q̂
′
Ŵ Q̂

)−1
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where

Ω̂ =
1

n

n∑
i=1

(
gi(β̂)− g

)(
gi(β̂)− g

)′
g = n−1

n∑
i=1

gi(β̂)

and

Q̂ =
1

n

n∑
i=1

∂

∂β′
gi(β̂).

For the case of the iterated effi cient weight matrix,

V̂ β =
(
Q̂
′
Ω̂
−1
Q̂
)−1

.

All of the methods discussed in this chapter —Wald tests, constrained estimation, Distance
tests, overidentification tests, endogeneity tests —apply similarly to the nonlinear GMM estimator.

13.26 Bootstrap for GMM

The bootstrap for 2SLS (Section 12.23) can be used for GMM estimation. The standard boot-
strap algorithm generates bootstrap samples by sampling the triplets (y∗i ,x

∗
i , z
∗
i ) independently

and with replacement from the original sample. The GMM estimator is applied to the bootstrap
sample to obtain the bootstrap estimates β̂

∗
gmm. This is repeated B times to create a sample of

B bootstrap draws. Given these draws, bootstrap confidence intervals, including percentile, BC
percentile, BCa and percentile-t, are calculated conventionally.

For variance and standard error estimation, the same cautions apply as for 2SLS. It is diffi cult
to know if the GMM estimator has a finite variance in a given application. It is best to avoid
using the bootstrap to calculate standard errors. Instead, use the bootstrap for percentile-type and
percentile-t confidence intervals.

When the model is overidentified, as discussed for 2SLS, bootstrap GMM inference will not
achieve an asymptotic refinement unless the bootstrap estimator is recented to satisfy the orthog-
onality condition. We now describe the recentering recommended by Hall and Horowitz (1996).

For linear GMM wth weight matrix W , the recented GMM bootstrap estimator is

β̂
∗∗
gmm =

(
X∗′Z∗W ∗Z∗′X∗

)−1 (
X∗′Z∗W ∗ (Z∗′y∗ −Z ′ê))

where W ∗ is the bootstrap version of W and ê = y −Xβ̂gmm. For effi cient GMM,

W ∗ =

(
1

n

n∑
i=1

z∗i z
∗′
i

(
yi − x∗′i β̃

∗)2
)−1

for preliminary estimator β̃
∗
.

For nonlinear GMM (Section 13.25), the bootstrap criterion function is modified. The recentered
bootstrap criterion is

J∗∗(β) = n
(
g∗n(β)− gn(β̂gmm)

)′
W ∗

(
g∗n(β)− gn(β̂gmm)

)
g∗n(β) =

1

n

n∑
i=1

g∗i (β)

where gn(β̂gmm) is from the sample, not from the bootstrap data. The bootstrap estimator is

β̂
∗∗
gmm = argmin J∗∗(β).
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The bootstrap can also be used to calculate the p-value of the GMM overidentification test.
For the GMM estimator with an effi cient weight matrix the standard overidentification test is the
Hansen J statistic

J = n gn(β̂gmm)′Ω̂
−1
gn(β̂gmm).

The recentered bootstrap analog is

J∗∗ = n
(
g∗n(β̂

∗∗
gmm)− gn(β̂gmm)

)′
Ω̂
∗−1

(
g∗n(β̂

∗∗
gmm)− gn(β̂gmm)

)
.

On each bootstrap sample J∗∗(b) is calculated and stored. The bootstrap p-value is

p∗ =
1

B

B∑
b=1

1 (J∗∗(b) > S) .

This bootstrap p-value is asymptotically valid since the statistic J∗∗ satisfies the overidentified
moment conditions.

13.27 Conditional Moment Equation Models

In many contexts, an economic model implies more than an unconditional moment restriction
of the form E (g(wi,β)) = 0. It implies a conditional moment restriction of the form

E (ei(β) | zi) = 0

where ei(β) is some s × 1 function of the observation and the parameters. In many cases, s = 1.
The variable zi is often called an instrument.

It turns out that this conditional moment restriction is much more powerful, and restrictive,
than the unconditional moment equation model discussed throughout this chapter.

For example, the linear model yi = x′iβ + ei with instruments zi falls into this class under the
assumption E (ei | zi) = 0. In this case, ei(β) = yi − x′iβ.

It is also helpful to realize that conventional regression models also fall into this class, except
that in this case xi = zi. For example, in linear regression, ei(β) = yi − x′iβ, while in a nonlinear
regression model ei(β) = yi − g(xi,β). In a joint model of the conditional mean E (y | x) = x′β
and variance var (y | x) = f (x)′ γ, then

ei (β,γ) =


yi − x′iβ

(yi − x′iβ)2 − f (xi)
′ γ

.

Here s = 2.
Given a conditional moment restriction, an unconditional moment restriction can always be

constructed. That is for any ` × 1 function φ (z,β) , we can set gi(β) = φ (zi,β) ei(β) which
satisfies E (gi(β)) = 0 and hence defines an unconditional moment equation model. The obvious
problem is that the class of functions φ is infinite. Which should be selected?

This is equivalent to the problem of selection of the best instruments. If zi ∈ R is a valid
instrument satisfying E (ei | zi) = 0, then zi, z2

i , z
3
i , ..., etc., are all valid instruments. Which should

be used?
One solution is to construct an infinite list of potent instruments, and then use the first k

instruments. How is k to be determined? This is an area of theory still under development. A
recent study of this problem is Donald and Newey (2001).

Another approach is to construct the optimal instrument. The form was uncovered by
Chamberlain (1987). Take the case s = 1. Let

Ri = E
(
∂

∂β
ei(β) | zi

)
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and
σ2
i = E

(
ei(β)2 | zi

)
.

Then the “optimal instrument”is
Ai = −σ−2

i Ri

so the optimal moment is
gi(β) = Aiei(β).

Setting gi(β) to be this choice (which is k× 1, so is just-identified) yields the best GMM estimator
possible.

In practice, Ai is unknown, but its form does help us think about construction of optimal
instruments.

In the linear model ei(β) = yi − x′iβ, note that

Ri = −E (xi | zi)

and
σ2
i = E

(
e2
i | zi

)
,

so
Ai = σ−2

i E (xi | zi) .

In the case of linear regression, xi = zi, so Ai = σ−2
i zi. Hence effi cient GMM is equivalently to

optimal GLS.
In the case of endogenous variables, note that the effi cient instrumentAi involves the estimation

of the conditional mean of xi given zi. In other words, to get the best instrument for xi, we need the
best conditional mean model for xi given zi, not just an arbitrary linear projection. The effi cient
instrument is also inversely proportional to the conditional variance of ei. This is the same as the
GLS estimator; namely that improved effi ciency can be obtained if the observations are weighted
inversely to the conditional variance of the errors.

13.28 Technical Proofs*

Proof of Theorem 13.12. Set ẽ = y −Xβ̂cgmm and ê = y −Xβ̂gmm. By standard covariance

matrix analysis Ω̂
p−→ Ω and Ω̃

p−→ Ω. Thus we can replace Ω̂ and Ω̃ in the criteria without
affecting the asymptotic distribution. In particular

J̃(β̂cgmm) =
1

n
ẽ′ZΩ̃

−1
Z ′ẽ

=
1

n
ẽ′ZΩ̂

−1
Z ′ẽ+ op(1). (13.25)

Now observe that
Z ′ẽ = Z ′ê−Z ′X

(
β̂cgmm − β̂gmm

)
.

Thus

1

n
ẽ′ZΩ̂

−1
Z ′ẽ =

1

n
ê′ZΩ̂

−1
Z ′ê− 2

n

(
β̂cgmm − β̂gmm

)′
X ′ZΩ̂

−1
Z ′ê

+
1

n

(
β̂cgmm − β̂gmm

)′
X ′ZΩ̂

−1
Z ′X

(
β̂cgmm − β̂gmm

)
= Ĵ(β̂gmm) +

1

n

(
β̂cgmm − β̂gmm

)′
X ′ZΩ̂

−1
Z ′X

(
β̂cgmm − β̂gmm

)
(13.26)
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where the second equality holds since X ′ZΩ̂
−1
Z ′ê = 0 is the first-order condition for β̂gmm. By

(13.16) and Theorem 13.4, under H0

√
n
(
β̂cgmm − β̂gmm

)
= −

(
X ′ZΩ−1Z ′X

)−1
R
(
R′
(
X ′ZΩ−1Z ′X

)−1
R
)−1

R′
√
n
(
β̂gmm − β

)
+ op(1)

d−→
(
Q′Ω−1Q

)−1
RZ (13.27)

where

Z ∼ N (0,V R) (13.28)

V R =
(
RV ′

(
Q′Ω−1Q

)−1
R
)−1

.

Putting together (13.25), (13.26), (13.27) and (13.28),

D = J̃(β̂cgmm)− Ĵ(β̂gmm)

=
√
n
(
β̂cgmm − β̂gmm

)′ 1

n
X ′ZΩ̂

−1 1

n
Z ′X

√
n
(
β̂cgmm − β̂gmm

)
d−→ Z′V −1

R Z

∼ χ2
q

since V R > 0 and Z is q × 1. �

Proof of Theorem 13.15. Let β̃ denote the GMM estimate obtained with the instrument set zai
and let β̂ denote the GMM estimates obtained with the instrument set zi. Set

ẽ = y −Xβ̃
ê = y −Xβ̂

Ω̃ = n−1
n∑
i=1

zaiz
′
aiẽ

2
i

Ω̂ = n−1
n∑
i=1

ziz
′
iê

2
i .

Let R be the `× `a selector matrix so that zai = R′zi. Note that

Ω̃ = R′n−1
n∑
i=1

ziz
′
iẽ

2
iR.

By standard covariance matrix analysis, Ω̂
p−→ Ω and Ω̃

p−→ R′ΩR. Also, 1
nZ
′X

p−→ Q, say. By

the CLT, n−1/2Z ′e
d−→ Z where Z ∼ N (0,Ω). Then

n−1/2Z ′ê =

(
I` −

(
1

n
Z ′X

)(
1

n
X ′ZΩ̂

−1 1

n
Z ′X

)−1( 1

n
X ′Z

)
Ω̂
−1

)
n−1/2Z ′e

d−→
(
I` −Q

(
Q′Ω−1Q

)−1
Q′Ω−1

)
Z

and

n−1/2Z ′aẽ = R′

(
I` −

(
1

n
Z ′X

)(
1

n
X ′ZRΩ̃

−1
R′

1

n
Z ′X

)−1( 1

n
X ′Z

)
RΩ̃

−1
R′

)
n−1/2Z ′e
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d−→ R′
(
I` −Q

(
Q′R

(
R′ΩR

)−1
R′Q

)−1
Q′R

(
R′ΩR

)−1
R′
)

Z

jointly.
By linear rotations of Z and R we can set Ω = I` to simplify the notation. Thus setting

PQ = Q (Q′Q)
−1
Q′, PR = R (R′R)

−1
R′ and Z ∼ N (0, I`) we have

Ĵ
d−→ Z′ (I` − PQ) Z

and
J̃

d−→ Z′
(
PR − PRQ

(
Q′PRQ

)−1
Q′PR

)
Z.

It follows that
C = Ĵ − J̃ d−→ Z′AZ

where
A =

(
I` − PQ − PR + PRQ

(
Q′PRQ

)−1
Q′PR

)
.

This is a quadratic form in a standard normal vector, and the matrix A is idempotent (this is
straightforward to check). Z′AZ is thus distributed as χ2

d with degrees of freedom d equal to the
rank of A. This is

rank (A) = tr
(
I` − PQ − PR + PRQ

(
Q′PRQ

)−1
Q′PR

)
= `− k − `a + k

= `b.

Thus the asymptotic distribution of C is χ2
`b
as claimed. �
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Exercises

Exercise 13.1 Take the model

yi = x′iβ + ei

E (xiei) = 0

e2
i = z′iγ + ηi

E (ziηi) = 0.

Find the method of moments estimators
(
β̂, γ̂

)
for (β,γ) .

Exercise 13.2 Take the single equation

y = Xβ + e

E (e | Z) = 0

Assume E
(
e2
i | zi

)
= σ2. Show that if β̂gmm is the GMM estimated by GMM with weight matrix

W n = (Z ′Z)
−1
, then

√
n
(
β̂ − β

)
d−→ N

(
0, σ2

(
Q′M−1Q

)−1
)

where Q = E (zix
′
i) andM = E (ziz

′
i) .

Exercise 13.3 Take the model yi = x′iβ + ei with E (ziei) = 0. Let ẽi = yi − x′iβ̃ where β̃ is
consistent for β (e.g. a GMM estimator with arbitrary weight matrix). Define an estimate of the
optimal GMM weight matrix

Ŵ =

(
1

n

n∑
i=1

ziz
′
iẽ

2
i

)−1

.

Show that Ŵ
p−→ Ω−1 where Ω = E

(
ziz
′
ie

2
i

)
.

Exercise 13.4 In the linear model estimated by GMM with general weight matrixW , the asymp-
totic variance of β̂GMM is

V =
(
Q′WQ

)−1
Q′WΩWQ

(
Q′WQ

)−1
.

(a) Let V 0 be this matrix when W = Ω−1. Show that V 0 =
(
Q′Ω−1Q

)−1
.

(b) We want to show that for anyW , V −V 0 is positive semi-definite (for then V 0 is the smaller
possible covariance matrix andW = Ω−1 is the effi cient weight matrix). To do this, start by
finding matrices A and B such that V = A′ΩA and V 0 = B′ΩB.

(c) Show that B′ΩA = B′ΩB and therefore that B′Ω (A−B) = 0.

(d) Use the expressions V = A′ΩA, A = B + (A−B) , and B′Ω (A−B) = 0 to show that
V ≥ V 0.

Exercise 13.5 Prove Theorem 13.8.

Exercise 13.6 Derive the constrained GMM estimator (13.16).

Exercise 13.7 Show that the constrained GMM estimator (13.16) with the effi cient weight matrix
is (13.19).
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Exercise 13.8 Prove Theorem 13.9.

Exercise 13.9 Prove Theorem 13.10.

Exercise 13.10 The equation of interest is

yi = m(xi,β) + ei

E (ziei) = 0.

The observed data is (yi, zi,xi). zi is `×1 and β is k×1, ` ≥ k. Show how to construct an effi cient
GMM estimator for β.

Exercise 13.11 As a continuation of Exercise 12.7, derive the effi cient GMM estimator using the
instrument zi = (xi x2

i )
′. Does this differ from 2SLS and/or OLS?

Exercise 13.12 In the linear model y = Xβ + e with E(xiei) = 0, a Generalized Method of
Moments (GMM) criterion function for β is defined as

J(β) =
1

n
(y −Xβ)′XΩ̂

−1
X ′ (y −Xβ) (13.29)

where Ω̂ = 1
n

∑n
i=1 xix

′
iê

2
i , êi = yi − x′iβ̂ are the OLS residuals, and β̂ = (X ′X)

−1
X ′y is least-

squares. The GMM estimator of β, subject to the restriction r(β) = 0, is defined as

β̃ = argmin
r(β)=0

Jn(β).

The GMM test statistic (the distance statistic) of the hypothesis r(β) = 0 is

D = J(β̃) = min
r(β)=0

J(β). (13.30)

(a) Show that you can rewrite J(β) in (13.29) as

J(β) = n
(
β − β̂

)′
V̂
−1

β

(
β − β̂

)
and thus β̃ is the same as the minimum distance estimator.

(b) Show that under linear hypotheses the distance statisticD in (13.30) equals the Wald statistic.

Exercise 13.13 Take the linear model

yi = x′iβ + ei

E (ziei) = 0.

and consider the GMM estimator β̂ of β. Let

J = ngn(β̂)′Ω̂
−1
gn(β̂)

denote the test of overidentifying restrictions. Show that J d−→ χ2
`−k as n→∞ by demonstrating

each of the following:

(a) Since Ω > 0, we can write Ω−1 = CC ′ and Ω = C ′−1C−1.

(b) J = n
(
C ′gn(β̂)

)′ (
C ′Ω̂C

)−1
C ′gn(β̂).
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(c) C ′gn(β̂) = DnC
′gn(β) where

Dn = I` −C ′
(

1

n
Z ′X

)((
1

n
X ′Z

)
Ω̂
−1
(

1

n
Z ′X

))−1( 1

n
X ′Z

)
Ω̂
−1
C ′−1

gn(β) =
1

n
Z ′e.

(d) Dn
p−→ I` −R (R′R)

−1
R′ where R = C ′E (zix

′
i) .

(e) n1/2C ′gn(β)
d−→ u ∼ N (0, I`) .

(f) J d−→ u′
(
I` −R (R′R)

−1
R′
)
u.

(g) u′
(
I` −R (R′R)

−1
R′
)
u ∼ χ2

`−k.

Hint: I` −R (R′R)
−1
R′ is a projection matrix.

Exercise 13.14 Take the model

yi = x′iβ + ei

E (ziei) = 0

yi scalar, xi a k vector and zi an ` vector, ` ≥ k. Assume i.i.d. observations. Consider the statistic

Jn(β) = nmn(β)′Wmn(β)

mn(β) =
1

n

n∑
i=1

zi
(
yi − x′iβ

)
for some weight matrix W > 0.

(a) Take the hypothesis
H0 : β = β0

Derive the asymptotic distribution of Jn(β0) under H0 as n→∞.

(b) What choice for W yields a known asymptotic distribution in part (a)? (Be specific about
degrees of freedom.)

(c) Write down an appropriate estimator Ŵ for W which takes advantage of H0. (You do not
need to demonstrate consistency or unbiasedness.)

(d) Describe an asymptotic test of H0 against H1 : β 6= β0 based on this statistic.

(e) Use the result in part (d) to construct a confidence region for β. What can you say about
the form of this region? For example, does the confidence region take the form of an ellipse,
similar to conventional confidence regions?

Exercise 13.15 Consider the model

yi = x′iβ + ei

E (ziei) = 0 (13.31)

R′β = 0 (13.32)

with yi scalar, xi a k vector and zi an ` vector with ` > k. The matrix R is k × q with 1 ≤ q < k.
You have a random sample (yi,xi, zi : i = 1, ..., n).

For simplicity, assume the effi cient weight matrix W =
(
E
(
ziz
′
ie

2
i

))−1 is known.
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(a) Write out the GMM estimator β̂ of β given the moment conditions (13.31) but ignoring
constraint (13.32).

(b) Write out the GMM estimator β̃ of β given the moment conditions (13.31) and constraint
(13.32).

(c) Find the asymptotic distribution of
√
n
(
β̃ − β

)
as n→∞ under the assumption that (13.31)

and (13.32) are correct.

Exercise 13.16 The observed data is {yi, xi, zi} ∈ R×Rk ×R`, k > 1 and ` > k > 1, i = 1, ..., n.
The model is

yi = x′iβ + ei

E (ziei) = 0. (13.33)

(a) Given a weight matrix W > 0, write down the GMM estimator β̂ for β.

(b) Suppose the model is misspecified in that

ei = δn−1/2 + ui (13.34)

E (ui | zi) = 0

with µz = E (zi) 6= 0 and δ 6= 0. Show that (13.34) implies (13.33) is false.

(c) Express
√
n
(
β̂ − β

)
as a function of W , n, δ, and the variables (xi, zi, ui).

(d) Find the asymptotic distribution of
√
n
(
β̂ − β

)
under Assumption (13.34).

Exercise 13.17 The model is

yi = ziβ + xiγ + ei

E (ei | xi) = 0.

Thus zi is potentially endogenous and xi is exogenous. Assume that zi and xi are scalar. Someone
suggests estimating (β, γ) by GMM, using the pair (xi, x

2
i ) as the instruments. Is this feasible?

Under what conditions, if any, (in additional to those described above) is this a valid estimator?

Exercise 13.18 The observations are i.i.d., (yi,xi, qi : i = 1, ..., n), where xi is k × 1 and qi is
m× 1. The model is

yi = x′iβ + ei

E (xiei) = 0

E (qiei) = 0.

Find the effi cient GMM estimator for β.

Exercise 13.19 You want to estimate µ = E (yi) under the assumption that E (xi) = 0, where yi
and xi are scalar and observed from a random sample. Find an effi cient GMM estimator for µ.

Exercise 13.20 Consider the model

yi = x′iβ + ei

E (ziei) = 0

R′β = 0.

The dimensions are x ∈ Rk, z ∈ R`, ` > k. The matrix R is k × q, 1 ≤ q < k. Derive an effi cient
GMM estimator for β for this model.
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Exercise 13.21 Take the linear equation yi = x′iβ+ e, and consider the following estimators of β.

1. β̂ : 2SLS using the instruments z1i.

2. β̃ : 2SLS using the instruments z1i.

3. β : GMM using the instruments zi = (z1i, z2i) and the weight matrix

W =

(
(Z ′1Z1)

−1
λ 0

0 (Z ′2Z2)
−1

(1− λ)

)

for λ ∈ (0, 1).

Find an expression for β which shows that it is a specific weighted average of β̂ and β̃.

Exercise 13.22 Consider the just-identified model

yi = x′1iβ1 + x′2iβ2 + ei

E (xiei) = 0

where xi = (x′1i x
′
2i)
′ and zi are k × 1. We want to test H0 : β1 = 0. Three econometricians are

called to advise on how to test H0.

• Econometrician 1 proposes testing H0 by a Wald statistic.

• Econometrician 2 suggests testing H0 by the GMM Distance Statistic.

• Econometrician 3 suggests testing H0 using the test of overidentifying restrictions.

You are asked to settle this dispute. Explain the advantages and/or disadvantages of the
different procedures, in this specific context.

Exercise 13.23 Take the model

yi = x′iβ + ei

E (xiei) = 0

β = Qθ

where β is k × 1, Q is k ×m with m < k, and Q is known. Assume that the observations (yi,xi)
are i.i.d. across i = 1, ..., n.

Under these assumptions, what is the effi cient estimator of θ?

Exercise 13.24 Take the model

yi = θ + ei

E (xiei) = 0

with (yi,xi) a random sample. yi is real-valued and xi is k × 1, k > 1.

(a) Find the effi cient GMM estimator of θ.

(b) Is this model over-identified or just-identified?

(c) Find the GMM test statistic for over-identification.



CHAPTER 13. GENERALIZED METHOD OF MOMENTS 513

Exercise 13.25 Take the model

yi = x′iβ + ei

E (xiei) = 0

where xi contains an intercept so E (ei) = 0. An enterprising econometrician notices that this
implies the n moment conditions

E (ei) = 0, i = 1, ..., n.

Given an n× n weight matrix W , this implies a GMM criterion

J(β) = (y −Xβ)′W (y −Xβ) .

(a) Under i.i.d. sampling, show that the effi cient weight matrix isW = σ−2In, where σ2 = E
(
e2
i

)
.

(b) Using the weight matrix W = σ−2In, find the GMM estimator β̂ that minimizes J(β).

(c) Find a simple expression for the minimized criterion J(β̂).

(d) Theorem 13.14 says that criterion such as J(β̂) are asymptotically χ2
`−k where ` is the number

of moments. While the assumptions of Theorem 13.14 do not apply to this context, what is
` here? That is, which χ2 distribution is the asserted asymptotic distribution?

(e) Does the answer in (d) make sense? Explain your reasoning.

Exercise 13.26 Take the model

yi = x′iβ + ei

E (ei | xi) = 0

E
(
e2
i | xi

)
= σ2.

An econometrician more enterprising than the one in previous question notices that this implies
the nk moment conditions

E (xiei) = 0, i = 1, ..., n.

We can write the moments using matrix notation as

E
(
X
′
(y −Xβ)

)
where

X =


x′1 0 · · · 0
0 x′2 0
...

...
...

0 0 · · · x′n

 .

Given an nk × nk weight matrix W , this implies a GMM criterion

J(β) = (y −Xβ)′XWX
′
(y −Xβ) .

(a) Calculate Ω = E
(
X
′
ee′X

)
.

(b) The econometrician decides to set W = Ω−, the Moore-Penrose generalized inverse of Ω.
(See Section A.6.)

Note: A useful fact is that for a vector a, (aa′)− = aa′ (a′a)−2 .

(c) Find the GMM estimator β̂ that minimizes J(β).
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(d) Find a simple expression for the minimized criterion J(β̂).

(e) Comment on whether the χ2 approximation from Theorem 13.14 is appropriate for J(β̂).

Exercise 13.27 Continuation of Exercise 12.23, based on the empirical work reported in Ace-
moglu, Johnson and Robinson (2001).

(a) Re-estimate the model estimated part (j) by effi cient GMM. Use the 2SLS estimates as the
first-step to get the weight matrix, and then calculate the GMM estimator from this weight
matrix without further iteration. Report the estimates and standard errors.

(b) Calculate and report the J statistic for overidentification.

(c) Compare the GMM and 2SLS estimates. Discuss your findings

Exercise 13.28 Continuation of Exercise 12.25, which involved estimation of a wage equation by
2SLS.

(a) Re-estimate the model in part (a) by effi cient GMM. Do the results change meaningfully?

(b) Re-estimate the model in part (d) by effi cient GMM. Do the results change meaningfully?

(c) Report the J statistic for overidentification.



Part IV

Dependent and Panel Data

515



Chapter 14

Time Series

14.1 Introduction

A time series yt ∈ Rm is a process observed in sequence over time: t = 1, ..., n. To denote
the time period it is typical to use the subscript t. The time series is univariate if m = 1 and
multivariate if m > 1. This chapter is primarily focused on univariate time series models, though
we describe the concepts for the multivariate case when the added generality does not add extra
complications.

Most economic time series are recorded at discrete intervals such as annual, quarterly, monthly,
weekly, or daily. The number of observations s per year is called the frequency.

Because of the sequential nature of time series, we expect that observations close in calender
time, e.g. yt and its lagged value yt−1, will be dependent. This type of dependence structure
requires a different distributional theory than for cross-sectional and clustered observations, since
we cannot divide the sample into independent groups. Many of the issues which distinguish time
series from cross-section econometrics concern the modeling of these dependence relationships.

There are many excellent textbooks for time series analysis. The encyclopedic standard is
Hamilton (1994). Others include Harvey (1990), Tong (1990), Brockwell and Davis (1991), Fan
and Yao (2003), Lütkepohl (2005), Enders (2014), and Kilian and Lütkepohl (2017). For textbooks
on the related subject of forecasting see Granger (1989), Granger and Newbold (1986), and Elliott
and Timmermann (2016).

14.2 Examples

Many economic time series are macroeconomic variables. An excellent resource for U.S. macro-
economic data are the FRED-MD and FRED-QD databases, which contain a wide set of monthly
and quarterly variables, assembled and maintained by the St. Louis Federal Reserve Bank. See
McCracken and Ng (2015). The datasets FRED-MD and FRED-QD for 1959-2017 are posted on
the course website. FRED-MD has 129 variables over 708 months. FRED-QD has 248 variables
over 236 quarters.

When working with time series data one of the first tasks is to plot the series against time.
In Figures 14.1-14.4 we plot eight example time series from FRED-QD and FRED-MD. As is
conventional in time series plots, the x-axis displays calendar dates (in this case years) and the
y-axis displays the level of the series. The series plotted are: (1a) Real U.S. GDP (gdpc1 ); (1b)
U.S.-Canada exchange rate (excausx ); (2a) Interest rate on U.S. 10-year Treasury (gs10 ); (2b)
Real crude oil price (oilpricex ); (3a) U.S. unemployment rate (unrate); (3b) U.S. real non-durables
consumption growth rate (growth rate of pcndx ); (4a) U.S. CPI inflation rate (growth rate of
cpiaucsl); (4b) S&P 500 return (growth rate of sp500 ). (1a) and (3b) are quarterly series, the rest
are monthly.

516



CHAPTER 14. TIME SERIES 517

Year

B
ill

io
ns

 o
f C

ha
in

ed
 2

01
2 

D
ol

la
rs

1960 1970 1980 1990 2000 2010 2020

40
00

70
00

10
00

0
13

00
0

16
00

0
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(b) U.S.-Canada Exchange Rate

Figure 14.1: U.S. GDP and Exchange Rate

Many of the plots are smooth, meaning that the neighboring values (in calendar time) are very
similar to one another and hence are correlated. Some of the plots are non-smooth, meaning that
the neighboring values are not similar and hence less correlated. At least one plot (real GDP)
displays a strong upward trend.

14.3 Differences and Growth Rates

It is common to transform many series by taking logarithms, differences and/or growth rates.
Three of the series in Figures 14.3-14.4 (consumption growth, inflation [growth rate of CPI index],
and S&P 500 return) are displayed as growth rates. This transformation may be done for a number
of different reasons, but the most credible reason is that this is the suitable variable for the desired
analysis.

Many aggregate series such as real GDP are transformed by taking natural logarithms. This
flattens the apparent exponential growth, and makes fluctuations proportionate.

The first difference of a series yt is

∆yt = yt − yt−1.

The second difference is
∆2yt = ∆yt −∆yt−1.

Higher-order differences can be defined similarly but are not used in practice.
The annual, or year-on-year, change of a series yt with frequency s is

∆syt = yt − yt−s.

There are several methods to calculate growth rates. The one-period growth rate is the per-
centage change from period t− 1 to period t:

qt = 100

(
∆yt
yt−1

)
= 100

(
yt
yt−1

− 1

)
. (14.1)

The multiplication by 100 is not essential but scales qt so that it is a percentage. This is the
transformation used for the plots in Figures 14.3(b)-14.4(a)(b).
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Figure 14.2: Interest Rate and Crude Oil Price

For non-annual data the one-period growth rate (14.1) may be unappealing for interpretation.
Consequently, statistical agencies commonly report “annualized”growth rates, which is the annual
growth which would occur if the one-period growth rate is compounded for a full year. For a series
with frequency s the annualized growth rate is

at = 100

((
yt
yt−1

)s
− 1

)
. (14.2)

Notice that at is a nonlinear function of qt.
Year-on-year growth rates are

Qt = 100

(
∆syt
yt−s

)
= 100

(
yt
yt−s

− 1

)
.

These do not need annualization.
Growth rates are closely related to logarithmic transformations. For small growth rates, qt, at

and Qt are approximately first differences in logarithms:

q∗t = 100∆ log yt ' qt
a∗t = 400∆ log yt ' at
Q∗t = 100∆s log yt ' Qt.

For analysis using growth rates I recommend the one-period growth rates (14.1) rather than the
annualized growth rates (14.2). While annualized growth rates are preferred for reporting, they are
a highly nonlinear transformation which is unnatural for statistical analysis. Differenced logarithms
(e.g. q∗t ) can alternatively be used, and are particularly recommended for models which combine
log-levels and growth rates, for then the models are linear in all variables.

14.4 Stationarity

Recall that cross-sectional observations are conventionally treated as random draws from an
underlying population. This is not an appropriate model for time series processes due to serial
dependence. Instead, we treat the observed sample {y1, ...,yn} as a realization of a dependent
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Figure 14.3: Unemployment Rate and Cconsumption Growth Rate

stochastic process. It is often useful to view {y1, ...,yn} as a subset of an underlying doubly-infinite
sequence

{
...,yt−1,yt,yt+1, ...

}
.

A random vector yt can be characterized by its distribution, and a set such as (yt,yt+1, ...,yt+`)
can be characterized by its joint distribution. Important features of these distributions are their
means, variances, and covariances. Since there is only one observed time series sample, in order to
learn about these distributions there needs to be some sort of constancy. This may only hold after
a suitable transformation such as growth rates (as discussed in the previous section).

The most commonly assumed form of constancy is stationarity. There are two definitions.
The first is suffi cient for construction of linear models.

Definition 14.1 {yt} is covariance or weakly stationary if the mean

µ = E (yt)

and variance matrix

Σ = var (yt) = E
(
(yt − µ) (yt − µ)′

)
are independent of t, and the autocovariances

Γ(k) = cov
(
yt,yt−k

)
= E

(
(yt − µ)

(
yt−k − µ

)′)
are independent of t for all k.

In the univariate case we typically write the variance as σ2 and autocovariances as γ(k).
The mean µ and variance Σ are features of the marginal distribution of yt (the distribution of

yt at a specific time period t). Their constancy as stated in the above definition means that these
features of the distribution are stable over time.

The autocovariances Γ(k) are features of the bivariate distributions of (yt,yt−k). Their con-
stancy as stated in the definition means that the correlation patterns between adjacent yt are stable
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Figure 14.4: U.S. Inflation Rate and S&P 500 Return

over time, and only depend on the number of time periods k separating the variables. By symmetry,
we have Γ(−k) = Γ(k)′. In the univariate case this simplifies to γ(−k) = γ(k).

The autocovariances summarize the linear dependence between yt and its lags. A scale-free
measure of linear dependence in the univariate case are the autocorrelations

ρ(k) = corr (yt, yt−k) =
cov (yt, yt−k)√

var (yt) var (yt−1)
=
γ(k)

σ2
=
γ(k)

γ(0)
.

Notice by symmetry that ρ(−k) = ρ(k).
The second definition of stationarity concerns the entire joint distribution.

Definition 14.2 {yt} is strictly stationary if the joint distribution of
(yt, ...,yt+`) is independent of t for all `.

This is the natural generalization of the cross-section definition of identical distributions. Strict
stationarity implies that the (marginal) distribution of yt does not vary over time. It also implies
that the bivariate distributions of (yt,yt+1) and multivariate distributions of (yt, ...,yt+`) are stable
over time. Under the assumption of a bounded variance a strictly stationary process is covariance
stationary1.

For formal statistical theory we will generally require the stronger assumption of strict station-
arity. Therefore, if we label a process as “stationary”you should interpret it as meaning “strictly
stationary”.

The core meaning of both weak and strict stationarity is the same —that the distribution of
yt is stable over time. To understand the concept, it may be useful to review the plots in Figures
14.1-14.4. Are these stationary processes? If so, we would expect that the mean and variance
would be stable over time. This seems unlikely to apply to the series in Figures 14.1 and 14.2, as
in each case it is diffi cult to describe what is the “typical”value of the series. Stationarity may be

1More generally, the two classes are non-nested since strictly stationary infinite variance processes are not covari-
ance stationary.
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appropriate for the series in Figures 14.3 and 14.4, as each oscillates with a fairly regular pattern.
It is diffi cult, however, to know whether or not a given time series is stationary simply by examining
a time series plot.

A straightforward but essential relationship is that an i.i.d. process is strictly stationary.

Theorem 14.1 If yt is i.i.d., then it strictly stationary.

Here are some examples of strictly stationary scalar processes. In each, et is i.i.d. and E(et) = 0.

Example 14.1 yt = et + θet−1.

Example 14.2 yt = Z for some random variable Z.

Example 14.3 yt = (−1)tZ for a random variable Z which is symmetrically distributed about 0.

Example 14.4 yt = Z cos (θt) for a random variable Z symmetrically distributed about 0.

Here are some examples of processes which are not stationary.

Example 14.5 yt = t.

Example 14.6 yt = (−1)t.

Example 14.7 yt = cos (θt) .

Example 14.8 yt =
√
t et.

Example 14.9 yt = et + t−1/2et−1.

Example 14.10 yt = yt−1 + et with y0 = 0.

From the examples we can see that stationarity means that the distribution is constant over
time. It does not mean, however, mean that the process has some sort of limited dependence, nor
that there is an absence of periodic patterns. These restrictions are actually associated with the
concepts of ergodicity and mixing, which we shall introduce in subsequent sections.

14.5 Transformations of Stationary Processes

One of the important properties of strict stationarity is that it is preserved by transformation.
That is, transformations of strictly stationary processes are also strictly stationary. This includes
transformations which include the full history of yt.

Theorem 14.2 If yt is strictly stationary and xt = φ
(
yt,yt−1,yt−2, ...

)
∈

Rq is a random vector, then xt is strictly stationary.
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Theorem 14.2 is extremely useful both for the study of stochastic processes which are constructed
from underlying errors, and for the study of sample statistics such as linear regression estimators
which are functions of sample averages of squares and cross-products of the original data.

As an example, Theorem 14.2 applies to the infinite-order moving average transformation

xt =

∞∑
j=0

ajyt−j (14.3)

where aj are coeffi cients. We only need to verify that the series xt converges almost surely. It turns
out that a suffi cient condition is that the coeffi cients are absolutely convergent.

Theorem 14.3 If supt E |yt| < ∞ and
∑∞

j=0 |aj | < ∞ then (14.3) con-
verges almost surely. If, in addition, yt is strictly stationary, then xt is
strictly stationary.

We give proofs of Theorems 14.2 and 14.3 in Section 14.45.

14.6 Convergent Series

Theorem 14.3 gives a condition under which the infinite series (14.3) is convergent. In this
section we review some relevant concepts.

A series SN =
∑N

j=0 aj is convergent if it has a finite limit as N →∞, thus SN → S =
∑∞

j=0 aj

with |S| <∞. The series is absolutely convergent if
∑N

j=0 |aj | has a finite limit, which holds if∑∞
j=0 |aj | <∞. Absolute convergence implies convergence.
There are several tests for convergence. Here are several.

1. The comparison test applies if 0 ≤ aj ≤ bj . If
∑∞

j=0 bj converges then so does
∑∞

j=0 aj .

2. The ratio test applies if aj ≥ 0. If limN→∞
aN+1

aN
< 1 then the series is absolutely convergent.

3. The integral test applies if f(N) = aN ≥ 0 and monotonically decreasing. If
∫∞

1 f(x)dx <
∞ then

∑∞
j=2 aj ≤

∫∞
1 f(x)dx <∞ so is absolutely convergent.

4. The Cauchy convergence criterion states that SN converges if and only if for all ε > 0,
there is an N <∞ such that for all m ≥ 1, |SN+m − SN | ≤ ε.

We now describe three convergent series which arise in our treatment of time series econometrics.

Theorem 14.4

1.
∞∑
k=0

βk =
1

1− β is absolutely convergent if |β| < 1.

2.
∞∑
k=1

kqβk is absolutely convergent if |β| < 1, for any q.

3.
∞∑
k=1

k−r ≤ r

r − 1
is absolutely convergent if r > 1.
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Parts 1 and 2 converge by the ratio test, and part 3 by the integral test.
To compute the limit for part 1,

A =
∞∑
k=0

βk = 1 +
∞∑
k=1

βk = 1 + β
∞∑
k=0

βk = 1 + βA.

Solving, we find A = 1/(1− β).
To close this section, we provide a few useful results.

Theorem 14.5 (Silverman-Toeplitz). If a` → A as ` → ∞, and for
weights wn` ≥ 0 such that

∑n
`=1wn` → 1 and wn` → 0 for each ` as

n→∞, then
∑n

`=1wn`a` → A as n→∞.

The proof is given in Section 14.45.
Setting wn` = 1/n we obtain the following.

Theorem 14.6 (Theorem of Cesàro means) If a` → A as ` → ∞ then
1
n

∑n
`=1 a` → A as n→∞.

The following useful result follows by taking the limit of the Riemann sum for the integral∫ 1
0 x

rdx = 1/(1 + r).

Theorem 14.7 As n→∞, for any r > 0, n−1−r∑n
t=1 t

r −→ 1/(1 + r).

14.7 Ergodicity

The assumption of stationarity is not suffi cient for many purposes, as there are strictly stationary
processes with no time series variation. As we described earlier, an example of a stationary process
is yt = Z for some random variable Z. This is random, but constant over all time. An implication
is that the sample mean of yt = Z will be inconsistent for the population mean.

We want a minimal suffi cient assumption so that the law of large numbers will apply to the
sample mean. It turns out that a suffi cient condition is ergodicity. As it is a rather technical
subject, we mention only a few highlights here. For a rigorous treatment see a standard textbook
such as Walters (1982).

A time series yt is ergodic if all invariant events are trivial, meaning that any event which is
unaffected by time-shifts has probability either zero or one. This definition is rather abstract and
diffi cult to grasp, but fortunately it is not needed by most economists.

A useful intuition is that if yt is ergodic then its sample paths will pass through all parts of the
sample space, never getting “stuck”in a subregion.

We will first describe the properties of ergodic series which will be relevant for our needs, and
follow with the more rigorous technical definitions. For proof of the results, see Section 14.45.

First, many standard time series processes can be shown to be ergodic. A useful starting point
is the observation that an i.i.d. sequence is ergodic.
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Theorem 14.8 If yt is i.i.d., then it strictly stationary and ergodic.

Second, ergodicity, like stationarity, is preserved by transformation.

Theorem 14.9 If yt is strictly stationary and ergodic and xt =
φ
(
yt,yt−1,yt−2, ...

)
is a random vector, then xt is strictly stationary and

ergodic.

As an example, the infinite-order moving average transformation (14.3) is ergodic if the input
is ergodic and the coeffi cients are absolutely convergent.

Theorem 14.10 If yt is strictly stationary, ergodic, E |yt| < ∞, and∑∞
j=0 |aj | <∞ then xt =

∑∞
j=0 ajyt−j is strictly stationary and ergodic.

We now present a useful property. It is that the Cesàro sum of the autocovariances limits to
zero.

Theorem 14.11 If yt is strictly stationary, ergodic, and E
(
y2
t

)
<∞, then

lim
n→∞

1

n

n∑
`=1

cov (yt, yt+`) = 0. (14.4)

The result (14.4) can be interpreted as that the covariances “on average” tend to zero. Some
authors have mis-stated ergodicity as implying that the covariances tend to zero but this is not
correct, as (14.4) allows, for example, the non-convergent sequence cov (yt, yt+`) = (−1)`. The
reason why (14.4) is particularly useful is because it is suffi cient for the weak law of large numbers,
as we discover later in Theorem 14.13.

We now give the formal definition of ergodicity for interested readers. As the concepts will not
be used again, most readers can safely skip this discussion.

As we stated above, by definition the series yt is ergodic if all invariant events are trivial. To
understand this we introduce some technical definitions. First, we can write an event as A =
{ỹt ∈ G} where ỹt =

(
...,yt−1,yt,yt+1, ...

)
is an infinite history and G ⊂ Rm∞. Second, the

`th time-shift of ỹt is defined as ỹt+` =
(
...,yt−1+`,yt+`,yt+1+`, ...

)
. Thus ỹt+` replaces each

observation in ỹt by its `
th shifted value yt+`. A time-shift of the event A = {ỹt ∈ G} is A` ={

ỹt+` ∈ G
}
. Third, an event A is called invariant if it is unaffected by a time-shift, so that

A` = A. Thus replacing any history ỹt with its shifted history ỹt+` doesn’t change the event.
Invariant events are rather special. An example of an invariant event is A = {max−∞<t<∞ yt ≤ 0}.
Fourth, an event A is called trivial if either P (A) = 0 or P (A) = 1. You can think of trivial events
as essentially non-random. Recall, by definition, yt is ergodic if all invariant events are trivial. This
means that any event which is unaffected by a time shift is trivial —is essentially non-random. For
example, again consider the invariant event A = {max−∞<t<∞ yt ≤ 0}. If yt = Z ∼ N(0, 1) for



CHAPTER 14. TIME SERIES 525

all t, then P (A) = P (Z ≤ 0) = 0.5. Since this does not equal 0 or 1 then yt = Z is not ergodic.
However, if yt is i.i.d. N(0, 1) then P {max−∞<t<∞ yt ≤ 0} = 0. This is a trivial event. For yt to
be ergodic (it is in this case) all such invariant events must be trivial.

An important technical result is that ergodicity is equivalent to the following property.

Theorem 14.12 A stationary series yt is ergodic if and only if for all
events A and B

lim
n→∞

1

n

n∑
`=1

P (A` ∩B) = P (A)P (B) . (14.5)

This result is rather deep so we do not prove it here. See Walters (1982), Corollary 1.14.2, or
Davidson (1994), Theorem 13.13. The limit in (14.5) is the Cesàro sum of P (A` ∩B). Theorem
14.6 shows that a suffi cient condition for (14.5) is that P (A` ∩B) → P (A)P (B) which is known
as mixing. Thus mixing implies ergodicity. Mixing, roughly, means that separated events are
asymptotically independent. Ergodicity is weaker, only requiring that the events are asymptotically
independent “on average”. We discuss mixing in Section 14.12.

14.8 Ergodic Theorem

The ergodic theorem is one of the most famous results in time series theory. There are actually
several forms of the theorem, most of which concern almost sure convergence. For simplicity we
state the theorem in terms of convergence in probability.

Theorem 14.13 (Ergodic Theorem) If yt is strictly stationary, ergodic,
and E ‖yt‖ <∞, then as n→∞,

E ‖y − µ‖ −→ 0 (14.6)

and
y

p−→ µ (14.7)

where µ = E(yt).

The ergodic theorem shows that ergodicity is suffi cient for consistent estimation. The moment
condition E ‖yt‖ <∞ is the same as in the WLLN for i.i.d. samples.

We now provide a proof of the ergodic theorem for the scalar case under the additional as-
sumption that var (yt) = σ2 < ∞. A proof which relaxes this assumption is provided in Section
14.45.

By direct calculation

var (y) =
1

n2

n∑
t=1

n∑
j=1

γ (t− j)

where γ(`) = cov (xt, xt+`). The double sum is over all elements of an n × n matrix whose tjth
element is γ (t− j). The diagonal elements are γ(0) = σ2, the first off-diagonal elements are γ(1),



CHAPTER 14. TIME SERIES 526

the second off-diagonal elements are γ(2) and so on. This means that there are precisely n diagonal
elements of σ2, 2(n− 1) equalling γ(1), etc. Thus the above equals

var (y) =
1

n2

(
nσ2 + 2 (n− 1) γ(1) + 2 (n− 2) γ(2) + · · ·+ 2γ(n− 1)

)
=
σ2

n
+

2

n

n∑
`=1

(
1− `

n

)
γ(`). (14.8)

This is a rather intruiging expression. It shows that the variance of the sample mean precisely
equals σ2/n (which is the variance of the sample mean under i.i.d. sampling) plus a weighted
Cesàro mean of the autocovariances. The latter is zero under i.i.d. sampling, but is non-zero
otherwise. Theorem 14.11 shows that the Cesàro mean of the autocovariances converges to zero.
Let wn` = 2(`/n2), which satisfy the conditions of Theorem 14.5 by Theorem 14.7.1. Then

2

n

n∑
`=1

(
1− `

n

)
γ(`) =

2

n2

n−1∑
`=1

∑̀
j=1

γ(j) =
n−1∑
`=1

wn`

1

`

∑̀
j=1

γ(j)

 −→ 0 (14.9)

by Theorem 14.5.
Together, we have shown that (14.8) is o(1) under ergodicity. Hence var (y) → 0. Markov’s

inequality establishes that y
p−→ µ.

14.9 Conditioning on Information Sets

In the past few sections we have introduced the concept of the infinite histories. We now consider
conditional expectations given infinite histories.

First, some basics. Recall from probability theory that an outcome is an element of a sample
space. An event is a set of outcomes. A probability law is a rule which assigns non-negative
real numbers to events. When outcomes are infinite histories then events are collections of such
histories, and a probability law is a rule which assigns numbers to collections of infinite histories.

Now we wish to define a conditional expectation given an infinite past history. Specifically, we
wish to define

Et−1 (yt) = E (yt | yt−1, yt−2, . . .) (14.10)

the expected value of yt given the history ỹt−1 = (yt−1, yt−2, . . .) up to time t. Intuitively,
Et−1 (yt) is the mean of the conditional distribution, the latter reflecting the information in the
history. Mathematically this cannot be defined using (2.4) as the latter requires a joint density for
(yt, yt−1, yt−2, . . .) and the latter does not make much sense. Instead, we can appeal to Theorem
2.13, which states that the conditional expectation (14.10) exists if E |yt| < ∞ and the probabili-
ties P

(
ỹt−1 ∈ A

)
are defined. The latter are the probabilities of events discussed in the previous

paragraph. Thus the conditional expectations are well defined.
In this textbook we have avoided measure-theoretic terminology to keep the presentation acces-

sible, and because it is my belief that measure theory is more distracting than helpful. However, it
is standard in the time series literature to follow the measure-theoretic convention of writing (14.10)
as the conditional expectation given by a σ-field. So at the risk of being overly-technical, we will
follow this convention and write the expectation (14.10) as E (yt | Ft−1) where Ft−1 = σ

(
ỹt−1

)
is

the σ-field generated by the history ỹt−1. A σ-field (also known as a σ-algebra) is a collection of
sets satisfying certain regularity conditions2. An important example is the Borel σ-field B, which
is the collection of open sets in R. The σ-field generated by a random variable Y is the collection
of measurable events involving Y . Similarly, the σ-field generated by an infinite history is the
collection of measurable events involving this history. Intuitively, Ft−1 contains all the information

2A σ-field contains the universal set, is closed under complementation, and closed under countable unions.
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available in the history ỹt−1. Consequently, economists typically call Ft−1 an information set
rather than a σ-field. As I said, in this textbook we endeavor to avoid measure theoretic complica-
tions so will follow the economists’label rather than the probabilists’, but use the latter’s notation
as is conventional. To summarize, we will write Ft = σ (yt, yt−1, . . .) to indicate the information set
generated by an infinite history (yt, yt−1, . . .), and will write (14.10) as E (yt | Ft−1).

We now describe some properties about information sets Ft.
First, they are nested: Ft−1 ⊂ Ft. This means that information accumulates over time. Infor-

mation is not lost.
Second, it is important to be precise about which variables are contained in the information

set. Some economists are sloppy and refer to “the information set at time t”without specifying
which variables are in the information set. It is better to be specific. For example, the information
sets F1t = σ (yt, yt−1, . . .) and F2t = σ (yt, xt, yt−1, xt−1 . . .) are distinct, even though they are both
dated at time t.

Third, the conditional expectations (14.10) follow the law of iterated expectations and the
conditioning theorem, thus

E(E (yt | Ft−1) | Ft−2) = E(yt | Ft−2)

E(E(yt | Ft−1)) = E(yt),

and
E (yt−1yt | Ft−1) = yt−1E (yt | Ft−1) .

14.10 Martingale Difference Sequences

An important concept in economics is unforecastability, meaning that the conditional expecta-
tion is the unconditional expectation. This is similar to the properties of a regression error. An
unforecastable process is called a martingale difference sequence (MDS).

A MDS et is defined with respect to a specific sequence of information sets Ft. Most commonly
the latter are the natural filtration Ft = σ (et, et−1, . . .) (the past history of et), but it could
be a larger information set. The only requirement is that et is adapted to Ft, meaning that
E(et | Ft) = et.

Definition 14.3 The process (et,Ft) is a Martingale Difference Se-
quence (MDS) if et is adapted to Ft , E |et| <∞ and E (et | Ft−1) = 0.

In words, a MDS et is unforecastable in the mean. It is useful to notice that if we apply iterated
expectations E (et) = E (E (et | Ft−1)) = 0. Thus a MDS is mean zero.

The definition of a MDS requires the information sets Ft to contain the information in et, but
is broader in the sense that it can contain more information. When no explicit definition is given
it is standard to assume that Ft is the natural filtration. However, it is best to explicitly specify
the information sets so there is no confusion.

The term “martingale difference sequence” refers to the fact that the summed process St =∑t
j=1 ej is a martingale, and et is its first-difference. A martingale St is defined as a process such

that E(St | Ft−1) = St−1.
If et is i.i.d. and mean zero it is a MDS, but the reverse is not the case. To see this, first

suppose that et is i.i.d. and mean zero. It is then independent of Ft−1 = σ (et−1, et−2, . . .), so
E(et | Ft−1) = E(et) = 0. Thus an i.i.d. shock is a MDS as claimed.

To show that the reverse is not true let ut be i.i.d. N(0, 1) and set

et = utut−1. (14.11)
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By the conditioning theorem,

E(et | Ft−1) = ut−1E(ut | Ft−1) = 0

so et is a MDS. The process (14.11) is not, however, i.i.d. One way to see this is to calculate the
first autocovariance of e2

t , which is

cov
(
e2
t , e

2
t−1

)
= E

(
e2
t e

2
t−1

)
− E

(
e2
t

)
E
(
e2
t−1

)
= E

(
u2
t

)
E
(
u4
t−1

)
E
(
u2
t−2

)
− 1

= 2 6= 0.

Since the covariance is non-zero, et is not an independent sequence. Thus et is a MDS but not i.i.d.
An important property of a square integrable MDS is that it is serially uncorrelated. To see

this, observe that by iterated expectations, the conditioning theorem, and the definition of a MDS,
for k > 0,

cov (et, et−k) = E(etet−k)

= E (E(etet−k | Ft−1))

= E (E(et | Ft−1)et−k)

= E (0et−k)

= 0.

Thus the autocovariances and autocorrelations are zero.
A process that is serially uncorrelated, however, is not necessarily a MDS. Take the process

et = ut + ut−1ut−2

where again ut is i.i.d. N(0, 1). The shock et is not a MDS since E(et | Ft−1) = ut−1ut−2 6= 0.
However,

cov (et, et−1) = E(etet−1)

= E ((ut + ut−1ut−2) (ut−1 + ut−2ut−3))

= E
(
utut−1 + utut−2ut−3 + u2

t−1ut−2 + ut−1u
2
t−2ut−3

)
= E (ut)E (ut−1) + E (ut)E (ut−2)E (ut−3)

+ E
(
u2
t−1

)
E (ut−2) + E (ut−1)E

(
u2
t−2

)
E (ut−3)

= 0.

Similarly, cov (et, et−k) = 0 for k 6= 0. Thus et is serially uncorrelated. We have proved the
following.

Theorem 14.14 If (et,Ft) is a MDS and E(e2
t ) < ∞ then et is serially

uncorrelated.

Another important special case is a homoskedastic martingale difference sequence.

Definition 14.4 The MDS (et,Ft) is a Homoskedastic Martingale
Difference Sequence (MDS) if E(e2

t | Ft−1) = σ2.
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A homoskedastic MDS should more properly be called a conditionally homoskedastic MDS,
because the property concerns the conditional distribution rather than the unconditional. That is,
any strictly stationary MDS satisfies a constant variance E

(
e2
t

)
but only a homoskedastic MDS a

constant conditional variance E
(
e2
t | Ft−1

)
.

A homoskedatic MDS is analogous to a conditionally homoskedastic regression error. It is
intermediate between a MDS and an i.i.d. sequence. Specifically, a (square integrable and mean
zero) i.i.d. sequence is a homoskedastic MDS, and the latter is a MDS.

The reverse is not the case. First, a MDS is not necessarily conditionally homoskedastic.
Consider the example et = utut−1 given previously which we showed is a MDS. It is not conditionally
homoskedastic, however, since

E
(
e2
t | Ft−1

)
= u2

t−1E(u2
t | Ft−1) = u2

t−1

which is time-varying. Thus this MDS et is conditionally heteroskedastic. Second, a homoskedastic
MDS is not necessarily i.i.d. Consider the following example. Set et =

√
1− 2/ηt−1Tt, where Tt is

distributed with a student t distribution with degree of freedom parameter ηt−1 = 2 + e2
t−1 This

is scaled so that E (et | Ft−1) = 0 and E
(
e2
t | Ft−1

)
= 1, and is thus a homoskedastic MDS. The

conditional distribution of et depends on et−1 through the degree of freedom parameter. Hence et
is not an independent sequence.

One way to think about the difference between MDS and i.i.d. shocks is in terms of forecastabil-
ity. An i.i.d. process is fully unforecastable, in that no function of an i.i.d. process is forecastable.
A MDS is unforecastable in the mean, but other moments may be forecastable.

14.11 CLT for Martingale Differences

We are interested in an asymptotic approximation for the distribution of standardized sample
means such as

Sn =
1√
n

n∑
t=1

ut (14.12)

where ut is mean zero with variance E (utu
′
t) = Σ <∞. In this section we present a CLT for the

case where ut is a martingale difference sequence.

Theorem 14.15 (MDS CLT) If ut is a strictly stationary and ergodic
martingale difference sequence and E (utu

′
t) = Σ <∞, then as n→∞,

Sn =
1√
n

n∑
t=1

ut
d−→ N (0,Σ) .

The conditions for Theorem 14.15 are similar to the Lindeberg-Lévy CLT. The only difference
is that the i.i.d. assumption has been replaced by the assumption of a strictly stationarity and
ergodic MDS.

It might be reasonable to conjecture that the CLT would hold under the broader assumption
that ut is white noise. However, no such theory exists. At present, it is unknown if the MDS
assumption can be weakened.

The proof of Theorem 14.15 is technically advanced so we do not present the full details, but
instead refer readers to Theorem 3.2 of Hall and Heyde (1980) or Theorem 24.3 of Davidson (1994)
(which are more general than Theorem 14.15, not requiring strict stationarity). To illustrate the
role of the MDS assumption we give a sketch of the proof in Section 14.45.
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14.12 Mixing

For many results, including a CLT for correlated (non-MDS) series, we need a stronger restric-
tion on the dependence between observations than ergodicity.

Recalling the property (14.5) of ergodic sequences, we can measure the dependence between
two events A and B by the discrepancy

α(A,B) = |P(A ∩B)− P(A)P(B)| . (14.13)

This equals 0 when A and B are independent, and is positive otherwise. In general, α(A,B) can
be used to measure the degree of dependence between the events A and B.

Now consider the two information sets (σ-fields)

F t−∞ = σ
(
...,yt−1,yt

)
F∞t = σ

(
yt,yt+1, ...

)
.

The first is the history of the series up until period t, and the second is the history of the series
starting in period t and going forward. We then separate the information sets by ` periods, that
is, take F t−`−∞ and F∞t . We can measure the degree of dependence between the information sets by
taking all events in each, and then taking the largest discrepancy (14.13). This is

α (`) = sup
A∈Ft−`−∞,B∈F∞t

α(A,B).

The constants α(`) are known as the mixing coeffi cients. We say that yt is strong mixing
if α(`) → 0 as ` → ∞. This means that as the time separation increases between the information
sets, the degree of dependence decreases, eventually reaching independence.

From the Theorem of Cesàro Means, strong mixing implies (14.5) which is equivalent to ergod-
icity. Thus a mixing process is ergodic.

An intuition concerning mixing can be colorfully illustrated by the following example due to
Halmos (1956). A martini is a drink consisting of a large portion of gin and a small part of
vermouth. Suppose that you pour a serving of gin into a martini glass, pour a small amount of
vermouth on top, and then stir the drink with a swizzle stick. If your stirring process is mixing,
with each turn of the stick the vermouth will become more evenly distributed throughout the gin,
and asymptotically (as the number of stirs tends to infinity) the vermouth and gin distributions
will become independent3. If so, we say this is a mixing process.

For applications, mixing is often useful when we can characterize the rate at which the coeffi -
cients α(`) decline to zero. There are two types of conditions which are seen in asymptotic theory:
rates and summation. Rate conditions take the form α(`) = O(`−r) or α(`) = o(`−r). Summation
conditions take the form

∑∞
`=0 α(`)r <∞ or

∑∞
`=0 `

sα(`)r <∞.
There are alternative measures of dependence beyond (14.13) and many have been proposed.

Strong mixing is one of the weakest (and thus embraces a wide set of time series processes) but
is insuffi ciently strong for some applications. Another popular dependence measure is known as
absolute regularity or β-mixing. The β-mixing coeffi cients are

β (`) = sup
A∈F∞t

E
∣∣∣P(A | F t−`−∞)− P(A)

∣∣∣ .
Absolute regularity is stronger than strong mixing in the sense that β (`) → ∞ implies α(`) → 0,
and rates conditions for the β-mixing coeffi cients imply the same rate conditions for the strong
mixing coeffi cients.

One reason why mixing is useful for applications is that it is preserved by transformations.

3Of course, if you really make an asymptotic number of stirs, you will never finish stirring and you won’t be able to
enjoy the martini. Hence in practice it is advised to stop stirring before the number of stirs actually reaches infinity.
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Theorem 14.16 If yt has mixing coeffi cients αy(`) and xt =
φ(yt,yt−1,yt−2, ...,yt−q) then xt has mixing coeffi cients αx(`) ≤ αy(`− q)
(for ` ≥ q). The coeffi cients αx(m) satisfy the same summation and rate
conditions as αy(`).

A limitation of the above result is that it is confined to a finite number of lags, unlike the
transformation results for stationarity and ergodicity.

Mixing can be a useful tool because of the following inequalities.

Theorem 14.17 Suppose that xt−` and zt are random variables which are
F t−`−∞ and F∞t measurable, respectively.

1. If |xt| ≤ C1 and |zt| ≤ C2 then

|cov (xt−`, zt)| ≤ 4C1C2α(`).

2. If E |xt|r <∞ and E |zt|q <∞ for 1/r + 1/q < 1 then

|cov (xt−`, zt)| ≤ 8 (E |xt|r)1/r (E |zt|q)1/q α(`)1−1/r−1/q.

3. If E(yt) = 0 and E |yt|r <∞ for r ≥ 1 then

E
∣∣∣E(yt ∣∣∣F t−`−∞)∣∣∣ ≤ 6 (E |yt|r)1/r α(`)1−1/r.

The proof is given in Section 14.45. The following follows fairly directly from the definition of
mixing.

Theorem 14.18 If yt is i.i.d. then it is strong mixing and ergodic.

14.13 CLT for Correlated Observations

In this section we develop a CLT for the normalized mean Sn defined in (14.12) allowing the
variables ut to be serially correlated.

In (14.8) we found that in the scalar case

var (Sn) = σ2 + 2
n∑
`=1

(
1− `

n

)
γ(`)

where σ2 = var (ut) and γ(`) = cov (ut, ut−`). Since γ(−`) = γ(`) this can be written as

var (Sn) =

n∑
`=−n

(
1− |`|

n

)
γ(`). (14.14)
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In the vector case define the variance

Σ = E
(
utu

′
t

)
and the matrix covariance

Γ(`) = E
(
utu

′
t−`
)

which satisfies Γ(−`) = Γ(`)′. We obtain by a calculation analogous to (14.14)

var (Sn) = Σ +
n∑
`=1

(
1− `

n

)(
Γ(`) + Γ(`)′

)
=

n∑
`=−n

(
1− |`|

n

)
Γ(`). (14.15)

A necessary condition for Sn to converge to a normal distribution is that the variance (14.15)
converges to a limit. Indeed,

n∑
`=1

(
1− `

n

)
Γ(`) =

1

n

n−1∑
`=1

∑̀
j=1

Γ(j) −→
∞∑
`=0

Γ(`) (14.16)

where the convergence holds by Theorem 14.6 if the limit in (14.16) is convergent. A necessary
condition for this to hold is that the covariances Γ(`) decline to zero as ` → ∞, which is stronger
than ergodicity. A suffi cient condition is that the covariances are absolutely summable, which can
be verified using a mixing inequality. Using the triangle inequality and Theorem 14.17.2, for r > 2

∞∑
`=0

‖Γ(`)‖ ≤ 8 (E ‖ut‖r)2/r
∞∑
`=0

α(`)1−2/r.

This implies that (14.15) converges if E ‖ut‖r < ∞ and
∑∞

`=0 α(`)1−2/r < ∞. We conclude that
under these assumptions

var (Sn) −→
∞∑

`=−∞
Γ(`)

def
= Ω. (14.17)

It turns out that these conditions are suffi cient for the CLT.

Theorem 14.19 If ut is strictly stationary with mixing coeffi cients α(`),
E (ut) = 0, for some r > 2, E ‖ut‖r < ∞ and

∑∞
`=1 α(`)1−2/r < ∞, then

(14.17) is convergent, and

Sn =
1√
n

n∑
t=1

ut
d−→ N (0,Ω) .

The proof is in Section 14.45.
The theorem requires r > 2 finite moments which is stronger than the MDS CLT. The summa-

bility condition on the mixing coeffi cients in Theorem 14.19 is considerably stronger than ergodicity.
Thus for a CLT without the MDS assumption, we require stonger dependence restrictions. There
is a trade off involving the choice of r. A larger r means more moments are required finite, but
a slower decay in the coeffi cients α(`) is allowed. Smaller r allows weak moments, but requires a
faster decay rate in the mixing coeffi cients.



CHAPTER 14. TIME SERIES 533

14.14 Linear Projection

In Chapter 2 we extensively studied the properties of linear projection models. In the context
of stationary time series we can use similar tools. An important extension is to allow for projec-
tions onto infinite dimensional random vectors. For this analysis we assume that yt is covariance
stationary.

Recall that when (y,x) have a joint distribution with bounded variances, the linear projection
of y onto x (the best linear predictor) is the minimizer of

S (β) = E
(
y − β′x

)2
and has the solution

P(y | x) = x′
(
E
(
xx′
))−1 E (xy) .

We are interested in the best linear predictor of the random variable yt given the infinite past
history ỹt−1 = (..., yt−2, yt−1). Linear functions of ỹt−1 take the form α0 +

∑∞
j=1 αjyt−j . The best

linear predictor minimizes the mean squared prediction error

S (α0, α1, ...) = E

yt − α0 −
∞∑
j=1

αjyt−j

2

.

The solution takes the form

Pt−1(yt) = P(yt | ỹt−1) = α0 +

∞∑
j=1

αjyt−j .

We call this the projection of yt onto ỹt−1. This is the projection analog of the conditional expec-
tation (14.10).

The projection error is
et = yt − Pt−1(yt). (14.18)

We can write the decomposition of yt into projection and projection error as a regression equation

yt = α0 +

∞∑
j=1

αjyt−j + et.

From the projection theorem for Hilbert spaces (see, e.g., Theorem 2.3.1 of Brockwell and Davis
(1991)) the projection Pt−1(yt) and projection error et are unique. The projection error has finite
variance

σ2 = E
(
e2
t

)
≤ E

(
y2
t

)
<∞.

Also, by Theorem 14.2, if yt is strictly stationary then Pt−1(yt) and et are strictly stationary.
The projection error is mean zero and uncorrelated with the elements of ỹt−1. This implies that

E (et−`et) = E

yt−` − α0 −
∞∑
j=1

αjyt−`−j

 et


= E (yt−`et)− α0E (et)−

∞∑
j=1

αjE (yt−`−jet)

= 0.

Thus the projection errors are serially uncorrelated.
We state these results formally.
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Theorem 14.20 If yt is covariance stationary it has the projection equa-
tion

yt = α0 +

∞∑
j=1

αjyt−j + et.

The projection error et satisfies

E (et) = 0

E (yt−jet) = 0 j ≥ 1

E (et−jet) = 0 j ≥ 1

and
σ2 = E

(
e2
t

)
≤ E

(
y2
t

)
<∞. (14.19)

If yt is strictly stationary, then et is strictly stationary.

14.15 White Noise

The projection error et is mean zero, has a finite variance, and is serially uncorrelated. This
describes what is known as a white noise process.

Definition 14.5 The process et is white noise if E (et) = 0, E
(
e2
t

)
=

σ2 <∞, and cov (et, et−k) = 0 for k 6= 0.

A MDS is white noise (Theorem 14.14) but the reverse is not true as shown by the example
et = ut + ut−1ut−2 given in Section 14.10, which is white noise but not a MDS.

Therefore, the following types of shocks are nested: i.i.d., MDS, and white noise, with i.i.d.
being the most narrow class, and white noise the broadest.

14.16 The Wold Decomposition

In Section 14.14 we showed that we can express a stationary time series by a projection equation
with white noise errors. An alternative is to express the time series as a linear function of the same
white noise errors. This is a famous result known as the Wold decomposition.
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Theorem 14.21 (The Wold Decomposition) If yt is covariance sta-
tionary and σ2 > 0 where σ2 is the projection error variance from (14.19),
then yt has the linear representation

yt = µt +
∞∑
j=0

bjet−j , (14.20)

where et are the white noise projection errors (14.18), b0 = 1,

∞∑
j=1

b2j <∞ (14.21)

and
µt = lim

m→∞
Pt−m(yt). (14.22)

The Wold decomposition shows that yt can be written as a linear function of the white noise
projection errors plus µt. The infinite sum in (14.20) is also known as a linear process. The
Wold decomposition is a foundational result for linear time series analysis. Since any covariance
stationary process can be written in this format we can use linear parametric models (autoregressive
and moving average) as approximations.

The series µt is the projection of yt on the history from the infinite past. It is the part of yt
which is perfectly predictable from its past values, and is called the deterministic component.
In most cases µt = µ, the unconditional mean of yt. However, it is possible for stationary processes
to have more substantive deterministic components. An example is

µt =

{
(−1)t with probability 1/2

(−1)t+1 with probability 1/2
.

This series is strictly stationary, has mean zero and variance one. However, it is perfectly predictable
given the previous history, as it simply oscillates between −1 and 1.

In practical applied time series analysis, deterministic components are typically excluded by
assumption. We call a stationary time series non-deterministic4 if µt = µ, a constant. In this
case the Wold decomposition has a simpler form.

Theorem 14.22 If yt is covariance stationary and non-deterministic then
yt has the linear representation

yt = µ+

∞∑
j=0

bjet−j ,

where bj satisfy (14.21) and et are the white noise projection errors (14.18).

A limitation of the Wold decomposition is the restriction to linearity. Effectively, it says that
there is a valid linear approximation within the class of linear models. It excludes alternative
(nonlinear) models by assumption.

For a proof of Theorem 14.21 see Section 14.45.
4Most authors define purely non-deterministic as the case µt = 0. We allow for a non-zero mean so to accomodate

practical time series applications.
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14.17 Linear Models

In the previous sections we showed that any non-deterministic covariance stationary time series
yt has the projection representations

yt = α0 +
∞∑
j=1

αjyt−j + et

and

yt = µ+
∞∑
j=0

bjet−j

where the errors et are white noise projection errors. These representations help us understand
that linear models can be used as approximations for stationary time series.

For the next several sections we reverse the analysis. We will assume a specific linear model, and
then study the properties of the resulting time series. In particular, we will be seeking conditions
under which the process is stationary. This helps us understand the properties of linear models.

Throughout, we will be assuming that the error et is a strictly stationary and ergodic MDS
with a finite variance. This allows as a special case the stronger assumption that et is i.i.d., but is
less restrictive. In particular, it allows for conditional heteroskedasticity.

14.18 Moving Average Processes

The first-order moving average process, denoted MA(1), is

yt = µ+ et + θet−1

E (et | Ft−1) = 0

E
(
e2
t

)
= σ2 <∞

where et is a strictly stationary and ergodic MDS. The model is called a “moving average”because
yt is a weighted average of the shocks et and et−1.

It is straightforward to calculate that a MA(1) has the following moments.

E (yt) = µ

var (yt) =
(
1 + θ2

)
σ2

γ(1) = θσ2

ρ(1) =
θ

1 + θ2

γ(k) = ρ(k) = 0, k ≥ 2.

Thus the MA(1) process has a non-zero first autocorrelation, with the remainder zero.
An MA(1) process with θ 6= 0 is serially correlated, with each pair of adjacent observations

(yt−1, yt) correlated. If θ > 0 the pair are positively correlated, while if θ < 0 they are negatively
correlated. The serial correlation, however, is limited in that observations separated by multiple
periods are mutually independent.

The qth-order moving average process, denoted MA(q), is

yt = µ+ θ0et + θ1et−1 + θ2et−2 + · · ·+ θqet−q
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where θ0 = 1. It is straightforward to calculate that a MA(q) has the following moments.

E (yt) = µ

var (yt) =

 q∑
j=0

θ2
j

σ2

γ(k) =

q−k∑
j=0

θj+kθj

σ2, k ≤ q

ρ(k) =

∑q−k
j=0 θj+kθj∑q
j=0 θ

2
j

γ(k) = ρ(k) = 0, k > q.

In particular, a MA(q) has q non-zero autocorrelations, with the remainder zero.
A MA(q) process yt is strictly stationary and ergodic.
A MA(q) process with moderately large q can have considerably more complicated dependence

relations than an MA(1) process. One specific pattern which can be induced by a MA process is
smoothing. Suppose that the coeffi cients θj all equal 1. Then yt is a smoothed version of the shocks
et.

To illustrate, Figure 14.5(a) displays a plot of a simulated white noise (i.i.d. N(0, 1)) process
with n = 120 observations. Figure 14.5(b) displays a plot of an MA(8) process constructed with
the same innovations, with θj = 1, j = 1, ..., 8. You can see that the white noise has no predictable
behavior, while the MA(8) is very smooth.

1985 1990 1995 2000 2005 2010 2015

−
2
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1

0
1
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(a) White Noise

1990 1995 2000 2005 2010 2015

−
5

0
5

(b) MA(8)

Figure 14.5: White Noise and MA(8)
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14.19 Infinite-Order Moving Average Process

An infinite-order moving average process, denoted MA(∞), also known as a linear
process, is

yt = µ+

∞∑
j=0

θjet−j

E (et | Ft−1) = 0

E
(
e2
t

)
= σ2 <∞

where et is a strictly stationary and ergodic MDS, and
∞∑
j=0

θ2
j <∞.

A linear process has the following moments:

E (yt) = µ

var (yt) =

 ∞∑
j=0

θ2
j

σ2

γ(k) =

 ∞∑
j=0

θj+kθj

σ2

ρ(k) =

∑∞
j=0 θj+kθj∑q
j=0 θ

2
j

.

Theorem 14.23 The MA(∞) process yt converges almost surely, and is
strictly stationary and ergodic.

For a proof see Section 14.45.

14.20 Lag Operator

An algebraic construct which is useful for the analysis of time series models is the lag operator.

Definition 14.6 The lag operator L satisfies Lyt = yt−1.

Defining L2 = LL, we see that L2yt = Lyt−1 = yt−2. In general, Lkyt = yt−k.
Using the lag operator, the MA(q) model can be written in the format

yt = θ0et + θ1Let + · · ·+ θqL
qet

= (θ0 + θ1L + · · ·+ θqL
q) et

= θ(L)et

where
θ(L) = θ0 + θ1L + · · ·+ θqL

q

is a qth-order polynomial in the lag operator L. The expression yt = θ(L)et is compact way to write
the model.
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14.21 First-Order Autoregressive Process

The first-order autoregressive process, denoted AR(1), is

yt = α0 + α1yt−1 + et (14.23)

E (et | Ft−1) = 0

E
(
e2
t

)
= σ2 <∞

where et is a strictly stationary and ergodic MDS. The AR(1) model is probably the single most
important model in econometric time series analysis.

As a simple motivating example, let yt be is the employment level (number of jobs) in an
economy. Suppose that a fixed fraction 1 − α1 of employees lose their jobs each period, and a
random number ut of new employees are hired each period. Setting α0 = E (ut) and et = ut − α0,
this implies the law of motion (14.23).

To illustrate the behavior of the AR(1) process, Figure 14.6 plots two simulated AR(1) processes.
Each is generated using the white noise process from Figure 14.5(a). The plot in Figure 14.6(a)
sets α1 = 0.5 and the plot in Figure 14.6(b) sets α1 = 0.95. You can see how both are more smooth
than the white noise process, and that the smoothing increases with α.
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(a) AR(1) with α[1] = 0.5
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−
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−
2

0
2

4

(b) AR(1) with α = 0.95

Figure 14.6: AR(1) Processes

Our first goal is to obtain conditions under which (14.23) is stationary. We can do so by showing
that yt can be written as a convergent linear process and then appealing to Theorem 14.9. To find a
linear process representation for yt we can use backward recursion. Notice that yt in (14.23) depends
on its previous value yt−1. If we take (14.23) and lag it one period we find yt−1 = α0 +α1yt−2 +et−1.
Substituting this into 14.23) we find

yt = α0 + α1 (α0 + α1yt−2 + et−1) + et

= α0 + α1α0 + α2
1yt−2 + α1et−1 + et.

Similarly we can lag (14.28) twice to find yt−2 = α0 + α1yt−3 + et−2 and can be used to substitute
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out yt−2. Continuing recursively t times, we find

yt = α0

(
1 + α1 + α2

1 + · · ·+ αt−1
1

)
+ αt1y0 + αt−1

1 e1 + αt−2
1 e2 + · · ·+ et

= α0

t−1∑
j=0

αj1 + αt1y0 +

t−1∑
j=0

αj1et−j .

Thus yt equals an intercept plus the scaled initial condition αt1y0 and the moving average
∑t−1

j=0 α
j
1et−j .

Now suppose we continue this recursion into the infinite past. By Theorem 14.23 this converges
if
∑∞

j=0 |α1|j < ∞ which holds when |α1| < 1 by Theorem 14.4.1. The intercept converges to
α0/(1− α1). We deduce the following:

Theorem 14.24 If |α1| < 1 then the AR(1) process (14.23) has the con-
vergent representation

yt = µ+

∞∑
j=0

αj1et−j (14.24)

where µ = α0/ (1− α1). The AR(1) process yt is strictly stationary and
ergodic.

We can compute the moments of yt from (14.24)

E (yt) = µ+
∞∑
k=0

αk1E (et−k) = µ

var(yt) =
∞∑
k=0

α2k
1 var (et−k) =

σ2

1− α2
1

.

An alternative informal way to calculate the moments is as follows. Apply expectations to both
sides of (14.23)

E (yt) = α0 + α1E (yt−1) + E (et) = α0 + α1E (yt−1) .

Stationarity implies E (yt−1) = E (yt). Solving we find E (yt) = α0/(1− α1). Similarly,

var (yt) = var (αyt−1 + et) = α2
1 var (yt−1) + var (et) = α2

1 var (yt−1) + σ2.

Stationarity implies var (yt−1) = var (yt). Solving we find var (yt) = σ2/(1 − α2
1). This method is

useful for calculation of autocovariances and autocorrelations. For simplicity set α0 = 1. We find

γ(1) = E (yt−1yt) = E (yt−1 (α1yt−1 + et)) = α1 var (yt)

so
ρ(1) = γ(1)/ var (yt) = α1.

Furthermore,
γ(k) = E (yt−kyt) = E (yt−k (α1yt−1 + et)) = α1γ(k − 1).

By recursion we obtain

γ(k) = αk1 var (yt)

ρ(k) = αk1 .
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Thus the AR(1) process with α1 6= 0 has non-zero autocorrelations of all orders which decay to
zero geometrically as k increases. For α1 > 0 the autocorrelations are all positive. For α1 < 0 the
autocorrelations alternate in sign.

We can also express the AR(1) process using the lag operator notation:

(1− α1L) yt = α0 + et. (14.25)

We can write this as
α(L)yt = α0 + et

where
α(L) = 1− α1L.

We call α(z) = 1− α1z the autoregressive polynomial of yt.
This suggests an alternative way of obtaining the representation (14.24). We can invert the

operator (1− α1L) to write yt as a function of lagged et. That is, suppose that the inverse operator
(1− α1L)−1 exists. Then we can use this operator on (14.25) to find

yt = (1− α1L)−1 (1− α1L) yt = (1− α1L)−1 (α0 + et) . (14.26)

What is the operator (1− α1L)−1? Recall from Theorem 14.4.1 that for |x| < 1,
∞∑
j=0

xj =
1

1− x = (1− x)−1 .

Now evaluate this expression at x = α1z. We find

(1− α1z)
−1 =

∞∑
j=0

αj1z
j . (14.27)

Setting z = L this is

(1− α1L)−1 =
∞∑
j=0

αj1Lj .

Substituted into (14.26) we obtain

yt = (1− α1L)−1 (α0 + et)

=

 ∞∑
j=0

αjLj

 (α0 + et)

=

∞∑
j=0

αj1Lj (α0 + et)

=
∞∑
j=0

αj1 (α0 + et−j)

=
α0

1− α1
+
∞∑
j=0

αj1et−j

which is (14.24). This is valid for |α1| < 1.
This illustrates another important concept. We say that a polynomial α(z) is invertible if it

can be written as

α(z)−1 =
∞∑
j=0

ajz
j

and is absolutely convergent. In particular, we have learned that the AR(1) autoregressive polyno-
mial α(z) = 1 − α1z is invertible if |α1| < 1. This is the same condition as for stationarity of the
AR(1) process. Invertibility turns out to be a very useful property.
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14.22 Unit Root and Explosive AR(1) Processes

The AR(1) process (14.23) is stationary if |α| < 1. What happens otherwise?
If α0 = 0 and α1 = 1 the model is known as a random walk.

yt = yt−1 + et.

This is also called a unit root process, a martingale, or an integrated process. By back-substitution
we find

yt = y0 +
t∑

j=1

ej .

Thus the initial condition does not disappear for large t. Consequently the series is non-stationary.
When α = 1, then autoregressive polynomial α(z) = 1− z is not invertible, meaning that yt cannot
be written as a convergent function of the infinite past history of et.

The stochastic behavior of a random walk is noticably different from a stationary AR(1) process.
It wanders up and down with equal likelihood, and is not mean-reverting. While it has no tendency
to return to its previous values, the wandering nature of a random walk can give the illusion of
mean reversion. The difference is that a random walk will take a very large number of time periods
to “revert”.
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Figure 14.7: Random Walk Processes

To illustrate, Figure 14.7 plots two independent random walk processes. The plot in panel (a)
uses the innovations from Figure 14.5(a). The plot in panel (b) uses an independent set of i.i.d.
N(0, 1) errors. You can see that the plot in panel (a) appears similar to the MA(8) and AR(1)
plots in the sense that the series is smooth with long swings, but the difference is that the series
does not return to a long-term mean. It appears to have drifted down over time. The plot in panel
(b) appears to have quite different behavior, falling dramatically over a 5-year period, and then
appearing to stabilize. These are both common behaviors of random walk proceses.

If α1 > 1 the process is explosive. The model (14.23) with α1 > 1 exhibits exponential growth,
and high sensitivity to initial conditions. Explosive autoregressive processes do not seem to be good
descriptions for most economic time series. While aggregate time series such as the GDP process
displayed in Figure 14.1(a) exhibit a similar exponential growth pattern, the exponential growth
can typically be removed by taking logarithms.
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The case α1 < −1 induces explosive oscillating growth and does not appear to be empirically
relevant for economic applications.

14.23 Second-Order Autoregressive Process

The second-order autoregressive process, denoted AR(2), is

yt = α0 + α1yt−1 + α2yt−2 + et (14.28)

E (et | Ft−1) = 0

E
(
e2
t

)
= σ2 <∞

where et is a strictly stationary and ergodic MDS. The dynamic patterns of an AR(2) process are
more complicated than an AR(1) process.

As a motivating example consider the multiplier-accelerator model of Samuelson (1939). It
might be a bit dated as a model, but it is simple so hopefully makes the point. Aggregate output
(in an economy with no trade) is defined as Yt = Consumptiont + Investmentt + Govt. Suppose
that individuals make their consumption decisions on the previous period’s income Consumptiont =
bYt−1, firms make their investment decisions on the change in consumption Investmentt = d∆Ct,
and government spending is random, Govt = a+ et. Then aggregate output follows

Yt = a+ b(1 + d)Yt−1 − bdYt−2 + et (14.29)

which is an AR(2) process.
Using the lag operator we can write (14.28) as

yt − α1Lyt − α2L2yt = α0 + et,

or
α(L)yt = α0 + et

where
α(L) = 1− α1L− α2L2.

We call α(z) the autoregressive polynomial of yt.
We would like to describe the conditions for the stationarity of yt. For simplicity set α0 = 0.

Factor the autoregressive polynomial as

α(z) = 1− α1z − α2z
2 = (1− β1z) (1− β2z)

which holds for

βj =
α1 ±

√
α2

1 + 4α2

2
. (14.30)

These factors are real if α2
1 − 4α2 ≥ 0 but are complex conjugates otherwise. Equating the factors,

we can see that α1 = β1 + β2 and α2 = β1β2.
The autoregressive polynomial α(z) is invertible when the polynomials (1− β1z) and (1− β2z)

are invertible. In the previous section we discovered that this occurs when |β1| < 1 and |β2| < 1.
Under these conditions the inverse equals

α(z)−1 = (1− β2z)
−1 (1− β1z)

−1 .

Consequently
yt = (1− β2L)−1 (1− β1L)−1 et.

If |β1| < 1, by Theorem 14.24 the series ut = (1− β1L)−1 et is a convergent AR(1) process. Fur-
thermore, when |β2| < 1 the series yt = (1− β2L)−1 ut is also convergent, by Theorem 14.3. Thus
suffi cient conditions for stationarity are |β1| < 1 and |β2| < 1.
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Figure 14.8: Stationarity Region for AR(2)

With some algebra, we can show that |β1| < 1 and |β2| < 1 iff the following restrictions hold on
the autoregressive coeffi cients:

α1 + α2 < 1 (14.31)

α2 − α1 < 1 (14.32)

α2 > −1 (14.33)

These restrictions describe a triangle in (α1, α2) space. This region is shown in Figure 14.8. Coef-
ficients within this triangle correspond to a stationary AR(2) process.

Furthermore, the triangle is divided into two regions, the region above the parabola α2
1−4α2 = 0

producing real factors βj , and the region below the parabola producing complex factors βj . These
two regions are marked in Figure 14.8. This is potentially interesting because when the factors
are complex the autocorrelations of yt display damped oscillations. For this reason, the dynamic
patterns of an AR(2) can be much more complicated than those of an AR(1).

