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Preface

Econometric models and methods are applied in

the daily practice of virtually all disciplines in

business and economics like finance, marketing,

microeconomics, and macroeconomics. This

book is meant for anyone interested in obtaining

a solid understanding and active working know-

ledge of this field. The book provides the reader

both with the required insight in econometric

methods and with the practical training needed

for successful applications. The guiding

principle of the book is to stimulate the reader

to work actively on examples and exercises, so

that econometrics is learnt the way it works in

practice— that is, practical methods for solving

questions in business and economics, based on a

solid understanding of the underlying methods.

In this way the reader gets trained to make the

proper decisions in econometric modelling.

This book has grown out of half a century of

experience in teaching undergraduate economet-

rics at the Econometric Institute in Rotterdam.

With the support of Jan Tinbergen, Henri Theil

founded the institute in 1956 and he developed

Econometrics into a full-blown academic pro-

gramme. Originally, econometrics was mostly

concernedwithnationalandinternationalmacro-

economic policy; the required computing power

to estimate econometric models was expensive

and scarcely available, so that econometrics was

almost exclusively applied in public (statistical)

agencies. Much has changed, and nowadays

econometrics finds widespread application in a

rich variety of fields. The two major causes

of this increased role of econometrics are the

information explosion in business and economics

(with large data sets— for instance, in finance

and marketing) and the enormous growth in

cheap computing power and user-friendly soft-

ware for a wide range of econometric methods.

This development is reflected in the book, as it

presents econometric methods as a collection of

very useful tools to address issues in a wide range

of application areas. First of all, students should

learn the essentials of econometrics in a rigorous

way, as this forms the indispensable basis for all

valid practical work. These essentials are treated

in Chapters 1–5, after which two major applica-

tion areas are discussed in Chapter 6 (on individ-

ual choice data with applications in marketing

and microeconomics) and Chapter 7 (on time

series data with applications in finance and inter-

national economics). The Introduction provides

more information on the motivation and con-

tents of the book, together with advice for stu-

dents and instructors, and the Guide to the Book

explains the structure and use of the book.

We thank our students, who always stimulate

our enthusiasm to teach and who make us feel

proud by their achievements in their later careers

in econometrics, economics, and business man-

agement. We also thank both current and

former members of the Econometric Institute in

Rotterdam who have inspired our econometric

work.

Several people helped us in the process of

writing the book and the solutions manual.

First of all we should mention our colleague

Zsolt Sandor and our (current and former) Ph.D.



students Charles Bos, Lennart Hoogerheide,

Rutger van Oest, and Björn Vroomen, who all

contributed substantially in producing the solu-

tions manual. Further we thank our (current

and former) colleagues at the Econometric Insti-

tute, Bas Donkers, Rinse Harkema, Johan

Kaashoek, Frank Kleibergen, Richard Kleijn,

Peter Kooiman, Marius Ooms, and Peter

Schotman. We were assisted by our (former)

students Arjan van Dijk, Alex Hoogendoorn,

and Jesse de Klerk, and we obtained very helpful

feedback from our students, in particular from

Simone Jansen, Martijn de Jong, Mariëlle Non,

Arnoud Pijls, and Gerard Voskuil. Special

thanks are for Aletta Henderiks, who never lost

her courage in giving us the necessary secretarial

support in processing the manuscript. Finally we

wish to thank the delegates and staff of Oxford

University Press for their assistance, in particular

Andrew Schuller, Arthur Attwell, and Hilary

Walford.

Christiaan Heij, Paul de Boer, Philip Hans

Franses, Teun Kloek, Herman K. van Dijk

Rotterdam, 2004

From left to right: Christiaan Heij, Paul de Boer, Philip Hans Franses, Teun Kloek, and Herman K. van Dijk
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Abbreviations

Apart from abbreviations that are common in econo-
metrics, the list also contains the abbreviations (in
italics) used to denote the data sets of examples and
exercises, but not the abbreviations used to denote the
variables in these data sets (see Appendix B for the
meaning of the abbreviated variable names).
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TMSP total mean squared prediction error
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VAR vector autoregressive
VECM vector error correction model
W Wald
WLS weighted least squares
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Guide to the Book

This guide describes the organization and use of the book. We refer to the

Introduction for the purpose of the book, for a synopsis of the contents of the

book, for study advice, and for suggestions for instructors as to how the book

can be used in different courses.

Learning econometrics: Why, what, and how

The learning student is confronted with three basic questions: Why should

I study this? What knowledge do I need? How can I apply this knowledge

in practice? Therefore the topics of the book are presented in the following

manner:

. explanation by motivating examples;

. discussion of appropriate econometric models and methods;

. illustrative applications in practical examples;

. training by empirical exercises (using an econometric software package);

. optional deeper understanding (theory text parts and theory and simulation

exercises).

The book can be used for applied courses that focus on the ‘how’ of economet-

rics and also for more advanced courses that treat both the ‘how’ and the ‘what’

of econometrics. The user is free to choose the desired balance between econo-

metric applications and econometric theory.

. In applied courses, the theory parts (clearly marked in the text) and the theory

and simulation exercises can be skipped without any harm. Even without

these parts, the text still provides a good understanding of the ‘what’ of

econometrics that is required in sound applied work, as there exist no standard

‘how-to-do’ recipes that can be applied blindly in practice.

. In more advanced courses, students get a deeper understanding of econo-

metrics— in addition to the practical skills of applied courses—by studying

also the theory parts and by doing the theory and simulation exercises. This

allows them to apply econometrics in new situations that require a creative

mind in developing alternative models and methods.



Text structure

The required background material is covered in Chapter 1 (which reviews

statistical methods that are fundamental in econometrics) and in Appendix A

(which summarizes useful matrix methods, together with computational

examples). The core material on econometrics is in Chapters 2–7; Chapters 2–

5 treat fundamental econometric methods that are needed for the topics dis-

cussed in Chapters 6 and 7. Each chapter has the following structure.

. The chapter starts with a brief statement of the purpose of the chapter,

followed by sections and subsections that are divided into manageable parts

with clear headings.

. Examples, theory parts, and computational schemes are clearly indicated in

the text.

. Summaries are included at many points—especially at the end of all sections

in Chapters 5–7.

. The chapter concludes with a brief summary, further reading, and a keyword

list that summarizes the treated topics.

. A varied set of exercises is included at the end of each chapter.

To facilitate the use of the book, the required preliminary knowledge is indicated

at the start of subsections.

. In Chapters 2–4 we refer to the preliminary knowledge needed from Chapter

1 (on statistics) and Appendix A (on matrix methods). Therefore, it is not

necessary to cover all Chapter 1 before starting on the other chapters, as

Chapter 1 can be reviewed along the way as one progresses through Chapters

2–4, and the same holds true for the material of Appendix A.

. In Chapters 6 and 7 we indicate which parts of the earlier chapters are needed

at each stage. Most of the sections of Chapter 5 can be read independently of

each other, and in Chapters 6 and 7 some sections can be skipped depending

on the topics of interest for the reader.

. Further details of the text structure are discussed in the Introduction (see the

section ‘Teaching suggestions’— in particular, Exhibit 0.3).

Examples and data sets

The econometric models and methods are motivated by means of fully

worked-out examples using real-world data sets from a variety of applications

in business and economics. The examples are clearly marked in the text because

they play a crucial role in explaining the application of econometric methods.
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The corresponding data sets are available from the web site of the book, and

Appendix B explains the type and source of the data and the meaning of the

variables in the data files (see p. 748 for a list of all the data sets used in

the book). The names of the data sets consist of three parts:

. XM (for examples) and XR (for exercises);

. three digits, indicating the example or exercise number;

. three letters, indicating the data topic.

For example, the file XM101STU contains the data for Example 1.1 on student

learning, and the file XR111STU contains the data for Exercise 1.11 on

student learning.

Exercises

Students will enhance their understanding and acquire practical skills by

working through the exercises, which are of three types.

. Theory exercises on derivations and model extensions. These exercises deepen

the theoretical understanding of the ‘what’ of econometrics. The desired level

of the course will determine how many of the theory exercises should be

covered.

. Simulation exercises illustrating statistical properties of econometric models

and methods. These exercises provide more intuitive understanding of some of

the central theoretical results.

. Empirical exercises on applications with business and economic data sets to

solve questions of practical interest. These exercises focus on the ‘how’ of

econometrics, so that the student learns to construct appropriate models from

real-world data and to draw sound conclusions from the obtained results.

Actively working through these empirical exercises is essential to gaining a

proper understanding of econometrics and to getting hands-on experience

with applications to solve practical problems. The web site of the book

contains the data sets of all empirical exercises, and Appendix B contains

information on these data sets.

The choice of appropriate exercises is facilitated by cross-references.

. Each subsection concludes with a list of exercises related to the material of

that subsection (where T denotes theory exercises, S simulation exercises, and

E empirical exercises).

. Every exercise refers to the parts of the chapter that are needed for doing the

exercise.

. An asterisk (�) denotes advanced (parts of) exercises.
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Web site and software

The web site of the book contains all the data sets used in the book, in three

formats:

. EViews;

. Excel;

. ASCII.

All the examples and all the empirical and simulation exercises in the book can

be done with EViews version 3.1 and higher (Quantitative Micro Software,

1994–8), but other econometric software packages can also be used in most

cases. The student version of the EViews package suffices for most of the book,

but this version has some limitations— for example, it does not support the

programs required for the simulation exercises (see the web site of the book for

further details). The exhibits for the empirical examples in the text have been

obtained by using EViews version 3.1.

Instructor material

Instructors who adopt the book can receive the SolutionsManual of the book for

free.

. The manual contains over 350 pages with fully worked-out text solutions of

all exercises, both of the theory questions and of the empirical and simulation

questions; this will assist instructors in selecting material for exercise sessions

and computer sessions as part of their course.

. The manual contains a CD-ROM with solution files (EViews work files with

the solutions of all empirical exercises and EViews programs for all simulation

exercises).

. This CD-ROM also contains all the exhibits of the book (in Word format) to

facilitate lecture presentations.

The printed solutions manual and CD-ROM can be obtained from Oxford

University Press, upon request by adopting instructors. For further information

and additional material we refer readers to the Oxford University Press web site

of the book.

Remarks on notation

In the text we follow the notational conventions commonly used in econometrics.

. Scalar variables and vectors are denoted by lower-case italic letters (x, y, and

so on); however, in Section 7.6 vectors of variables are denoted by upper-case

italic letters, such as Yt, in accordance with most of the literature on this topic.

. Matrices are denoted by upper-case italic letters (X, A, and so on).
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. The element in row i and column j of a matrix A is generally denoted by aij,

except for the regressor matrix X, where this element is denoted by xji, which

is observation i of variable j (see Section 3.1.2).

. xi denotes the vector containing the values of all the explanatory variables xji
for observation i (including the value 1 as first element of xi if the model

contains a constant term).

. Transposition is denoted by a prime (X0, x0, and so on).

. Unknown parameters are denoted by Greek italic letters (b, e, s, and so on).

. Estimated quantities are denoted by Latin italic letters (b, e, s, and so on), or

sometimes by imposing a hat (b̂b, êe, ŝs, and so on).

. Expected values are denoted by E[ _ ]— for instance, E[b].

. log (x) denotes the natural logarithm of x (with base e ¼ 2:71828 . . . ).

In many of the exhibits— for instance, the ones related to empirical examples—

we show the output as generated by the software program EViews. The notation

in these exhibits may differ from the above conventions.

. Scalar variables are denoted by capital letters (X, Y, instead of x, y, and so on).

. Statistics are denoted by text (R-squared, Std. Dev., instead of R2, s, and so

on).

In most cases this does not lead to any confusion, and otherwise the notation is

explained in the text or in the caption of the exhibits.
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Introduction

Econometrics

Decision making in business and economics is often supported by the use of
quantitative information. Econometrics is concerned with summarizing rele-
vant data information bymeans of a model. Such econometric models help to
understand the relation between economic and business variables and to
analyse the possible effects of decisions.
Econometrics was founded as a scientific discipline around 1930. In

the early years, most applications dealt with macroeconomic questions
to help governments and large firms in making their long-term decisions.
Nowadays econometrics forms an indispensable tool to model empirical
reality in almost all economic and business disciplines. There are three
major reasons for this increasing attention for factual data and econometric
models.

. Economic theory often does not give the quantitative information that is
needed in practical decision making.

. Relevant quantitative data are available in many economic and business
disciplines.

. Realistic models can easily be solved by modern econometric techniques to
support everyday decisions of economists and business managers.

In areas such as finance and marketing, quantitative data (on price move-
ments, sales patterns, and so on) are collected on a regular basis, weekly,
daily, or even every split second. Much information is also available in
microeconomics (for instance, on the spending behaviour of households).
Econometric techniques have been developed to deal with all such kinds of
information.
Econometrics is an interdisciplinary field. It uses insights from economics

and business in selecting the relevant variables and models, it uses computer-
science methods to collect the data and to solve econometric models, and it
uses statistics and mathematics to develop econometric methods that are
appropriate for the data and the problem at hand. The interplay of these
disciplines in econometric modelling is summarized in Exhibit 0.1.



Purpose of the book

The book gives the student a sound introduction into modern econometrics.
The student obtains a solid understanding of econometric methods and an
active training in econometrics as it is applied in practice. This involves the
following steps.

1. Question. Formulate the economic and business questions of central
interest.

2. Information. Collect and analyse relevant statistical data.

3. Model. Formulate and estimate an appropriate econometric model.

4. Analysis. Analyse the empirical validity of the model.

5. Application. Apply the model to answer the questions and to support
decisions.

These steps are shown in Exhibit 0.2. Steps 1, 2, and 5 form the applied part
of econometrics and steps 3 and 4 the theoretical part. Although econometric
models and methods differ according to the nature of the data and the type of
questions under investigation, all applications share this common structure.
As the title of the book indicates, it discusses econometricmethods (tools for

the formulation, estimation, and diagnostic analysis of econometric models)
that are motivated and illustrated by applications in business and economics
(to answer practical questions that support decisions by means of relevant
quantitative data information). The book provides a rigorous and self-
contained treatment of the central methods in econometrics in Chapters 1–5.
This provides the student with a thorough understanding of the central ideas
and their practical application. Two major application areas are discussed in
more detail— that is, models for individual economic behaviour (with appli-
cations in marketing and microeconomics) in Chapter 6 and models for time
series data (with applications in finance and macroeconomics) in Chapter 7.

The book is selective, as its purpose is not to give an exhaustive encyclo-
paedic overview of all available methods. The thorough treatment of the
selected topics not only enables the student to apply these methods success-
fully in practice; it also gives an excellent preparation for understanding and
applying econometrics in other application areas.

Economics and Business

Econometrics

Computer Science

MathematicsStatistics

Exhibit 0.1 Econometrics as an interdisciplinary field
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Characteristic features of the book

Over recent years several new and refreshing econometric textbooks have
appeared.Our book is characterized by its thorough discussion of core econo-
metrics motivated and illustrated by real-world examples from a broad range
of economic and business applications. In all our discussions of econometric
topics we stress the interplay between real-world applications and the prac-
tical need for econometric models and methods. This twofold serious atten-
tion for methods and applications is also reflected in the extensive exercise
sections at the end of each chapter, which contain both theory questions and
empirical questions. Some characteristic features of the book follow.

. The book is of an academic level and it is rigorous and self-contained.
Preliminary topics in statistics are reviewed in Chapter 1, and required
matrix methods are summarized in Appendix A.

. The book gives a sound and solid training in basic econometric thinking
and working in Chapters 1–5, the basis of all econometric work.

. The book presents deep coverage of key econometric topics rather
than exhaustive coverage of all topics. Two major application areas are
discussed in detail—namely, choice data (in marketing and
microeconomics) in Chapter 6 and time series data (in finance and inter-
national economics) in Chapter 7.

. All topics are treated thoroughly and are illustrated with up-to-date real-
world applications to solve practical economic and business questions.

. The book stimulates active learning by the examples, which show
econometrics as it works in practice, and by extensive exercise sets. The
theory and simulation exercises provide a deeper understanding, and the

Economic or business
problem of interest

Data
Economic

model
Statistical
method

Software

Econometric
model

OK?

YES

Use for forecasting
and decision making

NO
Revise

Exhibit 0.2 Econometric modelling
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empirical examples provide the student with a working understanding and
hands-on experience with econometrics in a broad set of real-world eco-
nomic and business data sets.

. The book can be used both in more advanced (graduate) courses and in
introductory applied (undergraduate) courses, because the more theoret-
ical parts can easily be skipped without loss of coherence of the exposition.

. The book supports the learning process in many ways (see the Guide to the
Book for further details).

Target audience and required background knowledge

As stated in the Preface, the book is directed at anyone interested in obtaining
a solid understanding and active working knowledge of econometrics as it
works in the daily practice of business and economics.
The book builds up econometrics from its fundamentals in simple models

to modern applied research. It does not require any prior course in econo-
metrics. The book assumes a good working knowledge of basic statistics and
some knowledge of matrix algebra. An overview of the required statistical
concepts and methods is given in Chapter 1, which is meant as a refresher
and which requires a preliminary course in statistics. The required matrix
methods are summarized in Appendix A.

Brief contents of the book

The contents can be split into four parts: Chapter 1 (review of statistics),
Chapters 2–4 (model building), Chapter 5 (model evaluation), and Chapters
6 and 7 (selected application areas).
Chapter 1 reviews the statistical material needed in later chapters. It serves

as a refresher for students with some background in statistics. The chapter
discusses the concepts of random variables and probability distributions and
methods of estimation and testing.

Basic econometric methods are described in Chapters 2–4. Chapters 2 and
3 treat a relatively simple yet very useful model that is much applied in
practice—namely, the linear regression model. The statistical properties of
the least squares method are derived under a number of assumptions. The
multiple regression model in Chapter 3 is formulated in matrix terms,
because this enables an analysis by means of transparent and efficient matrix
methods (summarized in Appendix A). In Chapter 4 we extend Chapters 2
and 3 to non-linear models and we discuss the maximum likelihood method
and the generalized method of moments. The corresponding estimates can be
computed by numerical optimization procedures and statistical properties
can be derived under the assumption that a sufficient number of observations
are available.
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Chapter 5 discusses a set of diagnostic instruments that play a crucial role in
obtaining empirically valid models. Along with tests on the correct specifica-
tion of the regression model, we also discuss several extensions that are often
used in practice. This involves, for instance, models with varying parameters,
the use of dummy variables in regression models, robust estimation methods,
instrumental variablesmethods, models for changing variance (heteroskedas-
ticity), and dynamic models (serial correlation). Our motivation for the
extensive treatment of these topics is that regression is by far themost popular
method for applied work. The applied researcher should check whether the
required regression assumptions are valid and, if some of the assumptions are
not acceptable, he or she should know how to proceed to improve the model.
Chapter 5 forms the bridge between the basic methods in Chapters 2–4 and
the application areas discussed in Chapters 6 and 7. The sections of Chapter 5
can be read independently from each other, and it is not necessary to study all
Chapter 5 before proceeding with the applications in Chapters 6 and 7.
In Chapters 6 and 7 we discuss econometric models and methods for two

major application areas—namely, discrete choicemodels andmodels for time
series data. These two chapters can be read independently from each other.
Chapter 6 concerns individualdecisionmakingwithapplications inmarketing
and microeconomics. We discuss logit and probit models and models for
truncatedand censoreddata anddurationdata.Chapter 7discusses univariate
andmultivariate time seriesmethods, which findmany applications in finance
and international economics.We pay special attention to forecastingmethods
and to the modelling of trends and changing variance in time series.
The book discusses core econometrics and selected key topics. It does not

provide an exhaustive treatment of all econometric topics— for instance, we
discuss only parametric models and we pay hardly any attention to non-
parametric or semi-parametric techniques. Our models are relatively simple
and can be optimized in a relatively straightforward way—for example, we
do not discuss optimization by means of simulation techniques. We pay only
brief attention to panel data models, simultaneous equation models, and
models with latent variables, to mention a few. Also some aspects of signifi-
cant practical importance, such as data collection and report writing, are not
discussed in the book. As stated before, our purpose is to give the student a
profound working knowledge of core econometrics needed in good applied
work.We are confident that, with the views and skills acquired after studying
the book, the student will be well prepared to master the other topics on his
or her own.

Study advice

In Chapters 2–4 it is assumed that the student understands the statistical
topics of Chapter 1. The student can check this by means of the keyword list
at the end of Chapter 1. The subsections of Chapters 2–4 contain references
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to the corresponding relevant parts of Chapter 1, so that statistical topics that
are unknown or partly forgotten can be studied along the way. The further
reading list in Chapter 1 contains references to statistical textbooks that treat
the required topics in much more detail. Chapter 2 is a fundamental chapter
that prepares the ground for all later chapters. It discusses the concept of an
econometric model and the role of random variables and it treats statistical
methods for estimation, testing, and forecasting. This is extended in Chapters
3 and 4 to more general models and methods. The best way to study is
as follows.

1. Understand the general nature of the practical question of interest.

2. Understand the model formulation and the main methods of analysis,
including the model properties and assumptions.

3. Train the practical understanding by working through the text examples
(preferably using a software package to analyse the example data sets).

4. Obtain active understanding by doing the empirical exercises, using
EViews or a similar econometric software package (the data sets can be
downloaded from the web site of the book).

5. Deepen the understanding by studying the theoretical parts in the main
text and by doing the theory and simulation exercises. This provides a
better understanding of the various model assumptions that are needed to
justify the econometric analysis.

After studying Chapters 2–4 in this way, the student is ready for more.
Several options for further chapters are open, and we refer to the teaching
suggestions and Exhibit 0.3 below for further details.

Teaching suggestions

The book is suitable both for advanced undergraduate courses and for
introductory graduate courses in business and economics programmes. In
applied courses much of the underlying theory can easily be skipped without
loss of coherence of the exposition (by skipping the theory sections in the text
and the theory and simulation exercises). In more advanced courses, the
theory parts in the text clarify the structure of econometric models and the
role of model assumptions needed to justify econometric methods. The book
can be used in three types of courses.

. Advanced Undergraduate Course on Econometrics. Focus on Chapters
2–4, and possibly on parts of Chapter 5. This material can be covered in
one trimester or semester.

. Introductory Graduate Course on Econometrics. Focus on Chapters 2–4,
and on some parts of Chapters 5–7. This requires one or two trimesters or
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semesters, depending on the background of the students and on the desired
coverage of topics.

. Intermediate Graduate Course on Econometrics. Focus on Chapters 5–7,
and possibly on some parts of Chapters 3–4 as background material. This
requires one or two trimesters or semesters, depending on background and
coverage.

In all cases it is necessary for the students to understand the statistical topics
reviewed in Chapter 1. The keyword list at the end of Chapter 1 summarizes
the required topics and the further reading contains references to textbooks
that treat the topics in more detail. Chapters 2–4 treat concepts and methods
that are of fundamental importance in all econometric work. This material
can be skipped only if the students have already followed an introductory
course in econometrics. Chapters 5–7 can be treated selectively, according to
the purposes of the course. Exhibit 0.3 gives an overview of the dependencies
between topics. For instance, if the aim is to cover GARCH models (Section
7.4) in the course, then it will be necessary to include the main topics of
Sections 5.4–5.6 and 7.1–7.3.
The book is suitable for different entrance levels. Students starting in

econometrics will have to begin at the top of Exhibit 0.3, and the basics
(Chapters 2–4 and possibly selected parts of Chapter 5) can be treated in one
trimester or semester. Students with a preliminary background in economet-
rics can start somewhere lower in Exhibit 0.3 and select different routes to
applied econometric areas, which can be treated thoroughly in one trimester
or semester.
The book leaves the teacher a lot of freedom to select topics, as long as the

logical dependencies between the topics in Exhibit 0.3 are respected. Our
advice is always to pay particular attention to the motivation of models and
methods; the examples in the main text serve this purpose, and the students
can get further training by working on the empirical exercises at the end of
each chapter. In our own programme in Rotterdam, the students work
together in groups of four to perform small-scale projects on the computer
by analysing data sets from the book. We advise teachers always to include
the following three ingredients in the course.

. Lectures on the book material to discuss econometric models and methods
with illustrative text examples, preferably supported by a lecture room PC
to show the data and selected results of the analysis.

. Computer sessions treating selected empirical and simulation exercises to
get hands-on experience by applying econometrics to real-world economic
and business data.

. Exercise sessions treating selected theory exercises to train mathematical
and statistical econometric methods on paper.
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Some possible course structures

For all courses we suggest reserving approximately the following relative
time load for the students’ different activities:

. 20 per cent for attending lectures;

. 20 per cent for computer sessions (10 per cent guided, 10 per cent group
work);

. 20 per cent for exercise sessions (10 per cent guided, 10 per cent individual
work);

. 40 per cent self-study of the book, including preparation of computer and
paper exercises.

For instance, in a twelve-week trimester course with a student load of 120
hours, this corresponds basically to two lecture hours per week and two

1: Statistics

2: Simple Regression

3: Multiple Regression

4: Non-Linear Models

5: Diagnostics

5.2 & 5.3
Functional form

Varying parameters

5.4 & 5.6
Heteroskedasticity

Non-normality

5.5
Serial

correlation

5.7
Endogenous
regressors

7.1−7.3
Univariate
time series

6.1
Binary

response

7.5
Regression
with lags

6.2
Multinomial

data

6.3
Limited

dependent
variables

7.4
Non-linearities

GARCH

7.6 & 7.7
Multiple
equation
models

choice models with applications in
microeconomics and marketing

time series models with
applications in macroeconomics

and finance

background

basics

Exhibit 0.3 Book structure
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exercise hours per week (half on computer and half on paper). Taking this
type of course as our basis, we mention the following possible course struc-
tures for students without previous knowledge of econometrics.

(a) Introductory Econometrics (single course on basics, 120 hours): Chap-
ters 2–4.

(b) Introductory Econometrics (extended course on basics, 180 hours):
Chapters 2–5.

(c) Econometrics with Applications in Marketing and Microeconomics
(double course, 240 hours): Chapters 2–4, Sections 5.4 and 5.6, and
Chapter 6.

(d) Econometrics with Applications in Finance and Macroeconomics
(double course, 240 hours): Chapters 2–4, Sections 5.4–5.7, and
Chapter 7.

(e) Econometrics with Applications (double course, 240 hours): Chapters
2–4 and Sections 5.4–5.7, 6.1 and 6.2, 7.1–7.6.

(f ) Econometrics with Applications (extended double course, 300 hours):
Chapters 2–7.

The book is also suitable for a second course, after an undergraduate intro-
ductory course in econometrics. The book can then be used as a graduate text
by skipping most of Chapters 2–4 and choosing one of the options (c)–(f )
above.

(c2) Econometric Applications in Marketing and Microeconomics (single
course, 120 hours): parts of Chapters 3 and 4, Sections 5.4 and 5.6, and
Chapter 6.

(d2) Econometric Applications in Finance and Macroeconomics (single
course, 120 hours): parts of Chapters 3 and 4, Sections 5.4–5.7, and
Chapter 7.

(e2) Econometric Applications (single course, 120 hours): parts of Chapters
3 and 4 and Sections 5.4–5.7, 6.1 and 6.2, 7.1–7.6.

(f2) Econometric Applications (extended or double course, 180–240 hours):
parts of Chapters 3 and 4, and Chapters 5–7.

In Rotterdam we use the book for undergraduate students in econometrics
and we basically follow option (e) above. This is a second-year course for
students who followed introductory courses in statistics and linear algebra in
their first year. We also use the book for first-year graduate students in
economics in Rotterdam and Amsterdam. Here we also basically follow
option (e), but, as the course load is 160 hours, we focus on practical aspects
and skip most of the theory parts.
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1

Review of Statistics

A first step in the econometric analysis of economic data is to get an idea of
the general pattern of the data. Graphs and sample statistics such as mean,
standard deviation, and correlation are helpful tools. In general, economic
data are partly systematic and partly random. This motivates the use of
random variables and distribution functions to describe the data. This chap-
ter pays special attention to data obtained by random sampling, where the
observations are mutually independent and come from an underlying popu-
lation with fixed mean and standard deviation. The concepts and methods
for this relatively simple situation form the building blocks for dealing with
more complex models that are relevant in practice and that will be discussed
in later chapters.



1.1 Descriptive statistics

1.1.1 Data graphs

E First used in Section 2.1.1.

Data

Economic data sets may contain a large number of observations for
many variables. For instance, financial investors can analyse the patterns of
many individual stocks traded on the stock exchange; marketing departments
get very detailed information on individual buyers from scanner data; and
national authorities have detailed data on import and export flows for many
kinds of goods. It is often useful to summarize the information in some way.
In this section we discuss some simple graphical methods and in the next
section some summary statistics.

Example 1.1: Student Learning

As an example, we consider in this chapter a data set on student learning.
These data were analysed by J. S. Butler, T. A. Finegan, and J. J. Siegfried in
their paper ‘Does More Calculus Improve Student Learning in Intermediate
Micro- andMacroeconomic Theory’ (Journal of Applied Econometrics, 13/2
(1998), 185–202). This data set contains information on 609 students of the
Vanderbilt University in the USA. In total there are thirty-one observed
variables, so that the data set consists of 18,879 numbers. In this chapter
we restrict the attention to four variables— that is, FGPA (the overall grade
point average at the end of the freshman year, on a scale from 0 to 4), SATM
(the score on the SAT mathematics test divided by 100, on a scale from 0 to
10), SATV (the score on the SAT verbal test divided by 100, on a scale from 0
to 10), and FEM (with value 1 for females and value 0 for males). A part of
the corresponding data table is given in Exhibit 1.1. (We refer readers to
Appendix B for further details on the data sets and corresponding notation of
variables used in this book.)

Graphs

The data can be visualized by means of various possible graphs. A histogram
of a variable consists of a two-dimensional plot. On the horizontal axis, the

E

XM101STU
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outcome range of the variable is divided into a number of intervals. In the
case of intervals with equal width, the value on the vertical axis measures the
number of observations of the variable that have an outcome in that particu-
lar interval. The sample cumulative distribution function (SCDF) is repre-
sented by a two-dimensional plot with the outcome range of the variable on
the horizontal axis. For each value v in this range, the function value on the
vertical axis is the fraction of the observations with an outcome smaller than
or equal to v. To investigate possible dependencies between two variables one
can draw a scatter diagram. One variable is measured along the horizontal
axis, the other along the vertical axis, and the plot consists of points repre-
senting the joint outcomes of the two variables that occur in the data set.

Example 1.2: Student Learning (continued)

Exhibit 1.2 shows histograms (a, c, e) and SCDFs (b, d, f ) of the variables
FGPA, SATM, and SATV, and scatter diagrams of FGPA against SATM (g),
FGPA against SATV (h), and SATM against SATV (i). The scatter diagrams
show much variation in the outcomes. In this example it is not so easy to
determine from the diagrams whether the variables are related or not.

More than two variables

For three variables it is possible to plot a three-dimensional scatter cloud, but
such graphs are often difficult to read. Instead three two-dimensional scatter

Obs. FGPA SATM SATV FEM

1 3.125 6.6 5.5 0
2 1.500 6.7 7.0 0
3 2.430 6.6 6.0 0
4 3.293 6.1 5.4 1
5 2.456 6.5 5.2 0
6 2.806 6.5 5.4 1
7 2.455 6.2 4.8 0
8 3.168 6.2 4.6 0
9 2.145 4.3 4.7 0

10 2.700 6.1 5.6 0
11 3.296 5.8 5.1 1
12 2.240 6.4 5.5 1
..
. ..

. ..
. ..

. ..
.

608 2.996 6.6 6.5 1
609 2.133 6.9 6.2 0

Exhibit 1.1 Student Learning (Example 1.1)

Part of data on 609 students on FGPA (grade point average at the end of the freshman year),
SATM (scaled score on SAT mathematics test), SATV (scaled score on SAT verbal test), and
FEM (1 for females, 0 for males).

E
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Exhibit 1.2 Student Learning (Example 1.2)

Histograms and sample cumulative distribution functions of FGPA ((a)–(b)), SATM ((c)–(d)),
and SATV ((e)–(f )), and scatter diagrams ((g)–(i)) of FGPA against SATM (g), of FGPA against
SATV (h), and of SATM against SATV (i).
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diagrams can be used. The same idea applies for four or more variables. It
should be realized, however, that histograms and scatter diagrams provide
only partial information if there are more than one or two variables. The
shape of these diagrams will partly be determined by the neglected variables,
but the influence of these variables cannot be detected from the diagrams. In
Example 1.3 we give an illustration of the possible effects of such a partial
analysis. One of the main purposes of econometric modelling is to disentan-
gle the mutual dependencies between a group of variables.

Example 1.3: Student Learning (continued)

The histogram of FGPA shows a spread that is partly caused by differences in
the learning abilities of the students. If they had differed less on their SATM
and SATV scores, then they would possibly have had less different FGPA
outcomes. As an example, Exhibit 1.3 shows histograms for two groups of
students. The 609 students are ordered by their average SAT score, defined as
SATA¼ 0.5(SATMþ SATV). The first group consists of students with low or
high SATA scores (rank numbers between 1 and 100 and between 510 and
609) and the second group with middle SATA scores (rank numbers between
205 and 405). As expected, the spread of the FGPA scores in the first group
(see Exhibit 1.3 (a)) is somewhat larger than that in the second group (see
Exhibit 1.3 (b)). The difference is small, though, and cannot easily be detected
from Exhibit 1.3. In the next section we describe numerical measures for the
spread of data that will simplify the comparison.
In general, the variation in one variable may be partly caused by another

variable, which of course cannot be detected from a histogram.

E Exercises: E: 1.11c, 1.13a, d.

E
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Exhibit 1.3 Student Learning (Example 1.3)

Histograms for FGPA scores of students with 100 lowest and 100 highest average SATA scores
(a) and for FGPA scores of 201 students with middle average SATA scores (b).
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1.1.2 Sample statistics

E First used in Section 2.1.1; uses Appendix A.1.

Sample moments

For a single variable, the shape of the histogram is often summarized by
measures of location and dispersion. Let the number of observations be
denoted by n and let the observed data points be denoted by yi with
i ¼ 1, 2, � � � , n. The sample mean is defined as the average of the observations
over the sample— that is,

y ¼ 1

n

Xn
i¼1

yi: (1:1)

The sample mean is also called the first sample moment. An alternative
measure of location is the median. Let the observations be ordered so that
yi � yiþ1 for i ¼ 1, � � � , n� 1; then the median is equal to the middle obser-
vation ynþ1

2
if n is odd and equal to 1

2 (yn
2
þ yn

2þ1) if n is even.
A measure of dispersion is the second sample moment, defined by

m2 ¼ 1

n

Xn
i¼1

(yi � y)2: (1:2)

For reasons that will become clear later (see Example 1.9), in practice one
often uses a slightly different measure of dispersion defined by

s2 ¼ 1

n� 1

Xn
i¼1

(yi � y)2: (1:3)

This is called the sample variance, and the sample standard deviation is equal
to s (the square root of s2). The rth (centred) sample moment is defined by
mr ¼ 1

n

Pn
i¼1 (yi � y)r and the standardized rth moment is defined bymr=s

r. In
particular,m3=s

3 is called the skewness andm4=s
4 the kurtosis. The skewness

is zero if the observations are distributed symmetrically around the mean,
negative if the left tail is longer than the right tail, and positive if the right tail
is longer than the left tail. If the mean is larger (smaller) than the median, this
is an indication of positive (negative) skewness. The kurtosis measures the
relative amount of observations in the tails as compared to the amount of
observations around the mean. The kurtosis is larger for distributions with
fatter tails.
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Example 1.4: Student Learning (continued)

Exhibit 1.4 shows the sample mean, median, standard deviation, skewness,
and kurtosis of the data on FGPA (a), SATM (b), and SATV (c). Both the
mean and the median of the SATV scores are lower than those of the SATM
scores. The tails of the SATM scores are somewhat fatter on the left, and the
mean is smaller than the median. The tails of FGPA and SATVare somewhat
fatter on the right, and the mean exceeds the median. Of the three variables,
FGPA has the smallest kurtosis, as it contains somewhat less observations in
the tails as compared to SATM and SATV. Further, returning to our discus-
sion in Example 1.3 on two groups of students, we measure the spread of the
FGPA scores in both groups by the sample standard deviation. The first
group of students (with either low or high average SATA scores) has
s ¼ 0:485, whereas the second group of students (with middle average
SATA scores) has s ¼ 0:449. As expected, the standard deviation is larger
for the first, more heterogeneous group of students, but the difference is
small.

Covariance and correlation

The dependence between two variables can be measured by their common
variation. Let the two variables be denoted by x and y, with observed
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Exhibit 1.4 Student Learning (Example 1.4)

Summary statistics of FGPA (a), SATM (b), and SATV (c) of 609 students.

E
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outcome pairs (xi, yi) for i ¼ 1, � � � , n. Let x be the sample mean of x and y
that of y, and let sx be the standard deviation of x and sy that of y. Then the
sample covariance between x and y is defined by

sxy ¼ 1

n� 1

Xn
i¼1

(xi � x)(yi � y) (1:4)

and the sample correlation coefficient by

rxy ¼ sxy
sxsy

: (1:5)

When two variables are positively correlated, this means that, on average,
relatively large observations on x correspond with relatively large observa-
tions on y and small observations on x with small observations on y. The
correlation coefficient rxy always lies between �1 and þ1 and it does not
depend on the units of measurement (see Exercise 1.1).

In the case of two or more variables, the first and second moments can be
summarized in vectors and matrices (see Appendix A for an overview of
results onmatrices that are used in this book).When there are p variables, the
corresponding sample means can be collected in a p� 1 vector, and when sjk
denotes the sample covariance between the jth and kth variable, then the
p� p sample covariance matrix S is defined by

S ¼

s11 s12 � � � s1p
s21 s22 � � � s2p

..

. ..
. ..

. ..
.

sp1 sp2 � � � spp

0BBB@
1CCCA:

The diagonal elements are the sample variances of the variables. The sample
correlation coefficients are given by rjk ¼ sjk=

ffiffiffiffiffiffiffiffiffiffi
sjjskk

p
, and the p� p correlation

matrix is defined similar to the covariancematrix by replacing the elements sjk
by rjk. As rjj ¼ 1, this matrix contains unit elements on the diagonal.

Example 1.5: Student Learning (continued)

Exhibit 1.5 shows the sample covariance matrix (Panel 1) and the sample
correlation matrix (Panel 2) for the four variables FGPA, SATM, SATV, and
FEM. The covariances are scale dependent. The correlations do not depend
on the scale of measurement and are therefore easier to interpret. The scores
on FGPA, SATM, and SATV are all positively correlated. As compared with
males, females have on average somewhat better scores on FGPA and SATV
and somewhat lower scores on SATM.

E

XM101STU
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E Exercises: T: 1.1; E: 1.11a, b, d, 1.13b.

Panel 1 FGPA SATM SATV FEM

FGPA 0.211 0.053 0.028 0.040
SATM 0.053 0.354 0.115 �0.047
SATV 0.028 0.115 0.451 0.011
FEM 0.040 �0.047 0.011 0.237

Panel 2 FGPA SATM SATV FEM

FGPA 1.000 0.195 0.092 0.176
SATM 0.195 1.000 0.288 �0.163
SATV 0.092 0.288 1.000 0.034
FEM 0.176 �0.163 0.034 1.000

Exhibit 1.5 Student Learning (Example 1.5)

Sample covariances (Panel 1) and sample correlations (Panel 2) of FGPA, SATM, SATV, and
FEM for 609 students.
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1.2 Random variables

1.2.1 Single random variables

E First used in Section 2.2.3.

Randomness

The observed outcomes of variables are often partly systematic and partly
random. One of the causes of randomness is sampling. For instance, the data
on student scores in Example 1.1 concern a group of 609 students. Other
data would have been obtained if another group of students (at another
university or in another year) had been observed.

Distributions

A variable y is called random if, prior to observation, its outcome cannot be
predicted with certainty. The uncertainty about the outcome is described by a
probability distribution. If the set of possible outcome values is discrete, say
V ¼ v1, v2, � � �f g, then the distribution is given by the set of probabilities
pi ¼ P[y ¼ vi], the probability of the outcome vi. These probabilities have the
properties that pi � 0 and

P
pi ¼ 1. The corresponding cumulative distribu-

tion function (CDF) is given by F(v) ¼ P[y � v] ¼P i;vi�vf g pi, which is a non-
decreasing function with limv!�1 F(v) ¼ 0 and limv!1 F(v) ¼ 1. If the set of
possible outcomes is continuous, then the CDF is again defined by P[y � v],
and, if this function is differentiable, then the derivative f (v) ¼ dF(v)

dv is called
the probability density function. It has the properties that f (v) � 0 andR1
�1 f (v)dv ¼ 1. Interval probabilities are obtained from P[a < y � b] ¼
F(b)� F(a) ¼ R ba f (v)dv.
The CDF of a random variable is also called the population CDF, as it

represents the distribution of all the possible outcomes of the variable. For
observed data y1, � � � , yn, the sample cumulative distribution function
(SCDF) of Section 1.1.1 is given by Fs(v) ¼ 1

n (number of yi � v).

Remarks on notation

Some remarks on notation are in order. In statistics one usually denotes
random variables by capital letters (for instance, Y) and observed outcomes
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of random variables by lower-case letters (for instance, y). However, in
econometrics it is usual to reserve capital letters for matrices only, so that
the notation in econometrics differs from the usual one in statistics. To avoid
confusion with the notation in later chapters, we use lower-case letters (like
y) to denote random variables. Further, for the random variable ywe denoted
the set of possible outcome values by V and the observed outcome by v.
However, in a sample of n observed data, the observations are usually
denoted by yi with i ¼ 1, � � � , n. Prior to observation, the outcome of yi can
be seen as a random variable. After observation, the realized values could be
denoted by say v(yi), the outcome value of the random variable yi, but for
simplicity of notation we write yi both for the random variables and for the
observed outcomes. This notation is common in econometrics. We will make
sure that it is always clear from the context what the notation yi means, a
random variable (prior to observation) or an observed outcome.

Mean

The distribution of a random variable can be summarized by measures
of location and dispersion. If y has a discrete distribution, then the (popula-
tion) mean is defined as a weighted average over the outcome set V with
weights equal to the probabilities pi of the different outcomes vi —that is,

m ¼ E[y] ¼
X

vipi: (1:6)

The operator E that determines the mean of a random variable is also called
the expectation operator. Note that the sample mean is obtained when the
SCDF is used. When y has a continuous distribution with density function f ,
the mean is defined by

m ¼ E[y] ¼
Z

vf (v)dv (1:7)

(if an integral runs from �1 to þ1, we delete this for simplicity of
notation).

Variance

The (population) variance is defined as the mean of (y� m)2. For a discrete
distribution this gives

s2 ¼ E[(y� m)2] ¼
X

(vi � m)2pi (1:8)
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and for a continuous distribution

s2 ¼ E[(y� m)2] ¼
Z

(v� m)2f (v)dv: (1:9)

The standard deviation s is the square root of the variance s2. The mean is
also called the (population) first moment, and the variance the second
(centred) moment.

Higher moments

The rth centred moment is defined as the mean of (y� m)r —that is (in the
case of a continuous distribution), mr ¼ E[(y� m)r] ¼ R (v� m)rf (v)dv. The
standardized rth moment is given by mr=s

r. For r ¼ 3 this gives the skewness
and for r ¼ 4 the kurtosis. The sample moments of Section 1.1.2 are obtained
by replacing the CDF by the sample CDF. Although the sample moments
always exist, this is not always the case for the population moments. If
E[jy� mjc] < 1, then all the moments mr with r � c exist. In particular, a
random variable with a finite variance also has a finite mean.

Transformations of random variables

Now we consider the statistical properties of functions of random variables.
If y is a random variable and g is a given function, then z ¼ g(y) is also a
random variable. Suppose that g is invertible with inverse function y ¼ h(z).
If y has a discrete distribution with outcomes v1, v2, � � �f g, then z also has a
discrete distribution with outcomes wi ¼ g(vi), i ¼ 1, 2, � � �f g and probabil-
ities P[z ¼ wi] ¼ P[y ¼ h(wi)] ¼ pi. When y has a continuous distribution
with density function fy and h is differentiable with derivative h0, then z has
density function

fz(w) ¼ fy(h(w))jh0(w)j (1:10)

(see Exercise 1.3 for a special case). The mean of z is given by E[z] ¼
E[g(y)] ¼P pig(vi) in the discrete case and by E[g(y)] ¼ R f (v)g(v)dv in the
continuous case. If g is linear, so that g(y) ¼ ayþ b for some constants a and
b, then E[ayþ b] ¼ aE[y]þ b, but if g is not linear then E[g(y)] 6¼ g(E[y])
in general.

E Exercises: T: 1.3a.
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1.2.2 Joint random variables

E First used in Section 3.1.4; uses Appendix A.2–A.4.

Two random variables

When there are two or more variables of interest, one can consider their joint
distribution. For instance, the data set on 609 student scores in Example 1.1
contains the outcomes of mathematics and verbal tests. The uncertainty
about the pair of outcomes (x, y) on these two tests can be described by a
joint probability distribution. If the sets of possible outcome values for x and
y are both discrete, say V ¼ v1, v2, � � �f g and W ¼ w1, w2, � � �f g, then the
joint distribution is given by the set of probabilities pij ¼ P[x ¼ vi, y ¼ wj].
The corresponding cumulative distribution function (CDF) is given by
F(v, w) ¼ P[x � v, y � w] ¼ P

(i; j); vi�v;wj�wf g pij. If the sets of possible

outcomes are continuous, then the CDF is also defined as
F(v, w) ¼ P[x � v, y � w], and if the second derivative of this function
exists, then the corresponding density function is defined by
f (v, w) ¼ @2F(v;w)

@v@w . The density function has the properties f (v, w) � 0 andR R
f (v, w)dvdw ¼ 1, and every function with these two properties describes

a joint probability distribution.
When the joint distribution of x and y is given, the individual distributions

of x and y (also called themarginal distributions) can be derived. The CDF Fy
of y is obtained from the CDF of (x, y) by Fy(w) ¼ P[y � w] ¼ F(1,w). For
continuous distributions, the corresponding densities are related by
fy(w) ¼ R f (v, w)dv. Mean and variance of x and y can also be determined
in this way— for instance, my ¼

R
fy(w)wdw ¼ R R f (v, w)wdvdw.

Covariance and correlation

The covariance between x and y is defined (for continuous distributions)
by

cov(x, y) ¼ E[(x� mx)(y� my)] ¼
Z Z

(v� mx)(w� my)f (v, w)dvdw:

The correlation coefficient between x and y is defined by

rxy ¼
cov(x, y)

sxsy
(1:11)
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where sx and sy are the standard deviations of x and y. The two random
variables are called uncorrelated if rxy ¼ 0. This is equivalent to the condi-
tion that E[xy] ¼ E[x]E[y].

Conditional distribution

The conditional distribution of y for given value of x is defined as follows.
When the distribution is discrete and the outcome x ¼ vi is given, with
P[x ¼ vi] > 0, the conditional probabilities are given by

P[y ¼ wjjx ¼ vi] ¼ P[x ¼ vi, y ¼ wj]

P[x ¼ vi]
¼ pijP

j pij
: (1:12)

This gives a new distribution for y, as the conditional probabilities sum up
(over j) to unity. For continuous distributions, the conditional density fyjx¼v is
defined as follows (for values of v for which fx(v) > 0).

fyjx¼v(w) ¼ f (v, w)

fx(v)
¼ f (v, w)R

f (v, w)dw
: (1:13)

Conditional mean and variance

The conditional mean and variance of y for given value x ¼ v are the mean
and variance with respect to the corresponding conditional distribution.
For instance, for continuous distributions the conditional expectation is
given by

E[yjx ¼ v] ¼
Z

fyjx¼v(w)wdw ¼
R

f (v, w)wdwR
f (v, w)dw

: (1:14)

Note that the conditional expectation is a function of v, so that E[yjx]
is a random variable with density fx(v). The mean of this conditional
expectation is (see Exercise 1.2)

E[E[yjx] ] ¼
Z

E[yjx ¼ v]fx(v)dv ¼ E[y]: (1:15)

In words, the conditional expectation E[yjx] (a function of the random
variable x) has the same mean as the unconditional random variable y. The
conditional variance var(yjx ¼ v) is the variance of y with respect to the
conditional distribution fyjx¼v. This variance depends on the value of v, and
the mean of this variance satisfies (see Exercise 1.2)
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E[var(yjx)] ¼
Z

fx(v)

Z
fyjx¼v(w)(w� E[yjx ¼ v])2dw

� �
dv � var(y):

(1:16)

So, on average, the conditional random variable yjx ¼ v has a smaller
variance than the unconditional random variable y. That is, knowledge of
the outcome of the variable x helps to reduce the uncertainty about the
outcome of y. This is an important motivation for econometric models
with explanatory variables. In such models, the differences in the outcomes
of the variable of interest (y) are explained in terms of underlying factors (x)
that influence this variable. For instance, the variation in the FGPA scores of
students can be related to differences in student abilities as measured by their
SATM and SATV scores. Such econometric models with explanatory vari-
ables are further discussed in Chapters 2 and 3.

Independence

A special situation occurs when the conditional distribution is always equal
to the marginal distribution. For discrete distributions this is the case if and
only if P[y ¼ wjjx ¼ vi] ¼ P[y ¼ wj] for all (vi, wj)— that is,

P[x ¼ vi, y ¼ wj] ¼ P[x ¼ vi]P[y ¼ wj]

for all (vi, wj). For continuous distributions the condition is that

f (v, w) ¼ fx(v)fy(w)

for all (v, w). If this holds true, then x and y are called independent random
variables. So in this case the joint distribution is simply obtained by multi-
plying the marginal distributions with each other. It follows from (1.12)
and (1.13) that for independent variables E[yjx ¼ v] ¼ E[y] is independent
of the value v of x. Further, for independent variables there holds var(yjx ¼ v)
¼ var(y) for all values x ¼ v, and hence also E[var(yjx)] ¼ var(y). If x and y
are independent, then the uncertainty of y is not diminished by conditioning
on x, that is, the variable x does not contain information on the variable y.
Independent variables are always uncorrelated, but the reverse does not hold
true (see Exercise 1.2).

More than two random variables

The definitions of joint, marginal, and conditional distributions are easily
extended to the case of more than two random variables. For instance, the
joint density function of p continuous random variables y1, � � � , yp is a
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function f (v1, � � � , vp) that is non-negative everywhere and that integrates
(over the p-dimensional space) to unity. Means, variances, and covariances
can be determined from the joint distribution. For instance, for continuous
distributions the covariance between y1 (with mean m1) and y2 (with mean
m2) is given by s12 ¼ cov(y1, y2) ¼ E[(y1 � m1)(y2 � m2)]— that is, the p-
dimensional integral

s12 ¼
Z

� � �
Z

(v1 � m1)(v2 � m2)f (v1, � � � , vp)dv1 � � � dvp:

These variances and covariances can be collected in the p� p symmetric
covariance matrix

S¼

var(y1) cov(y1, y2) � � � cov(y1, yp)
cov(y2, y1) var(y2) � � � cov(y2, yp)

..

. ..
. ..

. ..
.

cov(yp, y1) cov(yp, y2) � � � var(yp)

0BBB@
1CCCA¼

s11 s12 � � � s1p
s21 s22 � � � s2p
..
. ..

. ..
. ..

.

sp1 sp2 � � � spp

0BBB@
1CCCA:

The correlation matrix is defined in an analogous way, replacing the elements
sij in S by the correlations rij ¼ sijffiffiffiffiffiffiffisiisjj

p . The variables are independent if and

only if the joint density f is equal to the product of the p individual marginal
densities fyi of yi —that is,

f (v1, � � � , vp) ¼
Yp
j¼1

fyi(vi):

Independent variables are uncorrelated, so that in this case sij ¼ 0 for all
i 6¼ j. If in addition all the variables have equal variance sii ¼ s2, then the
covariance matrix is of the form S ¼ s2I where I is the p� p identity matrix.

Linear transformations of random variables

For our statistical analysis in later chapters we now consider the distribution
of functions of random variables. For linear transformations the first and
second moments of the transformed variables can be determined in a simple
way. Let y1, � � � , yp be given random variables and let z ¼ bþPp

j¼1 ajyj be a
linear function of these random variables, for given (non-random) constants
b and aj. Then the mean and variance of z are given by

E[z] ¼ bþ
Xp
j¼1

ajE[yj], var(z) ¼
Xp
j¼1

Xp
k¼1

ajakcov(yj, yk)
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where cov(yj, yj) ¼ var(yj). When the random variables yj are uncorrelated
and have identical mean m and variance s2, it follows that E[z] ¼ bþ m

P
aj

and var(z) ¼ s2
P

a2j . For instance, when y ¼ 1
n

Pn
i¼1 yi is the mean of n

uncorrelated random variables, then it follows that

E[y] ¼ m, var(y) ¼ s2

n
: (1:17)

Now let z ¼ Ayþ b be a vector of random variables, where A and b are a
given (non-random)m� pmatrix andm� 1 vector respectively and where y
is a p� 1 vector of random variables with vector of means m and covariance
matrix S. Then the vector of means of z and its covariance matrix Sz are
given by

E[z] ¼ Amþ b, Sz ¼ ASA0 (1:18)

where A0 denotes the transpose of the matrix A (see Exercise 1.3).

Arbitrary transformations of random variables

The distribution of non-linear functions of random variables can be
derived from the joint distribution of these variables. For example, let z1 ¼
g1(y1, y2) and z2 ¼ g2(y1, y2) be two functions of given random variables
y1 and y2. Suppose that the mapping g ¼ (g1, g2) from (y1, y2) to (z1, z2)
is invertible with inverse h ¼ (h1, h2). The Jacobian J is defined as the
determinant of the 2� 2 matrix with elements @hi(z)

@zj
for i, j ¼ 1, 2. For

discrete random variables, the distribution of (z1, z2) is given by
P[z1 ¼ w1, z2 ¼ w2] ¼ P[y1 ¼ v1, y2 ¼ v2] where (v1, v2) ¼ h(w1, w2).
For continuous random variables, the joint density function of (z1, z2) is
given by

fz1; z2 (w1, w2) ¼ fy1; y2 (h(w1, w2)) j J(w1, w2)j: (1:19)

That is, the density of (y1, y2) should be evaluated at the point h(w1, w2) and
the result should be multiplied by the absolute value of the Jacobian J in
(w1, w2). This result generalizes to the case of more than two functions.
When z1 ¼ g1(y1) and z2 ¼ g2(y2) and y1 and y2 are independent, then it
follows from (1.10) and (1.19) that z1 and z2 are also independent (see
Exercise 1.3). So in this case z1 and z2 are uncorrelated, so that
E[g1(y1)g2(y2)] ¼ E[g1(y1)]E[g2(y2)] when y1 and y2 are independent. If y1
and y2 are uncorrelated but not independent, then z1 and z2 are in general not
uncorrelated, unless g1 and g2 are linear functions (see Exercise 1.3).
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Example 1.6: Student Learning (continued)

As an illustration we consider again the data on student learning of 609
students. In this example we will consider these 609 students as the popula-
tion of interest and we will analyse the effect of the gender of the student by
conditioning with respect to this variable. Exhibit 1.6 shows histograms of
the variable FGPA for male students (a) and female students (b) separately.
Of the 609 students in the population, 373 are male and 236 are female. The
two means and standard deviations in Exhibit 1.6 are conditional on the
gender of the student and they differ in the two groups. The mean and
standard deviation of the unconditional (full) population are in Exhibit 1.4
(a). The relations (1.15) and (1.16) (more precisely, their analogue for the
current discrete distributions) are easily verified, using the fact that the
conditioning variable x in this case is a discrete random variable with
probabilities 373/609 for a male and 236/609 for a female student. Indeed,
denoting males byM and females by F, we can verify the result (1.15) for the
mean because

E[E[yjx]] ¼ 373

609
E[yjM]þ 236

609
E[yjF] ¼ 373

609
(2:728)

þ 236

609
(2:895) ¼ 2:793 ¼ E[y],

and we can verify the result (1.16) for the variance because

E[var(yjx)]¼ 373

609
var(yjM)þ 236

609
var(yjF)¼ 373

609
(0:441)2 þ 236

609
(0:472)2

¼ 0:206< 0:212¼ (0:460)2 ¼ var(y):

E Exercises: T: 1.2, 1.3b–d; E: 1.11e.
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Exhibit 1.6 Student Learning (Example 1.6)

Histograms for FGPA scores of males (a) and females (b).
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1.2.3 Probability distributions

E First used in Section 2.2.3; uses Appendix A.2–A.5.

Bernoulli distribution and binomial distribution

In this section we consider some probability distributions that are often used
in econometrics. The simplest case of a random variable is a discrete variable
y with only two possible outcomes, denoted by 0 (failure) and 1 (success).
The probability distribution is completely described by the probability
p ¼ P[y ¼ 1] of success, as P[y ¼ 0] ¼ 1� P[y ¼ 1] ¼ 1� p. This is called
the Bernoulli distribution. It has mean p and variance p(1� p) (see Exercise
1.4). Suppose that the n random variables yi, i ¼ 1, � � � , n, are independent
and identically distributed, with the Bernoulli distribution with probability p
of success. Let y ¼Pn

i¼1 yi be the total number of successes. The set of
possible outcome values of y is V ¼ {0, 1, � � � , n}, and

P[y ¼ v] ¼ n

v

� �
pv(1� p)n�v

(the first term, ‘n over v’, is the number of possibilities to locate v successes
over n positions). This is called the binomial distribution. It has mean np and
variance np(1� p) (see Exercise 1.4).

Normal distribution

The normal distribution is the most widely used distribution in econometrics.
One of the reasons is the central limit theorem (to be discussed later), which
says that many distributions can be approximated by normal distributions if
the sample size is large enough. Another reason is that the normal distribu-
tion has a number of attractive properties. A normal random variable is a
continuous random variable that can take on any value. Its density function
is given by

f (v) ¼ 1

s
ffiffiffiffiffiffi
2p

p e�
1

2s2
(v�m)2 , �1 < v < 1: (1:20)

This function is symmetric around m and it is shaped like a bell (see Exhibit
1.7). The distribution contains two parameters, m and s2, and the distribu-
tion is denoted by N(m, s2). This notation is motivated by the fact that m is the
mean and s2 the variance of this distribution. The third and fourth moments
of this distribution are 0 and 3s4 respectively (see Exercise 1.4), so that the
skewness is zero and the kurtosis is equal to 3. As the normal distribution is
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often taken as a benchmark, distributions with kurtosis larger than three are
called fat-tailed.
When y follows the N(m, s2) distribution, this is written as y � N(m, s2).

The result in (1.10) implies (see Exercise 1.4) that the linear function ayþ b
(with a and b fixed numbers) is also normally distributed and

ayþ b � N(amþ b, a2s2):

In particular, when y is standardized by subtracting its mean and dividing by
its standard deviation, it follows that

y� m
s

� N(0, 1):

This is called the standard normal distribution. Its density function is de-
noted by f, so that

f(v) ¼ 1ffiffiffiffiffiffi
2p

p e�
1
2v

2

,

and the cumulative distribution function is denoted by F(v) ¼ R v�1 f(u)du.

Multivariate normal distribution

In later chapters we will often consider jointly normally distributed random
variables. It is very convenient to use matrix notation to describe the multi-
variate normal distribution. The multivariate normal distribution of n
random variables has density function
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Exhibit 1.7 Normal distribution

Density functions of two normal distributions, one with mean 0 and variance 1 (a) and another
one with mean 3 and variance 2 (b). The plot in (c) shows the two densities in one diagram for
comparison.
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f (v) ¼ 1

(2p)n=2(det(S))1=2
e�

1
2(v�m)0S�1(v�m), (1:21)

where v denotes the n variables, m is an n� 1 vector, and S an n� n positive
definite matrix (det(S) denotes the determinant of this matrix). This notation
is motivated by the fact that this distribution has mean m and covariance
matrix S. The distribution is written as N(m, S).

Properties of the multivariate normal distribution

Marginal and conditional distributions of normal distributions remain
normal. If y � N(m, S), then the ith component yi is also normally distrib-
uted and yi � N(mi, sii) where mi is the ith component of m and sii the ith
diagonal element of S. For the conditional distribution, let the vector y be
split in two parts (with sub-vectors y1 and y2) and let the mean vector and
covariance matrix be split accordingly. Then the conditional distribution of
y1, given that y2 ¼ v2, is given by

y1jy2 ¼ v2 � N m1 þ S12S
�1
22 (v2 � m2), S11 � S12S

�1
22 S21

� �
(1:22)

where S11 is the covariance matrix of y1, S22 is the covariance matrix of
y2, S12 is the covariance matrix between y1 and y2, and S21 is the transpose
of S12 (see Exercise 1.4). Note that the conditional variance does not depend
on the value of y2 in this case. That is, knowledge of the value of y2 always
leads to the same reduction in the uncertainty of y1 if the variables are
normally distributed.
For arbitrary random variables, independence implies being uncorrelated

but not the other way round. However, when jointly normally distributed
variables are uncorrelated, so thatS is a diagonalmatrix, then the joint density
(1.21) reduces to the product of the individual densities. That is, when nor-
mally distributed variables are uncorrelated they are also independent. This
also follows from (1.22), as S12 ¼ 0 if y1 and y2 are uncorrelated so that the
conditional distribution of y1 becomes independent of y2.

If the n� 1 vector y is normally distributed, then the linear function
Ayþ b (with A a given m� n matrix and b a given m� 1 vector) is also
normally distributed and (see Exercise 1.4)

Ayþ b � N(Amþ b, ASA0): (1:23)

Chi-square (x2) distribution

In the rest of this section we consider the distribution of some other functions
of normally distributed random variables that will be used later on. Suppose
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that y1, � � � , yn are independent and all follow the standard normal distribu-
tion. Then the distribution of the sum of squares

Pn
i¼1 y

2
i is called the

chi-square distribution with n degrees of freedom, denoted by w2(n). This
can be generalized to other quadratic forms in the vector of random variables
y ¼ (y1, � � � , yn)0. LetA be an n� nmatrix that is symmetric (that is,A0 ¼ A),
idempotent (that is, A2 ¼ A) and that has rank r (which in this case is equal
to the trace of A—that is, the sum of the n diagonal elements of this
matrix). Then

y0Ay � w2(r) (1:24)

(see Exercise 1.5). For a symmetric idempotent matrix A there always holds
that y0Ay � 0. The density of the w2(r) distribution is given by

f (v) / v
r
2�1e�

v
2, v � 0,

¼ 0, v < 0,
(1:25)

where / means ‘proportional to’— that is, f (v) is equal to the given
expression up to a scaling constant that does not depend on v. This scaling
constant is defined by the condition that

R
f (v)dv ¼ 1. The w2(r) distribution

has mean r and variance 2r (see Exercise 1.5). Exhibit 1.8 shows chi-square
densities for varying degrees of freedom. The distributions have a positive
skewness.

Student t-distribution

If y1 � N(0, 1) and y2 � w2(r) and y1 and y2 are independently distributed,
then the distribution of y1=

ffiffiffiffiffiffiffiffiffi
y2=r

p
is called the Student t-distribution with r

degrees of freedom, written as
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Exhibit 1.8 x2-distribution

Density functions of two chi-squared distributions, one with 4 degrees of freedom (a) and
another one with 8 degrees of freedom (b). The plot in (c) shows the two densities in one
diagram for comparison.
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y1ffiffiffiffiffiffiffiffiffi
y2=r

p � t(r): (1:26)

Up to a scaling constant, the density of the t(r)-distribution is given by

f (v) / 1

1þ v2

r

� �rþ1
2

, �1 < v < 1: (1:27)

For r > 1 the mean is equal to 0, and for r > 2 the variance is equal to r
r�2.

Exhibit 1.9 shows t-distributions for varying degrees of freedom. These
distributions are symmetric (the skewness is zero) and have fat tails (the
kurtosis is larger than three). For r ¼ 1, the t(1)-distribution (also called the
Cauchy distribution) has density

f (v) ¼ 1

p(1þ v2)
:

This distribution is so much dispersed that it does not have finite moments—
in particular, the mean and the variance do not exist. On the other hand, if
r ! 1 then the t(r) density converges to the standard normal density (see
Exercise 1.5).
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Exhibit 1.9 t-distribution

Density functions of three t-distributions, with number of degrees of freedom equal to 1 (a),
4 (b), and 100 (c). The plot in (d) shows the three densities in one diagram for comparison.
For more degrees of freedom the density is more concentrated around zero and has less fat
tails.

1.2 Random variables 33



F-distribution

If y1 � w2(r1) and y2 � w2(r2) and y1 and y2 are independently distributed,
then the distribution of (y1=r1)=(y2=r2) is called the F-distributionwith r1 and
r2 degrees of freedom. This is written as

y1=r1
y2=r2

� F(r1, r2): (1:28)

Exhibit 1.10 shows F-distributions for varying degrees of freedom. If r2 ! 1,
then r1 � F(r1, r2) converges to the w2(r1)-distribution (see Exercise 1.5).

Conditions for independence

In connection with the t- and F-distributions, it is for later purposes helpful
to use simple checks for the independence between linear and quadratic
forms of normally distributed random variables. Let y � N(0, I) be a vector
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Exhibit 1.10 F-distribution

Density functions of three F-distributions, with numbers of degrees of freedom in numerator
and denominator respectively (4,4) (a), (4,100) (b), and (100,4) (c). The plot in (d) shows
the three densities in one diagram for comparison. For more degrees of freedom in the
numerator the density shifts more to the right, and for more degrees of freedom in
the denominator it gets less fat tails.
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of independent standard normal random variables, and let z0 ¼ Ay,
z1 ¼ y0Q1y and z2 ¼ y0Q2y be respectively a linear form (with A an m� n
matrix) and two quadratic forms (with Q1 and Q2 symmetric and idempo-
tent n� n matrices). The two following results are left as an exercise (see
Exercise 1.5). The random variables z0 (with normal distribution) and z1
(with w2-distribution) are independently distributed if

AQ1 ¼ 0, (1:29)

and the random variables z1 and z2 (both with w2-distribution) are independ-
ently distributed if

Q1Q2 ¼ 0: (1:30)

E Exercises: T: 1.4, 1.5a–e, 1.13f, 1.15b.

1.2.4 Normal random samples

E First used in Section 2.2.3; uses Appendix A.2–A.5.

To illustrate some of the foregoing results, we consider the situation where
y1, � � � , yn are normally and independently distributed random variables with
the same mean m and variance s2. This is written as

yi � NID(m, s2), i ¼ 1, � � � , n, (1:31)

where NID stands for normally and independently distributed. One also says
that y1, � � � , yn is a random sample (that is, with independent observations)
from N(m, s2). We are interested in the distributions of the sample mean y in
(1.1) and of the sample variance s2 in (1.3).

Sample mean

Let y be the n� 1 vector with elements y1, � � � , yn, so that

y � N(mi, s2I) (1:32)
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where i is the n� 1 vector with all its elements equal to 1 and I is the n� n
identity matrix. The sample mean is given by y ¼ 1

n

P
yi ¼ 1

n i
0y, and as i0i ¼ n

and i0Ii ¼ n it follows from (1.23) that

y ¼ 1

n
i0y � N m,

s2

n

� �
: (1:33)

Sample variance

To derive the distribution of the sample variance s2, let

zi ¼ (yi � m)=s

so that zi � NID(0, 1). Then s2 can be written as s2 ¼ 1
n�1

Pn
i¼1 (yi � y)2

¼ s2
n�1

Pn
i¼1 (zi � z)2. Now

Pn
i¼1 (zi � z)2 ¼ z0Mz where the matrix M is de-

fined by

M ¼ I � 1

n
ii0: (1:34)

The matrixM is symmetric and idempotent and has rank n� 1 (see Exercise
1.5). Then (1.24) shows that

(n� 1)s2

s2
¼ z0Mz � w2(n� 1): (1:35)

The t-value of the sample mean

Using the notation introduced above, the result (1.33) implies that
1ffiffi
n

p i0z ¼ ffiffiffi
n

p
z ¼ ffiffiffi

n
p

(y� m)=s � N(0, 1). As i0M ¼ 0, it follows from (1.29)
that this standard normal random variable is independent from the w2(n� 1)
random variable in (1.35). By definition,ffiffiffi

n
p

(y� m)=sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(n�1)s2

s2 =(n� 1)
q ¼ y� m

s=
ffiffiffi
n

p � t(n� 1): (1:36)

Note that the random variable in (1.36) has a distribution that does not
depend on s2. Such a random variable (in this case, a function of the data and
of the parameter m that does not depend on s2) is called pivotal for the
parameter m. The result in (1.35) shows that (n� 1)s2=s2 is pivotal for s2.
Such pivotal random variables are helpful in statistical hypothesis testing, as
will become clear in Section 1.4.2.
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If it is assumed that the population mean is zero— that is, m ¼ 0— it
follows that

y

s=
ffiffiffi
n

p � t(n� 1): (1:37)

This is called the t-value of the sample mean.

E Exercises: T: 1.5f, 1.15a.
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1.3 Parameter estimation

1.3.1 Estimation methods

E First used in Section 4.3.2; uses Appendix A.1, A.7.

Concepts: model, parameters, estimator, estimate

Suppose that n available observations yi, i ¼ 1, � � � , n are considered as the
outcomes of random variables with a joint probability distribution
fy(y1, � � � , yn). Here it is assumed that the general shape of the distribution is
known up to one or more unknown parameters that are denoted by y. A set of
distributions fy; y 2 Qf g is called a model for the observations— that is, it
specifies the general shape of the distribution together with a setQ of possible
values for the unknown parameters. The numerical values of y are unknown,
but they can be estimated from the observed data. Estimated parameters are
denoted by ŷy. As an example, if it is supposed that yi � NID(m, s2) with
unknown mean m and variance s2, then the joint distribution is given by
(1.32) with parameter set Q ¼ {(m, s2); s2 > 0}. The parameters can be esti-
mated, for instance, by the sample mean and sample variance discussed in
Section 1.1.2.

In this section we consider a general framework for estimation with
corresponding concepts and terminology that are used throughout this
book. In all that follows, we use the notation yi both for the random variable
and for the observed outcome of this variable. A statistic is any given
function g(y1, � � � , yn)— that is, any numerical expression that can be evalu-
ated from the observed data alone. An estimator is a statistic that is used to
make a guess about an unknown parameter. For instance, the sample mean
(1.1) is a statistic that provides an intuitively appealing guess for the popula-
tion mean m. An estimator is a random variable, as it depends on the random
variables yi. For given observed outcomes, the resulting numerical value of
the estimator is called the estimate of the parameter. So an estimator is a
numerical expression in terms of random variables, and an estimate is a
number. Several methods have been developed for the construction of esti-
mators. We discuss three methods— that is, the method of moments, least
squares, and maximum likelihood.
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The method of moments

In the method of moments the parameters are estimated as follows. Suppose
that y contains k unknown parameters. The specified model (that is, the
general shape of the distribution) implies expressions for the population
moments in terms of y. If k such moments are selected, the parameters y
can in general be solved from these k expressions. Now y is estimated by
replacing the unknown population moments by the corresponding sample
moments. An advantage of this method is that it is based on moments that
are often easy to compute. However, it should be noted that the obtained
estimates depend on the chosen moments.

Example 1.7: Student Learning (continued)

To illustrate the method of moments, we consider the FGPA scores of 609
students in Example 1.4. Summary statistics of this sample are in Exhibit 1.4
(a), with mean y ¼ 2:793, standard deviation s ¼ 0:460, skewness 0.168,
and kurtosis 2.511. So the first moment is 2.793 and the second moment
(1.2) is equal to m2 ¼ (n� 1)s2=n ¼ 0:211. If these scores are assumed to be
normally and independently distributed with mean m and variance s2, the
first and second moment of this distribution are equal to m and s2 respect-
ively. So the moment estimates then become m̂m ¼ 2:793 and ŝs2 ¼ 0:211.
Instead of using the second moment, one could also use the fourth moment

to estimate s2. The fourth (population) moment of the normal distribution is
equal to 3s4. To obtain the fourth sample moment from the summary
statistics presented in Exhibit 1.4 (a), note that the sample kurtosis (K) is
equal to the sample fourth moment (m4) divided by s4, so that
m4 ¼ Ks4 ¼ 2:511(0:460)4 ¼ 0:112. The estimate ŝs2 of the parameter s2

based on the fourth moment is then obtained by solving 3ŝs4 ¼ m4, so that
ŝs2 ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

m4=3
p ¼ 0:194. The above results show that the parameter estimates

may be different for different choices of the fitted moments. In our example
the differences are not so large.

Least squares

Another method for parameter estimation is least squares. We illustrate this
method for the estimation of the population mean from a random sample
y1, � � � , yn of a distribution with unknownmean m and unknown variance s2.
Let ei ¼ yi � m; then it follows that e1, � � � , en are identically and independ-
ently distributed with mean zero and variance s2. This is written as
ei � IID(0, s2). The model can now be written as

yi ¼ mþ ei, ei � IID(0, s2): (1:38)

E

XM101STU
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The least squares estimate is that value of m that minimizes the sum of
squared errors

S(m) ¼
Xn
i¼1

(yi � m)2:

Taking the first derivative of this expression with respect to m gives the first
order condition

Pn
i¼1 (yi � m) ¼ 0. Solving this for m gives the least squares

estimate m̂m ¼ y, the sample mean. Instead of least squares one could also use
other estimation criteria— for instance, the sum of absolute errors

Xn
i¼1

jyi � mj:

As will be seen in Chapter 5 (see Exercise 5.14), the resulting estimate is then
given by the median of the sample.

Maximum likelihood

A third method is that of maximum likelihood. Recall that a model consists
of a set fy; y 2 Qf g of joint probability distributions for y1, � � � , yn. For every
value of y, the distribution gives a certain value fy(y1, � � � , yn) for the given
observations. When seen as a function of y, this is called the likelihood
function, denoted by L(y), so that

L(y) ¼ fy(y1, � � � , yn), y 2 Q: (1:39)

For discrete distributions, the likelihood L(y) is equal to the probability (with
respect to the distribution fy) of the actually observed outcome. The max-
imum likelihood estimate is the value of y for which this probability is
maximal (over the set of all possible values y 2 Q). Similarly, for a continu-
ous distribution the maximum likelihood estimate is obtained by maximizing
L(y) over Q.
An attractive property of this method is that the estimates are invariant

with respect to changes in the definition of the parameters. Suppose that,
instead of using the parameters y, one describes the model in terms of another
set of parameters c and that the relation between c and y is given by
c ¼ h(y), where h is an invertible transformation. The model is then ex-
pressed as the set of distributions {~ffc;c 2 C} where ~ffc ¼ fh�1(c) and
C ¼ h(Q). Let ŷy and ĉc be the maximum likelihood estimates of y and c
respectively. Then ŷy ¼ h�1(ĉc), so that bothmodels lead to the same estimated
probability distribution (see Exercise 1.6 for an example).
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Comparison of methods

In later chapters we will encounter each of the above three estimation
methods. It depends on the application which method is the most attractive
one. If the model is expressed in terms of an equation, as in (1.38), then least
squares is intuitively appealing, as it optimizes the fit of the model with
respect to the observations. Sometimes the model is expressed in terms of
moment conditions, so that the method of moments is a natural way of
estimation.
Least squares and the method of moments are both based on the idea of

minimizing a distance function. For least squares the distance is measured
directly in terms of the observed data, whereas for themethod ofmoments the
distance is measured in terms of the sample and population moments. The
maximum likelihood method, on the other hand, is based not on a distance
function, but on the likelihood function that expresses the likelihood or
‘credibility’ of parameter values with respect to the observed data. This
method can be applied only if the joint probability distribution of the obser-
vations is completely specified so that the likelihood function (1.39) is a
known function of y. In this case maximum likelihood estimators have
optimal properties in large samples, as will be discussed in Section 1.3.3.

Example 1.8: Normal Random Sample

We will illustrate the method of maximum likelihood by considering data
generated by a random sample from a normal distribution. Suppose that
yi � NID(m, s2), i ¼ 1, � � � , n, with unknown parameters y ¼ (m, s2). Then
the likelihood function is given by

L(m, s2) ¼
Yn
i¼1

1

s
ffiffiffiffiffiffi
2p

p e�
1

2s2
(yi�m)2

� �
:

As the logarithm is a monotonically increasing function, the likelihood func-
tion and its logarithm log (L(m, s2)) obtain their maximum for the same
values of m and s2. As log (L(m, s2)) is easier to work with, we maximize

log (L(m, s2)) ¼ � n

2
log (2p)� n

2
log (s2)� 1

2s2
Xn
i¼1

(yi � m)2: (1:40)

The first order conditions (with respect to m and s2) for a maximum are given
by

@ log (L)

@m
¼ 1

s2
Xn
i¼1

(yi � m) ¼ 0, (1:41)

E
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@ log (L)

@s2
¼ � n

2s2
þ 1

2s4
Xn
i¼1

(yi � m)2 ¼ 0: (1:42)

The solutions of these two equations are given by

m̂mML ¼ 1

n

X
yi ¼ y, ŝs2ML ¼ 1

n

X
(yi � y)2 ¼ n� 1

n
s2:

So m is estimated by the sample mean and s2 by (1� 1
n ) times the sample

variance. For large sample sizes the difference with the sample variance s2

becomes negligible.
To check whether the estimated values indeed correspond to a maximum

of the likelihood function we compute the matrix of second order derivatives
(the Hessian matrix) and check whether this matrix (evaluated at
m̂mML and ŝs2ML) is negative definite. By differentiating the above two first
order conditions, it follows that the Hessian matrix is equal to

H(y)¼
@2 log(L)

@m2
@2 log(L)
@m@s2

@2 log(L)
@s2@m

@2 log(L)

@(s2)2

0@ 1A¼ � n
s2 � 1

s4
P

(yi�m)
� 1

s4
P

(yi�m) n
2s4� 1

s6
P

(yi�m)2

 !
: (1:43)

Evaluating this at the values of m̂mML and ŝs2ML shows that H(m̂m, ŝs2) is a
diagonal matrix with elements �n=ŝs2ML and �n=2ŝs4ML on the diagonal,
which is indeed a negative definite matrix.

Note that we expressed the model and the likelihood function in terms
of the parameters m and s2. We could equally well use the parameters m
and s. We leave it as an exercise (see Exercise 1.6) to show that solving the
first order conditions with respect to m and s gives the same estimators as
before, which illustrates the invariance property of maximum likelihood
estimators.

E Exercises: T: 1.6a, b, 1.9d, 1.10a, c.

1.3.2 Statistical properties

E First used in Section 2.2.4; uses Appendix A.2–A.5.

Data generating process

To evaluate the quality of estimators, suppose that the data are generated by
a particular distribution that belongs to the specified model. That is, the data
generating process (DGP) of y1, � � � , yn has a distribution fy0 where y0 2 Q.
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An estimator ŷy is a function of the random variables y1, � � � , yn, so that ŷy is
itself a random variable with a distribution that depends on y0. The estimator
would be perfect if P[ŷy ¼ y0] ¼ 1, as it would always infer the correct
parameter value from the sample. However, as the observations are partly
random, y0 can in general not be inferred with certainty from the infor-
mation in the data. To evaluate the quality of an estimator we therefore need
statistical measures for the distance of the distribution of ŷy from y0.

Variance and bias

First assume that y consists of a single parameter. The mean squared error
(MSE) of an estimator is defined byE[(ŷy� y0)

2], which can be decomposed in
two terms as

MSE(ŷy) ¼ E[(ŷy� y0)
2] ¼ var(ŷy)þ (E[ŷy]� y0)

2: (1:44)

Here all expectations are taken with respect to the underlying distribution fy0
of the data generating process. The first term is the variance of the estimator,
and if this is small this means that the estimator is not so much affected by the
randomness in the data. The second term is the square of the bias E[ŷy]� y0,
and if this is small this means that the estimator has a distribution that is
centred around y0. The mean squared error provides a trade-off between the
variance and the bias of an estimator.

Unbiased and efficient estimators

The practical use of the MSE criterion is limited by the fact that MSE(ŷy)
depends in general on the value of y0. As y0 is unknown (else there would be
no reason to estimate it), one often uses other criteria that can be evaluated
without knowing y0. For instance, one can restrict the attention to unbiased
estimators— that is, with the property that

E[ŷy] ¼ y0,

and try to minimize the variance var(ŷy) within the class of unbiased estima-
tors. Assume again that y consists of a single parameter. An estimator that
minimizes the variance over a class of estimators is called efficientwithin that
class. The Cramér–Rao lower bound states that for every unbiased estimator
ŷy there holds

var(ŷy) � E
d log (L(y))

dy

� �2
" # !�1

¼ � E
d2 log (L(y))

dy2

� 	� ��1

(1:45)
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where L(y) is the likelihood function and, as before, the expectations are
taken with respect to the distribution with parameter y0. The proof of the
equality in (1.45) is left as an exercise (see Exercise 1.7). The inequality in
(1.45) implies that a sufficient condition for the efficiency of an estimator ŷy in
the class of unbiased estimators with E[ŷy] ¼ y0 is that var(ŷy) is equal to the
Cramér–Rao lower bound. This condition is not necessary, however, because
in some situations the lower bound on the variance cannot be attained by any
unbiased estimator.

Warning on terminology

A comment on the terminology is in order. Although the property of unbia-
sedness is an attractive one, this does not mean that biased estimators should
automatically be discarded. Exhibit 1.11 shows the density functions of two
estimators, one that is unbiased but that has a relatively large variance and
another that has a small bias and a relatively small variance. In practice we
have a single sample y1, � � � , yn at our disposal, and corresponding single
outcomes of the estimators. As is clear from Exhibit 1.11, the outcome of the
biased estimator will in general be closer to the correct parameter value than
the outcome of the unbiased estimator. This shows that unbiasedness should
not be imposed blindly.

More than one parameter

Now suppose that y consists of a vector of parameters, and that ŷy is a vector
of estimators where each component is an estimator of the corresponding
component of y. Then ŷy is unbiased if E[ŷy] ¼ y0 — that is, if all components
are unbiased. For unbiased estimators, the covariance matrix is given by

var(ŷy) ¼ E (ŷy� E[ŷy])(ŷy� E[ŷy])0
h i

¼ E (ŷy� y0)(ŷy� y0)
0

h i
:

q0

Exhibit 1.11 Bias and variance

Densities of two estimators, one that is unbiased but that has a larger variance and another one
that is biased (downwards) but that has a smaller variance (y0 denotes the parameter of the
data generating process).
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An estimator ŷy1 is called more efficient than another estimator ŷy2 if
var(ŷy2)� var(ŷy1) is a positive semidefinite matrix. This means in particular
that every component of ŷy2 has a variance that is at least as large as that of
the corresponding component of ŷy1. The Cramér–Rao lower bound for the
variance of unbiased estimators is given by the inverse of the so-called infor-
mation matrix. This matrix is defined as follows, where the expectations are
taken with respect to the probability distribution with parameters y0 and
where the derivatives are evaluated at y0.

I0 ¼ E
@ log (L(y))

@y

� �
@ log (L(y))

@y

� �0� 	
¼ �E

@2 log (L(y))
@y@y0

� 	
: (1:46)

So, for every unbiased estimator there holds that var(ŷy)� I�1
0 is positive

semidefinite. A sufficient condition for efficiency of an unbiased estimator of
the kth component of y is that its variance is equal to the kth diagonal
element of I�1

0 .

Example 1.9: Normal Random Sample (continued)

As in Example 1.8, we consider the case of data consisting of a random
sample from the normal distribution. We suppose that yi �NID(m, s2),
i ¼ 1, � � � , n, with unknown parameters y ¼ (m, s2). The maximum likeli-
hood estimators are given by m̂mML ¼ y and ŝs2ML ¼ (n� 1)s2=n where s2 is
the sample variance. We will investigate (i) the unbiasedness of the ML
estimators m̂mML and ŝs2ML, (ii) the variance and efficiency of these two estima-
tors, (iii) simulated sample distributions of these two estimators and of
two alternative estimators, the median (for m) and the sample variance s2

(for s2), and (iv) the interpretation of the outcomes of this simulation
experiment.

(i) Means of the ML estimators m̂mML and ŝs2
ML

Aswas shown in Section 1.2.4, m̂m � N(m, s2=n) and (n� 1)s2=s2 � w2(n� 1).
It follows that E[m̂mML] ¼ m and that E[ŝs2ML] ¼ (n� 1)s2=n—that is, m̂mML

is unbiased but ŝs2ML not. An unbiased estimator of s2 is given by the
sample variance s2. This is the reason to divide by (n� 1) in (1.3) instead
of by n. Unless the sample size n is small, the difference between s2 and ŝs2ML

is small.

(ii) Variance and efficiency of the ML estimators

Now we evaluate the efficiency of the estimators y and s2 in the class of all
unbiased estimators. The variance of y is equal to s2=n. As the w2(n� 1)
distribution has variance 2(n� 1), it follows that s2 has variance
2s4=(n� 1). The information matrix is equal to I0 ¼ �E[H(y0)], where

E
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y0 ¼ (m, s2) and H(y0) is the Hessian matrix in (1.43). As E[yi � m] ¼ 0
and E[(yi � m)2] ¼ s2, it follows that

I0 ¼
n
s2 0
0 n

2s4

� �
:

By taking the inverse, it follows that the Cramér–Rao lower bounds for the
variance of unbiased estimators of m and s2 are respectively s2=n and 2s4=n.
So y is efficient, but the variance of s2 does not attain the lower bound. We
mention that s2 is nonetheless efficient— that is, there exists no unbiased
estimator of s2 with variance smaller than 2s4=(n� 1).

(iii) Simulated sample distributions

To illustrate the sampling aspect of estimators, we perform a small simula-
tion experiment. To perform a simulation we have to specify the data
generating process. We consider n ¼ 10 independent random variables
y1, � � � , yn that are all normally distributed with mean m ¼ 0 and variance
s2 ¼ 1. A simulation run then consists of the outcomes of the variables
y1, � � � , y10 obtained by ten random drawings from N(0, 1). Statistical and
econometric software packages contain random number generators for
this purpose. For such a simulated set of ten data points, we compute
the following statistics: the sample mean y, the sample median med(y), the
sample variance s2, and the second sample moment m2 ¼ ŝs2ML. The values
of these statistics depend on the simulated data, so that the outcomes will
be different for different simulation runs. To get an idea of this variation
we perform 10,000 runs. Exhibit 1.12 shows histograms for the resulting
10,000 outcomes of the statistics y in (a), med(y) in (b), s2 in (c), and
ŝs2ML in (d), together with their averages and standard deviations over the
10,000 runs.

(iv) Interpretation of simulation outcomes

Both the sample mean and the median have an average close to the mean
m ¼ 0 of the data generating process, but the sample mean has a smaller
standard deviation than the median. This is in line with the fact that the
sample mean is the efficient estimator. Also note that the sample standard
deviation of the sample mean over the 10,000 runs (0.3159, see (a)) is close
to the theoretical standard deviation of the sample mean (which
is s=

ffiffiffi
n

p ¼ 1=
ffiffiffiffiffiffi
10

p ¼ 0:3162). The estimates ŝs2ML show a downward bias,
whereas s2 has an average that is close to the variance s2 ¼ 1 of the data
generating process. This is in line with the fact that ŝs2ML is biased and s2

is unbiased. The theoretical expected value of ŝs2 is equal to n�1
n s2 ¼ 0:9,

which is close to the sample average of the estimates over the 10,000
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simulation runs (0.901). The standard deviations of ŝs2ML and s2 over the
10,000 runs are in line with the theoretical standard deviations offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(n� 1)=n2

p
¼ 0:424 for ŝs2ML (as compared to a value of 0.418 in (d)

over the 10,000 simulation runs) and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=(n� 1)

p ¼ 0:471 for s2 (as com-
pared to a value of 0.465 in (c) over the 10,000 simulation runs).

E Exercises: T: 1.6c, 1.7a, 1.8a–c, 1.9a–c, e, 1.10a.

1.3.3 Asymptotic properties

E First used in Section 4.1; uses Appendix A.2–A.5.

Motivation

In some situations the sample distribution of an estimator is known exactly.
For instance, for random samples from the normal distribution, the sample
mean and variance have distributions given by (1.33) and (1.35). In other
cases, however, the exact finite sample distribution of estimators is not
known. This is the case for many estimators used in econometrics, as will

0

200

400

600

800

1000

1200

1400

−1.0 −0.5 0.0 0.5 1.0

Series: MEAN
Sample 1 10000
Observations 10000

Mean  0.004406
Median 0.004149
Maximum 1.201058
Minimum
Std. Dev.  0.315891
Skewness −0.020633
Kurtosis  3.005740

0

200

400

600

800

1000

1200

−1.0 −0.5 0.0 0.5 1.0 1.5

Series: MEDIAN
Sample 1 10000
Observations 10000

Mean 0.005618
Median 0.007826
Maximum 1.579816
Minimum
Std. Dev. 0.371443
Skewness −0.029682
Kurtosis 2.998629

0

200

400

600

800

1000

1200

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Series: S2
Sample 1 10000
Observations 10000

Mean  1.001334
Median 0.928417
Maximum 3.631671
Minimum 0.074836
Std. Dev.  0.464999
Skewness  0.888960
Kurtosis  4.133899

0

200

400

600

800

1000

1200

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Series: SIGMA2HAT
Sample 1 10000
Observations 10000

Mean  0.901201
Median 0.835576
Maximum 3.268504
Minimum 0.067353
Std. Dev.   0.418499
Skewness   0.888960
Kurtosis   4.133899

(a) (b)

(c) (d)

−1.208065 −1.305028

Exhibit 1.12 Normal Random Sample (Example 1.9)

Histograms of sample mean (a), sample median (b), sample variance (c), and second sample
moment (d) obtained in 10,000 simulation runs. Each simulation run consists of ten random
drawings from the standard normal distribution and provides one outcome of the four sample
statistics.
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become clear in later chapters. Basically two methods can be followed in
such situations. One method is to simulate the distribution of the estimator
for a range of data generating processes. A possible disadvantage is that the
results depend on the chosen parameters of the data generating process.
Another method is to consider the asymptotic properties of the estimator—
that is, the properties if the sample size n tends to infinity. Asymptotic
properties give an indication of the distribution of the estimator in large
enough finite samples. A possible disadvantage is that it may be less clear
whether the actual sample size is large enough to use the asymptotic proper-
ties as an approximation.

Consistency

In this section we discuss some asymptotic properties that are much used in
econometrics. Let y be a parameter of interest and let ŷyn be an estimator of y
that is based on a sample of n observations. We are interested in the proper-
ties of this estimator when n ! 1, under the assumption that the data are
generated by a process with parameter y0. The estimator is called consistent if
it converges in probability to y0 — that is, if for all d > 0 there holds

lim
n!1P[jŷyn � y0j < d] ¼ 1: (1:47)

In this case y0 is called the probability limit of ŷyn, written as plim(ŷyn) ¼ y0. If
y is a vector of parameters, an estimator ŷyn is called consistent if each
component of ŷyn is a consistent estimator of the corresponding component
of y. Consistency is illustrated graphically in Exhibit 1.13. The distribution
of the estimator becomes more and more concentrated around the correct
parameter value y0 if the sample size increases. A sufficient (but not neces-
sary) condition for consistency is that

n1

n2

n3

q0

Exhibit 1.13 Consistency

Distribution of a consistent estimator for three sample sizes, with n1 < n2 < n3. If the sample
size gets larger, then the distribution becomes more concentrated around the parameter y0
of the data generating process.
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lim
n!1E[ŷyn] ¼ y0 and lim

n!1 var(ŷyn) ¼ 0, (1:48)

that is, if the estimator is asymptotically unbiased and its variance tends to
zero (see Exercise 1.7).

Calculation rules for probability limits

Probability limits are easy to work with, as they have similar properties as
ordinary limits of functions. Suppose that yn and zn are two sequences of
random variables with probability limits plim(yn) ¼ c1 and plim(zn) ¼
c2 ( 6¼ 0), then there holds, for instance, that

plim (yn þ zn) ¼ c1 þ c2, plim (ynzn) ¼ c1c2, plim (yn=zn) ¼ c1=c2

(see Exercise 1.7). Note that for expectations there holds E[yþ z] ¼
E[y]þ E[z], but E[yz] ¼ E[y]E[z] holds only if y and z are uncorrelated,
and in general E[y=z] 6¼ E[y]=E[z] (even when y and z are independent). If
g is a continuous function that does not depend on n, then

plim (g(yn)) ¼ g(c1)

(see Exercise 1.7), so that, for instance, plim(y2n) ¼ c21. Again, for
expectations this does in general not hold true (unless g is linear)—
for instance, E[y2n] 6¼ (E[yn])

2 in general. This result implies that, if
ŷyn is a consistent estimator of y0, then g(ŷyn) is a consistent estimator of
g(y0).
Similar results hold true for vector or matrix sequences of random

variables. Let An be a sequence of p� q matrices of random variables
an(i, j); then we write plim (An) ¼ A if all the elements converge so
that plim (an(i, j)) ¼ a(i, j) for all i ¼ 1, � � � , p, j ¼ 1, � � � , q. For two matrix
sequences An and Bn with plim (An) ¼ A and plim (Bn) ¼ B there holds

plim (An þ Bn) ¼ Aþ B, plim (AnBn) ¼ AB, plim (A�1
n Bn) ¼ A�1B,

provided that the matrices have compatible dimensions and, for the last
equality, that the matrix A is invertible.

Law of large numbers

When the data consist of a random sample from a population, sample
moments provide consistent estimators of the population moments. The
reason is that the uncertainty in the individual observations cancels out in
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the limit by taking averages. That is, if yi � IID, i ¼ 1, � � � , n, with finite
population mean E[yi] ¼ m, then

plim
1

n

Xn
i¼1

yi

 !
¼ m: (1:49)

This is called the law of large numbers. To get the idea, assume for simplicity
that the population variance s2 is finite. Then the sample mean of n observa-
tions yn ¼ 1

n

Pn
i¼1 yi is a random variable with mean m and variance s2=n, and

(1.49) follows from (1.48). Similarly, if yi � IID, i ¼ 1, � � � , n, and the rth
population moment mr ¼ E[(yi � m)r] < 1, then

plim
1

n

Xn
i¼1

(yi � yn)
r

 !
¼ mr:

For instance, the sample variance converges in probability to the population
variance. Also the sample covariance between two variables converges in
probability to the population covariance, and so on.

Central limit theorem

A sequence of random variables yn with cumulative distribution functions Fn
is said to converge in distribution to a random variable y with distribution
function F if limn!1 Fn(v) ¼ F(v) at all points vwhere F is continuous. This is
written as

yn !d y

and F is also called the asymptotic distribution of yn. A central result in
statistics is that, under very general conditions, sample averages from arbi-
trary distributions are asymptotically normally distributed. Let
yi, i ¼ 1, � � � , n be independently and identically distributed random vari-
ables with mean m and finite variance s2. Then

zn ¼
ffiffiffi
n

p yn � m
s

!d z � N(0, 1) (1:50)

This is called the central limit theorem. This means that (after standard-
ization by subtracting the mean, dividing by the standard deviation, and
multiplying by the square root of the sample size) the sample mean of a
random sample from an arbitrary distribution has an asymptotic standard
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normal distribution. For large enough sample sizes, the finite sample distri-
bution of zn can be approximated by the standard normal distribution
N(0, 1). It follows that yn is approximately distributed as N

�
m, s2

n

�
, which

we write as

yn � N m,
s2

n

� �
:

Note that an exact distribution is denoted by � and an approximate distri-
bution by �.

Generalized central limit theorems

The above central limit theorem for the IID case can be generalized in
several directions. We mention three generalizations that are used later
in this book. When yi are independent random variables with common
mean m and different variances s2i for which the average variance
s2 ¼ limn!1 1

n

Pn
i¼1 s

2
i is finite, then

ffiffiffi
n

p 1

n

Xn
i¼1

yi � m

 !
!d N(0, s2):

When yi, i ¼ 1, � � � , n is a random sample from a p-dimensional distribution
with finite vector of means m and finite covariance matrix S, then

ffiffiffi
n

p 1

n

Xn
i¼1

yi � m

 !
!d N(0, S):

Now suppose that An is a sequence of p� p matrices of random variables
and that yn is a sequence of p� 1 vectors of random variables. When
plim(An) ¼ A where A is a given (non-random) matrix and yn !d N(0, S),
then

Anyn !d N(0, ASA0):

Asymptotic properties of maximum likelihood estimators

The law of large numbers shows that moment estimators are consistent in
case of random samples. However, maximum likelihood estimators are
consistent and (asymptotically) efficient. Suppose that the likelihood
function (1.39) is correctly specified, in the sense that the data are generated

1.3 Parameter estimation 51



by a distribution fy0 with y0 2 Q. Then, under certain regularity conditions,
maximum likelihood estimators are consistent, asymptotically efficient, and
asymptotically normally distributed. More in particular, under these condi-
tions there holds

ffiffiffi
n

p
(ŷyML � y0) !d N(0, I�1

0 ): (1:51)

Here ŷyML denotes the maximum likelihood estimator (based on n obser-
vations) and I0 is the asymptotic information matrix evaluated at y0 —
that is,

I0 ¼ lim
n!1

1

n
In

� �
,

where In is the information matrix for sample size n defined in (1.46).
Asymptotic efficiency means that

ffiffiffi
n

p
(ŷyML � y0) has, for n ! 1, the smallest

covariance matrix among all consistent estimators, in the following sense.
Let ŷy be a consistent estimator (based on n observations) and let
S ¼ limn!1 var(

ffiffiffi
n

p
(ŷy� y0)) and SML ¼ limn!1 var(

ffiffiffi
n

p
(ŷyML � y0)), then

S� SML is a positive semidefinite matrix. For finite samples we obtain
from (1.51) the approximation

ŷyML � N
�
y0, Î�1

n

�
,

where În is the information matrix (1.46) evaluated at ŷyML. The result in
(1.51) can be seen as a generalization of the central limit theorem.

Intuitive argument for the consistency of ûuML

Although a formal proof of consistency falls outside the scope of this book, it may
be of interest to provide some intuition for this result, without being precise about
the required regularity conditions. Suppose that yi, i ¼ 1, � � � , n are IID with
common probability density function fy0 . The ML estimator ŷyML is obtained by
maximizing the likelihood function L(y) ¼Qn

i¼1 fy(yi) or equivalently by maxi-
mizing the log-likelihood 1

n log (L(y)) ¼ 1
n

Pn
i¼1 log (fy(yi)). The first order condi-

tions for a maximum of this function can be expressed as

@

@y
1

n

Xn
i¼1

log (fy yi)ð Þ
 !

¼ 1

n

Xn
i¼1

@ log (fy(yi))

@y
¼ 1

n

Xn
i¼1

1

fy(yi)

@fy(yi)

@y
¼ 0:

T
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Under suitable regularity conditions, the law of large numbers applies to the IID
random variables 1

fy(yi)
@fy(yi)
@y , so that the first order conditions converge in probabil-

ity (for n ! 1) to

plim
1

n

Xn
i¼1

1

fy(yi)

@fy(yi)

@y

 !
¼ E0

1

fy(yi)

@fy(yi)

@y

� 	
,

where E0 means that the expectation should be evaluated according to the density
fy0 of the DGP. We will show below that the DGP parameter y0 solves the above
asymptotic first order condition for a maximum. Intuitively, the estimator ŷyML

(which solves the equations for finite n) will then converge to y0 (which solves the
equations asymptotically) in case n ! 1. This intuition is correct under suitable
regularity conditions. Then plim(ŷyML) ¼ y0, so that ŷyML is consistent.

To prove that y0 is a solution of the asymptotic first order conditions, note that
fy is a density function, so that

R
fy(yi)dyi ¼ 1. Using this result, and substituting

y ¼ y0 in the asymptotic first order conditions, we get

E0
1

fy0 (yi)

@fy(yi)

@y

� 	
¼
Z

1

fy0 (yi)

@fy(yi)

@y
fy0 (yi)dyi ¼

Z
@fy(yi)

@y
dyi

¼ @

@y

Z
fy(yi)dyi

� �
¼ @

@y
(1) ¼ 0:

This shows that y0 solves the asymptotic first order conditions.

Example 1.10: Simulated Normal Random Sample

To illustrate the consistency and asymptotic normality of maximum likeli-
hood, we consider the following simulation experiment. We generate a
sample of n observations (y1, � � � , yn) by independent drawings from the
standard normal distribution N(0, 1) and we compute the corresponding
maximum likelihood estimate ŝs2ML ¼ 1

n

Pn
i¼1 (yi � y)2. The results in Section

1.3.2 and Example 1.9 (for n ¼ 10) showed that ŝs2ML is a biased estimator of
s2 ¼ 1. For each of the sample sizes n ¼ 10, n ¼ 100, and n ¼ 1000, we
perform 10,000 simulation runs.
Exhibits 1.14 (a), (c), and (e) show three histograms of the resulting

10,000 estimates of ŝs2ML for the three sample sizes. As the histograms become
strongly concentrated around the value s2 ¼ 1 for large sample size
(n ¼ 1000), this illustrates the consistency of this estimator. Exhibit 1.4 (b,
d, and f ) show three histograms of the resulting 10,000 values offfiffiffi
n

p
(ŝs2ML � 1) for the three sample sizes. Whereas for n ¼ 10 the skewness

of the w2 distribution is still visible, for n ¼ 1000 the distribution is much
more symmetric and approaches a normal distribution. This illustrates the
asymptotic normality of the maximum likelihood estimator of s2.

E
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E Exercises: T: 1.7b–e, 1.8d, 1.10b–d, 1.12d.
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Exhibit 1.14 Simulated Normal Random Sample (Example 1.10)

Histograms of the maximum likelihood estimates ŝs2ML of the error variance (denoted by
SIGMA2HAT, shown in (a), (c), and (e)) and of a scaled version (defined by

ffiffiffi
n

p
(ŝs2ML � 1)

and denoted by SER, shown in (b), (d), and (f )) for random drawings of the standard
normal distribution, with sample size n ¼ 10 in ((a)–(b)), n ¼ 100 in ((c)–(d)), and n ¼ 1000
in ((e)–(f )).
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1.4 Tests of hypotheses

1.4.1 Size and power

E First used in Section 2.3.1.

Null hypothesis and alternative hypothesis

When observations are affected by random influences, the same holds true
for all inference that is based on these data. If one wishes to evaluate
hypotheses concerning the data generating process, one should take the
random nature of the data into account. For instance, consider the hypoth-
esis that the data are generated by a probability distribution with mean zero.
In general, the sample mean of the observed data will not be (exactly) equal
to zero, even if the hypothesis is correct. The question is whether the differ-
ence between the sample mean and the hypothetical population mean is due
only to randomness in the data. If this seems unlikely, then the hypothesis is
possibly not correct.
Now we introduce some terminology. A statistical hypothesis is an asser-

tion about the distribution of one or more random variables. If the functional
form of the distribution is known up to a parameter (or vector of parameters),
then the hypothesis is parametric; otherwise it is non-parametric. If the
hypothesis specifies the distribution completely, then it is called a simple
hypothesis; otherwise, a composite hypothesis. We restrict the attention to
parametric hypotheses where one assertion, called the null hypothesis and
denoted byH0, is tested against another one, called the alternative hypothesis
and denoted by H1. Let the specified set of distributions be given by
fy; y 2 Qf g; then H0 corresponds to the assertion that y 2 Q0 and H1 to the
assertion that y 2 Q1, where Q0 and Q1 are disjoint subsets of Q. For
instance, if y is the (unknown) population mean, then we can test the
hypothesis of zero mean against the alternative of non-zero mean. In this
case Q0 ¼ {0} and Q1 ¼ {y 2 Q; y 6¼ 0}.

Test statistic and critical region

Let y0 be the parameter (or vector of parameters) of the data generating
process. The observed data (y1, � � � , yn) are used to decide which of the two
hypotheses (H0 andH1) seems to be the most appropriate one. This decision
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is made by means of a test statistic t(y1, � � � , yn)— that is, an expression that
can be computed from the observed data. The possible outcomes of this
statistic are divided into two regions, the critical region (denoted by C) and
the complement of this region. The null hypothesis is rejected if t 2 C and it is
not rejected if t =2C. Note that we say thatH0 is not rejected, instead of saying
that H0 is accepted. For instance, to test the null hypothesis that the popula-
tion mean y ¼ 0 against the alternative that y 6¼ 0, the sample mean y
provides an intuitively appealing test statistic. The null hypothesis will be
rejected if y is ‘too far away’ from zero. For instance, one can choose a value
c > 0 and reject the null hypothesis if jyj > c. If the sample is such that
jyj � c, then the hypothesis is not rejected, but this does not mean that we
accept the null hypothesis as a factual truth.

Size and power

In general, to test a hypothesis one has to decide about the test statistic and
about the critical region. These should be selected in such a way that one can
discriminate well between the null and alternative hypotheses. The quality of
a test can be evaluated in terms of the probability p(y) ¼ P[t 2 C] to reject
the null hypothesis. We restrict the attention to similar tests—that is, test
statistics t(y1, � � � , yn) that are pivotal in the sense that the distribution under
the null hypothesis does not depend on any unknown parameters. This
means that, for every given critical region C, the rejection probability p(y)
can be calculated for y 2 Q0 and that (in case the set Q0 contains more than
one element) this probability is independent of the value of y 2 Q0. If the null
hypothesis is valid (so that the data generating process satisfies y0 2 Q0) but
the observed data lead to rejection of the null hypothesis (because t 2 C), this
is called an error of the first type. The probability of this error is called the
size or also the significance level of the test. For similar tests, the size can be
computed for every given critical region. On the other hand, if the null
hypothesis is false (as y =2Q0) but the observed data do not lead to rejection
of the null hypothesis (because t =2C), this is called an error of the second
type. The rejection probability p(y) for y =2Q0 is called the power of the test.
A test is called consistent if the power p(y) converges to 1 for all y =2Q0 if
n ! 1.

Tests with a given significance level

Of course, for practical applications one prefers tests that have small size and
large power in finite samples. A perfect test would be one where the probabil-
ity to make a mistake is zero— that is, with p(y) ¼ 0 for y 2 Q0 and p(y) ¼ 1
for y =2Q0. This is possible only if the parameter values can be inferred with
absolute certainty from the observed data, but then there is, of course, no need
for tests anymore. In practice one often fixes a maximally tolerated size— for
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instance, 5 per cent— to control for errors of the first type. It then remains to
choose a test statistic and a critical region with good power properties— that
is, with small probabilities of errors of the second type. In this bookwemostly
use intuitive arguments to construct econometric tests of a given size, and we
pay relatively little attention to their power properties. However, many of the
standard econometric tests can be shown to have reasonably good power
properties.
Note that the null and alternative hypotheses play different roles in testing,

because a small size is taken as a starting point. This means that an econo-
metrician should try to formulate tests in such a way that errors of the first
type are more serious than errors of the second type.

The meaning of significance

One should distinguish statistical significance from practical significance.
In empirical econometrics we analyse data that are the result of economic
processes that are often relatively involved. The purpose of an econometric
model is to capture the main aspects of interest of these processes. Tests can
help to find a model that is reasonable, given the information at hand.
Hereby the less relevant details are neglected on purpose. One should not
always blindly follow rules of thumb like significance levels of 5 per cent in
testing. For example, in large samples nearly every null hypothesis will be
rejected at the 5 per cent significance level. In many cases the relevant
question is not so much whether the null hypothesis is exactly correct, but
whether it is a reasonable approximation. This means, for instance, that
significance levels should in practice be taken as a decreasing function of
the sample size.

Example 1.11: Simulated Normal Random Sample (continued)

To illustrate the power of tests, we consider a simulation experiment
where the data yi, i ¼ 1, � � � , n are generated by independent drawings from
N(m, 1). We assume that the modeller knows that the data are generated by
an NID process with known variance s2 ¼ 1 but that the mean m is un-
known. We will test the null hypothesis H0 : m ¼ 0 against the alternative
H1 : m 6¼ 0. We will now discuss (i) two alternative test statistics (the mean
and the median), (ii) the choice of critical regions (for fixed significance
level), (iii) the set-up of the simulation experiment, and (iv) the outcomes
of this experiment.

(i) Two test statistics: mean and median

We will analyse the properties of two alternative estimators of m—namely,
the sample mean y and the sample median med(y). Both estimators can be
used to construct test statistics to test the null hypothesis.

E
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(ii) Choice of critical regions

As both statistics (sample mean and sample median) have a distribution that
is symmetric around the population mean, intuition suggests that we should
reject the null hypothesis if jyj > c1 (if we use the sample mean) or if
jmed(y)j > c2 (if we use the sample median). We fix the size of the tests at 5
per cent in all cases. The critical values c1 and c2 are determined by the
condition that P[� c1 � y � c1] ¼ P[� c2 � med(y) � c2] ¼ 0:95 when
m ¼ 0. We consider sample sizes of n ¼ 10,n ¼ 100, and n ¼ 1000, for
which c1 ¼ 1:96=

ffiffiffi
n

p
(because s is known to the modeller) and c2 is approxi-

mately 0.73, 0.24, and 0.08 respectively. The values of c2 are obtained from a
simulation experiment with 100,000 runs, where in each run the median of a
sample yi � N(0, 1), i ¼ 1, � � � , n is determined.

(iii) Simulation experiment

To investigate the power properties of the two test statistics, we consider as
data generating processes yi � N(m, 1) for a range of eleven values for m
between m ¼ �2 and m ¼ 2, including m ¼ 0 (see Exhibit 1.15 for the precise
values of m in the eleven experiments). This leads to in total thirty-three
simulation experiments (three sample sizes n ¼ 10, 100, or 1000, for each of
the eleven values of m). For each experiment we perform 10,000 simulation
runs and determine the frequency of rejection of the null hypothesis, both for
the sample mean and for the sample median.

Population
mean

n ¼ 10 n ¼ 100 n ¼ 1000

Mean Median Mean Median Mean Median

m ¼ �2 100.0 100.0 100.0 100.0 100.0 100.0
m ¼ �1 89.0 77.2 100.0 100.0 100.0 100.0
m ¼ �0:2 9.7 8.8 51.2 35.9 100.0 99.9
m ¼ �0:1 6.4 5.9 17.3 13.2 88.5 70.7
m ¼ �0:05 5.4 5.5 7.3 6.9 35.5 23.6
m ¼ 0 5.0 5.0 4.7 5.0 4.8 4.8
m ¼ 0:05 5.2 5.0 7.7 7.5 34.4 24.1
m ¼ 0:1 6.4 6.1 16.7 12.5 88.3 71.1
m ¼ 0:2 9.5 7.8 51.6 37.2 100.0 99.9
m ¼ 1 88.4 76.7 100.0 100.0 100.0 100.0
m ¼ 2 100.0 100.0 100.0 100.0 100.0 100.0

Exhibit 1.15 Simulated Normal Random Sample (Example 1.11)

Results of simulation experiments with random samples of different sizes and with different
means of the data generating process. The numbers in the table report the rejection percentages
(over 10,000 simulation runs) of the null hypothesis that m ¼ 0, using tests of size 5% based on
the sample mean and on the sample median.
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(iv) Outcomes of the simulation experiment

The results are in Exhibit 1.15. For m ¼ 0 this indicates that the size is indeed
around 5 per cent. For m 6¼ 0 the power of the tests increases for larger
samples, indicating that both tests are consistent. The sample mean has
higher power than the sample median. This means that, for the normal
distribution, the sample mean is to be preferred above the sample median
to perform tests on the population mean. Note that for n ¼ 1000 the null
hypothesis that m ¼ 0 is rejected nearly always (both by the mean and by the
median) if the data generating process has m ¼ 0:2. It depends on the par-
ticular investigation whether the distinction between m ¼ 0 and m ¼ 0:2 is
really of interest— that is, whether this difference is of practical significance.

1.4.2 Tests for mean and variance

E First used in Section 2.3.1.

Two-sided test for the mean

To illustrate the general principles discussed in Section 1.4.1, we consider
tests for the mean and variance of a population. It is assumed that the data
yi, i ¼ 1, � � � , n consist of a random sample from a normal distribution, so
that yi � NID(m, s2), i ¼ 1, � � � , n. Both the mean m and the variance s2 of the
population are unknown, so that y ¼ (m, s2). First we test a hypothesis about
the mean—for instance,

H0 : m ¼ m0, H1 : m 6¼ m0,

where m0 is a given value. This is called a two-sided test, as the alternative
contains values m > m0 as well as values m < m0. As test statistic we consider
the sample mean y and we reject the null hypothesis if jy� m0j > c. This
defines the critical region of the test, and c determines the size of the test.
According to (1.33), for m ¼ m0 we get

y� m0
s=

ffiffiffi
n

p � N(0, 1):

However, the expression on the left-hand side is not a statistic, as s2 is
unknown. If this is replaced by the unbiased estimator s2, we obtain,
according to (1.36),

t ¼ y� m0
s=

ffiffiffi
n

p � t(n� 1): (1:52)
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Because all the terms in this expression are known (m0 is given and y and s can
be computed from the data), this is a test statistic. It is also a similar test
statistic, as the statistic t is pivotal in the sense that the distribution does not
depend on the unknown variance s2. The test (1.52) is called the t-test for the
mean. The null hypothesis is rejected if jtj > c, where the value of c is chosen
in accordance with the desired size of the test. So the null hypothesis is
rejected if y falls in the critical region

y < m0 � c
sffiffiffi
n

p or y > m0 þ c
sffiffiffi
n

p : (1:53)

The size of this test is equal to P[jtj > c], where t follows the t(n� 1)
distribution. For size 5 per cent, the critical value for n ¼ 20 is around
2.09; for n ¼ 60 it is around 2.00, and for n ! 1 it converges to 1.96. As
a rule of thumb, one often takes c � 2. Note that s=

ffiffiffi
n

p
is the estimated

standard deviation of the sample mean; see (1.33), where s is replaced by s.
The estimated standard deviation s=

ffiffiffi
n

p
is called the standard error of the

sample mean. So the null hypothesis is rejected if the sample mean is more
than two standard errors away from the postulated mean m0. In this case one
says that the sample mean differs significantly from m0, or (when m0 ¼ 0) that
the sample mean is significant at the 5 per cent significance level.

One-sided test for the mean

In some cases it is of interest to test the null hypothesisH0 : m ¼ m0 against the
one-sided alternative H1 : m > m0. This is called a one-sided test. The test
statistic is again as given in (1.52), but now the null hypothesis is rejected if
t > c with size equal to P[t > c] where t � t(n� 1). The critical value for
n ¼ 20 is around 1.73 in this case; for n ¼ 60 it is around 1.67, and for
n ! 1 it approaches 1.645. This test can also be used for the null hypothesis
H0 : m � m0 against the alternative H1 : m > m0. Tests for H0 : m ¼ m0 or
H0 : m � m0 against H1 : m < m0 are performed in a similar fashion, where
H0 is rejected for small values of t.

Probability value (P-value)

In practice it may not be clear how to choose the size. In principle this depends
on the consequences of making errors of the first and second type, but such
errors are often difficult to determine. Instead of fixing the size— for instance,
at 5 per cent—one can also leave the size unspecified and compute the value
of the test statistic from the observed sample.One can then ask forwhich sizes
this test outcomewould lead to rejection of the null hypothesis. As larger sizes
correspond to larger rejection probabilities, there will be a minimal value of
the size for which the null hypothesis is rejected. This is called the probability
value or P-value of the test outcome. That is, the null hypothesis should be
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rejected for all sizes larger than P, and it should not be rejected for all sizes
smaller than P. Stated otherwise, the null hypothesis should be rejected for
small values of P and it should not be rejected for large values of P.

P-value for the mean

As an example, let t0 be the calculated value of the t-test for the null
hypothesis H0 : m ¼ m0 against the two-sided alternative H1 : m 6¼ m0; then
the P-value is given by P ¼ P[t < t0 or t > t0]. If this P-value is small, this
means that outcomes of the test statistic so far away from zero are improb-
able under the null hypothesis, so that the null hypothesis should be rejected.
Note that the P-value depends on the form of the (one-sided or two-sided)
alternative hypothesis. For instance, when H0 : m ¼ m0 is tested against
H1 : m > m0, then P ¼ P[t > t0]. This is illustrated graphically in Exhibit
1.16. In general, the P-value can be defined as the probability (under the
null hypothesis) of getting the observed outcome of the test statistic or a more
extreme outcome—that is, the P-value is the corresponding (one-sided or
two-sided) tail probability.