Take, for example, the Samuelson multiplier-accelerator model (14.29). You can calculate that
this model has complex factors (and thus oscillations) for certain values of b and d, for example for
b ≤ 0.8 and d ≥ 0.4.

Theorem 14.25 If |βj | < 1 for βj defined in (14.30), or equivalently if
the inequalities (14.31)-(14.33) hold, then the AR(2) process (14.28) is
absolutely convergent, strictly stationary, and ergodic.

The proof is presented in Section 14.45.
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Figure 14.9: AR(2) Processes

To illustrate, Figure 14.9 displays two simulated AR(2) processes. The plot in panel (a) sets
α1 = α2 = 0.4. These coeffi cients produce real factos so the process displays behavior similar to
that of the AR(1) processes. The plot in panel (b) sets α1 = 1.3 and α2 = −0.8. These coeffi cients
produce complex factors so the process displays oscillations.

14.24 AR(p) Processes

The pth-order autoregressive process, denoted AR(p), is

yt = α0 + α1yt−1 + α2yt−2 + · · ·+ αpyt−p + et (14.34)

E (et | Ft−1) = 0

E
(
e2
t

)
= σ2 <∞

where et is a strictly stationary and ergodic MDS.
Using the lag operator,

yt − α1Lyt − α2L2yt − · · · − αpLpyt = α0 + et,

or
α(L)yt = α0 + et

where
α(L) = 1− α1L− α2L2 − · · · − αpLp. (14.35)

We call α(z) the autoregressive polynomial of yt.
The Fundamental Theorem of Algebra states that any polynomial can be factored as

α(z) = (1− β1z) (1− β2z) · · · (1− βpz) (14.36)

where the factors βj can be real or in complex conjugate pairs. If |βj | < 1 then the polynomials
(1− βjz) are invertible and thus so is α(z). The inverse is

α(z)−1 = (1− β1z)
−1 (1− β2z)

−1 · · · (1− βpz)−1 . (14.37)
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Consequently

yt = α(L)−1 (α0 + et)

= (1− βpL)−1 · · · (1− β2L)−1 (1− β1L)−1 (α0 + et)

= µ+ (1− βpL)−1 · · · (1− β2L)−1 (1− β1L)−1 et (14.38)

where
µ =

α0

1− α1 − · · · − αp
.

The series u1t = (1− β1L)−1 (α0 + et) is a strictly stationary and ergodic AR(1) process by Theorem
14.24. By induction, the series ujt = (1− β2L)−1 uj−1,t is strictly stationary and ergodic by
Theorem 14.10. Thus yt is strictly stationary and ergodic.

In general, we do not have explicit expressions for the factors βj (though they can be calculated
numerically from the coeffi cients). Instead, the following characterization may be insightful. Take
the inverse factors λj = β−1

j . Since 1 − βjλj = 0, then α(λj) = 0. This means that λj is a root
of the polynomial α(z) (the point on the x-axis where the polynomial hits zero). The requirement
|βj | < 1 is the same as |λj | > 1. We find that the following three conditions are equivalent.

1. |βj | < 1 for j = 1, ..., p.

2. All roots λj of α(z) satisfy |λj | > 1.

3. α(z) 6= 0 for all complex numbers z such that |z| ≤ 1.

For complex numbers z, the equation |z| = 1 defines the unit circle (the circle with radius of
unity), the region |z| ≤ 1 is the interior of the unit circle, and the region |z| > 1 is the exterior of
the unit circle. We have established the following.

Theorem 14.26 If all roots of α(z) lie outside the unit circle, then the
AR(p) process (14.34) is absolutely convergent, strictly stationary, and
ergodic.

Thus to check if a specific autoregressive process satisfies the conditions for stationarity, we can
(numerically) compute the roots λj of the autoregressive polynomial, calculate their modulus |λj |
and check if |λj | > 1.

The equation (14.38) can be written as

yt = µ+ b(L)et

where

b(z) = α(z)−1 =

∞∑
j=0

bjz
j . (14.39)

We have the following characterization of the moving average coeffi cients.

Theorem 14.27 If all roots of the autoregressive polynomial α(z) lie out-
side the unit circle then (14.39) holds with bj = O

(
jpβj

)
and

∑∞
j=0 |bj | <

∞.

The proof is presented in Section 14.45.
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14.25 Impulse Response Function

The coeffi cients of the moving average representation

yt = b(L)et

=
∞∑
j=0

bjet−j

= b0et + b1et−1 + b2et−2 + · · ·

are known among economists as the impulse response function (IRF). (Often, scaled by the
standard deviation of et. We discuss this scaling at the end of the section.) The impulse response
function is defined as the change in the expectation of yt+j at time t+ j due to a shock at time t.
Under the assumption of MDS shocks this is

∂

∂et
E (yt+j | Ft) = bj .

This means that the coeffi cients bj can be interpreted as the magnitude of the impact of a time t
shock on the time t + j variable. Plots of bj can then be used to assess the time-propagation of
shocks. This is a standard method of analysis for multivariate time series.

It is desirable to have a convenient method to calculate the impulse responses bj from the
coeffi cients of an autoregressive model (14.34). There are two methods which we now describe.

The first uses a simple recursion. In the linear AR(p) model, we can see that the coeffi cient bj
is the simple derivative

bj =
∂

∂et
yt+j =

∂

∂e0
yj

We can therefore calculate bj by generating a history and perturbing the shock e0. Since this
calculation is unaffected by all other shocks, we can simply set et = 0 for t 6= 0 and set e0 = 1.
This implies the recursion

b0 = 1

b1 = α1b0

b2 = α1b1 + α2b0
...

bj = α1bj−1 + α2bj−2 + · · ·+ αpbj−p.

Equivalently, this is achieved by the following simulation. Set yt = 0 for t ≤ 0. Set e0 = 1 and
et = 0 for t > 1. Generate yt for t ≥ 0 by yt = α1yt−1 + α2yt−2 + · · ·+ αpyt−p + et. Then yj = bj .

A second method uses a vector representation of the AR(p) model. Let ỹt = (yt, ..., yt−p+1)′

and ẽt = (et, 0..., 0)′. Then

ỹt =


α1 α2 · · · αp−1 αp
1 0 · · · 0 0
0 1 · · · 0 0
...

... 0
...

0 0 · · · 1 0

 ỹt−1 + ẽt

= Aỹt−1 + ẽt.

By recursion

ỹt =

∞∑
j=0

Aj ẽt−j .
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Here, Aj = A · · ·A means the jth matrix product of A with itself. Setting S = (1, 0, ...0)′ we find

yt =
∞∑
j=0

S′AjSet−j .

By linearity

bj =
∂

∂et
yt+j = S′AjS.

Thus the coeffi cient bj can be calculated by forming the matrix A, its j-fold product Aj , and then
taking the upper-left element.

As mentioned at the beginning of the section, it is often desirable to define the IRF to be scaled
so that it is the respose to a one-deviation shock. Let σ2 = var (et) and define εt = et/σ which has
unit variance. Then the IRF at lag j is

IRFj =
∂

∂εt
E (yt+j | Ft) = σbj .

14.26 ARMA and ARIMA Processes

The autoregressive-moving-average process, denoted ARMA(p,q), is

yt = α0 + α1yt−1 + α2yt−2 + · · ·+ αpyt−p + θ0et + θ1et−1 + θ2et−2 + · · ·+ θqet−q

E (et | Ft−1) = 0

E
(
e2
t

)
= σ2 <∞

where et is a strictly stationary and erogodic MDS. It can be written using lag operator notation
as

α(L)yt = α0 + θ(L)et.

Theorem 14.28 The ARMA(p,q) process (14.34) is strictly stationary
and ergodic if all roots of α(z) lie outside the unit circle. In this case we
can write

yt = µ+ b(L)et

where bj = O
(
jpβj

)
and

∑∞
j=0 |bj | <∞.

The process yt follows an autoregressive-integrated moving-average process, denoted
ARIMA(p,d,q), if ∆dyt is ARMA(p,q). It can be written using lag operator notation as

α(L)(1− L)dyt = α0 + θ(L)et.

14.27 Mixing Properties of Linear Processes

There is a considerable probability literature investigating the mixing properties of time series
processes. One challenge is that since autoregressive processes depend on the infinite past sequence
of innovations et it is not immediately obvious if they satisfy the mixing conditions.

In fact, a simple AR(1) is not necessarily mixing. A counter-example was developed by Andrews
(1984). He showed that if the error et has a two-point discrete distribution, then an AR(1) yt is not
strong mixing. The reason is that a discrete innovation combined with the autoregressive structure
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means that by observing yt you can deduce with near certainty the past history of the shocks et.
The example seems rather special, but shows the need to be careful with the theory. The intuition
stemming from Andrews’finding is that for an autoregressive process to be mixing it is necessary
for the errors et to not be discrete.

A useful characterization was provided by Pham and Tran (1985).

Theorem 14.29 Suppose that yt = µ+
∑∞

j=0 θjet−j satisfies the following
conditions:

1. et is i.i.d. with E |et|r < ∞ for some r > 0 and density f(x) which
satisfies ∫

|f (x− u)− f(x)| dx ≤ C |u| (14.40)

for some C <∞.

2. All roots of θ(z) lie outside the unit circle and
∑∞

j=0 |θj | <∞.

3.
∑∞

k=1

(∑∞
j=k |θj |

)r/(1+r)
<∞.

Then for some B <∞

α(`) ≤ 4β(`) ≤ B
∞∑
k=`

 ∞∑
j=k

|θj |

r/(1+r)

and yt is absolutely regular and strong mixing.

The condition (14.40) is rather unusual, but specifies that et has a smooth density. This rules
out the counter-example discovered by Andrews (1984).

The summability condition on the coeffi cients in part 3 involves a trade-off with the number
of moments r. If et has all moments finite (e.g. normal errors) then we can set r = ∞ and this
condition simplifies to

∑∞
k=1 k |θk| < ∞. For any r, the summability condition holds if θj has

geometric decay, as holds for an finite-order AR(p) process.
It is instructive to deduce how the decay in the coeffi cients θj affects the rate for the mixing

coeffi cients α(`). If |θj | ≤ O (j−η) then
∑∞

j=k |θj | ≤ O
(
k−(η−1)

)
so the rate is

α(`) ≤ 4β(`) ≤ O
(
`−s
)

s = (η − 1)

(
r

1 + r

)
− 1.

Mixing requires s > 0, which holds for suffi ciently large η. For example, if r = 4 it holds for
η > 9/4.

The primary message from this section is that linear processes, including autoregressive and
ARMA processes, are mixing, if the innovations satisfy suitable conditions. The mixing coeffi cients
decay at rates related to the decay rates of the moving average coeffi cients.

14.28 Identification

The parameters of a model are identified if the parameters are uniquely determined by the
probability distribution of the observations. In the case of linear time series analysis we typically
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focus on the second moments of the observations (means, variances, covariances). We therefore say
that the coeffi cients of a stationary MA, AR, or ARMA model are identified if they are uniquely
determined by the autocorrelation function. That is, given the autocorrelation function ρ(k), are
the coeffi cients unique?

It turns out that the answer is that MA and ARMA models are generally not identified. Iden-
tification is achieved by restricting the class of polynomial operators. AR models, however, are
generally identified.

Let us start with the MA(1) model

yt = et + θet−1.

It has first-order autocorrelation

ρ(1) =
θ

1 + θ2
.

Set ω = 1/θ. Then
ω

1 + ω2
=

1/ω

1 + (1/ω)2 =
θ

1 + θ2
= ρ(1)

Thus the MA(1) model with coeffi cient ω = 1/θ produces the same autocorrelations as the MA(1)
model with coeffi cient θ. For example, θ = 1/2 and ω = 2 each yield ρ(1) = 2/5. There is no
empirical way to distinguish between the models yt = et + θet−1 and yt = et + ωet−1. Thus the
coeffi cient θ is not identified.

The standard solution is to select the parameter which produce an invertible moving average
polynomial. Since there is only one such choice this yields a unique solution. This may be sensible
when there is reason to believe that shocks have their primary impact in the contemporaneous
period, and secondary (lesser) impact in the second period.

Now consider the MA(2) model

yt = et + θ1et−1 + θ2et−2.

The moving average polynomial can be factored as

θ(z) = (1− β1z) (1− β2z)

so that β1β2 = θ2 and β1 + β2 = −θ1. The process has first- and second-order autocorrelations

ρ(1) =
θ1 + θ1θ2

1 + θ2
1 + θ2

2

=
−β1 − β2 − β2

1β2 − β1β
2
2

1 + β2
1 + β2

2 + 2β1β2 + β2
1β

2
2

ρ(2) =
θ2

1 + θ2
1 + θ2

2

=
β1β2

1 + β2
1 + β2

2 + 2β1β2 + β2
1β

2
2

.

If we replace β1 with ω1 = 1/β1 we obtain

ρ(1) =
−1/β1 − β2 − β2/β

2
1 − β2

2/β1

1 + 1/β2
1 + β2

2 + 2β2/β1 + β2
2/β

2
1

=
−β1 − β2β

2
1 − β2 − β2

2β1

β2
1 + 1 + β2

2β
2
1 + 2β2β1 + β2

2

ρ(2) =
β2/β1

1 + 1/β2
1 + β2

2 + 2β2/β1 + β2
2/β

2
1

=
β1β2

β2
1 + 1 + β2

1β
2
2 + 2β1β2 + β2

2

which is unchanged. Similarly if we replace β2 with ω2 = 1/β2 we obtain unchanged first- and
second-order autocorrelations. It follows that in the MA(2) model, the factors β1 and β2 are not
identified. It follows that the coeffi cients θ1 and θ2 are not identified. Consequently there are four
distinct MA(2) models which are identifiably indistinguishable.

This analysis extends to the MA(q) model. The factors of the MA polynomial can be replaced
by their inverses, and consequently the coeffi cients are not identified.
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The standard solution is to confine attention to MA(q) models with invertible roots. This tech-
nically solves the identification dilemma. One reason why this choice may be considered reasonable
is because this corresponds to the Wold decomposition. This is because the Wold decomposition is
defined in terms of the projection errors, which correspond to the invertible representation.

A deeper identification failure occurs in ARMA models. Consider an ARMA(1,1) model

yt = αyt−1 + et + θet−1.

Written in lag operator notation

(1− αL) yt = (1 + θL) et.

The identification failure is that when α = −θ then the model simplifies to

yt = et.

This means that the continuum of models with α = −θ are all identical and hence the coeffi cents
are not identified.

This extends to higher order ARMA models. Take the ARMA(2,2) model written in factored
lag operator notation

(1− α1L) (1− α2L) yt = (1 + θ1L) (1 + θ2L) et.

Here we see that the models with α1 = −θ1, α1 = −θ2, α2 = −θ1, or α2 = −θ2 all simplify to an
ARMA(1,1) model. Thus all these models are identical and hence the coeffi cients are not identified.

The problem is called “cancelling roots” due to the fact that it arises when there are two
identical lag polynomial factors in the AR and MA polynomials.

The standard solution in the ARMA literature is to assume that there are no cancelling roots.
The trouble with this solution is that this is an assumption about the true process, which is
unknown. Thus it is not really a solution to the identification problem. One recommendation is
to be careful when using ARMA models, and be aware that highly parameterized models may not
have unique coeffi cients.

Now consider the AR(p) model (14.34). It can be written as

yt = x′tα+ et (14.41)

where α = (α0, α1, ...αp)
′ and xt = (1, yt−1, ..., yt−p)′. The MDS assumption implies that E (et) = 0,

E (y−jet) = 0, and hence
E (xtet) = 0.

This means that from our standard analysis of projection models the coeffi cient α satisfies

α =
(
E
(
xtx

′
t

))−1
(E (xtyt)) . (14.42)

This equation is unique if
Q = E

(
xtx

′
t

)
is positive definite. It turns out that this is generically true, so α is unique and identified.

Theorem 14.30 In the AR(p) model (14.34), if 0 < σ2 <∞ then Q > 0
and α is unique and identified.



CHAPTER 14. TIME SERIES 552

The assumption σ2 > 0 means that yt is not purely deterministic.
We can extend this result to approximating AR(p) models. That is, consider the equation

(14.41) without the assumption that yt is necessarily a true AR(p) with a MDS error. Instead,
suppose that yt is a non-deteministic stationary process. (Recall, non-deterministic means that
σ2 > 0 where σ2 is the projection error variance (14.19).) We then define the coeffi cient α as the
best linear predictor, which is (14.42). The error et is then defined by the equation (14.41). This
is a linear projection model.

As in the case of any linear projection, the error et satisfies E (xtet) = 0. This means that
E (et) = 0 and E (yt−jet) = 0 for j = 1, ..., p. However, the error et is not necessarily a MDS nor
white noise.

The coeffi cient α is identified if Q > 0. The proof of Theorem 14.30 does not make use of
the assumption that yt is an AR(p) with a MDS error. Rather, it only uses the assumption that
σ2 > 0. This holds in the approximate AR(p) model as well under the assumption that yt is
non-deterministic. We conclude that any approximating AR(p) is identified.

Theorem 14.31 If yt is strictly stationary, not purely deterministic, and
E
(
y2
t

)
< ∞, then for any p, Q = E (xtx

′
t) > 0 and thus the coeffi cient

vector (14.42) is identified.

14.29 Estimation of Autoregressive Models

We consider estimation of an AR(p) model for stationary, ergodic, and non-deterministic yt.
The model is

yt = x′tα+ et (14.43)

where xt = (1, yt−1, ..., yt−p)′. The coeffi cient α is defined by projection in (14.42). The error
is defined by (14.43), and has variance σ2 = E

(
e2
t

)
. This allows yt to actually follow an AR(p)

process, but it is not necessary for the specification of a regression model and consistent estimation.
The least squares estimator of the AR(p) model is

α̂ =

(
n∑
t=1

xtx
′
t

)−1( n∑
t=1

xtyt

)
.

This notation presumes that there are n+ p observations on yt, from which the first p are used as
initial conditions so that x1 = (1, y0, y−1, ..., y−p+1) is defined. Effectively, this redefines the sample
period. (An alternative notational choice is to define the estimator to have the sums range from
observations p+ 1 to n.)

The least squares residuals are
êt = yt − x′tα̂.

The error variance can be estimated by

σ̂2 =
1

n

n∑
t=1

ê2
t

or

s2 =
1

n− p− 1

n∑
t=1

ê2
t .
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If yt is strictly stationary and ergodic, then so are xtx′t and xtyt. They have finite means if
E
(
y2
t

)
<∞. Under these assumptions the Ergodic Theorem implies that

1

n

n∑
t=1

xtyt
p−→ E (xtyt) (14.44)

and
1

T

T∑
t=1

xtx
′
t

p−→ E
(
xtx

′
t

)
= Q.

Theorem 14.31 shows that Q > 0. Combined with the continuous mapping theorem, we see that

α̂ =

(
1

T

T∑
t=1

xtx
′
t

)−1(
1

T

T∑
t=1

xtyt

)
p−→
(
E
(
xtx

′
t

))−1
(E (xtyt)) = α.

It is straightforward to show that σ̂2 is consistent as well.

Theorem 14.32 If yt is strictly stationary, ergodic, not purely determin-
istic, and E

(
y2
t

)
<∞, then for any p, α̂ p−→ α and σ̂2 p−→ σ2 as n→∞.

This shows that under very mild conditions, the coeffi cients of an AR(p) model can be consis-
tently estimated by least squares. Once again, this does not require that the series yt is actually an
AR(p) process. It holds for any stationary process with the coeffi cient defined by projection (the
best linear predictor).

14.30 Asymptotic Distribution of Least Squares Estimator

The asymptotic distribution of the least squares estimator α̂ can vary depending on the specific
assumptions. In this section we derive the asymptotic distribution under the assumption of correct
specification.

Specifically, we assume that the error et is a MDS. An important implication of the MDS as-
sumption is that since xt = (1, yt−1, ..., yt−p)′ is part of the information set Ft−1, by the conditioning
theorem,

E (xtet | Ft−1) = xtE (et | Ft−1) = 0.

Thus xtet is a MDS. It has a finite variance if xt and et have finite fourth moments, which holds
if yt does. We can then apply the martingale difference CLT (Theorem 14.15) to see that

1√
n

n∑
t=1

xtet
d−→ N (0,Σ)

where
Σ = E

(
xtx

′
te

2
t

)
.

Theorem 14.33 If yt follows the AR(p) model (14.34) with
E (et | Ft−1) = 0, E

(
y4
t

)
<∞, and σ2 > 0, then as n→∞,

√
n (α̂−α)

d−→ N (0,V )

where
V = Q−1ΣQ−1.
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This is identical in form to the asymptotic distribution of least squares in cross-section re-
gression. The implication is that asymptotic inference is the same. In particular, the asymptotic
covariance matrix is estimated just as in the cross-section case.

14.31 Distribution Under Homoskedasticity

In cross-section regression we found that the variance matrix simplifies under the assumption of
conditional homoskedasticity. The same occurs in the time series context. Assume that the error
is a homoskedastic MDS:

E
(
e2
t | Ft−1

)
= σ2.

Then
Σ = E(xtx

′
tE
(
e2
t | Ft−1

)
) = Qσ2.

In this case the asymptotic distribution simplifies.

Theorem 14.34 If yt follows the AR(p) model (14.34) with
E (et | Ft−1) = 0, E

(
y4
t

)
< ∞, and E

(
e2
t | Ft−1

)
= σ2 > 0, then as

n→∞, √
n (α̂−α)

d−→ N
(
0,V 0

)
where

V 0 = σ2Q−1.

These results show that under correct specification (a MDS error) the format of the asymptotic
distribution of the least squares estimator exactly parallels the cross-section case. In general the
covariance matrix takes a sandwich form, with components exactly equal to the cross-section case.
Under conditional homoskedasticity the covariance matrix simplies exactly as in the cross-section
case.

A particularly useful insight which can be derived from Theorem 14.34 is to focus on the simple
AR(1) with no intercept. In this case Q = E

(
y2
t

)
= σ2/(1 − α2

1) so the asymptotic distribution
simplifies to √

n (α̂1 − α1)
d−→ N

(
0, 1− α2

1

)
.

Thus the asymptotic variance depends only on α1. The variance is decreasing with α2
1. An intuition

is that larger α2
1 means greater signal and hence greater estimation precision. This result also shows

that the asymptotic distribution is non-similar: the variance is a funcion of the parameter of interest.
This means that we can expect asymptotic inference to be less accurate than indicated by nominal
levels.

In the context of cross-section data we argued that the homoskedasticity assumption was dubious
except for occassional theoretical insight. For practical applications, it was recommended to use
heteroskedasticity-robust theory and methods when possible. The same argument applies to the
time series case. While the distribution theory simplifies under conditional homoskedasticity, there
is no reason to expect homoskedasticity to hold in practice. Therefore in applications it is better
to use the heteroskedasticity-robust distributional theory when possible.

Unfortunately, many existing time series textbooks report the distribution theory from (14.34).
This has influenced computer software packages, many of which also by default (or exclusively) use
the homoskedastic distribution theory. This is unfortunate.
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14.32 Asymptotic Distribution Under General Dependence

If the AR(p) model (14.34) holds with with noise errors, or if the AR(p) is an approximation
with α defined as the best linear predictor, then the MDS central limit theory does not apply.
Instead, if yt is strong mixing, we can use the central limit theory for mixing processes (Theorem
14.19).

Theorem 14.35 If yt is strictly stationary, ergodic, 0 < σ2 < ∞,
and for some r > 4, E |yt|r < ∞ and the mixing coeffi cients satisfy∑∞

`=1 α(`)1−4/r <∞, then

Ω =
∞∑

`=−∞
E
(
xt−`x

′
tetet−`

)
is convergent, and for the AR(p) least squares estimator α̂ and projection
coeffi cients (14.42),

√
n (α̂−α)

d−→ N (0,V )

as n→∞, where
V = Q−1ΩQ−1.

This result is substantially different from the cross-section case. It shows that model mis-
specification (misspecifying the order of the autoregression, or missing proper specification of the
conditional mean) renders invalid the conventional “heteroskedasticity-robust” covariance matrix
formula. Misspecified models do not have unforecastable (martingale difference) errors, so the
regression scores xtet are potentially serially correlated.

14.33 Covariance Matrix Estimation

Under the assumption of correct specification, covariance matrix estimation is identical to
the cross-section case. The asymptotic covariance matrix estimator under the assumption of ho-
moskedasticity is

V̂
0

= σ̂2Q̂
−1

Q̂ =
1

n

n∑
t=1

xtx
′
t

The estimator s2 may be used instead of σ̂2.
The heteroskedasticity-robust asymptotic covariance matrix estimator is

V̂ = Q̂
−1

Σ̂Q̂
−1

(14.45)

where

Σ̂ =
1

n

n∑
t=1

xtx
′
tê

2
t .

Degree-of-freedom adjustments may be made as in the cross-section case, though a theoretical
justification has not been developed in the time series case.

Standard errors s (α̂j) for individual coeffi cient estimates can be formed by taking the scaled
diagonal elements of V̂ .
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Theorem 14.36 Under the assumptions of Theorem 14.33 as n→∞,

V̂
p−→ V

and
α̂j − αj
s(α̂j)

d−→ N (0, 1) .

Theorem 14.36 shows that standard covariance matrix estimation is consistent and the resulting
t-ratios are asymptotically normal. This means that for stationary autoregressions, inference can
proceed using conventional regression methods.

14.34 Covariance Matrix Estimation Under General Dependence

Under the assumptions of Theorem 14.35, the conventional covariance matrix estimators are
inconsistent as they do not capture the serial dependence in the regression scores xtet. To con-
sistently estimate the covariance matrix, we need a different estimator. The appropriate class of
estimators are called Heteroskedasticity and Autocorrelation Consistent (HAC) or Het-
eroskedasticity and Autocorrelation Robust (HAR) covariance matrix estimators.

To understand the methods, it is helpful to define the vector series ut = xtet and autocovariance
matrices Γ(`) = E (ut−`u

′
t) so that

Ω =

∞∑
`=−∞

Γ(`).

Since this sum is convergent the autocovariance matrices converge to zero as `→∞. Therefore Ω
can be approximated by taking a finite sum of autocovariances, such as

ΩM =
M∑

`=−M
Γ(`).

The number M is sometimes called the lag truncation number. Other authors call it the band-
width. The sample estimator of Γ(`) is

Γ̂(`) =
1

n

∑
1≤t−`≤n

ût−`û
′
t

where ût = xtêt. By the ergodic theorem we can show that for any `, Γ̂(`)
p−→ Γ(`). Thus for any

fixed M , the estimator

Ω̂M =
M∑

`=−M
Γ̂(`) (14.46)

is consistent for ΩM .
If the serial correlation in xtet is known to be zero afterM lags, then ΩM = Ω and the estimator

(14.46) is consistent for Ω. This estimator was proposed by L. Hansen and Hodrick (1980) in the
context of multiperiod forecasts, and L. Hansen (1982) for the generalized method of moments.

In the general case, we can select M to increase with sample size n. If the rate at which
M increases is suffi ciently slow, then Ω̂M will be consistent for Ω, as first shown by White and
Domowitz (1984).

Once we view the lag truncation number M as a choice made by the user, the estimator (14.46)
has two potential deficiencies. One is that Ω̂M can change non-smoothly with M , which makes
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estimation results sensitive to the choice of M . The other is that Ω̂M may not be positive semi-
definite and is therefore not a valid variance matrix estimator. We can see this in the simple case
of scalar ut and M = 1. In this case

Ω̂1 = γ̂(0) (1 + 2ρ̂(1))

which is negative when ρ̂(1) < −1/2. Thus if the data are strongly negatively autocorrelated the
variance estimator can be negative. A negative variance estimator means that standard errors are
ill-defined (a naive compuation will produce a complex standard error which makes no sense5).

These two deficiencies can be resolved if we amend (14.46) by a weighted sum of autocovariances.
In particular, Newey and West (1987b) suggested the estimator

Ω̂NW =

M∑
`=−M

(
1− |`|

M + 1

)
Γ̂(`). (14.47)

This is a weighted sum of the autocovariances. Other weight functions can be used; the one in
(14.47) is known as the Bartlett kernel6. Newey and West (1987b) showed that this estimator has
the algebraic property that Ω̂NW ≥ 0 (it is positive sem-definite), solving the negative variance
estimator problem, and it is also a smooth function of M as well. Thus this estimator solves the
two problems described above.

For Ω̂NW to be consistent for Ω, the lag trunction number M must increase to infinity with n.
Suffi cient conditions were established by B. Hansen (1992).

Theorem 14.37 Under the assumptions of Theorem 14.35, plus∑∞
`=1 α(`)1/2−4/r <∞, if M →∞ yet M3/n = O(1), then as n→∞,

Ω̂NW
p−→ Ω.

The assumption M3/n = O(1) technically means that M grows no faster than n1/3, but this
does not have a meaningful practical counter-part, other than the implication that “M should be
much smaller than n”.

A important practical issue is how to select M . One way to think about it is that M impacts
the precision of the estimator Ω̂NW through its bias and variance. Since Γ̂(`) is a sample average,
its variance is O (1/n) so we expect the variance of Ω̂M to be of order O (M/n). The bias of Ω̂NW

for Ω is harder to calculate, but depends on the rate at which the covariances Γ(`) decay to zero.
Andrews (1991b) found that the M which minimizes the mean squared error of Ω̂NW satisfies the
rate M = Cn1/3 where the constant C depends on the autocovariances. Practical rules to estimate
and implement this optimal lag truncation parameter have been proposed by Andrews (1991b) and
Newey and West (1994). Stock and Watson (2014) show that a simplified version of Andrews’rule
is M = 0.75n1/3.

14.35 Testing the Hypothesis of No Serial Correlation

In some cases it may be of interest to test the hypothesis that the series yt is serially uncorrelated
against the alternative that it is serially correlated. There have been many proposed tests of this

5A common computational mishap is a complex standard error. This occurs when a covariance matrix estimator
has negative elements on the diagonal.

6See Andrews (1991b) for a description of popular options. In practice, the choice of weight function is much less
important than the choice of lag truncation number M .
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hypothesis. The most appropriate is based on the least squares regression of an AR(p) model. Take
the model

yt = α0 + α1yt−1 + α2yt−2 + · · ·+ αpyt−p + et

with et a MDS. In this model, the series yt is serially uncorrelated if the slope coeffi cieints are all
zero. Thus the hypothesis of interest is

H0 : α1 = · · · = αp = 0

H1 : αj 6= 0 for some j ≥ 1.

The test can be implemented by a Wald (or F) test. Estimate the AR(p) model by least
squares. Form the Wald (or F) statistic using the variance estimator (14.45). (The Newey-West
estimator should not be used as there is no serial correlation under the null hypothesis.) Accept
the hypothesis if the test statistic is smaller than a conventional critical value (or if the p-value
exceeds the significance level), and reject the hypothesis otherwise.

Implementation of this test requires a choice of autoregressive order p. This choice affects the
power of the test. A suffi cient number of lags should be included so to pick up potential serial
correlation patterns, but not so many that the power of the test is diluted. A reasonable choice
in many applications is to set p to equals s, the seasonal periodicity. Thus include four lags for
quarterly data, or twelve lags for monthly data.

14.36 Testing for Omitted Serial Correlation

When using an AR(p) model it may be of interest to know if there is any remaining serial
correlation. This can be expressed as a test for serial correlation in the error or equivalently as a
test for a higher-order autogressive model.

Take the AR(p) model

yt = α0 + α1yt−1 + α2yt−2 + · · ·+ αpyt−p + ut. (14.48)

The null hypothesis is that ut is serially uncorrelated, and the alternative hypothesis is that it is
serially correlated. We can model the latter as a mean-zero autoregressive process

ut = θ1ut−1 + · · ·+ θqut−q + et. (14.49)

The hypothesis is

H0 : θ1 = · · · = θq = 0

H1 : θj 6= 0 for some j ≥ 1.

A seemingly natural test for H0 uses a two-step method. First estimate (14.48) by least squares
and obtain the residuals ût. Second, estimate (14.49) by least squares by regressing ût on its
lagged values, and obtain the Wald (or F) test for H0. This seems like a natural approach, but
it is muddled by the fact that the distribution of the Wald statistic is distorted by the two-step
procedure. The Wald statistic is not asymptotically chi-square distributed, so it is inappropriate
to make a decision based on the conventional critical values and p-values. One approach to obtain
the correct asymptotic distribution is to use the generalized method of moments, treating (14.48)-
(14.49) as a two-equation just-identified system.

An easier solution is to re-write (14.48)-(14.49) as a higher-order autoregression so that we can
use a standard test statistic. To illustrate how this works, for simplicity take the case q = 1. Take
(14.48) and lag the equation once:

yt−1 = α0 + α1yt−2 + α2yt−3 + · · ·+ αpyt−p−1 + ut−1.
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We then multiply this by θ1 and subtract from (14.48), to find

yt − θ1yt−1 = α0 + α1yt−1 + α2yt−2 + · · ·+ αpyt−p + ut

− θ1α0 − θ1α1yt−2 − θ1α2yt−3 − · · · − θ1αpyt−p−1 − θ1ut−1

or
yt = α0(1− θ1) + (α1 + θ1) yt−1 + (α2 − θ1α1) yt−2 + · · · − θ1αpyt−p−1 + et.

This is an AR(p+1). It simplifies to an AR(p) when θ1 = 0. Thus H0 is equivalent to the restriction
that the coeffi cient on yt−p−1 is zero.

Thus testing the null hypothesis of an AR(p) (14.48) against the alternative that the error is
an AR(1) is equivalent to testing an AR(p) against an AR(p+1). The latter test is implemented
as a Wald (or F) test on the coeffi cient on yt−p−1.

More generally, testing the null hypothesis of an AR(p) (14.48) against the alternative that
the error is an AR(q) is equivalent to testing an AR(p) against an AR(p+q). The latter test
is implemented as a Wald (or F) test on the coeffi cients on yt−p−1, ..., yt−p−1. If the statistic is
smaller than the critical values (or the p-value is larger than the significance level) then we reject
the hypothesis that the AR(p) is correctly specified in favor of the alternative that there is omitted
serial correlation. Otherwise we accept the hypothesis that the AR(p) model is correctly specified.

Another way of deriving the test is as follows. Write (14.48) and (14.49) using lag operator
notation

α(L)yt = α0 + ut

θ(L)ut = et.

Applying the operator θ(L) to the first equation we obtain

θ(L)α(L)yt = α∗0 + et

where α∗0 = θ(1)α0. The product θ(L)α(L) is a polynomial of order p + q, so this is an AR(p+q)
model for yt.

However, it is unclear if there is good reason to use the test described in this section. Economic
theory does not typically produce hypotheses concerning the autoregressive order. Consequently
there is rarely a case where there is scientific interest in testing, say, the hypothesis that a series is
an AR(4), or any other specific autoregressive order. Instead, practitioners tend to use hypothesis
tests for another purpose — model selection. That is, in practice users want to know “What
autoregressive model should be used” in a specific application, and resort to hypothesis tests to
aid in this decision. This is an inappropriate use of hypothesis tests, because tests are designed
to provide answers to scientific questions, rather than being designed to select models with good
approximation properties. Instead, model selection should be based on model selection tools. One
is described in the following section.

14.37 Model Selection

What is the appropriate choice of autoregressive order p in practice? This is the problem of
model selection.

A good choice is to minimize the Akaike information criterion (AIC)

AIC(p) = n log σ̂2(p) + 2p

where σ̂2(p) is the estimated residual variance from an AR(p). The AIC is a penalized version of
the Gaussian log-likelihood function for the estimated regression model. It is an estimate of the
divergence between the fitted model and the true conditional density. By selecting the model with
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the smallest value of the AIC, you select the model with the smallest estimated divergence —the
highest estimated fit between the estimated and true densities.

The AIC is also a monotonic transformation of an estimate of the one-step-ahead forecast mean
squared error. Thus selecting the model with the smallest value of the AIC you are selecting the
model with the smallest estimated forecast error.

One possible hiccup in computing the AIC criterion for multiple models is that the sample size
available for estimation changes as p changes. (If you increase p, you need more initial conditions.)
This renders AIC comparisons inappropriate. The same sample —the same number of observations
—should be used for estimation of all models. The appropriate remedy is to fix a upper value p, and
then reserve the first p as initial conditions. Then estimate the models AR(1), AR(2), ..., AR(p)
on this (unified) sample.

The AIC of an estimated regression model can be displayed in Stata by using the estimates
stats command.

14.38 Illustrations

We illustrate autoregressive estimation with three empirical examples using U.S. quarterly time
series from the FRED-QD data file.

Table 14.1: U.S. GDP AR Models

AR(0) AR(1) AR(2) AR(3) AR(4)
α0 0.65 0.40 0.34 0.34 0.34

(0.06) (0.08) (0.10) (0.10) (0.11)
[0.09] [0.08] [0.09] [0.09] [0.09]

α1 0.39 0.34 0.33 0.34
(0.09) (0.10) (0.10) (0.10)
[0.10] [0.10] [0.10] [0.10]

α2 0.14 0.13 0.13
(0.11) (0.13) (0.14)
[0.10] [0.10] [0.11]

α3 0.02 0.03
(0.11) (0.12)
[0.07] [0.09]

α4 −0.02
(0.12)
[0.13]

AIC 329 306 305 307 309

1. Standard errors robust to heteroskedasticity in parenthesis.

2. Newey-West standard errors in square brackets, with M = 5.

The first example is real GDP growth rates (growth rate of gdpc1 ). We estimate autoregres-
sive models of order 0 through 4 using the sample from 1980-20177. This is a very commonly
estimated model in applied macroeconomic practice, and is the empirical version of the Samuel-
son multiplier-accelerator model discussed in Section 14.23. The coeffi cient estimates, conventional
(heteroskedasticity-robust) standard errors, Newey-West (with M = 5) standard errors, and AIC,
are displayed in Table 14.1. This sample has 152 observations. The model selected by the AIC

7This sub-sample was used for estimation as it has been argued that the growth rate of U.S. GDP slowed around
this period. The goal was to estimate the model over a period of time when the series is plausibly stationary.
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criterion is the AR(2). The estimated model has positive and small values for the first two au-
toregressive coeffi cients. This means that quarterly output growth rates are positively correlated
from quarter to quarter, but only mildly so, and most of the correlation is captured by the first
lag. The coeffi cients of this model are in the real section of Figure 14.8, meaning that the dynamics
of the estimated model do not display oscillations. The coeffi cients of the estimated AR(4) model
are nearly identical to the AR(2) model. The conventional and Newey-West standard errors are
somewhat different from one another for the AR(0) and AR(4) models, but are nearly identical to
one another for the AR(1) and AR(2) models

Our second example is real non-durables consumption growth rates (growth rate of pcndx ). This
is motivated by an influential paper by Robert Hall (1978), who argued that the permanent income
hypothesis implied that changes in consumption should be unpredictable (martingale differences).
To test this model Hall (1978) estimated an AR(4) model. Our estimated regression using the
full sample (n = 231), with heteroskedasticity-robust standard errors, are reported in the following
equation. Let ct denote the consumption growth rate.

ĉt = 0.15
(0.07)

ct−1 + 0.11
(0.07)

ct−2 + 0.13
(0.07)

ct−3 + 0.02
(0.08)

ct−4 + 0.35
(0.09)

.

Hall’s hypothesis is that the autoregressive coeffi cients are zero. We test this joint hypothesis with
an F statistic, and find F = 3.32, with a p-value of p = 0.012. This is nearly significant at the
1% level. The first three autoregressive coeffi cients appear to be positive, but small, indicating
positive serial correlation. This evidence is (mildly) inconsistent with Hall’s hypothesis. We report
heteroskedasticity-robust standard errors, not Newey-West standard errors, since the purpose was
to test the hypothesis of no serial correlation.

The third example is the first difference of CPI inflation (first difference of growth rate of
cpiaucsl). This is motivated by Stock and Watson (2007) who examined forecasting models for
inflation rates. We estimate autoregressive models of order 1 through 8 using the full sample
(n = 226), we report models 1 through 5 in Table 14.2. The model with the lowest AIC is the
AR(4). All four estimated autoregressive coeffi cients are negative, most particularly the first two.
The two sets of standard errors are quite similar for the AR(4) model. There are meaningful
differences only for the lower order AR models.

14.39 Time Series Regression Models

Least squares regression methods can be used broadly with stationary time series. Interpretation
and usefulness can depend, however, on constructive dynamic specifications. Furthermore, it is
necessary to be aware of the serial correlation properties of the series involved, and to use the
appropriate covariance matrix estimator when the dynamics have not been explicitly modeled.

Let (yt,xt) be paired observations with yt the dependent variable and xt a vector of regres-
sors including an intercept. The regressors can contain lagged yt so this framework includes the
autoregressive model as a special case. A linear regression model takes the form

yt = x′tβ + et. (14.50)

The coeffi cient vector is defined by projection and therefore equals

β =
(
E
(
xtx

′
t

))−1
(E (xtyt)) . (14.51)

The error et is defined by (14.50) and thus is properties are determined by that relationship.
Implicitly the model assumes that the variables have finite second moments, and E (xtx

′
t) > 0,



CHAPTER 14. TIME SERIES 562

Table 14.2: U.S. Inflation AR Models

AR(1) AR(2) AR(3) AR(4) AR(5)
α0 0.004 0.003 0.003 0.003 0.003

(0.034) (0.032) (0.032) (0.032) (0.032)
[0.023] [0.028] [0.029] [0.031] [0.032]

α1 −0.26 −0.36 −0.36 −0.36 −0.37
(0.08) (0.07) (0.07) (0.07) (0.07)
[0.05] [0.07] [0.07] [0.07] [0.07]

α2 −0.36 −0.37 −0.42 −0.43
(0.07) (0.06) (0.06) (0.06)
[0.06] [0.05] [0.07] [0.07]

α3 −0.00 −0.06 −0.08
(0.09) (0.10) (0.11)
[0.09] [0.12] [0.13]

α4 −0.16 −0.18
(0.08) (0.08)
[0.09] [0.09]

α5 −0.04
(0.07)
[0.06]

AIC 342 312 314 310 312

1. Standard errors robust to heteroskedasticity in parenthesis.

2. Newey-West standard errors in square brackets, with M = 5.

otherwise there model is not uniquely defined and a regressor could be eliminated. By the property
of projection the error is uncorrelated with the regressors

E (xtet) = 0.

The least squares estimator of the coeffi cient is

β̂ =

(
T∑
t=1

xtx
′
t

)−1( T∑
t=1

xtyt

)
.

Under the assumption that the joint series (yt,xt) is strictly stationary and ergodic, the estima-
tor is consistent. Under the mixing and moment conditions of Theorem 14.35 the estimator is
asymptotically normal with a general covariance matrix

However, under stronger assumpion that the error is a MDS the asymptotic covariance matrix
simplifies. It is worthwhile investigating this condition further. The necessary condition is

E (et | Ft−1) = 0

where Ft−1 is an information set to which (et−1,xt) is adapted. This notation may appear somewhat
odd, but recall in the autoregessive context that xt = (1, yt−1, ..., yt−p) contains variables dated time
t − 1 and previously, thus xt in this context is a “time t − 1”variable. The reason why we need
(et−1,xt) to be adapted to Ft−1 is for the MDS condition to hold, the regression function x′tβ in
(14.50) must be the conditional mean of yt given Ft−1, and thus xt must be part of the information
set Ft−1. Under this assumption

E (xtet | Ft−1) = xtE (et | Ft−1) = 0
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so (xtet,Ft) is a MDS. This means we can apply the MDS CLT to obtain the asymptotic distribu-
tion.

We summarize this discussion with the following formal statement.

Theorem 14.38 If (yt,xt) is strictly stationary, ergodic, with finite second
moments, and Q = E (xtx

′
t) > 0, then β in (14.51) is uniquely defined and

the least squares estimator is consistent, β̂
p−→ β.

If in addition, E (et | Ft−1) = 0, where Ft−1 is an information set to which
(et−1,xt) is adapted, E |yt|4 <∞ , and E ‖xt‖4 <∞, then

√
n
(
β̂ − β

)
d−→ N

(
0,Q−1ΩQ−1

)
(14.52)

as n→∞, where Ω = E
(
xtx

′
te

2
t

)
.

Alternatively, if in addition, for some r > 4, E |yt|r < ∞ , E ‖xt‖r < ∞,
and the mixing coeffi cients for (yt,xt) satisfy

∑∞
`=1 α(`)1−4/r < ∞, then

(14.52) holds with

Ω =
∞∑

`=−∞
E
(
xt−`x

′
tetet−`

)
.

14.40 Static, Distributed Lag, and Autoregressive Distributed Lag
Models

In this section we describe standard linear time series regression models.
Let (yt, zt) be paired observations with yt the dependent variable and zt an observed regressor

vector (which does not include lagged yt).
The simplest regression model is the static equation

yt = α+ z′tβ + et.

This is (14.50) by setting xt = (1, z′t)
′. Static models are motivated to describe how yt and zt co-

move. Their advantage is their simplicity. The disadvantage is that they are diffi cult to interpret.
The coeffi cient is the best linear predictor (14.51) but almost certainly is dynamically misspecified
since no lagged values are incorporated. The regression of yt on contemporeneous zt is also diffi cult
to interpret without a causal framework, since the two can be simultaneous. If this regression is
estimated it is important that the standard errors be calculated using the Newey-West method to
account for serial correlation in the error.

A model which allows the regressor to have impact over several periods is called a distributed
lag (DL) model. It takes the form

yt = α+ z′t−1β1 + z′t−2β2 + · · ·+ z′t−qβq + et.

It is also possible to include the contemporenous regressor zt. In this model the leading coeffi cient
β1 represents the initial impact of zt on yt, β2 represents the impact in the second period, and so
on. The cumulative impact is the sum of the coeffi cients β1 + · · ·+βq, which is called the long-run
multiplier.

The distributed lag model falls in the class (14.50) by setting xt = (1, z′t−1, z
′
t−2, . . . ,z

′
t−q)

′.
While they allow for a lagged impact of zt on yt, the model does not incorporate serial correlation,
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so the error et should be expected to be serially correlated. Thus the model is (typically) dynam-
ically misspecified which can make interpretation diffi cult. It is also necessary to use Newey-West
standard errors to account for the serial correlation.

A more complete model combines autoregressive and distributed lags. It takes the form

yt = α0 + α1yt−1 + · · ·+ αpyt−p + z′t−1β1 + · · ·+ z′t−qβq + et.

This is called an autoregressive distributed lag (AR-DL) model. It nests both the autore-
gressive and distributed lag models, thereby combining serial correlation and dynamic impact. The
AR-DL model falls in the class (14.50) by setting xt = (1, yt−1, ..., yt−p, z′t−1, . . . ,z

′
t−q)

′.
If the lag orders p and q are selected suffi ciently large, the AR-DL model will have an error

which is approximately white noise, in which case the model can be interpreted as dynamically
well-specified, and conventional standard error methods can be used.

In an AR-DL specification, the long-run multiplier is

LR =
β1 + · · ·+ βq

1− α1 − · · · − αp
which is a nonlinear function of the coeffi cients.

14.41 Illustration

We illustrate the model described in the previous section using a classical macroeconomic model
for inflation prediction based on the Phillips curve. A. W. Phillips (1958) famously observed that
the unemployment rate and the wage inflation rate are negatively correlated over time. Equations
relating the inflation rate, or the change in the inflation rate, to macroeconomic indicators such as
the unemployment rate are typically described as “Phillips curves”. A simple Phillips curve takes
the form

∆πt = α+ βurt + et (14.53)

where πt is price inflation and urt is the unemployment rate. This specification relates the change
in inflation in a given period to the level of the unemployment rate in the previous period.

The least squares estimate of (14.53) using U.S. quarterly series from FRED-QD is reported in
the first column Table 14.3. Both heteroskedasticity-robust and Newey-West standard errors are
reported. The Newey-West standard errors are the appropriate choice since the estimated equation
is static — no modeling of the serial correlation. In this example, the measured impact of the
unemployment rate on inflation appears minimal. The estimate is consistent with a small effect of
the unemployment rate on the inflation rate, but it is not precisely estimated.

A distributed lag (DL) model takes the form

∆πt = α+ β1urt−1 + β2urt−2 + · · ·+ βqurt−q + et. (14.54)

The least squares estimate of (14.54) is reported in the second column of Table 14.3. The estimates
are quite different from the static model. We see a large negative impacts in the first and third
periods, countered by a large positive impact in the second period. The model suggests that the
unemployment rate has a strong impact on the inflation rate, but the long-run impact is mitigated.
The long-run multiplier is reported at the bottom of the column. The point estimate of −0.022 is
quite small, and very similar to the static estimate. It implies that an increase in the unemployment
rate by 5 percentage points (a typical recession) decreases the long-run annual inflation rate by
about one-half of one percentage points.

An AR-DL takes the form

∆πt = α0 + α1∆πt−1 + · · ·+ αp∆πt−p + β1urt−1 + · · ·+ βqurt−q + et. (14.55)

The least squares estimate of (14.55) is reported in the third column of Table 14.3. The coeffi cient
estimates appear similar to those from the distributed lag model. The point estimate of the long-run
multiplier is also nearly identical, but with a somewhat smaller standard error.
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Table 14.3: Phillips Curve Regressions

Static Model DL Model AR-DL Model
urt −0.023

(0.025)
[0.017]

urt−1 −0.59 −0.62
(0.20) (0.16)
[0.16] [0.12]

urt−2 1.14 0.88
(0.29) (0.25)
[0.28] [0.21]

urt−3 −0.68 −0.36
(0.22) (0.25)
[0.25] [0.24]

urt−4 0.12 0.05
(0.11) (0.12)
[0.11] [0.12]

πt−1 −0.43
(0.08)
[0.08]

πt−2 −0.47
(0.10)
[0.09]

πt−3 −0.14
(0.10)
[0.11]

πt−4 −0.19
(0.08)
[0.09]

Multiplier −0.023 −0.022 −0.021
[0.017] [0.012] [0.008]

1. Standard errors robust to heteroskedasticity in parenthesis.

2. Newey-West standard errors in square brackets, with M = 5.
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14.42 Granger Causality

In the AR-DL model (14.55) the unemployment rate would have no predictive impact on the
inflation rate under the coeffi cient restriction β1 = · · · = βq = 0. This restriction is called “Granger
non-causality”. This definition of causality was developed by Granger (1969) and Sims (1972).
When the coeffi cients are non-zero then we say that the unemployment rate “Granger causes”the
inflation rate.

The reason why we call this “Granger Causality”rather than “causality”is because this is not
a physical or structure definition of causality. An alternative label is “predictive causality”.

To be precise, assume that we have two series (yt, zt). Consider the projection of yt onto the
lagged history of both series

yt = Pt−1(yt) + et

= α0 +
∞∑
j=1

αjyt−j +
∞∑
j=1

βjzt−j + et.

We say that zt does not Granger-cause yt if βj = 0 for all j. If βj 6= 0 for some j then we say that
zt Granger-causes yt.

It is important that the definition includes the projection on the past history of yt. Granger
causality means that zt helps to predict yt even after the past history of yt has been accounted for.

The definition can alternative be written in terms of conditional expectations rather than pro-
jections. We can say that zt does not Granger-cause yt if

E (yt | yt−1, yt−2...; zt−1, zt−2...) = E (yt | yt−1, yt−2...) .

Granger causality can be tested in AR-DL models using a standard Wald or F test. In the
context of model (14.55) we report the F statistic for β1 = · · · = βq = 0. The test rejects the
hypothesis (and thus finds evidence of Granger causality) if the statistic is larger than the critical
value (if the p-value is small), and fails to reject the hypothesis (and thus finds no evidence of
causality) if the statistic is smaller than the critical value.

For example, in the results presented in Table 14.3, the F statistic for the hypothesis β1 =
· · · = β4 = 0 using the Newey-West covariance matrix is F = 6.98 with a p-value of 0.000. This is
statistically significant at any conventional level so we can conclude that the unemployment rate
has a predictively causal impact on inflation.

Granger causality should not be interpreted structurally outside the context of an economic
model. For example consider the regression of GDP growth rates yt on stock price growth rates rt.
We use the quarterly series from FRED-QD, using an AR-DL specification with two lags

yt = 0.22
(0.09)

yt−1 + 0.14
(0.10)

yt−2 + 0.03
(0.01)

rt−1 + 0.01
(0.01)

rt−2.

The coeffi cients on the lagged stock price growth rates are small in magnitude, but the first lag
appears statistically significant. The F statistic for exclusion of (rt−1, rt−2) is F = 9.3 with a
p-value of 0.0002, which is highly significant. We can therefore reject the hypothesis of no Granger
causality, and deduce that stock price changes Granger-cause GDP growth. This should not be
interpreted as suggesting that the stock market causes output fluctuations, as a more reasonable
explanation from economic theory is that stock prices are forward-looking measures of expected
future profits. When corporate profits are forecasted to rise, the value of corporate stock rises,
bidding up stock prices. Thus stock prices move in advance of actual economic activity, but are
not necessarily structurally causal.
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Clive W. J. Granger

Clive Granger (1934-2009) of England was one of the leading figures in time-
series econometrics, and co-winner in 2003 of the Nobel Memorial Prize in
Economic Sciences (along with Robert Engle). In addition to formalizing
the definition of causality known as Granger causality, he invented the con-
cept of cointegration, introduced spectral methods into econometrics, and
formalized methods for the combination of forecasts.

14.43 Testing for Serial Correlation in Regression Models

Consider the problem of testing for omitted serial correlation in an AR-DL model such as

yt = α0 + α1yt−1 + · · ·+ αpyt−p + β1zt−1 + · · ·+ βqzt−q + ut. (14.56)

The null hypothesis is that ut is serially uncorrelated, and the alternative hypothesis is that it is
serially correlated. We can model the latter as a mean-zero autoregressive process

ut = θ1ut−1 + · · ·+ θrut−r + et. (14.57)

The hypothesis is

H0 : θ1 = · · · = θr = 0

H1 : θj 6= 0 for some j ≥ 1.

There are two ways to implement a test of H0 against H1. The first is to estimate equations
(14.56)-(14.57) sequentially by least squares and construct a test for H0 on the second equation.
This test is complicated by the fact that the two-step nature of the second regression invalidates
conventional asymptotic approximations. Therefore this approach is not recommended.

The second approach is to combine equations (14.56)-(14.57) into a single model and execute
the test as a restriction within this model. One way to make this combination is by using lag
operator notation. Write (14.56)-(14.57) as

α(L)yt = α0 + β(L)zt−1 + ut

θ(L)ut = et

Then applying the operator θ(L) to the first equation we obtain

θ(L)α(L)yt = θ(L)α0 + θ(L)β(L)zt−1 + θ(L)ut

or
α∗(L)yt = α∗0 + β∗(L)zt−1 + et

where α∗(L) is a p+ r order polynomial and β∗(L) is a q + r order polynomial. The restriction H0

is that these are p and q order polynomials. Thus we can implement a test of H0 against H1 by
estimating an AR-DL model with p+ r and q + r lags, and testing the exclusion of the final r lags
of yt and zt. This test has a conventional asymptotic distribution so is simple to implement.

The basic message is that testing for omitted serial correlation can be implement in regression
models by estimating and contrasting different dynamic specifications.
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14.44 Bootstrap for Time Series

Recall that the bootstrap approximates the sampling distribution of estimators and test statis-
tics by using the empirical distribution of the observations. The traditional non-parametric boot-
strap is appropriate for case of independent observations. For dependent observations alternative
methods should be used.

Bootstrapping for time series is considerably more complicated than the cross section case, and
many methods have been proposed. Part of the challenge is that theoretical justifications are much
more diffi cult to establish than in the independent observation case.

In this section we describe the most popular methods to implement bootstrap resampling for
time series data.

Recursive Bootstrap

1. Estimate a complete model such as an AR(p) with coeffi cients α̂ and residuals êt.

2. Fix the initial condition (y−p+1, y−p+2, ..., y0).

3. Simulate i.i.d. draws e∗t from the empirical distribution of the residuals {ê1, ..., ên}.

4. Create the bootstrap series y∗t by the recursive formula

y∗t = α̂0 + α̂1y
∗
t−1 + α̂2y

∗
t−2 + · · ·+ α̂py

∗
t−p + e∗t .

This construction creates bootstrap samples y∗t with the stochastic properties of the estimated
AR(p) model, including the auxiliary assumption that the errors are i.i.d. This method can work
well if the true process is an AR(p). One flaw is that it imposes homoskedasticity on the errors
e∗t , which may be different than the properties of the actual et. Another limitation is that it is
inappropriate for AR-DL models unless the conditioning variables are treated as strictly exogenous.

There are alternative versions of this basic method. First, instead of fixing the initial conditions
at the sample values a random block can be drawn from the sample. The difference is that this
produces an unconditional distribution rather than a conditional one. Second, instead of drawing
the errors from the residuals a parametric (typically normal) distribution can be used. This can
improve precision when sample sizes are very small but otherwise is not recommended.

Pairwise Bootstrap

1. Write the sample as {yt,xt} where xt = (yt−1, ..., yt−p)′ contains the lagged values used in
estimation.

2. Apply the traditional nonparametric bootstrap which samples pairs (y∗t ,x
∗
t ) i.i.d. from

{yt,xt} with replacement to create the bootstrap sample.

3. Create the bootstrap estimates on this bootstrap sample, e.g. regress y∗t on x
∗
t .

This construction is essentially the traditional nonparametric bootstrap, but applied to the
paired sample {yt,xt}. It does not mimic the time series correlations across observations. However,
it does produce bootstrap statistics with the correct first-order asymptotic distribution (under
MDS errors). This method may be useful when we are interested in the distriubtion of nonlinear
functions of the coeffi cient estimates and therefore desire an improvement on the Delta Method
approximation.

Fixed Design Residual Bootstrap
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1. Write the sample as {yt,xt, êt} where xt = (yt−1, ..., yt−p)′ contains the lagged values used in
estimation and êt are the residuals.

2. Fix the regressors xt at their sample values.

3. Simulate i.i.d. draws e∗t from the empirical distribution of the residuals {ê1, ..., ên}.

4. Set y∗t = x′tβ̂ + e∗t

This construction is similar to the pairwise bootstrap, but imposes an i.i.d. error. It is therefore
only valid when the errors are i.i.d. (and thus excludes heteroskedasticity).

Fixed Design Wild Bootstrap

1. Write the sample as {yt,xt, êt} where xt = (yt−1, ..., yt−p)′ contains the lagged values used in
estimation and êt are the residuals.

2. Fix the regressors xt and residuals êt at their sample values.

3. Simulate i.i.d. auxiliary random ξ∗t with mean zero and variance one. See Section 10.31 for a
discussion of choices.

4. Set e∗t = ξ∗t êt and y
∗
t = x′tβ̂ + e∗t .

This construction is similar to the pairwise and fixed design bootstrap methods, but uses the
wild bootstrap method. This imposes the conditional mean assumption on the error but allows
heteroskedasticity.

Block Bootstrap

1. Write the sample as {yt,xt} where xt = (yt−1, ..., yt−p)′ contains the lagged values used in
estimation.

2. Divide the sample of paired observations {yt,xt} into n/m blocks of length m.

3. Resample complete blocks. For each simulated sample, draw n/m blocks.

4. Paste the blocks together to create the bootstrap time series {y∗t ,x∗t }.

This construction allows for arbitrary stationary serial correlation, heteroskedasticity, and for
model-misspecification. One challenge is that the block bootstrap is sensitive to the block length
and the way that the data are partitioned into blocks. The method may also work less well in
small samples. Notice that the block bootstrap with m = 1 is equal to the pairwise bootstrap,
and the latter is the traditional nonparametric bootstrap. Thus the block bootstrap is a natural
generalization of the nonparametric bootstrap.

14.45 Technical Proofs*

Proof of Theorem 14.2. Define ỹt =
(
yt,yt−1,yt−2, ...

)
∈ Rm×∞ as the history of yt up to time

t. We can then write xt = φ(ỹt). Let B be the pre-image of {xt ≤ x} (the vectors ỹ ∈ Rm×∞
such that φ(ỹ) ≤ x). Then

P (xt ≤ x) = P (φ(ỹt) ≤ x) = P (ỹt ∈ B) .
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Since yt is strictly stationary the probability P (ỹt ∈ B) is independent8 of t. This means that the
distribution of xt is independent of t. This argument can be extended to show that the distribution
of (xt, ...,xt+`) is independent of t. This means that xt is strictly stationary as claimed. �

Proof of Theorem 14.3. We need to verify that the series SN =
∑N

j=0 ajyt−j converges almost
surely as N → ∞. By the Cauchy criterion for convergence, this holds if for all ε > 0, there is an
N <∞ such that maxm≥1 |SN+m − SN | ≤ ε. Using Markov’s inequality and the triangle inequality

P
(

max
m≥1
|SN+m − SN | > ε

)
≤ ε−1E

(
max
m≥1
|SN+m − SN |

)

= ε−1E

max
m≥1

∣∣∣∣∣∣
N+m∑
j=N+1

ajyt−j

∣∣∣∣∣∣


≤ E

 ∞∑
j=N+1

|aj | |yt−j |


≤

 ∞∑
j=N+1

|aj |

(sup
t
E |yt|

)
→ 0

as N →∞ since
∑∞

j=0 |aj | <∞. Thus xt =
∑∞

j=0 ajyt−j converges almost surely.
If yt is strictly stationary then xt is as well by Theorem 14.2. �

Proof of Theorem 14.5. Since
∑n

`=1wn` → 1 we can without loss of generality set A = 0. Fix
ε > 0. Pick N such that |a`| ≤ ε for ` ≥ N . Pick n suffi ciently large so that

N∑
`=1

wn` |a`| ≤ ε

which is feasible since wn` → 0. Then∣∣∣∣∣
n∑
`=1

wn`a`

∣∣∣∣∣ ≤
n∑
`=1

wn` |a`|

=

N∑
`=1

wn` |a`|+
n∑

`=N+1

wn` |a`|

≤ 2ε.

Since ε is arbitrary this establishes that 1
n

∑n
`=1wn`a` → 0 as asserted. �

Proof of Theorem 14.8. See Theorem 14.18. �

Proof of Theorem 14.9. Strict stationarity follows from Theorem 14.2. Let ỹt and x̃t be the
histories of yt and xt. We can write xt = φ (ỹt). Let A be an invariant event for xt. We want to
show P (A) = 0 or 1. The event A is a collection of x̃t histories, and occurs if and and only if an
associated collection of ỹt histories occur. That is, for some sets G and H,

A = {x̃t ∈ G} = {φ (ỹt) ∈ G} = {ỹt ∈ H} .
8An astute reader may notice that the independence of P (ỹt ∈ B) from t does not follow directly from the definition

of strict stationarity. Indeed, a full derivation requires a measure-theoretic treatment. See Section 1.2.B of Petersen
(1983) or Section 3.5 of Stout (1974).
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The assumption that A is invariant means it is unaffected by the time shift, thus can be written as

A = {x̃t+` ∈ G} =
{
ỹt+` ∈ H

}
.

This means the event
{
ỹt+` ∈ H

}
is invariant. Since yt is ergodic, the event has probability 0 or

1. Hence P (A) = 0 or 1, as desired. �

Proof of Theorem 14.11. Suppose yt is discrete with support on (τ1, ..., τN ) and without loss of
generality assume E (yt) = 0. Then by Theorem 14.12

lim
n→∞

1

n

n∑
`=1

cov (yt, yt+`) = lim
n→∞

1

n

n∑
`=1

E (ytyt+`)

= lim
n→∞

1

n

n∑
`=1

N∑
j=1

N∑
k=1

τjτkP (yt = τj , yt+` = τk)

=

N∑
j=1

N∑
k=1

τjτk lim
n→∞

1

n

n∑
`=1

P (yt = τj , yt+` = τk)

=
N∑
j=1

N∑
k=1

τjτkP (yt = τj)P (yt+` = τk)

= E (yt)E (yt+`)

= 0.

which is (14.4). This can be extended to the case of continuous distributions using the monotone
convergence theorem. See Corollary 13.14 of Davidson (1994). �

Proof of Theorem 14.13. We show (14.6). (14.7) follows by Markov’s inequality.
Without loss of generality we focus on the scalar case, and assume E(yt) = 0. Fix ε > 0. Pick

B large enough such that
E |yt1 (|yt| > B)| ≤ ε

4
(14.58)

which is feasible since E |yt| <∞. Define

wt = yt1 (|yt| ≤ B)− E (yt1 (|yt| ≤ B))

zt = yt1 (|yt| > B)− E (yt1 (|yt| > B)) .

Notice that wt is a bounded transformation of the ergodic series yt. Thus by (14.4) and (14.9) there
is an n suffi ciently large so that

var(wt)

n
+

2

n

n∑
m=1

(
1− m

n

)
cov (wt, wj) ≤

ε2

4
(14.59)

By the triangle inequality

E |y| = E |w + z| ≤ E |w|+ E |z| . (14.60)

By another application of the triangle inequality and (14.58)

E |z| ≤ E |zt| ≤ 2E |yi1 (|yt| > B)| ≤ ε

2
. (14.61)
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By Jensen’s inequality, direct calculation, and (14.59)

(E |w|)2 ≤ E |w|2

=
1

n2

n∑
t=1

n∑
j=1

E (wtwj)

=
var(wt)

n
+

2

n

n∑
m=1

(
1− m

n

)
cov (wt, wj)

≤ ε2

4
.

Thus
E |w| ≤ ε

2
. (14.62)

Together, (14.60), (14.61) and (14.62) show that E |y| ≤ ε. Since ε is arbitrary, this establishes
(14.6) as claimed. �

Proof of Theorem 14.15 (sketch). By the Cramér-Wold device (Theorem 6.10) it is suffi cient
to establish the result for scalar ut. Let σ2 = E

(
u2
t

)
. By a Taylor series expansion, for x small

log (1 + x) ' x− x2

2
.

Taking exponentials and rearranging, we obtain the approximation

exp (x) ' (1 + x) exp

(
x2

2

)
. (14.63)

Fix λ. Define

Tj =

j∏
i=1

(
1 +

λ√
n
ut

)

Vn =
1

n

n∑
t=1

u2
t .

Since ut is strictly stationary and ergodic, Vn
p−→ σ2. Since ut is a MDS

E (Tn) = 1. (14.64)

To see this, define Ft = σ (..., ut−1, ut). Note Tj = Tj−1

(
1 + λ√

n
uj

)
. By iterated expectations

E (Tn) = E (E (Tn | Fn−1))

= E
(
Tn−1E

(
1 +

λ√
n
un

∣∣∣∣ Fn−1

))
= E (Tn−1) = · · · = E (T1)

= 1.

This is (14.64).



CHAPTER 14. TIME SERIES 573

The moment generating function of Sn is

E

(
exp

(
λ√
n

n∑
t=1

ut

))
= E

(
n∏
i=1

exp

(
λ√
n
ut

))

' E
(

n∏
i=1

(
1 +

λ√
n
ut

)
exp

(
λ2

2n
u2
t

))
(14.65)

= E
(
Tn exp

(
λ2Vn

2

))
' E

(
Tn exp

(
λ2σ2

2

))
(14.66)

= exp

(
λ2σ2

2

)
.

The approximation in (14.65) is (14.63). The approximation (14.66) is Vn
p−→ σ2. (A rigorous

justification which allows this substitution in the expectation is quite technical.) The final equality
is (14.64). This calculation shows that the moment generating function of Sn is approximately that
of N

(
0, σ2

)
, as claimed.

The assumption that ut is a MDS is critical for (14.64). Tn is a nonlinear function of the errors
ut so a white noise assumption cannot be used instead. The MDS assumption is exactly the minimal
condition needed to obtain (14.64). This is why the MDS assumption cannot be easily replaced by
a milder assumption such as white noise. �

Proof of Theorem 14.17.1. Without loss of generality suppose E (xt) = 0 and E (zt) = 0. Set
η = sgn(E

(
zt | F t−m−∞

)
. Then by iterated expectations, |xt| ≤ C1,

∣∣E (zt | F t−m−∞ )∣∣ = ηE
(
zt | F t−m−∞

)
,

and again using iterated expectations

|cov (xt−m, zt)| =
∣∣E (E (xt−mzt | F t−m−∞ ))∣∣

=
∣∣E (xt−mE (zt | F t−m−∞ ))∣∣

≤ C1E
∣∣E (zt | F t−m−∞ )∣∣

= C1E
(
ηE
(
zt | F t−m−∞

))
= C1E

(
E
(
ηzt | F t−m−∞

))
= C1E (ηzt)

= C1 cov (η, zt) . (14.67)

Setting ξ = sgn(E (xt−m | F∞t ), by a similar argument, (14.67) is bounded by C1C2 cov (η, ξ). Set
A1 = 1 (η = 1), A2 = 1 (η = −1), B1 = 1 (ξ = 1), B2 = 1 (ξ = −1). We calculate

|cov (η, ξ)| = |P (A1 ∩B1) + P (A2 ∩B2)− P (A2 ∩B1)− P (A1 ∩B2)

−P (A1)P (B1)− P (A2)P (B2) + P (A2)P (B1) + P (A1)P (B2)|
≤ 4α(m).

Together, |cov (xt−m, zt)| ≤ 4C1C2α(m) as claimed. �

Proof of Theorem 14.17.2. Assume E (xt) = 0 and E (zt) = 0. We first show that if |xt| ≤ C
then

|cov (xt−`, zt)| ≤ 6C (E |zt|r)1/r α(`)1−1/r. (14.68)

Indeed, if α(`) = 0 the result it immediate so assume α(`) > 0. Set D = α(`)−1/r (E |zt|r)1/r,
vt = zt1 (|zt| ≤ D) and wt = zt1 (|zt| > D). Using the Triangle inequality, and then part 1, since
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|xt| ≤ C and |vt| ≤ D,

|cov (xt−`, zt)| ≤ |cov (xt−`, vt)|+ |cov (xt−`, wt)|
≤ 4CDα(`) + 2CE |wt| .

Also,

E |wt| = E |zt1 (|zt| > D)| = E
∣∣∣∣ |zt|r|zt|r−1 1 (|zt| > D)

∣∣∣∣ ≤ E |zt|rDr−1
= α(`)(r−1)/r (E |zt|r)1/r

using the definition of D. Together we have

|cov (xt−`, zt)| ≤ 6C (E |xt|r)1/r α(`)1−1/r.

which is (14.68) as claimed.
Now set C = α(`)−1/r (E |xt|r)1/r, vt = xt1 (|xt| ≤ C) and wt = xt1 (|xt| > C). Then using the

Triangle inequality and (14.68)

|cov (xt−`, zt)| ≤ |cov (vt−`, zt)|+ |cov (wt−`, zt)| .

Since |vt| ≤ C, using (14.68) and the definition of C

|cov (vt−`, zt)| ≤ 6C (E |zt|q)1/q α(`)1−1/q = 6 (E |xt|r)1/r (E |zt|q)1/q α(`)1−1/q−1/r.

Using Hölder’s inequality and the definition of C

|cov (wt−`, zt)| ≤ 2
(
E |wt|q/(q−1)

)(q−1)/q
(E |zt|q)1/q

= 2
(
E
(
|xt|q/(q−1) 1 (|xt| > C)

))(q−1)/q
(E |zt|q)1/q

= 2

(
E

(
|xt|r

|xt|r−q/(q−1)
1 (|xt| > C)

))(q−1)/q

(E |zt|q)1/q

≤ 2

Cr(q−1)/q−1
(E |xt|r)(q−1)/q (E |zt|q)1/q

= 2 (E |xt|r)1/r (E |zt|q)1/q α(`)1−1/q−1/r.

Together we have

|cov (xt−`, zt)| ≤ 8 (E |xt|r)1/r (E |zt|q)1/q α(`)1−1/r−1/q

as claimed. �

Proof of Theorem 14.17.3. Set η = sgn
(
E
(
yt

∣∣∣F t−`−∞)) which satisfies |η| ≤ 1. Then since

η is F t−`−∞-measurable, iterated expectations, using (14.68) with C = 1, the conditional Jensen’s
inequality, and iterated expectations,

E
∣∣∣E(yt ∣∣∣F t−`−∞)∣∣∣ = E

(
ηE
(
yt

∣∣∣F t−`−∞))
= E

(
E
(
ηyt

∣∣∣F t−`−∞))
= E (ηyt)

≤ 6
(
E
∣∣∣E(yt ∣∣∣F t−`−∞)∣∣∣r)1/r

α(`)1−1/r

≤ 6
(
E
(
E
(
|yt|r

∣∣∣F t−`−∞)))1/r
α(`)1−1/r

= 6 (E |yt|r |)1/r α(`)1−1/r
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as claimed. �

Proof of Theorem 14.19. By the Cramér-Wold device it is suffi cient to prove the result for the
scalar case. Our proof method is based on a MDS approximation. The trick is to establish the
relationship

ut = et + zt − zt+1 (14.69)

where et is a strictly stationary and ergodic MDS with E
(
e2
t

)
= Ω and E |zt| < ∞. Defining

Sen = 1√
n

∑n
t=1 et, we have

Sn =
1√
n

n∑
t=1

(et + zt − zt+1) = Sen +
z1√
n
− zn+1√

n
. (14.70)

The first component on the right side is asymptotically N (0,Ω) by the MDS CLT (Theorem 14.15),
and the second and third terms are op(1) by Markov’s inequality.

The desired relationship (14.69) holds as follows. Set Ft = σ (..., ut−1, ut),

et =
∞∑
`=0

(E (ut+` | Ft)− E (ut+` | Ft−1)) (14.71)

and

zt =

∞∑
`=0

E (ut+` | Ft−1) .

You can verify that these definitions satisfy (14.69), given E (ut | Ft) = ut. The variable zt has a
finite mean since by the Triangle inequality, Theorem 14.17.3, and the assumptions

E |zt| = E

∣∣∣∣∣
∞∑
`=0

E (ut+` | Ft−1)

∣∣∣∣∣
≤ 6 (E |ut|r)1/r

∞∑
`=0

α(`)1−1/r

<∞.

Since
∑∞

`=0 α(`)1−2/r <∞ implies
∑∞

`=0 α(`)1−1/r <∞.
The series et in (14.71) has a finite mean by the same calculation as for zt. It is a MDS since

by iterated expectations

E (et | Ft−1) = E

( ∞∑
`=0

(E (ut+` | Ft)− E (ut+` | Ft−1)) | Ft−1

)

=

∞∑
`=0

(E (E (ut+` | Ft) | Ft−1)− E (E (ut+` | Ft−1) | Ft−1))

=

∞∑
`=0

(E (ut+` | Ft−1)− E (ut+` | Ft−1))

= 0.

It is strictly stationary and ergodic by Theorem 14.2 since it is a function of the history (..., ut−1, ut).
The proof is completed by showing that et has a finite variance which equals Ω. The trickiest

step is to show that var (et) <∞. Since

E |Sn| ≤
√

var (Sn) −→
√

Ω
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(as shown in (14.17)) it follows that E |Sn| ≤ 2
√

Ω for n suffi ciently large. Using (14.70) and
E |zt| <∞, for n suffi ciently large,

E |Sen| ≤ E |Sn|+
E |z1|√
n

+
E |zn+1|√

n
≤ 3
√

Ω. (14.72)

Now define eBt = et1 (|et| ≤ B) − E (et1 (|et| ≤ B) | Ft−1) which is a bounded MDS. By Theorem

14.15, 1√
n

∑n
t=1 eBt

d−→ N
(
0, σ2

B

)
where σ2

B = E
(
e2
Bt

)
. Since the sequence is also uniformly

integrable, this implies

E

∣∣∣∣∣ 1√
n

n∑
t=1

eBt

∣∣∣∣∣ −→ E
∣∣N (0, σ2

B

)∣∣ =

√
2

π
σB (14.73)

using E |N (0, 1)| = 2/π. We want to show that var (et) < ∞. Suppose not. Then σB → ∞ as
B → ∞, so there will be some B suffi ciently large such that the right-side of (14.73) exceeds the
right-side of (14.72). This is a contradiction. We deduce that var (et) <∞.

Examining (14.70), we see that since var (Sn) −→ Ω < ∞ and var (Sen) = var (et) < ∞ then
var (z1 − zn+1) /n < ∞. Since zt is stationary, we deduce that var (z1 − zn+1) < ∞. Equation
(14.70) implies var (et) = var (Sen) = var (Sn) + o(1) −→ Ω. We deduce that var (et) = Ω as
claimed. �

Proof of Theorem 14.21. Consider the projection of yt onto (..., et−1, et). Since the projection
errors et are uncorrelated, the coeffi cients of this projection are the bivariate projection coeffi cients

bj = E (ytet−j) /E
(
e2
t−j

)
. The leading coeffi cient is

b0 =
E (ytet)

σ2

=

∑∞
j=1 αjE (yt−jet) + E

(
e2
t

)
σ2

= 1

using Theorem 14.20. By Bessel’s Inequality (Brockwell and David, Corollary 2.4.1),
∞∑
j=1

b2j = σ−4
∞∑
j=1

(E (ytet))
2 ≤ σ−4

(
E
(
y2
t

))2
<∞

since E
(
y2
t

)
<∞ by the assumption of covariance stationarity.

The error from the projection of yt onto (..., et−1, et) is µt = yt−
∑∞

j=0 bjet−j . The fact that this
can be written as (14.22) is technical. For the complete argument see Theorem 5.7.1 of Brockwell
and Davis (1991). �

Proof of Theorem 14.23. We need to verify that the series SN =
∑N

j=0 θjet−j converges almost
surely as N → ∞. By the Cauchy criterion for convergence, this holds if for all ε > 0, there is
an N < ∞ such that maxm≥1 |SN+m − SN | ≤ ε. By Kolmogorov’s inequality (B.38), since et is a
MDS with E

(
e2
t

)
= σ2 <∞

P
(

max
m≥1
|SN+m − SN | > ε

)
= P

max
m≥1

∣∣∣∣∣∣
N+m∑
j=N+1

θjet−j

∣∣∣∣∣∣ > ε


≤ ε−2

∞∑
j=N+1

E (θjet−j)
2

= σ2ε−2
∞∑

j=N+1

θ2
j → 0



CHAPTER 14. TIME SERIES 577

as N →∞ since
∑∞

j=0 θ
2
j <∞. Thus yt =

∑∞
j=0 θjet−j converges almost surely.

Since et is strictly stationary and ergodic then yt is as well by Theorem 14.9. �

Proof of Theorem 14.25. In the text we showed that |βj | < 1 is suffi cient for yt to be strictly
stationary and ergodic. We now verify that this is equivalent to (14.31)-(14.33). The roots are

βj =
(
α1 ±

√
α2

1 + 4α2

)
/2. Consider separately the cases of real roots and complex roots.

Suppose that the roots are real, which occurs when α2
1 + 4α2 ≥ 0. Then |βj | < 1 iff |α1| < 2

and
α1 +

√
α2

1 + 4α2

2
< 1 and − 1 <

α1 −
√
α2

1 + 4α2

2
.

Equivalently, this holds iff

α2
1 + 4α2 < (2− α1)2 = 4− 4α1 + α2

1 and α2
1 + 4α2 < (2 + α1)2 = 4 + 4α1 + α2

1

or equivalently iff
α2 < 1− α1 and α2 < 1 + α1

which are (14.31) and (14.32). α2
1 + 4α2 ≥ 0 and |α1| < 2 imply α2 ≥ −α2

1/4 ≥ −1, which is
(14.33).

Now suppose the roots are complex, which occurs when α2
1 + 4α2 < 0. The squared modulus of

the roots βj =
(
α1 ±

√
α2

1 + 4α2

)
/2 are

|βj |2 =
(α1

2

)2
−
(√

α2
1 + 4α2

2

)2

= −α2.

Thus the requirement |βj | < 1 is satisfied iff α2 > −1, which is (14.33). α2
1 + 4α2 < 0 and α2 > −1

imply α2
1 < −4α2 < 4, so |α1| < 2. α2

1 + 4α2 < 0 and |α1| < 2 imply α1 + α2 < α1 − α2
1/4 < 1 and

α2 − α1 < −α2
1/4− α1 < 1 which are (14.31) and (14.32). �

Proof of Theorem 14.27. The assumption that the roots of α(z) lie outside the unit circle implies
that the factors β` satisfy |β`| < 1. Using the factorization (14.37), and (14.27) under |β`| < 1, we
find

α(z)−1 =

p∏
`=1

(1− β`z)−1

=

p∏
`=1

 ∞∑
j=0

βj`z
j


=
∞∑
j=0

 ∑
i1+···+ip=j

βi11 · · ·β
ip
p

 zj

=
∞∑
j=0

bjz
j

with
bj =

∑
i1+···+ip=j

βi11 · · ·β
ip
p .
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Set β = max` |β`| < 1. Using the triangle inequality and the stars and bars theorem (from
combinatorics theory)

|bj | ≤
∑

i1+···+ip=j

|β1|i1 · · · |βp|ip

≤
∑

i1+···+ip=j

βj

≤
(
p+ j − 1

j

)
βj

=
(p+ j − 1)!

(p− 1)!j!
βj

≤ (j + 1)p βj

= O
(
jpβj

)
.

From Theorem 14.4.3,
∑∞

j=0 |bj | ≤
∑∞

j=0 (j + 1)p βj <∞ is convergent since β < 1. �

Proof of Theorem 14.34. If Q is singular then there is some γ such that γ ′Qγ = 0. We can
normalize γ to have a unit coeffi cient on yt−1 (or the first non-zero coeffi cient other than the

intercept). We then have that E
(
yt−1 −

(
1, yt−2, ..., yt−p)

)′
φ
)2

= 0 for some φ, or equivalently

E
(
yt −

(
1, yt−1, ..., yt−p+1)

)′
φ
)2

= 0. Setting β = (φ′, 0)′ this implies E
(
yt − β′xt

)2
= 0. Since

α is the best linear predictor we must have β = α. This implies σ2 = E (yt −α′xt)2 = 0. This
contradicts the assumption σ2 > 0. We conclude that Q is not singular. �
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14.46 Exercises

Exercise 14.1 For a scalar time series yt define the sample autocovariance and autocorrelation

γ̂(k) = n−1
n∑

t=k+1

(yt − y) (yt−k − y)

ρ̂(k) =
γ̂(k)

γ̂(0)
=

∑n
t=k+1 (yt − y) (yt−k − y)∑n

t=1 (yt − y)2 .

Assume the series is strictly stationary, ergodic, and strictly stationary and E
(
y2
t

)
<∞.

Show that γ̂(k)
p−→ γ(k) and ρ̂(k)

p−→ γ(k) as n→∞. (Use the Ergodic Theorem.)

Exercise 14.2 Show that if (et,Ft) is a MDS and xt is Ft-measurable that ut = xt−1et is a MDS.

Exercise 14.3 Let σ2
t = E

(
e2
t | Ft−1

)
. Show that ut = e2 − σ2

t is a MDS.

Exercise 14.4 Continuing the previous exercise, show that if E
(
e4
t

)
<∞ then

n−1/2
n∑
t=1

(
e2
t − σ2

t

) d−→ N
(
0, v2

)
.

Express v2 in terms of the moments of et.

Exercise 14.5 A stochastic volatility model is

yt = σtet

log σ2
t = ω + β log σ2

t−1 + ut

where et and ut are independent i.i.d. N (0, 1) shocks.

(a) Write down an information set for which yt is a MDS.

(b) Show that if |β| < 1 then yt is strictly stationary and ergodic.

Exercise 14.6 Verify the formula ρ(1) = θ/
(
1 + θ2

)
for a MA(1) process.

Exercise 14.7 Verify the formula ρ(k) =
(∑∞

j=0 θj+kθj

)
/
(∑q

j=0 θ
2
j

)
for a MA(∞) process.

Exercise 14.8 Suppose yt = yt−1 + et with et i.i.d. (0, 1) and y0 = 0. Find var (yt). Is yt
stationary?

Exercise 14.9 Take the AR(1) model with no intercept yt = α1yt−1 + et.

(a) Find the impulse response function bj = ∂
∂et
yt+j .

(b) Let α̂1 be the least squares estimator of α1. Find the estimator of bj .

(c) Let s (α̂1) be a standard error for α̂1. Use the delta method to find a 95% asymptotic
confidence interval for bj .

Exercise 14.10 Take the AR(2) model yt = α1yt−1 + α2yt−1 + et.

(a) Find expressions for the impulse responses b1, b2, b3 and b4.
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(b) Let (α̂1, α̂2) be the least squares estimator. Find the estimator of b2.

(c) Let V̂ be the estimated covariance matrix for the coeffi cients. Use the delta method to find
a 95% asymptotic confidence interval for b2.

Exercise 14.11 Take the quarterly series pnfix (nonresidential real private fixed investment) from
FRED-QD.

(a) Transform the series into quarterly growth rates.

(b) Estimate an AR(4) model. Report using heteroskedastic-consistent standard errors.

(c) Repeat using the Newey-West standard errors, using M = 5.

(d) Comment on the magnitude and interpretation of the coeffi cients.

(e) Calculate (numerically) the impulse responses for j = 1, ..., 10.

Exercise 14.12 Take the quarterly series oilpricex (real price of crude oil) from FRED-QD.

(a) Transform the series by taking first differences.

(b) Estimate an AR(4) model. Report using heteroskedastic-consistent standard errors.

(c) Test the hypothesis that the real oil prices is a random walk by testing that the four AR
coeffi cients jointly equal zero.

(d) Interpret the coeffi cient estimates and test result.

Exercise 14.13 Take the monthly series unrate (unemployment rate) from FRED-MD.

(a) Estimate AR(1) through AR(8) models, using the sample starting in 1960m1 so that all
models use the same observations.

(b) Compute the AIC for each AR model and report.

(c) Which AR model has the lowest AIC?

(d) Report the coeffi cient estimates and standard errors for the selected model.

Exercise 14.14 Take the quarterly series unrate (unemployment rate) and claimsx (initial claims)
from FRED-QD. “Initial claims”are the number of individuals who file for unemployment insur-
ance.

(a) Estimate a distributed lag regression of the unemployment rate on initial claims. Use lags 1
through 4. Which standard error method is appropriate?

(b) Estimate an autoregressive distributed lag regression of the unemployment rate on initial
claims. Use lags 1 through 4 for both variables.

(c) Test the hypothesis that initial claims does not Granger cause the unemployment rate.

(d) Interpret your results.

Exercise 14.15 Take the quarterly series gdpc1 (real GDP) and houst (housing starts) from
FRED-QD. “Housing starts”are the number of new houses which on which construction is started.

(a) Transform the real GDP series into its one quarter growth rate.
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(b) Estimate a distributed lag regression of GDP growth on housing starts. Use lags 1 through
4. Which standard error method is appropriate?

(c) Estimate an autoregressive distributed lag regression of GDP growth on housing starts. Use
lags 1 through 2 for GDP growth and 1 through 4 for housing starts.

(d) Test the hypothesis that housing starts does not Granger cause GDP growth.

(e) Interpret your results.



Chapter 15

Multivariate Time Series

15.1 Introduction

A multivariate time series yt = (y1t, ..., ymt)
′ is an m × 1 vector process observed in sequence

over time, t = 1, ..., n. Multivariate time series models primarily focus on the joint modeling of the
vector series yt. The most common multivariate time series models used by economists are vector
autoregressions (VARs) and factor models. VARs were introduced to econometrics by Sims (1980).

Some excellent textbooks and review articles on multivariate time series include Hamilton
(1994), Watson (1994), Canova (1995), Lütkepohl (2005), Ramey (1026), and Kilian and Lütkepohl
(2017).

This chapter is preliminary.

15.2 Multiple Equation Time Series Models

To motivate vector autoregressions let us start by reviewing the autoregressive distributed lag
model of Section 14.40 for the case of two series yt = (y1t, y2t)

′ with a single lag. An AR-DL model
for y1t takes the form

y1t = α0 + α1y1t−1 + β1y2t−1 + e1t.

Similarly, an AR-DL model for y2t takes the form

y2t = γ0 + γ1y2t−1 + δ1y1t−1 + e2t.

These two equations specify that each variable is a linear function of its own lagged dependent
variable and the lag of the other variable. In so doing, we find that the variables on the right hand
side of each equation are identical and is a linear function of yt−1.

We can simplify the equations by combining the regressors, stacking the two equations together,
and writing the vector error as et = (e1t, e2t)

′ to find

yt = A0 +A1yt−1 + et

where A0 is 2×1 and A1 is 2×2. This is a bivariate vector autoregressive model for yt. It specifies
that the multivariate process yt is a linear function of its own lag yt−1 plus the vector error et.
It is the combination of two equations, each of which is an autoregressive distributed lag model.
Thus a multivariate autoregression is simply a set of autoregressive distributed lag models.

The above derivation assumed a single lag. If the equations include p lags of each variable, we
obtain the pth order vector autoregressive (VAR) model

yt = A0 +A1yt−1 +A2yt−2 + · · ·+Apyt−p + et. (15.1)

In this equation, the matrices A` are 2×2 for ` ≥ 1. This is a bivariate vector autoregressive model
for yt.

582
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Furthermore, there is nothing special about the two variable case. The notation in (15.1) allows
yt to be a vector of dimension m, in which case the matrices A` are m × m and the error et is
m× 1. We will denote the elements of A` using the notation

A` =


a11,` a12,` · · · a1m,`

a21,` a22,` · · · a2m,`
...

...
...

am1,` am2,` · · · amm,`

 .
The error et = (e1t, ..., emt)

′ is the component of yt = (y1t, ..., ymt)
′ which is unforecastable

at time t − 1. In typical applications the components of et will be mutually contemporaneously
correlated, as the factors which simulaneously affect the components of yt will be related. Therefore
when we define the contemporaneous covariance matrix

Σ = E
(
ete
′
t

)
we generally expect Σ to be non-diagonal.

The VAR model falls in the class of multivariate regression models studied in Chapter 11.
In the following several sections we take a step back and provide a rigorous foundation for vector

autoregressions for stationary time series.

15.3 Linear Projection

In Section 14.14 we derived the linear projection of the univariate series yt on its infinite past
history. We now extend this to the multivariate case. Define the multivariate infinite past history
ỹt−1 = (...,yt−2,yt−1). The best linear predictor of each component of yt is linear in the lags yt−`.
Stacking together we obtain the linear projection of the vector yt on its past history

Pt−1(yt) = P(yt | ỹt−1) = A0 +

∞∑
`=1

A`yt−`.

The projection error is the difference

et = yt − Pt−1(yt) (15.2)

giving rise to the regression equation

yt = A0 +

∞∑
`=1

A`yt−` + et.

The projection errors are mean zero, uncorrelated with lagged yt−1, and are serially uncorre-
lated. We state this formally.
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Theorem 15.1 If yt is covariance stationary it has the projection equation

yt = A0 +

∞∑
`=1

A`yt−` + et.

The projection error et satisfies

E (et) = 0

E
(
yt−`e

′
t

)
= 0 ` ≥ 1

E
(
et−`e

′
t

)
= 0 ` ≥ 1

and
Σ = E

(
ete
′
t

)
<∞.

If yt is strictly stationary, then et is strictly stationary.

The multivariate projection errors et are mean zero and serially uncorrelated. This describes
what is known as a multivariate white noise process.

Definition 15.1 The vector process et is multivariate white noise if
E (et) = 0, E (ete

′
t) = Σ <∞, and E

(
ete
′
t−`
)

= 0 for ` 6= 0.

By projecting the multivariate yt onto the past history of the white noise projection errors et
we obtain a multivariate version of the Wold decomposition.

Theorem 15.2 If yt is covariance stationary and non-deterministic then
it has the linear representation

yt = µ+
∞∑
`=0

B`et−`

where et are the white noise projection errors and B0 = Im.

15.4 VAR Model

The first-order vector autoregressive process, denoted VAR(1), is

yt = A0 +A1yt−1 + et

E (et | Ft−1) = 0

E
(
ete
′
t

)
= Σ <∞

where et is a strictly stationary and ergodic MDS.
We are interested in conditions under which yt is a stationary process. Let λi be the ith

eigenvalue of A1.
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Theorem 15.3 If maxi |λi| < 1 then the VAR(1) process yt is strictly
stationary and ergodic.

The VAR(1) generalizes the AR(1) model to multivariate systems. The dynamics of a VAR(1)
can be considerably more involved than those of an AR(1).

The proof of Theorem 15.3 follows from the following technical result by applying back-substitution
to write yt =

∑∞
`=0A

`
1 (A0 + et−`).

Theorem 15.4 Let λi be the ith eigenvalue of A. If maxi |λi| < 1, ut is a
strictly stationary and ergodic, and E ‖ut‖ < ∞, then xt =

∑∞
`=0A

`ut−`
is convergent with probability one, and is strictly stationary and ergodic.

The proof is given in Section 15.14.
The pth-order vector autoregressive process, denoted VAR(p), is

yt = A0 +A1yt−1 + · · ·+Apyt−p + et

E (et | Ft−1) = 0

E
(
ete
′
t

)
= Σ <∞

where et is a strictly stationary and ergodic MDS.
We can write the model using the lag operator notation as

A (L)yt = A0 + et

A (z) = Im −A1z − · · · −Apz
p.

The condition for stationarity of the system can be expressed as a restriction on the roots of
the determinantal equation.

Theorem 15.5 If all roots λ of det (A (z)) = 0 satisfy |λ| > 1 then the
VAR(p) process yt is strictly stationary and ergodic.

The proof is given in Section 15.14.

15.5 Regression Notation

Defining the mp+ 1 vector

xt =


1
yt−1

yt−2
...

yt−p


and the m× (mp+ 1) matrix

A′ =
(
A0 A1 A2 · · · Ap

)
.
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Then the VAR system of equations can be written as

yt = A′xt + et. (15.3)

This is a multivariate regression model. The error has covariance matrix

Σ = E
(
ete
′
t

)
. (15.4)

We can also write the coeffi cient matrix as

A =
(
a1 a2 · · · am

)
where aj is the vector of coeffi cients for the jth equation. Thus

yjt = a′jxt + ejt.

In general, if yt is strictly stationary we can define the coeffi cient matrix A by linear projection,
thus

A =
(
E
(
xtx

′
t

))−1 E
(
xty

′
t

)
.

This holds whether or not yt is actually a VAR(p) process. By the properties of projection errors

E
(
xte
′
t

)
= 0. (15.5)

The projection coeffi cient matrix A is identified if E (xtx
′
t) is invertible.

Theorem 15.6 If yt is strictly stationary and 0 < Σ < ∞ for Σ defined
in (15.4), then Q = E (xtx

′
t) > 0 and thus the coeffi cient vector (14.42) is

identified.

The proof is given in Section 15.14.

15.6 Estimation

From Chapter 11, the systems estimator of a multivariate regression is least squares. The
estimator can be written as

Â =

(
n∑
t=1

xtx
′
t

)−1( n∑
t=1

xty
′
t

)
.

Alternatively, the coeffi cient estimator for the jth equation is

âj =

(
n∑
t=1

xtx
′
t

)−1( n∑
t=1

xtyjt

)
.

The least squares residual vector is

êt = yt − Â
′
xt.

The estimator of the variance matrix is

Σ̂ =
1

n

n∑
t=1

êtê
′
t.
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If yt is strictly stationary and ergodic with finite variances then we can apply the Ergodic
Theorem to deduce that

1

n

n∑
t=1

xty
′
t

p−→ E
(
xty

′
t

)
and

n∑
t=1

xtx
′
t

p−→ E
(
xtx

′
t

)
.

Since the latter is positive definite by Theorem 15.6, we conclude that Â is consistent for A.
Standard manipulations show that Σ̂ is consistent as well.

Theorem 15.7 If yt is strictly stationary and ergodic and 0 < Σ < ∞
then Â

p−→ A and Σ̂
p−→ Σ as n→∞.

VAR models can be estimated in Stata using the var command.

15.7 Asymptotic Distribution

Set

a = vec (A) =

 a1
...
am

 , â = vec
(
Â
)

=

 â1
...
âm

 .

By the same analysis as in Theorem 14.33 combined with Theorem 11.1 we obtain the following.

Theorem 15.8 If yt follows the VAR(p) model with E (et | Ft−1) = 0,
E ‖yt‖4 <∞, and Σ > 0, then as n→∞,

√
n (â− a)

d−→ N (0,V )

where

V = Q
−1

ΩQ
−1

Q = Im ⊗Q
Q = E

(
xtx

′
t

)
Ω = E

(
ete
′
t ⊗ xtx′t

)
.

Under the conditional homoskedasticity assumption

E
(
ete
′
t | Ft−1

)
= Σ

then the asymptotic variance simplifies as

Ω = Σ⊗Q
V = Σ⊗Q−1.

If the VAR(p) is an approximation then the MDS assumption is not appropriate. In this case
the asymptotic distribution can be derived under mixing conditions.
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Theorem 15.9 If yt is strictly stationary, ergodic, Σ > 0, and for some
r > 4, E ‖yt‖r < ∞ and the mixing coeffi cients satisfy

∑∞
`=1 α(`)1−4/r <

∞, then as n→∞, √
n (â− a)

d−→ N (0,V )

where

V = Q
−1

ΩQ
−1

Q = Im ⊗Q
Q = E

(
xtx

′
t

)
Ω =

∞∑
`=−∞

E
(
et−`e

′
t ⊗ xt−`x′t

)
.

The heteroskedasticity-robust estimator of the covariance matrix for â equals

V̂ â =
(
In ⊗

(
X ′X

)−1
)( n∑

i=1

(
êiê
′
i ⊗ xix′i

))(
In ⊗

(
X ′X

)−1
)
.

The homoskedastic estimator equals

V̂
0

â = Σ̂⊗
(
X ′X

)−1
.

Estimators adjusted for degree-of-freedom can also be used, though there is no established finite-
sample justification.

While the heteroskedasticity-robust covariance matrix estimator is generally appropriate, tra-
ditional textbooks have only used the homoskedastic formula, and consequently existing software
follows the same convention. This is unfortunate. For example, the var command in Stata displays
only the homoskedastic standard errors.

Asymptotic approximations tend to be much less accurate under time series dependence than for
independent observations. Therefore bootstrap methods are a popular alternative. In Section 14.44
we described several popular bootstrap methods for time series observations. While that section
focused on univariate time series, the extension to multivariate estimation is straightforward.

15.8 Selection of Lag Length in an VAR

For a data-dependent rule to pick the lag length p in a VAR, it is recommended to minimize an
information criterion. The formula for the AIC and BIC are

AIC(p) = n log det
(
Ω̂(p)

)
+ 2K(p)

BIC(p) = n log det
(
Ω̂(p)

)
+ log(n)K(p)

Σ̂(p) =
1

n

n∑
t=1

êt(p)êt(p)
′

K(p) = m(pm+ 1)

where K(p) is the number of parameters in the model, and êt(p) is the OLS residual vector from
the model with p lags. The log determinant is the criterion from the multivariate normal likelihood.

In Stata, the AIC for a set of estimated VAR models can be compared using the varsoc
command. It should be noted, however, that the Stata routine actually displays AIC(p)/n =

log det
(
Ω̂(p)

)
+2K(p)/n. This does not affect the ranking of the models, but makes the differences

between models appear smaller than they actually are.
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15.9 Impulse Response Function

One of the diffi culties in VAR analysis is that it is diffi cult to interpret the individual coeffi cients.
This challenge is particularly diffi cult in large systems. Consequently we analyze VARs using
different tools.

The most popular tool for interpretation of VARs is the impulse response function (IRF),
which is generally defined as the change in the expected value of yt due to a change in a shock. There
are several ways of defining a “shock”, resulting in multiple impulse response functions, including
non-orthogonalized, orthogonalized, and structural. In this section we describe non-orthogonalized
impulse responses, and describe the others in later sections.

The non-orthogonalized IRF is the change in the expected value of the ith variable yit at time
t+ h due to the jth shock ejt

IRFij(h) =
∂

∂ejt
E (yit+h | Ft) .

From the multivariate Wold representation

yt = µ+

∞∑
`=0

B`et−`

we can calculate that
IRFij(h) = Bij,h.

There are m2 such responses for each horizon h. We can write them as an m×m matrix

IRF (h) =
∂

∂e′t
E
(
yt+h | Ft

)
= Bh.

Typically we view impulse responses as a function of the horizon h, and plot them as a function
of h for each pair (i, j). The impulse response function IRFij(h) is interpreted as how the ith

variable responds over time to the jth shock.
Take, for example, the 3-variable system estimated in the previous section. Of common interest

is the effect of monetary policy on macroeconomic aggregates. In the context of the model, this is
the effect of a change in the federal funds rate on GDP growth and the inflation rate. The impulse
response function measures the magnitude of this effect, traced over time.

In a linear vector autoregression, the impulse response function is symmetric in negative and
positive shocks. That is, the impact on yit+h of a positive shock ejt = 1 is Bij,h and the impact
of a negative shock ejt = −1 is −Bij,h. Furthermore, the magnitude of the impact is linear in
the magnitude of the shock. Thus the impact of the shock ejt = 2 is 2Bij,h and the impact of
the shock ejt = −2 is −2Bij,h. This means that the shape of the impulse response function is
unaffected by the magnitude of the shock. (These are consequences of the linearity of the vector
autoregressive model, not necessarily features of the true world.) Consequently, we report impulse
response functions scaled for a single shock.

Another way of reporting the same information is via the cumulative impulse response
function (CIRF). It is defined as

CIRF (h) =

h∑
`=1

∂

∂e′t
E
(
yt+` | Ft

)
=

∂

∂e′t
E

(
h∑
`=1

yt+` | Ft

)
=

h∑
`=1

B`.

This is especially useful when the variables in yt have been defined as differences, for then the
CIRF is the effect on the levels of the variable.
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15.10 Impulse Response Estimation

There are two practical methods to calculate the impulse response coeffi cient matrices B` from
the VAR coeffi cient matrices A`, and they are natural generalizations of the methods for the
autoregressive model.

The first uses recursion.

B0 = Im

B1 = A1B0

B2 = A1B1 +B0

...

Bh = A1Bh−1 + · · ·+ApBh−p.

This is equivalent to perturbing the shock e0 and tracing out the effects in the series yt. By linearity
this equals the impulse response function.

The second method uses a state-space VAR(1) representation for the VAR(p) model. Set

ỹt =


yt
yt−1
...

yt−p+1

 , A =


A1 A2 · · · Ap−1 Ap

Im 0 · · · 0 0
0 Im · · · 0 0
...

... 0 0
0 0 · · · Im 0

 , ẽt =


et
0
...
0

 .

Then
ỹt = Aỹt−1 + ẽt.

This is a VAR(1) model in the augmented variable list ỹt. It follows that

ỹt =

∞∑
j=0

Aj ẽt−j .

Furthermore, if we define

J =


Im
0
...
0


Then

yt =

∞∑
j=0

J ′AjJet−j .

It follows that
Bh = J ′AhJ

which is a non-recursive computation formula.
To estimate the IRF we replace the unknown A with the least squares estimator Â. Thus the

estimator of Bh can be written as

B̂h = J ′Â
h
J .

Since Â is random, so is B̂h. The latter is a nonlinear function of Â. Using the Delta method,
we deduce that the elements of B̂h (the impulse responses) are asymptotically normally distributed.
With some messy algebra explicit expressions for the asymptotic variances can be obtained. Sample
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versions can be used to calculate asymptotic standard errors. These can be used to form asymptotic
confidence intervals for the impulse responses.

The asymptotic approximations, however, can be quite poor. As we discussed earlier, the
asymptotic approximations for the distribution of the coeffi cients Â can be quite poor due to the
serial dependence in the observations. The asymptotic approximations for B̂h can be significantly
worse, because the impulse responses can be quite nonlinear functions of the coeffi cients. For
example, in the simple AR(1) model with coeffi cient estimate α̂, the hth impulse response is α̂h

which is highly nonlinear for even moderate horizons h.
Consequently, asymptotic approximations are less popular than bootstrap approximations. The

most popular bootstrap approximations uses the recursive bootstrap (see Section ) using the fitted
VAR model, and then calculates confidence intervals for the impulse responses with the percentile
method. An unfortunate feature of this choice is that the bootstrap confidence intervals are quite
biased, since the nonlinear impulse response estimates are highly biased and the percentile bootstrap
accentuates bias.

Impulse response functions can be calculated and displayed in Stata using the irf command
set. The command irf create , for example, is used to calculate impulse response functions and
confidence intervals. The default confidence intervals are asymptotic (delta method). Bootstrap
(recursive method) standard errors can be substituted using the bs option. The command irf
graph irf produces graphs of the non-orthogonalized impulse response functions along with 95%
asymptotic confidence intervals.

15.11 Illustration

We estimate a three-variable system which is a simplified version of a model often used to
study the impact of monetary policy. The three variables are quarterly from FRED-QD: real GDP
growth rate (annualized), GDP inflation rate, and the Federal funds interest rate. VARs from lags
1 through 8 were estimated by least squares. The model with the smallest AIC was the VAR(6).
The coeffi cient estimates and (homoskedastic) standard errors are reported in Table ??.

In Figure 15.1 we display the estimated impulse response of the GDP growth rate in response to
a one percentage point increase in the federal funds rate. The left plot shows the impulse response
function and the right plot the cumulative impulse response function. The estimates show that the
main effect appears at the second lag (two quarters) with a negative effect somewhat greater than
1%. The point estimates are negative for most horizons up to 9. The cumulative impulse response
function shows the long-run impact on the level of real GDP. It shows that the estimated effect
approaches negative 4% around 8 quarters and reduces to negative 2% by 20 quarters.
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Figure 15.1: Response of GDP Growth to Non-Orthogonalized Fed Funds Shock
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Table 15.1: Vector Autoregression

GDP INF FF
GDPt−1 0.25 0.01 0.08

(0.07) (0.02) (0.02)
GDPt−2 0.23 −0.02 0.04

(0.07) (0.02) (0.02)
GDPt−3 0.00 0.03 0.01

(0.07) (0.02) (0.02)
GDPt−4 0.14 0.04 −0.02

(0.07) (0.02) (0.02)
GDPt−5 −0.02 −0.03 0.04

(0.07) (0.02) (0.02)
GDPt−6 0.05 −0.00 −0.01

(0.06) (0.02) (0.02)
INFt−1 0.11 0.57 0.01

(0.20) (0.07) (0.05)
INFt−2 −0.17 0.10 0.17

(0.23) (0.08) (0.06)
INFt−3 0.01 0.09 −0.05

(0.23) (0.08) (0.06)
INFt−4 0.16 0.14 −0.05

(0.23) (0.08) (0.06)
INFt−5 0.12 −0.05 −0.05

(0.24) (0.08) (0.06)
INFt−6 −0.14 0.10 0.09

(0.21) (0.07) (0.05)
FFt−1 0.13 0.28 1.14

(0.26) (0.08) (0.07)
FFt−2 −1.50 −0.27 −0.53

(0.38) (0.12) (0.10)
FFt−3 1.40 0.12 0.53

(0.40) (0.13) (0.10)
FFt−4 −0.57 −0.13 −0.28

(0.41) (0.13) (0.11)
FFt−5 0.01 0.25 0.28

(0.40) (0.13) (0.10)
FFt−6 0.47 −0.27 −0.24

(0.26) (0.08) (0.07)
Intercept 1.15 0.22 −0.33

(0.54) (0.18) (0.14)
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15.12 Structural VARs

The non-orthogonalized IRFs discussed in the previous sections are diffi cult to interpret as the
shocks ejt are (in general) correlated. It is preferred for impulse responses to be defined with respect
to uncorrelated shocks, so they can be treated as having independent variation. To do so, we need
a structural interpretation.

A reduced form VAR is

yt = A0 +A1yt−1 + et (15.6)

E (et) = 0

E
(
ete
′
t

)
= Σ.

A structural VAR can be written as either

Byt = B0 +B1yt−1 + εt (15.7)

or
yt = A0 +A1yt−1 +Hεt (15.8)

with

E (εt) = 0

E
(
εtε
′
t

)
= Im.

The coeffi cients of the models are related as

H = B−1

A0 = B−1B0

A1 = B−1B1

Σ = HH ′ = B−1B−1′.

The shocks are related as
et = Hεt

If we write out theequations (15.7) and (15.8), the equations for y1t in the bivariate case are

b11y1t = −b12y2t + b0 + b11,1y1t−1 + b12,1y2t−1 + ε1t (15.9)

y1t = a11,1y1t−1 + a12,1y2t−1 + h11ε1t + h12ε2t. (15.10)

In equation (15.9) the coeffi cient b12 allow contemporaneous correlation between y1t and y2t. In
equation (15.10) the contemporaneous correlateion is achieved by h12.

The structural VAR is not identified without restrictions. We can see this as it has more
coeffi cients than the reduced form. Comparing (15.6) with (15.8), the coeffi cient matrices A0 and
A1 are the same, the remaining coeffi cients are related by the equation Σ = HH ′. The reduced
form variance matrix Σ has m(m + 1)/2 free coeffi cients (e.g., 3 in the bivariate case) but H has
m2 free coeffi cients (e.g. 4 in the bivariate case). Model (15.7) has the same number of coeffi cients
as (15.8), and in particular the matrix B is identified from the relationship Σ = B−1B−1′ where
B has m2 free coeffi cients which exceeds the number of coeffi cients in Σ.

The diffi culty cannot be solved by scaling or normalization. Fundamentally, there are multiple
ways to decompose a covariance matrix to write correlated variables as the sum of uncorrelated
“shocks”. For example, consider the simple covariance matrix

Σ =

[
1 ρ
ρ 1

]
.
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Valid factorizations Σ = HH ′ include

H =

[ √
1− ρ2 ρ

0 1

]
,

H =

[
1 0

ρ
√

1− ρ2

]
,

H =
1

2

[ √
1 + ρ+

√
1− ρ

√
1 + ρ−

√
1− ρ√

1 + ρ−
√

1− ρ
√

1 + ρ+
√

1− ρ

]
.

These alternative factorizations are equally valid, and one can only be selected over another based
on a structural economic argument.

15.13 Recursive SVARs

One popular identification strategy is to assume a recursive structure. This approach was
promoted by Sims (1980). The structure is recursive if the matrix B is lower triangular, thus
(in the trivariate case)

B =

 b11 0 0
b21 b22 0
b31 b32 b33

 .
Equivalently, since the inverse of a lower triangular matrix is also lower triangular, a recursive
structure is achieved if H is lower triangular, thus

H =

 h11 0 0
h21 h22 0
h31 h32 h33

 .
Algebraically, the decomposition Σ = HH ′ with H lower triangular is known as the Cholesky

decomposition (see Section A.16). If Σ > 0 then H is unique and the diagonal elements hii are
strictly positive.

From the relation et = Hεt between the reduced form and structural shocks, we see that

e1t = h11ε1t

e2t = h21ε1t + h22ε2t

e3t = h31ε1t + h31ε2t + h33ε3t.

Thus e1t equals ε1t (up to scale), e2t is a combination of ε1t and ε2t, and e3t is a combination of
all three structural shocks. Thus the first variable in the system (y1t) in period t is only affected
by shock 1, the second variable (y2t) is affected by shocks 1 and 2, and the third variable (y3t) is
affected by all three shocks. This is not symmetric, but rather is recursive.

Another way of looking at the structure is that the assumption is that the first shock ε1t affects
all three variables, the second shock ε2t affects y2t and y3t, and the third shock ε3t only affects y3t.

A recursive structure is one type of an exclusion restriction. The recursive structure excludes
the possibility of ε2t or ε3t contemporeneously affecting y1t, and excludes the possibility of ε3t

contemporeneously affecting y2t.
The recursive structure of a VAR is determined by the ordering of the variables in the system.

The order matters, and is the key identifying assumption. In general, the variables listed first
should be those which are believed to be contemporaneously affected by the fewest number of
shocks. One way of thinking about it is that they are the variables which are “most sticky”within
a period. The variables listed last are those which are believed to be contemporanously affected
by the greatest number of shocks. These are the ones which are able to respond within a single
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period to the shocks, or are most flexible. For example, production measures are often listed first,
and price variables listed second, as production decisions are believed to take time to implement,
while market prices can respond immediately. Such distinctions may be more credible when the
time periods are short, and less credible for longer time periods.

A recursive structure can be justified by economic assumptions and models, though in some
cases it may be imposed without meaningful justification. Examples of possible justifications in-
clude: (1) information delays; (2) implementation delays; (3) institutions; (4) market structure; (5)
homogeneity; (6) imposing estimates from other sources. In mosts cases such arguments can be
made, but will be viewed as debatable and restrictive.

To illustrate, consider our example with the variables (GDP, Inflation, Federal Funds). It
is fairly conventional to order the fed funds rate last, allowing the fed funds rate to respond to
contemporenous information about output and price growth, and identifying the fed funds policy
shock as not having a contemporenous impact on the other variables. It is not clear, however, how
to order the other two variables. For simplicity consider a traditional aggregate supply/aggregate
demand model of the determination of output and the price level. If the AS curve is perfectly
elastic in the short run (one quarter), then prices are effectively fixed (sticky), so changes in AD
affect output but not prices. Changes in AS affect both output and prices. Thus we would want
the ordering (Inflation,GDP,Federal Funds), implying the system

Inflationt = h11St

GDPt = h21St + h22Dt

FedFundst = h31St + h31Dt + h33Pt

where St is the AS shock, Dt is the AD shock, and Pt is the policy shock.
In contrast, suppose that the AS curve is perfectly inelastic in the short run. Then output is

fixed and prices are flexible. Changes in AS affect both price and output, but changes in AD only
affect prices. Thus we would want the ordering (GDP, Inflation, Federal Funds) and would have
the system

GDPt = h11St

Inflationt = h21St + h22Dt

FedFundst = h31St + h31Dt + h33Pt.

Thus we see that the choice of ordering is equivalent to identification based on the assumption
of perfectly elastic versus perfectly inelastic short-run aggregate supply. Furthermore, if the AS
curve is assumed to be upward sloped then the AD and AS shocks cannot be separately identifed.
The impact of the Policy shock, however, is identified as long as it is excluded from the GDP and
Inflation equations.

In our example VAR, the impulse response of the orthogonalized policy shock on GDP (not
shown) is nearly identical to the plot in Figure 15.1, because the reduced form shocks have small
correlation.

15.14 Technical Proofs*

Proof of Theorem 15.3. First, observe that if we write A` = [Bij,`], xt = (x1t, ..., xmt)
′ and

ut = (u1t, ..., umt)
′ then xt =

∑∞
`=0A

`ut−` is the same as

xit =

m∑
j=1

∞∑
`=0

Bij,`ujt.

Applying Theorem 14.10, this is convergent, strictly stationary, and ergodic if
∑∞

`=0 |Bij,`| <∞ for
each i and j.
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By the Jordan matrix decomposition, A = PJP−1 where J = diag {J1, ...,Jr} is in Jordan
normal form. Thus

xt =

∞∑
`=0

A`ut−` = P

∞∑
`=0

J `vt−` (15.11)

where vt = P−1ut is strictly stationary and ergodic and satisfies E ‖vt‖ <∞.
Since J is block diagonal the sum in (15.11) converges if and only if each block converges.
The dimension of each Jordan block J i is determined by the multiplicity of the eigenvalues of

A. For unique eigenvalues λ, J i = λ so J `i = λ` which is absolutely summable if |λ| < 1.
For eigenvalues with double multiplicity the Jordan blocks take the form

J i =

[
λ 1
0 λ

]
where λ is an eigenvalue of A. We calculate that

J `i =

[
λ` `λ`−1

0 λ`

]
.

If |λ| < 1 these elements are absolutely summable by Theorem 14.4.
For eigenvalues with higher multiplicity s the Jordan blocks are s × s with a similar form.

Similar calculations show that the elements of J `i are absolutely summable if |λ| < 1. This verifies
the conditions for Theorem ?? as required.

�

Proof of Theorem 15.5. Factor the autoregressive polynomial as

A (z) = Im −A1z − · · · −Apz
p =

p∏
j=1

(Im −Bjz) .

Then

det (A (z)) =

p∏
j=1

det (Im −Bjz) .

If λ is a solution to det (A (z)) = 0 this means det (Im −Bjλ) = 0 for some j, which means λ−1

is an eigenvalue of Bj . The assumption |λ| > 1 means the eigenvalues of B1, ...,Bm are less than
one. By Theorem 15.4 the processes

u1t = B1u1t−1 + et

u2t = B2u2t−1 + u1t

...

umt = Bmumt−1 + um−1,t

are all strictly stationary and ergodic. But

umt = (Im −BmL)−1 um−1,t

= (Im −BmL)−1 (Im −Bm−1L)−1 um−2,t

=

p∏
j=1

(Im −BjL)−1 et

= A (L)−1 et

= yt.
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Thus yt is strictly stationary and ergodic. �

Proof of Theorem 15.6. The assumption that Σ > 0 means that if we regress y1t on y2t, ..., ypt
and yt−1, ...,yt−p that the error will have positive variance. If Q is singular then there is some γ
such that γ ′Qγ = 0. As in the proof of Theorem 14.31 This means that the regression of y1t on
y2t, ..., ypt,yt−1, ...,yt−p+1 has a zero variance. This is a contradiction. We conclude that Q is not
singular. �



Chapter 16

Non Stationary Time Series

16.1 Introduction

This chapter is preliminary.

16.2 Trend Stationarity

yt = µ0 + µ1t+ St (16.1)

St = α1St−1 + α2St−2 + · · ·+ αpSt−p + et, (16.2)

or
yt = α0 + γt+ α1yt−1 + α2yt−1 + · · ·+ αpyt−p + et. (16.3)

There are two essentially equivalent ways to estimate the autoregressive parameters (α1, ..., αp).

• You can estimate (16.3) by OLS.

• You can estimate (16.1)-(16.2) sequentially by OLS. That is, first estimate (16.1), get the
residual Ŝt, and then perform regression (16.2) replacing St with Ŝt. This procedure is some-
times called Detrending.

The reason why these two procedures are (essentially) the same is the Frisch-Waugh-Lovell
theorem.

16.3 Autoregressive Unit Roots

The AR(p) model is

α(L)yt = α0 + et

α(L) = 1− α1L− · · · − αpLp.

As we discussed before, yt has a unit root when α(1) = 0, or

α1 + α2 + · · ·+ αp = 1.

In this case, yt is non-stationary. The ergodic theorem and MDS CLT do not apply, and test
statistics are asymptotically non-normal.

A helpful way to write the equation is the so-called Dickey-Fuller reparameterization:

∆yt = ρ0yt−1 + ρ1∆yt−1 + · · ·+ ρp−1∆yt−(p−1) + et. (16.4)

598
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These models are equivalent linear transformations of one another. The DF parameterization
is convenient because the parameter ρ0 summarizes the information about the unit root, since
α(1) = −ρ0. To see this, observe that the lag polynomial for the yt computed from (16.4) is

(1− L)− ρ0L− ρ1(L− L2)− · · · − ρp−1(Lp−1 − Lp)

But this must equal ρ(L), as the models are equivalent. Thus

α(1) = (1− 1)− ρ0 − (1− 1)− · · · − (1− 1) = −ρ0.

Hence, the hypothesis of a unit root in yt can be stated as

H0 : ρ0 = 0.

Note that the model is stationary if ρ0 < 0. So the natural alternative is

H1 : ρ0 < 0.

Under H0, the model for yt is

∆yt = µ+ ρ1∆yt−1 + · · ·+ ρp−1∆yt−(p−1) + et,

which is an AR(p-1) in the first-difference ∆yt. Thus if yt has a (single) unit root, then ∆yt is a
stationary AR process. Because of this property, we say that if yt is non-stationary but ∆dyt is
stationary, then yt is “integrated of order d”, or I(d). Thus a time series with unit root is I(1).

Since α0 is the parameter of a linear regression, the natural test statistic is the t-statistic for
H0 from OLS estimation of (16.4). Indeed, this is the most popular unit root test, and is called the
Augmented Dickey-Fuller (ADF) test for a unit root.

It would seem natural to assess the significance of the ADF statistic using the normal table.
However, under H0, yt is non-stationary, so conventional normal asymptotics are invalid. An
alternative asymptotic framework has been developed to deal with non-stationary data. We do not
have the time to develop this theory in detail, but simply assert the main results.

Theorem 16.1 Dickey-Fuller Theorem.
If ρ0 = 0 then as n→∞,

nρ̂0
d−→ (1− ρ1 − ρ2 − · · · − ρp−1)DFα

ADF =
ρ̂0

s(ρ̂0)
→ DFt.

The limit distributions DFα and DFt are non-normal. They are skewed to the left, and have
negative means.

The first result states that ρ̂0 converges to its true value (of zero) at rate n, rather than the
conventional rate of n1/2. This is called a “super-consistent”rate of convergence.

The second result states that the t-statistic for ρ̂0 converges to a limit distribution which is
non-normal, but does not depend on the parameters ρ. This distribution has been extensively
tabulated, and may be used for testing the hypothesis H0. Note: The standard error s(ρ̂0) is the
conventional (“homoskedastic”) standard error. But the theorem does not require an assumption
of homoskedasticity. Thus the Dickey-Fuller test is robust to heteroskedasticity.

Since the alternative hypothesis is one-sided, the ADF test rejects H0 in favor of H1 when
ADF < c, where c is the critical value from the ADF table. If the test rejects H0, this means that
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the evidence points to yt being stationary. If the test does not reject H0, a common conclusion is
that the data suggests that yt is non-stationary. This is not really a correct conclusion, however.
All we can say is that there is insuffi cient evidence to conclude whether the data are stationary or
not.

We have described the test for the setting of with an intercept. Another popular setting includes
as well a linear time trend. This model is

∆yt = µ1 + µ2t+ ρ0yt−1 + ρ1∆yt−1 + · · ·+ ρp−1∆yt−(p−1) + et. (16.5)

This is natural when the alternative hypothesis is that the series is stationary about a linear time
trend. If the series has a linear trend (e.g. GDP, Stock Prices), then the series itself is non-
stationary, but it may be stationary around the linear time trend. In this context, it is a silly waste
of time to fit an AR model to the level of the series without a time trend, as the AR model cannot
conceivably describe this data. The natural solution is to include a time trend in the fitted OLS
equation. When conducting the ADF test, this means that it is computed as the t-ratio for ρ0 from
OLS estimation of (16.5).

If a time trend is included, the test procedure is the same, but different critical values are
required. The ADF test has a different distribution when the time trend has been included, and a
different table should be consulted.

Most texts include as well the critical values for the extreme polar case where the intercept has
been omitted from the model. These are included for completeness (from a pedagogical perspective)
but have no relevance for empirical practice where intercepts are always included.

16.4 Cointegration

The idea of cointegration is due to Granger (1981), and was articulated in detail by Engle and
Granger (1987).

Definition 16.1 The m × 1 series yt is cointegrated if yt is I(1) yet
there exists β, m× r, of rank r, such that zt = β′yt is I(0). The r vectors
in β are called the cointegrating vectors.

If the series yt is not cointegrated, then r = 0. If r = m, then yt is I(0). For 0 < r < m, yt is
I(1) and cointegrated.

In some cases, it may be believed that β is known a priori. Often, β = (1 −1)′. For example, if
yt is a pair of interest rates, then β = (1 −1)′ specifies that the spread (the difference in returns)
is stationary. If y = (log(C) log(I))′, then β = (1 − 1)′ specifies that log(C/I) is stationary.

In other cases, β may not be known.
If yt is cointegrated with a single cointegrating vector (r = 1), then it turns out that β can

be consistently estimated by an OLS regression of one component of yt on the others. Thus yt =

(Y1t, Y2t) and β = (β1 β2) and normalize β1 = 1. Then β̂2 = (y′2y2)−1y′2y1
p−→ β2. Furthermore

this estimator is super-consistent: T (β̂2 − β2) = Op(1), as first shown by Stock (1987). While
OLS is not, in general, a good method to estimate β, it is useful in the construction of alternative
estimators and tests.

We are often interested in testing the hypothesis of no cointegration:

H0 : r = 0

H1 : r > 0.
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Suppose that β is known, so zt = β′yt is known. Then under H0 zt is I(1), yet under H1 zt is
I(0). Thus H0 can be tested using a univariate ADF test on zt.

When β is unknown, Engle and Granger (1987) suggested using an ADF test on the estimated

residual ẑt = β̂
′
yt, from OLS of y1t on y2t. Their justification was Stock’s result that β̂ is super-

consistent under H1. Under H0, however, β̂ is not consistent, so the ADF critical values are not
appropriate. The asymptotic distribution was worked out by Phillips and Ouliaris (1990).

When the data have time trends, it may be necessary to include a time trend in the estimated
cointegrating regression. Whether or not the time trend is included, the asymptotic distribution of
the test is affected by the presence of the time trend.

16.5 Cointegrated VARs

We can write a VAR as

A(L)yt = et

A(L) = I −A1L−A2L2 − · · · −AkL
k

or alternatively as
∆yt = Πyt−1 +D(L)∆yt−1 + et

where

Π = −A(1)

= −I +A1 +A2 + · · ·+Ak.

Theorem 16.2 Granger Representation Theorem
yt is cointegrated with m × r β if and only if rank(Π) = r and Π = αβ′

where α is m× r, rank (α) = r.

Thus cointegration imposes a restriction upon the parameters of a VAR. The restricted model
can be written as

∆yt = αβ′yt−1 +D(L)∆yt−1 + et

∆yt = αzt−1 +D(L)∆yt−1 + et.

If β is known, this can be estimated by OLS of ∆yt on zt−1 and the lags of ∆yt.
If β is unknown, then estimation is done by “reduced rank regression”, which is least-squares

subject to the stated restriction. Equivalently, this is the MLE of the restricted parameters under
the assumption that et is iid N(0,Ω).

One diffi culty is that β is not identified without normalization. When r = 1, we typically just
normalize one element to equal unity. When r > 1, this does not work, and different authors have
adopted different identification schemes.

In the context of a cointegrated VAR estimated by reduced rank regression, it is simple to test
for cointegration by testing the rank ofΠ. These tests are constructed as likelihood ratio (LR) tests.
As they were discovered by Johansen (1988, 1991, 1995), they are typically called the “Johansen
Max and Trace” tests. Their asymptotic distributions are non-standard, and are similar to the
Dickey-Fuller distributions.



Chapter 17

Panel Data

17.1 Introduction

Economists traditionally use the term panel data to refer to data structures consisting of
observations on individuals for multiple time periods. Other fields such as statistics typically
call this structure longitudinal data. The observed “individuals” can be, for example, people,
households, workers, firms, schools, production plants, industries, regions, states, or countries. The
distinguishing feature relative to cross-sectional data sets is the presence of multiple observations for
each individual. More broadly, panel data methods can be applied to any context with cluster-type
dependence.

There are several distinct advantages of panel data relative to cross-section data. One is the
possibility of controlling for unobserved time-invariant endogeneity without the use of instrumental
variables. A second is the possibility of allowing for broader forms of heterogeneity. A third is
modeling dynamic relationships and effects.

There are two broad categories of panel data sets in economic applications: micro panels and
macro panels. Micro panels are typically surveys or administrative records on individuals and are
characterized by a large number of individuals (often in the 1000’s or higher) and a relatively small
number of time periods (often 2 to 20 years). Macro panels are typically national or regional
macroeconomic variables and are characterized by a moderate number of individuals (e.g. 7-20)
and a moderate number of time periods (20-60 years).

Panel data was once relatively esoteric in applied economic practice. Now, it is a dominant
feature of applied research.

A typical maintained assumption for micro panels (which we follow in this chapter) is that the
individuals are mutually independent while the observations for a given individual are correlated
across time periods. This means that the observations follow a clustered dependence structure.
Because of this, current econometric practice is to use cluster-robust covariance matrix estimators
when possible. Similar assumptions are often used for macro panels, though the assumption of
independence across individuals (e.g. countries) is much less compelling.

The application of panel data methods in econometrics started with the pioneering work of
Mundlak (1961) and Balestra and Nerlove (1966).

Several excellent monographs and textbooks have been written on panel econometrics, including
Arellano (2003), Hsiao (2003), Wooldridge (2010), and Baltagi (2013). This chapter will summarize
some of the main themes, but for a more in-depth treatment see these references.

One challenge arising in panel data applications is that the computational methods can require
meticulous attention to detail. It is therefore advised to use established packages for routine
applications. For most panel data applications in economics, Stata is the most application package.

602
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17.2 Time Indexing and Unbalanced Panels

It is typical to index observations by both the individual i and the time period t, thus yit denotes
a variable for individual i in period t. We wil index individuals as i = 1, ..., N and time periods as
t = 1, ...T . Thus N is the number of individuals in the panel and T is the number of time series
periods.

Panel data sets can involve data at any time series frequency, though the typical application
involves annual data. The observations in a data set will be indexed by calendar time, which for
the case of annual observations is the year. However, for notational convenience it is customary to
denote the time periods as t = 1, ..., T , so that t = 1 is the first time period observed and T is the
final time period.

When observations are available on all individuals for the same time periods we say that the
panel is balanced. In this case there are an equal number T of observations for each individual,
and the total number of observations is n = NT .

When different time periods are available for the individuals in the sample we say that the panel
is unbalanced. This is the most common type of panel data set. It does not pose a problem for
applications, but does make the notation a bit cumbersome and can also considerably complicate
computer programming.

To illustrate, consider the data set Invest1993 on the textbook webpage. This is a sample
of 1962 U.S. firms extracted from Compustat and assembled by Bronwyn Hall, and used in the
empirical work in Hall and Hall (1993). In Table 16.1 we display a set of variables from the data
set for the first 13 observations. The first variable is the firm code number. The second variable is
the year of the observation. These two variables are essential for any panel data analysis. In Table
16.1 you can see that the first firm (#32) is observed for the years 1970 through 1977. The second
firm (#209) is observed for 1987 through 1991. You can see that the years vary considerably across
the firms, so this is an unbalanced panel.

For unbalanced panels the time index t = 1, ..., T denotes the full set of time periods. For
example, in the data set Invest1993 there are observations for the years 1960 through 1991, so
the total number of time periods is T = 32. Each individual is observed for a subset of Ti periods.
The set of time periods for individual i is denoted as Si so that individual-specific sums (over time
periods) are written as

∑
t∈Si .

The observed time periods for a given individual are typically contiguous (for example, in Table
17.1, firm #32 is observed for each year from 1970 through 1977) but in some cases are non-
continguous (if, for example, 1973 was missing for firm #32). The total number of observations in
the sample is n =

∑N
i=1 Ti.

17.3 Notation

This chapter focuses on panel data regression models whose observations are pairs (yit, xit)
where yit is the dependent variable and xit is a k-vector of regressors. These are the observations
on individual i for time period t.

It will be useful to cluster the observations at the level of the individual. We borrow the
notation from Section 4.21 to write yi as the Ti × 1 stacked observations on yit for t ∈ Si, stacked
in chronological order. Similarly, we write Xi as the Ti×k matrix of stacked x′it for t ∈ Si, stacked
in chronological order.

We will also sometimes use matrix notation for the full sample. To do so, let y = (y′1, ...,y
′
N )′

denote the n× 1 vector of stacked yi, and set X = (X ′1, ...,X
′
N )′ similarly.
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Table 17.1: Observations from Investment Data Set

Firm Code Number Year Iit Ii İit Qit Qi Q̇it êit
32 1970 0.122 0.155 -0.033 1.17 0.62 0.55 .
32 1971 0.092 0.155 -0.063 0.79 0.62 0.17 -0.005
32 1972 0.094 0.155 -0.061 0.91 0.62 0.29 -0.005
32 1973 0.116 0.155 -0.039 0.29 0.62 -0.33 0.014
32 1974 0.099 0.155 -0.057 0.30 0.62 -0.32 -0.002
32 1975 0.187 0.155 0.032 0.56 0.62 -0.06 0.086
32 1976 0.349 0.155 0.194 0.38 0.62 -0.24 0.248
32 1977 0.182 0.155 0.027 0.57 0.62 -0.05 0.081
209 1987 0.095 0.071 0.024 9.06 21.57 -12.51 .
209 1988 0.044 0.071 -0.027 16.90 21.57 -4.67 -0.244
209 1989 0.069 0.071 -0.002 25.14 21.57 3.57 -0.257
209 1990 0.113 0.071 0.042 25.60 21.57 4.03 -0.226
209 1991 0.034 0.071 -0.037 31.14 21.57 9.57 -0.283

17.4 Pooled Regression

The simplest model in panel regresion is pooled regresssion

yit = x′itβ + eit

E (xiteit) = 0. (17.1)

where β is a k × 1 coeffi cient vector and eit is an error. The model can be written at the level of
the individual as

yi = Xiβ + ei

E
(
X ′iei

)
= 0

where ei is Ti × 1. The equation for the full sample is

y = Xβ + e

where e is n× 1.
The standard estimator of β in the pooled regression model is least squares, which can be

written as

β̂pool =

 N∑
i=1

∑
t∈Si

xitx
′
it

−1 N∑
i=1

∑
t∈Si

xityit


=

(
N∑
i=1

X ′iXi

)−1( N∑
i=1

X ′iyi

)
=
(
X ′X

)−1 (
X ′y

)
.

The vector of least-squares residuals for the ith individual is êi = yi − Xiβ̂pool. While it is

the conventional least-squares estimator, in the context of panel data β̂pool is called the pooled
regression estimator.

The pooled regression model is ideally suited for the context where the errors eit satisfy strict
mean independence:

E (eit |Xi) = 0. (17.2)
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This occurs when the errors eit are mean independent of all regressors xij for all time periods
j = 1, ..., T . Strict mean independence is stronger than pairwise mean independence E (eit | xit) = 0
as well the projection assumption (17.1). Strict mean independence requires that neither lagged
nor future values of xit help to forecast eit. It excludes lagged dependent variables (such as yit−1)
from xit (otherwise eit would be predictable given xit+1). It also requires that xit be exogenous in
the sense discussed in Chapter 12.

We now describe some statistical properties of β̂pool under (17.2). First, notice that by linearity
and the cluster-level notation we can write the estimator as

β̂pool =

(
N∑
i=1

X ′iXi

)−1( N∑
i=1

X ′i (Xiβ + ei)

)

= β +

(
N∑
i=1

X ′iXi

)−1( N∑
i=1

X ′iei

)
.

Then using (17.2)

E
(
β̂pool |X

)
= β +

(
N∑
i=1

X ′iXi

)−1( N∑
i=1

X ′iE (ei |Xi)

)
= 0

so β̂pool is unbiased for β.
Under the additional assumption that the error eit is serially uncorrelated and homoskedastic,

the covariance estimator takes a classical form and the classical homoskedastic variance estimator
can be used. If the error eit is heteroskedastic but serially uncorrelated then a heteroskedasticity-
robust covariance matrix estimator can be used.

In general, however, we expect the errors eit to be correlated across time t for a given individual.
This does not necessarily violate (17.2) but invalidates classical covariance matrix estimation. The
conventional solution is to use a cluster-robust covariance matrix estimator which allows arbitrary
within-cluster dependence. Cluster-robust covariance matrix estimators for pooled regression take
the form

V̂ pool =
(
X ′X

)−1

(
N∑
i=1

X ′iêiê
′
iXi

)(
X ′X

)−1
.

As in (4.48) this can be multiplied by a degree-of-freedom adjustment. The adjustment used by
the Stata regress command is

V̂ pool =

(
n− 1

n− k

)(
N

N − 1

)(
X ′X

)−1

(
N∑
i=1

X ′iêiê
′
iXi

)(
X ′X

)−1
.

The pooled regression estimator with cluster-robust standard errors can be obtained using the
Stata command regress cluster(id) where id indicates the individual.

When strict mean independence (17.2) fails, however, the pooled least-squares estimator β̂pool is
not necessarily consistent for β. Since strict mean independence is a strong and typically undesirable
restriction, it is typically preferred to adopt one of the alternative estimation approaches described
in the following sections.

To illustrate the pooled regression estimator, consider the data set Invest1993 described earlier.
We consider a simple investment model

Iit = β1Qit−1 + β2Dit−1 + β3CFit−1 + β4Ti + eit (17.3)

where I is investment/assets, Q is market value/assets, CF is cash flow/assets, D is long term
debt/assets, and T is a dummy variable indicating if the corporation’s stock is traded on the NYSE
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or AMEX. The regression also includes 19 dummy variables indicating an industry code. The Q
theory of investment suggests that β1 > 0 while β2 = β3 = 0. Theories of liquidity constraints
suggest that β2 < 0 and β3 > 0. We will be using this example throughout this chapter. The values
of I and Q for the first 13 observations are also displayed in Table 17.1.

In Table 17.2 we present the pooled regression estimates of (17.3) in the first column with
cluster-robust standard errors.

Table 17.2: Estimates of Investment Equation

Pooled Random Effects Fixed Effects Two-Way Hausman-Taylor

Qit−1
0.0024

(0.0010)
0.0019

(0.0009)
0.0017

(0.0008)
0.0016

(0.0008)
0.0017

(0.0008)

Dit−1
0.0096

(0.0041)
−0.0092
(0.0039)

−0.0139
(0.0049)

−0.0140
(0.0051)

0.0132
(0.0050)

CFit−1
0.0261

(0.0111)
0.0412

(0.0125)
0.0491

(0.0132)
0.0476

(0.0129)
0.0408

(0.0119)

Tradedi
−0.0167
(0.0024)

−0.0181
(0.0028)

−0.0348
(0.0048)

Industry Dummies Yes Yes No No Yes
Time Effects No No No Yes Yes

Cluster-robust standard errors in parenthesis.

17.5 One-Way Error Component Model

One approach to panel data regression is to model the correlation structure of the regression
error eit. The most common choice is an error-components structure. The simplest takes the form

eit = ui + εit (17.4)

where ui is an individual-specific effect and εit are idiosyncratic (i.i.d.) errors. This is known as a
one-way error component model.

In vector notation we can write
ei = 1iui + εi

where 1i is a Ti × 1 vector of 1’s.
The one-way error component regression model is

yit = x′itβ + ui + εit

written at the level of the observation, or

yi = Xiβ + 1iui + εi

written at the level of the individual.
To illustrate why an error-component structure such as (17.4) might be appropriate, examine

Table 17.1. In the final column we have included the pooled regression residuals êit for these
observations. (There is no residual for the first year for each firm due to the lack of lagged regressors
for this observation.) What is quite striking is that the residuals for the second firm (#209) are all
highly negative, clustering around −0.25. While informal, this suggests that it may be appropriate
to model these errors using (17.4), expecting that firm #209 has a large negative value for its
individual effect u.
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17.6 Random Effects

The random effects model assumes that the errors ui and εit in (17.4) are conditionally mean
zero, uncorrelated, and homoskedastic.

Assumption 17.1 (Random Effects). Model (17.4) holds with

E (εit |Xi) = 0 (17.5)

E
(
ε2
it |Xi

)
= σ2

ε (17.6)

E (εijεit |Xi) = 0 (17.7)

E (ui |Xi) = 0 (17.8)

E
(
u2
i |Xi

)
= σ2

u (17.9)

E (uiεit |Xi) = 0 (17.10)

where (17.7) holds for all j 6= t.

Assumption 17.1 is known as a random effects specification. It implies that the vector of
errors ei for individual i has the covariance structure

E (ei |Xi) = 0

E
(
eie
′
i |Xi

)
= 1i1

′
iσ

2
u + Iiσ

2
ε

=


σ2
u + σ2

ε σ2
u · · · σ2

u

σ2
u σ2

u + σ2
ε · · · σ2

u
...

...
. . .

...
σ2
u σ2

u · · · σ2
u + σ2

ε


= σ2

εΩi,

say, where Ii is an identity matrix of dimension Ti. Note Ωi = Ii + 1i1
′
iσ

2
u/σ

2
ε .

Observe that Assumptions 17.1.1 and 17.1.4 state that the idiosyncratic error εit and individual-
specific error ui are strictly mean independent, so the total error eit is strictly mean independent
as well.

The random effects model is equivalent to an equi-correlation model. That is, suppose that
the error eit satisfies

E (eit |Xi) = 0

E
(
e2
it |Xi

)
= σ2

and
E (eijeit |Xi) = ρσ2

for j 6= t. These conditions imply that eit can be written as (17.4) with the components satisfying
Assumption 17.1, with σ2

u = ρσ2 and σ2
ε = (1− ρ)σ2. Thus random effects and equi-correlation are

identical models.
The random effects regression model is

yit = x′itβ + ui + εit

or
yi = Xiβ + 1iui + εi

where the errors satisfy Assumption 17.1.
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Given the error structure, the natural estimator for β is GLS. Suppose σ2
u and σ

2
ε are known.

The GLS estimator of β is

β̂gls =

(
N∑
i=1

X ′iΩ
−1
i Xi

)−1( N∑
i=1

X ′iΩ
−1
i yi

)
.

A feasible GLS estimator replaces the unknown σ2
u and σ2

ε with estimates. We discuss this in
Section 17.15.

We now describe some statistical properties of the estimator under Assumption 17.1. By lin-
earity we can write

β̂gls − β =

(
N∑
i=1

X ′iΩ
−1
i Xi

)−1( N∑
i=1

X ′iΩ
−1
i ei

)
.

Thus

E
(
β̂gls − β |X

)
=

(
N∑
i=1

X ′iΩ
−1
i Xi

)−1( N∑
i=1

X ′iΩ
−1
i E (ei |Xi)

)
= 0.

Thus β̂gls is unbiased for β. The variance of β̂gls is

V gls =

(
n∑
i=1

X ′iΩ
−1
i Xi

)−1

. (17.11)

Now let’s compare β̂gls with the pooled estimator β̂pool. Under Assumption 17.1 the latter is
also unbiased for β and has variance

V pool =

(
n∑
i=1

X ′iXi

)−1( n∑
i=1

X ′iΩiXi

)−1( n∑
i=1

X ′iXi

)−1

. (17.12)

Using the algebra of the Gauss-Markov Theorem, we can deduce that

V gls ≤ V pool (17.13)

and thus the random effects estimator β̂gls is more effi cient than the pooled estimator β̂pool under
Assumption 17.1. (See Exercise 17.1.) The two variance matrices are identical when there is no
individual-specific effect (when σ2

u = 0) for then

V gls = V pool =

(
n∑
i=1

X ′iXi

)−1

σ2
ε .

Under the assumption that the random effects model is a useful approximation but not literally
true, then we may consider a cluster-robust covariance matrix estimator such as

V̂ gls =

(
N∑
i=1

X ′iΩ
−1
i Xi

)−1( N∑
i=1

X ′iΩ
−1
i êiê

′
iΩ
−1
i Xi

)(
n∑
i=1

X ′iΩ
−1
i Xi

)−1

(17.14)

where êi = yi −Xiβ̂gls. This may be re-scaled by a degree of freedom adjustment if desired.

The random effects estimator β̂gls can be obtained using the Stata command xtreg. The default
covariance matrix estimator is (17.11). For the cluster-robust covariance matrix estimator (17.14)
use the command xtreg vce(robust). (The xtset command must be used first to declare the
group identifier. For example, cusip is the group identifier in Table 17.1.)

To illustrate, in Table 17.2 we present the random effect regression estimates of the investment
model (17.3) in the second column with cluster-robust standard errors (17.14). The point estimates
are reasonably different from the pooled regression estimator. The coeffi cient on debt switches from
positive to negative (the latter consistent with theories of liquidity constraints) and the coeffi cient
on cash flow increases significantly in magnitude.



CHAPTER 17. PANEL DATA 609

17.7 Fixed Effect Model

Consider the one-way error component regression model

yit = x′itβ + ui + εit (17.15)

or
yi = Xiβ + 1iui + εi. (17.16)

In many applications it is useful to interpret the individual-specific effect ui as a time-invariant
unobserved missing variable. For example, in a wage regression ui may be the unobserved ability
of individual i. In the investment model (17.3) ui may be a firm-specific productivity factor.

When ui is interpreted as a missing variable it is natural to expect it to be correlated with the
regressors xit. This is especially the case when xit includes choice variables.

To illustrate, consider the entries in Table 17.1. The final column displays the pooled regression
residuals êit for the first 13 observations, which we interpret as estimates of the error eit = ui + εit.
As described before, what is particularly striking about the residuals is that they are all strongly
negative for firm #209, clustering around −0.25. We can interpret this as an estimate of ui for this
firm. Examining the values of the regressor Q for the two firms, we can also see that firm #209 has
very large values (in all time periods) for Q. (The average value Qi for the two firms appears in the
seventh column.) Thus it appears (though we are only looking at two observations) that ui and Qit
may be negatively correlated. It is not reasonable to infer too much from these limited observations
(indeed the correlation between ui and Qi is positive in the full sample), but the point is that it
seems reasonable that the unobserved common effect ui may be correlated with the regressors xit.

In the econometrics literature, if the stochastic structure of ui is treated as unknown and possibly
correlated with xit then ui is called a fixed effect .

Correlation between ui and xit will cause both pooled and random effect estimators to be
biased. This is due to the classic problems of omitted variables bias and endogeneity. To see this
in a generated example, view Figure 17.1. This shows a scatter plot of three observations (yit, xit)
from each of three firms. The true model is yit = 9−xit+ui. (Thus the true slope coeffi cient is −1 .)
The variables ui and xit are highly correlated, so the fitted pooled regression line through the nine
observations has a slope close to +1. (The random effects estimator is identical.) The apparent
positive relationship between y and x is driven entirely by the positive correlation between x and
u. Conditional on u, however, the slope is −1. Thus regression techniques which do not control for
ui will produce biased and inconsistent estimates.

The presence of the unstructured individual effect ui means that it is not possible to identify β
under a simple projection assumption such as E (xitεt) = 0. It turn out that a suffi cient condition
for identification is the following.

Definition 17.1 The regressor xit is strictly exogenous for the error εit
if

E (xisεit) = 0 (17.17)

for all s = 1, ..., T .

Strict exogeneity is a strong projection condition, meaning that if xis for any s 6= t is added
to (17.15) it will have a zero coeffi cient. Strict exogeneity is a projection analog of strict mean
independence

E (εit |Xi) = 0. (17.18)

(17.18) implies (17.17), but not conversely. While (17.17) is suffi cient for identification and asymp-
totic theory, we will also use the stronger condition (17.18) for finite sample analysis.
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Figure 17.1: Scatter Plot and Pooled Regression Line

While (17.17) and (17.18) are strong assumptions they are much weaker than (17.2) or Assump-
tion 17.1, which require that the individual effect ui is also strictly mean independent. In contrast,
(17.17) and (17.18) make no assumptions about ui.

Strict exogeneity (17.17) is typically inappropriate in dynamic models. In Section 17.40 we
discuss estimation under the weaker assumption of predetermined regressors.

17.8 Within Transformation

In the previous section we showed that if ui and xit are correlated, then pooled and random-
effects estimators will be biased and inconsistent. If we leave the relationship between ui and xit
fully unstructured, then the only way to consistently estimate the coeffi cient β is by an estimator
which is invariant to ui. This can be achieved by transformations which eliminate ui.

One such transformation is the within transformation. In this section we describe this
transformation in detail.

Define the mean of a variable for a given individual as

yi =
1

Ti

∑
t∈Si

yit.

We call this the individual-specific mean, since it is the mean of a given individual. Contrary-
wise, some authors call this the time-average or time-mean since it is the average over the time
periods.

Subtracting the individual-specific mean from the variable we obtain the deviations

ẏit = yit − yi.
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This is known as the within transformation. We also refer to ẏit as the demeaned values
or deviations from individual means. Some authors refer to ẏit as deviations from time
means. What is important is that the demeaning has occured at the individual level.

Some algebra may also be useful. We can write the individual-specific mean as yi = (1′i1i)
−1 1′iyi.

Stacking the observations for individual i we can write the within transformation using the notation

ẏi = yi − 1iyi

= yi − 1i
(
1′i1i

)−1
1′iyi

= Miyi

where
M i = Ii − 1i

(
1′i1i

)−1
1′i

is the individual-specific demeaning operator. Notice thatM i is an idempotent matrix.
Similarly for the regressors we define the individual-specific means and demeaned values:

xi =
1

Ti

∑
t∈Si

xit

ẋit = xit − xi
Ẋi = M iXi.

We illustrate demeaning in Table 17.1. In the fourth and seventh columns we display the
firm-specific means Ii and Qi and in the fifth and eighth columns the demeaned values İit and Q̇it.

We can also define the full-sample within operator. Define D = diag {1T1 , ...,1TN } andMD =

In −D (D′D)
−1
D′. Note thatMD = diag {M1, ...,MN}. Thus

MDy = ẏ =

 ẏ1
...
ẏN

 , MDX = Ẋ =

 Ẋ1
...
ẊN

 . (17.19)

Now apply these operations to equation (17.15). Taking individual-specific averages we obtain

yi = x′iβ + ui + εi (17.20)

where εi = 1
Ti

∑
t∈Si εit. Subtracting from (17.15) we obtain

ẏit = ẋ′itβ + ε̇it (17.21)

where ε̇it = εit − εit. The individual effect ui has been eliminated!
We can alternatively write this in vector notation. Applying the demeaning operator M i to

(17.16) we obtain
ẏi = Ẋiβ + ε̇i. (17.22)

The individual-effect ui is eliminated since M i1i = 0. Equation (17.22) is a vector version of
(17.21).

The equation (17.21) is a linear equation in the transformed (demeaned) variables. As desired,
the individual effect ui has been eliminated. Consequently estimators constructed from (17.21) (or
equivalently (17.22)) will be invariant to the values of ui. This means that the the endogeneity bias
described in the previous section will be eliminated.

Another consequence, however, is that all time-invariant regressors are also eliminated. That is,
if the original model (17.15) had included any regressors xit = xi which are constant over time for
each individual, then for these regressors the demeaned values are identically 0. What this means
is that if equation (17.21) is used to estimate β it will be impossible to estimate (or identify) a
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coeffi cient on any regressor which is time invariant. This is not a consequence of the estimation
method but rather a consequence of the model assumptions. In other words, if the individual
effect ui has no known structure then it is impossible to distangle the effect of any time-invariant
regressor xi. The two have observationally equivalent effects and cannot be separately identified.

The within transformation can greatly reduce the variance of the regressors. This can be seen in
Table 17.1, where you can see that the variation between the elements of the transformed variables
İit and Q̇it is less than that of the untransformed variables since much of the variation is captured
by the firm-specific means.

It is not typically needed to directly program the within transformation, but if it is desired the
following Stata commands easily do so.

Stata Commands for Within Transformation

* x is the original variable
* id is the group identifier
* xdot is the within-transformed variable
egen xmean = mean(x), by(id)
gen xdot = x - xmean

17.9 Fixed Effects Estimator

Consider least-squares applied to the demeaned equation (17.21) or equivalently (17.22). This
is

β̂fe =

 N∑
i=1

∑
t∈Si

ẋitẋ
′
it

−1 N∑
i=1

∑
t∈Si

ẋitẏit


=

(
N∑
i=1

Ẋ
′
iẊi

)−1( N∑
i=1

Ẋ
′
iẏi

)

=

(
N∑
i=1

X ′iM iXi

)−1( N∑
i=1

X ′iM iyi

)
.

This is known as the fixed-effects or within estimator of β. It is called the fixed-effects estimator
because it is appropriate for the fixed effects model (17.15). It is called the within estimator because
it is based on the variation of the data within each individual.

The above definition implicitly assumes that the matrix
∑N

i=1 Ẋ
′
iẊi is full rank. This requires

that all components of xit have time variation for at least some individuals in the sample.
The fixed effects residuals are

ε̂it = ẏit − ẋ′itβ̂fe

ε̂i = ẏi − Ẋiβ̂fe. (17.23)

Let us describe some of the statistical properties of the estimator under strict mean independence
(17.18). By linearity and the factM i1i = 0, we can write

β̂fe − β =

(
N∑
i=1

X ′iM iXi

)−1( N∑
i=1

X ′iM iεi

)
.
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Then (17.18) implies

E
(
β̂fe − β |X

)
=

(
N∑
i=1

X ′iM iXi

)−1( N∑
i=1

X ′iM iE (εi |Xi)

)
= 0.

Thus β̂fe is unbiased for β under (17.18).
Let

Σi = E
(
εiε
′
i |Xi

)
denote the Ti × Ti conditional covariance matrix of the idiosyncratic errors. The variance of β̂fe is

V fe = var
(
β̂fe |X

)
=

(
N∑
i=1

Ẋ
′
iẊi

)−1( N∑
i=1

Ẋ
′
iΣiẊi

)(
N∑
i=1

Ẋ
′
iẊi

)−1

. (17.24)

This expression simplifies when the idiosyncratic errors are homoskedastic and serially uncor-
related:

E
(
ε2
it |Xi

)
= σ2

ε (17.25)

E (εijεit |Xi) = 0 (17.26)

for all j 6= t. In this case, Σi = Iiσ
2
ε and (17.24) simplifies to

V 0
fe = σ2

ε

(
N∑
i=1

Ẋ
′
iẊi

)−1

. (17.27)

It is instructive to compare the variances of the fixed-effects estimator and the pooled estimator
under (17.25)-(17.26) and the assumption that there is no individual-specific effect ui = 0. In this
case we see that

V 0
fe = σ2

ε

(
N∑
i=1

Ẋ
′
iẊi

)−1

≥ σ2
ε

(
N∑
i=1

X ′iXi

)−1

= V pool. (17.28)

The inequality holds since the demeaned variables Ẋi have reduced variation relative to the original
observations Xi. (See Exercise 17.28.) This shows the cost of using fixed effects relative to pooled
estimation. The estimation variance increases due to reduced variation in the regressors. This
reduction in effi ciency is a necessary by-product of the robustness of the estimator to the individual
effects ui.

17.10 Differenced Estimator

The within transformation is not the only transformation which eliminates the individual-
specific effect. Another important transformation which does the same is first-differencing.

The first-differencing transformation is

∆yit = yit − yit−1.

This can be applied to all but the first observation (which is essentially lost). At the level of the
individual this can be written as

∆yi = Diyi

where Di is the (Ti − 1)× Ti matrix differencing operator

Di =


−1 1 0 · · · 0 0
0 −1 1 0 0
...

. . .
...

0 0 0 · · · −1 1

 .
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Applying the transformation ∆ to (17.15) or (17.16) we obtain

∆yit = ∆x′itβ + ∆εit

or
∆yi = ∆Xiβ + ∆εi. (17.29)

Least squares applied to the differenced equation is

β̂∆ =

 N∑
i=1

∑
t≥2

∆xit∆x
′
it

−1 N∑
i=1

∑
t≥2

∆xit∆yit


=

(
N∑
i=1

∆X ′i∆Xi

)−1( N∑
i=1

∆X ′i∆yi

)

=

(
N∑
i=1

X ′iD
′
iDiXi

)−1( N∑
i=1

X ′iD
′
iDiyi

)
. (17.30)

(17.30) is called the differenced estimator. For T = 2, β̂∆ = β̂fe equals the fixed effects estimator.
See Exercise 17.6. They differ, however, for T > 2.

When the errors εit are serially uncorrelated and homoskedastic, then the error ∆εi = Diεi in
(17.29) has variance matrix Hσ2

ε where

H = DiD
′
i =


2 −1 0 0

−1 2
. . . 0

0
. . . . . . −1

0 0 −1 2

 . (17.31)

We can reduce estimation variance by using GLS, which is

β̂∆ =

(
N∑
i=1

∆X ′iH
−1∆Xi

)−1( N∑
i=1

∆X ′iH
−1∆yi

)

=

(
N∑
i=1

X ′iD
′
i

(
DiD

′
i

)−1
DiXi

)−1( N∑
i=1

X ′iD
′
i

(
DiD

′
i

)−1
Diyi

)

=

(
N∑
i=1

X ′iPDXi

)−1( N∑
i=1

X ′iPDyi

)

where PD = D′i (DiD
′
i)
−1
Di. Recall, the matrix Di is (Ti − 1) × Ti with rank Ti − 1 and is

orthogonal to the vector of ones 1i. This means PD projects orthogonally to 1i and thus equals
PD = M i, the within transformation matrix. Hence β̂∆ = β̂fe, the fixed effects estimator!

What we have shown is that GLS applied to the first-differenced equation precisely equals the
fixed effects estimator. Since the Gauss-Markov theorem shows that GLS has lower variance than
least-squares, this means that the fixed effects estimator is more effi cient than first differencing
under the assumption that εit is i.i.d.

This argument extends to any other transformation which eliminates the fixed effect. GLS
applied after such a transformation is equal to the fixed effects estimator, and is more effi cient than
least-squares applied after the same transformation. This shows that the fixed effects estimator is
Gauss-Markov effi cient in the class of estimators which eliminate the fixed effect.
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17.11 Dummy Variables Regression

An alternative way to estimate the fixed effects model is by least squares of yi on xit and a full
set of dummy variables, one for each individual in the sample. It turns out that this is algebraically
equivalent to the within estimator.

To see this, start with the error-component model without a regressor:

yit = ui + εit. (17.32)

Consider least-squares estimation of the vector of fixed effects u = (u1, ..., uN )′. Since each fixed
effect ui is an individual-specific mean, and the least-squares estimate of the intercept is the sample
mean, it follows that the least-squares estimate of ui is ûi = yi. The least-squares residual is then
ε̂it = yit − yi = ẏit, the within transformation.

If you would prefer an algebraic argument, let di be a vector of N dummy variables where the
ith element indicates the ith individual. Thus the ith element of di is 1 and the remaining elements
are zero. Notice that ui = d′iu and (17.32) equals

yit = d′iu+ εit.

This is a regression with the regressors di and coeffi cients u. We can also write this in vector
notation at the level of the individual as

yi = 1id
′
iu+ εi

or using full matrix notation as
y = Du+ ε

where D = diag {1T1 , ...,1TN }.
The least-squares estimate of u is

û =
(
D′D

)−1 (
D′y

)
= diag

(
1′i1i

)−1
vec
(
1′iyi

)
= vec

((
1′i1i

)−1
1′iyi

)
= vec (yi) .

The least-squares residuals are

ε̂ =
(
In −D

(
D′D

)−1
D′
)
y = ẏ

as shown in (17.19). Thus the least-squares residuals from the simple error-component model are
the within transformed variables.

Now consider the error-component model with regressors, which can be written as

yit = x′itβ + d′iu+ εit (17.33)

since ui = d′iu as discussed above. In matrix notation

y = Xβ +Du+ ε. (17.34)

We consider estimation of (β,u) by least-squares, and write the estimates as

y = Xβ̂ +Dû+ ε̂.

We call this the dummy variable estimator of the fixed effects model.
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By the Frisch-Waugh-Lovell Theorem (Theorem 3.5), the dummy variable estimator β̂ and
residuals ε̂ may be obtained by the least-squares regression of the residuals from the regression of
y on D on the residuals from the regression of X on D. We learned above that residuals from
the regression on D are the within transformations. Thus the dummy variable estimator β̂ and
residuals ε̂ may be obtained from least-squares regression of the within transformed ẏ on the within
transformed Ẋ. This is exactly the fixed effects estimator β̂fe. Thus the dummy variable and fixed
effects estimators of β are identical.

This is suffi ciently important that we state this result as a theorem.

Theorem 17.1 The fixed effects estimator of β is algebraically identical
to the dummy variable estimator of β. The two estimators also yield the
same residuals.

This may be the most important practical application of the Frisch-Waugh-Lovell Theorem. It
shows that we can estimate the coeffi cients either by applying the within transformation, or by
inclusion of dummy variables (one for each individual in the sample). This is important because in
some cases one approach is more convenient than the other, and it is important to know that the
two methods are algebraically equivalent.

When N is large it is advisable to use the within transformation rather than the dummy
variable approach. This is because the latter requires considerably more computer memory. To
see this, consider the matrix D in (17.34) in the balanced case. It has TN2 elements, and for
dummy variable estimation it must be created and stored in memory. When N is large this can be
excessive. For example, if T = 10 and N = 10, 000, the matrixD has one billion elements! Whether
or not a package can technically handle a matrix of this dimension depends on several particulars
(system RAM, operating system, package version), but even if it can execute the calculation the
computation time will be considerably slowed. Hence for fixed effects estimation with large N it is
recommended to use the within transformation rather than dummy variable regression.

The dummy variable formulation may add insight about how the fixed effects estimator achieves
invariance to the fixed effects. Given the regression equation (17.34) we can write the least-squares
estimator of β using the residual regression formula:

β̂fe =
(
X ′MDX

)−1 (
X ′MDy

)
=
(
X ′MDX

)−1 (
X ′MD (Xβ +Du+ ε)

)
= β +

(
X ′MDX

)−1 (
X ′MDε

)
(17.35)

since MDD = 0. The expression (17.35) is free of the vector u and thus β̂fe is invariant to u.
This is another demonstration that the fixed effects estimator is invariant to the actual values of
the fixed effects, and thus its statistical properties do not rely on assumptions about ui.

17.12 Fixed Effects Covariance Matrix Estimation

First consider estimation of the classical covariance matrix V 0
fe as defined in (17.27). This is

V̂
0

fe = σ̂2
ε

(
Ẋ
′
Ẋ
)−1

(17.36)

with

σ̂2
ε =

1

n−N − k

n∑
i=1

∑
t∈Si

ε̂2
it =

1

n−N − k

n∑
i=1

ε̂′iε̂i. (17.37)
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The N + k degree of freedom adjustment is motivated by the dummy variable representation.
Indeed, you can verify that σ̂2

ε is unbiased for σ
2
ε under assumptions (17.18), (17.25) and (17.26).

See Exercise 17.8.
Notice that the assumptions (17.18), (17.25) and (17.26) are identical to (17.5)-(17.7) of As-

sumption 17.1. The assumptions (17.8)-(17.10) are not needed. Thus the fixed effect model weakens
the random effects model by eliminating the assumptions on ui but retaining those on εit.

The classical covariance matrix estimator (17.36) for the fixed effects estimator is valid when the
errors εit are homoskedastic and serially uncorrelated but is invalid otherwise. A covariance matrix
estimator which allows εit to be heteroskedastic and serially correlated across t is the cluster-robust
covariance matrix estimator, clustered by individual

V̂
cluster

fe =
(
Ẋ
′
Ẋ
)−1

(
N∑
i=1

Ẋ
′
iε̂iε̂

′
iẊi

)(
Ẋ
′
Ẋ
)−1

(17.38)

where ε̂i as the fixed effects residuals as defined in (17.23). (17.38) was first proposed by Arellano

(1987). As in (4.48) V̂
cluster

fe can be multiplied by a degree-of-freedom adjustment. The adjustment
recommended by the theory of C. Hansen (2007) is

V̂
cluster

fe =

(
N

N − 1

)(
Ẋ
′
Ẋ
)−1

(
N∑
i=1

Ẋ
′
iε̂iε̂

′
iẊi

)(
Ẋ
′
Ẋ
)−1

(17.39)

and that corresponding to (4.48) is

V̂
cluster

fe =

(
n− 1

n−N − k

)(
N

N − 1

)(
Ẋ
′
Ẋ
)−1

(
N∑
i=1

Ẋ
′
iε̂iε̂

′
iẊi

)(
Ẋ
′
Ẋ
)−1

. (17.40)

These estimators are convenient because they are simple to apply and allow for unbalanced panels.
In typical micropanel applications, N is very large and k is modest. Thus the adjustment in

(17.39) is minor, while that in (17.40) is approximately T/(T − 1) where T = n/N is the average
number of time periods per individual. When T is small this can be a very large adjustment. Hence
the choice between (17.38), (17.39), or (17.40) can be substantial.

To understand if the degree of freedom adjustment in (17.40) is appropriate, consider the
simplified setting where the residuals are constructed with the true β. This is a useful approximation
since the number of estimated slope coeffi cients β is small relative to the sample size n. Then
ε̂i = ε̇i = M iεi so Ẋ

′
iε̂i = Ẋ

′
iεi and (17.38) equals

V̂
cluster

fe =
(
Ẋ
′
Ẋ
)−1

(
N∑
i=1

Ẋ
′
iεiε

′
iẊi

)(
Ẋ
′
Ẋ
)−1

which is the idealized estimator with the true errors rather than the residuals. Since E
(
εiε
′
i |Xi

)
=

Σi it follows that E
(
V̂

cluster

fe |X
)

= V fe and V̂
cluster

fe is unbiased for V fe! Thus no degree of freedom

adjustment is required. This is despite the fact that N fixed effects have been estimated. While
this analysis concerns the idealized case where the residuals have been constructed with the true
coeffi cients β, so does not translate into a direct recommendation for the feasible estimator, it still
suggests that the strong ad hoc adjustment in (17.40) is unwarranted.

This (crude) analysis suggests that for the cluster robust covariance estimator for fixed effects
regression, the adjustment recommended by C. Hansen (17.39) may be the most appropriate, and
is typically well approximated by the unadjusted estimator (17.38). Based on current theory, there
is no justification for the ad hoc adjustment (17.40). The main argument for the latter is that it
produces the largest standard errors, and is thus the most conservative choice.
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In current practice the estimators (17.38) and (17.40) are the most commonly used covariance
matrix estimators for fixed effects estimation.

In Sections 17.22 and 17.23 we discuss covariance matrix estimation under heteroskedasticity
but no serial correlation.

To illustrate, in Table 17.2 we present the fixed effect regression estimates of the investment
model (17.3) in the third column with cluster-robust standard errors. The trading indicator Ti
and the industry dummies cannot be included as they are time-invariant. The point estimates are
similar to the random effects estimates, though the coeffi cients on debt and cash flow increase in
magnitude.

17.13 Fixed Effects Estimation in Stata

There are several methods to obtain the fixed effects estimator β̂fe in Stata.
The first method is to use full dummy variable regression, which can be obtained using the Stata

regress command, for example reg y x i.id, cluster(id) where id is the group (individual)
identifier. In most cases, as discussed in Section 17.11, this is not recommended due to the excessive
computer memory requirements and slow computation.

The second method is to manually create the within transformed variables as described in
Section 17.8, and then use regress.

The third method is xtreg fe, which is specifically written for panel data. This estimates the
slope coeffi cients using the partialling out approach. The default covariance matrix estimator is
classical, as defined in (17.36). The cluster-robust covariance matrix (17.38) can be obtained using
the option vce(robust), or simply r.

The fourth method is areg absorb(id), where id is the group (individual) identifier. This com-
mand is more general than panel data, also implementing the partialling out regression estimator.
The default covariance matrix estimator is the classical (17.36). The cluster-robust covariance ma-
trix estimator (17.40) can be obtained using the cluster(id) option. The heteroskedasticity-robust
covariance matrix is obtained when r or vce(robust) is specified, but this is not recommended
unless Ti is large, as will be discussed in Section 17.22.

An important difference between the Stata xtreg and areg commands is that they implement
different cluster-robust covariance matrix estimators: (17.38) in the case of xtreg, and (17.40) in
the case of areg. As discussed in the previous section, the adjustment used by areg is ad hoc and
not well-justified, but produces the largest and hence most conservative standard errors.

In current econometric practice, both xtreg and areg are used, though areg appears to be the
more popular choice.

17.14 Between Estimator

The between estimator is calculated from the individual-mean equation (17.20)

yi = x′iβ + ui + εi. (17.41)

Estimation can be done at the level of individuals or at the level of observations. Least squares
applied to (17.41) at the level of the N individuals is

β̂be =

(
N∑
i=1

xix
′
i

)−1( N∑
i=1

xiyi

)
.
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Least squares applied to (17.41) at the level of observations is

β̃be =

 N∑
i=1

∑
t∈Si

xix
′
i

−1 N∑
i=1

∑
t∈Si

xiyi


=

(
N∑
i=1

Tixix
′
i

)−1( N∑
i=1

Tixiyi

)
.

In balanced panels β̃be = β̂be but they differ on unbalanced panels. β̃be equals weighted least
squares applied at the level of individuals with weight Ti.

Under the random effects assumptions (Assumption 17.1), β̂be is unbiased for β and has variance

V be = var
(
β̂be |X

)
=

(
N∑
i=1

xix
′
i

)−1( N∑
i=1

xix
′
iσ

2
i

)(
N∑
i=1

xix
′
i

)−1

where

σ2
i = var (ui + εi) = σ2

u +
σ2
ε

Ti

is the variance of the error in (17.41). When the panel is balanced the variance formula simplifies
to

V be = var
(
β̂be |X

)
=

(
N∑
i=1

xix
′
i

)−1(
σ2
u +

σ2
ε

T

)
.

Under the random effects assumption the between estimator β̂be is unbiased for β but is less
effi cient than the random effects estimator β̂gls. Consequently there seems little direct use for the
between estimator in linear panel data applications.