Chi-square test for the variance

Next we consider tests on the variance. Again it is assumed that the data
consist of a random sample yi � N(m, s2), i ¼ 1, � � � , n, with m and s2 un-
known. Let the null hypothesis be H0 : s2 ¼ s20 and the (one-sided) alterna-
tiveH1 : s2 > s20. If the null hypothesis holds true, then (yi � m)=s0 �N(0, 1)
are independent, so that

Xn
i¼1

(yi � m)2=s20 � w2(n):

0 0

(a) (b)

Exhibit 1.16 P-value

P-value of a one-sided test ((a), for the one-sided alternative that the parameter is larger
than zero) and of a two-sided test ((b), for the two-sided alternative that the parameter is
not zero, with equal areas in both tails). The arrow indicates the outcome of the test
statistic calculated from the observed sample. In (a) the P-value is equal to the surface of
the shaded area, and in (b) the P-value is equal to the sum of the surfaces of the two
shaded areas.
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However, this is not a test statistic, as m is unknown. When this parameter is
replaced by its estimate y, we obtain, according to (1.35),

1

s20

Xn
i¼1

(yi � y)2 ¼ (n� 1)s2

s20
� w2(n� 1): (1:54)

The null hypothesis is rejected for large values of this test statistic, with
critical value determined from the w2(n� 1) distribution. For other hypoth-
eses— for instance,H0 : s2 ¼ s20 againstH1 : s2 6¼ s20 — the same test statistic
can be used with appropriate modifications of the critical regions.

F-test for equality of two variances

Finallywe discuss a test to compare the variances of two populations. Suppose
that the data consist of two independent samples, one of n1 observations
distributed as NID(m1, s

2
1) and the other of n2 observations distributed as

NID(m2, s
2
2). Consider the null hypothesis H0 : s21 ¼ s22 of equal variances

against the alternative H1 : s21 6¼ s22 that the variances are different. Let s
2
1 be

the sample variance in the first sample and s22 that in the second sample. As the
two samples are assumed to be independent, the same holds true for s21 and s

2
2.

Further (1.35) implies that (ni � 1)s2i =s
2
i � w2(ni � 1) for i ¼ 1, 2, so that

(s22=s
2
2)=(s

2
1=s

2
1) � F(n2 � 1, n1 � 1). When the null hypothesis s21 ¼ s22 is

true, it follows that

s22
s21

� F(n2 � 1, n1 � 1) (1:55)

and the null hypothesis is rejected if this test statistic differs significantly
from 1. The critical values can be obtained from the F(n2 � 1, n1 � 1)
distribution. Note that this test statistic is similar, as its distribution does
not depend on the unknown parameters m1 and m2.

The testing problem H0 : m1 ¼ m2 against the alternative H1 : m1 6¼ m2 is
more complicated and will be discussed later (see Exercise 3.10).

Example 1.12: Student Learning (continued)

We illustrate tests for the mean and variance by considering the random
variable consisting of the FGPA score of students at the Vanderbilt University
(see Example 1.1). We will discuss (i) a test for the mean and (ii) a test for the
equality of two variances.

(i) Test for the mean

Suppose that the mean value of this score over a sequence of previous years is
equal to 2.70 (this is a hypothetical, non-random value). Further suppose

E

XM101STU
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that the individual FGPA scores of students in the current year are independ-
ently and normally distributed with unknownmean m and unknown variance
s2. The university wishes to test the null hypothesisH0 : m ¼ 2:70 of average
scores against the alternative hypothesis H1 : m > 2:70 that the scores in the
current year are above average.
The FGPA scores in the current year of 609 students of this university are

summarized in Exhibit 1.4 (a). The sample mean and standard deviation
are y ¼ 2:793 and s ¼ 0:460 (after rounding; see Exhibit 1.4 (a) for the
more precise numbers). So the sample average is above 2.70. The question
is whether this should be attributed to random fluctuations in student
scores or whether the student scores are above average in the current year.
Under the null hypothesis that m ¼ 2:70, it follows from (1.52) that
(y� 2:70)=(s=

ffiffiffiffiffiffiffiffi
609

p
) � t(608). The one-sided critical value for size 5 per

cent is (approximately) 1.645. If we substitute the values of y and s as
calculated from the sample, this gives the value t ¼ 4:97. As this outcome
is well above 1.645, this leads to rejection of the null hypothesis. The P-value
of this test outcome is around 10�6. It seems that the current students
have better scores on average than the students in previous years.

(ii) Test for equality of two variances

Next we split the sample into two parts, males and females, and we assume
that all scores are independently distributed with distribution N(m1, s

2
1) for

males and N(m2, s
2
2) for females. The sample means and standard deviations

for both sub-samples are in Exhibit 1.6— that is, n1 ¼ 373 and n2 ¼ 236, the
sample means are y1 ¼ 2:728 and y2 ¼ 2:895, and the sample standard
deviations are s1 ¼ 0:441 and s2 ¼ 0:472. We test whether s21 ¼ s22 against
the alternative that s21 6¼ s22 by means of (1.55). The outcome is
F ¼ s22=s

2
1 ¼ (0:472)2=(0:441)2 ¼ 1:14, and for the corresponding F(235,

372) distribution this gives a (two-sided) P-value of around 0.26. The null
hypothesis of equal variances is not rejected (at 5 per cent significance level).
That is, there is no significant difference in the variance of the scores for male
and female students.

E Exercises: E: 1.12a–c, e.

1.4.3 Interval estimates and the bootstrap

E First used in Section 2.3.1.

Interval estimates

Although a point estimate may suggest a high precision, this neglects the
random nature of estimators. Because estimates depend on data that are
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partly random, it is sometimes preferred to give an interval estimate of
the parameter instead of a point estimate. This interval indicates the uncer-
tainty about the actual value of the parameter. When the interval is con-
structed in such a way that it contains the true parameter value with
probability 1� a, then it is called a (1� a)� 100 per cent interval
estimate. One method to construct such an interval is to use a test of size a
and to include all parameter values y� for which the null hypothesis
H0 : y ¼ y� is not rejected. Indeed, if the true parameter value is y0, then for
a test of size a the probability thatH0 : y ¼ y0 is rejected is precisely a, so that
the probability that the constructed interval contains y0 is 1� a. For
example, assuming that the observations are NID(m, s2), a 95 per cent
interval estimate for the mean is given by all values m for which

y� c
sffiffiffi
n

p � m � yþ c
sffiffiffi
n

p , (1:56)

where c is such that P[� c � t � c] ¼ 0:95 when t has the t(n� 1) distribu-
tion. If m0 is the true population mean, the complementary set of outcomes in
(1.53) has a probability of 5 per cent, so that the interval in (1.56) has a
probability of 95 per cent to contain m0. In a similar way, using (1.54), a 95
per cent interval estimate for the variance s2 is given by

(n� 1)s2

c2
� s2 � (n� 1)s2

c1
,

where c1 < c2 are chosen such that P[c1 � t � c2] ¼ 0:95 when t has the
w2(n� 1) distribution. For instance, one can take these values so that
P[t � c1] ¼ P[t � c2] ¼ 0:025.

Approximate tests and approximate interval estimators

Until now the attention has been restricted to data consisting of random
samples from the normal distribution. In this case, tests can be constructed
for the mean and variance that have a known distribution in finite samples. In
other cases, the distribution of the estimator ŷy in finite samples is not known.
When the asymptotic distribution is known, this can be used to construct
asymptotic tests and corresponding interval estimates. For instance, if a
maximum likelihood estimator ŷyn is asymptotically normally distributed

ffiffiffi
n

p
(ŷyn � y0) !d N(0, s2Þ,

then in finite samples we can take as an approximation ŷyn � N(y0, ŝs2=n),
where ŝs2 is a consistent estimator of s2. This means that
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ŷyn � y0
ŝs=

ffiffiffi
n

p � N(0, 1):

This is very similar to (1.52). For instance, let H0 : y ¼ y0 and H1 : y 6¼ y0;
then the null hypothesis is rejected if

ŷy < y0 � c
ŝsffiffiffi
n

p or ŷy > y0 þ c
ŝsffiffiffi
n

p ,

where P[jtj > c] with t � N(0, 1) is the approximate size of the test. For a 5
per cent size there holds c � 2. An approximate 95 per cent interval estimate
of y is given by all values in the interval

ŷy� 2
ŝsffiffiffi
n

p � y � ŷyþ 2
ŝsffiffiffi
n

p :

Bootstrap method

An alternative to asymptotic approximations is to use the bootstrapmethod.
This method has the attractive property that it does not require knowledge of
the shape of the probability distribution of the data or of the estimator. It
is, therefore, said to be distribution free. The bootstrap method uses the
sample distribution to construct an interval estimate. We discuss this for
the case of random samples. If the observations all have different values (that
is, yi 6¼ yj for i 6¼ j, i, j ¼ 1, � � � , n), then the bootstrap probability distribu-
tion of the random variable y is the discrete distribution with outcome set
V ¼ y1, � � � , ynf g and with probabilities

P[y ¼ yi] ¼ 1

n
: (1:57)

The distribution of a statistic t(y1, � � � , yn) is simulated as follows. In
one simulation run, n observations are randomly drawn (with replacement)
from the distribution (1.57) and the corresponding value of t is calculated.
Repeating this in a large number of runs (always with the same distribution
(1.57), which is based on the original data), this provides an accurate
approximation of the distribution of t if (1.57) would be the data generating
process. In reality it will, of course, be only an approximation of the data
generating process. However, the bootstrap is a simple method to get an idea
of possible random variations when there is little information about the
probability distribution that generates the data.
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Example 1.13: Student Learning (continued)

We will construct two interval estimates of the mean of the FGPA scores—
namely, (i) based on the assumed normal distribution of FGPA scores, and (ii)
obtained by the bootstrap method.

(i) Interval based on normal distribution

We construct interval estimates of the mean of FGPA, both for the combined
population (denoted by m) and for males (m1) and females (m2) separately. If
we assume that the scores are in all three cases normally distributed, the
interval estimates can be computed from (1.56). The resulting 95 per cent
interval estimates are

2:76 � m � 2:83, 2:68 � m1 � 2:77, 2:83 � m2 � 2:96:

Note that the interval estimate of m1 is below that of m2, which suggests that
the two means differ significantly. If we do not assume that the individual
scores are normally distributed but apply the asymptotic normal approxima-
tion for the sample means, then the corresponding asymptotic interval esti-
mates for the mean are the same as before.

(ii) Interval obtained by the bootstrap method

Although the sample sizes are relatively large in all three cases, we will
consider the bootstrap as an alternative to construct an interval estimate
for m2 (as the corresponding sample size n2 ¼ 236 is the smallest of the three
cases). For this purpose, the bootstrap distribution (1.57) consists of the 236
FGPA scores of female students. We perform 10,000 simulation runs. In each

E

XM101STU

Series: MEANFGPA
Sample 1 10000
Observations 10000

Mean  2.894837
Median  2.895028
Maximum  3.022415
Minimum 
Std. Dev.  0.030819
Skewness  0.000991
Kurtosis

 2.769504

3.0078790

200

400

600

800

1000

1200

1400

2.80 2.85 2.90 2.95 3.00

(a)

(b)
Lower value 95% bootstrap interval     2.8338220
Upper value 95% bootstrap interval     2.9551695

Exhibit 1.17 Student Learning (Example 1.13)

Bootstrap distribution (a) of the sample mean obtained by 10,000 simulation runs (each of
sample size 236) from the bootstrap distribution of the FGPA scores of female students, and
95% bootstrap interval estimate for the population mean m2 (b).
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run, 236 IID observations are drawn from the bootstrap distribution and the
corresponding sample mean is calculated. This gives a set of 10,000 simu-
lated values of the sample mean, with histogram given in Exhibit 1.17 (a).
Deleting the 250 smallest and the 250 largest values of the sample mean, we
obtain the 95 per cent bootstrap interval estimate 2:83 � m2 � 2:96 (see
Exhibit 1.17 (b)). This interval coincides (within this precision) with the
earlier interval that was based on the normal distribution, but this is a
coincidence, as in general the two intervals will be different. Here the
outcomes are very close, because the sample size (n ¼ 236) is large enough
to use the normal distribution of the sample mean as a reasonable approxi-
mation.

E Exercises: S: 1.14, 1.15c–g; E: 1.13c, e, g.
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Summary, further reading,
and keywords

SUMMARY

This chapter gives a concise review of the main statistical concepts and
methods that are used in the rest of this book. We discussed methods to
describe observed data by means of graphs and sample statistics. Random
variables provide a means to describe the random nature of economic
data. The normal distribution and distributions related to the normal distri-
bution play a central role. We considered different methods to estimate the
parameters of distributions from observed data and we discussed statistical
properties such as unbiasedness, efficiency, consistency, and asymptotic dis-
tributions of estimators. Further we discussed hypothesis testing and related
concepts such as size, power, significance, and P-values.
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Exercises

THEORY QUESTIONS

1.1 (E Section 1.1.2)
Suppose that n pairs of outcomes (xi, yi) of the
variables x and y have been observed.

a. Prove that the sample correlation coefficient be-
tween the variables x and y always lies between
�1 and þ1. It may be helpful to consider the
function S(b) ¼Pn

i¼1 (yi � y� b(xi � x))2 and
to use the fact that the minimal value of this
function is non-negative.

b. Prove that the sample correlation coefficient
is invariant under the linear transformation
x�i ¼ a1xi þ b1 and y�i ¼ a2yi þ b2 for all
i ¼ 1, � � � , n, with a1 > 0 and a2 > 0 positive
constants.

c. Show, by means of an example, that the sample
correlation coefficient is in general not invariant
under non-linear transformations.

d
�. Prove that the sample correlation coefficient is

equal to1or�1 if andonly if y is a linear function
of x—that is, yi ¼ aþ bxi, i ¼ 1, � � � , n, for
some numbers a and b that do not depend on i.

1.2 (E Section 1.2.2)
a�. Prove the results in (1.15) and (1.16).

b. Suppose that x and y are independent random
variables. Prove that the conditional distribu-
tion of yjx ¼ v then does not depend on the
value of v and that therefore the conditional
mean and variance of yjx ¼ v also do not
depend on v.

c. Prove that independent variables are uncorrel-
ated.

d. Give an example of two random variables that
are uncorrelated but not independent.

1.3 (E Sections 1.2.1, 1.2.2)
a. Prove the result in (1.10) for the case of a linear

transformation z ¼ ayþ b with a 6¼ 0.

b. Prove the two results in (1.18).

c. Suppose that y1 and y2 are independent random
variables and that z1 ¼ g1(y1) and z2 ¼ g2(y2).
Use the results in (1.10) and (1.19) to prove that
z1 and z2 are independent.

d. Show, by means of an example, that the result in
c does not generally hold true when ‘independ-
ent’ is replaced by ‘uncorrelated’.

1.4 (E Section 1.2.3)
a. Show that the mean and variance of the Ber-

noulli distribution are equal to p and p(1� p)
respectively.

b. Show that the mean and variance of the bino-
mial distribution are equal to np and np(1� p)
respectively.

c. Show the result in (1.23) for the case that A
is an n� n non-singular matrix, by using the
generalization of the result in (1.19) to the case
of n functions.

d. Show that, when two jointly normally distrib-
uted random variables are uncorrelated, they
are also independent.

e�. Show that the first four moments of the
normal distribution N(m, s2) are equal to
m1 ¼ m, m2 ¼ s2, m3 ¼ 0, and m4 ¼ 3s4. Show
that the skewness and kurtosis are equal to
zero and three respectively.

f. Let y � N(m, s2) and let z ¼ ayþ b with a 6¼ 0;
then prove that z � N(amþ b, a2s2).

g�. Show the result in (1.22).

1.5 (E Sections 1.2.3, 1.2.4)
Let y � N(0, I) be an n� 1 vector of independent
standard normal random variables and let z0 ¼ Ay,
z1 ¼ y0Q1y and z2 ¼ y0Q2y with A a given m� n
matrix and with Q1 and Q2 given symmetric idem-
potent n� n matrices.
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a. If the rank of Q1 is equal to r, then Q1 ¼ UU0

for an n� r matrix U with the property that
U0U ¼ I (the r� r identity matrix). Use this
result to prove that y0Q1y � w2(r).

b. Show that the mean and variance of the w2(r)
distribution are r and 2r respectively.

c. Prove the results in (1.29) and (1.30), using the
fact that jointly normally distributed random
variables are independent if and only if they
are uncorrelated.

d. Let yr � t(r); then show that for r ! 1 the
random variables yr converge in distribution to
the standard normal distribution.

e. Let yr � F(r1, r) with r1 fixed; then show that for
r ! 1 the random variables r1 � yr converge in
distribution to the w2(r1) distribution.

f. Show that the matrix M in (1.34) is symmetric
and idempotent and that it has rank (n� 1).

1.6 (E Sections 1.3.1, 1.3.2)
Let yi � NID(m, s2), i ¼ 1, � � � , n. In Example 1.8
the log-likelihood function (1.40) was analysed in
terms of the parameters y ¼ (m, s2), but now we
consider as an alternative the parameters c ¼ (m, s).

a. Determine gradient and Hessian matrix of the
log-likelihood function log (L(c) ).

b. Check that the maximum likelihood estimates
are invariant under this change of parameters.
In particular, show that the estimated value of s
is the square root of the estimated value of s2 in
Example 1.8.

c. Check the equality in (1.46) for the log-likeli-
hood function log (L(c) ).

1.7 (E Sections 1.3.2, 1.3.3)
a. Prove the equality in (1.45) for arbitrary distri-

butions.

b. Prove the inequality of Chebyshev, which states
that for a random variable y with mean m and
variance s2 there holds P[jy� mj � cs] � 1=c2

for every c > 0.

c. Use the inequality of Chebyshev to prove that
the two conditions in (1.48) imply consistency.

d. Use this result to prove that the maximum likeli-
hood estimators m̂mML and ŝs2ML in Example 1.8
are consistent.

e�. Prove the four rules for probability limits that
are stated in the text below formula (1.48)— that

is, for the sum, the product, the quotient, and
arbitrary continuous functions of sequences of
random variables.

1.8 (E Sections 1.3.2, 1.3.3)
Let y1, � � � , yn be a random sample from a Bernoulli
distribution.

a. Derive the maximum likelihood estimator of the
parameter p ¼ P[yi ¼ 1]. Investigate whether
this estimator is unbiased and consistent.

b. Derive the Cramér–Rao lower bound.

c. Investigate whether the estimator in a is efficient
in the class of unbiased estimators.

d. Suppose that the odds ratio P[y ¼ 1]=P[y ¼ 0] is
estimated by p̂p=(1� p̂p) with p̂p the estimator in a.
Investigate whether this estimator of the odds
ratio is unbiased and consistent.

1.9 (E Sections 1.3.1, 1.3.2)
Let yi � IID(m, s2), i ¼ 1, � � � , n, and consider
linear estimators of the mean m of the form
m̂m ¼Pn

i¼1 aiyi.

a. Derive the restriction on ai needed to guarantee
that the estimator m̂m is unbiased.

b. Derive the expression for the variance of the
estimator m̂m.

c. Derive the linear unbiased estimator that has the
minimal variance in this class of estimators.

d. Suppose that the distribution of each observation
is given by the double exponential density
f (v) ¼ 1

2 e
�jv�mj with �1 < v < 1. Show that in

this case the maximum likelihood estimator of m
is the median.

e. Discuss whether the estimator of cwill be asymp-
totically efficient in the class of all unbiased esti-
mators if the data are generated by the double
exponential density.

1.10 (E Sections 1.3.1, 1.3.2, 1.3.3)
Let y1, � � � , yn be a random sample from a popula-
tion with density function fy(v) ¼ ey�v for v � y and
f (v) ¼ 0 for v < y, where y is an unknown param-
eter.

a. Determine the method of moments estimator of
y, based on the first moment. Determine the
mean and variance of this estimator.

b. Prove that this estimator is consistent.
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c. Prove that the maximum likelihood estimator of
y is given by the minimum value of y1, � � � , yn.
Give explicit proofs that this estimator is biased
but consistent.

d. Discuss which of the two estimators in a and c
you would prefer. Consider in particular the two
extreme cases of a single observation (n ¼ 1) and
the asymptotic case (for n ! 1).

EMPIRICAL AND SIMULATION QUESTIONS

1.11 (E Sections 1.1.1, 1.1.2, 1.2.2)
In this exercise we consider data of ten
randomly drawn students (the observa-
tion index i indicates the position of the
students in the file of all 609 students of Example
1.1). The values of FGPA, SATM, and FEM of these
students are as follows.

i FGPA SATM FEM

8 3.168 6.2 0
381 3.482 5.4 0
186 2.592 5.7 1
325 2.566 6.0 0
290 2.692 5.9 1
138 1.805 5.4 1
178 2.264 6.2 1
108 3.225 6.0 1
71 2.074 5.3 0

594 3.020 6.2 1

a. Compute for each of the three variables the
sample mean, median, standard deviation, skew-
ness, and kurtosis.

b. Compute the sample covariances and sample cor-
relationcoefficientsbetween these threevariables.

c. Make three histograms and three scatter plots for
these three variables.

d. Relate the outcomes in a and b with the results
in c.

e. Compute the conditional means of FGPA and
SATM for the four male students and also for
the six female students. Check the relation (1.15)
(applied to the ‘population’ of the ten students
considered here) for the two variables FGPA and
SATM.

1.12 (E Sections 1.3.3, 1.4.2)
Consider the data set of ten observations
used in Exercise 1.11. The FGPA scores
are assumed to be independently nor-

mally distributed with mean m and variance s2,
and the gender variable FEM is assumed to
be independently Bernoulli distributed with param-
eter p ¼ P[FEM ¼ 1]. These ten students are actu-
ally drawn from a larger data set consisting of 236
female and 373 male students where the FGPA
scores have mean 2.79 and standard deviation 0.46.

a. On the basis of the ten observations, test the null
hypothesis that the mean is m ¼ 2:79 against the
alternative that m < 2:79. Use a statistical pack-
age to compute the corresponding (one-sided)
P-value of this test outcome.

b. Repeat a, but now for the two-sided alternative
that m 6¼ 2:79. What is the relation between the
P-values of the one-sided and the two-sided tests?

c. Answer the questions in a and b for testing the
null hypothesis s ¼ 0:46 against the one-sided
alternative s > 0:46.

d. Let p̂p denote the random variable consisting of
the fraction of successes in a random sample of
size n from the Bernoulli distribution. Use the
central limit theorem to argue that the approxi-
mate distribution of p̂p is p̂p � N p, 1

n p(1� p)
� �

.

e. In the sample there are six female and four male
students. Test the null hypothesis that
p ¼ 236=609 against the alternative that
p 6¼ 236=609, based on the asymptotic approxi-
mation in d.

1.13 (E Sections 1.1.1, 1.1.2, 1.2.3,
1.4.3)

In this exercise we consider data of 474
employees (working in the banking
sector) on the variables y (the yearly salary in dollars)
and x (the number of finished years of education).

a. Make histograms of the variables x and y and
make a scatter plot of y against x.

b. Compute mean, median, and standard deviation
of the variables x and y and compute the correl-
ation between x and y. Check that the distribu-
tion of the salaries y is very skewed and has
excess kurtosis.
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c. Compute a 95% interval estimate of the mean of
the variable y, assuming that the salaries are
NID(m, s2).

d. Define the random variable z ¼ log (y). Make
a histogram of the resulting 474 values of z
and compute the mean, median, standard devi-
ation, skewness and kurtosis of z. Check that
z 6¼ log (y) but that med(z) ¼ log (med(y)).
Explain this last result.

e. Compute a 95% interval estimate of the mean of
the variable z, assuming that the observations on
z are NID(mz, s

2
z ).

f. If z � N(mz, s
2
z ), then y ¼ ez is said to be log-

normally distributed. Show that the mean of y
is given by m ¼ emzþ

1
2s

2
z.

g. Compute a 95% interval estimate of m, based on
the results in d, e, and f. Compare this interval
with that obtained in c. Which interval do you
prefer?

1.14 (E Section 1.4.3)
In this simulation exercise we consider the quality of
the asymptotic interval estimates discussed in
Section 1.4.3. As data generating process we con-
sider the t(3) distribution that has mean equal to
zero and variance equal to three. We focus on the
construction of interval estimates of the mean and
on corresponding tests.

a. Generate a sample of n ¼ 10 independent draw-
ings from the t(3) distribution. Let y be the
sample mean and s the sample standard devi-
ation. Compute the interval y	 2s=

ffiffiffi
n

p
. Reject

the null hypothesis of zero mean if and only if
this interval does not include zero.

b. Repeat the simulation run of a 10,000 times and
compute the number of times that the null hy-
pothesis of zero mean is rejected.

c. Repeat the simulation experiment of a and b for
sample sizes n ¼ 100 and n ¼ 1000 instead of
n ¼ 10.

d. Give an explanation for the simulated rejection
frequencies of the null hypothesis for sample
sizes n ¼ 10, n ¼ 100, and n ¼ 1000.

1.15 (E Sections 1.2.3, 1.2.4, 1.4.3)
In this simulation exercise we consider an example
of the use of the bootstrap in constructing an inter-

val estimate of the median. If the median is taken as
a measure of location of a distribution f , this can be
estimated by the sample median. For a random
sample of size n, the sample median has a standard
deviation of (2f (m)

ffiffiffi
n

p
)�1 where m is the median of

the density f. When the distribution f is unknown,
this expression cannot be used to construct an inter-
val estimate.

a. Show that for random samples from the normal
distribution the standard deviation of the sample
median is s

ffiffiffi
p

p
=
ffiffiffiffiffiffi
2n

p
whereas the standard devi-

ation of the sample mean is s=
ffiffiffi
n

p
. Comment on

these results.

b. Show that for random samples from the Cauchy
distribution (that is, the t(1) distribution) the
standard deviation of the sample mean does not
exist, but that the standard deviation of the
sample median is finite and equal to p=(2

ffiffiffi
n

p
).

c. Simulate a data set of n ¼ 1000 observations
y1, � � � , y1000 by independent drawings from the
t(1) distribution.

d. Use the bootstrap method (based on the data
of c) to construct a 95% interval estimate of
the median, as follows. Generate a new set
of 1000 observations by IID drawings from
the bootstrap distribution and compute the
median. Repeat this 10,000 times. The 95%
interval estimate of the median can be obtained
by ordering the 10,000 computed sample
medians. The lower bound is then the 251st
value and the upper bound is the 9750th value
in this ordered sequence of sample medians (this
interval contains 9500 of the 10,000 medians—
that is, 95%).

e. Compute the standard deviation of the median
over the 10,000 simulations in d, and compare
this with the theoretical standard deviation in b.

f. Repeat c 10,000 times. Construct a correspond-
ing 95% interval estimate of the median and
compare this with the result in d. Also compute
the standard deviation of the median over these
10,000 simulations and compare this with the
result in b.

g. Comment on the differences between the
methods in d and f and their usefulness in prac-
tice if we do not know the true data generating
process.
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2

Simple Regression

Econometrics is concerned with relations between economic variables. The
simplest case is a linear relation between two variables. This relation can be
estimated by the method of least squares. We discuss this method and we
describe conditions under which this method performs well. We also describe
tests for the statistical significance of models and their use in making predic-
tions.



2.1 Least squares

2.1.1 Scatter diagrams

E Uses Sections 1.1.1, 1.1.2; Appendix A.1.

Data

Data form the basic ingredient for every applied econometric study. There-
fore we start by introducing three data sets, one taken from the financial
world, the second one from the field of labour economics, and the third one
from a marketing experiment. These examples are helpful to understand the
methods that we will discuss in this chapter.

Example 2.1: Stock Market Returns

Exhibit 2.1 shows two histograms (in (a) and (b)) and a scatter plot (in (c)) of
monthly excess returns in the UK over the period January 1980 to December
1999. The data are taken from the data bank DataStream. One variable,
which we denote by yi, corresponds to the excess returns on an index of
stocks in the sector of cyclical consumer goods. This index is composed on
the basis of 104 firms in the areas of household durables, automobiles,
textiles, and sports. The consumption of these goods is relatively sensitive
to economic fluctuations, for which reason they are said to be cyclical. The
other variable, which we denote by xi, corresponds to the excess returns on
an overall stock market index. The index i denotes the observation number
and runs from i ¼ 1 (for 1980.01) to i ¼ 240 (for 1999.12). The excess
returns are obtained by subtracting the return on a riskless asset from the
asset returns. Here we used the one-month interest rate as riskless asset. In
Exhibit 2.1, xi is denoted by RENDMARK and yi by RENDCYCO (see
Appendix B for an explanation of the data sets and corresponding notation
of variables used in the book).

The histograms indicate that the excess returns in the sector of cyclical
consumer goods are on average lower than those in the total market and
that they show a relatively larger variation over time. The extremely large
negative returns (of around �36 per cent and �28 per cent) correspond
to the stock market crash in October 1987. The scatter diagram shows
that the two variables are positively related, since the top right and

E
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bottom left of the diagram contain relatively many observations. However,
the relationship is not completely linear. If we were to draw a straight
line through the scatter of points, then there would be clear deviations
from the line.
The further analysis of these data is left as an exercise (see Exercises 2.11,

2.12, and 2.15).

Example 2.2: Bank Wages

Exhibit 2.2 shows two histograms (in (a) and (b)) and a scatter diagram (in
(c)) of 474 observations on education (in terms of finished years of education)
and salary (in (natural) logarithms of the yearly salary S in dollars). The
salaries are measured in logarithms for reasons to be discussed later (see
Example 2.6). The data are taken from one of the standard data files of the
statistical software package SPSS and concern the employees of a US bank.
Each point in the scatter diagram corresponds to the education and salary of
an employee. On average, salaries are higher for higher educated people.
However, for a fixed level of education there remains much variation in
salaries. This can be seen in the scatter diagram (c), as for a fixed value of

−30 −20 −10 0
0

10

20

30

40

10 20

Series: RENDCYCO
Sample 1980:01 1999:12
Observations 240

Mean 0.499826
Median 0.309320
Maximum 22.20496
Minimum −35.56618
Std. Dev. 7.849594
Skewness −0.230900
Kurtosis 4.531597

(a)

−30 −20
0

20

40

60

80

−10 0 10

Series: RENDMARK 
Sample 1980:01 1999:12
Observations 240

Mean 0.808884
Median 1.204026
Maximum 13.46098
Minimum −27.86969
Std. Dev. 4.755913
Skewness −1.157801
Kurtosis 8.374932

(b)

−40

−30

−20

−10

0

10

20

30

−40 −30 −20 −10 0 10 20 30

RENDMARK

R
E

N
D

C
Y

C
O

(c)

Exhibit 2.1 Stock Market Returns (Example 2.1)

Histograms of monthly returns in the sector of cyclical consumer goods (a) and monthly total
market returns (b) in the UK, and corresponding scatter diagram (c).

E

XM202BWA

2.1 Least squares 77



education (on the horizontal axis) there remains variation in salaries (on the
vertical axis).
In the sequel we will take this as the leading example to illustrate the

theory of this chapter.

Example 2.3: Coffee Sales

Exhibit 2.3 shows a scatter diagramwith twelve observations (xi, yi) on price
and quantity sold of a brand of coffee. The data are taken from A. C.
Bemmaor and D. Mouchoux, ‘Measuring the Short-Term Effect of In-Store
Promotion and Retail Advertising on Brand Sales: A Factorial Experiment’,
Journal of Marketing Research, 28 (1991), 202–14, and were obtained from
a controlled marketing experiment in stores in Paris. The price is indexed,
with value one for the usual price. Two price actions are investigated, with
reductions of 5 per cent or 15 per cent of the usual price. The quantity sold is
in units of coffee per week. Clearly, lower prices result in higher sales.
Further, for a fixed price (on the horizontal axis) there remains variation in
sales (different values on the vertical axis).

The further analysis of these data is left as an exercise (see Exercise 2.10).
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Exhibit 2.2 Bank Wages (Example 2.2)

Histograms of education (in years (a)) and salary (in logarithms (b)) of 474 bank employees,
and corresponding scatter diagram (c).
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2.1.2 Least squares

E Uses Appendix A.1, A.7.

Fitting a line to a scatter of data

Our starting point is a set of points in a scatter diagram corresponding to n
paired observations (xi, yi), i ¼ 1, � � � , n, and we want to find the line that
gives the best fit to these points. We describe the line by the formula

y ¼ aþ bx: (2:1)

Here b is called the slope of the line and a the intercept. The idea is to explain
the differences in the outcomes of the variable y in terms of differences in the
corresponding values of the variable x. To evaluate the fit, we assume that
our purpose is to explain or predict the value of y that is associated with a
given value of x. In the three examples in Section 2.1.1, this means that the
monthly variation in sector returns is explained by the market returns, that
differences in salaries are explained by education, and that variations in sales
are explained by prices.

Terminology

The variable y in (2.1) is called the variable to be explained (or also
the dependent variable or the endogenous variable) and the variable x is
called the explanatory variable (or also the independent variable, the exogen-
ous variable, the regressor, or the covariate). We measure the deviations ei of
the observations from the line vertically— that is,
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Exhibit 2.3 Coffee Sales (Example 2.3)

Scatter diagram of quantity sold against price index of a brand of coffee (the data set consists of
twelve observations; in the top left part of the diagram two observations nearly coincide).
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ei ¼ yi � a� bxi: (2:2)

So ei is the error that we make in predicting yi by means of the variable xi
using the linear relation (2.1) (see Exhibit 2.4).

The least squares criterion

Now we have to make precise what we mean by the fit of a line. We will do
this by specifying a criterion function— that is, a function of a and b that
takes smaller values if the deviations are smaller. In many situations we
dislike positive deviations as much as negative deviations, in which case the
criterion function depends on a and b via the absolute values of the devi-
ations ei. There are several ways to specify such a function— for instance,

Sabs(a, b) ¼
X

eij j,
S(a, b) ¼

X
e2i :

In both cases the summation index runs from 1 through n (where no
misunderstanding can arise we simply write

P
). The second of

these functions, the least squares criterion that measures the sum of squared
deviations, is by far the most frequently used. The reason is that its minimiza-
tion is much more convenient than that of other functions. This method is
also called ordinary least squares (abbreviated as OLS). However, we will
meet other criterion functions in later chapters. In this chapter we restrict our
attention to the minimization of S(a, b).

Computation of the least squares estimates a and b

By substituting (2.2) in the least squares criterion we obtain

a+bx

ei{

xi

yi

a+bxi

Exhibit 2.4 Scatter diagram with fitted line

Scatter diagram with observed data (xi, yi), regression line (aþ bx), fitted value (aþ bxi), and
residual (ei).
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S(a, b) ¼
X

(yi � a� bxi)
2: (2:3)

Here the n observations (xi, yi) are given, and we minimize the function
S(a, b) with respect to a and b. The first order conditions for a minimum are
given by

@S

@a
¼ �2

X
(yi � a� bxi) ¼ 0, (2:4)

@S

@b
¼ �2

X
xi(yi � a� bxi) ¼ 0: (2:5)

From the condition in (2.4) we obtain, after dividing by 2n, that

a ¼ y� bx (2:6)

where y ¼P yi=n and x ¼P xi=n denote the sample means of the variables
y and x respectively. Because x is fixed (that is, independent of i) so thatP

x(yi � a� bxi) ¼ x
P

(yi � a� bxi) ¼ 0 according to (2.4), we can re-
write (2.5) as X

(xi � x)(yi � a� bxi) ¼ 0: (2:7)

Now we substitute (2.6) in (2.7) and solve this expression for b, so that

b ¼
P

(xi � x)(yi � y)P
(xi � x)2

: (2:8)

To check whether the values of a and b in (2.6) and (2.8) indeed provide the
minimum of S(a, b), it suffices to check whether the Hessian matrix is
positive definite. From (2.4) and (2.5) the Hessian matrix is obtained as

@2S=@a2 @2S=@a@b
@2S=@b@a @2S=@b2

� �
¼ 2n 2

P
xi

2
P

xi 2
P

x2i

� �
:

This matrix is positive definite if n > 0 and the determinant 4n
P

x2i
�4

P
xið Þ2> 0—that is, X

(xi � x)2 > 0:

The condition that n > 0 is evident, and the condition that
P

(xi � x)2 > 0
means that there should be some variation in the explanatory variable x. If
this condition does not hold true, then all the points in the scatter diagram
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are situated on a vertical line. Of course, it makes little sense to try to explain
variations in y by variations in x if x does not vary in the sample.

Normal equations

We can rewrite the two first order conditions in (2.4) and (2.5) as

anþ b
X

xi ¼
X

yi, (2:9)

a
X

xi þ b
X

x2i ¼
X

xiyi: (2:10)

These are called the normal equations. The expressions in (2.6) and (2.8)
show that the least squares estimates depend solely on the first and second
(non-centred) sample moments of the data.

Remark on notation

Now that we have completed our minimization procedure, we make a
remark on the notation. When minimizing (2.3) we have treated the xi and
yi as fixed numbers and a and b as independent variables that could be chosen
freely. After completing the minimization procedure, we have found specific
values of a and b by (2.6) and (2.8). Strict mathematicians would stress the
difference by using different symbols. From now on, we no longer need a and
b as independent variables and for convenience we will use the notation a
and b only for the expressions in (2.6) and (2.8). That is, from now on a and b
are uniquely defined as the numbers that can be computed from the observed
data (xi, yi), i ¼ 1, � � � , n, by means of these two formulas.

E Exercises: T: 2.1a, b; E: 2.10b, 2.12a, c.

2.1.3 Residuals and R2

Least squares residuals

Given the observations (x1, y1), � � � , (xn, yn), and the corresponding unique
values of a and b given by (2.6) and (2.8), we obtain the residuals

ei ¼ yi � a� bxi:

Because a and b satisfy the first order conditions (2.4) and (2.7), we find two
properties of these residualsX

ei ¼ 0,
X

(xi � x)ei ¼ 0: (2:11)
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So (in the language of descriptive statistics) the residuals have zero mean and
they are uncorrelated with the explanatory variable.

Three sums of squares

A traditional way to measure the performance of least squares is to compare
the sum of squared residuals with the sum of squares of (yi � y). We can
rewrite (2.2) as

yi ¼ aþ bxi þ ei

and we obtain from (2.6) that

yi � y ¼ b(xi � x)þ ei:

So the difference from the mean (yi � y) can be decomposed as a sum of two
components, a component corresponding to the difference from the mean of
the explanatory variable (xi � x) and an unexplained component described
by the residual ei. The sum of squares of (yi � y) also consists of two
components X

(yi � y)2 ¼ b2
X

(xi � x)2 þ
X

e2i (2:12)

SST ¼ SSEþ SSR: (2:13)

Note that the cross product term
P

(xi � x)ei vanishes as a consequence of
(2.11). Here SST is called the total sum of squares, SSE the explained sum of
squares, and SSR the sum of squared residuals.

Coefficient of determination: R2

The above three sums of squares depend on the scale of measurement of the
variable y. To get a performance measure that is independent of scale we
divide through by SST. The coefficient of determination, denoted by the
symbol R2, is defined as the relative explained sum of squares

R2 ¼ SSE

SST
¼ b2

P
(xi � x)2P

(yi � y)2
: (2:14)

By substituting (2.8) in (2.14) we obtain

R2 ¼
P

(xi � x)(yi � y)ð Þ2P
(xi � x)2

P
(yi � y)2

:
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So R2 is equal to the square of the correlation coefficient between x and y. By
using (2.12) it follows that (2.14) can be rewritten as

R2 ¼ 1�
P

e2iP
(yi � y)2

: (2:15)

The expressions (2.14) and (2.15) show that 0 � R2 � 1 and that the least
squares criterion is equivalent to the maximization of R2.

R2 in model without intercept

Until now we have assumed that an intercept term (the coefficient a) is
included in the model. If the model does not contain an intercept— that is,
if the fitted line is of the form y ¼ bx—then R2 is still defined as in (2.14).
However, the results in (2.11), (2.12), and (2.15) no longer hold true (see
Exercise 2.4).

E Exercises: T: 2.2; E: 2.10c, 2.11.

2.1.4 Illustration: Bank Wages

We illustrate the results in Sections 2.1.2 and 2.1.3 with the data on bank
wages discussed before in Example 2.2. We will discuss (i) the precision of
reported results in this book, (ii) the least squares estimates, (iii) the sums of
squares and R2, and (iv) the outcome of a regression package (we used the
package EViews).

(i) Precision of reported results

For readers who want to check the numerical outcomes, we first comment on
the precision of the reported results. In all our examples, we report inter-
mediary and final results with a much lower precision than the software
packages used to compute the outcomes. Therefore, to check the outcomes,
the reader should also use a software package and should not work with our
intermediary outcomes, which involve rounding errors.

(ii) Least squares estimates

Continuing the discussion in Example 2.2 on bank wages, we report the
following sample statistics for the n ¼ 474 observations of the variables x
(education) and y (natural logarithm of salary).

E
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X
xi ¼ 6395,

X
yi ¼ 4909,

X
x2i ¼ 90215,X

y2i ¼ 50917,
X

xiyi ¼ 66609:

To compute the slope (2.8), we use

X
(xi � x)(yi � y) ¼

X
xiyi � nx y ¼

X
xiyi � 1

n

X
xi
X

yi ¼ 378:9,X
(xi � x)2 ¼

X
x2i � nx2 ¼

X
x2i �

1

n

X
xi

� �2
¼ 3936:5,

so that b ¼ 0:096. The formula (2.6) for the intercept gives a ¼ 9:06. We
leave it as an exercise to check that these values satisfy the normal equations
(2.9) and (2.10) (up to rounding errors). The regression line is given by
aþ bx ¼ 9:06þ 0:096x and is shown in Exhibit 2.5 (a). In the sense of
least squares, this line gives an optimal fit to the cloud of points. The
histogram of the residuals is shown in Exhibit 2.5 (b).

(iii) Sums of squares and R2

The sums of squares are

SST ¼
X

y2i � ny2 ¼
X

y2i �
1

n

X
yi

� �2
¼ 74:7,

SSE ¼ b2
X

x2i � nx2
� �

¼ b2
X

x2i �
1

n

X
xi

� �2� �
¼ 36:3,

SSR ¼ SST � SSE ¼ 38:4,

with a corresponding coefficient of determination R2 ¼ 0:49.
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Exhibit 2.5 Bank Wages (Section 2.1.4)

Scatter diagram of salary (in logarithms) against education with least squares line (a) and
histogram of the residuals (b).
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(iv) Outcome of regression package

The outcome of a regression package is given in Exhibit 2.6. The two values
in the column denoted by ‘coefficient’ show the values of a (the constant
term) and b (the coefficient of the explanatory variable). The table reports
R2, SSR, and also y and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SST=(n� 1)

p
(the sample mean and sample stand-

ard deviation of the dependent variable). We conclude that there is an
indication of a positive effect of education on salary and that around 50
per cent of the variation in (logarithmic) salaries can be attributed to differ-
ences in education.

Dependent Variable: LOGSALARY
Method: Least Squares
Sample: 1 474

Variable Coefficient
C 9.062102

EDUC 0.095963
R-squared 0.485447 Mean dependent var 10.35679
Sum squared resid 38.42407 S.D. dependent var 0.397334

Exhibit 2.6 Bank Wages (Section 2.1.4)

Results of regression of salary (in logarithms) on a constant (denoted by C) and education,
based on data of 474 bank employees.
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2.2 Accuracy of least squares

2.2.1 Data generating processes

E Uses Appendix A.1.

The helpful fiction of a ‘true model’ in statistical analysis

Before discussing the statistical properties of least squares, we pay attention
to the meaning of some of the terminology that is used in this context. This
concerns in particular the meaning of ‘data generating process’ and ‘true
model’.
Economic data are the outcome of economic processes. For instance, the

stock market data in Example 2.1 result from developments in the produc-
tion and value of many firms (in this case firms in the sector of cyclical
consumer goods) in the UK, and the sales data in Example 2.3 result from
the purchase decisions of many individual buyers in a number of stores in
Paris. The reported figures may further depend on the method of measure-
ment. For the stock market data, this depends on the firms that are included
in the analysis, and for the sales data this depends on the chosen shops and
the periods of measurement. It is common to label the combined economic
and measurement process as the data generating process (DGP). An econo-
metric model aims to provide a concise and reasonably accurate reflection of
the data generating process. By disregarding less relevant aspects of the data,
the model helps to obtain a better understanding of the main aspects of the
data generating process. This implies that, in practice, an econometric model
will never provide a completely accurate description of the data generating
process. Therefore, if taken literally, the concept of a ‘true model’ does not
make much practical sense. Still, in discussing statistical properties, we
sometimes use the notion of a ‘true model’. This reflects an idealized situation
that allows us to obtain mathematically exact results. The idea is that similar
results hold approximately true if the model is a reasonably accurate ap-
proximation of the data generating process.

Simulation as a tool in statistical analysis

The ideal situation of a ‘true model’ will never hold in practice, but we can
imitate this situation by means of computer simulations. In this case the data

2.2 Accuracy of least squares 87



are generated by means of a computer program that satisfies the assumptions
of the model. Then the model is indeed ‘true’, as the data generating process
satisfies all the model assumptions. So, for illustrative purposes, we will start
not by analysing a set of empirical data, but by generating a set of data
ourselves. For that purpose we shall write a small computer program in
which we shall carry out a number of steps.

Example of a simulation experiment

We start by choosing a value for the number n of observations— for instance,
n ¼ 20. Then we fix n numbers for the explanatory variable x—for instance,
x1 ¼ 1, x2 ¼ 2, � � � , xn ¼ n.We choose a constant term a—say, a ¼ 10—and
a slope coefficientb—say,b ¼ 1. Finallywe choose a value s2 for the variance
of the disturbance or error term—for instance, s2 ¼ 25. Then we generate
n random disturbances e1, � � � , en. For this purpose we use a generator of
normally distributed random numbers. Many computer packages contain
such a generator. As the computer usually generates random numbers with
zero mean and unit variance, we have to multiply them by s ¼ 5 to obtain
disturbances with variance s2 ¼ 25. Finally we generate values for the
dependent variable according to

yi ¼ aþ bxi þ ei (i ¼ 1, � � � , n): (2:16)

The role of the disturbances is to ensure that our data points are around the
line aþ bx instead of exactly on this line. In practice, simple relations like
yi ¼ aþ bxi will not hold exactly true for the observed data, and the disturb-
ances ei summarize the effect of all the other variables (apart from xi) on yi.
This completes our data generating process (DGP).

Use of simulated data in statistical analysis

Now consider the situation of an econometrician whose only information
consists of a data set (xi, yi), i ¼ 1, � � � , n, which is generated by this process,
but that this econometrician does not know the underlying values of a, b, s,
and ei, i ¼ 1, � � � , n. The observed data are partly random because of the
effects of the disturbance terms ei in (2.16). If this econometrician now
applies the formulas of Section 2.1.2 to this data set to compute a and b,
we can interpret them as estimates of a and b, respectively, and we can
compare them with the original values of a and b, which are known to us.
Because of the disturbance terms, the outcomes of a and b are random and in
general a 6¼ a and b 6¼ b. The estimates are accurate if they do not differ
much from the values of a and b of the DGP. So this experiment is useful for
assessing the accuracy of the method of least squares.
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We can repeat this simulation, saym times. The values of a and b obtained
in the jth simulation run are denoted by aj and bj, j ¼ 1, � � � , m. The accuracy
of least squares estimates can be evaluated in terms of the means a ¼P aj=m
and b ¼P bj=m and the mean squared errors

MSEb ¼
1

m

X
(bj � b)2, MSEa ¼ 1

m

X
(aj � a)2:

Example 2.4: Simulated Regression Data

We will consider outcomes of the above simulation experiment. The data
are generated by the equation (2.16) with n ¼ 20, xi ¼ i for i ¼ 1, � � � , 20,
a ¼ 10, b ¼ 1, and with e1, � � � , e20 a random sample from a normal distri-
bution with mean zero and variance s2 ¼ 25. The results of two simulation
runs are shown in Exhibit 2.7. As the two series of disturbance terms are
different in the two simulation runs (see (b) and (c)), the values of the
dependent variable are also different. This is also clear from the two scatter
diagrams in Exhibit 2.7 (d) and (e). As a result, the obtained regression line
aþ bx is different in the two simulation runs.
This simulation is repeatedm ¼ 10,000 times. Histograms of the resulting

estimates a and b are in Exhibit 2.8 (a) and (b). The means of the outcomes
are close to the values a ¼ 10 and b ¼ 1 of the DGP.We see that the variation

E

(a)

X YSYS ¼ 10þX EPS1 Y1¼ YSYSþEPS1 EPS2 Y2¼ YSYSþEPS2

1.000000 11.00000 �1.550532 9.449468 2.234083 13.23408

2.000000 12.00000 �2.385784 9.614216 �2.767494 9.232506

3.000000 13.00000 �0.577481 12.42252 9.072153 22.07215

4.000000 14.00000 1.973480 15.97348 �8.105329 5.894671

5.000000 15.00000 �4.845870 10.15413 �10.94552 4.054479

6.000000 16.00000 �5.324765 10.67523 0.572068 16.57207

7.000000 17.00000 �0.929291 16.07071 6.152398 23.15240

8.000000 18.00000 12.00469 30.00469 �5.419486 12.58051

9.000000 19.00000 �10.93570 8.064299 7.506255 26.50625

10.00000 20.00000 0.267976 20.26798 5.855825 25.85582

11.00000 21.00000 �1.136992 19.86301 5.656347 26.65635

12.00000 22.00000 4.090115 26.09012 0.413848 22.41385

13.00000 23.00000 �5.915039 17.08496 �0.160951 22.83905

14.00000 24.00000 �6.685956 17.31404 1.584349 25.58435

15.00000 25.00000 6.563120 31.56312 2.285183 27.28518

16.00000 26.00000 �2.506565 23.49344 13.43999 39.43999

17.00000 27.00000 �9.757085 17.24291 7.935698 34.93570

18.00000 28.00000 2.295170 30.29517 3.045441 31.04544

19.00000 29.00000 3.536910 32.53691 �4.568719 24.43128

20.00000 30.00000 8.769024 38.76902 6.649318 36.64932

Exhibit 2.7 Stimulated Regression Data (Example 2.4)

Data generated by y ¼ 10þ xþ e with e � N(0, 25); shown are two simulations of sample
size 20 (a).
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Exhibit 2.7 (Contd.)

Graphs corresponding to the two simulations in (a), with series of disturbances (EPS1 and
EPS2 ((b)–(c))), and scatter diagrams (of y1 against x and of y2 against x) and fitted regressions
(Y1FIT and Y2FIT ((d)–(e))).

0

200

400

600

800

1000

1200

0.4 0.6 0.8 1.0 1.2 1.4 1.6

Series: b
Sample 1 10000
Observations 10000 

Mean 0.998555
Median 0.998289
Maximum 1.700380
Minimum 0.296596
Std. Dev. 0.191656
Skewness −0.017376
Kurtosis 2.933285

0

200

400

600

800

1000

2 4 6 8 10 12 14 16 18

Series: a
Sample 1 10000
Observations 10000

Mean 10.00928
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Exhibit 2.8 Simulated Regression Data (Example 2.4)

Histograms of least squares estimates (a in (a) and b in (b)) in 10,000 simulations (the DGP has
a ¼ 10 and b ¼ 1), and mean squared error of these estimates (c).
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of the outcomes in b (measured by the standard deviation) is much smaller
than that of a, and the same holds true for the MSE (see (c)). Intuitively
speaking, the outcomes of the slope estimates b differ significantly from zero.
This will be made more precise in Section 2.3.1, where we discuss the
situation of a single data set, which is the usual situation in practice.

2.2.2 Examples of regression models

Notation: we do not know Greek but we can compute Latin

One of the virtues of the computer experiment in the foregoing section is that
it helps to explain the usual notation and terminology. We follow the con-
vention to denote the parameters of the DGP by Greek letters (a, b, s2) and
the estimates by Latin letters (a, b, s2). When we analyse empirical data we
do not know ‘true’ values of a and b, but we can compute estimates a and b
from the observed data.

Example 2.5: Stock Market Returns (continued)

Awell-known model of financial economics, the capital asset pricing model
(CAPM), relates the excess returns xi (on the market) and yi (of an individual
asset or a portfolio of assets in a sector) by the model (2.16). So the CAPM
assumes that the data in Example 2.1 in Section 2.1.1 are generated
by the linear model yi ¼ aþ bxi þ ei for certain (unknown) values of a and
b. The disturbance terms ei are needed because the linear dependence be-
tween the returns is only an approximation, as is clear from Exhibit 2.1. It is
one of the tasks of the econometrician to estimate a and b as well as possible.
The formulas for a and b in (2.6) and (2.8) can be used for this purpose. The
residuals ei in (2.2) can be seen as estimates of the disturbances ei in (2.16).
The further analysis of this data set is left as an exercise (see Exercises 2.11,
2.12, and 2.15).

Example 2.6: Bank Wages (continued)

We consider again Example 2.2 and assume that the model (2.16) applies for
the data on logarithmic salary and education. Let S be the salary; then the
model states that yi ¼ log (Si) ¼ aþ bxi þ ei. Here b can be interpreted as the
relative increase in salary due to one year of additional education, which
is given by dS=S

dx ¼ d log (S)
dx ¼ dy

dx : In the model (2.16) this derivative is assumed to
be constant.A careful inspectionofExhibit 2.2 (c)may cast somedoubt on this
assumption, but for the time being we will accept it as a working hypothesis.
Again, the disturbance terms ei are needed because the linear dependence
between the yi and xi is only an approximation. For every individual there
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will be many factors, apart from education, that affect the salary. In the next
chapter we will introduce some of these factors explicitly. This data set is
further analysed in Example 2.9 (p. 102) and in Example 2.11 (p. 107).

Example 2.7: Coffee Sales (continued)

The data on prices and quantities sold of Example 2.3 show that demand
increases if the price is decreased. If this effect is supposed to be proportional
to the price decrease, then the demand curve can be described by the model
(2.16) with yi for the quantity sold and with xi for the price. The scatter
diagram in Exhibit 2.3 clearly shows that, for fixed prices, the sales still
fluctuate owing to unobserved causes. The variations in sales that are not
related to price variations are summarized by the disturbance terms ei in
(2.16). The analysis of this data set is left as an exercise (see Exercise 2.10).

2.2.3 Seven assumptions

E Uses Sections 1.2.1, 1.2.3, 1.2.4.

The purpose of assumptions: simpler analysis

Data generating experiments as described in Section 2.2.1 are often per-
formed in applied econometrics, in particular in complicated cases where
little is known about the accuracy of the estimation procedures used. In the
case of the linear model and the method of least squares, however, we can
obtain accuracy measures by means of analytical methods. For this purpose,
we introduce the following assumptions on the data generating process.

Assumption on the regressors

. Assumption 1: fixed regressors. The n observations on the explanatory
variable x1, � � � , xn are fixed numbers. They satisfy

P
(xi � x)2 > 0.

This means that the values xi of the explanatory variable are assumed to be
non-random. This describes the situation of controlled experiments. For
instance, the price reductions in Example 2.3 were performed in
a controlled marketing experiment. However, in economics the possibilities
for experiments are often quite limited. For example, the data on salaries and
education in Example 2.2 are obtained from a sample of individuals. Here
the x variable, education, is not determined by a controlled experiment. It is
influenced by many factors— for instance, the different opportunities and
situational characteristics of the individuals—and these factors are not
observed in this sample.

E
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Assumptions on the disturbances

. Assumption 2: random disturbances, zero mean. The n disturbances
e1, � � � , en are random variables with zero mean, E[ei] ¼ 0 (i ¼ 1, � � � , n).

. Assumption 3: homoskedasticity. The variances of the n disturbances
e1, � � � , en exist and are all equal, E[e2i ] ¼ s2 (i ¼ 1, � � � , n).

. Assumption 4: no correlation. All pairs of disturbances (ei, ej) are uncor-
related, E[eiej] ¼ 0 (i, j ¼ 1, � � � , n, i 6¼ j).

Assumptions 2–4 concern properties of the disturbance terms. Note that
they say nothing about the shape of the distribution, except that extreme
distributions (such as the Cauchy distribution) are excluded because it is
assumed that the means and variances exist. When the variances are equal
the disturbances are called homoskedastic, and when the variances differ
they are called heteroskedastic. Assumption 4 is also called the absence of
serial correlation across the observations.

Assumptions on model and model parameters

. Assumption 5: constant parameters. The parameters a, b, and s are fixed
unknown numbers with s > 0.

This means that, although the parameters of the DGP are unknown, we
assume that all the n observations are generated with the same values of
the parameters.

. Assumption 6: linear model. The data on y1, � � � , yn have been generated by

yi ¼ aþ bxi þ ei (i ¼ 1, � � � , n): (2:17)

The model is called linear because it postulates that yi depends in a linear way
on the parameters a and b. Together with Assumptions 1–4, it follows that

E[yi] ¼ aþ bxi, var(yi) ¼ s2, cov(yi, yj) ¼ 0 (i 6¼ j):

So the observed values of the dependent variable are uncorrelated and have
the same variance. However, the mean value of yi varies across the observa-
tions and depends on xi.

Assumption on the probability distribution

. Assumption 7: normality. The disturbances e1, � � � , en are jointly normally
distributed.

Together with Assumptions 2–4, this assumption specifies a precise distribu-
tion for the disturbance terms and it implies that the disturbances are
mutually independent.
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Interpretation of the simple regression model

Under Assumptions 1–7, the values yi are normally and independently dis-
tributed with varying means aþ bxi and constant variance s2. This can be
written as

yi � NID(aþ bxi, s2) (i ¼ 1, � � � , n):

If b ¼ 0, this reduces to the case of random samples from a fixed population
described in Chapter 1. The essential characteristic of the current model is
that variations in yi are not seen purely as the effect of randomness, but partly
as the effect of variations in the explanatory variable xi.
Several of the results to be given below are proved under Assumptions 1–6,

but sometimes we also need Assumption 7. This is the case, for instance, in
Section 2.3.1, when we test whether the estimated slope parameter b is
significantly different from zero.

E Exercises: E: 2.10a.

2.2.4 Statistical properties

E Uses Sections 1.2.1, 1.3.2; Appendix A.1.

Derivation: Some helpful notation and results

Using Assumptions 1–6 we now derive some statistical properties of the least
squares estimators a and b as defined in (2.6) and (2.8). For this purpose, it
is convenient to express the random part of a and b as explicit functions
of the random variables ei, as the properties of these disturbances are given
by Assumptions 2–4. To express b in (2.8) in terms of ei, first note thatX

(xi � x)y ¼ y
X

(xi � x) ¼ 0,
X

(xi � x)x ¼ x
X

(xi � x) ¼ 0: (2:18)

Using this result, (2.8) can be written as

b ¼
P

(xi � x)yiP
(xi � x)xi

:

Because of Assumption 6 we may substitute (2.17) for yi, and by usingP
(xi � x)a ¼ 0 it follows that

b ¼ bþ
P

(xi � x)eiP
(xi � x)xi

¼ bþ
X

ciei (2:19)

T
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where the coefficients ci are non-random (because of Assumption 1) and given
by

ci ¼ xi � xP
(xi � x)xi

¼ xi � xP
(xi � x)2

: (2:20)

To express a in (2.6) in terms of ei, (2.17) implies that y ¼ aþ bxþ e (where
e ¼ 1

n

P
ei) and (2.19) that bx ¼ bxþ x

P
ciei. This shows that

a ¼ y� bx ¼ aþ 1

n

X
ei � x

X
ciei ¼ aþ

X
diei (2:21)

where the coefficients di are non-random and given by

di ¼ 1

n
� xci ¼ 1

n
� x(xi � x)P

(xi � x)2
: (2:22)

From (2.20) and (2.22) we directly obtain the following properties:

X
ci ¼ 0,

X
c2i ¼ 1P

(xi � x)2
, (2:23)

X
di ¼ 1,

X
d2
i ¼ 1

n
þ x2P

(xi � x)2
: (2:24)

Least squares is unbiased

If we use the rules of the calculus of expectations (see Section 1.2), it follows
from (2.19) that

E[b] ¼ E bþ
X

ciei
h i

¼ bþ
X

ciE[ei] ¼ b, (2:25)

because b is non-random (Assumption 5), the ci are non-random
(Assumption 1), andE[ei] ¼ 0 (Assumption 2). Summarizing, under Assump-
tions 1, 2, 5, and 6 the estimator b has expected value b and hence b is an
unbiased estimator of b. Under the same assumptions we get from (2.21)

E[a] ¼ E aþ
X

diei
h i

¼ aþ
X

diE[ei] ¼ a, (2:26)

so that a is also an unbiased estimator of a. So the least squares estimates will,
on average, be equal to the correct parameter values.
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The variance of least squares estimators

Although the property of being unbiased is nice, it tells us only that
the estimators a and b will on average be equal to a and b. However,
in practice we often have only a single data set at our disposal. Then it
is important that the deviations (b� b)2 and (a� a)2 are expected to
be small. We measure the accuracy by the mean squared errors E[(b� b)2]
and E[(a� a)2]. As the estimators are unbiased, these MSEs are equal to the
variances var(b) and var(a) respectively. It follows from (2.19) that

var(b) ¼
XX

cicjE[eiej],

and Assumptions 3 and 4 and (2.23) give

var(b) ¼
X

c2i s
2 ¼ s2P

(xi � x)2
: (2:27)

The variance of a follows from (2.21) and (2.24) with result

var(a) ¼
X

d2
i s

2 ¼ s2
1

n
þ x2P

(xi � x)2

 !
: (2:28)

Graphical illustration

In Exhibit 2.9 we show four scatters generated with simulations of the type
described in Section 2.2.1, with different values for the error variance s2 and
for the systematic variance

P
(xi � x)2. The shapes of the scatters give a good

impression of the possibilities to determine the regression line accurately. The
best case is small error variance and large systematic variance (shown in (b)),
and the worst case is large error variance and small systematic variance
(shown in (c)).

Mean and variance of residuals

In a similar way we can derive the mean and variance of the residuals ei,
where ei ¼ yi � a� bxi. There holds E[ei] ¼ 0 and

var(ei) ¼ s2 1� 1

n
� (xi � x)2P

(xj � x)2

 !
(2:29)

(see Exercise 2.7). Note that this variance is smaller than the variance s2 of
the disturbances ei. The reason is that the method of least squares tries to
minimize the sum of squares of the residuals. Note also that the difference is
small if n and

P
(xj � x)2 are large. If both n and

P
(xj � x)2 tend to infinity,

then var(ei) tends to s2.
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E Exercises: T: 2.4, 2.5, 2.6, 2.9.

2.2.5 Efficiency

E Uses Section 1.2.1.

Best linear unbiased estimators (BLUE)

The least squares estimators a and b given in (2.6) and (2.8) are linear
expressions in y1, � � � , yn. Such estimators are called linear estimators. We
have shown that they are unbiased. Now we will show that, under Assump-
tions 1–6, the estimators a and b are the best linear unbiased estimators
(BLUE)— that is, they have the smallest possible variance in the class of all
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Exhibit 2.9 Accuracy of least squares

Scatter diagrams of y against x; the standard deviation of x in (b) and (d) is three times as large
as in (a) and (c), and the standard deviation of the error terms in (c) and (d) is three times as
large as in (a) and (b).
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linear unbiased estimators. Stated otherwise, the least squares estimators are
efficient in this respect. This is called the Gauss–Markov theorem. Note that
the assumption of normality is not needed for this result.

Proof of BLUE

We will prove this result for b (the result for a follows from a more general result
treated in Section 3.1.4). Let b̂b be an arbitrary linear estimator of b. This means
that it can be written as b̂b ¼P giyi for certain fixed coefficients g1, � � � , gn. The
least squares estimator can be written as b ¼P ciyi with ci as defined in (2.20).
Now define wi ¼ gi � ci; then it follows that gi ¼ ci þwi and

b̂b ¼
X

(ci þwi)yi ¼ bþ
X

wiyi: (2:30)

Under Assumptions 1–6, the expected value of b̂b is given by

E[b̂b] ¼ E[b]þ
X

wiE[yi] ¼ bþ a
X

wi þ b
X

wixi:

We require unbiasedness, irrespective of the values taken by a and b. So the two
conditions on w1, � � � , wn are thatX

wi ¼ 0,
X

wixi ¼ 0: (2:31)

It then follows from the assumption of the linear model (2.17) thatX
wiyi ¼ a

X
wi þ b

X
wixi þ

X
wiei ¼

X
wiei, (2:32)

and from (2.30) and (2.19) that

b̂b ¼ bþ
X

wiei ¼ bþ
X

(ci þwi)ei:

Because of Assumptions 3 and 4, the variance of b̂b is equal to

var(b̂b) ¼ s2
X

(ci þwi)
2: (2:33)

Now
P

(ci þwi)
2 ¼P c2i þ

P
w2

i þ 2
P

ciwi, and the expression (2.20) for ci
together with the properties in (2.31) imply that

P
ciwi ¼ 0. Therefore (2.33)

reduces to

var(b̂b) ¼ var(b)þ s2
X

w2
i :

Clearly, the variance is minimal if and only if wi ¼ 0 for all i ¼ 1, � � � , n. This
means that b̂b ¼ b, and this proves the Gauss–Markov theorem.

E Exercises: T: 2.3.
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2.3 Significance tests

2.3.1 The t-test

E Uses Sections 1.2.3, 1.4.1–1.4.3.

The significance of an estimate

The regression model aims to explain the variation in the dependent variable
y in terms of variations in the explanatory variable x. This makes sense only
if y is related to x—that is, if b 6¼ 0 in the model (2.17). In general, the least
squares estimator b will be different from zero, even if b ¼ 0. We want to
apply a test for the null hypothesis b ¼ 0 against the alternative that b 6¼ 0.
The null hypothesis will be rejected if b differs significantly from zero. Now it
is crucial to realize that, under Assumptions 1–6, the obtained value of b is
the outcome of a random variable. So, to decide whether b is significant or
not, we have to take the uncertainty of this random variable into account.
For instance, if b has standard deviation 100, then an outcome b ¼ 10 is not
significantly different from zero, and if b has standard deviation 0.01 then
an outcome b ¼ 0:1 is significantly different from zero. Therefore we scale
the outcome of b by its standard deviation. Further, to apply the testing
approach discussed in Section 1.4, the distribution of b should be known.

Derivation of test statistic

To derive a test for the significance of the slope estimate b, we will assume that the
disturbances ei are normally distributed. So we will make use of Assumptions 1–7
of Section 2.2.3. Since b� b is linear in the disturbances (see (2.19)), it is normally
distributed with mean zero and with variance given by (2.27). So the standard

deviation of b is given by sb ¼ s=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

(xi � x)2
q

and

b� b
sb

� N(0, 1):

This expression cannot be used as a test statistic, since s is an unknown parameter.
As the residuals ei are estimates of the disturbances ei, this suggests estimating
the variance s2 ¼ E[e2i ] by ŝs2 ¼ 1

n

P
e2i . However, this estimator is biased. It

is left as an exercise (see Exercise 2.7) to show that an unbiased estimator is
given by

T
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s2 ¼ 1

n� 2

X
e2i : (2:34)

We also refer to Sections 3.1.5 and 3.3.1 below, where it is further proved
that

P
e2i =s

2 follows the w2(n� 2) distribution and that s2 and b are independent.

Standard error and t-value

It follows from the above results and by the definition of the t-distribution
that

tb ¼ b� b
sb

¼ b� b

s=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

(xi � x)2
q ¼ (b� b)=sbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

e2
i

s2 =(n� 2)

q � t(n� 2), (2:35)

where

sb ¼ sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
(xi � xÞ2

q : (2:36)

That is, tb follows the Student t-distribution with n� 2 degrees of freedom.
For b ¼ 0, tb is called the t-value of b. Further, sb is called the standard error of
b, and s, the square root of (2.34), is called the standard error of the regression.
The null hypothesisH0 : b ¼ 0 is rejected against the alternativeH1 : b 6¼ 0 if b
is too far from zero— that is, if jtbj > c, or equivalently, if jbj > csb. Then b is
called significant—that is, it differs significantly from zero.

A practical rule of thumb for significance

For a given level of significance, the critical value c is obtained from the
t(n� 2) distribution. For a 5 per cent significance level, the critical value for
n ¼ 30 is c ¼ 2:05, for n ¼ 60 it is 2.00, and for n ! 1 the critical value
converges to 1.96. As a rule of thumb (for the popular 5 per cent significance
level), one often uses c ¼ 2 as an approximation. In this case the estimate b is
significant if jbj > 2sb —that is, if the outcome is at least twice as large as the
uncertainty in this outcome asmeasured by the standard deviation. That is, an
estimatedcoefficientissignificantifitst-valueis(inabsolutevalue)largerthan2.

Interval estimates

The foregoing results can also be used to construct interval estimates of b. Let
c be the critical value of the t-test of size a, so that P[jtbj > c] ¼ a where tb is
defined as in (2.35). Then P[jtbj � c] ¼ 1� a, and an (1� a) interval esti-
mate of b is given by all values for which �c � tb � c—that is,

b� csb � b � bþ csb: (2:37)

E Exercises: T: 2.1c, d, 2.7; E: 2.10d–f, 2.12b, c, 2.13, 2.14a–c.
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2.3.2 Examples

Example 2.8: Simulated Regression Data (continued)

First we consider the situation of simulated data with a known DGP. For
this purpose we consider again the 10,000 simulated data sets of Example
2.4, with data generating process yi ¼ 10þ xi þ ei where xi ¼ i and ei are
NID(0, 25), i ¼ 1, � � � , 20. So this DGP has slope parameter b ¼ 1. The
histograms and some summary statistics of the resulting 10,000 values of
b, s2, and tb are given in Exhibit 2.10 (a–d). For comparison, (d) also
contains some properties of the corresponding theoretical distributions.
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Exhibit 2.10 Simulated Regression Data (Example 2.8)

Histograms of least squares estimates of slope (b, denoted by B in (a)), t-value (tb, denoted by
TSTAT_B in (b)), and variance (s2, denoted by S2 in (c)) resulting from 10,000 simulations
of the data generating process in Example 2.4 (with slope b ¼ 1 and variance s2 ¼ 25).
Theoretical means and standard deviations of b and s2 and theoretical and sample correlations
between b and s2 (d) and scatter diagram of s2 against b (e).

(d)

B S2
Theor. Expect. 1 25
Theor. Std. Dev. 0.1939 8.3333
Theor. Corr. (B, S2) 0
Sample Corr. (B, S2) �0.0147

2.3 Significance tests 101



The histogram of b is in accordance with the normal distribution
of this least squares estimator, and the histogram of s2 is in accordance
with the (scaled) w2 distribution. The t-statistic for the null hypothesis
H0 : b ¼ 0 does not follow the t-distribution, as this hypothesis is not correct
(b ¼ 1). In the great majority of cases the null hypothesis is rejected; only
in nineteen cases it is not rejected (using the 5 per cent critical value c ¼ 2:1
for the t(18) distribution). This indicates a high power (of around 99.8
per cent) of the t-test in this example. The scatter diagram of s2 against
b (shown in (e)) illustrates the independence of these two random vari-
ables; their sample correlation over the 10,000 simulation runs is less than
1.5 per cent.
This simulation illustrates the distribution properties of b, s2, and tb. In

this example, the t-test is very successful in detecting a significant effect of the
variable x on the variable y.

Example 2.9: Bank Wages (continued)

Next we consider a real data set—namely, on bank wages. For the salary
and education data of bank employees discussed before in Example 2.2,
the sample moments were given in Section 2.1.4. Using the results in
Exhibit 2.6, the variance of the disturbance terms is estimated by
s2 ¼ SSR=(n� 2) ¼ 38:424=472 ¼ 0:0814 and the standard error of the
regression is s ¼ 0:285. So the standard error of b is sb ¼ 0:285=ffiffiffiffiffiffiffiffiffiffiffi
3937

p ¼ 0:00455 and the t-value is tb ¼ 0:096=0:00455 ¼ 21:1. To
perform a 5 per cent significance test of H0: b ¼ 0 against H1: b 6¼ 0, the
(two-sided) critical value of the t(472) distribution is given by 1.96, so
that the null hypothesis is clearly rejected. This means that education has
a very significant effect on wages. These outcomes are also given in
Exhibit 2.11, together with the P-value for the test of H0: b ¼ 0 against
H1: b 6¼ 0. The P-value is reported as 0.0000, which actually means that it
is smaller than 0.00005. Note that this P-value is not exactly zero, as even
for b ¼ 0 the probability of getting t-values larger than 21.1 is non-zero.
However, the null hypothesis that b ¼ 0 is rejected for all sizes a > 0:00005.
For such a low P-value as in this example we will always reject the null
hypothesis.
The regression results are often presented in the following way, where the

numbers in parentheses denote the t-values and e denotes the residuals of the
regression (the equation without e is not valid, as the data do not lie exactly
on the estimated line).

y ¼ 9:06 þ 0:096x þ e:

(144) (21:1)
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2.3.3 Use under less strict conditions

Weaker assumptions on the DGP

The rather strict conditions of Assumptions 1–7 (in particular, fixed values of
the x variable and normally distributed disturbances) were introduced in
order to simplify the proofs. Fortunately, the same results hold approxi-
mately true under more general conditions. In Exhibit 2.12 we present the
results of a number of simulation experiments where the conditions on both
the explanatory variable and the disturbances have been varied. The exhibit
reports some quantiles. If a random variable y has a strictly monotone
cumulative distribution function F(v) ¼ P[y � v], then the quantile q(p) is
defined by the condition that F(q(p) ) ¼ p. In other words, the quantile
function is the inverse of the cumulative distribution function. The exhibit
shows quantiles for p ¼ 0:75, p ¼ 0:90, p ¼ 0:95, and p ¼ 0:975. The last
quantile corresponds to the critical value for a two-sided test with signifi-
cance level 5 per cent.

Dependent Variable: LOGSALARY
Method: Least Squares
Sample: 1 474

Variable Coefficient Std. Error t-Statistic Prob.
C 9.062102 0.062738 144.4446 0.0000

EDUC 0.095963 0.004548 21.10214 0.0000
R-squared 0.485447 Mean dependent var 10.35679
Sum squared resid 38.42407 S.D. dependent var 0.397334
S.E. of regression 0.285319

Exhibit 2.11 Bank Wages (Example 2.9)

Results of regression of salary (in logarithms) on a constant (denoted by C) and education,
based on data of 474 bank employees.

Row x e Result Quantiles
0.750 0.900 0.950 0.975

1 Fixed Normal Exact t(198) 0.676 1.286 1.653 1.972
2 Fixed Normal Simulated 0.675 1.290 1.651 1.984
3 Fixed Logistic Simulated 0.678 1.289 1.656 1.986
4 Normal Normal Simulated 0.677 1.285 1.653 1.980
5 Normal Logistic Simulated 0.679 1.287 1.650 1.982

Exhibit 2.12 Quantiles of distributions of t-statistics

Rows 1 and 2 correspond to the standard model that satisfies Assumptions 1–7, in rows 3 and
5 the DGP does not satisfy Assumption 7 (normality), and in rows 4 and 5 the DGP does not
satisfy Assumption 1 (fixed regressors).
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Discussion of simulation results

Rows 1 and 2 of the table give the results for the classical linear model, where
the x values are fixed and the disturbances are independently, identically
normally distributed. The first row gives the exact results corresponding to
the t(198) distribution. The second row gives the results from a simulation
experiment where 50,000 samples were drawn, each of n ¼ 200 observa-
tions. The remaining rows give the results of further simulation experiments
(each consisting of 50,000 simulation runs) under different conditions. In
row 3 the disturbances are drawn from a logistic distribution with density
function f (x) ¼ ex=(1þ ex)2 and with cumulative distribution function
F(x) ¼ 1=(1þ e�x). This density is bell-shaped but the tails are somewhat
fatter than those of the normal density. In rows 4 and 5 the values of the x
variable are no longer kept fixed along the different simulation runs, but
instead they are drawn from a normal distribution, independently of the
disturbances. To enhance the comparability of the results the same x values
were used in rows 4 and 5. Likewise, the same disturbances were used in
rows 2 and 4, and in rows 3 and 5.

Conclusion

When we compare the quantiles, we see that the differences between the
rows are very small. This illustrates that we may apply the formulas derived
under the assumptions of the linear model also in cases where the assump-
tions of fixed regressors or normal disturbances are not satisfied. Under the
assumptions of this simulation example this still gives reliable results.
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2.4 Prediction

2.4.1 Point predictions and prediction intervals

Point prediction

We consider the use of an estimated regression model for the prediction of the
outcome of the dependent variable y for a given value of the explanatory
variable x.

The least squares residuals ei ¼ yi � a� bxi correspond to the deviations
of yi from the fitted values aþ bxi, i ¼ 1, � � � , n. The regression line aþ bx
can be interpreted as the prediction of the y-value for a given x-value, and s2

indicates the average accuracy of these predictions. Now assume that we
want to predict the outcome ynþ1 for a given new value xnþ1. An obvious
prediction is given by aþ bxnþ1. This is called a point prediction.

Prediction error and variance

In order to say something about the accuracy of this prediction we need to
make assumptions about the mechanism generating the value of ynþ1. We
suppose that Assumptions 1–6 hold true for i ¼ 1, � � � , nþ 1. If at a later
point of time we observe ynþ1, we can evaluate the quality of our prediction
by computing the prediction error

f ¼ ynþ1 � a� bxnþ1: (2:38)

If ynþ1 is unknown, we can get an idea of the prediction accuracy by deriving
the mean and variance of the prediction error. Under Assumptions 1–6, the
mean is E[f ] ¼ 0, so that the prediction is unbiased, and the variance is
given by

var(f ) ¼ s2 1þ 1

n
þ (xnþ1 � x)2P

(xi � x)2

 !
: (2:39)

Here the average x and the summation refer to the estimation sample
i ¼ 1, � � � , n. The proofs are left as an exercise (see Exercise 2.8). Note that
the variance of the prediction error is larger than the variance s2 of the
disturbances. The extra terms are due to the fact that a and b are used rather
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than a and b. It is also seen that the variance of the prediction error reaches its
minimum for xnþ1 ¼ x and that the prediction errors tend to be larger for
values of xnþ1 that are further away from x. By using the expression (2.6) for
a, (2.38) can be written as f ¼ (ynþ1 � y) �b(xnþ1 � x). So uncertainty about
the slope b of the regression line leads to larger forecast uncertainty when
xnþ1 is further away from x. This is illustrated in Exhibit 2.13.

Prediction interval

The above results can also be used to construct prediction intervals. If
Assumptions 1–7 hold true for i ¼ 1, � � � , nþ 1, then the prediction error f
is normally distributed and independent of s2, based on the first n observa-
tions and defined in (2.34). Let

s2f ¼ s2 1þ 1

n
þ (xnþ1 � x)2Pn

i¼1 (xi � x)2

 !
,

then it follows that f=sf � t(n� 2). So a (1� a) prediction interval for ynþ1 is
given by

(aþ bxnþ1 � csf , aþ bxnþ1 þ csf )

where c is such that P[jtj > c] ¼ a when t � t(n� 2).

x

f1

x

y

x2

y=aU+bUx

y=aL+bLx

x1

f2

Exhibit 2.13 Prediction error

Uncertainty in the slope of the regression line (indicated by the lower value bL and the upper
value bU of an interval estimate of the slope) results in larger forecast uncertainty for values
of the explanatory variable that are further away from the sample mean (the forecast interval
f2 corresponding to x2 is larger than the interval f1 corresponding to x1).

106 2 Simple Regression



Conditional prediction

In the foregoing results the value of xnþ1 should be known. Therefore this is
called conditional prediction, in contrast to unconditional prediction, where
the value of xnþ1 is unknown and should also be predicted. Since our model
does not contain a mechanism to predict xnþ1, this would require additional
assumptions on the way the x-values are generated.

E Exercises: T: 2.8; E: 2.14d, e, 2.15.

2.4.2 Examples

Example 2.10: Simulated Regression Data (continued)

Consider once more the 10,000 simulated data sets of Example 2.4. We
consider two situations, one where the new value of x21 ¼ 10 is in the middle
of the sample of previous x-values (that range between 1 and 20) and another
where x21 ¼ 40 lies outside this range. For both cases we generate 10,000
predictions aþ bx21, each prediction corresponding to the values of (a, b)
obtained for one of the 10,000 simulated data sets. Further we also generate
in both cases 10,000 new values of y21 ¼ 10þ x21 þ e21 by random drawings
e21 of the N(0, 25) distribution.
Exhibit 2.14 shows histograms and summary statistics of the resulting two

sets of 10,000 predictions (in (a) and (c)) and of the prediction errors
f21 ¼ y21 � (aþ bx21) (in (b), (d), and (e)). Clearly, for x21 ¼ 10 the predic-
tions and forecast errors have a smaller standard deviation than for x21 ¼ 40,
as would be expected because of (2.39).

Example 2.11: Bank Wages (continued)

We consider again the salary and education data of bank employees. We will
discuss (i) the splitting of the sample in two sub-samples, (ii) the forecasts,
and (iii) the interpretation of the forecast results.

(i) Splitting of the sample in two sub-samples

To illustrate the idea of prediction we split the data set up in two parts. The
first part (used in estimation) consists of 424 individuals with sixteen years of
education or less, the second part (used in prediction) consists of the
remaining 50 individuals with seventeen years of education or more. In this
way we can investigate whether the effect of education on salary is the same
for lower and higher levels of education.

E

E

XM202BWA
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(ii) Forecasts

The results of the regression over the first group of individuals are shown in
Exhibit 2.15 (a). The estimated intercept is a ¼ 9:39 and the estimated slope
is b ¼ 0:0684. With this model the salary of an individual in the second
group with an education of x years is predicted by aþ bx ¼ 9:39þ 0:0684x.

(iii) Interpretation of forecast results

Exhibit 2.15 (d) shows that the actual salaries of these highly educated
persons are systematically higher than predicted. We mention the following
facts. The average squared prediction error (for the fifty highly educated

employees) is equal to
P474

i¼425 f
2
i =50 ¼ 0:268. This is larger than the average

squared residual
P474

i¼425 e
2
i =50 ¼ 0:142 if the estimates a ¼ 9:06 and

b ¼ 0:0960 are used that were obtained from a regression over the full
sample in Section 2.1.4 (see Exhibit 2.6). Moreover, the average squared
prediction error is also larger than what would be expected on the basis of
(2.39), which is based on Assumptions 1–7 for the DGP. If we average this
expression over the fifty values of education (x) in the second group, with the
estimated variance s2 ¼ (0:262)2 ¼ 0:0688 obtained from the regression
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Exhibit 2.14 Simulated Regression Data (Example 2.10)

Forecasted values of y ((a) and (c)) and forecast errors f ((b) and (d)) in 10,000 simulations
from the data generating process of Example 2.4 for two values of x—that is, x ¼ 10 ((a)–(b))
and x ¼ 40 ((c)–(d)), together with theoretical expected values and standard deviations of the
forecast errors (denoted by F10 for x ¼ 10 and F40 for x ¼ 40 (e)).
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over the 424 individuals with sixteen years of education or less in Exhibit
2.15, then this gives the value 0.139. As the actual squared prediction errors
are on average nearly twice as large (0.268 instead of 0.139), this may cast
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Exhibit 2.15 Bank Wages (Example 2.11)

Result of regression of salary (in logarithms) on a constant and education for 424 bank
employees with at most sixteen years of education (a) and three scatter diagrams, one for all
474 employees (b), one for 424 employees with at most sixteen years of education (c), and one
for all 474 employees together with the predicted values of employees with at least seventeen
years of education ((d), with predictions based on the regression in (a)).

(a) Dependent Variable: LOGSALARY
Method: Least Squares
Sample: 1 424 (individuals with at most 16 years of education)

Variable Coefficient Std. Error t-Statistic Prob.
C 9.387947 0.068722 136.6081 0.0000

EDUC 0.068414 0.005233 13.07446 0.0000
R-squared 0.288294 Mean dependent var 10.27088
Sum squared resid 29.02805 S.D. dependent var 0.310519
S.E. of regression 0.262272
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some doubt on the working hypothesis that Assumptions 1–7 hold true for
the full data set of 474 persons. It seems that the returns on education are
larger for higher-educated employees than for lower-educated employees.
We will return to this question in Section 5.2.1.
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Summary, further reading,
and keywords

SUMMARY

In this chapter we considered the simple regression model, where variations
in the dependent variable are explained in terms of variations of the explana-
tory variable. The method of least squares can be used to estimate the
parameters of this model. The statistical properties of these estimators were
derived under a number of assumptions on the data generating process.
Further we described methods to construct point predictions and prediction
intervals.
The ideas presented in this chapter form the basis for many other types of

econometric models. In Chapter 3 we consider models with more than one
explanatory variable, and later chapters contain further extensions that are
often needed in practice.

FURTHER READING

Most of the textbooks on statistics mentioned in Section 1.5 contain chapters on
regression. Econometric textbooks go beyond the simple regression model. In the
following chapters we make intensive use of matrix algebra, and references to
textbooks that also follow this approach are given in Chapter 3, Further Reading
(p. 178). We now mention some econometric textbooks that do not use matrix
algebra.

Gujarati, D. N. (2003). Basic Econometrics. Boston: McGraw-Hill.
Hill, R. C., Griffiths, W. E., and Judge, G. G. (2001). Undergraduate Economet-
rics. New York: Wiley.

Kennedy, P. (1998). A Guide to Econometrics. Oxford: Blackwell.
Maddala, G. S. (2001). Introduction to Econometrics. London: Prentice Hall.
Pindyck, R. S., and Rubinfeld, D. L. (1998). Econometric Models and Economic
Forecasts. Boston: McGraw-Hill.

Thomas, R. L. (1997). Modern Econometrics. Harlow: Addison-Wesley.
Wooldridge, J. M. (2000). Introductory Econometrics. Australia: Thomson
Learning.
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Exercises

THEORY QUESTIONS

2.1 (E Sections 2.1.2, 2.3.1)
Let two data sets (xi, yi) and (x�i , y

�
i ) be related by

x�i ¼ c1 þ c2xi and y�i ¼ c3 þ c4yi for all
i ¼ 1, � � � , n. This means that the only differences
between the two data sets are the location and the
scale of measurement. Such data transformations
are often applied in economic studies. For example,
yi may be the total variable production costs in
dollars of a firm in month i and y�i the total produc-
tion costs in millions of dollars. Then c3 are the total
fixed costs (in millions of dollars) and c4 ¼ 10�6.

a. Derive the relation y� ¼ a� þ b�x� between y�

and x� if y and x would satisfy the linear relation
y ¼ aþ bx.

b. For arbitrary data (xi, yi), i ¼ 1, � � � , n, derive
the relation between the least squares estimators
(a, b) for the original data and (a�, b�) for the
transformed data.

c. Which of the statistics R2, s2, sb, and tb are in-
variant with respect to this transformation?

d. Check the results in b and c with the
excess returns data of Example 2.1 on
stock market returns. Perform two re-
gressions, one with the original data
(in percentages) and the other with transformed
data with the actual excess returns— that is,
with c1 ¼ c3 ¼ 0 and c2 ¼ c4 ¼ 0:01.

2.2 (E Section 2.1.3)
In the regression model the variable y is regressed
on the variable x with resulting regression line
aþ bx. Reversing the role of the two variables, x
can be regressed on y with resulting regression line
cþ dy.

a. Derive formulas for the least squares estimates of
c and d obtained by regressing x on y.

b. Show that bd ¼ R2, where b is the conventional
least squares estimator and d the slope estimator
in a.

c. Conclude that in general d 6¼ 1=b. Explain this
in terms of the criterion functions used to obtain
b and d.

d. Finally, check the results in b and c by
considering again the excess returns
data of Example 2.1.

2.3 (E Section 2.2.5)
Suppose that Assumptions 1–6 are satisfied.We con-
sider two slope estimators, b1 ¼ (yn � y1)=(xn � x1)
and b2 ¼P yi=

P
xi, as alternatives for the least

squares estimator b.

a. Investigate whether b1 and b2 are unbiased esti-
mators of b.

b. Determine expressions for the variances of b1
and b2.

c. Show that var(b1) � var(b).

d. Show that there exist data xi, i ¼ 1, � � � , n, so
that var(b2) < var(b). Is this not in contradiction
with the Gauss–Markov theorem?

2.4 (E Section 2.2.4)
Let Assumption 6 be replaced by the assumption
that the data are generated by yi ¼ bxi þ ei, so that
a ¼ 0 is given. We wish to fit a line through the
origin by means of least squares— that is, by min-
imizing

P
(yi � bxi)

2.

a. Adapt Assumptions 1 and 5 for this special case.

b. Prove that the value of b that minimizes this sum
of squares is given by b� ¼

P
xiyi=

P
x2i .

c. Find the mean and variance of this estimator.

d. Investigate whether the estimator b2 of Exercise
2.3 is unbiased now, and show that var(b2) �
var(b�).

e. Let R2 be defined by R2 ¼ b2�
P

x2i =
P

y2i . Show,
by means of a simulation example, that the
results in (2.11), (2.12), and (2.15) no longer
hold true.
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2.5 (E Section 2.2.4)
Sometimes we wish to assign different weights to the
observations. This is for instance the case if the
observations refer to countries and we want to give
larger weights to larger countries.

a. Find the value of b that minimizes
P

wie
2
i where

the weights w1, � � � , wn are given positive
numbers— for instance, the populations or the
areas of the countries. Without loss of generality
it may be assumed that the weights are scaled so
that

P
wi ¼ 1.

b. Now suppose that Assumptions 1–6 are satisfied.
Is the estimator of a unbiased?

2.6 (E Section 2.2.4)
Suppose that Assumptions 1, 2, and 4–6 hold but
that the variances of the disturbances are given by
E[e2i ] ¼ s2gi (i ¼ 1, � � � , n), where the gi are known
and given numbers. Assume that b is computed
according to (2.8).

a. Is b still unbiased under these assumptions?

b. Derive the variance of b under these assumptions.

c. Verify that this result reduces to (2.27) if gi ¼ 1
for i ¼ 1, � � � , n.

2.7 (E Section 2.3.1)
In this exercise we prove that the least squares esti-
mator s2 is unbiased. Prove the following results
under Assumptions 1–6.

a. ei ¼ (yi�y)�b(xi�x)¼�(xi�x)(b�b)þ ei��ee.

b. E[(ei � �ee)2] ¼ s2(1� 1
n ) and E[(b� b)(ei � �ee)] ¼

s2 (xi�x)P
(xj�x)2

.

c. E[ei] ¼ 0 and var(ei) ¼ s2 1� 1
n � (xi�x)2P

(xj�x)2

� �
.

d. E[s2] ¼ s2, where s2 is defined in (2.34).

2.8 (E Section 2.4.1)
Under the assumptions stated in Section 2.4.1,
prove the following results for the prediction error
f in (2.38). The notation x, y, and �ee is used to
denote sample averages over the estimation sample
i ¼ 1, � � � , n.
a. f ¼ (ynþ1 � y)� b(xnþ1 � x)

¼ �(xnþ1 � x)(b� b)þ enþ1 � �ee, and E[f ] ¼ 0.

b. E[(enþ1 � �ee)2] ¼ s2(1þ 1
n ). Explain the differ-

ence with the first result in Exercise 2.7b.

c. Prove the result (2.39).

d. Comment on the difference between this result
and the one in Exercise 2.7c; in particular, ex-
plain why var(f ) > var(ei).

2.9 (E Section 2.2.4)
Suppose that data are generated by a process that
satisfies Assumptions 1 and 3–6, but that the
random disturbances ei do not have mean zero but
that E[ei] ¼ mi.

a. Show that the least squares slope estimator b
remains unbiased if mi ¼ m is constant for all
i ¼ 1, � � � , n.

b. Now suppose that mi ¼ xi=10 is proportional to
the level of xi. Derive the bias E[b]� b under
these assumptions.

c. Discuss whether Assumption 2 can be checked by
considering the least squares residuals ei, i ¼
1, � � � , n. Consider in particular the situations of
a and b.

EMPIRICAL AND SIMULATION QUESTIONS

2.10 (E Sections 2.1.2, 2.1.3, 2.2.3,
2.3.1)

Consider the set ofn ¼ 12observations on
price xi and quantity sold yi for a brand of
coffee in Example 2.3. It may be instructive to per-
form the calculations of this exercise only with the
help of a calculator. For this purpose we present the
data in the following table.

a. Discuss whether the Assumptions 1–6 are plaus-
ible for these data.

b. Compute the least squares estimates of a and b in
the model y ¼ aþ bxi þ ei.

c. Compute SST, SSE, SSR, and R2 for these data.

d. Estimate the variance s2 of the disturbance
terms.
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i Price Quantity

1 1.00 89
2 1.00 86
3 1.00 74
4 1.00 79
5 1.00 68
6 1.00 84
7 0.95 139
8 0.95 122
9 0.95 102

10 0.85 186
11 0.85 179
12 0.85 187

e. Compute the standard error of b and test the null
hypothesis H0: b ¼ 0 against the alternative
H1: b 6¼ 0, using a 5% significance level (the cor-
responding two-sided critical value of the t(10)
distribution is c ¼ 2:23).

f. Compute a 95% interval estimate of b.

2.11 (E Section 2.1.3)
Consider the excess returns data set de-
scribed in Example 2.1 on stock market
returns, with xi the excess returns of the
market index and yi the excess returns in the sector
of cyclical consumer goods.

a. Perform two regressions of y on x, one in the
model yi ¼ aþ bxi þ ei and the second in the
model yi ¼ bxi þ ei.

b. Check the conditions (2.11) and (2.12) for both
models.

c. Investigate the correlation between the two series
of residuals obtained in a. Can you explain this
outcome?

2.12 (E Sections 2.1.2, 2.3.1)
Consider again the stock market returns
data of Example 2.1, with the x-variable
for the excess returns for the whole
market and with the y-variable for the excess returns
for the sector of cyclical consumer goods.

a. Use a software package to compute the
sample means x and y and the sample
moments

P
(xi � x)2=n,

P
(yi � y)2=n, andP

(xi � x) (yi � y)=n.

b. Compute a, b, s2, and R2 from the statistics in a.

c. Check the results by performing a regression of y
on x by means of a software package.

2.13 (E Section 2.3.1)
Consider the data generating process defined in
terms of Assumptions 1–7 with the following speci-
fications. In Assumption 1 take n ¼ 10 and
xi ¼ 100þ i for i ¼ 1, � � � , 10, in Assumption 3
take s2 ¼ 1, and in Assumption 6 take a ¼ �100
and b ¼ 1. Note that we happen to know the par-
ameters of this DGP, but we will simulate the situ-
ation where the modeller knows only a set of data
generated by the DGP, and not the parameters of
the DGP.

a. Simulate one data set from this model and deter-
mine the least squares estimates a andb, the stand-
ard errors of a and b, and the t-values of a and b.

b. Determine 95% interval estimates for a and b.

c. Repeat steps a and b 100 times. Compare the
resulting variances in the 100 estimates a and b
with the theoretical variances. How many of the
100 computed interval estimates contain the true
values of a and b?

d. Now combine the data into one large data set
with 1000 observations. Estimate a and b by
using all 1000 observations simultaneously and
construct 95% interval estimates for a and b.
Discuss the resulting outcomes.

2.14 (E Sections 2.3.1, 2.4.1)
Consider the data set of Exercise 1.11 on
student learning, with FGPA and SATM
scores of ten students. We investigate how
far the FGPA scores of these students can be ex-
plained in terms of their SATM scores.

a. Regress the FGPA scores on a constant and
SATM and compute a, b, and s2.

b. Perform 5% significance tests on a and b.

c. Construct 95% interval estimates for a and b.

d. Make a point prediction of the FGPA score for a
student with SATM score equal to 6.0. Construct
also a 95% prediction interval.

e. Discuss the conditions needed to be confident
about these predictions.

2.15 (E Section 2.4.1)
Consider the CAPM of Example 2.5 for
the stock market returns data on the
excess returns yi for the sector of cyclical
consumer goods and xi for the market index. This
data set consists of 240 monthly returns. We pay
special attention to the ‘crash observation’ i ¼ 94
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corresponding to October 1987 when a crash took
place.

a. Estimate the CAPM using all the available data,
and a second version where the crash observation
is deleted from the sample.

b. Compare the outcomes of the two regressions.

c. Use the second model (estimated without the
crash observation) to predict the value of y94
for the given historical value of x94. Construct
also four prediction intervals, with confidence
levels 50%, 90%, 95%, and 99%. Does the
actual value of y94 belong to these intervals?

d. Explain the relation between your findings in b
and c.

e. Answer questions a and b also for some other
sectors instead of cyclical consumer goods—
that is, for the three sectors ‘Noncyclical Con-
sumer Goods’, ‘Information Technology’, and
‘Telecommunication, Media and Technology’.

f. For each of the four sectors in a and e, test the
null hypothesis H0: b ¼ 1 against the alternative
H1: b 6¼ 1, using the data over the full sample
(that is, including the crash observation). For
which sectors should this hypothesis be rejected
(at the 5% significance level)?

g. Relate the outcomes in f to the risk of the differ-
ent sectors as compared to the total market in the
UK over the period 1980–99.
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3

Multiple Regression

In practice there often exists more than one variable that influences the
dependent variable. This chapter discusses the regression model with mul-
tiple explanatory variables. We use matrices to describe and analyse this
model. We present the method of least squares, its statistical properties,
and the idea of partial regression. The F-test is the central tool for testing
linear hypotheses, with a test for predictive accuracy as a special case.
Particular attention is paid to the question whether additional variables
should be included in the model or not.



3.1 Least squares in matrix form
E Uses Appendix A.2–A.4, A.6, A.7.

3.1.1 Introduction

More than one explanatory variable

In the foregoing chapter we considered the simple regression model where
the dependent variable is related to one explanatory variable. In practice the
situation is often more involved in the sense that there exists more than one
variable that influences the dependent variable.
As an illustration we consider again the salaries of 474 employees at a

US bank (see Example 2.2 (p. 77) on bank wages). In Chapter 2 the vari-
ations in salaries (measured in logarithms) were explained by variations in
education of the employees. As can be observed from the scatter diagram in
Exhibit 2.5(a) (p. 85) and the regression results in Exhibit 2.6 (p. 86), around
half of the variability (as measured by the variance) can be explained in this
way. Of course, the salary of an employee is not only determined by the
number of years of education because many other variables also play a role.
Apart from salary and education, the following data are available for each
employee: begin or starting salary (the salary that the individual earned at his
or her first position at this bank), gender (with value zero for females and one
for males), ethnic minority (with value zero for non-minorities and value one
for minorities), and job category (category 1 consists of administrative jobs,
category 2 of custodial jobs, and category 3 of management jobs). The begin
salary can be seen as an indication of the qualities of the employee that,
apart from education, are determined by previous experience, personal char-
acteristics, and so on. The other variables may also affect the earned salary.

Simple regression may be misleading

Of course, the effect of each variable could be estimated by a simple regres-
sion of salaries on each explanatory variable separately. For the explanatory
variables education, begin salary, and gender, the scatter diagrams with
regression lines are shown in Exhibit 3.1 (a–c). However, these results may
be misleading, as the explanatory variables are mutually related. For

118 3 Multiple Regression



9.5

10.0

10.5

11.0

11.5

12.0

9.0 9.5 10.0 10.5 11.0 11.5

LOGSALBEGIN

L
O

G
SA

L

LOGSAL vs. LOGSALBEGIN

9.5

10.0

10.5

11.0

11.5

12.0

−0.5 0.0 0.5 1.0 1.5

GENDER

L
O

G
SA

L

LOGSAL vs. GENDER

9.0

9.5

10.0

10.5

11.0

11.5

−0.5 0.0 0.5 1.0 1.5

GENDER

L
O

G
SA

L
B

E
G

IN

LOGSALBEGIN vs. GENDER

9.5

10.0

10.5

11.0

11.5

12.0

5 10 15 20 25

EDUC

L
O

G
SA

L

LOGSAL vs. EDUC

9.0

9.5

10.0

10.5

11.0

11.5

5 10 15 20 25

EDUC

L
O

G
SA

L
B

E
G

IN
LOGSALBEGIN vs. EDUC

5

10

15

20

25

−0.5 0.0 0.5 1.0 1.5

GENDER

E
D

U
C

EDUC  vs.  GENDER

(a) (b)

(c) (d)

(e) (f )

Exhibit 3.1 Scatter diagrams of Bank Wage data

Scatter diagrams with regression lines for several bivariate relations between the variables
LOGSAL (logarithm of yearly salary in dollars), EDUC (finished years of education),
LOGSALBEGIN (logarithm of yearly salary when employee entered the firm) and GENDER
(0 for females, 1 for males), for 474 employees of a US bank.

3.1 Least squares in matrix form 119



example, the gender effect on salaries (c) is partly caused by the gender effect
on education (e). Similar relations between the explanatory variables are
shown in (d) and (f ). This mutual dependence is taken into account by
formulating a multiple regression model that contains more than one ex-
planatory variable.

3.1.2 Least squares

E Uses Appendix A.7.

Regression model in matrix form

The linear model with several explanatory variables is given by the equation

yi ¼ b1 þ b2x2i þ b3x3i þ � � � þ bkxki þ ei (i ¼ 1, � � � , n): (3:1)

From now on we follow the convention that the constant term is denoted by
b1 rather than a. The first explanatory variable x1 is defined by x1i ¼ 1 for
every i ¼ 1, � � � , n, and for simplicity of notation we write b1 instead of b1x1i.
For purposes of analysis it is convenient to express the model (3.1) inmatrix
form. Let

y ¼
y1

..

.

yn

0B@
1CA, X ¼

1 x21 � � � xk1
..
. ..

. ..
.

1 x2n � � � xkn

0B@
1CA, b ¼

b1
..
.

bk

0B@
1CA, e ¼

e1
..
.

en

0B@
1CA: (3:2)

Note that in the n� kmatrixX ¼ (xji) the first index j (j ¼ 1, � � � , k) refers to
the variable number (in columns) and the second index i (i ¼ 1, � � � , n) refers
to the observation number (in rows). The notation in (3.2) is common in
econometrics (whereas in books on linear algebra the indices i and j are often
reversed). In our notation, we can rewrite (3.1) as

y ¼ Xbþ e: (3:3)

Here b is a k� 1 vector of unknown parameters and e is an n� 1 vector of
unobserved disturbances.

Residuals and the least squares criterion

If b is a k� 1 vector of estimates of b, then the estimated model may be
written as

120 3 Multiple Regression



y ¼ Xbþ e: (3:4)

Here e denotes the n� 1 vector of residuals, which can be computed from the
data and the vector of estimates b by means of

e ¼ y�Xb: (3:5)

We denote transposition of matrices by primes (0)— for instance, the trans-
pose of the residual vector e is the 1� n matrix e0 ¼ (e1, � � � , en). To deter-
mine the least squares estimator, we write the sum of squares of the residuals
(a function of b) as

S(b) ¼
X

e2i ¼ e0e ¼ (y�Xb)0(y�Xb)

¼ y0y� y0Xb� b0X0yþ b0X0Xb:
(3:6)

Derivation of least squares estimator

The minimum of S(b) is obtained by setting the derivatives of S(b) equal to zero.
Note that the function S(b) has scalar values, whereas b is a column vector with k
components. So we have k first order derivatives andwewill follow the convention
to arrange them in a column vector. The second and third terms of the last expres-
sion in (3.6) are equal (a 1� 1matrix is always symmetric) andmay be replaced by
�2b0X0y. This is a linear expression in the elements of b and so the vector of
derivatives equals�2X0y. The last term of (3.6) is a quadratic form in the elements
of b. The vector of first order derivatives of this term b0X0Xb can be written as
2X0Xb. The proof of this result is left as an exercise (see Exercise 3.1). Toget the idea
we consider the case k ¼ 2 and we denote the elements of X0X by cij, i, j ¼ 1, 2,
with c12 ¼ c21. Then b0X0Xb ¼ c11b

2
1 þ c22b

2
2 þ 2c12b1b2. The derivative with re-

spect to b1 is 2c11b1 þ 2c12b2 and the derivative with respect to b2 is
2c12b1 þ 2c22b2. When we arrange these two partial derivatives in a 2� 1 vector,
this can be written as 2X0Xb. See Appendix A (especially Examples A.10 and A.11
in Section A.7) for further computational details and illustrations.

The least squares estimator

Combining the above results, we obtain

@S

@b
¼ �2X0yþ 2X0Xb: (3:7)

The least squares estimator is obtained by minimizing S(b). Therefore we set
these derivatives equal to zero, which gives the normal equations

X0Xb ¼ X0y: (3:8)

T
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Solving this for b, we obtain

b ¼ (X0X)�1X0y (3:9)

provided that the inverse of X0X exists, which means that the matrix X
should have rank k. As X is an n� k matrix, this requires in particular that
n � k—that is, the number of parameters is smaller than or equal to the
number of observations. In practice we will almost always require that k is
considerably smaller than n.

Proof of minimum

From now on, if we write b, we always mean the expression in (3.9). This is the
classical formula for the least squares estimator in matrix notation. If the matrixX
has rank k, it follows that the Hessian matrix

@2S

@b@b0
¼ 2X0X (3:10)

is a positive definite matrix (see Exercise 3.2). This implies that (3.9) is indeed
the minimum of (3.6). In (3.10) we take the derivatives of a vector @S

@b

� �
with

respect to another vector (b0) and we follow the convention to arrange these
derivatives in a matrix (see Exercise 3.2). An alternative proof that b minimizes
the sum of squares (3.6) that makes no use of first and second order derivatives is
given in Exercise 3.3.

Summary of computations

The least squares estimates can be computed as follows.

Least squares estimation


 Step 1: Choice of variables. Choose the variable to be explained (y) and the
explanatory variables (x1, � � � , xk, where x1 is often the constant that
always takes the value 1).


 Step 2: Collect data. Collect n observations of y and of the related values of
x1, � � � , xk and store the data of y in an n� 1 vector and the data on the
explanatory variables in the n� k matrix X.


 Step 3: Compute the estimates. Compute the least squares estimates by the
OLS formula (3.9) by using a regression package.

E Exercises: T: 3.1, 3.2.

T

122 3 Multiple Regression



3.1.3 Geometric interpretation

E Uses Sections 1.2.2, 1.2.3; Appendix A.6.

Least squares seen as projection

The least squares method can be given a geometric interpretation, which we
discuss now. Using the expression (3.9) for b, the residuals may be written as

e ¼ y�Xb ¼ y�X(X0X)�1X0y ¼ My (3:11)

where

M ¼ I �X(X0X)�1X0: (3:12)

The matrix M is symmetric (M0 ¼ M) and idempotent (M2 ¼ M). Since it
also has the property MX ¼ 0, it follows from (3.11) that

X0e ¼ 0: (3:13)

We may write the explained component ŷy of y as

ŷy ¼ Xb ¼ Hy (3:14)

where

H ¼ X(X0X)�1X0 (3:15)

is called the ‘hat matrix’, since it transforms y into ŷy (pronounced: ‘y-hat’).
Clearly, there holds H0 ¼ H, H2 ¼ H, H þM ¼ I and HM ¼ 0. So

y ¼ HyþMy ¼ ŷyþ e

where, because of (3.11) and (3.13), ŷy0e ¼ 0, so that the vectors ŷy and e
are orthogonal to each other. Therefore, the least squares method can be
given the following interpretation. The sum of squares e0e is the square of
the length of the residual vector e ¼ y�Xb. The length of this vector is
minimized by choosing Xb as the orthogonal projection of y onto the space
spanned by the columns of X. This is illustrated in Exhibit 3.2. The projec-
tion is characterized by the property that e ¼ y�Xb is orthogonal to
all columns of X, so that 0 ¼ X0e ¼ X0(y�Xb). This gives the normal
equations (3.8).
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Geometry of least squares

Let S(X) be the space spanned by the columns of X (that is, the set of all n� 1
vectors that can bewritten asXa for some k� 1 vector a) and let S?(X) be the space
orthogonal to S(X) (that is, the set of all n� 1 vectors z with the property that
X0z ¼ 0). The matrixH projects onto S(X) and the matrixM projects onto S?(X).
In y ¼ ŷyþ e, the vector y is decomposed into two orthogonal components, with
ŷy 2 S(X) according to (3.14) and e 2 S?(X) according to (3.13). The essence of this
decomposition is given in Exhibit 3.3, which can be seen as a two-dimensional
version of the three-dimensional picture in Exhibit 3.2.

Geometric interpretation as a tool in analysis

This geometric interpretation can be helpful to understand some of the algebraic
properties of least squares. As an example we consider the effect of applying linear
transformations on the set of explanatory variables. Suppose that the n� kmatrix
X is replaced by X� ¼ XA where A is a k� k invertible matrix. Then the least
squares fit (ŷy), the residuals (e), and the projection matrices (H and M) remain
unaffected by this transformation. This is immediately evident from the geometric
pictures in Exhibits 3.2 and 3.3, as S(X�) ¼ S(X).

T

e=My

y

0

Xb=Hy

X-plane

Exhibit 3.2 Least squares

Three-dimensional geometric impression of least squares, the vector of observations on
the dependent variable y is projected onto the plane of the independent variables X to obtain
the linear combination Xb of the independent variables that is as close as possible to y.

e = My

0

y

Xb = Hy
S(X)

Exhibit 3.3 Least squares

Two-dimensional geometric impression of least squares where the k-dimensional plane S(X) is
represented by the horizontal line, the vector of observations on the dependent variable y is
projected onto the space of the independent variables S(X) to obtain the linear combinationXb
of the independent variables that is as close as possible to y.

T
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The properties can also be checked algebraically, by working out the expres-
sions for ŷy, e, H, and M in terms of X�. The least squares estimates change after
the transformation, as b� ¼ (X0

�X�)�1X0
�y ¼ A�1b. For example, suppose that

the variable xk is measured in dollars and x�k is the same variable measured in
thousands of dollars. Then x�ki ¼ xki=1000 for i ¼ 1, � � � , n, andX� ¼ XAwhere A
is the diagonal matrix diag(1, � � � , 1, 0:001). The least squares estimates of bj for
j 6¼ k remain unaffected— that is, b�j ¼ bj for j 6¼ k, and b�k ¼ 1000bk. This also
makes perfect sense, as one unit increase in x�k corresponds to an increase of a
thousand units in xk.

E Exercises: T: 3.3.

3.1.4 Statistical properties

E Uses Sections 1.2.2, 1.3.2.

Seven assumptions on the multiple regression model

To analyse the statistical properties of least squares estimation, it is conveni-
ent to use as conceptual background again the simulation experiment de-
scribed in Section 2.2.1 (p. 87–8). We first restate the seven assumptions of
Section 2.2.3 (p. 92) for the multiple regression model (3.3) and use the
matrix notation introduced in Section 3.1.2.

. Assumption 1: fixed regressors. All elements of the n� k matrix X con-
taining the observations on the explanatory variables are non-stochastic. It
is assumed that n � k and that the matrix X has rank k.

. Assumption 2: random disturbances, zero mean. The n� 1 vector e con-
sists of random disturbances with zero mean so that E[e] ¼ 0, that is,
E[ei] ¼ 0 (i ¼ 1, � � � , n).

. Assumption 3: homoskedasticity. The covariance matrix of the disturb-
ances E[ee0] exists and all its diagonal elements are equal to s2, that is,
E[e2i ] ¼ s2 (i ¼ 1, � � � , n).

. Assumption 4: no correlation. The off-diagonal elements of the covariance
matrix of the disturbances E[ee0] are all equal to zero, that is, E[eiej] ¼ 0 for
all i 6¼ j.

. Assumption 5: constant parameters. The elements of the k� 1 vector b
and the scalar s are fixed unknown numbers with s > 0.

. Assumption 6: linear model. The data on the explained variable y have
been generated by the data generating process (DGP)

y ¼ Xbþ e: (3:16)
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. Assumption 7: normality. The disturbances are jointly normally distrib-
uted.

Assumptions 3 and 4 can be summarized in matrix notation as

E[ee0] ¼ s2I, (3:17)

where I denotes the n� n identity matrix. If in addition Assumption 7 is
satisfied, then e follows the multivariate normal distribution

e � N(0, s2I):

Assumptions 4 and 7 imply that the disturbances ei, i ¼ 1, � � � , n are mutually
independent.

Least squares is unbiased

The expected value of b is obtained by using Assumptions 1, 2, 5, and 6.
Assumption 6 implies that the least squares estimator b ¼ (X0X)�1X0y can be
written as

b ¼ (X0X)�1X0(Xbþ e) ¼ bþ (X0X)�1X0e:

Taking expectations is a linear operation— that is, if z1 and z2 are two
random variables and A1 and A2 are two non-random matrices of
appropriate dimensions so that z ¼ A1z1 þ A2z2 is well defined, then
E[z] ¼ A1E[z1]þ A2E[z2]. From Assumptions 1, 2, and 5 we obtain

E[b] ¼ E[bþ (X0X)�1X0e] ¼ bþ (X0X)�1X0E[e] ¼ b: (3:18)

So b is unbiased.

The covariance matrix of b

Using the result (3.18), we obtain that under Assumptions 1–6 the covariance
matrix of b is given by

var(b)¼ E[(b� b)(b� b)0]¼ E[(X0X)�1X0ee0X(X0X)�1]

¼ (X0X)�1X0E[ee0]X(X0X)�1 ¼ (X0X)�1X0(s2I)X(X0X)�1

¼ s2(X0X)�1: (3:19)

The diagonal elements of this matrix are the variances of the estimators of
the individual parameters, and the off-diagonal elements are the covariances
between these estimators.
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Least squares is best linear unbiased

The Gauss–Markov theorem, proved in Section 2.2.5 (p. 97–8) for the simple
regression model, also holds for the more general model (3.16). It states that,
among all linear unbiased estimators, b has minimal variance—that is, b is
the best linear unbiased estimator (BLUE) in the sense that, if b̂b ¼ Ay with A
a k� n non-stochastic matrix and E[b̂b] ¼ b, then var(b̂b)� var(b) is a positive
semidefinite matrix. This means that for every k� 1 vector c of constants
there holds c0(var(b̂b)� var(b))c � 0, or, equivalently, var(c0b) � var(c0b̂b).
Choosing for c the jth unit vector, this means in particular that for the jth
component var(bj) � var(b̂bj) so that the least squares estimators are efficient.
This result holds true under Assumptions 1–6, the assumption of normality is
not needed.

Proof of Gauss–Markov theorem

To prove the result, first note that the condition that E[b̂b] ¼ E[Ay] ¼
AE[y] ¼ AXb ¼ b for all b implies that AX ¼ I, the k� k identity matrix. Now
define D ¼ A� (X0X)�1X0, then DX ¼ AX� (X0X)�1X0X ¼ I � I ¼ 0 so that

var(b̂b) ¼ var(Ay) ¼ var(Ae) ¼ s2AA0 ¼ s2DD0 þ s2(X0X)�1,

where the last equality follows by writing A ¼ Dþ (X0X)�1X0 and working out
AA0. This shows that var(b̂b)� var(b) ¼ s2DD0, which is positive semidefinite, and
zero if and only if D ¼ 0— that is, A ¼ (X0X)�1X0. So b̂b ¼ b gives the minimal
variance.

E Exercises: T: 3.4.

3.1.5 Estimating the disturbance variance

Derivation of unbiased estimator

Next we consider the estimation of the unknown variance s2. As in the previous
chapter we make use of the sum of squared residuals e0e. Intuition could suggest to
estimate s2 ¼ E[e2i ] by the sample average 1

n

P
e2i ¼ 1

n e
0e, but this estimator is not

unbiased. It follows from (3.11) and (3.16) and the fact that MX ¼ 0 that
e ¼ My ¼ M(Xbþ e) ¼ Me. So

E[e] ¼ 0, (3:20)

var(e) ¼ E[ee0] ¼ E[Mee0M] ¼ ME[ee0]M ¼ s2M2 ¼ s2M: (3:21)

T

T
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To evaluate E[e0e] it is convenient to use the trace of a square matrix, which is
defined as the sum of the diagonal elements of this matrix. Because the trace and
the expectation operator can be interchanged, we find, using the property that
tr(AB) ¼ tr(BA), that

E[e0e] ¼ E[tr(ee0) ] ¼ tr(E[ee0] ) ¼ s2tr(M):

Using the property that tr(Aþ B) ¼ tr(A)þ tr(B) we can simplify this as

tr(M) ¼ tr(In �X(X0X)�1X0) ¼ n� tr(X(X0X)�1X0)

¼ n� tr(X0X(X0X)�1) ¼ n� tr(Ik) ¼ n� k,

where the subscripts denote the order of the identity matrices.

The least squares estimator s2 and standard errors

This shows that E[e0e] ¼ (n� k)s2 so that

s2 ¼ e0e
n� k

(3:22)

is an unbiased estimator of s2. The square root s of (3.22) is called the
standard error of the regression. If in the expression (3.19) we replace s2

by s2 and if we denote the jth diagonal element of (X0X)�1 by ajj, then s
ffiffiffiffiffi
ajj

p
is

called the standard error of the estimated coefficient bj. This is an estimate of
the standard deviation s

ffiffiffiffiffi
ajj

p
of bj.