Instead, its primary application is to construct an estimate of σ2
u. First, consider estimation of

σ2
b =

1

N

N∑
i=1

σ2
i

= σ2
u +

1

N

N∑
i=1

σ2
ε

Ti

= σ2
u +

σ2
ε

T

where T = N/
∑N

i=1
1
Ti
is the harmonic mean of Ti. (In the case of a balanced panel T = T .) A

natural estimator of σ2
b is

σ̂2
b =

1

N − k

N∑
i=1

ê2
bi. (17.42)

where êbi = yi − x′iβ̂be are the between residuals. (Either β̂be or β̃be can be used.)
From the relation σ2

b = σ2
u + σ2

ε/T and (17.42) we can deduce an estimator for σ2
u. We have

already described an estimator σ̂2
ε for σ

2
ε in (17.37) for the fixed effects model. Since the fixed effects

model holds under weaker conditions than the random effects model, σ̂2
ε is valid for the latter as

well. This suggests the following estimator for σ2
u

σ̂2
u = σ̂2

b −
σ̂2
ε

T
. (17.43)
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To summarize, the fixed effect estimator is used for σ̂2
ε , the between estimator for σ̂

2
b , and σ̂

2
u is

constructed from the two.
It is possible for (17.43) to be negative. It is typical to use the constrained estimator

σ̂2
u = max

[
0, σ̂2

b −
σ̂2
ε

T

]
. (17.44)

(17.44) is the most common estimator for σ2
u in the random effects model.

The between estimator β̂be can be obtained using Stata command xtreg be. The estimator
β̃be can be obtained by xtreg be wls.

17.15 Feasible GLS

The random effects estimator can be written as

β̂re =

(
N∑
i=1

X ′iΩ
−1
i Xi

)−1( N∑
i=1

X ′iΩ
−1
i yi

)

=

(
N∑
i=1

X̃
′
iX̃i

)−1( N∑
i=1

X̃
′
iỹi

)
(17.45)

where X̃i = Ω
−1/2
i Xi and ỹi = Ω

−1/2
i yi. It is instructive to study these transformations.

Define P i = 1i (1′i1i)
−1 1′i so that M i = Ii − P i. Thus while M i is the within operator, P i

can be called the individual-mean operator, since P iyi = 1iyi. We can write

Ωi = Ii + 1i1
′
iσ

2
u/σ

2
ε

= Ii +
Tiσ

2
u

σ2
ε

P i

= M i + ρ−2
i P i

where
ρi =

σε√
σ2
ε + Tiσ2

u

. (17.46)

Since the matricesM i and P i are idempotent and orthogonal, we find that

Ω−1
i = M i + ρ2

iP i

and
Ω
−1/2
i = M i + ρiP i = Ii − (1− ρi)P i. (17.47)

Therefore the transformation used by the GLS estimator is

ỹi = (Ii − (1− ρi)P i)yi

= yi − (1− ρi) 1iyi,

which is a partial within transformation.
The transformation as written depends on ρi which is unknown. It can be replaced by the

estimate

ρ̂i =
σ̂ε√

σ̂2
ε + Tiσ̂2

u

(17.48)

where the estimators σ̂2
ε and σ̂2

u are given in (17.37) and (17.44). We thus obtain the feasible
transformations

ỹi = yi − (1− ρ̂i) 1iyi (17.49)
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and
X̃i = Xi − (1− ρ̂i) 1ix

′
i. (17.50)

The feasible random effects estimator is (17.45) using (17.49) and (17.50).
In the previous section we noted that it is possible for σ̂2

u = 0. In this case ρ̂i = 1 and
β̂re = β̂pool.

What this shows is the following. The random effects estimator (17.45) is least-squares applied
to the transformed variables X̃i and ỹi defined in (17.50) and (17.49). When ρ̂i = 0 these are the
within transformations, so X̃i = Ẋi, ỹi = ẏi, and β̂re = β̂fe is the fixed effects estimator. When
ρ̂i = 1 the data are untransformed X̃i = Xi, ỹi = yi, and β̂re = β̂pool is the pooled estimator. In

general, X̃i and ỹi can be viewed as partial within transformations.
Recalling the definition ρ̂i = σ̂ε/

√
σ̂2
ε + Tiσ̂2

u, we see that when the idiosyncratic error variance
σ̂2
ε is large relative to Tiσ̂

2
u then ρ̂i ≈ 1 and β̂re ≈ β̂pool. Thus when the variance estimates suggest

that the individual effect is relatively small, the random effect estimator simplifies to the pooled
estimator. On the other hand when the individual effect error variance σ̂2

u is large relative to σ̂
2
ε

then ρ̂i ≈ 0 and β̂re ≈ β̂fe. Thus when the variance estimates suggest that the individual effect is
relatively large, the random effect estimator is close to the fixed effects estimator.

17.16 Intercept in Fixed Effects Regression

The fixed effect estimator does not apply to any regressor which is time-invariant for all indi-
viduals. This includes an intercept. Yet some authors and packages (e.g. Amemiya (1971) and
xtreg in Stata) report an intercept. To see how to construct an estimator of an intercept, take the
components regression equation adding an explicit intercept

yit = α+ x′itβ + ui + εit.

We have already discussed estimation of β by β̂fe. Replacing β in this equation with β̂fe and then
estimating α by least-squares, we obtain

α̂fe = y − x′β̂fe

where y and x are averages from the full sample. This is the estimator reported by xtreg.
It is unclear if α̂fe is particularly useful. It may be best to ignore the reported intercepts and

focus on the slope coeffi cients.

17.17 Estimation of Fixed Effects

For most applications researchers are interested in the coeffi cients β, not the fixed effects ui.
But in some cases the fixed effects themselves are interesting. This arises when we want to measure
the distribution of ui to understand its heterogeneity. It also arises in the context of prediction. As
discussed in Section 17.11 the fixed effects estimate û is obtained by least-squares applied to the
regression (17.33). To find their solution, replace β in (17.33) with the least squares minimizer β̂fe

and apply least-squares. Since this is the individual-specific intercept, the solution is

ûi =
1

Ti

N∑
i=1

(
yit − x′iβ̂fe

)
= yi − x′iβ̂fe. (17.51)
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Alternatively, using (17.34), this is

û =
(
D′D

)−1
D′
(
y −Xβ̂fe

)
= diag

{
T−1
i

} N∑
i=1

di1
′
i

(
yi −Xiβ̂fe

)
=

N∑
i=1

di

(
yi − x′iβ̂fe

)
= (û1, ..., ûN )′ .

Thus the least-squares estimates of the fixed effects can be obtained from the individual-specific
means, and does not require a regression with N + k regressors.

If an intercept has been estimated (as discussed in the previous section) it should be subtracted
from (17.51). In this case the estimated fixed effects are

ûi = yi − x′iβ̂fe − α̂fe. (17.52)

With either estimator, when the number of time series observations Ti is small, ûi will be an
imprecise estimator of ui. Thus calculations based on ûi should be interpreted cautiously.

The fixed effects (17.52) may be obtained in Stata after ivreg, fe using the predict u com-
mand, or after areg using the predict d command.

17.18 GMM Interpretation of Fixed Effects

We can also interpret the fixed effects estimator through the generalized method of moments.
Take the fixed effects model after applying the within transformation (17.21). We can view this

as a system of T equations, one for each time period t. This is a multivariate regression model.
Using the notation of Chapter 11, define the T × kT regressor matrix

Xi =

 ẋ′i1 0 · · · 0
... ẋ′i2

...
0 0 · · · ẋ′iT

 . (17.53)

If we treat each time period as a separate equation, we have the kT moment conditions

E
(
X
′
i

(
ẏi − Ẋiβ

))
= 0.

This is an overidentified system of equations when T ≥ 3 as there are k coeffi cients and kT moments.
(However, the moments are collinear due to the within transformation. There are k(T −1) effective
moments.) Interpreting this model in the context of multivariate regression, overidentification is
achieved by the restriction that the coeffi cient vector β is constant across time periods.

This model can be interpreted as a regression of ẏi on Ẋi using the instruments Xi. The 2SLS
estimator, using matrix notation, is

β̂ =

((
Ẋ
′
X
)(
X
′
X
)−1 (

X
′
Ẋ
))−1((

Ẋ
′
X
)(
X
′
X
)−1 (

X
′
ẏ
))

.

Notice that

X
′
X =

n∑
i=1

 ẋi1 0 · · · 0
... ẋi2

...
0 0 · · · ẋiT


 ẋ′i1 0 · · · 0

... ẋ′i2
...

0 0 · · · ẋ′iT


=


∑n

i=1 ẋi1ẋ
′
i1 0 · · · 0

...
∑n

i=1 ẋi2ẋ
′
i2

...
0 0 · · ·

∑n
i=1 ẋiT ẋ

′
iT

 ,
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X
′
Ẋ =


∑n

i=1 ẋi1ẋ
′
i1

...∑n
i=1 ẋiT ẋ

′
iT

 ,

and

X
′
ẏ =


∑n

i=1 ẋi1ẏi1
...∑n

i=1 ẋiT ẏiT

 .

Thus the 2SLS estimator simplifies to

β̂2sls =

 T∑
t=1

(
n∑
i=1

ẋitẋ
′
it

)(
n∑
i=1

ẋitẋ
′
it

)−1( n∑
i=1

ẋitẋ
′
it

)−1

·

 T∑
t=1

(
n∑
i=1

ẋitẋ
′
it

)(
n∑
i=1

ẋitẋ
′
it

)−1( n∑
i=1

ẋitẏit

)
=

(
T∑
t=1

n∑
i=1

ẋitẋ
′
it

)−1( T∑
t=1

n∑
i=1

ẋitẏit

)
= β̂fe

the fixed effects estimator!
This shows that if we treat each time period as a separate equation with its separate moment

equation so that the system is over-identified, and then estimate by GMM using the 2SLS weight
matrix, the resulting GMM estimator equals the simple fixed effects estimator. There is no change
by adding the additional moment conditions.

The 2SLS estimator is the appropriate GMM estimator when the equation error is serially
uncorrelated and homoskedastic. If we use a two-step effi cient weight matrix which allows for
heteroskedasticity and serial correlation the GMM estimator is

β̂gmm =

 T∑
t=1

(
n∑
i=1

ẋitẋ
′
it

)(
n∑
i=1

ẋitẋ
′
itê

2
it

)−1( n∑
i=1

ẋitẋ
′
it

)−1

·

 T∑
t=1

(
n∑
i=1

ẋitẋ
′
it

)(
n∑
i=1

ẋitẋ
′
itê

2
it

)−1( n∑
i=1

ẋitẏit

)
where êit are the fixed effects residuals.

Notationally, this GMM estimator has been written for a balanced panel. For an unbalanced
panel the sums over i need to be replaced by sums over individuals observed during time period t.
Otherwise no changes need to be made.

17.19 Identification in the Fixed Effects Model

The identification of the slope coeffi cient β in fixed effects regression is similar to that in
conventional regression but somewhat more nuanced.

It is most useful to consider the within-transformed equation, which can be written as

ẏit = ẋ′itβ + ε̇it

or
ẏi = Ẋiβ + ε̇i.
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From regression theory we know that the coeffi cient β is the linear effect of ẋit on ẏit. The
variable ẋit is the deviation of the regressor from its individual-specific mean, and similarly for ẏit.
Thus the fixed effects model does not identify the effect of the average level of xit on the average
level of yit, but rather the effect of the deviations in xit on yit.

In any given sample the fixed effects estimator is only defined if
∑N

i=1 Ẋ
′
iẊi is full rank. The

population analog (when individuals are i.i.d.) is

E
(
Ẋ
′
iẊi

)
> 0. (17.54)

In the case of a balanced panel we can write this as
T∑
t=1

E
(
ẋitẋ

′
it

)
> 0.

Equation (17.54) is the identification condition for the fixed effects estimator. It requires that the
regressor matrix is full-rank in expectation after application of the within transformation. Thus the
regressors cannot contain any variable which does not have time-variation at the individual level,
nor a set of regressors whose time-variation at the individual level is colinear.

17.20 Asymptotic Distribution of Fixed Effects Estimator

In this section we present an asymptotic distribution theory for the fixed effects estimator in
the case of a balanced panel. The case of unbalanced panels is considered in the following section.

We use the following assumptions.

Assumption 17.2

1. yit = x′itβ + ui + εit for i = 1, ..., N and t = 1, ..., T with T ≥ 2.

2. The variables (εi,Xi), i = 1, ..., N, are independent and identically
distributed.

3. E (xisεit) = 0 for all s = 1, ..., T.

4. QT = E
(
Ẋ
′
iẊi

)
> 0.

5. E
(
ε4
it

)
<∞.

6. E ‖xit‖4 <∞.

Given Assumption 17.2 we can establish asymptotic normality for β̂fe.

Theorem 17.2 Under Assumption 17.2, as N →∞,
√
N
(
β̂fe − β

)
d−→ N (0,V β)

where

V β = Q−1
T ΩTQ

−1
T

ΩT = E
(
Ẋ
′
iεiε

′
iẊi

)
.
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This asymptotic distribution is derived as the number of individuals N diverges to infinity while
the time number of time periods T is held fixed. Therefore the normalization is

√
N rather than

√
n

(though either could be used since T is fixed). This approximation is appropriate for the context of
a large number of individuals i. We could alternatively derive an approximation for the case where
both N and T diverge to infinity, but this would not be a stronger result. One way of thinking
about this is that Theorem 17.2 does not require T to be large.

Theorem 17.2 may appear quite standard given our arsenal of asymptotic theory but in a
fundamental sense it is quite different from any other result we have introduced. Fixed effects
regression is effectively estimating N + k coeffi cients —the k slope coeffi cients β plus the N fixed
effects u —and the theory specifies that N → ∞. Thus the number of estimated parameters is
diverging to infinity at the same rate as sample size, yet the the estimator obtains a conventional
mean-zero sandwich-form asymptotic distribution. In this sense Theorem 17.2 is quite new and
special.

We now discuss the assumptions.
Assumption 17.2.2 states that the observations are independent across individuals i. This is

commonly used for panel data asymptotic theory. An important implied restriction is that it means
that we exclude from the regressors any serially correlated aggregate time series variation.

Assumption 17.2.3 imposes that xit is strictly exogeneous for εit. This is stronger than simple
projection, but is weaker than strict mean independence (17.18). It does not impose any condition
on the individual-specific effects ui.

Assumption 17.2.4 is the identification condition discussed in the previous section.
Assumptions 17.2.5 and 17.2.6 are needed for the central limit theorem.
We now prove Theorem 17.2. The assumptions imply that the variables (Ẋi, εi) are i.i.d. across

i and have finite fourth moments. Thus by the WLLN

1

N

N∑
i=1

Ẋ
′
iẊi

p−→ E
(
Ẋ
′
iẊi

)
= QT .

The random vectors Ẋ
′
iεi are i.i.d. Assumption 17.2.3 implies

E
(
Ẋ
′
iεi

)
=

T∑
t=1

E (ẋitεit) =
T∑
t=1

E (xitεit)−
T∑
t=1

T∑
j=1

E (xijεit) = 0

so they are mean zero. Assumptions 17.2.5 and 17.2.6 imply that Ẋ
′
iεi has a finite covariance

matrix, which is ΩT . The assumptions for the CLT (Theorem 6.11) hold, thus

1√
N

N∑
i=1

Ẋ
′
iεi

d−→ N (0,ΩT ) .

Together we find

√
N
(
β̂fe − β

)
=

(
1

N

N∑
i=1

Ẋ
′
iẊi

)−1(
1

N

N∑
i=1

Ẋ
′
iεi

)
d−→ Q−1

T N (0,ΩT ) = N (0,V β)

as stated.

17.21 Asymptotic Distribution for Unbalanced Panels

In this section we extend the theory of the previous section to cover the case of unbalanced
panels under random selection. Our presentation is built on Section 17.1 of Wooldridge (2010).
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The key is to think of an unbalanced panel as a shortened version of an idealized balanced panel,
where the shortening is due to “missing”observations due to random selection. Thus suppose that
the underlying (potentially latent) variables are yi = (yi1, ..., yiT )′ and Xi = (xi1, ...,XiT )′. Let
si = (si1, ..., siT )′ be a vector of selection indicators, meaning that sit = 1 if the time period t is
observed for individual i, and sit = 0 otherwise. Then, algebraically, we can describe the estimators
on the observed sample as follows.

Let Si = diag (si) and M i = Si − si (s′isi)
−1 s′i, which is an idempotent matrix. The within

transformations can be written as ẏi = M iyi and Ẋi = M iXi. They have the property that if
the sit = 0 (so that time period t is missing) then the tth element of ẏi and the t

th row of Ẋi are
all zeros. Thus the missing observations have been replaced by zeros. Consequently, they do not
appear in matrix products and sums.

The fixed effects estimator of β based on the observed sample is

β̂fe =

(
N∑
i=1

Ẋ
′
iẊi

)−1( N∑
i=1

Ẋ
′
iẏi

)
.

Centered and normalized,

√
N
(
β̂fe − β

)
=

(
1

N

N∑
i=1

Ẋ
′
iẊi

)−1(
1

N

N∑
i=1

Ẋ
′
iεi

)
.

Notationally this appears to be identical to the case of a balanced panel, but the difference is
that the within operator M i incorporates the sample selection induced by the unbalanced panel
structure.

To derive a distribution theory for β̂fe we need to be explicit about the stochastic nature of si.
That is, why are some time periods observed and some not? We can take several approaches:

1. We could treat si as fixed (non-random). This is the easiest approach but the most unsatis-
factory.

2. We could treat si as random but independent of (yi,Xi). This is known as “missing at
random”and is a common assumption used to justify methods with missing observations. It is
justified when the reason why observations are not observed is independent of the observations.
This is appropriate, for example, in panel data sets where individuals enter and exit in
“waves”. The statistical treatment is not substantially different from the case of fixed si.

3. We could treat (yi,Xi, si) as jointly random but impose a condition suffi cient for consistent
estimation of β. This is the approach we take below. The condition turns out to be a form
of mean independence. The advantage of this approach is that it is less restrictive than full
independence. The disadvantage is that we must use a conditional mean restriction rather
than uncorrelatedness to identify the coeffi cients.

The specific assumptions we impose are as follows.
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Assumption 17.3

1. yit = x′itβ + ui + εit for i = 1, ..., N with Ti ≥ 2

2. The variables (εi,Xi, si), i = 1, ..., N, are independent and identically
distributed.

3. E (εit |Xi, si) = 0.

4. QT = E
(
Ẋ
′
iẊi

)
> 0.

5. E
(
ε4
it

)
<∞.

6. E ‖xit‖4 <∞.

The primary difference with Assumption 17.2 is that we have strengthened strict exogeneity to
strict mean independence. This imposes that the regression model is properly specified, and that
selection (si) does not affect the mean of εit. It is less restrictive than assuming full independence
since si can affect other moments of εit, and more importantly does not restrict the joint dependence
between si and Xi.

Given the above development it is straightforward to establish asymptotic normality.

Theorem 17.3 Under Assumption 17.3, as N →∞,
√
N
(
β̂fe − β

)
d−→ N (0,V β)

where

V β = Q−1
T ΩTQ

−1
T

ΩT = E
(
Ẋ
′
iεiε

′
iẊi

)
.

We now prove Theorem 17.3. The assumptions imply that the variables (Ẋi, εi) are i.i.d. across
i and have finite fourth moments. By the WLLN

1

N

N∑
i=1

Ẋ
′
iẊi

p−→ E
(
Ẋ
′
iẊi

)
= QT .

The random vectors Ẋ
′
iεi are i.i.d. The matrix Ẋi is a function of (Xi, si) only. Assumption 17.3.3

and the law of iterated expectations implies

E
(
Ẋ
′
iεi

)
= E

(
Ẋ
′
iE (εi |Xi, si)

)
= 0.

so that Ẋ
′
iεi is mean zero. Assumptions 17.3.5 and 17.3.6 and the fact that si is bounded implies

that Ẋ
′
iεi has a finite covariance matrix, which is ΩT . The assumptions for the CLT hold, thus

1√
N

N∑
i=1

Ẋ
′
iεi

d−→ N (0,ΩT ) .

Together we obtain the stated result.
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17.22 Heteroskedasticity-Robust Covariance Matrix Estimation

We have introduced two covariance matrix estimators for the fixed effects estimator. The classi-
cal estimator (17.36) is appropriate for the case where the idiosyncratic errors εit are homoskedastic
and serially uncorrelated. The cluster-robust estimator (17.38) allows for heteroskedasticity and
arbitrary serial correlation. In this and the following section we consider the intermediate case
where εit is heteroskedastic but serially uncorrelated.

That is, assume that (17.18) and (17.26) hold but not necessarily (17.25). Define the conditional
variances

E
(
ε2
it |Xi

)
= σ2

it. (17.55)

Then Σi = E
(
εiε
′
i |Xi

)
= diag

(
σ2
it

)
. The covariance matrix (17.24) can be written as

V fe =
(
Ẋ
′
Ẋ
)−1

 N∑
i=1

∑
t∈Si

ẋitẋ
′
itσ

2
it

(Ẋ ′Ẋ)−1
. (17.56)

A natural estimator of σ2
it is ε̂

2
it. Replacing σ

2
it with ε̂

2
it in (17.56) and making a degree-of-freedom

adjustment we obtain a White-type covariance matrix estimator

V̂ fe =
n

n−N − k

(
Ẋ
′
Ẋ
)−1

 N∑
i=1

∑
t∈Si

ẋitẋ
′
itε̂

2
it

(Ẋ ′Ẋ)−1
.

Following the insight of White (1980) it may seem appropriate to expect V̂ fe to be a reasonable
estimator of V fe. Unfortunately this is not the case, as discovered by Stock and Watson (2008).
The problem is that V̂ fe is a function of the individual-specific means εi which are negligible only
if the number of time series observations Ti are large.

We can see this by a simple bias calculation. Assume that the sample is balanced and that the
residuals are constructed with the true β. Then

ε̂it = ε̇it = εit −
1

T

T∑
t=1

εij .

Using (17.26) and (17.55)

E
(
ε̂2
it |Xi

)
=

(
T − 2

T

)
σ2
it +

σ2
i

T
(17.57)

where σ2
i = T−1

∑T
t=1 σ

2
it. (See Exercise 17.10.) Using (17.57) and setting k = 0 we obtain

E
(
V̂ fe |X

)
=

T

T − 1

(
Ẋ
′
Ẋ
)−1

 N∑
i=1

∑
t∈Si

ẋitẋ
′
itE
(
ε̂2
it |Xi

)(Ẋ ′Ẋ)−1

=

(
T − 2

T − 1

)
V fe +

1

T − 1

(
Ẋ
′
Ẋ
)−1

(
N∑
i=1

Ẋ
′
iẊiσ

2
i

)(
Ẋ
′
Ẋ
)−1

.

Thus V̂ fe is a biased estimator for V fe, with a bias of order O
(
T−1

)
. Unless T →∞, this bias

will persist as N →∞.
The estimator V̂ fe is unbiased in two contexts. The first is when the errors εit are homoskedastic.

The second is when T = 2. (To show the latter requires some algebra.)
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To correct the bias for the case T > 2, Stock and Watson (2008) proposed the estimator

Ṽ fe =

(
T − 1

T − 2

)
V̂ fe −

1

T − 1
B̂fe (17.58)

B̂fe =
(
Ẋ
′
Ẋ
)−1

(
N∑
i=1

Ẋ
′
iẊiσ̂

2
i

)(
Ẋ
′
Ẋ
)−1

σ̂2
i =

1

T − 1

T∑
t=1

ε̂2
it. (17.59)

You can check that E
(
σ̂2
i |Xi

)
= σ2

i and E
(
Ṽ fe |Xi

)
= V fe so Ṽ fe is unbiased for V fe. (See

Exercise 17.11.)
Stock and Watson (2008) show that Ṽ fe is consistent with T fixed and N →∞. In simulations

they show that Ṽ fe has excellent performance.
Because of the Stock-Watson analysis, Stata no longer calculates the heteroskedasticity-robust

covariance matrix estimator V̂ fe when the fixed effects estimator is calculated using the xtreg

command. Instead, the cluster-robust estimator V̂
cluster

fe is reported when robust standard errors
are requested. However, fixed effects is often implemented using the areg command, which will
report the biased estimator V̂ fe if robust standard errors are requested. These leads to the practical
recommendation that areg should typically be used with the cluster(id) option.

At present, the corrected estimator (17.58) has not been programmed as a Stata option.

17.23 Heteroskedasticity-Robust Estimation —Unbalanced Case

A limitation with the bias-corrected robust covariance matrix estimator of Stock and Watson
(2008) is that it was only derived for balanced panels. In this section we generalize their estimator
to cover the case of unbalanced panels.

The proposed estimator is

Ṽ fe =
(
Ẋ
′
Ẋ
)−1

Ω̃fe

(
Ẋ
′
Ẋ
)−1

(17.60)

Ω̃fe =

N∑
i=1

∑
t∈Si

ẋiẋ
′
i

[(
Tiε̂

2
it − σ̂2

i

Ti − 2

)
1 (Ti > 2) +

(
Tiε̂

2
it

Ti − 1

)
1 (Ti = 2)

]
where

σ̂2
i =

1

Ti − 1

∑
t∈Si

ε̂2
it.

To justify this estimator, as in the previous section make the simplifying assumption that the
residuals are constructed with the true β. We calculate that

E
(
ε̂2
it |Xi

)
=

(
Ti − 2

Ti

)
σ2
it +

σ2
i

Ti
(17.61)

E
(
σ̂2
i |Xi

)
= σ2

i . (17.62)

You can show that under these assumptions, E
(
Ṽ fe |X

)
= V fe and thus Ṽ fe is unbiased for V fe.

(See Exercise 17.12.)
The estimator Ṽ fe simplifies to the Stock-Watson estimator in the context of balanced panels

and k = 0.
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17.24 Hausman Test for Random vs Fixed Effects

The random effects model is a special case of the fixed effects model. Thus we can test the null
hypothesis of random effects against the alternative of fixed effects. The Hausman test is typically
used for this purpose. The statistic is a quadratic in the difference between the fixed effects and
random effects estimators. The statistic is

H =
(
β̂fe − β̂re

)′
v̂ar
(
β̂fe − β̂re

)−1 (
β̂fe − β̂re

)
=
(
β̂fe − β̂re

)′ (
V̂ fe − V̂ re

)−1 (
β̂fe − β̂re

)
where both V̂ fe and V̂ re take the classical (non-robust) form.

The test can be implemented on a subset of the coeffi cients β. In particular this needs to be done
if the regressors xit contain time-invariant elements so that the random effects estimator contains
more coeffi cients than the fixed effects estimator. In this case the test should be implemented only
on the coeffi cients on the time-varying regressors (and are thus estimated by both random and fixed
effects).

An asymptotic 100α% test rejects if H exceeds the 1−αth quantile of the χ2
k distribution, where

k = dim(β). If the test rejects, this is evidence that the individual effect ui is correlated with the
regressors, so the random effects model is not appropriate. On the other hand if the test fails to
reject, this evidence says that the random effects hypothesis cannot be rejected.

It is tempting to use the Hausman test to select whether to use the fixed effects or random effects
estimator. One could imagine using the random effects estimator if the Hausman test fails to reject
the random effects hypothesis, and using the fixed effects estimator if the Hausman test rejects
random effects. This is not, however, a wise approach. This procedure — selecting an estimator
based on a test —is known as a pretest estimator and is quite biased. The bias arises because
the result of the test is random and correlated with the estimators.

Instead, the Hausman test can be used as a specification test. If you are planning to use the
random effects estimator (and believe that the random effects assumptions are appropriate in your
context), the Hausman test can be used to check this assumption and provide evidence to support
your approach.

17.25 Random Effects or Fixed Effects?

We have presented the random effects and fixed effects estimators of the regression coeffi cients.
Which should be used in practice? How should we view the difference?

The basic distinction is that the random effects estimator requires the individual error ui to
satisfy the conditional mean assumption (17.8). The fixed effect estimator does not require (17.8),
and is robust to its violation. In particular, the individual effect ui can be arbitrarily correlated
with the regressors. On the other hand the random effect estimator is effi cient under the random
effects assumption (Assumption 17.1).

Current econometric practice is to prefer robustness over effi ciency. Consequently current prac-
tice is (nearly uniformly) to use the fixed effects estimator for linear panel data models. Random
effects estimators are only used in contexts where fixed effects estimation is unknown or challenging
(which turns out to be the case in many nonlinear models).

The labels “random effects” and “fixed effects” are misleading. These are labels which arose
in the early literature and we are stuck with them today. The term “fixed effects” was applied
to ui when it was viewed as an unobserved missing regressor in the era where regressors were
viewed as “fixed”. Calling ui “fixed”was equivalent to calling it a regressor. Today, we rarely refer
to regressors as “fixed”when dealing with observational data. We view all variables as random.
Consequently describing ui as “fixed”does not make much sense, and it is hardly a contrast with
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the “random effect”label since under either assumption ui is treated as random. Once again, the
labels are unfortunate, but the key difference is whether ui is correlated with the regressors.

17.26 Two-Way Error Components

In general we expect that economic agents will experience common shocks during the same time
period. For example, business cycle fluctations, inflation, and interest rates affect all agents in the
economy. Therefore it is often desirable to include time effects in a panel regression model.

The standard way to incorporate time effects is the two-way error component model

yit = x′itβ + vt + ui + εit. (17.63)

In this model, ui is an unobserved individual-specific effect, vt is an unobserved time-specific effect,
and εit is an idiosyncratic error.

The two-way model (17.63) can be handled either using random effects or fixed effects. In
a random effects framework, the errors vt and ui are modeled as in Assumption 17.1. When
the panel is balanced and using matrix notation, the covariance matrix of the error vector e =
v ⊗ 1N + 1T ⊗ u+ ε is

var (e) = Ω =
(
IT ⊗ 1N1′N

)
σ2
v +

(
1T1′T ⊗ IN

)
σ2
u + Inσ

2
ε . (17.64)

When the panel is unbalanced a similar but cumbersome expression for (17.64) can be derived.
This variance (17.64) can be used for GLS estimation of β.

More typically (17.63) is handled using fixed effects. The two-way within transformation sub-
tracts both individual-specific means and time-specific means to eliminate both vt and ui from the
two-way model (17.63). For a variable yit we define the time-specific mean as follows. Let St be the
set of individuals i for which the observation t is included in the sample, and let Nt be the number
of these individuals. Then the time-specific mean at time t is

ỹt =
1

Nt

∑
i∈St

yit.

This is the average across all values of yit observed at time t.
For the case of balanced panels the two-way within transformation is

ÿit = yit − yi − ỹt + y

where y = n−1
∑N

i=1

∑T
t=1 yit is the full-sample mean. If yit satisfies the two-way component model

yit = vt + ui + εit

then yi = v + ui + εi, ỹt = vt + u+ ε̃t and y = v + u+ ε. Hence

ÿit = vt + ui + εit − (v + ui + εi)− (vt + u+ ε̃t) + v + u+ ε

= εit − εi − ε̃t + ε

= ε̈it

so the individual and time effects are eliminated.
The two-way within transformation applied to (17.63) yields

ÿit = ẍ′itβ + ε̈it (17.65)

which is invariant to both vt and ui. The two-way within estimator of β is least-squares applied
to (17.65).
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For the unbalanced case there is a similar but algebraically more cumbersome two-way within
transformation due to Wansbeek and Kapteyn (1989) and is described in Baltagi (2013, Section
9.4). We do not describe the algebra here as it is easier to implement using the technique described
below.

If the two-way within estimator is used, then the regressors xit cannot include any time-invariant
variables xi or common time series variables xt. Both are eliminated by the two-way within trans-
formation. Thus coeffi cients are only identified for regressors which have variation both across
individuals and across time.

Similarly to the one-way estimator, the two-way within estimator is equivalent to least-squares
estimation after including dummy variables for all individuals and for all time periods. Let τ t be
a set of T dummy variables where the tth indicates the tth time period. Thus the tth element of τ t
is 1 and the remaining elements are zero. Set v = (v1, ..., vT )′ as the vector of time fixed effects.
Notice that vt = τ ′tv. Then we can write the two-way model as

yit = x′itβ + τ ′tv + d′iu+ εit. (17.66)

This is the dummy variable representation of the two-way error components model.
The two-way dummy variable model (17.66) is collinear as written, for both the individual-

specific dummies di and the time-specific dummies τ t span the intercept. Hence if (17.66) is to be
estimated one dummy variable must be removed or otherwise normalized. The individual effects
cannot be separately identified from the time effects.

When the number of time periods T is moderate a simple way to estimate (17.66) is by a hybrid
dummy variable/within estimator which includes the time dummies τ t but eliminates the individual
effects by the within transformation. That is, apply the (individual-level) within transformation to
(17.66) to obtain

ẏit = ẋ′itβ + τ̇ ′itv + ε̇it (17.67)

where
τ̇ it = τ t −

1

Ti

∑
i∈Si

τ t

are the within-transformed time dummy variables. If the panel is balanced τ̇ it = τ̇ t = τ t −
T−1

∑T
t=1 τ t does not vary across individuals, but in the unbalanced case it will vary across indi-

viduals. The coeffi cients (β,v) are estimated by least-squares applied to (17.67). This produces
estimates of the slopes β as well as the time effects v. Again to prevent singularity and achieve
identification one time dummy variable is omitted from τ t so the estimated time effects are all
relative to this baseline time period.

The fixed effect estimator of (17.63) is invariant to the values of vt and ui, thus no assumptions
need to be made concerning their stochastic properties.

To illustrate, the fourth column of Table 17.2 presents fixed effects estimates of the investment
equation, augmented to included year dummy indicators, and is thus a two-way fixed effects model.
In this example the coeffi cient estimates and standard errors are not greatly affected by the inclusion
of the year dummy variables.

17.27 Instrumental Variables

Take the fixed effects model
yit = x′itβ + ui + εit. (17.68)

We say xit is exogenous for εit if E (xitεit) = 0, and we say xit is endogenous for εit if E (xitεit) 6= 0.
In Chapter 12 we discussed several economic examples of endogeneity, and the same issues apply in
the panel data context. The primary difference is that in the fixed effects model, we only need to
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be concerned if the regressors are correlated with the idiosyncratic error εit, as correlation between
xit and ui is allowed.

As in Chapter 12 if the regressors are endogenous then the fixed effects estimator will be biased
and inconsistent for the structural coeffi cient β. The standard approach to handling endogeneity
is to specify instrumental variables zit which are both relevant (correlated with xit) yet exogenous
(uncorrelated with εit).

Let zit be an ` × 1 instrumental variable where ` ≥ k. As in the cross-section case, zit
may contain both included exogenous variables (variables in xit that are exogenous) and excluded
exogenous variables (variables not in xit). Let Zi be the stacked instruments for the individual i,
and Z be the stacked instruments for the full sample.

The dummy variable formulation of the fixed effects model is

yit = x′itβ + d′iu+ εit

where di is an N × 1 vector of dummy variables, one for each individual in the sample. The model
in matrix notation for the full sample is

y = Xβ +Du+ ε. (17.69)

Theorem 17.1 shows that the fixed effects estimator for β can be calculated by least squares
estimation of (17.69). Thus the dummies D should be viewed as an included exogenous variable.

Now consider 2SLS estimation of β using the instruments Z for X. Since D is an included
exogenous variable it should also be used as an instrument. Thus 2SLS estimation of the fixed
effects model (17.68) is algebraically 2SLS of the regression (17.69) of y on (X,D), using the pair
(Z,D) as instruments.

Since the dimension of D can be excessively large, as discussed in Section 17.11, it is advisable
to use residual regression to compute the 2SLS estimator, as we now describe.

In Section 12.12, we described several alternative representations for the 2SLS estimator. The
fifth (equation (12.34)) shows that the 2SLS estimator for β can be written as

β̂2sls =
(
X ′MDZ

(
Z ′MDZ

)−1
Z ′MDX

)−1 (
X ′MDZ

(
Z ′MDZ

)−1
Z ′MDy

)
where MD = In −D (D′D)

−1
D′. The latter is the matrix within operator, thus MDy = ẏ,

MDX = Ẋ, andMDZ = Ż. It follows that the 2SLS estimator is

β̂2sls =

(
Ẋ
′
Ż
(
Ż
′
Ż
)−1

Ż
′
Ẋ

)−1(
Ẋ
′
Ż
(
Ż
′
Ż
)−1

Ż
′
ẏ

)
.

This is quite convenient. It shows that the 2SLS estimator for the fixed effects model can be
calculated by applying the standard 2SLS formula to the within-transformed yit, xit, and zit. The
2SLS residuals are ê = ẏ − Ẋβ̂2sls.

This estimator can be obtained using the Stata command xtivreg fe. It can also be obtained
using the Stata command ivregress after making the within transformations.

The presentation above focused for clarity on the one-way fixed effects model. There is no
substantial change in the two-way fixed effects model

yit = x′itβ + ui + vt + εit.

The easiest way to estimate the two-way model is to add T−1 time-period dummies to the regression
model, and include these dummy variables as both regressors and instruments.
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17.28 Identification with Instrumental Variables

To understand the identification of the structural slope coeffi cient β in the fixed effects model
it is necessary to examine the reduced form equation for the endogenous regressors xit. This is

xit = Γzit +wi + ζit

where wi is a k × 1 vector of fixed effects for the k regressors and ζit is an idiosyncratic error.
The coeffi cient matrix Γ is the linear effect of zit on xit, holding the fixed effects wi constant.

Thus Γ has a similar interpretation as the coeffi cient β in the fixed effects regression model. It is
the effect of the variation in zit about its individual-specific mean on xit.

The 2SLS estimator is a function of the within transformed variables. Applying the within
transformation to the reduced form we find

ẋit = Γżit + ζ̇it.

Again we see that Γ is the effect of the within-transformed instruments on the within-transformed
regressors. If there is no time-variation in the within-transformed instruments, or there is no
correlation between the instruments and the regressors after removing the individual-specific means,
then the coeffi cient Γ will be either not identified or singular. In either case the structural coeffi cient
β will not be identified.

Thus for identification of the fixed effects instrumental variables model we need

E
(
Ż
′
iŻi

)
> 0 (17.70)

and
rank

(
E
(
Ż
′
iẊi

))
= k. (17.71)

Condition (17.70) is the same as the condition for identification in fixed effects regression — the
instruments must have full variation after the within transformation. Condition (17.71) is analogous
to the relevance condition for identification of instrumental variable regression in the cross-section
context, but applies to the within-transformed instruments and regressors.

Condition (17.71) shows that to examine instrument validity in the context of fixed effects 2SLS,
it is important to estimate the reduced form equation using fixed effects (within) regression. Stan-
dard tests for instrument validity (F tests on the excluded instruments) can be applied. However,
since the correlation structure of the reduced form equation is in general unknown, it is appropriate
to use a cluster-robust covariance matrix, clustered at the level of the individual.

17.29 Asymptotic Distribution of Fixed Effects 2SLS Estimator

In this section we present an asymptotic distribution theory for the fixed effects estimator. We
provide a formal theory for the case of balanced panels, and discuss an extension to the case of
unbalanced panels.

We use the following assumptions for balanced panels.
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Assumption 17.4

1. yit = x′itβ + ui + εit for i = 1, ..., N and t = 1, ..., T with T ≥ 2.

2. The variables (εi,Xi,Zi), i = 1, ..., N, are independent and identi-
cally distributed.

3. E (zisεit) = 0 for all s = 1, ..., T.

4. Qzz = E
(
Ż
′
iŻi

)
> 0.

5. rank (Qzx) = k where Qzx = E
(
Ż
′
iẊi

)
.

6. E
(
ε4
it

)
<∞.

7. E ‖xit‖2 <∞.

8. E ‖zit‖4 <∞.

Given Assumption 17.4 we can establish asymptotic normality for β̂2sls.

Theorem 17.4 Under Assumption 17.4, as N →∞,
√
N
(
β̂2sls − β

)
d−→ N (0,V β)

where

V β =
(
Q′zxΩ

−1
zz Qzx

)−1 (
Q′zxΩ

−1
zz ΩzεΩ

−1
zz Qzx

) (
Q′zxΩ

−1
zz Qzx

)−1

Ωzε = E
(
Ż
′
iεiε

′
iŻi

)
.

The proof of the result is similar to Theorem 17.2 so is omitted. The key orthogonality condition
is Assumption 17.4.3, which states that the instruments are strictly exogenous for the idiosyncratic
errors. The identification conditions are Assumptions 17.4.4 and 17.4.5, which were discussed in
the previous section.

The theorem is stated for balanced panels. For unbalanced panels we can modify the theo-
rem as in Theorem 17.3 by adding the selection indicators si, and replacing Assumption 17.4.3
with E (εit | Zi, si) = 0, which states that the idiosyncratic errors are mean independent of the
instruments and selection.

If the idiosyncratic errors εit are homoskedastic and serially uncorrelated, then the covariance
matrix simplifies to

V β =
(
Q′zxΩ

−1
zz Qzx

)−1
σ2
ε .

In this case a classical homoskedastic covariance matrix estimator can be used. Otherwise a cluster-
robust covariance matrix estimator can be used, which takes the form

V̂
β̂

=

(
Ẋ
′
Ż
(
Ż
′
Ż
)−1

Ż
′
Ẋ

)−1 (
Ẋ
′
Ż
)(
Ż
′
Ż
)−1

(
N∑
i=1

Ż
′
iε̂iε̂

′
iŻi

)

·
(
Ż
′
Ż
)−1 (

Ż
′
Ẋ
)(
Ẋ
′
Ż
(
Ż
′
Ż
)−1

Ż
′
Ẋ

)−1

.
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As for the case of fixed effects regression, the heteroskedasticity-robust covariance matrix estima-
tor is not recommended due to bias when T is small, and a bias-corrected version has not been
developed.

The Stata command xtivreg, fe by default reports the classical homoskedastic covariance
matrix estimator. To obtain a cluster-robust covariance matrix, use the option vce(robust) or
vce(cluster id).

17.30 Linear GMM

Consider the just-identified 2SLS estimator. It solves the equation

Ż
′ (
ẏ − Ẋβ

)
= 0

or equivalently
Ż
′
(y −Xβ) = 0.

These are sample analogs of the population moment condition

E
(
Ż
′
i

(
ẏi − Ẋiβ

))
= 0.

or equivalenlty

E
(
Ż
′
i (yi −Xiβ)

)
= 0.

These population conditions hold at the true β since Ż
′
u = Z ′MDu = 0 since u lies in the null

space of D, and E
(
Ż
′
iε
)

= 0 is implied by Assumption 17.4.3.

The population orthogonality conditions hold in the overidentified case as well. In this case an
alternative to 2SLS is GMM. Let Ω̂i be an estimate of

W = E
(
Ż
′
iεiε

′
iŻi

)
,

for example

Ŵ =
1

N

N∑
i=1

Ż
′
iε̂iε̂

′
iŻi (17.72)

where ε̂i are the 2SLS fixed effects residuals. The GMM fixed effects estimator is

β̂gmm =
(
Ẋ
′
ŻŴ

−1
Ż
′
Ẋ
)−1 (

Ẋ
′
ŻŴ

−1
Ż
′
ẏ
)
. (17.73)

The estimator (17.73)-(17.72) does not have a Stata command, but can be obtained by gener-
ating the within transformed variables Ẋ, Ż and ẏ , and then estimating by GMM a regression of
ẏ on Ẋ using Ż as instruments, using a weight matrix clustered by individual.

17.31 Estimation with Time-Invariant Regressors

One of the disappointments with the fixed effects estimator is that it cannot estimate the effect
of regressors which are time-invariant. They are not identified separately from the fixed effect, and
are eliminated by the within transformation. In contrast, the random effects estimator allows for
time-invariant regressors, but does so only by assuming strict exogeneity, which is stronger than
typically desired in economic applications.

It turns out that we can consider an intermediate case which maintains the fixed effects as-
sumptions for the time-varying regressors, but uses stronger assumptions on the time-invariant
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regressors. For our exposition we will denote the time-varying regressors by the k × 1 vector xit,
and the time-invariant regressors by the `× 1 vector zi.

Consider the linear regression model

yit = x′itβ + z′iγ + ui + εit.

At the level of the individual this can be written as

yi = Xiβ +Ziγ + ıiui + εi

where Zi = ıiz
′
i. For the full sample in matrix notation we can write this as

y = Xβ +Zγ + u+ ε. (17.74)

We will maintain the assumption that the idiosyncratic errors εit are uncorrelated with both
xit and zi at all time horizons:

E (xisεit) = 0 (17.75)

E (ziεit) = 0. (17.76)

In this section we consider the case where zi is uncorrelated with the individual-level error ui, thus

E (ziui) = 0, (17.77)

but the correlation of xit and ui is left unrestricted. In this context we say that zi is exogenous
with respect to the fixed effect ui, while xit is endogenous with respect to ui. Note that this is
a different type of endogeneity than considered in the sections on instrumental variables: there
we were concerned with correlation with the idiosyncratic error εit. Here we are concerned with
correlation with the fixed effect ui.

We consider estimation of (17.74) by instrumental variables, and thus need instruments which
are uncorrelated with the error u + ε. The time-invariant regressors Z satisfy this condition due
to (17.76) and (17.77), thus

E
(
Z ′i (yi −Xiβ −Ziγ)

)
= 0.

While the time-varying regressorsX are correlated with u, the within transformed variables Ẋ are
uncorrelated with u+ ε under (17.75), thus

E
(
Ẋ
′
i (yi −Xiβ −Ziγ)

)
= 0.

Therefore we can estimate (β,γ) by instrumental variable regression, using the instrument set
(Ẋ,Z). That is, regression of y on X and Z, treating X as endogenous, Z as exogenous, and
using the instrument Ẋ. Write this estimator as (β̂, γ̂). This can be implemented using the Stata
ivregress command after constructing the within transformed Ẋ.

This instrumental variables estimator is algebraically equal to a simple two-step estimator. The
first step β̂ = β̂fe is the fixed effects estimator. The second step sets γ̂ = (Z ′Z)

−1
(Z ′û) , the least-

squares coeffi cient from the regression of the estimated fixed effect û on Z. To see this equivalence,
observe that the instrumental variables estimator estimator solves the sample moment equations

Ẋ
′
(y −Xβ −Zγ) = 0 (17.78)

Z ′ (y −Xβ −Zγ) = 0. (17.79)

Notice that Ẋ
′
iZi = Ẋ

′
iıiz

′
i = 0 so Ẋ

′
Z = 0. Thus (17.78) is the same as Ẋ

′
(y −Xβ) = 0 whose

solution is β̂fe. Plugging this into the left-side of (17.79) we obtain

Z ′
(
y −Xβ̂fe −Zγ

)
= Z ′

(
y −Xβ̂fe −Zγ

)
= Z ′ (û−Zγ)
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where y andX are the stacked individual means ıiyi and ıix
′
i. Set equal to 0 and solving we obtain

the least-squares estimator γ̂ = (Z ′Z)
−1

(Z ′û) as claimed. This equivalence was first observed by
Hausman and Taylor (1981).

For standard error calculation it is recommended to estimate (β,γ) jointly by instrumental
variable regression, using a cluster-robust covariance matrix estimator, clustered at the individual
level. Classical and heteroskedasticity-robust estimators are misspecified due to the individual-
specific effect ui.

The estimator (β̂, γ̂) is a special case of the Hausman-Taylor estimator described in the next
section. (However, for an unknown reason the above estimator cannot be estimated using the Stata
xthtaylor command.)

17.32 Hausman-Taylor Model

Hausman and Taylor (1981) consider a generalization of the model of the previous section. The
model is

yit = x′1itβ1 + x′2itβ2 + z′1iγ + z′2iγ + ui + εit

where x1it and x2it are time-varying and z1i and z2i are time-invariant. Let the dimensions of x1it,
x2it, z1i, and z2i be k1, k2, `1, and `2, respectively.

Write the model in matrix notation as

y = X1β1 +X2β2 +Z1γ1 +Z2γ2 + u+ ε. (17.80)

Let X1 and X2 denote conformable matrices of individual-specific means, and let Ẋ1 = X1 −X1

and Ẋ2 = X2 −X2 denote the within-transformed variables.
The Hausman-Taylor model assumes that all regressors are uncorrelated with the idiosyncratic

error εit at all time horizons, and also that x1it and z1i are exogenous with respect to the fixed
effect ui, so that

E (x1itui) = 0

E (z1iui) = 0.

The regressors x2it and z2i, however, are allowed to be correlated with ui.
Set X = (X1,X2,Z1,Z2) and β = (β1,β2,γ1,γ2). The assumptions imply the following

population moment conditions

E
(
Ẋ
′
1 (y −Xβ)

)
= 0

E
(
Ẋ
′
2 (y −Xβ)

)
= 0

E
(
X
′
1 (y −Xβ)

)
= 0

E
(
Z ′1 (y −Xβ)

)
= 0.

There are 2k1 + k2 + `1 moment conditions and k1 + k2 + `1 + `2 coeffi cients. Thus identification
requires k1 ≥ `2: that there are at least as many exogenous time-varying regressors as endogenous
time-invariant regressors. (This includes the model of the previous section, where k1 = `2 = 0.)

Given the moment conditions, the coeffi cients β = (β1,β2,γ1,γ2) can be estimated by 2SLS re-
gression of (17.80) using the instrumentsZ = (Ẋ1, Ẋ2,X1,Z1), or equivalentlyZ = (X1, Ẋ2,X1,Z1).
This is 2SLS regression treating X1 and Z1 as exogenous and X2 and Z2 as endogenous, using
the excluded instruments Ẋ2 and X1. Setting X = (X1,X2,Z1,Z2), this is

β̂2sls =
(
X ′Z

(
Z ′Z

)−1
Z ′X

)−1 (
X ′Z

(
Z ′Z

)−1
Z ′y

)
.
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It is recommended to use cluster-robust covariance matrix estimation, clustered at the individual
level. Neither conventional nor heteroskedasticity-robust covariance matrix estimators should be
used, as they are misspecified due to the individual-specific effect ui.

When the model is just-identified, the estimators simplify as follows. β̂1 and β̂2 are the fixed
effects estimator. γ̂1 and γ̂2 equal the 2SLS estimator from a regression of û on Z1 and Z2, using
X1 as an instrument for Z2. (See Exercise 17.14.)

When the model is over-identified the equation can also be estimated by GMM with a cluster-
robust weight matrix, using the same equations and instruments.

This estimator with cluster-robust standard errors can be calculated using the Stata ivregress
cluster(id) command after constructing the transformed variables Ẋ2 and X1.

The 2SLS estimator described above corresponds with the Hausman and Taylor (1981) estimator
in the just-identified case with a balanced panel.

Hausman and Taylor derived their estimator under the stronger assumption that the errors εit
and ui are strictly mean independent and homoskedastic, and consequently proposed a GLS-type
estimator which is more effi cient when these assumptions are correct. Define Ω = diag (Ωi) where
Ωi = Ii + 1i1

′
iσ

2
u/σ

2
ε and σ

2
ε and σ

2
u are the variances of the error components εit and ui. Define as

well the transformed variables ỹ = Ω−1/2y, X̃ = Ω−1/2X and Z̃ = Ω−1/2Z. The Hausman-Taylor
estimator is

β̂ht =
(
X ′Ω−1Z

(
Z ′Ω−1Z

)−1
Z ′Ω−1X

)−1 (
X ′Ω−1Z

(
Z ′Ω−1Z

)−1
Z ′Ω−1y

)
=

(
X̃
′
Z̃
(
Z̃
′
Z̃
)−1

Z̃
′
X̃

)−1(
X̃
′
Z̃
(
Z̃
′
Z̃
)−1

Z̃
′
ỹ

)
.

Recall from (17.47) that Ω
−1/2
i = M i + ρiP i where ρi is defined in (17.46). Thus

ỹi = yi − (1− ρi)yi
X̃1i = X1i − (1− ρi)X1i

X̃2i = X2i − (1− ρi)X2i

Z̃1i = ρiZ1i

Z̃2i = ρiZ2i˜̇
X1i = Ẋ1i˜̇
X2i = Ẋ2i

X̃1i = ρiX1i.

It follows that the Hausman-Taylor estimator can be calculated by 2SLS regression of ỹi on

(X̃1i, X̃2i, ρiZ1i, ρiZ2i) using the instruments
(
Ẋ1i, Ẋ2i, ρiX1i, ρiZ2i

)
.

When the panel is balanced the coeffi cients ρi all equal and scale out from the instruments.
Thus the estimator can be calculated by 2SLS regression of ỹi on (X̃1i, X̃2i,Z1i,Z2i) using the

instruments
(
Ẋ1i, Ẋ2i,X1i,Z2i

)
.

In practice ρi is unknown. It can be estimated as in (17.48), with the modification that the
variance of the combined error can be estimated from the untransformed 2SLS regression. Under
the homoskedasticity assumptions used by Hausman and Taylor, the estimator β̂ht has a classical
asymptotic covariance matrix. When these assumptions are relaxed the covariance matrix can be
estimated using cluster-robust methods.

The Hausman-Taylor estimator with cluster-robust standard errors can be implemented in Stata
by the command xthtaylor vce(robust). This Stata command, for an unknown reason, requires
that there is at least one exogenous time-invariant variable (`1 ≥ 1), and at least one exogenous
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time-varying variable (k1 ≥ 1), even when the model is identified. Otherwise, the estimator can be
implemented using the instrumental variable method described above.

The Hausman-Taylor estimator was refined by Amemiya and MaCurdy (1986) and Breusch,
Mizon and Schmidt (1989), who proposed more effi cient versions using additional instruments
which are valid under stronger orthogonality conditions. The observation that in the unbalanced
case the instruments should be weighted by ρi was made by Gardner (1998).

In the over-identified case it is unclear if it is preferred to use the simpler 2SLS estimator β̂2sls or
the GLS-type Hausman-Taylor estimator β̂ht. The advantages of β̂ht are that it is asymptotically
effi cient under their stated homoskedasticity and serial correlation conditions, and that there is
an available program in Stata. The advantage of β̂2sls is that it is much simpler to program (if
doing so yourself), may have better finite sample properties (since it avoids variance-component
estimation), and is the natural estimator from the the modern GMM viewpoint.

To illustrate, the final column of Table 17.2 contains Hausman-Taylor estimates of the invest-
ment model, treating Qit−1, Dit−1, and Ti as endogenous for ui, and CFit−1 and the industry
dummies as exogenous. Relative to the fixed effects models, this allows estimation of the coeffi -
cients on the trading indicator Ti. The most interesting change relative to the previous estimates
is that the coeffi cient on the trading indicator Ti doubles in magnitude (relative to the random
effects estimate). This is consistent with the hypothesis that Ti is correlated with the fixed effect,
and hence the random effects estimate is biased.

17.33 Jackknife Covariance Matrix Estimation

As an alternative to asymptotic inference, the delete-cluster jackknife can be used for covariance
matrix calculation. In the context of fixed effects estimaion the delete-cluster estimators take the
form

β̂(−i) =

∑
j 6=i
Ẋ
′
jẊj

−1∑
j 6=i
Ẋ
′
jẏj


= β̂fe −

(
N∑
i=1

Ẋ
′
iẊi

)−1

Ẋ
′
iẽg.

where

ẽg =

(
Ii − Ẋi

(
Ẋ
′
iẊi

)−1
Ẋ
′
i

)−1

êi

êi = ẏi − Ẋiβ̂fe.

The delete-cluster jackknife estimator of the variance of β̂fe is

V̂
jack

β̂ =
N − 1

N

N∑
i=1

(
β̂(−i) − β

)(
β̂(−i) − β

)′
β =

1

N

N∑
i=1

β̂(−i).

The delete-cluster jackknife estimator V̂
jack

β̂ is similar to the cluster-robust covariance matrix esti-
mator.
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For parameters which are functions θ̂fe = r(β̂fe) of the fixed effects estimator, the delete-cluster
jackknife estimator of the variance of θ̂fe is

V̂
jack

θ̂ =
N − 1

N

N∑
i=1

(
θ̂(−i) − θ

)(
θ̂(−i) − θ

)′
θ̂(−i) = r(β̂(−i))

θ =
1

N

N∑
i=1

θ̂(−i).

The estimator V̂
jack

θ̂ is similar to the delta-method cluster-robust covariance matrix estimator for
θ̂.

As in the context of i.i.d. samples, one advantage of the jackknife covariance matrix estimators
is that they do not require the user to make a technical calculation of the asymptotic distribution.
A downside is an increase in computation cost, as N separate regressions are effectively estimated.
This can be particularly costly in micro panels which have a large number N of individuals.

In Stata, jackknife standard errors for fixed effects estimators are obtained by using either xtreg
fe vce(jackknife) or areg absorb(id) cluster(id) vce(jackknife) where id is the cluster
variable. For the fixed effects 2SLS estimator, use xtivreg fe vce(jackknife).

17.34 Panel Bootstrap

Bootstrap methods can also be applied to panel data by a straightforward application of the
pairs cluster bootstrap, which samples entire individuals rather than single observations. In the
context of panel data we call this the panel nonparametric bootstrap.

The panel nonparametric bootstrap samples N individual histories (yi,Xi) to create the
bootstrap sample. Fixed effects (or any other estimation method) is applied to the bootstrap
sample to obtain the coeffi cient estimates. By repeating B times, bootstrap standard errors for
coeffi cients estimates, or functions of the coeffi cient estimates, can be calculated. Percentile-type
and percentile-t confidence intervals can be calculated. The BCa interval requires an estimator
of the acceleration coeffi cient a which is a scaled jackknife estimate of the third moment of the
estimator. In panel data the delete-cluster jackknife should be used for estimation of a.

In Stata, to obtain bootstrap standard errors and confidence intervals use either xtreg, vce(bootstrap,
reps(#)) or areg, absorb(id) cluster(id) vce(bootstrap, reps(#)), where id is the clus-
ter variable and # is the number of bootstrap replications. For the fixed effects 2SLS estimator,
use xtivreg, fe vce(bootstrap, reps(#)).

17.35 Dynamic Panel Models

The models so far considered in this chapter have been static, with no dynamic relationships. In
many economic contexts it is natural to expect that behavior and decisions are dynamic, explicitly
depending on past behavior. In our investment equation, for example, economic models predict
that a firm’s investment in any given year will depend on investment decisions from previous years.
These considerations lead us to consider explicitly dynamic models.

The workhorse dynamic model in a panel framework is the pth-order autoregression (or AR(p))
with regressors and a one-way error component structure. This is

yit = α1yit−1 + · · ·+ αpyit−p + x′itβ + ui + εit. (17.81)

where αj are the autoregressive coeffi cients, xit is a k vector of regressors, ui is an individual-
effect, and εit is an idiosyncratic error. It is conventional to assume that the errors ui and εit are
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mutually independent, and the εit are serially uncorrelated and mean zero. For the present we will
assume that the regressors xit are strictly exogenous (17.17). In Section 17.40 we discuss the case
of predetermined regressors.

For many illustrations we will focus on the AR(1) model

yit = αyit−1 + ui + εit (17.82)

The dynamics should be interpreted individual-by-individual. The coeffi cient α in (17.82) equals
the first-order autocorrelation. When α = 0 the series is serially uncorrelated (conditional on ui).
α > 0 means yit is positively serially correlated. α < 0 means yit is negatively serially correlated.
An autoregressive unit root holds when α = 1, which means that yit follows a random walk with
possible drift. Since ui is constant for a given individual, it should be treated as an individual-
specific intercept. The idiosyncratic error εit plays the role of the error in a standard time series
autoregression.

If |α| < 1 then the model (17.82) is stationary. By standard autoregressive backwards recursion
we can calculate that

yit =

∞∑
j=0

αj (ui + εit) = (1− α)−1 ui +

∞∑
j=0

αjεit−j . (17.83)

Thus if we condition on ui the conditional mean and variance of yit is (1− α)−1 ui and
(
1− α2

)−1
σ2
ε ,

respectively. The kth autocorrelation (conditional on ui) is αk. Notice that the effect of cross-section
variation in ui is to shift the (conditional) mean, but not the variance or serial correlation. This
implies that if we view time series plots of yit against time for a set of individuals i, the series yit
will appear to have different means, but have similar variances and time series serial correlation.

As with the case with time series data, serial correlation (large α) can proxy for other factors
such as time trends. Thus in applications it will often be useful to include time effects to eliminate
spurious serial correlation.

17.36 The Bias of Fixed Effects Estimation

To estimate the panel autoregression (17.81) it may appear natural to use the fixed effects
(within) estimator. Indeed, the within transformation eliminates the individual effect ui. The
trouble is that the within operator induces correlation between the AR(1) lag and the error. The
result is that the within estimator is inconsistent for the coeffi cients when T is fixed. A thorough
explanation appears in Nickell (1981). We describe the basic problem in this section focusing on
the AR(1) model (17.82).

Applying the within operator to (17.82) we obtain

ẏit = αẏit−1 + ε̇it

for t ≥ 2. As expected the individual effect is eliminated. The diffi culty is that E (ẏit−1ε̇it) 6= 0,
since both ẏit−1 and ε̇it are functions of the entire time series.

To see this clearly in a simple example, suppose we have a balanced panel with T = 3. There
are two observed pairs (yit, yit−1) per individual so the within estimator equals the differenced
estimator. Applying the differencing operator to (17.82) for t = 3 we find

∆yi3 = α∆yi2 + ∆εi3. (17.84)

Because of the lagged dependent variable and differencing there is effectively one observation per
individual. Notice that the individual effect has been eliminated.
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The fixed effects estimator of α is equal to the least-squares estimator applied to (17.84), which
is

α̂fe =

(
N∑
i=1

∆y2
i2

)−1( N∑
i=1

∆yi2∆yi3

)

= α+

(
N∑
i=1

∆y2
i2

)−1( N∑
i=1

∆yi2∆εi3

)
.

This estimator is inconsistent for α since the differenced regressor and error are negatively corre-
lated. Indeed

E (∆yi2∆εi3) = E ((yi2 − yi1) (εi3 − εi2))

= E (yi2εi3)− E (yi1εi3)− E (yi2εi2) + E (yi1εi2)

= 0− 0− σ2
ε + 0

= −σ2
ε .

Using the variance formula for AR(1) models (assuming |α| < 1) we can calculate that E (∆yi2)2 =
2σ2

ε/(1 +α). It follows that the probability limit of the fixed effects estimator α̂fe of α in (17.84) is

plim
N→∞

(α̂fe − α) =
E (∆yi2∆εi3)

E (∆yi21)2 = −1 + α

2
. (17.85)

It is typical to call (17.85) the “bias”of α̂fe, though it is technically the probability limit.
The bias found in (17.85) is large. For α = 0 the bias is −1/2 and increases towards 1 as α→ 1.

Thus for any α < 1 the probability limit of α̂fe is negative! This is extreme bias.
From Nickell’s (1981) expressions and some algebra, we can calculate that the probability limit

of the fixed effects estimator for |α| < 1 and general T is

plim
N→∞

(α̂fe − α) =
1 + α

2α

1− α −
T − 1

1− αT−1

. (17.86)

If follows that the bias is of order O(1/T ).
One might guess (and is often asserted) that it is okay to use fixed effects if T is large, say

T ≥ 30 or perhaps T ≥ 60. However, from (17.86) we can calculate that for T = 30 the bias of the
fixed effects estimator is −0.056 when α = 0.5 and the bias is −0.15 when α = 0.9. For T = 60
and α = 0.9 the bias is −0.05. These magnitudes are unacceptably large. This includes the longer
time series encountered in macro panels. Thus the Nickell bias problem applies to both micro and
macro panel applications.

The conclusion from this analysis is that the fixed effects estimator should not be used for
models with lagged dependent variables, even if the time series dimension T is large.

17.37 Anderson-Hsiao Estimator

Anderson and Hsiao (1982) made an important breakthrough by showing that a simple instru-
mental variables estimator is consistent for the parameters of (17.81).

The method first eliminates the individual effect ui by first-differencing (17.81) for t ≥ p+ 1

∆yit = α1∆yit−1 + α2∆yit−2 + · · ·+ αp∆yit−p + ∆x′itβ + ∆εit. (17.87)

This eliminates the individual effect ui. The challenge is that first-differencing induces correlation
between ∆yit−1 and ∆εit:

E (∆yit−1∆εit) = E ((yit − yit−1) (εit − εit−1)) = −σ2
ε .
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The other regressors are not correlated with ∆εit. For s > 1

E (∆yit−s∆εit) = 0

and when xit is strictly exogenous
E (∆xit∆εit) = 0.

The correlation between ∆yit−1 and ∆εit is an endogeneity problem. One solution to endogene-
ity is to use an instrument. Anderson-Hsiao pointed out that yit−2 is a valid instrument since it is
correlated with ∆yit−1 yet uncorrelated with ∆εit.

E (yit−2∆εit) = E (yit−2εit)− E (yit−2εit−1) = 0. (17.88)

The Anderson-Hsiao estimator is IV using yit−2 as an instrument for∆yit−1. Equivalently, this is IV
using the instruments (yit−2, ..., yit−p−1) for (∆yit−1, ...,∆yit−p). The estimator requires T ≥ p+ 2.

To show that this estimator is consistent, for simplicity assume we have a balanced panel with
T = 3, p = 1, and no regressors. In this case the Anderson-Hsiao IV estimator is

α̂iv =

(
N∑
i=1

yi1∆yi2

)−1( N∑
i=1

yi1∆yi3

)

= α+

(
N∑
i=1

yi1∆yi2

)−1( N∑
i=1

yi1∆εi3

)
.

Under the assumption that εit is serially uncorrelated, (17.88) shows that E (yi1∆εi3) = 0. In
general, E (yi1∆yi2) 6= 0. As N →∞

α̂iv
p−→ α− E (yi1∆εi3)

E (yi1∆yi2)
= α.

Thus the IV estimator is consistent for α.
The Anderson-Hsiao IV estimator relies on two critical assumptions. First, the validity of the

instrument (uncorrelatedness with the equation error) relies on the assumption that the dynamics
are correctly specified so that εit is serially uncorrelated. For example, many applications use an
AR(1). If instead the true model is an AR(2) then yit−2 is not a valid instrument and the IV esti-
mates will be biased. Second, the relevance of the instrument (correlatedness with the endogenous
regressor) requires E (yi1∆yi2) 6= 0. This turns out to be problematic and is explored further in
Section 17.39. These considerations suggest that the validity and accuracy of the estimator are
likely to be sensitive to these unknown features.

17.38 Arellano-Bond Estimator

The orthogonality condition (17.88) is one of many implied by the dynamic panel model. Indeed,
all lags yit−2, yit−3, ... are valid instruments. If T > p+ 2 these can be used to potentially improve
estimation effi ciency. This was first pointed out by Holtz-Eakin, Newey and Rosen (1988) and
further developed by Arellano and Bond (1991).

Using these extra instruments has a complication that there are a different number of instru-
ments for each time period. The solution is to view the model as a system of T equations as in
Section 17.18.

It will be useful to first write the model in vector notation. Stacking the differenced regressors
(∆yit−1, ...∆yit−p,∆x′it) into a matrix ∆Xi and the coeffi cients into a vector θ we can write (17.87)
as

∆yi = ∆Xiθ + ∆εi.
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Stacking all N individuals this can be written as

∆y = ∆Xθ + ∆ε.

For period t = p+2 we have the p+k valid instruments [yi1..., yip,∆xi,p+2]. For period t = p+3
there are p+ 1 + k valid instruments [yi1..., yip+1,∆xi,p+3]. For period t = p+ 4 there are p+ 2 + k
instruments. In general, for any t ≥ p+ 2 there are t−2 instruments [yi1, ..., yi,t−2,∆xit]. Similarly
to (17.53) we can define the instrument matrix for individual i as

Zi =



[
yi1..., yip,∆x

′
i,p+2

]
0 0

0
[
yi1..., yip+1,∆x

′
i,p+3

]
0

. . .

0 0
[
yi1, yi2, ..., yi,T−2,∆x

′
i,T

]

 . (17.89)

This is (T − p− 1) × ` where ` = k (T − p− 1) + ((T − 2) (T − 1)− (p− 2) (p− 1)) /2. This in-
strument matrix consists of all lagged values yit−2, yit−3, ... which are available in the data set, plus
the differenced strictly exogenous regressors.

The ` moment conditions are

E
(
Z ′i (∆yi −∆Xiα)

)
= 0. (17.90)

If T > p+ 2 then ` > p and the model is overidentified. Define the `× ` covariance matrix for
the moment conditions

Ω = E
(
Z ′i∆εi∆ε

′
iZi

)
.

Let Z denote Zi stacked into a (T − p− 1)N × ` matrix. The effi cient GMM estimator of α is

α̂gmm =
(
∆X ′ZΩ−1Z ′∆X

)−1 (
∆X ′ZΩ−1Z ′∆y

)
.

If the errors εit are conditionally homoskedastic then

Ω = E
(
Z ′iHZi

)
σ2
ε

where H is given in (17.31). In this case set

Ω̂1 =
N∑
i=1

Z ′iHZi

as a (scaled) estimate of Ω. Under these assumptions an asymptotically effi cient GMM estimator
is

α̂1 =
(

∆X ′ZΩ̂
−1

1 Z ′∆X
)−1 (

∆X ′ZΩ̂
−1

1 Z ′∆y
)
. (17.91)

Estimator (17.91) is known as the one-step Arellano-Bond GMM estimator.
Under the assumption that the error εit is homoskedastic and serially uncorrelated, a classical

covariance matrix estimator for α̂1 is

V̂
0

1 =
(

∆X ′ZΩ̂
−1

1 Z ′∆X
)−1

σ̂2
ε (17.92)

where σ̂2
ε is the sample variance of the one-step residuals ε̂i = ∆yi −∆Xiα̂. A covariance matrix

estimator which is robust to violation of these assumptions is

V̂ 1 =
(

∆X ′ZΩ̂
−1

1 Z ′∆X
)−1 (

∆X ′ZΩ̂
−1

1 Z ′Ω̂2ZΩ̂
−1

1 Z ′∆X
)(

∆X ′ZΩ̂
−1

1 Z ′∆X
)−1

(17.93)
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where

Ω̂2 =
N∑
i=1

Z ′iε̂iε̂
′
iZi

is a (scaled) cluster-robust estimator of Ω using the one-step residuals.
An asymptotically effi cient two-step GMM estimator which relaxes the assumption of ho-

moskedasticity is

α̂2 =
(

∆X ′ZΩ̂
−1

2 Z ′∆X
)−1 (

∆X ′ZΩ̂
−1

2 Z ′∆y
)
. (17.94)

Estimator (17.94) is known as the two-step Arellano-Bond GMM estimator. An appropriate
robust covariance matrix estimator for α̂2 is

V̂ 2 =
(

∆X ′ZΩ̂
−1

2 Z ′∆X
)−1 (

∆X ′ZΩ̂
−1

2 Z ′Ω̂3ZΩ̂
−1

2 Z ′∆X
)(

∆X ′ZΩ̂
−1

2 Z ′∆X
)−1

(17.95)

where

Ω̂3 =

N∑
i=1

Z ′iε̂iε̂
′
iZi

is a (scaled) cluster-robust estimator of Ω using the two-step residuals ε̂i = ∆yi − ∆Xiα̂2. As-
ymptotically, V̂ 2 is equivalent to

Ṽ 2 =
(

∆X ′ZΩ̂
−1

2 Z ′∆X
)−1

. (17.96)

The GMM estimator can be iterated until convergence to produce an iterated GMM estimator.
The advantage of the Arellano-Bond estimator over the Anderson-Hsiao estimator is that when

T > p+ 2 the additional (overidentified) moment conditions reduce the asymptotic variance of the
estimator and stabilize its performance. The disadvantage is that when T is large using the full set
of lags as instruments may cause a “many weak instruments”problem. The advised compromise
is to limit the number of lags used as instruments.

The advantage of the one-step Arellano-Bond estimator is that the weight matrix Ω̂1 does not
depend on residuals and is therefore less random than the two-step weight matrix Ω̂2. This can
result in better performance by the one-step estimator in small to moderate samples, especially
when the errors are approximately homoskedastic. The advantage of the two-step estimator is that
it achieves asymptotic effi ciency allowing for heteroskedasticity, and is thus expected to perform
better in large samples with non-homoskedastic errors.

To summarize, the Arellano-Bond estimator applies GMM to the first-differenced equation
(17.87) using a set of available lags yit−2, yit−3, ... as instruments for ∆yit−1, ...,∆yit−p.

The Arellano-Bond estimator may be obtained in Stata using either the xtabond or xtdpd
command. The default setting is the one-step estimator (17.91) and non-robust standard errors
(17.92). For the two-step estimator and robust standard errors use the twostep vce(robust) op-
tions. Reported standard errors in Stata are based on Windmeijer’s (2005) finite-sample correction
to the asymptotic estimate (17.96). The robust covariance matrix (17.95) nor the iterated GMM
estimator are implemented.

17.39 Weak Instruments

Blundell and Bond (1998) pointed out that the Anderson-Hsiao and Arellano-Bond class of
estimators suffer from the problem of weak instruments. This can be seen easiest in the AR(1)
model with the Anderson-Hsiao estimator which uses yit−2 as an instrument for ∆yit−1. The
reduced form equation for ∆yit−1 is

∆yit−1 = yit−2γ + vit.
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The reduced form coeffi cient γ is defined by projection. Using ∆yit−1 = (α− 1) yit−2 + ui + εit−1

and E (yit−2εit−1) = 0 we can calculate that

γ =
E (yit−2∆yit−1)

E
(
y2
it−2

)
= (α− 1) +

E (yit−2ui)

E
(
y2
it−2

) .
Assuming stationarity so that (17.83) holds,

E (yit−2ui) = E

 ui
1− α +

∞∑
j=0

αjεit−2−j

ui


=

σ2
u

1− α
and

E
(
y2
it−2

)
= E

 ui
1− α +

∞∑
j=0

αjεit−2−j

2

=
σ2
u

(1− α)2 +
σ2
ε

(1− α2)

where σ2
u = E

(
u2
i

)
and σ2

ε = E
(
ε2
it

)
. Using these expressions and a little algebra, Blundell and

Bond (1998) found that the reduced form coeffi cient equals

γ = (α− 1)

(
k

k + σ2
u/σ

2
ε

)
(17.97)

where k = (1− α) / (1 + α).
The Anderson-Hsiao instrument yit−2 is weak if γ is close to zero. From (17.97) we see that

γ = 0 when either α = 1 (a unit root) or σ2
u/σ

2
ε = ∞ (the idiosyncratic effect is small relative

to the individual-specific effect). In either case the coeffi cient α is not identified. We know from
our earlier study of the weak instruments problem (Section 12.36) that when γ is close to zero
then α is weakly identified and the estimators will perform poorly. This means that when the
autoregressive coeffi cient α is large or the individual-specific effect dominates the idiosyncratic
effect, these estimators will be weakly identified, have poor performance, and conventional inference
methods will be misleading. Since the value of α and the relative variances are unknown a priori,
this means that we should generically treat this class of estimators as weakly identified.

An alternative estimator which has improved performance under weak identification is discussed
in Section 17.41.

17.40 Dynamic Panels with Predetermined Regressors

The assumption that regressors are strictly exogeneous is restrictive. A less restrictive assump-
tion is that the regressors are predetermined. Dynamic panel methods can be modified to handle
predetermined regressors by using their lags as instruments

Definition 17.2 The regressor xit is predetermined for the error εit if

E (xit−sεit) = 0 (17.98)

for all s ≥ 0.
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The difference between strictly exogeneous and predetermined regressors is that for the former
(17.98) holds for all s, not just s ≥ 0. One way of interpreting a regression model with predetermined
regressors is that the model is a projection on the complete past history of the regressors.

Under (17.98), leads of xit can be correlated with εit, that is E (xit+sεit) 6= 0 for s ≥ 1, or
equivalently xit can be correlated with lags of εij , that is E (xitεit−s) 6= 0 for s ≥ 1. This means
that xit can respond dynamically to past values of yit, as in, for example, an unrestricted vector
autoregression.

Consider the differenced equation (17.87)

∆yit = α1∆yit−1 + α2∆yit−2 + · · ·+ αp∆yit−p + ∆x′itβ + ∆εit.

When the regressors are predetermined but not strictly exogenous, xit and εit are uncorrelated,
but ∆xit and ∆εit are correlated. To see this,

E (∆xit∆εit) = E (xitεit)− E (xit−1εit)− E (xitεit−1) + E (xit−1εit−1)

= −E (xitεit−1)

6= 0.

This means that if we treat ∆xit as exogenous, the coeffi cient estimates will be biased.
To solve the correlation problem we can use instruments for ∆xit. A valid instrument is xit−1,

since it is generally correlated with ∆xit yet uncorrelated with ∆εit. Indeed, for any s ≥ 1

E (xit−s∆εit) = E (xit−sεit)− E (xit−sεit−1) = 0.

Consequently, Arellano and Bond (1991) recommend using the instrument set (xi1,xi2, ...,xit−1).
When the number of time periods is large it is advised to limit the number of instrument lags to
avoid the many weak instruments problem.

Algebraically, GMM estimation is the same as the estimators described in Section 17.38, except
that the instrument matrix (17.89) is modified to

Zi =



[
yi1, ..., yip,x

′
i1, ..,x

′
ip+1

]
0 0

0
[
yi1, ..., yip+1,x

′
i1, ..,x

′
ip+2

]
0

. . .
0 0

[
yi1, ..., yi,T−2,x

′
i1, ..,x

′
iT−1

]

 .
(17.99)

To understand how the model is identified we examine the reduced form equation for the
regressor. For t = p+ 2 and using the first lag as an instrument the reduced form is

∆xit = γ1yit−2 + Γ2xit−1 + ζit.

The model is identified if Γ2 is full rank. This is valid (in general) when xit is stationary. Iden-
tification fails, however, when xit has a unit root. This indicates that the model will be weakly
identified when the predetermined regressors are highly persistent.

The method generalizes to handle multiple lags of the predetermined regressors. To see this,
write the model explicitly as

yit = α1yit−1 + · · ·+ αpyit−p + x′itβ1 + · · ·+ x′it−qβq + ui + εit.

In first differences the model is

∆yit = α1∆yit−1 + · · ·+ αp∆yit−p + ∆x′itβ1 + · · ·+ ∆x′it−qβq + ∆εit.

A suffi cient set of instruments for the regressors are (xit−1,∆xit−1, ...,∆xit−q), or equivalently
(xit−1,xit−2, ...,xit−q−1).
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In many cases it is more reasonable to assume that xit−1 is predetermined but not xit, since xit
and εit may be endogenous. This, for example, is the standard assumption in vector autoregressions.
In this case the estimation method is modified to use the instruments (xit−2,xit−3, ...,xit−q−1).
While this weakens the exogeneity assumption it also weakens the instrument set, as now the
reduced form uses the second lag xit−2 to predict ∆xit.

The advantage obtained by treating a regressor as predetermined (rather than strictly exoge-
nous) is that it is a substantial relaxation of the dynamic assumptions. Otherwise the parameter
estimates will be inconsistent due to endogeneity.

The major disadvantage of treating a regressor as predetermined is that it substantially reduces
the strength of identification, especially when the predetermined regressors are highly persistent.

In Stata, the xtabond command by default treats independent regressors as strictly exogenous.
To treat the regressors as predetermined, use the option pre. By default all regressor lags are used
as instruments, but the number can be limited if specified.

17.41 Blundell-Bond Estimator

Arellano and Bover (1995) and Blundell and Bond (1998) introduced a set of orthogonality
conditions which reduce the weak instrument problem discussed in the Section 17.39 and improve
performance in finite samples.

Consider the levels AR(1) model with no regressors (17.82)

yit = αyit−1 + ui + εit.

Recall, least squares (pooled) regression is inconsistent because the regressor yit−1 is correlated
with the error ui. This raises the question: Is there an instrument zit which solves this problem, in
the sense that zit is correlated with yit−1 yet uncorrelated with uit + εit? Blundell-Bond propose
the instrument ∆yit−1. Clearly, ∆yit−1 and yit−1 are correlated, so ∆yit−1 satisfies the relevance
condition. Also, ∆yit−1 is uncorrelated with the idiosyncratic error εit when the latter is serially
uncorrelated. Thus the key to the Blundell-Bond instrument is whether or not

E (∆yit−1ui) = 0. (17.100)

Blundell and Bond (1998) show that a suffi cient condition for (17.100) is

E
((

yi1 −
ui

1− α

)
ui

)
= 0. (17.101)

Recall that ui/(1− α) is the conditional mean of yit under stationarity. Condition (17.101) states
that the deviation of the initial condition yi1 from this conditional mean is uncorrelated with the
individual effect ui. Condition (17.101) is implied by stationarity, but is somewhat weaker.

To see that (17.101) implies (17.100), by applying recursion to (17.87) we find that

∆yit−1 = αt−3∆yi2 +
t−3∑
j=0

∆εit−1−j .

Hence

E (∆yit−1ui) = αt−3E (∆yi2ui)

= αt−3E (((α− 1) yi1 + ui + εit)ui)

= αt−3 (α− 1)E
((

yi1 −
ui

1− α

)
ui

)
= 0
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under (17.101), as claimed.
Now consider the full model (17.81) with predetermined regressors. Consider the assumption

that the regressors have constant correlation with the individual effect

E (xitui) = E (xisui)

for all s. This implies
E (∆xitui) = 0 (17.102)

which means that the differenced predetermined regressors ∆xit can also be used as instruments
for the level equation.

Using (17.100) and (17.102), Blundell and Bond propose the following moment conditions for
GMM estimation

E
(
∆yit−1

(
yit − α1yit−1 − · · · − αpyit−p − x′itβ

))
= 0 (17.103)

E
(
∆xit

(
yit − α1yit−1 − · · · − αpyit−p − x′itβ

))
= 0 (17.104)

for t = p+2, ..., T . Notice that these are for the levels (undifferenced) equation, while the Arellano-
Bond (17.90) moments are in the differenced equation (17.87). We can write (17.103)-(17.104)
in vector notation if we set Z2i = diag (∆yi2, ...,∆yiT−1,∆xi3, ...,∆xiT ). Then (17.103)-(17.104)
equals

E (Z2i (yi −Xiθ)) = 0. (17.105)

Blundell and Bond proposed combining the ` Arellano-Bond moments with the levels moments.
This can be done by stacking the moment conditions (17.90) and (17.105). Recall from Section
17.38 the variables ∆yi, ∆Xi, and Zi. Now, define the stacked variables yi = (∆y′i,y

′
i)
′, Xi =

(∆X ′i,X
′
i)
′ and Zi = diag (Zi,Z2i). The stacked moment conditions are

E
(
Zi

(
yi −Xiθ

))
= 0.

The Blundell-Bond estimator is found by applying GMM to this equation. They call this a
systems GMM estimator. Let y, X and Z denote yi, Xi, and Zi stacked into matrices. Define
H = diag (H, IT−2) where H is from (17.31) and set

Ω̂1 =

N∑
i=1

Z
′
iHZi.

The Blundell-Bond one-step GMM estimator is

θ̂1 =
(
X
′
ZΩ̂

−1

1 Z
′
X
)−1 (

X
′
ZΩ̂

−1

1 Z
′
y
)
. (17.106)

The systems residuals are ε̂i = yi −Xiθ̂1. A robust covariance matrix estimator is

V̂ 1 =
(
X
′
ZΩ̂

−1

1 Z
′
X
)−1 (

X
′
ZΩ̂

−1

1 Z
′
Ω̂2ZΩ̂

−1

1 Z
′
X
)(
X
′
ZΩ̂

−1

1 Z
′
X
)−1

(17.107)

where

Ω̂2 =

N∑
i=1

Z
′
iε̂iε̂

′
iZi.

The Blundell-Bond two-step GMM estimator is

θ̂2 =
(
X
′
ZΩ̂

−1

2 Z
′
X
)−1 (

X
′
ZΩ̂

−1

2 Z
′
y
)
. (17.108)

The two-step systems residuals are ε̂i = yi −Xiθ̂2. A robust covariance matrix estimator is

V̂ 2 =
(
X
′
ZΩ̂

−1

2 Z
′
X
)−1 (

X
′
ZΩ̂

−1

2 Z
′
Ω̂3ZΩ̂

−1

2 Z
′
X
)(
X
′
ZΩ̂

−1

2 Z
′
X
)−1

(17.109)
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where

Ω̂3 =
N∑
i=1

Z
′
iε̂iε̂

′
iZi.

Asymptotically, V̂ 2 is equivalent to

Ṽ 2 =
(
X
′
ZΩ̂

−1

2 Z
′
X
)−1

. (17.110)

The GMM estimator can be iterated until convergence to produce an iterated GMM estimator.
Simulation experiments reported in Blundell and Bond (1998) indicate that their systems GMM

estimator performs substantially better than the Arellano-Bond estimator, especially when α is close
to one or the variance ratio σ2

u/σ
2
ε is large. The explanation is that the orthogonality condition

(17.103) does not suffer the weak instrument problem in these cases.
The advantage of the Blundell-Bond estimator is that the added orthogonality condition (17.103)

greatly improves performance relative to the Arellano-Bond estimator when the latter is weakly
identified. A disadvantage of the Blundell-Bond estimator is that their orthogonality condition is
justified by a stationarity condition (17.101), and violation of the latter may induce estimation
bias.

The advantages and disadvantages of the one-step versus two-step Blundell-Bond estimators
are the same as described for the Arellano-Bond estimator as described in Section 17.38. Also as
described there, when T is large it may be desired to limit the number of lags to use as instruments
in order to avoid the many weak instruments problem.

The Blundell-Bond estimator may be obtained in Stata using either the xtdpdsys or xtdpd
command. The default setting is the one-step estimator (17.106) and non-robust standard errors.
For the two-step estimator and robust standard errors use the twostep vce(robust) options.
Reported standard errors in Stata are based on Windmeijer’s (2005) finite-sample correction to the
asymptotic estimate (17.110). The robust covariance matrix estimator (17.109) nor the iterated
GMM estimator are implemented.

17.42 Forward Orthogonal Transformation

Arellano and Bover (1995) proposed an alternative transformation to first differencing which
eliminates the individual-specific effect and may have advantages in dynamic panel models. The
forward orthogonal transformation is

y∗it = cit

(
yit −

1

Ti − t
(yi,t+1 + · · ·+ yiTi)

)
(17.111)

where c2
it = (Ti − t) / (Ti − t+ 1). This can be applied to all but the final observation (which is

lost). Essentially, y∗it subtracts from yit the average of the remaining values, and then rescales so
that the variance is constant under the assumption of homoskedastic errors.

At the level of the individual this can be written as

y∗i = Aiyi

where Ai is the (Ti − 1)× Ti orthogonal deviation operator

Ai = diag

(
Ti − 1

Ti
, ...,

1

2

)


1 − 1
Ti−1 − 1

Ti−1 · · · − 1
Ti−1 − 1

Ti−1 − 1
Ti−1

0 1 − 1
Ti−2 · · · − 1

Ti−2 − 1
Ti−2 − 1

Ti−2
...

...
...

...
...

...
0 0 0 · · · 1 −1

2 −1
2

0 0
... 0 · · · 0 −1 1

 .
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Important properties of the matrix Ai are that Ai1i = 0 (so it eliminates individual effects),
A′iAi = M i, and AiA

′
i = ITi−1. These can be verified by direct multiplication.

Applying the transformation Ai to (17.81) we obtain

y∗it = α1y
∗
it−1 + · · ·+ αpy

∗
it−p + x∗′itβ + ε∗i . (17.112)

for t = p + 1, ..., T − 1. This is equivalent to first differencing (17.87) when T = 3 but differs for
T > 3.

What is special about the transformed equation (17.112) is that the under the assumption
that εit are serially correlated and homoskedastic, the error ε∗i has variance σ

2
εAiA

′
i = σ2

εITi−1.
This means that ε∗i has the same covariance structure as εi. Thus the orthogonal transformation
operator eliminates the fixed effect while preserving the covariance structure. This is in contrast
to (17.87) which has serially correlated errors ∆εi.

The transformed error ε∗it is a function of εit, εit+1, ..., εiT . Thus valid instruments are yit−1, yit−2, ....
Using the instrument matrix Zi from (17.89) in the case of strictly exogenous regressors or (17.99)
with predetermined regressors, the ` moment conditions can be written using matrix notation as

E
(
Z ′i (y∗i −X∗i θ)

)
= 0. (17.113)

Define the `× ` covariance matrix
Ω = E

(
Z ′iε

∗
i ε
∗′
i Zi

)
.

If the errors εit are conditionally homoskedastic then Ω = E (Z ′iZi)σ
2
ε . Thus an asymptotically

effi cient GMM estimator is 2SLS applied to the orthogonalized equation using Zi as an instrument.
In matrix notation,

θ̂1 =
(
X∗′Z

(
Z ′Z

)−1
Z ′X∗

)−1 (
X∗′Z

(
Z ′Z

)−1
Z ′y∗

)
.

This is the one-step GMM estimator.
Given the residuals ε̂i = y∗i − X∗i θ̂1 the two-step GMM estimator which is robust to het-

eroskedasticity and arbitrary serial correlation is

θ̂2 =
(
X∗′ZΩ̂

−1

2 Z ′X∗
)−1 (

X∗′ZΩ̂
−1

2 Z ′y∗
)

where

Ω̂2 =
N∑
i=1

Z ′iε̂iε̂
′
iZi.

Standard errors for θ̂1 and θ̂2 can be obtained using cluster-robust methods.
Forward orthogonalization may have advantages over first differencing. First, the equation errors

in (17.112) have a scalar covariance structure under i.i.d. idiosyncratic errors, which is expected
to improve estimation precision. It also implies that the one-step estimator is 2SLS rather than
GMM. Second, while there has not been a formal analysis of the weak instrument properties of the
estimators after forward orthogonalization, it appears that if T > p+ 2 the method is less affected
by weak instruments than first differencing. The disadvantages of forward orthogonalization are
that it treats early observations asymmetrically from late observations, it is less thoroughly studied
than first differencing, and is not available with several popular estimation methods.

The Stata command xtdpd includes forward orthogonalization as an option, but not when levels
(Blundell-Bond) instruments are included or if there are gaps in the data. An alternative is the
downloadable Stata package xtabond2.
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17.43 Empirical Illustration

We illustrate the dynamic panel methods with the investment model (17.3). Estimates from
two models are presented in Table 17.3. Both are estimated by Blundell-Bond two-step GMM with
lags 2 through 6 as instruments, a cluster-robust weight matrix, and clustered standard errors.

The first column presents estimates of an AR(2) model. The estimates show that the series
has a moderate amount of positive serial correlation, but appears to be well modeled as an AR(1)
as the AR(2) coeffi cient is close to zero. This pattern of serial correlation is consistent with the
presence of investment projects which span two years.

The second column presents estimates of the dynamic version of the investment regression
(17.3), excluding the trading indicator. Two lags are included of the dependent variable and each
regressor. The regressors are treated as predetermined, in contrast to the fixed effects regressions
which treated the regressors as strictly exogenous. The regressors not contemporaneous with the
dependent variable, but lagged one and two periods. This is done so that they are valid prede-
termined variables. Contemporaneous variables are likely endogenous so should not be treated as
predetermined.

The estimates fom the second column of Table 17.3 complement the earlier results. The evidence
shows that investment has a moderate degree of serial dependence, is positively related to the first
lag of Q, and is negatively related to lagged debt. Investment appears to be positively related to
change in cash flow, rather than the level. Thus an increase in cash flow in year t − 1 leads to
investment in year t.

Table 17.3: Estimates of Dynamic Investment Equation

AR(2) AR(2) with Regressors

Iit−1
0.3191

(0.0172)
0.2519

(0.0220)

Iit−2
0.0309

(0.0112)
0.0137

(0.0125)

Qit−1
0.0018

(0.0007)

Qit−2
−0.0000
(0.0003)

Dit−1
−0.0154
(0.0058)

Dit−2
−0.0043
(0.0054)

CFit−1
0.0400

(0.0091)

CFit−2
−0.0290
(0.0051)

Two-step GMM estimates. Cluster-robust standard errors in parenthesis.

All regressions include time effects. GMM instruments include lags 2 through 6.
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Exercises

Exercise 17.1

(a) Show (17.11) and (17.12).

(b) Show (17.13).

Exercise 17.2 Is E (εit | xit) = 0 suffi cient for β̂fe to be unbiased for β? Explain why or why not.

Exercise 17.3 Show that var (ẋit) ≤ var (xit).

Exercise 17.4 Show (17.24).

Exercise 17.5 Show (17.28).

Exercise 17.6 Show that when T = 2 the differenced estimator equals the fixed effects estimator.

Exercise 17.7 In Section 17.14 it is described how to estimate the individual-effect variance σ2
u

using the between residuals. Develop an alternative estimator of σ2
u only using the fixed effects

error variance σ̂2
ε and the levels error variance σ̂

2
e = n−1

∑N
i=1

∑
t∈Si ê

2
it where êit = yit − x′itβ̂fe are

computed from the levels variables.

Exercise 17.8 Verify that σ̂2
ε defined in (17.37) is unbiased for σ

2
ε under (17.18), (17.25) and

(17.26).

Exercise 17.9 Develop a version of Theorem 17.2 for the differenced estimator β̂∆. Can you
weaken Assumption 17.2.3? State an appropriate version which is suffi cient for asymptotic normal-
ity.

Exercise 17.10 Show (17.57).

Exercise 17.11

(a) For σ̂2
i defined in (17.59) show E

(
σ̂2
i |Xi

)
= σ2

i .

(b) For Ṽ fe defined in (17.58) show E
(
Ṽ fe |X

)
= V fe.

Exercise 17.12

(a) Show (17.61).

(b) Show (17.62).

(c) For Ṽ fe defined in (17.60) show E
(
Ṽ fe |X

)
= V fe.

Exercise 17.13 Take the fixed effects model yit = xitβ1 + x2
itβ2 + ui + εit. A researcher estimates

the model by first obtaining the within transformed ẏit and ẋit and then regressing ẏit on ẋit and
ẋ2
it. Is the correct estimation method? If not, describe the correct fixed effects estimator.

Exercise 17.14 In Section 17.32, verify that in the just-identified case, the 2SLS estimator β̂2sls

simplifies as claimed: β̂1 and β̂2 are the fixed effects estimator. γ̂1 and γ̂2 equal the 2SLS estimator
from a regression of û on Z1 and Z2, using X1 as an instrument for Z2.
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Exercise 17.15 In this exercise you will replicate and extend the empirical work reported in
Arellano and Bond (1991) and Blundell and Bond (1998). Arellano-Bond gathered a dataset of
1031 observations from an unbalanced panel of 140 U.K. companies for 1976-1984, and is in the
datafile AB1991 on the textbook webpage. The variables we will be using are log employment (n),
log real wages (w), and log capital (k). See the description file for definitions.

(a) Estimate the panel AR(1)
kit = αkit−1 + ui + vt + εit

using Arellano-Bond one-step GMM with clustered standard errors. Note that the model
includes year fixed effects.

(b) Re-estimate using Blundell-Bond one-step GMM with clustered standard errors.

(c) Explain the difference in the estimates.

Exercise 17.16 This exercise uses the same dataset as the previous question. Blundell and Bond
(1998) estimated a dynamic panel regression of log employment n on log real wages w and log capital
k. The following specification1 used the Arellano-Bond one-step estimator, treating wit−1 and kit−1

as predetermined

nit = .7075
(.0842)

nit−1 − .7088
(.1171)

wit + .5000
(.1113)

wit−1 + .4660
(.1010)

kit − .2151
(.0859)

kit−1. (17.114)

This equation also included year dummies, and the standard errors are clustered.

(a) Estimate (17.114) using the Arellano-Bond one-step estimator treating wit and kit as strictly
exogenous.

(b) Estimate (17.114) treating wit−1 and kit−1 as predetermind to verify the results in (17.114).
What is the difference between the estimates treating the regressors as strictly exogeneous
versus predetermined?

(c) Estimate the equation using the Blundell-Bond one-step systems GMM estimator.

(d) Interpret the coeffi cient estimates viewing (17.114) as a firm-level labor demand equation.

(e) Describe the impact on the standard errors of the Blundell-Bond estimates in part (c) if you
forget to use clustering. (You do not have to list all the standard errors, but describe the
magnitude of the impact.)

Exercise 17.17 Use the datafile Invest1993 on the textbook webpage. You will be estimating
the panel AR(1)

Dit = αDit−1 + ui + εit

for D = debt/assets (this is debta in the datafile). See the description file for definitions.

(a) Estimate the above autoregression using Arellano-Bond twostep GMM with clustered stan-
dard errors.

(b) Re-estimate using Blundell-Bond twostep GMM.

(c) Experiment with your results, trying twostep versus onestep, AR(1) versus AR(2), number of
lags used as instruments, and classical versus robust standard errors. What makes the most
difference for the coeffi cient estimates? For the standard errors?

1Blundell and Bond (1998), Table 4, column 3.



CHAPTER 17. PANEL DATA 656

Exercise 17.18 Use the datafile Invest1993 on the textbook webpage. You will be estimating
the model

Dit = αDit−1 + β1Iit−1 + β2Qit−1 + β3CFit−1 + ui + εit.

The variables are debta, inva, vala, and cfa in the datafile). See the description file for definitions.

(a) Estimate the above regression using Arellano-Bond twostep GMM with clustered standard
errors, treating all regressors as predetermined.

(b) Re-estimate using Blundell-Bond twostep GMM, treating all regressors as predetermined.

(c) Experiment with your results, trying twostep versus onestep, number of lags used as instru-
ments, and classical versus robust standard errors. What makes the most difference for the
coeffi cient estimates? For the standard errors?
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Chapter 18

Density Estimation

18.1 Introduction

Sometimes it is useful to estimate a density function of a continuously-distributed variable.
As a general rule, density functions can take any shape. This means that density functions are
inherently nonparametric. The most common method to estimate density functions is with
kernel smoothing estimators, which are related to the kernel regression estimators explored in
Chapter 19.

There are many excellent monographs written on nonparametric density estimation, including
Silverman (1986) and Scott (1992). The methods are also covered in detail in Pagan and Ullah
(1999) and Li and Racine (2007).

In this chapter we focus on univariate density estimation. The setting is a real-valued random
variable xi for which we have n observations. The maintained assumption is that xi has a continuous
density f(x). The goal is to estimate f(x) either at a single point x or at a set of points in the
interior of the support of xi. For purposes of presentation we focus on estimation at a single point
x.

For most of the theoretical treatment we assume that the observations are i.i.d. The methods
can also be applied to time series and clustered observations, but the theoretical treatment is more
advanced. The case of clustered observations is discussed in Section 18.7.

18.2 Histogram Density Estimation

To make things concrete, recall the cpsmar09 dataset and let’s focus on the sample of Asian
women, which has n = 1149 observations. Our goal is to estimate the density f(x) of hourly wages
for this group.

A simple and familiar density estimator is a histogram. We divide the range of f(x) into B bins
of width w and then count the number of observations nj in each bin. The histogram estimator of
f(x) for x in the jth bin is

f̂(x) =
nj
nw

. (18.1)

The histogram is the plot of these heights, displayed as rectangles. The scaling is set so that the
sum of the area of the rectangles is

∑B
j=1wnj/nw = 1, and therefore the histogram estimator is a

valid density.
To illustrate, Figure 18.1(a) displays the histogram of the sample described above, using bins

of width $10. For example, the first bar shows that 189 of the 1149 individuals had wages in the
range [0, 10) so the height of the histogram is 189/(1149 ∗ 10) = 0.016.

The histogram in Figure 18.1(a) is a rather crude estimate. For example, it in uninformative
whether $11 or $19 wages are more prevalent. To address this we display a histogram using bins
with the smaller width $1 in Figure 18.1(b). In contrast with part (a) this appears quite noisy,

658
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Figure 18.1: Histogram Estimate of Wage Density for Asian Women

and we might guess that the peaks and valleys are likely just sampling noise. We would like an
estimator which avoids the two extremes shown in Figures 18.1. For this we consider smoother
estimators in the following section.

18.3 Kernel Density Estimator

Continuing the wage density example from the previous section, suppose we want to estimate
the density at x = $13. Consider the histogram density estimate in Figure 18.1(a). It is based on
the frequency of observations in the interval [10, 20) which is a skewed window about x = 13. It
seems more sensible to center the window at x = 13, for example to use [8, 18) instead of [10, 20).
It also seems sensible to give more weight to observations close to x = 13 and less to those at the
edge of the window.

These considerations give rise to what is called the kernel density estimator of f(x):

f̂(x) =
1

nh

n∑
i=1

k

(
xi − x
h

)
. (18.2)

where k(u) is a weighting function known as a kernel function and h > 0 is a scalar known as a
bandwidth. The estimator (18.2) is the sample average of the “kernel smooths”h−1k

(
xi−x
h

)
. The

latter will be seen throughout this chapter and the next as they are used in all kernel smoothing
estimators. The estimator (18.2) was first proposed by Rosenblatt (1956) and Parzen (1962), and
is often called the Rosenblatt or Rosenblatt-Parzen kernel density estimator.

Kernel density estimators (18.2) can be constructed with any kernel satisfying the following
definition.
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Definition 18.1 A (second-order) kernel function k(u) satisfies

1. 0 ≤ k(u) ≤ k <∞,

2. k(u) = k(−u),

3.
∫∞
−∞ k(u)du = 1,

4.
∫∞
−∞ u

2k(u)du = 1,

5.
∫∞
−∞ |u|

r k(u)du <∞ for all positive integers r.

Essentially, a kernel function is a bounded probability density function which is symmetric
about zero and has a unit variance. Since k(u) is symmetric about zero all odd moments equal
zero. Assumption 18.1.4, that the kernel has unit variance, is not essential, but a convenient
normalization. Assumption 18.1.5 is also not essential for most results, but again is a convenient
simplification, and does not exclude any kernel functions used in standard empirical practice.

The estimator (18.2) critically depends on the bandwidth h.

Definition 18.2 A bandwidth or tuning parameter h > 0 is a real num-
ber used to control the degree of smoothing of a nonparametric estimator.

Typically, larger values of a bandwidth h result in smoother estimators and smaller values of h
result in less smooth estimators.

The histogram density estimator (18.1) equals the kernel density estimator (18.2) at the bin
midpoints (e.g. x = 5 or x = 15 in Figure 18.1(a)) when k(u) is a uniform density function. This
is known as the rectangular kernel.

The kernel density estimator generalizes the histogram estimator in two important ways. First,
the window is centered at the point x rather than by bins, and second, the observations are weighted
by the kernel function. Thus, the estimator (18.2) can be viewed as a smoothed histogram. f̂(x)
counts the frequency that observations xi are close to x. The bandwidth h determines what is
meant by “close”, and the kernel k(u) applies weights based on the distance between xi and x.

There are a large number of functions which satisfy Definition 18.1, and many are programmed
as options in statistical packages. We list the three most important in Table 18.1 below: the
rectangular, Gaussian, and Epanechnikov kernels. These three kernel functions are displayed
in Figure 18.2. In practice it is unnecessary to consider kernels beyond these three.

In practice we advise against the rectangular kernel as it produces discontinuous density es-
timates. Better choices are the Epanechnikov and Gaussian kernels which give more weight to
observations xi near the point of evaluation x. In most practical applications these two kernels
will provide very similar density estimates, with the Gaussian somewhat smoother. In practice the
Gaussian kernel is a convenient choice it produces a density estimator which possesses derivatives
of all orders.

Kernel estimators are invariant to rescaling the kernel function and bandwidth. That is, the
estimator (18.2) using a kernel k(u) and bandwidth h is equal for any b > 0 to a kernel density
estimator using the kernel kb(u) = k(u/b)/b with bandwith h/b.

Kernel density estimators are also invariant to data rescaling. That is, let yi = cxi for some
c > 0. Then the density of yi is fy(y) = fx(y/c)/c. If f̂x(x) is the estimator (18.2) using the
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Table 18.1: Common Second-Order Kernels

Kernel Formula Rk Ck

Rectangular k(u) =


1

2
√

3
if |u| <

√
3

0 otherwise

1

2
√

3
1.064

Gaussian k(u) =
1√
2π

exp

(
−u

2

2

)
1

2
√
π

1.059

Epanechnikov k(u) =


3

4
√

5

(
1− u2

5

)
if |u| <

√
5

0 otherwise

3
√

5

25
1.049

observations xi and bandwidth h, and f̂y(y) is the estimator using the scaled observations yi with
bandwidth ch, then f̂y(y) = f̂x(y/c)/c, appropriately.

The kernel density estimator (18.2) is a valid density function. Specifically, it is non-negative
and integrates to one. To see the latter point,∫ ∞

−∞
f̂(x)dx =

1

nh

n∑
i=1

∫ ∞
−∞

k

(
xi − x
h

)
dx =

1

n

n∑
i=1

∫ ∞
−∞

k (u) du = 1

where the second equality makes the change-of-variables u = (xi−x)/h and the final uses Definition
18.1.3.

To illustrate, Figure 18.3 displays the histogram estimator along with the kernel density estima-
tor using the Gaussian kernel with the bandwidth h = 2.14. (Bandwidth selection will be discussed
in Section 18.10.) You can see that the density estimator is a smoothed version of the histogram,
and is single-peaked with a maximum about x = $13.

18.4 Bias of Density Estimator

In this section we show how to approximate the bias of the density estimator.
Since the kernel density estimator (18.2) is an average of i.i.d. observations its expectation is

E
(
f̂(x)

)
= E

(
1

nh

n∑
i=1

k

(
xi − x
h

))
= E

(
1

h
k

(
xi − x
h

))
.

At this point we may feel unsure if we can proceed further, as k((xi−x)/h) is a nonlinear function
of the random variable xi. To make progress, we write the expectation as an explicit integral

=

∫ ∞
−∞

1

h
k

(
v − x
h

)
f(v)dv.

The next step is a trick. Make the change-of-variables u = (v − x)/h so that the expression equals

=

∫ ∞
−∞

k (u) f(x+ hu)du

= f(x) +

∫ ∞
−∞

k (u) (f(x+ hu)− f(x)) du (18.3)
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Figure 18.2: Kernel Functions

where the final equality uses Definition 18.1.3.
Expression (18.3) shows that the expected value of f̂(x) is a weighted average of the function

f(u) about the point u = x. When f(x) is linear then f̂(x) wil be unbiased for f(x). In general,
however, f̂(x) is a biased estimator.

As h decreases to zero, the bias term in (18.3) tends to zero:

E
(
f̂(x)

)
= f(x) + o(1).

Intuitively, (18.3) is an average of f(u) in a local window about x. If the window is suffi ciently
small then this average should be close to f(x).

Under a stronger smoothness condition we can provide an improved characterization of the bias.
Make a second-order Taylor series expansion of f(x+ hu) so that

f(x+ hu) = f(x) + f ′(x)hu+
1

2
f ′′(x)h2u2 + o(h2).

Substituting, we find that (18.3) equals

= f(x) +

∫ ∞
−∞

k (u)

(
f ′(x)hu+

1

2
f ′′(x)h2u2

)
du+ o(h2)

= f(x) + f ′(x)h

∫ ∞
−∞

uk (u) du+
1

2
f ′′(x)h2

∫ ∞
−∞

u2k (u) du+ o(h2)

= f(x) +
1

2
f ′′(x)h2 + o(h2).

The final equality uses the facts
∫∞
−∞ uk (u) du = 0 and

∫∞
−∞ u

2k (u) du = 1. We have shown that
(18.3) simplifies to

E
(
f̂(x)

)
= f(x) +

1

2
f ′′(x)h2 + o

(
h2
)
.
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Figure 18.3: Kernel Density Estimator of Wage Density for Asian Women

This is revealing. It shows that the approximate bias of f̂(x) for f(x) is 1
2f
′′(x)h2. This

is consistent with our earlier finding that the bias decreases as h tends to zero, but is a more
constructive characterization. We see that the bias depends on the underlying curvature of f(x)
through its second derivative. If f ′′(x) < 0 (as it typical at the mode) then the bias is negative,
meaning that f̂(x) is typically less than the true f(x). If f ′′(x) > 0 (as may occur in the tails) then
the bias is positive, meaning that f̂(x) is typically higher than the true f(x). This is smoothing
bias.

We summarize our findings. Let N be a neighborhood of x.

Theorem 18.1 If f(x) is continuous in N , then as h→ 0

E
(
f̂(x)

)
= f(x) + o(1). (18.4)

If f ′′(x) is continuous in N , then as h→ 0

E
(
f̂(x)

)
= f(x) +

1

2
f ′′(x)h2 + o

(
h2
)
. (18.5)

A formal proof is presented in Section 18.18.
The asymptotic unbiasedness result (18.4) holds under the minimal assumption that f(x) is

continuous. The asymptotic expansion (18.5) holds under the stronger assumption that the second
derivative is continuous. These are examples of what are often called smoothness assumptions.
They are interpreted as meaning that the density is not too variable. It is a common feature of
nonparametric theory to use smoothness assumptions to obtain asymptotic approximations.
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To illustrate the bias of the kernel density estimator, Figure 18.4 displays the density

f(x) =
3

4
φ(x− 4) +

1

3
φ

(
x− 7

3/4

)
with the solid line. You can see that the density is bimodal, with local peaks at 4 and 7. Now
imagine estimating this density using a Gaussian kernel and a bandwidth of h = 0.5 (which turns

out to be the reference rule (see Section 18.10) for a sample size n = 200). The mean E
(
f̂(x)

)
of

this estimator is plotted using the long dashes. You can see that it has the same general shape with
f(x), with the same local peaks, but the peak and valley are attenuated. The mean is a smoothed
version of the actual density f(x). The asymptotic approximation f(x) + f ′′(x)h2/2 is displayed

using the short dashes. You can see that it is similar to the mean E
(
f̂(x)

)
, but is not identical.

The difference between f(x) and E
(
f̂(x)

)
is the bias of the estimator.

0 2 4 6 8 10

f(x)
E(f(x))
f(x) + h2f(2)(x) 2

Figure 18.4: Smoothing Bias

18.5 Variance of Density Estimator

Since f̂(x) is a sample average of the kernel smooths and the latter are i.i.d., the exact variance
of f̂(x) is

var
(
f̂(x)

)
=

1

n2h2
var

(
n∑
i=1

k

(
xi − x
h

))
=

1

nh2
var

(
k

(
xi − x
h

))
.

This can be approximated by calculations similar to those used for the bias.
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Theorem 18.2 The exact variance of f̂(x) is

V
f̂

= var
(
f̂(x)

)
=

1

nh2
var

(
k

(
xi − x
h

))
. (18.6)

If f(x) is continuous in N , then as h→ 0 and nh→∞

nhV
f̂

=
f(x)Rk
nh

+ o

(
1

nh

)
(18.7)

where

Rk =

∫ ∞
−∞

k(u)2du (18.8)

is known as the roughness of the kernel k(u).

The proof is presented in Section 18.18
Equation (18.7) shows that the asymptotic variance of f̂(x) is inversely proportional to nh,

which can be viewed as the effective sample size. The variance is proportional to the height of
the density f(x) and the kernel roughness Rk. The values of Rk for the three kernel functions are
displayed in Table 18.1.

18.6 Variance Estimation and Standard Errors

The expressions (18.6) and (18.7) can be used to motivate estimators of the variance V
f̂
. An

estimator based on the finite sample formula (18.6) is the scaled sample variance of the kernel
smooths h−1k

(
xi−x
h

)
V̂
f̂
(x) =

1

n− 1

(
1

nh2

n∑
i=1

k

(
xi − x
h

)2

− f̂(x)2

)
.

An estimator based on the asymptotic formula (18.7) is

V̂
f̂
(x) =

f̂(x)Rk
nh

. (18.9)

Using either estimator, a standard error for f̂(x) is V̂
f̂
(x)1/2.

18.7 Clustered Observations

When the observations are clustered we can write the density estimator (18.2) using the notation

f̂(x) =
1

n

G∑
g=1

ng∑
i=1

1

h
k

(
xig − x
h

)
.

When the clusters are mutually independent this has exact variance

V
f̂
(x) =

1

n2

G∑
g=1

var

( ng∑
i=1

1

h
k

(
xig − x
h

))

=
1

n2

G∑
g=1

E

( ng∑
i=1

1

h
k

(
xig − x
h

)
− ngf(x)

)2

.
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This can be estimated by

V̂
f̂
(x) =

1

n2

G∑
g=1

( ng∑
i=1

1

h
k

(
xig − x
h

)
− ngf̂(x)

)2

=
1

n2h2

G∑
g=1

( ng∑
i=1

k

(
xig − x
h

))2

− 1

n2

G∑
g=1

n2
gf̂(x)2.

A clustered standard error for f̂(x) is V̂
f̂
(x)1/2.

18.8 IMSE of Density Estimator

A useful measure of precision of a density estimator is its integrated mean squared error
(IMSE).

IMSE =

∫ ∞
−∞

E
(
f̂(x)− f(x)

)2
dx.

It is the average precision of f̂(x) over all values of x. Using Theorems 18.1 and 18.2 we can
calculate that it equals

IMSE =
1

4
R
(
f ′′
)
h4 +

Rk
nh

+ o
(
h4
)

+ o
(

(nh)−1
)

where

R
(
f ′′
)

=

∫ ∞
−∞

(
f ′′(x)

)2
dx

is called the roughness of the second derivative f ′′(x). The leading term

AIMSE =
1

4
R
(
f ′′
)
h4 +

Rk
nh

(18.10)

is called the asymptotic integrated mean squared error. The AIMSE is an asymptotic ap-
proximation to the IMSE. In nonparametric theory is it common to use AIMSE to assess precision.

The AIMSE (18.10) shows that f̂(x) is less accurate when R (f ′′) is large, meaning that accuracy
deteriorates with increased curvature in f(x). The expression also shows that the first term (the
squared bias) of the AIMSE is increasing in h , but the second term (the variance) is decreasing in
h. Thus the choice of h affects (18.10) with a trade-off between bias and variance.

We can calculate the bandwidth h which minimizes the AIMSE by solving the first-order con-
dition. (See Exercise 18.2.) The solution is

h0 =

(
Rk

R (f ′′)

)1/5

n−1/5. (18.11)

This bandwidth takes the form h0 = cn−1/5 so satisfies the intruiging rate h0 ∼ n−1/5.
A common error is to interpret h0 ∼ n−1/5 as meaning that a user can set h = n−1/5. This is

incorrect and can be a huge mistake in an application. The constant c is critically important as
well.

When h ∼ n−1/5 then AIMSE ∼ n−4/5 which means that the density estimator converges at
the rate n−2/5. This is slower than the standard n−1/2 parametric rate. This is a common finding
in nonparametric analysis. An interpretation is that nonparametric estimation problems are harder
than parametric problems, so more observations are required to obtain accurate estimates.

We summarize our findings.
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Theorem 18.3 If f ′′(x) is uniformly continuous, then

IMSE =
1

4
R
(
f ′′
)
h4 +

Rk
nh

+ o
(
h4
)

+ o
(

(nh)−1
)
.

The leading terms (the AIMSE) are minimized by the bandwidth

h0 =

(
Rk

R (f ′′)

)1/5

n−1/5.

18.9 Optimal Kernel

Expression (18.10) shows that the choice of kernel function affects the AIMSE only through
Rk. This means that the kernel with the smallest Rk will have the smallest AIMSE. As shown by
Hodges and Lehmann (1956), Rk is minimized by the Epanechnikov kernel. This means that density
estimation with the Epanechnikov kernel is AIMSE effi cient. This observation led Epanechnikov
(1969) to recommend this kernel for density estimation.

Theorem 18.4 AIMSE is minimized by the Epanechnikov kernel.

We prove Theorem 18.4 below.
It is also interesting to calculate the effi ciency loss obtained by using a different kernel. Inserting

the optimal bandwidth (??) into the AIMSE (18.10) and a little algebra we find that for any kernel
the optimal AIMSE is

AIMSE0(k) =
5

4
R
(
f ′′
)1/5

R
4/5
k .

The square root of the ratio of the optimal AIMSE of the Gaussian kernel to the Epanechnikov
kernel is(

AIMSE0(Gaussian)

AIMSE0(Epanechnikov)

)1/2

=

(
Rk(Gaussian)

Rk(Epanechnikov)

)2/5

=

(
1/2
√
π

3
√

5/25

)2/5

' 1.02.

Thus the effi ciency loss from using the Gaussian kernel relative to the Epanechnikov is only 2%.
This is not particularly large. Therefore from an effi ciency viewpoint the Epanechnikov is optimal,
and the Gaussian is near-optimal.

The Gaussian kernel has other advantages over the Epanechnikov. The Gaussian kernel pos-
sesses derivatives of all orders (is infinitely smooth) so kernel density estimates with the Gaussian
kernel will also have derivatives of all orders. This is not the case with the Epanechnikov ker-
nel, as its first derivative is discontinuous at the boundary of its support. Consequently estimates
calculated using hte Gaussian kernel are smoother and particularly well suited for estimation of
density derivates. Another useful feature is that the density estimator f̂(x) with the Gaussian
kernel is non-zero for all x, which can be a useful feature if the inverse f̂(x)−1 is desired. These
considerations lead to the practical recommendation to use the Gaussian kernel.

We now show Theorem 18.4. To do so we use the calculus of variations. Construct the La-
grangian

L (k, λ1, λ2) =

∫ ∞
−∞

k(u)2du− λ1

(∫ ∞
−∞

k(u)du− 1

)
− λ2

(∫ ∞
−∞

u2k(u)du− 1

)
.
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The first term is Rk. The constraints are that the kernel integrates to one and the second moment
is 1. Taking the derivative with respect to k(u) and setting to zero we obtain

d

dk(u)
L (k, λ1, λ2) =

(
2k(u)− λ1 − λ2u

2
)

1 (k(u) ≥ 0) = 0.

Solving for k(u) we find the solution

k(u) =
1

2

(
λ1 + λ2u

2
)

1
(
λ1 + λ2u

2 ≥ 0
)

which is a truncated quadratic.
The constants λ1 and λ2 may be found by seting

∫∞
−∞ k(u)du = 1 and

∫∞
−∞ u

2k(u)du = 1. After
some algebra we find the solution is the Epanechnikov kernel as listed in Table 18.1.

18.10 Reference Bandwidth

The density estimator (18.2) depends critically on the bandwidth h. Without a specific rule
to select h the method is incomplete. Consequently an important component of nonparametric
estimation methods are data-dependent bandwidth selection rules.

A simple bandwidth selection rule proposed by Silverman (1986) has come to be known as the
reference bandwidth or Silverman’s Rule-of-Thumb. It uses the bandwidth (18.11) which
is optimal under the simplifying assumption that the true density f(x) is normal, with a few
variations. The rule produces a reasonable bandwidth for many estimation contexts.

The Silverman rule is
hr = σxCkn

−1/5 (18.12)

where σx is the standard deviation of the distribution of x and

Ck =

(
8
√
πRk
3

)1/5

.

The constant Ck is determined by the kernel. Its values are recorded in Table 18.1.
The Silverman rule is simple to derive. Using change-of-variables you can calculate that when

when f(x) = σ−1
x φ(x/σx) then R (f ′′) = σ−5

x R (φ′′). A technical calculation (see Theorem 18.5
below) shows that R (φ′′) = 3/8

√
π. Together we obtain the reference estimate R (f ′′) = σ−5

x 3/8
√
π.

Inserted into (18.11) we obtain (18.12).
For the Gaussian kernel Rk = 1/2

√
π so the constant Ck is

Ck =

(
8
√
π

3

1

2
√
π

)1/5

=

(
4

3

)1/5

' 1.059. (18.13)

Thus the Silverman rule (18.12) is often written as

hr = σx1.06n−1/5. (18.14)

It turns out that the constant (18.13) is remarkably robust to the choice of kernel. Notice that
Ck depends on the kernel only through Rk, which is minimized by the Epanechnikov kernel for
which Ck ' 1.05, and and maximized (among single-peaked kernels) by the rectangular kernel for
which Ck ' 1.06. Thus the constant Ck is essentially invariant to the specific kernel. Consequently
the Silverman rule (18.14) can be used by any kernel with unit variance.

The unknown standard deviation σx needs to be replaced with a sample estimator. Using the
sample standard deviation σ̂x we obtain a classical reference rule for the Gaussian kernel, sometimes
referred to as the optimal bandwidth under the assumption of normality:

hr = σ̂x1.06n−1/5. (18.15)
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Silverman (1986, Section 3.4.2) recommended a robust estimator for σx based on the interquar-
tile range R̂ (the difference between the 0.75 and 0.25 quantiles) divided by 1.34. Silverman
suggested the smaller of this and the sample standard deviation

σ̃x = min
[
σ̂x, R̂/1.34

]
.

This gives rise to a second form of the reference rule

hr = σ̃x1.06n−1/5. (18.16)

Silverman (1986) observed that the constant Ck = 1.06 produces a bandwidth which is a bit
too large when the density f(x) is thick-tailed or bimodal. He therefore recommended using a
slightly smaller bandwidth in practice, and based on simulation evidence specifically recommended
Ck = 0.9. This leads to a third form of the reference rule

hr = 0.9σ̃xn
−1/5. (18.17)

This rule (18.17) is popular in package implementations and is commonly known as Silverman’s
Rule of Thumb.

The kernel density estimator implemented with any of the above reference bandwidths is fully
data-dependent and thus a valid estimator. (That is, it does not depend on user-selected tuning
parameters.) This is a good property.

We close this section by justifying the claim R (φ′′) = 3/8
√
π. We provide a more general

calculation, and present the proof in Section 18.18.

Theorem 18.5 For any integer m ≥ 0,

R
(
φ(m)

)
=

µ2m

2m+1
√
π

(18.18)

where µ2m = (2m− 1)!! = E
(
Z2m

)
is the 2mth moment of the standard

normal density.

18.11 Sheather-Jones Bandwidth*

In this section we present a bandwidth selection rule derived by Sheather and Jones (1991)
which has much improved performance over the reference rule.

The AIMSE-optimal bandwidth (18.11) depends on the unknown roughness R (f ′′). An im-
provement on the reference rule may be obtained by replacing R (f ′′) with a nonparametric esti-
mator.

Consider the general problem of estimation of Sm =
∫∞
−∞

(
f (m)(x)

)2
dx for some integer m ≥ 0.

By m applications of integration-by-parts we can calculate that

Sm = (−1)m
∫ ∞
−∞

f (2m)(x)f(x)dx = (−1)m E
(
f (2m)(xi)

)
where the second equality uses the fact that f(x) is the density of xi. Let f̂(x) = (nbm)−1

∑n
i=1 φ ((xi − x) /bm)

be a kernel density estimator using the Gaussian kernel and bandwidth bm. An estimator of f (2m)(x)
is

f̂ (2m)(x) =
1

nb2m+1
m

n∑
i=1

φ(2m)

(
xi − x
bm

)
.
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A non-parametric estimator of Sm is

Ŝm(bm) =
(−1)m

n

n∑
i=1

f̂ (2m)(xi) =
(−1)m

n2b2m+1
m

n∑
i=1

n∑
j=1

φ(2m)

(
xi − xj
bm

)
.

Jones and Sheather (1991) calculated that the MSE-optimal bandwith bm for the estimator Ŝm is

bm =

(√
2

π

µ2m

Sm+1

)1/(3+2m)

n−1/(3+2m) (18.19)

where µ2m = (2m− 1)!! is the 2mth moment of the normal kernel. The bandwidth (18.19) depends
on the unknown Sm+1. One solution is to replace Sm+1 with a reference estimate. Given Theorem
18.5 this is Sm+1 = σ−3−2m

x µ2m+2/2
m+2√π. Substituted into (18.19) and simplifying we obtain

the reference bandwidth

b̃m = σx

(
2m+5/2

2m+ 1

)1/(3+2m)

n−1/(3+2m).

Used for estimation of Sm we obtain the feasible estimator S̃m = Ŝm(̃bm). It turns out that two
reference bandwidths of interest are

b̃2 = 1.24σxn
−1/7

and
b̃3 = 1.23σxn

−1/9

for S̃2 and S̃3.
A plug-in bandwidth h is obtained by replacing the unknown S2 = R (f ′′) in (18.11) with

S̃2. Its performance, however, depends critically on the preliminary bandwidth b2 which depends
on the reference rule estimator S̃3.

Sheather and Jones (1991) improved on the plug-in bandwidth with the following algorithm
which takes into account the interactions between h and b2. Take the two equations for optimal h
and b2 with S2 and S3 replaced with the reference estimates S̃2 and S̃3

h =

(
Rk

S̃2

)1/5

n−1/5

b2 =

(√
2

π

3

S̃3

)1/7

n−1/7.

Solve the first equation for n and plug it into the second equation, viewing it as a function of h.
We obtain

b2(h) =

(√
2

π

3

Rk

S̃2

S̃3

)1/7

h5/7.

Now use b̃2(h) to make the estimator Ŝ2(̃b2(h)) a function of h. Find the h which is the solution to
the equation

h =

(
Rk

Ŝ2(̃b2(h))

)1/5

n−1/5. (18.20)

The solution for h must be found numerically but it is fast to solve by the Newton-Raphson
method. Theoretical and simulation analysis have shown that the resulting bandwidth h and
density estimator f̂(x) perform quite well in a range of contexts.
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When the kernel k(u) is Gaussian the relevant formulae are

b2(h) = 1.357

(
S̃2

S̃3

)1/7

h5/7

and
h =

0.776

Ŝ2(̃b2(h))1/5
n−1/5.

18.12 Recommendations for Bandwidth Selection

In general it is advisable to try several bandwidths and use judgment. Estimate the density
function using each bandwidth. Plot the results and compare. Select your density estimator based
on the evidence, your purpose for estimation, and your judgment.

For example, take the empirical example presented at the beginning of this chapter, which are
wages for the sub-sample of Asian women. There are n = 1149 observations. Thus n−1/5 = 0.24.
The sample standard deviation is σ̂x = 20.6. This means that the Gaussian optimal rule (18.15) is

h = σ̂x1.06n−1/5 = 5.34.

The interquartile range is R̂ = 18.8. The robust estimate of standard deviation is σ̃x = 14.0.
The rule-of-thumb (18.17) is

h = 0.9σ̃xn
−1/5 = 3.08.

This is smaller than the Gaussian optimal bandwidth mostly because the robust standard deviation
is much smaller than the sample standard deviation.

The Sheather-Jones bandwidth which solves (18.20) is

h = 2.14.

This is significantly smaller than the other two bandwidths. This is because the empirical roughness
estimate Ŝ2 is much larger than the normal reference value.

We estimate the density using these three bandwidths and the Gaussian kernel, and display
the estimates in Figure 18.5. What we can see is that the estimate using the largest bandwidth
(the Gaussian optimal) is the smoothest, and the estimate using the smallest bandwidth (Sheather-
Jones) is the least smooth. The Gaussian optimal estimate understates the primary density mode,
and overstates the left tail, relative to the other two. The Gaussian optimal estimate seems over-
smoothed. The estimates using the rule-of-thumb and the Sheather-Jones bandwidth are reasonably
similar, and the choice between the two may be made partly on aesthetics. The rule-of-thumb
estimate produces a smoother estimate which may be more appealing to the eye, while the Sheather-
Jones estimate produces more detail. My preference leans towards detail, and hence the Sheather-
Jones bandwidth. This is the justification for the choice h = 2.14 used for the density estimate
which was displayed in Figure 18.3.

If you are working in a package which only produces one bandwith rule (such as Stata) then
it is advisable to experiment by try alternative bandwidths obtained by adding and subtracting
modest deviations (e.g. 20-30%) and then assess the density plots obtained.

We can also assess the impact of the choice of kernel function. In Figure 18.6 we display the
density estimates calculated using the rectangular, Gaussian, and Epanechnikov kernel functions,
and the Sheather-Jones bandwidth (optimized for the Gaussian kernel). The shapes of the three
density estimates are very similar, and the Gaussian and Epanechnikov estimates are nearly in-
distinguishable, with the Gaussian slightly smoother. The estimate using the rectangular kernel,
however, is noticably different. It is erratic and non-smooth. This illustrates how the rectangu-
lar kernel is a poor choice for density estimation, and the differences between the Gaussian and
Epanechnikov kernels are typically minor.
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Figure 18.5: Choice of Bandwidth

18.13 Practical Issues in Density Estimation

The most common purpose for a density estimator f̂(x) is to produce a display such as Figure
18.3. In this case the estimatorf̂(x) is calculated on a grid of values of x and then plotted. Typically
100 gridpoints is suffi cient for a reasonable density plot. However if the density estimate has a
section with a steep slope it may be poorly displayed unless more gridpoints are used.

Sometimes it is questionable whether or not a density estimator can be used when the observa-
tions are somewhat in between continuous and discrete. For example, many variables are recorded
as integers even though the underlying model treats them as continuous. A practical suggestion
is to refrain from applying a density estimator unless there are at least 50 distinct values in the
dataset.

There is also a practical question about sample size. How large should the sample be to apply
a kernel density estimator? The convergence rate is slow, so we should expect to require a larger
number of observations than for parametric estimators. I suggest a minimal sample size of n = 100,
and even then estimation precision may be poor.

18.14 Computation

In Stata, the kernel density estimator (18.2) can be computed and displayed using the kdensity
command. By default it uses the Epanechnikov kernel and selects the bandwidth using the reference
rule (18.17). One deficiency of the Stata kdensity command is that incorrectly implements the
reference rule for kernels with non-unit variances. (This includes all kernel options in Stata other
than the Epanechnikov and Gaussian). Consequently the kdensity command should only be used
with either the Epanechnikov or Gaussian kernel.

R has several commands for density estimation, including the built-in command density. By
default the latter uses the Gaussian kernel and the reference rule (18.17). The latter can be
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Figure 18.6: Choice of Kernel

explicitly specified using the option nrd0. Other kernels and bandwidth selection methods are
available, including (18.16) as the option nrd and the Sheather-Jones method as the option SJ.

Matlab has the built-in function kdensity. By default it uses the Gaussian kernel and the
reference rule (18.16).

18.15 Asymptotic Distribution

In this section we provide asymptotic limit theory for the kernel density estimator (18.2). We
first state a consistency result.

Theorem 18.6 If f(x) is continuous in N , then as h → 0 and nh → ∞,
f̂(x)

p−→ f(x).

This shows that the nonparametric estimator f̂(x) is consistent for f(x) under quite minimal
assumptions. Theorem 18.6 follows from (18.4) and (18.7).

We now provide an asymptotic distribution theory.

Theorem 18.7 If f ′′(x) is continuous in N , then as nh → ∞ such that
h = O

(
n−1/5

)
√
nh

(
f̂(x)− f(x)− 1

2
f ′′(x)h2

)
d−→ N (0, f(x)Rk) .
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The proof is given in Section 18.18.
Theorems 18.1 and 18.2 characterized the asymptotic bias and variance. Theorem 18.7 extends

this by applying the Lindeberg central limit theorem to show that the asymptotic distribution is
normal.

The convergence result in Theorem 18.7 is different from typical parametric results in two
aspects. The first is that the convergence rate is

√
nh rather than

√
n. This is because the

estimator is based on local smoothing, and the effective number of observations for local estimation
is nh rather than the full sample n. The second notable aspect of the theorem is that the statement
includes an explicit adjustment for bias, as the estimator f̂(x) is centered at f(x) + 1

2f
′′(x)h2. This

is because the bias is not asymptotically negligible and needs to be acknowledged. The presence of
a bias adjustment is typical in the asymptotic theory for kernel estimators.

Theorem 18.7 adds the extra technical condition that h = O
(
n−1/5

)
. This strengthens the

assumption h → 0 by saying it must decline at least at the rate n−1/5. This condition ensures
that the remainder from the bias approximation is asymptotically negligible. It can be weakened
somewhat if the smoothness assumptions on f(x) are strengthened.

18.16 Undersmoothing

A technical way to eliminate the bias term in Theorem 18.7 is by using an under-smoothing
bandwidth. This is a bandwidth h which converges to zero faster than the optimal rate n−1/5, thus
nh5 = o (1). In practice this means that h is smaller than the optimal bandwidth so the estimator
f̂(x) is AIMSE ineffi cient. An undersmoothing bandwidth can be obtained by setting h = n−αhr
where hr is a reference or plug-in bandwidth and α > 0.

With a smaller bandwidth the estimator has reduced bias and increased variance. Consequently
the bias is asymptotically negligible.

Theorem 18.8 If f ′′(x) is continuous in N , then as nh → ∞ such that
nh5 = o (1) √

nh
(
f̂(x)− f(x)

)
d−→ N (0, f(x)Rk) .

This theorem looks identical to Theorem 18.7 with the notable difference that the bias term is
omitted. At first, this appears to be a “better”distribution result, as it is certainly preferred to
have (asymptotically) unbiased estimators. However this is an incomplete understanding. Theorem
18.7 (with the bias term included) is a better distribution result precisely because it captures
the asymptotic bias. Theorem 18.8 is inferior precisely because it avoids characterizing the bias.
Another way of thinking about it is that Theorem 18.7 is a more honest characterization of the
distribution than Theorem 18.8.

It is worth noting that the assumption nh5 = o (1) is the same as h = o
(
n−1/5

)
. Some authors

will state it one way, and some the other. The assumption means that the estimator f̂(x) is
converging at a slower rate than optimal, and is thus AIMSE ineffi cient.

While the undersmoothing assumption nh5 = o (1) technically eliminates the bias from the
asymptotic distribution, it does not actually eliminate the finite sample bias. Thus it is better in
practice to view an undersmoothing bandwidth as producing an estimator with “low bias”rather
than “zero bias”.

18.17 Application

We close the chapter with an empirical illustration. We consider the Duflo, Dupas and Kremer
(2011) investigation of the effect of student tracking on testscores. Recall that the core model was
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a least-squares regression of a standardized version of the variable testscore on the dummy variable
tracking. We can examine the impact on the entire distribution of non-standardized testscores by
comparing the estimated densities of testscores for the subsamples with and without tracking. In
this application we focus on the sub-sample of girls. In Exercise 18.8 we repeat the application for
the sub-sample of boys.

The sub-samples of tracked and non-tracked girls are similar (each has approximately 1400
observations with testscore standard deviation of about 9.3). To compare the densities it therefore
makes sense to use the same bandwidth for each sample. We first computed the rule-of-thumb
bandwidth for each sub-sample, obtaining 1.94 and 1.99 respectively. We then computed the
Sheather-Jones bandwidth for each sub-sample, obtaining 1.57 and 1.29 respectively. We estimated
the two sub-sample densities using the Gaussian kernel and the three bandwidths 1.96, 1.57, and
1.29. The estimates with the largest bandwidth appear over-smoothed and those with the smallest
bandwidth appear under-smoothed, leading us to select the estimates with the middle bandwidth
1.57.

We display the density estimates using h = 1.57 in Figure 18.7. You can see that the testscore
distribution is highly skewed with a thick right tail. You can also see that the effect of tracking on
testscores is more than a simple location shift. In particular, the density of untracked testscores
has a significant mass of students with very low testscores. This hump shifts meaningfully to the
right for tracked students. At the upper end of the distribution the difference between the densities
seems smaller. This means that tracking appears to have a particular effect of improving scores for
students with the lowest initial performance.

This illustrates how examination of density estimates can augment regression analysis.
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Figure 18.7: Density Estimates of Test Scores for Girls
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18.18 Technical Proofs*

For simplicity all formal results assume that the kernel k(u) has bounded support, that is, for
some a < ∞, k(u) = 0 for |u| > a. This includes most kernels used in applications with the
exception of the Gaussian kernel. The results apply as well to the Gaussian kernel but with a more
detailed argument.

Proof of Theorem 18.1. We first show (18.4). Fix ε > 0. Since f(x) is continuous in some
neighborhood N there exists a δ > 0 such that |v| ≤ δ implies |f(x+ v)− f(x)| ≤ ε. Set h ≤ δ/a.
Then |u| ≤ a implies |hu| ≤ δ and |f(x+ hu)− f(x)| ≤ ε. Then using (18.3)∣∣∣E(f̂(x)− f(x)

)∣∣∣ =

∣∣∣∣∫ a

−a
k (u) (f(x+ hu)− f(x)) du

∣∣∣∣
≤
∫ a

−a
k (u) |f(x+ hu)− f(x)| du

≤ ε
∫ a

−a
k (u) du

= ε.

Since ε is arbitrary this shows that
∣∣∣E(f̂(x)− f(x)

)∣∣∣ = o(1) as h→ 0, as claimed.

We next show (18.5). By the mean-value theorem

f(x+ hu) = f(x) + f ′(x)hu+
1

2
f ′′(x+ hu∗)h2u2

= f(x) + f ′(x)hu+
1

2
f ′′(x)h2u2 +

1

2

(
f ′′(x+ hu∗)− f ′′(x)

)
h2u2

where u∗ lies between 0 and u. Substituting into (18.3) and using
∫∞
−∞ k (u)udu = 0 and

∫∞
−∞ k (u)u2du =

1 we find
E
(
f̂(x)

)
= f(x) +

1

2
f ′′(x)h2 + h2R(h)

where

R(h) =
1

2

∫ ∞
−∞

(
f ′′(x+ hu∗)− f ′′(x)

)
u2k (u) du.

It remains to show that R(h) = o(1) as h → 0. Fix ε > 0. Since f ′′(x) is continuous is some
neighborhood N there exists a δ > 0 such that |v| ≤ δ implies |f ′′(x+ v)− f ′′(x)| ≤ ε. Set h ≤ δ/a.
Then |u| ≤ a implies |hu∗| ≤ |hu| ≤ δ and |f ′′(x+ hu∗)− f ′′(x)| ≤ ε. Then

|R(h)| ≤ 1

2

∫ ∞
−∞

∣∣f ′′(x+ hu∗)− f ′′(x)
∣∣u2k (u) du ≤ ε

2
.

Since ε is arbitrary this shows that R(h) = o(1). This completes the proof. �

Proof of Theorem 18.2. As mentioned at the beginning of the section, for simplicity assume
k(u) = 0 for |u| > a.

Equation (18.6) was shown in the text. We now show (18.7). By a derivation similar to that
for Theorem 18.1, since f(x) is continuous in N

1

h
E

(
k

(
xi − x
h

)2
)

=

∫ ∞
−∞

1

h
k

(
v − x
h

)2

f(v)dv

=

∫ ∞
−∞

k (u)2 f(x+ hu)du

=

∫ ∞
−∞

k (u)2 f(x)du+ o(1)

= f(x)Rk + o(1).
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Then since the observations are i.i.d. and using (18.5)

nh var
(
f̂(x)

)
=

1

h
var

(
k

(
xi − x
h

))
=

1

h
E

(
k

(
xi − x
h

)2
)
− h

(
E
(

1

h
k

(
xi − x
h

)))2

= f(x)Rk + o(1)

as stated. �

Proof of Theorem 18.5 . By m applications of integration-by-parts, the fact φ(2m)(x) =
He2m(x)φ(x) where He2m(x) is the 2mth Hermite polynomial, the fact φ(x)2 = φ

(√
2x
)
/
√

2π,
the change-of-variables u = x/

√
2, an explicit expression for the Hermite polynomial, the nor-

mal moment
∫∞
−∞ u

2mjφ(u)du = (2m− 1)!! = (2m)!/ (2mm!), the Binomial Theorem, and finally
(2m)!/ (2mm!) = µ2m, we find

R
(
φ(m)

)
=

∫ ∞
−∞

φ(m)(x)φ(m)(x)dx

= (−1)m
∫ ∞
−∞

He2m(x)φ(x)2dx

=
(−1)m√

2π

∫ ∞
−∞

He2m(x)φ
(√

2x
)
dx

=
(−1)m

2
√
π

∫ ∞
−∞

He2m

(
u/
√

2
)
φ (u) du

=
(−1)m

2
√
π

∫ ∞
−∞

m∑
j=0

(2m)!

j! (2m− 2j)!2m
(−1)j u2m−2jφ (u) du

=
(−1)m (2m)!

22m+1m!
√
π

m∑
j=0

m!

j! (m− j)! (−1)j

=
(2m)!

22m+1m!
√
π

=
µ2m

2m+1
√
π

as claimed. �

Proof of Theorem 18.7. Define

yni = h−1/2

(
k

(
xi − x
h

)
− E

(
k

(
xi − x
h

)))
so that √

nh
(
f̂(x)− E

(
f̂(x)

))
=
√
ny.

We verify the conditions for the Lindeberg CLT (Theorem 6.12). It is necessary to verify the
Lindeberg condition as Lyuapunov’s condition fails.

In the notation of Theorem 6.12, σ2
n = var (

√
ny) → Rkf(x) as h → 0. Notice that since the

kernel function is positive and finite, 0 ≤ k(u) ≤ k, say, then y2
ni ≤ h−1k

2
. Fix ε > 0. Then

lim
n→∞

E
(
y2
ni1
(
y2
ni > εn

))
≤ lim

n→∞
E
(
y2
ni1
(
k

2
/ε > nh

))
= 0



CHAPTER 18. DENSITY ESTIMATION 678

the final equality since nh > k
2
/ε for suffi ciently large n. This establishes the Lindeberg condition

(6.5). The Lindeberg CLT (Theorem 6.12) shows that

√
nh
(
f̂(x)− E

(
f̂(x)

))
=
√
ny

d−→ N (0, f(x)Rk) .

Equation (18.5) established

E
(
f̂(x)

)
= f(x) +

1

2
f ′′(x)h2 + o(h2).

Since h = O
(
h−1/5

)
√
nh

(
f̂(x)− f(x)− 1

2
f ′′(x)κ2

kh
2

)
=
√
nh
(
f̂(x)− E

(
f̂(x)

))
+ o(1)

d−→ N (0, f(x)Rk) .

This completes the proof. �
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Exercises

Exercise 18.1 If x∗i is a random variable with density f̂(x) from (18.2), show that

(a) E (x∗i ) = xn.

(b) var (x∗i ) = σ̂2
x + h2.

Exercise 18.2 Show that (18.11) minimizes (18.10).
Hint: Differentiate (18.10) with respect to h and set to 0. This is the first-order condition for

optimization. Solve for h. Check the second-order condition to verify that this is a minimum.

Exercise 18.3 Suppose f(x) is the uniform density on [0, 1]. What does (18.11) suggest should
be the optimal bandwidth h? How do you interpret this?

Exercise 18.4 You estimate a density for expenditures measured in dollars, and then re-estimate
measuring in millions of dollars, but use the same bandwidth h. How do you expect the density
plot to change? What bandwidth should use so that the density plots have the same shape?

Exercise 18.5 You have a sample of wages for 1000 men and 1000 women. You estimate the
density functions f̂m(x) and f̂w(x) for the two groups using the same bandwidth h. You then take

the average f̂(x) =
(
f̂m(x) + f̂w(x)

)
/2. How does this compare to applying the density estimator

to the combined sample?

Exercise 18.6 You increase your sample from n = 1000 to n = 2000. For univariate density
estimation, how does the AIMSE-optimal bandwidth change? If the sample increases from n = 1000
to n = 10, 000?

Exercise 18.7 Using the asymptotic formula (18.9) to calculate standard errors s(x) for f̂(x),
find an expression which indicates when f̂(x) − 2s(x) < 0, which means that the asymptotic 95%
confidence interval contains negative values. For what values of x is this likely (that is, around the
mode or towards the tails)? If you generate a plot of f̂(x) with confidence bands, and the latter
include negative values, how should you interpret this?

Exercise 18.8 Take the DDK2011 dataset and the subsample of boys. Estimate the density of
testscores separately by tracked and not tracked. Are the graphs similar to those for girls in Figure
18.7?

Exercise 18.9 Take the cps09mar dataset and the subsample of individuals with education=20
(professional degree or doctorate), with experience between 0 and 40 years.

(a) Estimate the density of wages separately for men and women. Plot on the same graph to
compare. Comment.

(b) Estimate the density of experience separately for men and women. Plot on the same graph
to compare. Comment on the difference between the density of wages and experience.

Exercise 18.10 Take the Invest1993 dataset and the subsample of observations with Q ≤ 5.
Estimate the densities of the variables I and Q.



Chapter 19

Nonparametric Regression

19.1 Introduction

We now turn to nonparametric estimation of the conditional expectation function

E (yi | xi = x) = m(x).

Unless an economic model restricts the form of m(x) to a parametric function, m(x) can take any
nonlinear shape and is therefore nonparametric. In this chapter we discuss nonparametric kernel
smoothing estimators of m(x). These are related to the density estimators explored in the previous
chapter. In Chapter 20 we explore estimation by series and sieve methods.

There are many excellent monographs written on nonparametric regression estimation, including
Härdle (1990), Fan and Gijbels (1996), Pagan and Ullah (1999), and Li and Racine (2007).

To get started, suppose that there is a single real-valued regressor xi. We consider the case of
vector-valued regressors later. The nonparametric regression model with a real-valued regressor is

yi = m(xi) + ei

E (ei | xi) = 0

E
(
e2
i | xi

)
= σ2 (xi) .

We assume that we have n observations for the pair (yi, xi). The goal is to estimate m(x) either
at a single point x or at a set of points. For most of our theory we focus on estimation at a single
point x which is in the interior of the support of xi.

In addition to the conventional regression assumptions, we assume that both m(x) and f(x)
(the marginal density of xi) are continuous in x. For our theoretical treatment we assume that
the observations are i.i.d. The methods extend to the case of time series but the theory is more
advanced. An excellent treatment for the case of dependent data is Fan and Yao (2003). We discuss
clustered observations in Section 19.20.

19.2 Binned Means Estimator

For clarity, fix the point x and consider estimation of m(x). This is the mean of yi for random
pairs (yi, xi) such that xi = x. If the distribution of xi were discrete then we could estimate m(x) by
taking the average of the sub-sample of observations yi for which xi = x. But when xi is continuous
then the probability is zero that xi exactly equals x. So there is no sub-sample of observations
with xi = x and this estimation idea is infeasible. However, if m(x) is continuous then it should be
possible to get a good approximation by taking the average of the observations for which xi is close
to x, perhaps for the observations for which |xi − x| ≤ h for some small h > 0. As for the case of

680
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density estimation we call h a bandwidth. This binned means estimator can be written as

m̂(x) =

∑n
i=1 1 (|xi − x| ≤ h) yi∑n
i=1 1 (|xi − x| ≤ h)

. (19.1)

This is an step function estimator of the regression function m(x).
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Figure 19.1: Scatter of (yi, xi) and Nadaraya-Watson Regression

To visualize, Figure 19.1 displays a scatter plot of 100 random pairs (yi, xi) generated by sim-
ulation. The observations are displayed as the open circles. The estimator (19.1) of m(x) at x = 1
with h = 1 is the average of the yi for the observations such that xi falls in the interval [0 ≤ xi ≤ 2].
This estimator is m̂(1) and is shown on Figure 19.1 by the first solid square. We repeat the calcu-
lation (19.1) for x = 3, 5, 7, and 9, which is equivalent to partitioning the support of xi into the
bins [0, 2], [2, 4], [4, 6], [6, 8], and [8, 10]. These bins are shown in Figure 19.1 by the vertical dotted
lines, and the estimates (19.1) by the solid squares.

The binned estimator m̂(x) is the step function which is constant within each bin and equals the
binned mean. In Figure 19.1 it is displayed by the horizontal dashed lines which pass through the
solid squares. This estimate roughly tracks the central tendency of the scatter of the observations
(yi, xi). However, the huge jumps at the edges of the partitions are disconcerting, counter-intuitive,
and clearly an artifact of the discrete binning.

If we take another look at the estimation formula (19.1) there is no reason why we need to
evaluate (19.1) only on a course grid. We can evaluate m̂(x) for any set of values of x. In particular,
we can evaluate (19.1) on a fine grid of values of x and thereby obtain a smoother estimate of
the CEF. This estimator is displayed in Figure 19.1 with the solid line. We call this estimator
“Rolling Binned Means”. This is a generalization of the binned estimator and by construction
passes through the solid squares. It turns out that this is a special case of the Nadaraya-Watson
estimator considered in the next section. This estimator, while less abrupt than the Binned Means
estimator, is still quite jagged.
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19.3 Kernel Regression

One deficiency with the estimator (19.1) is that it is a step function in x, even when evaluated
on a fine grid. That is why its plot in Figure 19.1 is jagged. The source of the discontinuity is that
the weights wi(x) are constructed from indicator functions which are themselves discontinuous. If
instead the weights are constructed from a continuous kernel function (see Definition 18.1) then
m̂(x) will also be continuous in x.

A generalization of (19.1) is obtained by replacing the indicator function with a kernel function
from Definition 18.1:

m̂nw(x) =

∑n
i=1 k

(
xi − x
h

)
yi∑n

i=1 k

(
xi − x
h

) . (19.2)

The estimator (19.2) is known as the Nadaraya-Watson estimator, the kernel regression esti-
mator, or the local constant estimator, and was introduced independently by Nadaraya (1964)
and Watson (1964).

The rolling binned means estimator (19.1) is the Nadarya-Watson estimator with the rectangular
kernel. The Nadaraya-Watson estimator (19.2) can be constructed with any standard kernel, and
is typically estimated using the Gaussian or Epanechnikov kernel. In general we recommend the
Gaussian kernel since it produces an estimator m̂nw(x) which possesses derivatives of all orders.

The bandwidth h plays a similar role in kernel regression as in kernel density estimation. Namely,
larger values of h will result in estimates m̂nw(x) which are smoother in x, and smaller values of
h will result in estimates which are more erratic. It might be helpful to consider the two extreme
cases h→ 0 and h→∞. As h→ 0 we can see that m̂nw(xi)→ yi (if the values of xi are unique), so
that m̂nw(x) is simply the scatter of yi on xi. In contrast, as h→∞ then m̂nw(x)→ y, the sample
mean. For intermediate values of h, m̂nw(x) will smooth between these two extreme cases.

The estimator (19.2) using the Gaussian kernel and h = 1/
√

3 is also displayed in Figure 19.1
with the long dashes. As you can see, this estimator appears to be much smoother than that using
the binned estimator, but tracks exactly the same path. The bandwidth h = 1/

√
3 for the Gaussian

kernel is equivalent to the bandwidth h = 1 for the binned estimator because the latter is a kernel
estimator using the rectangular kernel scaled to have a standard deviation of 1/3.

19.4 Local Linear Estimator

The Nadaraya-Watson (NW) estimator is often called a local constant estimator as it locally
(about x) approximates m(x) as a constant function. One way to see this is to observe that m̂(x)
solves the minimization problem

m̂nw(x) = argmin
m

n∑
i=1

k

(
xi − x
h

)
(yi −m)2 .

This is a weighted regression of yi on an intercept only.
This means that the NW estimator is making the local approximation m(xi) ' m(x) for xi ' x,

which means it is making the approximation

yi = m(xi) + ei ' m(x) + ei.

The NW estimator is a local estimator of this approximate model using weighted least squares.
This interpretation suggests that we can construct alternative nonparametric estimators ofm(x)

by alternative local approximations. Many such local approximations are possible. A popular choice
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is the Local Linear (LL) approximation. Instead of the approximation m(xi) ' m(x), LL uses
the linear approximation m(xi) ' m(x) +m′(x) (xi − x). Thus

yi = m(xi) + ei

' m(x) +m′(x) (xi − x) + ei.

The LL estimator then applies weighted least squares similarly to the NW estimator.
One way to represent the LL estimator is as the solution to the minimization problem

{
m̂LL(x), m̂′LL(x)

}
= argmin

α,β

n∑
i=1

k

(
xi − x
h

)
(yi − α− β (xi − x))2 .

Another is to write the approximating model as

yi ' zi(x)′β(x) + ei

where β(x) = (m(x),m′(x))′ and

zi(x) =

(
1

xi − x

)
.

This is a linear regression with regressor vector zi(x) and coeffi cient vector β(x). Applying weighted
least squares with the kernel weights we obtain the LL estimator

β̂LL(x) =

(
n∑
i=1

k

(
xi − x
h

)
zi(x)zi(x)′

)−1 n∑
i=1

k

(
xi − x
h

)
zi(x)yi

=
(
Z ′KZ

)−1
Z ′Ky

where K = diag{k ((x1 − x) /h) , ..., k ((xn − x) /h)}, Z is the stacked zi(x)′, and y is the stacked
yi. This expression generalizes the Nadaraya-Watson estimator as the latter is obtained by setting
zi(x) = 1. Notice that the matrices Z and K depend on x and h.

The local linear estimator was first suggested by Stone (1977) and came into prominence through
the work of Fan (1992, 1993).

To visualize, Figure 19.2 displays the scatter plot of the same 100 observations from Figure
19.1 divided into the same five bins. A linear regression is fit to the observations in each bin.
These five fitted regression lines are displayed by the short dashed lines. This “binned regression
estimator”produces a flexible appromation for the mean function, but has large jumps at the edges
of the partitions. The midpoints of each of these five regression lines are displayed by the solid
squares, and could be viewed as the target estimate for the binned regression estimator. A rolling
version of the binned regresion estimator moves these estimation windows continuously across the
support of x, and is displayed by the solid line. This corresponds to the local linear estimator with
a rectangular kernel and a bandwidth of h = 1/

√
3. By construction, this line passes through the

solid squares. To obtain a smoother estimator, we replace the rectangular with the Gaussian kernel
(using the same bandwidth h = 1/

√
3). We display these estimates with the long dashes. This has

the same shape as the rectangular kernel estimate (rolling binned regression) but is visually much
smoother. We label this the “Local Linear”estimator since it is the standard implementation.

One interesting feature is that as h → ∞, the LL estimator approaches the full-sample linear
least-squares estimator m̂LL(x)→ α̂+ β̂x. That is because as h→∞ all observations receive equal
weight regardless of x. In this sense we can see that the LL estimator is a flexible generalization of
the linear OLS estimator.

Another useful property of the LL estimator is that it simultaneously provides estimates of the
regression function m(x) and its slope m′(x) at x.
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Figure 19.2: Scatter of (yi, xi) and Local Linear Regression

19.5 Local Polynomial Estimator

The NW and LL estimators are both special cases of the local polynomial estimator. The
idea is to approximate the regression function m(x) by a polynomial of fixed degree p, and then
estimate locally using the kernel weights.

The approximating model is a pth order Taylor series approximation

yi = m(xi) + ei

' m(x) +m′(x) (xi − x) + · · ·+m(p)(x)
(xi − x)p

p!
+ ei

= zi(x)′β(x) + ei

where

zi(x) =


1

xi − x
...

(xi − x)p

p!

 β(x) =


m(x)
m′(x)
...

m(p)(x)

 .

The estimator is

β̂LP(x) =

(
n∑
i=1

k

(
xi − x
h

)
zi(x)zi(x)′

)−1( n∑
i=1

k

(
xi − x
h

)
zi(x)yi

)
=
(
Z ′KZ

)−1
Z ′Ky.

Notice that this expression includes the Nadaraya-Watson and local linear estimators as special
cases with p = 0 and p = 1, respectively.
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There is a trade-off between the polynomial order p and the local smoothing bandwidth h. By
increasing p we improve the model approximation and thereby can use a larger bandwidth h. On
the other hand, increasing p increases estimation variance.

19.6 Asymptotic Bias

Since E (yi | xi) = m(xi), the conditional mean of the Nadaraya-Watson estimator is

E (m̂nw(x) |X) =

∑n
i=1 k

(
xi − x
h

)
E (yi | xi)∑n

i=1 k

(
xi − x
h

)

=

∑n
i=1 k

(
xi − x
h

)
m(xi)∑n

i=1 k

(
xi − x
h

) . (19.3)

We can simplify this expression as n→∞.
The following regularity conditions will be maintained through the chapter. Let f(x) denote

the marginal density of xi and let σ2(x) = E
(
e2
i | xi = x

)
denote the conditional variance of ei =

yi −m(xi).

Assumption 19.1

1. h→ 0.

2. nh→∞.

3. m(x), f(x) and σ2(x) are continuous in some neighborhood N of x.

4. f(x) > 0.

These conditions are similar to those used for the asymptotic theory for kernel density estima-
tion. The assumptions that h → 0 and nh → ∞ means that the bandwidth gets small yet the
number of observations in the estimation window about x diverges to infinity. Assumption 19.1.3
are minimal smoothness conditions on the conditional mean m(x), marginal density f(x) and con-
ditional variance σ2(x). Assumption 19.1.4 specifies that the marginal density is non-zero. This
is required since we are estimating the conditional mean at x, so there needs to be a non-trivial
number of observations for xi near x.
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Theorem 19.1 Suppose Assumption 19.1 holds and m′′(x) and f ′(x) are
continuous in N . Then

1. E (m̂nw(x) |X) = m(x) + h2Bnw(x) + op
(
h2
)

+Op

(√
h
n

)
where

Bnw(x) =
1

2
m′′(x) + f(x)−1f ′(x)m′(x).

2. E (m̂LL(x) |X) = m(x) + h2BLL(x) + op
(
h2
)

+Op

(√
h
n

)
where

BLL(x) =
1

2
m′′(x).

The proof for the Nadaraya-Watson estimator is presented in Section 19.25. For a proof for the
local linear estimator see Fan and Gijbels (1996).

In addition to Assumption 19.1, Theorem 19.1 adds additional smoothness conditions on m(x)
and f(x).

We call the terms h2Bnw(x) and h2BLL(x) the asymptotic bias of the estimators.
Theorem 19.1 shows that the asymptotic bias of the Nadaraya-Watson and local linear estima-

tors is proportional to the squared bandwidth h2 (the degree of smoothing) and to the functions
Bnw(x) and BLL(x). The asymptotic bias of the local linear estimator depends on the curvature
(second derivative) of the CEF function m(x) similarly to the asymptotic bias of the kernel density
estimator in Theorem 18.1. When m′′(x) < 0 then m̂LL(x) is downwards biased. When m′′(x) > 0
then m̂LL(x) is upwards biased. Local averaging smooths m(x), inducing bias, and this bias is
increasing in the level of curvature of m(x). This is called smoothing bias.

The asymptotic bias of the Nadaraya-Watson estimator adds a second term which depends on
the first derivatives of m(x) and f(x). This is because the Nadaraya-Watson estimator is a local
average. If the density is upward sloped at x (if f ′(x) > 0) then there are (on average) more
observations to the right of x than to the left, so a local average will be biased if m(x) has a
non-zero slope. In contrast the bias of the local linear estimator does not depend on the local slope
m′ (x) since it locally fits a linear regression. The fact that the bias of the local linear estimator
has fewer terms than the bias of the Nadaraya-Watson estimator (and is invariant to the slope
m′(x)) justifies the claim that the local linear estimator has generically reduced bias relative to
Nadaraya-Watson.

We illustrate asymptotic smoothing bias in Figure 19.3. The solid line is the true conditional
mean for the data displayed in Figures 19.1 and 19.2. The dashed lines are the asymptotic approx-
imations to the expectation m(x) + h2B(x) for bandwidths h = 1/2, h = 1, and h = 3/2. (The
asymptotic biases of the NW and LL estimators are the same since xi has a uniform distribution.)
You can see that there is minimal bias for the smallest bandwidth, but considerable bias for the
largest. The dashed lines are smoothed versions of the conditional mean, attenuating the peaks
and valleys.

Smoothing bias is a natural by-product of non-parametric estimation of non-linear functions.
It can only be reduced by using a small bandwidth. As we see in the following section this will
result in high estimation variance.
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Figure 19.3: Asymptotic Smoothing Bias

19.7 Asymptotic Variance

From (19.3) we deduce that

m̂nw(x)− E (m̂nw(x) |X) =

∑n
i=1 k

(
xi − x
h

)
ei∑n

i=1 k

(
xi − x
h

) .

Since the denominator is a function only of xi, and the numerator is linear in ei, we can calculate
that the finite sample variance of m̂nw(x) is

var (m̂nw(x) |X) =

∑n
i=1 k

(
xi − x
h

)2

σ2(xi)(∑n
i=1 k

(
xi − x
h

))2 . (19.4)

We can simplify this expression as n→∞. Let σ2(x) = E
(
e2
i | xi = x

)
denote the conditional

variance of ei = yi −m(xi).

Theorem 19.2 Under Assumption 19.1,

1. var (m̂nw(x) |X) =
Rkσ

2(x)

f(x)nh
+ o

(
1

nh

)
.

2. var (m̂LL(x) |X) =
Rkσ

2(x)

f(x)nh
+ o

(
1

nh

)
.
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The proof for the Nadaraya-Watson estimator is presented in Section 19.25. For the local linear
estimator see Fan and Gijbels (1996).

We call the leading terms in Theorem 19.2 the asymptotic variance of the estimators. The-
orem 19.2 shows that the asymptotic variance of the two estimators are identical. The asymptotic
variance is proportional to the roughness Rk of the kernel k(u) and to the conditional variance
σ2 (x) of the regression error. It is inversely proportional to the effective number of observations
nh and to the marginal density f(x). This expression reflects the fact that the estimators are local
estimators. The precision of m̂(x) is low for regions where ei has a large conditional variance and/or
xi has a low density (where there are relatively few observations).

19.8 AIMSE

One implication of Theorem 19.8 is that we can define the asymptotic MSE of m̂(x) as the sum
of the squared asymptotic bias and asymptotic variance:

AMSE(x)
def
= h4B(x)2 +

Rkσ
2(x)

nhf(x)

where B(x) = Bnw(x) for the Nadaraya-Watson estimator and B(x) = BLL(x) for the local linear
estimator. This is the asymptotic MSE for m̂(x) for a single point x.

A global measure of fit can be obtained by integrating AMSE(x). It is standard to weight
the AMSE by f(x)w(x) for some integrable weight function w(x). This is called the asymptotic
integrated MSE (AIMSE). Let S be the support of xi (the region where f(x) > 0).

AIMSE =

∫
S

(
h4B(x)2 +

Rkσ
2(x)

nhf(x)

)
f(x)w(x)dx (19.5)

= h4B +
Rk
nh

σ2

where

B =

∫
S
B(x)2f(x)w(x)dx

σ2 =

∫
S
σ2(x)w(x)dx.

The weight function w(x) can be omitted if S is bounded. Otherwise, a common choice is w(x) =
1 (ξ1 ≤ x ≤ ξ2). An integrable weight function is needed when xi has unbounded support to ensure
that σ2 <∞.

The form of the AIMSE is similar to that for kernel density estimation. It has two terms (squared
bias and variance). The first is increasing in the bandwidth h and the second is decreasing in h.
Thus the choice of h affects AIMSE with a trade-off between these two components. Similarly to
density estimation, we can calculate the bandwidth which minimizes the AIMSE. (See Exercise
19.2.) The solution is given in the following theorem.

Theorem 19.3 The bandwidth which minimizes the AIMSE (19.5) is

h0 =

(
Rkσ

2

4B

)1/5

n−1/5. (19.6)

With h ∼ n−1/5 then AIMSE (m̂(x)) = O
(
n−4/5

)
.
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This result characterizes the AIMSE-optimal bandwidth. This bandwidth satisfies the rate
h = cn−1/5 which is the same rate as for kernel density estimation. The optimal constant c
depends on the kernel k, the weighted average squared bias B, and the weighted average variance
σ2. The constant c is different from that for density estimation. A common mis-interpretation is
to set h = n−1/5, which is equivalent to setting c = 1 and is completely arbitrary. Instead, an
empirical bandwidth selection rule should be used in practice. Another common error is to use the
Silverman Rule-of-Thumb h = 0.9σ̂xn

−1/5. This is appropriate for estimation of the density of xi,
but is irrelevant for estimation of the conditional mean of yi given xi.

The AIMSE (19.5) depends on the kernel k(u) only through the constant Rk. Since the Epanech-
nikov kernel has the smallest value of Rk, it is also the kernel which produces the smallest AIMSE
for the NW and LL estimators.

Theorem 19.4 The AIMSE (19.5) is minimized by the Epanechnikov ker-
nel for the Nadaraya-Watson and Local Linear regression estimators.

Despite this result, we recommend the Gaussian kernel for regression estimation for the same
reasons as for density estimation. The Gaussian kernel is nearly as effi cient as the Epanechnikov
and produces smoother estimates. The latter is especially important as we are often interested in
marginal effects.

19.9 Boundary Bias

One strong advantage of the local linear over the Nadaraya-Watson estimator is that the LL
has better performance at the boundary of the support of xi. The NW estimator has excessive
smoothing bias near the boundaries. In many contexts in econometrics the boundaries are of great
interest. In these contexts it is strongly recommended to use the local linear estimator (or any local
polynomial estimator with p ≥ 1).

To understand the problem it may be helpful to example Figure 19.4. This shows a scatter
plot of 100 observations generated as xi ∼ U [0, 10] and yi ∼ N(xi, 1) so that m(x) = x. Suppose
we are interested the conditional mean m(0) at the lower boundary x = 0. If we use a Nadaraya-
Watson estimator it equals a weighted average of the yi observations for small values of |xi|. Since
xi ≥ 0, these are all observations for which m(xi) ≥ m(0), and therefore m̂nw(0) is biased upwards.
Symmetrically, the Nadaraya-Watson estimator at the upper boundary x = 10 is a weighted average
of observations for which m(xi) ≤ m(10) and therefore m̂nw(10) is biased downwards.

In contrast, the local linear estimators m̂LL(0) and m̂LL(10) are unbiased in this example since
m(x) is linear in x. The local linear estimator fits a linear regression line. Since the mean is
correctly specified there is no estimation bias.

The exact bias1 of the NW estimator is shown in Figure 19.4 by the dashed lines. The long
dashes is the mean E (m̂nw(x)) for h = 1 and the short dashes is the mean E (m̂nw(x)) for h = 2.
We can see that the bias is substantial. For h = 2 the bias is visible for all values of x. For the
smaller bandwidth h = 1 the bias is minimal for x in the central range of the support, but is still
quite substantial for x near the boundaries.

To calculate the asymptotic smoothing bias at the boundary we can revisit the proof of Theorem
19.1.1 which calculated the asymptotic bias at interior points. Equation (19.28) calculates the bias
of the numerator of the estimator, expressed as an integral over the marginal density. Evaluated
at a lower boundary point this density is only positive for u ≥ 0, so the integral is over the positive
region [0,∞). This applies as well to equation (19.30) and the equations which follow. In this case

1Calculated by simulation from 10,000 simulation replications.
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Figure 19.4: Boundary Bias

the leading term of this expansion is the first term (19.31) which is proportional to h rather than
h2. Completing the calculations we find the following.

Theorem 19.5 Let the support of xi be S = [x,x]. Suppose Assump-
tion 19.1 holds and m′′(x), σ2(x) and f ′(x) are right continuous at x, left
continuous at x, and f(x+) > 0 and f(x−) > 0. Then

1. E (m̂nw(x) |X) = m(x) + hm′(x)µk + op (h) +Op

(√
h
n

)
E (m̂nw(x) |X) = m(x)− hm′(x)µk + op (h) +Op

(√
h
n

)
where µk = 2

∫∞
0 uk(u)du.

2. E (m̂LL(x) |X) = m(x) + h2m′′(x)/2 + op
(
h2
)

+Op

(√
h
n

)
E (m̂LL(x) |X) = m(x) + h2m′′(x)/2 + op

(
h2
)

+Op

(√
h
n

)

Theorem 19.5 shows that the asymptotic bias of the NW estimator at the boundary is O(h) and
depends on the slope of m(x) at the boundary. This means that when the slope is positive the NW
estimator is upward biased at the lower boundary and downward biased at the upper boundary. In
contrast, the asymptotic bias of the LL estimator at the boundary is the same as at interior points,
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is O(h2) and is invariant to the slope of m(x). Our interpretation of Theorem 19.5 is that the NW
estimator will tend to have much higher bias near boundary points.

Taking Theorems 19.1, 19.2 and 19.5 together, the local linear estimator has superior asymptotic
properties relative to the NW estimator. For a given bandwidth h the two estimators have the same
asymptotic variance, but have different bias properties. At interior points both estimators have
asymptotic biases of order O(h2) but at boundary points the asymptotic bias of the NW estimator
is O(h), which is of higher order. Furthermore, at interior points the bias of the LL estimator is
invariant to the slope of m(x) and its asymptotic bias only depends on the second derivative, while
the bias of the NW estimator depends on both the first and second derivatives. For these reasons,
it is generally recommended to use the local linear estimator rather than the Nadaraya-Watson
estimator.

19.10 Reference Bandwidth

The NW, LL and LP estimators depend on a bandwidth, and without an empirical rule for
selection of h the methods are incomplete. It is useful to have a reference bandwith which mimics
the optimal bandwidth in a simplified setting and provides a baseline for further investigations.

Theorem 19.3 and a little re-writing reveals that the optimal bandwidth takes the form

h0 =

(
Rk
4

)1/5( σ2

nB

)1/5

' 0.58

(
σ2

nB

)1/5

(19.7)

where the approximation holds for all single-peaked kernels by similar calculations2 as in Section
18.10.

As we discussed in Section 18.10, Silverman developed a reference bandwidth h = 0.9σ̂xn
−1/5

for density estimation. A common error is to use this rule for regression estimation. This is a
mistake as the two smoothing problems are quite different, and there is no reason to expect a
bandwith appropriate for density estimation will be a good bandwith for regression estimation.

However, a reference approach can be used to develop a rule-of-thumb for regression estimation.
In particular, Fan and Gijbels (1996, Section 4.2) develop what they call the ROT (rule of thumb)
bandwidth for the local linear estimator. We now describe their derivation.

First, set w(x) = 1 (ξ1 ≤ x ≤ ξ2). Second, form a preliminary estimator of the regression
function m(x) using a qth-order polynomial regression

m(x) = β0 + β1x+ β2x
2 · · ·+ βqx

q.

(In particular they suggest q = 4 but this is not essential to their recommendation.). By least-
squares we obtain the coeffi cient estimates β̂0, ..., β̂q and implied second derivative m̂′′(x) = 2β̂2 +

6β̂3x+ 12β̂4x
2 (for the case q = 4). Third, notice that B can be written as an expectation

B = E
(
B(xi)

2w(xi)
)

= E

((
1

2
m′′(xi)

)2

1 (ξ1 ≤ xi ≤ ξ2)

)
.