Intuition for the factor 1/(n� k)

The result in (3.22) can also be given a more intuitive interpretation. Suppose
we would try to explain y by a matrix X with k ¼ n columns and rank k.
Then we would obtain e ¼ 0, a perfect fit, but we would not have obtained
any information on s2. Of course this is an extreme case. In practice we
confine ourselves to the case k < n. The very fact that we choose b in such a
way that the sum of squared residuals is minimized is the cause of the fact
that the squared residuals are smaller (on average) than the squared disturb-
ances. Let us consider a diagonal element of (3.21),

var(ei) ¼ s2(1� hi), (3:23)

where hi is the ith diagonal element of the matrixH ¼ I �M in (3.15). AsH
is positive semidefinite, it follows that hi � 0. If the model contains a con-
stant term (so that the matrix X contains a column of ones), then hi > 0 (see
Exercise 3.7). So each single element ei of the residual vector has a variance
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that is smaller than s2, and therefore the sum of squares
P

e2i has an expected
value less than ns2. This effect becomes stronger when we have more
parameters to obtain a good fit for the data. If one would like to use a
small residual variance as a criterion for a good model, then the denominator
(n� k) of the estimator (3.22) gives an automatic penalty for choosing
models with large k.

Intuition for the number of degrees of freedom (n� k)

As e ¼ Me, it follows under Assumptions 1–7 that e0e=s2 ¼ e0Me=s2 follows
the w2-distribution with (n� k) degrees of freedom. This follows from the
results in Section 1.2.3 (p. 32), using the fact thatM is an idempotent matrix
with rank (n� k). The term degrees of freedom refers to the restrictions
X0e ¼ 0.Wemay partition this asX0

1e1 þX0
2e2 ¼ 0, whereX0

1 is a k� (n� k)
matrix andX0

2 a k� kmatrix. If the matrixX0
2 has a rank less than k, we may

rearrange the columns of X0 in such a way that X0
2 has rank k. The restric-

tions imply that, once we have freely chosen the n� k elements of e1, the
remaining elements are dictated by e2 ¼ �(X0

2)
�1X0

1e1. This is also clear from
Exhibit 3.3. For given matrix X of explanatory variables, the residual vector
lies in S?(X) and this space has dimension (n� k). That is, k degrees of
freedom are lost because b has been estimated.

E Exercises: T: 3.5, 3.7a.

3.1.6 Coefficient of determination

Derivation of R2

The performance of least squares can be evaluated by the coefficient of determin-
ation R2 — that is, the fraction of the total sample variation

P
(yi � y)2 that is

explained by the model.
In matrix notation, the total sample variation can be written as y0Ny with

N ¼ I � 1

n
ii0,

where i ¼ (1, � � � , 1)0 is the n� 1 vector of ones. The matrix N has the property
that it takes deviations from the mean, as the elements ofNy are yi � y. Note that
N is a special case of an M-matrix (3.12) with X ¼ i, as i0i ¼ n. So Ny can be
interpreted as the vector of residuals and y0Ny ¼ (Ny)0Ny as the residual sum of
squares from a regression where y is explained by X ¼ i. If X in the multiple
regression model (3.3) contains a constant term, then the fact that X0e ¼ 0
implies that i0e ¼ 0 and hence Ne ¼ e. From y ¼ Xbþ e we then obtain
Ny ¼ NXbþNe ¼ NXbþ e ¼ ‘explained’ þ ‘residual’, and

T
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y0Ny ¼ (Ny)0Ny ¼ (NXbþ e)0(NXbþ e)

¼ b0X0NXbþ e0e:

Here the cross term vanishes because b0X0Ne ¼ 0, as Ne ¼ e and X0e ¼ 0. It
follows that the total variation in y (SST) can be decomposed in an explained
part SSE ¼ b0X0NXb and a residual part SSR ¼ e0e.

Coefficient of determination: R2

Therefore R2 is given by

R2 ¼ SSE

SST
¼ b0X0NXb

y0Ny
¼ 1� e0e

y0Ny
¼ 1� SSR

SST
: (3:24)

The third equality in (3.24) holds true if the model contains a constant term.
If this is not the case, then SSRmay be larger than SST (see Exercise 3.7) and
R2 is defined as SSE=SST (and not as 1� SSR=SST). If the model contains a
constant term, then (3.24) shows that 0 � R2 � 1. It is left as an exercise (see
Exercise 3.7) to show that R2 is the squared sample correlation coefficient
between y and its explained part ŷy ¼ Xb. In geometric terms, R (the square
root of R2) is equal to the length of NXb divided by the length of Ny—that
is, R is equal to the cosine of the angle between Ny and NXb. This is
illustrated in Exhibit 3.4. A good fit is obtained when Ny is close to
NXb—that is, when the angle between these two vectors is small. This
corresponds to a high value of R2.

Adjusted R2

When explanatory variables are added to the model, then R2 never decreases
(see Exercise 3.6). The wish to penalize models with large k has motivated an
adjusted R2 defined by adjusting for the degrees of freedom.

Ne

0

Ny

NXb

j

Exhibit 3.4 Geometric picture of R2

Two-dimensional geometric impression of the coefficient of determination. The dependent
variable and all the independent variables are taken in deviation from their sample means, with
resulting vector of dependent variables Ny and matrix of independent variables NX. The
explained part of Ny is NXb with residuals Ne ¼ e, and the coefficient of determination is
equal to the square of the cosine of the indicated angle j.
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R
2 ¼ 1� e0e=(n� k)

y0Ny=(n� 1)
¼ 1� n� 1

n� k
(1� R2): (3:25)

E Exercises: T: 3.6a, b, 3.7b, c.

3.1.7 Illustration: Bank Wages

To illustrate the foregoing results we consider the data on salary and educa-
tion discussed earlier in Chapter 2 and in Section 3.1.1.We will discuss (i) the
data, (ii) the model, (iii) the normal equations and the least squares estimates,
(iv) the interpretation of the estimates, (v) the sums of squares and R2, and
(vi) the orthogonality of residuals and explanatory variables.

(i) Data

The data consist of a cross section of 474 individuals working for a US bank.
For each employee, the information consists of the following variables:
salary (S), education (x2), begin salary (B), gender (x4 ¼ 0 for females,
x4 ¼ 1 for males), minority (x5 ¼ 1 if the individual belongs to a minority
group, x5 ¼ 0 otherwise), job category (x6 ¼ 1 for clerical jobs, x6 ¼ 2 for
custodial jobs, and x6 ¼ 3 for management positions), and some further job-
related variables.

(ii) Model

As a start, we will consider the model with y ¼ log (S) as variable to be
explained and with x2 and x3 ¼ log (B) as explanatory variables. That is,
we consider the regression model

yi ¼ b1 þ b2x2i þ b3x3i þ ei (i ¼ 1, � � � , n):

(iii) Normal equations and least squares estimates

As before, to simplify the notationwe define the first regressor by x1i ¼ 1. The
normal equations (3.8) involve the cross product termsX0X and X0y. For the
data at hand they are given (after rounding) in Exhibit 3.5, Panel 1. Solving
the normal equations (3.8) gives the least squares estimates
shown in Panel 3 in Exhibit 3.5, so that (after rounding) b1 ¼ 1:647,
b2 ¼ 0:023, and b3 ¼ 0:869. It may be checked from the cross products in
Panel 1 in Exhibit 3.5 thatX0Xb ¼ X0y (apart from rounding errors)— that is,

474 6395 4583
6395 90215 62166
4583 62166 44377

0@ 1A 1:647
0:023
0:869

0@ 1A ¼
4909

66609
47527

0@ 1A:

E
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(iv) Interpretation of estimates

A first thing to note here is that the marginal relative effect of education on
wage (that is, dS=Sdx2

¼ d log (S)
dx2

¼ dy
dx2

¼ b2) is estimated now as 0.023, whereas in
Chapter 2 this effect was estimated as 0.096 with a standard error of 0.005
(see Exhibit 2.11, p. 103). This is a substantial difference. That is, an

Panel 1 IOTA LOGSAL EDUC LOGSALBEGIN
IOTA 474

LOGSAL 4909 50917
EDUC 6395 66609 90215

LOGSALBEGIN 4583 47527 62166 44377

Panel 2 LOGSAL EDUC LOGSALBEGIN
LOGSAL 1.000000
EDUC 0.696740 1.000000

LOGSALBEGIN 0.886368 0.685719 1.000000

Panel 3: Dependent Variable: LOGSAL
Method: Least Squares
Sample: 1 474
Included observations: 474

Variable Coefficient Std. Error
C 1.646916 0.274598

EDUC 0.023122 0.003894
LOGSALBEGIN 0.868505 0.031835

R-squared 0.800579
Adjusted R-squared 0.799733
S.E. of regression 0.177812
Sum squared resid 14.89166
Total sum of squares 74.67462
Explained sum of squares 59.78296

Panel 4: Dependent Variable: RESID
Method: Least Squares
Sample: 1 474
Included observations: 474

Variable Coefficient
C 3.10E-11

EDUC 2.47E-13
LOGSALBEGIN �3.55E-12

R-squared 0.000000
Adjusted R-squared �0.004246
S.E. of regression 0.177812
Sum squared resid 14.89166

Exhibit 3.5 Bank Wages (Section 3.1.7)

Panel 1 contains the cross product terms (X0X and X0y) of the variables (iota denotes the
constant term with all values equal to one), Panel 2 shows the correlations between the
dependent and the two independent variables, and Panel 3 shows the outcomes obtained by
regressing salary (in logarithms) on a constant and the explanatory variables education and the
logarithm of begin salary. The residuals of this regression are denoted by RESID, and Panel 4
shows the result of regressing these residuals on a constant and the two explanatory variables
(3.10E-11 means 3.10�10�11, and so on; these values are zero up to numerical rounding).
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additional year of education corresponds on average with a 9.6 per cent
increase in salary. But, if the begin salary is ‘kept fixed’, an additional year of
education gives only a 2.3 per cent increase in salary. The cause of this
difference is that the variable ‘begin salary’ is strongly related to the variable
‘education’. This is clear from Panel 2 in Exhibit 3.5, which shows that x2
and x3 have a correlation of around 69 per cent. We refer also to Exhibit 3.1
(d), which shows a strong positive relation between x2 and x3. This means
that in Chapter 2, where we have excluded the begin salary from the model,
part of the positive association between education and salary is due to a third
variable, begin salary. This explains why the estimated effect in Chapter 2 is
larger.

(v) Sums of squares and R2

The sums of squares for this model are reported in Panel 3 in Exhibit 3.5,
with values SST ¼ 74:675, SSE ¼ 59:783, and SSR ¼ 14:892, so that
R2 ¼ 0:801. This is larger than the R2 ¼ 0:485 in Chapter 2 (see Exhibit
2.6, p. 86). In Section 3.4 we will discuss a method to test whether this is a
significant increase in the model fit. Panel 3 in Exhibit 3.5 also reports the
standard error of the regression s ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SSR=(474� 3)
p ¼ 0:178 and the stand-

ard error of b2 0.0039.

(vi) Orthogonality of residuals and explanatory variables

Panel 4 in Exhibit 3.5 shows the result of regressing the least squares
residuals on the variables x1, x2, and x3. This gives an R2 ¼ 0, which is in
accordance with the property that the residuals are uncorrelated with the
explanatory variables in the sense that X0e ¼ 0 (see Exhibits 3.2 and 3.4).
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3.2 Adding or deleting variables
E Uses Appendix A.2–A.4.

Choice of the number of explanatory variables

To make an econometric model we have to decide which variables provide
the best explanation of the dependent variable. That is, we have to decide
which explanatory variables should be included in the model. In this
section we analyse what happens if we add variables to our model or delete
variables from our model. This is illustrated in the scheme in Exhibit 3.6,
where X1 and X2 denote two subsets of variables. Here X1 is included in
the model, and the question is whether X2 should be included in the model
or not.

Organization of this section

The section is organized as follows. Section 3.2.1 considers the effects of
including or deleting variables on the regression coefficients, and Section
3.2.2 provides an interpretation of this result in terms of ceteris paribus
conditions. In Sections 3.2.3 and 3.2.4 we analyse the statistical conse-
quences of omitting or including variables. Section 3.2.5 shows that, in a
multiple regression model, each individual coefficient measures the effect
of an explanatory variable on the dependent variable after neutralizing
for the effects that are due to the other explanatory variables included in
the model.

X1

X2

yP

b1

b2

yX1 
b

(a) (b)

Exhibit 3.6 Direct and indirect effects

Two subsets of explanatory variables (X1 and X2) influence the variable to be explained (y),
and one subset of explanatory variables (X1) influences the other one (X2). The (total) effect of
X1 on y (a) is denoted by b in Chapter 2 (and by bR in Section 3.2.1), the (partial) effect of X1

on y (b) for given value ofX2 is denoted by b1 and the (partial) effect ofX2 on y for given value
of X1 is denoted by b2. The effect of changes in X1 on X2 is denoted by P.
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3.2.1 Restricted and unrestricted models

Two models: Notation

As before, we consider the regression model y ¼ Xbþ e where X is the
n� k matrix of explanatory variables with rank(X) ¼ k. We partition
the explanatory variables in two groups, one with k� g variables that
are certainly included in the model and another with the remaining g vari-
ables that may be included or deleted. The matrix of explanatory variables
is partitioned as X ¼ (X1 X2), where X1 is the n� (k� g) matrix of obser-
vations of the included regressors and X2 is the n� g matrix with
observations on the variables that may be included or deleted. The k� 1
vector b of unknown parameters is decomposed in a similar way in the
(k� g)� 1 vector b1 and the g� 1 vector b2. Then the regression model
can be written as

y ¼ X1b1 þX2b2 þ e: (3:26)

All the assumptions on the linear model introduced in Section 3.1.4 are
assumed to hold true. In this section we compare two versions of the
model—namely, the unrestricted version in (3.26) and a restricted version
where X2 is deleted from the model. In particular, we investigate the conse-
quences of deleting X2 for the estimate of b1 and for the residuals of the
estimated model.

Least squares in the restricted model

In the restricted model we estimate b1 by regressing y on X1, so that

bR ¼ (X0
1X1)

�1X0
1y: (3:27)

We use the notation

eR ¼ y�X1bR (3:28)

for the corresponding restricted residuals.

Least squares in the unrestricted model

We may write the unrestricted model as

y ¼ Xbþ e ¼ (X1 X2 )
b1
b2

� �
þ e: (3:29)
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The unrestricted least squares estimator is given by b ¼ (X0X)�1X0y. Decom-
posing the k� 1 vector b into a (k� g)� 1 vector b1 (the unrestricted
estimator of b1) and a g� 1 vector b2 (the unrestricted estimator of b2), we
can write the unrestricted regression as

y ¼ (X1 X2 )
b1
b2

� �
þ e ¼ X1b1 þX2b2 þ e: (3:30)

So we continue to write e for the residuals of the unrestricted model. We have
learned in the previous section that the least squares residuals are orthogonal
to all regressors. So we now have X0

1eR ¼ 0 for the restricted model, and
X0

1e ¼ 0 and X0
2e ¼ 0 for the unrestricted model. Note, however, that in

general X0
2eR 6¼ 0.

Comparison of bR and b1

To study the difference between the two estimators bR and b1 of b1, we
premultiply (3.30) by the matrix (X0

1X1)
�1X0

1 and make use of X0
1e ¼ 0 to

obtain bR ¼ (X0
1X1)

�1X0
1y ¼ b1 þ (X0

1X1)
�1X0

1X2b2, that is,

bR ¼ b1 þ Pb2 (3:31)

where the (k� g)� g matrix P is defined by

P ¼ (X0
1X1)

�1X0
1X2: (3:32)

So we see that the difference bR � b1 depends on both P and b2. If either of
these terms vanishes, then bR ¼ b1. This is the case, for instance, ifX2 has no
effect at all (b2 ¼ 0) or if X1 and X2 are orthogonal (X0

1X2 ¼ 0). In these
cases it does not matter for the estimate of b1 whether we include X2 in the
model or not. However, in general the restricted estimate bR will be different
from the unrestricted estimate b1.

Comparison of e0ReR and e0e

Next we compare the residuals of both equations— that is, the residuals eR
in the restricted regression (3.28) and the residuals e in the unrestricted
regression (3.30). As the unrestricted model contains more variables to
explain the dependent variable, it can be expected that it provides a better
(or at least not a worse) fit than the restricted model so that e0e � e0ReR. This
is indeed the case, as we will now show.
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Derivation of sums of squares

To prove that e0e � e0ReR we start with the restricted residuals and then substitute
the unrestricted model (3.30) for y. We obtain

eR ¼ M1y ¼ M1(X1b1 þX2b2 þ e) ¼ M1X2b2 þ e: (3:33)

Here M1 ¼ I �X1(X
0
1X1)

�1X0
1 is the projection orthogonal to the space spanned

by the columns of X1, and we used that M1X1 ¼ 0 and M1e ¼ e (as X0
1e ¼ 0). So

the difference between eR and e depends on M1X2 and b2. We see that eR ¼ e if,
for instance, X2 has no effect at all (b2 ¼ 0). For the sums of squared residuals,
(3.33) implies that

e0ReR ¼ b02X
0
2M1X2b2 þ e0e (3:34)

where the product term vanishes as X0
2M1e ¼ X0

2e�X0
2X1(X

0
1X1)

�1X0
1e ¼ 0

because X0
1e ¼ 0 and X0

2e ¼ 0.

Interpretation of result

As M1 is a positive semidefinite matrix, it follows that b02X
0
2M1X2b2 ¼

(X2b2)
0M1(X2b2) � 0 in (3.34), so that

e0ReR � e0e

and the inequality is strict unless M1X2b2 ¼ 0. This shows that adding
variables to a regression model in general leads to a reduction of the sum
of squared residuals. If this reduction is substantial, then this motivates to
include the variablesX2 in the model, as they provide a significant additional
explanation of the dependent variable. A test for the significance of the
increased model fit is derived in Section 3.4.1.

Example 3.1: Bank Wages (continued)

To illustrate the results in this section we return to the illustration in Section
3.1.7. The dependent variable y is the yearly wage (in logarithms). In the
restricted model we take as explanatory variables ‘education’ and a constant
term, and in the notation of Section 3.2.1 these two variables are collected in
the matrix X1 with n rows and k� g ¼ 2 columns. In the unrestricted model
we take as explanatory variables ‘education’, a constant term, and the
additional variable ‘begin salary’ (in logarithms). This additional variable is
denoted by the matrix X2 with n rows and g ¼ 1 column in this case.
The results of the restricted and unrestricted regressions are given in

Panels 1 and 2 of Exhibit 3.7. The unrestricted model (in Panel 2) has a
larger R2 than the restricted model (in Panel 1). As R2 ¼ 1� (e0e=SST)

E

XM301BWA
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Panel 1: Dependent Variable: LOGSAL
Method: Least Squares

Variable Coefficient Std. Error
C 9.062102 0.062738

EDUC 0.095963 0.004548
R-squared 0.485447

Panel 2: Dependent Variable: LOGSAL
Method: Least Squares

Variable Coefficient Std. Error
C 1.646916 0.274598

EDUC 0.023122 0.003894
LOGSALBEGIN 0.868505 0.031835

R-squared 0.800579

Panel 3: Dependent Variable: RESIDUNREST
Method: Least Squares

Variable Coefficient
C 3.10E-11

EDUC 2.47E-13
LOGSALBEGIN �3.55E-12

R-squared 0.000000

Panel 4: Dependent Variable: RESIDREST
Method: Least Squares

Variable Coefficient
C 3.78E-13

EDUC �2.76E-14
R-squared 0.000000

Panel 5: Dependent Variable: RESIDREST
Method: Least Squares

Variable Coefficient
C �4.449130

LOGSALBEGIN 0.460124
R-squared 0.324464

Panel 6: Dependent Variable: LOGSALBEGIN
Method: Least Squares

Variable Coefficient
C 8.537878

EDUC 0.083869
R-squared 0.470211

Exhibit 3.7 Bank Wages (Example 3.1)

Regression in the restricted model (Panel 1) and in the unrestricted model (Panel 2). The
residuals of the unrestricted regression (denoted by RESIDUNREST) are uncorrelated with
both explanatory variables (Panel 3), but the residuals of the restricted regression (denoted by
RESIDREST) are uncorrelated only with education (Panel 4) and not with the logarithm of
begin salary (Panel 5). The regression in Panel 6 shows that the logarithm of begin salary is
related to education.
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¼ 0:801 > 0:485 ¼ 1� (e0ReR)=SST, it follows that e0e � e0ReR. Panels 3–5 in
Exhibit 3.7 show that X0

1e ¼ 0 (Panel 3), X0
1eR ¼ 0 (Panel 4), but X0

2eR 6¼ 0
(Panel 5). Panel 6 shows the regression of X2 on X1 corresponding to (3.32).
It follows from the outcomes in Panel 1 (for bR), Panel 2 (for b1 and b2), and
Panel 6 (for P) that (apart from rounding errors)

9:062
0:096

� �
¼ 1:647

0:023

� �
þ 8:538

0:084

� �
� 0:869,

which verifies the relation bR ¼ b1 þ Pb2 in (3.31) between restricted and
unrestricted least squares estimates.

Summary of computations

In the restricted model (where y is regressed on k� g regressors) the
(k� g)� 1 vector of least squares estimates is given by bR ¼ (X0

1X1)
�1 X0

1y.
In the unrestricted model (where y is regressed on the same k� g regressors
and g additional regressors) the k� 1 vector of least squares estimates is
given by b ¼ (X0X)�1X0y.

Let b be decomposed in two parts as b ¼ (b01, b
0
2)

0, where the (k� g)� 1
vector b1 corresponds to the regressors of the restricted model and b2 to the g
added regressors. Then the relation between bR and b1 is given by
bR ¼ b1 þ Pb2.

3.2.2 Interpretation of regression coefficients

Relations between regressors: The effect of X1 on X2

The result in (3.31) shows that the estimated effect of X1 on y changes from
b1 to bR ¼ b1 þ Pb2 if we delete the regressors X2 from the model. The
question arises which of these two estimates should be preferred. To investi-
gate this question, we first give an interpretation of the matrix P in (3.32).
This matrix may be interpreted in terms of regressions, where each column of
X2 is regressed on X1. For the jth column of X2 — say, z—this gives esti-
mated coefficients pj ¼ (X0

1X1)
�1X0

1z with explained part ẑz ¼ X1pj and re-
sidual vector z� ẑz ¼ M1z where M1 ¼ I �X1(X

0
1X1)

�1X0
1. Collecting the g

regressions z ¼ ẑzþM1z in g columns, we get

X2 ¼ X1PþM1X2

¼ ‘explained part’þ ‘residuals’
(3:35)

with P ¼ (X0
1X1)

�1X0
1X2 as defined in (3.32).
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Non-experimental data and the ceteris paribus idea

The auxiliary regressions (3.35) have an interesting interpretation. In experi-
mental situations where we are free to choose the matricesX1 andX2, we can
choose orthogonal columns so that P ¼ 0. The result in (3.31) shows that
neglecting the variables X2 then has no effect on the estimate of b1. On the
other hand, if X1 and X2 are uncontrolled, then there are several possible
reasons why P could be different from 0. For instance, X1 may ‘cause’ X2 or
X2 may ‘cause’X1, or there could exist a third ‘cause’ in the background that
influences both X1 and X2. It may be useful to keep this in mind when
interpreting the restricted estimate bR and the unrestricted estimate b. Con-
sider the second element of bR (the first element is the intercept). Traditionally,
in a linear relationship thismeasures the partial derivative @y=@z (where znow
denotes the second explanatory variable— that is, the second column ofX1).
It answers the question how ywill react on a change in z ceteris paribus—that
is, if all other things remain equal. Now the question is: which ‘other things’?
In the restrictedmodel, the ‘other things’ clearly are the remaining columns of
the matrix X1 and the residual eR, and in the unrestricted model the ‘other
things’ are the same columns ofX1 and in addition the columns ofX2 and the
residual e.

Direct, indirect, and total effects

So the restricted and the unrestricted model raise different questions and one
should not be surprised if different questions lead to different answers. Take
the particular case that X1 ‘causes’ X2. Then a change of X1 may have two
effects on y, a direct effectmeasured by b1 and an indirect effectmeasured by
Pb2. It is seen from (3.31) that these are precisely the two components of bR.
Under these circumstances it may be hard to keep X2 constant ifX1 changes.
So in this case it may be more natural to look at the restricted model. That is,
bR gives a better idea of the total effect on y of changes in X1 than b1, as it is
unnatural to assume that X2 remains fixed.

If the variables would satisfy exact functional relationships, say
y ¼ f (x1, x2) and x2 ¼ h(x1) (with k ¼ 2 and g ¼ 1), then the marginal effect
of x1 on y is given by

dy

dx1
¼ @f

@x1
þ dh

dx1

@f

@x2
:

Here the total effect of x1 on y (on the left-hand side) is decomposed as the
sum of two terms (on the right-hand side), the direct effect of x1 on y (the first
term) and the indirect effect that runs via x2 (the second term). The result in
(3.31) shows that the same relation holds true when linear relationships are
estimated by least squares.
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Interpretation of regression coefficients in restricted
and unrestricted model

If one wants to estimate only the direct effect of an explanatory variable—
that is, under the assumption that all other explanatory variables remain
fixed— then one should estimate the unrestricted model that includes all
explanatory variables. On the other hand, if one wants to estimate the total
effect of an explanatory variable— that is, the direct effect and all the
indirect effects that run via the other explanatory variables— then one
should estimate the restricted model where all the other explanatory vari-
ables are deleted.

Example 3.2: Bank Wages (continued)

To illustrate the relation between direct, indirect, and total effects, we return
to Example 3.1 on bank wages. The current salary of an employee is influ-
enced by the education and the begin salary of that employee. Clearly, the
begin salary may for a large part be determined by education. The results
discussed in Example 3.1 are summarized in Exhibit 3.8 and have the
following interpretation. In the restricted model (without begin salary)
the coefficient bR ¼ 0:0960 measures the total effect of education on salary.
This effect is split up in two parts in the unrestricted model as bR ¼ bþ pc.

E

XM301BWA

 x3 = log begin salary 

 x2 = education

 x2 = education

0.0231

0.8685

y = log current salary

y = log current salary

0.0839 

0.0960

(a)

(b)

Exhibit 3.8 Bank Wages (Example 3.2)

Two variables (education and begin salary) influence the current salary, and education also
influences the begin salary. The total effect of education on salary consists of two parts, a
direct effect and an indirect effect that runs via the begin salary. If salary is regressed on
education alone, the estimated effect is 0.0960, and if salary is regressed on education
and begin salary together, then the estimated effects are respectively 0.0231 and 0.8685.
If begin salary is regressed on education, the estimated effect is 0.0839. In this case the
direct effect is 0.0231, the indirect effect is 0:0839 � 0:8685 ¼ 0:0729, and the total effect
is 0:0231þ 0:0729 ¼ 0:0960.
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Here b ¼ 0:0231 measures the direct effect of education on salary under the
assumption that begin salary remains constant (the ceteris paribus condi-
tion), and pc ¼ 0:0839 � 0:8685 ¼ 0:0729 measures the indirect effect of
education on salary that is due to a higher begin salary.

Clearly, the estimates bR and b have very different interpretations.

E Exercises: E: 3.14a–c.

3.2.3 Omitting variables

Choice of explanatory variables

For most economic variables to be explained, one can find a long list of
possible explanatory variables. The question is which of these variables
should be included in the model. It seems intuitively reasonable to include
variables only if they have a clear effect on the dependent variable and to
omit variables that are less important. In this section we analyse the effect of
omitting variables from the model, and in the next section of including
irrelevant variables. We focus on the statistical properties of the least squares
estimator. When comparing the restricted and the unrestricted model, a
remark about the term true model is in order; see also our earlier remarks
in Section 2.2.1 (p. 87). Strictly speaking, the term ‘true’ model has a clear
interpretation only in the case of simulated data. When the data are from the
real world, then the DGP is unknown and can at best be approximated.
Nevertheless, it helps our insight to study some of the consequences of
estimating a different model from the true model.

Omitted variables bias

In this section we consider the consequences of omitting variables from the
‘true model’. Suppose the ‘true model’ is

y ¼ X1b1 þX2b2 þ e,

but we use the model with only X1 as explanatory variables and with bR as
our estimator of b1. Then we have

bR ¼ (X0
1X1)

�1X0
1y ¼ b1 þ (X0

1X1)
�1X0

1X2b2 þ (X0
1X1)

�1X0
1e:

This shows that

E[bR] ¼ b1 þ (X0
1X1)

�1X0
1X2b2 ¼ b1 þ Pb2:
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The last term is sometimes called the omitted variables bias. The estimator bR
is in general a biased estimator of b1. In the light of our discussion in Section
3.2.2 we should not be surprised by this ‘bias’, since bR and b1 have different
interpretations.

Variance reduction

To compute the variance of bR, the above two expressions show that
bR � E[bR] ¼ (X0

1X1)
�1X0

1e so that

var(bR) ¼ E[(bR � E[bR])(bR � E[bR])
0] ¼ s2(X0

1X1)
�1:

It is left as an exercise (see Exercise 3.7) to prove that this is smaller than the
variance of the unrestricted least squares estimator b1, that is, var(b1)�
var(bR) is positive semidefinite.

Summary

Summarizing, the omission of relevant variables leads to biased estimates but
to a reduction in variance. If one is interested in estimating the ‘direct’ effect
b1, then omission of X2 is undesirable unless the resulting bias is small
compared to the gain in efficiency, for instance, when b2 is small enough.
This means that variables can be omitted if their effect is small, as this leads
to an improved efficiency of the least squares estimator.

3.2.4 Consequences of redundant variables

Redundant variables lead to inefficiency

A variable is called redundant if it plays no role in the ‘true’ model. Suppose
that

y ¼ X1b1 þ e,

that is, the DGP satisfies Assumptions 1–6 with b2 ¼ 0. In practice we do not
know that b2 is zero. Suppose that the variablesX2 are included as additional
regressors, so that the estimation results are given by

y ¼ X1b1 þX2b2 þ e:

Although the estimated model y ¼ X1b1 þX2b2 þ e neglects the fact that
b2 ¼ 0, it is not wrongly specified as it satisfies Assumptions 1–6. The result
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(3.18) shows that E[b1] ¼ b1 and E[b2] ¼ b2 ¼ 0 in this case. Therefore b1 is
an unbiased estimator. However, this estimator is inefficient in the sense that
var(b1)� var(bR) is positive semidefinite. That is, if the model contains
redundant variables, then the parameters are estimated with less precision
(larger standard errors) as compared with the model that excludes the
redundant variables. To prove this, we write (3.31) as b1 ¼ bR � Pb2. Then
the result

var(b1) ¼ var(bR)þ Pvar(b2)P
0

follows from the fact that cov(b2, bR) ¼ 0, as we will prove below. Because
var(b2) is positive definite, it follows that Pvar(b2)P

0 is positive semidefinite.
So the variances of the elements of b1 are larger than those of the corres-
ponding elements of bR, unless the corresponding rows of P are zero. That is,
if b2 ¼ 0, then in general we gain efficiency by deleting the irrelevant vari-
ablesX2 from the model. This shows the importance of imposing restrictions
on the model.

Proof of auxiliary result cov(b2, bR) ¼ 0

It remains to prove that cov(b2, bR) ¼ 0. The basic step is to express bR and b2 in
terms of e. As b2 ¼ 0 it follows that

bR ¼ (X0
1X1)

�1X0
1y ¼ (X0

1X1)
�1X0

1(X1b1 þ e) ¼ b1 þ (X0
1X1)

�1X0
1e: (3:36)

To express b2 in terms of e we first prove as an auxiliary result that the g� g
matrixX0

2M1X2 is non-singular. As X
0
2M1X2 ¼ (M1X2)

0M1X2, it suffices to prove
that the n� g matrix M1X2 has rank g. We use (3.35) and (3.32) to write

(X1 M1X2) ¼ (X1 X2 �X1P) ¼ (X1 X2)
I �P
0 I

� �
:

The last matrix is non-singular and Assumption 1 states that the n� k matrix
(X1 X2) has rank k. So (X1 M1X2) also has rank k—that is, all its columns are
linearly independent. This means in particular that all columns of the n� gmatrix
M1X2 are linearly independent, so that this matrix has rank g. This proves that
X0

2M1X2 is non-singular.
Now the result in (3.33) states that M1y ¼ M1X2b2 þ e. If we premultiply this

byX0
2, then we obtain, asX0

2e ¼ 0, thatX0
2M1y ¼ X0

2M1X2b2. AsX
0
2M1X2 is non-

singular, this means that

b2 ¼ (X0
2M1X2)

�1X0
2M1y: (3:37)

We now substitute the ‘true’ model y ¼ X1b1 þ e into (3.37). Because M1X1 ¼ 0,
this gives

T
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b2 ¼ (X0
2M1X2)

�1X0
2M1e (as b2 ¼ 0): (3:38)

Using the expressions (3.36) and (3.38) that express bR and b2 in terms of e, we
obtain (as M1X1 ¼ 0)

cov(b2, bR) ¼ E[(b2 � E[b2])(bR � E[bR])
0]

¼ E[(X0
2M1X2)

�1X0
2M1ee0X1(X

0
1X1)

�1]

¼ s2(X0
2M1X2)

�1X0
2M1X1(X

0
1X1)

�1 ¼ 0:

Summary of results

We summarize the results of this and the foregoing section in Exhibit 3.9. If
we include redundant variables (b2 ¼ 0) in our model, then this causes a loss
of efficiency of the estimators of the parameters (b1) of the relevant variables.
That is, by excluding irrelevant variables we gain efficiency. However, if we
exclude relevant variables (b2 6¼ 0), this causes a bias in the estimators. So the
choice between a restricted and an unrestricted model involves a trade-off
between the bias and efficiency of estimators. In practice we do not know the
true parameters b2 but we can test whether b2 ¼ 0. This is discussed in
Sections 3.3 and 3.4.

E Exercises: T: 3.7d.

3.2.5 Partial regression

Multiple regression and partial regression

In this section we give a further interpretation of the least squares estimates
in a multiple regression model. In Section 3.2.2 we mentioned that these

Data Generating Process
Estimated Model y ¼ X1b1 þX2b2 þ e

(b2 non-zero)
y ¼ X1b1 þ e

b2 ¼ 0ð Þ
y ¼ X1bR þ eR bR biased, but smaller variance

than b1

bR best linear unbiased

y ¼ X1b1 þX2b2 þ e b1 unbiased, but larger variance
than bR

b1 unbiased, but not efficient

Exhibit 3.9 Bias and efficiency

Consequences of regression in models that contain redundant variables (bottom right cell) and
inmodels with omitted variables (top left cell). Comparisons should bemade in columns— that
is, for a fixed data generating process. The cells show the statistical properties of the estimators
bR (of the restricted model whereX2 is deleted, first row) and b1 (of the unrestricted model that
contains bothX1 andX2, second row) for the model parameters b1, under Assumptions 1–6.
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estimates measure direct effects under the ceteris paribus condition that the
other variables are kept fixed. As such ‘controlled experiments’ are almost
never possible in economics, the question arises what is the precise interpret-
ation of this condition. As will be shown below, it means that the indirect
effects that are caused by variations in the other variables are automatically
removed in a multiple regression. We consider again the model where the
n� kmatrix of explanatory variablesX is split in two parts asX ¼ (X1 X2),
where X1 is an n� (k� g) matrix and X2 an n� g matrix. The regression of
y on X1 and X2 gives the result

y ¼ X1b1 þX2b2 þ e:

Another approach to estimate the effects ofX1 on y is the following two-step
method, called partial regression.

Partial regression


 Step 1: Remove the effects of X2. Here we remove the side effects that are
caused by X2. That is, regress y on X2 with residuals M2y, where
M2 ¼ I �X2(X

0
2X2)

�1X0
2. Also regress each column of X1 on X2 with re-

siduals M2X1. Here M2y and M2X1 can be interpreted as the ‘cleaned’
variables obtained after removing the effects of X2. Note that, as a con-
sequence of the fact that residuals are orthogonal to explanatory variables,
the ‘cleaned’ variablesM2y andM2X1 are uncorrelated withX2.


 Step 2: Estimate the ‘cleaned’ effect of X1 on y. Now estimate the ‘cleaned’
effect of X1 on y by regressing M2y on M2X1. This gives

M2y ¼ M2X1b� þ e�

where b� ¼ [(M2X1)
0M2X1]

�1(M2X1)
0M2y ¼ (X0

1M2X1)
�1X0

1M2y and
e� ¼ M2y�M2X1b� are the corresponding residuals.

The result of Frisch–Waugh

The result of Frisch–Waugh states that

b� ¼ b1, e� ¼ e: (3:39)

That is, by including X2 in the regression model, the estimated effect
b1 of X1 on y is automatically ‘cleaned’ from the side effects caused by X2.

Proof of the result of Frisch–Waugh

To prove the result of Frisch–Waugh, we write out the normal equations
X0Xb ¼ X0y in terms of the partitioned matrix X ¼ (X1 X2).

T
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X0
1X1b1 þX0

1X2b2 ¼ X0
1y (3:40)

X0
2X1b1 þX0

2X2b2 ¼ X0
2y (3:41)

From (3.41) we get b2 ¼ (X0
2X2)

�1X0
2y� (X0

2X2)
�1X0

2X1b1, and by substituting
this in (3.40) and arranging terms it follows that

X0
1M2X1b1 ¼ X0

1M2y,

where M2 ¼ I �X2(X
0
2X2)

�1X0
2. In Section 3.2.4 we proved that X0

2M1X2 is
invertible, and a similar argument shows that also X0

1M2X1 is invertible. This
shows that b� ¼ b1. Further it follows from (3.30) and the facts that M2X2 ¼ 0
and M2e ¼ e that

M2y ¼ M2X1b1 þ e:

As b1 ¼ b�, this shows that e� ¼ e.

Summary: To estimate the effect of X1 on y, should we
include X2 or not?

Suppose that we wish to estimate the effect of a certain set of regressors (X1)
on the dependent variable (y). The question is whether certain other variables
(X2) should be added to or omitted from the regression. If the two sets of
regressors X1 and X2 are related (in the sense that X0

1X2 6¼ 0), then the
estimated effects X1 ! y differ in the two models. The partial effect
X1 ! y (ceteris paribus, as if X2 were fixed) cannot be determined if X2 is
deleted from the model, because then the indirect effectX1 ! X2 ! y is also
present.
To isolate the direct effectX1 ! y one can first remove the effects ofX2 on

y and of X2 on X1, after which the cleaned M2y is regressed on the cleaned
M2X1. Instead of this partial regression, one can also include X2 as add-
itional regressors in the model and regress y on X1 and X2.
On the other hand, if one is interested in the total effect ofX1 on y, thenX2

should be deleted from the model.

Three illustrations

There are several interesting applications of the result of Frisch–Waugh, and
we mention three of them.

Case 1: Deviations from sample mean

LetX2 have only one column consisting of ones. If we premultiply byM2, this
amounts to taking deviations from means. For instance, regressing y on X2
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gives an estimated coefficient (X0
2X2)

�1X0
2y ¼ 1

n

P
yi ¼ y with residuals

yi � y, so that the elements of M2y are (y1 � y), � � � , (yn � y). The result of
Frisch–Waugh states that inclusion of a constant term gives the same results
as a regression where all variables are expressed in deviation from their
means. In fact we have already met this kind of formula in Chapter 2— for
instance, in formula (2.8) for the least squares slope estimator.

Case 2: Detrending

Let X2 consist of two columns, a constant and a trend, as follows.

X2 ¼
1 1
1 2
..
. ..

.

1 n

0BB@
1CCA�

Then the first step in partial regression amounts to removing the (linear)
trends from y and the columns of X1. This case was the subject of the article
by R. Frisch and F. V. Waugh, ‘Partial Time Regressions as Compared with
Individual Trends’, Econometrica, 1 (1933), 387–401.

Case 3: Single partial relation

Let X1 consist of a single variable, so that k� g ¼ 1 and X2 contains the
remaining k� 1 variables. Then both M2X1 and M2y have one column and
one can visualize the relation between these columns by drawing a scatter
plot. This is called a partial regression scatter plot. The slope of the regres-
sion line in this plot is b1. This equals the slope parameter of X1 in the
multiple regression equation (3.30).

Example 3.3: Bank Wages (continued)

Using the data on bank wages of the illustration in Section 3.1.7, we illustrate
some of the foregoing results for the model

yi ¼ b1 þ b2x2i þ b3x3i þ ei,

where yi denotes the logarithm of yearly salary, x2i the education, and x3i the
logarithm of the begin salary of the ith employee. This is the regression of
the illustration in Section 3.1.7, with results in Exhibit 3.5, Panel 3. We will
now consider (i) the above-mentioned Case 1, and (ii) the above-mentioned
Case 3.

E
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Regression 1: Dependent Variable: LOGSAL
Variable Coefficient Std. Error

C 10.35679 0.018250

Regression 2: Dependent Variable: EDUC
Variable Coefficient Std. Error

C 13.49156 0.132505

Regression 3: Dependent Variable: LOGSALBEGIN
Variable Coefficient Std. Error

C 9.669405 0.016207

Regression 4: Dependent Variable: DMLOGSAL
Variable Coefficient Std. Error

DMEDUC 0.023122 0.003890
DMLOGSALBEGIN 0.868505 0.031801
R-squared 0.800579
Adjusted R-squared 0.800157
S.E. of regression 0.177624
Sum squared resid 14.89166

Regression 5: Dependent Variable: LOGSAL
Variable Coefficient Std. Error

C 0.705383 0.232198
LOGSALBEGIN 0.998139 0.023998

Regression 6: Dependent Variable: EDUC
Variable Coefficient Std. Error

C �40.71973 2.650406
LOGSALBEGIN 5.606476 0.273920

Regression 7: Dependent Variable: RESLOGSAL
Variable Coefficient Std. Error

RESEDUC 0.023122 0.003885
R-squared 0.069658
Adjusted R-squared 0.069658
S.E. of regression 0.177436
Sum squared resid 14.89166

Exhibit 3.10 Bank Wages (Example 3.3)

Two illustrations of partial regressions. Regressions 1–3 determine the effect of the constant
term on the variables LOGSAL, EDUC, and LOGSALBEGIN. The residuals of these regres-
sions (which correspond to taking the original observations in deviation from their sample
mean and which are denoted by DM) are related in Regression 4. Regressions 5 and 6
determine the effect of LOGSALBEGIN on EDUC and LOGSAL. The residuals of these two
regressions (which correspond to the variables LOGSAL and EDUC where the effect of
LOGSALBEGIN has been eliminated and which are denoted by RESLOGSAL and RESEDUC)
are related in Regression 7.
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(i) Deviation from mean

We first consider Case 1 above, where the variables are expressed in devi-
ations from their sample mean. In the first step all variables are regressed on a
constant, and then the demeaned y is regressed on the two demeaned
variables x2 and x3. This is shown in Regressions 1–4 in Exhibit 3.10. If
we compare the results of Regression 4 in Exhibit 3.10 with those of the
unrestricted regression in Exhibit 3.5, Panel 3, we see that the regression
coefficients are equal. However, there is a small difference in the calculated
standard errors (see Exercise 3.9).

(ii) Direct effect of education on salary

Next we consider Case 3 above and give a partial regression interpretation of
the coefficient b2 ¼ 0:023 in Exhibit 3.5, Panel 3, for the estimated ‘direct
effect’ of education on salary for ‘fixed’ begin salary. This is shown in
Regressions 5–7 in Exhibit 3.10. In terms of the model y ¼ X1b1þ
X2b2 þ e in (3.26), let X2 be the 474� 2 matrix with a column of ones
and with the values of x3 (begin salary) in column 2, and let X1 be the
474� 1 vector containing the values of x2 (education). To remove the effects
of the other variables, y and X1 are first regressed on X2 with residuals M2y
and M2X1, and in the second step M2y is regressed on M2X1. The last
regression corresponds to the model M2y ¼ (M2X1)b� þ e� in the result
of Frisch–Waugh. This result states that the estimated coefficient in this
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RESLOGSAL vs. RESEDUC 

Exhibit 3.11 Bank Wages (Example 3.3)

Partial regression scatter plot of (logarithmic) salary against education, with regression
line. On the vertical axis are the residuals of the regression of log salary on a constant and
log begin salary and on the horizontal axis are the residuals of the regression of education
on a constant and log begin salary. The slope of the regression line in the figure indicates
the direct effect of education on log salary after neutralizing for the indirect effect via log
begin salary.
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regression is equal to the coefficient in the multiple regression model, which
is verified by comparing Regression 7 in Exhibit 3.10 with the result in
Exhibit 3.5, Panel 3. The corresponding partial regression scatter plot is
shown in Exhibit 3.11, where RESLOGSAL denotes M2y and RESEDUC
denotes M2X1.

E Exercises: T: 3.9; E: 3.16, 3.18.
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3.3 The accuracy of estimates

3.3.1 The t-test

E Uses Sections 1.2.3, 1.4.1, 1.4.2.

Test of significance

To test whether we should include a variable in the model or not, we can test
its statistical significance. To check whether the jth explanatory variable has
a significant effect on y, we test the null hypothesis H0 : bj ¼ 0 against the
alternative H1 : bj 6¼ 0.

Derivation of t-test

For this purpose we suppose that Assumptions 1–7 hold true. As the least squares
estimator b is a linear function of e, it follows that, under these assumptions, b
is normally distributed. Its mean and variance are given by (3.18) and (3.19),
so that

b � N(b, s2(X0X)�1): (3:42)

The variance of the jth component bj of the least squares estimator b is equal
to s2ajj, where ajj is the jth diagonal element of (X0X)�1. By standardization
we get

bj � bj
s
ffiffiffiffiffi
ajj

p � N(0, 1):

This expression cannot be used to test whether bj ¼ 0, as the variance s2 is
unknown. Therefore s is replaced by s, where s2 is the unbiased estimator of s2

defined in (3.22).
To derive the distribution of the resulting test statistic we use the following

results of Section 1.2.3 (p. 32 and 34–5). Let w � N(0, I) be a n� 1 vector of
independent N(0, 1) variables, and let A be a given m� n matrix and Q a given
n� n symmetric and idempotent matrix. Then Aw � N(0, AA0) and
w0Qw � w2(r) where r ¼ tr(Q), and these two random variables are independ-
ently distributed when AQ ¼ 0. We apply these results with w ¼ (1=s)e,
A ¼ (X0X)�1X0, and Q ¼ M ¼ I �X(X0X)�1X0 with tr(M) ¼ n� k. Note that

T
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b� b ¼ (X0X)�1X0e ¼ Ae so that (b� b)=s ¼ Aw, and that e ¼ My ¼
M(Xbþ e) ¼ Me so that e0e=s2 ¼ w0Mw. As AM ¼ 0, it follows that b and e0e are
independently distributed. Further, e0e=s2 � w2(n� k) and (bj � bj)= s

ffiffiffiffiffi
ajj

p� �
� N(0, 1), and as both terms are independent their quotient has by definition the
Student t-distribution with (n� k) degrees of freedom.

The t-test

Let sj ¼ s
ffiffiffiffiffi
ajj

p
be the standard error of bj; then

tj ¼
bj � bj

sj
¼ bj � bj

s
ffiffiffiffiffi
ajj

p ¼ (bj � bj)= s
ffiffiffiffiffi
ajj

p� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e0e
s2

=(n� k)

r � t(n� k), (3:43)

that is, tj follows the t(n� k) distribution.

The t-value and significance

To test whether xj has no effect on y, which corresponds to bj ¼ 0, we use the
above test statistic with bj ¼ 0. That is, to test the null hypothesis that bj ¼ 0
against the alternative that bj 6¼ 0, we compute the t-value

tj ¼ bj
sj
¼ bj

s
ffiffiffiffiffi
ajj

p : (3:44)

We reject the null hypothesis if tj differs significantly from zero. If the null
hypothesis bj ¼ 0 is true, tj follows the t(n� k) distribution. Against the
above two-sided alternative, we reject the null hypothesis if jtj > c where c
is the significance level defined by P[jtj > c] where t � t(n� k). This is called
the t-test, or the test of (individual) significance of bj.

Use of the t-test and the P-value

As discussed in Section 2.3.1 (p. 100), for a size of 5 per cent we can use c ¼ 2
as a rule of thumb, which is accurate if n� k is not very small (say
n� k > 30). In general it is preferable to report the P-value of the test. Of
course, if we want to establish an effect of xj on y, then we hope to be able to
reject the null hypothesis. However, we should do this only if there exists
sufficient evidence for this effect. That is, in this case the size of the test
should be chosen small enough to protect ourselves from a large probability
of an error of the first type. Stated otherwise, the null hypothesis is rejected
only for small enoughP-values of the test. For a significance level of 5 per cent,
the null hypothesis is rejected for P < 0:05 and it is not rejected for P > 0:05.
In some situations smaller significance levels are used (especially in large
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samples), and in other situations sometimes larger significance levels are used
(for instance in small samples).

Summary of computations

In regression we usually compute

. the regression coefficients b ¼ (X0X)�1X0y,

. the standard error of regression s,

. for each of the coefficients bj, j ¼ 1, � � � , k, their standard error sj ¼ s
ffiffiffiffiffi
ajj

p
,

their t-value tj ¼ bj=sj, and their P-value Pj ¼ P[jtj > jtjj] where t has the
t(n� k)-distribution.

Of particular interest are

. the significance of the regressors (measured by the P-values),

. the sign of significant coefficients (indicating whether the corresponding
regressor has a positive or a negative effect on y),

. the size of the coefficients (which can only be judged properly in combin-
ation with the measurement scale of the corresponding regressor).

Other statistics like R2 may also be of interest, as well as other statistics that
will be discussed later in the book.

3.3.2 Illustration: Bank Wages

We consider again the salary data and the linear model with k ¼ 3 explana-
tory variables (a constant, education, and the logarithm of begin salary)
discussed in Example 3.3. We will discuss (i) the regression outcomes and
t-tests, (ii) presentation of the regression results, and (iii) results of the model
with two additional regressors (gender and minority).

(i) Regression outcomes and t-tests

Panel 1 in Exhibit 3.12 shows the outcomes of regressing salary (in loga-
rithms) on a constant and the explanatory variables education and begin
salary (the last again in logarithms). The column ‘Coefficient’ contains the
regression coefficients bj, the column ‘Std. Error’ the standard errors sj, and
the column ‘t-Statistic’ the t-values tj ¼ bj=sj. The column denoted by ‘Prob’
contains the P-values corresponding to the t-values in the preceding
column—that is, the P-value of the hypothesis that bj ¼ 0 against the two-
sided alternative that bj 6¼ 0. In this example with n ¼ 474 and k ¼ 3, if t
follows the t(471) distribution and c is the outcome of the t-statistic, then the
P-value is defined as the (two-sided) probability P(jtj > jcj). The P-value

E
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requires Assumptions 1–7 and, in addition, that the null hypothesis bj ¼ 0 is
true. All parameters are highly significant.

(ii) Presentation of regression results

There are several conventions to present regression results in the form of an
equation. For example, similar to what was done in Example 2.9 (p. 102),
the parameter estimates can be reported together with their t-values (in
parentheses) in the form

y ¼ 1:647þ 0:023 x2 þ 0:869 x3 þ e:

(5:998) (5:938) (27:282)

Sometimes the parameter estimates are reported together with their standard
errors. Many readers are interested in the question whether the estimates are

Panel 1: Dependent Variable: LOGSAL
Method: Least Squares
Sample: 1 474
Included observations: 474

Variable Coefficient Std. Error t-Statistic Prob.
C 1.646916 0.274598 5.997550 0.0000

EDUC 0.023122 0.003894 5.938464 0.0000
LOGSALBEGIN 0.868505 0.031835 27.28174 0.0000

R-squared 0.800579 Mean dependent var 10.35679
Adjusted R-squared 0.799733 S.D. dependent var 0.397334
S.E. of regression 0.177812
Sum squared resid 14.89166

Panel 2: Dependent Variable: LOGSAL
Method: Least Squares
Sample: 1 474
Included observations: 474

Variable Coefficient Std. Error t-Statistic Prob.
C 2.079647 0.314798 6.606288 0.0000

EDUC 0.023268 0.003870 6.013129 0.0000
LOGSALBEGIN 0.821799 0.036031 22.80783 0.0000

GENDER 0.048156 0.019910 2.418627 0.0160
MINORITY �0.042369 0.020342 �2.082842 0.0378

R-squared 0.804117 Mean dependent var 10.35679
Adjusted R-squared 0.802446 S.D. dependent var 0.397334
S.E. of regression 0.176603
Sum squared resid 14.62750

Exhibit 3.12 Bank Wages (Section 3.3.2)

Results of two regressions. Panel 1 shows the regression of salary (in logarithms) on education
and begin salary (in logarithms) and Panel 2 shows the results when gender and minority are
included as additional explanatory variables. The column ‘Prob’ contains the P-values for the
null hypothesis that the corresponding parameter is zero against the two-sided alternative that
it is non-zero.
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significantly different from zero. These readers almost automatically start to
calculate the t-values themselves. So it is friendly to them to present the t-
values right away. In some cases, however, the null hypothesis of interest is
different from zero. In such a case the t-values give the wrong answers and
extra calculations are required. These calculations are simpler if standard
errors are presented. Those who prefer interval estimates are also better
served by reporting standard errors. The obvious way out seems to report
both the t-values and the standard errors, but this requires more reporting
space. In any case, one should always clearly mention which convention is
followed.

(iii) Two additional regressors

As compared with the illustration in Section 3.1.7, we now extend the set of
explanatory variables with x4 (gender) and x5 (minority). Panel 2 of Exhibit
3.12 shows the regression outcomes when these variables are added. On the
basis of the t-test, both the variable x4 and the variable x5 have significant
effects (at 5 per cent significance level).

Note that, if we add variables, the coefficients of the other variables change
also. This is because the explanatory variables are correlated with each
other— that is, in the notation of Section 3.2.1 we have X0

1X2 6¼ 0 (see
(3.31) and (3.32)). For instance, the additional regressor gender is correlated
with the regressors education and begin salary, with correlation coefficients
0.36 and 0.55 respectively. Using the notation of the result of Frisch–Waugh,
to guarantee that b� ¼ b1 we should not simply regress y on X1 (as in Panel
1 of Exhibit 3.12), but instead we should regressM2y onM2X1. If important
variables like x4 and x5 are omitted from the model, this may lead to biased
estimates of direct effects, as was discussed in Section 3.2.3.

3.3.3 Multicollinearity

Factors that affect significance

It may happen that bj 6¼ 0 but that the t-test cannot reject the hypothesis that
bj ¼ 0. The estimate bj is then not accurate enough—that is, its standard
error is too large. In this case the t-test does not have enough power to reject
the null hypothesis. To analyse the possible causes of such a situation we
decompose the variance of the least squares estimators in terms of a number
of components. We will derive the result in three steps, first for the mean,
then for the simple regression model, and finally for the multiple regression
model.
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First case: Sample mean

We start with the simplest possible example of a matrixX that consists of one
column of unit elements. In this case we have b ¼ y and

var(b) ¼ s2

n
:

We see that for a given required accuracy there is a trade-off between s2 and
n. If the disturbance variance s2 is large— that is, if there is much random
variation in the outcomes of y—then we need a large sample size to obtain a
precise estimate of b.

Second case: Simple regression

Next we consider the simple regression model studied in Chapter 2,

yi ¼ aþ bxi þ ei:

For the least squares estimator b discussed there, the variance is given by

var(b) ¼ s2P
(xi � x)2

¼ s2

(n� 1)s2x
: (3:45)

Here we use the expression

s2x ¼
P

(xi � x)2

n� 1

for the sample variance of x. For a given required accuracy we now see a
tradeoff between three factors: a large disturbance s2 can be compensated for
by either a large sample size n or by a large variance s2x of the explanatory
variable. More variation in the disturbances ei gives a smaller accuracy of the
estimators whereas more observations and more variation in the regressor xi
lead to a higher accuracy.

General case: Multiple regression (derivation)

Finally we look at the general multiple regression model. We concentrate on one
regression coefficient and without loss of generality we choose the last one, since it
is always possible to change the order of the columns of X. We use the notation
introduced in Section 3.2. In the current situation g ¼ 1 so that the n� g matrix
X2 reduces to an n� 1 vector that we will denote by x2. The n� (k� 1)

T
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matrixX1 corresponds to the first (k� 1) regressors. We concentrate on the single
parameter b2 in the model

y ¼ X1b1 þX2b2 þ e ¼ X1b1 þ b2x2 þ e:

Substituting this in (3.37) and using M1X1 ¼ 0, it follows that
b2 ¼ b2 þ (x02M1x2)

�1x02M1e, so that

var(b2) ¼ s2(x02M1x2)
�1: (3:46)

Here M1x2 has one column and x02M1x2 is the residual sum of squares of the
auxiliary regression x2 ¼ X1PþM1x2 (see (3.35)). As R2 ¼ 1� (SSR=SST), we
may write

SSR ¼ SST(1� R2):

If we apply this result to the auxiliary regression x2 ¼ X1PþM1x2 we
may substitute SSR ¼ x02M1x2 and SST ¼P (x2i � x2)

2 ¼ (n� 1)s2x2 . Denoting
the R2 of this auxiliary regression by R2

a we obtain the following result.

The effect of multicollinearity

In the multiple regression model the variance of the last regression coefficient
(denoted by b2) may be decomposed as

var(b2) ¼ s2

(n� 1)s2x2 (1� R2
a)
:

If we compare this with (3.45), we see three familiar factors and a new one,
(1� R2

a). So var(b2) increases with R2
a and it even explodes if R2

a " 1. This is
called the multicollinearity problem. If x2 is closely related to the remaining
regressorsX1, it is hard to estimate its isolated effect accurately. Indeed, if R2

a

is large, then x2 is strongly correlated with the set of variables in X1, so that
the ‘direct’ effect of x2 on y (that is, b2) is accompanied by strong side effects
via X1 on y.

Rewriting the above result for an arbitrary column of X (except the
intercept), we get

var(bj) ¼ s2

(n� 1)s2xj(1� R2
j )
, (j ¼ 2, � � � , k), (3:47)

where R2
j denotes the R2 of the auxiliary regression of the jth regressor

variable on the remaining (k� 1) regressors (including the constant term)
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and s2xj is the sample variance of xj. So, accurate estimates of ‘direct’ or
‘partial’ effects are obtained for large sample sizes, large variation in the
relevant explanatory variable, small error variance, and small collinearity
with the other explanatory variables. The factor 1=(1� R2

j ) is called
the variance inflation factor—that is, the factor by which the variance
increases because of collinearity of the jth regressor with the other (k� 1)
regressors.

Interpretation of results

In many applications we hope to find significant estimates of the partial
effects of the explanatory variables. If some of the t-values of the regression
coefficients are small, this may possibly be caused by high correlations
among the explanatory variables, measured by the coefficients of determin-
ationR2

j . Onemethod to improve the significance is to get more data, if this is
possible. However, if the purpose of the model would be to estimate the total
effects of some of the variables (as opposed to partial effects), then another
solution is to drop some of the other explanatory variables. In some applica-
tions the individual parameters may not be of so much interest— for in-
stance, in prediction. Then multicollinearity is not a very relevant issue, but it
may be of interest to compare the forecast quality of the full model with that
of restricted versions where some of the explanatory variables are omitted.
Methods to choose the number of explanatory variables in prediction will be
discussed later (see Section 5.2.1).

E Exercises: S: 3.12; E: 3.14d.

3.3.4 Illustration: Bank Wages

To illustrate the factors that affect the standard errors of least squares
estimates we consider once again the bank wage data. Panel 1 of Exhibit
3.13 shows once more the regression of salary on five explanatory variables
(see also Panel 2 of Exhibit 3.12). The standard errors of the estimated
parameters are relatively small, but it is still of interest to decompose these
errors as in (3.47) to see if this is only due to the fact that the number
of observations n ¼ 474 is quite large. The values R2

j of the auxiliary regres-
sions are equal to R2

2 ¼ 0:47 (shown in Panel 2), R2
3 ¼ 0:59, R2

4 ¼ 0:33, and
R2

5 ¼ 0:07. Recall from Section 3.1.6 that R2 is the square of a correlation
coefficient, so that these outcomes cannot directly be compared to the
(bivariate) correlations that are also reported in Panel 3 of Exhibit 3.13.

Therefore Panel 3 also contains the values of Rj ¼
ffiffiffiffiffiffi
R2

j

q
and of the square

root of the variance inflation factors 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R2

j

q
that affect the standard

E
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errors of bj in (3.47), for j ¼ 2, 3, 4, 5. The largest multiple correlation is
R3 ¼ 0:77 with corresponding square root of the variance inflation factor

1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R2

3

q
¼ 1:57. This shows that some collinearity exists. However, as

the variance inflation factors are not so large, multicollinearity does not seem
to be a very serious problem in this example.

Panel 1: Dependent Variable: LOGSAL
Method: Least Squares
Sample: 1 474
Included observations: 474

Variable Coefficient Std. Error t-Statistic Prob.
C 2.079647 0.314798 6.606288 0.0000

EDUC 0.023268 0.003870 6.013129 0.0000
LOGSALBEGIN 0.821799 0.036031 22.80783 0.0000

GENDER 0.048156 0.019910 2.418627 0.0160
MINORITY �0:042369 0.020342 �2:082842 0.0378

R-squared 0.804117 Mean dependent var 10.35679
Adjusted R-squared 0.802446 S.D. dependent var 0.397334
S.E. of regression 0.176603
Sum squared resid 14.62750

Panel 2: Dependent Variable: EDUC
Method: Least Squares

Variable Coefficient Std. Error t-Statistic Prob.
C �41:59997 3.224768 �12:90014 0.0000

LOGSALBEGIN 5.707538 0.339359 16.81859 0.0000
GENDER �0:149278 0.237237 �0:629237 0.5295

MINORITY �0:071606 0.242457 �0:295337 0.7679
R-squared 0.470869

Panel 3 EDUC LOGSALBEGIN GENDER MINORITY

Rj
2 0.470869 0.592042 0.330815 0.071537

Rj 0.6862 0.7694 0.5752 0.2675
1=

p
(1� Rj

2) 1.3747 1.5656 1.2224 1.0378
EDUC 1.000000

LOGSALBEGIN 0.685719 1.000000
GENDER 0.355986 0.548020 1.000000

MINORITY �0.132889 �0.172836 0.075668 1.000000

Exhibit 3.13 Bank Wages (Section 3.3.4)

Panel 1 shows the regression of salary (in logarithms) on a constant, education, begin salary
(in logarithms), gender, and minority. Panel 2 shows the regression of one of the explanatory
variables (EDUC) on the other ones, with corresponding coefficient of determination. Similar
regressions are performed (but not shown) and the corresponding R2 are reported in Panel 3,
together with the values of R and of the square root of the variance inflation factors. For
comparison, Panel 3 also contains the pairwise sample correlations between the explanatory
variables.
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3.4 The F-test

3.4.1 The F-test in different forms

E Uses Section 1.2.3, 1.4.1; Appendix A.2–A.4.

Testing the joint significance of more than one coefficient

In Section 3.2 we considered the choice between the unrestricted model

y ¼ X1b1 þX2b2 þ e

with estimates y ¼ X1b1 þX2b2 þ e, and the restricted model with b2 ¼ 0
and estimates y ¼ X1bR þ eR. We may prefer to work with the simpler
restricted model if b2 is small. The question is when b2 is small enough to
do so, so that a measure is needed for the distance between b2 and 0. For this
purpose the F-test is commonly used to test the null hypothesis that b2 ¼ 0.
One computes the F-statistic to be defined below and uses the restricted
model if F does not exceed a certain critical value.

Derivation of the F-test

To derive the F-test forH0 : b2 ¼ 0 againstH1 : b2 6¼ 0, we use the result in (3.38),
which states that, if b2 ¼ 0,

b2 ¼ (X0
2M1X2)

�1X0
2M1e:

Under Assumptions 1–7 we conclude that E[b2] ¼ 0 and b2 � N(0, V), where
V ¼ var(b2) ¼ s2(X0

2M1X2)
�1. LetV�1=2 be a symmetric matrix with the property

that V�1=2VV�1=2 ¼ I, the g� g identity matrix. Such a matrix V�1=2 is called a
square root of the matrix V�1, and it exists because V is a positive definite matrix.
As b2 � N(0, V), it follows that V�1=2b2 �N(0, I)— that is, the g components of
V�1=2b2 are independently distributed with standard normal distribution. By
definition it follows that the sum of the squares of these components b02V

�1b2
has the w2(g) distribution. As V�1 ¼ s�2X0

2M1X2 this means that

b02X
0
2M1X2b2=s2 � w2(g), (3:48)

T
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if the null hypothesis that b2 ¼ 0 is true. However, this still involves the unknown
parameter s2 and hence it can not be used in practice. But if we divide it by the
ratio e0e=s2 (which follows a w2(n� k) distribution (see Section 3.3.1)), and if we
divide both the numerator and the denominator by their degrees of freedom, the
two factors with the unknown s2 cancel and we obtain

F ¼ b02X
0
2M1X2b2=g

e0e=(n� k)
: (3:49)

This follows an F(g, n� k) distribution, as it was shown in Section 3.3.1 that
s2 ¼ e0e=(n� k) and the least squares estimator b (and hence also b2) are inde-
pendent (for an alternative proof see Exercise 3.7). Using (3.34) we see that
b02X

0
2M1X2b2 ¼ e0ReR � e0e, so that F may be computed as follows.

Basic form of the F-test

F ¼ (e0ReR � e0e)=g
e0e=(n� k)

� F(g, n� k): (3:50)

So the smaller model with b2 ¼ 0 is rejected if the increase in the sum of
squared residuals e0ReR � e0e is too large. The null hypothesis that b2 ¼ 0 is
rejected for large values of F—that is, this is a one-sided test (see Exhibit
3.14). A geometric impression of the equality of the two forms (3.49) and
(3.50) of the F-test is given in Exhibit 3.15. This equality can be derived from
the theorem of Pythagoras, as is explained in the text below the exhibit.

F(g, n−k)

Exhibit 3.14 P-value

F-test on parameter restrictions, where g is the number of restrictions under the null hypoth-
esis, n is the total number of observations, and k is the total number of regression parameters in
the unrestricted model. The P-value is equal to the area of the shaded region in the right tail,
and the arrow on the horizontal axis indicates the calculated F-value.
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The F-test with R2

In the literature the F-test appears in various equivalent forms, and we now
present some alternative formulations. Let R2 and R2

R denote the coefficients
of determination for the unrestricted model and the restricted model respect-
ively. Then e0e ¼ SST(1� R2) and e0ReR ¼ SST(1� R2

R), where the total sum
of squares is in both cases equal to SST ¼P (yi � y)2. Substituting this in
(3.50) gives

F ¼ n� k

g
� R

2 � R2
R

1� R2
: (3:51)

X1b1

X1bR

M1X2b2

M1X2b2

X1b1 + X2b2

e

eR

X2b2

S(X1)

S(X2)

y

Exhibit 3.15 Geometry of F-test

Three-dimensional geometric impression of the F-test for the null hypothesis that the
variables X2 are not significant. The projection of y on the unrestricted model (which
contains both X1 and X2) is given by X1b1 þX2b2 with residual vector e. The projection
of y on the restricted model (which contains only X1) is given by X1bR with residual
vector eR. The vectors eR and e are both orthogonal to the variables X1, and hence the
same holds true for the difference eR � e. This difference is the residual that remains
after projection of X1b1 þX2b2 on the space of the variables X1 — that is, eR � e ¼
M1(X1b1 þX2b2) ¼ M1X2b2. As the vector e is orthogonal to X1 and X2, it is also
orthogonal to M1X2b2. The theorem of Pythagoras implies that e0ReR ¼ e0eþ
(M1X2b2)

0M1X2b2 ¼ e0eþ b02X
0
2M1X2b2. The F-test for b2 ¼ 0 corresponds to testing

whether the contribution M1X2b2 of explaining y in terms of X2 is significant— that is, it
tests whether the length of eR is significantly larger than the length of e, or, equivalently,
whether (e0ReR � e0e) differs significantly from 0.
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So the restriction b2 ¼ 0 is not rejected if the R2 does not decrease too much
when this restriction is imposed. This method to compare the R2 of two
models is preferred above the use of the adjusted R2 of Section 3.1.6. This is
because the F-test can be used to compute the P-value for the null hypothesis
that b2 ¼ 0, which provides a more explicit basis to decide whether the
decrease in fit is significant or not.
The derivation of (3.51) from (3.50) makes clear that the R2 or the

adjusted R2 can only be used to compare two models that have the same
dependent variable. For instance, it makes no sense to compare the R2 of a
model where y is the measured variable with another model where y is the
logarithm of the measured variable. This is because the total sum of squares
(SST) of both models differ— that is, explaining the variation of y around its
mean is something different from explaining the variation of log (y) around
its mean.

F- and t-tests

The above F-statistics can be computed for every partition of the matrixX in
two parts X1 and X2. For instance, in the particular case that X2 consists of
only one column (so that g ¼ 1) F ¼ t2 — that is, the F-statistic equals the
square of the t-statistic and in this case the F-test and the two-sided t-test
always lead to the same conclusion (see Exercise 3.7).

Test on the overall significance of the regression

Several statistical packages present for every regression the F-statistic and its
associated P-value for the so-called significance of the regression. This cor-
responds to a partitioning of X in X1 and X2 where X1 only contains the
constant term (that is, X1 is a single column consisting of unit elements) and
X2 contains all remaining columns (so that g ¼ k� 1). If we denote the
components of the (k� 1)� 1 vector b2 by the scalar parameters
b2, � � � , bk, then the null hypothesis is that b2 ¼ b3 ¼ � � � ¼ bk ¼ 0, which
means that none of the explanatory variables (apart from the constant term)
has effect on y. So this tests whether the model makes any sense at all. In this
case, eR ¼ y� iy and e0ReR ¼ SST, so that R2

R ¼ 0. For this special case the
F-statistic can therefore be written as

F ¼ n� k

k� 1
� R2

1� R2
:

So there is a straightforward link between the F-test for the joint signifi-
cance of all variables (except the intercept) and the coefficient of determin-
ation R2.
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Test of general linear restrictions

Until now we have tested whether certain parameters are zero and we have
decomposed the regression matrix X ¼ (X1 X2) accordingly. An arbitrary
set of linear restrictions on the parameters can be expressed in the form
Rb ¼ r, where R is a given g� k matrix with rank g and r is a given g� 1
vector. We consider the testing problem

y ¼ Xbþ e, H0 :Rb ¼ r, (3:52)

which imposes g independent linear restrictions on b under the null hypoth-
esis. Examples are given in Section 3.4.2.

Derivation of the F-test

We can test these restrictions, somewhat in the spirit of the t-test, by estimating the
unrestricted model and checking whether Rb is sufficiently close to r. Under
Assumptions 1–7, it follows that b � N(b, s2(X0X)�1) (see (3.42)). There-
fore Rb� r � N(Rb� r, s2R(X0X)�1R0) and we reject the null hypothesis if
Rb� r differs significantly from zero. If the null hypothesis is true, then
Rb� r � N(0, s2R(X0X)�1R0) and

(Rb� r)0[s2R(X0X)�1R0]�1(Rb� r) � w2(g): (3:53)

The unknown s2 drops out again if we divide by e0e=s2, which has the w2(n� k)
distribution and which is independent of b and hence also of the expression (3.53).
By the definition of the F-distribution, this means that

(Rb� r)0[R(X0X)�1R0]�1(Rb� r)=g

e0e=(n� k)
(3:54)

follows the F(g, n� k) distribution if the null hypothesis is true. Expression (3.54)
is not so convenient from a computational point of view. It is left as an exercise
(see Exercise 3.8) that this F-test can again be written in terms of the sum of
squared residuals (SSR) as in (3.50), where e0e is the unrestricted SSR and e0ReR is
the SSR under the null hypothesis.

Summary of computations

A set of linear restrictions on the model parameters can be tested as follows.
Let n be the number of observations, k the number of parameters of the
unrestricted model, and g the number of parameter restrictions under the null
hypothesis (so that there are only (k� g) free parameters in the restricted
model).

T
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Testing a set of linear restrictions


 Step 1: Estimate the unrestricted model. Estimate the unrestricted model
and compute the corresponding sum of squared residuals e0e.


 Step 2: Estimate the restricted model. Estimate the restricted model under
the null hypothesis and compute the corresponding sum of squared re-
siduals e0ReR.


 Step 3: Perform the F-test. Compute the F-test by means of (3.50), and
reject the null hypothesis for large values of F. The P-values can be obtained
from the fact that the F-test has the F(g, n� k) distribution if the null
hypothesis is true (provided that Assumptions 1–7 are satisfied).

E Exercises: T: 3.6c, d, 3.7e, f, 3.8, 3.10; E: 3.13, 3.15, 3.19a–e.

3.4.2 Illustration: Bank Wages

As an illustration, we consider again the data discussed in previous examples
on salary (y, in logarithms of yearly wage), education (x2, in years), begin
salary (x3, in logarithms of yearly wage), gender (x4, taking the value 0 for
females and 1 for males), and minority (x5, taking the value 0 for non-
minorities and 1 for minorities). We will discuss (i) the results of various
models for three data sets, (ii) the significance of the variable minority, (iii)
the joint significance of the regression, (iv) the joint significance of gender
and minority, and (v) the test whether gender and minority have the
same effect.

(i) Results of various models for three data sets

Exhibit 3.16 summarizes results (the sum of squared residuals and the coeffi-
cient of determination) of regressions in the unrestricted model

y ¼ b1 þ b2x2 þ b3x3 þ b4x4 þ b5x5 þ e

(see Panel 1) and in several restricted versions corresponding to different
restrictions on the parameters bi, i ¼ 1, � � � , 5 (see Panel 2). Most of the
results of the unrestricted regression in Panel 1 of Exhibit 3.16 were already
reported in Panel 1 of Exhibit 3.13 (p. 160).

In Panel 2 of Exhibit 3.16 the models are estimated for different data sets.
One version uses the data of all 474 employees, a second one of the employees
with custodial jobs (job category 2), and a third one of the employees with
management jobs (job category 3). Some of the regressions cannot be per-
formed for the second version. The reason is that all employees with a
custodial job are male, so that x4 ¼ 1 for all employees in job category 2.

E
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Therefore the variable x4 should not be included in this second version of the
model, as x4 ¼ x1 ¼ 1 and this would violate Assumption 1. With the results
in Exhibit 3.16, we will perform four tests, all for the data set of all 474
employees. We refer to Exercise 3.13 for the analysis of similar questions for
the sub-samples of employees with management or custodial jobs.

(ii) Significance of minority

Here the unrestricted model contains a constant term and the
variables x2, x3, x4, and x5, and we test H0 : b5 ¼ 0 against H1 : b5 6¼ 0.
This corresponds to (3.52) with k ¼ 5 and g ¼ 1 and with
R ¼ (0, 0, 0, 0, 1) and r ¼ 0. This restriction can be tested by the t-value of
b5 in Panel 1 of Exhibit 3.16. It is equal to �2:083 with P-value 0.038, so
that the hypothesis is rejected at the 5 per cent level of significance.

Panel 1: Dependent Variable: LOGSAL
Method: Least Squares
Sample: 1 474
Included observations: 474

Variable Coefficient Std. Error t-Statistic Prob.
C 2.079647 0.314798 6.606288 0.0000

EDUC 0.023268 0.003870 6.013129 0.0000
LOGSALBEGIN 0.821799 0.036031 22.80783 0.0000

GENDER 0.048156 0.019910 2.418627 0.0160
MINORITY �0:042369 0.020342 �2:082842 0.0378

R-squared 0.804117 Mean dependent var 10.35679
Adjusted R-squared 0.802446 S.D. dependent var 0.397334
S.E. of regression 0.176603 F-statistic 481.3211
Sum squared resid 14.62750 Prob(F-statistic) 0.000000

Panel 2 ALL (n ¼ 474) JOBCAT 2 (n ¼ 27) JOBCAT 3 (n ¼ 84)

X-variables SSR R2 SSR R2 SSR R2

1 74.6746 0.0000 0.1274 0.0000 5.9900 0.0000
1 2 38.4241 0.4854 0.1249 0.0197 4.8354 0.1928
1 2 3 14.8917 0.8006 0.1248 0.0204 3.1507 0.4740
1 2 3 4 14.7628 0.8023 ----- ----- 3.1263 0.4781
1 2 3 5 14.8100 0.8017 0.1224 0.0391 3.0875 0.4846
1 2 3 4 5 b4 þ b5 ¼ 0ð Þ 14.6291 0.8041 ----- ----- 3.1503 0.4741
1 2 3 4 5 (unrestricted) 14.6275 0.8041 ----- ----- 3.0659 0.4882

Exhibit 3.16 Bank Wages (Section 3.4.2)

Summary of outcomes of regressions where the dependent variable (logarithm of salary) is
explained in terms of different sets of explanatory variables. Panel 1 shows the unrestricted
regression in terms of five explanatory variables (including a constant term). In Panel 2, the
explanatory variables (X) are denoted by their index 1 (the constant term), 2 (education), 3
(logarithm of begin salary), 4 (gender), and 5 (minority). The significance of explanatory
variables can be tested by F-tests using the SSR (sum of squared residuals) or theR2 (coefficient
of determination) of the regressions. The column ‘X-variables’ indicates which variables
are included in the model (in the sixth row all variables are included and the parameter
restriction is that b4 þ b5 ¼ 0). The models are estimated for three data sets, for all 474
employees, for the twenty-seven employees in job category 2 (custodial jobs), and for the
eighty-four employees in job category 3 (management jobs).
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As an alternative, we can also compare the residual sum of squares
e0e ¼ 14:6275 in the unrestricted model (see last row in Panel 2 of Exhibit
3.16) with the restricted sum of squares e0ReR ¼ 14:7628 (see the row with
x1, x2, x3, and x4 included in Panel 2 of Exhibit 3.16) and compute the F-test

F ¼ (14:7628� 14:6275)=1

14:6275=(474� 5)
¼ 4:338

with corresponding P-value of 0.038. The 5 per cent critical value of the
F(1, 469) distribution is 3.84, so that the null hypothesis is rejected at 5 per
cent significance level. Note that

ffiffiffiffiffiffiffiffiffiffiffiffi
4:338

p ¼ 2:083 is equal (in absolute value)
to the t-value of b5, that

ffiffiffiffiffiffiffiffiffiffi
3:84

p ¼ 1:96 is the two-sided 5 per cent critical
value of the t(469) distribution, and that the P-values of the t-test and the
F-test are equal. If we substitute the values R2 ¼ 0:8041 and R2

R ¼ 0:8023
into (3.51), then the same value for F is obtained.

(iii) Significance of the regression

Now we test the joint significance of all explanatory variables by testing the
null hypothesis that b2 ¼ b3 ¼ b4 ¼ b5 ¼ 0. In this case there are g ¼ 4
independent restrictions and in terms of (3.52) we have

R ¼
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

0BB@
1CCA, r ¼

0
0
0
0

0BB@
1CCA:

Using the values of the sum of squared residuals in Panel 2 of Exhibit 3.16,
the F-statistic becomes

F ¼ (74:6746� 14:6275)=4

14:6275=(474� 5)
¼ 481:321:

The 5 per cent critical value of F(4, 469) is 2.39 and so this hypothesis is
strongly rejected. Note that the value of this F-test has already been reported
in the regression table in Panel 1 in Exhibit 3.16, with a P-value that is
rounded to zero.

(iv) Joint significance of gender and minority

Next we test the null hypothesis that b4 ¼ b5 ¼ 0. This corresponds to (3.52)
with k ¼ 5 and g ¼ 2 and with

R ¼ 0 0 0 1 0
0 0 0 0 1

� �
, r ¼ 0

0

� �
:
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To perform this test for the joint significance of the variables x4 and x5, we
use row 3 (for the restricted model) and row 7 (for the unrestricted model) in
Exhibit 3.16, Panel 2, and find (using the R2 this time)

F ¼ (0:8041� 0:8006)=2

(1� 0:8041)=(474� 5)
¼ 4:190:

The P-value with respect to the F(2, 469) distribution is equal to P ¼ 0:016.
So, at 5 per cent significance level we reject the null hypothesis.

(v) Test whether gender and minority have the same effect

In the unrestricted model the variable gender (x4) has a positive coefficient
(0.048). As x4 ¼ 0 for females and x4 ¼ 1 for males, this means that, on
average, males have higher salaries than females (for the same education,
begin salary, and minority classification). Further, the variable minority has
a negative coefficient (� 0:042). As x5 ¼ 1 for minorities and x5 ¼ 0 for non-
minorities, this means that, on average, minorities have lower salaries than
non-minorities (for the same education, begin salary, and gender). As the two
estimated effects are nearly of equal magnitude, we will test whether the
advantage of males is equally large as the advantage of non-minorities. This
corresponds to the null hypothesis that b4 ¼ �b5, or, equivalently,
b4 þ b5 ¼ 0. In terms of (3.52), we have k ¼ 5, g ¼ 1,
R ¼ (0, 0, 0, 1, 1), and r ¼ 0. Using the last two rows in Exhibit 3.16, Panel
2, we get (in terms of SSR)

F ¼ (14:6291� 14:6275)=1

14:6275=(474� 5)
¼ 0:051

with a P-value of P ¼ 0:821. So this hypothesis is not rejected— that is, the
two factors of discrimination (gender and minority) seem to be of equal
magnitude.

3.4.3 Chow forecast test

E Uses Appendix A.2–A.4.

Evaluation of predictive performance: Sample split

One of the possible practical uses of a multiple regression model is to produce
forecasts of the dependent variable for given values of the explanatory
variables. It is, therefore, of interest to evaluate an estimated regression
model by studying its predictive performance out of sample. For this purpose
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the full sample is split into two parts, an estimation sample with n observa-
tions used to estimate the parameters, and a prediction sample with g
additional observations used for the evaluation of the forecast quality of
the estimated model. This is illustrated in Exhibit 3.17.

Notation

The data in the estimation sample are denoted by y1 and X1, where y1 is a
n� 1 vector and X1 a n� k matrix. The data in the prediction sample are
denoted by y2 andX2, where y2 is a g� 1 vector andX2 a g� kmatrix. Note
that this notation of X1 and X2 differs from the one used until now. That is,
now the rows of the matrixX are partitioned instead of the columns. We can
write

X ¼ X1

X2

� �
, y ¼ y1

y2

� �
,

where X is a (nþ g)� k matrix and y is a (nþ g)� 1 vector. Since we use y1
and X1 for estimation, we assume that n > k, whereas gmay be any positive
integer. For the DGP over the full sample we suppose that Assumptions 1–7
are satisfied, so that

y1 ¼ X1bþ e1,

y2 ¼ X2bþ e2,

with E[e1e01] ¼ s2I, E[e2e02] ¼ s2I, E[e1e02] ¼ 0.

Prediction and prediction error

The estimate of b is based on the estimation sample and is given by

b ¼ (X0
1X1)

�1X0
1y1:

full sample

n + g

estimation
sample

prediction
sample

n g
Exhibit 3.17 Prediction

The full sample is split into two non-overlapping parts, the estimation sample with observa-
tions that are used to estimate the model, and the prediction sample. The estimated model is
used to forecast the values in the prediction sample, which can be compared with the actually
observed values in the prediction sample.
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This estimate is used to predict the values of y2 by means of X2b, with
resulting prediction error

f ¼ y2 �X2b: (3:55)

It is left as an exercise (see Exercise 3.7) to show that X2b is the best linear
unbiased predictor of y2 in the sense that it minimizes the variance of f . We
can write

f ¼ X2bþ e2 �X2(X
0
1X1)

�1X0
1y1 ¼ e2 �X2(X

0
1X1)

�1X0
1e1,

so that the prediction error f consists of two uncorrelated components—
namely, the disturbance e2 and a component caused by the fact that we use b
rather than b in our prediction formula X2b. As a consequence, the variance
of the prediction errors is larger than the variance of the disturbances,

var( f ) ¼ s2(I þX2(X
0
1X1)

�1X0
2): (3:56)

Superficial observation could suggest that the prediction error covariance
matrix attains it minimum if X2 ¼ 0, but in a model with an intercept this is
impossible (as the elements in the first column of X2 all have the value 1). It
can be shown that the minimum is reached if all the rows of X2 are equal to
the row of column averages of X1 (for the regression model with k ¼ 2 this
follows from formula (2.39) for the variance of the prediction error in
Section 2.4.1 (p. 105)).

Prediction interval

If s2 in (3.56) is replaced by the least squares estimator s2 ¼ e01e1=(n� k),
where e1 ¼ y1 �X1b are the residuals over the estimation sample, then one
can construct forecast intervals for y2. It is left as an exercise (see Exercise
3.7) that a (1� a) prediction interval for y2j for given values X2j of the
explanatory variables is given by

X0
2jb� cs

ffiffiffiffiffi
djj

q
� y2j � X0

2jbþ cs
ffiffiffiffiffi
djj

q
,

where djj is the jth diagonal element of the matrix I þX2(X
0
1X1)

�1X0
2 in

(3.56) and c is such that P[jtj > c] ¼ a when t � t(n� k).

Test of constant DGP

To obtain the predicted values of y2, we assumed that the data in the two sub-
samples are generated by the same DGP. This may be tested by considering
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whether the predictions are sufficiently accurate. For a cross section this may
mean, for example, that we check whether our model estimated using data
from a number of regions may be used to predict the y variable in another
region. For a time series model we check if our model estimated using data
from a certain period can be used to predict the y variable in another period.
In all cases we study conditional prediction— that is, we assume that the X2

matrix required in the prediction is given. In order to test the predictive
accuracy, we formulate the model

y1 ¼ X1bþ e1
y2 ¼ X2bþ gþ e2,

where g is a g� 1 vector of unknown parameters. The foregoing predictions
of y2 are made under the assumption that g ¼ 0. We can test this by means of
an F-test in the model

y1
y2

� �
¼ X1 0

X2 I

� �
b
g

� �
þ e1

e2

� �
, (3:57)

where it is assumed, as before, that the model satisfies Assumptions 1–7 over
the full sample of nþ g observations. To perform the F-test for H0 : g ¼ 0
against H1 : g 6¼ 0, note that H0 involves g restrictions. The number of
observations in the model (3.57) is nþ g and the number of parameters is
kþ g. So the F-test in (3.50) becomes in this case

F ¼ (e0ReR � e0e)=g
e0e=(nþ g� (kþ g))

¼ (e0ReR � e0e)=g
e0e=(n� k)

,

which follows the F(g, n� k) distribution when g ¼ 0. Note that n is the
number of observations in the estimation sample, not in the full sample.

Derivation of sums of squares

To compute the F-test we still have to determine the restricted sum of squared
residuals e0ReR and the unrestricted sum of squared residuals e0e. Under the null
hypothesis that g ¼ 0, the model becomes

y1
y2

� �
¼ X1

X2

� �
bþ e1

e2

� �
:

So eR is obtained as the (nþ g)� 1 vector of residuals of the regression over the
full sample of (nþ g) observations, and e0ReR is the corresponding SSR. Under the

T
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alternative hypothesis that g 6¼ 0, least squares in (3.57) is equivalent to minimiz-
ing

S(b, c) ¼ y1 �X1b

y2 �X2b� c

� �0 y1 �X1b

y2 �X2b� c

� �
¼ (y1 �X1b)

0(y1 �X1b)þ (y2 �X2b� c)0(y2 �X2b� c):

The first term is minimized by regressing y1 onX1 — that is, for b ¼ (X0
1X1)

�1X0
1y,

and the second term attains its minimal value zero for c ¼ y2 �X2b. So the
unrestricted SSR is equal to e0e ¼ (y1 �X1b)

0 (y1 �X1b) ¼ e01e1 — that is, the
SSR corresponding to a regression of the n observations in the estimation sample.

Chow forecast test

The test may therefore be performed by running two regressions, an ‘unre-
stricted’ one (the regression of y1 on X1 on the estimation sample with

residuals e1) and a ‘restricted’ one (the regression of
�
y1
y2

�
on
�
X1

X2

�
on the

full sample with residuals eR). This gives

F ¼ (e0ReR � e01e1)=g
e01e1=(n� k)

, (3:58)

which is called the Chow forecast test for predictive accuracy. If we use the
expression (3.49) of the F-test instead of (3.50), then b2 corresponds to the
estimated parameters g in the unrestricted model. As stated before, these
estimates are given by c ¼ y2 �X2b—that is, c ¼ f are the prediction errors
in (3.55). So the Chow test may also be written as

F ¼ f 0Vf=g
e01e1=(n� k)

,

where V is a g� gmatrix of similar structure as in (3.49) with submatrices of
explanatory variables as indicated in (3.57). This shows that the null hypoth-
esis that g ¼ 0 is rejected if the prediction errors f are too large.

Comment on the two regressions in the Chow forecast test

Note that in the Chow forecast test (3.58) the regression in the ‘large’
(unrestricted) model corresponds to the regression over the ‘small’ sub-
sample (of the first n observations), whereas the regression in the ‘small’
(restricted) model corresponds to the regression over the ‘large’ sample (of all
nþ g observations). The unrestricted model is larger in the sense that it
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contains more parameters (kþ g instead of k). Both models apply to the
same set of nþ g observations, and it is precisely because the large model
contains g parameters for the g observations in the second sub-sample that
the estimation of the large model can be reduced to a regression over the first
sub-sample.

E Exercises: T: 3.7g, h, 3.11; E: 3.17, 3.19f, g.

3.4.4 Illustration: Bank Wages

As an illustration we return to the data on bank wages and we perform two
forecast tests of the salary model with the explanatory variables x1, x2,
x3, x4, and x5 described in Section 3.4.2. We will discuss (i) the regression
results, (ii) forecast of salaries for custodial jobs, (iii) forecast of salaries for
management jobs, and (iv) a comparison of the two forecasts.

(i) Regression results

Weuse the results in Exhibit 3.18. This exhibit contains three regressions, one
over the full sample of 474 employees (Panel 1), a second one over an
estimation sample of 447 employees working in administration or manage-
ment (Panel 2, the twenty-seven employees with custodial jobs form the
prediction sample in this case), and a third one over an estimation sample of
390 employees with administrative or custodial jobs (Panel 3, the eighty-four
employees with management jobs form the prediction sample in this case).

(ii) Forecast of salaries for custodial jobs

We first perform a Chow forecast test by predicting the salaries of the twenty-
seven employees with custodial jobs. The corresponding F-statistic (3.58) can
be computed from the results in Panels 1 and 2 in Exhibit 3.18:

F ¼ (e0ReR � e01e1)=g
e01e1=(n� k)

¼ (14:6275� 13:9155)=27

13:9155=(447� 5)
¼ 0:838:

The P-value of the corresponding F(27, 442) distribution is P ¼ 0:70, so that
the predictions are sufficiently accurate. That is, the salaries for custodial
jobs can be predicted by means of the model estimated for administrative and
management jobs. The scatter of twenty-seven points of the actual and
predicted salaries is shown in Exhibit 3.19 (a), and a histogram of the
forecast errors is given in Exhibit 3.19 (b). Although the great majority
of the predicted salaries are lower than the actual salaries, indicating a

E
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Panel 1: Dependent Variable: LOGSAL
Method: Least Squares
Sample: 1 474
Included observations: 474

Variable Coefficient Std. Error t-Statistic Prob.
C 2.079647 0.314798 6.606288 0.0000

EDUC 0.023268 0.003870 6.013129 0.0000
LOGSALBEGIN 0.821799 0.036031 22.80783 0.0000

GENDER 0.048156 0.019910 2.418627 0.0160
MINORITY �0:042369 0.020342 �2:082842 0.0378

R-squared 0.804117 Mean dependent var 10.35679
Adjusted R-squared 0.802446 S.D. dependent var 0.397334
S.E. of regression 0.176603
Sum squared resid 14.62750

Panel 2: Dependent Variable: LOGSAL
Method: Least Squares
Sample: 1 474 IF JOBCAT ¼ 1 OR JOBCAT ¼ 3
Included observations: 447

Variable Coefficient Std. Error t-Statistic Prob.
C 2.133639 0.323277 6.600032 0.0000

EDUC 0.029102 0.004352 6.687637 0.0000
LOGSALBEGIN 0.808688 0.037313 21.67293 0.0000

GENDER 0.028500 0.020875 1.365269 0.1729
MINORITY �0:053989 0.021518 �2:508953 0.0125

R-squared 0.813307 Mean dependent var 10.35796
Adjusted R-squared 0.811617 S.D. dependent var 0.408806
S.E. of regression 0.177434
Sum squared resid 13.91547

Panel 3: Dependent Variable: LOGSAL
Method: Least Squares
Sample (adjusted): 2 474 IF JOBCAT ¼ 1 OR JOBCAT ¼ 2
Included observations: 390 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob.
C 3.519694 0.517151 6.805930 0.0000

EDUC 0.018640 0.003774 4.939607 0.0000
LOGSALBEGIN 0.674293 0.056446 11.94577 0.0000

GENDER 0.071522 0.020327 3.518492 0.0005
MINORITY �0:040494 0.019292 �2:099032 0.0365

R-squared 0.552306 Mean dependent var 10.21188
Adjusted R-squared 0.547655 S.D. dependent var 0.240326
S.E. of regression 0.161635
Sum squared resid 10.05848

Exhibit 3.18 Bank Wages (Section 3.4.4)

Regressions for two forecast tests. In Panel 1 a model for salaries is estimated using the data of
all 474 employees; in Panel 2 this model is estimated using only the data of the employees with
jobs in categories 1 and 3 (administration and management); in Panel 3 this model is estimated
using only the data of the employees with jobs in categories 1 and 2 (administration and
custodial jobs).
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downward bias, the forecast errors are small enough for the null hypothesis
not to be rejected. The mean squared error of the forecasts (that is, the sum of
the squared bias and the variance) is (0:1286)2 þ (0:1270)2 ¼ 0:0327 (see
Exhibit 3.19 (b)), whereas the estimated variance of the disturbances is
s2 ¼ (0:1774)2 ¼ 0:03125 (see Panel 2 in Exhibit 3.18). The forecast test is
based on the magnitude of the forecast errors, and these are of the same order
as the random variation s2 on the estimation sample. This explains that the
Chow test does not reject the hypothesis that custodial salaries can be
predicted from the model estimated on the basis of wage data for jobs in
administration and management.
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Exhibit 3.19 Bank Wages (Section 3.4.4)

Scatter diagrams of forecasted salaries against actual salaries, both in logarithms ((a) and (c)),
and histograms of forecast errors ((b) and (d)), for employees in job category 2 ((a) and (b),
forecasts obtained from model estimated for the data of employees in job categories 1 and 3)
and for employees in job category 3 ((c) and (d), forecasts obtained from model estimated for
the data of employees in job categories 1 and 2). The diagrams indicate that the salaries in a job
category cannot be well predicted from the salaries in the other two job categories. In terms of
the Chow forecast test, the prediction errors in (a) and (b) are acceptable, whereas those in (c)
and (d) are not.
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(iii) Forecast of salaries for management jobs

As a second test, we predict the salaries for the eighty-four employees with
management positions from the model estimated for administrative and
custodial jobs (job categories 1 and 2). The regression results based on the
390 observations in job categories 1 and 2 are shown in Panel 3 of Exhibit
3.18. The corresponding Chow forecast test (3.58) can be computed from the
results in Panels 1 and 3 of Exhibit 3.18:

F ¼ (e0ReR � e01e1)=g
e01e1=(n� k)

¼ (14:6275� 10:0585)=84

10:0585=(390� 5)
¼ 2:082:

The P-value of the corresponding F(84, 385) distribution is rounded to
P ¼ 0:0000, so that the predictions are not accurate. That is, the salaries in
job category 3 cannot be predicted well in this case.
The scatter of eighty-four points of the actual and predicted salaries is

shown in Exhibit 3.19 (c), and the histogram of the forecast errors in Exhibit
3.19 (d). The values are again mostly below the 458 line, so that salaries in
this category are higher than would be expected (on the basis of education,
begin salary, gender, and minority) for categories 1 and 2. The standard error
of the regression over the 390 individuals in categories 1 and 2 is s ¼ 0:1616
(see Panel 3 in Exhibit 3.18), whereas the root mean squared forecast error
over the eighty-four individuals in category 3 can be computed from Exhibit
3.19 (d) as ((0:2006)2þ (0:1997)2)1=2 ¼ 0:2831. So the forecast errors are
much larger than the usual random variation in the estimation sample. Stated
otherwise, people with management positions earn on average more than
people with administrative or custodial jobs for given level of education,
begin salary, gender, and minority.

(iv) Comparison of the two forecasts

Comparing once more Exhibit 3.19 (a) and (c), at first sight the predict-
ive quality seems to be comparable in both cases. Note, however, that
the vertical scales differ in the two scatter diagrams. Further, (a) con-
tains much less observations than (c) (27 and 84 respectively). Forecast errors
become more significant if they occur for a larger number of observations.
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Summary, further reading,
and keywords

SUMMARY

In this chapter we considered regression models with more than one explana-
tory variable. The least squares coefficients measure the direct effect of an
explanatory variable on the dependent variable after neutralizing for the
indirect effects that run via the other explanatory variables. These estimated
effects therefore depend on the set of all explanatory variables included in the
model. We paid particular attention to the question of which explanatory
variables should be included in the model. For reasons of efficiency it is better
to exclude variables that have only a marginal effect. The statistical proper-
ties of least squares were derived under a number of assumptions on the data
generating process. Under these assumptions, the F-test can be used to test
for the individual and joint significance of explanatory variables.
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Exercises

THEORY QUESTIONS

3.1 (E Section 3.1.2)
In this exercise we study the derivatives of (3.6) and
prove the result in (3.7). For convenience, we write
X0y ¼ p (a k� 1 vector) and X0X ¼ Q (a k� k
matrix), so that we have to minimize the function
f (b) ¼ y0y� p0b� b0pþ b0Qb ¼ y0y� 2b0pþ b0Qb.
Check every detail of the following argument.

a. Let b increase to bþ h, where we may choose
the elements of the k� 1 vector h as small as we
like. Then f (bþh)¼ f (b)þh0(�2pþ(Q0þQ)b)
þh0Qh.

b. This result can be interpreted as a Taylor expan-
sion. If the elements of h are sufficiently small,
the last term can be neglected, and the central
term is a linear expression containing the
k� 1 vector of first order derivatives
@f
@b ¼ �2pþ (Q0 þQ)b. There are k first order
derivatives and we follow the convention to ar-
range them in a column vector.

c. If we apply this to (3.6), this shows that
@S
@b ¼ �2X0yþ 2X0Xb.

3.2 (E Section 3.1.2)
In this exercise we prove the result in (3.10). The
vector of first order derivatives in (3.7) contains one
term that depends on b. For convenience we write it
as Qb and we partition the k� k matrix Q ¼ 2X0X
into its columns as Q ¼ (q1 q2 . . . qk). Verify each
step in the following argument.

a. Qb can be written as Qb ¼ q1b1 þ q2b2 þ . . .þ
qkbk.

b. The derivatives of the elements of Qb with re-
spect to the scalar bi can be written as a column
qi. To write all derivatives for i ¼ 1, . . . , k in one
formula we follow the convention to write them
as a ‘row of columns’— that is, we group them
into a matrix, so that @Qb

@b0 ¼ Q (note the prime in
the left-hand denominator; this indicates that the
separate derivatives are arranged as a row).

c. With the same conventions we get @2S
@b@b0 ¼ Q for

the Hessian.

d. LetX be an n� kmatrix with rank k; then prove
that the k� k matrix X0X is positive definite.

3.3 (E Section 3.1.2)
The following steps show that the least squares
estimator b ¼ (X0X)�1X0y minimizes (3.6) without
using the first and second order derivatives. In this
exercise b� denotes any k� 1 vector.

a. Let b� ¼ (X0X)�1X0yþ d; then show that
y�Xb� ¼ e�Xd, where e is a vector of con-
stants that does not depend on the choice of d.

b. Show that S(b�) ¼ e0eþ (Xd)0(Xd) and that the
minimum of this expression is attained ifXd ¼ 0.

c. Derive the condition for uniqueness of this min-
imum and show that the minimum is then given
by d ¼ 0.

3.4 (E Section 3.1.4)
a. In the model y ¼ Xbþ e, the normal equations

are given by X0Xb ¼ X0y, the least squares esti-
mates by b ¼ (X0X)�1X0y, and the variance by
var(b) ¼ s2(X0X)�1. Work these three formulas
out for the special case of the simple regression
model yi ¼ aþ bxi þ ei and prove that these
results are respectively equal to the normal equa-
tions, the estimates a and b, and the variances of
a and b obtained in Sections 2.1.2 and 2.2.4.

b. Suppose that the k random variables y, x2,
x3, � � � , xk are jointly normally distributed
with mean m and (non-singular) covariance
matrix S. Let the observations be obtained by
a random sample of size n from this distribu-
tion N(m, S). Define the random variable
yc ¼ yj x2, � � � , xkf g—that is, y conditional on
the values of x2, � � � , xk. Show that the n obser-
vations yc satisfy Assumptions 1–7 of Section
3.1.4.
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3.5 (E Section 3.1.5)
In some software packages the user is asked to specify
the variable to be explained and the explanatory vari-
ables,while an intercept is added automatically.Now
suppose that you wish to compute the least squares
estimates b in a regression of the type y ¼ Xbþ e
where the n� kmatrix X does not contain an ‘inter-
cept column’ consisting of unit elements. Define

y� ¼ y
�y

� �
, X� ¼ i X

i �X

� �
,

where the i columns, consisting of unit elements
only, are added by the computer package and the
user specifies the other data.

a. Prove that the least squares estimator obtained
by regressing y� on X� gives the desired result.

b. Prove that the standard errors of the regression
coefficients of this regression must be corrected
by a factor

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2n� k� 1)=(n� k)

p
.

3.6 (E Section 3.1.6)
Suppose we wish to explain a variable y and that the
number of possible explanatory variables is so large
that it is tempting to take a subset. In such a situation
some researchers apply the so-called Theil criterion
and maximize the adjusted R2 defined by
R

2 ¼ 1� n�1
n�k (1� R2), where n is the number of ob-

servations andk thenumberof explanatoryvariables.

a. Prove that R2 never decreases by including an
additional regressor in the model.

b. Prove that the Theil criterion is equivalent with
minimizing s, the standard error of regression.

c. Prove that the Theil criterion implies that an
explanatory variable xj will be maintained if
and only if the F-test statistic for the null hypoth-
esis bj ¼ 0 is larger than one.

d. Show that the size (significance level) of such a
test is larger than 0.05.

3.7 (E Sections 3.1.5, 3.1.6, 3.2.4, 3.4.1, 3.4.3)
Some of the following questions and arguments
were mentioned in this chapter.

a. Prove the result stated in Section 3.1.5 that
hi > 0 if the n� k matrix X contains a column
of unit elements and rank (X) ¼ k.

b. Prove that R2 (in the model with constant term)
is the square of the sample correlation coefficient
between y and ŷy ¼ Xb.

c. If a regression model contains no constant term
so that the matrix X contains no column of ones,
then show that 1� (SSR=SST) (and hence R2

when it is computed in this way) may be negative.

d. Let y ¼ X1b1 þX2b2 þ e and let b1 be estimated
by regressing y on X1 alone (the ‘omitted vari-
ables’ case of Section 3.2.3). Show that
var(bR) � var(b1) in the sense that var(b1) –
var(bR) is a positive semidefinite matrix. When
are the two variances equal?

e. Show that the F-test for a single restriction bj ¼ 0
is equal to the square of the t-value of bj. Show
also that both tests lead to the same conclusion,
irrespective of the chosen significance level.

f�. Consider the expression (3.49) of the F-test in
terms of the random variables b02X

0
2M1X2b2

and e0e. Prove that, under the null hypothesis
that b2 ¼ 0, these two random variables are inde-
pendently distributed as w2(g) and w2(n� k)
respectively by showing that (i) they can be
expressed as e0Q1e and e0Q2e, with (ii)
Q1 ¼ M1 �M and Q2 ¼ M, where M is the
M-matrix corresponding to X and M1 is the
M-matrix corresponding to X1, so that (iii) Q1

is idempotent with rank g and Q2 is idempotent
with rank (n� k), and (iv) Q1Q2 ¼ 0.

g. In Section 3.4 we considered the prediction of
y2 for given values of X2 under the assumptions
that y1 ¼ X1bþ e1 and y2 ¼ X2bþ e2 where
E[e1]¼0, E[e2]¼ 0, E[e1e01]¼s2I, E[e2e02]¼s2I,
and E[e1e02] ¼ 0. Prove that under Assumptions
1–6 the predictor X2b with b ¼ (X0

1X1)
�1X0

1y1 is
best linear unbiased. That is, among all predict-
ors of the form ŷy2 ¼ Ly1 (with L a given matrix)
with the property that E[y2 � ŷy2] ¼ 0, it minim-
izes the variance of the forecast error y2 � ŷy2.

h. Using the notation introduced in Section 3.4.3,
show that a (1� a) prediction interval for y2j is
given by X0

2jb	 cs
ffiffiffiffiffi
djj

p
.

3.8 (E Section 3.4.1)
Consider the model y ¼ Xbþ e with the null hy-
pothesis that Rb ¼ rwhere R is a given g� kmatrix
of rank g and r is a given g� 1 vector. Use the
following steps to show that the expression (3.54)
for the F-test can be written in terms of residual
sums of squares as in (3.50).

a. The restricted least squares estimator bR
minimizes the sum of squares (y�Xb̂b)0(y�Xb̂b)
under the restriction that Rb̂b ¼ r. Show that
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bR ¼ b� A(Rb� r), where b is the unrestricted
least squares estimator and A ¼ (X0X)�1

R0[R(X0X)�1R0]�1.

b. Let e ¼ y�Xband eR ¼ y�XbR; then show that

e0ReR ¼ e0eþ (Rb� r)0[R(X0X)�1R0]�1(Rb� r):

c. Show that the F-test in (3.54) can be written as in
(3.50).

d. In Section 3.4.2 we tested the null hypothesis that
b4 þ b5 ¼ 0 in the model with k ¼ 5 explanatory
variables. Describe a method to determine the
restricted sum of squared residuals e0ReR in this
case.

3.9 (E Section 3.2.5)
This exercise serves to clarify a remark on standard
errors in partial regressions that was made in
Example 3.3 (p. 150). We use the notation of
Section 3.2.5, in particular the estimated regressions

(1) y ¼ X1b1 þX2b2 þ e, and
(2) M2y ¼ (M2X1)b� þ e�

in the result of Frisch–Waugh. Here X1 and M2X1

are n� (k� g) matrices and X2 is an n� g matrix.

a. Prove that var(b1) ¼ var(b�) ¼ s2(X0
1M2X1)

�1.

b. Derive expressions for the estimated variance s2

in regression (1) and s2� in regression (2), both in
terms of e0e.

c. Prove that the standard errors of the coefficients
b1 in (1) can be obtained by multiplying the
standard errors of the coefficients b� in (2) by
the factor

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(n� kþ g)=(n� k)

p
.

d. Check this result by considering the standard
errors of the variable education in the second
regression in Exhibit 3.7 and the last regression
in Exhibit 3.10. (These values are rounded; a
more precise result is obtained when higher pre-
cision values from a regression package are used).

e. Derive the relation between the t-values of (1)
and (2).

3.10 (E Section 3.4.1)
In Section 1.4.2 we mentioned the situation of two
independent random samples, one of size n1 from
N(m1, s

2) and a second one of size n2 from
N(m2, s

2). We want to test the null hypothesis
H0 : m1 ¼ m2 against the alternative H1 : m1 6¼ m2.
The pooled t-test is based on the difference be-
tween the sample means y1 and y2 of the two

sub-samples. Let e01e1 ¼Pn1
i¼1 (yi � y1)

2 and
e02e2 ¼Pn1þn2

i¼n1þ1(yi � y2)
2 be the total sum of squares

in the first and second sub-sample respectively; then
the pooled estimator of the variance is defined by
s2p ¼ (e01e1 þ e02e2)=(n1 þ n2 � 2) and the pooled
t-test is defined by

tp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1n2

n1 þ n2

r
y2 � y1

sp
:

a. Formulate the testing problem of m1 ¼ m2 against
m1 6¼ m2 in terms of a parameter restriction in a
multivariate regression model (with parameters
m1 and m2).

b. Derive the F-test for H0 : m1 ¼ m2 in the form
(3.50).

c. Prove that t2p is equal to the F-test in b and that tp
follows the t(n1 þ n2 � 2) distribution if the null
hypothesis of equal means holds true.

d. In Example 1.12 (p. 62) we considered the
FGPA scores of n1 ¼ 373 male students and
n2 ¼ 236 female students. Use the results
reported in Exhibit 1.6 to perform a test of the
null hypothesis of equal means for male and
female students against the alternative that
female students have on average higher scores
than male students.

3.11 (E Section 3.4.3)
We consider the Chow forecast test (3.58) for the
case g ¼ 1 of a single new observation (xnþ1, ynþ1).
The n preceding observations are used in the model
y1 ¼ X1bþ e with least squares estimator b. We
assume that Assumptions 1–4 and 7 are satisfied
for the full sample i ¼ 1, � � � , nþ 1, and Assump-
tions 5 and 6 for the estimation sample
i ¼ 1, � � � , n, whereas for the (nþ 1)st observation
we write

ynþ1 ¼ x0nþ1bþ gþ enþ1

with g an unknown scalar parameter. We consider
the null hypothesis that g ¼ 0 against the alternative
that g 6¼ 0.

a. Prove that the least squares estimators of b and g
over the full sample i ¼ 1, � � � , nþ 1, are given
by b and c ¼ ynþ1 � x0nþ1b. Show that the re-
sidual for the (nþ 1)st observation is equal to
zero. Provide an intuitive explanation for this
result.
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b. Derive the residual sum of squares over the full
sample i ¼ 1, � � � , nþ 1 under the alternative
hypothesis.

c. Derive the F-test for the hypothesis that g ¼ 0.

EMPIRICAL AND SIMULATION QUESTIONS

3.12 (E Section 3.3.3)
In this simulation exercise we consider five variables
(y, z, x1, x2, and x3) that are generated as follows.
Let n ¼ 100 and let ei, !i, Zi � NID(0, 1) be inde-
pendent random samples from the standard normal
distribution, i ¼ 1, � � � , n. Define

x1i ¼ 5þ !i þ 0:3Zi
x2i ¼ 10þ !i

x3i ¼ 5þ Zi
yi ¼ x1i þ x2i þ ei
zi ¼ x2i þ x3i þ ei

a. What is the correlation between x1 and x3? And
what is the correlation between x2 and x3?

b. Perform the regression of y on a constant, x1 and
x2. Compute the regression coefficients and their
t-values. Comment on the outcomes.

c. Answer the questions of b for the regression of z
on a constant, x2 and x3.

d. Perform also regressions of y on a constant and
x1, and of z on a constant and x3. Discuss the
differences that arise between these two cases.

3.13 (E Section 3.4.1)
In Section 3.4.2 we tested four different
hypotheses— that is, (i) b5 ¼ 0, (ii) b2 ¼
b3 ¼ b4 ¼ b5 ¼ 0, (iii) b4 ¼ b5 ¼ 0, and
(iv) b4 þ b5 ¼ 0. As data set we considered the
data on all 474 employees (see Exhibit 3.16). Use a
significance level of 5 per cent in all tests below.

a. Test these four hypotheses also for the subset of
employees working in management (job category
3), using the results in the last two columns in
Exhibit 3.16.

b. Now consider the hypothesis (iii) that gender and
minority have no effect on salary for employees
in management. We mention that of the eighty-
four employees in management, seventy are
male non-minority, ten are female-non-minority,
four are male-minority, and no one is female-

minority. Discuss the relevance of this informa-
tion with respect to the power of the test for
hypothesis (iii).

c. Finally consider the subset of employees with
custodial jobs (job category 2, where all employ-
ees are male). Use the results in Exhibit 3.16 to
test the hypothesis that b5 ¼ 0. Test also the hy-
pothesis that b2 ¼ b3 ¼ b5 ¼ 0.

3.14 (E Sections 3.2.2, 3.3.3)
In this exercise we consider the data set
on student learning of Example 1.1 (p. 12)
for 609 students. The dependent variable
(y) is the FGPA score of a student, and the explana-
tory variables are x1 (constant term), x2 (SATM
score), x3 (SATV score), and x4 (FEM, with x4 ¼ 1
for females and x4 ¼ 0 for males).

a. Compute the 4� 4 correlation matrix for the
variables (y, x2, x3, x4).

b. Estimate a model for FGPA in terms of SATV by
regressing y on x1 and x3. Estimate also a model
by regressing y on x1, x2, x3, and x4.

c. Comment on the differences between the two
models in b for the effect of SATV on FGPA.

d. Investigate the presence of collinearity between
the explanatory variables by computing R2

j in
(3.47) and the square root of the variance infla-

tion factors, 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R2

j

q
, for j ¼ 2, 3, 4.

3.15 (E Section 3.4.1)
In this exercise we consider production
data for the year 1994 of n ¼ 26 US firms
in the sector of primary metal industries
(SIC33). The data are taken from E. J. Bartelsman
and W. Gray, National Bureau of Economic Re-
search, NBER Technical Working Paper 205, 1996.
For each firm, values are given of production (Y,
value added in millions of dollars), labour (L, total
payroll in millions of dollars), and capital (K, real
capital stock inmillions of 1987dollars).A log-linear
production function is estimated with the following
result (standard errors are in parentheses).
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log (Y) ¼ 0:701þ 0:756 log (L)þ 0:242 log (K)þ e

(0:415) (0:091) (0:110)

The model is also estimated under two alternative
restrictions, the first with equal coefficients for
log (L) and log (K) and the second with the sum of
the coefficients of log (L) and log (K) equal to one
(‘constant returns to scale’). For this purpose the
following two regressions are performed.

log (Y) ¼ 0:010þ 0:524( log (L)þ log (K))þ e1

(0:358) (0:026)

log(Y)�log(K)¼0:686þ0:756(log(L)�log(K))þe2

(0:132) (0:089)

The residual sums of squares are respectively e0e ¼
1:825544, e01e1 ¼ 2:371989, and e02e2 ¼ 1:825652,
and theR2 are respectively equal toR2 ¼ 0:956888,
R2

1 ¼ 0:943984, and R2
2 ¼ 0:751397. In the

following tests use a significance level of 5%.

a. Test for the individual significance of log (L) and
log (K) in the first regression. Test also for the
joint significance of these two variables.

b. Test the restriction of equal coefficients by means
of an F-test based on the residual sums of
squares.

c. Test this restriction also by means of the R2.

d. Test the restriction of constant returns to scale
also in two ways, one with the F-test based on the
residual sums of squares and the other with the
F-test based on the R2.

e. Explain why the outcomes of b and c are the
same but the two outcomes in d are different.
Which of the two tests in d is the correct one?

3.16 (E Section 3.2.5)
Consider the data on bank wages of the
example in Section 3.1.7. To test for
the possible effect of gender on wage,
someone proposes to estimate the model
y ¼ b1 þ b4x4 þ e, where y is the yearly wage (in
logarithms) and x4 is the variable gender (with
x4 ¼ 0 for females and x4 ¼ 1 for males). As an
alternative we consider the model with x2 (educa-
tion) as an additional explanatory variable.

a. Use the data to perform the two regressions.

b. Comment on the differences between the conclu-
sions that could be drawn (without further think-
ing) from each of these two regressions.

c. Draw a partial regression scatter plot (with re-
gression line) for salary (in logarithms) against
gender after correction for the variable education
(see Case 3 in Section 3.2.5). Draw also a scatter
plot (with regression line) for the original (uncor-
rected) data on salary (in logarithms) and gender.
Discuss how these plots help in clarifying the
differences in b.

d. Check the results on regression coefficients and
residuals in the result of Frisch–Waugh (3.39) for
these data, where X1 refers to the variable x4,
and X2 refers to the constant term and the vari-
able x2.