A moment estimator is

B̂ =
1

n

n∑
i=1

(
1

2
m̂′′(xi)

)2

1 (ξ1 ≤ xi ≤ ξ2) . (19.8)

Third, assume that the regression error is homoskedastic E
(
e2
i | xi

)
= σ2 so that σ2 = σ2 (ξ2 − ξ1).

Estimate σ2 by the error variance estimate σ̂2 from the preliminary regression. Plugging these into
(19.7) we obtain the reference bandwidth

hrot = 0.58

(
σ̂2 (ξ2 − ξ1)

nB̂

)1/5

. (19.9)

2The constant (Rk/4)1/5 is bounded between 0.58 and 0.59.
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Fan and Gijbels (1996) call this the rule-of-thumb (ROT) bandwidth.
Fan and Gijbels developed similar rules for higher-order odd local polynomial estimators, but

not for the local constant (Nadaraya-Watson) estimator. However, we can derive a ROT for the
NW as well by using a reference model for the marginal density f(x). A particularly convenient
choice is the uniform density, under which f ′(x) = 0 and the optimal bandwidths for NW and LL
coincide. This motivates using (19.9) as a ROT bandwidth for both the LL and NW estimators.

We now comment on the choice of the weight region [ξ1, ξ2]. When xi has bounded support
then [ξ1, ξ2] can be set equal to this support. Otherwise, [ξ1, ξ2] can be set equal to the region of
interest for m̂(x), or the endpoints can be set to equal fixed quantiles (e.g. 0.05 and 0.95) of the
distribution of xi.

To illustrate, take the data shown in Figures 19.1 and 19.2. If we fit 4th order polynomial we
find m̂(x) = .49 + .70x − .28x2 − .033x3 − .0012x4 which implies m̂′′(x) = −.56 − .20x − .014x2.
Setting [ξ1, ξ2] = [0, 10] to equal to the support of xi, we find B̂ = 0.00889. The residuals from this
polynomial regression have variance σ̂2 = 0.0687. Plugging these into (19.9) we find hrot = 0.551,
which is similar to the one used in Figures 19.1 and 19.2.

19.11 Nonparametric Residuals and Prediction Errors

Given any nonparametric regression estimator m̂(x) the fitted regression at x = xi is m̂(xi) and
the fitted residual is

êi = yi − m̂(xi).

As a general rule, but especially when the bandwidth h is small, it is hard to view êi as a good
measure of the fit of the regression. For the NW and LL estimators, as h→ 0 then m̂(xi)→ yi and
therefore êi → 0. This is clear overfitting as the true error ei is not zero. In general, since m̂(xi) is
a local average which includes yi, the fitted value will be necessarily close to yi and the residual êi
small, and the degree of this overfitting increases as h decreases.

A standard solution is to measure the fit of the regression at x = xi by re-estimating the model
excluding the ith observation. Let m̃−i(x) be the leave-one-out nonparametric estimator computed
without observation i. For example, for Nadaraya-Watson regression, this is

ỹi = m̃−i(x) =

∑
j 6=i k

(
xj − x
h

)
yj∑

j 6=i k

(
xj − x
h

) .

Notationally, the “−i”subscript is used to indicate that the ith observation is omitted.
The leave-one-out predicted value for yi at x = xi is

ỹi = m̃−i(xi)

and the leave-one-out prediction error is

ẽi = yi − ỹi. (19.10)

Since ỹi is not a function of yi, there is no tendency for ỹi to overfit for small h. Consequently, ẽi
is a good measure of the fit of the estimated nonparametric regression.

When possible the leave-one-out prediction errors should be used instead of the residuals êi.

19.12 Cross-Validation Bandwidth Selection

The most popular method in applied statistics to select bandwidths is cross-validation. The
general idea is to estimate the model fit based on leave-one-out estimation. Here we describe the
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method as typically applied for regression estimation. The method applies to NW, LL and LP
estimation, as well as other nonparametric estimators as well.

To be explicit about the dependence of the estimator on the bandwidth, let us write an estimator
of m(x) with a given bandwidth h as m̂(x, h).

Ideally, we would like to select h to minimize the integrated mean-squared error (IMSE) of
m̂(x, h) as a estimate of m(x) :

IMSEn(h) =

∫
S
E
(

(m̂(x, h)−m(x))2
)
f(x)w(x)dx

where f(x) is the marginal density of xi and w(x) is an integrable weight function. The weight
w(x) is the same as used in (19.5) and can be omitted when xi has bounded support.

The difference m̂(x, h)−m(x) at x = xi can be estimated by the leave-one-out prediction errors
(19.10)

ẽi(h) = yi − m̃−i(xi, h)

where we are being explicit about the dependence on the bandwidth h. A reasonable estimator of
IMSEn(h) is the weighted average mean squared prediction errors

CV (h) =
1

n

n∑
i=1

ẽi(h)2w(xi). (19.11)

This function of h is known as the cross-validation criterion. Once again, if xi has bounded
support then the weights w(xi) can be omitted and this is typically done in practice.

It turns out that the cross-validation criterion is an unbiased estimator of the IMSE plus a
constant for a sample with n− 1 observations.

Theorem 19.6

E (CV (h)) = σ2 + IMSEn−1(h) (19.12)

where σ2 = E
(
e2
iw(xi)

)
.

The proof of Theorem 19.6 is presented in Section 18.18.
Since σ2 is a constant independent of the bandwidth h, E (CV (h)) is simply a shifted version

of IMSEn−1(h). In particular, the h which minimizes E (CV (h)) and IMSEn−1(h) are identical.
When h is large the bandwidth which minimizes IMSEn−1(h) and IMSEn(h) are nearly identical,
so CV (h) is essentially unbiased as an estimator of IMSEn(h) + σ2. This considerations lead to
the recommendation to select h as the value which minimizes CV (h).

The cross-validation bandwidth ĥ is the value which minimizes CV (h)

hcv = argmin
h≥h`

CV (h) (19.13)

for some h` > 0. The restriction h ≥ h` can be imposed so that CV (h) is not evaluated over
unreasonably small bandwidths.

There is not an explicit solution to the minimization problem (19.13), so it must be solved
numerically. One method is grid search. Create a grid of values for h, e.g. [h1, h2, ..., hJ ], evaluate
CV (hj) for j = 1, ..., J, and set

hcv = argmin
h∈[h1,h2,...,hJ ]

CV (h).
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Evaluation using a coarse grid is typically suffi cient for practical application. Plots of CV (h) against
h are a useful diagnostic tool to verify that the minimum of CV (h) has been obtained. Another
method for obtaining the solution (19.13) is numerical optimization.

It is possible for the solution (19.13) to be unbounded, that is, CV (h) is decreasing for large h
so that hcv =∞. This is okay. It simply means that the regression estimator simplifies to its full-
sample version. For Nadaraya-Watson estimator this is m̂nw(x) = y. For the local linear estimator
this is m̂LL(x) = α̂+ β̂x.

For NW and LL estimation, the criterion (19.11) requires leave-one-out estimation of the con-
ditional mean at each observation xi. This is different from calculation of the estimator m̂(x) as
the latter is typically done at a set of fixed values of x for purposes of display.

To illustrate, Figure 19.5 displays the cross-validation criteria CV (h) for the Nadaraya-Watson
and Local Linear estimators using the data from Figure 19.1, both using the Gaussian kernel. The
CV functions are computed on a grid on [hrot/3, 3hrot] with 200 gridpoints. The CV-minimizing
bandwidths are hnw = 0.830 for the Nadaraya-Watson estimator and hLL = 0.764 for the local
linear estimator. These are slightly higher than the rule of thumb hrot = 0.551 value calculated
earlier. Figure 19.5 shows the minimizing bandwidths by the arrows.
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Figure 19.5: Cross-Validation Criteria, Nadaraya-Watson Regression and Local Linear Regression

The CV criterion can also be used to select between different nonparametric estimators. The
CV-selected estimator is the one with the lowest minimized CV criterion. For example, in Figure
19.5, you can see that the LL estimator has a minimized CV criterion of 0.0699 which is lower than
the minimum 0.0703 obtained by the NW estimator. Since the LL estimator achieves a lower value
of the CV criterion, LL is the CV-selected estimator. The difference, however, is small, indicating
that the two estimators achieve similar IMSE.

Figure 19.6 displays the local linear estimates m̂(x) using the ROT and CV bandwidths along
with the true conditional mean m(x). The estimators track the true function quite well, and the
difference between the bandwidths is relatively minor in this application.
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Figure 19.6: Nonparametric Estimates using data-dependent (CV) bandwidths

19.13 Asymptotic Distribution

We first provide a consistency result for the Nadaraya-Watson estimator.

Theorem 19.7 Under Assumption 19.1, then m̂nw(x)
p−→ m(x) and

m̂LL(x)
p−→ m(x).

A proof for the Nadaraya-Watson estimator is presented in Section 19.25. For the local linear
estimator see Fan and Gijbels (1996).

Theorem 19.7 shows that the estimators are consistent for m(x) under very mild continuity
assumptions. In particular, no smoothness conditions on m(x) are required beyond continuity.

We next present an asymptotic distribution result. The following shows that the kernel regres-
sion estimators are asymptotically normal with a non-parametric rate of convergence, a non-trivial
asymptotic bias, and a non-degenerate asymptotic variance.
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Theorem 19.8 Suppose Assumption 19.1 holds. Assume in addition that
m′′(x) and f ′(x) are continuous in N , that for some r > 2 and x ∈ N ,

E (|ei|r | xi = x) ≤ σ <∞, (19.14)

and
nh5 = O(1). (19.15)

Then

√
nh
(
m̂nw(x)−m(x)− h2Bnw(x)

) d−→ N

(
0,
Rkσ

2(x)

f(x)

)
. (19.16)

Similarly,

√
nh
(
m̂LL(x)−m(x)− h2BLL(x)

) d−→ N

(
0,
Rkσ

2(x)

f(x)

)
.

A proof for the Nadaraya-Watson estimator appears in Section 18.18. For the local linear
estimator, see Fan and Gijbels (1996).

Relative to Theorem 19.7, Theorem 19.8 requires stronger smoothness conditions on the condi-
tional mean and marginal density. There are also two technical regularity conditions. The first is
a conditional moment bound (19.14) (which is used to verify the Lindeberg condition for the CLT)
and the second is the bandwidth bound nh5 = O(1). The latter means that the bandwidth must
decline to zero at least at the rate n−1/5, and is used3 to ensure that higher-order bias terms do
not enter the asymptotic distribution (19.16).

There are several interesting features about the asymptotic distribution which are noticeably
different than for parametric estimators. First, the estimators converge at the rate

√
nh not

√
n.

Since h → 0,
√
nh diverges slower than

√
n, thus the nonparametric estimators converge more

slowly than a parametric estimator. Second, the asymptotic distribution contains a non-negligible
bias term h2B(x). Third, the distribution (19.16) is identical in form to that for the kernel density
estimator (Theorem 18.7).

The fact that the estimators converge at the rate
√
nh has led to the interpretation of nh as the

“effective sample size”. This is because the number of observations being used to construct m̂(x)
is proportional to nh, not n as for a parametric estimator.

It is helpful to understand that the nonparametric estimator has a reduced convergence rate
relative to parametric asymptotic theory because the object being estimated —m(x) — is non-
parametric. This is harder than estimating a finite dimensional parameter, and thus comes at a
cost.

Unlike parametric estimation, the asymptotic distribution of the nonparametric estimator in-
cludes a term representing the bias of the estimator. The asymptotic distribution (19.16) shows
the form of this bias. It is proportional to the squared bandwidth h2 (the degree of smoothing)
and to the function Bnw(x) or BLL(x) which depends on the slope and curvature of the CEF m(x).
Interestingly, when m(x) is constant then Bnw(x) = BLL(x) = 0 and the kernel estimator has no
asymptotic bias. The bias is essentially increasing in the curvature of the CEF function m(x). This
is because the local averaging smooths m(x), and the smoothing induces more bias when m(x) is
curved.

The asymptotic variance of m̂(x) is inversely proportional to the marginal density f(x). This
means that m̂(x) has relatively low precision for regions where xi has a low density. This makes

3This could be weakened if stronger smoothness conditions are assumed. For example, if m(4)(x) and f (3)(x) are
continuous then (19.15) can be weakened to nh9 = O(1), which means that the bandwidth must decline to zero at
least at the rate n−1/9.
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sense since these are regions where there are relatively few observations. An implication is that the
nonparametric estimator m̂(x) will be relatively inaccurate in the tails of the distribution of xi.

19.14 Undersmoothing

In Section 18.16 we showed that the bias term in the asymptotic distribution of the kernel
density estimator can be eliminated if the bandwidth is selected to converge to zero faster than the
optimal rate n−1/5, thus h = o

(
n−1/5

)
. The same holds for kernel regression. This is called an

under-smoothing bandwidth.
Similarly, with a smaller bandwidth the regression estimator has reduced bias and increased

variance. Consequently the bias is asymptotically negligible if the bandwidth converges to zero
faster than n−1/5.

Theorem 19.9 Under the conditions of Theorem 19.8, and in addition
nh5 = o (1) ,

√
nh (m̂nw(x)−m(x))

d−→ N

(
0,
Rkσ

2(x)

f(x)

)
√
nh (m̂LL(x)−m(x))

d−→ N

(
0,
Rkσ

2(x)

f(x)

)
.

This result has the same advantages and disadvantages as discussed in Section 18.16. In partic-
ular, undersmoothing results in a less effi cient estimator. While a smaller bandwidth reduces bias
it does not actually eliminate the bias in any actual appliction. In this sense the undersmoothing
distribution theory in Theorem 19.9 is misleading.

19.15 Conditional Variance Estimation

The conditional variance is

σ2(x) = var (yi | xi = x) = E
(
e2
i | xi = x

)
.

There are a number of contexts where it is desirable to estimate σ2(x) including prediction intervals
and confidence intervals for the estimated mean function. In general the conditional variance
function is nonparametric as economic models rarely specify the form of σ2(x). Thus estimation of
σ2(x) is typically done nonparametrically.

Since σ2(x) is the CEF of e2
i given xi, it can be estimated by a nonparametric regression of e

2
i

on xi. For example, the ideal NW estimator (if ei were observed) is

σ2(x) =

∑n
i=1 k

(
xi − x
h

)
e2
i∑n

i=1 k

(
xi − x
h

) .

Since the errors ei are not observed, we need to replace them with an estimator. A simple choice
are the residuals êi = yi − m̂(xi). A better choice are the leave-one-out prediction errors ẽi =



CHAPTER 19. NONPARAMETRIC REGRESSION 698

yi − m̂−i(xi). The latter are recommended for variance estimation as they are not subject to
overfitting. With this substitution the NW estimator of the conditional variance is

σ̂2(x) =

∑n
i=1 k

(
xi − x
h

)
ẽ2
i∑n

i=1 k

(
xi − x
h

) . (19.17)

This estimator depends on a bandwidth h, but there is no reason for this bandwidth to be the
same as that used to estimate the conditional mean. The ROT or cross-validation using ẽ2

i as the
dependent variable can be used to select the bandwidth for estimation of σ̂2(x) separately from
cross-validation for estimation of m̂(x).

There is one subtle difference between CEF and conditional variance estimation. The conditional
variance is inherently non-negative σ2(x) ≥ 0 and it is desirable for the estimator to satisfy this
property. Interestingly, the NW estimator (19.17) is necessarily non-negative, since it is a smoothed
average of the non-negative squared residuals, but the LL estimator is not guaranteed to be non-
negative for all x. Furthermore, the NW estimator has as a special case the homoskedastic estimator
σ̂2(x) = σ̂2 (full sample variance) which may be a relevant selection. For these reasons, the NW
estimator may be preferred for conditional variance estimation.

Fan and Yao (1998) derive the asymptotic distribution of the estimator (19.17). They obtain
the surprising result that the asymptotic distribution of the two-step estimator σ̂2(x) is identical
to that of the one-step idealized estimator σ2(x).

19.16 Variance Estimation and Standard Errors

It is relatively straightforward to calculate the exact conditional variance of the Nadaraya-
Watson, local linear, or local polynomial estimator. They can be written as

β̂(x) =
(
Z ′KZ

)−1 (
Z ′Ky

)
=
(
Z ′KZ

)−1 (
Z ′Km

)
+
(
Z ′KZ

)−1 (
Z ′Ke

)
wherem is the n×1 vector of means m(xi). The first component is a function only of the regressors
and the second is linear in the error e. Thus conditionally on the regressors X,

V
β̂

(x) = var
(
β̂ |X

)
=
(
Z ′KZ

)−1 (
Z ′KDKZ

) (
Z ′KZ

)−1

where D = diag
(
σ2(x1), ...σ2(xn)

)
.

A White-type estimator can be formed by replacing σ2(xi) with the squared residuals ê2
i or

prediction errors ẽ2
i

V̂
β̂

(x) =
(
Z ′KZ

)−1

(
n∑
i=1

k

(
xi − x
h

)2

zi(x)zi(x)′ẽ2
i

)(
Z ′KZ

)−1
.

A second estimator is obtained by replacing σ2(xi) with an estimator such as (19.17)

V̂
β̂

(x) =
(
Z ′KZ

)−1

(
n∑
i=1

k

(
xi − x
h

)2

zi(x)zi(x)′σ̂2(xi)

)(
Z ′KZ

)−1
.

A third replaces σ̂2(xi) with the estimator σ̂2(x)

V̂
β̂

(x) =
(
Z ′KZ

)−1

(
n∑
i=1

k

(
xi − x
h

)2

zi(x)zi(x)′

)(
Z ′KZ

)−1
σ̂2(x)

=
(
Z ′KZ

)−1 (
Z ′K2Z

) (
Z ′KZ

)−1
σ̂2(x). (19.18)
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A fourth uses the asymptotic formula

V̂m̂(x) =
Rkσ̂

2(x)

nhf̂(x)

with σ̂2(x) from (19.17) and f̂(x) from (18.2).
For local linear and local polynomial estimators the estimator V̂m̂(x) is the first diagonal element

of the matrix V̂
β̂

(x). For any of the variance estimators a standard error for m̂(x) is the square

root of V̂m̂(x).

19.17 Confidence Bands

For either density or conditional mean estimation we we can construct asymptotic confidence
intervals. For the density function f(x) an asymptotic 95% confidence interval is

f̂(x)± 1.96
√
V̂
f̂
(x). (19.19)

For the mean function m(x) an asymptotic 95% confidence interval is

m̂(x)± 1.96
√
V̂m̂(x). (19.20)

These confidence intervals can be plotted along with f̂(x) or m̂(x) to assess precision.
It should be noted, however, that these confidence intervals have two unusual properties. First,

they are pointwise in x, meaning that they are designed to have coverage probability at each x, not
uniformly across x. Thus they are typically called pointwise confidence intervals.

Second, because they do not account for the bias, they are not asymptotically valid confidence
intervals for f(x) orm(x). Rather, they are asymptotically valid confidence intervals for the pseudo-
true (smoothed) value, e.g. f(x)+ 1

2f
′′(x)h2. One way of thinking about this is that the confidence

intervals account for the variance of the estimator but not its bias. A technical trick which solves
this problem is to assume an undersmoothing bandwidth. In this case the above confidence intervals
are technically asymptotically valid. This is only a technical trick as it does not really eliminate
the bias only assumes it away. The plain fact is that once we honestly acknowledge that the true
CEF is nonparametric, it then follows that any finite sample estimate will have finite sample bias,
and this bias will be inherently unknown and thus diffi cult to incorporate into confidence intervals.

Despite these unusual properties we can still use the intervals (19.19) and (19.20) to display
uncertainty and as a check on the precision of the estimates.

19.18 The Local Nature of Kernel Regression

The kernel regression estimators (Nadaraya-Watson, Local Linear, and Local Polynomial) are
all essentially local estimators in that given h the estimator m̂(x) is a function only of the sub-
sample for which xi is close to x. The other observations do not directly affect the estimator.
This is reflected in the distribution theory as well. Theorem 19.7 shows that m̂(x) is consistent
for m(x) if the latter is continuous at x. Theorem 19.8 shows that the asymptotic distribution of
m̂(x) depends only on the functions m(x), f(x) and σ2(x) at the point x. The distribution does
not depend on the global behavior of m(x).

Global features do affect the estimator m̂(x), however, through the bandwidth h. The band-
width selection methods described here are global in nature as they attempt to minimize AIMSE.
Local bandwidths (designed to minimize the AMSE at a single point x) can alternatively be em-
ployed, but these are less commonly used, in part because such bandwidth estimators have high
imprecision. Picking local bandwidths adds extra noise.

Furthermore, selected bandwidths may be meaningfully large, so that the estimation window
may be a large portion of the sample. In this case estimation is neither local nor fully global.
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Figure 19.7: Cross-Validation Criteria for Wage Regression

19.19 Application to Wage Regression

We illustrate the methods with an application to the the CPS data set. We are interested in
the nonparametric regression of log(wage) on experience. To illustrate we take the subsample of
black men with 12 years of education (high school graduates). This sample has 762 observations.

We first need to decide on the region of interest (range of experience) for which we will calculate
the regression estimator. We select the range [0, 40] since most observations (90%) have experience
levels below 40 years.

To avoid boundary bias, we use the local linear estimator.
We next calculate the Fan-Ghybels rule-of-thumb bandwidth (19.9) and find hrot = 5.14. We

then calculate the cross-validation criterion, using the rule-of-thumb as a baseline. The CV criterion
is displayed in Figure 19.7. The minimizer is hcv = 4.32 which is somewhat smaller than the ROT
bandwidth.

We calculate the local linear estimator using both bandwidths and display the estimates in
Figure 19.8. The regression functions are increasing for experience levels up to 20 years, and
then become flat. While the functions are roughly concave, they are noticably different than a
traditional quadratic specification. Comparing the estimates, the smaller CV-selected bandwidth
produces a regression estimate which is a bit too wavy, while the ROT bandwidth produces a
regression estimate which is much smoother, yet captures the same essential features. Based on
this inspection we select the estimate based on the ROT bandwidth (the solid line in Figure 19.8).

Our next step is to calculate the conditional variance function. We calculate the ROT bandwidth
for a regression using the squared leave-one-out residuals (prediction errors), and find hrot = 6.77
which is larger than the bandwidth used for conditional mean estimation. We next calculate the
cross-validation functions for conditional variance estimation (regression of squared prediction errors
on experience) using both NW and LL regression. The CV functions are displayed in Figure 19.9.
The CV plots are quite interesting. For the LL estimator the CV function has a local minimum
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Figure 19.8: Local Linear Regressions of log(wage) on experience

around h = 5 but the global minimizer is unbounded. The CV function for the NW estimator
is globally decreasing with an unbounded minimizer. The NW also achieves a considerably lower
CV value than the LL estimator. This means that the CV-selected variance estimator is the NW
estimator with h =∞, which is the simple full-sample estimator σ̂2 calculated with the prediction
errors.

We next compute standard errors for the regression function estimates, using formula (19.18)
with the estimator σ̂2 just described. In Figure 19.10 we display the estimated regression (the same
as Figure 19.8 using the ROT bandwidth), along with 95% asymptotic confidence bands computed
as in (19.20). By displaying the confidence bands we can see that there is considerable imprecision
in the estimator for low experience levels. We can still see that the estimates and confidence bands
show that the experience profile is increasing up to about 20 years of experience, and then flattens
above 20 years. The estimates imply that for this population (black men who are high school
graduates) the average wage rises for the first 20 years of work experience (from 18 to 38 years of
age) and then flattens, with no further increases in average wages for the next 20 years of work
experience (from 38 to 58 years of age).

19.20 Clustered Observations

Clustered observations take the form (yig, xig) for individuals i = 1, ..., ng in cluster g = 1, ..., G.
The model is

yig = m (xig) + eig

E (eig |Xg) = 0.

where Xg is the stacked xig. The assumption is that the clusters are mutually independent.
Dependence within each cluster is unstructured.
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Figure 19.9: Cross-Validation Functions for Conditional Variance Estimators

Write

zig(x) =

(
1

xig − x

)
.

Stack yig, eig and zig(x) into cluster-level variables yg, eg andZg(x). LetKg(x) = diag

{
k

(
xig − x
h

)}
.

The local linear estimator can be written as

β̂(x) =

 G∑
g=1

ng∑
i=1

k

(
xig − x
h

)
zig(x)zig(x)′

−1 G∑
g=1

ng∑
i=1

k

(
xig − x
h

)
zig(x)yig


=

 G∑
g=1

Zg(x)′Kg(x)Zg(x)

−1 G∑
g=1

Zg(x)′Kg(x)yg

 . (19.21)

The local linear estimator m̂(x) = β̂1(x) is the intercept in (19.21).
The natural method to obtain prediction errors is by delete-cluster regression. The delete-cluster

estimator of β is

β̃(−g)(x) =

∑
j 6=g

Zj(x)′Kj(x)Zj(x)

−1∑
j 6=g

Zj(x)′Kj(x)yj

 . (19.22)

The delete-cluster estimator of m (x) is the intercept m̃1(x) = β̃1(−g)(x) from (19.22). The delete-
cluster prediction error for observation ig is

ẽig = yig − β̃1(−g)(xig). (19.23)
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Figure 19.10: Regression log(wage) on experience, with 95% Pointwise Confidence Bands

Let ẽg be the stacked ẽig for cluster g.
The variance of (19.21), conditional on the regressors X, is

V
β̂

(x) =

 G∑
g=1

Zg(x)′Kg(x)Zg(x)

−1 G∑
g=1

Zg(x)′Kg(x)Sg(x)Kg(x)Zg(x)

 G∑
g=1

Zg(x)′Kg(x)Zg(x)

−1

(19.24)
where

Sg = E
(
ege
′
g |Xg

)
.

The covariance matrix (19.24) can be estimated by replacing Sg with an estimator of ege′g. Based
on analogy with regression estimation we suggest the delete-cluster prediction errors ẽg as they are
not subject to over-fitting. This covariance matrix estimator using this choice is

V̂
β̂

(x) =

 G∑
g=1

Zg(x)′Kg(x)Zg(x)

−1 G∑
g=1

Zg(x)Kg(x)ẽgẽ
′
gKg(x)Zg(x)

 G∑
g=1

Zg(x)Kg(x)Zg(x)

−1

.

(19.25)
The standard error for m̂(x) is the square root of the first diagonal element of V̂

β̂
(x).

There is no current theory on how to select the bandwidth h for nonparametric regression
using clustered observations. The Fan-Ghybels ROT bandwidth hrot is designed for independent
observations, so is likely to be a crude choice in the case of clustered observations. Standard cross-
validation has similar limitations. A practical alternative is to select the bandwidth h to minimize
a delete-cluster cross-valiation criterion. While there is no formal theory to justify this choice, it
seems like a reasonable option. The delete-cluster CV criterion is

CV (h) =
1

n

G∑
g=1

ng∑
i=1

ẽ2
ig
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where ẽig are the delete-cluster prediction errors (19.23). The delete-cluster CV bandwidth is the
value which minimizes this function:

hcv = argmin
h≥h`

CV (h).

As for the case of conventional cross-validation, it may be valuable to plot CV (h) against h to
verify that the minimum has been obtained and to assess sensitivity.
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Figure 19.11: Cross-Validation Functions

19.21 Application to Testscores

We illustrate kernel regression with clustered observations by using the Duflo, Dupas and Kre-
mer (2011) investigation of the effect of student tracking on testscores. Recall that the core question
was effect of testscore on the dummy variable tracking. A set of controls were included, including a
continuous variable percentile which recorded the student’s initial test score (as a percentile) used
for classroom assignment. We investigate the authors’specification of this control using local linear
regression.

We took the subsample of 1487 girls who experienced tracking, and estimated the regression of
testscores on percentile. For this application we used unstandardized4 test scores which range from
0 to about 40. We used local linear regression with a Gaussian kernel.

First consider bandwidth selection. The Fan-Ghybels ROT and conventional cross-validation
bandwidths are hrot = 6.7 and hcv = 12.3. We then calculated the clustered cross-validation
criterion, which has minimizer hcv = 6.2. To understand the differences, we plot the standard
and clustered cross-validation functions in Figure 19.11. In order to plot on the same graph we

4 In Section 4.21, following Duflo, Dupas and Kremer (2011) the dependent variable was standardized testscores
(normalized to have mean zero and variance one).
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normalize each by subtracting their minimized value (so each is minimized at zero). What we can
see from Figure 19.11 is that while the conventional CV criterion is sharply minimized at h = 12.3,
the clustered CV criterion is essentially flat between 5 and 11. This means that the clustered CV
criterion has diffi culty discriminating between these bandwidth choices
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Figure 19.12: TestScore as a Function of Initial Percentile

To compare the estimated regression functions, in Figure 19.12 we plot the estimated regres-
sion functions which use the bandwidths selected by conventional and clustered cross-validation.
Inspecting the plots, the estimator using the conventional CV bandwidth is smoother than the
estimator using the smaller clustered CV bandwidth. The most noticeable differences arises at
the right end of the plot, which shows the expected test score for the students who had the very
best preliminary test scores. The estimator using the clustered CV bandwidth shows a meaningful
upturn for students with initial testscore percentile above 90%. Based on this evidence we select
the local linear estimator m̂LL(x) using the clustered cross-validation bandwidth hcv = 6.2.

Using this bandwidth we estimate the delete-cluster prediction errors ẽg and use these to calcu-
late the standard errors for the local linear estimator m̂LL(x) using formula (19.25). These standard
errors are roughly twice as large as those calculated using the non-clustered formula. We use the
standard errors to calculate 95% asymptotic pointwise confidence bands as in (19.20).

Figure 19.13 shows our estimated regression function and pointwise 95% confidence bands.
Also plotted for comparison is an estimated linear regression line. The local linear estimator is very
similar to the global linear regression estimator for initial percentiles below 80%. But for initial
percentiles above 80% the two lines diverge. The confidence bands suggest that these differences
are statistically meaningful. Students with initial testscores at the top of the initial distribution
have higher final testscores on average than predicted by a linear specification.
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Figure 19.13: TestScore as a Function of Initial Percentile with Confidence Bands

19.22 Multiple Regressors

Our analysis has focus on the case of real-valued xi for simplicity of exposition, but the methods
of kernel regression extend easily to the multiple regressor case, at the cost of a reduced rate of
convergence. In this section we consider the case of estimation of the conditional expectation
function

E (yi | xi = x) = m(x)

when

xi =

 x1i
...
xdi


is a d-vector.

For any evaluation point x and observation i, define the kernel weights

ki(x) = k

(
x1i − x1

h1

)
k

(
x2i − x2

h2

)
· · · k

(
xdi − xd
hd

)
,

a d-fold product kernel. The kernel weights ki(x) assess if the regressor vector xi is close to the
evaluation point x in the Euclidean space Rd.

These weights depend on a set of d bandwidths, hj , one for each regressor. We can group them
together into a single vector for notational convenience:

h =

 h1
...
hd

 .
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Given these weights, the Nadaraya-Watson estimator takes the form

m̂(x) =

∑n
i=1 ki(x)yi∑n
i=1 ki(x)

.

For the local-linear estimator, define

zi(x) =

(
1

xi − x

)
and then the local-linear estimator can be written as m̂(x) = α̂(x) where(

α̂(x)

β̂(x)

)
=

(
n∑
i=1

ki(x)zi(x)zi(x)′

)−1 n∑
i=1

ki(x)zi(x)yi

=
(
Z ′KZ

)−1
Z ′Ky

where K = diag{k1(x), ..., kn(x)}.
In multiple regressor kernel regression, cross-validation remains a recommended method for

bandwidth selection. The leave-one-out residuals ẽi and cross-validation criterion CV (h) are defined
identically as in the single regressor case. The only difference is that now the CV criterion is a
function over the d-dimensional bandwidth h. This means that numerical minimization needs to
be done more effi ciently than by a simple grid search.

The asymptotic distribution of the estimators in the multiple regressor case is an extension
of the single regressor case. Let f(x) denote the marginal density of xi, σ2(x) = E

(
e2
i | xi = x

)
denote the conditional variance of ei = yi −m(xi), and set |h| = h1h2 · · ·hd.

Proposition 19.1 Let m̂(x) denote either the Nadarya-Watson or Local
Linear estimator of m(x). As n→∞ and hj → 0 such that n |h| → ∞,

√
n |h|

m̂(x)−m(x)−
d∑
j=1

h2
jBj(x)

 d−→ N

(
0,
Rdkσ

2(x)

f(x)

)
.

For the Nadaraya-Watson estimator

Bj(x) =
1

2

∂2

∂x2
j

m(x) + f(x)−1 ∂

∂xj
f(x)

∂

∂xj
m(x)

and for the Local Linear estimator

Bj(x) =
1

2

∂2

∂x2
j

m(x).

We do not provide regularity condition or a formal proof of the result but instead refer interested
readers to Fan and Gijbels (1996).

19.23 Curse of Dimensionality

The term “curse of dimensionality” is used to describe the phenomenon that the convergence
rate of nonparametric estimators slows as the dimension increases.
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For the multiple regressor case we define the AIMSE as the integral of the squared bias plus
variance, integrating with respect to f(x)w(x) where w(x) is an integrable weight function. For
notational simplicity consider the case that there is a single common bandwidth h. In this case the
AIMSE of m̂(x) equals

AIMSE = h4

∫
S

 d∑
j=1

Bj(x)

2

f(x)w(x)dx+
Rdk
nhd

∫
S
σ2(x)w(x)dx.

We see that the squared bias is of order h4, the same as in the single regressor case. The variance,
however, is of larger order (nhd)−1.

If pick the bandwith to minimizing the AIMSE, we find that it takes the form h = cn−1/(4+d) for
some constant c. This generalizes the formula for the one-dimensional case. The rate n−1/(4+d) is
slower than the n−1/5 rate. This effectively means that with multiple regressors a larger bandwidth
is required.

When the bandwidth is set as h = cn−1/(4+d) then the AIMSE is of order O
(
n−4/(4+d)

)
. This

is a slower rate of convergence than in the one-dimensional case.

Theorem 19.10 In the multiple regression problem, the bandwidth which
minimizes the AIMSE is of order h ∼ n−1/(4+d). With h ∼ n−1/(4+d) then
AIMSE = O

(
n−4/(4+d)

)
.

See Exercise 19.6.
We see that the optimal AIMSE rate O

(
n−4/(4+d)

)
depends on the dimension d. As d increases

this rate slows. Thus the precision of kernel regression estimators worsens with multiple regressors.
The reason is the estimator m̂(x) is a local average of the yi for observations such that xi is close
to x, and when there are multiple regressors the number of such observations is inherently smaller.

This phenomenon — that the rate of convergence of nonparametric estimation decreases as
the dimension increases — is called the curse of dimensionality. It is common across most
nonparametric estimation problems and is not specific to kernel regression.

19.24 Computation

Stata has two commands which implement kernel regression: lpoly and npregress. npregress
is only available in Stata 15 or higher. lpoly implements local polynomial estimation for any p,
including Nadaraya-Watson (the default) and local linear estimation, and selects the bandwidth
using the Fan-Gijbels ROT method. It uses the Epanechnikov kernel by default, but the Gaussian
can be selected as an option. The lpoly command automatically displays the estimated mean
function along with 95% confidence bands with standard errors computed using (19.18).

The Stata command npregress estimates local linear (the default) regression or Nadaraya-
Watson regression. By default it selects the bandwidth by cross-validation. It uses the Epanech-
nikov kernel by default, but the Gaussian can be selected as an option. Confidence intervals may
be calculated using the percentile bootstrap. A display of the estimated mean and 95% confi-
dence bands at specific points (computed using the percentile bootstrap) may be obtained with the
postestimation command margins.

There are several R packages which implement kernel regression. One flexible choice is npreg
available in the np package. Its default method is Nadaraya-Watson estimation using a Gaussian
kernel with bandwidth selected by cross-validation. There are options which allow local linear and
local polynomial estimation, alternative kernels, and alternative bandwidth selection methods.
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19.25 Technical Proofs*

For all technical proofs we make the simplifying assumption that the kernel function k(u) has
bounded support, thus k(u) = 0 for |u| > a. The results extend to the Gaussian kernel but with
addition technical arguments.

Proof of Theorem 19.1.1. Equation (19.3) shows that

E (m̂nw(x) |X) = m(x) +
b̂(x)

f̂(x)
(19.26)

where f̂(x) is the kernel density estimator (18.2) of f(x) and

b̂(x) =
1

nh

n∑
i=1

k

(
xi − x
h

)
(m(xi)−m(x)) . (19.27)

Theorem 18.6 established that f̂(x)
p−→ f(x). The proof is completed by showing that b̂(x) =

h2f(x)Bnw(x) + op

(
h2 + 1/

√
nh
)
.

Since b̂(x) is a sample average it has the expectation

E
(
b̂(x)

)
=

1

h
E
(
k

(
xi − x
h

)
(m(xi)−m(x))

)
=

∫ ∞
−∞

1

h
k

(
v − x
h

)
(m(v)−m(x)) f(v)dv

=

∫ ∞
−∞

k (u) (m(x+ hu)−m(x)) f(x+ hu)du. (19.28)

The second equality writes the expectation as an integral with respect to the density of xi. The
third uses the change-of-variables v = x+ hu. We next use the two Taylor series expansions

m(x+ hu)−m(x) = m′(x)hu+
1

2
m′′(x)h2u2 + o(h2) (19.29)

f(x+ hu) = f(x) + f ′(x)hu+ o(h).

Inserted into (19.28) we find that (19.28) equals∫ ∞
−∞

k (u)

(
m′(x)hu+

1

2
m′′(x)h2u2 + o(h2)

)(
f(x) + f ′(x)hu+ o(h)

)
du (19.30)

= h

(∫ ∞
−∞

uk (u) du

)
m′(x) (f(x) + o(h)) (19.31)

+ h2

(∫ ∞
−∞

u2k (u) du

)(
1

2
m′′(x)f(x) +m′(x)f ′(x)

)
+ h3

(∫ ∞
−∞

u3k (u) du

)
1

2
m′′(x)f ′(x) + o(h2)

= h2

(
1

2
m′′(x)f(x) +m′(x)f ′(x)

)
+ o(h2)

= h2Bnw(x)f(x) + o(h2).

The second equality uses the fact that the kernel k integrates to one, its odd moments are zero,

and the kernel variance is one. We have shown that E
(
b̂(x)

)
= Bnw(x)f(x)h2 + o(h2).
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Now consider the variance of b̂(x). Since b̂(x) is a sample average of independent components
and the variance is smaller than the second moment

var
(
b̂(x)

)
=

1

nh2
var

(
k

(
xi − x
h

)
(m(xi)−m(x))

)
≤ 1

nh2
E

(
k

(
xi − x
h

)2

(m(xi)−m(x))2

)

=
1

nh

∫ ∞
−∞

k (u)2 (m(x+ hu)−m(x))2 f(x+ hu)du (19.32)

=
1

nh

∫ ∞
−∞

u2k (u)2 du
(
m′(x)

)2
f(x)

(
h2 + o(1)

)
≤ h

n
k
(
m′(x)

)2
f(x) + o

(
h

n

)
.

The second equality writes the expectation as an integral. The third uses (19.29). The final in-
equality uses k (u) ≤ k from Definition 18.1.1 and the fact that the kernel variance is one. This
shows that

var
(
b̂(x)

)
≤ O

(
h

n

)
.

Together we conclude that

b̂(x) = h2f(x)Bnw(x) + o
(
h2
)

+Op

(√
h

n

)

and
b̂(x)

f̂(x)
= h2Bnw(x) + op

(
h2
)

+Op

(√
h

n

)
(19.33)

Together with (19.26) this implies Theorem 19.1.1. �

Proof of Theorem 19.2.1. Equation (19.4) states that

nh var (m̂nw(x) |X) =
v̂(x)

f̂(x)2

where

v̂(x) =
1

nh

n∑
i=1

k

(
xi − x
h

)2

σ2(xi)

and f̂(x) is the kernel density estimator (18.2) of the marginal density f(x). Theorem 18.6 estab-
lished that f̂(x)

p−→ f(x). The proof is completed by showing that v̂(x)
p−→ Rkσ

2(x)f(x).
First, writing the expectation as an integral with respect to the marginal density of xi, making

the change-of-variables v = x+ hu, and appealing to the continuity of σ2(x) and f(x) at x,

E (v̂(x)) =

∫ ∞
−∞

1

h
k

(
v − x
h

)2

σ2(v)f(v)dv

=

∫ ∞
−∞

k (u)2 σ2(x+ hu)f(x+ hu)du

=

∫ ∞
−∞

k (u)2 σ2(x)f(x) + o(1)

= Rkσ
2(x)f(x).
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Second, since v̂(x) is an average of independent random variables and the variance is smaller
than the second moment

nh var (v̂(x)) =
1

h
var

(
k

(
xi − x
h

)2

σ2(xi)

)

≤ 1

h

∫ ∞
−∞

k

(
v − x
h

)4

σ4(v)f(v)dv

=

∫ ∞
−∞

k (u)4 σ4(x+ hu)f(x+ hu)du

≤ k2
Rkσ

4(x)f(x) + o(1)

so var (v̂(x))→ 0.
We deduce from Markov’s inequality that v̂(x)

p−→ Rkσ
2(x)f(x), completing the proof. �

Proof of Theorem 19.6. Observe that m(xi) − m̃−i(xi, h) is a function only of (x1, ..., xn) and
(e1, ..., en) excluding ei, and is thus uncorrelated with ei. Since ẽi(h) = m(xi) − m̃−i(xi, h) + ei,
then

E (CV (h)) = E
(
ẽi(h)2w(xi)

)
= E

(
e2
iw(xi)

)
+ E

(
(m̃−i(xi, h)−m(xi))

2w(xi)
)

+ 2E ((m̃−i(xi, h)−m(xi))w(xi)ei)

= σ2 + E
(

(m̃−i(xi, h)−m(xi))
2w(xi)

)
. (19.34)

The second term is an expectation over the random variables xi and m̃−i(x, h), which are indepen-
dent as the second is not a function of the ith observation. Thus taking the conditional expectation
given the sample excluding the ith observation, this is the expectation over xi only, which is the
integral with respect to its density

E−i
(

(m̃−i(xi, h)−m(xi))
2w(xi)

)
=

∫
(m̃−i(x, h)−m(x))2 f(x)w(x)dx.

Taking the unconditional expecation yields

E
(

(m̃−i(xi, h)−m(xi))
2w(xi)

)
= E

∫
(m̃−i(x, h)−m(x))2 f(x)w(x)dx

= IMSEn−1(h)

where this is the IMSE of a sample of size n − 1 as the estimator m̃−i uses n − 1 observations.
Combined with (19.34) we obtain (19.12), as desired. �

Proof of Theorem 19.7. We can write the Nadaraya-Watson estimator as

m̂nw(x) = m(x) +
b̂(x)

f̂(x)
+
ĝ(x)

f̂(x)
(19.35)

where f̂(x) is the kernel density estimator (18.2), b̂(x) is defined in (19.27), and

ĝ(x) =
1

nh

n∑
i=1

k

(
xi − x
h

)
ei. (19.36)

Since f̂(x)
p−→ f(x) > 0 by Theorem 18.6, the proof is completed by showing b̂(x)

p−→ 0 and
ĝ(x)

p−→ 0.
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Take b̂(x). From (19.28) and the continuity of m(x) and f(x)

E
(
b̂(x)

)
=

∫ ∞
−∞

k (u) (m(x+ hu)−m(x)) f(x+ hu)du = o(1)

as h→∞. From (19.32),

nh var
(
b̂(x)

)
≤
∫ ∞
−∞

k (u)2 (m(x+ hu)−m(x))2 f(x+ hu)du = o(1)

as h→∞. Thus var
(
b̂(x)

)
−→ 0. By Markov’s inequality we conclude b̂(x)

p−→ 0.

Take ĝ(x). Since ĝ(x) is linear in ei and E (ei | xi) = 0, we find E (ĝ(x)) = 0. Since ĝ(x) is an
average of independent random variables, the variance is smaller than the second moment, and the
definition σ2(xi) = E

(
e2
i | xi

)
nh var (ĝ(x)) =

1

h
var

(
k

(
xi − x
h

)
ei

)
≤ 1

h
E

(
k

(
xi − x
h

)2

e2
i

)

=
1

h
E

(
k

(
xi − x
h

)2

σ2(xi)

)

=

∫ ∞
−∞

k (u)2 σ2(x+ hu)f(x+ hu)du

= Rkσ
2(x)f(x) + o(1) (19.37)

since σ2(x) and f(x) are continuous in x. Thus var (ĝ(x)) −→ 0. By Markov’s inequality we
conclude Thus ĝ(x)

p−→ 0, completing the proof. �

Proof of Theorem 19.8. From (19.35), Theorem 18.6, and (19.33) we have

√
nh
(
m̂nw(x)−m(x)− h2Bnw(x)

)
=
√
nh

(
ĝ(x)

f̂(x)

)
+
√
nh

(
b̂(x)

f̂(x)
− h2Bnw(x)

)

=
√
nh

(
ĝ(x)

f(x)

)
(1 + op(1)) +

√
nh

(
op
(
h2
)

+Op

(√
h

n

))

=
√
nh

(
ĝ(x)

f(x)

)
(1 + op(1)) +

(
op

(√
nh5

)
+Op (h)

)
=
√
nh

(
ĝ(x)

f(x)

)
where the final equality holds since

√
nhĝ(x) = Op(1) by (19.37) and the assumption nh5 = O(1).

The proof is completed by showing
√
nhĝ(x)

d−→ N
(
0, Rkσ

2(x)f(x)
)
.

Define yni = h−1/2k
(
xi−x
h

)
ei which is mean zero. Then we can write

√
nhĝ(x) =

√
ny. We

verify the conditions for the Lindeberg CLT (Theorem 6.12). The summands yni are independent
and mean zero. In the notation of Theorem 6.12, set σ2

n = var (
√
ny) → Rkf(x)σ2(x) as h → 0.

The CLT holds if we can verify the Lindeberg condition.
It turns out that this is a quite advanced calculation and will not interest most readers. It is

provided for those interested in a complete derivation.
Fix ε > 0 and δ > 0. Since k(u) is bounded we can write k(u) ≤ k. Let nh be suffi ciently large

so that (
εnh

k

)r−2

≥ σ

δ
.
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The conditional moment bound (19.14) implies that for x ∈ N ,

E
(
e2
i 1
(
e2
i > εnh/k

)
| xi = x

)
= E

(
|ei|r

|ei|r−2 1
(
e2
i > εnh/k

)
| xi = x

)
≤ E

(
|ei|r(

εnh/k
)(r−2)/2

| xi = x

)
≤ δ.

Since y2
ni ≤ h−1ke2

i we find

E
(
y2
ni1
(
y2
ni > εn

))
≤ 1

h
E

(
k

(
xi − x
h

)2

e2
i1
(
e2
i > εnh/k

))

=
1

h
E

(
k

(
xi − x
h

)2

E
(
e2
i1
(
e2
i > εnh/k

)
| xi
))

=

∫ ∞
−∞

k (u)2 E
(
e2
i1
(
e2
i > εnh/k

)
| xi = x+ hu

)
f(x+ hu)du

≤ δ
∫ ∞
−∞

k (u)2 f(x+ hu)du

= δRkf(x) + o(1)

= o(1)

since δ is arbitrary. This is the Lindeberg condition (6.5). The Lindeberg CLT (Theorem 6.12)
shows that √

nhĝ(x) =
√
ny

d−→ N
(
0, Rkσ

2(x)f(x)
)
.

This completes the proof. �
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Exercises

Exercise 19.1 For kernel regression, suppose you rescale y, for example replace yi with 100yi,
how should the bandwidth h change? To answer this, first address how the functions m(x) and
σ2(x) change under rescaling, and then calculate how B and σ2 change. Deduce how the optimal
h0 changes due to rescaling yi. Does your answer make intuitive sense?

Exercise 19.2 Show that (19.6) minimizes the AIMSE (19.5).

Exercise 19.3 Describe in words how the bias of the local linear estimator changes over regions
of convexity and concavity in m(x). Does this make intuitive sense?

Exercise 19.4 Suppose the true regression function is linear m(x) = α + βx and we estimate
the function using the Nadaraya-Watson estimator. Calculate the bias function B(x). Suppose
β > 0. For which regions is B(x) > 0 and for which regions is B(x) < 0? Now suppose that β < 0
and re-answer the question. Can you intuitively explain why the NW estimator is positively and
negatively biased for these regions?

Exercise 19.5 Suppose m(x) = α is a constant function. Find the AIMSE-optimal bandwith
(19.6) for NW estimation? Explain.

Exercise 19.6 Prove Theorem 19.10: Show that when d ≥ 1 the AIMSE optimal bandwidth takes
the form h0 = cn−1/(4+d) and AIMSE is O

(
n−4/(4+d)

)
.

Exercise 19.7 Take the DDK2011 dataset and the subsample of boys who experienced tracking.
As in Section 19.21, use the Local Linear estimator to estimate the regression of testscores on
percentile, but now with the subsample of boys. Plot with 95% confidence intervals. Comment on
the similarities and differences with the estimate for the subsample of girls.

Exercise 19.8 Take the cps09mar dataset and the subsample of individuals with education=20
(professional degree or doctorate), with experience between 0 and 40 years.

(a) Use Nadaraya-Watson to estimate the regression of log(wage) on experience, separately for
men and women. Plot with 95% confidence intervals. Comment on how the estimated wage
profiles vary with experience. In particular, do you think the evidence suggests that expected
wages fall for experience levels above 20 for this education group?

(b) Repeat using the Local Linear estimator. How do the estimates and confidence intervals
change?

Exercise 19.9 Take the Invest1993 dataset and the subsample of observations with Q ≤ 5.

(a) Use Nadaraya-Watson to estimate the regression of I on Q. Plot with 95% confidence inter-
vals.

(b) Repeat using the Local Linear estimator.

(c) Is there evidence to suggest that the regression function is non-linear?

Exercise 19.10 The RR2010 dataset is from Reinhart and Rogoff (2010). It contains observations
on annual U.S. GDP growth rates, inflation rates, and the debt/gdp ratio for the long time span
1791-2009. The paper made the strong claim that gdp growth slows as debt/gdp increases, and in
particular that this relationship is nonlinear with debt negatively affecting growth for debt ratios
exceeding 90%. Their full dataset includes 44 countries, our extract only includes the United States.
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(a) Use Nadaraya-Watson to estimate the regression of gdp growth on the debt ratio. Plot with
95% confidence intervals.

(b) Repeat using the Local Linear estimator.

(c) Do you see evidence of nonlinearity, and/or a change in the relationship at 90%?

(d) Now estimate a regression of gdp growth on the inflation rate. Comment on what you find.

Exercise 19.11 We will consider a nonlinear AR(1) model for gdp growth rates

yt = m(yt−1) + et

yt = 100

((
GDPt
GDPt−1

)4

− 1

)

(a) Create GDP growth rates yt. Extract the level of real U.S. GDP (GDPC1 ) from the FRED-QD
dataset and make the above transformation to growth rates.

(b) Use Nadaraya-Watson to estimate m(x). Plot with 95% confidence intervals.

(c) Repeat using the Local Linear estimator.

(d) Do you see evidence of nonlinearity?



Chapter 20

Series Regression

20.1 Introduction

Chapter 19 studied nonparametric regression by kernel smoothing methods. In this chapter we
study an alternative class of nonparametric regression methods known as series regression.

The basic model is identical to that examined in Chapter 19. We assume that there are pairs
(yi, xi) such that E

(
y2
i

)
<∞ and satisfy the regression model

yi = m(xi) + ei (20.1)

E (ei | xi) = 0

E
(
e2
i | xi

)
= σ2 (xi) .

The goal is to estimate the conditional mean function m(x). We start with the simple setting where
xi is scalar and consider more general cases later.

A series regression model is a sequence K = 1, 2, ..., of approximating models mK(x) with
K parameters. In this chapter we exclusively focus on linear series models, and in particular
polynomials splines. This is because these are simple, convenient, and cover most applications
of series methods in applied economics. Other series models include trigonometric polynomials,
wavelets, orthogonal wavelets, B-splines, and neural networks. For a detailed review see Chen
(2007).

Linear series regression models take the form

yi = x′KiβK + eKi (20.2)

where xKi = xK(xi) is a vector of regressors obtained by making transformations of xi, and βK is
a coeffi cient vector. There are multiple possible definitions of the coeffi cient βK . We define

1 it by
projection

βK = E
(
xKix

′
Ki

)−1 E (xKiyi)

= E
(
xKix

′
Ki

)−1 E (xKim(xi)) . (20.3)

The series regression error eKi is defined by (20.2) and (20.3), is distinct from the regression error
ei in (20.1), and is indexed by K since it depends on the specific regressors xKi. The series
approximation to m(x) is

mK(x) = xK(x)′βK . (20.4)

The coeffi cient is typically2 estimated by least-squares

β̂K =

(
n∑
i=1

xKix
′
Ki

)−1( n∑
i=1

xKiyi

)
=
(
X ′KXK

)−1 (
X ′Ky

)
. (20.5)

1An alternative is to define βK as the best uniform approximation as in (20.8). It is not critical so long as we are
careful to be consistent with our notation.

2Penalized estimators have also been recommended. We do not review these methods here.

716
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The estimator for m(x) is
m̂K(x) = xK(x)′β̂K . (20.6)

The difference between specific models arises due to the different choices of transformations xK(x).
The theoretical issues we will explore in this chapter are: (1) Approximation properties of

polynomials and splines; (2) Consistent estimation ofm(x); (3) Asymptotic normal approximations;
(4) Selection of K; (5) Extensions.

For a textbook treatment of series regression see Li and Racine (2007). For an advanced
treatment see Chen (2007). Two seminal contributions are Andrews (1991a) and Newey (1997).
Two recent important papers are Belloni, Chernozhukov, Chetverikov, and Kato (2015) and Chen
and Christensen (2015).

20.2 Polynomial Regression

The prototypical series regression model for m(x) is a pth order polynomial

mK(x) = β0 + β1x+ β2x
2 + · · ·+ βpx

p.

We can write it in vector notation as (20.4) where

xK(x) =


1
x
...
xp

 .

The number of parameters is K = p + 1. Notice that we index xK(x) and βK by K as their
dimensions and values vary with K.

The implied polynomial regression model for the random pair (yi, xi) is (20.2) with

xKi = xK(xi) =


1
xi
...
xpi

 .

The degree of flexibility of a polynomial regression is controlled by the polynomial order p. A
larger p yields a more flexible model, while a smaller p typically results in a estimator with a smaller
variance.

In general, a linear series regression model takes the form

mK(x) = β1τ1(x) + β2τ2(x) + · · ·+ βKτK(x)

where the functions τj(x) are called the basis transformations. The polynomial regression model
uses the power basis τj(x) = xj−1. The model mK(x) is called a series regression because it is
obtained by sequentially adding the series of variables τj(x).

20.3 Illustrating Polynomial Regression

Consider the cps09mar dataset and a regression of log wages on experience for women with a
college education (education= 16), separately for white women and black women. The classical
Mincer model uses a quadratic in experience. Given the large sample sizes (4682 for white women
and 517 for black women) we can consider higher order polynomials. In Figure 20.1 we plot least-
squares estimates of the conditional mean functions using polynomials of order 2, 4, 8, and 12.
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Examine panel (a), which shows the estimates for the sub-sample of white women. The quadratic
specification appears mis-specified, with a shape noticably different from the other estimates. The
difference between the polynomials of order 4, 8, and 12 is relatively minor, especially for experience
levels below 20.

Now examine panel (b), which shows the estimates for the sub-sample of black women. This
panel is quite different from panel (a). The estimates are erratic, and increasingly so as the polyno-
mial order increases. Assuming we are expecting a concave (or nearly concave) experience profile,
the only estimate which satisfies this is the quadratic.

Why the difference between panels (a) and (b)? The most likely explanation is the different
sample sizes. The sub-sample of black women has much fewer observations so the mean function
is much less precisely estimated, giving rise to the erratic plots. This suggests (informally) that it
may be preferred to use a smaller polynomial order p in the second sub-sample, or equivalently to
use a larger p when the sample size n is larger. The idea that model complexity —the number of
coeffi cients K —should vary with sample size n is an important feature of series regression.

The erratic nature of the estimated polynomial regressions in Figure 20.1(b) is a common feature
of higher-order estimated polynomial regressions. Better results can sometimes be obtained by a
spline regression, which is described in Section 20.5.
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Figure 20.1: Polynomial Estimates of Experience Profile, College-Educated Women

20.4 Orthogonal Polynomials

Standard implementation of the least-squares estimator (20.5) of a polynomial regression may
return a computational error message when p is large. (See Section 3.24.) This is because the
moments of xji can be highly heterogeneous across j, and because the variables x

j
i can be highly

correlated. These two factors imply in practice that the matrix X ′KXK can be ill-conditioned (the
ratio of the largest to smallest eigenvalue can be quite large) and some packages will return error
messages rather than compute β̂K .

In most cases the condition of X ′KXK can be dramatically improved by rescaling the observa-
tions. As discussed in Section 3.24, a simple method for non-negative regressors is to rescale each

by its sample mean, e.g. replace xji with x
j
i/
(
n−1

∑n
i=1 x

j
i

)
. Even better conditioning can often be

obtained by rescaling xi to lie in [−1, 1] before applying powers. In most applications one of these
methods will be suffi cient for a well-conditioned regression.
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A computationally more robust implementation can be obtained by using orthogonal polyno-
mials. These are linear combinations of the polynomial basis functions, and produce identical
regression estimators (20.6). The goal of orthogonal polynomials is to produce regressors which
are either orthogonal or close to orthogonal, and have similar variances, so that X ′KXK is close
to diagonal with similar diagonal elements. These orthogonalized regressors x∗Ki = AKxKi can be
written as linear combinations of the original variables xKi. If the regressors are orthogonalized,
then the regression estimator (20.6) is modified by replacing xK(x) with x∗K(x) = AKxK(x).

One approach is to use sample orthogonalization. This is done by a sequence of regressions
of xji on the previously orthogonalized variables, and then rescaling. This will result in perfectly
orthogonalized variables. This is what is implemented in many statistical packages under the label
“orthogonal polynomials”, for example, the function poly in R. If this is done then the least-squares
coeffi cients have no meaning outside this specific sample, and it is not convenient for calculation
of m̂K(x) for values of x other than sample values. This is the approach used for the examples
presented in the previous section.

Another approach is to use an algebraic orthogonal polynomial. This is a polynomial which
is orthogonal with respect to a known weight function w(x). Specifically, it is a sequence pj(x),
j = 0, 1, 2, ..., with the property that

∫
pj(x)p`(x)w(x)dx = 0 for j 6= `. This means that if

w(x) = f(x), the marginal density of xi, then the basis transformations pj(xi) will be mutually
orthgonal (in expectation). Since we do now know the density of xi this is not feasible in practice,
but if w(x) is close to the density of xi, then we can expect that the basis transformations will be
close to mutually orthogonal. To implement an algebraic orthogonal polynomial, you first should
rescale your xi variable so that it satisfies the support for the weight function w(x).

The following three choices are most relevant for economic applications.

Legendre Polynomial. These are orthogonal with respect to the uniform density on [−1, 1] .
(So should be applied to regressors scaled to have support in [−1, 1].)

pj(x) =
1

2j

j∑
`=0

(
j

`

)2

(x− 1)j−` (x+ 1)` .

For example, the first several are p0(x) = 1, p1(x) = x, p2(x) =
(
3x2 − 1

)
/2, and p3(x) =(

5x3 − 3x
)
/2. The best computational method is to use the recurrence relationship

pj+1(x) =
(2j + 1)xpj(x)− jpj−1(x)

j + 1
.

Laguerre Polynomial. These are orthogonal with respect to the exponential density e−x on
[0,∞). (So should be applied to non-negative regressors scaled to have unit mean and variance.)

pj(x) =

j∑
`=0

(
j

`

)
(−x)`

`!
.

For example, the first several are p0(x) = 1, p1(x) = 1− x, p2(x) =
(
x2 − 4x+ 2

)
/2, and p3(x) =(

−x3 + 9x2 − 18x+ 6
)
/6. The best computational method is to use the recurrence relationship

pj+1(x) =
(2j + 1− x) pj(x)− jpj−1(x)

j + 1
.

Hermite Polynomial. These are orthogonal with respect to the standard normal density on
(−∞,∞) . (So should be applied to regressors scaled to have mean zero and variance one.)

pj(x) = j!

bj/2c∑
`=0

(−1/2)` x`−2j

`! (j − 2`!)
.
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For example, the first several are p0(x) = 1, p1(x) = x, p2(x) = x2 − 1, and p3(x) = x3 − 3x. The
best computational method is to use the recurrence relationship

pj+1(x) = xpj(x)− jpj−1(x).

The R package orthopolynom provides a convenient set of commands to compute many orthog-
onal polynomials, including the above.

20.5 Splines

A spline is a piecewise polynomial. Typically the order of the polynomial is pre-selected to be
linear, quadratic, or cubic. The flexibility of the model is determined by the number of polynomial
segments. The join points between these segments are called knots.

To impose smoothness and parsimony it is common to constrain the spline function to have
continuous derivatives up to the order of the spline. Thus a linear spline is constrained to be
continuous, a quadratic spline is constrained to have a continuous first derivative, and a cubic
spline is constrained to have continuous first and second derivatives.

A simple way to construct a regression spline is as follows. A linear spline with one knot τ is

mK(x) = β0 + β1x+ β2 (x− τ) 1 (x ≥ τ) .

To see that this is a linear spline, observe that for x ≤ τ the function mK(x) = β0 + β1x is linear
with slope β1; for x ≥ τ the function mK(x) = (β0 − β0τ) + (β1 + β2)x is linear with slope β1 +β2,
and the function is continuous at x = τ . Note that β2 is the change in the slope at τ . A linear
spline with two knots τ1 < τ2 is

mK(x) = β0 + β1x+ β2 (x− τ1) 1 (x ≥ τ2) + β3 (x− τ2) 1 (x ≥ τ2) .

A quadratic spline with one knot is

mK(x) = β0 + β1x+ β2x
2 + β3 (x− τ)2 1 (x ≥ τ) .

To see that this is a quadratic spline, observe that for x ≤ τ the function is the quadratic β0 +
β1x + β2x

2, for x ≥ τ it is the quadratic β0 + β3τ
2 + (β1 − 2β3τ)x + (β2 + β3)x2, and the first

derivative is β1 + 2β2x and continuous at x = τ .
In general, a pth-order spline with N knots τ1 < τ2 < · · · < τN is

mK(x) =

p∑
j=0

βjx
j +

N∑
k=1

βp+k (x− τk)p 1 (x ≥ τk)

which has K = N + p+ 1 coeffi cients.
The implied spline regression model for the random pair (yi, xi) is (20.2) where

xKi = xK(xi) =



1
xi
...
xpi

(xi − τ1)p 1 (xi ≥ τ1)
...

(xi − τN )p 1 (xi ≥ τN )


.

In practice a spline will depend critically on the choice of the knots τk. When xi is bounded with
an approximately uniform distribution it is common to space the knots evenly so all segments have
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the same length. When the distribution of xi is not uniform an alternative is to set the knots at the
quantiles j/(N + 1) so that the probability mass is equalized across segments. A third alternative
is to set the knots at the points where m(x) has the greatest change in curvature (see Schumaker
(2007), Chapter 7). In all cases the set of knots τj can change with K. Therefore a spline is a
special case of an approximation of the form

mK(x) = β1τ1K(x) + β2τ2K(x) + · · ·+ βKτKK(x)

where the basis transformations τjK(x) depend on both j and K. Many authors call such
approximations a sieve rather than a series, because the basis transformations change withK. This
distinction is not critical to our treatment so for simplicity we refer to splines as series regression
models.

20.6 Illustrating Spline Regression

In Section 20.3 we illustrated regressions of log wages on experience for white and black women
with a college education. Now we consider a similar regression for black men with a college educa-
tion, a sub-sample with 394 observations.

We use a quadratic spline with four knots at experience levels of 10, 20, 30, and 40. This is a
regression model with seven coeffi cients. The estimated regression function is displayed in Figure
20.2. An estimated 6th order polynomial regression is also displayed for comparison (a 6th order
polynomial is an appropriate comparison because it also has seven coeffi cients).

While the spline is a quadratic over each segment, what you can see is that the first two segments
(for experience levels between 0-10 and 10-20 years) are essentially linear. Most of the curvature
occurs in the third and fourth segments (20-30 and 30-40 years), where the estimated regression
function peaks and twists into a negative slope. The estimated regression function is quite smooth.
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Figure 20.2: Quadratic Spline Estimate of Experience Profile, College-Educated Black Men
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A quadratic (or cubic) spline is useful when it is desired to impose smoothness as in Figure
20.2. In contrast, a linear spline is useful when it is desired to allow for sharp changes in slope.

To illustrate we consider the data set CHJ2004 which is a sample of 8684 urban Phillipino
households from Cox, Hansen, and Jimenez (2004). This paper studied the crowding-out impact
of a family’s income on non-governmental (e.g., extended family) income transfers. A model of
altruistic transfers predicts that extended families will make gifts (transfers) when the recipient
family’s income is suffi ciently low, but will not make transfers if the recipient family’s income
exceeds a threshold. A pure altruistic model predicts that the regression of transfers received on
family income should be negative with a slope of −1 up to this threshold, and be flat above this
threshold. We estimated this regression (including a set of additional controls) using a linear spline
with knots at 10000, 20000, 30000, 40000, 50000, 60000, 100000, and 150000 pesos. These knots
were selected to give considerable flexibility for low income levels and greater smoothness at higher
income levels where there are fewer observations. This model has a total of 26 coeffi cients.

The estimated regression function (as a function of household income) is displayed in Figure
20.3. For the first two segments (incomes levels below 20000 pesos) the regression function is
negatively sloped as predicted, with a slope about −0.7 from 0 to 10000 pesos, and −0.3 from
10000 to 20000 pesos. The estimated regression function is effectively flat for income levels above
20000 pesos. This shape is highly consistent with the pure altruism model. A linear spline model
is particularly well suited for this application as it allows for discontinuous changes in slope.

Linear spline models with a single knot have been recently popularized by Card, Lee, Pei, and
Weber (2015) with the label regression kink design.
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20.7 The Global/Local Nature of Series Regression

Recall from Section 19.18 that we described kernel regression as inherently local in nature. The
Nadaraya-Watson, Local Linear, and Local Polynomial estimators of the conditional mean m(x)
are weighted averages of yi for observations for which xi is close to x.

In contrast, series regression methods are typically described as global in nature. The estimator
m̂K(x) = xK(x)′β̂K is a function of the entire sample. The coeffi cients of a fitted polynomial (or
spline) are affected by the global shape of the function m(x), and thus affect the estimator m̂K(x)
at any local point x.

While this description has some merit, it is not a complete description. As we now show,
series regression estimators share the local smoothing property of kernel regression. As the number
of series terms K increase a series estimator m̂K(x) = xK(x)′β̂K also becomes a local weighted
average estimator.

To see this, observe that we can write the estimator as

m̂K(x) = xK(x)′
(
X ′KXK

)−1 (
X ′Ky

)
=

1

n

n∑
i=1

xK(x)′Q̂
−1

K xK(xi)yi

=
1

n

n∑
i=1

ŵK(x, xi)yi

where Q̂K = n−1X ′KXK and

ŵK(x, u) = xK(x)′Q̂
−1

K xK(u).

Thus m̂K(x) is a weighted average of yi using the weights ŵK(x, xi). The weight function ŵK(x, xi)
appears to be maximized at xi = x, so m̂(x) puts more weight on observations for which xi is close
to x, similarly to kernel regression.
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Figure 20.4: Kernel Representation of Polynomial Weight Function

To see this more precisely, observe that since Q̂K will be close (in large samples) to QK =
E (xKix

′
Ki), ŵK(x, u) will be close to the deterministic weight function

wK(x, u) = xK(x)′Q−1
K xK(u).
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Take the case xi ∼ U [0, 1]. In Figure 20.4 we plot the weight function wK(x, u) as a funtion of u
for x = 0.5 (panel (a)) and x = 0.25 (panel (b)) for p = 4, 8, 12 in panel (a) and p = 4, 12 in panel
(b). First, examine panel (a). Here you can see that the weight function w(x, u) is symmetric in
u about x. For p = 4 the weight function appears similar to a quadratic in u, and as p increases
the weight function concentrates its main weight around x. However, the weight function is not
non-negative. It is quite similar in shape to what are known as higher-order (or bias-reducing)
kernels, which were not reviewed in the previous chapters but are part of the kernel estimation
toolkit. Second, examine panel (b). Again the weight function is maximized at x, but now it is
asymmetric in u about the point x. Still, the general features from panel (a) carry over to panel
(b). Namely, as p increases the polynomial estimator puts most weight on observations for which
xi is close to x (just as for kernel regression), but is different from conventional kernel regression
in that the weight function is not non-negative. Qualitatively similar plots are obtained for spline
regression.

There is little formal theory (of which I am aware) which makes a formal link between series
regression and kernel regression, so the comments presented here are illustrative3. However, the
point is that statements of the form “Series regession is a global method; Kernel regression is a
local method”may not be complete descriptions. Both are global in nature when h is large (for
kernels) or K is small (series), and are local in nature when h is small (for kernels) or K is large
(series).

20.8 Stone-Weierstrass and Jackson Approximation Theory

A good series approximation mK(x) has the property that it gets close to the true CEF m(x)
as the complexity K increases. Formal statements can be derived from the mathematical theory of
the approximation of functions.

An elegant and famous theorem is the Stone-Weierstrass Theorem, (Weierstrass, 1885,
Stone, 1948) which states that any continuous function can be uniformly well approximated by a
polynomial of suffi ciently high order. Specifically, the theorem states that if m(x) is continuous on
a compact set S, then for any ε > 0 there is some K suffi ciently large such that

inf
β

sup
x∈S

∣∣m(x)− xK(x)′β
∣∣ ≤ ε. (20.7)

Thus the true unknown m(x) can be arbitrarily well approximated by selecting a suitable polyno-
mial.

Jackson (1912) strengthened this result to give convergence rates which depend on the smooth-
ness of m(x). The basic result has also been extended to spline functions. The following notation
will be useful. Define the β which minimizes the left-side of (20.7) as

β∗K = argmin
β

sup
x∈S

∣∣m(x)− xK(x)′β
∣∣ , (20.8)

define the approximation error
r∗K(x) = m(x)− xK(x)′β∗K (20.9)

and define the minimized value of (20.7)

δ∗K
def
= inf

β
sup
x∈S

∣∣m(x)− xK(x)′β
∣∣ = sup

x∈S

∣∣m(x)− xK(x)′β∗K
∣∣ = sup

x∈S
|r∗K(x)| . (20.10)

3Similar connections are made in the appendix of Chen, Liao, and Sun (2012).
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Theorem 20.1 If for some α ≥ 0, m(α)(x) is uniformly continuous on a
compact set S, and xK(x) is either a polynomial basis or a spline basis
(with uniform knot spacing) of order s ≥ α, then as K →∞

δ∗K ≤ o
(
K−α

)
. (20.11)

Furthermore, if m(2)(x) is uniformly continuous on S and xK(x) is a linear
spline basis, then δ∗K ≤ O

(
K−2

)
.

For a proof for the polynomial case, see Theorem 4.3 of Lorentz (1986), or Theorem 3.12 of
Schumaker (2007) plus his equations (2.119) and (2.121). For the spline case see Theorem 6.27 of
Schumaker (2007) plus his equations (2.119) and (2.121). For the linear spline case see Theorem
6.15 of Schumaker, equation (6.28).

Theorem 20.1 is more useful than the classic Stone-Weierstrass Theorem, as it gives an approx-
imation rate which depends on the smoothness order α. The rate o(K−α) in (20.11) means that
the approximation error (20.10) decreases as K increases, and decreases at a faster rate when α is
large. The standard interpretation is that when m(x) is smoother it is possible to approximate it
with a fewer number of series terms.

It will turn out that for our distributional theory results it will be suffi cient to consider the
case that m(2)(x) is uniformly continuous. For this case, Theorem 20.1 shows that polynomials and
quadratic/cubic splines achieve the rate o(K−2), and linear splines achieve the rate O(K−2). For
most of of our results the latter bound will be suffi cient.

More generally, Theorem 20.1 makes a distinction between polynomials and splines, as poly-
nomials achieve the rate o (K−α) adaptively (without input from the user) while splines achieve
the rate o (K−α) only if the spline order s is appropriately chosen. This is an advantage for poly-
nomials. However, as emphasized by Schumaker (2007), splines simultaneously approximate the
derivatives m(q)(x) for q < α. Thus, for example, a quadratic spline simultaneously approximates
the function m(x) and its first derivative m′(x). There is no comparable result for polynomials.
This is an advantage for quadratic and cubic splines. Since economists are often more interested in
marginal effects (derivatives) than in levels, this may be a good reason to prefer such splines over
polynomials.

Theorem 20.1 is a bound on the best uniform approximation error. The coeffi cient β∗K which
minimizes (20.11) is not, however, the projection coeffi cient βK as defined in (20.3). Thus Theorem
20.1 does not directly inform us concerning the approximation error obtained by series regression.
It turns out, however, that the projection error can be easily deduced from (20.11). It is useful to
define the projection approximation error

rK(x) = m(x)− xK(x)′βK . (20.12)

This is similar to (20.9) but evaluated using the projection coeffi cient rather than the mini-
mizing coeffi cient β∗K (20.8). Also define rKi = rK(xi). Assuming that xi has compact support S,
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the expected squared projection error is

δK
def
=
(
E (rKi)

2
)1/2

=

(∫
S

(
m(x)− xK(x)′βK

)2
dF (x)

)1/2

≤
(∫

S

(
m(x)− xK(x)′β∗K

)2
dF (x)

)1/2

≤
(∫

S
δ∗2K dF (x)

)1/2

= δ∗K . (20.13)

The first inequality holds since the projection coeffi cient βK minimizes the expected squared pro-
jection error (see Section 2.25). The second inequality is the definition of δ∗K . Combined with
Theorem 20.1 we have established the following result.

Theorem 20.2 If xi has compact support S, for some α ≥ 0 m(α)(x) is
uniformly continuous on S, and xK(x) is either a polynomial basis or a
spline basis of order s ≥ α, then as K →∞

δK ≤ δ∗K ≤ o
(
K−α

)
.

Furthermore, if m(2)(x) is uniformly continuous on S and xK(x) is a linear
spline basis, then δK ≤ O

(
K−2

)
.

The available theory of the approximation of functions goes beyond the results described here.
For example, there is a theory of weighted polynomial approximation (Mhaskar, 1996) which pro-
vides an analog of Theorem 20.2 for the unbounded real line when xi has a density with exponential
tails.

20.9 Regressor Bounds

The approximation result in Theorem 20.2 assumes that the regressors xi have bounded support
S. This is conventional in series regression theory, as it greatly simplifies the analysis. Bounded
support implies that the regressor function xK(x) is bounded. Define

ζK(x) =
(
xK(x)′Q−1

K xK(x)
)1/2

(20.14)

ζK = sup
x
ζK(x) (20.15)

where QK = E (xKix
′
Ki) is the population design matrix given the regressors xKi. This implies

that for all observations (
x′KiQ

−1
K xKi

)1/2 ≤ ζK . (20.16)

The constant ζK(x) is the normalized length of the regressor vector zK(x). The constant ζK is
the maximum normalized length. Their values are determined by the basis function transformations
and the distribution of xi. They are invariant, however, to rescaling xKi or linear rotations.

For polynomials and splines we have explicit expressions for the rate at which ζK grows with
K.
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Theorem 20.3 If xi has compact support S with a strictly positive density
f(x) on S then

1. ζK ≤ O (K) for polynomials

2. ζK ≤ O
(
K1/2

)
for splines

For a proof of Theorem 20.3 see Newey (1997, Theorem 4).
Furthermore, when xi is uniformly distributed then we can explicitly calculate for polynomials

that ζK = K, so the polynomial bound ζK ≤ O (K) cannot be improved.
To illustrate, we plot in Figure 20.5 the values ζK(x) for the case xi ∼ U [0, 1]. We plot ζK(x)

for a polynomial of degree p = 9 and a quadratic spline with N = 7 knots (both satisfy K = 10).
You can see that the values of ζK(x) are close to 3 for both basis transformations and most values
of x, but ζK(x) increases sharply for x near the boundary. The maximum values are ζK = 10 for
the polynomial and ζK = 7.4 for the quadratic spline. While Theorem 20.3 shows the two have
different rates for large K, we see for moderate K that the differences are relatively minor.
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Figure 20.5: Normalized Regressor Lengths ζK(x), K = 10

20.10 Matrix Convergence

One of the challenges which arise when developing a theory for the least squares estimator is
how to describe the large-sample behavior of the sample design matrix

Q̂K =
1

n

n∑
i=1

xKix
′
Ki
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as K → ∞. The trouble is that the dimension of Q̂K is increasing with K, so we cannot apply a
standard WLLN.

It turns out to be convenient for the theory if we first rotate the regressor vector so that the
elements are orthogonal in expectation. Thus we define the standardized regressors and design
matrix as

x̃Ki = Q
−1/2
K xKi (20.17)

Q̃K =
1

n

n∑
i=1

x̃Kix̃
′
Ki.

Note that E
(
x̃Kix̃

′
Ki

)
= IK . The standardized regressors are not used in practice; they are

introduced only to simplify the theoretical derivations.
Our convergence theory will require the following fundamental rate bound on the number of

coeffi cients K.

Assumption 20.1

1. λmin (QK) ≥ λ > 0

2. ζ2
K log(K)/n→ 0 as n,K →∞

Assumption 20.1.1 ensures that the transformation (20.17) is well defined4. Assumption 20.1.2
states that the squared maximum regressor length ζ2

K grows slower than n. Since ζK increases
with K this is a bound on the rate at which K can increase with n. By Theorem 20.2, the rate in
Assumption 20.1.2 holds for polynomials if K2 log(K)/n → 0 and for splines if K log(K)/n → 0.
In either case, this means that the number of coeffi cients K is growing at a rate slower than n.

We are now in a position to describe a convergence result for the standardized design matrix.
The following is Lemma 6.2 of Belloni, Chernozhukov, Chetverikov, and Kato (2015).

Theorem 20.4 If Assumption 20.1 holds then∥∥∥Q̃K − IK
∥∥∥

2

p−→ 0. (20.18)

A simplified proof of Theorem 20.4 can be found in Section 20.32.
The norm in (20.18) is the spectral norm

‖A‖2 =
(
λmax

(
A′A

))1/2
where λmax (B) denotes the largest eigenvalue of the matrix B. For a full description see Section
A.23. It is a useful norm for matrices which are growing in dimension.

For the least-squares estimator what is particularly important is the inverse of the sample design
matrix. Fortunately we can easily deduce consistency of its inverse from (20.18) when the regressors
have been orthogonalized as described.

4Technically, what is required is that λmin (BKQKB
′
K) ≥ λ > 0 for some K × K sequence of matrices BK , or

equivalently that Assumption 20.1.1 holds after replacing xKi with BKxKi.
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Theorem 20.5 If Assumption 20.1 holds then∥∥∥Q̃−1

K − IK
∥∥∥

2

p−→ 0 (20.19)

and
λmax

(
Q̃
−1

K

)
= 1/λmin

(
Q̃K

)
p−→ 1. (20.20)

The proof of Theorem 20.5 can be found in Section 20.32.

20.11 Consistent Estimation

In this section we give conditions for consistent estimation of m(x) by the series estimator
m̂K(x) = xK(x)′β̂K .

What we know from standard regression theory is that for any fixed K, β̂K
p−→ βK and

thus m̂K(x) = xK(x)′β̂K
p−→ xK(x)′βK as n → ∞. Furthermore, from the Stone-Weierstrass

Theorem we know that xK(x)′βK → m(x) as K → ∞. It therefore seems reasonable to expect
that m̂K(x)

p−→ m(x) as both n → ∞ and K → ∞ together. Making this argument rigorous,
however, is technically challenging, in part because the dimensions of β̂K and its components are
changing with K.

Since m̂K(x) and m(x) are functions, convergence should be defined with respect to an ap-
propriate metric. For kernel regression we focused on pointwise convergence (for each value of x
separately) as that is the simplest to analyze in that context. For series regression it turns out to
be simplest to describe convergence with respect to integrated squared error (ISE). We define the
latter as

ISE(K) =

∫
(m̂K(x)−m(x))2 dF (x)

where F is the marginal distribution of xi. ISE(K) is the average squared distance between m̂K(x)
andm(x), weighted by the marginal distribution of xi. The ISE is random, depends on both sample
size n and model complexity K, and its distribution is determined by the joint distribution of the
observations (yi, xi).

We can establish the following.

Theorem 20.6 Under Assumption 20.1 and δK = o(1), then as n,K →
∞,

ISE(K) = op (1) . (20.21)

The proof of Theorem 20.6 can be found in Section 20.32.
Theorem 20.6 shows that the series estimator m̂K(x) is consistent in the ISE norm under very

mild conditions. The assumption δK = o(1) holds for polynomials and splines if K → ∞ and
m(x) is uniformly continuous. This result is analogous to Theorem 19.7 which showed that kernel
regression estimator is consistent if m(x) is continuous.

20.12 Convergence Rate

Theorem 20.6 showed that the series regression estimator is consistent in the ISE norm. We
now give a rate of convergence.
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Theorem 20.7 Under Assumption 20.1 and σ2 (x) ≤ σ2 < ∞, then as
n,K →∞,

ISE(K) ≤ Op
(
δ2
K +

K

n

)
. (20.22)

Furthermore, if m(2)(x) is uniformly continuous then for polynomial or
spline basis functions

ISE(K) ≤ Op
(
K−4 +

K

n

)
. (20.23)

The proof of Theorem 20.7 can be found in Section 20.32. It is based on Newey (1997).
The bound (20.23) is particularly useful as it gives an explicit rate in terms of K and n. The

result shows that the integrated squared error is bounded in probability by two terms. The first
K−4 is the squared bias. The second K/n is the estimation variance. This is analogous to the
AIMSE for kernel regression (19.5). We can see that increasing the number of series terms K
affects the integrated squared error by decreasing the bias but increasing the variance. The fact
that the estimation variance is of order K/n can be intuitively explained by the fact that the
regression model is estimating K coeffi cients.

If desired, the bound (20.23) can be written as op
(
K−4

)
+ Op (K/n) for polynomials and

quadratic splines.
We are interested in the sequence K which minimizes the trade-off in (20.23). By examining

the first-order condition, we find that the sequence which minimizes this bound is K ∼ n1/5. With
this choice we obtain the optimal integrated squared error ISE(K) ≤ Op

(
n−4/5

)
. This is the same

convergence rate as obtained by kernel regression under similar assumptions.
It is interesting to contrast the optimal rate K ∼ n1/5 for series regression with h ∼ n−1/5

for kernel regression. Essentially, one can view the rate K−1 in series regression as a “bandwidth”
similar to kernel regression, or one can view the rate 1/h in kernel regression as the effective number
of coeffi cients.

The rate K ∼ n1/5 means that the optimal K increases very slowly with the sample size. For
example, doubling your sample size implies only a 15% increase in the optimal number of coeffi cients
K. To obtain a doubling in the optimal number of coeffi cients, you need to multiply the sample
size by 32.

To illustrate, Figure 20.6 displays the ISE rate bounds K−4+K/n as a function of K for n = 10,
30, 150. The filled circles mark the ISE-minimizing K, which are K = 2, 3, and 4 for the three
functions. Notice that the ISE functions are steeply downward sloping for small K, and nearly flat
for large K (when n is large). This is because the bias term K−4 dominates for small values of K
while the variance term K/n dominates for large values of K, and the latter flattens as n increases.

20.13 Asymptotic Normality

The theory we present in this section will apply to any linear function of the regression function.
That is, we consider parameters of interest which can be written as a real-valued linear function of
the regression function:

θ = a (m) .

This includes the regression function m(x) at a given point x, derivatives of m(x), and integrals
over m(x). Given m̂K(x) = xK(x)′β̂K as an estimator for m(x), the estimator for θ is

θ̂K = a (m̂K) = a′Kβ̂K



CHAPTER 20. SERIES REGRESSION 731

1 2 3 4 5 6 7 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

K

IS
E

(K
)

K−4 + K 10
K−4 + K 30
K−4 + K 150

●

●

●

Figure 20.6: Integrated Squared Error

for some K × 1 vector of constants aK 6= 0. (The relationship a (m̂K) = a′Kβ̂K follows since a is
linear in m and m̂K is linear in β̂K .)

If K were fixed as n → ∞, then by standard asymptotic theory we would expect θ̂K to be
asymptotically normal with variance

VK = a′KQ
−1
K ΩKQ

−1
K aK

where ΩK = E
(
xKix

′
Kie

2
i

)
. The standard justification, however, is not valid in the nonparametric

case. This is in part because VK may diverge asK →∞, and in part due to the finite sample bias due
to the approximation error. Therefore a new theory is required. Interestingly, it turns out that in
the nonparametric case θ̂K is still asymptotically normal, and VK is still the appropriate variance for
θ̂K . The proof is different than the parametric case as the dimensions of the matrices are increasing
with K, and we need to be attentive to the estimator’s bias due to the series approximation.

Assumption 20.2 In addition to Assumption 20.1

1. lim
B→∞

sup
x
E
(
e2
i1
(
e2
i > B

)
|xi = x

)
= 0

2. E
(
e2
i |xi

)
≥ σ2 > 0

3. ζKδK = o(1) as K →∞

Assumption 20.2.1 is conditional square integrability. It implies that the conditional variance
E
(
e2
i |xi

)
is bounded. It is used to verify the Lindeberg condition for the CLT.
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Assumption 20.2.2 states that the conditional variance is nowhere degenerate. Thus there is no
xi for which yi is perfectly predictable. This is a technical condition used to bound VK from below.

Assumption 20.2.3 states that approximation error δK declines faster than the maximal regressor
length ζK . For polynomials a suffi cient condition for this assumption is that m(2)(x) is uniformly
continuous. For splines a suffi cient condition is that m(1)(x) is uniformly continuous.

Theorem 20.8 Under Assumption 20.2, as n→∞,
√
n
(
θ̂K − θ + a (rK)

)
V

1/2
K

d−→ N (0, 1) . (20.24)

The proof of Theorem 20.8 can be found in Section 20.32.
Theorem 20.8 shows that the estimator θ̂K is approximately normal with bias −a (rK) and

variance VK/n. The variance is the same as in the parametric case, but the asymptotic distribution
contains an asymptotic bias, similar as is found in kernel regression.

One useful message from Theorem 20.8 is that the classical variance formula VK for θ̂K still ap-
plies for series regression. This motivates using conventional estimators for VK , as will be discussed
in Section 20.19.

Theorem 20.8 shows that the estimator θ̂K has a bias term a (rK) .What is this? It is the same
transformation of the function rK(x) as θ = a (m) is of the regression function m(x). For example,
if θ = m(x) is the regression at a fixed point x, then a (rK) = rK(x), the approximation error at the

same point. If θ =
d

dx
m(x) is the regression derivative, then a (rK) =

d

dx
rK(x) is the derivative of

the approximation error.
This means that the bias in the estimator θ̂K for θ shown in Theorem 20.8 is simply the

approximation error transformed by the functional of interest. If we are estimating the regression
function then the bias is the error in approximating the regression function; if we are estimating
the regression derivative then the bias is the error in the derivative in the approximation error for
the regression function.

20.14 Regression Estimation

A special yet important example of a linear estimator is the regression function at a fixed point
x. In the notation of the previous section, a (m) = m(x) and aK = xK(x). The series estimator of
m(x) is θ̂K = m̂K(x) = xK(x)′β̂K . As this is a key problem of interest, we restate the asymptotic
result of Theorems 20.8 for this estimator.

Theorem 20.9 Under Assumption 20.2, as n→∞,
√
n (m̂K(x)−m(x) + rK(x))

V
1/2
K (x)

d−→ N (0, 1) (20.25)

where
VK(x) = xK(x)′Q−1

K ΩKQ
−1
K xK(x).

There are two important features about the asymptotic distribution (20.25).
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First, as mentioned in the previous section, it shows that the classical variance formula VK(x)
applies for the series estimator m̂K(x). Second, (20.25) shows that the estimator has the asymptotic
bias rK(x). This is due to the fact that the finite order series is an approximation to the unknown
regression function m(x), and this results in finite sample bias.

20.15 Undersmoothing

An unpleasant aspect about Theorem 20.9 is the bias term. An interesting trick is that this bias
term can be made asymptotically negligible if we assume that K increases with n at a suffi ciently
fast rate.

Theorem 20.10 Under Assumption 20.2, if in addition nδ∗2K → 0 then

√
n (m̂K(x)−m(x))

V
1/2
K (x)

d−→ N (0, 1) . (20.26)

The condition nδ∗2K → 0 implies that the squared bias converges faster than the estimation
variance, so the former is asymptotically negligible. If m(2)(x) is uniformly continuous, then a
suffi cient condition for polynomials and quadratic splines is that K ∼ n1/4. For linear splines a
suffi cient condition is for K to diverge faster than K1/4. The rate K ∼ n1/4 is somewhat faster
than the ISE-optimal rate K ∼ n1/5.

The assumption nδ∗2K → 0 is often stated by authors as an innocuous technical condition. This
is misleading as it is a technical trick and should be discussed explicitly. The reason why the
assumption eliminates the bias from (20.26) is that the assumption forces the estimation variance
to dominate the squared bias so that the latter can be ignored. This means that the estimator
itself is ineffi cient.

Because nδ∗2K → 0 means that K is larger than optimal, we say that m̂K(x) is undersmoothed
relative to the optimal series estimator.

Many authors like to focus their asymptotic theory on the assumptions in Theorem 20.10 as
the distribution (20.26) appears cleaner. However, it is a poor use of asymptotic theory. There are
three problems with the assumption nδ∗2K → 0 and the approximation (20.26). First, the estimator
m̂K(x) is ineffi cient. Second, while the assumption nδ∗2K → 0 makes the bias of lower order than the
variance, it only makes the bias of slightly lower order, meaning that the accuracy of the asymptotic
approximation is poor. Effectively, the estimator is still biased in finite samples. Third, nδ∗2K → 0
is an assumption, not a rule for empirical practice. It is unclear what the statement “Assume
nδ∗2K → 0”means in a practical application. From this viewpoint the difference between (20.24)
and (20.26) is in the assumptions, not in the actual reality nor in the actual empirical practice.
Eliminating a nuisance (the asymptotic bias) through an assumption is a trick, not a substantive
use of theory. My strong view is that the result (20.24) is more informative than (20.26). It shows
that the asymptotic distribution is normal but has a non-trivial finite sample bias.

20.16 Residuals and Regression Fit

The fitted regression at x = xi is m̂K(xi) = x′Kiβ̂K and the fitted residual is

êKi = yi − m̂K(xi).
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The leave-one-out prediction errors are

ẽKi = yi − m̂K,−i(xi)

= yi − x′Kiβ̂K,−i

where β̂K,−i is the least-squares coeffi cient with the i
th observation omitted. Using (3.45) we have

the simple computational formula

ẽKi = êKi(1− x′Ki
(
X ′KXK

)−1
xKi)

−1. (20.27)

As for kernel regression, the prediction errors ẽiK are better estimators of the errors than the
fitted residuals êKi, as the former do not have the tendency to over-fit when the number of series
terms is large.

20.17 Cross-Validation Model Selection

A common method for selection of the number of series terms K is cross-validation. The cross-
validation criterion is mean5 squared prediction errors

CV (K) =
1

n

n∑
i=1

ẽ2
Ki =

1

n

n∑
i=1

ê2
Ki(1− x′Ki

(
X ′KXK

)−1
xKi)

−2.

The CV-selected value of K is the integer which minimizes CV (K).
As shown in Theorem 19.6, CV (K) is an approximately unbiased estimator of the integrated

mean-squared error IMSE, which is the expected integrated squared error (ISE). The proof of the
result is the same for all nonparametric estimators (series as well as kernels) so does not need to
be repeated here. Therefore, finding the K which produces the smallest value of CV (K) is a good
indicator that the estimator m̂K(x) has small IMSE.

For practical implementation we first designate a set of models (sets of basis transformations
and number of variables K) over which to search. (For example, polynomials of order 1 through
Kmax for some pre-selected Kmax.) For each, there is a set of regressors xKi which are obtained
by transformations of the original variables xi. For each set, we estimate the regression by least-
squares, calculate the leave-one-out prediction errors and the CV criterion. Since the errors are a
linear operation this is a simple calculation. The CV-selected K is the integer which produces the
smallest value of CV (K). Plots of CV (K) against K can aid assessment and interpretation. Since
the model order K is an integer, the CV criterion for series regression is a discrete function, unlike
the case of kernel regression.

If it is desired to produce an estimator m̂K(x) with reduced bias it may be preferred to select
a value of K slightly higher than that selected by CV alone.

To illustrate, in Figure 20.7 we plot the cross-validation functions for the polynomial regression
estimates from Figure 20.1. The lowest point marks the polynomial order which minimizes the
cross-validation function. In panel (a) we plot the CV function for the sub-sample of white women.
Here we see that the CV-selected order is p = 3, a cubic polynomial. In panel (b) we plot the
CV function for the sub-sample of black women, and find that the CV-selected order is p = 2,
a quadratic. As expected from visual examination of Figure 20.1, the selected model is more
parsimonious for panel (b), most likely because it has a substantially smaller sample size. What
may be surprising is that even for panel (a), which has a large sample and smooth estimates, the
CV-selected model is still relatively parsimonious.

A user who desires a reduced bias estimator might increase the polynomial orders to p = 4 or
even p = 5 for the subsample of white women, and to p = 3 for the subsample of black women.
Both CV functions are relatively similar across these values.

5Some authors define CV (K) has the sum of squared prediction errors.
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Figure 20.7: Cross-Validation Functions for Polynomial Estimates of Experience Profile, College-
Educated Women

20.18 Selection Criterion

Some other selection criterion have been proposed. We now list several which are quite similar
to cross-validation but do require calculation of the leave-one-out prediction errors. In each, K
equals the number of estimated regression coeffi cients and σ̂2

K = n−1
∑n

i=1 ê
2
Ki.

Mallow’s criterion (Cp)

Mallows(K) = nσ̂2
K + 2σ2K.

The variance σ2 = E
(
e2
i

)
can be replaced by an estimator, typically from a first-stage regression.

Shibata’s criterion
Shibata(K) = nσ̂2

K + 2K.

Generalized cross-validation (GCV)

GCV (K) =
nσ̂2

K

(n−K)2 .

Akaike Information Criterion (AIC)

AIC(K) = n log
(
σ̂2
K

)
+ 2K.

Corrected AIC

AICc(K) = AIC(K) +
2K2 + 2K

n−K − 1
.

The Mallows criterion is an estimator of the MISE when the errors ei are conditionally ho-
moskedastic with variance σ2. The Shibata criterion replaces the unknown σ2 with the estimator
σ̂2
K . By a first-order Taylor series approximation, you can see that GCV is approximately equal
to the Shibata criterion. By taking logarithms, you can see that GCV is approximatly the AIC
criterion up to scale. The AICc criterion makes a finite sample correction.
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The number of series terms K can be selected by finding the value which minimizes any of the
above criterion. The technique is similar to cross-valiation. A set of models is selected. Each is
estimated, the residuals calculated and residual variance σ̂2

K . From this the above criterion are
simple calculations.

By a Taylor series approximation you can also show that under homoskedasticity the cross-
validation criterion CV (K) will be similar to the Shibata criterion. Thus when the errors are
homoskedastic the CV-selected K is typically similar to K selected by any of the above criterion.
Under heteroskedasticity, however, the methods can differ.

Since CV (K) does not require homoskedasticity as a justification, it is our generally preferred
method for selection ofK. The other methods are not preferred, but are computationally convenient
simplifications when CV (K) is inconvenient to calculate.

20.19 Variance and Standard Error Estimation

The exact conditional variance of the least squares estimator β̂K under independent sampling
is

V
β̂

=
(
X ′KXK

)−1

(
n∑
i=1

xKix
′
Kiσ

2(x)

)(
X ′KXK

)−1
. (20.28)

The exact conditional variance for the conditional mean estimator m̂K(x) = xK(x)′β̂K is

VK(x) = xK(x)′
(
X ′KXK

)−1

(
n∑
i=1

xKix
′
Kiσ

2(x)

)(
X ′KXK

)−1
xK(x).

Using the notation of Section 20.7 this equals

1

n2

n∑
i=1

ŵK(x, xi)
2σ2(x).

In the case of conditional homoskedasticity the latter simplifies to

1

n
ŵK(x, x)σ2 ' 1

n
ζK(x)2σ2.

where ζK(x) is the normalized regressor length defined in (20.14). Under conditional heteroskedas-
ticty but large samples with K large (so that ŵK(x, xi) is a local kernel) it approximately equals

1

n
wK(x, x)σ2(x) =

1

n
ζK(x)2σ2(x).

In either case, we find that the variance is approximately

VK(x) ' 1

n
ζK(x)2σ2(x).

This shows that the variance of the series regression estimator is a scale of ζK(x)2 and the conditional
variance. From the plot of ζK(x) shown in Figure 20.5 we can deduce that the series regression
estimator will be relatively imprecise at the boundary of the support of xi.

The estimator of (20.28) recommended by Andrews (1991a) is

V̂
β̂

=
(
X ′KXK

)−1

(
n∑
i=1

xKix
′
Kiẽ

2
Ki

)(
X ′KXK

)−1 (20.29)

where ẽKi is the leave-one-out prediction error (20.27). This is the HC3 estimator. An alternative
is to replace ẽKi with the least-squares residuals êKi and then multiply by a degree-of-freedom
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adjustment, which is the HC1 covariance estimator. These estimators are the same as used in
parametric regression.

Given (20.29), a variance estimator for the conditional mean estimator m̂K(x) = xK(x)′β̂K is

V̂K(x) = xK(x)′
(
X ′KXK

)−1

(
n∑
i=1

xKix
′
Kiẽ

2
Ki

)(
X ′KXK

)−1
xK(x). (20.30)

A standard error for m̂(x) is its square root.

20.20 Clustered Observations

Clustered observations take the form (yig, xig) for individuals i = 1, ..., ng in cluster g = 1, ..., G.
The model is

yig = m (xig) + eig

E (eig |Xg) = 0

where Xg is the stacked xig. Stack yig and eig into cluster-level variables yg and eg.
The series regression model using cluster-level notation is

yg = XgβK + eKg.

We can write the series estimator as

β̂K =

 G∑
g=1

X ′gXg

−1 G∑
g=1

X ′gyg

 .

The cluster-level residual vector is êg = yg −Xgβ̂K .
As for parametric regression with clustered observations, the standard assumption is that the

clusters are mutually independent, but dependence within each cluster is unstructured. We there-
fore use the same variance formulae as used for parametric regression. The standard estimator
is

V̂
CR1

β̂ =

(
G

G− 1

)(
X ′KXK

)−1

 G∑
g=1

X ′gêgê
′
gXg

(X ′KXK

)−1
.

An alternative is to use the delete-cluster prediction error

ẽg = yg −Xgβ̃K,−g

β̃K,−g =

∑
j 6=g

X ′jXj

−1∑
j 6=g

X ′jyj


leading to the estimator

V̂
CR3

β̂ =
(
X ′KXK

)−1

 G∑
g=1

X ′gẽgẽ
′
gXg

(X ′KXK

)−1
.

There is no current theory on how to select the number of series terms K for clustered obser-
vations. A reasonable choice is the delete-cluster cross-validation criterion, which is

CV (K) =
1

n

G∑
g=1

ẽ′gẽg.

The delete-cluster choice for K is the value which minimizes CV (K).
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20.21 Confidence Bands

When displaying nonparametric estimators such as m̂K(x) it is customary to display confidence
intervals. An asymptotic pointwise 95% confidence interval for m(x) is

m̂K(x)± 1.96V̂
1/2
K (x).

These confidence intervals can be plotted along with m̂K(x).
To illustrate, Figure 20.8 plots polynomial estimates of the regression of log(wage) on experience

using the selected estimates from Figure 20.1, plus 95% confidence bands. Panel (a) plots the
estimate for the subsample of white women using p = 5. Panel (b) plots the estimate for the
subsample of black women using p = 3. The standard errors are calculated using the formula
(20.30). You can see that the confidence bands widen at the boundaries. The confidence bands are
tight for the larger subsample of white women, and significantly wider for the smaller subsample
of black women. Regardless, both plots indicate that the average wage rises for experience levels
up to about 20 years, and then flattens for experience levels above 20 years.
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Figure 20.8: 95% Confidence Bands for Polynomial Estimates, College-Educated Women

There are two deficiencies with these confidence bands. First, they do not take into account the
bias rK(x) of the series estimator. Consequently, we should interpret the confidence bounds as valid
for the pseudo-true regression (the best finite K approximation) rather than the true regression
function m(x). Second, the above confidence intervals are based on a pointwise (in x) asymptotic
distribution theory. Consequently we should interpret there coverage as having pointwise validity,
and be cautious about interpreting global shapes from the confidence bands.

20.22 Uniform Approximations

Since m̂K(x) is a function it is desirable to have a distribution theory which applies to the entire
function, not just the estimator at a point. This can be used, for example, to construct confidence
bands with uniform (in x) coverage properties.

For those familiar with empirical process theory, it might be hoped that the stochastic process

ηK(x) =

√
n (m̂K(x)−m(x))

V
1/2
K (x)
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might converge to a stochastic (Gaussian) process, but this is not the case. Effectively, the process
ηK(x) is not asymptotically stochastically equicontinuous so conventional empirical process theory
does not apply.

To develop a uniform theory, Belloni, Chernozhukov, Chetverikov, and Kato (2015) have in-
troduced what are known as strong approximations. Their method shows that ηK(x) is equal in
distribution to a sequence of Gaussian processes plus a negligible error. Their theory (Theorem
4.4) takes the following form. Under stronger conditions than Assumption 20.2

ηK(x) =d
xK(x)′

(
Q−1
K ΩKQ

−1
K

)1/2
V

1/2
K (x)

GK + op(1)

uniformly in x, where “=d”means “equality in distribution and GK ∼ N (0, IK).
This shows the distributional result in Theorem 20.10 can be interpreted as holding uniformly in

x. It can also be used to develop confidence bands (different from those from the previous section)
with asymptotic uniform coverage.

20.23 Partially Linear Model

A common use of a series regression is to allow m(x) to be nonparametric with respect to one
variable, yet linear in the other variables. This allows flexibility in a particular variable of interest.
A partially linear model with vector-valued regressor x1 and real-valued continuous x2 takes the
form

m (x1, x2) = x′1β1 +m2(x2).

This model is commonly used when x1 are discrete (e.g. binary variables) and x2 is continuously
distributed.

Series methods are particularly convenient for estimation of partially linear models, as we can
replace the unknown function m2(x2) with a series expansion to obtain

m (x) ' mK (x)

= x′1β1 + x2K(x)′β2K

= x′KβK

where x2K = x2K(x2) are the basis transformations of x2 (typically polynomials or splines) and
β2K are coeffi cients. After transformation the regressors are xK = (x′1,x

′
2K). and the coeffi cients

are βK = (β′1,β
′
2K)′.

20.24 Panel Fixed Effects

The one-way error components nonparametric regression model is

yit = m(xit) + ui + εit

for i = 1, ..., N and t = 1, ..., T . It is standard to treat the individual effect ui as a fixed effect. This
model can be interpreted as a special case of the partially linear model from the previous section,
though the dimension of ui is increasing with N .

A series estimator approximates the function m(x) with mK(x) = xK(x)′βK as in (20.4). This
leads to the series regression model

yit = x′KitβK + ui + εKit

where xKit = xK(xit).
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The fixed effects estimator is the same as in linear panel data regression. First, the within
transformation is applied to yit and the elements of the basis transformations xKit. This is

ẏit = yit − yi
ẋKit = xKit − xKit.

The transformed regression equation is

ẏit = ẋ′KitβK + ε̇Kit.

What is important about the within transformation for the regressors is that it is applied to the
transformed variables xKit, not the original regressor xit. For example, in a polynomial regression
the within transformation is applied to the powers xjit. It is inappropriate to first apply the within
transformation to xit and then construct the basis transformations.

The coeffi cient is estimated by least-squares on the within transformed variables

β̂K =

(
n∑
i=1

T∑
t=1

ẋKitẋ
′
Kit

)−1( n∑
i=1

T∑
t=1

ẋKitẏit

)
.

Variance estimators should be calculated using the clustered variance formulas, clustered at the
level of the individual i, as described in Section 20.20.

For selection of the number of series terms K there is no current theory. A reasonable method
is to use delete-cluster cross-validation as described in Section 20.20.

20.25 Multiple Regressors

Suppose x ∈ Rd is vector-valued and continuously distributed. A multivariate series approx-
imation can be obtained as follows. Construct a set of basis transformations for each variable
separately. Then take their tensor cross-products. Use these as regressors. For example, a pth-
order polynomial is

mK(x) = β0 +

p∑
j1=1

· · ·
p∑

jd=1

xj11 · · ·x
jd
d βj1,...,jdK .

This includes all powers and cross-products. The coeffi cient vector has dimension K = 1 + pd.
The inclusion of cross-products greatly increases the number of coeffi cients relative to the uni-

variate case. Consequently series applications with multiple regressors typically require large sample
sizes.

20.26 Additively Separable Models

As discussed in the previous section, when x ∈ Rd a full series expansion requires a large number
of coeffi cients, which means that estimation precision will be low unless the sample size is quite
large. A common simplification is to treat the regression function m (x) as additively separable in
the individual regressors. This means that

m (x) = m1 (x1) +m2 (x2) + · · ·+md (xd) .

We then apply series expansions (polynomials or splines) separately for each componentmj (xj) .
Essentially, this is the same as the expansions discussed in the previous section, but omitted all the
interaction terms.

The advantage of additive separability is the reduction in dimensionality. While an uncon-
strained pth order polynomial has 1 + pd coeffi cients, an additively separable polynomial model has
only 1 + dp coeffi cients. This is a major reduction.
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The disadvantage of additive separability is that the interaction effects have been eliminated.
This is a substantive restriction on m (x).

The decision to impose additive separability can be based on an economic model which suggests
the absence of interaction effects, or can be a model selection decision similar to the selection of
the number of series terms.

20.27 Nonparametric Instrumental Variables Regression

The basic nonparametric instrumental variables (NPIV) model takes the form

yi = m(xi) + ei (20.31)

E (ei | zi) = 0

where yi, xi and zi are real valued. Here, zi is an instrumental variable and xi is an endogenous
regressor.

In recent years there have been many papers in the econometrics literature examining the NPIV
model, exploring identification, estimation, and inference. Many of these papers are mathematically
advanced. Two important and accessible contributions are Newey and Powell (1993) and Horowitz
(2011). Here we describe some of the primary results.

A series estimator approximates the function m(x) with mK(x) = xK(x)′βK as in (20.4). This
leads to the series structural equation

yi = x′KiβK + eKi (20.32)

where xKi = xK(xi). For example, if a polynomial basis is used then xKi = (1, xi, ..., x
K−1
i ).

Since xi is endogenous so is the entire vector xKi. Thus we need at least K instrumental
varibles. It is useful to consider the reduced form equation for xi. A nonparametric specification is

xi = g(zi) + ui

E (ui | zi) = 0.

We can appropriate g(z) by the series expansion

g(z) ' gL(z) = zL(z)′γL

where zL(z) is an L × 1 vector of basis transformations and γL is an L × 1 coeffi cient vector.
For example, if a polynomial basis is used then zLi = (1, zi, ..., z

L−1
i ). Most of the literature for

simplicity focuses on the case L = K, but this is not essential to the method.
If L ≥ K we can then use zLi = zL(zi) as instruments for xKi. The 2SLS estimator β̂K,L of

βK is

β̂K,L =
(
X ′KZL

(
Z ′LZL

)−1
Z ′LXK

)−1 (
X ′KZL

(
Z ′LZL

)−1
Z ′Ly

)
.

The estimator of m(x) is m̂K(x) = xK(x)′β̂K,L. If L > K the linear GMM estimator can be
similarly defined.

One way to think about the choice of instruments is to realize that we are actually estimating
reduced form equations for each element of xKi. Thus the reduced form system is

xKi = Γ′KzLi + uKi

ΓK = E
(
zLiz

′
Li

)−1 E
(
zLix

′
Ki

)
.

For example, suppose we use a polynomial basis with K = L = 3. Then the reduced form system
(ignoring intercepts) is  xi

x2
i

x3

 =

 Γ11 Γ21 Γ31

Γ12 Γ22 Γ32

Γ13 Γ13 Γ23

 zi
z2
i

z3
i

+

 u1i

u2i

u3i

 . (20.33)
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This is modeling the conditional mean of xi, x2
i and x

3
i as linear functions of zi, z

2
i and z

3
i .

To understand if the coeffi cient βK is identified, it is useful to consider the simple reduced form
equation xi = γ0 + γ1zi + ui. Assume that γ1 6= 0 so that the equation is strongly identified and
assume for simplicity that ui is independent of zi with mean zero and variance σ2

u. The identification
properties of the reduced form are invariant to rescaling and recentering xi and zi so without loss
of generality we can set γ0 = 0 and γ1 = 1. Then we can calculate that the coeffi cient matrix in
(20.33) is  Γ11 Γ21 Γ31

Γ12 Γ22 Γ32

Γ13 Γ13 Γ23

 =

 1 0 0
0 1 0

3σ2
u 0 1

 .
Notice that this is lower triangular and full rank. It turns out that this property holds for any values
of K = L so the coeffi cient matrix in (20.33) is full rank for any choice of K = L. This means that
identification of the coeffi cient βK is strong if the reduced form equation for xi is strong. Thus to
check the identification condition for βK it is suffi cient to check the reduced form equation for xi.
A critically important caveat, however, as discussed in the following section, is that identification
of βK does not mean that the structural function m(x) is identified.

A simple method for pointwise inference is to use conventional methods to estimate VK,L =

var
(
β̂K,L

)
and then estimate var (m̂K(x)) by xK(x)′V̂K,L xK(x) as in series regression. Bootstrap

methods are typically advocated to achieve better coverage. See Horowitz (2011) for details. For
state-of-the-art inference methods see Chen and Pouzo (2015) and Chen and Christensen (2018).

20.28 NPIV Identification

In the previous section we discussed identication of the pseudo-true coeffi cient βK . In this
section we discuss identification of the structural function m(x). This is considerably more chal-
lenging.

To understand how the functionm(x) is determined, apply the expectation operator E (· | zi = z)
to (20.31). We find

E (yi | zi = z) = E (m(xi) | zi = z)

with the remainder equal to zero because E (ei | zi) = 0. We can write this equation as

µ(z) =

∫
m(x)f (x|z) dx (20.34)

where µ(z) = E (yi | zi = z) is the conditional mean of yi given zi = z and f (x|z) is the conditional
density of xi given zi. These two functions are identified6 from the joint distribution of (yi, xi, zi).
This means that the unknown function m(x) is the solution to the integral equation (20.34).
Conceptually, you can imagine estimating µ(z) and f (x|z) using standard techniques, and then
finding the solution m(x). In essence, this is how m(x) is defined, and is the nonparametric analog
of the classical relationship between the structural and reduced forms.

Unfortunately the solution m(x) may not be unique, even in situations where a linear IV model
is strongly identified. It is related to what is known as the ill-posed inverse problem. The
latter means that the solution m(x) is not necessarily a continuous function of µ(z). Identification
requires restricting the class of allowable functions f (x|z). This is analogous to the linear IV
model, where identification requires restrictions on the reduced form equations, but specifying and
understanding the needed restrictions is more subtle than in the linear case.

The function m(x) is identified if it is the unique solution to (20.34). Equivalently, m(x) is not
identified if we can replace m(x) in (20.34) with m(x) + δ(x) for some non-trivial function δ(x) yet

6Technically, if E |yi| <∞, the joint density of (zi, xi) exists, and the marginal density of zi is positive.
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the solution does not change. The latter occurs when∫
δ(x)f (x|z) dx = 0 (20.35)

for all z. Equivalently, m(x) is identified if (and only if) (20.35) holds only for the trivial function
δ(x) = 0.

Newey and Powell (1993) defined this fundamental condition as completeness.

Proposition 20.1 (Completeness) m(x) is identified if (and only if) the
completeness condition holds: (20.35) for all z implies δ(x) = 0.

Completeness is a property of the reduced form conditional density f (x|z). It is unaffected by
the structural equation m(x). This is analogous to the linear IV model, where identification is a
property of the reduced form equations, not a property of the structural equation.

As we stated above, completeness may not be satisfied even if the reduced form relationship is
strong. This may be easiest to see by a constructed example7. Suppose that the reduced form is

xi = zi + ui,

var (zi) = 1, ui is independent of zi, and ui is distributed U [−1, 1]. This reduced form equation has
R2 = 0.75 so is strong. The reduced form conditional density is f (x|z) = 1/2 on [−1 + z, 1 + z].
Consider δ(x) = sin (x/π). We calculate that∫

δ(x)f (x|z) dx =

∫ 1+z

−1+z
sin (x/π) dx = 0

for every z, since sin (x/π) is periodic on intervals of length 2 and integrates to zero over [−1, 1].
This means that equation (20.34) holds8 for m(x) + sin(x/π). Thus m(x) is not identified. This is
despite the fact that the reduced form equation is strong.

While identification fails for some conditional distributions f (x|z), it does not fail for all distri-
butions. Andrews (2017) provides classes of distributions which satisfy the completeness condition
and shows that these distribution classes are quite general.

What does this mean in practice? If completeness fails, then the structural equation is not iden-
tified and cannot be consistently estimated. Furthermore, by analogy with the weak instruments
literature, we expect that if the conditional distribution is close to incomplete, then the structural
equation will be poorly identified and our estimators will be imprecise. Since whether or not the
conditional distribution is complete is unknown (and more diffi cult to assess than in the linear
model) this is very troubling for empirical research. Effectively, in any given application we do not
know whether or not the structural function m(x) is identified.

A partial answer is provided by Freyberger (2017). He shows that while the hypothesis of
incompleteness cannot be tested, the joint hypothesis of incompleteness and small asymptotic bias
can be tested. By applying the test proposed in Freyberger (2017), a user can obtain evidence
that their NPIV estimator is well-behaved in the sense of having low bias. Unlike Stock and Yogo
(2005), however, Freyberger’s result does not address inference.

7This example was suggested by Joachim Freyberger.
8 In fact, (20.35) holds for m(x)+δ(x) for any function δ(x) which is periodic on intervals of legnth 2 and integrates

to zero on [−1, 1].
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20.29 NPIV Convergence Rate

As described in Horowitz (2011), the convergence rate of m̂K(x) for m(x) is

|m̂K(x)−m(x)| = Op

(
K−s +Kr

(
K

n

)1/2
)

(20.36)

where s is the smoothness9 of m(x) and r is the smoothness of the joint density fxz(x, z) of (xi, zi).
The first term K−s is the bias due to the approximation of m(x) by mK(x) and takes the same
form as for series regression. The second term Kr (K/n)1/2 is the standard deviation of m̂K(x).
The component (K/n)1/2 is the same as for series regression. The extra component Kr is due to
the ill-posed inverse problem (see the previous section).

From the rate (20.36) we can calculate that the optimal number of series terms is K ∼
n1/(2r+2s+1). Given this rate the best possible convergence rate in (20.36) is Op

(
n−s/(2r+2s+1)

)
.

For r > 0 these rates are slower than for series regression. If we consider the case s = 2, these rates
are K ∼ n1/(2r+5) and Op

(
n−2/(2r+5)

)
, which are slower than the K ∼ n1/5 and Op

(
n−2/5

)
rates

obtained by series regression.
A very unusual aspect of the rate (20.36) is that smoothness of fxz(x, z) adversely affects the

convergence rate. Larger r means a slower rate of convergence. The limiting case as r → ∞
(for example, joint normality of x and z) results in a logarithmic convergence rate. This seems
very strange. The reason is that when the density fxz(x, z) is very smooth the data contain little
information about the function m(x). This is not intuitive, and requires a deeper mathematical
treatment.

A practical implication of the convergence rate (20.36) is that the number of series terms K
should be much smaller than for regression estimation. Estimation variance increases quickly as K
increases. Therefore K should not be taken to be too large. In practice, however, it is unclear how
to select the series order K as standard cross-validation methods do not apply.

20.30 Nonparametric vs Parametric Identification

One of the insights from the nonparametric identification literature is that it is important to
understand which features of a model are nonparametrically identified, meaning that that are iden-
tified without functional form assumptions, and which are only identified based on functional form
assumptions. Since functional form assumptions are dubious in most economic applications, the
strong implication is that researchers should strive to work only with models which are nonpara-
metrically identified.

Even if a model is determined to be nonparametrically identified a researcher may estimate
a linear (or another simple parametric) model. This is valid because it can be viewed as an
approximation to the nonparametric structure. If, however, the model is identified only under the
parametric assumption, then it cannot be viewed as an approximation, and it is unclear how to
interpret the model more broadly.

For example, in the regression model

yi = m(xi) + ei

E (ei | xi) = 0

the conditional mean is nonparametrically identified by Theorem 2.14. This means that researchers
who estimate linear regressions (or other low-dimensional regressions) can interpret their estimated
model as an approximation to the underlying conditional mean function.

9The number of bounded derivatives.
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As another example, in the NPIV model

yi = m(xi) + ei

E (ei | zi) = 0

the structural function m(x) is identified under the completeness condition. This means that
researchers who estimate linear 2SLS regressions can interpret their estimated model as an approx-
imation to m(x) (subject to the caveat that it is diffi cult to know if completeness holds).

But the analysis can also point out simple yet subtle mistakes. Take the simple IV model with
one exogenous regressor x1i and one endogenous regressor x2i

yi = β0 + β1x1i + β2x2i + ei (20.37)

E (ei | x1i) = 0

with no additional instruments. Suppose that an enterprising researcher suggests using the instru-
ment x2

1i for x2i, using the reasoning that the assumptions impliy that E
(
x2

1iei
)

= 0 so x2
1i is a

valid instrument. The trouble is that the basic model is not nonparametrically identified. If we
write (20.37) as a partially linear nonparametric IV problem

yi = m(x1i) + β2x2i + ei (20.38)

E (ei | x1i) = 0

then we can see that this model is not identified. We need a valid excluded instrument zi. Since
(20.38) is not identified, then (20.37) cannot be viewed as a valid approximation. The apparent
identification of (20.37) critically rests on the (unknown) truth of the linearity in (20.37).

The point of this example is that (20.37) should never be estimated by 2SLS using the instrument
x2

1i for x2i, fundamentally because the nonparametric model (20.38) is not identified.
Another way to describe the mistake is to observe that x2

1i is a valid instrument in (20.37) only
if it is a valid exclusion restriction from the structural equation (20.37). Viewed in the context of
(20.38) we can see that this is a functional form restriction. As stated above, identification based
on functional form restrictions alone is highly undesirable since functional form assumptions are
dubious.

20.31 Example: Angrist and Lavy (1999)

To illustrate nonparametric instrumental variables in practice, we follow Horowitz (2011) by
extending the empirical work reported in Angrist and Lavy (1999). Their paper is concerned with
measuring the causal effect of the number of students in an elementary school classroom on academic
achievement. They address this using a sample of 4067 Israeli 4th and 5th grade classrooms. The
dependent variable is the classroom average score on an achievement test. Here we consider the
reading score avgverb, and consider the mathematics score in Exercise 20.17. The explanatory
variables are the number of students in the classroom (classize), the number of students in the
grade at the school (enrollment), and a school-level index of students’socioeconomic status that
the authors call percent disadvantaged. The variables enrollment and disadvantaged are treated
as exogenous, but classize is treated as endogenous since wealthier schools may be able to offer
smaller class sizes.

The authors suggest the following instrumental variable for class size. Israeli regulations specify
that class sizes must be capped at 40. This means that classize should be perfectly predictable from
enrollment. If the regulation is followed, a school with up to 40 students will have one classrrom
in the grade, schools with 41-80 students will have two classrooms, etc. The precise prediction is
that class size should be

p =
enrollment

1 + int[1 + enrollment/40]
(20.39)
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where int[a] is the integer part of a. Angrist and Lavy therefore suggest using p as an instrumental
variable for classize.

They estimate several specifications. We focus on equation (6) from their Table VII, which
specifies avgverb as a linear function of classize, disadvantaged, enrollment, Grade4, and the inter-
action of classize and disadvantaged, where Grade4 is a dummy indicator for 4th grade classrooms.
The equation is estimated by instrumental variables, using p and p∗disadvantaged as instruments.
The observations are treated as clustered at the level of the school. Their estimates show a negative
and statistically significant impact of class size on reading test scores.

We are interested in a nonparametric version of their equation. To keep the specification
reasonably parsimonious yet flexible we use the following equation.

avgverb = β1

(
classize

40

)
+ β2

(
classize

40

)2

+ β3

(
classize

40

)3

+ β4

(
disadvantaged

14

)
+ β5

(
disadvantaged

14

)2

+ β6

(
disadvantaged

14

)3

+ β7

(
classize

40

)(
disadvantaged

14

)
+ β8enrollment+ β9Grade4 + β10 + e.

This is a cubic equation in classize and disadvantaged, with a single interaction term, and linear in
enrollment and Grade4. The cubic in disadvantaged was selected by a delete-cluster cross-validation
regression without classize. The cubic in classize was selected to allow for a minimal degree of
nonparametric flexibility without overparameterization. The variables classize and disadvantaged
were scaled by 40 and 14, respectively, so that the regression is well conditioned. The scaling for
classize was selected so that the variable essentially falls in [0, 1], and the scaling for disadvantaged
was selected so that its mean is 1.

Table 20.1: Nonparametric Instrumental Variable Regression for Reading Test Score

classize/40 34.2
(33.4)

(classize/40)2 −61.2
(53.0)

(classize/40)3 29.0
(26.8)

disadvantaged/14 −12.4
(1.7)

(disadvantaged/14)2 3.33
(0.54)

(disadvantaged/14)3 −0.377
(0.078)

(classize/40)(disadvantaged/14) 0.81
(1.77)

enrollment 0.015
(0.007)

Grade 4 −1.96
(0.16)

Intercept 77.0
(6.9)

The equation is estimated by just-identified 2SLS, using (p/40), (p/40)2, (p/40)3 and (p/40) ∗
(disadvantaged/14) as instruments for the four variables involving classize. The parameter esti-
mates are reported in Table 20.1. The standard errors are clustered at the level of the school. Most
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of the individual coeffi cients do not have interpretable meaning, except the positive coeffi cient on
enrollment shows that larger schools achieve slightly higher testscores, and the negative coeffi cient
on Grade4 shows that 4th grade students have somewhat lower testscores than 5th grade students.
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Figure 20.9: Nonparametric Instrumental Variables Estimates of the Effect of Classize and Disad-
vantaged on Reading Test Scores

To obtain a better interpretation of the results we display the estimated regression functions
in Figure 20.9. Panel (a) displays the estimated effect of classize on reading test scores. Panel (b)
displays the estimated effect of percent disadvantaged. In both figures the other variables are set
at their sample means10.

In panel (a) we can see that increasing class size decreases the average test score. This is
consistent with the results from the linear model estimated by Angrist and Lavy (1999). The
estimated effect is remarkably close to linear. However, the relationship is not precisely estimated,
as the pointwise confidence bands are wide.

In panel (b) we can see that increasing the percentage of disadvantaged students greatly de-
creases the average test score. This effect is substantially greater in magnitude than the effect of
class size. The effect also appears to be nonlinear. The effect is quite precisely estimated, with
tight pointwise confidence bands.

We can also use the estimated model for hypothesis testing. The question addressed by Angrist
and Lavy was whether or not class size has an effect on test scores. Within the nonparametric model
estimated here, this hypothesis holds under the linear restriction H0 : β1 = β2 = β3 = β7 = 0.
Examining the individual coeffi cient estimates and standard errors, it is unclear if this is a significant
effect as none of these four coeffi cient estimates is statistically different from zero. This hypothesis
is better tested by a Wald test (using cluster-robust variance estimates). This statistic is 12.7 which
has an asymptotic p-value of 0.013. This appears to suppport the hypothesis that class size has
negative effect on student performance.

We can also use the model to quantify the impact of class size on test scores. Consider the
impact of increasing a class from 20 to 40 students. In the above model the predicted impact on
test scores is

θ =
1

2
β1 +

3

4
β2 +

7

8
β3 +

1

2
β4.

This is a linear function of the coeffi cients. The point estimate is θ̂ = −2.96 with a standard error
10 If they are set at other values it does not change the qualitative nature of the plots.



CHAPTER 20. SERIES REGRESSION 748

of 1.21. (The point estimate is identical to the difference between the endpoints of the estimated
function shown in panel (a).) This is a small but substantive impact.

20.32 Technical Proofs*

Proof of Theorem 20.4. We provide a proof under the stronger rate assumption ζ2
KK/n → 0.

(The proof presented by Belloni, Chernozhukov, Chetverikov, and Kato (2015) requires a more
advanced treatment.) Let ‖A‖F denote the Frobenius norm (see Section A.23), and write the jth

element of x̃Ki as x̃jKi. Using (A.17),∥∥∥Q̃K − IK
∥∥∥2

2
≤
∥∥∥Q̃K − IK

∥∥∥2

F
=

K∑
j=1

K∑
`=1

(
1

n

n∑
i=1

(x̃jKix̃`Ki − E (x̃jKix̃`Ki))

)2

.

Then

E
(∥∥∥Q̃K − IK

∥∥∥2

2

)
≤

K∑
j=1

K∑
`=1

var

(
1

n

n∑
i=1

x̃jKix̃`Ki

)

=
1

n

K∑
j=1

K∑
`=1

var (x̃jKix̃`Ki)

≤ 1

n
E

 K∑
j=1

x̃2
jKi

K∑
`=1

x̃2
`Ki


=

1

n
E
((
x̃′Kix̃Ki

)2)
≤ ζ2

K

n
E
(
x̃′Kix̃Ki

)
=
ζ2
KK

n
−→ 0

where final three lines use (20.16), E
(
x̃′Kix̃Ki

)
= K, and ζ2

KK/n→ 0. Markov’s inequality implies
(20.18). �

Proof of Theorem 20.5. By the spectral decomposition we can write Q̃K = H ′ΛH where
H ′H = IK and Λ = diag (λ1, ..., λK) are the eigenvalues. Then∥∥∥Q̃K − IK

∥∥∥
2

=
∥∥H ′ (Λ− IK)H

∥∥
2

= ‖Λ− IK‖2 = max
j≤K
|λj − 1| p−→ 0

by Theorem 20.4. This implies
min
j≤K
|λj |

p−→ 1

which is (20.20). Similarly ∥∥∥Q̃−1

K − IK
∥∥∥

2
=
∥∥H ′ (Λ−1 − IK

)
H
∥∥

2

=
∥∥Λ−1 − IK

∥∥
2

= max
j≤K

∣∣∣λ−1
j − 1

∣∣∣
≤ maxj≤K |1− λj |

minj≤K |λj |
p−→ 0.
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�

Proof of Theorem 20.6. Using (20.12) we can write

m̂K(x)−m(x) = xK(x)′
(
β̂K − βK

)
− rK(x). (20.40)

Since eKi = rKi+ei is a projection error, it satisfies E (xKieKi) = 0. Since ei is a regression error it
satisfies E (xKiei) = 0. We deduce E (xKirKi) = 0. Hence

∫
xK(x)rK(x)f(x)dx = E (xKirKi) = 0.

Also observe that
∫
xK(x)xK(x)′dF (x) = QK and

∫
rK(x)2dF (x) = E

(
r2
Ki

)
= δ2

K . Then

ISE(K) =

∫ (
xK(x)′

(
β̂K − βK

)
− rK(x)

)2
dF (x)

=
(
β̂K − βK

)′(∫
xK(x)xK(x)′dF (x)

)(
β̂K − βK

)
− 2

(
β̂K − βK

)′(∫
xK(x)rK(x)dF (x)

)
+

∫
rK(x)2dF (x)

=
(
β̂K − βK

)′
QK

(
β̂K − βK

)
+ δ2

K . (20.41)

We calculate that(
β̂K − βK

)′
QK

(
β̂K − βK

)
=
(
e′KXK

) (
X ′KXK

)−1
QK

(
X ′KXK

)−1 (
X ′KeK

)
=
(
e′KX̃K

)(
X̃
′
KX̃K

)−1 (
X̃
′
KX̃K

)−1 (
X̃
′
KeK

)
= n−2

(
e′KX̃K

)
Q̃
−1

K Q̃
−1

K

(
X̃
′
KeK

)
≤
(
λmax

(
Q̃
−1

K

))2 (
n−2e′KX̃KX̃

′
KeK

)
≤ Op(1)

(
n−2e′KXKQ

−1
K X

′
KeK

)
(20.42)

where X̃K and Q̃K are the orthogonalized regressors as defined in (20.17). The first inequality is
the Quadratic Inequality (B.16), the second is (20.20).

Using the fact that xKieKi are mean zero and uncorrelated, (20.16), E
(
e2
Ki

)
≤ E

(
y2
i

)
<∞ and

Assumption 20.1.2

E
(
n−2e′KXKQ

−1
K X

′
KeK

)
= n−1E

(
x′KiQ

−1
K xKie

2
Ki

)
(20.43)

≤ ζ2
K

n
E
(
e2
Ki

)
≤ o(1).

This shows that (20.42) is op(1). Combined with (20.41) we find ISE(K) = op(1) as claimed. �

Proof of Theorem 20.7. The assumption σ2 (x) ≤ σ2 implies that

E
(
e2
Ki|xi

)
= E

(
(rKi + ei)

2 |xi
)

= r2
Ki + σ2(xi) ≤ r2

Ki + σ2.

Thus (20.43) is bounded by

n−1E
(
x′KiQ

−1
K xKir

2
Ki

)
+ n−1E

(
x′KiQ

−1
K xKi

)
σ2 ≤ ζ2

K

n
E
(
r2
Ki

)
+ n−1E tr

(
Q−1
K xKix

′
Ki

)
σ2

=
ζ2
K

n
δ2
K + n−1E tr (IK)σ2

≤ o
(
δ2
K

)
+
K

n
σ2
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where the inequality is Assumption 20.1.2. This implies (20.42) is op
(
δ2
K

)
+Op (K/n). Combined

with (20.41) we find ISE(K) = Op
(
δ2
K +K/n

)
as claimed. �

Proof of Theorem 20.8. Using (20.12) and linearity

θ = a (m)

= a
(
zK(x)′βK

)
+ a (rK)

= a′KβK + a (rK) .

Thus √
n

VK

(
θ̂K − θ + a (rK)

)
=

√
n

VK
a′K

(
β̂K − βK

)
=

√
1

nVK
a′KQ̂

−1

K X
′
KeK

=
1√
nVK

a′KQ
−1
K X

′
Ke (20.44)

+
1√
nVK

a′K

(
Q̂
−1

K −Q−1
K

)
X ′Ke (20.45)

+
1√
nVK

a′KQ̂
−1

K X
′
KrK . (20.46)

where we have used eK = e+ rK . We now take the terms in (20.44)-(20.46) separately. We show
that (20.44) is asymptotically normal and (20.45)-(20.46) are asymptotically negligible.

First, take (20.44). We can write

1√
nVK

a′KQ
−1
K X

′
Ke =

1√
n

n∑
i=1

1√
VK
a′KQ

−1
K xKiei. (20.47)

Observe that a′KQ
−1
K xKiei/

√
VK are independent across i, mean zero, and have variance 1. We

will apply Theorem 6.12, for which it is suffi cient to verify Lindeberg’s condition: for all ε > 0

E

((
a′KQ

−1
K xKiei

)2
VK

1

((
a′KQ

−1
K xKiei

)2
VK

≥ nε
))
→ 0. (20.48)

Pick η > 0. Set B suffi ciently large so that E
(
e2
i1
(
e2
i > B

)
|xi
)
≤ σ2η which is feasible by

Assumption 20.2.1. Pick n suffi ciently large so that ζ2
K/n ≤ εσ2/B, which is feasible under As-

sumption 20.1.2.
By Assumption 20.2.2

VK = E
((
a′KQ

−1
K xKi

)2
e2
i

)
= E

((
a′KQ

−1
K xKi

)2
σ(x2

i )
)

≥ E
((
a′KQ

−1
K xKi

)2
σ2
)

= a′KQ
−1
K E

(
xKix

′
Ki

)
Q−1
K aKσ

2

= a′KQ
−1
K aKσ

2. (20.49)

Then by the Schwarz Inequality, (20.16), (20.49), and ζ2
K/n ≤ εσ2/B(

a′KQ
−1
K xKi

)2
VK

≤
(
a′KQ

−1
K aK

) (
x′KiQ

−1
K xKi

)
VK

≤ ζ2
K

σ2
≤ ε

B
n.
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Then the left-side of (20.48) is smaller than

E

((
a′KQ

−1
K xKi

)2
VK

e2
i1
(
e2
i ≥ B

))
= E

((
a′KQ

−1
K xKi

)2
VK

E
(
e2
i1
(
e2
i ≥ B

)
|xi
))

≤ E
((
a′KQ

−1
K xKi

)2
VK

)
σ2η

≤ a
′
KQ

−1
K aK
VK

σ2η

≤ η

the final inequality by (20.49). Since η is arbitrary this verifies (20.48) and we conclude

1√
nVK

a′KQ
−1
K X

′
Ke

d−→ N (0, 1) . (20.50)

Second, take (20.45). Assumption 20.2 implies E
(
e2
i |xi

)
≤ σ̄2 < ∞. Since E (e |X) = 0, then

applying E
(
e2
i |xi

)
≤ σ̄2, the Schwarz and Norm Inequalities, (20.49), Theorems 20.4 and 20.5,

E

((
1√
nVK

a′K

(
Q̂
−1

K −Q−1
K

)
X ′Ke

)2

|X
)

=
1

nVK
a′K

(
Q̂
−1

K −Q−1
K

)
X ′KE

(
ee′ |X

)
XK

(
Q̂
−1

K −Q−1
K

)
aK

≤ σ̄2

VK
a′K

(
Q̂
−1

K −Q−1
K

)
Q̂K

(
Q̂
−1

K −Q−1
K

)
aK

≤ σ̄2a′KQ
−1
K aK

VK

∥∥∥(Q̂−1

K −Q−1
K

)
Q̂K

(
Q̂
−1

K −Q−1
K

)∥∥∥
=
σ̄2a′KQ

−1
K aK

VK

∥∥∥(IK − Q̃K

)(
Q̃
−1

K − IK
)∥∥∥

≤ σ̄2

σ2

∥∥∥IK − Q̃K

∥∥∥∥∥∥Q̃−1

K − IK
∥∥∥

≤ σ̄2

σ2
op(1).

This establishes that (20.45) is op(1).
Third, take (20.46). By the Cauchy-Schwarz inequality, the Quadratic Inequality, (20.49), and

(20.20), (
1

√
nvK

a′KQ̂
−1

K X
′
KrK

)2

≤ a
′
KQ

−1
K aK

nvK
r′KXKQ̂

−1

K QKQ̂
−1

K X
′
KrK

≤ 1

σ2

(
λmaxQ̃

−1

K

)2 1

n
r′KXKQ

−1
K X

′
KrK

≤ Op(1)
1

n
r′KXKQ

−1
K X

′
KrK . (20.51)

Observe that since the observations are independent, E (xKirKi) = 0, x′KiQ
−1
K xKi ≤ ζ2

K , and
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E
(
r2
Ki

)
= δ2

K ,

E
(

1

n
r′KXKQ

−1
K X

′
KrK

)
= E

 1

n

n∑
i=1

rKix
′
KiQ

−1
K

n∑
ij=1

xKjrKj


= E

(
x′KiQ

−1
K xKir

2
Ki

)
≤ ζ2

KE
(
r2
Ki

)
= ζ2

Kδ
2
K

= o(1)

under Assumption 20.2.3. Thus
1

n
r′KXKQ

−1
K X

′
KrK = op(1), (20.51) is op(1) and (20.46) is op(1).

Together, we have shown that√
n

VK

(
θ̂K − θK + a (rK)

)
d−→ N (0, 1)

as claimed. �

Proof of Theorem 20.10. It is suffi cient to show that
√
n

V
1/2
K (x)

rK(x) = o(1). (20.52)

Notice that by Assumption 20.2.2

VK(x) = xK(x)′Q−1
K ΩKQ

−1
K xK(x)

= E
((
xK(x)′Q−1

K xKi
)2
e2
i

)
= E

((
xK(x)′Q−1

K xKi
)2
σ2(xi)

)
≥ E

((
xK(x)′Q−1

K xKi
)2)

σ2

= xK(x)′Q−1
K E

(
xKix

′
Ki

)
Q−1
K xK(x)σ2

= xK(x)′Q−1
K xK(x)σ2

= ζK(x)2σ2. (20.53)

Using the definitions β∗K , r
∗
K(x) and δ∗K from Section 20.8, note that

rK(x) = m(x)− x′K(x)βK = r∗K(x) + x′K(x) (β∗K − βK) .

By the Triangle Inequality, the definition (20.10), the Schwarz Inequality, and definition (20.14)

|rK(x)| ≤ |r∗K(x)|+
∣∣x′K(x) (β∗K − βK)

∣∣
≤ δ∗K +

∣∣x′K(x)Q−1
K x

′
K(x)

∣∣1/2 ∣∣(β∗K − βK)′QK (β∗K − βK)
∣∣1/2

= δ∗K + ζK(x)
∣∣(β∗K − βK)′QK (β∗K − βK)

∣∣1/2 .
The coeffi cients satisfy the relationship

βK = E
(
xKix

′
Ki

)−1 E (xKim (xi)) = β∗K + E
(
xKix

′
Ki

)−1 E (xKir
∗
Ki) .

Thus

(β∗K − βK)′QK (β∗K − βK) = E
(
r∗Kix

′
Ki

)
E
(
xKix

′
Ki

)−1 E (xKir
∗
Ki)

≤ E
(
r2∗
Ki

)
≤ δ∗2K .
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The first inequality is because E (r∗Kix
′
Ki)E (xKix

′
Ki)
−1 E (xKir

∗
Ki) is a projection. The second

inequality follows from the definition (20.10). We deduce that

|rK(x)| ≤ (1 + ζK(x)) δ∗K ≤ 2ζK(x)δ∗K . (20.54)

Equations (20.53), (20.54), and nδ∗2K = o(1) together imply that

n

VK(x)
r2
K(x) ≤ 4

σ2
nδ∗2K = o(1)

which is (20.52), as required. �
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Exercises

Exercise 20.1 Take the linear spline with three knots

mK(x) = β0 + β1x+ β2 (x− τ1) 1 (x ≥ τ1) + β3 (x− τ2) 1 (x ≥ τ2) + β4 (x− τ3) 1 (x ≥ τ3) .

Find the (inequality) restrictions on the coeffi cients βj so that mK(x) is non-decreasing.

Exercise 20.2 Take the linear spline from the previous question. Find the (inequality) restrictions
on the coeffi cients βj so that mK(x) is concave.

Exercise 20.3 Take the quadratic spline with three knots

mK(x) = β0 +β1x+β2x
3 +β3 (x− τ1)2 1 (x ≥ τ1)+β4 (x− τ2)2 1 (x ≥ τ2)+β5 (x− τ3)2 1 (x ≥ τ3) .

Find the (inequality) restrictions on the coeffi cients βj so that mK(x) is concave.

Exercise 20.4 Consider spline estimation with one knot τ . Explain why the knot τ must be
within the sample support of xi. [Explain what happens if you estimate the regression with the
knot placed outside the support of xi].

Exercise 20.5 You estimate the polynomial regression model:

m̂K(x) = β̂0 + β̂1x+ β̂2x
2 + · · ·+ β̂px

p.

You are interested in the regression derivative m′(x) at x.

(a) Write out the estimator m̂′K(x) of m′(x).

(b) Is m̂′K(x) is a linear function of the coeffi cient estimates?

(c) Use Theorem 20.8 to obtain the asymptotic distribution of m̂′K(x).

(d) Show how to construct standard errors and confidence intervals for m̂′K(x).

Exercise 20.6 Does rescaling yi or xi (multiplying by a constant) affect the CV (K) function?
The K which minimizes it?

Exercise 20.7 Take the NPIV approximating equation (20.32) and error eKi.

(a) Does it satisfy E (eKi | zi) = 0?

(b) If L = K, can you define βK so that E (zKieKi) = 0?

(c) If L > K, does E (zKieKi) = 0?

Exercise 20.8 Take the cps09mar dataset (full sample).

(a) Estimate a 6th order polynomial regression of log(wage) on experience. To reduce the ill-
conditioned problem, first rescale experience to lie in the interval [0, 1] before estimating the
regression.

(b) Plot the estimated regression function along with 95% pointwise confidence intervals.

(c) Interpret the findings. How do you interpret the estimated function for experience levels
exceeding 65?
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Exercise 20.9 Continuing the previous exercise, compute the cross-validation function (or alter-
natively the AIC) for polynomial orders 1 through 8.

(a) Which order minimizes the function?

(b) Plot the estimated regression function along with 95% pointwise confidence intervals.

Exercise 20.10 Take the cps09mar dataset (full sample).

(a) Estimate a 6th order polynomial regression of log(wage) on education. To reduce the ill-
conditioned problem, first rescale education to lie in the interval [0, 1].

(b) Plot the estimated regression function along with 95% pointwise confidence intervals.

Exercise 20.11 Continuing the previous exercise, compute the cross-validation function (or alter-
natively the AIC) for polynomial orders 1 through 8.

(a) Which order minimizes the function?

(b) Plot the estimated regression function along with 95% pointwise confidence intervals.

Exercise 20.12 Take the cps09mar dataset (full sample).

(a) Estimate quadratic spline regressions of log(wage) on experience. Estimate four models: (1)
no knots (a quadratic); (2) one knot at 20 years; (3) two knots at 20 and 40; (4) four knots
at 10, 20, 30 & 40. Plot the four estimates. Intrepret your findings.

(b) Compare the four splines models using either cross-validation or AIC. Which is the preferred
specification?

(c) For your selected specification, plot the estimated regression function along with 95% point-
wise confidence intervals. Intrepret your findings.

(d) If you also estimated a polynomial specification, do you prefer the polynomial or the quadratic
spline estimates?

Exercise 20.13 Take the cps09mar dataset (full sample).

(a) Estimate quadratic spline regressions of log(wage) on education. Estimate four models: (1)
no knots (a quadratic); (2) one knot at 10 years; (3) three knots at 5, 10 and 15; (4) four
knots at 4, 8, 12, & 16. Plot the four estimates. Intrepret your findings.

(b) Compare the four splines models using either cross-validation or AIC. Which is the preferred
specification?

(c) For your selected specification, plot the estimated regression function along with 95% point-
wise confidence intervals. Intrepret your findings.

(d) If you also estimated a polynomial specification, do you prefer the polynomial or the quadratic
spline estimates?

Exercise 20.14 The RR2010 dataset is from Reinhart and Rogoff (2010). It contains observations
on annual U.S. GDP growth rates, inflation rates, and the debt/gdp ratio for the long time span
1791-2009. The paper made the strong claim that gdp growth slows as debt/gdp increases, and in
particular that this relationship is nonlinear with debt negatively affecting growth for debt ratios
exceeding 90%. Their full dataset includes 44 countries, our extract only includes the United
States. Let yt denote GDP growth and let dt denote debt/gdp. We will estimate the partial linear
specificaiton

yt = αyt−1 +m(dt−1) + et

using a linear spline for m(d).
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(a) Estimate (1) linear model; (2) linear spline with one knot at dt−1 = 60; (3) linear spline with
two knots at 40 and 80. Plot the three estimates.

(b) For the model with one knot, plot with 95% confidence intervals.

(c) Compare the three splines models using either cross-validation or AIC. Which is the preferred
specification?

(d) Interpret the findings.

Exercise 20.15 Take the DDK2011 dataset (full sample). Use a quadratic spline to estimate the
regression of testscores on percentile.

(a) Estimate five models: (1) no knots (a quadratic); (2) one knot at 50; (3) two knots at 33 and
66; (4) three knots at 25, 50 & 75; (5) knots at 20, 40, 60, & 80. Plot the five estimates.
Intrepret your findings.

(b) Select a model. Consider using leave-cluster-one CV.

(c) For your selected specification, plot the estimated regression function along with 95% point-
wise confidence intervals. [Use cluster-robust standard errors.] Intrepret your findings.

Exercise 20.16 The CHJ2004 dataset is from Cox, Hansen and Jimenez (2004). As described
in Section 20.6 it contains a sample of 8684 urban Phillipino households. This paper studied the
crowding-out impact of a family’s income on non-governmental transfers. Estimate an analog of
Figure 20.3 using polynomial regression. Regress transfers on the regression controls (variables 2
through 16 in the dataset) and a high-order polynomial in income. Ideally, select the polynomial
order by cross-validation. You will need to rescale the variable income before taking polynomial
powers. Plot the estimated function along with 95% pointwise confidence intervals. Comment on
the similarities and differences with Figure 20.3.

Exercise 20.17 The AL1999 dataset is from Angrist and Lavy (1999). It contains 4067 obser-
vations on classroom test scores and explanatory variables, including those described in Section
20.31. In Section 20.31 we report a nonparametric instrumental variables regression of reading test
scores (avgverb) on classize, disadvantaged, enrollment and Grade4, using the Angrist-Levy vari-
able (20.39) as an instrument. Repeat the analysis, but instead of reading test scores (avgverb) use
math test scores (avgmath) as the dependent variable. Comment on the similarities and differences
with the results for reading test scores.



Chapter 21

Nonlinear Econometric Models

21.1 Introduction

This chapter surveys a set of core econometric methods which require nonlinear estimation.
This chapter is preliminary.

For more detailed textbook treatments see Maddala (1983), Cameron and Trivedi (1998),
Gourieroux (2000), Cameron and Trivedi (2005), Wooldridge (2010), and Greene (2017).

21.2 Nonlinear Least Squares

In some cases we might use a parametric regression function m (x,θ) = E (yi | xi = x) which is
a non-linear function of the parameters θ. We describe this setting as nonlinear regression.

Example 21.1 Exponential Link Regression

m (x,θ) = exp
(
x′θ
)

The exponential link function is strictly positive, so this choice can be useful when it is desired to
constrain the mean to be strictly positive.

Example 21.2 Logistic Link Regression

m (x,θ) = Λ
(
x′θ
)

where
Λ(u) = (1 + exp(−u))−1 (21.1)

is the Logistic distribution function. Since the logistic link function lies in [0, 1], this choice can be
useful when the conditional mean is bounded between 0 and 1.

Example 21.3 Exponentially Transformed Regressors

m (x,θ) = θ1 + θ2 exp(θ3x)

Example 21.4 Power Transformation

m (x,θ) = θ1 + θ2x
θ3

with x > 0.

757
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Example 21.5 Box-Cox Transformed Regressors

m (x,θ) = θ1 + θ2x
(θ3)

where

x(λ) =

 xλ − 1

λ
, if λ > 0

log(x), if λ = 0

 (21.2)

and x > 0. The function (21.2) is called the Box-Cox Transformation and was introduced by Box
and Cox (1964). The function nests linearity (λ = 1) and logarithmic (λ = 0) transformations
continuously.

Example 21.6 Continuous Threshold Regression

m (x,θ) = θ1 + θ2x+ θ3 (x− θ4) 1 (x > θ4)

Example 21.7 Threshold Regression

m (x,θ) =
(
θ′1x1

)
1 (x2 < θ3) +

(
θ′2x1

)
1 (x2 ≥ θ3)

Example 21.8 Smooth Transition

m (x,θ) = θ′1x1 +
(
θ′2x1

)
Λ

(
x2 − θ3

θ4

)
where Λ(u) is the logit function (21.1).

What differentiates these examples from the linear regression model is that the conditional
mean cannot be written as a linear function of the parameter vector θ.

Nonlinear regression is sometimes adopted because the functional form m (x,θ) is suggested
by an economic model. In other cases, it is adopted as a flexible approximation to an unknown
regression function.

The least squares estimator θ̂ minimizes the normalized sum-of-squared-errors

Ŝ(θ) =
1

n

n∑
i=1

(yi −m (xi,θ))2 .

When the regression function is nonlinear, we call θ̂ the nonlinear least squares (NLLS) esti-
mator. The NLLS residuals are êi = yi −m

(
xi, θ̂

)
.

One motivation for the choice of NLLS as the estimation method is that the parameter θ is the
solution to the population problem minθ E (yi −m (xi,θ))2

Since the criterion Ŝ(θ) is not quadratic, θ̂ must be found by numerical methods. See Appendix
E. When m(x,θ) is differentiable, then the FOC for minimization are

0 =
n∑
i=1

mθ

(
xi, θ̂

)
êi (21.3)

where

mθ (x,θ) =
∂

∂θ
m (x,θ) .
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Theorem 21.1 Asymptotic Distribution of NLLS Estimator
If the model is identified and m (x,θ) is differentiable with respect to θ,

√
n
(
θ̂ − θ

)
d−→ N (0,V θ)

V θ =
(
E
(
mθim

′
θi

))−1 (E (mθim
′
θie

2
i

)) (
E
(
mθim

′
θi

))−1

where mθi = mθ(xi,θ0).

Based on Theorem 21.1, an estimate of the asymptotic variance V θ is

V̂ θ =

(
1

n

n∑
i=1

m̂θim̂
′
θi

)−1(
1

n

n∑
i=1

m̂θim̂
′
θiê

2
i

)(
1

n

n∑
i=1

m̂θim̂
′
θi

)−1

where m̂θi = mθ(xi, θ̂) and êi = yi −m(xi, θ̂).
Identification is often tricky in nonlinear regression models. Suppose that

m(xi,θ) = β′1zi + β′2xi(γ)

where xi (γ) is a function of xi and the unknown parameter γ. Examples include xi (γ) = xγi ,
xi (γ) = exp (γxi) , and xi (γ) = xi1 (g (xi) > γ). The model is linear when β2 = 0, and this is
often a useful hypothesis (sub-model) to consider. Thus we want to test

H0 : β2 = 0.

However, under H0, the model is
yi = β′1zi + ei

and both β2 and γ have dropped out. This means that under H0, γ is not identified. This renders
the distribution theory presented in the previous section invalid. Thus when the truth is that
β2 = 0, the parameter estimates are not asymptotically normally distributed. Furthermore, tests
of H0 do not have asymptotic normal or chi-square distributions.

The asymptotic theory of such tests have been worked out by Andrews and Ploberger (1994) and
B. E. Hansen (1996). In particular, Hansen shows how to use simulation (similar to the bootstrap)
to construct the asymptotic critical values (or p-values) in a given application.

Proof of Theorem 21.1 (Sketch). NLLS estimation falls in the class of optimization estimators.
For this theory, it is useful to denote the true value of the parameter θ as θ0.

The first step is to show that θ̂
p−→ θ0. Proving that nonlinear estimators are consistent is more

challenging than for linear estimators. We sketch the main argument. The idea is that θ̂ minimizes
the sample criterion function Ŝ(θ), which (for any θ) converges in probability to the mean-squared

error function E
(

(yi −m (xi,θ))2
)
. Thus it seems reasonable that the minimizer θ̂ will converge

in probability to θ0, the minimizer of E
(

(yi −m (xi,θ))2
)
. It turns out that to show this rig-

orously, we need to show that Ŝ(θ) converges uniformly to its expectation E
(

(yi −m (xi,θ))2
)
,

which means that the maximum discrepancy must converge in probability to zero, to exclude the
possibility that Ŝ(θ) is excessively wiggly in θ. Proving uniform convergence is technically chal-
lenging, but it can be shown to hold broadly for relevant nonlinear regression models, especially if
the regression function m (xi,θ) is differentiable in θ. For a complete treatment of the theory of
optimization estimators see Newey and McFadden (1994).
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Since θ̂
p−→ θ0, θ̂ is close to θ0 for n large, so the minimization of Ŝ(θ) only needs to be

examined for θ close to θ0. Let
y0
i = ei +m′θiθ0.

For θ close to the true value θ0, by a first-order Taylor series approximation,

m (xi,θ) ' m (xi,θ0) +m′θi (θ − θ0) .

Thus

yi −m (xi,θ) ' (ei +m (xi,θ0))−
(
m (xi,θ0) +m′θi (θ − θ0)

)
= ei −m′θi (θ − θ0)

= y0
i −m′θiθ.

Hence the normalized sum of squared errors function is

Ŝ(θ) =
1

n

n∑
i=1

(yi −m (xi,θ))2 ' 1

n

n∑
i=1

(
y0
i −m′θiθ

)2
and the right-hand-side is the criterion function for a linear regression of y0

i onmθi. Thus the NLLS
estimator θ̂ has the same asymptotic distribution as the (infeasible) OLS regression of y0

i on mθi,
which is that stated in the theorem.

21.3 Least Absolute Deviations

We stated that a conventional goal in econometrics is estimation of impact of variation in xi
on the central tendency of yi. We have discussed projections and conditional means, but these are
not the only measures of central tendency. An alternative good measure is the conditional median.

To recall the definition and properties of the median, let y be a continuous random variable.
The median θ = med(y) is the value such that P(y ≤ θ) = P (y ≥ θ) = 0.5. Two useful facts about
the median are that

θ = argmin
θ

E |y − θ| (21.4)

and
E (sgn (y − θ)) = 0

where

sgn (u) =

{
1 if u ≥ 0
−1 if u < 0

is the sign function.
These facts and definitions motivate three estimators of θ. The first definition is the 50th

empirical quantile. The second is the value which minimizes 1
n

∑n
i=1 |yi − θ| , and the third definition

is the solution to the moment equation 1
n

∑n
i=1 sgn (yi − θ) . These distinctions are illusory, however,

as these estimators are indeed identical.
Now let’s consider the conditional median of y given a random vector x. Let m(x) = med (y | x)

denote the conditional median of y given x. The linear median regression model takes the form

yi = x′iβ + ei

med (ei | xi) = 0

In this model, the linear function med (yi | xi = x) = x′β is the conditional median function, and
the substantive assumption is that the median function is linear in x.

Conditional analogs of the facts about the median are



CHAPTER 21. NONLINEAR ECONOMETRIC MODELS 761

• P(yi ≤ x′β | xi = x) = P(yi > x
′β | xi = x) = .5

• E (sgn (ei) | xi) = 0

• E (xi sgn (ei)) = 0

• β = minβ E |yi − x′iβ|

These facts motivate the following estimator. Let

LAD(β) =
1

n

n∑
i=1

∣∣yi − x′iβ∣∣
be the average of absolute deviations. The least absolute deviations (LAD) estimator of β
minimizes this function

β̂ = argmin
β

LAD(β)

Equivalently, it is a solution to the moment condition

1

n

n∑
i=1

xi sgn
(
yi − x′iβ̂

)
= 0. (21.5)

The LAD estimator has an asymptotic normal distribution.

Theorem 21.2 Asymptotic Distribution of LAD Estimator
When the conditional median is linear in x

√
n
(
β̂ − β

)
d−→ N (0,V )

where

V =
1

4

(
E
(
xix

′
if (0 | xi)

))−1 (E (xix′i)) (E (xix′if (0 | xi)
))−1

and f (e | x) is the conditional density of ei given xi = x.

The variance of the asymptotic distribution inversely depends on f (0 | x) , the conditional
density of the error at its median. When f (0 | x) is large, then there are many innovations near
to the median, and this improves estimation of the median. In the special case where the error is
independent of xi, then f (0 | x) = f (0) and the asymptotic variance simplifies

V =
(E (xix

′
i))
−1

4f (0)2 (21.6)

This simplification is similar to the simplification of the asymptotic covariance of the OLS estimator
under homoskedasticity.

Computation of standard error for LAD estimates typically is based on equation (21.6). The
main diffi culty is the estimation of f(0), the height of the error density at its median. This can be
done with kernel estimation techniques. See Chapter ??. While a complete proof of Theorem 21.2
is advanced, we provide a sketch here for completeness.

Proof of Theorem 21.2: Similar to NLLS, LAD is an optimization estimator. Let β0 denote the
true value of β0.
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The first step is to show that β̂
p−→ β0. The general nature of the proof is similar to that for the

NLLS estimator, and is sketched here. For any fixed β, by the WLLN, LAD(β)
p−→ E |yi − x′iβ| .

Furthermore, it can be shown that this convergence is uniform in β. (Proving uniform convergence
is more challenging than for the NLLS criterion since the LAD criterion is not differentiable in
β.) It follows that β̂, the minimizer of LAD(β), converges in probability to β0, the minimizer of
E |yi − x′iβ|.

Since sgn (a) = 1−2·1 (a ≤ 0) , (21.5) is equivalent to gn(β̂) = 0, where gn(β) = n−1
∑n

i=1 gi(β)
and gi(β) = xi (1− 2 · 1 (yi ≤ x′iβ)) . Let g(β) = E (gi(β)). We need three preliminary results.
First, since E (gi(β0)) = 0 and E (gi(β0)gi(β0)′) = E (xix

′
i), we can apply the central limit theorem

(Theorem 6.11) and find that

√
ngn(β0) = n−1/2

n∑
i=1

gi(β0)
d−→ N

(
0,E

(
xix

′
i

))
.

Second using the law of iterated expectations and the chain rule of differentiation,

∂

∂β′
g(β) =

∂

∂β′
Exi

(
1− 2 · 1

(
yi ≤ x′iβ

))
= −2

∂

∂β′
E
(
xiE

(
1
(
ei ≤ x′iβ − x′iβ0

)
| xi
))

= −2
∂

∂β′
E

(
xi

∫ x′iβ−x′iβ0

−∞
f (e | xi) de

)
= −2E

(
xix

′
if
(
x′iβ − x′iβ0 | xi

))
so

∂

∂β′
g(β) = −2E

(
xix

′
if (0 | xi)

)
.

Third, by a Taylor series expansion and the fact g(β) = 0

g(β̂) ' ∂

∂β′
g(β)

(
β̂ − β

)
.

Together

√
n
(
β̂ − β0

)
'
(

∂

∂β′
g(β0)

)−1√
ng(β̂)

=
(
−2E

(
xix

′
if (0 | xi)

))−1√
n
(
g(β̂)− gn(β̂)

)
' 1

2

(
E
(
xix

′
if (0 | xi)

))−1√
n (gn(β0)− g(β0))

d−→ 1

2

(
E
[
xix

′
if (0 | xi)

])−1
N
(
0,E

(
xix

′
i

))
= N (0,V ) .

The third line follows from an asymptotic empirical process argument and the fact that β̂
p−→ β0.

21.4 Quantile Regression

Quantile regression has become quite popular in recent econometric practice. For τ ∈ [0, 1] the
τ th quantile Qτ of a random variable with distribution function F (u) is defined as

Qτ = inf {u : F (u) ≥ τ}
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When F (u) is continuous and strictly monotonic, then F (Qτ ) = τ, so you can think of the quantile
as the inverse of the distribution function. The quantile Qτ is the value such that τ (percent) of
the mass of the distribution is less than Qτ . The median is the special case τ = .5.

The following alternative representation is useful. If the random variable U has τ th quantile
Qτ , then

Qτ = argmin
θ

E (ρτ (U − θ)) . (21.7)

where ρτ (q) is the piecewise linear function

ρτ (q) =

{
−q (1− τ) q < 0

qτ q ≥ 0
(21.8)

= q (τ − 1 (q < 0)) .

This generalizes representation (21.4) for the median to all quantiles.
For the random variables (yi,xi) with conditional distribution function F (y | x) the conditional

quantile function qτ (x) is
Qτ (x) = inf {y : F (y | x) ≥ τ} .

Again, when F (y | x) is continuous and strictly monotonic in y, then F (Qτ (x) | x) = τ. For fixed τ,
the quantile regression function qτ (x) describes how the τ th quantile of the conditional distribution
varies with the regressors.

As functions of x, the quantile regression functions can take any shape. However for computa-
tional convenience it is typical to assume that they are (approximately) linear in x (after suitable
transformations). This linear specification assumes that Qτ (x) = β′τx where the coeffi cients βτ
vary across the quantiles τ. We then have the linear quantile regression model

yi = x′iβτ + ei

where ei is the error defined to be the difference between yi and its τ th conditional quantile x′iβτ .
By construction, the τ th conditional quantile of ei is zero, otherwise its properties are unspecified
without further restrictions.

Given the representation (21.7), the quantile regression estimator β̂τ for βτ solves the mini-
mization problem

β̂τ = argmin
β

Sτ (β)

where

Sτ (β) =
1

n

n∑
i=1

ρτ
(
yi − x′iβ

)
and ρτ (q) is defined in (21.8).

Since the quantile regression criterion function Sτ (β) does not have an algebraic solution, nu-
merical methods are necessary for its minimization. Furthermore, since it has discontinuous deriv-
atives, conventional Newton-type optimization methods are inappropriate. Fortunately, fast linear
programming methods have been developed for this problem, and are widely available.

An asymptotic distribution theory for the quantile regression estimator can be derived using
similar arguments as those for the LAD estimator in Theorem 21.2.
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Theorem 21.3 Asymptotic Distribution of the Quantile Regres-
sion Estimator
When the τ th conditional quantile is linear in x

√
n
(
β̂τ − βτ

)
d−→ N (0,V τ ) ,

where

V τ = τ (1− τ)
(
E
(
xix

′
if (0 | xi)

))−1 (E (xix′i)) (E (xix′if (0 | xi)
))−1

and f (e | x) is the conditional density of ei given xi = x.

In general, the asymptotic variance depends on the conditional density of the quantile regression
error. When the error ei is independent of xi, then f (0 | xi) = f (0) , the unconditional density of
ei at 0, and we have the simplification

V τ =
τ (1− τ)

f (0)2

(
E
(
xix

′
i

))−1
.

An excellent monograph on quantile regression is Koenker (2005).

21.5 Limited Dependent Variables

y is a limited dependent variable if it takes values in a strict subset of R. The most common
cases are

• Binary: y ∈ {0, 1}

• Multinomial: y ∈ {0, 1, 2, ..., k}

• Integer: y ∈ {0, 1, 2, ...}

• Censored: y ∈ R+

The traditional approach to the estimation of limited dependent variable (LDV) models is
parametric maximum likelihood. A parametric model is constructed, allowing the construction of
the likelihood function. A more modern approach is semi-parametric, eliminating the dependence
on a parametric distributional assumption. We will discuss only the first (parametric) approach,
due to time constraints. They still constitute the majority of LDV applications. If, however, you
were to write a thesis involving LDV estimation, you would be advised to consider employing a
semi-parametric estimation approach.

For the parametric approach, estimation is by MLE. A major practical issue is construction of
the likelihood function.

21.6 Binary Choice

The dependent variable yi ∈ {0, 1}. This represents a Yes/No outcome. Given some regressors
xi, the goal is to describe P (yi = 1 | xi) , as this is the full conditional distribution.

The linear probability model specifies that

P (yi = 1 | xi) = x′iβ.
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As P (yi = 1 | xi) = E (yi | xi) , this yields the regression: yi = x′iβ+ ei which can be estimated by
OLS. However, the linear probability model does not impose the restriction that 0 ≤ P (yi | xi) ≤ 1.
Even so estimation of a linear probability model is a useful starting point for subsequent analysis.

The standard alternative is to use a function of the form

P (yi = 1 | xi) = F
(
x′iβ

)
where F (·) is a known CDF, typically assumed to be symmetric about zero, so that F (u) =
1− F (−u). The two standard choices for F are

• Logistic: F (u) = (1 + e−u)
−1
.

• Normal: F (u) = Φ(u).

If F is logistic, we call this the logit model, and if F is normal, we call this the probit model.
This model is identical to the latent variable model

y∗i = x′iβ + ei

ei ∼ F (·)

yi =

{
1 if y∗i > 0
0 otherwise

.

For then

P (yi = 1 | xi) = P (y∗i > 0 | xi)
= P

(
x′iβ + ei > 0 | xi

)
= P

(
ei > −x′iβ | xi

)
= 1− F

(
−x′iβ

)
= F

(
x′iβ

)
.

Estimation is by maximum likelihood. To construct the likelihood, we need the conditional
distribution of an individual observation. Recall that if y is Bernoulli, such that P(y = 1) = p and
P(y = 0) = 1− p, then we can write the density of y as

f(y) = py(1− p)1−y, y = 0, 1.

In the Binary choice model, yi is conditionally Bernoulli with P (yi = 1 | xi) = pi = F (x′iβ) . Thus
the conditional density is

f (yi | xi) = pyii (1− pi)1−yi

= F
(
x′iβ

)yi (1− F
(
x′iβ

)
)1−yi .

Hence the log-likelihood function is

logL(β) =

n∑
i=1

log f(yi | xi)

=

n∑
i=1

log
(
F
(
x′iβ

)yi (1− F
(
x′iβ

)
)1−yi)

=

n∑
i=1

[
yi logF

(
x′iβ

)
+ (1− yi) log(1− F

(
x′iβ

)
)
]

=
∑
yi=1

logF
(
x′iβ

)
+
∑
yi=0

log(1− F
(
x′iβ

)
).

The MLE β̂ is the value of β which maximizes logL(β). Standard errors and test statistics are
computed by asymptotic approximations. Details of such calculations are left to more advanced
courses.
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21.7 Count Data

If y ∈ {0, 1, 2, ...}, a typical approach is to employ Poisson regression. This model specifies
that

P (yi = k | xi) =
exp (−λi)λki

k!
, k = 0, 1, 2, ...

λi = exp(x′iβ).

The conditional density is the Poisson with parameter λi. The functional form for λi has been
picked to ensure that λi > 0.

The log-likelihood function is

logL(β) =
n∑
i=1

log f(yi | xi) =
n∑
i=1

(
− exp(x′iβ) + yix

′
iβ − log(yi!)

)
.

The MLE is the value β̂ which maximizes logL(β).
Since

E (yi | xi) = λi = exp(x′iβ)

is the conditional mean, this motivates the label Poisson “regression.”
Also observe that the model implies that

var (yi | xi) = λi = exp(x′iβ),

so the model imposes the restriction that the conditional mean and variance of yi are the same.
This may be considered restrictive. A generalization is the negative binomial.

21.8 Censored Data

The idea of censoring is that some data above or below a threshold are mis-reported at the
threshold. Thus the model is that there is some latent process y∗i with unbounded support, but we
observe only

yi =

{
y∗i if y∗i ≥ 0
0 if y∗i < 0

. (21.9)

(This is written for the case of the threshold being zero, any known value can substitute.) The
observed data yi therefore come from a mixed continuous/discrete distribution.

Censored models are typically applied when the data set has a meaningful proportion (say 5%
or higher) of data at the boundary of the sample support. The censoring process may be explicit
in data collection, or it may be a by-product of economic constraints.

An example of a data collection censoring is top-coding of income. In surveys, incomes above
a threshold are typically reported at the threshold.

The first censored regression model was developed by Tobin (1958) to explain consumption of
durable goods. Tobin observed that for many households, the consumption level (purchases) in a
particular period was zero. He proposed the latent variable model

y∗i = x′iβ + ei

ei
iid∼ N(0, σ2)

with the observed variable yi generated by the censoring equation (21.9). This model (now called
the Tobit) specifies that the latent (or ideal) value of consumption may be negative (the household
would prefer to sell than buy). All that is reported is that the household purchased zero units of
the good.
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The naive approach to estimate β is to regress yi on xi. This does not work because regression
estimates E (yi | xi) , not E (y∗i | xi) = x′iβ, and the latter is of interest. Thus OLS will be biased
for the parameter of interest β.

[Note: it is still possible to estimate E (yi | xi) by LS techniques. The Tobit framework postu-
lates that this is not inherently interesting, that the parameter of β is defined by an alternative
statistical structure.]

Consistent estimation will be achieved by the MLE. To construct the likelihood, observe that
the probability of being censored is

P (yi = 0 | xi) = P (y∗i < 0 | xi)
= P

(
x′iβ + ei < 0 | xi

)
= P

(
ei
σ
< −x

′
iβ

σ
| xi
)

= Φ

(
−x
′
iβ

σ

)
.

The conditional density function above zero is normal:

σ−1φ

(
y − x′iβ

σ

)
, y > 0.

Therefore, the density function for y ≥ 0 can be written as

f (y | xi) = Φ

(
−x
′
iβ

σ

)1(y=0) [
σ−1φ

(
z − x′iβ

σ

)]1(y>0)

,

where 1 (·) is the indicator function.
Hence the log-likelihood is a mixture of the probit and the normal:

logL(β) =
n∑
i=1

log f(yi | xi)

=
∑
yi=0

log Φ

(
−x
′
iβ

σ

)
+
∑
yi>0

log

[
σ−1φ

(
yi − x′iβ

σ

)]
.

The MLE is the value β̂ which maximizes logL(β).