3.17 (E Section 3.4.3)
In this exercise we consider data on
weekly coffee sales of a certain brand of
coffee. These data come from the same
marketing experiment as discussed in Example 2.3
(p. 78), but for another brand of coffee and for
another selection of weeks. The data provide for
n ¼ 18 weeks the values of the coffee sales in that
week (Q, in units), the applied deal rate (D ¼ 1 for
the usual price, D ¼ 1:05 in weeks with 5% price
reduction, and D ¼ 1:15 in weeks with 15% price
reduction), and advertisement (A ¼ 1 in weeks with
advertisement, A ¼ 0 otherwise). We postulate the
model

log (Q) ¼ b1 þ b2 log (D)þ b3Aþ e:

For all tests below use a significance level of 5%.

a. Test whether advertisement has a significant
effect on sales, both by a t-test and by an F-test.

b. Test the null hypothesis that b2 ¼ 1 against the
alternative that b2 > 1.

c. Construct 95% interval estimates for the param-
eters b2 and b3.

d. Estimate the model using only observations in
weeks without advertisement. Test whether this
model produces acceptable forecasts for the sales
(in logarithms) in the weeks with advertisement.
Note: take special care of the fact that the esti-
mated model can not predict the effect of adver-
tisement.

e. Make two scatter plots, one of the actual values
of log (Q) against the fitted values of d for the
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twelve observations in the estimation sample,
and a second one of log (Q) against the predicted
values for the six observations in the prediction
sample. Relate these graphs to your conclusions
in d.

3.18 (E Section 3.2.5)
In this exercise we consider yearly data
(from 1970 to 1999) related to motor gas-
oline consumption in the USA. The data
are taken from different sources (see the table). Here
‘rp’ refers to data in the Economic Report of
the President (see w3.access.gpo.gov), ‘ecocb’ to
data of the Census Bureau, and ‘ecode’ to data of
the Department of Energy (see www.economagic.
com). The price indices are defined so that the aver-
age value over the years 1982–4 is equal to 100.
We define the variables y ¼log (SGAS=PGAS),
x2 ¼ log (INC=PALL), x3 ¼ log (PGAS=PALL),
x4 ¼ log (PPUB=PALL), x5 ¼ log (PNCAR=PALL),
and x6 ¼ log (PUCAR=PALL). We are interested in
the price elasticity of gasoline consumption—that is,
the marginal relative increase in sold quantity due to
a marginal relative price increase.

Variable Definition Units Source

SGAS Retail sales gasoline
service stations

106 dollars ecocb

PGAS Motor gasoline retail
price, US city average

cts/gallon ecode

INC Nominal personal
disposable income

109 dollars rp

PALL Consumer price index (1982� 4)=3
¼ 100

rp

PPUB Consumer price index
of public transport

idem rp

PNCAR Consumer price index
of new cars

idem rp

PUCAR Consumer price index
of used cars

idem rp

a. Estimate this price elasticity by regressing
log (SGAS) on a constant and log (PGAS). Com-
ment on the outcome, and explain why this out-
come is misleading.

b. Estimate the price elasticity now by regressing y
on a constant and log (PGAS). Explain the precise
relation with the results in a. Why is this outcome
still misleading?

c. Now estimate the price elasticity by regressing y
on a constant and the variables x2 and x3. Pro-
vide a motivation for this choice of explained and
explanatory variables and comment on the out-
comes.

d. If y is regressed on a constant and the variable x3
then the estimated elasticity is more negative
than in c. Check this result and give an explan-
ation in terms of partial regressions. Use the fact
that, in the period 1970–99, real income has
mostly gone up and the price of gasoline (as
compared with other prices) has mostly gone
down.

e. Perform the partial regressions needed to remove
the effect of income (x2) on the consumption (y)
and on the relative price (x3). Make a partial
regression scatter plot of the ‘cleaned’ variables
and check the validity of the result of Frisch–
Waugh in this case.

f. Estimate the price elasticity by regressing y on a
constant and the variables x2, x3, x4, x5, and x6.
Comment on the outcomes and compare them
with the ones in c.

g. Transform the four price indices (PALL, PPUB,
PNCAR, and PUCAR) so that they all have the
value 100 in 1970. Perform the regression of f
for the transformed data (taking logarithms
again) and compare the outcomes with the ones
in f. Which regression statistics remain the same,
and which ones have changed? Explain these
results.

3.19 (E Sections 3.4.1, 3.4.3)
We consider the same data on motor gas-
oline consumption as in Exercise 3.18
and we use the same notation as intro-
duced there. For all tests below, compute sums of
squared residuals of appropriate regressions, deter-
mine the degrees of freedom of the test statistic, and
use a significance level of 5%.

a. Regress y on a constant and the variables x2, x3,
x4, x5, and x6. Test for the joint significance of
the prices of new and used cars.

b. Regress y on a constant and the four explanatory
variables log (PGAS), log (PALL), log (INC),
and log (PPUB). Use the results to construct a
95% interval estimate for the price elasticity of
gasoline consumption.
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c. Test the null hypothesis that the sum of the coef-
ficients of the four regressors in the model in b
(except the constant) is equal to zero. Explain
why this restriction is of interest by relating
this regression model to the restricted regression
in a.

d. Show that the following null hypothesis is not
rejected: the sumof the coefficients of log (PALL),
log (INC), and log (PPUB) in the model of b is
equal to zero. Show that the restricted model has
regressors log (PGAS), x2 and x4 (and a constant
term), and estimate this model.

e. Use the model of d (with the constant,
log (PGAS), x2 and x4 as regressors) to construct

a 95% interval estimate for the price elasticity of
gasoline consumption. Compare this with the
result in b and comment.

f. Search the Internet to find the most recent year
with values of the variables SGAS, PGAS,
PALL, INC, and PPUB (make sure to use the
same units as the ones mentioned in Exercise
3.18). Use the models in b and d to construct
95% forecast intervals of y ¼ log (SGAS=PGAS)
for the given most recent values of the regressors.

g. Compare the most recent value of y with the two
forecast intervals of part f. For the two models in
b and d, perform Chow forecast tests for the most
recent value of y.
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4

Non-Linear Methods

In the previous chapter, the finite sample statistical properties of regression
methods were derived under restrictive assumptions on the data generating
process. In this chapter we describe several methods that can be applied more
generally. We consider models with stochastic explanatory variables, non-
normal disturbances, and non-linearities in the parameters. Some of these
models can be estimated by (non-linear) least squares; other models are
better estimated by maximum likelihood or by the generalized method of
moments. In most cases there exists no closed-form expression for the
estimates, so that numerical methods are required. Often the finite sample
statistical properties of the estimators cannot be derived analytically. An
approximation is obtained by asymptotic analysis— that is, by considering
the statistical properties if the sample size tends to infinity.



4.1 Asymptotic analysis
E Uses Section 1.3.3.

4.1.1 Introduction

Motivation of asymptotic analysis and use in finite samples

In the previous chapter we have seen that, given certain assumptions on the
data generating process, we can derive the exact distributional properties of
estimators (b and s2) and of tests (for instance, t- and F-tests). However, these
assumptions are rather strong and one might have a hard time finding
practical applications where all these assumptions hold exactly true. For
example, regressors typically do not tend to be ‘fixed’ (as we do not often
do controlled experiments), but they are often stochastic (as we rely on
empirical data that are for some part affected by random factors). Also,
regression models need not be linear in the parameters.

An interesting question now iswhether estimators and tests, which are based
on the same principles as before, still make sense in this more general setting.
Strictly speaking, if one or several of the standard Assumptions 1–7 in Section
3.1.4 (p. 125–6) are violated, then we do not know the statistical properties of
the estimators and tests anymore. A useful tool to obtain understanding of the
properties and tests in thismoregeneral setting is topretend thatwecanobtaina
limitless number of observations. We can then pose the question how
the estimators and tests would behave when the number of observations
increases without limit. This, in essence, is what is called asymptotic analysis.
Of course, in practice our sample size is finite. However, the asymptotic proper-
ties translate into results thatholdtrueapproximately infinite samples,provided
that the sample size is large enough. That is, once we know how estimators and
tests behave for a limitless number of observations, we also get an approximate
idea of how they perform in finite samples of usual size.

Random regressors and non-normal disturbances

As before, we consider the linear model

y ¼ Xbþ e: (4:1)

In the previous chapter we derived the statistical properties of the least
squares estimator under the seven assumptions listed in Section 3.1.4. In
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this chapter we relax some of these assumptions. In particular, we consider
situations where the explanatory variables are random (so that Assumption
1 is not satisfied), where the disturbances are not normally distributed (so
that Assumption 7 is violated), or where the model is not linear in the
parameters (so that Assumption 6 is violated). Such situations often occur
in practice when we analyse observed economic data. In this section we
consider the properties of the least squares estimator when Assumptions
1 and 7 are violated. Non-linear regression models are discussed in Section
4.2.

Averaging to remove randomness and to obtain normality,
asymptotically

The general idea is to remove randomness and non-normality asymptotically
by taking averages of the observed data. In Section 1.3.3 (p. 50) we discussed
the law of large numbers, which states that the (random) sample average
converges in probability to the (non-random) population mean, and the
central limit theorem, which states that this average (properly scaled)
converges in distribution to a normal distribution. That is, if Assumptions
1 and 7 are violated, then under appropriate conditions these assumptions
still hold true asymptotically— that is, if the sample size grows without limit
(n ! 1). The results of Chapter 3 then also hold true asymptotically, and
they can be taken as an approximation in large enough finite samples.
Before discussing further details of asymptotic analysis, we give an

example to illustrate that Assumptions 1 and 7 are often violated in practice.

Example 4.1: Bank Wages (continued)

As an illustration, suppose that we want to investigate the wage structure in
the US banking sector. We will discuss (i) randomness of the regressors due to
sampling, (ii)measurement errors, and (iii) non-normality of the disturbances.

(i) Sampling as a source of randomness

To estimate a wage equation for the US banking sector, we could use the data
of n ¼ 474 employees of a US bank (see Section 2.1.4 and Exhibit 2.5 (a)
(p. 85), and Section 3.1.7 and Exhibit 3.5, Panel 3 (p. 132)). If we were to use
data of employees of another bank, this would of course give other values
for the dependent and explanatory variables. That is, both y and X in (4.1)
are obtained by sampling from the full population of employees of all US
banks. This means that both y and X are random, so that Assumption 1 is
violated.
To illustrate this idea, suppose that our data set consisted only of a subset

of the 474 employees considered before. We show the results for two
such sub-samples. Exhibit 4.1 contains three histograms of the explanatory
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Exhibit 4.1 Bank Wages (Example 4.1)

Histograms of variable education (EDUC) ((a), (c), and (e)), and scatter diagrams of salary (in
logarithms) against education ((b), (d), and (f )), for full sample (n ¼ 474 ((a) and (b))), and for
two (complementary) random samples of size 237 ((c)–(f )).
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variable education (in (a), (c), and (e)) and three corresponding scatter
diagrams (in (b), (d), and (f )). The first data set consists of the full sample;
the other two are the result of a random selection of the employees in two
distinct groups of size 237 each. Clearly, the outcomes depend on the chosen
sample, and both y and X are random because of sampling.

(ii) Measurement errors

Apart from sampling effects, the observed explanatory variables often pro-
vide only partial information on the economic variables of interest. For
example, the measured number of years of education of employees does
not take the quality of the education into account. The reported data contain
measurement errors, in the sense that they give imperfect information on the
relevant underlying economic variables.

(iii) Non-normality of disturbances

As concerns the Assumption 7, an indication of the distribution of the
disturbances may be obtained by considering the least squares residuals.
For the simple regression model of Section 2.1.4, where salaries (in loga-
rithms) are explained from education alone, the histogram of the residuals is
given in Exhibit 2.5 (b). This distribution is skewed and this may cast doubt
on the validity of Assumption 7.

4.1.2 Stochastic regressors

Interpretation of previous results for stochastic regressors

One way to deal with stochastic regressors is to interpret the results that are
obtained under the assumption of fixed regressors as results that hold true
conditional on the given outcomes of the regressors. The results in Chapters 2
and 3, which were obtained under Assumption 1 of fixed regressors, carry
over to the case of stochastic regressors, provided that all assumptions
and results are interpreted conditional on the given values of the regressors.
To illustrate this idea, we consider the mean and variance of the least
squares estimator b. In Section 3.1.4 (p. 126) we showed that, under
Assumptions 1–6, E[b] ¼ b and var(b) ¼ s2(X0X)�1. If the regressors in the
n� k matrix X are stochastic, these results are not valid anymore. However,
suppose that we replace Assumption 2 thatE[e] ¼ 0 andAssumptions 3 and 4
that var(e) ¼ s2I by the following two assumptions that are conditional onX:

E[ejX] ¼ 0, var(ejX) ¼ s2I:
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Then it holds true that

E[bjX] ¼ b, var(bjX) ¼ s2(X0X)�1,

so that the previous results remain true if we interpret everything conditional
on X. To prove the above two results, note that

E[bjX] ¼ E[bþ (X0X)�1X0ejX] ¼ bþ (X0X)�1X0E[ejX] ¼ b,

var(bjX) ¼ var(bþ (X0X)�1X0ejX) ¼ (X0X)�1X0var(ejX)X(X0X)�1

¼ (X0X)�1X0(s2I)X(X0X)�1 ¼ s2(X0X)�1:

Derivation of statistical properties OLS when X and « are independent

Consider the linear model y ¼ Xbþ e and suppose that Assumptions 2–6 (see
Section 3.1.4) are satisfied, but that Assumption 1 of fixed regressors is not valid.
If X is random but independently distributed from e, then it follows that

E[b] ¼ E[(X0X)�1X0y]

¼ bþ E[(X0X)�1X0e]

¼ bþ E[(X0X)�1X0]E[e]
¼ b,

where the third equality follows because X and e are independent. So, in this case
the least squares estimator is still unbiased. To evaluate the variance var(b) ¼
E[(b� b)(b� b)0] we write

b ¼ (X0X)�1X0y ¼ (X0X)�1X0(Xbþ e) ¼ bþ (X0X)�1X0e, (4:2)

so that b� b ¼ (X0X)�1X0e. Using the properties of conditional expectations (see
Section 1.2.2 (p. 24)) it follows by conditioning on X (denoted by E[ � jX]) that

var(b) ¼ E[(X0X)�1X0ee0X(X0X)�1]

¼ E[E[(X0X)�1X0ee0X(X0X)�1jX] ]

¼ E[(X0X)�1X0E[ee0jX]X(X0X)�1]

¼ E[(X0X)�1X0E[ee0]X(X0X)�1]

¼ s2E[(X0X)�1]:

The third equality follows because, conditional on X, X is given, and the fourth
equality holds true becauseX and e are independent. The last equality uses the fact
that E[ee0] ¼ s2I because of Assumptions 2–4. This shows that the variance of
b depends on the distribution of X.

T
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Consequences of random regressors

In general it may be difficult to estimate the joint distribution of X
or to estimate E[(X0X)�1]. The t- and F-statistics as computed in Chapter 3
will no longer exactly follow the t- and F-distributions. This also means that
the P-values reported by statistical packages that are based on these distribu-
tions are no longer valid. In general, the exact finite sample distributions of b
and of the t- and F-statistics cannot be determined analytically. However, the
asymptotic properties can be determined under appropriate regularity con-
ditions (see Section 4.1.4).

The assumption of stable regressors

In the sequel we no longer assume that X and e are independent. In order to
investigate the asymptotic properties of the least squares estimator, we make
the following assumption. For the definition and calculation rules of prob-
ability limits we refer to Section 1.3.3 (p. 48–9).

. Assumption 1�: stability (replaces Assumption 1 of fixed regressors). The
regressors X may be stochastic and the probability limit of 1

nX
0X exists

and is non-singular, that is, for some non-singular k� k matrix Q there
holds

plim
1

n
X0X

� �
¼ Q:

This stability assumption places restrictions on the variation in the
explanatory variables— that is, the variables should vary sufficiently (so that
Q is invertible) but not excessively (so thatQ is finite). For example, suppose
that the values of the k� 1 vector of regressors are obtained by random
sampling from a population with zero mean and positive definite covariance
matrixQ—that is, from a population where the regressors are not perfectly
collinear. The element (h, j) of the matrix 1

nX
0X is given by 1

n

Pn
i¼1 xhixji, the

(non-centred) secondmoment of thehth and jth explanatory variable.The law
of large numbers (see Section 1.3.3 (p. 50)) implies that plim 1

n

Pn
i¼1 xhixji

� � ¼
E[xhixji] ¼ Qhj, so that Assumption 1� holds true under these conditions.

4.1.3 Consistency

The exogeneity condition for consistency

If X is random but independent of e, then the least squares estimator b is
unbiased. If X and e are not independent, then b is in general no longer
unbiased, because E[b] ¼ bþ E[(X0X)�1X0e] and the last term is non-zero
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in general. To investigate whether b is consistent—that is, whether
plim(b) ¼ b—we write (4.2) as

b ¼ bþ 1

n
X0X

� ��11

n
X0e: (4:3)

Using the rules for probability limits, it follows from Assumption 1� that

plim(b) ¼ bþQ�1plim
1

n
X0e

� �
,

so that b is consistent if and only if

plim
1

n
X0e

� �
¼ 0: (4:4)

This last condition is called the orthogonality condition. If this condition is
satisfied, then the explanatory variables are said to be exogenous (or some-
times ‘weakly’ exogenous, to distinguish this type of exogeneity, which is
related to consistent estimation, from other types of exogeneity related to
forecasting and structural breaks). The jth component of (4.4) can be written
as plim 1

n

Pn
i¼1 xjiei

� �
, so that this condition basically means that the explana-

tory variables should be asymptotically uncorrelated with the disturbances.

Derivation of consistency of s2

Under Assumption 1� and condition (4.4), s2 (defined in (3.22)) is a con-
sistent estimator of s2 provided that plim 1

n e
0e

� � ¼ plim 1
n

Pn
i¼1 e

2
i

� � ¼ s2. This can
be seen by writing (using the notation and results of Section 3.1.5)

s2 ¼ 1

n� k
e0e ¼ 1

n� k
e0Me ¼ 1

n� k
(e0e� e0X(X0X)�1X0e)

¼ n

n� k

1

n
e0e� 1

n
e0X

1

n
X0X

� ��11

n
X0e

 !
:

For n ! 1 the first expression in the last line converges to 1, the second to s2, the
third and fifth to zero because of condition (4.4), and the fourth expression
converges to Q�1 because of Assumption 1�. This shows that plim(s2) ¼ s2

under the stated conditions.

An example where OLS is consistent

As an illustration, we consider the data generating process

yi ¼ bxi þ ei,

T
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where the xi are IID(0, q) and the ei are IID(0, s2). If the explanatory variable
xi and the disturbance term ei are independent, it follows that

E
1

n
X0e

� 	
¼ E

1

n

Xn
i¼1

xiei

" #
¼ 1

n

Xn
i¼1

E[xi]E[ei] ¼ 0,

var
1

n
X0e

� �
¼ E

1

n2

Xn
i¼1

Xn
j¼1

xixjeiej

" #
¼ 1

n2

Xn
i¼1

Xn
j¼1

E[xixj]E[eiej]

¼ 1

n2

Xn
i¼1

E x2i

 �

s2 ¼ s2q
n

:

It follows from the result (1.48) in Section 1.3.3 (p. 49) that in this case
condition (4.4) is satisfied.

An example where OLS is not consistent

On the other hand, if xi and ei are correlated then the least squares estimator
is no longer consistent. This is illustrated by a simulation in Exhibit 4.2. Here
the explanatory variable and the disturbance terms have positive covariance
(see (a)), so that g ¼ E[xiei] > 0, and the estimated slope b is larger than
the slope b of the DGP (see (b)). This is in line with the fact that
plim(b) ¼ bþ q�1plim 1

nX
0e

� � ¼ bþ g=q > b. Note that the least squares
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Exhibit 4.2 Inconsistency

Effect of correlation between regressor and disturbance terms. The data are generated by
y ¼ xþ e (so that the DGP has slope parameter b ¼ 1). (a) shows the scatter diagram of
the disturbance terms e (EPS) against the regressor x, which are positively correlated.
(b) contains the scatter diagram of y against x with the regression line and the systematic
relation y ¼ x (dashed line) of the DGP. This shows that least squares overestimates the
slope parameter. (c) contains the scatter diagram of the least squares residuals (RES) against
x, which shows that the correlation between x and the disturbances (e) cannot be detected
in this way.
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estimate is obtained from the normal equation 1
n

P
xi(yi � bxi) ¼ 1

n

P
xiei ¼ 0,

where ei ¼ yi � bxi are the least squares residuals. This means that the
positive correlation between xi and ei cannot be detected from the least
squares residuals (see (c)). Therefore, in practice this issue cannot be tested
by simply looking at the residuals. Tests for exogeneity will be discussed later
(see Section 5.7.3 (p. 411)).

E Exercises: T: 4.1, 4.3, 4.4; S: 4.8.

4.1.4 Asymptotic normality

Derivation of asymptotic distribution

To determine the asymptotic distribution of b, it is helpful to rewrite (4.3) as

ffiffiffi
n

p
(b� b) ¼ 1

n
X0X

� ��1 1ffiffiffi
n

p X0e: (4:5)

Under Assumption 1�, the first factor in (4.5) converges in probability to Q�1, so
that it remains to determine the asymptotic distribution of 1ffiffi

n
p X0e. It can be shown

that, under Assumptions 1� and 2–6 and some additional weak regularity condi-
tions, there holds

1ffiffiffi
n

p X0e!d N(0, s2Q): (4:6)

The result in (4.6) is based on generalizations of the central limit theorem. We do
not discuss the precise regularity conditions needed for this general result, but we
analyse the simple regression model yi ¼ bxi þ ei in somewhat more detail.

Illustration: Simple regression model

Suppose that the disturbances ei are independently but not normally distributed and
that the (single) explanatory variable xi is non-stochastic. In this case
1ffiffi
n

p X0e ¼ 1ffiffi
n

p
P

xiei ¼ 1ffiffi
n

p
P

zi, where the random variables zi ¼ xiei are inde-

pendently distributed with mean E[zi] ¼ E[xiei] ¼ 0 and variance E z2i

 � ¼

E x2i e
2
i


 � ¼ s2x2i . In particular, ifxi ¼ 1 (so that themodel contains only the constant
term), then 1ffiffi

n
p X0e ¼ 1ffiffi

n
p
P

ei, and, according to the central limit theorem (1.50) in

Section 1.3.3 (p. 50), it follows that this converges in distribution to N(0, s2). As
Q ¼ 1 in this situation this shows (4.6) for this particular case. If xi is not constant,
we can use a generalized central limit theorem (see Section 1.3.3), which states
that 1ffiffi

n
p
P

zi converges in distribution to N(0, s2�) with variance equal to

s2� ¼ limn!1 1
n

Pn
i¼1 var(zi) ¼ s2 lim 1

n

Pn
i¼1 x

2
i Þ ¼ s2Q

�
, which proves (4.6) also

T

T
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for this case. Note that asymptotic normality is obtained independent of the
distribution of the disturbances— that is, even if the disturbances are not nor-
mally distributed. The result in (4.6) can be proved under much weaker condi-
tions, with correlated disturbances and stochastic X, but the orthogonality
condition is crucial to obtain the zero mean in (4.6).

Asymptotic distribution of OLS estimator

If the result on the asymptotic distribution in (4.6) holds true, it follows from
(4.5) and Assumption 1� that

ffiffiffi
n

p
(b� b)!d N(0,s2Q�1QQ�1) ¼ N(0, s2Q�1): (4:7)

Approximate distribution in finite samples

We say that the rate of convergence of b to b is
ffiffiffi
n

p
. If the sample size n is large

enough, the finite sample distribution of b can be approximated by
N
�
b, s2

n Q�1
�
. It depends on the application to hand which size of the sample

is required to justify this approximation. For instance, for the case of random
samples discussed in Section 1.3.3, the distribution of the sample mean is
often well approximated by a normal distribution for small sample sizes like
n ¼ 50. On the other hand, if the model for example contains many regres-
sors, then larger sample sizes may be required. The situation is somewhat
comparable to the discussion in Section 3.3.3 on multicollinearity (p. 158).
The expression (3.47) for the variance shows that the sample size required to
get a prescribed precision depends on the amount of variation in the individ-
ual regressors and on the correlations between the regressors.

Practical use of asymptotic distribution

To apply the normal approximation in practice, the (unknown) matrix Q is
approximated by 1

nX
0X. This gives the approximate distribution

b � N b, s2(X0X)�1
� �

: (4:8)

This means that the statistical results of Chapter 3— for example, the t-test
and the F-test that are based on the assumption that b � N

�
b, s2(X0X)�1

�
—

remain valid as an asymptotic approximation under the following four
assumptions.

(i) plim 1
nX

0X
� � ¼ Q exists and is invertible (Assumption 1�),

(ii) E[e] ¼ 0, var(e) ¼ s2I (Assumptions 2–4),

(iii) y ¼ Xbþ e (Assumptions 5 and 6),

(iv) plim 1
nX

0e
� � ¼ 0 (orthogonality condition).
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The standard inference methods for least squares are still valid for stochastic
regressors and non-normal disturbances, provided that these four conditions
are satisfied.

4.1.5 Simulation examples

As an illustration, we perform some simulation experiments with the model

yi ¼ xi þ ei, i ¼ 1, � � � , n:

So our data generating process has parameters b ¼ 1 and s2 ¼ 1.
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Exhibit 4.3 Simulation Example (Section 4.1.5)

Consistency and asymptotic normality. Estimates of the slope parameter (b, denoted by B in
(a) and (b)), a normalized version (BNORM, i.e.

ffiffiffi
n

p
(b� 1) in (c) and (d)), and estimates of the

disturbance variance (s2, denoted by S2 in (e) and (f )), for simulated data that satisfy the
orthogonality condition. The number of simulation runs is 10,000, and the histograms show
the distribution of the resulting 10,000 estimates. The sample size is n ¼ 25 in (a), (c), and (e)
and n ¼ 100 in (b), (d), and (f ) (note the differences between the scales on the horizontal axis
for both sample sizes).

198 4 Non-Linear Methods



Simulations with stable random regressors

First we consider simulations where the values of (xi, ei) are obtained
by a random sample of the bivariate normal distribution with mean zero,
unit variances, and covariance r. So the regressor xi is random, and it is also
stable because the law of large numbers implies that plim 1

n

Pn
i¼1 x

2
i

� � ¼
E[x2] ¼ 1.

We consider two experiments, one experiment with r ¼ 0 (so that the
regressor satisfies the orthogonality condition) and another experiment
with r ¼ 0:5 (so that the orthogonality condition is violated). Exhibit 4.3
shows histograms (based on 10,000 simulations) of the values of
b,

ffiffiffi
n

p
(b� 1), and s2, for sample sizes n ¼ 25 (a, c, e, g, i, k) and n ¼ 100

(b, d, f , h, j, l). The histograms (a–f ) indicate the consistency and
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Exhibit 4.3 (Contd.)

Inconsistency when orthogonality is violated. Estimates of the slope parameter (b, denoted by
B in (g) and (h)), a normalized version (BNORM, i.e.

ffiffiffi
n

p
(b� 1) in (i) and (j)), and estimates

of the disturbance variance (s2, denoted by S2 in (k) and (l)), for simulated data that do not
satisfy the orthogonality condition. The number of simulation runs is 10,000, and the histo-
grams show the distribution of the resulting 10,000 estimates. The sample size is n ¼ 25 in (g),
(i), and (k) and n ¼ 100 in (h), (j), and (l) (note the differences between the scales on the
horizontal axis for both sample sizes).

4.1 Asymptotic analysis 199



0

400

800

1200

1600

0.90 0.95 1.00 1.05 1.10

0

200

400

600

800

1000

1200

0.985 0.990 0.995 1.000 1.005 1.010

0

400

800

1200

1600

−0.6 −0.4 −0.2 0.0 0.2 0.4

0

200

400

600

800

1000

1200

−3 −2 −1 0 1 2 3 4

0

200

400

600

800

1000

1200

−2 −1 0 1 2 3 4

0

200

400

600

800

1000

− 20 −15 −10 −5 0 5 10 15

0

200

400

600

800

1000

1200

−0.15 −0.10 −0.05 0.00 0.05 0.10
0

200

400

600

800

1000

1200

−30 20 −10 0 10 20 30

Series: BNORM
Sample 1 10000
Observations 10000

Mean
Median
Maximum
Minimum
Std. Dev.
Skewness
Kurtosis

−0.000273
−0.000535
0.126881

−0.141444
0.034689
0.017561
2.998325

 0.000514
−0.000835
0.515674

−0.571300
0.139732
0.016874
3.063997

Series: BNORM
Sample 1 10000
Observations 10000

Mean
Median
Maximum
Minimum
Std. Dev.
Skewness
Kurtosis

 0.999973
 0.999947
1.012688
0.985856
0.003469
0.017561
2.998325

Series: B
Sample 1 10000
Observations 10000

Mean
Median
Maximum
Minimum
Std. Dev.
Skewness
Kurtosis

 1.000103
 0.999833
1.103135
0.885740
0.027946
0.016874
3.063997

Series: B
Sample 1 10000
Observations 10000

Mean
Median
Maximum
Minimum
Std. Dev.
Skewness
Kurtosis

 0.054108
 0.072468
17.85650

−19.67192
4.997995

−0.012978
2.991443

Series: BNORM
Sample 1 10000
Observations 10000

Mean
Median
Maximum
Minimum
Std. Dev.
Skewness  
Kurtosis

 1.006782
 1.011155
4.403408

−2.179959
0.858568

−0.027607
2.938697

Series: B
Sample 1 10000
Observations 10000

Mean
Median
Maximum
Minimum
Std. Dev.
Skewness  
Kurtosis

 1.010822
 1.014494
4.571300

−2.934385
0.999599

−0.012978
2.991443

Series: B
Sample 1 10000
Observations 10000

Mean
Median
Maximum
Minimum
Std. Dev.
Skewness  
Kurtosis

Series: BNORM
Sample 1 10000
Observations 10000

Mean
Median
Maximum
Minimum
Std. Dev.
Skewness  
Kurtosis

 0.067819
 0.111553
 34.03408

−31.79959
8.585676

−0.027607
 2.938697
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Exhibit 4.4 Simulation Example (Section 4.1.5)

Estimates of the slope parameter (b, denoted by B in (a)–(d)) and a normalized version
(BNORM, i.e.

ffiffiffi
n

p
(b� 1) in (e)–(h)) for two data generating processes that do not satisfy

Assumption 1�. (a), (c), (e), (g), and (i) are for the model with linear trend and (b), (d), (f ), (h),
and (j) are for the model with hyperbolic trend. (a)–(b) show the estimates of b for sample size
n ¼ 25 and (c)–(d) for n ¼ 100; (e)–(f ) show the outcomes of BNORM for n ¼ 25 and (g)–(h)
for n ¼ 100; (i)–(j) show scatter diagrams for a sample of size n ¼ 100 of the models with
linear trend (i) and with hyperbolic trend (j).

200 4 Non-Linear Methods



approximate normality when the orthogonality condition is satisfied, and the
histograms (g–l) indicate the inconsistency of both b and s2 when the ortho-
gonality condition is violated. (Note that the horizontal axis differs among
the different histograms, so that the width of the distributions is more easily
compared by comparing the reported standard deviations of the outcomes.)

Simulations with regressors that are not stable

Next we generate data from the model yi ¼ xi þ ei with xi ¼ i (a linear trend)
and with xi ¼ 1=i (a hyperbolic trend). In both cases the disturbances ei are
NID(0, 1), and the least squares estimator b is unbiased and efficient. Note
that these trend models do not satisfy the stability Assumption 1�, as
lim 1

n

Pn
i¼1 i

2
� � ¼ 1 and lim 1

n

Pn
i¼1 i

�2
� � ¼ 0. In the linear trend model, the

rate of convergence of b to b is equal to n
ffiffiffi
n

p
(instead of

ffiffiffi
n

p
), and in the

hyperbolic trend model the estimator b does not converge to b (the proof is
left as an exercise (see Exercise 4.2)).
Exhibit 4.4 shows the histograms of b and

ffiffiffi
n

p
(b� 1) for 10,000

simulations of both models, with sample sizes n ¼ 25 (a, b, e, f ) and
n ¼ 100 (c, d, g, h). By comparing the reported standard deviations in the
histograms, it is seen that for the linear trend the distribution of

ffiffiffi
n

p
(b� 1)

shrinks to zero for n ! 1 (see (e) and (g)), whereas for the hyperbolic trend
the distribution of

ffiffiffi
n

p
(b� 1) does not converge for n ! 1 (see (f ) and (h)).

For the hyperbolic trend data the least squares estimator b is not consistent
(see (b) and (d)), as the observations xi ¼ 1

i of the explanatory variable do not
contain sufficient variation for i ! 1.

E Exercises: T: 4.2.
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4.2 Non-linear regression

4.2.1 Motivation

Assumptions on the data generating process

In this section we consider regression models that are non-linear in the
parameters. This means that Assumption 6 in Section 3.1.4 (p. 125) no
longer holds true. Throughout this section we suppose that the stability
Assumption 1� of Section 4.1.2 and the Assumptions 2–5 of Section 3.1.4
are satisfied and that the regressors satisfy the orthogonality condition (4.4)
in Section 4.1.3. We now present two examples motivating the use of non-
linear models.

Example 4.2: Coffee Sales (continued)

In this example we consider marketing data on coffee sales. These data are
obtained from a controlled marketing experiment in stores in suburban Paris
(see A. C. Bemmaor and D. Mouchoux, ‘Measuring the Short-Term Effect of
In-Store Promotion and Retail Advertising on Brand Sales: A Factorial
Experiment’, Journal of Marketing Research, 28 (1991), 202–14). The
question of interest is whether the sensitivity of consumers to price reduc-
tions depends on the magnitude of the price reduction. Stated in economic
terms, the question is whether the price elasticity of demand for coffee is
constant or whether it depends on the price. We will discuss (i) the data,
(ii) the linear model with constant elasticity, and (iii) a non-linear model with
varying elasticity.

(i) Data

Exhibit 4.5 shows scatter diagrams of weekly sales (q) of two brands of coffee
against the applied deal rate (d) in these weeks (both variables are taken in
natural logarithms). The data for brand 2 (in (b)) were discussed before in
Example 2.3 (p. 78). The deal rate d is defined as d ¼ 1 if no price reduction
applies, d ¼ 1:05 if the price reduction is 5 per cent, and d ¼ 1:15 if the price
reduction is 15 per cent. For each brand there are n ¼ 12 observations, six
with d ¼ 1, three with d ¼ 1:05, and three with d ¼ 1:15. For both brands,
two of the sales figures for d ¼ 1:15 are nearly overlapping (the lower figure
for brand 1 in (a) and the higher figure for brand 2 in (b)).

E

XM402COF
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(ii) Linear model with constant elasticity

A simple linear regression model is given by

log (q) ¼ b1 þ b2 log (d)þ e

(here we suppress the observation index i for ease of notation). In this model
b2 is the derivative of log (q) with respect to log (d)— that is,

b2 ¼ @ log (q)

@ log (d)
¼ @q=q

@d=d
,

which is the demand elasticity with respect to the deal rate. So the slope in
the scatter diagram of log (q) against log (d) corresponds to the demand
elasticity.

(iii) Non-linear model with varying elasticity

The scatter diagrams in Exhibit 4.5 suggest that for both brands the elasticity
may not be constant. The slope seems to decrease for larger values of log (d),
so that the elasticity may be decreasing for higher deal rates. A possible way
to model such a rate-specific elasticity is given by the equation

log (q) ¼ b1 þ
b2
b3

(db3 � 1)þ e: (4:9)

5.6

5.8

6.0

6.2

6.4

6.6

−0.05 0.00 0.05 0.10 0.15

LOGD1

L
O

G
Q

1

4.2

4.4

4.6

4.8

5.0

5.2

5.4

−0.05 0.00 0.05 0.10 0.15

LOGD2

L
O

G
Q

2

(a) (b)

Exhibit 4.5 Coffee Sales (Example 4.2)

Scatter diagrams for two brands of coffee, brand 1 (a) and brand 2 (b). The variable on the
vertical axis is the logarithm of sales (in units of coffee), the variable on the horizontal axis is
the logarithm of the deal rate (deal rates of 1.05 and 1.15 correspond to price reductions of
5% and 15% respectively). Both scatter diagrams contain twelve points, but for both brands
two observations for deal rate 15% are nearly overlapping (for brand 1 the ones with the
lower sales and for brand 2 the ones with the higher sales).

4.2 Non-linear regression 203



As (db3 � 1)=b3 ! log (d) for b3 ! 0, the limiting model for b3 ¼ 0 is the
linear model log (q) ¼ b1 þ b2 log (d)þ e. The deal rate elasticity in (4.9) is
equal to

@ logq

@ logd
¼ @ logq

@d=d
¼ d

@ log q

@d
¼ db2d

b3�1 ¼ b2d
b3 :

The null hypothesis of constant elasticity corresponds to b3 ¼ 0—that is, the
linear model. The non-linear model (4.9) provides a simple way to model a
non-constant elasticity. This example will be further analysed in Sections
4.2.5 and 4.3.9.

Example 4.3: Food Expenditure

As a second example we consider budget data on food expenditure of groups
of households. Here the question of interest is whether the food expenditure
depends linearly on household income or whether this dependence becomes
weaker for higher levels of income. Such a decreasing effect of income on
food consumption may be expected because households with higher incomes
can afford to spend relatively more on other expenses that provide a higher
marginal utility than additional food.
Exhibit 4.6 shows a scatter diagram of the fraction of consumptive ex-

penditure of households spent on food against total consumptive expenditure
(measured in $10,000). These data are analysed (amongst others) in a special
issue of the Journal of Applied Econometrics (12/5 (1997)). The data consist
of averages over groups of households and were obtained by a budget survey
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Exhibit 4.6 Food Expenditure (Example 4.3)

Scatter diagram of fifty-four data points of the fraction of expenditure spent on food against
total (consumption) expenditure.
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in the USA in 1950. The total consumption expenditure is taken as a
measure of the household income. We denote the fraction of expenditure
spent on food by y, the total consumption expenditure (in $10,000) by
x2, and the (average) household size by x3. The scatter diagram indicates
that the effect of income on the fraction spent on food declines for
higher income levels. Such a relation can be expressed by the non-linear
model

y ¼ b1 þ b2x
b3
2 þ b4x3 þ e:

The hypothesis that the fraction spent on food does not depend on household
income corresponds to b3 ¼ 0, and the hypothesis that it depends linearly on
income corresponds to b3 ¼ 1. Further analysis of this example is left as an
exercise (see Exercise 4.16).

4.2.2 Non-linear least squares

E Uses Appendix A.7.

Non-linear regression

The linear regression model y ¼ Xbþ e can be written as yi ¼ x0ibþ ei, where
i (i ¼ 1, � � � , n) denotes the observation and where x0i is the ith row of the
n� k matrix X (so that xi is a k� 1 vector). This model is linear in the
unknown parameters b. A non-linear regression model is described by an
equation of the form

yi ¼ f (xi, b)þ ei, (4:10)

where f is a non-linear function. If the non-linearity is only in xi —that is, if
for fixed xi the function f is linear in b—then this can be written as
f (xi, b) ¼ b1f1(xi)þ � � � þ bkfk(xi). This is a linear regression model with
explanatory variables fj(xi), j ¼ 1, � � � , k. In this case the parameters can be
estimated by regressing y on the explanatory variables f1, � � � , fk. On the
other hand, if the function is non-linear in b—for instance, as in (4.9)—
then the least squares estimation problem to minimize

S(b) ¼
Xn
i¼1

�
yi � f (xi, b)

�2
(4:11)
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becomes non-linear. The first order conditions are given by

@S(b)
@b

¼ �2
Xn
i¼1

�
yi � f (xi, b)

� � @f (xi, b)
@b

¼ 0:

This gives a set of non-linear normal equations in b. In general the solution of
these equations cannot be determined analytically, so that numerical ap-
proximations are needed. Numerical aspects are discussed in the next
section.

Requirement of identified parameters

The non-linear least squares (NLS) estimator bNLS is defined as the minimiz-
ing value of (4.11). We assume that this minimum exists and that it is unique.
This imposes conditions on the model. For example, if there exist parameter
vectors b1 6¼ b2 with f (xi, b1) ¼ f (xi, b2) for all xi, then S(b1) ¼ S(b2) in
(4.11), in which case minima need not be unique. The parameters of the
model (4.10) are said to be identified if for all b1 6¼ b2 there exists a vector x
such that f (x, b1) 6¼ f (x, b2). The parameters of the linear model with
f (x, b) ¼ x0b are always identified provided that the explanatory variables
x are not perfectly collinear. So, if Assumption 1 is satisfied so that the
regressor matrix X has rank k, then the parameters b of the linear model
are identified. An example of a non-linear regression model with unidentified
parameters (with a single explanatory variable x) is f (x, b) ¼ b1e

b2þb3x, as
two parameter vectors (b11, b21, b31) and (b12, b22, b32) give the same func-
tion values for all values of x if b31 ¼ b32 and b11e

b21 ¼ b12e
b22 . To avoid

problems in optimization one should work only with models with identified
parameters.

Statistical properties of non-linear least squares

The estimator bNLS will in general not be unbiased. Under appropriate
assumptions it is a consistent estimator and its variance may be approxi-
mated in large samples by

var(bNLS) � s2(X0X)�1,

where s2 ¼ 1
n�k

Pn
i¼1 (yi � f (xi, bNLS))

2 is the NLS estimate of the variance of
the disturbance terms ei. Here X is the n� k matrix of first order derivatives
of the function f in (4.10) with respect to b—that is,

X ¼
@f (x1, b)=@b

0

..

.

@f (xn, b)=@b
0

0B@
1CA� (4:12)
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Note that for the linear model with f (xi, b) ¼ x0ib this gives the matrix X as
defined in (3.2) in Section 3.1.2 (p. 120).

Idea of conditions for asymptotic properties

It is beyond the scope of this book to derive the above asymptotic results for bNLS.
However, we give an idea of the required assumptions, which are basically the
same as the ones discussed in Section 4.1.

Suppose that the data are generated by (4.10) with parameter vector b ¼ b0.
Further suppose that the disturbance terms satisfy Assumptions 2–4, and
that Assumption 5 (constant parameters) is also satisfied. Suppose further that
Assumption 1� is satisfied with X as defined in (4.12) and evaluated at b ¼ b0. Let
f 0i ¼ f (xi, b0) and fi ¼ f (xi, b), then the least squares criterion (4.11) can be
decomposed as follows:

1

n
S(b) ¼ 1

n

X
(yi � fi)

2 ¼ 1

n

X
(f 0i þ ei � fi)

2

¼ 1

n

X
(f 0i � fi)

2 þ 1

n

X
e2i þ

2

n

X
(f 0i � fi)ei:

Of the three terms in the last expression, the middle one does not depend on b and
hence it does not affect the location of the minimum of S(b). For n ! 1, the last
term will tend (in probability) to zero under appropriate orthogonality conditions.
For instance, in the linear model with fi ¼ x0ib, we get f 0i � fi ¼ x0i(b0 � b) and the
condition plim 1

n

P
xiei

� � ¼ 0 is the orthogonality condition (4.4). Finally, the

first term 1
n

P
f 0i � fi
� �2

will not vanish for b 6¼ b0 if the parameters are identified
in the sense that for every b 6¼ b0

plim
1

n

Xn
i¼1

(f (xi, b0)� f (xi, b))
2

 !
6¼ 0:

Under the above conditions, the minimum value of 1
n S(b) is asymptotically only

obtained for b ¼ b0, and hence bNLS is consistent. Under similar conditions bNLS is
also asymptotically normally distributed in the sense that

ffiffiffi
n

p
(bNLS � b0)!d N(0, s2Q�1) (4:13)

where Q ¼ plim 1
nX

0X
� �

with X the n� k matrix of first order derivatives defined
in (4.12) and evaluated at b0.

Approximate distribution in finite samples

Under the foregoing conditions, the result in (4.13) means that

T
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bNLS � N b0, s
2(X0X)�1

� �
(4:14)

where X is the matrix defined in (4.12) and evaluated at bNLS and where
s2 ¼ 1

n�k

Pn
i¼1 (yi � f (xi, bNLS))

2 is the NLS estimate of s2. Under similar
conditions bNLS is also asymptotically efficient, in the sense thatffiffiffi
n

p
(bNLS � b0) has the smallest covariance matrix among all consistent esti-

mators of b0.
The result in (4.14) motivates the use of t-tests and F-tests in a similar way

as in Chapter 3. For the F-test the sums of squares are equal to the minimum
value of S(b) in (4.11) under the null hypothesis and under the alternative
hypothesis. That is, let bNLS be the unrestricted non-linear least squares
estimator and bRNLS the restricted estimator obtained by imposing g restric-
tions under the null hypothesis. Then under the above assumptions the F-test
is computed by

F ¼ (e0ReR � e0e)=g
e0e=(n� k)

� F(g, n� k),

where e0e ¼ S(bNLS) is the sum of squares (4.11) obtained for the unrestricted
NLS estimate bNLS and e0ReR ¼ S bRNLS

� �
is the sum of squares obtained for

bRNLS.

Summary of computations in NLS

The non-linear least squares estimate bNLS is obtained by minimizing the
sum of squares (4.11)— for instance, by one of the non-linear optimization
algorithms discussed in the next section. Under suitable regularity condi-
tions, and provided that the parameters of the model are identified, the
estimator bNLS is consistent and asymptotically normally distributed.
Asymptotic t-values and F-tests can be obtained as in the linear regression
model, using the fact that in large enough samples var(bNLS) � s2(X0X)�1

where s2 ¼ 1
n�k

P
e2i (with ei ¼ yi � f (xi, bNLS) the NLS residuals) and where

the n� k regressor matrix X is given in (4.12), evaluated at b ¼ bNLS.
Summarizing,

Computations for NLS

. Step 1: Estimation. Estimate b by minimizing (4.11) and determine the NLS
residuals ei ¼ yi � f (xi, bNLS).

. Step 2: Testing. Approximate t- and F-tests can be based on the fact that
bNLS � N(b, s2(X0X)�1) where s2 ¼ 1

n�k

P
e2i and X is given in (4.12).
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4.2.3 Non-linear optimization

E Uses Appendix A.7.

Numerical aspects

If the model (4.10) is non-linear, the objective function S(b) in (4.11) is not
quadratic and the optimal value of b cannot be written as an explicit
expression in terms of the data (yi, xi), i ¼ 1, � � � , n. In this section we
consider some numerical aspects of non-linear optimization. The vector of
unknown parameters is denoted by y and the objective function by F(y), with
column vector of gradients G(y) ¼ @F(y)=@y and Hessian matrix
H(y) ¼ @2F(y)=@y@y0. Optimal values of y are characterized by the first
order conditions

G(y) ¼ 0:

Numerical procedures often involve the following steps.

Iterative optimization

. Step 1: Start. Determine an initial estimate of y, say ŷy0.

. Step 2: Improve and repeat. Determine an improved estimate of y, say ŷy1.
Iterate these improvements, giving a sequence of estimates ŷy1, ŷy2, ŷy3, � � �.

. Step 3: Stop. Stop the iterations if the improvements become sufficiently
small.

Remarks on numerical methods

In general there is no guarantee that the final estimate ŷy is close to the global
optimum. Even if G(ŷy) � 0, this may correspond to a local optimum. To
prevent the calculated ŷy being only a local optimum instead of a global
optimum one can vary the initial estimate of y in step 1. For instance, we can
change each component of the final estimate ŷy by a certain percentage and
take the new values as initial estimates in a new round of iterations. For
the stopping rule in step 3, one can consider the percentage changes in the
estimatedparameters ŷyh and ŷyhþ1 in two consecutive iterations and the relative
improvement (F(ŷyhþ1)� F(ŷyh))= F(ŷyh). If these changes are small enough, the
iterations are stopped. If the improvements in the objective function are small
but the changes in the parameters remain large in a sequence of iterations, this
may be an indication of identification problems. A possible solution is to
adjust the objective function or the underlying model specification.
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Several methods are available for the iterations in step 2. Here we discuss
twomethods that are often applied—namely, Newton–Raphson and Gauss–
Newton. Both methods are based on the idea of linear approximation—
namely, of the gradient G(y) in Newton–Raphson and of the non-linear
function f (x, b) in Gauss–Newton.

The Newton–Raphson method

The Newton–Raphson method is based on the iterative linearization of the
first order condition for an optimum—that is, G(y) ¼ 0. Around a given
value ŷyh, the gradient G can be linearized by G(y) � G(ŷyh)þH(ŷyh)(y� ŷyh).
The condition G(y) ¼ 0 is approximated by the condition G(ŷyh)þ
H(ŷyh)(y� ŷyh) ¼ 0. These equations are linear in the unknown parameter
vector y and they are easily solved, giving the next estimate

ŷyhþ1 ¼ ŷyh �H�1
h Gh, (4:15)

whereGh andHh are the gradient and Hessian matrix evaluated at ŷyh. Under
certain regularity conditions these iterations converge to a local optimum of
F(y). It depends on the form of the function F(y) and on the procedure to
determine initial estimates ŷy0 whether the limiting estimate corresponds to
the global optimum. A graphical illustration of this method is given in
Exhibit 4.7, which shows the (non-linear) gradient function and two iter-
ations of the algorithm.

Regularization

Sometimes— for instance, if the Hessian matrix is nearly singular— the iterations
in (4.15) are adjusted by a regularization factor so that

q
qq2q1q0

G(q)

∧ ∧ ∧ ∧

Exhibit 4.7 Newton–Raphson

Illustration of two Newton–Raphson iterations to find the optimum of an objective function.
The graph shows the first derivative (G) of the objective function as a function of the parameter
y. The algorithm starts in ŷy0; ŷy1 and ŷy2 denote the estimates obtained in the first and second
iteration, and ŷy is the optimal value.

T
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ŷyhþ1 ¼ ŷyh � (Hh þ cI)�1Gh,

where c > 0 is a chosen constant and I is the identity matrix. This forces the
parameter adjustments more in the direction of the gradient. The Newton–
Raphson method requires the computation of the gradient vector and the Hessian
matrix in each iteration. In some cases these can be computed analytically; in
other cases one has to use numerical methods.

The Gauss–Newton method

In many cases the computation of the Hessian matrix is cumbersome and it is
much more convenient to use methods that require only the gradient. There-
fore we now discuss the Gauss–Newton method for non-linear regression
models. In this case the parameter vector is y ¼ b and the objective function
is S(b) defined in (4.11). The idea is to linearize the function f so that this
objective function becomes quadratic.

Derivation of Gauss–Newton iterations

Assuming that the function f (x, b) is differentiable around a given value b̂bh, it can
be written as

f (x, b) ¼ fh(x)þ gh(x)
0(b� b̂bh)þ rh(x),

where fh(x) ¼ f (x, b̂bh) and gh(x) ¼ @f (x, b)=@b is the gradient, the k� 1 vector of
first order derivatives, evaluated at b̂bh. Further rh(x) is a remainder term that
becomes negligible if b is close to b̂bh. If we replace the function f (x, b) in (4.11) by
its linear approximation, the least squares problem becomes to minimize

Sh(b) ¼
Xn
i¼1

yi � fh(xi)� gh(xi)
0(b� b̂bh)

� �2
¼
Xn
i¼1

(zhi � g0hib)
2,

where zhi ¼ yi � fh(xi)þ gh(xi)
0b̂bh and ghi ¼ gh(xi) are computed at the given value

of b̂bh. The minimization of Sh(b) with respect to b is an ordinary least squares
problem with dependent variable zhi and with independent variables ghi. Let zh be
the n� 1 vector with elements zhi and let Xh be the n� k matrix with rows
g0hi ¼ @f (xi, b)=@b

0 —that is, the matrix (4.12) evaluated at b̂bh. Further let

ehi ¼ yi � f (xi, b̂bh)

be the residuals of the non-linear regression model (4.10) corresponding to b̂bh. The
value of b that minimizes Sh(b) is obtained by regressing zh on Xh, and using
the fact that zh ¼ eh þXhb̂bh it follows that b̂bhþ1 ¼ (X0

hXh)
�1X0

hzh ¼ (X0
hXh)

�1X0
h

(eh þXhb̂bh) and hence

b̂bhþ1 ¼ b̂bh þ (X0
hXh)

�1X0
heh: (4:16)

T
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So, in each Gauss–Newton iteration the parameter adjustment b̂bhþ1 � b̂bh is
obtained by regressing the residuals eh of the last estimated model on the gradient
matrix Xh evaluated at b̂bh. The Gauss–Newton iterations are repeated until the
estimates converge. The usual expression for the variance of least squares estima-
tors in the final iteration is s2(X0X)�1, whereX is the gradient matrix evaluated at
the final estimate b̂b. This is precisely the asymptotic approximation of the variance
of the non-linear least squares estimator bNLS in (4.14). So asymptotic standard
errors of b̂b are immediately obtained from the final regression in (4.16).

Comparison of the two methods

Finally, we compare the Gauss–Newton iterations (4.16) with those of Newton–
Raphson in (4.15) for the least squares criterion S(b) in (4.11). For the criterion
function F(y) ¼ S(b), the gradient and Hessian at b̂bh are given by

@S

@b
¼ �2

Xn
i¼1

�
yi � f (xi, b)

� @f (xi, b)
@b

¼ �2X0
heh

@2S

@b@b0
¼ 2

Xn
i¼1

@f (xi, b)
@b

@f (xi, b)
@b0

� 2
Xn
i¼1

�
yi � f (xi, b)

� @2f (xi, b)
@b@b0

¼ 2X0
hXh � 2

Xn
i¼1

ehi
@2f (xi, b)
@b@b0

:

So the Newton–Raphson iterations (4.15) reduce to those of Gauss–Newton
(4.16) if we neglect the last term in the above expression for the Hessian. This
can also be motivated asymptotically, as 1

nX
0X has a finite and non-zero limit

(under Assumption 1�) and the term 1
n

P
ehi

@2f
@b@b0 converges to zero for n ! 1

(under appropriate orthogonality conditions).

E Exercises: S: 4.9; E: 4.13b, 4.16b, c.

4.2.4 The Lagrange Multiplier test

E Uses Appendix A.7, A.8.

For the computation of the F-test at the end of Section 4.2.2 we have to
perform two non-linear optimizations, one in the restricted model and
another one in the unrestricted model. We now discuss an alternative ap-
proach for testing parameter restrictions that needs the estimates only of the
restricted model. This test is based on the method of Lagrange for minimiza-
tion under restrictions.

T

212 4 Non-Linear Methods



Interpretation of the Lagrange multiplier in the linear model

For simplicity we first consider the case of a linear model with linear restric-
tions, so that

y ¼ X1b1 þX2b2 þ e, H0 : b2 ¼ 0, (4:17)

where b2 contains g parameters and b1 contains the remaining k� g param-
eters. We assume that the restricted model contains a constant term, so that
X1 contains a column with all elements equal to 1. The Lagrange method
states that the least squares estimates under the null hypothesis are obtained
by minimization of the (unconstrained) Lagrange function

L(b1, b2, l) ¼ S(b1, b2)þ 2l0b2, (4:18)

where S(b1, b2) ¼ (y�X1b1 �X2b2)
0(y�X1b1 �X2b2) is the least squares

criterion function and l is a vector with the g Lagrange multipliers. The first
order conditions for a minimum are given by

@L

@b1
¼ �2X0

1(y�X1b1 �X2b2) ¼ 0,

@L

@b2
¼ �2X0

2(y�X1b1 �X2b2)þ 2l̂l ¼ 0,

@L

@l
¼ 2b2 ¼ 0:

Substituting b2 ¼ 0 in the first condition shows that X0
1(y�X1b1) ¼ 0—

that is, b1 ¼ bR ¼ (X0
1X1)

�1X0
1y is the restricted least squares estimate

obtained by regressing y on X1. If we write eR ¼ y�X1bR for the corres-
ponding restricted least squared residuals, then the above three first order
conditions can be written as

X0
1eR ¼ 0, l̂l ¼ X0

2eR, b2 ¼ 0: (4:19)

In particular, @L
@b2

¼ @S
@b2

þ 2l ¼ 0, so that (evaluated at the restricted esti-
mates)

�2l̂l ¼ @S(b1, 0)

@b2
:

So l̂lmeasures the marginal decrease of the least squares criterion S in (4.11),
which can be achieved by relaxing the restriction that b2 ¼ 0. This is illus-
trated graphically in Exhibit 4.8. In (a) the slope l̂l is nearly zero (and the
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value of S at b2 ¼ 0 is nearly minimal), whereas in (b) the slope l̂l is further
away from zero (and the value of S at b2 ¼ 0 is further away from the
minimum).

The hypothesis b2 ¼ 0 is acceptable if the sum of squares S does not
increase much by imposing this restriction— that is, if l̂l is sufficiently
small. This suggests that the null hypothesis can be tested by testing whether
l̂l differs significantly from zero. For this purpose we need to know the
distribution of l̂l under the null hypothesis that b2 ¼ 0.

Derivation of LM-test statistic

Under the null hypothesis that b2 ¼ 0, it follows that

eR ¼ y�X1bR ¼ M1y ¼ M1(X1b1 þ e) ¼ M1e,

where M1 ¼ I �X1(X
0
1X1)

�1X0
1. Under the standard Assumptions 1–7 of Section

3.1.4 (p. 125–6), there holds e � N(0, s2I) so that eR � N(0, s2M1) and

l̂l ¼ X0
2eR � N(0, s2X0

2M1X2):

This means that l̂l0(X0
2M1X2)

�1l̂l=s2 is distributed as w2(g). If the unknown vari-
ance s2 is replaced by the consistent estimator ŝs2 ¼ 1

n e
0
ReR, then it follows that

LM ¼ l̂l0(X0
2M1X2)

�1l̂l=ŝs2 � w2(g): (4:20)

b2

S(b1, b2) S(b1, b2)

b2

S(b1, 0)
 −2l = ‘small’

b2

S(b1, 0)
 −2l = ‘large’

0 b2
b20 b2

(a) (b)

∂
∂ ∂

∂

Exhibit 4.8 Lagrange multiplier

Graphical interpretation of the Lagrange multiplier in constrained optimization. The
graphs show the objective function as a function of the parameter b2. In (a) the restriction
b2 ¼ 0 is close to the unrestricted minimizing value b2ð Þ, whereas in (b) b2 ¼ 0 is further
away from b2.

T
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This is called the Lagrange Multiplier test statistic. The null hypothesis is rejected
for large values of LM, as the value of l̂l then differs significantly from zero. Of
course we could also use the unbiased estimator s2 ¼ e0ReR=(n� kþ g) instead of
ŝs2, but here we use ŝs2 for ease of later comparisons. The difference between s2 and
ŝs2 is small if n is sufficiently large and it disappears for n ! 1.

Computation of LM-test by auxiliary regressions

The expression for the LM-test in (4.20) involves the inverse of the matrix
X0

2M1X2. It is convenient to compute the LM-test in an alternative way by
means of regressions. We will show that the value of the LM-test in (4.20)
can be computed by the following steps.

Computation of LM-test

. Step 1: Estimate the restricted model. Estimate the restricted model under
the null hypothesis that b2 ¼ 0— that is, regress y on X1 alone, with result
y ¼ X1bR þ eR, where eR is the vector of residuals of this regression.

. Step 2: Auxiliary regression of residuals of step 1. Regress the residuals eR
of step 1 on the set of all explanatory variables of the unrestricted model—
that is, regress eR on X ¼ (X1 X2 ).

. Step 3: LM ¼ nR2 of step 2. Then LM ¼ nR2 of the regression in step 2,
and LM � w2(g) if the null hypothesis b2 ¼ 0 holds true (where g is the
number of elements of b2 — that is, the number of restrictions under the
null hypothesis).

Derivation of auxiliary regressions

The proof of the validity of the above three-step computation of the LM-test is
based on results obtained in Chapter 3. We proceed as follows. It follows from
(4.19) and ŝs2 ¼ e0ReR=n that (4.20) can be written as

LM ¼ n
e0RX2(X

0
2M1X2)

�1X0
2eR

e0ReR
:

To prove that LM ¼ nR2 of step 3, it suffices to prove that the regression in step 2
has total sum of squares SST ¼ e0ReR and explained sum of squares
SSE ¼ e0RX2(X

0
2M1X2)

�1X0
2eR, as by definition R2 ¼ SSE=SST.

First we consider the total sum of squares SST of the regression in step 2.
By assumption, the restricted model contains a constant term, and as X0

1eR ¼ 0
it follows that the mean of the restricted residuals eR is zero. Therefore the total
sum of squares of the regresion in step 2 is equal to SST ¼P (eRi � �eeR)

2 ¼P
e2Ri ¼ e0ReR. Next we consider the explained sum of squares of the regression in

T
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step 2. The regression of eR onX in the model eR ¼ Xgþ ! gives ĝg ¼ (X0X)�1X0eR
with explained part êeR ¼ Xĝg ¼ X(X0X)�1 X0eR. As X contains a constant term, it
follows that the mean of êeR is zero. So the explained sum of squares is

SSE ¼ êe0RêeR ¼ e0RX(X0X)�1X0eR:

It remains to prove that this can be written as e0RX2(X
0
2M1X2)

�1X0
2eR. Now the

conditions in (4.19) also imply that, with X ¼ (X1 X2 ), there holds

X0eR ¼ X0
1eR

X0
2eR

� �
¼ 0

X0
2eR

� �
. Further it follows from the results in Section

3.4.1 (p. 161) that the covariance matrix of b2 (the least squares estimator of b2
in the unrestricted model) is equal to var(b2) ¼ s2(X0

2M1X2)
�1 (see (3.46) (p. 158)

for the case where X2 contains a single column). As the covariance matrix of the
unrestricted estimators (b1, b2) of (b1, b2) is equal to s2(X0X)�1, this means that
(X0

2M1X2)
�1 is the lower g� g diagonal block of (X0X)�1. Combining these

results gives

e0RX(X0X)�1X0eR ¼ (0 e0RX2)(X
0X)�1 0

X0
2eR

� �
¼ e0RX2(X

0
2M1X2)

�1X0
2eR:

The above results prove the validity of the three-step procedure to compute the
LM-test, so that

LM ¼ n
e0RX(X0X)�1X0eR

e0ReR
¼ n

SSE

SST
¼ nR2, (4:21)

where R2 is the coefficient of determination of the auxiliary regression

eR ¼ X1g1 þX2g2 þ !: (4:22)

Interpretation of LM-test and relation with F-test

The null hypothesis that b2 ¼ 0 is rejected for large values of LM—that is,
for large values of R2 in (4.22). Stated intuitively, the restrictions are rejected
if the residuals eR under the null hypothesis can be explained by the variables
X2. The LM-test in the linear model is related to the F-test (3.50). It is left as
an exercise (see Exercise 4.6) to prove that in the linear model

LM ¼ ngF

n� kþ gF
: (4:23)

This shows that for a large sample size n there holds LM � gF.
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Derivation of LM-test in non-linear regression model

Until now we considered the linear regression model (4.17). A similar approach
can be followed to perform tests in non-linear regression models. Consider the
following testing problem, where b2 contains g parameters and b1 the remaining
k� g parameters in the model

yi ¼ f (xi, b1, b2)þ e, H0 : b2 ¼ 0: (4:24)

The Lagrange function is defined as in (4.18), with S the non-linear least squares
criterion in (4.11). So S ¼P (yi � f (xi, b1, b2))

2 and

@S

@b1
¼ �2X0

1e,
@S

@b2
¼ �2X0

2e,

whereX1 ¼ @f=@b01 is the n� (k� g) matrix of first order derivatives with respect
to b1, X2 ¼ @f=@b02 is the n� g matrix of derivatives with respect to b2, and
ei ¼ yi � f (xi, b1, b2) are the residuals. It follows from (4.19) that the first order
conditions @L=@b1 ¼ 0, @L=@b2 ¼ 0, and @L=@l ¼ 0 can be written as

X0
1ReR ¼ 0, l̂l ¼ X0

2ReR, b2 ¼ 0:

Here X1R and X2R are the matrices of derivatives X1 ¼ @f=@b01 and X2 ¼ @f=@b02
evaluated at (b1, b2) ¼ bRNLS, 0

� �
, with bRNLS the restricted NLS estimator of b1

under the restriction that b2 ¼ 0 and eRi ¼ yi � f xi, b
R
NLS, 0

� �
are the correspond-

ing residuals. The difference with (4.19) is that X1R and X2R depend on bNLS, so
that the normal equations X0

1ReR ¼ 0 are non-linear in b1. As before, the restric-
tions that b2 ¼ 0 can be tested by considering whether l̂l differs significantly from
zero. Under the conditions of asymptotic normality in (4.14), the test can again be
computed (approximately in large enough samples) as in (4.21).

LM-test in non-linear regression model

The foregoing arguments show that the LM-test of the null hypothesis that
b2 ¼ 0 can be computed as

LM ¼ nR2 � w2(g),

with R2 of the regression of the restricted residuals eRi ¼ yi � f (xi, b
R
NLS, 0)

on the gradients X1 ¼ @f=@b01 and X2 ¼ @f=@b02, evaluated at (bRNLS, 0). In
terms of the Gauss–Newton iterations (4.16), this means that the residuals of
the last iteration (in the model estimated under the null hypothesis) are
regressed on the full matrix of gradients under the alternative hypothesis
and evaluated at bRNLS, 0

� �
. The LM-test has the advantage that only the

smaller model has to be estimated by NLS, followed by an auxiliary linear
regression as in (4.22).

T
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Summary of computations for the LM-test

The LM-test of the hypothesis that b2 ¼ 0 in the model y ¼ f (x, b1, b2)þ e
can be computed by means of an auxiliary regression. Let b2 consist of g
components and b1 of (k� g) components.

Computation of LM-test

. Step 1: Estimate the restricted model. Estimate the restricted model (with
b2 ¼ 0 imposed), with corresponding vector of residuals eR.

. Step 2: Auxiliary regression of residuals on full set of regressors. Regress the

residuals eR on the n� k matrix of first order derivatives X ¼ @f
@b01

@f
@b02

� �
.

. Step 3: LM ¼ nR2 of the regression in step 2. Then LM ¼ nR2 of the
regression in step 2, and the null hypothesis is rejected for large enough
values of the LM-statistic. Asymptotically, the LM-statistic follows the
w2(g) distribution if the hypothesis that b2 ¼ 0 holds true.

E Exercises: T: 4.6a; S: 4.10; E: 4.13d, 4.16g.

4.2.5 Illustration: Coffee Sales

We illustrate the results on non-linear regression by considering
the marketing data of coffee sales discussed before in Example 4.2 (p. 202).
We will discuss (i) the model, (ii) the non-linear least squares estimates, (iii)
results of the Gauss–Newton iterations, (iv) t- and F-tests on constant elasti-
city, and (v) the LM-test on constant elasticity.

(i) Model

In Example 4.2 in Section 4.2.1 we considered the non-linear regression
model log (qi) ¼ f (di, b)þ ei for coffee sales (q) in terms of the deal rate (d)
where

f (d, b) ¼ b1 þ
b2
b3

(db3 � 1):

Of special interest is the hypothesis that b3 ¼ 0, which corresponds to a
constant demand elasticity. This case is obtained in the limit for b3 ! 0,
which gives the linear model f (d, b) ¼ b1 þ b2 log (d).

(ii) Non-linear least squares estimates

Wefirst consider the n ¼ 12 data for the first brand of coffee. For a given value
of b3 the model is linear in the parameters b1 and b2 and these two parameters

E
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can be estimated by regressing log (qi) on a constant and 1
b3
(db3 � 1). Exhibit

4.9 (a) shows the minimal value of the least squares criterion (the sum of
squared residuals SSR in (4.11)) for a grid of values of b3. The NLS estimates
correspond to the values where SSR is minimal. This grid search gives
b̂b3 ¼ �13:43, with corresponding estimates b̂b1 ¼ 5:81 and b̂b2 ¼ 10:30. The
SSR at b̂b3 is of course lower than at b3 ¼ 0, and below we will test the
hypothesis that b3 ¼ 0 by evaluating whether this difference is significant.

(iii) Gauss–Newton iterations

Next we apply the Gauss–Newton algorithm for the estimation of b. As
starting values we take b1 ¼ 0, b2 ¼ 1, and b3 ¼ 1. The vector of gradients is
given by

@f

@b1
¼ 1,

@f

@b2
¼ 1

b3
(db3 � 1),

@f

@b3
¼ � b2

b23
(db3 � 1)þ b2

b3
db3 log (d):

Exhibit 4.9 shows the estimates of b3 (in (b)) and the value of SSR (in (c)) for
a number of iterations of the Gauss–Newton method. This shows that the
values of SSR converge, and the same holds true for the parameter estimates.
The resulting estimates of a software package are in Panel 2 in Exhibit 4.10.
The outcomes are in line with the earlier results based on a grid search for b3.
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Exhibit 4.9 Coffee Sales (Section 4.2.5)

Non-linear least squares for the model for coffee sales of brand 1. (a) shows the minimum
SSR that can be obtained for a given value of b3, and the NLS estimate corresponds to
the value of b3 where this SSR is minimal. (b) shows the values of b3 that are obtained in
iterations of the Gauss–Newton algorithm, with starting values b1 ¼ 0 and b2 ¼ b3 ¼ 1.
(c) shows the values of SSR that are obtained in the Gauss–Newton iterations.
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Panel 1: Dependent Variable: LOGQ1 (brand 1, 12 observations)
Method: Least Squares
Variable Coefficient Std. Error t-Statistic Prob.

C 5.841739 0.043072 135.6284 0.0000
LOGD1 4.664693 0.581918 8.016063 0.0000

R-squared 0.865333 Sum squared resid 0.132328

Panel 2: Dependent Variable: LOGQ1 (brand 1, 12 observations)
Method: Least Squares, convergence achieved after 5 iterations
LOGQ1 ¼ C(1) þ (C(2)/C(3)) � (D1^C(3)�1)
Parameter Coefficient Std. Error t-Statistic Prob.

C(1) 5.807118 0.040150 144.6360 0.0000
C(2) 10.29832 3.295386 3.125072 0.0122
C(3) �13.43073 6.674812 �2.012152 0.0751

R-squared 0.911413 Sum squared resid 0.087049

Panel 3: Dependent Variable: LOGQ2 (brand 2, 12 observations)
Method: Least Squares
Variable Coefficient Std. Error t-Statistic Prob.

C 4.406561 0.043048 102.3638 0.0000
LOGD2 6.003298 0.581599 10.32206 0.0000

R-squared 0.914196 Sum squared resid 0.132183

Panel 4: Dependent Variable: LOGQ2 (brand 2, 12 observations)
Method: Least Squares, convergence achieved after 5 iterations
LOGQ2 ¼ C(1) þ (C(2)/C(3)) � (D2^C(3)�1)
Parameter Coefficient Std. Error t-Statistic Prob.

C(1) 4.377804 0.043236 101.2540 0.0000
C(2) 10.28864 3.001698 3.427608 0.0075
C(3) �8.595289 5.207206 �1.650653 0.1332

R-squared 0.934474 Sum squared resid 0.100944

Panel 5: Dep Var: RESLIN1 (12 residuals of Panel 1 for brand 1)
Variable Coefficient Std. Error t-Statistic Prob.

C �0.034622 0.040150 �0.862313 0.4109
LOGD1 4.449575 2.115810 2.103012 0.0648

LOGD1^2 �31.96557 14.77373 �2.163676 0.0587
R-squared 0.342177

Panel 6: Dep Var: RESLIN2 (12 residuals of Panel 3 for brand 2)
Variable Coefficient Std. Error t-Statistic Prob.

C �0.028757 0.043236 �0.665120 0.5227
LOGD2 3.695844 2.278436 1.622097 0.1392

LOGD2^2 �26.55080 15.90927 �1.668888 0.1295
R-squared 0.236330

Exhibit 4.10 Coffee Sales (Section 4.2.5)

Regressions for two brands of coffee, models with constant elasticity (Panels 1 and 3), models
with varying elasticity (Panels 2 and 4), and auxiliary regressions for LM-tests on constant
elasticities (Panels 5 and 6).
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This table also contains the NLS estimates for the second brand of coffee (in
Panel 4) and the estimates under the null hypothesis that b3 ¼ 0 (in Panels
1 and 3).

(iv) t- and F-tests on constant elasticity

At 5 per cent significance, the t-test fails to reject the null hypothesis that
b3 ¼ 0 for both brands. The reported P-values (rounded to two decimals) are
0.08 for brand 1 (see Panel 2) and 0.13 for brand 2 (see Panel 4). Note,
however, that these values are based on the asymptotic distribution in (4.14)
and that the number of observations (n ¼ 12) is quite small, so that the P-
values are not completely reliable. The F-tests for brands 1 and 2 are given by

F1 ¼ (0:1323� 0:0870)=1

0:0870=(12� 3)
¼ 4:68, F2 ¼ (0:1322� 0:1009)=1

0:1009=(12� 3)
¼ 2:79:

The 5 per cent critical value of the F(1, 9) distribution is equal to 5.12, so
that the hypothesis that b3 ¼ 0 is again not rejected. As can be checked from
the t-values in Panels 2 and 4 in Exhibit 4.10, the F-values are not equal to
the squares of the t-value of b3. The relation F ¼ t2 for a single parameter
restriction was shown in Chapter 3 to be valid for linear models, but for non-
linear models this no longer holds true.

(v) LM-test on constant elasticity

Next we compute the LM-test for the hypothesis that b3 ¼ 0. To compute
this test, the residuals of the log-linear models (corresponding to b3 ¼ 0) are
regressed on the partial derivatives @f=@bi (evaluated at the estimated par-
ameters under the null hypothesis, so that limits for b3 ! 0 should be taken).
This gives

@f

@b1
¼ 1,

@f

@b2
¼ lim

b3!0

db3 � 1

b3

� �
¼ log (d),

@f

@b3
¼ lim

b3!0

b2
b3

db3 log (d)� 1

b3
(db3 � 1)

� �� �
¼ b2( log (d))

2,

so the relevant regressors in step 2 of the LM computation scheme are
1, log (d), and ( log (d))2. The results of the auxiliary regressions in (4.22)
for the two brands are in Panels 5 and 6 in Exhibit 4.10. So the test statistics
(rounded to two decimals) are LM1 ¼ 12R2

1 ¼ 12 � 0:34 ¼ 4:11 and
LM2 ¼ 12R2

2 ¼ 12 � 0:24 ¼ 2:84. The 5 per cent critical value of the w2(1)
distribution is equal to 3.84, so that in this case the null hypothesis is rejected
for brand 1, but not for brand 2.
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4.3 Maximum likelihood

4.3.1 Motivation

Two approaches in estimation

In Section 1.3.1 (p. 41) we discussed two approaches in parameter esti-
mation. One is based on the idea of minimizing the distance between the
data and the model parameters in some way. Least squares is an example of
this approach. Although this is a very useful method, it is not always the most
appropriate approach, and for somemodels it is even impossible to apply this
method, as will become clear in later chapters. Another approach in param-
eter estimation is to maximize the likelihood of the parameters for the
observed data. Then the parameters are chosen in such a way that the
observed data become as likely or ‘probable’ as possible. In this section we
will discuss the method of maximum likelihood (ML) in more detail. We will
consider the general framework and we will use the linear model as an
illustration. The ML method is the appropriate estimation method for a
large variety of models, and applications for models of special interest in
business and economics will be discussed in later chapters.

Some disadvantages of least squares

If we apply least squares in the linear model y ¼ Xbþ e, then the estimator is
given by

b ¼ (X0X)�1X0y ¼ bþ (X0X)�1X0e:

This means that the (unobserved) disturbances e affect the outcome of b in a
linear way. If some of the disturbances ei are large, these observations have a
relatively large impact on the estimates. There are several ways to reduce the
influence of such observations— for instance, by adjusting the model, by
transforming the data, or by using another criterion than least squares. These
methods are discussed in Chapter 5. Another approach is to replace the
normal distribution of the disturbances by another distribution— for in-
stance, one that has fatter tails. We recall from Section 3.1.4 (p. 127)
that OLS is the best linear unbiased estimator under Assumptions 1–6.
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However, if the disturbances are not normally distributed (so that Assump-
tion 7 is not satisfied), there exist non-linear estimators that are more
efficient. Asymptotically, the most efficient estimators are the maximum
likelihood estimators.

Example 4.4: Stock Market Returns (continued)

We investigate the assumption of normally distributed disturbances in
the CAPM for stock market returns discussed before in Example 2.1
(p. 76–7). We will discuss (i) the possibility of fat tails in returns data,
(ii) the least squares residuals, and (iii) choice of the distribution of the
disturbances.

(i) Possibility of fat tails in returns data

Traders on financial markets may react relatively strongly to positive or
negative news, and in particular they may react to the behaviour of fellow
traders. This kind of herd behaviour may cause excessive up and down
swings of stock prices, so that the returns may be larger (both positive and
negative) than would normally be expected. Such periods of shared panic or
euphoria among traders may lead to returns far away from the long-run
mean—that is, in the tail of the distribution of returns.

(ii) Least squares residuals

The data consist of excess returns data for the sector of cyclical consumer
goods (denoted by y) and for the whole market (denoted by x) in the UK. The
CAPM postulates the linear model

yi ¼ aþ bxi þ ei, i ¼ 1, � � � , n:

A scatter diagram of these data is given in Exhibit 2.1 (c) (p. 77). The
parameters a and b can be estimated by least squares. The histogram of
the least squares residuals is shown in Exhibit 4.11 (a). It seems some-
what doubtful that the disturbances are normally distributed. The sample
mean and standard deviation of the residuals ei are �ee ¼ 0 and

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

e2i =(n� 1)
q

¼ 5:53. Two of the n ¼ 240 residuals have values of
around �20 � �3:6 s. For the normal distribution, the probability of out-
comes more than 3.6 standard deviations away from the mean is around
0.0003, which is much smaller than 2=240 ¼ 0:0083. The histogram indi-
cates that the disturbances may have fatter tails than the normal distribution.

(iii) Choice of distribution of the disturbances

As an alternative, one could for instance use a t-distribution for the disturb-
ances. Exhibit 4.11 (b) shows the density function of the standard normal

E
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distribution and of the t(5) distribution (scaled so that it also has variance
equal to one). The table with values of the kurtosis in Exhibit 4.11 (c) shows
that t-distributions have fatter tails than the normal distribution. In the next
sections we describe the method of maximum likelihood that can be applied
for any specified distribution.

4.3.2 Maximum likelihood estimation

E Uses Section 1.3.1; Appendix A.7.

The idea of maximum likelihood

In Section 1.3.1 we discussed the method of maximum likelihood estimation
for data consisting of a random sample from a population with fixed mean
and variance. The idea is illustrated in Exhibit 4.12. The observed values of
the dependent variable are indicated by crosses. Clearly, this set of outcomes
is much more probable for the distribution on the right side than for
the distribution on the left side. This is expressed by saying that the distribu-
tion on the right side has a larger likelihood then the one on the left side.
For a random sample y1, � � � , yn from the normal density N(m, s2), the
normal distribution with the largest likelihood is given by m̂m ¼ �yy and
ŝs2 ¼ 1

n

P
(yi � �yy)2, see Section 1.3.1.
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Mean  4.14E-16
Median  0.231594
Maximum  15.11497
Minimum −20.41222
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(c) Degrees of freedom (d) 5 6 7 8 9 10 1000 1
Kurtosis of t(d) 9.0 6.0 5.0 4.5 4.2 4.0 3.006 3

Exhibit 4.11 Stock Market Returns (Example 4.4)

(a) shows the histogram of the least squares residuals of the CAPM for the sector of cyclical
consumer goods in the UK. (b) shows two distributions, the standard normal distribution and
the t(5) distribution (scaled so that it has variance 1); the t-distribution has fatter tails than the
normal distribution. (c) shows the kurtosis of t-distributions for selected values of the number
of degrees of freedom.
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Likelihood function and log-likelihood

We now extend the maximum likelihood (ML) method to more general
models. The observed data on the dependent variable are denoted by the
n� 1 vector y and those on the explanatory variables by the n� kmatrix X.
In order to apply ML, the model is expressed in terms of a joint probability
density p(y, X, y). Here y denotes the vector of model parameters, and for
given values of y, p(y, X, y) is a probability density for (y, X). On the other
hand, for given (y,X) the likelihood function is defined by

L(y) ¼ p(y, X, y): (4:25)

Stated intuitively, this measures the ‘probability’ of observing the data (y,X)
for different values of y. It is natural to prefer parameter values for which this
‘probability’ is large. The maximum likelihood estimator ŷyML is defined as
the value of y that maximizes the function L(y) over the set of allowed
parameter values. In practice, for computational convenience one often
maximizes the logarithmic likelihood function or log-likelihood

l(y) ¼ log (L(y)): (4:26)

As the logarithm is a monotonically increasing transformation, the max-
imum of (4.25) and (4.26) is obtained for the same values of y. An attractive
property of ML is that it is invariant under reparametrization. That is,
suppose that the model is formulated in terms of another parameter vector
c and that c and y are related by an invertible transformation c ¼ h(y). Then
the ML estimates are related by ĉcML ¼ h(ŷyML) (see also Section 1.3.1).
The log-likelihood can be decomposed if the observations (yi, xi) are

mutually independent for i ¼ 1, � � � , n. If the probability density function
for the ith observation is py(yi, xi), then the joint density is
p(y, X, y) ¼ Pn

i¼1py(yi, xi) so that

y��� ��� ���� � �

Exhibit 4.12 Maximum likelihood

The set of actually observed outcomes of y (denoted by the crosses on the horizontal axis)
is less probable for the distribution on the left than for the distribution on the right;
the distribution on the left therefore has a smaller likelihood than the distribution on the
right.
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l(y) ¼
Xn
i¼1

log (py(yi, xi)) ¼
Xn
i¼1

li(y), (4:27)

where li(y) ¼ log (py(yi, xi)) is the contribution of the ith observation to the
log-likelihood l(y).

Numerical aspects of optimization

In general the computation of ŷyML is a non-linear optimization problem. Solution
methods were discussed in Section 4.2.3. For instance, the Newton–Raphson
iterations in (4.15) can be performed with the gradient vector G ¼ @l(y)=@y and
with the Hessian matrix H ¼ @2l(y)=@y@y0, or equivalently with G ¼ 1

n @l(y)=@y
andH ¼ 1

n @
2l(y)=@y@y0. If the observations are mutually independent, the result in

(4.27) shows that then

G ¼ 1

n

Xn
i¼1

@li
@y

, H ¼ 1

n

Xn
i¼1

@2li
@y@y0

:

In this case it is also possible to perform the iterations in a way where only the first
order derivatives (and no second order derivatives) need to be computed. In this
case there holds

1

n

Xn
i¼1

@2li
@y@y0

� E
@2li
@y@y0

� 	
¼ �E

@li
@y

@li
@y0

� 	
� � 1

n

Xn
i¼1

@li
@y

@li
@y0

: (4:28)

The first and the last approximate equalities follow from the law of large numbers,
as the terms @2li=@y@y

0 are mutually independent and the same holds true for the
terms (@li=@y)(@li=@y

0). The middle equality in (4.28) follows from (1.46) in
Section 1.3.2 (p. 45) (applied for each individual observation i separately). The
last term in (4.28) is called the outer product of gradients. Using this approxima-
tion, the Newton–Raphson iterations (4.15) become

ŷyhþ1 ¼ ŷyh þ
1

n

Xn
i¼1

@li
@y

@li
@y0

 !�1
1

n

Xn
i¼1

@li
@y

 !
:

This is called the method of Berndt, Hall, Hall, and Hausman (abbreviated as
BHHH). As discussed in Section 4.2.3, one sometimes uses a regularization factor

and replaces the above matrix inverse by 1
n

Pn
i¼1

@li
@y

@li
@y0 þ cI

� ��1
with c > 0 a

chosen constant and I the identity matrix. This is called the Marquardt algorithm.

These methods have the advantage that they require only the first order deriva-
tives, but they may give less precise estimates as compared with methods using the
second order derivatives.

T
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ML in the linear model

In some cases the ML estimates can be computed analytically. An example is
given by the linear model under Assumptions 1–7 of Section 3.1.4 (p. 125–6).
In this case

y ¼ Xbþ e, e � N(0, s2I), (4:29)

so that y � N(Xb, s2I). This model has parameters y ¼ (b0, s2)0. Using the
expression (1.21) in Section 1.2.3 (p. 31) for the density of the multivariate
normal distribution with mean m ¼ Xb and covariance matrix S ¼ s2I, it
follows that the log-likelihood (4.26) is given by

l(b, s2) ¼ � n

2
log (2p)� n

2
log (s2)� 1

2s2
(y�Xb)0(y�Xb): (4:30)

The maximum likelihood estimates are obtained from the first order condi-
tions

@l

@b
¼ 1

s2
X0(y�Xb) ¼ 0, (4:31)

@l

@s2
¼ � n

2s2
þ 1

2s4
(y�Xb)0(y�Xb) ¼ 0: (4:32)

The solutions are given by

bML ¼ (X0X)�1X0y ¼ b, (4:33)

s2ML ¼ 1

n
(y�Xb)0(y�Xb) ¼ n� k

n
s2, (4:34)

where s2 is the (unbiased) least squares estimator of s2 discussed in Section
3.1.5 (p. 128). This shows that bML coincides with the least squares
estimator b, and that s2ML differs from the unbiased estimator s2 by a factor
that tends to 1 for n ! 1.

ML in non-linear regression models

In a similar way, the ML estimates of b in the non-linear regression model
yi ¼ f (xi, b)þ ei with ei � NID(0, s2) are equal to the non-linear least
squares estimates bNLS (see Exercise 4.6).

E Exercises: T: 4.6c; S: 4.12a, b, d–f.
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4.3.3 Asymptotic properties

E Uses Sections 1.3.2, 1.3.3; Appendix A.7.

Asymptotic distribution of ML estimators

As was discussed in Section 1.3.3 (p. 51–2), maximum likelihood estima-
tors have asymptotically optimal statistical properties. Apart frommild regu-
larity conditions on the log-likelihood (4.26), the main condition is that
the model (that is, the joint probability distribution of the data) has been
specified correctly. Then the maximum likelihood estimator is consistent, is
asymptotically efficient, and has an asymptotically normal distribution.
The model is correctly specified if there exists a parameter y0 so that the
data are generated by the probability distribution p(y, X, y0). The asymp-
totic efficiency means that

ffiffiffi
n

p
(ŷyML � y0) has the smallest covariance matrix

among all consistent estimators of y0 (the reason for scaling with
ffiffiffi
n

p
is to get

a finite, non-zero covariance matrix in the limit). Some regularity conditions
are necessary for generalizations of the central limit theorem to hold true,
so that

ffiffiffi
n

p
(ŷyML � y0)!d N(0, I�1

0 ): (4:35)

Here I0 is the asymptotic information matrix evaluated at y0 — that is,
I0 ¼ limn!1 1

n In(y0)
� �

where

In(y0) ¼ E
@l

@y
@l

@y0

� 	
¼ �E

@2l

@y@y0

� 	
(4:36)

is the information matrix (evaluated at y ¼ y0) for sample size n of the data
(y, X) in (4.25).

Approximate distribution for finite samples

This means that, asymptotically, conventional t- and F-tests can be based on
the approximate distribution

ŷyML � N
�
y0, I�1

n (ŷyML)
�

where we used that in large enough samples var(ŷyML) � 1
n I�1

0 � I�1
n (y0) �

I�1
n (ŷyML). In the following sections we discuss some alternative tests that are

of much practical use—namely, the Likelihood Ratio test, the Wald test, and
the Lagrange Multiplier test. These tests are compared in Section 4.3.8.
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Illustration of asymptotic results for ML in the linear model

Now we illustrate the above asymptotic results for the linear model y ¼ Xbþ e
that satisfies Assumptions 1–7. Here the parameter vector is given by the
(kþ 1)� 1 vector y ¼ (b0, s2)0 and the vector of ML estimators by
ŷyML ¼ b0ML, s

2
ML

� �0
in (4.33) and (4.34). According to (4.35), these estimators

(when measured in deviation from y0 and multiplied by
ffiffiffi
n

p
) are asymptotically

normally distributed with covariance matrix I�1
0 . The second order derivatives of

the log-likelihood in (4.30) are given by

@2l

@b@b0
¼ � 1

s2
X0X, (4:37)

@2l

@b@s2
¼ � 1

s4
X0(y�Xb), (4:38)

@2l

@s2@s2
¼ n

2s4
� 1

s6
(y�Xb)0(y�Xb): (4:39)

Using (4.29) and the assumption that X is fixed, for b ¼ b0 there holds
E[X0(y�Xb0)] ¼ X0E[y�Xb0] ¼ 0 and E[(y�Xb0)

0(y�Xb0)] ¼ ns2, so that
the (kþ 1)� (kþ 1) information matrix in (4.36) is given by

In(y0) ¼
1
s2 X

0X 0
0 n

2s4

� �
: (4:40)

The asymptotic covariance matrix is obtained from I0 ¼ lim 1
n In(y0)
� �

, and under
Assumption 1� in Section 4.1.2 it follows that

I0 ¼
1
s2 Q 0

0 1
2s4

� �
:

Therefore, large sample approximations of the distribution of the ML estimators
(4.33) and (4.34) for the linear model are given by

bML � N b0, s
2(X0X)�1

� �
, (4:41)

s2ML � N s2,
2s4

n

� �
: (4:42)

Actually, for the model (4.29) the distribution in (4.41) holds exactly, as was
shown in Section 3.3.1 (p. 152). In Section 3.4.1 we considered the F-test for the
null hypothesis of g linear restrictions on the model (4.29) of the form Rb ¼ r,
where R is a g� k matrix of rank g. In (3.50) this test is computed in the form

F ¼ (e0ReR � e0e)=g
e0e=(n� k)

, (4:43)

T
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where e0ReR and e0e are the sums of squared residuals under the null and alternative
hypothesis respectively. Under Assumptions 1–7, the test statistic (4.43) has the
F(g, n� k) distribution.

Summary of computations in ML

To estimate model parameters by the method of maximum likelihood, one
proceeds as follows.

Computations in ML

. Step 1: Formulate the log-likelihood. First one has to specify the form of the
likelihood function— that is, the form of the joint probability function
L(y) ¼ p(y,X, y). For given data y and X, this should be a known function
of y—that is, for every choice of y the value of L(y) can be computed. The
criterion for estimation is the maximization of L(y), or, equivalently, the
maximization of the log-likelihood l(y) ¼ log (L(y)).

. Step 2: Maximize the log-likelihood. For the observed data y andX, the log-
likelihood l(y) ¼ log (p(y, X, y)) is maximized with respect to the param-
eters y. This is often a non-linear optimization problem, and numerical
aspects were discussed in Section 4.3.2.

. Step 3: Asymptotic tests. Approximate t-values and F-tests for the ML
estimates ŷyML can be obtained from the fact that this estimator is consistent
and approximately normally distributed with covariance matrix
var(ŷyML) � I�1

n (ŷyML), where In is the information matrix defined in
(4.36) and evaluated at ŷyML. In Section 4.3.8 we will make some comments
on the actual computation of this covariance matrix.

E Exercises: E: 4.17a–f.

4.3.4 The Likelihood Ratio test

E Uses Appendix A.8.

General form of the LR-test

Suppose that the model is given by the likelihood function (4.25) and that the
null hypothesis imposes g independent restrictions r(y) ¼ 0 on the param-
eters. We denote the ML estimator under the null hypothesis by ŷy0 and
the ML estimator under the alternative by ŷy1. The Likelihood Ratio test is
based on the loss of log-likelihood that results if the restrictions are
imposed— that is,
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LR ¼ 2 log (L(ŷy1))� 2 log (L(ŷy0)) ¼ 2l(ŷy1)� 2l(ŷy0): (4:44)

A graphical illustration of this test is given in Exhibit 4.13. Here y is a single
parameter and the null hypothesis is that y ¼ 0. This hypothesis is rejected if
the (vertical) distance between the log-likelihoods is too large. It can be
shown that, if the null hypothesis is true,

LR!d w2(g): (4:45)

The null hypothesis is rejected if LR is sufficiently large. For a proof of (4.45)
we refer to textbooks on statistics (see Chapter 1, Further Reading (p. 68)).

LR-test in the linear model

As an illustration we consider the linear model y ¼ Xbþ ewith Assumptions 1–7.
To compute the LR-test for the null hypothesis that Rb ¼ r (with R a g� kmatrix
of rank g), we use a technique known as concentration of the log-likelihood. This
means that the ML optimization problem is transformed into another one that
involves less parameters. For a linear model it follows from (4.32) that, for given
value of b, the optimal value of s2 is given by s2(b) ¼ 1

n (y�Xb)0(y�Xb). Substi-
tuting this in (4.30), the optimal value of b is obtained by maximizing the concen-
trated log-likelihood

l(b, s2(b)) ¼ � n

2
log (2p)� n

2
log (s2(b))� n

2
:

T

log L

q
0 qML

Exhibit 4.13 Likelihood Ratio test

Graphical illustration of the Likelihood Ratio test. The restrictions are rejected if the loss in the
log-likelihood (measured on the vertical axis) is too large.
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This function of b is maximal if s2(b) is minimal, and this corresponds to least
squares. The maximum likelihood estimator of b under the null hypothesis is
therefore given by the restricted least squares estimator bR, and the above expres-
sion for the log-likelihood shows that

LR ¼ 2l(ŷy1)� 2l(ŷy0) ¼ �n log (s2(b) )þ n log (s2(bR)) ¼ n log
e0ReR
e0e

� �
,

where b is the unrestricted least squares estimator. The relation between this test
and the F-test in (4.43) is given by

LR ¼ n log 1þ e0ReR � e0e
e0e

� �
¼ n log 1þ g

n� k
F

� �
: (4:46)

This result holds true for linear models with linear restrictions under the null
hypothesis. It does not in general hold true for other types of models and restric-
tions.

Computational disadvantage of the LR-test

The LR-test (4.44) requires that ML estimates are determined both for the
unrestricted model and for the restricted model. If the required computations
turn out to be complicated, then it may be more convenient to estimate only
one of these two models. Two of such test methods are discussed in the
following two sections.

E Exercises: E: 4.13e, 4.14b, 4.15b, 4.16f.

4.3.5 The Wald test

Idea of Wald test (for a single parameter)

Whereas the LR-test requires two optimizations (ML under the null hypoth-
esis and ML under the alternative hypothesis), the Wald test is based on the
unrestricted model alone. This test considers how far the restrictions are
satisfied by the unrestricted estimator ŷy1. This is illustrated graphically in
Exhibit 4.14 for the simple case of a single parameter y with the restriction
y ¼ 0. The (horizontal) difference between the unrestricted estimator ŷy1 and
y ¼ 0 is related to the (vertical) difference in the log-likelihoods. Because
only the unrestricted model is estimated, an indication of this vertical dis-
tance is obtained by the curvature d2l

dy2
of the log-likelihood l in ŷy1. The exhibit

shows that this distance becomes larger for larger curvatures. Asymptotic-
ally, the curvature is equal to the inverse of the covariance matrix of ŷy1, see
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(4.35) and (4.36). This motivates to estimate the loss in log-likelihood, that
results from imposing the restriction that y ¼ 0, by the Wald test statistic

W ¼ ŷy21 � � d2l

dy2

� �
� ŷy1

sŷy1

 !2

� w2(1):

Here s2
ŷy1

is an estimate of the variance of the unrestricted ML estimator ŷy1
and the asymptotic distribution follows from (4.35). The expression ŷy1=sŷy1 is
analogous to the t-value in a regression model (see Section 3.3.1 (p. 153)).
The t-test for a single parameter restriction is also obtained by estimating the
unrestricted model and evaluating whether the estimated parameter differs
significantly from zero.

Derivation of Wald test for general parameter restrictions

Now we describe the Wald test for the general case of g non-linear restrictions
r(y) ¼ 0. Suppose that this hypothesis holds true for the DGP, so that r(y0) ¼ 0.
Because ŷy1 is consistent, it follows that in large enough samples r(ŷy1) � r(y0)þ
R0(ŷy1 � y0) ¼ R0(ŷy1 � y0), where R0 ¼ @r=@y0 evaluated at y ¼ y0. It follows
from (4.35) that

log L1
log L2

log L2

log L1

0 qML

q

Exhibit 4.14 Wald test

Graphical illustration of theWald test. The restrictions are rejected if the estimated parameters
are too far away from the restrictions of the null hypothesis. This is taken as an indication that
the loss in the log-likelihood is too large, and this ‘vertical’ difference is larger if the log-
likelihood function has a larger curvature.

T

4.3 Maximum likelihood 233



ffiffiffi
n

p
r(ŷy1)!d N(0, R0I�1

0 R0
0): (4:47)

Let R1 ¼ @r=@y0 evaluated at y ¼ ŷy1 and let In(ŷy1) be the information matrix for
sample size n defined in (4.36) evaluated at y ¼ ŷy1. Then plim(R1) ¼ R0 and
plim( 1n In(ŷy1)) ¼ I0, and (4.47) implies that

r(ŷy1) � N(0, R1I�1
n (ŷy1)R0

1):

Now recall that, if the g� 1 vector z has the distribution N(0, V) then
z0V�1z � w2(g), so that under the null hypothesis

W ¼ r(ŷy1)
0(R1I�1

n (ŷy1)R0
1)

�1r(ŷy1) � w2(g): (4:48)

This is an attractive test if the restricted model is difficult to estimate— for
instance, if the parameter restriction r(y) ¼ 0 is non-linear. A disadvantage is
that the numerical outcome of the test may depend on the way the model and
the restrictions are formulated (see Exercise 4.16 for an example).

Wald test in the linear model

We illustrate the Wald test by considering the linear model y ¼ Xbþ e with
Assumptions 1–7 and the linear hypothesis that Rb ¼ r (with R a g� k matrix
of rank g). The parameter vector y ¼ (b0, s2)0 contains kþ 1 parameters and the
restrictions are given by r(y) ¼ 0, where r(y) ¼Rb� r ¼ (R 0)y� r. The unre-
stricted estimators are given by b in (4.33) and s2ML ¼ e0e=n in (4.34), where
e ¼ y�Xb are the unrestricted least squares residuals. So in (4.48) we have
r(ŷy1) ¼ Rb� r and R1 ¼ @r=@y0 ¼ (@r=@b0 @r=@s2) ¼ (R 0): An asymptotic ap-
proximation of the inverse of the information matrix in (4.48) is obtained from
(4.40)— that is,

I�1
n (ŷy1) � I�1

n (y0) ¼ s2(X0X)�1 0
0 2s4

n

� �
� s2ML(X

0X)�1 0

0
2s4

ML

n

 !
:

Combining these results, we get R1I�1
n (ŷy1)R0

1 � s2MLR(X
0X)�1R0 so that

W ¼ (Rb� r)0 s2MLR(X
0X)�1R0� ��1

(Rb� r)

¼ (Rb� r)0 R(X0X)�1R0� ��1
(Rb� r)

e0e=n

¼ ng

n� k
F: (4:49)

The last equality follows from (3.54) in Section 3.4.1 (p. 165). This formula, like
the one in (4.46), holds true only for linear models with linear restrictions. (Some
software packages, such as EViews, compute the Wald test with the OLS estimate

T
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s2 instead of the ML estimate s2ML, in which case the relation (4.49) becomes
W ¼ gF; in EViews, tests of coefficient restrictions are computed in two ways, one
with the F-test andwith P-values based on the F(g, n� k) distribution, and another
with the Wald testW ¼ gF and with P-values based on the w2(g) distribution.)

Relation between Wald test and t-test

For the case of a single restriction (so that g ¼ 1) we obtained in Section 3.4.1
the result that F ¼ t2. Substituting this in (4.49) we get the following relation
between the Wald test and the t-test for a single parameter restriction:

W ¼ n

n� k
t2: (4:50)

The cause of the difference lies in the different estimator of the variance s2 of
the error terms, s2ML in the Wald test and the OLS estimator s2 in the t-test.
Because of the relation s2ML ¼ n�k

n s2 in (4.34), the relation (4.50) can also be
written as

W ¼ t2 � s2

s2ML

:

E Exercises: S: 4.11a, b, d, e; E: 4.13c, 4.14c, 4.15b, 4.16h–j.

4.3.6 The Lagrange Multiplier test

E Uses Section 1.2.3; Appendix A.8.

Formulation of parameter restrictions by means of
Lagrange parameters

As a third test we discuss the Lagrange Multiplier test, also called the score
test. This test considers whether the gradient (also called the ‘score’) of the
unrestricted likelihood function is sufficiently close to zero at the restricted
estimate ŷy0. This test was discussed in Section 4.2.4 for regression models
where we minimize the sum of squares criterion (4.11), but now we consider
this within the framework of ML estimation where we maximize the log-
likelihood criterion (4.26).
The null hypothesis r(y) ¼ 0 imposes g independent restrictions on y. For

simplicity of notation we suppose that the vector of parameters y can be split

in two parts, y ¼
� y1
y2

�
, and that the restrictions are given by y2 ¼ 0, where

y2 contains g components. Then the restricted ML estimator can be obtained
by maximizing the Lagrange function
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L(y1, y2, l) ¼ l(y1, y2)� l0y2:

Here l is the g� 1 vector of Lagrange multipliers. The restricted maximum
satisfies the first order conditions

@L

@y1
¼ @l

@y1
¼ 0,

@L

@y2
¼ @l

@y2
� l̂l ¼ 0,

@L

@l
¼ y2 ¼ 0: (4:51)

So the Lagrange multipliers l̂l ¼ @l=@y2 measure the marginal increase in the
log-likelihood l if the restrictions y2 ¼ 0 are relaxed. The idea is to reject the
restrictions if these marginal effects are too large.

Idea of LM-test for a single parameter

This is illustrated graphically in Exhibit 4.15 for the simple case of a single
parameter (g ¼ 1, y ¼ y2 contains one component, and there are no add-
itional components y1). The slope l̂l ¼ @l=@y in y ¼ 0 is related to the (verti-
cal) difference in the log-likelihoods l(ŷy)� l(0), where ŷy is the unrestricted
ML estimate. This difference is larger for smaller curvatures @2l=@y2 in
y ¼ 0. This suggests evaluating the loss in log-likelihood, which results
from imposing the restriction that y ¼ 0, by the LM-test statistic

LM ¼ (@l=@y)2

�@2l=@y2
(evaluated at y ¼ 0):

log L1
log L2

log L2

log L1

0 qML,1

q
qML,2

Exhibit 4.15 Lagrange Multiplier test

Graphical illustration of the Lagrange Multiplier test. The restrictions are rejected if the
gradient (evaluated at the restricted parameter estimates) differs too much from zero. This
is taken as an indication that the loss in the log-likelihood is too large, and this ‘vertical’
difference is larger if the log-likelihood has a smaller curvature.
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Derivation of LM-test for general parameter restrictions

Now we return to the more general case in (4.51) and consider a test for the null
hypothesis that y2 ¼ 0 that is based on the magnitude of the vector of Lagrange
multipliers l. To test the significance of the Lagrange multipliers we have to derive
the distribution under the null hypothesis of l̂l ¼ @l=@y2 (evaluated at the re-
stricted ML estimates). This derivation (which runs till (4.54) below) goes as
follows. Let

z(y) ¼ @l=@y1
@l=@y2

� �
be the gradient vector of the log-likelihood (4.26) for n observations. Then, under
weak regularity conditions, this vector evaluated at the parameter y ¼ y0 of the
DGP has the property that

1ffiffiffi
n

p z(y0)!d N(0, I0): (4:52)

The proof of asymptotic normality is beyond the scope of this book and is based
on generalizations of the central limit theorem. Here we only consider the mean
and variance of z(y0). To compute the mean, we write l(y) ¼ log (py(y)) with
py(y) ¼ p(y,X, y) the density in (4.25). Then

E[z(y0)] ¼ E
@ log py(y)

@y

� 	
jy¼y0

¼ E
1

py0 (y)

@py(y)

@y

� 	
jy¼y0

¼
Z

py0 (y)

py0 (y)

@py(y)

@y
dy

� �
jy¼y0

¼ @
R
py(y)dy

@y

� �
jy¼y0

¼ 0 (4:53)

as
R
py(y)dy ¼ 1 for every density function function of y. Using (4.36) it then

follows that

var(z(y0)) ¼ E
@l

@y
@l

@y0

� 	
jy¼y0

¼ In(y0):

The two foregoing results show that 1ffiffi
n

p z(y0) in (4.52) has mean zero and covar-
iance matrix 1

n In(y0). For n ! 1 this covariance matrix converges to I0.
If the null hypothesis y2 ¼ 0 is true and ŷy0 denotes the ML estimator of y under

this hypothesis, then ŷy0 is a consistent estimator of y0 and (4.52) implies that

1ffiffiffi
n

p z(ŷy0) � N(0, I0):

Now the Lagrange multipliers l̂l in (4.51) are given by l̂l ¼ @l=@y2 under the
restriction that @l=@y1 ¼ 0. If we decompose the matrix I0 in (4.52) in

T

4.3 Maximum likelihood 237



accordance with the components z1 ¼ @l=@y1 and z2 ¼ @l=@y2 of z and use the
result (1.22) on conditional distributions of the normal distribution, it follows
that

1ffiffiffi
n

p l̂l ¼ 1ffiffiffi
n

p z2jz1 ¼ 0

� �
� N(0, I022 � I021I�1

011I012):

If we denote the above covariance matrix by W, it follows that l̂l � N(0,V),
whereV ¼ nW � I22 � I21I�1

11 I12 is defined in terms of In in (4.36) with decom-
position according to that of z in z1 and z2. Therefore l̂l0V�1l̂l � w2(g). As the
matrix V�1 is equal to the lower diagonal block of the matrix I�1

n , it follows from
(4.51) that

LM ¼ l̂l0V�1l̂l ¼ 0
l̂l

� �0
I�1
n

0
l̂l

� �
¼ @l

@y

� �0
I�1
n

@l

@y

� �
:

LM-test in terms of the log-likelihood

The above result can be written as

LM ¼ @l

@y

� �0
�E

@2l

@y@y0

� 	� ��1
@l

@y

� �
� w2(g), (4:54)

where the expressions @l=@y and E[@2l=@y@y0] are both evaluated at y ¼ ŷy0,
the ML estimate under the null hypothesis. The advantage of the LM-test is
that only the restricted ML estimate ŷy0 has to be computed. This estimate
is then substituted in (4.54) in the gradient and the information matrix of
the unrestricted model. So we need to compute the gradient and Hessian
matrix of the unrestricted model, but we do not need to optimize the unre-
stricted likelihood function. Therefore the LM-test is attractive if the
unrestricted likelihood function is relatively complicated.

4.3.7 LM-test in the linear model

Model formulation

As an illustration we apply the LM-test (4.54) for the linear model
y ¼ Xbþ e with Assumptions 1–7. The vector of parameters b is split in
two parts b ¼ (b01, b

0
2)

0, where b2 is a g� 1 vector and b1 is a (k� g)� 1
vector. The model can be written as y ¼ X1b1 þX2b2 þ e and we consider
the null hypothesis that b2 ¼ 0.
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Derivation of LM-test with auxiliary regressions

To compute the LM-test (4.54) for this hypothesis, we first note that under the null
hypothesis the model is given by y ¼ X1b1 þ e. According to the results in Section
4.3.2, the ML estimates of this model are given by bML ¼ bR ¼ (X0

1X1)
�1X0

1y and
s2R ¼ 1

n e
0
ReR, where eR ¼ y�X1bR are the restricted least squares residuals. The

gradient @l
@y in (4.54), evaluated at (b1, b2, s

2) ¼ (bR, 0, s
2
R), is given by (4.31) and

(4.32), so that

@l

@b1
¼ 1

s2R
X0

1(y�X1bR) ¼ 0,

@l

@b2
¼ 1

s2R
X0

2(y�X1bR) ¼ 1

s2R
X0

2eR,

@l

@s2
¼ � n

2s2R
þ 1

2s4R
(y�X1bR)

0(y�X1bR) ¼ 0:

To compute the information matrix in (4.54), evaluated at (bR, 0, s
2
R), we use the

second order derivatives in (4.37), (4.38), and (4.39). The term in (4.37) becomes
� 1

s2
R

X0X. As s2R is a consistent estimator of s2 (under the null hypothesis),

the expectation of this term is approximately also equal to � 1
s2
R

X0X. The term

in (4.39) becomes
n
2s4

R

� 1
s6
R

e0ReR ¼ � n
2s4

R
, and the expectation of this term is

approximately the same. Finally, to evaluate (4.38), note that in Section 3.3.1
(p. 152–3) we proved that the least squares estimators b and s2 are independent.
Therefore, if the null hypothesis holds true, the restricted least squares estimators
bR and s

2
R are also independent. The term in (4.38) is givenby� 1

s4
R

X0(y�X1bR), and

E
1

s4R
X0(y�X1bR)

� 	
¼ E

1

s4R

� 	
X0E[y�X1bR] ¼ 0,

as E[y�X1bR] ¼ E[y]�X1E[bR] ¼ X1b1 �X1b1 ¼ 0 for b2 ¼ 0. Combining the
above results, we get

�E
@2l

@y@y0

� �� 	
jy¼ŷy0

�
1
s2
R

X0
1X1

1
s2
R

X0
1X2 0

1
s2
R

X0
2X1

1
s2
R

X0
2X2 0

0 0 n
2s4

R

0BB@
1CCA ¼

1
s2
R

X0X 0

0 n
2s4

R

 !
:

With the above expressions for the gradient and the Hessian matrix, the LM-test
(4.54) becomes

LM ¼ 0
1
s2
R

X0
2eR

 !0
1

s2R
X0X

� ��1 0
1
s2
R

X0
2eR

 !

¼ 1

s2R

X0
1eR

X0
2eR

� �0
(X0X)�1 X0

1eR
X0

2eR

� �
¼ e0RX(X0X)�1X0eR

s2R

¼ n
e0RX(X0X)�1X0eR

e0ReR
¼ nR2: (4:55)
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Computation of LM-test as variable addition test

This is precisely the result (4.21) that was obtained in Section 4.2.4 within
the setting of non-linear regression models. This result holds true much more
generally— that is, in many cases (non-linear models, non-linear restrictions,
non-normal disturbances) the LM-test can be computed as follows.

Computation of LM-test by auxiliary regressions

. Step 1: Estimate the restricted model. Estimate the restricted model, with
corresponding residuals eR.

. Step 2: Auxiliary regression of residuals of step 1. Perform a regression of
eR on all the variables in the unrestricted model. In non-linear models
y ¼ f (x, b)þ e, the regressors are given by @f

@b0; in other types of models the
regressors may be of a different nature (several examples will follow in the
next chapters).

. Step 3: LM ¼ nR2 of step 2. Then LM ¼ nR2 � w2(g), where R2 is the R2 of
the regression in step 2.

Because variables are added in step 2 to the variables that are used in step 1,
this is also called a variable addition test. The precise nature of the variables
to be used in the regression in step 2 depends on the particular testing
problem at hand. In the rest of this book we will encounter several examples.

E Exercises: E: 4.14d, 4.15b.

4.3.8 Remarks on tests

E Uses Section 1.4.1.

Comparison of three tests

In the foregoing sections we discussed four tests on parameter restrictions (F,
LR, W, and LM). In this section we give a brief summary and we comment
on some computational issues.
Exhibit 4.16 (a) gives a graphical illustration of the relation between the

LR-, W-, and LM-tests for the case of a single parameter y with the null
hypothesis that y ¼ 0. TheW- andLM-tests are an approximation of the LR-
test— that is, the loss in log-likelihood caused by imposing the null hypoth-
esis. The advantage of the LM- and W-tests is that only one model needs to
be estimated. If the restricted model is the simplest to estimate, as is often the
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case, then the LM-test is preferred. In situations where the unrestricted
model is the simplest to estimate we can use the W-test. Exhibit 4.16 (b)
gives a summary comparison of the three tests LR, W, and LM.
In Section 4.2.3 we discussed methods for non-linear optimization. In

general this involves a number of iterations to improve the estimates and a
stopping rule determines when the iterations are ended. In ML estimation
one can stop the iterations if the criterion values of the log-likelihood do not
change anymore (this is related to the LR-test), if the estimates do not change
anymore (this is related to the W-test, which weighs the changes against the
variance of the estimates), or if the gradient has become zero (this is related to
the LM-test, which weighs the gradient against its variance).

LR

0

LM

(a)

qML

q

log L

W

(b)

Test

LR W LM

Estimated models 2 (under H0 and H1) 1 (under H1) 1 (under H0)

Advantage Optimal power If model under
H0 is complicated

Simple computations
(auxiliary regressions)

Disadvantage Needs 2 optimizations
(ML under H0 and H1)

Test depends on
parametrization

Power may be small

Main formula (4.44)
2 logL H1ð Þ � 2 logL H0ð Þ

(4.48)
(generalizes F-test)

(4.54) and (4.55)
LM ¼ nR2

Exhibit 4.16 Comparison of tests

(a) gives a graphical illustration of the Likelihood Ratio test, the Wald test, and the Lagrange
Multiplier test. The LR-test is based on the indicated vertical distance, the W-test on the
indicated horizontal distance, and the LM-test on the indicated gradient. (b) contains a
summary comparison of the three tests.
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Relations between tests

The relations of the tests LR, W, and LM with the F-test for a linear
hypothesis in a linear model is given in (4.46), (4.49), and (4.23). From
these expressions the following inequalities can be derived for testing a linear
hypothesis in a linear model.

LM � LR � W: (4:56)

This is left as an exercise (see Exercise 4.6). As all three statistics have the
same asymptotic w2(g) distribution, it follows that the P-values based on this
distribution satisfy P(LM) � P(LR) � P(W). This means that, if the LM-test
rejects the null hypothesis, the same holds true for the LR- andW-tests, and,
if the W-test fails to reject the null hypothesis, then the same holds true for
the LM- and LR-tests. It also follows from (4.23), (4.46), and (4.49) that the
three tests are asymptotically (for n ! 1) equivalent to gF(g, n� k), and this
converges in distribution to a w2(g) distribution. That is, all four tests are
asymptotically equivalent.

x2- and F-distribution in testing

To perform the tests LR, W, and LM, it is sometimes preferable to use the
critical values of the gF(g, n� k) distribution instead of those of the w2(g)
distribution. These critical values are somewhat larger, so that the evidence
to reject the null hypothesis should be somewhat stronger than what would
be required asymptotically. Exhibit 4.17 shows the 5 per cent critical values
for some selected degrees of freedom (g, n� k). This shows that both

g gF (g,10) gF (g,100) gF (g,1000) w2(g)

1 4.96 3.94 3.85 3.84
2 8.21 6.17 6.01 5.99
3 11.12 8.09 7.84 7.81
4 13.91 9.85 9.52 9.49
5 16.63 11.53 11.12 11.07
6 19.30 13.14 12.65 12.59
7 21.95 14.72 14.13 14.07
8 24.57 16.26 15.58 15.51
9 27.18 17.77 17.00 16.92

10 29.78 19.27 18.40 18.31
20 55.48 33.53 31.62 31.41
50 131.86 73.86 68.16 67.50

100 258.84 139.17 125.96 124.34

Exhibit 4.17 F- and x2-distributions

The 5% critical values of the chi-squared distribution (last column) for some selected degrees
of freedom (g) and the 5% critical values of the scaled F-distribution gF(g, n� k) for different
values of n� k (10, 100, and 1000).
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methods lead to the same results for large sample sizes, but that for small
samples the critical values of the gF(g, n� k) distribution may be consider-
ably larger than those of the w2(g) distribution.

Alternative expressions for tests and information matrix

Sometimes theW-test and theLM-test are computed by expressions that differ from
(4.48) and (4.54) by using approximations of the information matrix. Note that
each of the values y ¼ y0 (of the DGP), y ¼ ŷy1 (ML in the unrestricted model) and
y ¼ ŷy0 (ML under the null hypothesis) are asymptotically equal (if the null hypoth-
esis is true), asMLestimatorsare consistent so thatplim(ŷy1) ¼ y0 andplim(ŷy0) ¼ y0.
For instance, for independent observations the log-likelihood is given by (4.27) and
the information matrix in (4.48) and (4.54) can be approximated by using

1

n
In ¼ � 1

n
E
Xn
i¼1

@2li
@y@y0

" #
� � 1

n

X @2li
@y@y0

� 1

n

X @li
@y

@li
@y0

(4:57)

evaluated at any of the three parameter values y0, ŷy1, or ŷy0. The last approximation
was stated in (4.28) and may be convenient as it requires only the first order
derivatives, but it may provide less precise estimates as compared to methods that
make use of the second order derivatives. All these expressions can also be used as
approximations of the asymptotic covariancematrix of theML estimator in (4.35).

E Exercises: T: 4.5, 4.6b; E: 4.13, 4.14, 4.15, 4.16.

4.3.9 Two examples

We illustrateML estimation and testing with two examples. The first example
concerns a linear model with non-normal disturbances, the second example a
non-linear regressionmodelwithnormallydistributeddisturbances.Of course
it is also of interest to apply the LR-,W-, and LM-tests for a linear hypothesis
in a linear model and to compare the outcomes with the F-test of Chapter 3.
This is left for the exercises (see Exercises 4.14 and 4.15). Further, ML has
important applications for other types ofmodels that cannot be expressed as a
regression. Such applications will be discussed in Chapters 6 and 7.

Example 4.5: Stock Market Returns (continued)

We consider again the CAPM for the sector of cyclical consumer goods
of Example 4.4 in Section 4.3.1. We will discuss (i) the specification of
the log-likelihood for t(5)-distributed disturbances, (ii) outcomes of the ML
estimates, and (iii) choice of the number of degrees of freedom in the t-
distribution.

T

E

XM404SMR
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(i) Log-likelihood for (scaled) t(5)-distributed disturbances

As was discussed in Example 4.4 (p. 223–4), the disturbance terms in
the CAPM may have fatter tails than the normal distribution (see also
Exhibit 4.11 (a)). As an alternative, we consider the same linear model
with disturbances that have the (scaled) t(5)-distribution. That is, the
model is given by

yi ¼ aþ bxi þ ei,

where yi and xi are the excess returns in respectively the sector of cyclical
consumer goods and the whole market. We suppose that Assumptions 1–6 of
Section 3.1.4 (p. 125) are satisfied. In particular, the disturbance terms ei have
zero mean, they have equal variance, and we assume that they are mutually
independent. As independence implies being uncorrelated, this is stronger
than Assumption 4 of uncorrelated disturbance terms. The postulated scaled
t(5)-density of the disturbance terms is

p(ei) ¼ c5(1þ e2i =5s
2)�3=s,

where c5 is a scaling constant (that does not depend on s) so thatR
p(ei)dei ¼ 1. The log-likelihood (4.27) is given by

l(a, b, s2) ¼
Xn
i¼1

log (p(ei)) ¼ n log (c5)� n

2
log (s2)

� 3
Xn
i¼1

log 1þ (yi � a� bxi)
2

5s2

 !
:

(ii) ML estimates based on (scaled) t(5)-distribution

The first order derivatives of the above log-likelihood are given by

@l

@a
¼
Xn
i¼1

�3

1þ e2i =5s
2
� (� 2ei=5s2) ¼

Xn
i¼1

6ei
5s2 þ e2i

,

@l

@b
¼
Xn
i¼1

�3

1þ e2i =5s
2
� (� 2eixi=5s2) ¼

Xn
i¼1

6eixi
5s2 þ e2i

,

@l

@s2
¼ � n

2s2
� 3

Xn
i¼1

1

1þ e2i =5s
2
� (� e2i =5s

4) ¼ � n

2s2
þ 3

s2
Xn
i¼1

e2i
5s2 þ e2i

:

Substituting ei ¼ yi � a� bxi, the ML estimates are obtained by solving the
above three non-linear equations @l=@a ¼ @l=@b ¼ @l=@s2 ¼ 0. The out-
comes (aML, bML, sML) of the BHHH algorithm of Section 4.3.2 are given
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in Exhibit 4.18 (a–c), together with a histogram of the ML residuals
êei ¼ yi � aML � bMLxi in (f ). The iterations are started in (a, b, s) ¼
(0, 1, 1) and converge to (aML, bML, sML) ¼(� 0:34, 1:20, 4:49).
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Exhibit 4.18 Stock Market Returns (Example 4.5)

ML estimates of CAPM for the sector of cyclical consumer goods in the UK, using a scaled t(5)
distribution for the disturbances. (a)–(c) show the estimates of the constant term a (a), the slope
b (b), and the scale parameter s (c) obtained by twenty iterations of the BHHH algorithm, with
starting values a ¼ 0, b ¼ 1, and s ¼ 1. (d)–(e) show the values of SSR (d) and of the log-
likelihood values (denoted by LL (e)) obtained in these iterations. The value of LL increases at
each iteration, but the value of SSRdoes not decrease always. (f ) shows the histogramof theML
residuals, and (g) shows themaximumof the log-likelihood function for the t(d) distribution for
different degrees of freedom (the optimal value is obtained for d ¼ 8, and for d infinitely large
(the case of the normal distribution) the LL value is indicated by the horizontal line).
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(iii) Choice of degrees of freedom of t-distribution

The motivation to use the (scaled) t(5)-distribution instead of the normal
distribution is that the disturbance distribution may have fat tails. However,
we have no special reason to take the t-distribution with d ¼ 5 degrees of
freedom. Therefore we estimate the CAPMalso with scaled t(d)-distributions
for selected values of d, including d ¼ 1 (which corresponds to the normal
distribution, see Section 1.2.3 (p. 33)). This can be used for a grid search for d
to obtain ML estimates of the parameters (a, b, s2, d). Exhibit 4.18 (g)
shows the maximum of the log-likelihood for different values of d. The
overall optimum is obtained for d ¼ 8. The difference in the log-likelihood
with d ¼ 5 is rather small.We can also test for the null hypothesis of normally
distributed error terms against the alternative of a t(d)-distribution— that is,
the test of d ¼ 1 against d < 1. The Likelihood Ratio test is given by

LR ¼ 2l(ŷy1)� 2l(ŷy0) ¼ 2(� 747:16þ 750:54) ¼ 6:77,

where l(ŷy1) ¼ �747:16 is the unrestricted maximal log-likelihood value (that
is, for d ¼ 8) and l(ŷy0) ¼ �750:54 is the log-likelihood value for the model
with normally distributed disturbances. Asymptotically, LR follows the w2(1)
distribution. The P-value of the computed LR-test is P ¼ 0:009, so that the
null hypothesis is rejected. Therefore we conclude that, under the stated
assumptions, a t-distribution may be more convenient to model the disturb-
ances of the CAPM than a normal distribution. In Section 4.4.6 we provide a
further comparison between the models with normal and with scaled t(5)-
disturbances.

Example 4.6: Coffee Sales (continued)

As a second example we consider again the data on sales of two brands of
coffee discussed before in Section 4.2.5. We will discuss (i) the outcomes of
ML estimation for the two brands, (ii) LR-tests on constant elasticity, (iii)
LM-tests on constant elasticity, (iv) Wald tests on constant elasticity, and (v)
comparison of the tests and conclusion.

(i) Outcomes of ML for the two brands

For each of the two brands separately, we use the non-linear regressionmodel
(4.9) with the assumption of normally distributed disturbances, so that

log (qi) ¼ b1 þ
b2
b3

�
d
b3
i � 1

�þ ei, ei � NID(0, s2):

The null hypothesis of constant demand elasticity corresponds to the parameter
restriction b3 ¼ 0, with corresponding model log (q) ¼ b1 þ b2 log (d)þ e.

E

XM402COF
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We perform different tests of this hypothesis for both brands of coffee. The
tests are based on the results in Exhibit 4.19. Panels 1 and 3 give the results of
ML estimation under the hypothesis that b3 ¼ 0. Because the disturbances
are assumed to be normally distributed, ML corresponds to least squares (see
Section 4.3.2). Panels 2 and 4 give the results of ML estimation in the
unrestricted non-linear regression model (4.9). This corresponds to non-
linear least squares.

(ii) LR-tests on constant elasticity

The Likelihood Ratio tests for the null hypothesis that b3 ¼ 0 against the
alternative that b3 6¼ 0 can be obtained from the results in Exhibit 4.19 for
brands 1 and 2. The results are as follows, with P-values based on the
asymptotic w2(1) distribution:

LR1 ¼ 2(12:530� 10:017) ¼ 5:026 (P ¼ 0:025),

LR2 ¼ 2(11:641� 10:024) ¼ 3:235 (P ¼ 0:072):

(iii) LM-tests on constant elasticity

Under the null hypothesis, the model is linear with dependent variable log (qi)
and with explanatory variable log (di) (see Example 4.2 (p. 202–4)).
The Lagrange Multiplier test for non-linear regression models has already
been performed in Section 4.2.5 for both brands of coffee, with the results in
Panels 5 and 6 in Exhibit 4.10. The test outcomes are

LM1 ¼ nR2 ¼ 12 � 0:342 ¼ 4:106 (P ¼ 0:043),

LM2 ¼ nR2 ¼ 12 � 0:236 ¼ 2:836 (P ¼ 0:092):

(iv) Wald tests on constant elasticity

To compute the Wald test (4.48) we use the relation (4.50) between the Wald
test and the t-test— that is,

W ¼ n

n� k
t2:

The non-linear regressions in Panels 2 and 4 in Exhibit 4.10 show the t-values
of b̂b3 with P-values based on the t(9)-distribution—namely,

t1 ¼ �2:012 (P ¼ 0:075),

t2 ¼ �1:651 (P ¼ 0:133):

Using (4.50) with n ¼ 12 and k ¼ 3, this leads to the following values for the
Wald test, with corresponding P-values based on the w2(1) distribution:
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Panel 1: Dependent Variable: LOGQ1 (brand 1)
Method: Least Squares
Included observations: 12

Variable Coefficient Std. Error t-Statistic Prob.
C 5.841739 0.043072 135.6284 0.0000

LOGD1 4.664693 0.581918 8.016063 0.0000
R-squared 0.865333
Sum squared resid 0.132328
Log likelihood 10.01699

Panel 2: Dependent Variable: LOGQ1 (brand 1)
Method: Least Squares
Included observations: 12
Convergence achieved after 5 iterations
LOGQ1 ¼ C(1) þ (C(2)/C(3)) � (D1^C(3)� 1)

Parameter Coefficient Std. Error t-Statistic Prob.
C(1) 5.807118 0.040150 144.6360 0.0000
C(2) 10.29832 3.295386 3.125072 0.0122
C(3) �13.43073 6.674812 �2.012152 0.0751

R-squared 0.911413
Sum squared resid 0.087049
Log likelihood 12.52991

Panel 3: Dependent Variable: LOGQ2 (brand 2)
Method: Least Squares
Included observations: 12

Variable Coefficient Std. Error t-Statistic Prob.
C 4.406561 0.043048 102.3638 0.0000

LOGD2 6.003298 0.581599 10.32206 0.0000
R-squared 0.914196
Sum squared resid 0.132183
Log likelihood 10.02358

Panel 4: Dependent Variable: LOGQ2 (brand 2)
Method: Least Squares
Included observations: 12
Convergence achieved after 5 iterations
LOGQ2 ¼ C(1) þ (C(2)/C(3)) � (D2^C(3)� 1)

Parameter Coefficient Std. Error t-Statistic Prob.
C(1) 4.377804 0.043236 101.2540 0.0000
C(2) 10.28864 3.001698 3.427608 0.0075
C(3) �8.595289 5.207206 �1.650653 0.1332

R-squared 0.934474
Sum squared resid 0.100944
Log likelihood 11.64129

Exhibit 4.19 Coffee Sales (Example 4.6)

Regressions for two brands of coffee, models with constant elasticity (Panels 1 and 3) and
models with varying elasticity (Panels 2 and 4).
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W1 ¼ 12

9
� (� 2:012)2 ¼ 5:398 (P ¼ 0:020),

W2 ¼ 12

9
� (� 1:651)2 ¼ 3:633 (P ¼ 0:057):

(v) Comparison of tests and conclusion

Summarizing the outcomes of the test statistics, note that for both brands of
coffee LM < LR < W, in accordance with (4.56). If we use a 5 per cent
significance level, the null hypothesis of constant demand elasticity is not
rejected for brand 2, but it is rejected for brand 1 by the LR-test, the LM-test,
and the W-test, but not by the t-test.

As the sample size (n ¼ 12) is very small, the asymptotic w2(1) distribution
is only a rough approximation. It is helpful to consider also the
gF(g, n� k) ¼ F(1, 9) distribution with 5 per cent critical value equal to
5.12. This is considerably larger than the value 3.84 for the w2(1) distribu-
tion. With this critical value of 5.12, all tests fail to reject the null hypothesis,
with the exception of the Wald test for brand 1. Therefore, on the basis of
these data there is not so much compelling evidence to reject the null
hypothesis of constant elasticity of the demand for coffee. Of course, the
number of observations for the two models (n ¼ 12 for both brands) is very
small, and in Section 5.3.1 (p. 307–10) we will use a combined model for the
two brands (so that n ¼ 24 in this case). As we shall see in Section 5.3.1,
the null hypothesis of constant elasticity can then be rejected for both brands
by all three tests (LR, LM, and Wald).
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4.4 Generalized method of
moments

4.4.1 Motivation

Requirements for maximum likelihood

The results in the foregoing section show that maximum likelihood has
(asymptotically) optimal properties for correctly specifiedmodels. In practice
this means that the joint probability distribution (4.25) of the data should be
a reasonable reflection of the data generating process. If there is much
uncertainty about this distribution, then it may be preferable to use an
estimation method that requires somewhat less information on the DGP. In
general, by making less assumptions on the DGP, some efficiency will be lost
as compared toML in the correct model. However, this loss may be relatively
small compared to the loss of using ML in a model that differs much from
the DGP.

Evaluation of accuracy of estimates

The accuracy of parameter estimates is usually evaluated in terms of their
standard errors and their P-values associated with tests of significance. Until
now we have discussed two methods for this purpose. The expression

cvarvar(b) ¼ s2(X0X)�1

provides correct P-values on the significance of least squares estimates if the
seven standard Assumptions 1–7 of Section 3.1.4 are satisfied. Further, the
expression

cvarvar(ŷyML) ¼ I�1
n (ŷyML)

provides asymptotically correct P-values on the significance of maximum
likelihood estimates if the joint probability function p(y, X, y) of the data is
correctly specified (see Section 4.3.3).
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In this section we discuss the generalized method of moments (GMM). In
this approach the parameters are estimated by solving a set of moment
conditions. As we shall see below, both OLS and ML can be seen as particu-
lar examples of estimators based onmoment conditions. The GMM standard
errors are computed on the basis of the moment conditions and they provide
asymptotically correct P-values, provided that the specified moment condi-
tions are valid. For instance, one can estimate the parameters by OLS and
compute the GMM standard errors even if not all the Assumptions 1–7
hold true. One can also estimate the parameters by ML and compute the
GMM standard errors, even if the specified probability distribution is not
correct. That is, GMM can be used to compute reliable standard errors and
P-values in situations where some of the assumptions of OLS or ML are
not satisfied.

Example 4.7: Stock Market Returns (continued)

As an illustration, Exhibit 4.20 shows the OLS residuals of the CAPM
discussed in Examples 2.1, 4.4, and 4.5. It seems that the disturbances have
a larger variance at the beginning and near the end of the observation period
as compared to themiddle period. If the variances differ, then the disturbances
are heteroskedastic and Assumption 3 is violated.We have already concluded
(see Sections 4.3.1 and 4.3.9) that Assumption 7 of normally distributed
disturbances is also doubtful. However, the alternative of ML based on
t-distribution does not take the apparent heteroskedasticity of the disturb-
ances into account either. It seems preferable to evaluate the CAPM, in
particular to compute the standard errors, without making such assump-
tions. In Section 4.4.6 we will use GMM for this purpose.
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Exhibit 4.20 Stock Market Returns (Example 4.7)

Least squares residuals of CAPM for the sector of cyclical consumer goods in the UK.
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4.4.2 GMM estimation

E Uses Section 1.3.1.

Method of moments estimator of the mean

In Section 1.3.1 (p. 39) we discussed the method of moments, which is based
on estimating population moments by means of sample moments. For
example, suppose that the data yi consist of a random sample from a
population with unknown mean m, so that

E[yi � m] ¼ 0:

Then the moment estimator of m is obtained by replacing the population
mean (E) by the sample mean 1

n

Pn
i¼1

� �
, so that

1

n

Xn
i¼1

(yi � m̂m) ¼ 0,

that is, m̂m ¼ 1
n

Pn
i¼1 yi.

Least squares derived by the method of moments

The least squares estimator in the linear model (4.1) can also be derived by
the method of moments. The basic requirement for this estimator is the
orthogonality condition (4.4). Here 1

nX
0e ¼ 1

n

Pn
i¼1 xiei, where xi is the

k� 1 vector of explanatory variables for the ith observation, and condition
(4.4) is satisfied (under weak regularity conditions) if E[xiei] ¼ 0 for all i. As
ei ¼ yi � x0ib, this is equivalent to the condition that

E[xi(yi � x0ib)] ¼ 0, i ¼ 1, � � � , n: (4:58)

Note that xi is a k� 1 vector, so that this imposes k restrictions on the
parameter vector b. The corresponding conditions on the sample moments
(replacing the population mean E by the sample mean 1

n

Pn
i¼1) gives the k

equations

1

n

Xn
i¼1

xi(yi � x0ib̂b) ¼ 0:

This can be written as X0(y�Xb̂b) ¼ 0, so that b̂b ¼ b is equal to the least
squares estimator. This shows that OLS can be derived by the method of
moments, using the orthogonality conditions (4.58) as moment conditions.
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ML as methods of moments estimator

ML estimators can also be obtained from moment conditions. Suppose that
the data consist of n independent observations, so that the log-likelihood is
l(y) ¼Pn

i¼1 li(y), as in (4.27). By the arguments in (4.53), replacing
log p(y) by li(y) ¼ log py(yi, xi), it follows that

E
@li
@y

� 	
jy¼y0

¼ 0, i ¼ 1, � � � , n: (4:59)

Replacing the population mean E by the sample mean 1
n

Pn
i¼1, this gives

1

n

Xn
i¼1

@li
@y

¼ 0: (4:60)

The solution of these equations gives the ML estimator, as this corresponds
to the first order conditions for a maximum of the log-likelihood. The
equations (4.60) require that the sample mean of the terms @li

@y is equal to
zero. Such equations are called ‘generalized’ moment conditions.

The generalized method of moments

We now describe the generalized method of moments more in general. The
basic assumption is that we can formulate a set of moment conditions. Sup-
pose that the parameter vector of interest, y, contains p unknown parameters
and that the DGP has parameters y0. Further suppose that for each observa-
tion (i ¼ 1, � � � , n) the DGP satisfiesm distinct moment conditions, say

E[gi(y0)] ¼ 0, i ¼ 1, � � � , n, (4:61)

where the gi are known functions gi :R
p ! Rm that depend on the observed

data. That is, the crucial assumption is that the DGP satisfies the m restric-
tions in (4.61) for the observations i ¼ 1, � � � , n. Examples are the orthogon-
ality conditions (4.58) (which corresponds to k linear functions in the k
unknown parameters) and the first order conditions (4.60) (which gives p
non-linear functions in the p unknown parameters). If the number of
moment conditions m is equal to the number of unknown parameters p in
y, then the model (4.61) is called exactly identified, and if m > p then the
model is called over-identified. The GMM estimator ŷy is defined as the
solution of the m equations obtained by replacing the population mean E
in (4.61) by the sample mean 1

n

Pn
i¼1 — that is,

1

n

Xn
i¼1

gi(ŷy) ¼ 0: (4:62)
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Numerical aspects of GMM

To obtain a solution for ŷy, we need in general to impose at least as
many moment conditions as there are unknown parameters (m � p). In the
exactly identified case (m ¼ p), this system of m equations in p unknown
parameters has a unique solution (under suitable regularity conditions). The
numerical solution methods discussed in Section 4.2.3 can be used for this
purpose. In the over-identified case (m > p) there are more equations than
unknown parameters and there will in general exist no exact solution of this
system of equations. That is, although the m (population) conditions (4.61)
are satisfied (by assumption) for the DGP—that is, for y ¼ y0 — there often
exists no value ŷy for which the sample condition (4.62) is exactly satisfied.
Let the m� 1 vector Gn(y) be defined by

Gn(y) ¼
Xn
i¼1

gi(y):

If there exists no value of y so that Gn(y) ¼ 0, one can instead minimize the
distance of this vector fromzero, for instance byminimizing 1

nG
0
n(y)Gn(y) with

respect to y. As an alternative one can alsominimize aweighted sumof squares

1

n
G0

nWGn, (4:63)

where W is an m�m symmetric and positive definite matrix. In the exactly
identified case (with a solution Gn(ŷy) ¼ 0) the choice of W is irrelevant, but
in the over-identified case it may be chosen to take possible differences in
sampling variation of the individual moment conditions into account. In
general the minimization of (4.63) will be a non-linear optimization problem
that can be solved by the numerical methods discussed in Section 4.2.3— for
example, by Newton–Raphson.

Summary of computations in GMM estimation

Estimation by GMM proceeds in the following two steps.

GMM estimation

. Step 1: Specify a sufficient number of moment conditions. Identify the p
parameters of interest y and specify m ( � p) moment conditions (4.61).
The crucial assumption is that the DGP satisfies these moment conditions.
In particular, the specified moments should exist.

. Step 2: Estimate the parameters. Estimate y by GMM by solving the
equations (4.62) (in the exactly identified case with m ¼ p) or by minimiz-
ing (4.63) (in the over-identified case with m > p). The choice of the
weighting matrix W (when m > p) will be discussed in the next section.
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4.4.3 GMM standard errors

An asymptotic result

To apply tests based on GMM estimators we need to know (asymptotic) expres-
sions for the covariance matrix of these estimators. In our analysis we will assume
that the moment conditions are valid for the DGP, that our GMM estimator is
consistent, and that the sample average 1

nGn ¼ 1
n

Pn
i¼1 gi satisfies the following

central limit theorem:

1ffiffiffi
n

p Gn(y0)!d N(0, J0), J0 ¼ E[gi(y0)g0i(y0)]: (4:64)

These assumptions hold true under suitable regularity assumptions on the
moment conditions (4.61) and on the correlation structure of the data generating
process (in particular, the random vectors gi(y0) should satisfy the moment condi-
tions (4.61) and these random vectors should not be too strongly correlated
for i ¼ 1, � � � , n with n ! 1). Note that E[Gn(y0)] ¼ 0 if (4.61) is valid. It
falls beyond the scope of this book to treat the required assumptions for asymp-
totic normality in (4.64) in more detail. However, for two special cases (OLS and
ML), the result (4.64) follows from earlier results in this chapter, as we shall
now show.

Illustration of asymptotic result: OLS

If the moment conditions are those of OLS in (4.58), it follows that

Gn(y0) ¼
Xn
i¼1

xi(yi � x0ib) ¼
Xn
i¼1

xiei ¼ X0e:

Under appropriate conditions (Assumptions 1�, 2–6, and orthogonality between
xi and ei) there holds J0 ¼ E[xie2i x

0
i] ¼ s2E[xix0i] ¼ s2plim 1

n

Pn
i¼1 xix

0
i

� � ¼ s2Q and
then (4.64) follows from (4.6) in Section 4.1.4, which states that
1ffiffi
n

p X0e!d N(0, s2Q).

Second illustration of asymptotic result: ML

If the moment conditions are those of ML in (4.60), it follows that

Gn(y0) ¼
Xn
i¼1

@li
@y

���
y¼y0

¼ @l

@y

���
y¼y0

:

Now (4.52) in Section 4.3.6 states that for z(y0) ¼ @l
@y jy¼y0 there holds

1ffiffi
n

p z(y0)!d N(0, I0). This result is equivalent to (4.64), because z(y0)¼ Gn(y0) and

T

T

T
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J0 ¼ E
@li
@y

@li
@y0

� 	
¼ lim � 1

n

Xn
i¼1

E
@2li
@y@y0

� 	 !
¼ I0

(see (4.36) and (4.57)).

Derivation of asymptotic distribution of the GMM estimator

Assuming that (4.64) is satisfied, it follows that for large enough samples (so that ŷy
is close to y0) the minimization problem in (4.63) can be simplified by the
linearization Gn ¼ Gn(y) � Gn0 þHn0(y� y0), where Gn0 ¼ Gn(y0) and
Hn0 ¼ Hn(y0) is the m� p matrix defined by Hn ¼ @Gn=@y

0. Substituting this
linear approximation in (4.63) and using the fact that the derivative of
Gn0 þHn0(y� y0) with respect to y is equal to Hn0, the first order conditions for
a minimum of (4.63) are given by

H0
n0W(Gn0 þHn0(y� y0)) ¼ 0:

The solution is given by

ŷy ¼ y0 � (H0
n0WHn0)

�1H0
n0WGn0:

Suppose that plim 1
nHn0

� � ¼ H0 exists, then it follows from the above expression
and (4.64) that

ffiffiffi
n

p
(ŷy� y0)!d N(0, V), (4:65)

where V ¼ (H0
0WH0)

�1H0
0WJ0WH0(H

0
0WH0)

�1.

Choice of weighting matrix in the over-identified case

The weighting matrix W in (4.63) can now be chosen so that this expression is
minimal (in the sense of positive semidefinite matrices) to get an asymptotically
efficient estimator. Intuitively, it seems reasonable to allow larger errors for
estimated parameters that contain more uncertainty. We can then penalize the
deviations of Gn from zero less heavily in directions that have a larger variance.
This suggests choosing the weights inversely proportional to the covariance
matrix var

�
1ffiffi
n

p Gn(y0)
� � J0 — that is, taking W ¼ J�1

0 . It is left as an exercise
(see Exercise 4.7) to show that this is indeed the optimal weighting matrix. The
resulting p� p asymptotic covariance matrix is given by

V ¼ H0
0J

�1
0 H0

� ��1
: (4:66)

So the estimator ŷy obtained by minimizing (4.63) with W ¼ J�1
0 is the most

efficient estimator within the class of GMM estimators obtained by minimizing
(4.63) for any positive definite matrix W.

T

T
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Factors that influence the variance of GMM

The efficiency of this estimator further depends on the set of moment conditions
that has been specified. Stated in general terms, the best moment conditions (that
is, with the smallest covariance matrix V for ŷy) are those for whichH0 is large and
J0 is small (all in the sense of positive definite matrices). HereH0 ¼ @G=@y0 is large
when the violation of the moment conditions (4.61) is relatively strong for
y 6¼ y0 — that is, when the restrictions are powerful in this sense. And J0 is small
when the random variation of the moments gi(y0) in (4.61) is small.

Illustration: OLS

As an illustration, for the OLS moment conditions E[xi(yi � x0ib)] ¼ 0 in (4.58)
we obtainHn ¼ @Gn=@b ¼ �Pn

i¼1 xix
0
i ¼ �X0X and (under Assumptions 1�, 2–6,

and orthogonality of the regressors xi with the disturbances ei)
H0 ¼ plim � 1

nX
0X

� � ¼ �Q. We showed earlier that J0 ¼ s2Q in this case, so
that

VOLS ¼ (H0
0 J

�1
0 H0)

�1 ¼ (Qs�2Q�1Q)�1 ¼ s2Q�1 � s2
1

n
X0X

� ��1

:

This agrees with (4.7) in Section 4.1.4. So this estimator is more efficient if X0X is
larger (more systematic variation) and if s2 is smaller (less random variation).

Second illustration: ML

For the ML moment conditions (4.60) we obtain Hn ¼ @Gn=@y ¼P @2li
@y@y0

and it follows from (4.57) that H0 ¼ plim 1
nHn0

� � ¼ plim � 1
n In

� � ¼ �I0. We
showed earlier that in this case J0 ¼ I0, so that for ML there holds H0 ¼ �J0 and

VML ¼ (H0
0 J

�1
0 H0)

�1 ¼ (I0I�1
0 I0)

�1 ¼ I�1
0 :

This is in line with (4.35) in Section 4.3.3. So ML estimators are efficient if
the information matrix I0 is large, or, equivalently, if the log-likelihood has a
large curvature around y0. This is also intuitively evident, as for y 6¼ y0 the log-
likelihood values drop quickly if the curvature is large.

Iterative choice of weights

In practice y0 is unknown, so that we cannot estimate y with the criterion (4.63)
with W ¼ J�1

0 . A possible iterative method is to start, for instance, with W ¼ I
(the m�m identity matrix) and to minimize (4.63). The resulting estimate ŷy is
then used to compute ĴJ0 ¼ 1

n

Pn
i¼1 gi(ŷy)g

0
i(ŷy) as an estimate of J0. Then (4.63)

is minimized with W ¼ ĴJ�1
0 , and this process is repeated until the estimates

converge.

T

T

T

T
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GMM standard errors

Consistent estimates of the standard errors of the GMM estimators ŷy are
obtained as the square roots of the diagonal elements of the estimated
covariance matrix of ŷy—that is,

cvarvar(ŷy) ¼ (H0
n J�1

n Hn)
�1, (4:67)

Jn ¼
Xn
i¼1

gi(ŷy)g0i(ŷy), Hn ¼
Xn
i¼1

@gi(ŷy)
@y0

: (4:68)

Here we used the fact that, according to (4.65), ŷy has covariance
matrix approximately equal to 1

n V, andH0 and J0 in (4.66) are approximated
by 1

nHn and 1
n Jn evaluated at y ¼ ŷy, so that

var(ŷy) � 1

n
V ¼ 1

n
(H0

0J
�1
0 H0)

�1 � 1

n

1

n
H0

n

1

n
Jn

� ��11

n
Hn

 !�1

¼ (H0
nJ

�1
n Hn)

�1:

The covariance matrix in (4.67) is called the sandwich estimator of the
covariance matrix of the GMM estimator ŷy.

Test of moment conditions: The J-test

In the over-identified case, one can test the over-identifying restrictions by
means of the result that, under the null hypothesis that the moment condi-
tions (4.61) hold true,

G0
n J�1

n Gn � w2(m� p): (4:69)

This is called the J-test. Herem is the number of moment conditions and p is
the number of parameters in y. The result of the w2-distribution is based on
(4.64), where J0 is approximated by 1

n Jn. Note that (4.63) can be seen as a
non-linear least squares problem with m ‘observations’ and p parameters,
which explains that the number of degrees of freedom ism� p. In the exactly
identified case (m ¼ p) the moment conditions cannot be tested, asGn(ŷy) will
be identically zero irrespective of the question whether the imposed moment
conditions are correct or not.

Summary of computations in GMM estimation and testing

Summarizing the results on GMMestimation and testing obtained in this and
the foregoing section, this approach consists of the following steps.

GMM estimation and testing

. Step 1: Specify a sufficient number of moment conditions. Identify the p
parameters of interest y and specifym (� p) moment conditions (4.61). The
crucial assumption is that the DGP satisfies these moment conditions.

(continues)
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GMM estimation and testing (continued )

. Step 2: Estimate the parameters. Estimate y by GMM by solving the
equations (4.62) (if m ¼ p) or by minimizing (4.63) (if m > p). The
weighting matrix W can be chosen iteratively, starting with W ¼ I and (if
ŷyh is the estimate obtained in the hth iteration) choosing in the (hþ 1)st
iteration W ¼ J�1

h , where Jh ¼ 1
n

Pn
i¼1 gi(ŷyh)g

0
i(ŷyh).

. Step 3: Compute the GMM standard errors. The asymptotic covariance
matrix of the GMM estimator ŷy can be obtained from (4.67) and (4.68).
The GMM standard errors are the square roots of the diagonal elements of
this matrix.

. Step 4: Test of moment conditions (in over-identified models). The correct-
ness of the moment conditions can be tested in the over-identified case
(m > p) by the J-test in (4.69).

E Exercises: T: 4.7; S: 4.11c, f, 4.12c, g.

4.4.4 Quasi-maximum likelihood

Moment conditions derived from a postulated likelihood

Considering the four steps of GMM at the end of the last section, the
question remains how to find the required moment conditions in step 1. In
some cases these conditions can be based on models of economic behav-
iour— for instance, expected utility maximization. Another possibility is the
so-called quasi-maximum likelihood (QML) method. This method derives
the moment conditions from a postulated likelihood function, as in (4.60). It
is assumed that the corresponding moment conditions

E[gi(y)] ¼ E[@li=@y] ¼ 0

hold true for the DGP, but that the likelihood function is possibly misspeci-
fied. This means that the expression (4.35) for the covariance matrix does not
apply. The (asymptotically) correct covariance matrix can be computed by
means of (4.67). Aswas discussed in Section 4.4.3, if the likelihood function is
correct, then H0 ¼ �J0, but this no longer holds true if the model is misspe-
cified. The reason is that the equality (4.36) holds true only at y ¼ y0 — that is,
for correctly specified models. On the other hand, the results in (4.65) and
(4.66) always hold true as long as the moment conditions (4.61) are valid.

Comparison of ML and QML

So in QML the likelihood function is used only to obtain the first order
conditions (4.60) and the standard errors are computed from (4.67). QML is
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consistent if the conditions E[@li=@y] ¼ 0 hold true for the DGP. In practice,
when one is uncertain about the correct specification of the likelihood
function, it may be helpful to calculate the standard errors in both ways,
withML and with QML. If the outcomes are widely different, this is a sign of
misspecification.

Summary of QML method

In quasi-maximum likelihood, the parameter estimates and their standard
errors are computed in the following way. Here it is assumed that the n
observations (yi, xi) are mutually independent for i ¼ 1, � � � , n.

Quasi-maximum likelihood

. Step 1: Specify a probability distribution for the observed data. Identify the
p parameters of interest y. Postulate a probability distribution p(yi,xi, y) for
the ith observation, and let li(y) ¼ log (p(yi, xi, y)) be the contribution of the
ith observation to the log-likelihood log (L(y)) ¼Pn

i¼1 log (p(yi,xi, y)).

. Step 2: Derive the corresponding moment conditions. Define the pmoment
conditions E[gi(y)] ¼ 0, where the moments are defined by
gi(y) ¼ @li

@y , i ¼ 1, � � � , n. The crucial assumption is that the DGP satisfies
these moment conditions.

. Step 3: Estimate the parameters. Estimate y by solving the equations (4.62)
(as m ¼ p, there is no need for a weighting matrix). This is equivalent to
ML estimation based on the chosen probability distribution in step 1.

. Step 4: Compute theGMMstandard errors. Approximate standard errors of
the QML estimates can be obtained from the asymptotic covariance matrix
in (4.67) and (4.68), with gi(y) ¼ li(y) ¼ log (p(yi, xi, y)).

E Exercises: E: 4.17h.

4.4.5 GMM in simple regression

The two moment conditions

We illustrate GMM by considering the simple regression model. The results
will be used in the example in the next section. Suppose that we wish to
estimate the parameters a and b in the model

yi ¼ aþ bxi þ ei, i ¼ 1, � � � , n:

We suppose that the functional form is correctly specified in the sense that the
DGP has parameters (a0, b0) with the property that
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E[ei] ¼ E[yi � a0 � b0xi] ¼ 0, i ¼ 1, � � � , n:

Further we assume that the explanatory variable xi satisfies the orthogonality
condition

E[xiei] ¼ E[xi(yi � a0 � b0xi)] ¼ 0, i ¼ 1, � � � , n:

This provides two moment conditions, so that the model is exactly
identified.

The GMM estimators

The GMM estimates of a and b are obtained by replacing the expectation E
by the sample mean 1

n

Pn
i¼1, so that

1

n

Xn
i¼1

�
yi � âa� b̂bxi

� ¼ 0,
1

n

Xn
i¼1

xi
�
yi � âa� b̂bxi

� ¼ 0:

These equations are equivalent to the two normal equations (2.9) and (2.10)
in Section 2.1.2 (p. 82). So the GMM estimates of a and b are the OLS
estimates a and b.

GMM standard errors (allowing for heteroskedasticity)

The variance of the estimators a and b was derived in Section 2.2.4 (p. 96) under
Assumptions 1–6 (see (2.27) and (2.28)). The above two moment conditions
correspond to Assumptions 1 (exogeneity), 2 (zero mean), and 5 and 6 (linear
model with constant parameters). We now suppose that Assumption 4 (no correl-
ation) is also satisfied, but that Assumption 3 (homoskedasticity) is doubtful. If
Assumption 3 is violated, then the formulas (2.27) and (2.28) for the variances of a
and b do not apply. A consistent estimator of the 2� 2 covariance matrix is
obtained from (4.67). In our case,

gi(a,b) ¼ yi � a� bxi
xi(yi � a� bxi)

� �
¼ ei

xiei

� �
,

so that the estimated covariance matrix (4.67) is cvarvar(ŷy) ¼ H0
n J�1

n Hn

� ��1
with

Hn ¼
Xn
i¼1

@gi
@a

@gi
@b

� �
¼
Xn
i¼1

�1 �xi

�xi �x2i

 !
¼ �

Xn
i¼1

1 xi

xi x2i

 !
,

Jn ¼
Xn
i¼1

gig
0
i ¼

Xn
i¼1

e2i

1 xi

xi x2i

 !
:

T
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If the residuals are all of nearly equal magnitude so that e2i � s2, then we obtain
Hn ¼ �X0X and Jn � s2(X0X), whereX is the n� 2 regressor matrix. The formula
(4.67) then gives V̂V � s2(X0X)�1, as in Chapter 3. However, if the residuals differ
much in magnitude, then Jn may differ considerably from s2(X0X)�1, and the
(correct) GMM expression in (4.67) may differ much from the (incorrect) expres-
sion s2(X0X)�1 for the covariance matrix.

E Exercises: E: 4.17g.

4.4.6 Illustration: Stock Market Returns

We consider once again the excess returns data for the sector of cyclical
consumer goods (yi) and for the whole asset market (xi) in the UK (see also
Examples 4.5 (p. 243–6) and 4.7 (p. 251)). We will discuss (i) the data and
the model assumptions, (ii) two estimation methods, OLS and QML with
(scaled) t(5)-disturbances, (iii) correctness of the implied moment conditions,
(iv) the estimation results, and (v) tests of two hypotheses.

(i) Data and model assumptions

The data set consists of n ¼ 240 monthly data over the period 1980.01–
1999.12. The CAPM is given by

yi ¼ aþ bxi þ ei, i ¼ 1, � � � , n:

We make the following assumptions on the DGP. The disturbances have
mean zero (Assumption 2). The terms xi and ei are independent, so that in
particular E[xiei] ¼ E[xi]E[ei] ¼ 0 (compare with Assumption 1). The dis-
turbances are independent (Assumption 4) and the DGP is described by the
above simple regression model for certain (unknown) parameters (a0, b0)
(Assumptions 5 and 6). However, we do not assume normality (Assumption
7), as the results in Example 4.4 (p. 223–4) indicate that the distribution may
have fat tails. We also do not assume homoskedasticity (Assumption 3), as
the variance of the disturbances may be varying over time (see Example 4.7).
That is, we assume that the disturbances ei are independently distributed
with unknown distributions pi(ei) with mean E[ei] ¼ 0 and possibly different
unknown variances E[e2i ] ¼ s2i , i ¼ 1, � � � , n. Further we assume that the
density functions pi(ei) are symmetric around zero in the sense that
pi(ei) ¼ pi(� ei), that is, P[ei � c] ¼ P[ei � �c] for every value of c.

(ii) Two estimation methods: OLS and QML with (scaled) t(5)-disturbances

As the distribution of the disturbances is unknown, we cannot estimate
the parameters a and b by maximum likelihood. We consider two

E

XM404SMR
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estimators, least squares (OLS) and quasi-maximum likelihood (QML) based
on the (scaled) t(5)-distribution introduced in Example 4.5 (p. 244). We
compute the standard errors by GMM and compare the outcomes with
those obtained by the conventional expressions for OLS and ML standard
errors.

(iii) Correctness of moment conditions under the stated assumptions

Under the above assumptions, the OLS and QML estimators are consistent
and (asymptotic) GMM standard errors can be obtained from (4.67) and
(4.68), provided that the specified moment conditions hold true for the DGP.
For OLS this follows from Assumptions 1 and 2, as discussed in Section
4.4.5. For QML, the moment conditions are given by (4.59)— that is,
E[@li=@y]jy¼y0 ¼ 0. We use only the moments for a and b, with first order
conditions described in Example 4.5 (p. 244). That is,

g
QML
i (a0, b0) ¼

@li
@a
@li
@b

 !
¼

6ei
5s2 þ e2i
6xiei

5s2 þ e2i

0BB@
1CCA

(in QML we use the estimated value ŝs2 ¼ 4:49 obtained in Example 4.5). It
follows from Assumptions 1 and 2, together with the symmetry of the den-
sities pi(ei), that E[g

QML
i (a0, b0)] ¼ 0. Therefore, under the stated assump-

tions the moment conditions are valid for both estimation procedures.

(iv) Estimation results

The results in Exhibit 4.21 show the estimates for OLS (Panels 1 and 2)
and QML (Panels 3 and 4), with standard errors computed both in the
conventional way (see Section 4.4.3, by means of VOLS in Panel 1 and VML

in Panel 3) and by means of GMM as in (4.67) (in Panels 2 and 4). For OLS,
the matricesHn and Jn in (4.68) were derived in Section 4.4.5. For QML, the
matrices Hn and Jn can be derived from the above expression for g

QML
i .

The differences between the OLS and QML estimates are not so large, and
the same applies for the standard errors (computed in four different ways
for âa and b̂b). Therefore, the effects of possible heteroskedasticity and non-
normality of the disturbances seem to be relatively mild for these data. The
application of OLS with conventional formulas for the standard errors seems
to be reasonable for these data.

(v) Test outcomes

We finally consider tests for the hypothesis that a ¼ 0 against the alternative
that a 6¼ 0, and also for b ¼ 1 against the alternative that b 6¼ 1. Based on the
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(asymptotic) normal distribution, the P-values of the test outcomes in
Exhibit 4.21 are as follows:

for a ¼ 0 : POLS ¼ 0:22, PGMM
OLS ¼ 0:19, PML ¼ 0:32, PGMM

ML ¼ 0:30,

for b ¼ 1 : POLS ¼ 0:023, PGMM
OLS ¼ 0:012, PML ¼ 0:008, PGMM

ML ¼ 0:003:

Panel 1: Dependent Variable: RENDCYCO
Method: Least Squares
Sample: 1980:01 1999:12
Included observations: 240

Variable Coefficient Std. Error t-Statistic Prob.
C �0.447481 0.362943 �1.232924 0.2188

RENDMARK 1.171128 0.075386 15.53500 0.0000
R-squared 0.503480

Panel 2: Dependent Variable: RENDCYCO
Method: Generalized Method of Moments
Sample: 1980:01 1999:12
Included observations: 240
Moment Conditions: normal equations

Variable Coefficient Std. Error t-Statistic Prob.
C �0.447481 0.342143 �1.307876 0.1922

RENDMARK 1.171128 0.067926 17.24135 0.0000
R-squared 0.503480

Panel 3: Model: RENDCYCO ¼ C(1) þ C(2)�RENDMARK þ EPS
EPS are IID with scaled t(5) distribution, scale parameter is C(3)
Method: Maximum Likelihood (BHHH)
Sample: 1980:01 1999:12
Included observations: 240
Convergence achieved after 19 iterations
Parameter Coefficient Std. Error z-Statistic Prob.

C(1) �0.344971 0.348223 �0.990660 0.3219
C(2) 1.196406 0.073841 16.20244 0.0000
C(3) 4.494241 0.271712 16.54049 0.0000

Log likelihood �747.6813

Panel 4: GMM standard errors
aML (C(1) in Panel 3) 0.334173
bML (C(2) in Panel 3) 0.066475

Exhibit 4.21 Stock Market Returns (Section 4.4.6)

Results of different estimates of CAPM for the sector of cyclical consumer goods, estimated by
OLS (Panel 1) and by ML (Panel 3, using the scaled t(5) distribution for the disturbances). For
OLS the standard errors are computed in two ways, as usual (Panel 1, using the expression
s2(X0X)�1 of Chapter 3) and by means of GMM (Panel 2, using the normal equations of OLS
as moment conditions). For ML the standard errors are also computed in two ways, as usual
(Panel 3, using the information matrix as discussed in Section 4.3.3) and by means of GMM
(Panel 4, using the first order conditions for the maximum of the log-likelihood as moment
conditions).
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The four computed P-values for these two tests all point in the same direc-
tion. The outcomes suggest that we should reject the hypothesis that b ¼ 1
but not that a ¼ 0. The conclusions based onML are somewhat sharper than
those based on OLS.
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Summary, further reading,
and keywords

SUMMARY

In this chapter we considered methods that can be applied if some of the
assumptions of the regression model in Chapter 3 are not satisfied. If the
regressors are stochastic or the disturbances are not normally distributed,
then the results of Chapter 3 are still valid asymptotically if the regressors are
exogenous. If the model is non-linear in the parameters, then the least
squares estimator has to be computed by numerical optimization methods
and this estimator has similar asymptotic properties as the least squares
estimator in the linear model. Maximum likelihood is a widely applicable
estimation method that has (asymptotically) optimal properties— that is, it
is consistent and it has minimal variance among all consistent estimators.
This method requires that the joint probability distribution of the disturb-
ances is correctly specified. If there is much uncertainty about this distribu-
tion, then the generalized method of moments can be applied. In this case the
parameters are estimated by solving a set of moment equations, and the
standard errors are computed in a way that does not require the joint
probability distribution. This method requires that the specified moment
conditions are valid for the data generating process.

FURTHER READING

The textbooks mentioned in Chapter 3, Further Reading (p. 178–9), all contain
sections on asymptotic analysis, non-linear methods, maximum likelihood, and
the generalized method of moments. We further refer in particular to Davidson
and MacKinnon (1993), Gourieroux and Monfort (1995), and Hayashi (2000).

Davidson, R., and MacKinnon, J. G. (1993). Estimation and Inference in Econo-
metrics. New York: Oxford University Press.

Gourieroux, C., and Monfort, A. (1995). Statistics and Econometric Models.
2 vols. Cambridge: Cambridge University Press.

Hayashi, F. (2000). Econometrics. Princeton: Princeton University Press.
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Exercises

THEORY QUESTIONS

4.1 (E Section 4.1.3)
The consistency of b depends on the probability
limits of the two terms 1

nX
0X and 1

nX
0e.

a. Investigate this consistency for nine cases,
according to whether these limits are zero, finite,
or infinite.

b. Give examples of models where plim( 1nX
0X) is

zero, finite, and infinite. Give an intuitive explan-
ation why b is (in)consistent in these cases.

4.2 (E Section 4.1.5)
Consider the data generating process yi ¼ xi þ ei
where ei are independently normally distributed
N(0, 1) random variables. For simplicity we esti-
mate the parameter b ¼ 1 by regression in the
model without constant term—that is, in the
model yi ¼ bxi þ ei. By the speed of convergence of
b to b we mean the power np for which the distribu-
tion of np(b� b) does not diverge and also does not
have limit zero if n ! 1. Section 4.1 presented
results with speed of convergence

ffiffiffi
n

p
, see (4.7).

a. Let xi ¼ i. Show that this DGP does not satisfy
Assumption 1�. Show that the speed of conver-
gence is n

ffiffiffi
n

p
in this case. (It may be helpful to use

the fact that
Pn

i¼1 i
2 ¼ 1

6 n(nþ 1)(2nþ 1).)

b. Now let xi ¼ 1=i. Show that this DGP also does
not satisfy Assumption 1�. Show that plim(b)
does not exist in this case, and that the speed of
convergence is n0. (It may be helpful to use the
fact that

P1
i¼1 (1=i)

2 ¼ 1
6p

2.)

4.3 (E Section 4.1.3)
Consider the linear model y ¼ Xbþ e with stochas-
tic regressors that satisfy Assumption 1� and with
plim( 1nX

0e) ¼ (0, � � � , 0, r)0, so that only the last
regressor is asymptotically correlated with the
error term.

a. Show that, in general, b is inconsistent with re-
spect to all coefficients of the vector b.

b. Under which condition does only the estimator
of the last coefficient become inconsistent? Pro-
vide an intuitive explanation of this result.

4.4 (E Section 4.1.3)
Consider the model with measurement errors,
where two economic variables y� and x� are related
by y� ¼ aþ bx� and where the measured variables
are given by y ¼ y� þ ey and x ¼ x� þ ex. The vari-
ances of the measurement errors ey and ex are de-
noted by s2y and s2x respectively. It is assumed that ey
and ex are uncorrelated with each other and that
both are also uncorrelated with the variables y�

and x�. The variance of x� is denoted by s2�. The
observed data consist of n independent observations
(xi, yi), i ¼ 1, � � � , n. For simplicity, assume that x�,
ex and ey are all IID (identically and independently
distributed).

a. Write the model in the form y ¼ aþ bxþ e and
express e in terms of ey and ex.

b. Show that the OLS estimator b is inconsistent if
s2x 6¼ 0 and b 6¼ 0.

c. Express the magnitude of the inconsistency (that
is, plim(b)� b) in terms of the so-called signal-
to-noise ratio var(x�)=var(ex) ¼ s2�=s

2
x. Explain

this result by means of two scatter diagrams,
one with small and the other with large signal-
to-noise ratio.

4.5 (E Section 4.3.8)
In Section 4.3 it was discussed that the LM-, LR-,
and W-tests are asymptotically distributed as w2(g),
but that gF(g, n� k) can also be used.

a. Show that for n ! 1 there holds gF(g,n� k)!d
w2(g).

b. Check that the P-values (corresponding to the
right tail of the distributions) of gF(g, n� k) are
larger than those of w2(g), by using a statistical
package or by inspecting tables of critical values
of both distributions.
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c. Comment on the relevance of this result for ap-
plying the LM-, LR-, and W-tests.

4.6 (E Sections 4.2.4, 4.3.2, 4.3.8)
a. Prove the expression (4.23) for the relation

between the LM-test and the F-test in the
linear model y ¼ X1b1 þX2b2 þ e for the null
hypothesis b2 ¼ 0. It may be helpful to prove as
a first step that the numerator of R2 in (4.21)
can be written, with M ¼ I �X(X0X)�1X0, as
e0R(I �M)eR ¼ e0ReR � e0RMeR and that e0RMeR
¼ e0e.

b. Prove the inequalities in (4.56) for testing a linear
hypothesis in the linear model y ¼ Xbþ e. For
this purpose, make use of the expressions (4.23),

(4.46), and (4.49), which express the three tests
LM, LR, and W in terms of the F-test.

c. Show the statement at the end of Section 4.3.2
that ML in a non-linear regression model with
normally distributed disturbances is equivalent
to non-linear least squares.

4.7� (E Section 4.4.3)
Prove that the choice of weights W ¼ J�1

0 (with the
notation of Section 4.4) minimizes the asymptotic
covariancematrixV in (4.65) of theGMMestimator.
Also prove that this choice makes the GMM estima-
tor invariantwith respect to linear transformationsof
themodel restrictions (4.61)— that is, ifgi is replaced
by Agi, where A is anm�m non-singular matrix.

EMPIRICAL AND SIMULATION QUESTIONS

4.8 (E Section 4.1.3)
Suppose that data are generated by the process
yi ¼ b1 þ b2x2i þ b3x3i þ !i, where the !i are
IID(0, s2) disturbances that are uncorrelated with
the regressors x2 and x3. Suppose that the regressors
x2 and x3 are positively correlated. An investigator
investigates the relation between y and x2 by re-
gressing y on a constant and x2 — that is, x3 is
omitted. The estimator of b2 in this restricted
model is denoted by bR2, and the estimator of s2 in
this model is denoted by s2R.

a. Investigate whether bR2 is an unbiased and/or
consistent estimator of b2.

b. Also argue whether or not s2R will be an unbiased
and/or consistent estimator of s2.

c. Construct a data generating process that satisfies
the above specifications. Generate samples of
sizes n ¼ 10, n ¼ 100, and n ¼ 1000 of this pro-
cess.

d. Compute the estimates bR2 and s2R for the sample
sizes n ¼ 10, n ¼ 100, and n ¼ 1000. Compare
these outcomes with the results in a and b.

4.9 (E Section 4.2.3)
a. Generate a sample of size 100 from the model

yi ¼ 2þ ffiffiffiffi
xi

p þ ei, where the xi are independent
and uniformly distributed on the interval [0, 20]
and the ei are independent and distributed as
N(0, 0.01).

b. Consider the non-linear regression model
y ¼ f (x, b) þ e with f (x, b) ¼ b1 þ b2x

b3 . Deter-
mine the 3� 1 vector of gradients g ¼ @f=@b of
this model.

c. Perform twenty steps of the Gauss–Newton
method to estimate b, with starting values
b ¼ (0, 1, 1)0. Plot the three resulting series of
twenty estimates of b1, b2, and b3.

d. Now take as starting values b ¼ (0, 1, 0)0. Ex-
plain the problems that arise in this case.

e. With the final estimate in c, perform an F-test of
the hypothesis that b3 ¼ 1=2. Perform also an
LM-test of this hypothesis.

4.10 (E Sections 4.2.4, 4.3.7)
Consider the DGP yi ¼ 1þ x2i þ !i with
xi � NID(0, 1) and !i � NID(0, 1) and with
(x1, � � � , xn) independent from (!1, � � � , !n). The es-
timated model is yi ¼ b1þ b2xi þ b3x

2
i þ ei —that

is, with additional regressor xi. Let b2 denote the
least squares estimate of b2 in this model.

a. Generate two samples of this model, one of size
n ¼ 10 and another of size n ¼ 100. Determine
b2 and the standard error of b2 for these two
samples.

b. Perform an LM-test for the null hypothesis that
b2 ¼ 0 against the alternative that b2 6¼ 0 for the
two samples of a. Use a 5% significance level (the
5%critical value of the w2(1) distribution is 3.84).
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c. Repeat a and b 1000 times, drawing new values
for xi and !i in each simulation run. Make histo-
grams of the resulting 1000 values of b2 and of
the LM-test, both for n ¼ 10 and for n ¼ 100.

d. What is the standard deviation of the 1000 out-
comes of b2 for n ¼ 10? And for n ¼ 100? How
does this compare with the standard errors in a?

e. How many of the 1000 computed LM-values are
larger than 3.84 for n ¼ 10? And for n ¼ 100?
Comment on the outcomes.

f. Compute the asymptotic distribution (4.7) for the
parameter vector b ¼ (b1, b2, b3)

0 of this DGP.
What approximation does this provide for the
standard error of b2? How does this compare
with the results in d?

4.11 (E Sections 4.3.5, 4.4.3)
In this simulation exercise we generate a random
sample by means of yi ¼ mþ ei, where m ¼ 1

2 and
the disturbances ei are independently and identically
distributed with the t(3) distribution. A researcher
who does not know the DGP is interested in testing
the hypothesis that the observations come from a
population with mean zero. This hypothesis is, of
course, not correct, as the DGP has mean 1

2.

a. Simulate a set of n ¼ 50 data from this DGP.
Make a histogram of the simulated data set.

b. The researcher tests the null hypothesis of zero
mean by means of the conventional (least squares
based) t-test. Perform this test. What is the com-
puted standard error of the sample mean? What
is the true standard deviation of the sample
mean? What is your conclusion?

c. Suppose now that the researcher uses GMM,
based on the moment condition E[yi � m] ¼ 0 for
i ¼ 1, � � � , n.What is the estimatedmean?What is
the corresponding GMM standard error? Give a
formal proof, based on (4.67) and (4.68), of the
fact that in the current model the GMM standard
error is equal to the conventional OLS standard

error multiplied by the factor
ffiffiffiffiffiffiffiffiffiffiffi
1� 1

n

q
.

d. Now the researcher postulates the Cauchy distri-
bution (that is, the t(1) distribution) for the dis-
turbances. Using this distribution, compute the
corresponding ML estimate of � and perform the
Wald test on the hypothesis that m ¼ 0. What is
the computed standard error of this ML estima-
tor of m? Why is this not the true standard error
of this estimator?

e. Now suppose that the researcher is so lucky to
postulate the t(3) distribution for the disturb-
ances. Perform the corresponding Wald test of
the hypothesis that the population mean is zero.

f. Discuss which method (of the ones used in b–e)
the researcher would best use if he or she does
not know the DGP and is uncertain about the
correct disturbance distribution.

4.12 (E Sections 4.3.2, 4.4.3)
In this exercise we consider a simulated
data set of sample size n ¼ 50. The data
were generated by the model

yi ¼ 0:5þ xi þ Zi, i ¼ 1, � � � , 50,

where the regressors xi are IID with uniform distri-
bution on the interval 0 � x � 2 and the Zi are IID
with tð3Þ distribution. The estimated model is

yi ¼ aþ bxi þ ei,

so that the correct parameter values of the DGP are
a ¼ 0:5 and b ¼ 1. In answering the following
questions, give comments on all the outcomes.

a. Estimate the parameters a and b by means of
OLS.

b. Make a scatter plot of the data and make a
histogram of the OLS residuals obtained in a.

c. Determine the GMM standard errors of the OLS
estimates of a and b.

d. Estimate the parameters a and b by ML, using
the (incorrect) Cauchy distribution for the dis-
turbances ei. The density of the Cauchy distribu-
tion (that is, the t(1) distribution) is
f (ei) ¼ 1

p 1þe2
ið Þ.

e. Estimate the parameters a and b now by ML
using the (incorrect) t(5) distribution with dens-
ity f (ei) / 1

1þ1
5e

2
ið Þ3.

f. Finally estimate the parameters a and b by ML
using the correct t(3) distribution with density
f (ei) / 1

1þ1
3e

2
ið Þ2.

g. Explain why GMM provides no help here to get
a clear idea of the slope parameter b. Also explain
why the (incorrect) ML estimates in d and e
perform quite well in this case. State your overall
conclusion for estimating models for data that
are scattered in a way as depicted in b.

XR412SIM
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4.13 (E Section 4.3.8)
Consider the n ¼ 12 data for coffee sales
of brand 2 in Section 4.2.5. Let
y ¼ log (q) denote the logarithm of quan-
tity sold and x ¼ log (d) the logarithm of the deal
rate. Two econometricians (A and B) estimate dif-
ferent models for these data—namely,

A: y ¼ aþ bxþ e, B: y ¼ g(1þ dx)þ e:

The least squares estimates of a and b are denoted by
a and b, the (non-linear) least squares estimates of g
and d by c and d. In the tests below use a significance
level of 5%.

a. Give a mathematical proof of the fact that c ¼ a
and d ¼ b=a.

b. Perform the two regressions and check that the
outcomes satisfy the relations in a.

c. Test the hypothesis that d ¼ 1 by a Wald test.

d. Test this hypothesis also by a Lagrange Multi-
plier test.

e. Test this hypothesis alsoby aLikelihoodRatio test.

f. Test this hypothesis using the model of econo-
metrician A.

4.14 (E Section 4.3.8)
In this exercise we consider the bank
wage data and the model discussed before
in Section 3.4.2. Here the logarithm of
yearly wage (y) is explained in terms of education
(x2), logarithm of begin salary (x3), gender (x4), and
minority (x5), by the model

y ¼ b1 þ b2x2 þ b3x3 þ b4x4 þ b5x5 þ e:

The data set consists of observations for n ¼ 474
individuals. Apart from the unrestricted model we
consider three restricted models— that is, (i) b5 ¼ 0,
(ii) b4 ¼ b5 ¼ 0, (iii) b4 þ b5 ¼ 0. For all tests
below, compute the relevant (asymptotic) P-values.
It is assumed that the error terms e are NID(0,s2).

a. For each of the fourmodels, compute the SSR and
the ML estimate s2ML of the disturbance variance.

b. Compute the log-likelihoods (4.30) of the four
models. Perform LR-tests for the three restricted
models against the unrestricted model.

c. Perform Wald tests for the three restricted
models against the unrestricted model.

d. Perform also LM-tests for the three restricted
models against the unrestricted model, by
means of auxiliary regressions (4.55).

e. Compare the outcomes with the ones obtained in
Section 3.4.2.

4.15 (E Section 4.3.8)
Use the same bank wage data set as in
Exercise 4.14. Now assume that we
accept the hypothesis that b5 ¼ 0 and
that we wish to test the hypothesis that b4 ¼ 0,
given that b5 ¼ 0. In the notation of Exercise 4.14,
we test the restricted model (ii) against the alterna-
tive ‘unrestricted’ model (i). For the tests below,
compute the relevant (asymptotic) P-values.

a. Perform conventional t- and F-tests for this hy-
pothesis.

b. Compute also the LR-,W-, and LM-tests for this
hypothesis.

c. Use these outcomes to discuss the difference be-
tween joint testing of multiple restrictions (as in
Exercise 4.14 with the joint model restriction (ii)
tested against the full model with all five regres-
sors) and sequential testing of single hypotheses
(as in the current exercise). In particular, consider
the differences if one uses a significance level of
2.5% in all tests.

4.16 (E Section 4.3.8)
In this exercise we consider the food ex-
penditure data on food consumption (fc,
measured in $10,000 per year), total con-
sumption (tc, also measured in $10,000 per year),
and average household size (hs) that were discussed
in Example 4.3 (p. 204–5). As dependent variable
we take y ¼ fc=tc, the fraction of total consumption
spent on food, and as explanatory variables we
take (apart from a constant term) x2 ¼ tc and
x3 ¼ hs. The estimated model is of the form
yi ¼ f (x2i, x3i, b)þ ei, where f (x2i, x3i, b) ¼ b1þ
b2x

b3
2i þ b4x3i. We will consider three hypotheses for

the parameter b3 —namely, b3 ¼ 0 (so that x2 has no
effect on y), b3 ¼ 1 (so that the marginal effect of x2
on y is constant), and b3 ¼ 1

2 (so that the marginal
effect of x2 on y declines for higher values of x2).

a. Exhibit 4.6 shows a scatter diagram of y against
x2. Discuss whether you can get any intuition
from this diagram concerning the question
which of the hypotheses b3 ¼ 0, b3 ¼ 1, and
b3 ¼ 1

2 could be plausible.
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b. For b3 ¼ 0 the parameters (b1, b2, b4) of the
model are not identified. Prove this. What refor-
mulation of the restricted model (for b3 ¼ 0) is
needed to get identified parameters in this case?

c. Estimate the unrestricted model with four regres-
sion parameters. Try out different starting values
and pay attention to the convergence of the esti-
mates.

d. Test the three hypotheses (b3 ¼ 0, b3 ¼ 1, and
b3 ¼ 1

2 ) by means of t-tests.

e. Test these three hypotheses also by means of
F-tests.

f. Now test the three hypotheses by means of
LR-tests.

g. Test the three hypotheses by means of LM-tests,
using the result (4.21) with appropriate auxiliary
regressions. The regressors in step 2 of the LM-
test consist of the four partial derivatives @f

@bj
for

j ¼ 1, 2, 3, 4.

h. Test the three hypotheses by means of the Wald
test as expressed in (4.48). Formulate the param-
eter restriction respectively as r(y) ¼ b3 ¼ 0,
r(y) ¼ b3 � 1 ¼ 0, and r(y) ¼ b3 � 1

2 ¼ 0:

i. Test the three hypotheses again by means of the
Wald test as expressed in (4.48), but now with
the parameter restriction formulated as respect-
ively r(y) ¼ b23 ¼ 0, r(y) ¼ b23 � 1 ¼ 0, and r(y) ¼
b23 � 1

4 ¼ 0:

j. Compare the outcomes of the foregoing six
testing methods (in d–i) for the three hypotheses
on b3. Comment on the similarities and differ-
ences of the test outcomes.

4.17 (E Sections 4.3.3, 4.4.4, 4.4.5)
In this exercise we consider the stock
market returns data for the sector of
non-cyclical consumer goods in the UK.
The model is yi ¼ aþ bxi þ ei, where yi are the
excess returns in this sector and xi are the market
excess returns. The monthly data are given for
1980–99, giving n ¼ 240 observations. The disturb-

ances ei are assumed to be IID distributed, either
with normal distribution N(0, s2) or with the Cau-
chy distribution with density f (ei) ¼

�
p(1þ e2i )

��1
.

a. Determine the log-likelihood for the case of
Cauchy disturbances. Show that the ML esti-
mates for a and b are obtained from the
two conditions

P
ei(1þ e2i )

�1 ¼ 0 andP
eixi(1þ e2i )

�1 ¼ 0.

b. Estimate a and b by ML, based on the Cauchy
distribution. Determine also the (asymptotic)
standard errors of these estimates.

c. Estimate a and b by ML, based on the normal
distribution. Compute also the standard errors
of these estimates. Compare the results with
those obtained by OLS.

d. Test the hypothesis that a ¼ 0 using the results
in b. Test this hypothesis also using the results in
c. Use a 5% significance level.

e. Answer the questions in d also for the hypoth-
esis that b ¼ 1. Again use a 5% significance
level.

f. Determine the two histograms of the residuals
corresponding to the estimates in b and c. On
the basis of this information, which of the two
estimation methods do you prefer? Motivate
your answer.

g. Compute GMM standard errors of the esti-
mates in c—that is, the estimates based on the
two moment conditions E[ei] ¼ 0 and
E[eixi] ¼ 0. How does this compare with the
(ordinary) standard errors computed in c?
Does this alter your answers in d and e to test
respectively whether a ¼ 0 and b ¼ 1?

h�. Finally, consider the QML estimates based on
the two Cauchy moment conditions defined by
E[ ei

1þe2
i

] ¼ 0 and E[ eixi
1þe2

i

] ¼ 0. Determine the

GMM standard errors of these estimates and
perform the two tests of d and e. Compare the
outcomes (standard errors and test results) with
the outcomes in b, d, and e based on the Cauchy
ML standard errors.
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5

Diagnostic Tests and
Model Adjustments

In this chapter we describe methods to test the assumptions of the regression
model. If some of the assumptions are not satisfied then there are several
ways to proceed. One option is to use least squares and to derive the proper-
ties of this estimator under more general conditions. Another option is to
adjust the specification of the model— for instance, by changing the included
variables, the functional form, or the probability distribution of the disturb-
ance terms. We discuss alternative model specifications, including non-linear
models, disturbances that are heteroskedastic or serially correlated, and the
use of instrumental variables.
Most of the sections of this chapter can be read independently of each

other. We refer to Exhibit 0.3 (p. 8) for the sections of this chapter that are
needed for selected topics in Chapters 6 and 7.



5.1 Introduction

Modelling in practice

It is the skill of econometricians to use economic theory and statistical data in
order to construct econometric models that provide an adequate summary of
the available information. In most situations the relevant theoretical infor-
mation is of a qualitative nature, suggesting which economic variables play a
role and perhaps whether variables are positively or negatively related. Most
models from economic theory describe a part of the economy in isolation
from its environment (the ceteris paribus assumption). This means that the
empirical modeller is faced with the following two questions. How should
the relationships between the variables of interest be specified, and how
should the other influences be taken into account?

In practice it often occurs that an initially chosen econometric model does
not fit well to the data. This may happen despite genuine efforts to use
economic theory and to collect data that are relevant for the investigation
at hand. The model may turn out to be weak, for instance, because important
aspects of the data are left unexplained or because some of the basic assump-
tions underlying the econometric model are violated. Examples of the latter
are that the residuals may be far from normal or that the parameter estimates
may differ substantially in subsamples. If the model is not correctly specified,
there are various avenues to take, depending on the degree of belief one has in
the employed model structure and in the observed data. In this book we
describe econometric modelling from an applied point of viewwhere we start
from the data. We consider models as constructs that we can change in the
light of the data information. By incorporating more of the relevant data
characteristics in the model, we may improve our understanding of the
underlying economic processes. The selection and adjustment of models are
guided by our insight in the relevant economic and business phenomena. As
economic theory does not often suggest explicit models, this leaves some
freedom to choose the model specification. Several diagnostic tests have been
developed that help to get clear ideas about which features of the model need
improvement.

This view on econometric modelling differs from a more traditional one
that has more confidence in the theory and the postulated model and less in
the observed data. In this view econometrics is concerned with
the measurement of theoretical relations as suggested by economic theory.
In our approach, on the other hand, we are not primarily interested in testing
a particular theory but in using data to get a better understanding of an
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observed phenomenon of interest. The major role of tests is then to find out
whether the chosen model is able to represent the main characteristics of
interest of the data.

Diagnostic tests

In econometrics we use empirical data to improve our understanding of
economic processes. The regression model,

y ¼ Xbþ e,

discussed in Chapter 3 is one of the standard tools of analysis. This is a nice
tool as it is simple to apply and it gives reliable information if the assumptions
of Chapter 3 are satisfied. Several tests are available to test whether the
proposed model is correctly specified. Such tests of the underlying model
assumptions are called misspecification tests. Because the purpose of the
analysis is to make a diagnosis of the quality of the model, this is also called
diagnostic testing. Like a medical doctor, the econometrician tries to detect
possible weaknesses of the model, to diagnose possible causes, and to pro-
pose treatments (model adjustments) to end up with a ‘healthy’ model. Such
a model is characterized by the fact that it provides insight into the problem
at hand and that it shows acceptable reactions to relevant diagnostic tests.
The regression model y ¼ Xbþ e was analysed in Chapter 3 under the

seven assumptions stated in Section 3.1.4 (p. 125–6). All these assumptions
will be subjected to diagnostic tests in this chapter. In Section 5.2 we test the
specification of the functional form—that is, the number of included ex-
planatory variables inX and the way they enter into the model (Assumptions
2 and 6). Section 5.3 considers the possibility of non-constant parameters b
(Assumptions 5 and 2). Next we examine the assumptions on the disturbance
terms e and we discuss alternative estimation methods in the case of hetero-
skedasticity (Assumption 3, in Section 5.4), serial correlation (Assumption 4,
in Section 5.5), and non-normal distributions (Assumption 7, in Section 5.6).
Finally, in Section 5.7 we consider models with endogenous regressors in X,
in which case the orthogonality condition of Section 4.1.3 (p. 194) is
violated.

The empirical cycle in model construction

In practice, econometric models are formed in a sequence of steps. First one
selects the relevant data, specifies an initial model, and chooses an estimation
method. The resulting estimated model is subjected to diagnostic tests. The
test outcomes can help to make better choices for the model and the estima-
tion method (and sometimes for the data). The new model is again subjected
to diagnostic tests, and this process is repeated until the final model is
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satisfactory. This process of iterative model specification and testing is called
the empirical cycle (see Exhibit 5.1).
This sequential method of model construction has implications for the

interpretation of test outcomes. Tests are usually performed under the as-
sumption that the model has been correctly specified. For instance, the
computed standard errors of estimated coefficients and their P-values depend
on this assumption. In practice, in initial rounds of the empirical cycle we
may work with first-guess models that are not appropriately specified. This
may lead, for instance, to underestimation of the standard errors. Also in this
situation diagnostic tests remain helpful tools to find suitable models. How-
ever, one should not report P-values without providing the details of the
search process that has led to the finally chosen model.

At this point we mention one diagnostic tool that is of particular import-
ance—namely, the evaluation of the predictive quality of proposed models.
It is advisable to exclude a part of the observed data in the process of model
construction. The excluded data are called the hold-out sample. It is then
possible to investigate whether the final model that is obtained in the empir-
ical cycle is able to predict the outcomes in this hold-out sample. This
provides a clear test of model quality, irrespective of the way the model has
been obtained. Forecast evaluation as a diagnostic tool will be further
discussed in Sections 5.2.1 (p. 280) and 7.2.4 (p. 570).

estimation
economic model econometric model

numerical method
diagnostic tests

OK?
NO

YES

use

statistical data

adjust

Exhibit 5.1 The empirical cycle in econometric modelling
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5.2 Functional form and
explanatory variables

5.2.1 The number of explanatory variables

How many variables should be included?

Assume that a set of explanatory variables has been selected as possible
determinants of the variable y. Even if one is interested in the effect of only
one of these explanatory variables— say, x2 — it is of importance not to
exclude the other variables a priori. The reason is that variation in the
other variables may cause variations in the variable y, and, if these variables
are excluded from the model, then all the variations in y will be attributed to
the variable x2 alone. On the other hand, the list of possibly influential
variables may be very long. If all these variables are included, it may be
impossible to estimate the model (if the number of parameters becomes
larger than the number of observations) or the estimates may become very
inefficient (owing to a lack of degrees of freedom if there are insufficient
observations available). The question then is how many variables to include
in the model.
Suppose that we want to estimate the effects of a set of (k� g) variablesX1

on the dependent variable y, and that in addition another set of g variables
X2 is available that possibly also influence the dependent variable y. The
effects ofX1 on y can be estimated in the model y ¼ X1b1 þ e, with estimator
bR ¼ (X0

1X1)
�1X0

1y. An alternative is to include the variables X2 and to
perform a regression in the model y ¼ X1b1 þX2b2 þ e, with corresponding
estimators (b1, b2) of (b1, b2). Which estimator of b1 should be preferred, b1
or bR?

Trade-off between bias and efficiency

The answer to the above question is easy if b2 ¼ 0. In Section 3.2.4 (p. 144)
we showed that the inclusion of irrelevant variables leads to a loss in
efficiency. More precisely, under Assumptions 1–6 and with b2 ¼ 0 there
holds E[b1] ¼ E[bR] ¼ b1, so that both estimators are unbiased, and var(b1)
� var(bR) (in the sense that var(b1)� var(bR) is positive semidefinite). On the
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other hand, if b2 6¼ 0, then the situation is more complicated. In Section 3.2.3
(p. 142–3) we showed that by deleting variables we obtain an estimator that
is in general biased (so that E[bR] 6¼ b1), but that it has a smaller variance
than the unbiased estimator b1 (so that var(bR) � var(b1)). The question then
becomes whether the gain in efficiency is large enough to justify the bias that
results from deleting X2. The fact that restrictions improve the efficiency is
one of the main motivations for modelling, but of course the restrictions
should not introduce too much bias. If many observations are available,
then it is better to start with a model that includes all variables that
are economically meaningful, as deleting variables gives only a small gain
in efficiency.

A prediction criterion and relation with the F-test

A possible criterion to find a trade-off between bias and variance is the mean
squared error (MSE) of an estimator b̂b of b, defined by

MSE(b̂b) ¼ E[(b̂b� b)(b̂b� b)0] ¼ var(b̂b)þ (E[b̂b]� b)(E[b̂b]� b)0:

If b contains more than one component then the MSE is a matrix, and
the last equality follows by using the definition of the variance var(b̂b) ¼
E[(b̂b� E[b̂b])(b̂b� E[b̂b])0]. A scalar criterion could be obtained by taking the trace
of the MSE matrix. However, as the magnitude of the individual parameters bj
depends on the scales of measurement of the individual explanatory variables xj,
this addition of squared errors (b̂bj � bj)

2 does not make much sense in general.
Instead we consider the accuracy of the prediction ŷy ¼ Xb̂b of the vector of mean
values E[y] ¼ Xb, as the prediction error Xb̂b�Xb does not depend on the scales
of measurement. The total mean squared prediction error (TMSP) is defined as the
sum of the squared prediction errors (ŷyi � E[yi])

2 — that is,

TMSP(b̂b) ¼ E[(Xb̂b�Xb)0(Xb̂b�Xb)]:

We can apply this criterion to compare the predictions ŷy ¼ X1b1 þX2b2
of the larger model with the predictions ŷyR ¼ X1bR of the smaller model. It is
left as an exercise (see Exercise 5.2) to show that TMSP(bR) � TMSP(b1) if and
only if

b02V
�1
2 b2 � g,

where V2 is the covariance matrix of b2 and g is the number of components of b2.
So the restricted estimator bR has a smaller TMSP than the unbiased estimator b1
if b2 is sufficiently small and/or the variance V2 of the estimator b2 is sufficiently
large. In such a situation it is also intuitively evident that it is better to reduce the

T
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uncertainty by eliminating the variablesX2 from the model. In practice, b2 and V2

are of course unknown. We can replace b2 and V2 by their least squares estimates
in the model y ¼ X1b1 þX2b2 þ e. That is, b2 is replaced by b2 and V2 by
V̂V2 ¼ s2(X0

2M1X2)
�1, where s2 is the estimated error variance in the unrestricted

model andM1 ¼ I �X1(X
0
1X1)

�1X0
1 (see Section 3.4.1 (p. 161)). We can prefer to

delete the variables X2 from the model if

b02V̂V
�1
2 b2=g ¼ b02X

0
2M1X2b2=(gs

2) � 1:

According to the result (3.49) in Section 3.4.1, this is equivalent to the F-test for
the null hypothesis that b2 ¼ 0 with a critical value of 1. This F-test can also be
written as

F ¼ (e0ReR � e0e)=g
e0e=(n� k)

, (5:1)

where eR and e are the residuals of the restricted and unrestricted model, respect-
ively. The critical value of 1 corresponds to a size of more than 5 per cent— that is,
the TMSP criterion used in this way is more liberal in accepting additional
regressors.

The information criteria of Akaike and Schwarz

Another method to decide whether the variablesX2 should be included in the
model or not is to use information criteria that express the model fit and the
number of parameters in a single criterion. The Akaike information criterion
(AIC) and Schwarz information criterion (SIC) (also called the Bayes infor-
mation criterion or BIC) are defined as follows, where p is the number of
included regressors and s2p is the maximum likelihood estimator of the error
variance in the model with p regressors:

AIC( p) ¼ log
�
s2p
�þ 2p

n
,

SIC(p) ¼ log
�
s2p
�þ p log (n)

n
:

These criteria involve a penalty term for the number of parameters, to
account for the fact that the model fit always increases (that is, s2p decreases)
if more explanatory variables are included. The unrestricted model has
p ¼ k, and the restricted model obtained by deleting X2 has p ¼ (k� g).
The model with the smallest value of AIC or SIC is chosen. For n � 8, the SIC
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imposes a stronger penalty on extra variables than AIC, so that SIC is more
inclined to choose the smaller model than AIC.
For the linear regression model, the information criteria are related to the

F-test (5.1). For large enough sample size n, the comparison of AIC values
corresponds to an F-test with critical value 2 and SIC corresponds to an
F-test with critical value log (n) (see Exercise 5.2). For instance, the restricted
model is preferred above the unrestricted model by AIC, in the sense that
AIC(k� g) < AIC(k), if the F-test in (5.1) is smaller than 2.

Criteria based on out-of-sample predictions

Another useful method for model selection is to compare the predictive
performance of the models. For this purpose the data set is split in two
parts, an ‘estimation sample’ (used to construct the model) and a ‘prediction
sample’ or ‘hold-out sample’ for predictive evaluation. So the models are
estimated using only the data in the first subsample, and the estimated
models are then used to predict the y-values in the prediction sample.
Possible evaluation criteria are the root mean squared error (RMSE) and
the mean absolute error (MAE). These are defined by

RMSE ¼ 1

nf

Xnf
i¼1

(yi � ŷyi)
2

 !1=2

,

MAE ¼ 1

nf

Xnf
i¼1

jyi � ŷyij,

where nf denotes the number of observations in the prediction sample and ŷyi
denotes the predicted values.

Iterative variable selection methods

In the foregoing we assumed that the (k� g) variables in X1 should all be
included in the model and that the g variables in X2 should either all
be included or all be deleted. But how should we choose g and the decom-
position of the variables in the two groups X1 and X2? We assume that the k
regressors can be ordered in decreasing importance— that is, if the jth
regressor is included in the model then also the regressors 1, 2, � � � , j� 1 are
included. It then remains to choose the number of regressor (k� g) to be
included in the model. This can be done, for instance, by choosing the model
with the smallest value of TMSP, AIC, or SIC. Another method is to perform
a sequence of t-tests.
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In the bottom-up approach one starts with the smallest model (including
only the constant term, corresponding to g ¼ k� 1) and tests H0 : b2 ¼ 0
against H1 : b2 6¼ 0 (in the model with g ¼ k� 2). If this hypothesis is
rejected, then the second regressor is included in the model and one tests
H0 : b3 ¼ 0 against H1 : b3 6¼ 0 (in the model with g ¼ k� 3). Variables are
added in this way until the next regressor is not significant anymore. This is
also called the specific-to-general method and it is applied much in practice,
as it starts from simple models.
In the top-down approach one starts with the largest model (with g ¼ 0)

and tests H0 : bk ¼ 0 against H1 : bk 6¼ 0. If this hypothesis is not rejected,
then one tests H0 : bk ¼ bk�1 ¼ 0 and so on. Variables are deleted until the
next regressor becomes significant. This is also called the general-to-specific
method and it has the attractive statistical property that all tests are per-
formed in correctly specified models. In contrast, in the specific-to-general
approach, the initial small models are in general misspecified, as they will
exclude relevant regressors.
Variants of this approach can also be applied if the regressors cannot be

ordered in decreasing importance. The method of backward elimination
starts with the full model (with g ¼ 0) and deletes the variable that is least
significant. In the second step, the model with the remaining k� 1 regressors
is estimated and again the least significant variable is deleted. This is repeated
until all remaining regressors are significant. The method of forward selec-
tion starts with the smallest model (that includes only the constant term, with
g ¼ k� 1). Then the variable is added that has the (in absolute sense) largest
t-value (this involves k� 1 regressions in models that contain a constant and
one other regressor). This is repeated until none of the additional regressors is
significant anymore.

Example 5.1: Bank Wages (continued)

As an illustration we consider again the data on wages and education of 474
employees of a US bank that were analysed in foregoing chapters. The
relation between education and wage may be non-linear because the mar-
ginal returns of schooling may depend on the attained level of education. We
will discuss (i) the data and possible nonlinearities in the wage equation, (ii) a
class of polynomial models, (iii) selection of the degree of the polynomial by
means of different selection criteria, and (iv) a forecast evaluation of the
models.

(i) The data and possible non-linearities in the wage equation

The dependent variable (y) is the logarithm of yearly wage, and as regressors
we take the variables education (x, the number of years of education), gender

E
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(Dg ¼ 0 for females, Dg ¼ 1 for males), and minority (Dm ¼ 0 for non-
minorities, Dm ¼ 1 for minorities). Exhibit 5.2 (a) shows the partial regres-
sion scatter plot of wage against education (after regressions on a constant
and the variables Dg and Dm). This plot indicates the possibility of a non-
linear relation between education and wage.

(ii) Polynomial models for the wage equation

One method to incorporate non-linearities is to consider polynomial models
of the form

y ¼ aþ gDg þ mDm þ b1xþ b2x
2 þ � � � þ bpx

p þ e:

The constant term and the variables Dg and Dm are included in all models,
and the question is how many powers of x to include in the model. These
variables are ordered in a natural way— that is, if xp is included in the model,
then xj is also included for all j < p. For evaluation purposes we leave out the
fifty observations corresponding to employees with the highest education
(x � 17). The remaining 424 observations (with x � 16) are used to estimate
models with different values of p.

(iii) Selection of the degree of the polynomial model

Exhibit 5.2 (b) and (c) show plots for p ¼ 1 of the residuals against x and of
the value of y against the fitted value ŷy. Both plots indicate some non-
linearities. Exhibit 5.2 (d) and (e) show the same two plots for the model
with p ¼ 2. There are less indications for remaining non-linearities in this
case. Exhibit 5.3 summarizes the outcomes of the models with degrees
p ¼ 1, 2, 3, 4. If we use the adjusted R2 as criterion, then p ¼ 4 is optimal.
If we use the t-test on the highest included power of x (‘bottom up’), then this
would suggest taking p ¼ 3 (for a significance level of 5 per cent). If we
perform F-tests on the significance of the highest powers in the model with
p ¼ 4 (‘top down’), then p ¼ 3 is again preferred. The AIC and SIC criteria
also prefer the model with p ¼ 3.

(iv) Forecast evaluation of the models

Although the foregoing results could suggest selecting the degree of the
polynomial model as p ¼ 3 or p ¼ 4, the models with p ¼ 1 and p ¼ 2
provide much better forecasts. The model with degree p ¼ 2 is optimal
from this perspective.

This is also illustrated by the graphs in Exhibit 5.2 (f – i), which show
that for p ¼ 3 and p ¼ 4 the forecasted wages of the fifty employees with
the highest education are larger than the actual wages. This means that the
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Exhibit 5.2 Bank Wages (Example 5.1)

(a): partial regression scatter plot of wage (in logarithms) against education (after regressions
on a constant and the variables ‘gender’ and ‘minority’, 474 employees). (b) and (c): scatter
diagrams of residuals against education (b) and of wage against fitted values for the (linear)
model with p ¼ 1 (c) using data of 424 employees with EDUC � 16. (d) and (e): two similar
scatter diagrams for the (quadratic) model with p ¼ 2.
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Exhibit 5.2 (Contd.)

Scatter diagrams of actual wages against forecasted wages (both in logarithms) for fifty
employees with highest education (� 17 years), based on polynomial models with different
values of p (p ¼ 1, 2, 3, 4).

Criterion p ¼ 1 p ¼ 2 p ¼ 3 p ¼ 4

Adjusted R2 0.4221 0.4804 0.5620 0.5628�
P-values ‘bottom up’ t-test 0.0000 0.0000 0.0000� 0.1808
P-values ‘top down’ F-test 0.0000 0.0000 0.0000� 0.1808
AIC �0.0400 �0.1440 �0.3125� �0.3121
SIC �0.0019 �0.0963 �0.2552� �0.2452
RMSE of forecasts 0.4598 0.2965� 2.7060 7.3530
MAE of forecasts 0.4066 0.2380� 2.3269 5.9842

Exhibit 5.3 Bank Wages (Example 5.1)

Model selection criteria applied to wage data; an � indicates the optimal degree of the
polynomial model for each criterion.
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models with larger values of p do not reflect systematic properties of the
wage–education relation for higher levels of education.

E Exercises: T: 5.1, 5.2a–d

5.2.2 Non-linear functional forms

A general misspecification test: RESET

In the foregoing chapters the functional relation between the dependent
variable and the explanatory variables was assumed to be known up to a
set of parameters to be estimated. The linear model is given by

yi ¼ x0ibþ ei ¼ b1 þ
Xk
j¼2

bjxji þ ei: (5:2)

Instead of this linear relation, it may be that the dependent variable depends in
a non-linear way on the explanatory variables. To test this, we can, for
example, add quadratic and cross product terms to obtain the model

yi ¼ b1 þ
Xk
j¼2

bjxji þ
Xk
j¼2

gjjx
2
ji þ

Xk
j¼2

Xk
h¼jþ1

gjhxjixhi þ ei:

A test for non-linearity is given by the F-test for the 1
2 k(k� 1) restrictions that

all parameters gij are zero. This may be impractical if k is not small. A simpler
test is to add a single squared term to the linearmodel (5.2)— for example, ŷy2i ,
where ŷyi ¼ x0ibwith b the OLS estimator in (5.2). This gives the test equation

yi ¼ x0ibþ gŷy2i þ ei: (5:3)

Under the null hypothesis of a correct linear specification in (5.2) there holds
g ¼ 0, which can be tested by the t-test in (5.3). This is called the regression
specification error test (RESET) of Ramsey. As b depends on y, this means
that the added regressor ŷy2i in (5.3) is stochastic. Therefore the t-test is valid
only asymptotically under the assumptions stated in Section 4.1.4 (p. 197).
To allow for higher order non-linearities we can include higher order terms in
the RESET—that is,

yi ¼ x0ibþ
Xp
j¼1

gj(ŷyi)
jþ1 þ ei: (5:4)
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The hypothesis that the linear model is correctly specified then corresponds
to the F(p, n� k� p) test on the joint significance of the parameters
g1, � � � , gp.

Some meaningful non-linear specifications

The RESET is a misspecification test. That is, it tests the null hypothesis of
correct specification, but if the null hypothesis is rejected it does not tell us
how to adjust the functional form. If possible, the choice of an alternative
model should be inspired by economic insight.

In the linear model (5.2), the marginal effects of the explanatory variables
on the dependent variable are constant— that is, @y

@xj
¼ bj for j ¼ 2, � � � , k.

Alternative models can be obtained by assuming different forms for these
marginal effects. We discuss some possible models, and for simplicity we
assume that k ¼ 3.

It may be that the marginal effect @y
@x2

depends on the level of x2 — say,
@y
@x2

¼ b2 þ g2x2. This can be modelled by including the squared term x22 in the
model so that

yi ¼ b1 þ b2x2i þ 1
2g2x

2
2i þ b3x3i þ ei:

It may also be that the marginal effect @y
@x2

depends on the level of another
variable— say, @y

@x2
¼ b2 þ g3x3. This can be modelled by including the prod-

uct term x2x3 in the model, so that

yi ¼ b1 þ b2x2i þ b3x3i þ g3x2ix3i þ ei:

The term x2ix3i is called an interaction term. The above two specifications
provide non-linear functional forms with a clear interpretation. As these
models remain linear in the unknown parameters, they can be estimated by
(linear) least squares. Other methods to deal with non-linearities are to use
non-parametric techniques, to transform the data, or to use varying param-
eters. This is discussed in Sections 5.2.3, 5.2.4, and 5.3.2 respectively.

Example 5.2: Bank Wages (continued)

We consider again the wage data discussed in Example 5.1, with education
(x), gender (Dg), and minority (Dm) as explanatory variables. The linear
model is given by

y ¼ aþ gDg þ mDm þ bxþ e:

As was discussed in Example 5.1, the wage equation may be non-linear. We
will now discuss (i) tests on non-linearities, (ii) a non-linear model with non-
constant marginal returns to schooling, and (iii) the results of this model.

E

XM501BWA
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(i) Tests on non-linearities

Recall that y is the logarithm of yearly wage S, so that b ¼ @y=@x ¼
@ log (S)=@x ¼ (@S=@x)=S measures the relative wage increase due to
an additional year of education. The above linear model assumes that this
effect of education is constant for all employees. The results of two RESETs
(with p ¼ 1 and with p ¼ 2 in (5.4)) are in Panels 2 and 3 of Exhibit 5.4. Both
tests indicate that the linear model is misspecified. Note that in the model
with p ¼ 2, the two terms ŷy2i and ŷy3i are individually not significant but

Panel 1: Dependent Variable: LOGSALARY
Method: Least Squares
Sample: 1 474
Included observations: 474

Variable Coefficient Std. Error t-Statistic Prob.
C 9.199980 0.058687 156.7634 0.0000

EDUC 0.077366 0.004436 17.44229 0.0000
GENDER 0.261131 0.025511 10.23594 0.0000

MINORITY �0.132673 0.028946 �4.583411 0.0000

Panel 2: Ramsey RESET Test:
F-statistic 77.60463 Probability 0.000000
Log likelihood ratio 72.58029 Probability 0.000000
Test Equation: Dependent Variable: LOGSALARY
Method: Least Squares
Sample: 1 474
Included observations: 474

Variable Coefficient Std. Error t-Statistic Prob.
C �69.82447 8.970686 �7.783627 0.0000

EDUC �1.443306 0.172669 �8.358791 0.0000
GENDER �4.877462 0.583791 �8.354812 0.0000

MINORITY 2.488307 0.298731 8.329595 0.0000
FITTED^2 0.947902 0.107602 8.809349 0.0000

Panel 3: Ramsey RESET Test:
F-statistic 40.23766 Probability 0.000000
Log likelihood ratio 75.21147 Probability 0.000000
Test Equation: Dependent Variable: LOGSALARY
Method: Least Squares
Sample: 1 474
Included observations: 474

Variable Coefficient Std. Error t-Statistic Prob.
C 827.2571 555.8566 1.488256 0.1374

EDUC 10.63188 7.483135 1.420779 0.1560
GENDER 35.89400 25.26657 1.420612 0.1561

MINORITY �18.22389 12.83565 �1.419787 0.1563
FITTED^2 �14.11083 9.330216 �1.512380 0.1311
FITTED^3 0.483936 0.299821 1.614082 0.1072

Exhibit 5.4 Bank Wages (Example 5.2)

Panel 1: regression of wage (in logarithms) on education, gender, and minority. Panels 2 and 3:
RESET, respectively with p ¼ 1 and with p ¼ 2.

5.2 Functional form and explanatory variables 287



jointly they are highly significant. This is because of multicollinearity, as the
terms ŷy2i and ŷy3i have a correlation coefficient of 0.999871. The reason for
this high correlation is that the logarithmic salaries yi vary only between 9.66
and 10.81 in the sample (corresponding to salaries ranging from $15,750 to
$135,000).

(ii) A non-linear model

As a possible alternative model we investigate whether the marginal returns
of schooling depend on the level of (previous) education and on the variables
gender and minority— that is,

@y

@x
¼ b1 þ 2b2xþ b3Dg þ b4Dm:

This motivates a model with quadratic term and interaction effects

y ¼ aþ gDg þ mDm þ b1xþ b2x
2 þ b3Dgxþ b4Dmxþ e:

Panel 4: Dependent Variable: LOGSALARY
Method: Least Squares
Sample: 1 474
Included observations: 474

Variable Coefficient Std. Error t-Statistic Prob.
C 10.72379 0.182800 58.66402 0.0000

GENDER 0.234323 0.123432 1.898401 0.0583
MINORITY 0.315020 0.136128 2.314151 0.0211

EDUC �0.171086 0.028163 �6.074851 0.0000
EDUC^2 0.009736 0.001117 8.717483 0.0000

GENDER�EDUC �0.002213 0.009350 �0.236632 0.8130
MINORITY�EDUC �0.032525 0.010277 �3.164785 0.0017

Panel 5: Dependent Variable: LOGSALARY
Method: Least Squares
Sample: 1 474
Included observations: 474

Variable Coefficient Std. Error t-Statistic Prob.
C 10.72135 0.182324 58.80378 0.0000

GENDER 0.205648 0.023451 8.769373 0.0000
MINORITY 0.322841 0.131921 2.447231 0.0148

EDUC �0.169464 0.027289 �6.209968 0.0000
EDUC^2 0.009624 0.001010 9.529420 0.0000

MINORITY�EDUC �0.033074 0.010002 �3.306733 0.0010

Exhibit 5.4 (Contd.)

Non-linear models with quadratic term for education and with interaction terms for
education with gender and minority (Panel 4) and with the insignificant interaction term
GENDER�EDUC omitted (Panel 5).
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(iii) Results of the non-linear model

The estimated model is in Panel 4 of Exhibit 5.4. The regression coefficient b3
is not significant. The estimated model obtained after deleting the regressor
Dgx is given in Panel 5 of Exhibit 5.4. The marginal returns of schooling are
estimated as

@y

@x
¼ b1 þ 2b2xþ b4Dm ¼ �0:169þ 0:019x� 0:033Dm:

For instance, for an education level of x ¼ 16 years an additional year
of education gives an estimated wage increase of 13.8 per cent for non-
minorities and of 10.5 per cent for minorities.

5.2.3 Non-parametric estimation

Non-parametric model formulation

The methods discussed in the foregoing section to deal with non-linear
functional forms require that the non-linearity is explicitly modelled in
terms of a limited number of variables (such as squared terms and interaction
terms) and their associated parameters. Such methods are called parametric,
as the non-linearity is modelled in terms of a limited number of parameters.
Non-linearity can also be modelled in a more flexible way, by means of so-
called non-parametric models. In this section we will discuss the main ideas
by considering the situation of a scatter of points (xi, yi), i¼ 1, � � � ,n. Instead
of the simple linear regression model that requires a linear dependence in the
sense that y¼ aþbxþ e, it is assumed that

y ¼ f (x)þ e,

where the function f is unknown. In particular, it may be non-linear in the
explanatory variable x. It is assumed that E[e] ¼ 0, or, in the case where the
regressor x is stochastic, that E[ejx] ¼ 0. This means that the (parametric)
assumption of the linear regression model that E[yjx] ¼ aþ bx is replaced by
the (non-parametric) assumption that E[yjx] ¼ f (x). That is, f (x) can be
interpreted as the expectation of y for a given value of x.

Local regression with nearest neighbour fit

We now describe a procedure called local regression to estimate the function
f (x). This estimation method is called local because the function values f (x)
are estimated locally, for (a large number of) fixed values of x. We describe
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the estimation of f (x0) at a given point x0. The function f (x) can then be
estimated by repeating the procedure for a grid of values of x. It is assumed
that the function f is smooth, in particular, differentiable at x0. This implies
that, locally around x0, the function f can be approximated by a linear
function— that is,

f (x) � a0 þ b0(x� x0),

where a0 ¼ f (x0) and b0 is the derivative of the function f at x0. The basic
idea of local regression is to use the observations (xi, yi) with xi-values that
are close enough to x0 to estimate the parameters a0 and b0 in the model

yi ¼ a0 þ b0(xi � x0)þ !i:

As the linear function is only an approximation, we denote the error by a new
disturbance term !. If we consider a point x0 that is present in the observed
data set— say, for observation i0 so that xi0 ¼ x0 — then

E[yi0 jxi0] ¼ f (xi0 ) ¼ a0:

That is, in this case the estimate of the constant term a0 can be interpreted as
an estimate of the function value f (xi0).

The linear approximation is more accurate for values of xi that are closer
to x0, and this motivates the use of larger weights for such observations.
Therefore, instead of estimating a0 and b0 by ordinary least squares, the
parameters are estimated by minimizing the weighted sum of squares

X
i

wi

�
yi � a0 � b0(xi � x0)

�2
:

This is called weighted least squares. In particular, we can exclude observa-
tions with values of xi that are too far away from x0 (and that include no
reliable information on f (x0) anymore) by choosing weights with wi ¼ 0 if
xi � x0j j is larger than a certain threshold value. In this case only the obser-
vations for which xi lies in some sufficiently close neighbourhood of x0 are
included in the regression. This is, therefore, called a regression with nearest
neighbour fit.

Choice of neighbourhood

To apply the above local regression method, we have to choose which
observations are included in the regression (that is, the considered
neighbourhood of x0) and the weights of the included observations. We will
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discuss a method for choosing neighbourhoods and weights that is much
applied in practice.
The neighbourhood can be chosen by selecting the bandwidth span, also

called the span. This is a number 0 � s � 1 representing the fraction of the n
observations (xi, yi) that are included in the regression to estimate a0 and b0.
The selected observations are the ones that are closest to x0 — that is, the sn
nearest neighbours of x0, and the other (1� s)n observations with largest
values of jxi � x0j are excluded in the regression. One usually chooses the
bandwidth span around s ¼ 0:6 or s ¼ 0:7. Smaller values may lead to
estimated curves that are overly erratic, whereas larger values may lead to
very smooth curves that miss relevant aspects of the function f . It is often
instructive to try out some values for the bandwidth span— for instance,
s ¼ 0:3, s ¼ 0:6, and s ¼ 0:9—and then to decide which estimated curve has
the best interpretation.

Choice of weights

After the selection of the relevant neighbourhood of x0, the next step is to
select the weights of the included observations. These weights decrease for
observations with a larger distance between xi and x0. LetD be the maximal
distance jxi � x0j that occurs for the sn included observations, and let
di ¼ jxi � x0j=D be the scaled distance of the ith observation from x0 (so
that 0 � di � 1 for all included observations). A popular weighting function
is the so-called tricube weighting function, defined by

wi ¼ 1� d3
i

� �3
for 0 � di � 1:

The largest weight is given when di ¼ 0 (that is, when xi ¼ x0) and the
weights gradually decrease to zero as di tends to 1 (the upper bound).
The graph of the tricube function is shown in Exhibit 5.5.
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Exhibit 5.5 Tricube weights

The tricube weighting function w ¼ (1� d3)3 for 0 � d � 1.
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Some extensions

The tricube function is only one out of a number of possible weighting functions
that are used in practice. In most cases the choice of the bandwidth span is crucial,
whereas the estimates for a given bandwidth span do not depend much on the
chosen weights. Note that the weights of the tricube function will in general not
add up to unity, and the same holds true for other weighting functions. This is not
important, as the choice of scaled weights (with weights wi=

P
wj, where the sum

runs over the sn included observations) gives the same estimates of a0 and b0.
Since the weights need not add up to unity, the weighting functions are often called
kernel functions.

The local linear specification yi ¼ a0 þ b0(xi � x0)þ !i is recommended in most
cases, but sometimes one uses regressions with only a constant term

yi ¼ a0 þ !i,

or regressions with a second degree polynomial

yi ¼ a0 þ b0(xi � x0)þ g0(xi � x0)
2 þ !i:

The version with only the constant term was the first one that was developed and
is usually called the kernel method. It has the disadvantage that it leads to biased
estimates near the left and right end of the curve, whereas the local linear regres-
sion method is unbiased.

Local regression is most often used to draw a smooth curve through a two-
dimensional scatter plot. It is, however, also possible to use it with k regressors,
but it is less easy to get a good graphical feeling for the obtained estimates.

Summary of local linear regression

To estimate a non-linear curve y ¼ f (x) from a scatter of points (xi, yi),
i ¼ 1, � � � , n, by means of local linear regression, one takes the following
steps.

Local regression


 Step 1: Choice of grid of points. Choose a grid of points for the variable x
where the function f (x) will be estimated. If the number of observations is
not too large, one can take all the n observed values xi; otherwise one can
estimate f (x) only for a selected subsample of these values.


 Step 2: Choice of bandwidth span. Choose the fraction s (with 0 � s � 1) of
the observations to be included in each local regression. A usual choice is
s ¼ 0:6, but it is advisable to try out some other values as well.


 Step 3: Choice of weighting function. Choose the weights wi to be used in
weighted least squares. A possible choice is the tricube weighting function.

(continues)

T
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Local regression (continued )


 Step 4: Perform weighted linear regressions. For each point x0 in the grid of
points chosen in step 1, perform a weighted linear regression by minimizing
the weighted sum of squares

P
i wi(yi � a0 � b0(xi � x0) )

2. Here the sum-
mation runs over the sn included points of step 3.


 Step 5: Estimated non-linear function y ¼ f (x). For given value of x0,
estimate the function value f (x0) by f̂f (x0) ¼ âa0 with âa0 the estimated
constant term in step 4. The estimated function can be visualized by
means of a scatter plot of f̂f (xi) against xi for the grid of points of step 1,
and a continuous curve is obtained by interpolating between the points
(xi, f̂f (xi)) in this scatter.

Example 5.3: Simulated Data from a Non-linear Model

To illustrate the idea of local regression we first apply the method to a set of
simulated data. We simulate a set of n ¼ 200 data from the data generating
process yi ¼ sin (xi)þ ei, where the xi consist of a random sample from the
uniform distribution on the interval 0 � xi � 2:5 and the ei are a random
sample from the normal distribution with mean zero and standard deviation
s ¼ 0:2, with xi and ej independent for all i, j ¼ 1, � � � , 200.

Exhibit 5.6 shows the scatter of the generated data (in (a)) as well as four
curves—namely, of the data generating process in (b) and of three curves
that are estimated by local linear regression with three choices for the
bandwidth span, s ¼ 0:3 in (c), s ¼ 0:6 in (d), and s ¼ 0:9 in (e). For
s ¼ 0:9 the fitted curve is very smooth, but it underestimates the decline of
the curve at the right end. For s ¼ 0:3 this decline is picked up well, but the
curve shows some erratic movements that do not correspond to properties of
the data generating process. The curve obtained for s ¼ 0:6 provides a
reasonable compromise between smoothness and sensitivity to fluctuations
that are present in the functional relationship.

Example 5.4: Bank Wages (continued)

As a second illustration we consider the relation between education and
wages in the banking sector. In Example 5.1 we found evidence for possible
non-linearities in this relation. We can also investigate this by a local linear
regression of wage on education (for simplicity we exclude other explanatory
variables gender and minority).
Exhibit 5.7 (a) shows the scatter of the n ¼ 474 data, together with four

fitted curves in (b–e). The relation does not seem to be linear, and the returns
to education seem to become larger for higher levels of education. For this
data set the local linear regression with bandwidth span s ¼ 0:9 seems to be
preferable, as it gives nearly the same results as s ¼ 0:6 but without the small
irregularities that do not seem to have a clear interpretation.

E

E

XM501BWA
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Exhibit 5.6 Simulated Data from a Non-linear Model (Example 5.3)

Simulated data with local linear regression based on nearest neighbour fit with span 0.6 (a),
DGP curve (b), and three local linear regression curves with spans 0.3 (c), 0.6 (d), and 0.9 (e).

294 5 Diagnostic Tests and Model Adjustments



EDUC

10.0

10.2

10.4

10.6

10.8

11.0

11.2

11.4

6 8 10 12 14 16 18 20 226 8 10 12 14 16 18 20 22

10.0

10.2

10.4

10.6

10.8

11.0

11.2

11.4

6 8 10 12 14 16 18 20 226 8 10 12 14 16 18 20 22

EDUC

Y
L

O
C

L
IN

03

10.0

10.2

10.4

10.6

10.8

11.0

11.2

11.4

Y
L

IN

10.0

10.2

10.4

10.6

10.8

11.0

11.2

11.4

EDUC EDUC

Y
L

O
C

L
IN

06

Y
L

O
C

L
IN

09

9.6

10.0

10.4

10.8

11.2

11.6

12.0

6 8 10 12 14 16 18 20 22

EDUC

LOGSALARY
YLIN
YLOCLIN09

(a)

(b) (c)

(d) (e)

Exhibit 5.7 Bank Wages (Example 5.4)

Scatter diagram of salary (in logarithms) against education with linear fit and with local
linear fit with span 0.9 (a) and four fitted curves, linear (b) and local linear with spans 0.3
(c), 0.6 (d), and 0.9 (e).
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5.2.4 Data transformations

Data should be measured on compatible scales

If diagnostic tests indicate misspecification of the model, one can consider
transformations of the data to obtain a better specification. In every empir-
ical investigation, one of the first questions to be answered concerns the most
appropriate form of the data to be used in the econometric model.
For linear models (5.2) the scaling of the variables is not of intrinsic

importance, as was discussed at the end of Section 3.1.3 (p. 124–5), although
for the computation of the inverse of X0X in b ¼ (X0X)�1X0y, it is preferable
that all explanatory variables are roughly of the same order of magnitude.
What is more important is that the additive structure of the model implies
that the variables should be incorporated in a compatible manner. For
example, it makes sense to relate the price of one stock to the price of another
stock, and also to relate the respective returns, but it makes less sense to
relate the price of one stock to the returns of another stock. It also makes
sense to relate the output of a firm to labour and capital, or to relate the
logarithms of these variables, but it makes less sense to relate the logarithm
of output to the levels of labour and capital. Of all the possible data trans-
formations we discuss two important ones, taking logarithms and taking
differences.

Use and interpretation of taking logarithms of observed data

The logarithmic transformation is useful for several reasons. Of course, it can
only be applied if all variables take on only positive values, but this is the case
for many economic variables. For instance, if the dependence of the depend-
ent variable on the explanatory variable is multiplicative of the form
yi ¼ a1x

a2
i eei , then

log (yi) ¼ b1 þ b2 log (xi)þ ei, (5:5)

with b1 ¼ log (a1) and b2 ¼ a2. This so-called log-linear specification is
of interest because the coefficient b2 is the elasticity of y with respect to
x—that is,

b2 ¼
d log (yi)

d log (xi)
¼ dyi

dxi

xi
yi
:

It is often more plausible that economic agents show constant reactions to
relative changes in variables like prices and income than to absolute changes.
Further, the logarithmic transformation may reduce skewness and hetero-
skedasticity. To illustrate this idea, consider the model (5.5), where ei is
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normally distributed. Then log (yi) is normally distributed with mean
mi ¼ b1 þ b2 log (xi) and variance s2, and the original variable yi is log-
normally distributed with median emi , mean E[yi] ¼ emiþ

1
2s

2
, and variance

var(yi) ¼ (E[yi])
2(es

2 � 1) (see Exercise 5.2). This means that the distribution

of yi is (positively) skewed and that the standard deviation is proportional to
the level. These are very common properties of economic data and then the
logarithmic transformation of the data may reduce the skewness and hetero-
skedasticity.

Taking differences of observed data

Many economic time series show a trending pattern. In such cases, the
statistical assumptions of Chapters 3 and 4 may fail to hold. For instance,
Assumption 1� of Section 4.1.2 (p. 193) requires the regressors to be stable in

the sense that plim
�
1
n

Pn
i¼1 x

2
ji

�
exists and is finite for all explanatory variables

xj. In the case of a linear deterministic trend, say x2i ¼ i for i ¼ 1, � � � , n, the
sequence 1

n

Pn
i¼1 i

2 diverges. To apply conventional tests, the variables should
be transformed to get stable regressors. The trend in a variable y can often be
removed by taking first differences. This operation is denoted by D, which is
defined by

Dyi ¼ yi � yi�1:

For instance, if x2i ¼ i, then Dx2i ¼ 1, which is a stable regressor.
A combination of the two foregoing transformations is also of interest.
Because

D log (yi) ¼ log
yi
yi�1

� �
¼ log 1þ Dyi

yi�1

� �
� Dyi

yi�1

for Dyi=yi�1 sufficiently small, this transforms the original level variables yi
into growth rates. Themodelling of trends and the questionwhether variables
should be differenced or not is further discussed in Chapter 7.

The Box–Cox transformation

If one doubts whether the variables should be included in levels or in logarithms,
one can consider the more general Box–Cox transformation given by

yi(l) ¼ b1 þ
Xk
j¼2

bjxji(l)þ ei, (5:6)

T
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where yi(l) ¼ (yli � 1)=l and xji(l) is defined in a similar way. If l ¼ 1, this
corresponds to a linear model, and, as yi(l) ! log (yi) for l ! 0, the log-linear
model is obtained for l ¼ 0. The elasticity of ywith respect to xj in (5.6) is given by
bjx

l
ji=y

l
i . To estimate the parameters of the model (5.6) we assume that the

disturbance terms ei satisfy Assumptions 2–4 and 7. Then the logarithm of the
joint density function is given by

log (p(e1, � � � , en)) ¼
Xn
i¼1

log (p(ei) ) ¼ � n

2
log (2p)� n

2
log (s2)� 1

2s2
Xn
i¼1

e2i :

To obtain the likelihood function, we use that ei ¼ yi(l)� b1 �
Pk

j¼2 bjxji(l)
so that dei=dyi ¼ yl�1

i . The Jacobian corresponding to the transformation of
(e1, � � � , en) to (y1, � � � , yn) is therefore equal to Pn

i¼1y
l�1
i (see also (1.19)

in Section 1.2.2 (p. 27)). The log-likelihood is equal to l(b1, � � � , bk, l, s
2) ¼

log (p(y1, � � � , yn)) ¼ (l� 1)
Pn

i¼1 log (yi)þ log (p(e1, � � � , en)), so that

l ¼� n

2
log (2p)� n

2
log (s2)þ (l� 1)

Xn
i¼1

log (yi)

� 1

2s2
Xn
i¼1

yi(l)� b1 �
Xk
j¼2

bjxji(l)

 !2

:

(5:7)

The ML estimates of the parameters are obtained by maximizing this function.
Note that this differs from non-linear least squares in (5.6), as in the minimization
of
P

e2i the term (l� 1)
P

log (yi) in (5.7) would be neglected. Actually, NLS in
(5.6) to estimate the parameters makes no sense. For instance, if the values of the
variables satisfy yi � 1 and xji � 1 for all i ¼ 1, � � � , n and all j ¼ 1, � � � , k, thenP

e2i ! 0 by taking l ! �1.
Tests for a linear model (l ¼ 1) or a log-linear model (l ¼ 0) can be based on

(5.7)— for instance, by using the LR test.

Example 5.5: Bank Wages (continued)

We consider once again the bank wage data and investigate the best way to
include the dependent variable, the salary of US bank employees, in the
model. Until now we have chosen to take the logarithm of salary as the
dependent variable, but there are alternatives. We will discuss (i) the choice
between salaries in levels or logarithms, (ii) a test of linearity and log-
linearity, and (iii) the results and interpretation of an alternative relation.

(i) Choice between levels and logarithms

Exhibit 5.8 (a) and (b) show histograms of the salary (S) (in dollars per year)
and of the natural logarithm of salary (y ¼ log (S) ) of the 474 employees of

E
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the considered bank. The distribution of S is more skewed than that of y.
Exhibits 5.8 (c) and (d) show scatter diagrams of S and y against education.
As could be expected, the variation of salaries is considerably larger for higher
levels of education than for lower levels of education. This effect is much less
pronounced for the variable y. This provides statistical reasons to formulate
models in terms of the variable y instead of the variable S. Regression models
for y also have an attractive economic interpretation, as @y=@xj ¼ (@S=@xj)=S
measures the relative increase in salary due to an increase in the explanatory
variable xj. We are often more interested in such relative effects than in
absolute effects.

(ii) Tests of linearity and log-linearity

Nowwe consider the followingmodel for the relation between (scaled) salary
(the dependent variable is expressed in terms of S ¼ Salary=$10, 000) and
education (x). Here we scale the salary to make the two variables x and S of
similar order of magnitude.

S(l) ¼ Sl � 1

l
¼ aþ gDg þ mDm þ bxþ e:
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Series: SALARY
Sample 1 474
Observations 474

Mean
Median
Maximum
Minimum
Std. Dev.
Skewness
Kurtosis

34419.57
28875.00
135000.0
15750.00
17075.66
2.117877
8.308630

Series: LOGSALARY
Sample 1 474
Observations 474

Mean
Median
Maximum
Minimum
Std. Dev.
Skewness
Kurtosis  
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Exhibit 5.8 Bank Wages (Example 5.5)

Histograms of salary (a) and log salary (b), and scatter diagrams of salary against education (c)
and of log salary against education (d).
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(b) Panel 2: Method: Maximum Likelihood
Dependent variable: (S^lambda� 1)/lambda with S ¼ Salary=10000
Included observations: 474
Convergence achieved after 58 iterations
Parameter Coefficient Std. Error z-Statistic Prob.
LAMBDA �0.835898 0.111701 �7.483362 0.0000

C 0.320157 0.022535 14.20703 0.0000
GENDER 0.102712 0.014278 7.193465 0.0000

MINORITY �0.046302 0.011135 �4.158373 0.0000
EDUCATION 0.025821 0.003656 7.062606 0.0000
VARIANCE 0.007800 0.001986 3.926990 0.0001

Log likelihood �519.9367

(c) Panel 3: Method: Maximum Likelihood for lambda ¼ 1
Dependent variable: S� 1 with S ¼ Salary=10000
Included observations: 474

Variable Coefficient Std. Error z-Statistic Prob.
C �13314.27 2763.358 �4.818149 0.0000

GENDER 9022.212 1201.227 7.510828 0.0000
MINORITY �5116.840 1362.978 �3.754163 0.0002
EDUCATION 3257.199 208.8534 15.59562 0.0000
Log likelihood �759.5043

(d) Panel 4: Method: Maximum Likelihood for lambda ¼ 0
Dependent variable: log(S) with S ¼ Salary=10000
Included observations: 474

Variable Coefficient Std. Error z-Statistic Prob.
C 9.199980 0.058687 156.7634 0.0000

GENDER 0.261131 0.025511 10.23594 0.0000
MINORITY �0.132673 0.028946 �4.583411 0.0000
EDUCATION 0.077366 0.004436 17.44229 0.0000
Log likelihood �568.5082

Exhibit 5.9 Bank Wages (Example 5.5)

Values of log-likelihood for a grid of values of l (a) and ML estimates, both unrestricted
(Panel 2) and under the restriction that l ¼ 1 (Panel 3) or l ¼ 0 (Panel 4).
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So we consider the transformation only of the dependent variable and
not of the regressors. The log-likelihood of this model is given by (5.7),
replacing the last term in parentheses of this expression by ei ¼ Si(l)� a
� gDgi � mDmi � bxi. The ML estimates are given in Panel 2 of Exhibit 5.9
and the ML estimate of l is l̂l ¼ �0:836. The exhibit also shows the results
for l ¼ 1 in Panel 3 (with dependent variable S� 1) and for l ¼ 0 in Panel 4
(with dependent variable log (S)). The LR-tests for linearity and log-linearity
are given by

LR(l ¼ 1) ¼ 2(� 519:94þ 759:50) ¼ 479:14 (P ¼ 0:0000),

LR(l ¼ 0) ¼ 2(� 519:94þ 568:51) ¼ 97:14 (P ¼ 0:0000):

We conclude that linearity and log-linearity are rejected.

(iii) Interpretation of an alternative relation

We now use the ML estimates of the above model in Panel 2 of Exhibit 5.9
(with l ¼ �0:836) to determine the relative increase in salary caused by an
additional year of schooling— that is, (dS=dx)=S. It is left as an exercise (see
Exercise 5.2) to show that in this model

dS=dx

S
¼ b

1þ l(aþ gDg þ mDm þ bxþ e)
:

In the log-linear model that was considered in previous examples, l ¼ 0 and
the marginal return to schooling is constant. Now, in our model with
l ¼ �0:836, this return depends on the values of the explanatory variables.
For instance, for an ‘average’ non-minority male employee (with
Dg ¼ 0,Dm ¼ 0 and e ¼ 0), the estimated increase is

dS=dx

S
¼ b̂b

1þ l̂l(âaþ b̂bx)
¼ 0:0258

0:732� 0:022x
:

This means that the marginal returns of schooling increase with the previ-
ously achieved level of education. For instance, at an education level of
x ¼ 10 years the predicted increase in salary is 5.0 per cent, whereas for an
education level of x ¼ 20 years this becomes 8.6 per cent. Such a non-linear
effect is in line with our previous analysis in Examples 5.1 and 5.4.

E Exercises: T: 5.2e, f.
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5.2.5 Summary

In order to construct a model for the explanation of the dependent
variable we have to make a number of decisions.

. Howmany explanatory variables should be included in the model? This
can be investigated by means of selection criteria (such as AIC, SIC), by
tests of significance (for instance, forward selection or backward elim-
ination), and by comparing the predictive performance of competing
models on a hold-out sample.

. What is the best way to incorporate the variables in the model? In many
cases the model has a better economic interpretation if variables are
taken in logarithms, and, if the observed data contain trends, it may be
worthwhile to take first differences.