21.9 Sample Selection

The problem of sample selection arises when the sample is a non-random selection of potential
observations. This occurs when the observed data is systematically different from the population
of interest. For example, if you ask for volunteers for an experiment, and they wish to extrapolate
the effects of the experiment on a general population, you should worry that the people who
volunteer may be systematically different from the general population. This has great relevance for
the evaluation of anti-poverty and job-training programs, where the goal is to assess the effect of
“training”on the general population, not just on the volunteers.

A simple sample selection model can be written as the latent model

yi = x′iβ + e1i

Ti = 1
(
z′iγ + e0i > 0

)
.

The dependent variable yi is observed if (and only if) Ti = 1. Else it is unobserved.
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For example, yi could be a wage, which can be observed only if a person is employed. The
equation for Ti is an equation specifying the probability that the person is employed.

The model is often completed by specifying that the errors are jointly normal(
e0i

e1i

)
∼ N

(
0,

(
1 ρ
ρ σ2

))
.

It is presumed that we observe {xi, zi, Ti} for all observations.
Under the normality assumption,

e1i = ρe0i + vi,

where vi is independent of e0i ∼ N(0, 1). A useful fact about the standard normal distribution is
that

E (e0i | e0i > −x) = λ(x) =
φ(x)

Φ(x)
,

and the function λ(x) is called the inverse Mills ratio.
The naive estimator of β is OLS regression of yi on xi for those observations for which yi is

available. The problem is that this is equivalent to conditioning on the event {Ti = 1}. However,

E (e1i | Ti = 1, zi) = E
(
e1i | {e0i > −z′iγ}, zi

)
= ρE

(
e0i | {e0i > −z′iγ}, zi

)
+ E

(
vi | {e0i > −z′iγ}, zi

)
= ρλ

(
z′iγ
)
,

which is non-zero. Thus
e1i = ρλ

(
z′iγ
)

+ ui,

where
E (ui | Ti = 1, zi) = 0.

Hence
yi = x′iβ + ρλ

(
z′iγ
)

+ ui (21.10)

is a valid regression equation for the observations for which Ti = 1.
Heckman (1979) observed that we could consistently estimate β and ρ from this equation, if γ

were known. It is unknown, but also can be consistently estimated by a Probit model for selection.
The “Heckit”estimator is thus calculated as follows

• Estimate γ̂ from a Probit, using regressors zi. The binary dependent variable is Ti.

• Estimate
(
β̂, ρ̂

)
from OLS of yi on xi and λ(z′iγ̂).

• The OLS standard errors will be incorrect, as this is a two-step estimator. They can be
corrected using a more complicated formula. Or, alternatively, by viewing the Probit/OLS
estimation equations as a large joint GMM problem.

The Heckit estimator is frequently used to deal with problems of sample selection. However,
the estimator is built on the assumption of normality, and the estimator can be quite sensitive
to this assumption. Some modern econometric research is exploring how to relax the normality
assumption.

The estimator can also work quite poorly if λ (z′iγ̂) does not have much in-sample variation.
This can happen if the Probit equation does not “explain”much about the selection choice. Another
potential problem is that if zi = xi, then λ (z′iγ̂) can be highly collinear with xi, so the second
step OLS estimator will not be able to precisely estimate β. Based this observation, it is typically
recommended to find a valid exclusion restriction: a variable should be in zi which is not in xi. If
this is valid, it will ensure that λ (z′iγ̂) is not collinear with xi, and hence improve the second stage
estimator’s precision.
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Exercises

Exercise 21.1 Suppose that yi = g(xi,θ) + ei with E (ei | xi) = 0, θ̂ is the NLLS estimator, and

V̂ is the estimate of var
(
θ̂
)
. You are interested in the conditional mean function E (yi | xi = x) =

g(x) at some x. Find an asymptotic 95% confidence interval for g(x).

Exercise 21.2 In Exercise 9.26, you estimated a cost function on a cross-section of electric com-
panies. The equation you estimated was

log TCi = β1 + β2 logQi + β3 logPLi + β4 logPKi + β5 logPFi + ei. (21.11)

(a) Following Nerlove, add the variable (logQi)
2 to the regression. Do so. Assess the merits of

this new specification using a hypothesis test. Do you agree with this modification?

(b) Now try a non-linear specification. Consider model (21.11) plus the extra term β6zi, where

zi = logQi (1 + exp (− (logQi − β7)))−1 .

In addition, impose the restriction β3 + β4 + β5 = 1. This model is called a smooth threshold
model. For values of logQi much below β7, the variable logQi has a regression slope of β2.
For values much above β7, the regression slope is β2 + β6, and the model imposes a smooth
transition between these regimes. The model is non-linear because of the parameter β7.

The model works best when β7 is selected so that several values (in this example, at least
10 to 15) of logQi are both below and above β7. Examine the data and pick an appropriate
range for β7.

(c) Estimate the model by non-linear least squares. I recommend the concentration method:
Pick 10 (or more if you like) values of β7 in this range. For each value of β7, calculate zi and
estimate the model by OLS. Record the sum of squared errors, and find the value of β7 for
which the sum of squared errors is minimized.

(d) Calculate standard errors for all the parameters (β1, ..., β7).

Exercise 21.3 For any predictor g(xi) for yi, the mean absolute error (MAE) is

E |yi − g(xi)| .

Show that the function g(x) which minimizes the MAE is the conditional median m (x) = med(yi |
xi).

Exercise 21.4 Define
g(u) = τ − 1 (u < 0)

where 1 (·) is the indicator function (takes the value 1 if the argument is true, else equals zero).
Let θ satisfy E (g(yi − θ)) = 0. Is θ a quantile of the distribution of yi?

Exercise 21.5 Verify equation (21.7)

Exercise 21.6 You are interested in estimating the equation yi = x′iβ + ei. You believe the
regressors are exogenous, but you are uncertain about the properties of the error. You estimate the
equation both by least absolute deviations (LAD) and OLS. A colleagye suggests that you should
prefer the OLS estimate, because it produces a higher R2 than the LAD estimate. Is your colleague
correct?
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Exercise 21.7 Your model is

y∗i = x′iβ + ei

E (ei | xi) = 0.

However, y∗i is not observed. Instead only a capped version is reported. That is, the dataset
contains the variable

yi =


y∗i if y∗i ≤ τ

τ if y∗i > τ

Suppose you regress yi on xi using OLS. Is OLS consistent for β? Describe the nature of the effect
of the mis-measured observation on the OLS estimate.

Exercise 21.8 Take the model

yi = x′iβ + ei

E (ei | xi) = 0.

Let β̂ denote the OLS estimator for β based on an available sample.

(a) Suppose that the ith observation is in the sample only if x1i > 0, where x1i is an element of
xi. Assume P (x1i < 0) > 0.

i Is β̂ consistent for β̂?

ii If not, can you obtain an expression for its probability limit?
(For this, you may assume that ei is independent of xi and N(0, σ2).)

(b) Suppose that the ith observation is in the sample only if yi > 0.

i Is β̂ consistent for β̂?

ii If not, can you obtain an expression for its probability limit?
(For this, you may assume that ei is independent of xi and N(0, σ2).)

Exercise 21.9 The Tobit model is

y∗i = x′iβ + ei

ei ∼ N
(
0, σ2

)
yi = y∗i 1 (y∗i ≥ 0)

where 1 (·) is the indicator function.

(a) Find E (yi | xi) .
Note: You may use the fact that since ei ∼ N

(
0, σ2

)
,

E (ei1 (ei ≥ −u)) = σλ(u/σ) = σφ(u/σ)/Φ(u/σ).

(b) Use the result from part (a) to suggest a NLLS estimator for the parameter β given a sample
{yi,xi}.

Exercise 21.10 A latent variable y∗i is generated by

y∗i = xiβ + ei

The distribution of ei, conditional on xi, is N(0, σ2
i ), where σ

2
i = γ0 + x2

i γ1 with γ0 > 0 and γ1 > 0.
The binary variable yi equals 1 if y∗i ≥ 0, else yi = 0. Find the log-likelihood function for the
conditional distribution of yi given xi (the parameters are β, γ0, γ1).
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Appendix A

Matrix Algebra

A.1 Notation

A scalar a is a single number.
A vector a is a k × 1 list of numbers, typically arranged in a column. We write this as

a =


a1

a2
...
ak


Equivalently, a vector a is an element of Euclidean k space, written as a ∈ Rk. If k = 1 then a is
a scalar.

A matrix A is a k × r rectangular array of numbers, written as

A =


a11 a12 · · · a1r

a21 a22 · · · a2r
...

...
...

ak1 ak2 · · · akr


By convention aij refers to the element in the ith row and jth column of A. If r = 1 then A is a
column vector. If k = 1 then A is a row vector. If r = k = 1, then A is a scalar.

A standard convention (which we will follow in this text whenever possible) is to denote scalars
by lower-case italics (a), vectors by lower-case bold italics (a), and matrices by upper-case bold
italics (A). Sometimes a matrix A is denoted by the symbol (aij).

A matrix can be written as a set of column vectors or as a set of row vectors. That is,

A =
[
a1 a2 · · · ar

]
=


α1

α2
...
αk


where

ai =


a1i

a2i
...
aki


are column vectors and

αj =
[
aj1 aj2 · · · ajr

]
772
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are row vectors.
The transpose of a matrix A, denoted A′, A>, or At, is obtained by flipping the matrix on

its diagonal. (In most of the econometrics literature, and this textbook, we use A′, but in the
mathematics literature A> is the convention.) Thus

A′ =


a11 a21 · · · ak1

a12 a22 · · · ak2
...

...
...

a1r a2r · · · akr


Alternatively, letting B = A′, then bij = aji. Note that if A is k × r, then A′ is r × k. If a is a
k × 1 vector, then a′ is a 1× k row vector.

A matrix is square if k = r. A square matrix is symmetric if A = A′, which requires aij = aji.
A square matrix is diagonal if the off-diagonal elements are all zero, so that aij = 0 if i 6= j. A
square matrix is upper (lower) diagonal if all elements below (above) the diagonal equal zero.

An important diagonal matrix is the identity matrix, which has ones on the diagonal. The
k × k identity matrix is denoted as

Ik =


1 0 · · · 0
0 1 · · · 0
...
...

...
0 0 · · · 1

 .
A partitioned matrix takes the form

A =


A11 A12 · · · A1r

A21 A22 · · · A2r
...

...
...

Ak1 Ak2 · · · Akr


where the Aij denote matrices, vectors and/or scalars.

A.2 Complex Matrices*

Scalars, vectors and matrices may contain real or complex numbers as entries. (However, most
econometric applications exclusively use real matrices.) If all elements of a vector x are real we say
that x is a real vector, and similarly for matrices.

Recall that a complex number can be written as x = a+ bi where where i =
√
−1 and a and b

are real numbers. Similarly a vector with complex elements can be written as x = a+ bi where a
and b are real vectors, and a matrix with complex elements can be written as X = A+Bi where
A and B are real matrices.

Recall that the complex conjugate of x = a + bi is x∗ = a − bi . For matrices, the analogous
concept is the conjugate transpose. The conjugate transpose of X = A+Bi is X∗ = A′ −B′i. It
is obtained by taking the transpose and taking the complex conjugate of each element.

A.3 Matrix Addition

If the matrices A = (aij) and B = (bij) are of the same order, we define the sum

A+B = (aij + bij) .

Matrix addition follows the commutative and associative laws:

A+B = B +A

A+ (B +C) = (A+B) +C.
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A.4 Matrix Multiplication

If A is k × r and c is real, we define their product as

Ac = cA = (aijc) .

If a and b are both k × 1, then their inner product is

a′b = a1b1 + a2b2 + · · ·+ akbk =

k∑
j=1

ajbj .

Note that a′b = b′a. We say that two vectors a and b are orthogonal if a′b = 0.
If A is k × r and B is r × s, so that the number of columns of A equals the number of rows

of B, we say that A and B are conformable. In this event the matrix product AB is defined.
Writing A as a set of row vectors and B as a set of column vectors (each of length r), then the
matrix product is defined as

AB =


a′1
a′2
...
a′k

 [ b1 b2 · · · bs
]

=


a′1b1 a′1b2 · · · a′1bs
a′2b1 a′2b2 · · · a′2bs
...

...
...

a′kb1 a′kb2 · · · a′kbs

 .
Matrix multiplication is not commutative: in general AB 6= BA. However, it is associative

and distributive:

A (BC) = (AB)C

A (B +C) = AB +AC.

An alternative way to write the matrix product is to use matrix partitions. For example,

AB =

[
A11 A12

A21 A22

] [
B11 B12

B21 B22

]

=

[
A11B11 +A12B21 A11B12 +A12B22

A21B11 +A22B21 A21B12 +A22B22

]
.

As another example,

AB =
[
A1 A2 · · · Ar

]

B1

B2
...
Br


= A1B1 +A2B2 + · · ·+ArBr

=
r∑
j=1

AjBj .



APPENDIX A. MATRIX ALGEBRA 775

An important property of the identity matrix is that if A is k×r, then AIr = A and IkA = A.
We say two matrices A and B are orthogonal if A′B = 0. This means that all columns of A

are orthogonal with all columns of B.
The k×r matrixH, r ≤ k, is called orthonormal ifH ′H = Ir. This means that the columns

of H are mutually orthogonal, and each column is normalized to have unit length.

A.5 Trace

The trace of a k × k square matrix A is the sum of its diagonal elements

tr (A) =
k∑
i=1

aii.

Some straightforward properties for square matrices A and B and real c are

tr (cA) = c tr (A)

tr
(
A′
)

= tr (A)

tr (A+B) = tr (A) + tr (B)

tr (Ik) = k.

Also, for k × r A and r × k B we have

tr (AB) = tr (BA) . (A.1)

Indeed,

tr (AB) = tr


a′1b1 a′1b2 · · · a′1bk
a′2b1 a′2b2 · · · a′2bk
...

...
...

a′kb1 a′kb2 · · · a′kbk


=

k∑
i=1

a′ibi

=
k∑
i=1

b′iai

= tr (BA) .

A.6 Rank and Inverse

The rank of the k × r matrix (r ≤ k)

A =
[
a1 a2 · · · ar

]
is the number of linearly independent columns aj , and is written as rank (A) . We say that A has
full rank if rank (A) = r.

A square k × k matrix A is said to be nonsingular if it is has full rank, e.g. rank (A) = k.
This means that there is no k × 1 c 6= 0 such that Ac = 0.

If a square k × k matrix A is nonsingular then there exists a unique matrix k × k matrix A−1

called the inverse of A which satisfies

AA−1 = A−1A = Ik.
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For non-singular A and C, some important properties include

AA−1 = A−1A = Ik(
A−1

)′
=
(
A′
)−1

(AC)−1 = C−1A−1

(A+C)−1 = A−1
(
A−1 +C−1

)−1
C−1

A−1 − (A+C)−1 = A−1
(
A−1 +C−1

)−1
A−1.

If a k×k matrixH is orthonormal (so thatH ′H = Ik), thenH is nonsingular andH−1 = H ′.
Furthermore, HH ′ = Ik and H ′−1 = H.

Another useful result for non-singular A is known as theWoodbury matrix identity

(A+BCD)−1 = A−1 −A−1BC
(
C +CDA−1BC

)−1
CDA−1.

In particular, for C = 1, B = b and D = b′ for vector b we find what is known as the Sherman—
Morrison formula (

A+ bb′
)−1

= A−1 −
(
1 + b′A−1b

)−1
A−1bb′A−1.

and similarly using C = −1(
A− bb′

)−1
= A−1 +

(
1− b′A−1b

)−1
A−1bb′A−1. (A.2)

The following fact about inverting partitioned matrices is quite useful.[
A11 A12

A21 A22

]−1
def
=

[
A11 A12

A21 A22

]
=

[
A−1

11·2 −A−1
11·2A12A

−1
22

−A−1
22·1A21A

−1
11 A−1

22·1

]
(A.3)

where A11·2 = A11 −A12A
−1
22 A21 and A22·1 = A22 −A21A

−1
11 A12. There are alternative algebraic

representations for the components. For example, using the Woodbury matrix identity you can
show the following alternative expressions

A11 = A−1
11 +A−1

11 A12A
−1
22·1A21A

−1
11

A22 = A−1
22 +A−1

22 A21A
−1
11·2A12A

−1
22

A12 = −A−1
11 A12A

−1
22·1

A21 = −A−1
22 A21A

−1
11·2.

Even if a matrix A does not possess an inverse, we can still define the Moore-Penrose gen-
eralized inverse A− as the matrix which satisfies

AA−A = A

A−AA− = A−

AA− is symmetric

A−A is symmetric.

For any matrix A, the Moore-Penrose generalized inverse A− exists and is unique.
For example, if

A =

[
A11 0
0 0

]
and A−1

11 exists then

A− =

[
A−1

11 0
0 0

]
.
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A.7 Orthogonal and Orthonormal Matrices

We say that two k × 1 vectors h1 and h2 are orthogonal if h′1h2 = 0. This means that they
are perpendicular.

We say that a k × 1 vector h is a unit vector if h′h = 1. This means that it has unit length
in Rk.

We say that two k× 1 vectors h1 and h2 are orthonormal if they are orthogonal unit vectors.
We say that the k ×m1 and k ×m2 matrices H1 and H2 are orthogonal if H ′1H2 = 0.
We say that the k ×m (k ≥ m) matrix H is orthonormal if H ′H = Im. This means that

the columns of H are orthonormal. Some call H an orthogonal matrix.
Typically an orthonormal matrix is written as H.
IfH is a k×k orthogonal matrix then it has full rank k,H ′H = Ik,HH ′ = Ik, andH−1 = H ′.

A.8 Determinant

The determinant is a measure of the volume of a square matrix. It is written as detA or |A|.
While the determinant is widely used, its precise definition is rarely needed. However, we

present the definition here for completeness. Let A = (aij) be a k × k matrix . Let π = (j1, ..., jk)
denote a permutation of (1, ..., k) . There are k! such permutations. There is a unique count of the
number of inversions of the indices of such permutations (relative to the natural order (1, ..., k) ,
and let επ = +1 if this count is even and επ = −1 if the count is odd. Then the determinant of A
is defined as

detA =
∑
π

επa1j1a2j2 · · · akjk .

For example, if A is 2 × 2, then the two permutations of (1, 2) are (1, 2) and (2, 1) , for which
ε(1,2) = 1 and ε(2,1) = −1. Thus

detA = ε(1,2)a11a22 + ε(2,1)a21a12

= a11a22 − a12a21.

For a square matrix A, the minor Mij of the ijth element aij is the determinant of the matrix
obtained by removing the ith row and jth column of A. The cofactor of the ijth element is Cij =
(−1)i+jMij . An important representation known as Laplace’s expansion relates the determinant
of A to its cofactors:

detA =
k∑
j=1

aijCij .

This holds for all i = 1, , .., k. This is often presented as a method for computation of a determinant.

Theorem A.1 Properties of the determinant

1. det (A) = det (A′)

2. det (cA) = ck detA

3. det (AB) = det (BA) = (detA) (detB)

4. det
(
A−1

)
= (detA)−1

5. det

[
A B
C D

]
= (detD) det

(
A−BD−1C

)
if detD 6= 0

6. det

[
A B
0 D

]
= det (A) (detD) and det

[
A 0
C D

]
= det (A) (detD)
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7. If A is p× q and B is q × p then det (Ip +AB) = det (Iq +BA)

8. If A and D are invertible then det
(
A−BD−1C

)
=

det (A)

det (D)
det
(
D −CA−1B

)
9. detA 6= 0 if and only if A is nonsingular

10. If A is triangular (upper or lower), then detA =
∏k
i=1 aii

11. If A is orthonormal, then detA = ±1

12. A−1 = (detA)−1C where C = (Cij) is the matrix of cofactors

A.9 Eigenvalues

The characteristic equation of a k × k square matrix A is

det (λIk −A) = 0.

The left side is a polynomial of degree k in λ so it has exactly k roots, which are not necessarily
distinct and may be real or complex. They are called the latent roots, characteristic roots, or
eigenvalues of A. If λ is an eigenvalue of A, then λIk −A is singular so there exists a non-zero
vector h such that (λIk −A)h = 0 or

Ah = hλ.

The vector h is called a latent vector, characteristic vector, or eigenvector ofA corresponding
to λ. They are typically normalized so that h′h = 1 and thus λ = h′Ah.

Set H = [h1 · · · hk] and Λ = diag {λ1, ..., λk}. A matrix expression is

AH = HΛ

We now state some useful properties.

Theorem A.2 Properties of eigenvalues. Let λi and hi, i = 1, ..., k, denote the k eigenvalues and
eigenvectors of a square matrix A.

1. det(A) =
∏k
i=1 λi

2. tr(A) =
∑k

i=1 λi

3. A is non-singular if and only if all its eigenvalues are non-zero.

4. The non-zero eigenvalues of AB and BA are identical.

5. If B is non-singular then A and B−1AB have the same eigenvalues.

6. If Ah = hλ then (I −A)h = h(1 − λ). So I −A has the eigenvalue 1 − λ and associated
eigenvector h.

Most eigenvalue applications in econometrics concern the case where the matrix A is real and
symmetric. In this case all eigenvalues of A are real and its eigenvectors are mutually orthogonal.
Thus H is orthonormal so H ′H = Ik and HH ′ = Ik. When the eigenvalues are all real it is
conventional to write them in decending order λ1 ≥ λ2 ≥ · · · ≥ λk.

The following is a very important property of real symmetric matrices, which follows directly
from the equations AH = HΛ and H ′H = Ik.
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Theorem A.3 (Spectral Decomposition) If A is a k × k real symmetric matrix, then A =
HΛH ′ where H contains the eigenvectors and Λ is a diagonal matrix with the eigenvalues on the
diagaonal. The eigenvalues are all real and the eigenvector matrix satisfies H ′H = Ik.

The spectral decomposition can be alternatively written as H ′AH = Λ.
If A is real, symmetric, and invertible, then by the spectral decomposition and the properties

of orthonormal matrices, A−1 = H ′−1Λ−1H−1 = HΛ−1H ′. Thus the columns of H are also the
eigenvectors of A−1, and its eigenvalues are λ−1

1 , λ−1
2 , ..., λ−1

k .

A.10 Positive Definite Matrices

We say that a k×k real symmetric square matrix A is positive semi-definite if for all c 6= 0,
c′Ac ≥ 0. This is written as A ≥ 0. We say that A is positive definite if for all c 6= 0, c′Ac > 0.
This is written as A > 0.

Some properties include:

Theorem A.4 Properties of positive semi-definite matrices

1. If A = G′BG with B ≥ 0 and some matrix G, then A is positive semi-definite. (For any
c 6= 0, c′Ac = α′Bα ≥ 0 where α = Gc.) If G has full column rank and B > 0, then A is
positive definite.

2. If A is positive definite, then A is non-singular and A−1 exists. Furthermore, A−1 > 0.

3. A > 0 if and only if it is symmetric and all its eigenvalues are positive.

4. By the spectral decomposition, A = HΛH ′ where H ′H = Ik and Λ is diagonal with non-
negative diagonal elements. All diagonal elements of Λ are strictly positive if (and only if)
A > 0.

5. The rank of A equals the number of strictly positive eigenvalues.

6. If A > 0 then A−1 = HΛ−1H ′.

7. If A ≥ 0 and rank (A) = r ≤ k then the Moore-Penrose generalized inverse of A is A− =
HΛ−H ′ where Λ− = diag

(
λ−1

1 , λ−1
2 , ..., λ−1

r , 0, ..., 0
)
.

A.11 Idempotent Matrices

A k×k square matrix A is idempotent if AA = A.When k = 1 the only idempotent numbers
are 1 and 0. For k > 1 there are many possibilities. For example, the following matrix is idempotent

A =

[
1/2 −1/2
−1/2 1/2

]
.

If A is idempotent and symmetric with rank r, then it has r eigenvalues which equal 1 and k−r
eigenvalues which equal 0. To see this, by the spectral decomposition we can write A = HΛH ′

where H is orthonormal and Λ contains the eigenvalues. Then

A = AA = HΛH ′HΛH ′ = HΛ2H ′.

We deduce that Λ2 = Λ and λ2
i = λi for i = 1, ..., k. Hence each λi must equal either 0 or 1. Since

the rank of A is r, and the rank equals the number of positive eigenvalues, it follows that

Λ =

[
Ir 0
0 0k−r

]
.
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Thus the spectral decomposition of an idempotent matrix A takes the form

A = H

[
Ir 0
0 0k−r

]
H ′ (A.4)

with H ′H = Ik. Additionally, tr(A) = rank(A) and A is positive semi-definite.
If A is idempotent and symmetric with rank r < k then it does not possess an inverse, but its

Moore-Penrose generalized inverse takes the simple form A− = A. This can be verified by checking
the conditions for the Moore-Penrose generalized inverse , for example AA−A = AAA = A.

If A is idempotent then I −A is also idempotent.
One useful fact is that if A is idempotent then for any conformable vector c,

c′Ac ≤ c′c (A.5)

c′ (I −A) c ≤ c′c (A.6)

To see this, note that
c′c = c′Ac+ c′ (I −A) c.

Since A and I − A are idempotent, they are both positive semi-definite, so both c′Ac and
c′ (I −A) c are non-negative. Thus they must satisfy (A.5)-(A.6).

A.12 Singular Values

The singular values of a k × r real matrix A are the positive square roots of the eigenvalues of
A′A. Thus for j = 1, ..., r

sj =
√
λj (A′A).

Since A′A is positive semi-definite, its eigenvalues are non-negative. Thus singular values are
always real and non-negative.

The non-zero singular values of A and A′ are the same.
When A is positive semi-definite then the singular values of A correspond to its eigenvalues.
It is convention to write the singular values in decending order s1 ≥ s2 ≥ · · · ≥ sr.

A.13 Matrix Decompositions

There are several useful ways to decompose a matrix into the products of simpler matrices. We
have already introduced the spectral decomposition, which we repeat here for completeness. The
following apply to real matrices A.

Spectral Decomposition: If A is k × k and symmetric then A = HΛH ′ where H ′H = Ik
and Λ is a diagonal matrix with the (real) eigenvalues on the diagaonal.

Eigendecomposition: If A is k×k and has distinct eigenvalues there exists a nonsingular matrix
P such that A = PΛP−1 and P−1AP = Λ. The columns of P are the eigenvectors. Λ is diagonal
with the eigenvalues on the diagonal.

Matrix Square Root: If A is k × k and positive definite we can find a matrix B such that
A = BB′. We call B a matrix square root of A and is typically written as B = A1/2.

The matrix B need not be unique. One matrix square root is obtained using the spectral
decomposition A = HΛH ′. Then B = HΛ1/2H ′ is itself symmetric and positive definite and
satisfies A = BB. Another matrix square root is the Cholesky decomposition, described in Section
A.16.
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Singular Value Decomposition: If A is k × r then A = UΛV ′ where U is k × k, Λ is k × r
and V is r × r. U and V are orthonormal (U ′U = Ik and V ′V = Ir). Λ is a diagonal matrix
with the singular values of A on the diagonal.

Cholesky Decomposition: If A is k × k and positive definite the A = LL′ where L is lower
triangular and full rank. See Section A.16.

QR Decomposition: If A is k × r with k ≥ r and rank r then A = QR. Q is a k × r and
orthonormal matrix (Q′Q = Ir). R is a r × r full rank upper triangular matrix. See Section
A.17.

Jordan Matrix Decomposition: IfA is k×k with r unique eigenvalues thenA = PJP−1 where
J takes the Jordan normal form. The latter is a block diagonal matrix J = diag {J1, ...,Jr}.
The Jordan blocks J i are mi × mi where mi is the multiplicity of λi (number of eigenvalues
equalling λi) and take the form

J i =

 λi 1 0
0 λi 1
0 0 λi


illustrated here for mi = 3.

A.14 Generalized Eigenvalues

Let A and B be k × k matrices. The generalized characteristic equation is

det (µB −A) = 0.

The solutions µ are known as generalized eigenvalues of A with respect to B. Associated with
each generalized eigenvalue µ is a generalized eigenvector v which satisfies

Av = Bvµ.

They are typically normalized so that v′Bv = 1 and thus µ = v′Av.
A matrix expression is

AV = BVM

whereM = diag {µ1, ..., µk}.
If A and B are real and symmetric then the generalized eigenvalues are real.
Suppose in addition that B is invertible. Then the generalized eigenvalues of A with respect to

B are equal to the eigenvalues of B−1/2AB−1/2′. The generalized eigenvectors V of A with respect
to B are related to the eigenvectors H of B−1/2AB−1/2′ by the relationship V = B−1/2′H. This
implies V ′BV = Ik. Thus the generalized eigenvectors are orthogonalized with respect to the
matrix B.

If Av = Bvµ then (B −A)v = Bv(1−µ). So a generalized eigenvalue of B−A with respect
to B is 1− µ with associated eigenvector v.

Generalized eigenvalue equations have an interesting dual property. The following is based on
Lemma A.9 of Johansen (1995).

Theorem A.5 Suppose that B and C are invertible p × p and r × r matrices, respectively, and
A is p× r. Then the generalized eigenvalue problems

det
(
µB −AC−1A′

)
= 0 (A.7)

and
det
(
µC −A′B−1A

)
= 0 (A.8)
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have the same non-zero generalized eigenvalues. Furthermore, for any such generalized eigenvalue
µ, if v and w are the associated generalized eigenvectors of (A.7) and (A.8), then

w = µ−1/2C−1A′v. (A.9)

Proof:. Let µ 6= 0 be an eigenvalue of (A.7). Then using Theorem A.1.8

0 = det
(
µB −AC−1A′

)
=

det (µB)

det (C)
det
(
C −A′ (µB)−1A

)
=

det (B)

det (C)
det
(
µC −A′B−1A

)
.

Since det (B) /det (C) 6= 0 this implies (A.9) holds. Hence µ is an eigenvalue of (A.8), as claimed.
We next show that (A.9) is an eigenvector of (A.8). Note that the solutions to (A.7) and (A.8)

satisfy
Bvµ = AC−1A′v (A.10)

and
Cwµ = A′B−1Aw (A.11)

and are normalized so that v′Bv = 1 and w′Cw = 1. We show that (A.9) satisfies (A.11). Using
(A.9), we find that the left-side of (A.11) equals

C
(
µ−1/2C−1A′

)
µ = A′µ1/2 = A′B−1Bvµ1/2 = A′B−1AC−1A′vµ−1/2 = A′B−1Aw

The third equality is (A.10) and the final is (A.9). This shows that (A.11) holds and thus (A.9) is
an eigenvector of (A.8) as stated. �

A.15 Extrema of Quadratic Forms

The extrema of quadratic forms in real symmetric matrices can be conveniently be written in
terms of eigenvalues and eigenvectors.

Let A denote a k × k real symmetric matrix. Let λ1 ≥ · · · ≥ λk be the ordered eigenvalues of
A and h1, ...,hk the associated ordered eigenvectors.

We start with results for the extrema of x′Ax. Throughout this Section, when we refer to the
“solution”of an extremum problem, it is the solution to the normalized expression.

• max
x′x=1

x′Ax = max
x

x′Ax

x′x
= λ1. The solution is x = h1. (That is, the maximizer of x′Ax

over x′x = 1.)

• min
x′x=1

x′Ax = min
x

x′Ax

x′x
= λk. The solution is x = hk.

Multivariate generalizations can involve either the trace or the determinant.

• max
X′X=I`

tr (X ′AX) = max
X

tr
(

(X ′X)
−1

(X ′AX)
)

=
∑`

i=1 λi.

The solution is X = [h1, ...,h`].

• min
X′X=I`

tr (X ′AX) = min
X

(
(X ′X)

−1
(X ′AX)

)
=
∑`

i=1 λk−i+1.

The solution is X = [hk−`+1, ...,hk].
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For a proof, see Theorem 11.13 of Magnus and Neudecker (1988).

Suppose as well that A > 0 with ordered eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λk and eigenvectors
[h1, ...,hk]

• max
X′X=I`

det (X ′AX) = max
X

det (X ′AX)

det (X ′X)
=
∏̀
i=1

λi. The solution is X = [h1, ...,h`].

• min
X′X=I`

det (X ′AX) = min
X

det (X ′AX)

det (X ′X)
=
∏̀
i=1

λk−i+1. The solution is X = [hk−`+1, ...,hk].

• max
X′X=I`

det (X ′ (I −A)X) = max
X

det (X ′ (I −A)X)

det (X ′X)
=
∏̀
i=1

(1− λk−i+1). The solution is

X = [hk−`+1, ...,hk].

• min
X′X=I`

det (X ′ (I −A)X) = min
X

det (X ′ (I −A)X)

det (X ′X)
=
∏̀
i=1

(1− λi). The solution is X =

[h1, ...,h`].

For a proof, see Theorem 11.15 of Magnus and Neudecker (1988).
We can extend the above results to incorporate generalized eigenvalue equations.
Let A and B be k × k real symmetric matrices with B > 0. Let µ1 ≥ · · · ≥ µk be the ordered

generalized eigenvalues of A with respect to B and v1, ...,vk the associated ordered eigenvectors.

• max
x′Bx=1

x′Ax = max
x

x′Ax

x′Bx
= µ1. The solution is x = v1.

• min
x′Bx=1

x′Ax = min
x

x′Ax

x′Bx
= µk. The solution is x = vk.

• max
X′BX=I`

tr (X ′AX) = max
X

tr
(

(X ′BX)
−1

(X ′AX)
)

=
∑`

i=1 µi.

The solution is X = [v1, ...,v`].

• min
X′BX=I`

tr (X ′AX) = min
X

tr
(

(X ′BX)
−1

(X ′AX)
)

=
∑`

i=1 µk−i+1.

The solution is X = [vk−`+1, ...,vk].

Suppose as well that A > 0.

• max
X′BX=I`

det (X ′AX) = max
X

det (X ′AX)

det (X ′BX)
=
∏̀
i=1

µi.

The solution is X = [v1, ...,v`].

• min
X′BX=I`

det (X ′AX) = min
X

det (X ′AX)

det (X ′BX)
=
∏̀
i=1

µk−i+1.

The solution is X = [vk−`+1, ...,vk].

• max
X′BX=I`

det (X ′ (I −A)X) = max
X

det (X ′ (I −A)X)

det (X ′BX)
=
∏̀
i=1

(1− µk−i+1).

The solution is X = [vk−`+1, ...,vk].
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• min
X′BX=I`

det (X ′ (I −A)X) = min
X

det (X ′ (I −A)X)

det (X ′BX)
=
∏̀
i=1

(1− µi).

The solution is X = [v1, ...,v`]..

By change-of-variables, we can re-express one eigenvalue problem in terms of another. For
example, let A > 0, B > 0, and C > 0. Then

max
X

det (X ′CACX)

det (X ′CBCX)
= max

X

det (X ′AX)

det (X ′BX)

and

min
X

det (X ′CACX)

det (X ′CBCX)
= min

X

det (X ′AX)

det (X ′BX)
.

A.16 Cholesky Decomposition

For a k × k positive definite matrix A, its Cholesky decomposition takes the form

A = LL′

where L is lower triangular and full rank. A lower triangular matrix (also known as a left
triangular matrix) takes the form

L =


L11 0 · · · 0
L21 L22 · · · 0
...

...
. . .

...
Lk1 Lk2 · · · Lkk

 .
The diagonal elements of L are all strictly positive. The Cholesky decomposition is unique (for
positive definite A).

The decomposition is very useful for a range of computations, especially when a matrix square
root is required. Algorithms for computation are available in standard packages (for example, chol
in either MATLAB or R).

Lower triangular matrices such as L have special properties. One is that its determinant equals
the product of the diagonal elements.

Proofs of uniqueness of the Cholesky decomposition (as well as computation) are algorithmic.
Here are the details for the case k = 3. Write out A11 A21 A31

A21 A22 A32

A31 A32 A33

 = A = LL′ =

 L11 0 0
L21 L22 0
L31 L32 L33

 L11 L21 L31

0 L22 L32

0 0 L33


=

 L2
11 L11L21 L11L31

L11L21 L2
21 + L2

22 L31L21 + L32L22

L11L31 L31L21 + L32L22 L2
31 + L2

32 + L2
33

 .
There are six equations, six knowns (the elements of A) and six unknowns (the elements of L). We
can solve for the latter by starting with the first column, moving from top to bottom. The first
element has the simple solution

L11 =
√
A11.

This has a real solution since A11 > 0. Moving down, since L11 is known, for the entries beneath
L11 we solve and find

L21 =
A21

L11
=

A21√
A11

L31 =
A31

L11
=

A31√
A11

.
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Next we move to the second column. We observe that L21 is known. Then we solve for L22

L22 =
√
A22 − L2

21 =

√
A22 −

A2
21

A11
.

This has a real solution since A > 0. Then since L22 is known we can move down the column to
find

L32 =
A32 − L31L21

L22
=
A32 − A31A21

A11√
A22 − A221

A11

.

Finally we take the third column. All elements except L33 are known. So we solve to find

L33 =
√
A33 − L2

31 − L2
32 =

√√√√√A33 −
A2

31

A11
−

(
A32 − A31A21

A11

)2

A22 − A221
A11

.

A.17 QR Decomposition

The QR decomposition is widely used for numerical problems such as matrix inversion and
solving systems of linear equations.

Let A be an k × r matrix, with k ≥ r and rank r. The QR decomposition of A is

A = QR

where Q is a k × r orthonormal matrix and R is a r × r full rank upper triangular matrix (also
known as a right triangular matrix).

To show that the QR decomposition exists, observe that A′A is r × r and positive definite.
Apply the Cholesky decomposition to find

A′A = LL′

where L is lower triangular and full rank. We then set

Q = A
(
L′
)−1

R = L′.

The matrix R is upper triangular by construction. Also,

Q′Q =
(
L′
)−1′

A′A
(
L′
)−1

= L−1LL′
(
L′
)−1

= Ik

so Q is orthonormal as claimed.
Numerical computation of the QR decomposition does not use the above matrix operations.

Instead it is done algorithmically. Standard methods include the Gram-Schmidt and House-
holder algorithms. The Gram-Schmidt is simple to describe and implement, but the Householder
is numerically more stable and is therefore the standard implementation. Since the algorithm is
involved we do not describe it here.
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A.18 Solving Linear Systems

A linear system of k equations with k unknowns is

a11b1 + a12b2 + · · ·+ a1kbk = c1

a21b1 + a22b2 + · · ·+ a2kbk = c2

...

ak1b1 + ak2b2 + · · ·+ akkbk = ck

or in matrix notation
Ab = c (A.12)

where A is k× k, and b and c are k× 1. If A is full rank then the solution b = A−1c is unique. In
this section we describe three algorithms to numerically find the solution b. The first uses Gaussian
elimination, the second uses the QR decomposition, and the third uses the Cholesky decomposition
for positive definite A.

(1) Solving by Gaussian elimination
The solution b in (A.12) is invariant to row operations; including multiplying an equation by

non-zero numbers, and adding and subtracting equations from one another. To exploit this insight
combine the known constants A and c into a k × (k + 1) augmented matrix

[A|c] . (A.13)

The row operations described above are the same as multiplying rows of [A|c] by non-zero numbers,
and adding and subtracting rows of [A|c] from one another. Such operations do not change the
solution b. Gaussian elimination works by applying row operations to [A|c] until the left section
equals the identity matrix Ik and thus equals

[Ik|d] . (A.14)

Since row operations do not alter the solution, this means that the solution b in (A.12) also satisfies
Ikb = d which implies b = d. Thus the solution b can be found as the right-most vector d in (A.14).

The Gauss-Jordan algorithm implements a sequence of row operations which obtains the solution
for any pair (A.13) such that A is full rank. The algorithm is as follows.

For r = 1, ..., k:

1. Divide the elements of row r by arr. Thus make the changes

(a) ari 7→ ari/arr for i = 1, ..., k

(b) cr 7→ cr/arr

2. For rows j 6= r, subtract ajr times row r from row j. Thus make the changes

(a) aji 7→ aji − ajrari for i = 1, ..., k

(b) cj 7→ cj − ajrcr

Each pair of operations transforms a column of the matrix A into an column of the identity
matrix Ik, starting with the first column and working sequentially to the right. The first operation
(dividing by arr) normalizes the rth diagonal element to unity. The second set of operations makes
row operations to transform the remaining elements of the rth column to equal zero. Since the
previous columns are unit vectors they are unaffected by these operations.
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(2) Solving by QR Decomposition
First, compute the QR decomposition

A = QR

where Q is a k × k orthogonal matrix, and R is k × k and upper triangular. This is is done
numerically (typically by the Householder algorithm) as described in Section A.17. This means
that (A.12) can be written as

QRb = c.

Premultiplying by Q′ and observing Q′Q = Ik we obtain

Rb = Q′c
def
= d.

This system can be written as

r11b1 + r12b2 + · · ·+ r1,k−1bk−2 + r1kbk = d1

r22b2 + · · ·+ r2,k−1bk−2 + r2kbk = d2

...

rk−1,k−1bk−2 + rk−1,kbk = dk−1

rkkbk = dk.

This can be solved by backwards recursion

bk = dk/rkk

bk−1 = (dk−1 − rk−1,kbk) /rk−1,k−1

...

b1 = (d1 − r12b2 − · · · − r1kbk) /r11.

To summarize, the QR solution method is

1. Numerically compute the QR decomposition A = QR.

2. Calculate d = Q′c.

3. Solve for b by backward recursion.

(3) Solving by Cholesky Decomposition for positive definite A
First, compute the Cholesky decomposition

A = LR

where L is k× k and lower triangular, and R = L′ is upper triangular. This is is done numerically
as described in Section A.16. This means that (A.12) can be written as

LRb = c.

or
Ld = c

where d = Rb. The vector d can be solved from L and c using forward recursion. The equation

Rb = d

can then be solved for b by backwards recursion.

We have described three algorithms. Which should be used in practice? For positive definite A,
solving by the Cholesky decomposition is the preferred method as it is numerically most effi cient
and stable. When A is not positive definite, solving by the QR decomposition is the preferred
method as it is numerically most stable. The advantage of the Gauss-Jordan algorithm is that it
is the simplest to program.
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A.19 Algorithmic Matrix Inversion

Numerical methods for solving linear systems can be used to calculate the inverse of a full-rank
k × k matrix A. Let B = A−1 be the inverse of A. The matrices satisfy

AB = Ik

which is a matrix generalization of (A.12). The goal is to solve this system to obtain B.
(1) Solving by Gaussian elimination
Replace c in (A.13) with Ik and apply the Gauss-Jordan elimination algorithm. The solution

is B.
(2) Solving by QR decomposition
Numerically compute the QR decomposition

A = QR.

This implies
QRB = Ik.

Premultiplying by Q′ and observing Q′Q = Ik we obtain

RB = Q′.

Write B = [b1, ..., bk] and Q′ = [q1, ..., qk]. For j = 1, ..., k

Rbj = qj .

Since R is upper triangular the vector bj can be found by backwards recursion as described in
Section A.18.

(3) Solving by Cholesky decomposition for positive definite A
Compute the Cholesky decomposition

A = LR

where L is k × k and lower triangular and R = L′ is upper triangular. This implies

LRB = Ik

or
LC = Ik

where C = RB. Applying forward recursion one column at a time we can solve for C. We then
have

RB = C.

Applying backwards recursion one column at a time we can solve for B.

A.20 Matrix Calculus

Let x = (x1, ..., xk)
′ be k × 1 and g(x) = g(x1, ..., xk) : Rk → R. The vector derivative is

∂

∂x
g (x) =


∂
∂x1

g (x)
...

∂
∂xk

g (x)


and

∂

∂x′
g (x) =

(
∂
∂x1

g (x) · · · ∂
∂xk

g (x)
)
.

Some properties are now summarized.
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Theorem A.6 Properties of matrix derivatives

1. ∂
∂x (a′x) = ∂

∂x (x′a) = a

2. ∂
∂x (x′A) = A and ∂

∂x′ (Ax) = A

3. ∂
∂x (x′Ax) = (A+A′)x

4. ∂2

∂x∂x′ (x′Ax) = A+A′

5. ∂
∂A tr (BA) = B′

6. ∂
∂A log det (A) =

(
A−
)′

To show part 1, note that

∂

∂xj

(
a′x
)

=
∂

∂xj
(a1x1 + · · ·+ akxk) = aj .

Thus

∂

∂x

(
a′x
)

=

 a1
...
ak

 = a

as claimed.

For part 2, write A = [a1, ...,am] so that

∂

∂x

(
x′A

)
=

∂

∂x

[
x′a1, ...,x

′am
]

=

[
∂

∂x

(
x′a1

)
, ...,

∂

∂x

(
x′am

)]
= [a1, ...,am] = A

using part 1. ∂
∂x′ (Ax) = A follows by taking the transpose.

For part 3, notice x′Ax = x′A′x and apply the product rule and then part 2,

∂

∂x

(
x′Ax

)
=

∂

∂x

(
x′Ik

)
Ax+

∂

∂x

(
x′A′

)
x = IkAx+A′x =

(
A+A′

)
x.

For part 4, applying part 3 we find

∂2

∂x∂x′
(
x′Ax

)
=

∂

∂x

∂

∂x′
(
x′Ax

)
=

∂

∂x
x′
(
A+A′

)
= A+A′.

For part 5, recall from Section A.5 that we can write out explicitly

tr (BA) =
∑
i

∑
j

aijbji.

Thus if we take the derivative with respect to aij we find

∂

∂aij
tr (BA) = bji.

which is the ijth element of B′, establishing part 5.
For part 6, recall Laplace’s expansion

detA =

k∑
j=1

aijCij .
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where Cij is the ijth cofactor of A. Set C = (Cij). Observe that Cij for j = 1, ..., k are not
functions of aij . Thus the derivative with respect to aij is

∂

∂aij
log det (A) = (detA)−1 ∂

∂aij
detA = (detA)−1Cij .

Together this implies
∂

∂A
log det (A) = (detA)−1C = A−1

where the second equality is Theorem A.1.12.

A.21 Kronecker Products and the Vec Operator

Let A = [a1 a2 · · · an] be m× n. The vec of A, denoted by vec (A) , is the mn× 1 vector

vec (A) =


a1

a2
...
an

 .

Let A = (aij) be an m × n matrix and let B be any matrix. The Kronecker product of A
and B, denoted A⊗B, is the matrix

A⊗B =


a11B a12B · · · a1nB
a21B a22B · · · a2nB
...

...
...

am1B am2B · · · amnB

 .
Some important properties are now summarized. These results hold for matrices for which all
matrix multiplications are conformable.

Theorem A.7 Properties of the Kronecker product

1. (A+B)⊗C = A⊗C +B ⊗C

2. (A⊗B) (C ⊗D) = AC ⊗BD

3. A⊗ (B ⊗C) = (A⊗B)⊗ C

4. (A⊗B)′ = A′ ⊗B′

5. tr (A⊗B) = tr (A) tr (B)

6. If A is m×m and B is n× n, det(A⊗B) = (det (A))n (det (B))m

7. (A⊗B)−1 = A−1 ⊗B−1

8. If A > 0 and B > 0 then A⊗B > 0

9. vec (ABC) = (C ′ ⊗A) vec (B)

10. tr (ABCD) = vec (D′)′ (C ′ ⊗A) vec (B)
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A.22 Vector Norms

Given any vector space V (such as Euclidean space Rm) a norm on V is a function ρ : V → R
with the properties

1. ρ (ca) = |c| ρ (a) for any complex number c and a ∈ V

2. ρ (a+ b) ≤ ρ (a) + ρ (b)

3. If ρ (a) = 0 then a = 0.

A seminorm on V is a function which satisfies the first two properties. The second property
is known as the triangle inequality, and it is the one property which typically needs a careful
demonstration (as the other two properties typically hold by inspection).

The typical norm used for Euclidean space Rm is the Euclidean norm

‖a‖ =
(
a′a
)1/2

=

(
m∑
i=1

a2
i

)1/2

.

An alternative norm is the p−norm (for p ≥ 1)

‖a‖p =

(
m∑
i=1

|ai|p
)1/p

.

Special cases include the Euclidean norm (p = 2), the 1−norm

‖a‖1 =
m∑
i=1

|ai|

and the sup-norm
‖a‖∞ = max (|a1| , ..., |am|) .

For real numbers (m = 1) these norms coincide.

A.23 Matrix Norms

Two common norms used for matrix spaces are the Frobenius norm and the spectral norm.
We can write either as ‖A‖, but may write ‖A‖F or ‖A‖2 when we want to be specific.

The Frobenius norm of an m× k matrix A is the Euclidean norm applied to its elements

‖A‖F = ‖vec (A)‖

=
(
tr
(
A′A

))1/2
=

 m∑
i=1

k∑
j=1

a2
ij

1/2

.

When m×m A is real symmetric then

‖A‖F =

(
m∑
`=1

λ2
`

)1/2
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where λ`, ` = 1, ...,m are the eigenvalues of A. To see this, by the spectral decomposition A =
HΛH ′ with H ′H = I and Λ = diag{λ1, ..., λm}, so

‖A‖F =
(
tr
(
HΛH ′HΛH ′

))1/2
= (tr (ΛΛ))1/2 =

(
m∑
`=1

λ2
`

)1/2

. (A.15)

A useful calculation is for any m× 1 vectors a and b, using (A.1),∥∥ab′∥∥
F

= tr
(
ba′ab

′
)1/2

=
(
b′ba′a

)1/2
= ‖a‖ ‖b‖

and in particular ∥∥aa′∥∥
F

= ‖a‖2 . (A.16)

The spectral norm of an m× k real matrix A is its largest singular value

‖A‖2 = smax (A) =
(
λmax

(
A′A

))1/2
where λmax (B) denotes the largest eigenvalue of the matrix B. Notice that

λmax

(
A′A

)
=
∥∥A′A∥∥

2

so
‖A‖2 =

∥∥A′A∥∥1/2

2
.

If A is m×m and symmetric with eigenvalues λj then

‖A‖2 = max
j≤m
|λj | .

The Frobenius and spectral norms are closely related. They are equivalent when applied to a
matrix of rank 1, since

∥∥ab′∥∥
2

= ‖a‖ ‖b‖ =
∥∥ab′∥∥

F
. In general, for m× k matrix A with rank r

‖A‖2 =
(
λmax

(
A′A

))1/2 ≤
 k∑
j=1

λj
(
A′A

)1/2

= ‖A‖F . (A.17)

Since A′A also has rank at most r, it has at most r non-zero eigenvalues, and hence

‖A‖F =

 k∑
j=1

λj
(
A′A

)1/2

=

 r∑
j=1

λj
(
A′A

)1/2

≤
(
rλmax

(
A′A

))1/2
=
√
r ‖A‖2 . (A.18)

Given any vector norm ‖a‖ the induced matrix norm is defined as

‖A‖ = sup
x′x=1

‖Ax‖ = sup
x6=0

‖Ax‖
‖x‖ .

To see that this is a norm we need to check that it satisfies the triangle inequality. Indeed

‖A+B‖ = sup
x′x=1

‖Ax+Bx‖ ≤ sup
x′x=1

‖Ax‖+ sup
x′x=1

‖Bx‖ = ‖A‖+ ‖B‖ .

For any vector x, by the definition of the induced norm

‖Ax‖ ≤ ‖A‖ ‖x‖

a property which is called consistent norms.
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Let A and B be conformable and ‖A‖ an induced matrix norm. Then using the property of
consistent norms

‖AB‖ = sup
x′x=1

‖ABx‖ ≤ sup
x′x=1

‖A‖ ‖Bx‖ = ‖A‖ ‖B‖ .

A matrix norm which satisfies this property is called a sub-multiplicative norm, and is a matrix
form of the Schwarz inequality.

Of particular interest, the matrix norm induced by the Euclidean vector norm is the spectral
norm. Indeed,

sup
x′x=1

‖Ax‖2 = sup
x′x=1

x′A′Ax = λmax

(
A′A

)
= ‖A‖22 .

It follows that the spectral norm is consistent with the Euclidean norm, and is sub-multiplicative.



Appendix B

Useful Inequalities

In this Appendix, we list a set of inequalities and bounds which are used frequently in econo-
metric theory, predominantly in asymptotic analysis. The proofs are presented in Section B.5.

B.1 Inequalities for Real Numbers

Triangle Inequality. For any real numbers xj∣∣∣∣∣∣
m∑
j=1

xj

∣∣∣∣∣∣ ≤
m∑
j=1

|xj | . (B.1)

Jensen’s Inequality. If g(·) : R → R is convex, then for any non-negative weights aj such that∑m
j=1 aj = 1, and any real numbers xj

g

 m∑
j=1

ajxj

 ≤ m∑
j=1

ajg (xj) . (B.2)

In particular, setting aj = 1/m, then

g

 1

m

m∑
j=1

xj

 ≤ 1

m

m∑
j=1

g (xj) . (B.3)

If g(·) : R→ R is concave then the inequalities in (B.2) and (B.3) are reversed.

Weighted Geometric Mean Inequality. For any non-negative real weights aj such that∑m
j=1 aj = 1, and any non-negative real numbers xj

xa11 x
a2
2 · · ·xamm ≤

m∑
j=1

ajxj . (B.4)

Loève’s cr Inequality. For r > 0, and any real numbers xj∣∣∣∣∣∣
m∑
j=1

xj

∣∣∣∣∣∣
r

≤ cr
m∑
j=1

|xj |r (B.5)

where cr = 1 when r ≤ 1 and cr = mr−1 when r ≥ 1.

794
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Norm Monotonicity. If 0 < t ≤ s, and any real numbers xj∣∣∣∣∣∣
m∑
j=1

|xj |s
∣∣∣∣∣∣
1/s

≤

∣∣∣∣∣∣
m∑
j=1

|xj |t
∣∣∣∣∣∣
1/t

. (B.6)

B.2 Inequalities for Vectors

Triangle Inequalty. If a = (a1, ..., am)′

‖a‖ ≤
m∑
j=1

|aj | . (B.7)

c2 Inequality. For any m× 1 vectors a and b,

(a+ b)′ (a+ b) ≤ 2a′a+ 2b′b. (B.8)

Hölder’s Inequality for vectors. If p > 1, q > 1, and 1/p+ 1/q = 1, then for any m× 1 vectors
a and b, ∣∣a′b∣∣ ≤ ‖a‖p ‖b‖q . (B.9)

Schwarz Inequality for vectors. For any m× 1 vectors a and b,∣∣a′b∣∣ ≤ ‖a‖ ‖b‖ . (B.10)

Minkowski’s Inequality for vectors. For any m× 1 vectors a and b, if p ≥ 1, then

‖a+ b‖p ≤ ‖a‖p + ‖b‖p . (B.11)

Triangle Inequality for vectors. For any m× 1 vectors a and b,

‖a+ b‖ ≤ ‖a‖+ ‖b‖ . (B.12)

B.3 Inequalities for Matrices

Schwarz Matrix Inequality: For any m × k and k × m matrices A and B, and either the
Frobenius or spectral norm,

‖AB‖ ≤ ‖A‖ ‖B‖ . (B.13)

Triangle Inequality for Matrices: For any m× k matrices A and B, and either the Frobenius
or spectral norm,

‖A+B‖ ≤ ‖A‖+ ‖B‖ . (B.14)

Trace Inequality. For any m×m matrices A and B such that A is symmetric and B ≥ 0

tr (AB) ≤ ‖A‖2 tr (B) . (B.15)

Quadratic Inequality. For any m× 1 b and m×m symmetric matrix A

b′Ab ≤ ‖A‖2 b
′b. (B.16)

Strong Schwarz Matrix Inequality. For any conformable matrices A and B

‖AB‖F ≤ ‖A‖2 ‖B‖F . (B.17)
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Norm Equivalence. For any m× k matrix A of rank r

‖A‖2 ≤ ‖A‖F ≤
√
r ‖A‖2 . (B.18)

Eigenvalue Product Inequality. For any m ×m real symmetric matrices A ≥ 0 and B ≥ 0,
the eigenvalues λ` (AB) are real and satisfy

λmin (A)λmin (B) ≤ λ` (AB) ≤ λmax (A)λmax (B) . (B.19)

(Zhang and Zhang, 2006, Corollary 11).

B.4 Probabability Inequalities

Monotone Probability Inequality. For any events A and B such that A ⊂ B,

P(A) ≤ P(B). (B.20)

Union Equality. For any events A and B,

P(A ∪B) = P(A) + P(B)− P(A ∩B). (B.21)

Boole’s Inequality (Union Bound). For any events A and B,

P(A ∪B) ≤ P(A) + P(B). (B.22)

Bonferroni’s Inequality. For any events A and B,

P(A ∩B) ≥ P(A) + P(B)− 1. (B.23)

Jensen’s Inequality. If g(·) : Rm → R is convex, then for any random vector x for which
E ‖x‖ <∞ and E |g (x)| <∞,

g(E(x)) ≤ E (g (x)) . (B.24)

If g(·) concave, then the inequality is reversed.

Conditional Jensen’s Inequality. If g(·) : Rm → R is convex, then for any random vectors
(y,x) for which E ‖y‖ <∞ and E ‖g (y)‖ <∞,

g(E(y | x)) ≤ E (g (y) | x) . (B.25)

If g(·) concave, then the inequality is reversed.

Conditional Expectation Inequality. For any r ≥ 1 such that E |y|r <∞, then

E (|E(y | x)|r) ≤ E |y|r <∞. (B.26)

Expectation Inequality. For any random matrix Y for which E ‖Y ‖ <∞,

‖E(Y )‖ ≤ E ‖Y ‖ . (B.27)

Hölder’s Inequality. If p > 1 and q > 1 and 1
p + 1

q = 1, then for any random m× n matrices X
and Y ,

E
∥∥X ′Y ∥∥ ≤ (E (‖X‖p))1/p (E (‖Y ‖q))1/q . (B.28)
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Cauchy-Schwarz Inequality. For any random m× n matrices X and Y ,

E
∥∥X ′Y ∥∥ ≤ (E(‖X‖2))1/2 (

E
(
‖Y ‖2

))1/2
. (B.29)

Matrix Cauchy-Schwarz Inequality. Tripathi (1999). For any random x ∈ Rm and y ∈ R`,

E
(
yx′
) (
E
(
xx′
))− E (xy′) ≤ E (yy′) . (B.30)

Minkowski’s Inequality. For any random m× n matrices X and Y ,

(E (‖X + Y ‖p))1/p ≤ (E (‖X‖p))1/p + (E (‖Y ‖p))1/p . (B.31)

Liapunov’s Inequality. For any random m× n matrix X and 0 < r ≤ p,

(E (‖X‖r))1/r ≤ (E (‖X‖p))1/p . (B.32)

Markov’s Inequality (standard form). For any random vector x, non-negative function g(x) ≥
0, and ε > 0

P(g(x) > ε) ≤ ε−1E (g(x)) . (B.33)

Markov’s Inequality (strong form). For any random vector x, non-negative function g(x) ≥ 0,
and ε > 0

P(g(x) > ε) ≤ ε−1E (g (x) 1 (g(x) > ε)) . (B.34)

Chebyshev’s Inequality. For any random variable x and ε > 0

P(|x− E (x)| > ε) ≤ ε−2 var (x) . (B.35)

Bernstein’s Inequality. If xi are independent random variables, E (xi) = 0, σ2
i = E

(
x2
i

)
, σ2 =∑n

i=1 σ
2
i and |xi| ≤M <∞, then for all ε > 0

P

(∣∣∣∣∣
n∑
i=1

xi

∣∣∣∣∣ > ε

)
≤ 2 exp

(
− ε2

2σ2 + 2Mε/3

)
. (B.36)

Bernstein’s Inequality for vectors. If xi = (x1i, ..., xmi)
′ are independent random vectors,

E (xi) = 0, σ2 = maxj
∑n

i=1 E
(
x2
ji

)
and |xji| ≤M <∞, then for all ε > 0

P

(∣∣∣∣∣
n∑
i=1

xi

∣∣∣∣∣ > ε

)
≤ 2m exp

(
− ε2

2m2σ2 + 2mMε/3

)
. (B.37)

For the following we use the following definition. The sequence of random variables and informa-
tion sets (xi,Fi) is a martingale difference sequence (MDS) if (i) xi is measurable with respect
to Fi, (ii) E |xi| < ∞, and (iii) E (xi | Fi−1) = 0 a.s. A MDS is a generalization of independent
mean zero sequences.
Kolmogorov’s Inequality. If (xi,Fi) is a MDS and σ2

i = E
(
x2
i

)
<∞ then for all ε > 0

P

(
max

1≤j≤n

∣∣∣∣∣
j∑
i=1

xi

∣∣∣∣∣ > ε

)
≤ ε−2

n∑
i=1

σ2
i . (B.38)

Rosenthal’s Inequality. For any r ≥ 2 there is a constant Ar < ∞ such that if Xni are
independent, E (Xni) = 0, and E ‖Xni‖r <∞ then

E

(∥∥∥∥∥
n∑
i=1

Xni

∥∥∥∥∥
r)
≤ Ar


(

n∑
i=1

E ‖Xni‖2
)r/2

+

n∑
i=1

E ‖Xni‖r
 . (B.39)
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B.5 Proofs*

Proof of Triangle Inequality (B.1). First take the case m = 2. Observe that

− |x1| ≤ x1 ≤ |x1|
− |x2| ≤ x2 ≤ |x2| .

Adding, we find
− |x1| − |x2| ≤ x1 + x2 ≤ |x1|+ |x2|

which is (B.1) for m = 2. For m > 2, we apply (B.1) m− 1 times. �

Proof of Jensen’s Inequality (B.2). By the definition of convexity, for any λ ∈ [0, 1]

g (λx1 + (1− λ)x2) ≤ λg (x1) + (1− λ) g (x2) . (B.40)

This implies

g

 m∑
j=1

ajxj

 = g

a1x1 + (1− a1)
m∑
j=2

aj
1− a1

xj


≤ a1g (x1) + (1− a1) g

 m∑
j=2

bjxj


where bj = aj/(1− a1) and

∑m
j=2 bj = 1. By another application of (B.40) this is bounded by

a1g (x1) + (1− a1)

b2g(x2) + (1− b2)g

 m∑
j=2

cjxj


= a1g (x1) + a2g(x2) + (1− a1) (1− b2)g

 m∑
j=2

cjxj


where cj = bj/(1− b2). By repeated application of (B.40) we obtain (B.2). �

Proof of Weighted Geometric Mean Inequality (B.4). Since the logarithm is strictly concave,
by Jensen’s inequality (B.2)

log (xa11 x
a2
2 · · ·xamm ) =

m∑
j=1

aj log xj ≤ log

 m∑
j=1

ajxj

 .

Applying the exponential yields (B.4). �

Proof of Loève’s cr Inequality (B.5). For r ≥ 1 this is simply a rewriting of the finite form

Jensen’s inequality (B.3) with g(u) = ur. For r < 1, define bj = |xj | /
(∑m

j=1 |xj |
)
. The facts that

0 ≤ bj ≤ 1 and r < 1 imply bj ≤ brj and thus

1 =

m∑
j=1

bj ≤
m∑
j=1

brj

which implies  m∑
j=1

|xj |

r

≤
m∑
j=1

|xj |r .
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The proof is completed by observing that m∑
j=1

xj

r

≤

 m∑
j=1

|xj |

r

.

�

Proof of Norm Monotonicity (B.6). Set yi = |xj |s and r = t/s ≤ 1. The cr inequality implies∣∣∣∑m
j=1 yj

∣∣∣r ≤∑m
j=1 y

r
j or ∣∣∣∣∣∣

m∑
j=1

|xj |s
∣∣∣∣∣∣
t/s

≤
m∑
j=1

|xj |t .

Raising the two sides to the power 1/t yields (B.6). �

Proof of Triangle Inequality (B.7). We apply the ct inequality (B.5) with r = 1/2 to find

‖a‖ =

∣∣∣∣∣∣
m∑
j=1

a2
j

∣∣∣∣∣∣
1/2

≤
m∑
j=1

|aj | .

�

Proof of c2 Inequality (B.8). By the cr inequality (B.5), (aj + bj)
2 ≤ 2a2

j + 2b2j . Thus

(a+ b)′ (a+ b) =

m∑
j=1

(aj + bj)
2

≤ 2

m∑
j=1

a2
j + 2

m∑
j=1

b2j

= 2a′a+ 2b′b.

�

Proof of Hölder’s Inequality (B.9). Set uj = |aj |p / ‖a‖pp and uj = |bj |q / ‖b‖qq and observe
that

∑m
j=1 uj = 1 and

∑m
j=1 vj = 1. By the weighted geometric mean inequality (B.4),

u
1/p
j v

1/q
j ≤ uj

p
+
vj
q
.

Then since
∑m

j=1 uj = 1,
∑m

j=1 vj = 1 and 1/p+ 1/q = 1∑m
j=1 |ajbj |
‖a‖p ‖b‖q

=

m∑
j=1

u
1/p
j v

1/q
j ≤

m∑
j=1

(
uj
p

+
vj
q

)
= 1. (B.41)

By the Triangle inequality (B.1) and then (B.41)

∣∣a′b∣∣ =

∣∣∣∣∣∣
m∑
j=1

ajbj

∣∣∣∣∣∣ ≤
m∑
j=1

|ajbj | ≤ ‖a‖p ‖b‖q

which is (B.9). �
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Proof of Schwarz Inequality for vectors (B.10). This is a special case of Hölder’s inequality
(B.9) with p = q = 2. ∣∣a′b∣∣ ≤ m∑

j=1

|ajbj | ≤ ‖a‖ ‖b‖

�
Proof of Minkowski’s Inequality (B.11). Set q = p/(p− 1) so that 1/p+ 1/q = 1. Using the
triangle inequality for real numbers (B.1) and two applications of Hölder’s inequality (B.9)

‖a+ b‖pp =
m∑
j=1

|aj + bj |p

=
m∑
j=1

|aj + bj | |aj + bj |p−1

≤
m∑
j=1

|aj | |aj + bj |p−1 +

m∑
j=1

|bj | |aj + bj |p−1

≤ ‖a‖p

 m∑
j=1

|aj + bj |(p−1)q

1/q

+ ‖b‖p

 m∑
j=1

|aj + bj |(p−1)q

1/q

=
(
‖a‖p + ‖b‖p

)
‖a+ b‖p−1

p

Solving, we find (B.11). �

Proof of Triangle Inequality for vectors (B.12). This is a special case of Minkowski’s in-
equality (B.11) with p = 2. �

Proof of Schwarz Matrix Inequality (B.13). The inequality holds for the spectral norm
since it is an induced norm. Now consider the Frobenius norm. Partition A′ = [a1, ...,an] and
B = [b1, ..., bn]. Then by partitioned matrix multiplication, the definition of the Frobenius norm
and the Schwarz inequality for vectors (B.10)

‖AB‖F =

∥∥∥∥∥∥∥
a′1b1 a′1b2 · · ·
a′2b1 a′2b2 · · ·
...

...
. . .

∥∥∥∥∥∥∥
F

≤

∥∥∥∥∥∥∥
‖a1‖ ‖b1‖ ‖a1‖ ‖b2‖ · · ·
‖a2‖ ‖b1‖ ‖a2‖ ‖b2‖ · · ·

...
...

. . .

∥∥∥∥∥∥∥
F

=

 m∑
i=1

m∑
j=1

‖ai‖2 ‖bj‖2
1/2

=

(
m∑
i=1

‖ai‖2
)1/2( m∑

i=1

‖bi‖2
)1/2

=

 k∑
i=1

m∑
j=1

a2
ji

1/2 m∑
i=1

k∑
j=1

‖bji‖2
1/2

= ‖A‖F ‖B‖F .

�
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Proof of Triangle Inequality for matrices (B.14). The inequality holds for the spectral norm
since it is an induced norm. Now consider the Frobenius norm. Let a = vec (A) and b = vec (B) .
Then by the definition of the Frobenius norm and the Triangle Inequality for vectors (B.12)

‖A+B‖F = ‖vec (A+B)‖F
= ‖a+ b‖
≤ ‖a‖+ ‖b‖
= ‖A‖F + ‖B‖F .

�

Proof of Trace Inequality (B.15). By the spectral decomposition for symmetric matices, A =
HΛH ′ where Λ has the eigenvalues λj of A on the diagonal and H is orthonormal. Define
C = H ′BH which has non-negative diagonal elements Cjj since B is positive semi-definite. Then

tr (AB) = tr (ΛC) =

m∑
j=1

λjCjj ≤ max
j
|λj |

m∑
j=1

Cjj = ‖A‖2 tr (C)

where the inequality uses the fact that Cjj ≥ 0. But note that

tr (C) = tr
(
H ′BH

)
= tr

(
HH ′B

)
= tr (B)

since H is orthonormal. Thus tr (AB) ≤ ‖A‖2 tr (B) as stated. �

Proof of Quadratic Inequality (B.16). In the Trace Inequality (B.15) set B = bb′ and note
tr (AB) = b′Ab and tr (B) = b′b. �

Proof of Strong Schwarz Matrix Inequality (B.17). By the definition of the Frobenius
norm, the property of the trace, the Trace Inequality (B.15) (noting that both A′A and BB′ are
symmetric and positive semi-definite), and the Schwarz matrix inequality (B.13)

‖AB‖F =
(
tr
(
B′A′AB

))1/2
=
(
tr
(
A′ABB′

))1/2
≤
(∥∥A′A∥∥

2
tr
(
BB′

))1/2
= ‖A‖2 ‖B‖F .

�

Proof of Norm Equivalence (B.18). The first inequality was established in (A.17), and the
second in (A.18). �

Proof of Monotone Probability Inequality (B.20). Since A ⊂ B then B = A ∪ {B ∩ Ac}
where Ac is the complement of A. The sets A and {B ∩Ac} are disjoint. Thus

P(B) = P(A ∪ {B ∩Ac}) = P(A) + P(B ∩Ac) ≥ P(A)

since probabilities are non-negative. Thus P(A) ≤ P(B) as claimed. �

Proof of Union Equality (B.21). {A ∪B} = A ∪ {B ∩Ac} where A and {B ∩Ac} are disjoint.
Also B = {B ∩ A} ∪ {B ∩ Ac} where {B ∩ A} and {B ∩ Ac} are disjoint. These two relationships
imply

P(A ∪B) = P(A) + P(B ∩Ac)
P(B) = P(B ∩A) + P(B ∩Ac).
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Substracting,
P(A ∪B)− P(B) = P(A)− P(B ∩A)

which is (B.21) upon rearrangement. �

Proof of Boole’s Inequality (B.22). From the Union Equality (B.21) and P(A ∩B) ≥ 0,

P(A ∪B) = P(A) + P(B)− P(A ∩B)

≤ P(A) + P(B)

as claimed. �

Proof of Bonferroni’s Inequality (B.23). Rearranging the Union Equality (B.21) and using
P(A ∪B) ≤ 1

P(A ∩B) = P(A) + P(B)− P(A ∪B)

≥ P(A) + P(B)− 1

which is (B.23). �

Proof of Jensen’s Inequality (B.24). Since g(u) is convex, at any point u there is a nonempty
set of subderivatives (linear surfaces touching g(u) at u but lying below g(u) for all u). Let a+b′u
be a subderivative of g(u) at u = E (x) . Then for all u, g(u) ≥ a+ b′u yet g(E (x)) = a+ b′E (x) .
Applying expectations, E (g(x)) ≥ a+ b′E (x) = g(E (x)), as stated. �

Proof of Conditional Jensen’s Inequality (B.25). The same as the proof of Jensen’s Inequality
(B.24), but using conditional expectations. The conditional expectations exist since E ‖y‖ < ∞
and E ‖g (y)‖ <∞. �

Proof of Conditional Expectation Inequality (B.26). As the function |u|r is convex for r ≥ 1,
the Conditional Jensen’s inequality (B.25) implies

|E(y | x)|r ≤ E (|y|r | x) .

Taking unconditional expectations and the law of iterated expectations, we obtain

E (|E(y | x)|r) ≤ E (E (|y|r | x)) = E (|y|r) <∞

as required. �

Proof of Expectation Inequality (B.27). By the Triangle inequality (B.14), for λ ∈ [0, 1],

‖λU1 + (1− λ)U2‖ ≤ λ ‖U1‖+ (1− λ) ‖U2‖

which shows that the matrix norm g(U) = ‖U‖ is convex. Applying Jensen’s Inequality (B.24) we
find (B.27). �

Proof of Hölder’s Inequality (B.28). Since 1
p + 1

q = 1 an application of the discrete Jensen’s
Inequality (B.2) shows that for any real a and b

exp

[
1

p
a+

1

q
b

]
≤ 1

p
exp (a) +

1

q
exp (b) .

Setting u = exp (a) and v = exp (b) this implies

u1/pv1/q ≤ u

p
+
v

q
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and this inequality holds for any u > 0 and v > 0.
Set u = ‖X‖p /E (‖X‖p) and v = ‖Y ‖q /E (‖Y ‖q) . Note that E (u) = E (v) = 1. By the matrix

Schwarz Inequality (B.13), ‖X ′Y ‖ ≤ ‖X‖ ‖Y ‖. Thus

E ‖X ′Y ‖
(E (‖X‖p))1/p (E (‖Y ‖q))1/q

≤ E (‖X‖ ‖Y ‖)
(E (‖X‖p))1/p (E (‖Y ‖q))1/q

= E
(
u1/pv1/q

)
≤ E

(
u

p
+
v

q

)
=

1

p
+

1

q

= 1,

which is (B.28). �

Proof of Cauchy-Schwarz Inequality (B.29). Special case of Hölder’s inequality (B.28) with
p = q = 2.

Proof of Matrix Cauchy-Schwarz Inequality (B.30). Define e = y − (E (yx′)) (E (xx′))− x.
Note that E (ee′) ≥ 0 is positive semi-definite. We can calculate that

E
(
ee′
)

= E
(
yy′
)
−
(
E
(
yx′
)) (

E
(
xx′
))− E (xy′) .

Since the left-hand-side is positive semi-definite, so is the right-hand-side, which means E (yy′) ≥
(E (yx′)) (E (xx′))− E (xy′) as stated. �

Proof of Minkowski’s Inequality (B.31). Note that by rewriting, using the triangle inequality
(B.14), and then Hölder’s Inequality (B.28) to the two expectations

E (‖X + Y ‖p) = E
(
‖X + Y ‖ ‖X + Y ‖p−1

)
≤ E

(
‖X‖ ‖X + Y ‖p−1

)
+ E

(
‖Y ‖ ‖X + Y ‖p−1

)
≤ (E (‖X‖p))1/p E

((
‖X + Y ‖q(p−1)

)1/q
)

+ (E (‖Y ‖p))1/p E
((
‖X + Y ‖q(p−1)

)1/q
)

=
(

(E (‖X‖p))1/p + (E (‖Y ‖p))1/p
)
E
(

(‖X + Y ‖p)(p−1)/p
)

where the second equality picks q to satisfy 1/p + 1/q = 1, and the final equality uses this
fact to make the substitution q = p/(p − 1) and then collects terms. Dividing both sides by

E
(

(‖X + Y ‖p)(p−1)/p
)
, we obtain (B.31). �

Proof of Liapunov’s Inequality (B.32). The function g(u) = up/r is convex for u > 0 since
p ≥ r. Set u = ‖X‖r . By Jensen’s inequality (B.24), g (E (u)) ≤ E (g (u)) or

(E (‖X‖r))p/r ≤ E
(

(‖X‖r)p/r
)

= E (‖X‖p) .

Raising both sides to the power 1/p yields (E (‖X‖r))1/r ≤ (E (‖X‖p))1/p as claimed. �
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Proof of Markov’s Inequality (B.33) and (B.34). Let F denote the distribution function of
x. Then

P (g(x) ≥ ε) =

∫
{g(u)≥ε}

dF (u)

≤
∫
{g(u)≥α}

g(u)

ε
dF (u)

= ε−1

∫
1 (g(u) > ε) g(u)dF (u)

= ε−1E (g (x) 1 (g(x) > ε))

the inequality using the region of integration {g(u) > ε}. This establishes the strong form (B.34).
Since 1 (g(x) > ε) ≤ 1, the final expression is less than ε−1E (g(x)) , establishing the standard form
(B.33). �

Proof of Chebyshev’s Inequality (B.35). Define y = (x− E (x))2 and note that E (y) =
var (x) . The events {|x− E (x)| > ε} and

{
y > ε2

}
are equal, so by an application Markov’s in-

equality we find
P(|x− E (x)| > ε) = P(y > ε2) ≤ ε−2E (y) = ε−2 var (x)

as stated. �

Proof of Bernsteins’s Inequality (B.36). We first show

P

(
n∑
i=1

xi > ε

)
≤ exp

(
− ε2

2σ2 + 2Mε/3

)
. (B.42)

Set t = ε/
(
σ2 +Mε/3

)
> 0. Using Markov’s inequality the left side of (B.42) equals

P

(
exp

(
t

n∑
i=1

xi

)
> exp (tε)

)
≤ e−tεE

(
exp

(
t

ni∑
i=1

xi

))
= e−tε

n∏
i=1

E (exp (txi)) . (B.43)

By the property of the exponential function

exp (x) = 1 + x+
∞∑
k=2

xk

k!
= 1 + x+

x2

2
g(x)

where g(x) = 2
∑∞

k=2
xk−2

k! . Notice for x ≤ B < 3,

g(x) ≤ g(B) ≤ 1

1−B/3 .

The second inequality holds since the fact k! ≥ 2 · 3k−2 implies

g(B) = 2

∞∑
k=2

Bk−2

k!
≤
∞∑
k=2

Bk−2

3k−2
=

1

1−B/3 .

Then since txi ≤ tM < 3,

E (exp (txi)) = 1 + E
(
t2x2

i

2
g(txi)

)
≤ 1 +

t2σ2
i

2 (1− tM/3)
≤ exp

(
t2σ2

i

2 (1− tM/3)

)
.

So the right side of (B.43) is less than

exp

(
−tε+

t2σ2

2 (1− tM/3)

)
= exp

(
− ε2

2σ2 + 2Mε/3

)
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the equality using the defintion t = ε/
(
σ2 +Mε/3

)
. This establishes (B.42).

Replacing xi with −xi in the above argument we obtain

P

(
n∑
i=1

xi < −ε
)
≤ exp

(
− ε2

2σ2 + 2Mε/3

)
. (B.44)

Together, (B.42) and (B.44) establish (B.36). �

Proof of Bernsteins’s Inequality for vectors (B.37). By the Triangle inequality (B.7), Boole’s
inequality (B.22), and then Bernstein’s inequality (B.36)

P

(∥∥∥∥∥
n∑
i=1

xi

∥∥∥∥∥ > ε

)
≤ P

 m∑
j=1

∣∣∣∣∣
n∑
i=1

xji

∣∣∣∣∣ > ε


≤ P

 m⋃
j=1

1

(∣∣∣∣∣
n∑
i=1

xji

∣∣∣∣∣ > ε/m

)
≤

m∑
j=1

P

(∣∣∣∣∣
n∑
i=1

xji

∣∣∣∣∣ > ε/m

)

≤ 2m exp

(
− (ε/m)2

2σ2 + 2M (ε/m) /3

)

which is (B.37). �

Proof of Kolmogorov’s Inequality (B.38). Set Si =
∑i

j=1 xj . The law of iterated expectations
and the MDS property implies that for any j > i

E (Xj | Fi) = E (E (Xj | Fj−1) |Fi) = 0. (B.45)

Note that Sn = Si +
∑n

j=i+1Xj so

S2
n = S2

i + 2Si

n∑
j=i+1

Xj +

 n∑
j=i+1

Xj

2

.

Since Si is measurable with respect to Fi and the third term in the above expression is positive,
we find

E
(
S2
n | Fi

)
≥ S2

i + 2Si

n∑
j=i+1

E (Xj | Fi) = S2
i (B.46)

using (B.45).
Define the event

E =

{
max
i≤n

S2
i > ε2

}
=

n⋃
i=1

{
S2
i > ε2,max

j<i
S2
j > ε

}
=

n⋃
i=1

Ei
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say. The events Ei are disjoint. Then by the same method as to prove Markov’s inequality

ε2P (E) =
n∑
i=1

ε2E (1 (Ei))

≤
n∑
i=1

E
(
S2
i 1 (Ei)

)
≤

n∑
i=1

E
(
E
(
S2
n | Fi

)
1 (Ei)

)
=

n∑
i=1

E
(
E
(
S2
n1 (Ei) | Fi

))
=

n∑
i=1

E
(
S2
n1 (Ei)

)
= E

(
S2
n1 (E)

)
≤ E

(
S2
n

)
.

The second inequality is (B.46). The following equalities use the conditioning theorem, the law of
iterated expecations, and the definition of E.

For i < j, the law of iterated expectations and (B.45) show that

E (XiXj) = E (E (XiXj | Fi)) = E (XiE (Xj | Fi)) = 0.

This means that the MDS sequence xi is mutually uncorrelated. Since xi are uncorrelated,

E
(
S2
n

)
= var

(
n∑
i=1

xi

)
=

n∑
i=1

var (xi) =
n∑
i=1

σ2
i .

Together we have established the result. �

Proof of Rosenthal’s Inequality (B.39). We prove a slightly stronger result for scalar xi. We
prove that

E

(
max

1≤j≤n

∣∣∣∣∣
j∑
i=1

xi

∣∣∣∣∣
r)
≤ Ar


(

n∑
i=1

E
(
x2
i

))r/2
+

n∑
i=1

E |xi|r
 . (B.47)

For the matrix case see B. Hansen (2015).

Define Sj =
∑j

i=1 xi, X = maxj≤n |Sj | and Y = max
((∑n

i=1 E
(
x2
i

))1/2
,maxi≤n |xi|

)
. Pick

0 < δ < (1 + 2r/2)−1.
Take any ε > 0. Denote the events Iσ =

{∑n
i=1 E

(
x2
i

)
≤ δ2ε2

}
and Ix = {maxi≤n |xi| ≤ δε}.

Define ui = 1 (max`≤i |S`| > ε) and Tj =
∑j

i=1 ui−1xi. Setting Fi = σ(x1, ..., xi),

E (ui−1xi | Fi−1) = ui−1E (xi | Fi−1) = 0,

so (ui−1xi,Fi) is a MDS. Let J be the smallest j such that |Sj | > ε. On the event Ix, |Sj | ≤
ε+ δε+ |Tj |. Indeed, if j < J , |Sj | ≤ ε ≤ ε+ δε+ |Tj |, while if j ≥ J

|Sj | =
∣∣∣∣∣SJ−1 + xJ +

j∑
i=J+1

xi

∣∣∣∣∣ ≤ |SJ−1|+ |xJ |+
∣∣∣∣∣
j∑
i=1

ui−1xi

∣∣∣∣∣ ≤ ε+ δε+ |Tj | .
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This implies that on the event Ix, X ≤ ε + δε + maxj≤n |Tj |. Since Y ≤ δε implies events Ix and
Iσ, and using Kolmogorov’s Inequality,

P (X > 2ε, Y ≤ δε) = P (X > 2ε, Ix) Iσ

≤ P
(
ε+ δε+ max

j≤n
|Tj | > 2ε

)
Iσ

≤ (1− δ)−2 ε−2
n∑
i=1

E
(
u2
i−1x

2
i

)
Iσ

= (1− δ)−2 ε−2
n∑
i=1

P
(

max
`≤i−1

|S`| > ε

)
E
(
x2
i

)
Iσ

≤ (1− δ)−2 ε−2P (X > ε)

n∑
i=1

E
(
x2
i

)
Iσ

≤ δ2

(1− δ)2P (X > ε) .

Then for any ε > 0

P (X > 2ε) = P (X > 2ε, Y ≤ δε) + P (X > 2ε, Y > δε)

≤ δ2

(1− δ)2P (X > ε) + P (Y > δε) . (B.48)

Using Theorem 2.12 and two changes of variables, for any non-negative random variable U

E (U r) =

∫ ∞
0
P (U r > u) du =

∫ ∞
0

rxr−1P (U > x) dx = 2r
∫ ∞

0
rεr−1P (U > 2ε) dε. (B.49)

Then using (B.49), (B.48), and (B.49) twice again

E (Xr) = 2r
∫ ∞

0
rεr−1P (X > 2ε) dε

≤ δ22r

(1− δ)2

∫ ∞
0

rεr−1P (X > ε) dε+ βr
∫ ∞

0
rεr−1P (Y > δε) dε

=
δ22r

(1− δ)2E (Xr) +
2r

δr
E (Y r) .

Solving for E (Xr) we obtain

E (Xr) ≤ 2r

δr
1

1− δ22r

(1−δ)2
E (Y r) .

(Since δ < (1 + 2r/2)−1 we have δ22r/ (1− δ)2 < 1). This is (B.47) with

Ar =
2r

δr
1

1− δ22r

(1−δ)2
.

�
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