. Can the relation between explanatory variables and explained variable
be expressed by a linear model or is the relationship non-linear? The
method of local regression and Ramsey’s RESET can be used to get an
idea of possible non-linearities.
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5.3 Varying parameters

5.3.1 The use of dummy variables

Relaxing the assumption of fixed parameters

In the linear model y ¼ Xbþ e, the ‘direct’ effect of a regressor xj on the
dependent variable y is given by @y=@xj ¼ bj. The assumption of fixed par-
ameters (Assumption 5) means that these effects are the same for all obser-
vations. If these effects differ over the sample, then this can be modelled in
different ways. In Section 5.2.2 we discussed the addition of quadratic terms
and product terms of regressors. In other cases the sample can be split in
groups so that the parameters are constant for all observations within a
group but differ between groups. For example, the sampled population
may consist of several groups that are affected in different ways by the
regressors. This kind of parameter variation can be modelled by means of
dummy variables.

An example: Seasonal dummies

For example, suppose that the data consist of quarterly observations with a
mean level that varies over the seasons. This can be represented by the time
varying parameter model

yi ¼ ai þ
Xk
j¼2

bjxji þ ei, (5:8)

where ai takes on four different values, according to the season of the ith
observation. This means that ai ¼ aiþ4 for all i, as the observations i and
(iþ 4) fall in the same season. Now define four dummy variables
Dh, h ¼ 1, 2, 3, 4, where Dhi ¼ 1 if the ith observation falls in season
h and Dhi ¼ 0 if the ith observation falls in another season. These variables
are called ‘dummies’ because they are artificial variables that we define
ourselves. With the help of these dummies, the model (5.8) can be ex-
pressed as

yi ¼ a1D1i þ a2D2i þ a3D3i þ a4D4i þ
Xk
j¼2

bjxji þ ei: (5:9)
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This is a linear regression model with constant parameters. That is, the
parameter variation in (5.8) is removed by including dummy variables as
additional regressors. In practice we often prefer models that include a
constant term. In this case we should delete one of the dummy variables in
(5.9) from the model. For instance, if we delete the variable D1, then (5.9)
can be reformulated as

yi ¼ a1 þ g2D2i þ g3D3i þ g4D4i þ
Xk
j¼2

bjxji þ ei, (5:10)

where gs ¼ as � a1 for s ¼ 2, 3, 4. The first quarter is called the reference
quarter in this case and the parameters gs measure the incremental effects
of the other quarters relative to the first quarter. Clearly, the parameters gs in
(5.10) have a different interpretation from the parameters as in (5.9). For
instance, suppose we want to test whether the second quarter has a signifi-
cant effect on the level of y. A t-test on a2 in (5.9) corresponds to the null

hypothesis that E[yi] ¼
Pk

j¼2 bjxji in the second quarter. However, a t-test on

g2 in (5.10) corresponds to the null hypothesis that E[yi] ¼ a1 þ
Pk

j¼2 bjxji in
the second quarter— that is, that a1 � a2. The latter hypothesis is more

interesting. If we delete another dummy variable from (5.9)— for instance,
D4 instead of D1 — then the dummy part in (5.10) becomes
a4 þ d1D1i þ d2D2i þ d3D3i, where ds ¼ as � a4 for s ¼ 1, 2, 3. The interpret-
ation of the t-test on d2 differs from that of the t-test on g2. In general, models
with dummy variables can often be formulated in different ways, and we can
choose the one with the most appealing interpretation.

The use of dummies for piece-wise linear relations

Dummy variables can also be used to model varying slope parameters. For
instance, suppose that the dependence of y on x2 is continuous and piece-wise
linear with slope b2 for x2 � a and with slope b2 þ g2 for x > a. This can be
formulated as follows. LetD be a dummy variable withDi ¼ 0 if x2i � a and
Di ¼ 1 if x2i > a; then

yi ¼ aþ b2x2i þ g2(x2i � a)Di þ
Xk
j¼3

bjxji þ ei:

This model has constant parameters and it is linear in the parameters,
provided that the break point a is known. The null hypothesis that the
marginal effect of x2 on y does not vary over the sample can be tested by a
t-test on the significance of g2.
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Example 5.6: Fashion Sales

We consider US retail sales data of high-priced fashion apparel. The data are
taken from G.M. Allenby, L. Jen, and R.P. Leone, ‘Economic Trends and
Being Trendy: The Influence of Consumer Confidence on Retail Fashion
Sales’, Journal of Business and Economic Statistics, 14/1 (1996), 103–11.
Wemayexpect seasonalfluctuations in sales of fashionapparel— for instance,
because of sales actions around the change of seasons. We will discuss (i) the
data and the model, and (ii) estimation results and tests of seasonal effects.

(i) The data and the model

We consider quarterly data from 1986 to 1992, so that n ¼ 28, and we
investigate whether there exists a quarterly effect in the relation between
sales (Si, real sales per thousand square feet of retail space) and two explana-
tory variables, purchasing ability (Ai, real personal disposable income) and
consumer confidence (Ci, an index of consumer sentiment). We define four
quarterly dummiesDji, j ¼ 1, 2, 3, 4, whereDji ¼ 1 if the ith observation falls
in quarter j and Dji ¼ 0 if the ith observation does not fall in quarter j. The
general levels of sales and the effect of purchasing ability and consumer
confidence on fashion sales may vary over the seasons. We suppose that the
standard Assumptions 1–7 are satisfied for the model

log (Si) ¼ a1 þ
X4
j¼2

ajDji þ
X4
j¼1

bjDji log (Ai)þ
X4
j¼1

gjDji log (Ci)þ ei:

The variation in the coefficients a reflects the possible differences in the
average level of retail fashion sales between seasons.

(ii) Estimation results and tests on seasonal effects

Exhibit 5.10 shows the results of three estimated models. The null hypothesis
that the effects of the variables Ai and Ci on sales do not depend on the
season corresponds to the six parameter restrictions b1 ¼ b2 ¼ b3 ¼ b4 and
g1 ¼ g2 ¼ g3 ¼ g4. The corresponding F-test of this hypothesis can be com-
puted from the results in Panels 1 and 2 of Exhibit 5.10— that is,

F ¼ (0:1993� 0:1437)=6

0:1437=(28� 12)
¼ 1:03 (P ¼ 0:440):

Therefore, the null hypothesis of constant parameters for b and g is not
rejected. The corresponding restricted model has six parameters, and we
test whether fashion sales depend on the season— that is, we test whether
a2 ¼ a3 ¼ a4 ¼ 0 in this model. The results in Panels 2 and 3 of Exhibit
5.10 give

E
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F ¼ (1:5292� 0:1993)=3

0:1993=(28� 6)
¼ 48:93 (P ¼ 0:000):

This hypothesis is therefore clearly rejected. Exhibit 5.11 shows the residuals
of the model with a2 ¼ a3 ¼ a4 ¼ 0. The residuals show a clear seasonal
pattern with peaks in the fourth quarter. This can also be interpreted as a

Panel 1: Dependent Variable: LOGSALES
Method: Least Squares
Sample: 1986:1 1992:4
Included observations: 28
Variable Coefficient Std. Error t-Statistic Prob.

C �13.20387 5.833571 �2.263429 0.0379
D2 12.75170 12.06633 1.056800 0.3063
D3 9.671240 8.959647 1.079422 0.2964
D4 8.545816 7.282290 1.173507 0.2578

LOGA�D1 2.711783 0.841984 3.220704 0.0053
LOGA�D2 1.085208 1.175397 0.923269 0.3696
LOGA�D3 0.737792 0.849956 0.868036 0.3982
LOGA�D4 1.386734 0.660245 2.100334 0.0519
LOGC�D1 0.933291 0.445010 2.097239 0.0522
LOGC�D2 0.003096 1.006677 0.003076 0.9976
LOGC�D3 0.860878 0.609848 1.411626 0.1772
LOGC�D4 0.587470 0.342052 1.717487 0.1052
R-squared 0.910259 Sum squared resid 0.143700

Panel 2: Dependent Variable: LOGSALES
Method: Least Squares
Sample: 1986:1 1992:4
Included observations: 28
Variable Coefficient Std. Error t-Statistic Prob.

C �6.139694 2.870911 �2.138587 0.0438
D2 0.193198 0.051066 3.783329 0.0010
D3 0.313589 0.051166 6.128849 0.0000
D4 0.618763 0.052318 11.82706 0.0000

LOGA 1.488666 0.393303 3.785039 0.0010
LOGC 0.660192 0.240432 2.745860 0.0118

R-squared 0.875514 Sum squared resid 0.199337

Panel 3: Dependent Variable: LOGSALES
Method: Least Squares
Sample: 1986:1 1992:4
Included observations: 28
Variable Coefficient Std. Error t-Statistic Prob.

C 1.175230 7.073808 0.166138 0.8694
LOGA 0.774249 0.986040 0.785210 0.4397
LOGC �0.022716 0.587800 �0.038646 0.9695

R-squared 0.044989 Sum squared resid 1.529237

Exhibit 5.10 Fashion Sales (Example 5.6)

Regressions of sales on purchasing ability and consumer confidence (all in logarithms), with
seasonal variation in all parameters (Panel 1) or only in the constant term (Panel 2) or in none
of the parameters (Panel 3).
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violation of Assumption 2 that the disturbance terms have a fixed mean. The
seasonal variation of this mean is modelled by including the three dummy
variables with parameters a2, a3, and a4 in the model.

Example 5.7: Coffee Sales

As a second illustration of the use of dummy variables we return to the mar-
keting data on coffee sales of two brands of coffee that were discussed before
in Section 4.2.5 (p. 218–21). We will discuss (i) the results for the two brands
separately, (ii) a combined model for the two brands, (iii) a test of constant
elasticity in the combined model, and (iv) the interpretation of the results.

(i) Results for the two brands separately

In Section 4.2.5 we analysed the relation between coffee sales and the applied
deal rate and we tested the null hypothesis of constant price elasticity for two
brands of coffee. Although scatter diagrams of the data indicate a decreasing
elasticity for larger deal rates (see Exhibit 4.5), we had difficulty in rejecting
the null hypothesis of constant elasticity when this is tested for the two
brands separately. A possible reason is the small number of observations,
n ¼ 12, for both brands.

(ii) A combined model for the two brands

We will now consider a model that combines the information of the two
brands. The model for the effect of price deals (denoted by d) on coffee sales
(denoted by q) in Section 4.2.5 is given by

log (qi) ¼ b1 þ
b2
b3

�
d
b3
i � 1

�þ ei:
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Exhibit 5.11 Fashion Sales (Example 5.6)

Residuals of the model for fashion sales where none of the parameters is allowed to vary over
the seasons (note that time is measured on the horizontal axis and that the values of the
residuals are measured on the vertical axis).
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The price elasticity in this model is equal to b2d
b3 (see Example 4.2, p. 204),

and the null hypothesis of constant price elasticity corresponds to the par-
ameter restriction b3 ¼ 0. Now we combine the data of the two brands of
coffee by means of the model

log(qi)¼D1i b1þ
b2
b3

�
d
b3
i �1

�� �
þD2i g1þ

g2
g3

�
d
g3
i �1

�� �
þ ei, i¼ 1, . . . , 24,

where D1i ¼ 1 for the observations of brand one and D1i ¼ 0 for the obser-
vations of brand two, and where D2i ¼ 1�D1i. This model allows for the
possibility that all regression coefficients differ between the two brands of
coffee. Exhibit 5.12 shows the NLS estimates of this model in Panel 1 and of
the restricted model with b2 ¼ g2 and b3 ¼ g3 in Panel 3. This corresponds to
the assumption that the elasticities are the same for the two brands of
coffee— that is, b2d

b3 ¼ g2d
g3 . We do not impose the condition b1 ¼ g1, as

the level of the sales are clearly different for the two brands (see Exhibit 4.5).
TheWald test for the hypothesis that (b2, b3) ¼ (g2, g3) has P-value 0.249 (see
Panel 2). We do not reject this hypothesis and therefore we will consider the
following combined model for the two brands of coffee:

log (qi) ¼ D1ib1 þD2ig1 þ
b2
b3

d
b3
i � 1

� �
þ ei, i ¼ 1, . . . , 24:

(iii) Test of constant elasticity in the combined model

We now test the hypothesis of constant elasticity in the above combined
model for the two brands. That is, we test whether b3 ¼ 0, in which case
b2
b3

d
b3
i � 1

� �
reduces to b2 log (di), as in the Box–Cox transformation. The

results in Panels 3–5 of Exhibit 5.12 are used to compute the values of
the Wald test, the Likelihood Ratio test, and the Lagrange Multiplier test.
For the Wald test (for a single parameter restriction) we use the relation
(4.50) with the t-test, and Panel 3 gives

W ¼ n

n� k
t2 ¼ 24

20
(�2:520)2 ¼ 7:62 (P ¼ 0:006):

The Likelihood Ratio test is obtained from Panels 3 and 4 and is equal to

LR ¼ 2(l1 � l0) ¼ 2(22:054� 18:549) ¼ 7:01 (P ¼ 0:008):

The Lagrange Multiplier test is computed in a similar way as described in
Sections 4.2.5 (p. 221) and 4.3.9 (p. 247), and Panel 5 gives

LM ¼ nR2 ¼ 24(0:253) ¼ 6:08 (P ¼ 0:014):

308 5 Diagnostic Tests and Model Adjustments



(iv) Interpretation of the results

The above test outcomes indicate that the null hypothesis of constant deal
elasticity should be rejected. Our earlier results in Example 4.6 in Section
4.3.9 gave less clear conclusions. This illustrates the power of imposing
model restrictions, in this example, the assumption that the functional de-
pendence of the elasticity on the deal rate is the same for the two brands of
coffee. The combined model is estimated for twenty-four observations, so
that, in comparison with our analysis in Section 4.2.5, we gain twelve

Panel 1: Dependent Variable: LOGQ
Method: Least Squares
Sample: 1 24
Included observations: 24
Convergence achieved after 5 iterations

LOGQ¼C(1)�DUMRGC1þC(2)�DUMRGC2þC(3)/C(4)�DUMRGC1
�(DEAL^C(4)�1)þC(5)/C(6)�DUMRGC2�(DEAL^C(6)�1)

Parameter Coefficient Std. Error t-Statistic Prob.
C(1) 5.807118 0.041721 139.1879 0.0000
C(2) 4.377804 0.041721 104.9294 0.0000
C(3) 10.29832 3.424515 3.007235 0.0076
C(4) �13.43074 6.936886 �1.936133 0.0687
C(5) 10.28864 2.896461 3.552142 0.0023
C(6) �8.595289 5.024271 �1.710753 0.1043

R-squared 0.986396 Sum squared resid 0.187993
S.E. of regression 0.102196 Log likelihood 24.13832

Panel 2: Wald Test
Null Hypothesis: C(3)¼C(5)

C(4)¼C(6)
F-statistic 1.502889 Probability 0.249117
Chi-square 3.005777 Probability 0.222487

Panel 3: Dependent Variable: LOGQ
Method: Least Squares
Sample: 1 24
Included observations: 24
Convergence achieved after 5 iterations
LOGQ¼C(1)�DUMRGC1þC(2)�DUMRGC2þC(3)/C(4)�(DEAL^C(4)�1)

Parameter Coefficient Std. Error t-Statistic Prob.
C(1) 5.778500 0.037388 154.5565 0.0000
C(2) 4.406421 0.037388 117.8577 0.0000
C(3) 10.23724 2.274838 4.500207 0.0002
C(4) �10.67745 4.237472 �2.519770 0.0204

R-squared 0.983815 Sum squared resid 0.223654
S.E. of regression 0.105748 Log likelihood 22.05400

Exhibit 5.12 Coffee Sales (Example 5.7)

Regression of coffee sales on deal rate with all parameters different for the two brands
(Panel 1), test on equal elasticities for the two brands (Panel 2), and regression model with
equal elasticities (but different sales levels) for the two brands (Panel 3).
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observations at the cost of one parameter. This gain of eleven degrees of
freedom leads to more clear-cut conclusions.

E Exercises: E: 5.26.

5.3.2 Recursive least squares

Recursive estimation to detect parameter variations

If we want to model varying parameters by means of dummy variables, we
should know the nature of this variation. In some situations the choice of
dummy variables is straightforward (see for instance Examples 5.6 and 5.7 in
the foregoing section). However, in other cases it may be quite difficult to
specify the precise nature of the parameter variation.
Now suppose that the data can be ordered in a natural way. For instance, if

the data consist of time series that are observed sequentially over time, then it
is natural to order them with time. If the data consist of a cross section, then
the observations can be ordered according to the values of one of the
explanatory variables. For such ordered data sets we can detect possible

Panel 4: Dependent Variable: LOGQ
Method: Least Squares
Sample: 1 24
Included observations: 24

Variable Coefficient Std. Error t-Statistic Prob.
DUMRGC1 5.810190 0.039926 145.5240 0.0000
DUMRGC2 4.438110 0.039926 111.1584 0.0000
LOG(DEAL) 5.333995 0.427194 12.48611 0.0000

R-squared 0.978325 Sum squared resid 0.299523
S.E. of regression 0.119428 Log likelihood 18.54891

Panel 5: Dependent Variable: RESLOGDEAL
Method: Least Squares
Sample: 1 24
Included observations: 24

Variable Coefficient Std. Error t-Statistic Prob.
DUMRGC1 �0.031689 0.037388 �0.847590 0.4067
DUMRGC2 �0.031689 0.037388 �0.847590 0.4067
LOG(DEAL) 4.072710 1.608700 2.531678 0.0198

LOG(DEAL)^2 �29.25819 11.23281 �2.604707 0.0170
R-squared 0.253300 Sum squared resid 0.223654
S.E. of regression 0.105748

Exhibit 5.12 (Contd.)

Regression model for coffee sales with constant elasticity (Panel 4) and regression of the
residuals of this model on the gradient of the unrestricted model where the elasticity depends
on the deal rate (Panel 5).
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break points by applying recursive least squares. For every value of t with
kþ 1 � t � n, a regression is performed in the model yi ¼ x0ibþ ei using only
the (t � 1) observations i ¼ 1, � � � , t � 1. This gives an OLS estimator bt�1

and a corresponding forecast ŷyt ¼ x0tbt�1 with forecast error

ft ¼ yt � x0tbt�1: (5:11)

The recursive least squares estimators are defined as the series of estimators
bt. It is left as an exercise (see Exercise 5.3) to show that these estimators can
be calculated recursively by

bt ¼ bt�1 þ Atxtft (5:12)

At ¼ At�1 � 1

vt
At�1xtx

0
tAt�1 (5:13)

vt ¼ 1þ x0tAt�1xt, (5:14)

where At ¼ (X0
tXt)

�1 with Xt the t � k regressor matrix for the observations
i ¼ 1, � � � , t. The result in (5.12) shows that the magnitude of the changes
bt � bt�1 in the recursive estimates depends on the forecast errors ft in (5.11).
Under the standard Assumptions 1–7, the correction factor At is propor-
tional to the covariance matrix of the estimator bt, so that large uncertainty
leads to large changes in the estimates.

Recursive residuals

Under Assumptions 1–7 the forecast errors have mean E[ ft] ¼ 0. As
yt ¼ x0tbþ et is independent of bt�1 (that depends only on e1, � � � , et�1), it
follows that var(ft) ¼ var(yt)þ var(x0tbt�1) ¼ s2(1þ x0tAt�1xt) ¼ s2vt. It is
left as an exercise (see Exercise 5.3) to show that the forecast errors ft are also
mutually independent. This means that, if the model is valid (so that in
particular the parameters are constant),

wt ¼ ftffiffiffiffi
vt

p � NID(0, s2), t ¼ kþ 1, � � � , n: (5:15)

The values of wt are called the recursive residuals. To detect possible param-
eter breaks it is helpful to plot the recursive estimates bt and the recursive
residuals wt as a function of t. If the parameters are varying, then this is
reflected in variations in the estimates bt and in relatively large and serially
correlated recursive residuals wt after the break. Such breaks may suggest
additional explanatory variables that account for the break, or the model can
be adjusted by including non-linear terms or dummy variables, as discussed
in Sections 5.2.2 and 5.3.1.
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Example 5.8: Bank Wages (continued)

We continue our analysis of the bank wage data discussed in previous
sections. Using the notation introduced there, the model is

yi ¼ aþ gDgi þ mDmi þ bxi þ ei, (5:16)

where y is the logarithm of yearly salary and x the number of completed years
of education. We order the n ¼ 474 employees according to the values of x,
starting with the lowest education. The education ranges from 8 to 21 years.
Employees with ranking number 365 or lower have at most 15 years of
education (x � 15), those with ranking number 366–424 have x ¼ 16, and
those with ranking number 425–474 have x > 16.

Exhibit 5.13 shows the recursive least squares estimates of the constant
term a (in (a)) and of the marginal return of schooling b (in (b)), together
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Exhibit 5.13 Bank Wages (Example 5.8)

Recursive estimates of constant term (a) and of slope with respect to education (b), together
with plot of recursive residuals (c). The graphs also show 95% interval estimates of the
parameters and 95% confidence intervals for the recursive residuals.
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with 95 per cent interval estimates. The estimates of b show a break after
observation 365, suggesting that the returns may be larger for higher
levels of education. The plot of recursive residuals in (c) shows mostly
positive values after observation 365. This means that for higher levels
of education the wages are higher than is predicted from the estimates
based on the employees with less education. These results are in line with
our analysis of non-linearities in the previous examples, see Examples 5.1,
5.4, and 5.5. All these results indicate that the effect of education on salary is
non-linear.

E Exercises: T: 5.3.

5.3.3 Tests for varying parameters

The CUSUM test for the regression parameters

Although plots of recursive estimates and recursive residuals are helpful in
analysing possible parameter variations, it is also useful to perform statistical
tests on the null hypothesis of constant parameters. Such tests can be based
on the recursive residuals wt defined in (5.15). Under the hypothesis of
constant parameters, it follows from (5.15) that the sample mean

w ¼ 1
n�k

Pn
t¼kþ1wt is normally distributed with mean zero and variance

s2
n�k. Let ŝs

2 ¼ 1
n�k�1

Pn
t¼kþ1 (wt �w)2 be the unbiased estimator of s2 based

on the recursive residuals; then

ffiffiffiffiffiffiffiffiffiffiffiffi
n� k

p w

ŝs
� t(n� k� 1):

A significant non-zero mean of the recursive residuals indicates possible
instability of the regression parameters. The CUSUM test is based on the
cumulative sums

Wr ¼
Xr
t¼kþ1

wt

s
, r ¼ kþ 1, � � � , n,

where s2 is the OLS estimate of s2 in the model y ¼ Xbþ e over the full data
sample using all n observations. If the model is correctly specified, then the
terms wt=s are independent with distribution N(0, 1), so thatWr is approxi-
mately distributed as N(0, r� k). For a significance level of (approximately)
5 per cent, an individual value Wr differs significantly from zero if
jWrj > 2

ffiffiffiffiffiffiffiffiffiffiffi
r� k

p
. It is also possible to test for the joint significance of the set

of values Wr, r ¼ kþ 1, � � � , n. For a significance level of (approximately) 5
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per cent, it can be shown that this set of values indicates misspecification of
the model if there exists a point r for which jWrj > 0:948

�
1þ 2 r�k

n�k

� ffiffiffiffiffiffiffiffiffiffiffiffi
n� k

p
.

The CUSUMSQ test for the variance

Large values for one or more recursive residuals are not necessarily caused by
changes in the regression parameters b. Another possibility is that the vari-
ance s2 of the error terms is changing— that is, the amount of uncertainty or
randomness in the observations may vary over time. This can be investigated
by considering the sequence of squared recursive residuals w2

t =ŝs
2. If the

model is correctly specified, then (5.15) shows that these values are approxi-
mately distributed as independent w2(1) variables. The CUSUMSQ test is
based on the cumulative sums of squares

Sr ¼

Pr
t¼kþ1

w2
tPn

t¼kþ1

w2
t

, r ¼ kþ 1, � � � , n:

For large enough sample size, 1
n�k

Pn
t¼kþ1 w

2
t � s2, so that (n� k)Sr is ap-

proximately distributed as w2(r� k) with expected value r� k and variance
2(r� k). So Sr has approximately a mean of (r� k)=(n� k) and a variance of
2(r� k)=(n� k)2. This provides simple tests for the individual significance
of a value of Sr (for fixed r).
Note that the values always run from Sk ¼ 0 (for r ¼ k) to Sn ¼ 1 (for

r ¼ n), independent of the values of the recursive residuals. Tests on the joint
significance of deviations of Sr from their mean values have been derived,
where the model is said to be misspecified if there exists a point r for
which jSr � r�k

n�k j > c. The value of c depends on the significance level and
on (n� k).

Interpretation as general misspecification tests

Apart from the effects of changing parameters or variances, large recursive
residuals may also be caused by exceptional values of the disturbance terms ei
in the relation yi ¼ x0ibþ ei. Such observations are called outliers, and this is
discussed in Section 5.6. It may also be the case that breaks occur in the
explanatory variables. For instance, if one of the xi variables shows signifi-
cant growth over the sample period, then the linear approximation
yi ¼ x0ibþ ei that may be acceptable at the beginning of the sample, for
small values of xi, may cause large errors at the end of the sample. That is,
the diagnostic tests CUSUM and CUSUMSQ that are introduced here as
parameter stability tests are sensitive to any kind of instability of the model,
not only for changes in the parameters.
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The Chow break test

In some situations there may be a clear break point in the sample and we
want to test whether the parameters have changed at this point. Let the n
observations be split in two parts, the first part consisting of n1 observations
and the second part of the remaining n2 ¼ n� n1 observations. In order to
test the hypothesis of constant coefficients across the two subsets of data, the
model can be formulated as

y1 ¼ X1b1 þ e1
y2 ¼ X2b2 þ e2,

(5:17)

where y1 and y2 are the n1 � 1 and n2 � 1 vectors of the dependent variable
in the two subsets and X1 and X2 the n1 � k and n2 � kmatrices of explana-
tory variables. This can also be written as

y1
y2

� �
¼ X1 0

0 X2

� �
b1
b2

� �
þ e1

e2

� �
: (5:18)

It is assumed that the model (5.18) satisfies all the standard Assumptions 1–7,
in particular, that all the (n1 þ n2) error terms are independent and have
equal variance. The null hypothesis of constant coefficients is given by

H0 : b1 ¼ b2: (5:19)

This can be tested against the alternative that b1 6¼ b2 by means of the F-test.
The number of parameters under the alternative hypothesis is 2k, and the
number of restrictions in (5.19) is k. Least squares in the unrestricted model
(5.18) gives an error sum of squares that is equal to the sum of the error sum
of squares of the two separate regressions in (5.17) (see Exercise 5.4). So the
F-test is given by

F ¼ (S0 � S1 � S2)=k

(S1 þ S2)=(n1 þ n2 � 2k)
, (5:20)

where S0 is the error sum of squares under the null hypothesis (obtained by
regression in y ¼ Xbþ e over the full sample of n ¼ n1 þ n2 observations)
and where S1 and S2 are obtained by the two subset regressions in (5.17).
This is called the Chow break test, and under the null hypothesis of constant
parameters it follows the F(k, n1 þ n2 � 2k) distribution. The regressions
under the alternative hypothesis require that n1 � k and n2 � k—that is,
in both subsets the number of observations should be at least as large as the
number of parameters in the model for that subset.
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The Chow forecast test

The model specification (5.17) allows for a break in the parameters, but
apart from this the model structure is assumed to be the same. The model
structure under the alternative can also be left unspecified. Then the null
hypothesis is that y ¼ Xbþ e holds for all n1 þ n2 observations and the
alternative is that this model only holds for the first n1 observations and
that the last n2 observations are generated by an unknown model. This can
be expressed by the model

yi ¼ x0ibþ
Xn1þn2

j¼n1þ1

gjDji þ ei, (5:21)

whereDj is a dummy variable withDji ¼ 1 for i ¼ j andDji ¼ 0 for i 6¼ j. So,
for every observation i > n1, the model allows for an additional effect gj that
may differ from observation to observation. The coefficients gj represent all
factors that are excluded under the null hypothesis— for instance, neglected
variables, another functional form, or another error model. The null hypoth-
esis of constant model structure corresponds to

H0 : gj ¼ 0 for all j ¼ n1 þ 1, � � � , n1 þ n2: (5:22)

This can be tested by the F-test, which is called the Chow forecast test. Using
the above notation, the Chow forecast test is computed as

F ¼ (S0 � S1)=n2
S1=(n1 � k)

:

This is exactly equal to the forecast test discussed in Section 3.4.3 (p. 173)
(see Exercise 5.4). This test can also be used as an alternative to the Chow
break test (5.20) if one of the subsets of data contains less than k observa-
tions.

Example 5.9: Bank Wages (continued)

We continue our analysis of the data on wages and education where the data
are ordered with increasing values of education (see Example 5.8). We will
discuss (i) Chow tests on parameter variations, and (ii) CUSUM and
CUSUMSQ tests.

(i) Chow tests

To test whether an additional year of education gives the same relative
increase in wages for lower and higher levels of education, we perform a

E
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Chow break test and a Chow forecast test. The n ¼ 474 employees are split
into two groups, one group with at most sixteen years of education
(n1 ¼ 424) and the other with seventeen years of education or more
(n2 ¼ 50). Exhibit 5.14 shows the results of regressions for the whole data
set (in Panel 1) and for the two subsamples (in Panels 2 and 3). The Chow
break test (5.20) is given by

F ¼ (30:852� 23:403� 2:941)=4

(23:403þ 2:941)=(424þ 50� 8)
¼ 19:93 (P ¼ 0:000):

Panel 1: Dependent Variable: LOGSALARY
Method: Least Squares
Sample: 1 474
Included observations: 474
Variable Coefficient Std. Error t-Statistic Prob.

C 9.199980 0.058687 156.7634 0.0000
GENDER 0.261131 0.025511 10.23594 0.0000

MINORITY �0.132673 0.028946 �4.583411 0.0000
EDUC 0.077366 0.004436 17.44229 0.0000

R-squared 0.586851 Sum squared resid 30.85177

Panel 2: Dependent Variable: LOGSALARY
Method: Least Squares
Sample: 1 424
Included observations: 424
Variable Coefficient Std. Error t-Statistic Prob.

C 9.463702 0.063095 149.9906 0.0000
GENDER 0.229931 0.023801 9.660543 0.0000

MINORITY �0.111687 0.027462 �4.066947 0.0001
EDUC 0.055783 0.004875 11.44277 0.0000

R-squared 0.426202 Sum squared resid 23.40327

Panel 3: Dependent Variable: LOGSALARY
Method: Least Squares
Sample: 425 474
Included observations: 50
Variable Coefficient Std. Error t-Statistic Prob.

C 9.953242 0.743176 13.39284 0.0000
GENDER 0.830174 0.263948 3.145213 0.0029

MINORITY �0.346533 0.126096 �2.748175 0.0085
EDUC 0.019132 0.041108 0.465418 0.6438

R-squared 0.302888 Sum squared resid 2.941173

Exhibit 5.14 Bank Wages (Example 5.9)

Regressions of salary on gender, minority, and education over full sample (Panel 1), over
subsample of employees with at most sixteen years of education (Panel 2), and over
subsample of employees with seventeen years of education or more (Panel 3).

5.3 Varying parameters 317



The Chow forecast test (3.58) gives

F ¼ (30:852� 23:403)=50

23:403=(424� 4)
¼ 2:67 (P ¼ 0:000):

The null hypothesis of constant returns of schooling is clearly rejected.

(ii) CUSUM and CUSUMSQ tests

Exhibit 5.15 shows plots of the CUSUM and CUSUMSQ tests. This shows
that, at the end of the sample, the CUSUM deviates significantly from zero.
After observation i ¼ 366 the recursive residuals are mostly positive, mean-
ing that predicted wages are smaller than the actual wages. This is in
agreement with the recursive slope estimate in Exhibit 5.13 (b), which
becomes larger after observation 366. The CUSUMSQ plot shows that the
squared recursive residuals in the first part of the sample are relatively small
and that the sum of squares builds up faster after observation 366. This is a
further sign that the returns of schooling are not constant for different levels
of education.

E Exercises: T: 5.4; S: 5.19; E: 5.24, 5.31a, b, f, 5.33b, d.

5.3.4 Summary

An econometric model usually involves a number of parameters that are
all assumed to be constant over the observation sample. It is advisable to
apply tests on parameter constancy and to adjust the model if the param-
eters seem to vary over the sample.
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Exhibit 5.15 Bank Wages (Example 5.9)

Plots of CUSUM and CUSUMSQ for wage data, ordered with increasing education. Employ-
ees with index 365 or lower have at most fifteen years of education, those with index between
366 and 424 have sixteen years of education, and those with index 425 or higher have
seventeen years of education or more.
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. The assumption of constant parameters can be tested by applying recur-
sive least squares, by considering plots of recursive residuals and of the
CUSUM and CUSUMSQ statistics, and by means of the break and
forecasts tests of Chow.

. If the parameters are not constant one has to think of meaningful
adjustments of the model that do have constant parameters. This may
mean that one has to adjust the specification of the model— for in-
stance, by choosing an appropriate non-linear model or by incorpor-
ating additional relevant explanatory variables. Dummy variables are a
helpful tool to remove parameter variation by incorporating additional
parameters that account for this variation.
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5.4 Heteroskedasticity

5.4.1 Introduction

General model for heteroskedastic error terms

For ordinary least squares, it is assumed that the error terms of the model
have constant variance and that they are mutually uncorrelated. If this is not
the case, then OLS is no longer efficient, so that we can possibly get more
accurate esimates by applying different methods. In this section we discuss
the estimation and testing of models for data that exhibit heteroskedasticity,
and in the next section we discuss serial correlation.
Under Assumptions 1–6, the standard regression model is given by

y ¼ Xbþ e, E[e] ¼ 0, E[ee0] ¼ s2I:

In this section we suppose that Assumptions 1, 2, 4, 5, and 6 are satisfied but
that Assumption 3 of constant variance is violated. Let the disturbances be
heteroskedastic with E[e2i ] ¼ s2i , i ¼ 1, � � � , n; then

E[ee0] ¼ V ¼
s21 0 � � � 0
0 s22 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � s2n

0BBB@
1CCCA:

So the covariance matrix is diagonal because of Assumption 4 of uncorrel-
ated disturbances, but the elements on the diagonal may be different for each
observation. This means that the amount of randomness in the outcome of yi,
measured by var(yi) ¼ s2i , may differ for each observation.

Implications of heteroskedasticity for estimation

In least squares we minimize
Pn

i¼1 (yi � x0ib)
2, but if the variances differ

it may be better to assign relatively smaller weights to observations
with large variance and larger weights to observations with small variance.
This is because observations with small error terms provide more informa-
tion on the value of b than observations with large error terms. We can then
use a weighted least squares criterion of the form
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Xn
i¼1

w2
i yi � x0ib
� �2

,

with weights w2
i that decrease for larger values of s2i . The choice of optimal

weights is one of the issues discussed below. First we give two examples.

Example 5.10: Bank Wages (continued)

We consider again the bank wage data of 474 bank employees. We will
discuss (i) three job categories, (ii) a possible model for heteroskedasticity,
and (iii) a graphical idea of the amount of variation in wages.

(i) Three job categories

The bank employees can be divided according to three job categories—
namely, administrative jobs, custodial jobs, and management jobs. It may
well be that the amount of variation in wages differs among these three
categories. For instance, for a given level of education it may be expected
that employees with custodial jobs earn more or less similar wages. However,
two managers with the same level of education may have quite different
salaries— for instance, because the job responsibilities differ or because the
two employees have different management experience.

(ii) A possible model for heteroskedasticity

We consider the regression model

yi ¼ b1 þ b2xi þ b3Dgi þ b4Dmi þ b5D2i þ b6D3i þ ei,

where yi is the logarithm of yearly wage, xi is the number of years of educa-
tion,Dg is a gender dummy (1 for males, 0 for females), andDm is a minority
dummy (1 for minorities, 0 otherwise). Administration is taken as reference
category andD2 andD3 are dummy variables (D2 ¼ 1 for individuals with a
custodial job and D2 ¼ 0 otherwise, and D3 ¼ 1 for individuals with a
management position and D3 ¼ 0 otherwise). We sort the observations so
that the first n1 ¼ 363 individuals have jobs in administration, the next
n2 ¼ 27 ones have custodial jobs, and the last n3 ¼ 84 ones have jobs in
management. If we allow for different variances among the three job categor-
ies, the covariance matrix can be specified as follows, where Ini denotes the
ni � ni identity matrix for i ¼ 1, 2, 3.

V ¼
s21In1 0 0
0 s22In2 0
0 0 s23In3

0@ 1A:
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(iii) Graphical impression of the amount of variation

Exhibit 5.16 shows for each job category both the (unconditional) variation
in y in (a) and the conditional variation (that is, the variation of the OLS
residuals of the above regression model) in (b). The exhibit indicates that the
variations are the smallest for custodial jobs.

Example 5.11: Interest and Bond Rates

We now consider monthly data on the short-term interest rate (the three-
month Treasury Bill rate) and on the AAA corporate bond yield in the USA.
As Treasury Bill notes and AAA bonds can be seen as alternative ways of
investment in low-risk securities, it may be expected that the AAA bond rate
is positively related to the interest rate. It may further be that this relation
holds more tightly for lower than for higher levels of the rates, as for higher
rates there may be more possibilities for speculative gains. We will discuss (i)
the data and the model, (ii) a graphical impression of changes in variance,
and (iii) a possible model for heteroskedasticity.

(i) Data and model

The AAA bond rate is defined as an average over long-term bonds of firms
with AAA rating. The data on the Treasury Bill rate are taken from the
Federal Reserve Board of Governors and the data on AAA bonds from
Moody’s Investors Service. The data run from January 1950 to December
1999. Let xi denote the monthly change in the Treasury Bill rate and let yi be
the monthly change in the AAA bond rate. These changes will be related to
each other, and we postulate the simple regression model
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Exhibit 5.16 Bank Wages (Example 5.10)

Unconditional variation in log salary (a) and conditional variation of residuals of log salary
(after regression on education, gender, minority, and job category dummies (b)). The job
categories are administration (1), custodial jobs (2), and management (3), with respective
sizes of the subsamples n1 ¼ 363, n2 ¼ 27, and n3 ¼ 84.
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yi ¼ aþ bxi þ ei, i ¼ 1, 2, � � � , 600:

(ii) Graphical impression of changes in variance

Exhibit 5.17 (a) shows the residuals that are obtained from regression in the
above model (the figure has time on the horizontal axis, the values of the
residuals are measured on the vertical axis). The variance over the first half of
the considered time period is considerably smaller than that over the second
half. This suggests that the uncertainty of AAA bonds has increased over
time. One of the possible causes is that the Treasury Bill rate has become
more volatile. Exhibit 5.17 shows two scatter diagrams of yi against xi, one
(b) for the first 300 observations (1950–74) and the other (c) for the last 300
observations (1975–99).

(iii) A possible model for heteroskedasticity

The magnitude of the random variations ei in the AAA bond rate changes
may be related to the magnitude of the changes xi in the Treasury Bill rate.
For instance, if E[e2i ] ¼ s2x2i , then the covariance matrix becomes

V ¼ s2

x21 0 � � � 0
0 x22 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � x2n

0BBB@
1CCCA,

where n ¼ 600. Observations in months with small changes in the Treasury
Bill rate are then more informative about a and b than observations in
months with large changes. Alternative models for the variance in these
data will be considered in later sections (see Examples 5.16 and 5.18).
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Exhibit 5.17 Interest and Bond Rates (Example 5.11)

Plot of residuals of regression of changes in AAA bond rate on changes in three-month
Treasury Bill rate (a) and scatter diagrams of these changes over the periods 1950–74 (b)
and 1975–99 (c).
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5.4.2 Properties of OLS and White standard errors

Properties of OLS for heteroskedastic disturbances

Suppose that Assumptions 1, 2, 5, and 6 are satisfied but that the covariance
matrix of the disturbances is not equal to s2I. That is, assume that

y ¼ Xbþ e, E[e] ¼ 0, E[ee0] ¼ V:

Although ordinary least squares will no longer have all the optimality
properties discussed in Chapter 3, it is still attractive, as it is simple to
compute these estimates. In this section we consider the consequences of
applying ordinary least squares under the above assumptions. The OLS
estimator is given by b ¼ (X0X)�1X0y, and, substituting y ¼ Xbþ e, it
follows that

b ¼ bþ (X0X)�1X0e:

Under the stated assumptions this means that

E[b] ¼ b, var(b) ¼ (X0X)�1X0VX(X0X)�1: (5:23)

So the OLS estimator b remains unbiased. However, the usual expression
s2(X0X)�1 for the variance does not apply anymore. Therefore, if one rou-
tinely applies the usual least squares expressions for standard errors, then the
outcomes misrepresent the correct standard errors, unless V ¼ s2I. So the
estimated coefficients b are ‘correct’ in the sense of being unbiased, but the
OLS formulas for the standard errors are wrong.

White standard errors

In order to perform significance tests we should estimate the covariance
matrix in (5.23). If the disturbances are uncorrelated but heteroskedastic,
so thatV is a diagonal matrix with elements s21, � � � , s2n on the diagonal, then
(5.23) can be written as

var(b) ¼ (X0X)�1
Xn
i¼1

s2i xix
0
i

 !
(X0X)�1: (5:24)

Here xi is the k� 1 vector of explanatory variables for the ith observation.
In most situations the values s2i of the variances are unknown. A simple
estimator of s2i is given by e2i , the square of the OLS residual ei ¼ yi � x0ib.
This gives
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cvarvar(b) ¼ (X0X)�1
Xn
i¼1

e2i xix
0
i

 !
(X0X)�1: (5:25)

This is called theWhite estimate of the covariance matrix of b, and the square
roots of the diagonal elements are called the White standard errors. Some-
times a correction is applied. In case of homoskedastic error terms, it was
derived in Section 3.1.5 (p. 127–8) that the residual vector e has covariance
matrix s2M, where M ¼ I �X(X0X)�1X0 ¼ I �H. So the residual ei has
variance s2(1� hi) in this case, where hi is the ith diagonal element of H.
For this reason one sometimes replaces e2i in (5.25) by e2i =(1� hi).

Proof of consistency of White standard errors

Note that, even in the homoskedastic case and with the above correction, the
estimator e2i =(1� hi) of the variance s2i is unbiased but not consistent. This is
because only a single observation (the ith) has information about the value of s2i ,
so that by increasing the sample size we gain no additional information on s2i .
However, we will now show that the estimator (5.25) of the covariance matrix
(5.24) of b is consistent, provided that

E[eixi] ¼ E[(yi � x0ib)xi] ¼ 0:

That is, the orthogonality conditions should be satisfied. This is also required for
the consistency of the OLS estimator b. To prove that (5.25) is a con-
sistent estimator of the covariance matrix (5.24), we use the results in Section
4.4.3 (p. 258) on GMM estimators. Note that the GMM estimator for
the above moment conditions is equal to the OLS estimator b (see Section 4.4.2
(p. 252)). The above moment conditions can be formulated as E[gi] ¼ 0 with
gi ¼ (yi � x0ib)xi. According to the results in (4.67) and (4.68), a consistent esti-
mator of the covariance matrix of the GMM estimator is given by

cvarvar(b) ¼ (H0J�1H)�1,

where J ¼Pn
i¼1 gig

0
i and H ¼Pn

i¼1 @gi=@b
0 and with J and H evaluated at b. This

means that J ¼P e2i xix
0
i andH ¼ �P xix

0
i ¼ �X0X. This shows that (5.25) is the

GMM estimator of the covariance matrix, which is consistent (see Section 4.4.3).

Example 5.12: Bank Wages; Interest and Bond Rates (continued)

As an illustration we consider the two examples of Section 5.4.1, the first on
wages (see Example 5.10) and the second on interest rates (see Example 5.11).
Exhibit 5.18 shows the results of least squares with conventional OLS formu-
las for the standard errors (in Panels 1 and 3) and with White heteroskedas-
ticity consistent standard errors (in Panels 2 and 4). For most coefficients,
these two standard errors are quite close to each other.Note, however, that for

T
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Panel 1: Dependent Variable: LOGSALARY
Dependent Variable: LOGSALARY
Method: Least Squares
Sample: 1 474
Included observations: 474
Variable Coefficient Std. Error t-Statistic Prob.

C 9.574694 0.054218 176.5965 0.0000
EDUC 0.044192 0.004285 10.31317 0.0000

GENDER 0.178340 0.020962 8.507685 0.0000
MINORITY �0.074858 0.022459 �3.333133 0.0009
DUMJCAT2 0.170360 0.043494 3.916891 0.0001
DUMJCAT3 0.539075 0.030213 17.84248 0.0000
R-squared 0.760775

Panel 2: Dependent Variable: LOGSALARY
Method: Least Squares
Sample: 1 474
Included observations: 474
White Heteroskedasticity-Consistent Standard Errors & Covariance
Variable Coefficient Std. Error t-Statistic Prob.

C 9.574694 0.054477 175.7556 0.0000
EDUC 0.044192 0.004425 9.987918 0.0000

GENDER 0.178340 0.019985 8.923848 0.0000
MINORITY �0.074858 0.020699 �3.616538 0.0003
DUMJCAT2 0.170360 0.033025 5.158477 0.0000
DUMJCAT3 0.539075 0.035887 15.02147 0.0000
R-squared 0.760775

Panel 3: Dependent Variable: DAAA
Method: Least Squares
Sample: 1950:01 1999:12
Included observations: 600
Variable Coefficient Std. Error t-Statistic Prob.

C 0.006393 0.006982 0.915697 0.3602
DUS3MT 0.274585 0.014641 18.75442 0.0000

R-squared 0.370346

Panel 4: Dependent Variable: DAAA
Method: Least Squares
Sample: 1950:01 1999:12
Included observations: 600
White Heteroskedasticity-Consistent Standard Errors & Covariance
Variable Coefficient Std. Error t-Statistic Prob.

C 0.006393 0.006992 0.914321 0.3609
DUS3MT 0.274585 0.022874 12.00409 0.0000

R-squared 0.370346

Exhibit 5.18 Bank Wages; Interest and Bond Rates (Example 5.12)

Regressions for wage data (Panels 1 and 2) and for AAA bond rate data (Panels 3 and 4),
with conventional standard errors (Panels 1 and 3) and with White standard errors (Panels 2
and 4).
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the interest rate data the (consistent) White standard error of the slope coeffi-
cient is 0.023, whereas according to the conventional OLS formula this
standard error is computed as 0.015.

E Exercises: S: 5.20a.

5.4.3 Weighted least squares

Models for the variance

The use of OLS with White standard errors has the advantage that no model
for the variances is needed. However, OLS is no longer efficient, and more
efficient estimators can be obtained if one has reliable information on the
variances s2i . If the model explaining the heteroskedasticity is sufficiently
accurate, then this will increase the efficiency of the estimators. Stated in
general terms, a model for heteroskedasticity is of the form

s2i ¼ h(z0ig), (5:26)

where h is a known function, z ¼ (1, z2, � � � , zp)0 is a vector consisting
of p observed variables that influence the variances, and g is a vector of p
unknown parameters. Two specifications that are often applied are the model
with additive heteroskedasticitywhere h(z0g) ¼ z0g and the model withmulti-
plicative heteroskedasticity where h(z0g) ¼ ez

0g. The last model has the ad-
vantage that it always gives positive variances, whereas in the additive model
we have to impose restrictions on the parameters g.

Weighted least squares

A particularly simple model is obtained if the variance depends only on a
single variable v so that

s2i ¼ s2vi,

where vi > 0 is known and where s2 is an unknown scalar parameter. An
example is the regression model for bond rates in Example 5.11, where we
proposed the model s2i ¼ s2x2i . In such cases we can transform the model

yi ¼ x0ibþ ei, E[e2i ] ¼ s2vi, i ¼ 1, � � � , n,

by dividing the ith equation by
ffiffiffiffi
vi

p
. Let y�i ¼ yi=

ffiffiffiffi
vi

p
, x�i ¼ 1ffiffiffi

vi
p xi and

e�i ¼ ei=
ffiffiffiffi
vi

p
, then we obtain the transformed model

y�i ¼ x�
0
i bþ e�i , E[e�2i ] ¼ s2, i ¼ 1, � � � , n:
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As the numbers vi are known, we can calculate the transformed data y�i and
x�i . Further, if the original model satisfies Assumptions 1, 2, and 4–6, then
the same holds true for the transformed model. The transformed model has
also homoskedastic error terms and hence it satisfies Assumptions 1–6.
Therefore, the best linear (in y�i ) unbiased estimator of b is obtained by
applying least squares in the transformed model. To derive an explicit for-
mula for this estimator, let X� be the n� kmatrix with rows x�

0
i and let y� be

the n� 1 vector with elements y�i . Then the estimator is given by

b� ¼ (X0
�X�)�1X0

�y� ¼
Xn
i¼1

x�i x
�0
i

 !�1Xn
i¼1

x�i y
�
i

¼
Xn
i¼1

1

vi
xix

0
i

 !�1 Xn
i¼1

1

vi
xiyi

 !
:

(5:27)

This estimator is obtained by minimizing the criterion

S(b) ¼
Xn
i¼1

y�i � x�
0

i b
� �2

¼
Xn
i¼1

(yi � x0ib)
2

vi
: (5:28)

As observations with smaller variance have a relatively larger weight in
determining the estimate b�, this is called weighted least squares (WLS).
The intuition is that there is less uncertainty around observations with
smaller variances, so that these observations are more important for estima-
tion.We recall that in Section 5.2.3 we applied weighted least squares in local
regression, where the observations get larger weight the nearer they are to a
given reference value.

Illustration: Heteroskedasticity for grouped data

In research in business and economics, the original data of individual
agents or individual firms are often averaged over groups for privacy reasons.
The groups should be chosen so that the individuals within a group are
more or less homogeneous with respect to the variables in the model.
Let the individual data satisfy the model y ¼ Xbþ e with E[e] ¼ 0 and
E[ee0] ¼ s2I (that is, with homoskedastic error terms). Let nj be the number
of individuals in group j, then, in terms of the reported group means, the
model becomes

yj ¼ x0jbþ ej,

where yj and ej are the means of yj and ej and x0j is the row vector of the means
of the explanatory variables in group j. The error terms satisfy
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E[ej] ¼ 0, E[e2j ] ¼ s2=nj and E[ejeh] ¼ 0 for j 6¼ h, so that grouping leads to
heteroskedastic disturbances with covariance matrix

V ¼ s2

n�1
1 0 � � � 0
0 n�1

2 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � n�1
G

0BBB@
1CCCA,

whereG denotes the number of groups. TheWLS estimator is given by (5.27)
with vj ¼ 1=nj, so that

bWLS ¼
XG
j¼1

njxjx
0
j

 !�1 XG
j¼1

njxjyj

 !
:

The weighting factors show that larger groups get larger weights.

Statistical properties of the WLS estimator

The properties of the weighted least squares estimator are easily obtained
from the transformed model. The covariance matrix of b� is given by

var(b�) ¼ s2(X0
�X�)�1 ¼ s2

Xn
i¼1

1

vi
xix

0
i

 !�1

: (5:29)

The weighted least squares estimator is efficient, and hence its covariance
matrix is smaller than that of the OLS estimator in (5.24) (see also Exercise
5.5). In terms of the residuals of the transformed model

e� ¼ y� �X�b�,

an unbiased estimator of the variance s2 is given by

s2� ¼ 1

n� k

Xn
i¼1

y�i � x�
0

i b�
� �2

¼ 1

n� k

Xn
i¼1

1

vi
(yi � xib�)2:

If we add Assumption 7 that the disturbance terms are normally distributed,
then the results of Chapter 3 on testing linear hypotheses can be applied
directly to the transformed model. For instance, the F-test of Chapter 3 now
becomes

F ¼
X

e2�Ri �
X

e2�i
� �

=gX
e2�i=(n� k)

¼
X

e2
Ri

vi
�
X

e2i
vi

� �
=gX

e2
i

vi
=(n� k)

, (5:30)
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where e ¼ y�Xb�, e�R ¼ y� �X�b�R, and eR ¼ y�Xb�R with b�R the re-
stricted ordinary least squares estimator in the transformed model.

Asymptotic properties of WLS

The asymptotic results in Chapter 4 can be applied directly to the transformed
model. For instance, if we drop Assumption 1 of fixed regressors and Assumption
7 of normally distributed error terms, then

ffiffiffi
n

p
(b� � b)!d N(0, s2Q�1

� ), (5:31)

that is, WLS is consistent and has an asymptotic normal distribution, under the
conditions that

plim
1

n
X0

�X�

� �
¼ plim

1

n

Xn
i¼1

1

vi
xix

0
i

 !
¼ Q� (5:32)

plim
1

n
X0

�e�

� �
¼ plim

1

n

Xn
i¼1

1

vi
xiei

 !
¼ 0: (5:33)

Under these assumptions, expressions like (5.29) and (5.30) remain valid asymp-
totically.

Summary of estimation by WLS

Estimation by weighted least squares can be performed by means of the
following steps.

Weighted least squares


 Step 1: Formulate the model. Formulate the model regression model
yi ¼ x0ibþ ei and the model for the variances E[e2i ] ¼ s2vi, where (yi, xi)
are observed and vi are known, i ¼ 1, � � � , n, and where b and s2 are
unknown fixed parameters.


 Step 2: Transform the data. Transform the observed data yi and xi by
dividing by

ffiffiffiffi
vi

p
, to get y�i ¼ 1ffiffiffi

vi
p yi and x�i ¼ 1ffiffiffi

vi
p xi.


 Step 3: Estimate and test with transformed data. Apply the standard
procedures for estimation and testing of Chapters 3 and 4 on the trans-
formed data y�, X�.


 Step 4: Transform results to original data. The results can be rewritten in
terms of the original data by substituting yi ¼ ffiffiffiffi

vi
p

y�i and xi ¼ ffiffiffiffi
vi

p
x�i .

We illustrate this with two examples.

T

330 5 Diagnostic Tests and Model Adjustments



Example 5.13: Bank Wages (continued)

In this example we continue our previous analysis of the bank wage data. We
consider the possible heteroskedasticity that results by grouping the data. We
will discuss (i) the grouped data, and (ii) the results of OLS and WLS for the
grouped data.

(i) Grouped bank wage data

Suppose that for privacy reasons the individual bank wage data are grouped
according to the variables gender, minority, job category, and four education
groups (10 years or less, between 11 and 13 years, between 14 and 16 years,
and 17 years or more). In principle this gives 2� 2� 3� 4 ¼ 48 groups.
However, twenty-two combinations do not occur in the sample, so that
G ¼ 26 groups remain. Exhibit 5.19 shows a histogram of the resulting
group sizes. Some groups consist of a single individual, and the largest group
contains 101 individuals. It is intuitively clear that the averaged data in this
large group should be given more weight than the data in the small groups.

(ii) Results of OLS and WLS for grouped data

Exhibit 5.20 shows the result of applyingOLS to the grouped data, both with
OLS standard errors (in Panel 1) and withWhite standard errors (in Panel 2),
and efficient WLS estimates are reported in Panel 3. The WLS estimates are
clearly different from the OLS estimates and the standard errors of WLS are
considerably smaller than those of OLS. For WLS, the R2 and the standard
error of regression are reported both for weighted data (based on the
residuals e� ¼ y� �X�b� of step 3 of WLS) and for unweighted data (based
on the residuals e ¼ y�Xb� of step 4 of WLS).
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Exhibit 5.19 Bank Wages (Example 5.13)

Grouped data of 474 employees, with groups defined by gender, minority, job category, and
four education groups. The histogram shows the sizes of the resulting twenty-two groups of
employees (the group size is measured on the horizontal axis, and the vertical axis measures the
frequency of occurrence of the group sizes in the indicated intervals on the horizontal axis).
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Panel 1: Dependent Variable: MEANLOGSAL
Method: Least Squares
Sample(adjusted): 1 26
Included observations: 26 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob.
C 9.673440 0.141875 68.18272 0.0000

MEANEDUC 0.033592 0.010022 3.351783 0.0032
GENDER 0.249522 0.074784 3.336567 0.0033

MINORITY �0.024444 0.062942 �0.388348 0.7019
DUMJCAT2 0.019526 0.090982 0.214610 0.8322
DUMJCAT3 0.675614 0.084661 7.980253 0.0000

R-squared 0.886690 S.E. of regression 0.157479

Panel 2: Dependent Variable: MEANLOGSAL
Method: Least Squares
Sample(adjusted): 1 26
Included observations: 26 after adjusting endpoints
White Heteroskedasticity-Consistent Standard Errors & Covariance

Variable Coefficient Std. Error t-Statistic Prob.
C 9.673440 0.125541 77.05376 0.0000

MEANEDUC 0.033592 0.009617 3.492757 0.0023
GENDER 0.249522 0.053352 4.676939 0.0001

MINORITY �0.024444 0.060389 �0.404766 0.6899
DUMJCAT2 0.019526 0.102341 0.190792 0.8506
DUMJCAT3 0.675614 0.104891 6.441090 0.0000

R-squared 0.886690 S.E. of regression 0.157479

Panel 3: Dependent Variable: MEANLOGSAL
Method: Least Squares
Sample(adjusted): 1 26
Included observations: 26 after adjusting endpoints
Weighting series: sq.root group size (vi ¼ 1=ni with ni the group size)

Variable Coefficient Std. Error t-Statistic Prob.
C 9.586344 0.077396 123.8604 0.0000

MEANEDUC 0.043238 0.006123 7.061221 0.0000
GENDER 0.179823 0.029525 6.090510 0.0000

MINORITY �0.074960 0.031581 �2.373596 0.0277
DUMJCAT2 0.166985 0.061281 2.724918 0.0130
DUMJCAT3 0.542568 0.042672 12.71483 0.0000

Weighted Statistics
R-squared 0.999903 S.E. of regression 0.077288
Unweighted Statistics
R-squared 0.834443 S.E. of regression 0.190354

Exhibit 5.20 Bank Wages (Example 5.13)

Regressions for grouped wage data, OLS (Panel 1), OLS with White standard errors (Panel 2),
and WLS with group seizes as weights (Panel 3). In Panel 3, the weighted statistics refer to
the transformed data (with weighted observations) and the unweighted statistics refer to the
observed (unweighted) data.
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Example 5.14: Interest and Bond Rates (continued)

We continue our analysis of the interest and bond rate data introduced in
Example 5.11 in Section 5.4.1. We will discuss (i) the application of weighted
least squares in this model, (ii) the outcomes of OLS and WLS, and (iii)
comments on the outcomes.

(i) Application of weighted least squares

In Example 5.11 in Section 5.4.1 we considered the regression model
yi ¼ aþ bxi þ ei for the relation between changes in the AAA bond rate yi

E

XM511IBR

(a) Panel 1: Dependent Variable: DAAA
Method: Least Squares
Sample: 1950:01 1999:12
Included observations: 600

Variable Coefficient Std. Error t-Statistic Prob.
C 0.006393 0.006982 0.915697 0.3602

DUS3MT 0.274585 0.014641 18.75442 0.0000
R-squared 0.370346 S.E. of regression 0.171002

(b) Panel 2: Dependent Variable: DAAA
Method: Least Squares
Sample: 1950:01 1999:12
Included observations: 583
Excluded observations: 17
Weighting series: 1/DUS3MT (vi ¼ DUS3MTið Þ2Þ

Variable Coefficient Std. Error t-Statistic Prob.
C �0.002380 0.005143 �0.462794 0.6437

DUS3MT 0.262260 0.144280 1.817717 0.0696
Weighted Statistics
R-squared 0.000369 S.E. of regression 7.381207
Unweighted Statistics
R-squared 0.370293 S.E. of regression 0.172944
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Series: DAAA
Sample 1950:01 1999:12
with DUS3MT = 0
Observations 17

Mean
Median
Maximum
Minimum
Std. Dev.
Skewness
Kurtosis  

0.006471
0.010000
0.160000

−0.320000
0.104758

−1.676769
6.841560

(c)

Exhibit 5.21 Interest and Bond Rates (Example 5.14)

Regressions for AAA bond rate data, OLS (Panel 1) and WLS (with variances proportional to
the square of DUS3MT, Panel 2). (c) shows the histogram of the values of DAAA in the
seventeen months where DUS3MT ¼ 0 (these observations are excluded in WLS in Panel 2).
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and the three-month Treasury Bill rate xi. The plots in Exhibit 5.17 suggest
E[e2i ] ¼ s2x2i as a possible model for the variances. TheWLS estimator (5.27)
is obtained by ordinary least squares in the transformed model

yi
xi

¼ a � 1
xi

þ bþ e�i ,

where the error terms e�i ¼ ei=xi are homoskedastic with E[e�2i ] ¼ s2.

(ii) Outcomes of OLS and WLS

Exhibit 5.21 shows the results of OLS in the original model (in Panel 1) and
of WLS (in Panel 2). Note that, according to the WLS outcomes and at the
5 per cent significance level, the Treasury Bill rate changes (xi) provide no
significant explanation of AAA rate changes (yi).

(iii) Comments on the outcomes

Panel 2 of Exhibit 5.21 indicates that, for WLS, 17 of the n ¼ 600 observa-
tions are dropped. This is because in these months xi ¼ 0. This indicates a
shortcoming of the model for the variance, as for xi ¼ 0 the model postulates
that var(yi) ¼ E[e2i ] ¼ s2x2i ¼ 0: In reality this variance is non-zero, as the
AAA rate does not always remain fixed in months where the Treasury Bill
rate remains unchanged (see the histogram in Exhibit 5.21 (c)). In the next
section we will consider alternative, less restrictive models for the variance of
the disturbances (see Example 5.16).

E Exercises: T: 5.5; S: 5.20b–e; E: 5.33c, e.

5.4.4 Estimation by maximum likelihood and feasible WLS

Maximum likelihood in models with heteroskedasticity

The application of WLS requires that the variances of the disturbances are
known up to a scale factor— that is, s2i ¼ s2vi with s2 an unknown scalar
parameter and with vi known for all i ¼ 1, � � � , n. If we are not able to specify
such a type of model, then we can use the more general model (5.26) with
variances s2i ¼ h(z0ig), where g contains p unknown parameters. Under As-
sumptions 1, 2, and 4–7, the log-likelihood (in terms of the (kþ p) unknown
parameters b and g) is given by

l(b, g) ¼ � n

2
log (2p)� 1

2

Xn
i¼1

log h z0ig
� �� �� 1

2

Xn
i¼1

yi � x0ib
� �2

h z0ig
� � : (5:34)
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The ML estimators of b and g are obtained by maximizing l(b, g), and these
estimators have the usual optimal asymptotic properties. For given values of
g, the optimal values of b are obtained by WLS, replacing vi in (5.27) by
h(z0ig), so that

bWLS(g) ¼
Xn
i¼1

1

s2i
xix

0
i

 !�1 Xn
i¼1

1

s2i
xiyi

 !
, s2i ¼ h z0ig

� �
: (5:35)

This estimator is not ‘feasible’— that is, it cannot be computed because g is
unknown. However, we can substitute this formula for bWLS in (5.34) to
obtain the concentrated log-likelihood as a function of g alone. Then g can be
estimated by maximizing this concentrated log-likelihood and the corres-
ponding estimate of b follows from (5.35).

Feasible weighted least squares

An alternative and computationally simpler estimation method is to
use a two-step approach. In the first step the variance parameters g are
estimated, and in the second step the regression parameters b are estimated,
using the estimated variances of the first step. This method is called (two-
step) feasible weighted least squares (FWLS).

Two-step feasible weighted least squares


 Step 1: Estimate the variance parameters. Determine an estimate c of
the variance parameters g in the model var(ei) ¼ h(z0ig) and define the
estimated variances by s2i ¼ h(z0ic).


 Step 2: Apply WLS with the estimated variances. Compute the feasible
weighted least squares estimates

bFWLS ¼
X
i

1

s2i
xix

0
i

 !�1 X
i

1

s2i
xiyi

 !
: (5:36)

Derivation of statistical properties of FWLS

The properties of the estimator bFWLS depend on those of the used estimator c of g
in step 1. To investigate the consistency and the asymptotic distribution of bFWLS,
we writeVg for the n� n diagonal matrix with elements s2i ¼ h(z0ig) andVc for the
n� n diagonal matrix with elements s2i ¼ h(z0ic). Writing the model yi ¼ x0ibþ ei
in matrix form y ¼ Xbþ e, we get

bFWLS � bWLS(g) ¼ (X0V�1
c X)�1X0V�1

c y� (X0V�1
g X)�1X0V�1

g y

¼ (X0V�1
c X)�1X0V�1

c e� (X0V�1
g X)�1X0V�1

g e:

T
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Therefore, bFWLS has the same asymptotic distribution (5.31) as bWLS (and hence it
is consistent and asymptotically efficient) provided that

plim
1

n
X0 V�1

c �V�1
g

� �
X

� �
¼ plim

1

n

Xn
i¼1

1

s2i
� 1

s2i

� �
xix

0
i

 !
¼ 0, (5:37)

plim
1ffiffiffi
n

p X0 V�1
c �V�1

g

� �
e

� �
¼ plim

1ffiffiffi
n

p
Xn
i¼1

1

s2i
� 1

s2i

� �
xiei

 !
¼ 0: (5:38)

Under some regularity conditions on the regressors xi and the function h in (5.26),
the above two conditions are satisfied if c is a consistent estimator of g. If c is
consistent, then the FWLS estimator has the same asymptotic covariance matrix as
the WLS estimator. Under conditions (5.37), (5.38), and (5.32), (5.33), we can use
the following result as an approximation in finite samples.

Approximate distribution of the FWLS estimator

Under the above conditions, in particular consistency of the estimator c of
the variance parameters g, there holds

bFWLS � N b, (X0V�1
c X)�1

� �
:

Here c is the estimate of g obtained in step 1 of FWLS, and Vc is the
corresponding diagonal matrix with the estimated variances s2i ¼ h(z0ic) on
the diagonal. So the covariance matrix of the FWLS estimator can be ap-
proximated by

cvarvar(bFWLS) ¼ (X0V�1
c X)�1 ¼

Xn
i¼1

1

s2i
xix

0
i

 !�1

:

If one wants to useWLSwith chosen weighting factors s2i but one is uncertain
whether these weights correspond to the actual variances, then the above
formula for the variance is in general no longer correct. In this case consistent
estimates of the standard errors can be obtained by GMM. This corresponds
to the White standard errors of OLS after the observations (yi, xi) have been
transformed to (y�i , x

�
i ), where y�i ¼ yi=si and x�i ¼ 1

si
xi.

Two-step FWLS in the additive and multiplicative model

The foregoing shows that the two-step FWLS estimator is asymptotically
equally efficient asWLS, provided that the estimator c in step 1 is a consistent
estimator of g. We consider this for the additive and the multiplicative model
for heteroskedasticity. In both cases, first OLS is applied in the model
y ¼ Xbþ e with residuals e. If b is consistent, the squared residuals e2i are
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asymptotically unbiased estimates of s2i . Then g is estimated by replacing s2i
by e2i and by running the regression

e2i ¼ z0igþ Zi

in the additive model, and in the multiplicative model

log e2i
� � ¼ z0igþ Zi:

The error terms are given by Zi ¼ e2i � s2i in the additive model and by
Zi ¼ log (e2i =s

2
i ) in the multiplicative model. It is left as an exercise (see

Exercise 5.6) to show that the above regression for the additive model gives
a consistent estimate of g, but that in the multiplicative model a correction
factor is needed. In the latter model the coefficients gj of the variables zj are
consistently estimated for j ¼ 2, . . . , p, but the coefficient g1 of the constant
term z1 ¼ 1 should be estimated as ĝg1 þ a, where ĝg1 is the OLS estimate of g1
and a ¼ �E[ log (w2(1))] � 1:27.

Iterated FWLS

Instead of the above two-step FWLS method, we can also apply iterated
FWLS. In this case the FWLS estimate of b in step 2 is used to construct the
corresponding series of residuals, which are used again in step 1 to determine
new estimates of the heteroskedasticity parameters g. The newly estimated
variances are then used in step 2 to compute the corresponding new FWLS
estimates of b. This is iterated until the parameter estimates converge. These
iterations can improve the efficiency of the FGLS estimator in finite samples.

Example 5.15: Bank Wages (continued)

We consider the bank wage data again and will discuss (i) a multiplicative
model for heteroskedasticity, (ii) the two-step FWLS estimates of this model,
and (iii) the ML estimates.

(i) A multiplicative model for heteroskedasticity

In Example 5.10 we considered the regression model

yi ¼ b1 þ b2xi þ b3Dgi þ b4Dmi þ b5D2i þ b6D3i þ ei:

We concluded that the unexplained variation ei in the (logarithmic) salaries
may differ among the three job categories (see Exhibit 5.16). Suppose that
the disturbance terms ei in the above regression model have variances s21, s

2
2,

or s23 according to whether the ith employee has a job in category 1, 2,
or 3 respectively. Let the parameters be transformed by g1 ¼ log (s21),

E

XM501BWA

5.4 Heteroskedasticity 337



g2 ¼ log (s22=s
2
1), and g3 ¼ log (s23=s

2
1); then we can formulate the following

multiplicative model for

s2i ¼ E[e2i ] ¼ eg1þg2D2iþg3D3i :

(ii) Two-step FWLS estimates

To apply (two-step) FWLS, the parameters of this model for the variances are
estimated in Panels 1 and 2 of Exhibit 5.22. In Panel 2 the explained variable

Panel 1: Dependent Variable: LOGSALARY
Method: Least Squares
Sample: 1 474
Included observations: 474

Variable Coefficient Std. Error t-Statistic Prob.
C 9.574694 0.054218 176.5965 0.0000

EDUC 0.044192 0.004285 10.31317 0.0000
GENDER 0.178340 0.020962 8.507685 0.0000

MINORITY �0.074858 0.022459 �3.333133 0.0009
DUMJCAT2 0.170360 0.043494 3.916891 0.0001
DUMJCAT3 0.539075 0.030213 17.84248 0.0000

R-squared 0.760775

Panel 2: Dependent Variable: LOG(RESOLS^2)
Method: Least Squares
Sample: 1 474
Included observations: 474

Variable Coefficient Std. Error t-Statistic Prob.
C �4.733237 0.123460 �38.33819 0.0000

DUMJCAT2 �0.289197 0.469221 �0.616335 0.5380
DUMJCAT3 0.460492 0.284800 1.616892 0.1066

R-squared 0.006882

Panel 3: Dependent Variable: LOGSALARY
Method: Least Squares
Sample: 1 474
Included observations: 474
Weighting series: 1/STDEV (vi ¼ STDEVið Þ2 obtained from Panel 2)

Variable Coefficient Std. Error t-Statistic Prob.
C 9.595652 0.052207 183.8011 0.0000

EDUC 0.042617 0.004128 10.32413 0.0000
GENDER 0.178389 0.020391 8.748212 0.0000

MINORITY �0.077864 0.021358 �3.645626 0.0003
DUMJCAT2 0.166836 0.037321 4.470278 0.0000
DUMJCAT3 0.545375 0.032659 16.69933 0.0000

Weighted Statistics
R-squared 0.936467
Unweighted Statistics
R-squared 0.760688

Exhibit 5.22 Bank Wages (Example 5.15)

OLS for wage data (Panel 1), step 1 of FWLS (Panel 2, auxiliary regression of OLS residuals for
estimation of the variance parameters in the multiplicative model of heteroskedasticity), and
step 2 of FWLS (Panel 3, WLS with estimated variances obtained from Panel 2).
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is log (e2i ), where ei are the OLS residuals of the regression in Panel 1. With
the correction factor for multiplicative models, the variances are estimated
by s2i ¼ e1:27þĝg1þĝg2D2iþĝg3D3i —that is, s21 ¼ e1:27þĝg1 , s22 ¼ s21e

ĝg2 and s23 ¼ s21e
ĝg3 .

The results in Panel 2 give the following estimates of the standard deviations
per job category.

s1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e1:27�4:733

p
¼ 0:177, s2 ¼ s1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e�0:289

p
¼ 0:153,

s3 ¼ s1
ffiffiffiffiffiffiffiffiffiffiffi
e0:460

p
¼ 0:223:

As expected, the standard deviation is smallest for custodial jobs and it
is largest for management jobs. The corresponding (two-step) FWLS estima-
tor in (5.36) is given in Panel 3 of Exhibit 5.22. The outcomes are quite close
to those of OLS, so that the effect of heteroskedasticity is relatively small.
Moreover, the estimates ĝg2 and ĝg3 are not significant, indicating that the
homoskedasticity of the error terms need not be rejected.

(iii) ML estimates

Panel 4 of Exhibit 5.22 shows the results of ML. The ML estimates of the
parameters of the regression equation are close to the (two-step) FWLS
estimates. However, the ML estimates of the variance parameters g1, g2,
and g3 are quite different from those obtained in the (two-step) FWLS
method. In particular, the ML estimates of the parameters g2 and g3 differ
significantly from zero. That is, the ML results indicate significant hetero-
skedasticity between the three job categories. As the ML estimates are

Panel 4: Dependent Variable: LOGSALARY
Method: Maximum Likelihood (BHHH), multiplicative heteroskedasticity
Sample: 1 474
Included observations: 474
Evaluation order: By observation
Convergence achieved after 76 iterations

Variable Coefficient Std. Error z-Statistic Prob.
Constant 9.629294 0.053441 180.1839 0.0000
EDUC 0.039782 0.004162 9.559227 0.0000

GENDER 0.182140 0.021259 8.567533 0.0000
MINORITY �0.072756 0.023355 �3.115197 0.0018
DUMJCAT2 0.155865 0.036379 4.284448 0.0000
DUMJCAT3 0.557101 0.034005 16.38289 0.0000

Variance Equation
Constant g1ð Þ �3.342117 0.065795 �50.79576 0.0000

DUMJCAT2 g2ð Þ �0.867102 0.259368 �3.343140 0.0008
DUMJCAT3 g3ð Þ 0.452073 0.173538 2.605030 0.0092
Log likelihood 112.2237

Exhibit 5.22 (Contd.)

ML estimates of model for wages with multiplicative model for heteroskedasticity
(Panel 4, starting values at FWLS estimates).
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efficient, this leads to sharper conclusions than FWLS (where the null hy-
pothesis of homoskedasticity could not be rejected).

Example 5.16: Interest and Bond Rates (continued)

We continue our analysis of the interest and bond rate data of Example 5.14.
ThemodelE[e2i ] ¼ s2x2i that was analysed in that example did not turn out to
be very realistic. We will discuss (i) two alternative models for the variance,
(ii) two-step FWLS andML estimates of bothmodels, and (iii) our conclusion.

(i) Two alternative models for the variance

We consider again the relation between monthly changes in AAA bond rates
(yi) and monthly changes in Treasury Bill rates (xi) given by

yi ¼ aþ bxi þ ei, E[e2i ] ¼ s2i :

In Section 5.4.3 we considered WLS with the model s2i ¼ s2x2i for the
variances and we concluded that this model has its shortcomings. Exhibit
5.17 shows that the variance in the period 1950–74 is smaller than that in the
period 1975–99. This can be modelled by

s2i ¼ g1 þ g2Di,

where Di is a dummy variable with Di ¼ 0 in the months 50.01–74.12 and
Di ¼ 1 in the months 75.01–99.12. In this model the variance is g1 until 1974
and it becomes g1 þ g2 from 1975 onwards. However, as is clear from Exhibit
5.17 (a), the variance is also changingwithin these two subperiods. In general,
large residuals tend to be followed by large residuals, and small residuals by
small ones. A model for this kind of clustered variances is given by

s2i ¼ g1 þ g2e
2
i�1 ¼ g1 þ g2(yi�1 � a� bxi�1)

2:

(ii) Two-step FWLS and ML estimates

Exhibit 5.23 shows the results of two-step FWLS and ML estimates for both
heteroskedasticity models. The two-step FWLS estimates are obtained as
follows. In the first step, yi is regressed on xi with residuals
ei ¼ yi � a� bxi (see Panels 1 and 5). In the second step, for the dummy
variable model we perform the regression (see Panel 2)

e2i ¼ g1 þ g2Di þ Zi,

and for the model with clustered variances we perform the regression (see
Panel 6)

E
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e2i ¼ g1 þ g2e
2
i�1 þ Zi:

The estimated variances, ŝs2i ¼ ĝg1 þ ĝg2Di in the first model and ŝs2i ¼
ĝg1 þ ĝg2e

2
i�1 in the second model, are then used to compute the (two-step)

FWLS estimates (5.36) of a and b (see Panels 3 and 7). The results in Panels 4
and 8 of Exhibit 5.23 show that the standard errors of the ML estimates are
smaller than those of the FWLS estimates. For instance, the estimated slope
parameter b in the dummymodel for the variance has standard errors 0.0107
(ML, see Panel 4) and 0.0141 (FWLS, see Panel 3), and in the model with

Panel 1: Dependent Variable: DAAA
Method: Least Squares
Sample: 1950:01 1999:12
Included observations: 600

Variable Coefficient Std. Error t-Statistic Prob.
C 0.006393 0.006982 0.915697 0.3602

DUS3MT 0.274585 0.014641 18.75442 0.0000

Panel 2: Dependent Variable: RESOLS^2
Method: Least Squares
Sample: 1950:01 1999:12
Included observations: 600

Variable Coefficient Std. Error t-Statistic Prob.
C 0.009719 0.004374 2.222044 0.0267

DUM7599 0.038850 0.006186 6.280616 0.0000

Panel 3: Dependent Variable: DAAA
Method: Least Squares
Sample: 1950:01 1999:12
Included observations: 600
Weighting series: 1/STDEV (vi ¼ STDEVið Þ2¼ fitted value of Panel 2)

Variable Coefficient Std. Error t-Statistic Prob.
C 0.013384 0.005127 2.610380 0.0093

DUS3MT 0.214989 0.014079 15.27018 0.0000

Panel 4: Dependent Variable : DAAA
Method:MaximumLikelihood (BHHH), dummymodel heteroskedasticity
Sample: 1950:01 1999:12
Included observations: 600
Convergence achieved after 18 iterations

Variable Coefficient Std. Error z-Statistic Prob.
Constant 0.014083 0.005036 2.796224 0.0052
DUS3MT 0.205870 0.010699 19.24227 0.0000

Variance Equation
Constant g1ð Þ 0.008413 0.000393 21.38023 0.0000
DUM7599 g2ð Þ 0.043714 0.002960 14.76792 0.0000

Exhibit 5.23 Interest and Bond Rates (Example 5.16)

OLS of AAA bond rate on Treasury Bill rate (Panel 1), step 1 of FWLS (Panel 2, auxiliary
regression of squared residuals to estimate dummy model of heteroskedasticity), step 2 of
FWLS (Panel 3, WLS with estimated variances obtained from Panel 2), and ML with dummy
model for heteroskedasticity (Panel 4).
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clustered variances the standard errors are 0.0036 (ML, see Panel 8) and
0.0156 (FWLS, see Panel 7).

(iii) Conclusion

A natural question is which model for the variance should be preferred. To
answer this question we should test the validity of the specified models for
heteroskedasticity. This is further analysed in Example 5.18 at the end of the
next section.

E Exercises: T: 5.6a, b; E: 5.25a, 5.28a–c.

Panel 5: Dependent Variable: DAAA
Method: Least Squares
Sample: 1950:01 1999:12
Included observations: 600

Variable Coefficient Std. Error t-Statistic Prob.
C 0.006393 0.006982 0.915697 0.3602

DUS3MT 0.274585 0.014641 18.75442 0.0000

Panel 6: Dependent Variable: RESOLS^2
Method: Least Squares
Sample(adjusted): 1950:02 1999:12
Included observations: 599 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob.
C 0.023025 0.003336 6.901212 0.0000

RESOLS(� 1)^2 0.211512 0.039997 5.288181 0.0000

Panel 7: Dependent Variable: DAAA
Method: Least Squares
Sample(adjusted): 1950:02 1999:12
Included observations: 599 after adjusting endpoints
Weighting series: 1/STDEV (vi ¼ STDEVið Þ2¼ fitted value of Panel 6)

Variable Coefficient Std. Error t-Statistic Prob.
C 0.008738 0.006354 1.375250 0.1696

DUS3MT 0.284731 0.015628 18.21882 0.0000

Panel 8: Dependent Variable: DAAA
Method: Maximum Likelihood (BHHH), clustered variances
Sample: 1950:01 1999:12
Included observations: 600
Convergence achieved after 14 iterations

Variable Coefficient Std. Error z-Statistic Prob.
C 0.013154 0.003749 3.508211 0.0005

DUS3MT 0.246218 0.003566 69.04759 0.0000
Variance Equation
Constant g1ð Þ 0.010647 0.000647 16.45021 0.0000
e2i�1 g2ð Þ 1.023405 0.101769 10.05619 0.0000

Exhibit 5.23 (Contd.)

OLS of AAA bond rate on Treasury Bill rate (Panel 5), step 1 of FWLS (Panel 6, auxiliary
regression of residuals to estimate model with clustered variances), step 2 of FWLS (Panel 7,
WLS with estimated variances obtained from Panel 6), and ML for model with clustered
variances (Panel 8).
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5.4.5 Tests for homoskedasticity

Motivation of diagnostic tests for heteroskedasticity

When heteroskedasticity is present,ML and FWLSwill in general offer a gain
in efficiency as compared to OLS. But efficiency is lost if the disturbances are
homoskedastic. In order to decide which estimation method to use, we first
have to test for the presence of heteroskedasticity.
It is often helpful to make plots of the least squares residuals ei and

their squares e2i as well as scatters of these variables against explana-
tory variables xi or against the fitted values ŷyi ¼ x0ib. This may provide
a first indication of deviations from homoskedastic error terms. Diagnostic
tests like the CUSUMSQ discussed in Section 5.3.3 are also helpful. Further,
if the disturbances in the model yi ¼ x0ibþ ei are heteroskedastic and a model
s2i ¼ h(z0ig) has been postulated, then it is of interest to test whether this
model for the variances is adequately specified. Let b̂b be the (ML or FWLS)
estimate of b with corresponding residuals êei ¼ yi � x0ib̂b and let ĝg be the
estimate of g and ŝs2i ¼ h(z0iĝg). Then the standardized residuals êei=ŝsi should
be (approximately) homoskedastic.
In this section we discuss some tests for homoskedasticity— that is,

Goldfeld–Quandt, Likelihood Ratio, Breusch–Pagan, and White.

The Goldfeld–Quandt test

The Goldfeld–Quandt test requires that the data can be ordered with non-
decreasing variance. The null hypothesis is that the variance is constant for
all observations, and the alternative is that the variance increases. To test this
hypothesis, the ordered data set is split in three groups. The first group
consists of the first n1 observations (with variance s21), the second group of
the last n2 observations (with variance s22), and the third group of the
remaining n3 ¼ n� n1 � n2 observations in the middle. This last group is
left out of the analysis, to obtain a sharper contrast between the variances in
the first and second group. The null and alternative hypotheses are

H0 : s21 ¼ s22, H1 : s22 > s21:

Now OLS is applied in groups 1 and 2 separately, with resulting sums of
squared residuals SSR1 and SSR2 respectively and estimated variances
s21 ¼ SSR1=(n1 � k) and s22 ¼ SSR2=(n2 � k). Under the standard Assump-
tions 1–7 (in particular, independently and normally distributed error
terms), SSRj=s2j follows the w2(nj � k) distribution for j ¼ 1, 2, and these
two statistics are independent. Therefore

SSR2=(n2 � k)s22
SSR1=(n1 � k)s21

¼ s22=s
2
2

s21=s
2
1

� F(n2 � k, n1 � k):
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So, under the null hypothesis of equal variances, the test statistic

F ¼ s22=s
2
1

follows the F(n2 � k, n1 � k) distribution. The null hypothesis is rejected in
favour of the alternative if F takes large values. There exists no generally
accepted rule to choose the number n3 of excluded middle observations. If
the variance changes only at a single break-point, then it would be optimal to
select the two groups accordingly and to take n3 ¼ 0. On the other hand, if
nearly all variances are equal and only a few first observations have smaller
variance and a few last ones have larger variance, then it would be best to
take n3 large. In practice one uses rules of thumb—for example, n3 ¼ n=5 if
the sample size n is small and n3 ¼ n=3 if n is large.

Likelihood Ratio test

Sometimes the data can be split in several groups where the variance is
assumed to be constant within groups and to vary between groups. If there
areG groups and s2j denotes the variance in group j, then the null hypothesis
of homoskedasticity is

H0 : s21 ¼ s22 ¼ � � � ¼ s2G,

and the alternative is that this restriction does not hold true. It is left
as an exercise (see Exercise 5.6) to show that, under the standard
Assumptions 1–7, the Likelihood Ratio test for the above hypothesis is
given by

LR ¼ n log s2ML

� ��XG
j¼1

nj log
�
s2j, ML

� � w2(G� 1): (5:39)

Here s2ML ¼ e0e=n is the estimated variance over the full data set (that is,
under the null hypothesis of homoskedasticity) and s2j, ML ¼ e0jej=nj is the
estimated variance in group j (obtained by a regression over the nj observa-
tions in this group).

Breusch–Pagan LM-test

The Breusch–Pagan test is based on models of the type s2i ¼ h(z0ig) for the
variances, with variables zi ¼ (1, z2i, � � � , zpi) that explain the differences in
the variances. The null hypothesis of constant variance corresponds to the
(p� 1) parameter restrictions
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g2 ¼ � � � ¼ gp ¼ 0:

The Breusch–Pagan test is equal to the LM-test

LM ¼ @l

@y

� �0
�E

@2l

@y@y0

� 	� ��1
@l

@y

� �
:

To compute this test we should calculate the first and second order deriva-
tives of the (unrestricted) log-likelihood (5.34) with respect to the parameters
y ¼ (b, g), which are then evaluated at the estimated parameter values under
the null hypothesis. It is left as an exercise (see Exercise 5.7) to show that this
leads to the following three-step procedure to compute the Breusch–Pagan
test for heteroskedasticity.

Breusch–Pagan test for heteroskedasticity


 Step 1: Apply OLS. Apply OLS in the model y ¼ Xbþ e and compute the
residuals e ¼ y�Xb.


 Step 2: Perform auxiliary regression. If the variances s2i are possibly
affected by the (p� 1) variables (z2i, � � � , zpi), then apply OLS in the auxil-
iary regression equation

e2i ¼ g1 þ g2z2i þ � � � þ gpzpi þ Zi: (5:40)


 Step 3: LM ¼ nR2 of the regression in step 2. Then LM ¼ nR2 where R2 is
the coefficient of determination of the auxiliary regression in step 2. This is
asymptotically distributed as w2(p� 1) under the null hypothesis of homo-
skedasticity.

White test

An advantage of the Breusch–Pagan test is that the function h in the model
(5.26) may be left unspecified. However, one should know the variables
zj (j ¼ 2, � � � , p) that influence the variance. If these variables are unknown,
then one can replace the variables zj (j ¼ 2, � � � , p) by functions of the ex-
planatory variables x—for instance, x2i, � � � , xki and x22i, � � � , x2ki, in which
case p� 1 ¼ 2k� 2. The above LM-test with this particular choice of the
variables z is called the White test (without cross terms). An extension is the
White test with cross terms, where all cross products xjixhi with j 6¼ h are also
included as z-variables.

Remarks on choice and interpretation of tests

If one can identify variables zj for the model for the variances that are based
on plausible economic assumptions, then the corresponding test of Breusch
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and Pagan is preferred. If homoskedasticity is rejected, then the variances can
be modelled in terms of the variables zj. After the model has been estimated
by taking this type of heteroskedasticity into account, one can test whether
the standardized residuals are homoskedastic. If not, one can try to find a
better model for the variances.

Although the above tests are originally developed to test for hetero-
skedasticity, they can also be considered more generally as misspeci-
fication tests. For example, in the White test a significant correlation
between the squared OLS residuals e2i and the squares and cross products
of explanatory variables may be caused by misspecification of the func-
tional form. The hypothesis of homoskedastic error terms may also be
rejected because of the presence of outliers. This is further discussed in
Section 5.6.

Example 5.17: Bank Wages (continued)

We continue our analysis of the bank wage data (see Example 5.15). We will
discuss (i) the Goldfeld–Quandt test, (ii) the Breusch–Pagan test, (iii) the
Likelihood Ratio test, and (iv) tests for grouped data.

(i) Goldfeld–Quandt test

We apply tests on homoskedasticity for the Bank Wage data. Using the
notation of Example 5.10, the model is given by

yi ¼ b1 þ b2xi þ b3Dgi þ b4Dmi þ b5D2i þ b6D3i þ ei:

For the Goldfeld–Quandt test we perform three regressions, one for each
job category (see Panels 2–4 of Exhibit 5.24). The two job category dummies
D2 andD3 should, of course, be dropped in these regressions. For the second
job category the gender dummy Dg also has to be deleted from the model,
as this subsample consists of males only. Because the results in job category 2
are not significant, possibly owing to the limited number of observations
within this group, we will leave them out and test the null hypothesis
that s21 ¼ s23 against the alternative that s23 > s21. Using the results in
Panels 2 and 4 of Exhibit 5.24, the corresponding test is computed
as F ¼ (0:227=0:188)2 ¼ 1:46, and this has the F(n2 � k, n1 � k) ¼
F(84� 4, 363� 4) ¼ F(80, 359) distribution. The corresponding P-value is
0.011, which indicates that the variance in the third job category is larger
than that in the first job category.

E

XM501BWA

XM513BWA

346 5 Diagnostic Tests and Model Adjustments



Panel 1: Dependent Variable: LOGSALARY
Method: Least Squares; Sample: 1 474; Included observations: 474
Variable Coefficient Std. Error t-Statistic Prob.

C 9.574694 0.054218 176.5965 0.0000
EDUC 0.044192 0.004285 10.31317 0.0000

GENDER 0.178340 0.020962 8.507685 0.0000
MINORITY �0.074858 0.022459 �3.333133 0.0009
DUMJCAT2 0.170360 0.043494 3.916891 0.0001
DUMJCAT3 0.539075 0.030213 17.84248 0.0000
R-squared 0.760775 S.E. of regression 0.195374

Panel 2: Dependent Variable: LOGSALARY
Method: Least Squares; Sample: JOBCAT¼1; Included observations: 363
Variable Coefficient Std. Error t-Statistic Prob.

C 9.556421 0.056544 169.0083 0.0000
EDUC 0.046360 0.004494 10.31572 0.0000

GENDER 0.169221 0.021275 7.954113 0.0000
MINORITY �0.098557 0.023313 �4.227561 0.0000
R-squared 0.418977 S.E. of regression 0.188190

Panel 3: Dependent Variable: LOGSAL
Method: Least Squares; Sample: JOBCAT¼2; Included observations: 27
Variable Coefficient Std. Error t-Statistic Prob.

C 10.39388 0.067739 153.4409 0.0000
EDUC �0.004634 0.006319 �0.733397 0.4704

MINORITY �0.019166 0.027543 �0.695845 0.4932
R-squared 0.039055 S.E. of regression 0.071427

Panel 4: Dependent Variable: LOGSAL
Method: Least Squares; Sample: JOBCAT¼3; Included observations: 84
Variable Coefficient Std. Error t-Statistic Prob.

C 9.675982 0.274004 35.31327 0.0000
EDUC 0.066967 0.016525 4.052588 0.0001

GENDER 0.211185 0.080797 2.613780 0.0107
MINORITY 0.260611 0.119540 2.180112 0.0322
R-squared 0.308942 S.E. of regression 0.227476

Panel 5: Dependent Variable: RES^2
Method: Least Squares; Sample: 1 474; Included observations: 474
Variable Coefficient Std. Error t-Statistic Prob.

C 0.035166 0.003427 10.26280 0.0000
DUMJCAT2 �0.018265 0.013023 �1.402511 0.1614
DUMJCAT3 0.020103 0.007904 2.543209 0.0113
R-squared 0.019507

Exhibit 5.24 Bank Wages (Example 5.17)

Regression for wage data of all employees (Panel 1) and for the three job categories separately
(Panel 2 for category 1, Panel 3 for category 2, and Panel 4 for category 3), and Breusch–Pagan
test (Panel 5, RES denotes the residuals of Panel 1).
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(ii) Breusch–Pagan test

The Breusch-Pagan test for the multiplicative model s2i ¼ eg1þg2D2iþg3D3i can
be computed from the regression in Panel 5 of Exhibit 5.24. Note that in step
2 of the Breusch–Pagan test the dependent variable is e2i , not log (e

2
i ). The

explained variable in this regression consists of the squared OLS residuals of
the above regression model for the wages. The test result for the hypothesis
that g2 ¼ g3 ¼ 0 is LM ¼ nR2 ¼ 474(0:0195) ¼ 9:24. With the w2ð2Þ distri-
bution, the (asymptotic) P-value is 0.010. This again indicates that the
hypothesis of homoskedastic error terms should be rejected.

(iii) Likelihood Ratio test

The Likelihood Ratio test (5.39) for equal variances in the three job categor-
ies can also be computed from the results in Exhibit 5.24. For each regression
in the exhibit, the standard error of regression (s) is computed by least
squares, and s2ML can then be computed by s2ML ¼ n�k

n s2. For the regression
over the full sample with n ¼ 474 in Panel 1, this gives s ¼ 0:195 and
s2ML ¼ 468

474 s
2 ¼ 0:0377. In a similar way, using the results for the three job

categories in Panels 2–4 of Exhibit 5.24, we obtain s21,ML ¼ 0:0350,
s22,ML ¼ 0:0045, and s23,ML ¼ 0:0493. With these values, the LR-test is
computed as LR ¼ 474 log (0:0377)� 363 log (0:0350)� 27 log (0:0045)�
84 log (0:0493) ¼ 61:2. With the (asymptotic) w2(2) distribution the P-value
is P ¼ 0:000, so that homoskedasticity is again rejected.

(iv) Tests for grouped data

Next we consider the data obtained after grouping, as described in Example
5.13. The result of estimating the above regression model for the grouped
data was given in Panel 1 of Exhibit 5.20, and is repeated in Panel 1 of
Exhibit 5.25. Panel 2 of Exhibit 5.25 shows the corresponding White test for
homoskedasticity. Note that the square of a dummy variable is equal to that
dummy variable, so that the squares of dummies are not included as explana-
tory variables in the White test. This outcome does not lead to the rejection
of homoskedasticity. However, if we use the model s2j ¼ s2=nj then the
Breusch–Pagan test in Panel 3 of Exhibit 5.25 gives a value of
LM ¼ nR2 ¼ 26 � 0:296 ¼ 7:69 with P-value 0.006. This leads to rejection
of homoskedasticity. This test relates the variance directly to the inverse of
the group size.

The foregoing results illustrate the importance of using all the available
information on the variances of the disturbance terms. This also becomes
evident in the scatter plot in Exhibit 5.25 (d), which relates the squared OLS
residuals to the inverse of the group sizes 1=nj.
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(a) Panel 1: Dependent Variable: MEANLOGSAL
Method: Least Squares
Sample(adjusted): 1 26
Included observations: 26

Variable Coefficient Std. Error t-Statistic Prob.
C 9.673440 0.141875 68.18272 0.0000

MEANEDUC 0.033592 0.010022 3.351783 0.0032
GENDER 0.249522 0.074784 3.336567 0.0033

MINORITY �0.024444 0.062942 �0.388348 0.7019
DUMJCAT2 0.019526 0.090982 0.214610 0.8322
DUMJCAT3 0.675614 0.084661 7.980253 0.0000

(b) Panel 2: White Heteroskedasticity Test:
F-statistic 0.839570 Probability 0.554832
Obs�R-squared 5.448711 Probability 0.487677
Test Equation:
Dependent Variable: RES^2
Method: Least Squares
Sample: 1 26
Included observations: 26

Variable Coefficient Std. Error t-Statistic Prob.
C �0.037059 0.112378 �0.329770 0.7452

MEANEDUC 0.002928 0.018407 0.159088 0.8753
MEANEDUC^2 �1.30E-05 0.000720 �0.018086 0.9858

GENDER 0.009429 0.018527 0.508896 0.6167
MINORITY 0.009845 0.015601 0.631018 0.5355
DUMJCAT2 0.019932 0.022435 0.888406 0.3854
DUMJCAT3 0.019311 0.020769 0.929819 0.3641

R-squared 0.209566

(c) Panel 3: Dependent Variable: RES^2
Method: Least Squares
Sample(adjusted): 1 26
Included observations: 26 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob.
C 0.002398 0.008236 0.291213 0.7734

1/GROUPSIZE 0.059922 0.018879 3.173942 0.0041
R-squared 0.295649
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Exhibit 5.25 Bank Wages (Example 5.17)

Regression for grouped wage data (Panel 1), White heteroskedasticity test (Panel 2, RES are
the residuals of Panel 1), and Breusch–Pagan test for heteroskedasticity related to group size
(Panel 3) with scatter diagram of squared residuals against inverse of group size (d).
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Example 5.18: Interest and Bond Rates (continued)

We continue our previous analysis of the interest and bond rate data (see
Examples 5.14 and 5.16). We will discuss (i) heteroskedasticity tests based
on different models, (ii) evaluation of the obtained results, and (iii) our
conclusion.

(i) Tests on heteroskedasticity based on different models

We consider again the model yi ¼ aþ bxi þ ei for the relation between the
monthly changes in the AAA bond rate (yi) and the monthly changes in the
three-month Treasury Bill rate (xi). In the foregoing we considered different
possiblemodels for thevariancess2i of thedisturbances— that is, (i)s2i ¼ s2x2i ,
(ii) s2i ¼ g1 þ g2Di, where Di is a dummy variable for the second half
(1975–99) of the considered time period, and (iii) s2i ¼ g1 þ g2e

2
i�1.

Nowwe use these models to test for the presence of heteroskedasticity. For
the models (ii) and (iii) this can be done by testing whether g2 differs signifi-
cantly from zero. The results in Panels 4 and 8 of Exhibit 5.23 show that the
null hypothesis of homoskedastic disturbances is rejected for both models
(P ¼ 0:000). Exhibit 5.26 shows the result of the White test. The P-value of
this test is P ¼ 0:046 (see Panel 2). At 5 per cent significance we still reject the
null hypothesis of homoskedasticity, but the tests based on the explicit models
(ii) and (iii) have smaller P-values.

E
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Panel 1: Dependent Variable: DAAA
Method: Least Squares
Sample: 1950:01 1999:12
Included observations: 600

Variable Coefficient Std. Error t-Statistic Prob.
C 0.006393 0.006982 0.915697 0.3602

DUS3MT 0.274585 0.014641 18.75442 0.0000

Panel 2: White Heteroskedasticity Test:
F-statistic 3.106338 Probability 0.045489
Obs�R-squared 6.179588 Probability 0.045511
Test Equation:
Dependent Variable: RES^2
Method: Least Squares
Sample: 1950:01 1999:12
Included observations: 600

Variable Coefficient Std. Error t-Statistic Prob.
C 0.027654 0.003246 8.518663 0.0000

DUS3MT �0.000224 0.007073 �0.031639 0.9748
DUS3MT^2 0.006560 0.002804 2.339087 0.0197

R-squared 0.010299 Mean dependent var 0.029144

Exhibit 5.26 Interest and Bond Rates (Example 5.18)

OLS (Panel 1) and White heteroskedasticity test (Panel 2) for regression of changes in AAA
bond rate on changes in Treasury Bill rate (RES in Panel 2 denotes the residuals of the
regression in Panel 1).

350 5 Diagnostic Tests and Model Adjustments



−6

−4

−2

0

2

4

6

50 55 60 65 70 75 80 85 90 95

STRES2 STRES3

−4

−2

0

2

4

6

50 55 60 65 70 75 80 85 90 95

−6

−4

−2

0

2

4

6

8

50 55 60 65 70 75 80 85 90 95

STRESOLS

STRESOLS = e/s
e = resid OLS
s = stdev(e) = 0.171

(a)

−15

−10

−5

0

5

10

15

50 55 60 65 70 75 80 85 90 95

STRES1

−10

0

10

−6 −4 −2 0 2 4 6
DUS3MT

ST
R

E
S1

(b) (c)

(d) (e)

Exhibit 5.27 Interest and Bond Rates (Example 5.18)

Time plots of standardized residuals of AAA bond rate data, for OLS (STRESOLS (a)), for
model with variance proportional to the square of DUS3MT (STRES1 (b), and (c) shows the
scatter diagram of these standardized residuals against DUS3MT), for dummy variance model
(STRES2 (d)), and for clustered variance model (STRES3 (e)).
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(ii) Evaluation of the results

It is of interest to compare the success of the models (i), (ii), and (iii)
in removing the heteroskedasticity. For this purpose we compute the
standardized residuals of the three models— that is, (yi � âa� b̂bxi)=ŝsi. Plots
of the standardized residuals are in Exhibit 5.27 (b, d, e), together with the
plot of the standardized OLS residuals ei=s in (a). This shows that model (i)
has some very large standardized residuals, corresponding to observations in
months where xi is close to zero, see Exhibit 5.27(c). Such observations get
an excessively large weight. The standardized residuals of models (ii) and (iii)
still show some changes in the variance, but somewhat less than the
OLS residuals.

(iii) Conclusion

The overall conclusion is that the models considered here are not able to
describe the relation between AAA bond rates and the Treasury Bill rate over
the time span 1950–99. This means that we should either consider less
simplistic models or restrict the attention to a shorter time period. We will
return to these data in Chapter 7, where we discuss the modelling of time
series data in more detail.

E Exercises: T: 5.6c, 5.7; E: 5.25b–e, 5.31c.

5.4.6 Summary

If the error terms in a regression model are heteroskedastic, this means
that some observations are more informative than others for the under-
lying relation. Efficient estimation requires that the more informative
observations get a relatively larger weight in estimation. One can proceed
as follows.

. Apply a test for the possible presence of heteroskedasticity. If one has an
idea what are the possible causes of heteroskedasticity, it is helpful to
formulate a corresponding model for the variance of the error terms and
to apply the Breusch–Pagan test. If one has no such ideas, one can apply
the White test or the Goldfeld–Quandt test.

. If tests indicate the presence of significant heteroskedasticity, then OLS
should not be routinely applied, as it is not efficient and the usual
formulas for the standard errors (as computed by software packages)
do not apply. If one sees no possibility of formulating a meaningful
model for the heteroskedasticity, then one can apply GMM—that is,
OLS with White standard errors.
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. If one can formulate a model for the heteroskedasticity (for instance, an
additive or a multiplicative model), then the model parameters can be
estimated by weighted least squares if the variances are known up to a
scale factor. Otherwise one can use feasible weighted least squares or
maximum likelihood, with the usual approximate distributions of the
estimators.

. Let ei ¼ yi � x0ib̂b be the ith residual and let ŝs2i be the estimated variance
of the ith disturbance. Then the model for heteroskedasticity may be
evaluated by checking whether the scaled residuals ei=ŝsi are homoske-
dastic. If this is not the case, one can try to improve the model for the
variances, or otherwise apply OLS with White standard errors.
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5.5 Serial correlation

5.5.1 Introduction

Interpretation of serial correlation

As before, let the relation between the dependent variable y and the inde-
pendent variables x be specified by

yi ¼ x0ibþ ei, i ¼ 1, � � � , n: (5:41)

The disturbances are said to be serially correlated if there exist observations
i 6¼ j so that ei and ej have a non-zero correlation. In this case the covariance
matrix V is not diagonal. This means that, apart from the systematic parts
modelled by x0ib and x0jb, the observations yi and yj have something more in
common.

In general, the purpose of (5.41) is to model all systematic factors that
influence the dependent variable y. If the error terms are serially correlated,
this means that the model is not successful in this respect. One should then try
to detect the possible causes for serial correlation and, if possible, to adjust the
model so that its disturbances become uncorrelated. For example, it may be
that in (5.41) an important independent variable is missing (omitted vari-
ables), or that the functional relationship is non-linear instead of linear
(functional misspecification), or that lagged values of the dependent or inde-
pendent variables should be included as explanatory variables (neglected
dynamics). We illustrate this by two examples.

Example 5.19: Interest and Bond Rates (continued)

We continue our analysis of the interest and bond rate data and will discuss
(i) graphical evidence of serial correlation for these data, and (ii) an economic
interpretation of this serial correlation.

(i) Graphical evidence for serial correlation

We consider the linear model

yi ¼ aþ bxi þ ei, i ¼ 1, � � � , 600,
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for the monthly changes yi in the AAA bond rate and the monthly changes xi
in the three-month Treasury Bill rate. The sample period runs from January
1950 to December 1999. Exhibit 5.28 shows graphs of the series of residuals
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Exhibit 5.28 Interest and Bond Rates (Example 5.19)

Residuals of regression of changes in AAA bond rates on changes in Treasury Bill rates over the
period 1950.01–1999.12 (a), same plot over subsample 1990.01–1999.12 (b), and scatter plot
of residuals against their one-month lagged value (c).
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ei over the whole sample period (in (a)) and also over the period January
1990 to December 1999 (in (b)). These graphs have time on the horizontal
axis and the values of the residuals on the vertical axis. Exhibit 5.28 (c) is a
scatter plot of the residuals against their lagged values— that is, the points in
this plot are given by (ei�1, ei). The residuals of consecutive months are
positively correlated with sample correlation coefficient r ¼ 0:28. In 60 per
cent of the months the residual ei has the same sign as the residual ei�1 in the
previous month.

(ii) Economic interpretation

These results indicate that the series of disturbances ei may be positively
correlated over time. Suppose that in some month the change of the AAA
bond rate is larger than would be predicted from the change of the Treasury
Bill rate in that month, so that ei�1 ¼ yi�1 � a� bxi�1 > 0. If ei and ei�1 are
positively correlated, then we expect that ei > 0—that is, that in the next
month the change of the AAA rate is again larger than usual. This may be
caused by the fact that deviations from an equilibrium relation between the
two rates are not corrected within a single month but that this adjustment
takes a longer period of time. Such dynamic adjustments require a different
model from the above (static) regression model.

Example 5.20: Food Expenditure (continued)

The investigation of serial correlation for cross section data makes sense only
if the observations can be ordered in some meaningful way. We will illustrate
this by considering a cross section of budget data on food expenditure for a
number of households. These data were earlier discussed in Example 4.3
(p. 204). We will discuss (i) the data, (ii) a meaningful ordering of the data,
and (iii) the interpretation of serial correlation for these cross section data.

(i) The data

The budget study of Example 4.3 consists of a cross section of 12,488
households that are aggregated in fifty-four groups. Exhibit 5.29 (a) shows
a histogram of the group sizes. In all that follows we will delete the six groups
with size smaller than twenty. This leaves n ¼ 48 group observations for
our analysis (see Exhibit 5.29 (b)). For each group the following data are
available: the fraction of expenditure spent on food (y), the total consump-
tion expenditure (x2, in $10,000 per year), and the average household
size (x3Þ. We consider the following linear regression model:

yi ¼ b1 þ b2x2i þ b3x3i þ ei, i ¼ 1, � � � , 48:
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(ii) A meaningful ordering of the data

The OLS estimates of b1, b2, and b3 and of the variance s2 ¼ E[e2i ] do not
depend on the ordering of the groups. Exhibit 5.29 (c) shows the scatter
diagram of the residuals against their lagged values— that is, the scatter of
points (ei�1, ei), for a randomly chosen order of the groups. The sample
correlation between ei and ei�1 is very small: r ¼ �0:012. Of course,
it does not make much sense to compare the residual of one observation
with the residual of the previous observation in such a randomly ordered
sample.
To obtain a meaningful ordering we first order the data in six segments.

Each segment consists of group observations with comparable household
size, with 1 � x3 < 2 in the first segment to 5 � x3 < 6 in the fifth segment,
and with x3 � 6 in the last segment. The number of observations in the six
segments is respectively 6, 9, 9, 8, 8, and 8. Within each segment— that is,
for ‘fixed’ household size— the observations are ordered according to the
total consumption expenditure. This ordering is indicated in Exhibit 5.29 (d)
and (f ). With this ordering, we make a scatter diagram of the residuals ei
against the previous residuals ei�1 within segments— that is, for i taking the
values 2–6, 8–15, 17–24, 26–32, 34–40, and 42–48 so that residuals are
compared only within the same segment and not between different segments.
The scatter diagram in (e) shows a positive correlation between ei�1 and ei,
and the sample correlation coefficient is r ¼ 0:43 in this case. This indicates
that the series of error terms ei may be positively correlated within each
segment.

(iii) Interpretation of serial correlation for cross section data

To obtain a better understanding, Exhibits 5.29 (g) and (h) show the actual
values of yi and the fitted values ŷyi ¼ b1 þ b2x2i þ b3x3i for the third segment
of households (where x3i ¼ 3:1 for each observation), together with the
residuals ei ¼ yi � ŷyi. Whereas the fitted relation is linear, the observed data
indicate a non-linear relation with diminishing slope for higher levels of total
expenditure. As a consequence, residuals tend to be positive for relatively
small and for relatively large values of total expenditure and they tend to be
negative for average values of total expenditure. As a consequence, the
residuals are serially correlated. These results are in line with the earlier
discussion in Example 4.3 (p. 204–5), as the effect of income on food
expenditure declines for higher income levels. That is, the relation between
x2 and y is non-linear, so that the linear regression model is misspecified. The
serial correlation of the ordered data provides a diagnostic indication of this
misspecification.
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E Exercises: E: 5.27a, b.

5.5.2 Properties of OLS

Consequences of serial correlation

Serial correlation is often a sign that the model should be adjusted. If one sees
no possibilities to adjust the model to remove the serial correlation, then one
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Exhibit 5.29 Food Expenditure (Example 5.20)

(a) and (b) show histograms of the group sizes ((a) for all 54 groups, (b) for the 48 groups with
size � 20). (c) and (e) show scatter diagrams of the OLS residuals (RESOLS) against their
lagged values (RESOLSLAG) for random ordering ((c), r ¼ �0:012) and for systematic
ordering ((e), r ¼ 0.43). The systematic ordering is in six segments according to household
size (d), and the ordering within each segment is by total consumption (f ). (g) shows the actual
and fitted values in the third segment (groups 16–24, average household size 3.1) with
corresponding residuals in (h).
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can still apply OLS. Serial correlation corresponds to the case where the
covariance matrix V ¼ E[ee0] of the disturbances is not diagonal, and we
assume that V is unknown. As was discussed in Section 5.4.2, under the
Assumptions 1, 2, 5, and 6, OLS remains unbiased and is consistent under
appropriate conditions. In this sense OLS is still an acceptable method of
estimation. However, the OLS estimator is not efficient, and its covariance
matrix is not equal to s2(X0X)�1 but it depends on the (unknown) covariance
matrix V (see (5.23)). In many cases, the OLS expressions underestimate the
standard errors of the regression coefficients and therefore t- and F-tests tend
to exaggerate the significance of these coefficients (see Exercise 5.22 for an
illustration).

Derivation of GMM standard errors

Consistent estimates of the standard errors can be obtained by GMM. That is,
OLS can be expressed in terms of the k moment conditions

E[gi] ¼ 0, gi ¼ eixi ¼ (yi � x0ib)xi, i ¼ 1, � � � ,n:
Note that the situation differs from the one considered in Section 5.4.2, as there
the functions gi are mutually independent, but this does not hold true if the ei are
serially correlated. To describe the required modifications, we use the result (5.23)
so that the variance of b is given by

var(b) ¼ 1

n

1

n
X0X

� ��1 1

n
X0VX

� �
1

n
X0X

� ��1

:

Let sij denote the (i, j)th element of V; then sij ¼ sji (as V is symmetric) and

1

n
X0VX ¼ 1

n

Xn
i¼1

Xn
j¼1

sijxix0j ¼
1

n

Xn
i¼1

siixix0i þ
1

n

Xn�1

i¼1

Xn
j¼iþ1

sij(xix0j þ xjx
0
i):

In the White correction for standard errors, the unknown variances s2i in (5.24)
are replaced by the squared residuals e2i in (5.25). If we copy this idea for the
current situation, then the variance would be estimated simply by replacing
sij ¼ E[eiej] by the product eiej of the corresponding residuals. However, the
resulting estimate of the covariance matrix of b is useless because

1

n

Xn
i¼1

e2i xix
0
i þ

1

n

Xn�1

i¼1

Xn
j¼iþ1

eiej(xix
0
j þ xjx

0
i) ¼

1

n
X0ee0X ¼ 0:

A consistent estimator of the variance of b can be obtained by weighting the
contributions of the terms eiej to give the estimate

V̂V ¼ 1

n
dX0VXX0VX ¼ 1

n

Xn
i¼1

e2i xix
0
i þ

1

n

Xn�1

i¼1

Xn
j¼iþ1

wj�ieiej
�
xix

0
j þ xjx

0
i

�
: (5:42)
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The terms on the diagonal (with i ¼ j) have weight 1, and the terms with i 6¼ j are
given weights with 0 � wj�i � 1. The weighting function w is also called the
kernel. For example, the Bartlett kernel has weights wh ¼ 1� h

B for h < B and
wh ¼ 0 for h � B. To get consistent estimates, the bandwidth B should depend on
the sample size n in such a way that B ! 1 for n ! 1, but at the same time B
should be sufficiently small so that the double summation in (5.42) converges.
Rules that are applied in practice are to take B � n1=3 or, in large samples,
B � n1=5.

Newey–West standard errors

The above method with weighting kernels is due to Newey and West. The
corresponding estimates of the standard errors of the OLS estimator b are
called HAC—that is, they are heteroskedasticity and autocorrelation con-
sistent. So theNewey–West standard errors of b are given by the square roots
of the diagonal elements of the matrix

cvarvar(b) ¼ 1

n
(X0X)�1V̂V(X0X)�1

with the matrix V̂V as defined in (5.42).

Example 5.21: Interest and Bond Rates (continued)

We continue our analysis of the interest and bond rate data (see Example
5.19). Exhibit 5.30 shows the result of regressing the changes in AAA bond

E

XM511IBR Panel 1: Dependent Variable: DAAA
Method: Least Squares
Sample: 1950:01 1999:12
Included observations: 600

Variable Coefficient Std. Error t-Statistic Prob.
C 0.006393 0.006982 0.915697 0.3602

DUS3MT 0.274585 0.014641 18.75442 0.0000
R-squared 0.370346

Panel 2: Dependent Variable: DAAA
Method: Least Squares
Sample: 1950:01 1999:12
Included observations: 600
Newey-West HAC Standard Errors & Covariance (lag truncation¼5)

Variable Coefficient Std. Error t-Statistic Prob.
C 0.006393 0.008309 0.769436 0.4419

DUS3MT 0.274585 0.021187 12.95993 0.0000
R-squared 0.370346

Exhibit 5.30 Interest and Bond Rates (Example 5.21)

Regression of changes in AAA bond rates on changes in Treasury Bill rates with conventional
OLS standard errors (Panel 1) and with Newey–West standard errors (Panel 2).
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rates on the changes in the Treasury Bill rates. The HAC standard errors in
Panel 2 are larger than the standard errors computed by the conventional
OLS formulas in Panel 1. However, these differences do not affect the
significance of the relationship. The residual correlation is relatively mild
(r ¼ 0:28 (see Exhibit 5.28 (c))). In situations with more substantial serial
correlation the differences may be muchmore dramatic (see Exercise 5.22 for
an illustration).

E Exercises: S: 5.22.

5.5.3 Tests for serial correlation

Autocorrelation coefficients

Serial correlation tests require that the observations can be ordered in
a natural way. For time series data, where the variables are observed sequen-
tially over time, such a natural ordering is given by the time index i. For
cross section data the observations can be ordered according to one of the
explanatory variables. In the foregoing sections we considered the correl-
ation between consecutive residuals. The sample correlation coefficient of
the residuals is defined by

r ¼
Pn

i¼2 eiei�1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼2 e

2
i

Pn�1
i¼1 e2i

q :

In practice one often considers a slightly different (but asymptotically equiva-
lent) expression, the first order autocorrelation coefficient defined by

r1 ¼
Pn

i¼2 eiei�1Pn
i¼1 e

2
i

: (5:43)

Large values of r1 may be an indication of dynamic misspecification (for time
series data) or of functional misspecification (for cross section data). To
consider the possibility of more general forms of misspecification, it is
informative to consider also the kth order autocorrelation coefficients

rk ¼
Pn

i¼kþ1 eiei�kPn
i¼1 e

2
i

: (5:44)

This measures the correlation between residuals that are k observations
apart. A plot of the autocorrelations rk against the lag k is called the
correlogram. This plot provides a first idea of possible serial correlation.
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We will now discuss three tests for serial correlation, Durbin–Watson,
Breusch–Godfrey, and Ljung–Box.

The Durbin–Watson test

TheDurbin–Watson test is based on the following idea. Let s2 be the variance
of the disturbances and let r be the correlation between ei and ei�1; then
E[(ei � ei�1)

2] ¼ 2s2(1� r). So if successive error terms are positively (nega-
tively) correlated, then the differences ei � ei�1 tend to be relatively small
(large). The Durbin–Watson statistic is defined as

d ¼
Pn

i¼2 (ei � ei�1)
2Pn

i¼1 e
2
i

:

This statistic satisfies 0 � d � 4, and

d � 2(1� r1)

with r1 the first order autocorrelation coefficient defined in (5.43). In the
absence of first order serial correlation r1 � 0 so that d � 2. Values of d close
to zero indicate positive serial correlation, and values close to four indicate
negative serial correlation. Critical values to test the null hypothesis r ¼ 0
depend on the matrixX of explanatory variables. However, lower and upper
bounds for the critical values that do not depend on X have been calculated
by Durbin and Watson. The use of these bounds requires that the model
contains a constant term, that the disturbances are normally distributed, and
that the regressors are non-stochastic— for instance, lagged values of the
dependent variable yi are not allowed. The Durbin–Watson test is nowadays
mostly used informally as a diagnostic tool to indicate the possible existence
of serial correlation.

Derivation of the Breusch–Godfrey LM-test

The Breusch–Godfrey test is an LM-test on serial correlation. The model is
given by

yi ¼ x0ibþ ei (5:45)

ei ¼ g1ei�1 þ � � � þ gpei�p þ Zi, (5:46)

where Zi satisfies Assumptions 2–4 and 7. That is, the n� 1 vector Z is distributed
as N(0, s2ZI) so that the Zi are homoskedastic and serially uncorrelated. The
equation (5.46) is called an autoregressive model of order p (written as AR(p))
for the error terms. For simplicity we consider in our analysis below only the case
of an AR(1) model for the error terms. In this case we have

T
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ei ¼ gei�1 þ Zi, (5:47)

and we assume that �1 < g < 1: By repetitive substitution we get

ei ¼ Zi þ gZi�1 þ g2Zi�2 þ � � � þ gi�2Z2 þ gi�1e1:

So the error term for observation i is composed of independent terms with weights
that decrease geometrically. The absence of serial correlation corresponds to the
null hypothesis that

H0 : g ¼ 0:

We derive the LM-test for this hypothesis by using the results in Section 4.2.4
(p. 217–8) for non-linear regression models (the ML approach of Section 4.3.6 is
left as an exercise (see Exercise 5.8)). As a first step in the derivation of the LM-test
we use (5.45) and (5.47) to obtain

yi ¼ gyi�1 þ x0ib� gx0i�1bþ Zi: (5:48)

This model contains 2kþ 1 regressors but only kþ 1 parameters— that is, the
parameters satisfy k (non-linear) restrictions. The model (5.48) can be written as a
non-linear regression model

yi ¼ f (zi,b, g)þ Zi,

where zi ¼ (yi�1, x
0
i, x

0
i�1)

0. According to the results for non-linear regression
models in Section 4.2.4, the LM-test can be computed by auxiliary regressions
provided that the regressors zi satisfy the two conditions that plim( 1n

P
ziz

0
i) ¼ Qz

exists (and is non-singular) and that plim( 1n
P

Zizi) ¼ 0 (orthogonality). Under the
null hypothesis that g ¼ 0 in (5.47), we get ei ¼ Zi and (5.45) shows that zi is a
linear function of (Zi�1, x

0
i, x

0
i�1)

0. The above two limit conditions are satisfied if
plim( 1n

P
Zixi) ¼ plim( 1n

P
Zixi�1) ¼ plim( 1n

P
Zi�1xi) ¼ 0 and

plim
1

n

P
xix

0
i

P
xix

0
i�1P

xi�1x
0
i

P
xi�1x

0
i�1

� �� �
¼ Q

with Q a non-singular (2k)� (2k) matrix. According to the results in Section
4.2.4, the LM-test for g ¼ 0 can then be computed as

LM ¼ nR2:

Here R2 is obtained from the regression of the OLS residuals e ¼ y�Xb on the
gradient of the function f —that is, the vector of first order derivatives
@f=@b and @f=@g evaluated in the point (b, g) ¼ (b, 0). The model (5.48) gives,
when evaluated at b ¼ b and g ¼ 0,
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@f=@b ¼ xi � gxi�1 ¼ xi

@f=@g ¼ yi�1 � x0i�1b ¼ yi�1 � x0i�1b ¼ ei�1:

The Breusch–Godfrey test

The foregoing arguments show that the Breusch–Godfrey test is obtained as
LM ¼ nR2 of the auxiliary regression

ei ¼ x0idþ gei�1 þ !i, i ¼ 2, � � � , n: (5:49)

This test has an asymptotic w2(1) distribution under the null hypothesis
of absence of serial correlation. The LM-test for the null hypothesis of
absence of serial correlation against the alternative of AR(p) errors in
(5.46) can be derived in a similar way. This leads to the following test
procedure.

Breusch–Godfrey test for serial correlation of order p


 Step 1: Apply OLS. Apply OLS in the model y ¼ Xbþ e and compute the
residuals e ¼ y�Xb.


 Step 2: Perform auxiliary regression. Apply OLS in the auxiliary regression
equation

ei ¼ x0idþ g1ei�1 þ � � � þ gpei�p þ !i, i ¼ pþ 1, � � � , n:


 Step 3: LM ¼ nR2 of the regression in step 2. Then LM ¼ nR2 where R2 is
the coefficient of determination of the auxiliary regression in step 2. This is
asymptotically distributed as w2(p) under the null hypothesis of no serial
correlation, that is, if g1 ¼ � � � ¼ gp ¼ 0.

An asymptotically equivalent test is given by the usual F-test on the joint
significance of the parameters (g1, � � � , gp) in the above auxiliary regression.
To choose the value of p in the Breusch–Godfrey test, it may be helpful to
draw the correlogram of the residuals ei. In practice one usually selects small
values for p (p ¼ 1 or p ¼ 2) and includes selective additional lags according
to the data structure. For instance, if the data consist of time series that are
observed every month, then one can include all lags up to order twelve to
incorporate monthly effects.

Box–Pierce and Ljung–Box tests

As a third test for serial correlation we consider the Box–Pierce test for the
joint significance of the first p autocorrelation coefficients defined in (5.44).
The test statistic is given by
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BP ¼ n
Xp
k¼1

r2k: (5:50)

It is left as an exercise (see Exercise 5.9) to show that this test is asymptotic-
ally equivalent to the Breusch–Godfrey test. In particular, BP � w2(p) under
the null hypothesis of no serial correlation.
Sometimes the correlations in (5.50) are weighted because higher order

autocorrelations are based on less observations— that is, rk in (5.44) is based
on (n� k) products of residuals eiei�k. This gives the Ljung–Box test (also
denoted as the Q-test)

LB ¼ n
Xp
k¼1

nþ 2

n� k
r2k � w2(p):

Similar to the Durbin–Watson test, the Box–Pierce test and the Ljung–Box
test also require that the regressors xi in the model (5.45) are non-stochastic.
Otherwise it is better to apply the Breusch–Godfrey LM-test.

Example 5.22: Interest and Bond Rates (continued)

We perform serial correlation tests for the interest and bond rate data
discussed before in Examples 5.19 and 5.21. Exhibit 5.31, Panel 1, shows
the results of regressing the changes in the AAA bond rate on the changes
in the Treasury Bill rate. The Durbin–Watson statistic is equal to d ¼ 1:447,
so that the first order autocorrelation coefficient is r1 � 1� 1

2 d ¼ 0:277.
Exhibit 5.31, Panel 2, contains the first twelve autocorrelation coefficients
of the residuals. The first order autocorrelation coefficient is significant. The
Q-test in Panel 2 corresponds to the Ljung–Box test (with p ranging from
p ¼ 1 to p ¼ 12). Panels 3 and 4 show the results of the Breusch–Godfrey test
with one or two lags of the residuals. All tests lead to a clear rejection of the
null hypothesis of no serial correlation.

Example 5.23: Food Expenditure (continued)

Next we perform tests on serial correlation for the data on food expenditure
discussed before in Example 5.20. Exhibit 5.32 shows the results of different
tests for serial correlation for the budget data of forty-eight groups of
households. For a randomly chosen ordering of the groups, the correlogram,
the Ljung–Box test, and the Breusch–Godfrey test indicate that there is no
serial correlation (see Panels 1 and 2).
Now we consider a meaningful ordering of the groups in six segments, as

discussed in Example 5.20. Each segment consists of groups of households of

E

XM511IBR

E
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Panel 1: Dependent Variable: DAAA
Method: Least Squares
Sample: 1950:01 1999:12
Included observations: 600

Variable Coefficient Std. Error t-Statistic Prob.
C 0.006393 0.006982 0.915697 0.3602

DUS3MT 0.274585 0.014641 18.75442 0.0000
R-squared 0.370346 Durbin-Watson stat 1.446887

Panel 2: Correlogram of residuals
Lag AC Q-Stat Prob
1 0.276 45.932 0.000
2 �0.076 49.398 0.000
3 0.008 49.441 0.000
4 0.034 50.126 0.000
5 0.055 51.939 0.000
6 0.101 58.189 0.000
7 0.035 58.934 0.000
8 0.049 60.412 0.000
9 0.044 61.610 0.000

10 0.008 61.646 0.000
11 0.032 62.289 0.000
12 �0.062 64.624 0.000

Panel 3: Breusch–Godfrey Serial Correlation LM Test:
F-statistic 51.91631 Probability 0.000000
Obs�R-squared 48.00277 Probability 0.000000
Dependent Variable: RESID

Variable Coefficient Std. Error t-Statistic Prob.
C 0.000222 0.006702 0.033123 0.9736

DUS3MT �0.022449 0.014396 �1.559364 0.1194
RESID(�1) 0.289879 0.040231 7.205297 0.0000

R-squared 0.080005

Panel 4: Breusch–Godfrey Serial Correlation LM Test:
F-statistic 36.01114 Probability 0.000000
Obs�R-squared 64.68852 Probability 0.000000
Dependent Variable: RESID

Variable Coefficient Std. Error t-Statistic Prob.
C 0.000311 0.006606 0.047153 0.9624

DUS3MT �0.029051 0.014271 �2.035626 0.0422
RESID(�1) 0.342590 0.041495 8.256187 0.0000
RESID(�2) �0.175063 0.040616 �4.310152 0.0000

R-squared 0.107814

Exhibit 5.31 Interest and Bond Rates (Example 5.22)

Regression of AAA bond rates (Panel 1) with correlogram of residuals (Panel 2, ‘Q-Stat’ is
the Ljung–Box test) and Breusch–Godfrey tests on serial correlation (with order p ¼ 1 in
Panel 3 and p ¼ 2 in Panel 4; these panels also show the auxiliary regression of step 2 of
this LM-test).
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Panel 1: Correlogram RESRAND
(randomly ordered data, 48 observations)

Lag AC Q-Stat Prob
1 �0.096 0.4697 0.493
2 0.093 0.9237 0.630
3 0.066 1.1560 0.764
4 0.012 1.1643 0.884
5 0.031 1.2165 0.943
6 �0.134 2.2497 0.895
7 0.207 4.7566 0.690
8 �0.256 8.6744 0.370
9 0.183 10.729 0.295

10 �0.019 10.752 0.377

Panel 2: Breusch–Godfrey test, Dependent Variable: RESRAND
Sample(adjusted): 2 48 (included observations: 47)

Variable Coefficient Std. Error t-Statistic Prob.
C �8.66E-05 0.005750 �0.015064 0.9881

TOTCONS �0.000470 0.008724 �0.053863 0.9573
AHSIZE 9.38E-05 0.001248 0.075099 0.9405

RESRAND(�1) �0.101757 0.156142 �0.651694 0.5181
R-squared 0.009857

Panel 3: Correlogram RESORD
(systematically ordered data)
Sample: 1–6, 8–15, 17–24, 26–32, 34–40, 42–48 (43 obs)

Lag AC Q-Stat Prob
1 0.327 4.9124 0.027
2 0.115 5.5369 0.063
3 �0.039 5.6113 0.132
4 �0.340 11.362 0.023
5 �0.253 14.618 0.012
6 0.007 14.620 0.023
7 0.087 15.031 0.036
8 0.353 21.912 0.005
9 0.213 24.503 0.004

10 0.076 24.842 0.006

Panel 4: Breusch–Godfrey test, Dependent Variable: RESORD
Sample: 2–6, 8–15, 17–24, 26–32, 34–40, 42–48 (included obs 42)

Variable Coefficient Std. Error t-Statistic Prob.
C �0.007112 0.005876 �1.210341 0.2336

TOTCONS 0.016883 0.009605 1.757771 0.0868
AHSIZE �0.000463 0.001233 �0.375160 0.7096

RESORD(�1) 0.480625 0.168762 2.847947 0.0071
R-squared 0.183146

Exhibit 5.32 Food Expenditure (Example 5.23)

Correlograms of residuals and auxiliary regressions of step 2 of Breusch–Godfrey test for
budget data with randomly ordered data (Panels 1 and 2, residuals RESRAND) and with
systematically ordered data (Panels 3 and 4, residuals RESORD).
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comparable size, and the observations within a segment are ordered
according to the total consumption expenditure. The six segments consist
of the observations with index 1–6, 7–15, 16–24, 25–32, 33–40, and 41–48.
We investigate the presence of first order serial correlation within these
segments. At the observations i ¼ 7, 16, 25, 33, and 41, the residuals ei and
ei�1 correspond to different segments and the correlations between these
residuals are excluded from the analysis. This leaves forty-two pairs of
residuals (ei, ei�1) for analysis. The results are in Panels 3 and 4 of Exhibit
5.32. The correlogram, the Ljung–Box test, and the Breusch–Godfrey test
(with LM ¼ nR2 ¼ 42 � 0:18 ¼ 7:69 with P ¼ 0:006) all reject the absence of
serial correlation. This indicates misspecification of the linear model— that
is, the fraction of expenditure spent on food depends in a non-linear way on
total expenditure (see also Example 5.20 (p. 356–8)).

E Exercises: T: 5.8, 5.9, 5.11; S: 5.21; E: 5.30a, b, 5.31d.

5.5.4 Model adjustments

Regression models with lagged variables

If the residuals of an estimated equation are serially correlated, this indicates
that the model is not correctly specified. For (ordered) cross section data this
may be caused by non-linearities in the functional form, and we refer to
Section 5.2 for possible adjustments of the model. For time series data, serial
correlation means that some of the dynamic properties of the data are not
captured by the model. In this case one can adjust the model— for instance,
by including lagged values of the explanatory variables and of the explained
variable as additional regressors. As an example, suppose that the model

yi ¼ b1 þ b2xi þ ei

is estimated by OLS and that the residuals are serially correlated. This
suggests that ei ¼ yi � b1 � b2xi is correlated with ei�1 ¼ yi�1 �b1 � b2xi�1.
This may be caused by correlation of yi with yi�1 and xi�1, which can be
expressed by the model

yi ¼ g1 þ g2xi þ g3xi�1 þ g4yi�1 þ Zi: (5:51)

When the disturbances Zi of this model are identically and independently
distributed (IID), then the model is said to have a correct dynamic specifica-
tion. The search for correct dynamic specifications of time series models is
discussed in Chapter 7.
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Regression model with autoregressive disturbances

In this section we consider only a special case that is often applied as
a first step in modelling serial correlation. Here it is assumed that the
dynamics can be modelled by means of the disturbances ei, and more in
particular that ei satisfies the AR(1) model (5.47) so that ei ¼ gei�1 þ Zi. This
is called the regression model with AR(1) errors. If one substitutes
ei ¼ yi � b1 � b2xi and ei�1 ¼ yi�1 � b1 � b2xi�1, it follows that (5.47) can
be written as

yi ¼ b1(1� g)þ b2xi � b2gxi�1 þ gyi�1 þ Zi: (5:52)

This is of the form (5.51) with g1 ¼ b1(1� g), g2 ¼ b2, g3 ¼ �b2g, and
g4 ¼ g, so that the parameters satisfy the restriction

g2g4 þ g3 ¼ b2g� b2g ¼ 0:

Estimation by Cochrane–Orcutt

If the terms Zi are IID and normally distributed, then the parameters b1, b2,
and g can be estimated by NLS. An alternative is to use the following iterative
two-step method. Note that for a given value of g the parameters b1 and b2
can be estimated by OLS in

yi � gyi�1 ¼ b1(1� g)þ b2(xi � gxi�1)þ Zi:

On the other hand, if the values of b1 and b2 are given, then ei ¼ yi �
b1 � b2xi can be computed and hence g can be estimated by OLS in

ei ¼ gei�1 þ Zi:

Wecan exploit this as follows.As a first step take g ¼ 0 and estimateb1 andb2,
by OLS. This estimator is consistent (provided that �1 < g < 1 (see Chapter
7)), but it is not efficient. Let ei ¼ yi � b1 � b2xi be the OLS residuals; then in
the second step g is estimated by regressing ei on ei�1. This estimator (say ĝg) is
also consistent. To improve the efficiencywe can repeat these two steps. First a
new estimate of b1 and b2 is obtained by regressing yi � ĝgyi�1 on a constant
and xi � ĝgxi�1. Second, if ~eei are the new residuals, then a new estimate of g is
obtained by regressing ~eei on ~eei�1. This process is iterated till the estimates of
b1, b2, and g converge. This is called the Cochrane–Orcutt method for the
estimation of regression models with AR(1) errors. The estimates converge to
a local minimum of the sum-of-squares criterion function, and it may be
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worthwhile to redo the iterations with different initial values for the param-
eters b1, b2, and g.
As the regression model with AR(1) errors is a restriction of the

more general model (5.51), this restriction can be tested in the usual
way— for instance, by the Wald test. The regression model with AR(1)
errors has been popular because it is simple and because the Cochrane–
Orcutt estimator can be computed by iterated regressions. Nowadays more
general dynamic models like (5.51) are often preferred, as will be discussed in
Chapter 7.

Example 5.24: Interest and Bond Rates (continued)

We continue our analysis of the interest and bond rate data. In Example 5.22
in the previous section we found clear evidence for the presence of serial
correlation for these data. We now estimate the adjusted model (5.51), with
the result shown in Panel 2 of Exhibit 5.33. Both lagged terms (xi�1 and yi�1)
are significant, and ĝg2ĝg4 þ ĝg3 ¼ 0:252 � 0:290� 0:080 ¼ � 0:007 is close to
zero. The Wald test on the restriction g2g4 þ g3 ¼ 0 in Panel 3 has a P-value
of P ¼ 0:64, so that this restriction is not rejected. The regression model with
AR(1) errors is therefore not rejected, and the estimation results of this model
are shown in Panel 4 of Exhibit 5.33. To evaluate this last model, Panel
1 contains for comparison the results of OLS. Including AR(1) errors leads to
an increase of R2, but this should not be a surprise. The Durbin–Watson
statistic is more close to 2 (1.90 as compared with 1.45), but recall that for
models with lags this statistic does not provide consistent estimates of the
correlation between the residuals (see p. 362 and Exercise 5.11). Panel 5
contains the correlogram of the OLS residuals and of the residuals of the
model with AR(1) errors— that is, of (5.52). The residuals of the model
(5.52) still contains some significant correlations. Other models are needed
for these data, and this will be further discussed in Chapter 7.

Example 5.25: Food Expenditure (continued)

In Example 5.23 we concluded that there exists significant serial correlation
for the residuals of the linear food expenditure model of Example 5.20. This
is an indication that this linear model is not correctly specified. As it makes
no sense to include ‘lagged’ variables for cross section data, we consider
instead another specification of the functional relation between income and
food expenditure. We will discuss (i) a non-linear model, (ii) the Breusch–
Godfrey test for this non-linear model, and (iii) the outcome and interpret-
ation of the test.

E
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Panel 1: Dependent Variable: DAAA (1950.01 – 1999.12)
Variable Coefficient Std. Error t-Statistic Prob.

C 0.006393 0.006982 0.915697 0.3602
DUS3MT 0.274585 0.014641 18.75442 0.0000

R-squared 0.370346 Durbin–Watson stat 1.446887

Panel 2: Dependent Variable: DAAA (1950.01 – 1999.12)
Variable Coefficient Std. Error t-Statistic Prob.

C 0.004780 0.006712 0.712171 0.4766
DUS3MT 0.252145 0.015007 16.80237 0.0000

DUS3MT(�1) �0.079636 0.017800 �4.473948 0.0000
DAAA(�1) 0.289881 0.040344 7.185151 0.0000

R-squared 0.420728 Durbin–Watson stat 1.897040

Panel 3: Wald Test
Null Hypothesis: C(2)�C(4)þ C(3) ¼ 0

F-statistic 0.215300 Probability 0.642814
Chi-square 0.215300 Probability 0.642645

Panel 4: Dependent Variable: DAAA (1950.01 – 1999.12)
Convergence achieved after 3 iterations

Variable Coefficient Std. Error t-Statistic Prob.
C 0.006668 0.009423 0.707620 0.4795

DUS3MT 0.252361 0.014989 16.83586 0.0000
AR(1) 0.288629 0.040228 7.174887 0.0000

R-squared 0.420519 Durbin–Watson stat 1.896645

Panel 5: Correlograms
OLS residuals AR(1) residuals
Lag AC Q-Stat Prob Lag AC Q-Stat Prob
1 0.276 45.932 0.000 1 0.050 1.5232 0.217
2 �0.076 49.398 0.000 2 �0.181 21.402 0.000
3 0.008 49.441 0.000 3 0.013 21.509 0.000
4 0.034 50.126 0.000 4 0.023 21.829 0.000
5 0.055 51.939 0.000 5 0.036 22.622 0.000
6 0.101 58.189 0.000 6 0.090 27.510 0.000
7 0.035 58.934 0.000 7 �0.011 27.582 0.000
8 0.049 60.412 0.000 8 0.030 28.136 0.000
9 0.044 61.610 0.000 9 0.036 28.926 0.001

10 0.008 61.646 0.000 10 �0.005 28.938 0.001
11 0.032 62.289 0.000 11 0.058 31.023 0.001
12 �0.062 64.624 0.000 12 �0.044 32.189 0.001

Exhibit 5.33 Interest and Bond Rates (Example 5.24)

Regression models for AAA bond rates, simple regression model (Panel 1), dynamic model
with single lags (Panel 2) with Wald test for AR(1) errors (Panel 3), simple regression model
with AR(1) errors (Panel 4), and correlograms of residuals (Panel 5, for residuals of Panel 1 on
the left and for residuals of Panel 4 on the right).
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(i) Non-linear food expenditure model

In Example 4.3 (p. 205) we considered a non-linear functional form for the
budget data. That is,

yi ¼ b1 þ b2x
b3
2i þ b4x3i þ ei,

where yi is the fraction of total expenditure spent on food, x2 is total
expenditure (in $10,000 per year), and x3 is the (average) household size of
households in group i.

Panel 1 of Exhibit 5.34 shows the resulting estimates and a scatter diagram
(in (b)) of the NLS residuals ei against their lagged values ei�1, with correl-
ation r ¼ 0:167 (as compared to r ¼ 0:43 for the residuals of the linear model
in Example 5.20 (see Exhibit 5.29 (g))).

(ii) Breusch–Godfrey test for the non-linear model

To test whether the residual correlation is significant we apply the Breusch–
Godfrey LM-test for the non-linear model. Step 1 of this test consists of NLS,
with NLS residuals ei. To perform step 2 of this test, we first reformulate the
non-linear model with AR(1) error terms as a non-linear regression model,
similar to (5.48) for the linear model. The AR(1) model is ei ¼ gei�1 þ Zi,
where Zi � NID(0,s2Z), and the non-linear model can be written in terms of
the independent error terms Zi as

yi ¼ b1(1� g)þ gyi�1 þ b2x
b3
2i � gb2x

b3
2, i�1 þ b4x3i � gb4x3, i�1 þ Zi:

This is a non-linear regression model yi ¼ f (xi, y)þ Zi with 6� 1
vector of regressors given by xi ¼ (1, yi�1, x2i, x2, i�1, x3i, x3, i�1)

0 and with
5� 1 parameter vector y ¼ (b1, b2, b3, b4, g)

0. Now step 2 of the Breusch–
Godfrey test can be performed as described in Section 4.2.4 (p. 217–8) for
LM-tests— that is, the NLS residuals ei are regressed on the gradient @f

@y,
evaluated at the restricted NLS estimates ŷy ¼ (b1, b2, b3, b4, 0), with g ¼ 0
and with the NLS estimates of the other parameters, as given in Panel 1 of
Exhibit 5.34. The regressors in step 2 are therefore (for g ¼ 0) given by

@f

@b1
¼ 1� g ¼ 1,

@f

@b2
¼ x

b3
2i � gxb32, i�1 ¼ xb32i ,

@f

@b3
¼ b2x

b3
2i log (x2i)� gb2x

b3
2, i�1 log (x2, i�1) ¼ b2x

b3
2i log (x2i),
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@f

@b4
¼ x3i � gx3, i�1 ¼ x3i,

@f

@g
¼ yi�1 � b1 � b2x

b3
2, i�1 � b4x3, i�1 ¼ yi�1 � b1 � b2x

b3
2, i�1 � b4x3, i�1 ¼ ei�1:

(a) Panel 1: Dependent Variable: FRACFOOD
Method: Least Squares
Sample: 1 48 (groups with size � 20)
Included observations: 48
Convergence achieved after 7 iterations
FRACFOOD¼C(1)þC(2)�TOTCONS^C(3)þC(4)�AHSIZE

Parameter Coefficient Std. Error t-Statistic Prob.
C(1) 0.453923 0.054293 8.360611 0.0000
C(2) �0.271015 0.053437 �5.071693 0.0000
C(3) 0.412584 0.115538 3.570982 0.0009
C(4) 0.016961 0.000991 17.11004 0.0000

R-squared 0.939246
Durbin–Watson stat 1.957808

(c) Panel 3: Dependent Variable: RESNONLIN
Method: Least Squares
Sample: 2–6, 8–15, 17–24, 26–32, 34–40, 42–48 (included obs 42)

Variable Coefficient Std. Error t-Statistic Prob.
C 0.154181 0.070516 2.186478 0.0352

TOTCONS^(0.412584) �0.155027 0.070053 �2.212985 0.0331
TOTCONS^(0.412584)�

LOG(TOTCONS)
0.078232 0.038573 2.028173 0.0498

AHSIZE 0.000423 0.001012 0.418210 0.6782
RESNONLIN(�1) 0.195965 0.152414 1.285746 0.2065

R-squared 0.157982

Exhibit 5.34 Food Expenditure (Example 5.25)

Non-linear regression model for budget data (Panel 1), scatter plot of residuals against their
lags (within segments (b)), and auxiliary regression of step 2 of Breusch–Godfrey test on serial
correlation (Panel 3).
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Therefore the required regression in step 2 is

ei ¼ d1 þ d2x
b3
2i þ d3x

b3
2i log (x2i)þ d4x3i þ gei�1 þ !i:

The Breusch–Godfrey test is LM ¼ nR2 of this regression.

(iii) Outcome and interpretation of the test

The results in Panel 3 of Exhibit 5.34 show that LM ¼ nR2 ¼
42 � 0:158 ¼ 6:64 with P-value P ¼ 0:010 (there are forty-two relevant ob-
servations because residuals in different segments should not be compared to
each other (see Example 5.23)). This indicates that there still exists signifi-
cant serial correlation, although the coefficient of ei�1 is not significant
(P ¼ 0:207 (see Panel 3 of Exhibit 5.34), as compared to P ¼ 0:007 for the
linear model in Panel 4 of Exhibit 5.32). So the above simple non-linear
model does not capture all the non-linear effects of the variable x2 on y, but it
is an improvement as compared to the linear model.

This example shows that serial correlation tests can be applied as diagnos-
tic tools for cross section data, provided that the observations are ordered in
a meaningful way.

Example 5.26: Industrial Production

Whereas the two foregoing examples were concerned with data from finance
and microeconomics, serial correlation is also often a relevant issue for
macroeconomic time series. For instance, serial correlation may result be-
cause of prolonged up- and downswings of macroeconomic variables from
their long-term growth path. Although the discussion of time series models is
postponed till Chapter 7, we will now give a brief illustration.Wewill discuss
(i) the data, (ii) a simple trend model, (iii) tests on serial correlation, and (iv)
interpretation of the result.

(i) The data

We consider quarterly data on industrial production in the USA over the
period 1950.1 until 1998.3. The data are taken from the OECD main
economic indicators.

(ii) A simple trend model

We denote the series of industrial production by INP. In order to model the
exponential growth of this series, we fit a linear trend to the logarithm of this
series. We estimate the simple regression model

log (INPi) ¼ aþ biþ ei,

E

XM526INP
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where xi ¼ i denotes the linear trend. The result is shown in Panel 1 of
Exhibit 5.35. The estimated quarterly growth rate is around 0.8 per cent,
corresponding to a yearly growth rate of around 3.3 per cent.

(iii) Tests on serial correlation

The Durbin–Watson statistic is very close to zero, indicating a strong positive
serial correlation in the residuals. This is also clear from the autocorrelations
of the residuals in Panel 2 of Exhibit 5.35. Both the Ljung–Box test in Panel 2

Panel 1: Dependent Variable: LOG(IP)
Method: Least Squares
Sample(adjusted): 1950:1 1998:3
Included observations: 195 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob.
C 3.321756 0.012141 273.6052 0.0000

@TREND(1950.1) 0.008197 0.000108 75.71580 0.0000
R-squared 0.967431
S.E. of regression 0.085094
Durbin–Watson stat 0.084571

Panel 2: Correlogram of residuals
Lag AC Q-Stat Prob
1 0.941 175.36 0.000
2 0.875 327.80 0.000
3 0.813 459.89 0.000
4 0.768 578.37 0.000
5 0.716 681.88 0.000
6 0.686 777.61 0.000
7 0.649 863.63 0.000
8 0.632 945.73 0.000
9 0.609 1022.4 0.000

10 0.589 1094.5 0.000
11 0.556 1159.2 0.000
12 0.548 1222.2 0.000

Panel 3: Breusch–Godfrey Serial Correlation LM Test:
F-statistic 747.5207 Probability 0.000000
Obs�R-squared 172.9098 Probability 0.000000
Test Equation:
Dependent Variable: RESID
Method: Least Squares

Variable Coefficient Std. Error t-Statistic Prob.
C 0.000138 0.004108 0.033538 0.9733

@TREND(1950.1) �2.13E-06 3.66E-05 �0.058197 0.9537
RESID(�1) 1.026273 0.072090 14.23600 0.0000
RESID(�2) �0.090350 0.072114 �1.252877 0.2118

R-squared 0.886717

Exhibit 5.35 Industrial Production (Example 5.26)

Linear trend model for industrial production (in logarithms) (Panel 1, @TREND denotes the
linear trend), correlogram of residuals (Panel 2), and Breusch–Godfrey test (Panel 3).
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and the Breusch–Godfrey test in Panel 3 (with p ¼ 2) strongly reject the
absence of serial correlation.

(iv) Interpretation

The time plot of the residuals in Exhibit 5.36 shows that the growth was
above average for a long period from around 1965 to 1980. Such prolonged
deviations from the linear trend line indicate that this simple linear trend
model misses important dynamical aspects of the time series. More realistic
models for this series will be presented in Chapter 7.

E Exercises: T: 5.10; E: 5.27c, d, 5.29a, b.

5.5.5 Summary

If the error terms in a regression model are serially correlated, this means
that the model misses some of the systematic factors that influence the
dependent variable. One should then try to find the possible causes and to
adjust the model accordingly. The following steps may be helpful in the
diagnostic analysis.

. Order the observations in a natural way. The ordering is evident for time
series data, and serial correlation is one of the major issues for such data
(see Chapter 7). In the case of cross section data, the analysis of serial
correlation makes sense only if the observations are ordered in some
meaningful way.

. Check whether serial correlation is present, by drawing the correlogram
of the residuals and by performing tests, in particular the Breusch–
Godfrey LM-test.
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Exhibit 5.36 Industrial Production (Example 5.26)

Actual and fitted values of US quarterly industrial production (in logarithms, right vertical
axis) and plot of residuals with 95% confidence interval (left vertical axis).
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. If serial correlation is present, OLS is no longer efficient and the usual
formulas for the standard errors do not apply. If it is not possible to
adjust the model to remove the serial correlation, then OLS can be
applied with Newey–West standard errors.

. The best way to deal with serial correlation is to adjust the model so that
the correlation disappears. This may sometimes be achieved by
adjusting the specification of the functional relation— for instance,
by including lagged variables in the model (this is further discussed in
Chapter 7).
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5.6 Disturbance distribution

5.6.1 Introduction

Weighted influence of individual observations

In ordinary least squares, the regression parameters are estimated by minim-
izing the criterion

S(b) ¼
Xn
i¼1

yi � x0ib
� �2

:

This means that errors are penalized in the same way for all observations and
that large errors are penalized more than proportionally. An alternative is to
apply weighted least squares where the errors are not all penalized in the
same way. For instance, for time series data the criterion

Sw(b) ¼
Xn
t¼1

wn�t yt � x0tb
� �2

(5:53)

(with 0 < w < 1) assigns larger weights to more recent observations. This
criterion may be useful, for instance, when the parameters b vary over time
so that the most recent observations contain more information on the current
parameter values than the older observations. In Section 5.4 the use of
weighted least squares was motivated by heteroskedastic error terms. For
time-varying parameters the criterion (5.53) allows for relatively larger
residuals for older observations.

Overview

In Section 5.6.2 we investigate the question of which observations are the
most influential ones in determining the outcomes of an ordinary least
squares regression. If the outcomes depend heavily on only a few observa-
tions, it is advisable to investigate the validity of these data. If the explan-
ation of outlying data falls within the purpose of the analysis, then the
specification of the model should be reconsidered.
Section 5.6.3 contains a test for normality of the disturbances. It may be

that outlying observations are caused by special circumstances that fall
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outside the scope of the model. The influence of such data can be reduced by
using a less sensitive criterion function— for example,

Sabs(b) ¼
Xn
i¼1

jyi � x0ibj:

If the outcomes of estimation and testing methods are less sensitive to
individual observations and to the underlying model assumptions, then
such methods are called robust. Robust methods are discussed in Section
5.6.4.

5.6.2 Regression diagnostics

The leverage of an observation

To characterize influential data in the regression model y ¼ Xbþ e, we use
the hat-matrix H defined by (see Section 3.1.3 (p. 123))

H ¼ X(X0X)�1X0:

The explained part ŷy of the dependent variable y is given by ŷy ¼ Xb ¼ Hy.
The jth diagonal element of H is denoted by

hj ¼ x0j(X
0X)�1xj, (5:54)

where the 1� k vector x0j is the jth row of the n� kmatrixX. The value hj is
called the leverage of the jth observation. The leverages satisfy 0 � hj � 1
and

Pn
j¼1 hj ¼ k (see Exercise 5.12). So the mean leverage is equal to k=n. A

large leverage hj means that the values of the explanatory variables xj are
somewhat unusual as compared to the average of these values over the
sample.

Characterization of outliers

An observation is called an outlier if the value of the dependent variable yj
differs substantially from what would be expected from the general pattern
of the other observations. To test whether the jth observation is an outlier,
we consider the model with a dummy variable for the jth observation—
that is,

yi ¼ x0ibþ gDji þ ei, i ¼ 1, � � � , n, (5:55)
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with Djj ¼ 1 and Dji ¼ 0 for i 6¼ j. The null hypothesis that the jth observa-
tion fits in the general pattern of the data corresponds to the null hypothesis
that g ¼ 0, and this can be tested by the t-test.

Derivation of studentized residuals

Let Dj denote the n� 1 vector with elements Dji, i ¼ 1, � � � , n; then the model in
(5.55) can be written as y ¼ XbþDjgþ e. According to the result of Frisch–
Waugh in Section 3.2.5 (p. 146), the OLS estimator of g is given by

ĝg ¼ (D0
jMDj)

�1D0
jMy ¼ (D0

jDj �D0
jX(X0X)�1X0Dj)

�1D0
je

¼ (1� x0j(X
0X)�1xj)

�1ej ¼ ej
1� hj

:

Here M ¼ I �H and e ¼ My is the usual vector of OLS residuals in
the model y ¼ Xbþ e—that is, in (5.55) with g ¼ 0. If e � N(0, s2I),
then e ¼ Me � N(0, s2M) and ej ¼ D0

je � N(0, s2(1� hj)Þ, so that
ĝg � N(0, s2=(1� hj)). Let s2j be the OLS estimator of s2 based on the model
(5.55), including the dummy. Then the t-value of ĝg in (5.55) is given by

e�j ¼
ĝg

sj=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� hj

p ¼ ej

sj
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� hj

p : (5:56)

This statistic follows the t(n� k� 1) distribution under the null hypothesis that
g ¼ 0. The jth observation is an outlier if ĝg is significant— that is, if the residual ej
or the leverage hj is sufficiently large. The residuals e�j are called the studentized
residuals. Note that the dummy variable is included only to compute the studen-
tized residual. This should not be interpreted as an advice to include dummies in
the model for each outlier. Indeed, if one uses the rule of thumb jtj > 2 for
significance, then one may expect that 5 per cent of all observations are ‘outliers’.
Such ‘ordinary’ outliers are of no concern, but one should pay attention to large
outliers (with t-values further away from zero) and try to understand the cause of
such outliers, as this may help to improve the model.

The ‘leave-one-out’ interpretation of studentized residuals

The jth studentized residual can also be obtained by leaving out the jth
observation. That is, perform a regression in the model yi ¼ x0ibþ ei using
the (n� 1) observations with i 6¼ j, so that the jth observation is excluded.
Let b(j) and s2(j) be the corresponding OLS estimators of b and s2. It is left as
an exercise (see Exercise 5.12) to show that b(j) is the OLS estimator of b in
(5.55) (for n observations), that s2(j) ¼ s2j (that is, the OLS estimator of s2 in
(5.55)), and that yj � x0jb(j) ¼ ĝg in (5.55). With these results it follows from
(5.56) that the studentized residuals can be computed as

T
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e�j ¼
yj � x0jb(j)

s(j)=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� hj

p :

The studentized residual can be interpreted in terms of the Chow forecast test
of observation j, where the forecast is based on the model estimated from the
(n� 1) observations i 6¼ j (see Exercise 5.12). If e�j is large, this means that yj
cannot be predicted well from the other observations, so that the jth obser-
vation does not fit the general pattern of the other observations. In this sense
the jth observation then is an outlier.

OLS may not detect outliers

It should be noted that outliers may not always be detected from the plot of
OLS residuals ei. This is because OLS tries to prevent very large residuals, so
that ej may be small even if e�j is large. Because of (5.56), this can occur if the
leverage of the observation is large. This is illustrated by a simulation in
Exhibit 5.37. The outlier (corresponding to the first observation, with j ¼ 1)
is not detected from the residuals if we include all observations (a–b), but
it is revealed very clearly if the outlier observation is excluded from the
regression (c–e).

Panels 7 and 8 of Exhibit 5.37 illustrate that the estimates of b and s2

and the sum of squared residuals (SSR) in (5.55) are the same as the esti-
mates obtained by deleting the outlier observation. The R2 of (5.55) is
much larger, however. This is simply caused by the fact that the total sum
of squares is much larger for the set of all observations (SST ¼ 1410 in Panel
8) than for the set of observations excluding the outlier (SST ¼ 285 in
Panel 7).

Influence on parameter estimates: ‘dfbetas’

The influence of individual observations on the estimates of b can be evaluated as
follows. Let b be the usual OLS estimator in (5.55) under the restriction that
g ¼ 0, with residuals e, and let b(j) and ĝg be the OLS estimators in (5.55) with
the dummy included, with residuals e(j). Then y ¼ Xbþ e ¼ Xb(j)þDjĝgþ e(j),
so that

X(b� b(j))�Djĝg� e(j)þ e ¼ 0:

If we premultiply this with X0 and use that X0e ¼ 0, X0e(j) ¼ 0, and X0Dj ¼ x0j,
then we obtain

b� b(j) ¼ (X0X)�1X0Djĝg ¼ 1

1� hj
(X0X)�1xjej: (5:57)

T
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(f) Panel 6: Dependent Variable: Y
Included observations: 25

Variable Coefficient Std. Error t-Statistic Prob.
C 43.99717 4.873317 9.028179 0.0000
X �2.988136 0.448928 �6.656161 0.0000

R-squared 0.658269 Sum squared resid 481.7315
S.E. of regression 4.576554 Total sum of squares 1409.682

(g) Panel 7: Dependent Variable: Y
Included observations: 24 (first observation, outlier, removed)

Variable Coefficient Std. Error t-Statistic Prob.
C �22.73838 13.66355 �1.664163 0.1103
X 3.028141 1.233459 2.454999 0.0225

R-squared 0.215043 Sum squared resid 223.4754
S.E. of regression 3.187157 Total sum of squares 284.6977

(h) Panel 8: Dependent Variable: Y
Included observations: 25 (DUM1 is dummy for first observation)

Variable Coefficient Std. Error t-Statistic Prob.
C �22.73838 13.66355 �1.664163 0.1103
X 3.028141 1.233459 2.454999 0.0225

DUM1 64.71023 12.83368 5.042220 0.0000
R-squared 0.841471 Sum squared resid 223.4754
S.E. of regression 3.187157 Total sum of squares 1409.682

Exhibit 5.37 Outliers and OLS

Scatter diagrams and residuals ((a)–(d)), studentized residuals (e), regressions with outlier
(Panel 6), without outlier (Panel 7) and with outlier dummy (Panel 8).
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It is preferable to make the difference bl � bl(j) in the lth estimated parameter,
owing to the jth observation, invariant with respect to the measurement scale of
the explanatory variable xl. Therefore this difference is scaled with an estimate of
the standard deviation of bl —for example, sj

ffiffiffiffiffi
all

p
where all is the lth diagonal

element of (X0X)�1. This gives the dfbetas defined by

dfbetaslj ¼
bl � bl(j)

sj
ffiffiffiffiffi
all

p : (5:58)

It is left as an exercise (see Exercise 5.13) to show that (under appropriate
conditions) the variance of the ‘dfbetas’ is approximately 1=n. So the difference
in the parameter estimates can be stated to be significant if the value of (5.58) is (in
absolute value) larger than 2=

ffiffiffi
n

p
.

Influence on fitted values: ‘dffits’

The influence of the jth observation on the fitted values is given by ŷy� ŷy(j), where
ŷy ¼ Xb and ŷy(j) ¼ Xb(j). In particular, by using (5.57) the difference in the fitted
values for yj is given by

ŷyj � ŷyj(j) ¼ x0j(b� b(j) ) ¼ hj
1� hj

ej:

As ej ¼ yj � ŷyj it follows that

ŷyj ¼ hjyj þ (1� hj)ŷyj(j):

Therefore, the leverage hj gives the relative weight of the observation yj itself
in constructing the predicted value for the jth observation. That is, if hj is large,
then the jth observation may be difficult to fit from the other observations.
Because the variance of ŷyj is equal to E[(x0jb� x0jb)

2] ¼ s2x0j(X
0X)�1xj ¼ s2hj, a

scale invariant measure for the difference in fitted values is given by the dffits
defined by

dffitsj ¼ ŷyj � ŷyj(j)

sj
ffiffiffiffi
hj

p ¼ ej
sj

ffiffiffiffi
hj

p
1� hj

¼ e�j

ffiffiffiffiffiffiffiffiffiffiffiffiffi
hj

1� hj

s
:

Also in this respect, the jth observation is influential if the studentized residual
or the leverage is large. As var(e�j ) � 1 and hj is generally very small for large
enough sample sizes, it follows that ‘dffits’ has a variance of approximately
var(‘dffits’) � var(e�j

ffiffiffiffi
hj

p
) ¼ hj. As

Pn
j¼1 hj ¼ k, the average variance is approxi-

mately k
n. Therefore, differences in fitted values can be stated to be significant if

‘dffits’ is larger (in absolute value) than 2
ffiffiffiffiffiffiffiffi
k=n

p
.

T
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What to do with influential observations?

If the most influential observations in the data set are detected, the question
arises what to do with these observations. They can be the most important
pieces of information, in which case their large influence is justified. If the
influential observations do not fit well in the general pattern of the data, one
may be tempted to delete them from the analysis. However, one should be
careful not to remove important sample information. In any case one should
check whether these observations are correctly reported and one should
investigate whether outliers can possibly be explained in terms of additional
explanatory variables.

Example 5.27: Stock Market Returns (continued)

As an illustration we consider the stock market returns data that were
introduced in Example 2.1 (p. 76–7). We will discuss (i) the data and the
possibility of outliers and (ii) the analysis of influential data.

(i) The data and the possibility of outliers

Financial markets are characterized by sudden deviations from normal oper-
ation caused by crashes or moments of excessive growth. Here we consider
data on excess returns in the sector of cyclical consumer goods and in the
whole market in the UK. These data were previously analysed in Examples
2.1, 4.4 (p. 223–4), and 4.5 (p. 243–6), and in Section 4.4.6 (p. 262–5). In
Examples 4.4 and 4.5 we analysed the possibility of fat tails and now we will
apply regression diagnostics on these data.

(ii) Analysis of influential data

The data consist of monthly observations over the period from January 1980
to December 1999. The CAPM corresponds to the simple regression model
yi ¼ aþ bxi þ ei, where yi is the excess return of the sector and xi that of the
market. Exhibit 5.38 provides graphical information (leverages, studentized
residuals, dfbetas, and dffits, among others) and Exhibit 5.39 displays the
characteristics for some of the data points. The observation in October 1987
(when a crash took place) has a very large leverage but a small studentized
residual, so that this is not an outlier. Such observations are helpful in
estimation, as they fit well in the estimated model and reduce the standard
errors of the estimated parameters. On the other hand, the observations in
September 1980 and September 1982 are outliers, but the leverages of these
observations are small.

E
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Exhibit 5.38 Stock Market Returns (Example 5.27)

Timeplotsofexcess returns inmarket (Panel1)and insectorofcyclical consumergoods (Panel2),
scatter diagram of excess returns in sector against market (Panel 3), regression of excess sector
returns on excess market returns with corresponding residuals (e, Panel 4), leverages (Panel 5),
standard deviations (sj, Panel 6), studentized residuals (Panel 7), dfbetas (Panel 8), and dffits
(Panel 9). The dashed horizontal lines in Panels 4 and 7–9 denote 95% confidence intervals.
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E Exercises: T: 5.12a–c, 5.13; E: 5.29c, d, 5.30c, d, 5.31e, 5.33a.

5.6.3 Test for normality

Skewness and kurtosis

As was discussed in Chapter 4, OLS is equivalent to maximum likelihood if
the error terms are normally distributed. So under this assumption OLS is an
optimal estimation method, in the sense that it is consistent and (asymptotic-
ally) efficient. For this reason it is of interest to test Assumption 7 of normally
distributed error terms. It is also of interest for other reasons— for example,
because many econometric tests (like the t-test and the F-test) are based on
the assumption of normally distributed error terms.

Suppose that the standard Assumptions 1–6 of the regression model are
satisfied. This means that

yi ¼ x0ibþ ei, i ¼ 1, � � � , n,

where E[ei] ¼ 0, E[e2i ] ¼ s2, and E[eiej] ¼ 0 for all i 6¼ j. Then Assumption 7
of normally distributed disturbances can be tested by means of the OLS
residuals ei ¼ yi � x0ib. In particular, we can compare the sample moments
of the residuals with the theoretical moments of the disturbances under the
null hypothesis of the normal distribution. In this case there holds E[e3i ] ¼ 0
and E[e4i ] ¼ 3s4, so that the skewness (S) and kurtosis (K) are equal to

S ¼ E[e3i ]=s
3 ¼ 0, K ¼ E[e4i ]=s

4 ¼ 3:

Characteristic Residual ej Leverage hj St. Resid. e�j dfbetas dffits

5% crit. value 	2s ¼
	11:086

	2=n ¼
	0:008

	2 	2=
ffiffiffi
n

p ¼
	0:129

	2
ffiffiffiffiffiffiffiffiffiffiffi
(2=n)

p ¼
	0:183

1980:06 �10.694 0.015� �1.956 �0.209� �0.245�
1980:09 �20.412� 0.005 �3.795� �0.139� �0.282�

1981:04 15.115� 0.010� 2.779� 0.214� 0.280�
1981:09 2.551 0.059� 0.474 �0.115 0.119
1982:09 �19.558� 0.005 �3.626� �0.086 �0.250�
1983:04 �13.588� 0.011� �2.492� �0.204� �0.260�

1987:10 �2.480 0.156� �0.486 0.206� �0.209�
1991:02 8.930 0.021� 1.634 0.215� 0.240�

Exhibit 5.39 Stock Market Returns (Example 5.27)

Characteristics of some selected influential observations in CAPM over the period 1980.01–
1999.12 (n ¼ 240 observations). An � indicates values that differ significantly from zero (at
5% significance).
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If the null hypothesis of normality is true, then the residuals ei should have a
skewness close to 0 and a kurtosis close to 3. We suppose that the model
contains a constant term, so that the sample mean of the residuals is zero.
Then the jth moment of the residuals is given by mj ¼

Pn
i¼1 e

j
i=n and the

skewness and kurtosis are computed as

S ¼ m3=(m2)
3=2, K ¼ m4=m

2
2:

It can be shown that, under the null hypothesis of normality,
ffiffiffiffiffiffiffiffi
n=6

p
S andffiffiffiffiffiffiffiffiffiffiffi

n=24
p

(K� 3) are asymptotically independently distributed as N(0, 1).
These results can be used to perform individual tests for the skewness and
kurtosis.

Jarque–Bera test on normality

The skewness and kurtosis can also be used jointly to test for normality. The
normal distribution has skewness S ¼ 0 and kurtosis K ¼ 3, and the devi-
ation from normality can be measured by

JB ¼
ffiffiffi
n

6

r
S

� �2

þ
ffiffiffiffiffiffi
n

24

r
(K� 3)

� �2

¼ n
1

6
S2 þ 1

24
(K� 3)2

� �
� w2(2):

This is the Jarque–Bera test on normality, and the null hypothesis is rejected
for large values of JB. Here we will not derive the asymptotic w2(2) distribu-
tion, but note that the null hypothesis poses two conditions (S ¼ 0 and
K ¼ 3), so that the test statistic has two degrees of freedom.

Example 5.28: Stock Market Returns (continued)

We continue our analysis of Example 5.27 in the previous section
and consider the Capital Asset Pricing Model (CAPM) of Example 2.5
(p. 91) for the sector of cyclical consumer goods. The data consist of monthly
observations over the period 1980–99 (n ¼ 240). Exhibit 5.40 (a, b) shows
the time series plot and the histogram of the residuals. The skewness and
kurtosis are equal to S ¼ �0:28 and K ¼ 4:04. This gives values offfiffiffiffiffiffiffiffi

n=6
p

S ¼ �1:77 and
ffiffiffiffiffiffiffiffiffiffiffi
n=24

p
(K� 3) ¼ 3:30. The corresponding (two-

sided) P-value for the hypothesis that S ¼ 0 is P ¼ 0:08, and for the hypoth-
esis that K ¼ 3 it is P ¼ 0:001. So the residuals have a considerably larger
kurtosis than the normal distribution. The Jarque–Bera test has value
JB ¼ (� 1:77)2 þ (3:30)2 ¼ 14:06 with P-value 0.001. So the assumption
of normality is rejected. Exhibit 5.40 (c) shows the histogram that results
when two extremely large negative residuals (in the months of September
1980 and September 1982) are removed. This has a large effect on the
skewness and kurtosis, and the assumption of normality is no longer rejected.
This indicates that for the majority of the sample period the assumption of

E
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normality is a reasonable one. The two extreme observations were detected
as outliers in Example 5.27.

E Exercises: E: 5.28d, 5.31e.

5.6.4 Robust estimation

Motivation of robust methods

If we apply OLS, then all the observations are weighted in a similar way. On
the other hand, the regression model (5.55) with the dummy variable Dj

effectively removes all effects of the jth observation on the estimate of b. If this
observation is very influential but not very reliable, it may indeed make sense
to remove it. Sometimes there are several or even a large number of outlying
data points, and it may be undesirable to neglect them completely.

An alternative is to use another estimation criterion that assigns relatively
less weight to extreme observations as compared to OLS. Such estimation
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RESCAPM

(a)

0
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15
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−20 −15 −10 −5 0 5 10 15

Series: RESCAPM
Sample 1980:01 1999:12
Observations 240

Mean
Median
Maximum
Minimum
Std. Dev.
Skewness
Kurtosis

4.14E-16
0.231594
15.11497

−20.41222
5. 531151

−0.280299
 4.044751

Jarque-Bera
Probability

14.05774
0.000886

(b)

Series: RESCAPM
Sample 1980:01 1999:12
Observations 238

Mean
Median
Maximum
Minimum
Std. Dev.
Skewness
Kurtosis

0.167940
0.254391
15.11497

−13.58811
5.239418
0.040987
3.256015

Jarque-Bera
Probability

 0.716610
0.6988600
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80.09 and 82.0
removed from
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(c)

Exhibit 5.40 Stock Market Returns (Example 5.28)

Time plot of residuals of CAPM (a) and histograms of all residuals (n ¼ 240 (b)) and of
residuals with two outliers removed (n ¼ 238 (c)).
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methods are called robust, because the estimation results are relatively
insensitive to changes in the data.
As a simple illustration, we first consider the situation where the data

consist of a random sample yi, i ¼ 1, � � � , n, and we want to estimate the
centre of location of the population. This centre is more robustly estimated
by the sample median than by the sample mean, as the following simulation
example illustrates.

Example 5.29: Simulated Data of Normal and Student t(2)
Distributions

To illustrate the idea of robust estimation we consider two data generating
processes. The first one is the standard normal distribution N(0, 1). In this
case the sample mean is an efficient estimator, and the median is inefficient.
The second one is the Student t-distribution with two degrees of freedom,
t(2). This distribution has mean zero and infinite variance. It has very fat
tails so that outliers occur frequently, and the mean is an inefficient esti-
mator. Exhibit 5.41 shows summary statistics of simulated data from the
two distributions. The sample sizes are n ¼ 10, 25, 100, and 400, with
1000 replications for each sample size. For every replication the mean and
median of the sample are computed as estimates of the centre of location,
m ¼ 0. The exhibit reports the range (the difference between the maximum
and minimum values of these estimates over the 1000 replications) and the

(non-centred) sample standard deviation
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

m̂m2j =1000
q

over the replications.

It clearly shows that the mean is the best estimator if the population

E

n DGP N(0, 1) N(0, 1) t(2) t(2)

Estimator Mean Median Mean Median

10 St. Dev. 0.322 0.383 1.015 0.445
Range 2.092 3.145 18.903 3.457

25 St. Dev. 0.200 0.255 0.880 0.290
Range 1.254 1.630 20.599 1.925

100 St. Dev. 0.098 0.126 0.325 0.135
Range 0.617 0.795 4.720 0.984

400 St. Dev. 0.050 0.063 0.203 0.070
Range 0.322 0.383 4.542 0.440

Exhibit 5.41 Simulated Data of Normal and Student t(2) Distribution (Example 5.29)

Sample standard deviation and range of sample mean and sample median over 1000
simulation runs of two DGPs (N(0, 1) and t(2) ) for different sample sizes (n ¼ 10, 25,
100, and 400).
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is normally distributed and that the median is best if the population has the
t(2) distribution. That is, for distributions with fat tails the median is a more
robust estimator than the mean.

Robust estimation criteria

Now we consider the model yi ¼ x0ibþ ei and we suppose that Assumptions 1–6
are satisfied. Further we suppose that b is estimated by minimizing a criterion
function of the form

S(b̂b) ¼
Xn
i¼1

G
�
yi � x0ib̂b

� ¼Xn
i¼1

G(ei), (5:59)

where we write ei ¼ yi � x0ib̂b for the residuals. The function G is assumed to be
differentiable with derivative g(ei) ¼ dG(ei)=dei. The first order conditions for a
minimum of (5.59) are given by

@S(b̂b)

@b̂b
¼ �

Xn
i¼1

g(ei)xi ¼ 0: (5:60)

If one defines the weights wi ¼ g(ei)=ei, this can also be written as

Xn
i¼1

wieixi ¼ 0: (5:61)

Ordinary least squares corresponds to the choice

G(ei) ¼ 1

2
e2i , g(ei) ¼ ei, wi ¼ 1:

The function g(ei) measures the influence of outliers in the first order conditions
(5.60) for the estimator b̂b. In ordinary least squares this influence is a linear
function of the residuals. A more robust estimator— that is, an estimator that is
less sensitive to outliers— is obtained by choosing

G(ei) ¼ jeij, g(ei) ¼ �1 for ei < 0,
þ1 for ei > 0.


We call this criterion function the least absolute deviation (LAD). If the observa-
tions consist of a random sample— that is, yi ¼ mþ ei for i ¼ 1, � � � , n—then OLS
gives m̂m ¼P yi=n and LAD gives m̂m ¼ med(yi), the median of the observations (see
Exercise 5.14). As our simulation in Example 5.29 illustrates, LAD is more robust
than OLS, but some efficiency is lost if the disturbances are normally distributed.
The attractive properties of both methods (OLS and LAD) can be combined by
using, for instance, the following criterion:

T
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G(ei) ¼
1
2 e

2
i if jeij � c,

cjeij � 1
2 c

2 if jeij > c.


(5:62)

This criterion was proposed by Huber. The derivative of G is given by

g(ei) ¼
�c if ei < �c,
ei if �c � ei � c,
c if ei > c.

8<: (5:63)

The corresponding estimator of b̂b gives a compromise between the efficiency (for
normally distributed errors) of OLS (obtained for c ! 1) and the robustness of
LAD (obtained for c # 0). In Exhibit 5.42 the Huber criterion is compared with
OLS and LAD. Relatively small residuals have a linear influence and constant
weights, and large residuals have constant influence and declining weights. The
influence of outliers is reduced because (5.63) imposes a threshold on the function
g(ei).

OLS LAD Huber 

G(ei)=
1
2
 ei

2 G(ei)=ei G(ei)

ei0

0

0 0 0

0 0

0 0−c +c+c ei

ei

ei −c

g(ei)g(ei)g(ei)

wi=g(ei)/ei

+1
+1

+1

−c

+1

−c +c

+c

−1−1

eiei

ei ei ei

wi wi

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Exhibit 5.42 Three estimation criteria

Criterion functions (G in (a–c)), first order derivatives (influence functions g in (d–f )), and
weights (wi in Swieixi ¼ 0 in (g–i)) of three criteria, OLS ((a), (d), (g)), LAD ((b), (e), (h)),
and Huber ((c), (f ), (i)).
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Remarks on statistical properties

In general, the equations (5.60) to compute the estimator b̂b are non-linear and
should be solved by numerical methods. The initial estimate is of importance
and it is advisable to use a robust initial estimate, even if this may be ineffi-
cient. The statistical properties of this estimator can be derived by noting
that (5.60) corresponds to a GMM estimator with moment functions
gi ¼ �g(ei)xi (see Section 4.4.2 (p. 253–4)). The estimator is consistent and,
in large enough samples, approximate standard errors can be obtained from
the asymptotic results on GMM in Section 4.4.3 (p. 258), provided that
E[g(ei)xi] ¼ 0, see (4.61) (p. 253). If the regressors xi are not stochastic this
gives the condition

E[g(ei)] ¼ 0:

For OLS, with g(ei) ¼ ei, this is guaranteed by Assumption 2, as this states that
E[ei] ¼ 0. For LAD this condition means that P(ei > 0) ¼ P(ei < 0)— that is, that
the median of the distribution of ei is zero.

Interpretation of robust estimation in terms of ML

Robust estimation can also be interpreted in terms of maximum likelihood
estimation by an appropriate choice of the probability distribution of the error
terms ei. Let ei have density function f and let li ¼ log (f (ei)), where ei ¼ yi � x0ib̂b
for a given estimate b̂b of b. Then the log-likelihood is given by logL ¼P

li ¼
P

log (f (ei) ), and ML corresponds to the minimization of (� logL) with
first order conditions

� @ logL

@b̂b
¼ �

Xn
i¼1

@ log (f (ei))

@b̂b
¼ �

Xn
i¼1

d log (f (ei))

dei

@ei
@b

¼
Xn
i¼1

f 0(ei)
f (ei)

xi,

where f 0(ei) ¼ df (ei)=dei is the derivative of f . This corresponds to the equations
(5.60) with

g(ei) ¼ �f 0(ei)=f (ei):

In practice the density f of the disturbances is unknown. A criterion of the
type (5.59) can be interpreted as postulating that �f 0(ei)=f (ei) ¼ g(ei) is a reason-
able assumption to estimate b. For OLS this leads to �f 0(ei)=f (ei) ¼ ei, with
solution f (ei) ¼ 1ffiffiffiffi

2p
p e�

1
2e

2
i , the standard normal distribution. For LAD this gives

�f 0(ei)=f (ei) ¼ 	1 (the sign of ei), with solution f (ei) ¼ 1
2 e

�jeij (see also Exercise
5.14).

T

T
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Interpretation of robust estimation in terms of WLS

The estimator b̂b that minimizes (5.59) can also be interpreted in terms of weighted
least squares. If the weightswi in (5.61) are fixed, then these equations correspond
to the first order conditions for minimizing the weighted least squares criterionPn

i¼1 wie
2
i . So the weights wi measure the relative importance of the squared

errors e2i in determining b̂b. This also motivates a simple iterative method for
estimating b by means of the (robust) criterion (5.59). Start with weights
wi ¼ 1, i ¼ 1, � � � , n, and estimate b by OLS with residuals ei. Then compute
wi ¼ g(ei) and estimate b by WLS. Iterate the computation of residuals ei, weights
wi, and WLS estimates of b, until convergence.

Appropriate scaling in robust estimation

It is of course preferable that the results do not depend on the chosen scales of
measurement of the variables. Let us consider the effect of rescaling the dependent
variable yi. If this variable is replaced by y�i ¼ ayi, with a a given constant, then we
would like the estimates b̂b to be replaced by b̂b� ¼ ab̂b, as in this case the fitted values
are related by ŷy�i ¼ x0ib̂b

� ¼ ax0ib̂b ¼ aŷyi. The criteria OLS and LAD satisfy this
requirement. For other criterion functions this requirement is satisfied by re-
placing (5.59) by

S(b̂b) ¼
Xn
i¼1

G
yi � x0ib̂b

s

 !
,

where s2 ¼ E[e2i ] ¼ var(yi). For instance, for the Huber criterion (5.62) this means
that c should be replaced by cs.

In practice s is unknown and has to be estimated. The usual OLS estimator
of the variance may be sensitive for outliers. Let m denote the median of
the n residuals e1, � � � , en; then a robust estimator of the standard deviation is
given by

ŝs ¼ 1:483 �med(jej �mj, j ¼ 1, � � � , n), (5:64)

where ‘med’ denotes the median of the n values jej �mj. It is left as an exercise (see
Exercise 5.12) to prove (for a simple case) that this gives a consistent estimator of
s if the observations are normally distributed.

This can be used to estimate the parameters b and s by an iterative two-step
method. In the first step s is fixed and b is estimated robustly, with corresponding
residuals ei. In the second step, ŝs is estimated from the residuals ei. This new
estimate of s can be used to compute new robust estimates of b, and so on, until
the estimates converge.

T

T
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Limiting the influence of observations with large leverage

Finally we note that by an appropriate choice of the function g in the criterion
(5.60) the influence of large residuals can be limited, but the explanatory variables
can still be influential because of the linear term xi. This influence may also be
bounded— for example, by replacing the ‘normal equations’ (5.60) by

Xn
i¼1

g1(xi)g2

�
yi � x0ib̂b

ŝs

�
¼ 0:

For instance, one can take g1(xi) ¼ g(x0i(X
0X)�1xi) ¼ g(hi) with hi the leverage in

(5.54) and with g chosen as in (5.63) with c ¼ k=n (the mean value of the
leverages).

E Exercises: T: 5.12d, 5.14, 5.15; E: 5.29e.

5.6.5 Summary

In least squares the deviations from the postulated relation between de-
pendent and independent variables are penalized in a quadratic way. This
means that observations that deviate much from the general pattern may
have an excessive influence on the parameter estimates. To investigate the
presence of such influential observations and to reduce their influence, one
can proceed as follows.

. A first impression may be obtained by inspecting the histogram of the
least squares residuals and by the Jarque–Bera test on normality. Note,
however, that OLS is not a reliable method to detect influential obser-
vations.

. Influential data may be detected by considering the leverages, studen-
tized residuals, dffits, and dfbetas of the individual observations.

. If some of the observations deviate a lot from the overall pattern, one
should try to understand the possible causes. This may suggest, for
instance, additional relevant explanatory variables or another choice
for the distribution of the disturbances. In some cases it may also be that
some of the reported data are unreliable, so that they should be excluded
in estimation.

. If the deviating observations are a realistic aspect of the data (as is the
case in many situations), one may wish to limit their influence by
applying a robust estimation method.

T
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. The choice of the robust estimation method (corresponding to solving
the equations

P
g(ei)xi ¼ 0) can be based on ideas concerning appro-

priate weights wi of the individual observations (by taking g(ei) ¼ wiei)
or on ideas concerning the probability distribution f of the disturbances
(by taking g(ei) ¼ �f 0(ei)=f (ei) where f 0(ei) ¼ df (ei)=dei).
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5.7 Endogenous regressors and
instrumental variables

5.7.1 Instrumental variables and two-stage least squares

Motivation

Until now we have assumed either that the regressors xi are fixed or that
they are stochastic and exogenous in the sense that there is no correlation
between the regressors and the disturbance terms. It is intuitively clear that,
if xi and ei are mutually correlated, it will be hard to distinguish their
individual contributions to the outcome of the dependent variable yi ¼
x0ibþ ei. In Section 4.1.3 (p. 194–6) we showed that OLS is inconsistent in
this situation.
We briefly discuss two examples that will be treated in greater detail later

in this section. The first example is concerned with price movements on
financial markets. If we relate the returns of one financial asset y (in our
example AAA bonds) to the returns of another asset x (in our example
Treasury Bill notes) by means of the simple regression model

yi ¼ aþ bxi þ ei,

then xi and ei may well be correlated. This is the case if the factors ei
that affect the bond rate, such as the general sentiment in the market, also
affect the Treasury Bill rate. For instance, unforeseen increased uncertainties
in international trade may have a simultaneous upward effect both on bond
rates and on interest rates. We will consider this possible endogeneity of
Treasury Bill rates in later examples in this section (see Examples 5.30, 5.32,
and 5.33).
As a second example, for many goods the price and traded quantity are

determined jointly in the market. A higher price may lead to lower demand,
whereas a higher demand may lead to higher prices. If we relate price x and
quantity y by the simple regression model yi ¼ aþ bxi þ ei, then xi and ei
may well be correlated. For instance, the demand may increase because of
higher wealth of consumers, and this may at the same time increase the price.
We will consider this possible endogeneity of the price by considering the
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market for motor gasoline consumption in later examples (see Examples 5.31
and 5.34).

OLS requires exogenous regressors

In the multivariate regression model yi ¼ x0ibþ ei, the dependent variable yi
is modelled in terms of k explanatory variables x0i ¼ (1, x2i, � � � , xki). Under
the standard Assumptions 1–6 of Section 3.1.4 (p. 125), it is assumed that yi
is a random variable, but that the values of xi are ‘fixed’. In many situations
the outcomes of the variables xi are partly random. This was analysed in
Section 4.1 under Assumption 1� of stability— that is,

plim
1

n
X0X

� �
¼ Q (5:65)

exists with Q a k� k invertible matrix. In Section 4.1.3 (p. 194) we derived
that OLS is consistent in this case if and only if the explanatory variables are
(weakly) exogenous— that is, the variables should satisfy the orthogonality
condition plim( 1nX

0e) ¼ 0. In this case the results that were obtained under
the assumption of fixed regressors (including the diagnostic analysis in
Sections 5.1–5.6) carry over to the case of stochastic exogenous regressors,
by interpreting the results conditional on the given outcomes of the
regressors in the n� k matrix X. For instance, the statistical properties
E[b] ¼ b and var(b) ¼ s2(X0X)�1 should then be interpreted as E[bjX] ¼ b
and var(bjX) ¼ s2(X0X)�1. This was also discussed in Section 4.1.2
(p. 191–2).

Consequences of endogenous regressors

We will now consider the situation where one or more of the regressors is
endogenous in the sense that

plim
1

n
X0e

� �
6¼ 0: (5:66)

This means that the random variation in X is correlated with the random
variation e in y. In such a situation it is difficult to isolate the effect of X on y
because variations inX are related to variations in y in two ways, directly via
the term Xb but also indirectly via changes in the term e. For instance, in a
cross section of cities the per capita crime (y) may very well be positively
correlated with the per capita police force (x), in which case a regression of y
on x gives a positive OLS estimate of the effect of police on crime. The reason
is that in the model yi ¼ aþ bxi þ ei cities with high crime rates (ei > 0) tend
to have larger police forces (values of xi larger than average). Clearly, in such
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a situation the effect of police on crime cannot be estimated reliably by OLS
(see also Exercise 5.23). Stated in statistical terms, if one or more of the
regressors is endogenous, then OLS is no longer consistent and the conven-
tional results (t-test, F-tests, diagnostic tests in previous sections of this
chapter) are no longer valid.

The use of instruments

A consistent estimator can be obtained if one can identify instruments. A set
of m observed variables z0i ¼ (z1i, � � � , zmi) is called a set of instruments if the
following three conditions are satisfied, where Z denotes the n�m matrix
with rows z0i, i ¼ 1, � � � , n:

plim
1

n
Z0e

� �
¼ 0, (5:67)

plim
1

n
Z0X

� �
¼ Qzx, rank(Qzx) ¼ k, (5:68)

plim
1

n
Z0Z

� �
¼ Qzz, rank(Qzz) ¼ m: (5:69)

The condition (5.67) means that the instruments should be exogenous. For
example, this is satisfied (under weak additional conditions) when the instru-
ments are uncorrelated with the disturbances in the sense that

E[ziei] ¼ 0, i ¼ 1, � � � , n: (5:70)

The condition (5.68) means that the instruments should be sufficiently cor-
related with the regressors. This is called the rank condition. As Qzx is an
m� k matrix, this requires that m � k—that is, the number of instruments
should be at least as large as the number of regressors. This is called the order
condition for the instruments. The stability condition (5.69) is similar to
(5.65).

How to find instruments?

Before we describe the instrumental variable estimator (below) and its statis-
tical properties (in the next section), we first discuss the question of how to
find instruments. First of all, one should analyse which of the explanatory
variables are endogenous. If the jth explanatory variable is exogenous,
so that plim

�
1
n

Pn
i¼1 xjiei

� ¼ 0, then this variable should be included in the
set of instruments. For instance, the constant term should always be
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included, together with all other exogenous regressors. If k0 of the regressors
are endogenous, one should find at least k0 additional instruments. One
option is to formulate additional equations that explain the dependence of
the endogenous variables in terms of exogenous variables. This leads to
simultaneous equation models that are discussed in Chapter 7. In many
cases it is too demanding to specify such additional equations, and instead
one selects a number of variables that are supposed to satisfy the conditions
(5.67)–(5.69). In Section 5.7.3 we describe a test for the validity of these
conditions.
In practice the choice of instruments is often based on economic insight, as

we will illustrate by means of two examples at the end of this section.

Derivation of IV estimator

To describe the instrumental variable (IV) estimator, we assume that condition
(5.70) is satisfied. This corresponds to m moment conditions. The IV estimator is
defined as the GMM estimator corresponding to these moment conditions. In the
exactly identified case (m ¼ k), the IV estimator bIV is given by the solution of the
m equations 1

n

Pn
i¼1 zi(yi � x0ibIV) ¼ 0— that is,

bIV ¼
Xn
i¼1

zix
0
i

 !�1Xn
i¼1

ziyi ¼ (Z0X)�1Z0y:

In the over-identified case (m > k), the results in Section 4.4.3 (p. 256) show that
the efficient estimator corresponding to these moment conditions is obtained by
weighted least squares. More particularly, the GMM criterion function 1

nG
0
nWGn

in (4.63) with Gn ¼
Pn

i¼1 zi(yi � x0ib) ¼ Z0(y�Xb) leads to the criterion function

S(b) ¼ 1

n
(y�Xb)0ZWZ0(y�Xb),

where the weighting matrix W is equal to the inverse of the covariance matrix
J� ¼ E[ziei(ziei)

0] ¼ E[e2i ziz
0
i]. Under weak regularity conditions, a consistent esti-

mator of these weights is given byW ¼ J�1, where J ¼ s2
n

Pn
i¼1 ziz

0
i ¼ s2

n Z0Z. As the
scale factor s2 has no effect on the location of the minimum of S(b), we obtain the
criterion function

SIV(b) ¼ (y�Xb)0Z(Z0Z)�1Z0(y�Xb) ¼ (y�Xb)0PZ(y�Xb), (5:71)

where PZ ¼ Z(Z0Z)�1Z0 is the projection matrix corresponding to regression on
the instruments Z. The first order conditions for a minimum are given by

@SIV(b)
@b

¼ �2X0PZ(y�Xb) ¼ 0:

T
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The IV estimator and two-stage least squares

The foregoing analysis shows that the IV estimator is given by

bIV ¼ (X0PZX)�1X0PZy: (5:72)

This estimator has an interesting interpretation. We are interested in the
coefficients b in y ¼ Xbþ e, but OLS is inconsistent because of (5.66). If
the regressors would have beenZ instead ofX, then (5.67) means that OLS is
consistent. The idea is to replaceX by linear combinations of Z that approxi-
mateX as well as possible. This best approximation is obtained by regressing
every column of X on the instruments matrix Z. The fitted values of this
regression are

X̂X ¼ Z(Z0Z)�1Z0X ¼ PZX: (5:73)

Then b is estimated by regressing y on X̂X, which gives the following estimator
of b:

(X̂X0X̂X)�1X̂X0y ¼ (X0PZX)�1X0PZy ¼ bIV : (5:74)

So the IV estimator can be computed by two successive regressions. The IV
estimator is therefore also called the two-stage least squares estimator, ab-
breviated as 2SLS.

Two-stage least squares estimates of the parameters b (2SLS)


 Stage 1. Regress each column of X on Z, with fitted values X̂X ¼
Z(Z0Z)�1Z0X.


 Stage 2. Regress y on X̂X, with parameter estimates bIV ¼ (X̂X0X̂X)�1X̂X0y.

Example 5.30: Interest and Bond Rates (continued)

As an illustration we consider the interest and bond rate data introduced in
Example 5.11.We will discuss (i) the possible endogeneity of the explanatory
variable (the interest rate), (ii) a suggestion for possible instruments, and (iii)
the results of IV estimation with these instruments.

(i) Possible endogeneity of the interest rate

In foregoing sections we analysed the relation between monthly changes in
the AAA bond rate (yi) and in the short-term interest rate (the three-month
Treasury Bill rate, (xi)) by the model

yi ¼ aþ bxi þ ei, i ¼ 1, � � � , n:

E
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It may very well be that the factors ei that cause changes in the AAA bond rate
reflect general financial conditions that also affect the Treasury Bill rate. If
this is the case, then xi is not exogenous and OLS is not consistent.

Panel 1: Correlogram of explanatory var. DUS3MT
Sample 1980.01–1999.12 (240 observations)

Lag AC Q-Stat Prob
1 0.279 18.938 0.000
2 �0.185 27.259 0.000
3 �0.155 33.156 0.000
4 �0.102 35.713 0.000
5 0.037 36.056 0.000
6 �0.167 42.972 0.000
7 �0.157 49.110 0.000
8 0.155 55.157 0.000
9 0.264 72.725 0.000

10 0.048 73.318 0.000
11 �0.110 76.382 0.000
12 �0.247 91.897 0.000

Panel 2: Dependent Variable: DUS3MT
Method: Least Squares
Sample: 1980:01 1999:12
Included observations: 240

Variable Coefficient Std. Error t-Statistic Prob.
C �0.026112 0.039009 �0.669400 0.5039

DUS3MT(�1) 0.358145 0.062307 5.748060 0.0000
DUS3MT(�2) �0.282601 0.062266 �4.538625 0.0000
R-squared 0.151651

Panel 3: Dependent Variable: DAAA
Method: Least Squares
Sample: 1980:01 1999:12
Included observations: 240

Variable Coefficient Std. Error t-Statistic Prob.
C �0.004558 0.015440 �0.295200 0.7681

DUS3MT 0.306453 0.023692 12.93503 0.0000
R-squared 0.412803

Panel 4: Dependent Variable: DAAA
Method: Instrumental Variables
Sample: 1980:01 1999:12
Included observations: 240
Instrument list: C DUS3MT(�1) DUS3MT(�2)

Variable Coefficient Std. Error t-Statistic Prob.
C �0.008453 0.016572 �0.510085 0.6105

DUS3MT 0.169779 0.064952 2.613906 0.0095
R-squared 0.330694

Exhibit 5.43 Interest and Bond Rates (Example 5.30)

Correlations of explanatory variable (DUS3MT) with its lagged values (Panels 1 and 2) and
regression model estimated by OLS (Panel 3) and by IV (Panel 4).
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(ii) Possible instruments

If financial markets are efficient, this means that all past information is
processed in the current prices. In this case the current value of ei is uncorrel-
ated with the past values of both yi�j and xi�j for all j � 1. We will assume
that the disturbance term ei is correlated with the current change xi in
the Treasury Bill rate, but not with past changes xi�1, xi�2, and so on.
Then these past changes can serve as instruments. In Example 5.33 we
will test the exogeneity condition (5.67)— that is, the condition that
E[xi�1ei] ¼ E[xi�2ei] ¼ 0.

(iii) Results of IV estimation

We now analyse the interest and bond rate data over the period from January
1980 to December 1999 (n ¼ 240). To check the rank condition (5.68),
Panel 1 of Exhibit 5.43 shows that the variable xi is correlated with its
past values. As instruments we take xi�1 and xi�2, the one- and two-month
lagged changes in the Treasury Bill rate. The regression of xi on xi�1 and xi�2

has an R2 ¼ 0:15 (see Panel 2 of Exhibit 5.43). The condition (5.68) is
satisfied, although the correlations are not so large. Panel 4 reports the
IV estimates with instruments z0i ¼ (1, xi�1, xi�2), and for comparison
Panel 3 reports the OLS estimates. The estimates of the slope parameter b
differ quite substantially. A further analysis is given in Example 5.33 at the
end of Section 5.7.3.

Example 5.31: Motor Gasoline Consumption

For many goods, the price and traded quantities are determined jointly in the
market process. It may well be that price and quantity influence each other,
with higher prices leading to lower demand and with higher demand leading
to higher prices. We will analyse this for the market of motor gasoline in the
USA. We will discuss (i) the data and (ii) possible instruments and corres-
ponding IV estimates.

(i) The data

We consider the relation between gasoline consumption, gasoline price, and
disposable income in the USA. Yearly data on these variables and three price
indices (of public transport, new cars, and used cars) are available over the
period 1970–99. Exhibit 5.44 (a–c) shows time plots of these three variables
(all in logarithms), and a scatter diagram (d) and a partial scatter diagram (e)
(after removing the influence of income) of consumption against price.

We are interested in the demand equation for motor gasoline, in particular,
in the effects of price and income on demand.We postulate the linear demand
function

E
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GCi ¼ aþ bPGi þ gRIi þ ei, i ¼ 1, � � � , 30,

whereGC stands for gasoline consumption, PG for the gasoline price index,
and RI for disposable income (all measured in real terms and taken in
logarithms).
The USA is a major player on the world oil market, so that the fluctu-

ations ei in US gasoline consumption could affect the gasoline price. If this
is the case, then PG is not exogenous, and OLS provides inconsistent
estimates.

(ii) Possible instruments and corresponding IV estimates

As possible instruments we consider (apart from the constant term and the
regressor RI) the real price indices of public transport (RPT), of new cars
(RPN), and of used cars (RPU). In Example 5.34 we will test whether these
variables are indeed exogenous.
Exhibit 5.45 shows the results of OLS (in Panel 1) and IV (in Panel 2). The

estimates do not differ much, which can be taken as an indication that the
gasoline price can be considered as an exogenous variable for gasoline
consumption in the US. In Example 5.34 we will formally test whether the
price is exogenous or endogenous.
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Exhibit 5.44 Motor Gasoline Consumption (Example 5.31)

Time plots of real gasoline consumption (GC (a)), real gasoline price (PG (b)) and real income
(RI (c)), all in logarithms, and scatter diagram of consumption against price (d) and partial
scatter diagram after removing the influence of income (e).
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E Exercises: T: 5.16a, b, 5.18; S: 5.23a–d.

5.7.2 Statistical properties of IV estimators

Derivation of consistency of IV estimators

We consider the properties of the IV estimator (5.72) for the model y ¼ Xbþ e
with n�m instrument matrix Z. Referring to Section 3.1.4 (p. 125–6), we
suppose that Assumptions 2–6 are satisfied and that Assumption 1 is replaced

Panel 1: Dependent Variable: GC
Method: Least Squares
Sample: 1970 1999
Included observations: 30
Variable Coefficient Std. Error t-Statistic Prob.

C 4.985997 0.081101 61.47914 0.0000
PG �0.527578 0.026319 �20.04565 0.0000
RI 0.573220 0.024511 23.38644 0.0000

R-squared 0.987155

Panel 2: Dependent Variable: GC
Method: Instrumental Variables
Sample: 1970 1999
Included observations: 30
Instrument list: C RPT RPN RPU RI
Variable Coefficient Std. Error t-Statistic Prob.

C 5.013700 0.083911 59.75035 0.0000
PG �0.544450 0.028950 �18.80669 0.0000
RI 0.564662 0.025389 22.24005 0.0000

R-squared 0.986959

Panel 3: Dependent Variable: PG
Method: Least Squares
Sample: 1970 1999
Included observations: 30
Variable Coefficient Std. Error t-Statistic Prob.

C 7.740963 0.833698 9.285095 0.0000
RPT �0.808004 0.191221 �4.225499 0.0003
RPN �3.527853 0.351973 �10.02308 0.0000
RPU 0.233078 0.183108 1.272898 0.2148
RI �2.298421 0.247071 �9.302668 0.0000

R-squared 0.886815

Exhibit 5.45 Motor Gasoline Consumption (Example 5.31)

OLS of gasoline consumption (GC) on price of gasoline (PG) and income (RI) (Panel 1), IV of
consumption on price and income using five instruments, the constant term, income, and three
real price indices (of public transport (RPT), new cars (RPN), and used cars (RPU) (Panel 2) ),
and relation between gasoline price and the five instruments (Panel 3).

T
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by the five (asymptotic) conditions (5.65)–(5.69). Under these conditions the IV
estimator is consistent. To prove this, we write (5.72) as

bIV ¼ X0Z(Z0Z)�1Z0X
� ��1

X0Z(Z0Z)�1Z0(Xbþ e)

¼ bþ 1

n
X0Z

1

n
Z0Z

� ��11

n
Z0X

 !�1
1

n
X0Z

1

n
Z0Z

� ��11

n
Z0e:

(5:75)

Because of the conditions (5.67)–(5.69) we obtain the probability limit of bIV as

plim(bIV) ¼ bþ (Q0
zxQ

�1
zz Qzx)

�1Q0
zxQ

�1
zz 0 ¼ b:

This shows that the exogeneity of the instruments Z is crucial to obtain consist-
ency. Note that the IV estimator is also consistent if Assumptions 3 and 4 are not
satisfied (that is, for heteroskedastic or serially correlated errors), as long as the
instruments are exogenous. However, Assumptions 3 and 4 are needed in our
derivation of the asymptotic distribution of bIV .

Derivation of asymptotic distribution

We will assume (in analogy with (4.6) in Section 4.1.4 (p. 196)) that

1ffiffiffi
n

p Z0e !d N(0, s2Qzz):

Using the notation bIV ¼ bþ An(
1
n Z

0e) for the last expression in (5.75),
we can rewrite (5.75) as

ffiffiffi
n

p
(bIV � b) ¼ An � 1ffiffi

n
p Z0e, where An has probability

limit A ¼ (Q0
zxQ

�1
zz Qzx)

�1Q0
zxQ

�1
zz . Combining these results and using

AQzzA
0 ¼ (Q0

zxQ
�1
zz Qzx)

�1 gives

ffiffiffi
n

p
(bIV � b) !d N

�
0, s2

�
Q0

zxQ
�1
zz Qzx

��1�
:

In large enough finite samples, bIV is approximately normally distributed with
mean b and covariance matrix s2

n ( 1nX
0Z( 1nZ

0Z)�1 1
n Z

0X)�1 ¼ s2(X0PZX)�1. With
the notation (5.73) this gives

bIV � N
�
b, s2(X0PZX)�1

� ¼ N
�
b, s2(X̂X0X̂X)�1

�
: (5:76)

The instrumental variable estimator is relatively more efficient if the instruments
Z are more highly correlated with the explanatory variables. In practice, the
exogeneity condition (5.67) is often satisfied only for variables that are relatively
weakly correlated with the explanatory variables. Such weak instruments lead to
relatively large variances of the IV estimator.

T
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To use the above results in testing we need a consistent estimator of the variance
s2. Let eIV ¼ y�XbIV be the IV residuals; then a consistent estimator is given by

s2IV ¼ 1

n� k
e0IVeIV ¼ 1

n� k
(y�XbIV)

0(y�XbIV): (5:77)

If the IV estimator is computed as in (5.74)— that is, by regressing y on X̂X—then
the conventional OLS expression for the covariance matrix is not correct. This
would give ŝs2(X̂X0X̂X)�1 with ŝs2 ¼ 1

n�k (y� X̂XbIV)
0(y� X̂XbIV), and this estimator of

s2 is not consistent (see Exercise 5.16).

Remark on finite sample statistical properties

The above analysis is based on asymptotic results. As concerns finite sample
properties, we mention that in finite samples the pth moments of bIV exist if and
only if p < m� kþ 1. In the exactly identified case there holds m ¼ k, so that the
finite sample probability distribution of bIV does not have a well-defined mean or
variance. The covariance matrix of bIV exists if and only if m � kþ 2. This result
could suggest that it is always best to incorporate as many instruments as possible.
Adding instruments also leads to asymptotically smaller variances, provided that
all additional instruments are exogenous. However, if the additional instruments
areweak, then the finite sample distributionmay verywell deteriorate. In practice it
is often better to search for a sufficient number of good instruments than for a large
number of relatively weak instruments.

Derivation of the F-test in IV estimation

Tests on the individual significance of coefficients can be performed by
conventional t-tests based on (5.76) and (5.77). An F-test for joint linear restric-
tions can be performed along the lines of Section 3.4.1 (p. 161–2). To derive
the expression for this test we use some results of matrix algebra (see Appendix A,
Section A.6 (p. 737)). There it is proved that the n� n projection matrix
PZ ¼ Z(Z0Z)�1Z0 of rank m can be written in terms of an m� n matrix K as

PZ ¼ K0K, with KK0 ¼ Im,

where Im is the m�m identity matrix. Define the m� 1 vector y� ¼ Ky and the
m� k matrix X� ¼ KX. The instrumental variable criterion (5.71) can then be
written as

SIV(b) ¼ (y�Xb)0K0K(y�Xb) ¼ (y� �X�b)0(y� �X�b):

If y ¼ Xbþ e with e � N(0, s2In), then

y� ¼ X�bþ e�, e� � N(0, s2KK0) ¼ N(0, s2Im):

T
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This shows that IV estimation in the model y ¼ Xbþ e is equivalent to applying
OLS in the transformed model y� ¼ X�bþ e�. Let the unrestricted IV estimator be
denoted by bIV and the restricted IV estimator by bRIV, with corresponding
residuals e� ¼ y� �X�bIV ¼ K(y�XbIV) ¼ KeIV and e�R ¼ y� �X�bRIV ¼
K(y�XbRIV) ¼ KeRIV . If the g restrictions of the null hypothesis hold true, then
the results in Section 3.4.1 (p. 161–2) imply that

e�
0

Re
�
R � e�

0
e�

� �
=s2 ¼ e0RIVK

0KeRIV � e0IVK
0KeIV

� �
=s2

¼ e0RIVPZeRIV � e0IVPZeIV
� �

=s2 � w2(g):

If we replace s2 by the consistent estimator (5.77), then we get

F ¼ e0RIVPZeRIV � e0IVPZeIV
� �

=g

e0IVeIV=(n� k)
� F(g, n�k):

This differs from the standard expression (3.50) for the F-test, as in the numerator
the IV residuals are weighted with PZ.

Computation of the F-test

It is computationally more convenient to perform the following regressions.
First regress every column of X on Z with fitted values X̂X as in (5.73). Then
perform two regressions of y on X̂X, one without restrictions (with residuals
denoted by êe) and one with the restrictions of the null hypothesis imposed
(with residuals denoted by êeR). Then

F ¼ êe0RêeR � êe0êe
� �

=g

e0IVeIV=(n� k)
: (5:78)

The proof that this leads to the same F-value as the foregoing expression is
left as an exercise (see Exercise 5.16).

Example 5.32: Interest and Bond Rates (continued)

We continue our previous analysis of the interest and bond rate data in
Example 5.30. The model is

yi ¼ aþ bxi þ ei,

with yi the monthly AAA bond rate changes and xi the monthly Treasury Bill
rate changes. As instruments we take again z0i ¼ (1, xi�1, xi�2). Now we test
whether the AAA bond rate will on average remain the same if the Treasury
Bill rate is fixed. This seems to be a natural assumption. So we test the null

E

XM511IBR

5.7 Endogenous regressors and instrumental variables 407



hypothesis that a ¼ 0. Panel 1 of Exhibit 5.46 shows the t-value obtained by
IV—that is, tIV(âa) ¼ �0:510. So the null hypothesis is not rejected. Note
that if we compute the IV estimate by regressing y on X̂X as in (5.74), then the
reported t-value becomes �0:42 (see Panel 3 of Exhibit 5.46), so this t-value
is not correct. Exhibit 5.46 also contains the regressions needed for (5.78),
with sums of squared residuals êe0RêeR ¼ 22:717 (Panel 4), êe0êe ¼ 22:700 (Panel
3), and e0IVeIV ¼ 15:491 (Panel 1). So the F-test for a ¼ 0 becomes

Panel 1: Dependent Variable: DAAA
Method: Instrumental Variables
Sample: 1980:01 1999:12
Included observations: 240
Instrument list: C DUS3MT(�1) DUS3MT(�2)

Variable Coefficient Std. Error t-Statistic Prob.
C �0.008453 0.016572 �0.510085 0.6105

DUS3MT 0.169779 0.064952 2.613906 0.0095
R-squared 0.330694 Sum squared resid 15.49061

Panel 2: Dependent Variable: DUS3MT
Method: Least Squares
Sample: 1980:01 1999:12
Included observations: 240

Variable Coefficient Std. Error t-Statistic Prob.
C �0.026112 0.039009 �0.669400 0.5039

DUS3MT(�1) 0.358145 0.062307 5.748060 0.0000
DUS3MT(�2) �0.282601 0.062266 �4.538625 0.0000
R-squared 0.151651 Sum squared resid 86.30464

Panel 3: Dependent Variable: DAAA
Method: Least Squares
Sample: 1980:01 1999:12
Included observations: 240

Variable Coefficient Std. Error t-Statistic Prob.
C �0.008453 0.020060 �0.421374 0.6739

XHAT 0.169779 0.078626 2.159311 0.0318
R-squared 0.019214 Sum squared resid 22.69959

Panel 4: Dependent Variable: DAAA
Method: Least Squares
Sample: 1980:01 1999:12
Included observations: 240

Variable Coefficient Std. Error t-Statistic Prob.
XHAT 0.173480 0.078000 2.224107 0.0271

R-squared 0.018483 Sum squared resid 22.71653

Exhibit 5.46 Interest and Bond Rates (Example 5.32)

Model for AAA bond rates estimated by IV (Panel 1), first step of 2SLS (Panel 2, construction
of X̂X, denoted by XHAT, by regressing DUS3MT on three instruments— that is, the constant
term and the 1 and 2 lagged values of DUS3MT), second step of 2SLS (Panel 3, regression of
AAA bond rates on XHAT), and regression of AAA bond rates on XHAT in restricted model
without constant term (Panel 4). The sum of squared residuals in Panels 1, 3, and 4 is used in the
F-test for the significance of the constant term.
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F ¼ (22:717� 22:700)=1

15:491=(240� 2)
¼ 0:261, P ¼ 0:611:

This is equal to the square of the IV t-value in Panel 1, F ¼ t2IV(âa), and both
tests do not lead to rejection of the hypothesis that a ¼ 0.

E Exercises: T: 5.16c, e.

5.7.3 Tests for exogeneity and validity
of instruments

Motivation of exogeneity tests

If some of the regressors are endogenous, then OLS is not consistent but IV is
consistent. On the other hand, if the regressors are exogenous, then OLS is
consistent and (under the usual assumptions) more efficient than IV in the
sense that var(bIV) � var(b), because (X0PZX)�1 � (X0X)�1 (see Exercise
5.16). So OLS will be preferred if the regressors are exogenous (or weakly
endogenous in the sense that the correlations in (5.66) are small) and IV will
be better if the regressors are (too strongly) endogenous. The choice between
these two estimators can be based on a test for the exogeneity of the
regressors. So we want to test the null hypothesis of exogeneity—that is,

plim
1

n
X0e

� �
¼ 0, (5:79)

against the alternative of endogeneity (5.66) that plim( 1nX
0e) 6¼ 0. If the

assumption of exogeneity is not rejected, we can apply OLS, otherwise it
may be better to use IV to prevent large biases due to the inconsistency of
OLS for endogenous regressors.

Derivation of test based on comparison of OLS and IV

A simple idea is the following. If the regressors in y ¼ Xbþ e are exogenous, then
OLS and IVare both consistent and the respective estimators b and bIV of b should
not differ very much (in large enough samples). This suggests basing the test on
the difference d ¼ bIV � b. Using (5.74) and the fact that X̂X0X ¼ X0PZX ¼ X̂X0X̂X,
we get

b ¼ (X0X)�1X0y ¼ bþ (X0X)�1X0e,

bIV ¼ (X̂X0X̂X)�1X̂X0y ¼ bþ (X̂X0X̂X)�1X̂X0e:

T
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So d ¼ bIV � b ¼ ( 1n X̂X
0X̂X)�1 1

n X̂X
0e� ( 1nX

0X)�1 1
nX

0e. If the null hypothesis (5.79)
holds true, then E[d] � 0 and

var(d) ¼ var
�
(X̂X0X̂X)�1X̂X0e� (X0X)�1X0e

�
� s2

�
(X̂X0X̂X)�1X̂X0 � (X0X)�1X0��(X̂X0X̂X)�1X̂X0 � (X0X)�1X0�0

¼ s2
�
(X̂X0X̂X)�1 � (X0X)�1

� � var(bIV)� var(b),

where we used that var(e) ¼ s2I and X̂X0X ¼ X̂X0X̂X. Under the usual assumptions, d
is also asymptotically normally distributed so that (under the null hypothesis of
exogeneity)

(bIV � b)0
�
var(bIV)� var(b)

��1
(bIV � b) � w2(k):

This test is easy to apply, as OLS of y on X gives b and an estimate of
var(b), and OLS of y on X̂X gives bIV and an estimate of var(bIV) (see (5.76)).
However, in finite samples the estimated covariances may be such that
( ^varvar(bIV)� ^varvar(b)) is not positive semidefinite, in which case the variance of d is
very badly estimated and the test as computed above does not have a good
interpretation.

Derivation of exogeneity test of Durbin, Wu, and Hausman

Usually exogeneity is tested in another way. We will now describe an exogeneity
test associated with Durbin, Wu, and Hausman, commonly known as the Haus-
man test. This test corresponds to the LagrangeMultiplier test. The main idea is to
reformulate the exogeneity condition (5.79) in terms of a parameter restriction.
For this purpose we split the regressors into two parts, the k0 variables that are
possibly endogenous and the other (k� k0) variables that are exogenous (for
instance, the constant term). We order the regressors so that the first (k� k0)
ones are exogenous and the last k0 ones are potentially endogenous. The null
hypothesis of exogeneity of these regressors is formulated as

E[xjiei] ¼ 0, j ¼ k� k0 þ 1, � � � , k:

By assumption, the m instruments zi satisfy the exogeneity condition (5.70) that
E[ziei] ¼ 0. Now we consider the auxiliary regression model explaining the jth
regressor in terms of these m instruments— that is,

xji ¼ z0igj þ vji, i ¼ 1, � � � , n: (5:80)

Here gj is an m� 1 vector of parameters and vji are error terms. Because of (5.70)
it follows that E[xjiei] ¼ E[vjiei], and the null hypothesis of exogeneity is equiva-
lent to E[vjiei] ¼ 0 for j ¼ k� k0 þ 1, � � � , k. Let vi be the k0 � 1 vector with
components vji; then the condition is that ei is uncorrelated with all components

T
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of vi. If we assume that all error terms are normally distributed, the condition
becomes more specific, in that vi and ei are independent— that is, that in the
conditional expectation E[eijvi] ¼ v0ia there holds a ¼ 0. Let wi ¼ ei � E[eijvi];
then ei ¼ v0iaþwi, where wi is independent of vi, and the condition of exogeneity
can be expressed as follows:

ei ¼ v0iaþwi, H0 : a ¼ 0: (5:81)

Substituting the results (5.81) and (5.80) in the original model yi ¼ x0ibþ ei
gives

yi ¼
Xk
j¼1

bjxji þ
Xk

j¼k�k0þ1

aj
�
xji � z0igj

�þwi: (5:82)

This is a non-linear regression model, as it involves products of the unknown
parameters aj and gj. Assuming a joint normal distribution for the error terms wi

in (5.82) and vji in (5.80), the LM-test for the hypothesis that a ¼ 0 can be derived
along the lines of Section 4.3.6 (p. 238) in terms of the score vector and the
Hessian matrix (see (4.54)). The computations are straightforward but tedious
and are left as an exercise for the interested reader (see Exercise 5.17 for the
derivation).

The Hausman LM-test on exogeneity

The Hausman LM-test on exogeneity can be computed as follows.

Hausman text on exogeneity


 Step 1: Perform preliminary regressions. Regress y on X, with n� 1 re-
sidual vector e ¼ y�Xb. Regress every possibly endogenous regressor xj
on Z in (5.80), with n� 1 residual vector v̂vj ¼ xj � Zĝgj.


 Step 2: Perform the auxiliary regression. Regress e on X (the n� k matrix
including both the (k� k0) exogenous and the k0 possibly endogenous
regressors) and on the k0 series of residuals v̂vk�k0þ1, � � � , v̂vk —that is,
perform OLS in the model

ei ¼
Xk
j¼1

djxji þ
Xk

j¼k�k0þ1

ajv̂vji þ Zi: (5:83)


 Step 3: LM ¼ nR2 of the regression in step 2. Then LM ¼ nR2 where R2 is
the coefficient of determination of the regression in step 2. Under the
hypothesis that all k0 regressors xj, j ¼ k� k0 þ 1, � � � ,k, are exogenous,
LM has asymptotically the w2(k0) distribution.
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This three-step method to compute the LM-test by means of auxiliary
regressions is similar to the LM-test procedure described in Section 4.3.7
(p. 238–40) for the linear model. In step 1 the model (5.82) is estimated
under the null hypothesis— that is, with a ¼ 0. In step 2, the residuals of step
1 are regressed on all explanatory variables in the unrestricted model (5.82).
Because the regressors vji ¼ xji � z0igj are unknown (as the parameters gj are
unknown), they are replaced by the residuals v̂vji obtained by regressing the
jth regressor on the m instruments.

Comments on the LM-test

The null hypothesis of exogeneity— that is, aj ¼ 0 for j ¼ k� k0 þ 1, � � � , k in
(5.82)—can also be tested by the usual F-test on the joint significance of these
parameters in the regression (5.83). Under the null hypothesis, this test statistic is
asymptotically distributed as F(k0, n� k� k0). This F-test and the LM-test of step
3 above are asymptotically equivalent. That is, in large enough samples they
provide (nearly) the same P-value and hence both tests lead to the
same conclusion (rejection or not) concerning the exogeneity of the last k0
regressors.

In another version of the F-test on exogeneity, the ‘explained’ variable ei
in (5.83) is replaced by the dependent variable yi. As e ¼ y�Xb, both regres-
sions (with ei or with yi on the left-hand side) have the same residual sum of
squares (as all k regressors xi are included on the right-hand side). That is,
the F-test on the joint significance of the parameters aj can be equivalently
performed in the regression equation (5.83) or in the same equation with ei
replaced by yi.

Summarizing, exogeneity is equivalent to the condition that E[vjiei] ¼ 0, where
ei are the error terms in the model yi ¼ x0ibþ ei and vji are the error terms in (5.80).
As error terms are not observed, they are replaced by residuals in step 1 and the
correlation between the residuals ei and v̂vji is evaluated by the regression (5.83).
Endogeneity of the regressors is indicated by significant correlations— that is, by a
significant R2 and significant estimates of the parameters aj.

Sargan test on validity of instruments

Finally we consider the question whether the instruments are valid. That is,
we test whether the instruments are exogenous in the sense that condition
(5.70) is satisfied. This assumption is critical in all the foregoing results. If the
instruments are not exogenous, then IV is not consistent and also the Haus-
man test is not correct anymore. In some cases the exogeneity of the instru-
ments is reasonable from an economic point of view, but in other situations
this may be less clear. We illustrate this later with two examples. A simple
idea to test (5.70) is to replace the (unobserved) error terms ei by reliable
estimates of these error terms. As the regressors may be endogenous, we
should take not the OLS residuals but the IV residuals eIV ¼ y�XbIV . Under

T
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the null hypothesis that the instruments are exogenous, bIV is consistent and
eIV provides reliable estimates of the vector of error terms e. We test (5.70) by
testing whether zi is uncorrelated with eIVi, the ith component of eIV . This
suggests the following test, which is called the Sargan test on the validity of
instruments.

Sargan test on the validity of instruments


 Step 1: Apply IV. Estimate y ¼ Xbþ e by IV, with n� 1 residual vector
eIV ¼ y�XbIV .


 Step 2: Perform auxiliary regression. Regress eIV on Z in the model

eIVi ¼ z0igþ Zi:


 Step 3: LM ¼ nR2 of the regression in step 2. Compute LM ¼ nR2

of the regression in step 2. Under the null hypothesis that the instruments
are exogenous, LM asymptotically has the w2(m� k) distribution, wherem
is the number of instruments (the number of variables in zi) and k is the
number of regressors (the number of variables in xi).

Derivation of the distribution of the Sargan test

To derive the distribution under the null hypothesis, in particular that the degrees
of freedom is equal to (m� k), we recall that IV corresponds to GMM with
moment conditions (5.70). If m > k—that is, in the over-identified case—we
can apply the GMM test on over-identifying restrictions of Section 4.4.3 (p. 258).
Using the notation of Section 4.4.3 (p. 253), the moment functions corresponding
to (5.70) are

gi ¼ ziei ¼ zi(yi � x0ib),

and Gn ¼
Pn

i¼1 gi ¼
Pn

i¼1 ziei ¼ Z0e and Jn ¼
Pn

i¼1 gig
0
i ¼
Pn

i¼1 e
2
i ziz

0
i. Evaluated at

the GMMestimator bIV, we getGn ¼ Z0eIV and plim( 1n Jn) ¼ plim 1
n

Pn
i¼1 e

2
i ziz

0
i

� � ¼
s2Qzz. If we approximate Qzz by 1

n Z
0Z and s2 by 1

n e
0
IVeIV, we get

Jn � 1
n e

0
IVeIVZ

0Z. Then the test on over-identifying restrictions— that is, the J-test
(4.69)— is given by

G0
nJ

�1
n Gn ¼ n

e0IVZ(Z
0Z)�1Z0eIV

e0IVeIV
¼ nR2

with the R2 of the regression in step 2 above. So our intuitive arguments for the
Sargan test can be justified by the GMM test on over-identifying restrictions.
According to Section 4.4.3 (p. 258), under the null hypothesis of exogenous
instruments there holds

T
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LM ¼ nR2 � w2(m� k):

The validity of the instruments is rejected for large values of this test statistic. Note
that the validity can be checked only if m > k—that is, if the number of instru-
ments exceeds the number of regressors. In the exactly identified case (m ¼ k) the
validity of the instruments cannot be tested.

Example 5.33: Interest and Bond Rates (continued)

We continue our previous analysis of the interest and bond rate data
in Example 5.30. We will discuss (i) a comparison of the IV and
OLS estimates, (ii) the Hausman test on exogeneity, and (iii) the Sargan test
on the validity of the lagged Treasury Bill rate changes as instruments.

(i) Comparison of IV and OLS estimates

In Section 5.7.1 we estimated the relation between changes in the AAA bond
rate (yi) and the Treasury Bill rate (xi) by instrumental variables, with the
lagged values xi�1 and xi�2 as instruments. Exhibit 5.43, Panels 3 and 4
(p. 401), shows the results of OLS and of IV. Denoting the estimates of a and b
in yi ¼ aþ bxi þ ei by a and b, respectively, we see that aIV � a ¼ �0:004
and bIV � b ¼ �0:137. The covariance matrices of these estimates are

cvarvarOLS ¼ s2(X0X)�1 ¼ 10�5
23:8 1:6

1:6 56:1

 !
,

cvarvarIV ¼ s2IV(X̂X
0X̂X)�1 ¼ 10�5

27:5 12:0

12:0 421:9

 !
:

If one uses these results to test for exogeneity, it follows that

aIV � a
bIV � b

� �0
(cvarvarIV � cvarvarOLS)

�1 aIV � a
bIV � b

� �
¼ 5:11:

This is smaller than the 5 per cent critical value of the w2(2) distribution
(5.99), so that at this significance level this test does not lead to rejection of
the hypothesis that xi is exogenous.

(ii) Hausman test on exogeneity

As the above test is not so reliable, we now perform the Hausman test. As
in the model yi ¼ aþ bxi þ ei we have k ¼ 2 and as the constant term is
exogenous, it follows that k0 ¼ 1. The result of step 2 of the Hausman test
is in Panel 1 of Exhibit 5.47, where ‘resaux’ stands for the residuals obtained

E
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by regressing xi on the instruments xi�1, xi�2 and a constant term. The
t-test on the significance of ‘resaux’ has a P-value of 0.014, and the
Hausman LM-test gives LM ¼ nR2 ¼ 240 � 0:024996 ¼ 6:00, with P-value
(corresponding to the w2(1) distribution) P ¼ 0:014. This indicates that the
assumption of exogeneity should be rejected, and that the OLS estimator

(a) Panel 1: Step 2 of Hausman test; Dependent Variable: RESOLS
Method: Least Squares
Sample: 1980:01 1999:12
Included observations: 240
Variable Coefficient Std. Error t-Statistic Prob.

C �0.003895 0.015359 �0.253610 0.8000
DUS3MT �0.136674 0.060199 �2.270359 0.0241
RESAUX 0.161106 0.065359 2.464945 0.0144
R-squared 0.024996

(b) Panel 2: Correlations between IV residuals and lagged values of DUS3MT
Lag 0 1 2 3 4 5 6 7 8 9 10
Corr. 0.35 �0.01 �0.01 �0.07 0.07 0.16 �0.06 0.02 0.13 �0.02 �0.01

(f ) Panel 6: Step 2 of Sargan test; Dependent Variable: RESIV
Method: Least Squares
Sample: 1980:01 1999:12
Included observations: 240

Variable Coefficient Std. Error t-Statistic Prob.
C �0.000156 0.016525 �0.009431 0.9925

DUS3MT(�1) �0.002218 0.026395 �0.084042 0.9331
DUS3MT(�2) �0.003387 0.026378 �0.128395 0.8979
R-squared 0.000135

Exhibit 5.47 Interest and Bond Rates (Example 5.33)

Panel 1 contains the regression of step 2 of the Hausman test on exogeneity of the
explanatory variable DUS3MT (RESOLS and RESAUX are the residuals obtained in step 1
of the Hausman test, RESOLS are the residuals of the regression in Panel 3 of Exhibit 5.43,
and RESAUX are the residuals of the regression in Panel 2 of Exhibit 5.46). Panel 2 shows
the correlations of the IV residuals with lags of the explanatory variable for lags 0–10, and the
three scatter diagrams are for lags 0 (c), 1 (d), and 2 (e). Panel 6 contains the regression for step
2 of the Sargan test on validity of instruments (RESIVare the IV residuals obtained in step 1 of
this test; this regression is shown in Panel 1 of Exhibit 5.46).

−1.0

−0.5

0.0

0.5

1.0

1.5

−6 −4 −2 0 2 4

DUS3MT

R
E

SI
V

r = 0.350

(c) (d) (e)

−1.0

−0.5

0.0

0.5

1.0

1.5

−6 −4 −2 0 2 4

DUS3MTLAG1

R
E

SI
V

 r = −0.008

−1.0

−0.5

0.0

0.5

1.0

1.5

−6 −4 −2 0 2 4

DUS3MTLAG2

R
E

SI
V

 r = −0.010

5.7 Endogenous regressors and instrumental variables 415



may be considerably biased. The IV estimate of the slope is much smaller
than the OLS estimate and it has a much larger standard error (0.065
instead of the computed value of 0.024 for OLS (see Panels 3 and 4 of
Exhibit 5.43)).

(iii) Sargan test on validity of instruments

The IV estimates can be trusted only if the instruments xi�1 and xi�2 are
exogenous— that is, this requires that E[xi�1ei] ¼ E[xi�2ei] ¼ 0. Exhibit
5.47 shows the correlations between lagged values of xi and the IV residuals
eIV (in Panel 2) and scatters of the IV residuals against xi, xi�1, and xi�2 (see
(c), (d), and (e)). This indicates that xi is indeed not exogenous but that xi�1

and xi�2 are exogenous (with correlations of around �0:01, both between
xi�1 and eIV and between xi�2 and eIV).

Panel 6 of Exhibit 5.47 shows the regression of step 2 of the Sargan test.
This gives LM ¼ nR2 ¼ 240 � 0:000135 ¼ 0:032. As there are m ¼ 3 instru-
ments (the constant term and xi�1 and xi�2) and k ¼ 2 regressors (the
constant term and xi), it follows that the w2-distribution has (m� k) ¼ 1
degree of freedom. The P-value of the LM-test, corresponding to the w2(1)
distribution, is P ¼ 0:86. This indicates that the lagged values of xi are valid
instruments.

Example 5.34: Motor Gasoline Consumption (continued)

Next we consider the data on motor gasoline consumption introduced
in Example 5.31. We will discuss (i) the Hausman test on exogeneity of the
gasoline price, (ii) the Sargan test on the validity of the price indices as
instruments, and (iii) a remark on the required model assumptions.

(i) Hausman test on the exogeneity of the gasoline price

In Example 5.31 we considered the relation between gasoline consumption
(GC), gasoline price (PG), and disposable income (RI) in the USA. We
postulated the demand equation

GCi ¼ aþ bPGi þ gRIi þ ei:

We supposed that RI is exogenous and considered the possible endogeneity
of PG. The outcomes of OLS and IV estimates (with five instruments— that
is, a constant, RI, and the three price indices RPT, RPN, and RPU) in Panels
1 and 2 of Exhibit 5.45 turned out to be close together, suggesting that PG is
exogenous. Panel 1 of Exhibit 5.48 shows the regression of step 2 of the
Hausman test, with outcome LM ¼ nR2 ¼ 2:38. Since the constant and the
income are assumed to be exogenous and the price PG is the only possibly
endogenous variable, we have k0 ¼ 1. So the distribution of the LM-test
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(under the null hypothesis of exogeneity) is w2(1), which gives a P-value
of P ¼ 0:12. This does not lead to rejection of the exogeneity of the
variable PG.

(ii) Sargan test on validity of instruments

Panel 2 of Exhibit 5.48 shows the regression of step 2 of the Sargan test.
Here we test whether the five instruments are exogenous. In this case k ¼ 3
and m ¼ 5, so that LM ¼ nR2 ¼ 3:12 should be compared with the w2(2)
distribution. The corresponding P-value is P ¼ 0:21, so that the exogeneity
of the instruments is not rejected. However, note that IV estimation is not
required as the regressor PG seems to be exogenous. For these data we
therefore prefer OLS, as OLS is consistent and gives (somewhat) smaller
standard errors (see the results in Exhibit 5.45, Panel 1 for OLS and Panel 2
for IV).

(iii) Remark on required model assumptions

We conclude by mentioning that the above tests require that the standard
Assumptions 2–6 of the regression model are satisfied. It is left as an exercise

Panel 1: Step 2 of Hausman test; Dependent Variable: RESOLS
Method: Least Squares
Sample: 1970 1999
Included observations: 30
Variable Coefficient Std. Error t-Statistic Prob.

C 0.027703 0.081429 0.340209 0.7364
PG �0.016872 0.028093 �0.600566 0.5533
RI �0.008558 0.024638 �0.347347 0.7311

RESAUX 0.104845 0.070032 1.497107 0.1464
R-squared 0.079363

Panel 2: Step 2 of Sargan test; Dependent Variable: RESIV
Method: Least Squares
Sample: 1970 1999
Included observations: 30
Variable Coefficient Std. Error t-Statistic Prob.

C �0.209753 0.271047 �0.773862 0.4463
RPT �0.051202 0.062169 �0.823606 0.4180
RPN 0.020409 0.114431 0.178352 0.8599
RPU �0.070229 0.059531 �1.179698 0.2492
RI 0.060410 0.080326 0.752055 0.4590

R-squared 0.104159

Exhibit 5.48 Motor Gasoline Consumption (Example 5.34)

Panel 1 shows the regression for step 2 of the Hausman test on exogeneity of the explanatory
variable PG (RESOLS and RESAUX are the residuals obtained in step 1 of the Hausman test,
RESOLS are the residuals of the regression in Panel 1 of Exhibit 5.45 and RESAUX are the
residuals of the regression in Panel 3 of Exhibit 5.45). Panel 2 shows the regression for step 2 of
the Sargan test on validity of instruments (RESIVare the IV residuals obtained in step 1 of this
test; this regression is shown in Panel 2 of Exhibit 5.45).
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(see Exercise 5.31) to show that the residuals of the above demand equation
for motor gasoline consumption show significant serial correlation. There-
fore we should give the above test outcomes on exogeneity and validity of
instruments the correct interpretation— that is, as diagnostic tests indicating
possible problems with OLS. In particular, the OLS estimates are not effi-
cient, as they neglect the serial correlation of the disturbances. Similar
remarks apply to our analysis of the interest and bond rate data in Example
5.33, as in Examples 5.27 and 5.28 we concluded that these data contain
some outliers.

E Exercises: T: 5.16d, 5.17; S: 5.23e.

5.7.4 Summary

The OLS method becomes inconsistent if the regressors are not exogen-
ous. In this case the OLS estimates may provide very misleading infor-
mation. One may proceed as follows.

. First of all, try to use economic intuition to guess whether endogeneity
might play a role for the investigation at hand. If it does, one should find
a sufficient number of instruments that are exogenous and that carry
information on the possibly endogenous regressors (that is, the order
and rank conditions should be satisfied).

. Investigate the possible endogeneity of ‘suspect’ regressors by means of
the Hausman test. If one has a sufficiently large number of instruments,
then perform the Sargan test to check whether the proposed instruments
are indeed exogenous.

. If some of the regressors are endogenous and the instruments are valid,
then consistent estimates are obtained by the instrumental variables
estimation method. The t- and F-tests can be performed as usual,
although some care is needed to use the correct formulas (see (5.77)
and (5.78)).

. If the endogeneity is only weak, then OLS may be considered as an
alternative, provided that the resulting bias is compensated by a suffi-
ciently large increase in efficiency as compared to IV.
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5.8 Illustration: Salaries of
top managers

The discussion in this chapter could lead one to think that ordinary least
squares is threatened from so many sides that it never works in practice. This
is not true. OLS is a natural first step in estimating economic relations and in
many cases it provides valuable insight in the nature of such relations. By
means of the following example we will illustrate that in some cases OLS
provides a reasonable model that performs well under various relevant
diagnostic tests.

Example 5.35: Salaries of Top Managers

As an example we analyse the relation between salaries of top managers and
profits of firms. The data set consists of 100 large firms in the Netherlands in
1999. The 100 firms are ordered with increasing profits. Let yi be the
logarithm of the average yearly salary (in thousands of Dutch guilders) of
top managers of firm i and let xi be the logarithm of the profit (in millions of
Dutch guilders) of firm i. Results of OLS in the model

yi ¼ aþ bxi þ ei

are in Panel 3 of Exhibit 5.49, and this exhibit also shows the outcomes of
various diagnostic tests discussed in this chapter. The tests in Exhibits 5.49
(e–q) do not indicate any misspecification of the model, so that we are
satisfied with this simple relation. The estimated elasticity b is around 16
per cent, so that salaries of top managers tend to be rather inelastic with
respect to profits when compared over this cross section of firms.

E

XM535TOP
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(c) Panel 3: Dependent Variable: LOGSALARY
Method: Least Squares
Sample(adjusted): 5 100
Included observations: 96 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob.
C 6.350338 0.128961 49.24249 0.0000

LOGPROFIT 0.162212 0.021984 7.378765 0.0000
R-squared 0.366774 Mean dependent var 7.269493
Adjusted R-squared 0.360037 S.D. dependent var 0.408740
S.E. of regression 0.326982 Akaike info criterion 0.622791
Sum squared resid 10.05023 Schwarz criterion 0.676215
Log likelihood �27.89396 F-statistic 54.44617
Durbin–Watson stat 2.233248 Prob(F-statistic) 0.000000
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Exhibit 5.49 Salaries of Top Managers (Example 5.35)

Scatter diagrams of salary against profit (in levels (a) and in logarithms (b)), regression
table (with variables in logarithms, Panel 3), and graph of actual and fitted (logarithmic)
salaries and corresponding least squares residuals ((d); the data are ordered with
increasing values of profits; the original number of observations is 100, but the number
of observations in estimation is 96, as 4 firms have negative profits).
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(e) Panel 5: Ramsey RESET Test:
F-statistic 0.878905 Probability 0.350930
Log likelihood ratio 0.902997 Probability 0.341979
Test Equation: Dependent Variable: LOGSALARY
Method: Least Squares
Sample: 5 100; Included observations: 96

Variable Coefficient Std. Error t-Statistic Prob.
C �5.981640 13.15475 �0.454713 0.6504

LOGPROFIT �0.582640 0.794813 �0.733053 0.4654
FITTED^2 0.312867 0.333725 0.937499 0.3509
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(h)

(i) Panel 9: Chow Breakpoint Test: 77
F-statistic 0.845556 Probability 0.432627
Log likelihood ratio 1.748622 Probability 0.417149

(j) Panel 10: Chow Forecast Test: Forecast from 77 to 100
F-statistic 0.873523 Probability 0.634024
Log likelihood ratio 25.14958 Probability 0.397669
Test Equation: Dependent Variable: LOGSALARY
Method: Least Squares
Sample: 5 76; Included observations: 72

Variable Coefficient Std. Error t-Statistic Prob.
C 6.521363 0.222507 29.30862 0.0000

LOGPROFIT 0.124737 0.044001 2.834870 0.0060
R-squared 0.102984 Mean dependent var 7.142288
Adjusted R-squared 0.090169 S.D. dependent var 0.348475
S.E. of regression 0.332393 Akaike info criterion 0.662387
Sum squared resid 7.733956 Schwarz criterion 0.725628
Log likelihood �21.84593 F-statistic 8.036490
Durbin–Watson stat 2.306228 Prob(F-statistic) 0.005988

Exhibit 5.49 (Contd.)

Diagnostic tests, RESET (Panel 5), recursive residuals with CUSUM and CUSUMSQ tests
((f )–(h)), Chow break test (Panel 9), and Chow forecast test (Panel 10), both with 72 firms
(those with lower profits) in the first subsample and with 24 firms (those with higher profits)
in the second subsample. The test outcomes do not give reason to adjust the functional
specification of the model (Assumptions 2, 5, and 6).
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(k) Panel 11: White Heteroskedasticity Test:
F-statistic 0.589335 Probability 0.556754
Obs�R-squared 1.201465 Probability 0.548410
Test Equation: Dependent Variable: RESOLS^2
Method: Least Squares
Sample: 5 100; Included observations: 96

Variable Coefficient Std. Error t-Statistic Prob.
C �0.032151 0.140858 �0.228249 0.8200

LOGPROFIT 0.048798 0.046586 1.047494 0.2976
LOGPROFIT^2 �0.004059 0.003746 �1.083502 0.2814

R-squared 0.012515

(l) Panel 12: Breusch-Godfrey Serial Correlation LM Test:
F-statistic 0.759000 Probability 0.471043
Obs�R-squared 1.558288 Probability 0.458798
Test Equation: Dependent Variable: RESOLS
Method: Least Squares

Variable Coefficient Std. Error t-Statistic Prob.
C �0.005453 0.129438 �0.042130 0.9665

LOGPROFIT 0.001021 0.022068 0.046281 0.9632
RESOLS(�1) �0.119031 0.104460 �1.139490 0.2575
RESOLS(�2) 0.035061 0.105207 0.333255 0.7397

R-squared 0.016232

(m)

Panel 13: CORRELATIONS OF RESOLS
Lag AC Ljung-Box Prob
1 �0.122 1.4799 0.224
2 0.048 1.7100 0.425
3 �0.095 2.6321 0.452
4 0.262 9.6293 0.047
5 0.019 9.6656 0.085
6 �0.060 10.045 0.123
7 0.006 10.049 0.186
8 �0.111 11.368 0.182
9 0.172 14.571 0.103

10 0.106 15.792 0.106

Exhibit 5.49 (Contd.)

Diagnostic tests, White test on heteroskedasticity (Panel 11), tests on serial correlation
(Breusch–Godfrey LM-test in Panel 12 and Ljung–Box test in Panel 13), and test on normality
(histogram and Jarque–Bera test (n)). RESOLS denotes the OLS residuals of the regression in
Panel 3. The test outcomes do not give reason to adjust the standard probability model for the
disturbance terms (Assumptions 3, 4, and 7).
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E Exercises: E: 5.32.

(p) Panel 16: Dependent Variable: LOGSALARY
Method: Instrumental Variables
Included observations: 84
Excluded observations: 16 (missing values of turnover)
Instrument list: C LOGTURNOVER

Variable Coefficient Std. Error t-Statistic Prob.
C 6.253435 0.182995 34.17263 0.0000

LOGPROFIT 0.181561 0.031937 5.685017 0.0000
R-squared 0.385981

(q) Panel 17: Dependent Variable: RESOLS
Method: Least Squares
Included observations: 84
Excluded observations: 16 (missing values of turnover)

Variable Coefficient Std. Error t-Statistic Prob.
C �0.096903 0.184116 �0.526314 0.6001

LOGPROFIT 0.019349 0.032132 0.602173 0.5487
V �0.002833 0.052095 �0.054385 0.9568

R-squared 0.006438

Exhibit 5.49 (Contd.)

Diagnostic tests, instrumental variable estimate of the wage equation (with LOGTURNOVER
as instrument, Panel 16; the scatter diagram of the explanatory variable against the instrument
is shown in (o)) and step 2 of the Hausman test on exogeneity of the explanatory variable
(LOGPROFIT) in the wage equation (Panel 17; RESOLS denotes the OLS residuals of the
regression in Panel 3 and V denotes the residuals of the regression of LOGPROFIT on a
constant and LOGTURNOVER). The sample size in estimation is 84 because the turnover
of some of the firms is unknown. The test outcomes do not give reason to reject the assumption
of exogeneity of profits in the wage equation for top managers (Assumption 1).
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Summary, further reading,
and keywords

SUMMARY

In this chapter the seven standard assumptions of the regression model were
subjected to diagnostic tests. The exogeneity of the regressors (Assumption 1)
is required for OLS to be consistent, and this was investigated in Section 5.7.
If the regressors are endogenous, then consistent estimates can be obtained
by using instrumental variables. The functional specification of the model
(linear model with constant parameters, Assumptions 2, 5, and 6) was
discussed in Sections 5.2 and 5.3. A correct specification is required to get
consistent estimators. In practice it may be worthwhile excluding the less
relevant variables—namely, if the resulting bias is compensated by an in-
creased efficiency of the estimators. We also discussed methods for the
specification and estimation of non-linear models and models with varying
parameters. If the disturbances of the model are heteroskedastic or serially
correlated (so that Assumptions 3 or 4 are not satisfied), then OLS is consist-
ent but not efficient. The efficiency can be increased by using weighted least
squares (based on a model for the variances of the disturbances) or by
transforming the model (to remove the serial correlation of the disturbances).
This was discussed in Sections 5.4 and 5.5. In Section 5.6 we considered the
assumption of normally distributed disturbances (Assumption 7). If the
disturbances are not normally distributed, then OLS is consistent but not
efficient. Regression diagnostics can be used to detect influential observa-
tions, and if there are relatively many outliers then robust methods can
improve the efficiency of the estimators.

FURTHER READING

The textbooks mentioned in Chapter 3, Further Reading (p. 178–9), contain
chapters on most of the topics discussed in this chapter. For a more extensive
treatment of some of these topics we refer to the three volumes of the Handbook
of Econometrics mentioned in Chapter 3. We mention some further references:
Belsley, Kuh, and Welsch (1980) for regression diagnostics; Cleveland (1993) and
Fan and Gijbels (1996) for non-parametric methods; Godfrey (1988) for diagnos-
tic tests; Rousseeuw and Leroy (1987) for robust methods.
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Belsley, D. A., Kuh, E., and Welsch, R. E. (1980). Regression Diagnostics: Identi-
fying Influential Data and Sources of Collinearity. New York: Wiley.

Cleveland, W. S. (1993). Visualizing Data. Summit, NJ: Hobart Press.
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regression specification error
test 285

RESET 285
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root mean squared error 280
Sargan test 413
scaling 296
Schwarz information criterion 279
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studentized residual 380
top-down approach 281

total mean squared prediction
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transformed model 327
trend 297
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two-stage least squares 400
two-step FWLS 335
validity of instruments 413
weak instruments 405
weighted least squares 290, 328
White standard errors 325
White test 345
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Exercises

THEORY QUESTIONS

5.1 (E Section 5.2.1)
Consider the model y ¼ X1b1 þX2b2 þ e with
b2 6¼ 0. It was shown in Section 3.2.3 (p. 143)
that the restricted least squares estimator
bR ¼ (X0

1X1)
�1X0

1y has a variance that is smaller
than that of the unrestricted least squares estimator
b1 in the model that includes both X1 and X2.

a. Show that the standard error of the regression s
may be larger in the restricted model. Is the
standard error in the restricted model always
larger?

b. Show that, as a consequence, the estimates bR
need not be more significant (in the sense of
having larger t-values) than the estimates b1.

c. Verify the results in a and b by simulating a data
set with sample size n ¼ 100 by means of the
model y ¼ b1 þ b2xþ e, where x1i ¼ 1 is the
constant term and x2i and ei are two independent
samples from the standard normal distribution.
As parameter values take b1 ¼ 1 and b2 ¼ 10.

d. Discuss the relevance of your findings for the
‘bottom-up’ strategy in model selection, which
starts with small models and performs sequential
tests on the significance of additional variables.

5.2 (E Sections 5.2.1, 5.2.4)
a. Using the notation of Section 5.2.1, show that

MSE(b1)�MSE(bR) ¼ P(V2 � b2b
0
2)P

0, where
P ¼ (X0

1X1)
�1X0

1X2 and where V2 ¼ var(b2) is
the g� g covariance matrix of b2 in the model
y ¼ X1b1 þ X2b2 þ e.

b. Using again the notation of Section 5.2.1, prove
that TMSP(bR) � TMSP(b1) if and only if
b02V

�1
2 b2 � g.

c. Prove that, for n sufficiently large, AIC
corresponds to an F-test with critical value ap-
proximately equal to 2.

d. Prove that SIC corresponds to an F-test with
critical value approximately equal to log (n).

e. Suppose that log (y) � N(m, s2); then prove that y

has mean emþ
1
2s

2
, median em, and variance

e2mþs2 (es
2 � 1).

f. Consider the non-linear wage model S(l) ¼ aþ
gDg þ mDm þ bxþ e in Example 5.5, where
S(l) ¼ (Sl � 1)=l. Prove that in this model
(dS=dx)=S ¼ b=(1þ l(aþ gDg þ mDm þ bxþ e)).

5.3 (E Section 5.3.2)
a. Prove the expressions (5.12)–(5.14). It is helpful

to write out the normal equations X0
tþ1Xtþ1btþ1

¼ X0
tþ1Ytþ1, where Ytþ1 ¼ (y1, � � � , ytþ1)

0 and
Xtþ1 ¼ (x1, � � � , xtþ1)

0 ¼ (X0
t, xtþ1)

0.
b. Prove that the variances of the forecast errors ft

in (5.11) are equal to s2vt.

c. Prove that the forecast errors ft are independent
under the standard Assumptions 1–7.

5.4 (E Section 5.3.3)
a. Prove the result (5.20) for the hypothesis

(5.19).

b. The F-test requires that the disturbance vectors
e1 and e2 in (5.18) are uncorrelated with mean
zero and covariance matrices s21In1 and s22In2 ,
where s21 ¼ s22. Derive a test for the hypothesis
(5.19) for the case that s21 6¼ s22.

c. Prove that the F-test for the hypothesis (5.22) in
the model (5.21) is equal to the forecast test in
Section 3.4.3.

5.5 (E Section 5.4.3)
Consider the model yi ¼ bxi þ ei (without constant
term and with k ¼ 1), where E[ei] ¼ 0, E[eiej]
¼ 0 for i 6¼ j, and E[e2i ] ¼ s2i .

a. Consider the following three estimators of b:
b1 ¼Pxiyi=

P
x2i , b2 ¼P yi=

P
xi, and b3 ¼

1
n

P
(yi=xi). For each estimator, derive a model

for the variances s2i for which this estimator is
the best linear unbiased estimator of b.
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b. Let s2i ¼ s2x2i . Show that the OLS estimator is
unbiased. Derive expressions for the variance
of the OLS estimator and also for the WLS
estimator.

c. Use the results in b to show that the OLS esti-
mator has a variance that is at least as large as
that of the WLS estimator.

d�. For the general case, show that the OLS vari-
ance in (5.24) is always at least as large as the
WLS variance (5.29) in the sense that
var(b)� var(b�) is positive semidefinite.

5.6 (E Sections 5.4.4, 5.4.5)
a. In the additive heteroskedasticity model with

s2i ¼ z0ig, the variances are estimated by the re-
gression e2i ¼ z0igþ Zi with error terms
Zi ¼ e2i � s2i (see Section 5.4.4). Now assume
that plim( 1n

P
ziz

0
i) ¼ Qzz exists with Qzz an

invertible matrix, and assume that the vari-
ables zi are exogenous in the sense that
plim( 1n

P
zi(e2i � s2i )) ¼ 0. Show that g is esti-

mated consistently under this assumption.

b�. Prove the results that are stated in Section
5.4.4 for the consistent estimation of the param-
eters of the multiplicative model for heteroske-
dasticity.

c. Derive the expression (5.39) for the LR-test for
groupwise heteroskedasticity in the model
y ¼ Xbþ e.

5:7� (E Section 5.4.5)
In this exercise we derive the three-step method for
the computation of the Breusch–Pagan test on
homoskedasticity. Consider the model y ¼ Xbþ e,
which satisfies the standard regression Assumptions
1–7, except for Assumption 3, which is replaced by
the model (5.26).

a. Let s2i ¼ s2zai , where zi is a single explanatory
variable that takes on only positive values.
Derive the log-likelihood for this model, with
parameter vector y ¼ (b0, a, s2)0, and determine
the first order conditions (for ML) and the infor-
mation matrix.

b. Derive the LM-test for homoskedasticity
(a ¼ 0), using the results in a. Show in particular
that this can be written as LM ¼ SSE=2, where
SSE is the explained sum of squares of the re-
gression of e2i =s

2
ML on a constant and log (zi) and

where s2ML ¼ e0e=n.

c. Show that, in large enough samples, the result in
b can also be written as LM ¼ nR2 of the regres-
sion of e2i on a constant and log (zi).

d. Now consider the general model (5.26). Derive
the log-likelihood and its first order derivatives.
Show that the LM-test for g2 ¼ � � � ¼ gp ¼ 0 is
given by LM ¼ SSE=2, where SSE is the ex-
plained sum of squares of the regression of
e2i =s

2
ML on z.

e. Show that the result in d can be written as
LM ¼ nR2 of the auxiliary regression (5.40).

5:8� (E Section 5.5.3)
In this exercise we consider an alternative derivation
of the Breusch–Godfrey test— that is, the auxiliary
regression (5.49). In the text this test was derived by
using the results of Section 4.2.4 (p. 218) on non-
linear regression models, and now we will consider
theML-based version of this test. The model is given
by (5.45) with AR(1) errors (5.47) where
Zi � NID(0, s2Z). The parameter vector is
y ¼ (b0, g, s2Z)

0 and the null hypothesis of no serial
correlation corresponds to g ¼ 0.

a. Determine the log-likelihood of this model (for
the observations (y2, � � � , yn), treating y1 as a
fixed, non-random value).

b. Determine the first and second order derivatives
of the log-likelihood with respect to the param-
eter vector y.

c. Use the results in a and b to compute the LM-test
by means of the definition in (4.54) in Section
4.3.6 (p. 238).

d. Prove that the result in c can be written as nR2 of
the auxiliary regression (5.49). It may be as-
sumed that the model (5.45) contains a constant
term—that is, x1, i ¼ 1 for i ¼ 1, � � � , n—and
that plim( 1n

P
xiei�1) ¼ 0, where e is the vector

of OLS residuals.

5:9� (E Section 5.5.3)
In this exercise we show that the Box–Pierce (BP) test
(5.50) is asymptotically equivalent to the Breusch–
Godfrey (BG) test obtained by the regression of the
OLS residuals ei on xi and the lagged values
ei�1, � � � , ei�p. We assume that the explanatory vari-
ables x include a constant term and that they satisfy
the conditions that plim( 1n

Pn
i¼1 xix

0
i) ¼ Q is invert-

ible and that plim( 1n
Pn

i¼pþ1 ei�jxi) ¼ 0 for all
j ¼ 1, � � � , p. Further we assume that under the null
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hypothesis of absence of serial correlation there also
holds plim( 1n

Pn
i¼pþ1 ei�jei) ¼ 0 for all j ¼ 1, � � � , p,

and plim( 1n
P

e2i ) ¼ s2.

a. Write the regression of ei on xi and ei�1, � � � ,
ei�p, as e ¼ Xdþ Egþ !, where the columns of
E consist of lagged values of the OLS residuals.
Let d̂d and ĝg be the OLS estimators obtained from
this model; then show that (under the null
hypothesis of no serial correlation)

ffiffiffi
n

p
d̂d � 0

and
ffiffiffi
n

p
ĝg � 1

s2
1ffiffi
n

p E0e (where we write a � b if

plim(a� b) ¼ 0).

b. Show that the explained sum of squares SSE
of the regression in a satisfies SSE �
1
n

Pp
k¼1 [

P
i eiei�k]

2=s2.

c. Use the result in b to prove that for the regression
in a there holds nR2 ¼ SSE

SST=n � n
Pp

k¼1 r
2
k.

5.10 (E Section 5.5.4)
Consider the model yi ¼ mþ ei, where m is the un-
known mean of the variable y and the ei are error
terms. It is assumed that e1 ¼ (1� g2)�1=2Z1 and
ei ¼ gei�1 þ Zi for i ¼ 2, � � � , n, where the terms Zi
(with mean zero) are uncorrelated and homoskedas-
tic and where �1 < g < 1.

a. Show that the error terms ei are homoskedastic
but that all autocorrelations are non-zero. De-
scribe in detail how m can be estimated by the
Cochrane–Orcutt method.

b. Investigate whether the estimator of a is un-
biased. Investigate also whether it is consistent.

c. Now suppose that the error terms are not gener-
ated by the above process, but that instead e1 ¼ Z1
and ei ¼ ei�1 þ Zi for i ¼ 2, � � � , n. Derive the best
linear unbiased estimator for m in this model.

d. Investigate whether the estimator of c is un-
biased. Investigate also whether it is consistent.

e. Try to give an intuitive explanation of the result
in d.

5.11 (E Section 5.5.3)
Let yi ¼ byi�1 þ ei and ei ¼ gei�1 þ Zi, where
�1 < b < 1 and �1 < g < 1 and the terms Zi are
homoskedastic and uncorrelated. By b we denote
the OLS estimator of b and by r the estimator of g
obtained by regressing the OLS residuals ei on their
lagged values ei�1.

a. Show that the above model can be rewritten as
yi ¼ (bþ g)yi�1 � bgyi�2 þ Zi and that the two

transformed parameters (bþ g and bg) can be
estimated consistently by OLS. Can this result
be used to estimate b and g?

b. Prove that plim(b) ¼ bþ g(1�b2)
1þbg .

c. Prove that plim(b)þ plim(r) ¼ bþ g.

d. What is the implication of these results for the
Durbin–Watson test when lagged values of the
dependent variable are used as explanatory vari-
ables in a regression model?

5.12 (E Sections 5.6.2, 5.6.4)
In this exercise we use the notation of Sections 5.6.2
and 5.6.4.

a. Prove that the leverages hj in (5.54) satisfy
0 � hj � 1 and

Pn
j¼1 hj ¼ k.

b. Let b(j) and s2(j) be the estimators of b and
the disturbance variance s2 obtained by the re-
gression yi ¼ x0ibþ ei, i 6¼ j—that is, by leaving
out the jth observation. Further let b̂b and ĝg be the
OLS estimators of b and g in the model (5.55)—
that is, OLS for all observations but with a
dummy for the jth observation included in the
model—and let s2j be the corresponding esti-
mated disturbance variance. Prove that b̂b ¼ b(j),
ĝg ¼ yj � x0jb(j), and s2j ¼ s2(j).

c. The studentized residual in (5.56) can be inter-
preted as a Chow forecast test for the jth obser-
vation, where the forecast is based on the (n� 1)
observations i 6¼ j. Prove this, using the results of
b and of Exercise 3.11.

d. Show that (5.64) is a consistent estimator of s in
the simple case that yi ¼ mþ ei, where the ei are
NID(0,s2).

5.13 (E Section 5.6.2)
Consider the simple regression model yi ¼
aþ bxi þ ei. The following results are helpful in
computing regression diagnostics for this model by
means of a single regression including all n observa-
tions. We use the notation of Section 5.6.2.

a. Show that the leverages are equal to
hj ¼ 1

n þ
(xj��xx)2P
(xi��xx)2

.

b. Show that s2j ¼ n�k
n�k�1 s

2 � e2j
(n�k�1)(1�hj)

.

c. Show that the ‘dfbetas’ (for b) are equal to
e�jffiffiffiffiffiffiffiffi
1�hj

p xj��xxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
(xi��xx)2

p .

d. Give an interpretation of the results in a and c by
drawing scatter plots.
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e. Show that the variance of the ‘dfbetas’ for the
slope parameter b is approximately

(xj��xx)2P
(xi��xx)2

,
with average value 1=n.

f. Now consider the multiple regression model.
Show that the average variance of the ‘dfbetas’
in (5.58) in this case is approximately equal to
1=n if the terms all are approximately constant—
that is, if all least squares coefficients have ap-
proximately the same standard error.

5.14 (E Section 5.6.4)
Consider estimation of the mean m from a random
sample yi ¼ mþ ei, i ¼ 1, � � � ,n.
a. Let m be estimated by minimizing the criter-

ion
P jyi � mj. Show that the median m ¼

med(yi, i ¼ 1, � � � , n) is optimal for this criterion
(distinguish the cases n odd and n even).

b. Show that the median is the maximum likelihood
estimator if the disturbances are independently
distributed with the double-exponential distribu-
tion with density function f (ei) ¼ 1

2a e
�jeij=a. Com-

pare this distribution with the normal
distribution, and give an intuitive motivation
why the median will be a better estimator than
the sample mean in this case.

c. Now suppose that the disturbances are inde-

pendently t(d) distributed with density

f (ei) ¼ cd (1þ e2i
d )

�dþ1
2 , where d is positive and cd

is a scaling constant. Show that theML estimator
is relatively insensitive to outliers (for small
values of d) by writing out the first order condi-
tion d log (L)=dm ¼ 0.

d. Show this also by computing the weights wi in
(5.61) for the t-distribution.

5.15 (E Section 5.6.4)
As estimation criterion we consider expressions of
the form S(y) ¼Pn

i¼1 G(ei(y)), where ei(y) are
the residuals corresponding to y. We impose the
following conditions on the function G:G(0) ¼
0, G(e) ¼ G(� e), G is non-decreasing in jej and
constant for jej > c for a given constant c > 0, and
the Hessian of G is continuous.

a. Discuss possible motivations for each of these
five conditions.

b. Let G be a non-zero polynomial of degree m—
say,G(e) ¼Pm

j¼0 Gke
k for jej � c; then prove that

m � 6 is required to satisfy the five conditions.

c. Show that, up to an arbitrary multiplicative
scaling constant, the only polynomial of degree
six, G(e) ¼P6

j¼0 Gke
k, that satisfies the five con-

ditions has a derivative g(e) ¼ dG(e)=de ¼
e(1� e2

c2
)2 for jej � c, the so-called bisquare func-

tion.

d. Make plots of the functions G(e) and g(e) and of
the weights wi in (5.61) corresponding to this
criterion, similar to the plots shown in Exhibit
5.42. Discuss the outcomes.

5.16 (E Sections 5.7.1–5.7.3)
In this exercise we consider the two-step method
(5.73) and (5.74) for the computation of the IV
estimator. We assume that Z contains a constant
term, and we denote the jth column of X by Xj

and the jth column of X̂X by X̂Xj. So Xj and X̂Xj are
n� 1 vectors, with elements denoted by xji and
x̂xji, j ¼ 1, � � � , k, i ¼ 1, � � � , n.
a. Prove that of all linear combinations of the in-

struments (that is, of all vectors of the form
v ¼ Zc for some m� 1 vector c), X̂Xj is the linear
combination that has the largest ‘correlation’
with Xj, in the sense that it maximizesPn

i¼1
xjiviffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
x2
ji

Pn

i¼1
v2
i

p .

b. IfXj is exogenous, then it is included in the set of
instruments. Prove that in this case X̂Xj in (5.73) is
equal to Xj.

c. Show that the usual OLS estimator of the vari-
ance based on the regression in (5.74)— that is,
ŝs2 ¼ (y� X̂XbIV)

0(y� X̂XbIV)=(n� k)— is not a
consistent estimator of s2.

d. If all the regressors in X are exogenous, then
prove that (var(bIV)� var(b)) is positive semide-
finite. For this purpose, show first that
X0X�X0PZX is positive semidefinite.

e. Prove that the F-test on linear restrictions can be
computed by (5.78). It is helpful to prove first
that êe0RêeR � e0RIVPZeRIV ¼ y0y� y0PZy and also
that êe0êe� e0IVPZeIV ¼ y0y� y0PZy.

5:17� (E Section 5.7.3)
This exercise is concerned with the derivation of the
Hausman test for the null hypothesis that all regres-
sors are exogenous against the alternative that the
last k0 regressors are endogenous. We use the nota-
tion of Section 5.7.3, and we write vi for the k0 � 1
vector with elements vji, Xe for the n� k0 matrix of
possibly endogenous regressors, x0ei for the ith row
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ofXe, a for the k0 � 1 vector with elements aj, and G
for the k0 �m matrix with rows g0j. In the equations
xei ¼ Gzi þ vi it is assumed that vi � NID(0,V),
where V is the k0 � k0 covariance matrix of vi, and
in the equation ei ¼ v0iaþwi (where v0ia ¼ E[eijvi]) it
is assumed that wi � NID(0, s2). The null hypoth-
esis of exogeneity is that a ¼ 0, in which case
ei ¼ wi � NID(0,s2). With this notation, the
model (5.82) can be written as

yi ¼ x0ibþ ei ¼ x0ibþ v0iaþwi

¼ x0ibþ (xei � Gzi)
0aþwi:

This model is non-linear in the parameters
y ¼ (a, b,G, s2,V�1), because of the product term
G0a.
a. Show that the log-likelihood is given by

l(y)¼�n log(2p)þn
2logdet(V

�1)�1
2

Pn
i¼1v

0
iV

�1vi
� n

2 log (s
2)� 1

2s2
Pn

i¼1 w
2
i .

b. Show that the ML estimators obtained under the
null hypothesis that a ¼ 0, are given by b̂b ¼ b,
ĜG0 ¼ (Z0Z)�1Z0Xe, ŝs2 ¼ e0e=n, and V̂V ¼ 1

n

P
v̂viv̂v

0
i,

where v̂vi ¼ xei � ĜGzi.

c. Show that the score vector @l=@y of the unre-
stricted log-likelihood, evaluated at the estimates
of b, is zero, with the exception of @l=@a, which
is equal to 1

ŝs2 V̂V
0e.

d. The Hessian matrix (� @2l
@yy0 ) is a 5� 5 block

matrix with blocks Brs. Let sub-index 1 indicate
the blocks related to a and sub-index 2 the blocks
related to b, then show that B11 ¼ 1

ŝs2 V̂V
0V̂V, that

B12 ¼ B0
21 ¼ 1

ŝs2 V̂V
0X, and that B22 ¼ 1

ŝs2 X
0X. Fur-

ther the following approximations may be used
in e, but these results need not be proved: Brs ¼ 0

for all (r, s) with r ¼ 1, 2 and s ¼ 3, 4, 5, and also
for all (r, s) with r ¼ 3, 4, 5 and s ¼ 1, 2.

e. Use the results in c and d to prove that the
LM-test computed according to LM ¼
( @l
@y )

0(� @2l
@yy0 )

�1( @l
@y ) can be written as LM ¼

1
ŝs2 e

0U(U0U)�1U0e, where U is the n� (k0 þ k)
matrix U ¼ (V̂V X).

f. Prove that e implies that LM ¼ nR2 of the regres-
sion in (5.83).

5.18 (E Section 5.7.1)
Consider the following model for the relation be-
tween macroeconomic consumption (C), disposable
income (D), and non-consumptive expenditures (Z):
Ci ¼ aþ bDi þ ei (the consumption equation) and
Di ¼ Ci þ Zi (the income equation). Here Z is as-
sumed to be exogenous in the sense that E[Ziei] ¼ 0
for all i ¼ 1, � � � , n.
a. Prove that the application of OLS in the con-

sumption equation gives an inconsistent estima-
tor of the parameter b.

b. Give a graphical illustration of the result in a by
drawing a scatter plot of C against D, and use
this graph to explain why OLS is not consistent.

c. Consider two cases in b, one where Z does not
vary at all and another where Z has a very large
variance.

d. Derive an explicit expression for the IV estimator
of b in terms of the observed variables C, D,
and Z.

e. Use the expression of d to prove that this IV
estimator is consistent.

EMPIRICAL AND SIMULATION QUESTIONS

5.19 (E Section 5.3.3)
a. Generate a sample of size 100 from the model

yi ¼ 2þ ffiffiffiffi
xi

p þ ei where the xi are independent
and uniformly distributed on the interval [0, 20]
and the ei are independent and distributed as
N(0, 0.01).

b. Regress y on a constant and x. Perform a RESET
test and a Chow forecast test. Analyse the recur-
sive residuals and the CUSUM and CUSUMSQ
plots.

c. Answer the same questions after the data have
been ordered with increasing values of x.

d. Estimate the model y ¼ aþ bx(l)þ e by ML,
where x(l) ¼ (xl � 1)=l.

e. For the estimated value of l, regress y on a con-
stant and x(l) and analyse the corresponding
recursive residuals and CUSUM and CUSUMSQ
plots. Perform also a RESET test and a Chow
forecast test.
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5.20 (E Sections 5.4.2, 5.4.3)
Simulate n ¼ 100 data points as follows. Let xi
consist of 100 random drawings from the standard
normal distribution, let Zi be a random drawing
from the distribution N(0,x2i ), and let yi ¼ xi þ Zi.
We will estimate the model yi ¼ bxi þ ei.

a. Estimate b by OLS. Estimate the standard error
of b both in the conventional way and byWhite’s
method.

b. Estimate b by WLS using the knowledge that
s2i ¼ s2x2i . Compare the estimate and the stand-
ard error obtained for this WLS estimator with
the results for OLS in a.

c. Now estimate b by WLS using the (incorrect)
heteroskedasticity model s2i ¼ s2=x2i . Compute
the standard error of this estimate in three
ways— that is, by the WLS expression corres-
ponding to this (incorrect) model, by the White
method for OLS on the (incorrectly) weighted
data, and also by deriving the correct formula
for the standard deviation of WLS with this in-
correct model for the variances.

d. Perform 1000 simulations, where the n ¼ 100
values of xi remain the same over all simulations
but the 100 values of Zi are different drawings
from the N(0,x2i ) distributions and where the
values of yi ¼ xi þ Zi differ accordingly between
the simulations. Determine the sample standard
deviations over the 1000 simulations of the three
estimators of b in a, b, and c—that is, OLS,WLS
(with correct weights), and WLS (with incorrect
weights).

e. Compare the three sample standard deviations
in d with the estimated standard errors in a, b,
and c, and comment on the outcomes. Which
standard errors are reliable, and which ones are
not?

5.21 (E Section 5.5.3)
a. Generate a sample of size n ¼ 100 from the

model yi ¼ 2þ ffiffiffiffi
xi

p þ ei, where the xi are inde-
pendent and uniformly distributed on the inter-
val [0, 20] and the ei are independent and
distributed as N(0, 0.01). Regress y on a constant
and x and apply tests on serial correlation.

b. Sort the data of a with increasing values of x.
Again regress y on a constant and x and apply
tests on serial correlation. Save the residual series
for later use in e.

c. Generate a sample of size n ¼ 100 from the
linear model yi ¼ 2þ xi þ ei, where the xi are
independent and uniformly distributed on the
interval [0, 20] and the ei are independent and
distributed as N(0, 0.01). Regress y on a constant
and x and apply tests on serial correlation.

d. Sort the data of c with increasing values of the
residuals e. Again regress y on a constant and x
and apply tests on serial correlation.

e. Explain the results in b and d by considering
relevant scatter diagrams.

f. Discuss the relevance of your findings for the
interpretation of serial correlation tests (like
Durbin–Watson) for cross section data.

5.22� (E Section 5.5.2)
In this exercise we simulate data with the model
yi ¼ bxi þ ei, i ¼ 1, � � � , n, where xi and ei are
both generated by an AR(1) model. That is,
xi ¼ rxi�1 þ !i (with x0 ¼ 0) and ei ¼ gei�1 þ Zi
(with e0 ¼ 0), where !i and Zi are both NID(0,1)
with !i and Zj independent for all i, j. The param-
eters r and g satisfy �1 < r < 1 and �1 < g < 1.
The OLS estimator of b is given by b ¼Pn

i¼1 xiyi=
Pn

i¼1 x
2
i , and the conventional OLS for-

mula for the variance is cvarvar(b) ¼ s2=
Pn

i¼1 x
2
i where

s2 ¼Pn
i¼1 (yi � bxi)

2=(n� 1).

a. Prove that, for i ! 1, the correlation between xi
and xi�k converges to rk and the correlation
between ei and ei�k to gk. Prove also that, for
i ! 1, the variance of xi converges to
1=(1� r2) and the variance of ei to 1=(1� g2).

b. Prove that, although the regressors are stochastic
here, the OLS estimator b is unbiased and con-
sistent in this case.

c. Prove that, for n ! 1, the true variance of b is
not given by the OLS formula cvarvar(b)
¼ s2=

Pn
i¼1 x

2
i , but that it is approximately

equal to cvarvar(b) 1þrg
1�rg. Use the fact that s2 is a

consistent estimator of the variance 1=(1� g2)
of the disturbances ei.

d. Simulate two data sets of size n ¼ 100, one in the
model with b ¼ 0 and the other one in the model
with b ¼ 1. For both simulations, take
r ¼ g ¼ 0:7. For both data sets, regress y on x
and compute the OLS standard error of b and
also the HAC standard error of b. For the data
generated with b ¼ 0, test the null hypothesis
that b ¼ 0 against the (two-sided) alternative
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that b 6¼ 0 (at 5% significance), using the two
t-values obtained by the OLS and the HAC
standard errors of b.

e. Repeat the simulation of d 1000 times. For the
model with b ¼ 0, compute the frequency of re-
jection of the null hypothesis that b ¼ 0 for the t-
tests based on the OLS and the HAC standard
errors of b.

f. For each of the two data generating processes,
compute the standard deviation of the estimates
b over the 1000 simulations and also the mean of
the 1000 reported OLS standard errors and of the
1000 reported HAC standard errors. Compare
these values and relate them to the outcomes in e.

g. Relate the outcomes in f also to the result
obtained in c.

h. Comment on the relevance of your findings for
significance tests of regression coefficients if
serial correlation is neglected.

5.23 (E Sections 5.7.1, 5.7.3)
In this exercise we consider simulated
data on the relation between police (x)
and crime (y). Some of the data refer to
election years (z ¼ 1), the other data to non-election
years (z ¼ 0). We want to estimate the effect of
police on crime—that is, the parameter b in the
model yi ¼ aþ bxi þ ei.

a. Regress ‘crime’ on a constant and ‘police’. Give a
possible explanation of the estimated positive
effect.

b. Give a verbal motivation why the election
dummy z could serve as an instrument.

c. Show that the IV estimator of b is given by
(y1 � y0)=(x1 � x0), where y1 denotes the sample
mean of y over election years and y0 over non-
election years and where x1 and x0 are defined in
a similar way. Give also an intuitive motivation
for this estimator of b.

d. Use the data to estimate b by instrumental vari-
ables, using z (and a constant) as instruments.
Check that the result of c holds true. Give an
interpretation of the resulting estimate.

e. Perform the Hausman test on the exogeneity of
the variable x.

5.24 (E Section 5.3.3)
Consider the data of Example 5.9
(ordered with education), which showed

a break at observation 366 (education at least 16
years) in the marginal effect b of education on salar-
ies (see Exhibit 5.15).

a. Check the outcomes on a break (at observation
425 for the Chow tests) discussed in Example 5.9.

b. Formulate a model with two different values of b
in (5.16), one for education levels less than 16
years (observations i � 365) and another for
education levels of 16 years or more (observa-
tions i � 366). Estimate this model, and give an
interpretation of the outcomes.

c. PerformChowbreak tests andChow forecast tests
(with the break now located at observation 366).

d. Perform a sequence of Chow break tests for all
segments where the variable ‘education’ changes.
This variable takes on ten different values, so
that there are nine possible break points. Com-
ment on the outcomes.

e. Perform also a sequence of Chow forecast tests
and give an interpretation of the outcomes.

5.25 (E Sections 5.4.4, 5.4.5)
Consider the salary data of Example 5.15
with the regression model discussed in
that example. In this exercise we adjust
the model for the variances as follows:
E[e2i ] ¼ g1 þ g2D2i þ g3D3i þ g4xi þg5x

2
i —that is,

the model for the variances is additive and contains
also effects of the level of education.

a. Estimate the eleven parameters (six regression
parameters and five variance parameters) by
(two-step) FWLS and compare the outcomes
with the results in Exhibit 5.22.

b. Check that the data in the data file are sorted
with increasing values of xi. Inspect the histo-
gram of xi and choose two subsamples to per-
form the Goldfeld–Quandt test on possible
heteroskedasticity due to the variable xi.

c. Perform the Breusch–Pagan test on heteroskedas-
ticity, using the specified model for the variances.

d. Alsoperform theWhite test onheteroskedasticity.

e. Comment on the similarities and differences be-
tween the test outcomes in b–d.

5.26 (E Section 5.3.1)
In this exercise we consider data on
weekly coffee sales (for brand 1). In total
there are n ¼ 18 weekly observations,
namely six weeks without any marketing actions,XM501BWA

XM501BWA

XR526COF

XR523SIM
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six weeks with price reductions without advertise-
ment, and six weeks with joint price reductions and
advertisement. In Example 5.7we considered similar
coffee data, but only for the twelve weeks without
advertisement. Now we will shift the attention to
another subset of the data, and we restrict the atten-
tion to sales in the twelve weeks with marketing
actions. As there are no advertisements without sim-
ultaneous price reductions, we formulate the model

y ¼ b1 þ b2Dp þ b3Da þ b4DpDa þ e,

where y denotes the logarithm of weekly sales,Dp is
a dummy variable with the value 0 if the price
reduction is 5% and the value 1 if this reduction is
15%, andDa is a dummy variable that is 0 if there is
no advertisement and 1 if there is advertisement.

a. Give an economicmotivation for the abovemodel.
Estimate this model and test the null hypothesis
that b2 ¼ 0. What is the P-value of this test?

b. Estimate the above model, replacing Da by the
alternative dummy variable D�

a, which has
the value 0 if there is advertisement and 1 if
there is not. The model then becomes
y ¼ b�1 þ b�2Dpþ b�3Da þ b�4DpD

�
a þ e. Compare

the estimated price coefficient and its t-value
and P-value with the results obtained in a.

c. Explain why the two results for the price dummy
differ in a and b. Discuss the relevance of this fact
for the interpretation of coefficients of dummy
variables in regression models.

d. Derive the four relations between the parameters
bi and b�i , i ¼ 1, � � � , 4, in the two models. Check
that the two sets of regression parameters satisfy
the same relations. Relate this result to c.

5.27 (E Sections 5.5.1, 5.5.4)
In this exercise we consider the budget
data of Example 5.20, ordered in seg-
ments as discussed in Example 5.20. We
consider both the linear model of Section 5.5.1 and
the non-linear model of Section 5.5.4 for the rela-
tion between the fraction of expenditures spent on
food (y), the total consumption expenditures (x2,
in $10,000 per year), and the average household
size (x3).

a. Apply OLS in the linear model and perform a
RESET.

b. Apply recursive least squares in the linear model
and perform a CUSUM test.

c. Investigate whether the disturbances in the non-
linear model are heteroskedastic. In particular,
investigate whether the disturbance variance is
related to the group size.

d. Discuss how the non-linear model can be esti-
mated in case of heteroskedasticity related to the
group size. Estimate this model and compare the
outcomes (especially the regression coefficients
and the standard errors) with the results in
Example 5.25 (see Exhibit 5.34).

5.28 (E Sections 5.4.4, 5.6.3)
In this exercise we consider monthly data
of the three-month Treasury Bill rate (ri)
in the USA from January 1985 to Decem-
ber 1999. In Example 5.11 we considered the
monthly changes xi ¼ ri � ri�1. We consider the
following simple model for the relation of these
changes to the level of this interest rate:
ri � ri�1 ¼ aþ bri�1 þ ei. In financial economics,
several models are proposed for the variance of the
unpredicted changes ei. We consider models of the
form E[e2i ] ¼ s2r2gi�1, so that the vector of unknown
parameters is given by y ¼ (a, b, g,s2)0. The Vasicek
model postulates that g ¼ 0, the Cox–Ingersoll–
Ross model that g ¼ 1=2, and the Brennan–
Schwartz model that g ¼ 1.

a. Estimate the four parameters in y by (two-step)
FWLS.

b. Estimate y by maximum likelihood, assuming
that the error terms ei are normally distributed.
Compare the estimates with the ones obtained in
a.

c. Test the three hypotheses that g ¼ 0, g ¼ 1=2,
and g ¼ 1, both by the Wald test and by the
Likelihood Ratio test. What is your conclusion?

d. Test the hypothesis of normally distributed error
terms ei by means of the ML residuals of b. What
is your conclusion?

5.29 (E Sections 5.5.4, 5.6.2, 5.6.4)
In this exercise we consider the quarterly
series of industrial production (yi, in loga-
rithms) for the USA over the period
1950.1–1998.3. These data were discussed in
Example 5.26 (see Exhibit 5.36 to get an idea of
this series).

a. Estimate the linear trend model yi ¼ aþ biþ ei
and test whether the slope b is constant over the
sample.

XR528IBR

XM526INP

XM520FEX
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b. Now include seasonal dummies to account for
possible seasonal effects. Test for the individual
and joint significance of the seasonal dummies.

c. Investigate the presence of outliers in this model.

d. Let D4yi ¼ yi � yi�4 be the yearly growth rate;
then estimate the model D4yi ¼ mþ ei by OLS.
What are the leverages in this model? Investigate
the presence of outliers in this model.

e. How would you estimate the yearly growth rate
of industrial production, by the sample mean, by
the median, or in another way? Motivate your
answer.

5.30 (E Sections 5.5.3, 5.6.2)
In Example 5.27 we considered the
CAPM for the sector of cyclical consumer
goods. In addition we now also consider
the sector of non-cyclical consumer goods.

a. Perform tests for heteroskedasticity and serial
correlation in the CAPM for the sector of cyclical
consumer goods.

b. Answer a also for the sector of non-cyclical con-
sumer goods.

c. Investigate the presence and nature of influential
observations in the CAPM for the sector of non-
cyclical consumer goods.

d. Discuss the relevance of the possible presence of
heteroskedasticity and serial correlation on the
detection of influential observations.

5.31 (E Sections 5.3.3, 5.4.5, 5.5.3,
5.6.2, 5.6.3)

In Example 5.31 we considered data on
gasoline consumption (GC), price of gas-
oline (PG), and real income (RI) over the years
1970–99. In all tests below use a significance level
of 5%.

a. Estimate the model GCi ¼ aþ bPGi þ gRIi þ ei,
using the data over the period 1970–95.

b. Perform a test on parameter constancy over this
period.

c. Perform a test for heteroskedasticity over this
period.

d. Perform a test for serial correlation over this
period.

e. Perform a test on outliers and a test on normality
of the disturbances over this period.

f. Perform a Chow forecast test for the quality of
the model in a in forecasting the gasoline con-
sumption in the years 1996–99, for given values
of the explanatory variables over this period.

5.32 (E Section 5.8)
In Section 5.8 we considered the relation
between the salary of top managers and
the profits of firms for the 100 largest
firms in the Netherlands in 1999. We postulated
the model yi ¼ aþ bxi þ ei, where yi is the average
salary of top managers of firm i and xi is the profit of
firm i (both in logarithms).

a. Discuss whether you find the seven standard as-
sumptions of the regression model intuitively
plausible.

b. Check the results of diagnostic tests reported in
Exhibit 5.49 (for the sample of n ¼ 96 firms with
positive profits).

c. When the model is estimated for the forty-eight
firms with the smallest (positive) profits, then no
significant relation is found. Check this, and dis-
cuss the importance of this finding for a top
manager of a firm with small profits who wishes
to predict his or her salary.

5.33 (E Sections 5.3.3, 5.4.3, 5.6.2)
In this exercise we consider data on the
US presidential election in 2000. The data
file contains the number of votes on the
different candidates in the n ¼ 67 counties of the
state Florida, before recounting. The county Palm
Beach is observation number i ¼ 50. The recounts in
Florida were motivated in part by possible mistakes
of voters in Palm Beach who wanted to vote for
Gore (the second candidate, but third punch hole
on the ballot paper) but by accident first selected
Buchanan (second punch hole on the ballot paper).
This resulted in ballot papers with multiple punch
holes. The difference (before recounts) between
Bush and Gore in the state Florida was 975 votes
in favour of Bush.

a. Perform a regression of the number of votes on
Buchanan on a constant and the number of votes
on Gore. Investigate for the presence of outliers.

b. Estimate the number of votes v in Palm Beach
county that are accidentally given to Buchanan
by including a dummy variable for this county in
the regression model of a. Test the hypothesis

XR533USP
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that v < 975 against the alternative that
v � 975.

c. The counties differ in size so that the error terms
in the regression in a may be heteroskedastic.
Perform the Breusch–Pagan test on heteroskedas-
ticity of the form s2i ¼ h(g1 þ g2ni), where ni de-
notes the total number of votes on all candidates
in county i.

d. Answer b and c also for the model where the
fraction of votes (instead of the number of
votes) on Buchanan in each county is explained

in terms of the fraction of votes on Gore in that
county. For the Breusch–Pagan test consider het-
eroskedasticity of the form s2i ¼ h(g1 þ g2

1
ni
).

e. Formulate an intuitively plausible model for the
variance of the disturbance terms in the regres-
sion model of a, using the results of the Breusch–
Pagan tests in c and d. Answer b using a regres-
sion equation with appropriately weighted data.

f. Discuss and investigate whether the assumptions
that are needed for the (politically important)
conclusion of e are plausible for these data.
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6

Qualitative and Limited
Dependent Variables

In this chapter we consider dependent variables with a restricted domain of
possible outcomes. Binary variables have only two possible outcomes (‘yes’
and ‘no’); other qualitative variables can have more than two but a finite
number of possible outcomes (for example, the choice between a limited
number of alternatives). It may also be that the outcomes of the dependent
variable are restricted to an interval. For instance, for individual agents the
amount of money spent on luxury goods or the duration of unemployment is
non-negative, with a positive probability for the outcome ‘zero’. For all such
types of dependent variables, the linear regression model with normally
distributed error terms is not suitable. We discuss probit and logit models
for qualitative data, tobit models for limited dependent variables, and
models for duration data.
Section 6.1 is the basic section of this chapter and it is required for the

material discussed in Sections 6.2 and 6.3. These last two sections can be
read independently from each other.



6.1 Binary response

6.1.1 Model formulation

E Uses Chapters 1–4; Sections 5.4 and 5.6.

Motivation

Students may succeed in finishing their studies or they may drop out, house-
holds may buy a trendy new product or not, and individuals may respond to a
directmailing or not. In all such cases the variable of interest can take only two
possible values. Such variables are called binary. The two outcomes will be
labelled as 1 (‘success’) and 0 (‘failure’). The simplest statistical model to
describe a binary variable y is theBernoulli distributionwithP[y ¼ 1] ¼ p and
P[y ¼ 0] ¼ 1� p. However, it may well be that the probability of success
differs among individuals, and in this section we are interested in modelling
the possible causes of these differences. For instance, the probability of success
for students in their studieswill depend on their intelligence, the probability of
buying a new trendy product will depend on income and age, and the prob-
ability of a response to a direct mailingwill depend on relevant interests of the
individuals.

Assumptions on explanatory variables

As before, for individual i the values of k explanatory variables are denoted
by the k� 1 vector xi and the outcome of the binary dependent variable is
denoted by yi. We will always assume that the model contains a constant term
and that x1i ¼ 1 for all individuals. Throughout this chapter we will treat the
explanatory variables as fixed values, in accordance with Assumption 1 in
Section 3.1.4 (p. 125). However, as was discussed in Section 4.1, in practice
all data (both yi and xi) are often stochastic. This is the case, for instance,
when the observations are obtained by random sampling from an underlying
population, and this is the usual situation for the types of data considered in
this chapter. All the results of this chapter carry over to the case of exogenous
stochastic regressors, by interpreting the results conditional on the given
outcomes of xi, i ¼ 1, � � � , n. This kind of interpretation was also discussed
in Section 4.1.2 (p. 191).
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The linear probability model

For a binary dependent variable, the regression model

yi ¼ x0ibþ ei ¼ b1 þ
Xk
j¼2

bjxji þ ei, E[ei] ¼ 0 (6:1)

is called the linear probability model. As E[ei] ¼ 0 and yi can take only the
values zero and one, it follows that x0ib ¼ E[yi] ¼ 0 � P[yi ¼ 0]þ1 � P[yi ¼ 1],
so that

P[yi ¼ 1] ¼ E[yi] ¼ x0ib: (6:2)

Note that we write P[yi ¼ 1] ¼ x0ib—that is, the subindex i of yi indicates
that we deal with an individual with characteristics xi. This can be
written more explicitly as P[yi ¼ 1jxi], but for simplicity of notation we
delete the conditioning on xi. Similar shorthand notations will be used
throughout this chapter. In the linear probability model, x0ib measures the
probability that an individual with characteristics xi will make the choice
yi ¼ 1, so that the marginal effect of the jth explanatory variable is equal to

@P[yi ¼ 1]=@xji ¼ bj, j ¼ 2, � � � , k:

Disadvantages of the linear model

The linear probability model has several disadvantages. It places implicit
restrictions on the parameters b, as (6.2) requires that 0 � x0ib � 1 for all
i ¼ 1, � � � , n. Further, the error terms ei are not normally distributed. This is
because the variable yi can take only the values zero and one, so that ei is a
random variable with discrete distribution given by

ei ¼ 1� x0ib with probability x0ib

ei ¼ �x0ib with probability 1� x0ib:

The distribution of ei depends on xi and has variance equal to var(ei)
¼ x0ib(1� x0ib), so that the error terms are heteroskedastic with variances
that depend on b. The assumption that E[ei] ¼ 0 in (6.1) implies that OLS is
an unbiased estimator of b (provided that the regressors are exogenous), but
clearly it is not efficient and the conventional OLS formulas for the standard
errors do not apply. Further, if the OLS estimates b are used to compute the
estimated probabilities P̂P[yi ¼ 1] ¼ x0ib, then this may give values smaller
than zero or larger than one, in which case they are not real ‘probabilities’.
This may occur because OLS neglects the implicit restrictions 0 � x0ib � 1.
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Non-linear model for probabilities

The probabilities can be confined to values between zero and one by using a
non-linear model. Let F be a function with values ranging between zero and
one, and let

P[yi ¼ 1] ¼ F(x0ib): (6:3)

For the ease of interpretation of this model, the function F is always taken
to be monotonically non-decreasing. In this case, if bj > 0, then an increase
in xji leads to an increase (or at least not to a decrease) of the probability
that yi ¼ 1. That is, positive (negative) coefficients correspond to positive
(negative) effects on the probability of success. An obvious choice for
the function F is a cumulative distribution function. This is illustrated in
Exhibit 6.1.

Marginal effects on probabilities

In the model (6.3) x0ib can be interpreted as the strength of the stimulus for
the outcome yi ¼ 1, with P[yi ¼ 1] ¼ F(x0ib) ! 1 if x0ib ! 1 and
P[yi ¼ 1] ! 0 if x0ib ! �1. Assuming that F is differentiable with derivative
f (the density function corresponding to F), the marginal effect of the jth
explanatory variable is given by

@P[yi ¼ 1]

@xji
¼ f (x0ib)bj, j ¼ 2, � � � , k: (6:4)
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Exhibit 6.1 Probability Models

Binary dependent variable (y takes value 0 or 1) with linear probability model (a) and with
non-linear probability model in terms of a cumulative distribution function (b), for a single
explanatory variable (x).
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This shows that the marginal effect of changes in the explanatory variables
depends on the level of these variables. Usually, the density function f has
relatively smaller values in the tails and relatively larger values near the mean,
so that the effects are smallest for individuals for which P[yi ¼ 1] is near zero
(in the left tail of f ) or near one (in the right tail of f ). This conforms with the
intuition that individuals with clear-cut preferences are less affected by
changes in the explanatory variables. The sensitivity of decisions to changes
in the explanatory variables depends on the shape of the density function f . It
is usually assumed that this density has mean zero, which is no loss of
generality, because the explanatory variables include a constant term. Further
it is usually assumed that the density is unimodal and symmetric, so that f (t)
is maximal for t ¼ 0 and f (t) ¼ f (� t) for all t. Then the marginal effects are
maximal for values of x0ib around zero, where P[yi ¼ 1] is around 1/2.

Restriction needed for parameter identification

The standard deviation of the density f should be specified before-
hand. Indeed, if g(t) ¼ sf (st), then the cumulative distribution functions
(G of g and F of f ) are related by G(t) ¼ F(st), so that P[yi ¼ 1]
¼ F(x0ibÞ ¼ G(x0ib=s). That is, the model (6.3) with function F and
parameter vector b is equivalent to the model with functionG and parameter
vector b=s. So the variance of the distribution f should be fixed, independent
of the data, as otherwise the parameter vector b is not identified.

Interpretation of model in terms of latent variables

The model (6.3) can be given an interpretation in terms of an unobserved
variable y�i that represents the latent preference of individual i for the choice
yi ¼ 1. It is assumed that

y�i ¼ x0ibþ ei, ei � IID, E[ei] ¼ 0:

This is the so-called index function, where x0ib is the systematic preference
and ei the individual–specific effect. This takes the possibility into account
that individuals with the same observed characteristics xmay make different
choices because of unobserved individual effects. The observed choice y is
related to the index y� by means of the equation

yi ¼ 1 if y�i � 0,

yi ¼ 0 if y�i < 0:

It is assumed that the individual effects ei are independent and identically
distributed with symmetric density f —that is, f (ei) ¼ f (� ei). It then follows
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that P[ei � �t] ¼ R1�t f (s)ds ¼
R t
�1 f (s)ds ¼ P[ei � t], so that P[yi ¼ 1]

¼ P[ei � �x0ib] ¼ P[ei � x0ib] ¼ F(x0ib), where F is the cumulative distribu-
tion function of ei. This provides an interpretation of the model (6.3) in terms
of differences in the individual effects ei over the population.

Interpretation of model in terms of utilities

Another possible interpretation of the model (6.3) is in terms of the utilities
U0 and U1 of the two alternative choices. The utilities for individual i are
defined by

U0
i ¼ x0ib0 þ e0i, U1

i ¼ x0ib1 þ e1i:

The alternative with maximal utility is chosen, so that

yi ¼ 1 if U0
i � U1

i ,

yi ¼ 0 if U0
i > U1

i :

In this case the choice depends on the difference in the utilities U1
i �U0

i

¼ x0ibþ ei, where b ¼ b1 � b0 and ei ¼ e1i � e0i. Again, if the individual-
specific terms ei are assumed to be independent and identically distributed
with symmetric density f, it follows that P[yi ¼ 1] ¼ P[ei � �x0ib]
¼ P[ei � x0ib] ¼ F(x0ib). So this motivates the model (6.3) in terms of unob-
served individual effects in the utilities of the two alternatives.

Example 6.1: Direct Marketing for Financial Product

To illustrate the modelling of binary response data, we consider data that
were collected in a marketing campaign for a new financial product of a
commercial investment firm (Robeco). We will discuss (i) the motivation of
the marketing campaign, and (ii) the data set.

(i) Motivation of the marketing campaign

The campaign consisted of a direct mailing to customers of the firm. The
firm is interested in identifying characteristics that might explain which
customers are interested in the new product and which ones are not. In
particular, there may be differences between male and female customers
and between active and inactive customers (where active means that the
customer already invests in other products of the firm). Also the age
of customers may be of importance, as relatively young and relatively old
customers may have less interest in investing in this product than middle-
aged people.

E

XM601DMF
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(ii) The data set

The variable to be explained is whether a customer is interested in the new
financial product or not. This is denoted by the binary variable yi, with yi ¼ 1
if the ith customer is interested and yi ¼ 0 otherwise. Apart from a constant
term (denoted by x1i ¼ 1), the explanatory variables are gender (denoted by
x2i ¼ 0 for females and x2i ¼ 1 for males), activity (denoted by x3i ¼ 1 for
customers that are already active investors and x3i ¼ 0 for customers that do
not yet invest in other products of the firm), age (in years, denoted by x4i) and
the square of age (divided by hundred, denoted by x5i ¼ x24i=100).
The data set considered in this chapter is drawn from a much larger

database that contains more than 100,000 observations. A sample of 1000
observations is drawn from this database, and 75 observations are omitted
because of missing data (on the age of the customer). This leaves a data set of
n ¼ 925 customers. Of these customers, 470 responded positively (denoted
by yi ¼ 1) and the remaining 455 did not respond (denoted by yi ¼ 0). The
original data set of more than 100,000 observations contains only around
5000 respondents. So our sample contains relatively many more positive
responses (470 out of 925) than the original database. The effect of this
selection is analysed in Exercises 6.2 and 6.11. For further background on the
data we refer to the research report by P. H. Franses, ‘On the Econometrics of
Modelling Marketing Response’, RIBES Report 97-15, Rotterdam, 1997.
This data set will be further analysed in Examples 6.2 and 6.3.

6.1.2 Probit and logit models

Model formulation

The model (6.3) depends not only on the choice of the explanatory variables
x but also on the shape of the distribution function F. This choice corres-
ponds to assuming a specific distribution for the unobserved individual
effects (in the index function or in the utilities) and it determines the shape
of the marginal response function (6.4) via the corresponding density func-
tion f . In practice one often chooses either the standard normal density

f (t) ¼ f(t) ¼ 1ffiffiffiffiffiffi
2p

p e�
1
2t

2

or the logistic density

f (t) ¼ l(t) ¼ et

(1þ et)2
:
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The model (6.3) with the standard normal distribution is called
the probit model, and that with the logistic distribution is called the logit
model.

Comparison of probit and logit model

Both the standard normal density and the logistic density have mean zero and
are unimodal and symmetric. The standard deviation of both distributions is
fixed, for reasons explained before. The logistic distribution has standard
deviation s ¼ p=

ffiffiffi
3

p � 1:8, whereas the standard normal distribution has
standard deviation 1. In order to compare the two models, the graphs of the
density f(t) and the standardized logistic density sl(st) are given in Exhibit
6.2. This shows that, as compared to the probit model, the logit model has
marginal effects (6.4) that are relatively somewhat larger around the mean
and in the tails but somewhat smaller in the two regions in between. There are
often no compelling reasons to choose between the logit and probitmodel. An
advantage of the logit model is that the cumulative distribution function
F ¼ L can be computed explicitly, as

L(t) ¼
Z t

�1
l(s)ds ¼ et

1þ et
¼ 1

1þ e�t
, (6:5)

whereas the cumulative distribution function F ¼ F of the probit
model should be computed numerically by approximating the integral
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Exhibit 6.2 Normal and logistic densities

Densities of the standard normal distribution (dashed line) and of the logistic distribution
(solid line, scaled so that both densities have standard deviation equal to 1). As compared with
the normal density, the logistic density has larger values around the mean (x ¼ 0) and also in
both tails (for values of x far away from 0).
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F(t) ¼
Z t

�1
f(s)ds ¼ 1ffiffiffiffiffiffi

2p
p

Z t

�1
e�

1
2s

2

ds: (6:6)

In practice this poses no real problems, however, as there exist very accurate
numerical integration algorithms. In general the differences between the two
models are not so large, unless the tails of the distributions are of importance.
This is the case when the choices are very unbalanced, in the sense that the
fraction of individuals with yi ¼ 1 differs considerably from 1

2.

Comparison of parameters of the two models: scaling

One can, of course, always estimate both the logit and the probit model and
compare the outcomes. The parameters of the two models should be scaled
for such a comparison. Instead of the scaling factor 1.8, which gives the two
densities the same variance, one often uses another correction factor. The
marginal effects (6.4) of the explanatory variables are maximal around zero,
so that these effects are of special interest. As f(0)=l(0) ¼ 4=

ffiffiffiffiffiffi
2p

p � 1:6, the
estimated probit parameters b can be multiplied by 1.6 to compare themwith
the estimated logit parameters. In terms of Exhibit 6.2 this means that, after
scaling, the two densities have the same function value in t ¼ 0.

Marginal effects of explanatory variables

As concerns the interpretation of the parameters b, (6.4) shows that the signs
of the coefficients bj and the relative magnitudes bj=bh have a direct inter-
pretation in terms of the sign and the relative magnitude of the marginal
effects of the explanatory variables on the chance of success (yi ¼ 1). Since
the marginal effects depend on the values of xi, these effects vary among the
different individuals. The effects of the jth explanatory variable can be
summarized by the mean marginal effects over the sample of n individ-
uals— that is,

1

n

Xn
i¼1

@P[yi ¼ 1]

@xji
¼ bj

1

n

Xn
i¼1

f (x0ib), j ¼ 2, � � � , k:

Sometimes the effect at the mean values of the explanatory variables
is reported instead— that is, (6.4) evaluated at x ¼ 1

n

Pn
i¼1 xi. This is a bit

simpler to compute, but the interpretation is somewhat less clear.
When the jth explanatory variable is a dummy variable, it remains possible
to compute ‘marginal’ effects in this way. Instead, it is also possible to
compare the two situations xji ¼ 0 and xji ¼ 1 by comparing
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P[yi ¼ 1] ¼ F
�P

l 6¼j blxli
�

(for individuals with xji ¼ 0) with P[yi ¼ 1]
¼ F

�
bj þ

P
l 6¼j blxli

�
(for individuals with xji ¼ 1). This may reveal differ-

ences in the effect of the dummy variable for different ranges of the other
explanatory variables (xli with l 6¼ j).

Comparison of probabilities and the odds ratio

It may further be informative to consider the predicted probabilities
pi ¼ P[yi ¼ 1] ¼ F(x0ib), i ¼ 1, � � � , n—for instance, the mean, variance,
minimum, and maximum of these probabilities. The individuals may also
be split into groups, after which the values of pi can be compared within and
between groups. Of special interest is the odds ratio, which is defined by

P[yi ¼ 1]

P[yi ¼ 0]
¼ F(x0ib)

1� F(x0ib)
:

So the odds ratio is the relative preference of option 1 as compared to option
0. This preference depends on the values xi of the explanatory variables. The
log-odds is the natural logarithm of the odds ratio. In the logit model with
F ¼ L there holds L(t) ¼ et=(1þ et) and 1� L(t) ¼ 1=(1þ et), so that
L(t)=(1� L(t)) ¼ et and

log
L(x0ib)

1� L(x0ib)

� �
¼ x0ib:

That is, in the logit model the log-odds is a linear function of the explanatory
variables.

As a constant term is included in the model, we can transform the data
by measuring all other explanatory variables (x2, � � � , xk) in deviation
from their sample mean. After this transformation, the odds ratio, evaluated
at the sample mean of the explanatory variables, becomes F(b1)=(1� F(b1)),
and this provides the following interpretation of the constant term. If b1 ¼ 0,
then the odds ratio evaluated at the sample mean is equal to 1 (as F(0) ¼ 1

2,
both for the probit and for the logit model), so that for an ‘average’ individ-
ual both choices are equally likely. If b1 > 0, then F(b1) > F(0) ¼ 1

2, so that
an ‘average’ individual has a relative preference for alternative 1 above alter-
native 0, and, if b1 < 0, an ‘average’ individual has a relative preference for
alternative 0 above alternative 1.

E Exercises: T: 6.2a–c; S: 6.7a–c.
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6.1.3 Estimation and evaluation

The likelihood function

The logit and probit models are non-linear and the parameters can be
estimated by maximum likelihood. Suppose that a random sample of n
outcomes of the binary variable yi is available. If the probability of success
is the same for all observations—say, P[yi ¼ 1] ¼ p—then the probability
distribution of the ith observation is given by pyi(1� p)1�yi. If the observa-
tions are mutually independent, then the likelihood function is given by
L(p) ¼ Pn

i¼1p
yi(1� p)1�yi and the log-likelihood by

log (L(p)) ¼
X
i; yi¼1f g

log (p)þ
X
i; yi¼0f g

log (1� p)

¼
Xn
i¼1

yi log (p)þ
Xn
i¼1

(1� yi) log (1� p):

Maximizing this with respect to p we get the ML estimator p̂p ¼Pn
i¼1 yi=n.

Now suppose that the observations y1, � � � , yn are mutually independent but
that the probability of success differs among the observations according to
the model (6.3), all with the same function F but with differences in the
values of the explanatory variables xi. Then the variable yi follows a Ber-
noulli distribution with probability

pi ¼ P[yi ¼ 1] ¼ F(x0ib)

on the outcome yi ¼ 1 and with probability (1� pi) on the outcome yi ¼ 0.
The probability distribution is then given by p(yi) ¼ pyii (1� pi)

1�yi , yi ¼ 0, 1.
The log-likelihood is therefore equal to

log (L(b)) ¼
Xn
i¼1

yi log (pi)þ
Xn
i¼1

(1� yi) log (1� pi)

¼
Xn
i¼1

yi log (F(x
0
ib))þ

Xn
i¼1

(1� yi) log (1� F(x0ib))

¼
X
i; yi¼1f g

log (F(x0ib))þ
X
i; yi¼0f g

log (1� F(x0ib)): (6:7)

The terms pi depend on b, but for simplicity of notation we will in the sequel
often write pi instead of the more explicit expression F(x0ib).
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Maximization of the log-likelihood

The maximum likelihood estimates are obtained by solving the first
order conditions. Using the fact that the density function f (t) is the derivative of
the cumulative distribution function F(t), the k first order conditions are given by

g(b) ¼ @ log (L)

@b
¼
Xn
i¼1

yi
pi

@pi
@b

þ
Xn
i¼1

(1� yi)

1� pi

@(1� pi)

@b

¼
Xn
i¼1

yi
pi
fixi �

Xn
i¼1

(1� yi)

1� pi
fixi ¼

Xn
i¼1

yi � pi
pi(1� pi)

fixi ¼ 0:

(6:8)

Here fi ¼ f (x0ib) is the density function corresponding to the cumulative
distribution function F. These first order conditions can be seen as a variation of
the normal equations

Pn
i¼1 eixi ¼ 0 of the linear regression model. In a binary

response model, yi � pi ¼ yi � P[yi ¼ 1] is the residual of the model (6.3) with
respect to the actually observed outcome of yi. The weighting factor pi(1� pi) is
equal to the variance of yi, so that this corresponds to the usual correction for
heteroskedasticity in weighted least squares (see Section 5.4.3 (p. 327–8)). Finally,
the factor fi reflects the fact that the marginal effects (6.4) are not constant over the
sample (as is the case in a linear regression model) but depend on the value of
f (x0ib). The set of k non-linear equations g(b) ¼ 0 can be solved numerically— for
instance, by Newton–Raphson— to give the estimate b. To get an idea of the
effects of the different explanatory variables it can be helpful to plot the predicted
probabilities P̂P[y ¼ 1] ¼ F(x0b) and the corresponding odds ratio or log-odds
against each individual explanatory variable, fixing the other variables at their
sample means.

Approximate distribution of the ML estimator

The general properties of ML estimators were discussed in Section 4.3.3
(p. 228)— for instance, large sample standard errors can be obtained from the
inverse of the information matrix. It is often convenient to use the outer product of
gradients expression for this (see Sections 4.3.2 and 4.3.3 and formula (4.57)
in Section 4.3.8). With the notation introduced there, we have @li=@b ¼
(yi � pi)fixi=(pi(1� pi)), so that the covariance matrix of b can be estimated by

var(b) � V̂V ¼
Xn
i¼1

@li
@b

@li
@b0

" #�1

¼
Xn
i¼1

(yi � p̂pi)
2

p̂p2i (1� p̂pi)
2
f̂f 2i xix

0
i

" #�1

, (6:9)

where p̂pi ¼ F(x0ib) and f̂fi ¼ f (x0ib). Under the stated assumptions— that is, that the
observations yi are independently distributed with P[yi ¼ 1] ¼ F(x0ib) with the
same cumulative distribution function F for all observations— the ML estimator
b has an asymptotic normal distribution in the sense that

ffiffiffi
n

p
(b� b) converges in

distribution to the normal distribution with mean zero and covariance matrix
plim(nV̂V). This probability limit exists under weak regularity conditions on the
explanatory variables xi. In finite samples this gives

T

T
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b � N(b, V̂V): (6:10)

These results can be used to perform t- and F-tests in the usual way, and of course
the Likelihood Ratio test (4.44) can also be applied.

Results for the logit model

The foregoing expressions apply for any choice of the distribution function F. As an
illustration we consider the logit model with F ¼ L in (6.5) in more detail. The
expression for the gradient (6.8) simplifies in this case as

li ¼ ex
0
ib

(1þ ex
0
i
b)2

¼ ex
0
ib

1þ ex
0
i
b 1� ex

0
ib

1þ ex
0
i
b

� �
¼ Li(1� Li),

so that fi ¼ pi(1� pi) in this case. Therefore the logit estimates are obtained by
solving the k equations

g(b) ¼
Xn
i¼1

(yi � pi)xi ¼
Xn
i¼1

yi � 1

1þ e�x0
i
b

� �
xi ¼ 0:

As the first explanatory variable is the constant term with x1i ¼ 1 for all
i ¼ 1, � � � , n, it follows that

Pn
i¼1 (yi � p̂pi) ¼ 0, so that

1

n

Xn
i¼1

p̂pi ¼ 1

n

Xn
i¼1

yi:

So the logit model has the property that the average predicted probabilities of
success and failure are equal to the observed fractions of successes and failures in
the sample. The ML first order conditions (6.11) have a unique solution, because
the Hessian matrix

@2 log (L)

@b@b0
¼ @g(b)

@b0
¼ �

Xn
i¼1

fixix
0
i ¼ �

Xn
i¼1

pi(1� pi)xix
0
i

is negative definite. This simplifies the numerical optimization, and in general the
Newton–Raphson iterations will converge rather rapidly to the global maximum.
The information matrix (for given values of the explanatory variables) is given by

In ¼ �E
@2 log (L)

@b@b0

� 	
¼
Xn
i¼1

pi(1� pi)xix
0
i: (6:11)

Large sample standard errors of the logit parameters can be obtained, as discussed
in Section 4.3.3 (p. 228)— that is, by substituting the logit estimate b for b in the
above expression and by taking the square roots of the diagonal elements of

T
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the inverse of (6.11). Expression (6.9) for the covariance matrix can be obtained
from (6.11) by replacing the terms pi(1� pi) in (6.11) by (yi � pi)

2, since for
the logit model f̂f 2i ¼ p̂p2i (1� p̂p2i ), so that these terms cancel in (6.9). As
E[(yi � pi)

2] ¼ var(yi) ¼ pi(1� pi), the two expressions (6.9) and I�1
n of (6.11)

for the covariance matrix are asymptotically equivalent.

Remarks on the probit model

The analysis of the probit model is technically somewhat more involved. The
Hessian matrix is again negative definite, and the numerical optimization
poses no problems in general. With suitable software, the practical usefulness
of probit and logit models is very much alike.

Example 6.2: Direct Marketing for Financial Product (continued)

We continue our analysis of the direct mailing data introduced in Example
6.1. We will discuss (i) the outcomes of estimated logit and probit models for
the probability that a customer is interested in the product, and (ii) the odds
ratios (depending on the age of the customer) of the two models.

(i) Outcomes of logit and probit models

The dependent variable is yi with yi ¼ 1 if the ith individual is interested and
yi ¼ 0 otherwise. The explanatory variables are gender, activity, and age
(with a linear and a squared term) (see Example 6.1). The results of logit
and probit models are given in Panels 2 and 3 of Exhibit 6.3. For comparison
the results of the linear probability model are also given (see Panel 1). All
models indicate that the variables ‘gender’ and ‘activity’ are statistically the
most significant ones. As the corresponding two parameters are positive,
these variables have a positive impact on the probability of responding to
the mailing. That is, male customers and active customers tend to be more
interested than female and inactive customers. The effects of ‘gender’ and
‘activity’ are almost the same.

The numerical values of the coefficients of the three models can be com-
pared by determining the mean marginal effects of the explanatory variables
in the three models. As discussed in Section 6.1.2, the meanmarginal effect of
the jth explanatory variable is bj

1
n

Pn
i¼1 f (x

0
ib), so we take as correction factor

1
n

Pn
i¼1 f (x

0
ib). For our data, in the logit model this correction factor is 0.230

and in the probit model it is 0.373. For instance, the mean marginal effect of
the variable gender is 0.224 in the linear probability model (see Panel 1),
0:954 � 0:230 ¼ 0:219 in the logit model, and 0:588 � 0:373 ¼ 0:219 in the
probit model. So the coefficients of the variable gender differs in the three
models (0.224, 0.954, 0.588), but their interpretation in terms of mean
marginal effects is very much the same. This also holds true for the coeffi-
cients of the other explanatory variables.

E
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The variable ‘age’ has an effect that first increases and then decreases,
although the effects are only marginally significant (at 5 per cent significance
level). However, the possible effect of age is of great practical importance for
the firm.

(a) Panel 1: Dependent Variable: RESPONSE
Method: Least Squares
Sample: 1 1000
Included observations: 925; Excluded observations: 75

Variable Coefficient Std. Error t-Statistic Prob.
C �0.060888 0.195906 �0.310802 0.7560

GENDER 0.224002 0.035809 6.255535 0.0000
ACTIVITY 0.208268 0.040669 5.121010 0.0000

AGE 0.015494 0.007861 1.971057 0.0490
AGE^2/100 �0.015209 0.007507 �2.026048 0.0430

R-squared 0.081542
S.E. of regression 0.480418

(b) Panel 2: Dependent Variable: RESPONSE
Method: ML - Binary Logit
Sample: 1 1000
Included observations: 925; Excluded observations: 75
Convergence achieved after 5 iterations

Variable Coefficient Std. Error z-Statistic Prob.
C �2.488358 0.889992 �2.795932 0.0052

GENDER 0.953694 0.158183 6.029070 0.0000
ACTIVITY 0.913748 0.184779 4.945090 0.0000

AGE 0.069945 0.035605 1.964455 0.0495
AGE^2/100 �0.068692 0.034096 �2.014643 0.0439

S.E. of regression 0.480195 Scale factor (marg. eff.) 0.229533
Log likelihood �601.8624

(c) Panel 3: Dependent Variable: RESPONSE
Method: ML - Binary Probit
Sample: 1 1000
Included observations: 925; Excluded observations: 75
Convergence achieved after 5 iterations

Variable Coefficient Std. Error z-Statistic Prob.
C �1.497584 0.536822 �2.789720 0.0053

GENDER 0.588114 0.096684 6.082811 0.0000
ACTIVITY 0.561167 0.111572 5.029656 0.0000

AGE 0.041680 0.021544 1.934636 0.0530
AGE^2/100 �0.040982 0.020607 �1.988730 0.0467

S.E. of regression 0.480242 Scale factor (marg. eff.) 0.372705
Log likelihood �601.9497

Exhibit 6.3 Direct Marketing for Financial Product (Example 6.2)

Responses to direct mailing (1¼ response, 0¼ no response) explained by gender, activity
dummy, and age (quadratic function). Estimates obtained from the linear probability model
(Panel 1), the logit model (Panel 2), and the probit model (Panel 3). The reported scale factors
are the averages of f (x0ib) over the sample, with f the logistic density (Panel 2) or the standard
normal density (Panel 3).
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(ii) Odds ratios depending on age

To give an impression of the age effect, Exhibit 6.3 shows the estimated odds
ratios (for the logit model in (d) and for the probit model in (e)) against the
variable ‘age’. All odds ratios are highest around an age of 50 years. In each
diagram, the top curve shows that males who are already active investors
have a probability of responding to the direct mailing that is two to three
times as large as the probability of not responding. The opposite odds ratios
apply for females who are not yet investing. As the coefficients of ‘gender’
and ‘activity’ are almost equal, the odds ratios for inactive males and active
females coincide approximately.

E Exercises: T: 6.2d, e; S: 6.7d–f, 6.8a, b; E: 6.11, 6.13a, b.

6.1.4 Diagnostics

In this section we discuss some diagnostic tools for logit and probit
models—namely, the goodness of fit (LR-test and R2), the predictive quality
(classification table and hit rate), and analysis of the residuals (in particular
an LM-test for heteroskedasticity).
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Exhibit 6.3 (Contd.)

Estimated odds ratios for logit model (d) and for probit model (e) against age. In both
diagrams, the top curve is for active males, the second one for non-active males, the (nearly
coinciding) third one for active females, and the lowest one for non-active females.
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Goodness of fit

The significance of individual explanatory variables can be tested by the
usual t-test based on (6.10). The sample size should be sufficiently large to
rely on the asymptotic expressions for the standard errors, and the t-test
statistic then follows approximately the standard normal distribution. Joint
parameter restrictions can be tested by the Likelihood Ratio test. For logit
and probit models it is no problem to estimate the unrestricted and restricted
models, at least if the restrictions are not too involved. The overall goodness
of fit of the model can be tested by the LR-test on the null hypothesis that all
coefficients (except the constant term) are zero— that is, b2 ¼ � � � ¼ bk ¼ 0.
This test follows (asymptotically) the w2(k� 1) distribution. Sometimes one
reports measures similar to the R2 of linear regression models— for instance,
McFadden’s R2 defined by

R2 ¼ 1� log (L1)

log (L0)
,

where L1 is the maximum value of the unrestricted likelihood function and
L0 that of the restricted likelihood function. It follows from (6.7) that
L0 � L1 < 0, so that 0 � R2 < 1 and higher values of R2 correspond to a
relatively higher overall significance of the model. Note, however, that this
R2 cannot be used, for example, to choose between a logit and a probit
model, as these two models have different likelihood functions.

Predictive quality

Alternative specifications of the model may be compared by evaluating
whether the model gives a good classification of the data into the two categor-
ies yi ¼ 1 and yi ¼ 0. The estimatedmodel gives predicted probabilities p̂pi for
the choice yi ¼ 1, and this can be transformed into predicted choices by
predicting that ŷyi ¼ 1 if p̂pi � c and ŷyi ¼ 0 if p̂pi < c. The choice of c can
sometimes be based on the costs of misclassification. In practice one often
takes c ¼ 1

2, or, if the fraction p̂p of successes differs much from 50 per cent, one
sometimes takes c ¼ p̂p. This leads to a 2� 2 classification table of the pre-
dicted responses ŷyi against the actually observed responses yi. The hit rate is
defined as the fraction of correct predictions in the sample. Formally, letwi be
the random variable indicating a correct prediction— that is, wi ¼ 1 if
yi ¼ ŷyi and wi ¼ 0 if yi 6¼ ŷyi; then the hit rate is defined by h ¼ 1

n

Pn
i¼1 wi.

In the population the fraction of successes is p. If we randomly make the
prediction 1 with probability p and 0 with probability (1� p), then we make
a correct prediction with probability q ¼ p2 þ (1� p)2. Using the properties
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of the binomial distribution for the number of correct random predictions, it
follows that the ‘random’ hit rate hr has expected value E[hr] ¼ E[w] ¼ q
and variance var(hr) ¼ var(w)=n ¼ q(1� q)=n. The predictive quality of our
model can be evaluated by comparing our hit rate h with the random hit rate
hr. Under the null hypothesis that the predictions of the model are no better
than pure random predictions, the hit rate h is approximately normally
distributed with mean q and variance q(1� q)=n. Therefore we reject the
null hypothesis of random predictions in favour of the (one-sided) alternative
of better-than-random predictions if

z ¼ h� qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q(1� q)=n

p ¼ nh� nqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nq(1� q)

p
is large enough (larger than 1.645 at 5 per cent significance level). In practice,
q ¼ p2 þ (1� p)2 is unknown and estimated by p̂p2 þ (1� p̂p)2, where p̂p is the
fraction of successes in the sample. In the above expression for the z-test, nh
is the total number of correct predictions in the sample and nq is the expected
number of correct random predictions.

Description may be more relevant than prediction

Although the comparison of the classification success of alternative models
may be of interest, it should be realized that the parameters of binary response
models are chosen to maximize the likelihood function, and not directly to
maximize ameasure of fit between the observed outcomes yi and the predicted
outcomes ŷyi. This is another distinction with the linear regression model,
where maximizing the (normal) likelihood function is equivalent to maximiz-
ing the (least squares) fit. A binary response model may be preferred over
another one because it gives a more useful description, for example, of the
marginal effects (6.4), even if it performs worse in terms of classification.

Standardized residuals and consequences of heteroskedasticity

The residuals ei of a binary response model are defined as the differences
between the observed outcomes yi and the fitted probabilities p̂pi. As the
variance of yi (for given values of xi) is pi(1� pi), the standardized residuals
are defined by

e�i ¼
yi � p̂piffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂pi(1� p̂pi)

p : (6:12)

A histogram of the standardized residuals may be of interest, for example,
to detect outliers. Further, scatter diagrams of these residuals against

454 6 Qualitative and Limited Dependent Variables



explanatory variables are useful to investigate the possible presence of het-
eroskedasticity. Heteroskedasticity can be due to different kinds of misspe-
cification of the model. It may be, for instance, that a relevant explanatory
variable is missing or that the function F is misspecified. In contrast with the
linear regression model, where OLS remains consistent under heteroskedas-
ticity, maximum likelihood estimators of binary response models become
inconsistent under this kind of misspecification. For instance, if the data
generating process is a probit model but one estimates a logit model,
then the estimated parameters and marginal effects are inconsistent and
the calculated standard errors are not correct. However, as the differences
between the probit function F and the logit function L are not so large,
the outcomes may still be reasonably reliable. If one has doubts on the
correct choice of the distribution function F, it may be helpful to compute
the standard errors in two ways— that is, by the ML expression (6.9) and
also by GMM based on the ‘moment’ conditions (6.8). If the two sets
of computed standard errors differ significantly, then this is a sign of
misspecification.

Likelihood Ratio test on heteroskedasticity

A formal test for heteroskedasticity can be based on the index model
y�i ¼ x0ibþ ei. Until now it was assumed that the error terms ei all follow
the same distribution (described by F). As an alternative we consider the
model where all ei=si follow the same distribution F where

si ¼ ez
0
ig,

with zi a vector of observed variables. The constant term should not be
included in this vector because (as was discussed in Section 6.1.1) the scale
parameter of a binary response model should be fixed, independent of the
data. We assume again that the density function f (the derivative of F) is
symmetric— that is, f (t) ¼ f (� t). It then follows that P[yi ¼ 1] ¼ P[y�i � 0]
¼ P[ei � �x0ib] ¼ P[(ei=s) � �x0ib=s] ¼ P[(ei=s) � x0ib=s] ¼ F(x0ib=s)],
so that

P[yi ¼ 1] ¼ F
�
x0ib=e

z0ig
�
: (6:13)

The null hypothesis of homoskedasticity corresponds to the parameter re-
striction H0 : g ¼ 0. This hypothesis can be tested by the LR-test. The unre-
stricted likelihood function is obtained from the log-likelihood (6.7) by
replacing the terms pi ¼ F(x0ib) by pi ¼ F(x0ib=e

z0ig).
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Lagrange Multiplier test on heteroskedasticity

An alternative is to use the LM-test, so that only the model under the null
hypothesis (with g ¼ 0) needs to be estimated. By working out the formulas for
the gradient and the Hessian of the unrestricted likelihood, it can be shown that
the LM-test can be performed as if (6.13) were a non-linear regression model. The
correctness of the following steps to compute the LM-test is left as an exercise (see
Exercise 6.1).

First estimate the model without heteroskedasticity— that is, under the
null hypothesis that g ¼ 0. This amounts to estimating the model
p[yi ¼ 1] ¼ F(x0ib) by ML, as discussed in Section 6.1.3. The residuals of this
model are denoted by ei ¼ yi � p̂pi ¼ yi � F(x0ib). As a second step, regress the
residuals ei on the gradient of the non-linear model P[yi ¼ 1] ¼ F(x0ib=e

z0ig), taking
into account that the residuals are heteroskedastic. This amounts to applying
(feasible) weighted least squares— that is, OLS after division for the ith observa-
tion by the (estimated) standard deviation. The variance of the ‘error term’ yi � pi
is var(yi � pi) ¼ var(yi) ¼ pi(1� pi). We replace pi by p̂pi obtained in the first step,
so that the weight of the ith observation inWLS is given by 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂pi(1� p̂pi)

p
. Further,

the gradient of the function F(x0ib=e
z0ig) in the model (6.13), when evaluated at

g ¼ 0, is given by

@F(x0b=ez
0g)

@b
¼ f (x0b)x,

@F(x0b=ez
0gÞ

@g
¼ �f (x0b)x0bz:

Therefore, the required auxiliary regression in this second step can be written in
terms of the standardized residuals (6.12) as

e�i ¼
yi � p̂piffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂pi(1� p̂pi)

p ¼ f (x0ib)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂pi(1� p̂pi)

p x0id1 þ
f (x0ib)x

0
ibffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p̂pi(1� p̂pi)
p z0id2 þ Zi: (6:14)

Under the null hypothesis of homoskedasticity, there holds that LM ¼ nR2
nc of this

regression, where R2
nc denotes the non-centred R2 — that is, the explained sum of

squares of (6.14) is divided by the non-centred total sum of squares
Pn

i¼1 (e
�
i )

2. As
the regression in (6.14) does not contain a constant term on the right-hand side,
one should take here the non-centredR2 defined byR2

nc ¼
P

(êe�i )
2=
P

(e�i )
2 , where

êe�i denote the fitted values of the regression in (6.14). We reject the null hypothesis
for large values of the LM-test, and under the null hypothesis of homoskedasticity
(g ¼ 0) it is asymptotically distributed as w2(g), where g is the number of variables
in zi —that is, the number of parameters in g.

This can be summarized as follows.

T
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Computation of LM-test on heteroskedasticity


 Step 1: Estimate the restricted model. Estimate the homoskedastic model
P[yi ¼ 1] ¼ F(x0ib) by ML. Let p̂pi ¼ F(x0ib) and define the generalized re-
siduals e�i by (6.12).


 Step 2: Auxiliary regression of generalized residuals of step 1. Regress the
generalized residuals e�i of step 1 on the (scaled) gradient of the heteroske-
dastic model P[yi ¼ 1] ¼ F(x0ib=e

z0ig)— that is, perform OLS in (6.14).


 Step 3: LM ¼ nR2
nc of step 2. Then LM ¼ nR2

nc, where R2
nc is the non-

centred R2 of the regression in step 2. If the null hypothesis of homoske-
dasticity (g ¼ 0) holds true, then LM � w2(g), where g is the number of
parameters in g.

Example 6.3: Direct Marketing for Financial Product (continued)

We perform some diagnostic checks on the logit and probit models that were
estimated for the direct mailing data in Example 6.2. We will discuss (i) the
significance of the explanatory variables, (ii) the investigation of the possible
presence of outliers and heteroskedasticity, and (iii) the predictive perform-
ance of the models. Exhibit 6.4 reports the results of these diagnostic checks.

(i) Significance of the explanatory variables

In Example 6.2 we concluded that the variables ‘gender’ and ‘activity’ are
significant but that the linear and quadratic age variables are individually
only marginally significant. Panel 1 of Exhibit 6.4 contains the result of the
LR-test for the joint significance of the two age variables. This indicates that
they are jointly not significant, as P ¼ 0:12 in the logit model and P ¼ 0:13 in
the probit model. The two models have nearly equal and not so large values
of R2 (0.061), but the LR-test for the joint significance of the variables
(x2, � � � , x5) in Panel 1 of Exhibit 6.4 shows that the models have explanatory
power. The combination of statistical significance with relatively low fit is
typical for models explaining individual behaviour. This means that the
model may have difficulty in describing individual decisions but that it
gives insight into the overall pattern of behaviour.

(ii) Investigation of possible outliers and heteroskedasticity

The maximum andminimum values of the standardized residuals reported in
Panel 1 of Exhibit 6.4 for the logit and probit model do not indicate the
presence of outliers. To test for the possible presence of heteroskedasticity,
we consider the model si ¼ egzi , where zi is the total amount of money that
individual i has already invested in other products of the bank. The test

E
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outcomes provide some evidence for the presence of heteroskedasticity
(P ¼ 0:01).

(iii) Predictive performance

Panels 2 and 3 of Exhibit 6.4 also contain results on the predictive perform-
ance of the logit and probit models. The hit rates are 0.616 for the logit
model and 0.622 for the probit model. This is well above the expected hit
rate of around 0.5 of random predictions (more precisely, of the 925 obser-
vations there are 470 with yi ¼ 1 and 455 with yi ¼ 0 so that p̂p ¼ 470

925 and
p̂p2 þ (1� p̂p)2 ¼ 0:5001). The test whether the predictions are better than

Panel 1: DIAGNOSTIC TEST RESULTS LOGIT PROBIT
Standardized residuals: maximum 2.123 2.135

minimum �1.786 �1.787
Heteroskedasticity LM test value (df¼ 1) 6.237 6.186

corresponding P-value 0.0125 0.0129
LR test for significance of explanatory variables (df¼ 4) 78.35 78.18

corresponding P-value 0.0000 0.0000
LR test for significance of age variables (df¼ 2) 4.247 4.089

corresponding P-value 0.1196 0.1294
R-squared 0.061 0.061

Panel 2: LOGIT: Prediction Evaluation (success cutoff C¼ 0.5)
Estimated Equation Constant Probability

Dep¼ 0 Dep¼ 1 Total Dep¼ 0 Dep¼ 1 Total
P(Dep¼ 1)<¼C 196 96 292 0 0 0
P(Dep¼1)>C 259 374 633 455 470 925

Total 455 470 925 455 470 925
Correct 196 374 570 0 470 470

% Correct 43.08 79.57 61.62 0.00 100.00 50.81
% Incorrect 56.92 20.43 38.38 100.00 0.00 49.19

p ¼ 470/925 ¼ 0.508, random hit rate p2 þ (1� p)2 ¼ 0:5001
Z-value ¼ (570� 462:5)=

p
(925�0:5001�0:4999) ¼ 7:07, P ¼ 0:0000

Panel 3: PROBIT: Prediction Evaluation (success cutoff C ¼ 0.5)
Estimated Equation Constant Probability

Dep¼ 0 Dep¼ 1 Total Dep¼ 0 Dep¼ 1 Total
P(Dep¼1)<¼C 190 85 275 0 0 0
P(Dep¼1)>C 265 385 650 455 470 925

Total 455 470 925 455 470 925
Correct 190 385 575 0 470 470

% Correct 41.76 81.91 62.16 0.00 100.00 50.81
% Incorrect 58.24 18.09 37.84 100.00 0.00 49.19

p ¼ 470/925 ¼ 0.508, random hit rate p2 þ (1� p)2 ¼ 0:5001
Z-value ¼ (575� 462:5)=

p
(925�0:5001�0:4999) ¼ 7:40, P ¼ 0:0000

Exhibit 6.4 Direct Marketing for Financial Product (Example 6.3)

Outcomes of various diagnostic tests for logit and probit models for responses to direct mailing
(Panel 1) and predictive performance of logit model (Panel 2) and of probit model (Panel 3).
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random gives values of z ¼ 7:07 for the logit model and z ¼ 7:40 for the
probit model, with P-value P ¼ 0:00 (see Panels 2 and 3 of Exhibit 6.4). This
shows that the classification of respondents by the logit and probit models is
better than what would have been achieved by random predictions. The
models are more successful in predicting positive responses (around 80 per
cent is predicted correctly) than in predicting no response (of which a bit
more than 40 per cent is predicted correctly).

E Exercises: T: 6.1; S: 6.8c–f; E: 6.10, 6.13c, d.

6.1.5 Model for grouped data

Grouped data

Sometimes— for instance, for reasons of confidentiality— the individual
data are not given and only the average values of the variables over groups
of individuals are reported. For instance, the investment decisions of custom-
ers of a bank may be averaged over residential areas (zip codes) or over age
groups. Suppose that the individual data satisfy the binary response model
(6.3)— that is, P[yi ¼ 1] ¼ F(x0ib) with the same function F for all
i ¼ 1, � � � , n. Let the data be grouped into G groups, with nj individuals in
group j. The groups should be chosen so that the values of the explanatory
variables x are reasonably constant within each group. Let xj denote the
vector of group means of the explanatory variables for the nj individuals in
this group. Let yj be the fraction of individuals in group j that have chosen
alternative 1, so that a fraction 1� yj has chosen the alternative 0. The data
consist of the G values of (yj, xj), and the group sizes nj are assumed to be
known, j ¼ 1, � � � ,G.

Estimation by maximum likelihood

It is assumed that xj is a close enough approximation of the characteristics of
all individuals in group j so that their probabilities to choose alternative
1 are constant and given by pj ¼ F(x0jb). Then the joint contribution of the
individuals in group j to the log-likelihood (6.7) is given by nj1 log (pj)þ
(nj � nj1) log (1� pj), where nj1 ¼ njyj is the number of individuals in group j
that chooses alternative 1. So, in terms of the observed fractions yj, the log-
likelihood becomes

log (L) ¼
XG
j¼1

nj yj log (pj)þ (1� yj) log (1� pj)
� �

: (6:15)
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It is required that k � G—that is, the number of explanatory variables may
not be larger than the number of groups. The model parameters can be
estimated by maximum likelihood, much in the same way as was discussed
in Section 6.1.3 for the case of individual binary response data. The model
imposes restrictions if the decisions of G groups are modelled in terms of
k < G parameters. To test the specification of the model, one can consider as
an alternative the model that contains a dummy for each group, that is, with
pj ¼ F(dj) for j ¼ 1, � � � ,G. This model containsG parameters and allows for
arbitrary different specific probabilities for each group. The corresponding
maximum likelihood estimates are given by d̂dj ¼ yj. The model pj ¼ F(x0jb)
imposes (G� k) parameter restrictions dj ¼ x0jb. This can be tested by the
LR-test that follows a w2(G� k) distribution under the null hypothesis of
correct specification.

Estimation by feasible weighted least squares

Instead of using the above maximum likelihood approach, one can also use
feasible weighted least squares (FWLS) to estimate the parameters b. This is
based on the fact that yj is the sample mean of nj independent drawings from
the Bernoulli distribution with mean pj and variance pj(1� pj). If nj is sufficiently
large, it follows from the central limit theorem that

yj � N pj,
pj(1� pj)

nj

� �
:

If F is continuous and monotonically increasing (as is the case for logit and probit
models), then the inverse function F�1 exists. We define transformed observations

zj ¼ F�1(yj):

Using the facts that F�1(pj) ¼ x0jb and that F�1(p) has derivative 1=f (F�1(p)), it
follows that in large enough samples

zj � N x0jb,
pj(1� pj)

njf 2j

 !
,

where fj ¼ f (x0jb). This can be written as a regression equation

zj ¼ x0jbþ ej, j ¼ 1, � � � ,G:

Here the error terms ej are independent and approximately normally distributed
with mean zero and variances s2j ¼ pj(1� pj)=

�
njf

2
j

�
. So the error terms are

heteroskedastic. Then b can be estimated by FWLS—for instance, as follows. In
the first step b is estimated by OLS, regressing zj on xj for the G groups. Let b be
the OLS estimate; then the variance s2j of ej can be estimated by replacing pj by
p̂pj ¼ F(x0jb) and fj by f (x0jb), so that

T
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s2j ¼ p̂pj(1� p̂pj)=(njf
2(xjb)):

In the second step b is estimated by WLS, using the estimated standard deviations
of ej to obtain the appropriate weighting factors. That is, in the second step OLS is
applied in the transformed model

zj
sj
¼ 1

sj
xj

� �0
bþ !j, j ¼ 1, � � � , G:

FWLS in the logit model

We specify the above general method in more detail for the logit model. In
this case the required regressions simplify somewhat, because the logit model
has the property that fj ¼ lj ¼ Lj(1� Lj) ¼ pj(1� pj) (see Section 6.1.3). So
s2j ¼ 1=(njp̂pj(1� p̂pj)) and the FWLS estimates are obtained by performing OLS
in the following regression model.

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
njp̂pj(1� p̂pj)

q
zj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
njp̂pj(1� p̂pj)

q
x0jbþ !j, p̂pj ¼ L(xjb) ¼ 1

1þ e�x0jb
:

So, for the logit model the FWLS estimates are obtained by regressing zj on xj
(with OLS estimate b) followed by a regression of wjzj on wjxj with weights

wj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
njp̂pj(1� p̂pj)

q
¼ ffiffiffiffi

nj
p e�

1
2x

0
jb

1þ e�x0jb
¼ ffiffiffiffi

nj
p e

1
2x

0
jb

1þ ex
0
jb
:

FWLS is asymptotically equivalent to ML (see also Section 5.4.4 (p. 336)).
However, if nj is relatively small for some groups, it may be preferable to use
ML. An example using grouped data is left as an exercise: see Exercise 6.12, which
considers the direct mailing data averaged over ten age groups.

E Exercises: E: 6.12.

6.1.6 Summary

To model the underlying factors that influence the outcome of a binary
dependent variable we take the following steps.

. Determine the possibly relevant explanatory variables and formulate a
model of the form P[y ¼ 1] ¼ F(x0b), where y is the dependent variable
(with possible outcomes 0 and 1) and x is the vector of explanatory
variables. The function F is chosen as a cumulative distribution func-
tion, in most cases F ¼ L of (6.5) (the logit model) or F ¼ F of (6.6) (the
probit model).

T
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. Estimate the parameters b of the model by maximum likelihood. For
logit and probit models, the required non-linear optimization can be
solved without any problems by standard numerical methods.

. The estimated model can be interpreted in terms of the signs and
significance of the estimated coefficients b and in terms of the mean
marginal effects and odds ratios discussed in Section 6.1.2.

. The model can be evaluated in different ways, by diagnostic tests
(standardized residuals, test on heteroskedasticity) and by measuring
the model quality (goodness of fit and predictive performance).

. The approach for grouped (instead of individual) data is similar; the
main distinction is that the log-likelihood is now given by (6.15) instead
of (6.7).
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6.2 Multinomial data

6.2.1 Unordered response

E Uses Chapters 1–4; Section 5.4; Section 6.1.

Multinomial data

When the dependent variable has a finite number of possible outcomes, the
data are called multinomial. This occurs, for instance, when individuals can
choose among more than two options. In some cases the options can be
ordered (for example, how much one agrees or disagrees with a statement),
in other cases the different options are unordered (for example the choice
of travel mode for urban commuters). In this section and the next one
we discuss models for unordered data and in Section 6.2.3 we consider
ordered data.

Multinomial model for individual-specific data

Let m be the number of alternatives. These alternatives (for example, to
travel by bicycle, bus, car or train) are supposed to have no natural ordering.
However, for ease of reference the alternatives are labeled by an index
j ¼ 1, � � � ,m, so that the response yi ¼ j is a nominal (not an ordinal) vari-
able. Let nj be the number of observations with response yi ¼ j and let
n ¼Pm

j¼1 nj be the total number of observations. Suppose that, apart from
the choices yi, also the values xi of k explanatory variables are observed,
i ¼ 1, � � � , n. The first element of xi is the constant term x1i ¼ 1, and the other
elements of xi represent characteristics of the ith individual. A possible model
in terms of stochastic utilities is given by

Uj
i ¼ uij þ eij ¼ x0ibj þ eij: (6:16)

Here xi is a k� 1 vector of explanatory variables for individual i and bj is
a k� 1 vector of parameters for alternative j. Further, uij ¼ x0ibj represents
the systematic utility of alternative j for an individual with characteristics xi,
and bj measures the relative weights of the characteristics in the derived
utility. The differences between the alternatives are modelled by differences
in the weights, and bjl � bhl measures the marginal increase of the utility of
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alternative j as compared to alternative h when the lth explanatory variable
raises by one unit. The terms eij are individual-specific and represent unmo-
delled factors in individual preferences.

The model (6.16) is called themultinomial model. This model can be used
if data are available on the individual-specific values of the k explanatory
variables xi, i ¼ 1, � � � , n, and there is no data information on the character-
istics of the alternatives j ¼ 1, � � � ,m. The differences between the alterna-
tives are modelled by the unknown k� 1 parameter vectors bj, j ¼ 1, � � � ,m.

Conditional model for individual- and alternative-specific data

Another type of model is obtained when aspects of the alternatives are
measured for each individual— for example, the travel times for alternative
transport modes. Let xij be the vector of values of the explanatory variables
that apply for individual i and alternative j. A possible model for the
utilities is

Uj
i ¼ uij þ eij ¼ x0ijbþ eij, (6:17)

where xij and b are m� 1 vectors. This is called the conditional model. This
model can be used if relevant characteristics xij of the m alternatives can be
measured for the n individuals. The difference with the multinomial model
(6.16) is that the differences between the alternatives j and h are measured
now by (xij � xih), which may vary between individuals, whereas in (6.16)
these differences are (bj � bh), which are unknown and the same for all
individuals.

Choice model and log-likelihood

Both in the multinomial model and in the conditional model, it is assumed
that the ith individual chooses the alternative j for which the utility Uj

i is
maximal. It then follows that

pij ¼ P[yi ¼ j] ¼ P[uij þ eij > uih þ eih for all h 6¼ j], (6:18)

where uij ¼ x0ibj or uij ¼ x0ijb depending on which of the two above models is
chosen.

In order to estimate the parameters, the joint distribution of the terms eij
has to be specified. It is assumed that (conditional on the given values of
the explanatory variables) the individuals make independent choices, so that
eij and egh are independent for all i 6¼ g and all j, h ¼ 1, � � � ,m. The log-
likelihood can then be written as follows, where yij ¼ 1 if yi ¼ j and yij ¼ 0
otherwise, and where pij ¼ piyi for the actually chosen alternative j ¼ yi.
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log (L) ¼
Xn
i¼1

Xm
j¼1

yij log (pij) ¼
Xn
i¼1

log (piyi): (6:19)

So this consists of the sum over the n terms log (pij), where j ¼ yi is the
alternative chosen by individual i. For the binary choice model with m ¼ 2
alternatives, (6.19) reduces to the log-likelihood (6.7).

Multinomial and conditional probit models

The ML estimates of the parameters of the model can be obtained by
maximizing (6.19) after the joint distribution of the terms eij, j ¼ 1, � � � ,m,
in (6.18) has been specified. For example, suppose that these terms are jointly
normally distributed with mean zero and (unknown) m�m covariance
matrix V, so that

ei1
..
.

eim

0B@
1CA � NID(0, V):

If uij ¼ x0ibj, as in the multinomial model (6.16), then the model (6.18) for the
choice probabilities pij with ei � NID(0, V) is called the multinomial probit
model. And if uij ¼ x0ijb, as in the conditional model (6.17), then (6.18) with
ei � NID(0, V) is called the conditional probit model. An important advan-
tage of incorporating the covariance matrix V in the model is the following.
When two alternatives j and h are perceived as being close together, then a
typical preference eij ¼ Uj

i � uij > 0 (meaning that the ith individual derives a
larger utility from alternative j than is usual for individuals with the same
values of the explanatory variables) will mostly correspond to a preference
eih ¼ Uh

i � uih > 0 as well. That is, if in the multinomial probit model bj � bh
or in the conditional probit model xij � xih (so that the utilities derived from
the alternatives j and h are close together), then it may be expected that eij
and eih are positively correlated. Such correlations can be modelled by the
off-diagonal elements (j, h) of the covariance matrix V.

Estimation of multinomial and conditional probit models

The multinomial and conditional probit models can be estimated byML. For fixed
values of the parameters, the log-likelihood (6.19) can be evaluated by numerical
integration of the probabilities pij in (6.18). As the probability pij involves the
(m� 1) conditions eij � eih > uih � uij (for h 6¼ j), this probability is expressed as
an (m� 1) dimensional integral in terms of the (m� 1) random variables
(eij � eih). The evaluation of this integral (for given values of (uih � uij), that is,
of x0i(bh � bj) in the multinomial model and of (xih � xij)

0b in the conditional

T
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model) requires appropriate numerical integration techniques. Numerically sim-
pler likelihood functions can be obtained by choosing other distributions for the
error terms eij, as is discussed in the next section.

Parameter restrictions needed for identification

Some parameter restrictions have to be imposed, as the probabilities pij
depend only on the differences uih � uij and as they are invariant
under multiplication of the utilities Uj

i by a constant. The last problem can
be solved by fixing one of the variances— for instance, by setting E[e2i1] ¼
V11 ¼ 1. Further, for the multinomial probit model uih � uij ¼ x0i(bh � bj), so
that one of the parameter vectors can be chosen arbitrarily— for instance,
b1 ¼ 0, which corresponds to choosing the first alternative as reference. In
the conditional probit model uih � uij ¼ (xih � xij)

0b, so that the vector of
explanatory variables should not include a constant term in this case.

6.2.2 Multinomial and conditional logit

Model formulation

Although multinomial and conditional probit models can be estimated
by suitable numerical integration methods, it is in practice often preferred
to use simpler models. A considerable simplification is obtained by assuming
that all the mn error terms eij are independently and identically distributed
(for all individuals and all alternatives) with the so-called extreme value
distribution. It can be shown (see Exercise 6.3) that in this case the multi-
nomial and the conditional probabilities in (6.18) become

multinomial logit: pij ¼ ex
0
ibjPm

h¼1 e
x0
i
bh

¼ ex
0
ibj

1þPm
h¼2 e

x0
i
bh
,

conditional logit: pij ¼ ex
0
ijbPm

h¼1 e
x0
ih
b:

(6:20)

For the multinomial model we used the identification convention to choose
b1 ¼ 0 for the first (reference) category. The first model for the choice
probabilities pij is called the multinomial logit model, the second model the
conditional logit model. For the case ofm ¼ 2 alternatives, both models boil
down to a binary logit model. Indeed, for the multinomial model we get
pi2 ¼ ex

0
ib2=(1þ ex

0
ib2), which is a binary logit model with parameter vector

b ¼ b2. In the conditional logit model we get for m ¼ 2 that
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pi2 ¼ ex
0
i2
b

ex
0
i1
b þ ex

0
i2
b ¼ e(xi2�xi1)

0b

1þ e(xi2�xi1)
0b
,

which is a binary logit model with explanatory variables xi ¼ xi2 � xi1.

Estimation of the multinomial logit model

The multinomial logit (MNL) model can be estimated by maximum likelihood—
that is, by maximizing (6.19) with respect to the parameters bj, j ¼ 2, � � � ,m. It is
left as an exercise (see Exercise 6.3) to show the following results. If we substitute
(6.20) in (6.19), the log-likelihood becomes

log (LMNL(b2, � � � , bm)) ¼
Xn
i¼1

Xm
j¼2

yijx
0
ibj � log 1þ

Xm
h¼2

ex
0
ibh

 ! !
: (6:21)

The gradient of the log-likelihood consists of the (m� 1) stacked k� 1 vectors

@ log (LMNL)

@bh
¼
Xn
i¼1

(yih � pih)xi, h ¼ 2, � � � ,m,

with pih as specified above for the multinomial model. Further, the
(m� 1)k� (m� 1)k Hessian matrix is negative definite with k� k blocks
�Pn

i¼1 pih(1� pih)xix
0
i on the diagonal (h ¼ 2, � � � ,m) and k� k blocksPn

i¼1 pihpigxix
0
i off the diagonal (g, h ¼ 2, � � � ,m, g 6¼ h).

Estimation of the conditional logit model

For the conditional logit (CL) model the results are as follows (see Exercise 6.3).
The log-likelihood is given by

log (LCL(b)) ¼
Xn
i¼1

Xm
j¼1

yijx
0
ijb� log

Xm
h¼1

ex
0
ih
b

 ! !
: (6:22)

The gradient of the log-likelihood is

@ log (LCL)

@b
¼
Xn
i¼1

Xm
j¼1

(yij � pij)xij:

Finally, the Hessian is �Pn
i¼1

Pm
j¼1 pijxij

�
xij �

Pm
h¼1 pihxih

�0
.

T

T
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Numerical aspects

The first order conditions for a maximum can be solved numerically— for in-
stance, by using the above expressions for the gradient and the Hessian in the
Newton–Raphson algorithm. In both the multinomial and the conditional logit
model the Hessian matrix is negative definite, so that in general the iterations
converge relatively fast to the global maximum. As usual, approximate stand-
ard errors of the ML estimates can be obtained from the inverse of the Hessian
matrix.

Marginal effects of explanatory variables

The parameters of the model can be interpreted in terms of the marginal
effects of the explanatory variables on the choice probabilities. The following
results are left as an exercise (see Exercise 6.3). In the multinomial logit
model, the k� 1 vector of marginal effects is given by

@PMNL[yi ¼ j]

@xi
¼ pij bj �

Xm
h¼2

pihbh

 !
: (6:23)

In the conditional logit model the marginal effects are

@PCL[yi ¼ j]

@xij
¼ pij(1� pij)b,

@PCL[yi ¼ j]

@xih
¼ �pijpihb for h 6¼ j:

Note that, in the multinomial logit model, all the parameters bh,
h ¼ 2, � � � ,m, together determine the marginal effect of xi on the probability
to choose the jth alternative. It may even be the case that the marginal effect
of the lth variable xli on P[yi ¼ j] has the opposite sign of the parameter bjl. So
the sign of the parameter bjl cannot always be interpreted directly as the sign
of the effect of the lth explanatory variable on the probability to choose the
jth alternative. Therefore the individual parameters of a multinomial logit
model do not always have an easy direct interpretation. On the other hand, in
the conditional logit model the sign of bl is equal to the sign of the marginal
effect of the lth explanatory variable (xij, l) on the probability to choose each
alternative since 0 < pij(1� pij) < 1.

Odds ratios and the ‘independence of irrelevant alternatives’

The above multinomial and conditional logit models are based on the as-
sumption that the error terms eij are independent not only among different
individuals i but also among the different alternatives j. That is, the unmo-
delled individual preferences eij of a given individual i are independent for
the different alternatives j. This requires that the alternatives should be

T
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sufficiently different from each other. This can be further clarified by con-
sidering the log-odds between two alternatives j and h. In the multinomial
and conditional logit model, the log-odds for alternatives j and h is given
respectively by

log
PMNL[yi ¼ j]

PMNL[yi ¼ h]

� �
¼ x0i(bj � bh),

log
PCL[yi ¼ j]

PCL[yi ¼ h]

� �
¼ (xij � xih)

0b:

So the relative odds to choose between the alternatives j and h is not affected
by the other alternatives. This property of the multinomial and conditional
logit model is called the ‘independence of irrelevant alternatives’. That is, in
comparing the alternatives j and h, the other options are irrelevant. As an
example, suppose that consumers can choose between ten brands of a certain
product, with two strong leading brands (j ¼ 1, 2) and with eight other much
smaller brands. Suppose that the owner of the first leading brand is interested
in the odds of his product compared with the other leading brand— that is,
in log (P[yi ¼ 1]=P[yi ¼ 2]). Clearly, it should make little difference whether
this is modelled as a choice between ten alternative brands or as a choice
between three alternatives (the two leading brands and the rest, taken as one
category). In such situations the ‘independence of irrelevant alternatives’ is a
reasonable assumption. The odds ratio between two alternatives then does
not change when other alternatives are added to or deleted from the model.
In other situations, especially if some of the alternatives are very similar, the
independence of irrelevant alternatives is not realistic, so that the discussed
logit models are not appropriate. In this case it is better to use multinomial or
conditional probit models to incorporate the dependencies between the error
terms eij for the different alternatives j.

Diagnostic tests

One can apply similar diagnostic checks on multinomial and conditional
models, as discussed before in Section 6.1.4 for binary models. For instance,
the overall significance of the model can again be tested by means of the
likelihood ratio test on the null hypothesis that all parameters are zero. One
can further evaluate the success of classification— for instance, by predicting
that the ith individual chooses the alternative h for which p̂pih is maximal.
These predicted choices can be compared with the actual observed choices yi
in an m�m classification table. Let njj be the number of individuals for
which yi ¼ ŷyi ¼ j is predicted correctly, and let pjj ¼ njj=n. Then h ¼Pm

j¼1 pjj
is the hit rate— that is, the success rate of the model predictions. This may be
compared to random predictions, where for each individual the alternative j
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is predicted with probability p̂pj ¼ nj=n, the observed fractions in the sample.
The expected hit rate of these random predictions is q̂q ¼Pm

j¼1 p̂p
2
j . The model

provides better-than-random predictions if

z ¼ h� q̂qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q̂q(1� q̂q)=n

p ¼ nh� nq̂qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nq̂q(1� q̂q)

p
is large enough (larger than 1.645 at 5 per cent significance level). An LR-test
for heteroskedasticity may be performed, for instance, by specifying a model
for the error terms eij in the utility function (6.16) or (6.17) by
E


e2ij
� ¼ s2j , j ¼ 2, � � � ,m, where E



e2i1
� ¼ 1 is fixed. This allows for the possi-

bility that the utilities of some of the alternatives are better captured by the
explanatory variables than other ones.

Example 6.4: Bank Wages (continued)

We return to data of employees of a bank considered in earlier chapters. The
jobs in the bank are divided into three categories. One category (which is
given the label ‘1’) consists of administrative jobs, a second category (with
label ‘2’) of custodial jobs, and a third category (with label ‘3’) of manage-
ment jobs. We consider the job category (1, 2, 3) as nominal variable and we
estimate a multinomial logit model to explain the attained job category in
terms of observed characteristics of the employees. We will discuss (i) the
data and the model, (ii) the estimation results, (iii) an analysis of the marginal
effects of education, (iv) the average marginal effects of education, (v) the
predictive performance of the model, and (vi) the odds ratios.

(i) The data and the model

The dependent variable is the attained job category (1, 2, or 3) of the bank
employee. As there are no women with custodial jobs, we restrict the atten-
tion to the 258 male employees of the bank (a model for all 474 employees of
the bank is left as an exercise (see Exercise 6.14)). As explanatory variables
we use the education level (x2, in years) and the variable ‘minority’ (x3 ¼ 1
for minorities and x3 ¼ 0 otherwise). The multinomial model logit model
(6.20) for the m ¼ 3 job categories has k ¼ 3 explanatory variables (the
constant term and x2 and x3). We take the first job category (administration)
as reference category. The model contains in total six parameters, a 3� 1
vector b2 for job category 2 (custodial jobs) and a 3� 1 vector b3 for job
category 3 (management). For an individual with characteristics xi, the
probabilities for the three job categories are then given by

pi1 ¼ 1

1þ ex
0
i
b2 þ ex

0
i
b3
, pi2 ¼ ex

0
ib2

1þ ex
0
i
b2 þ ex

0
i
b3
, pi3 ¼ ex

0
ib3

1þ ex
0
i
b2 þ ex

0
i
b3
:

E

XM604BWA
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(ii) Estimation results

The results of the multinomial logit model are in Panel 1 of Exhibit 6.5.
The outcomes show that the minority effect is significant for management
jobs, but not for custodial jobs. The education effect is significant for both
job categories, with a positive coefficient of 1.63 for management jobs
and a negative coefficient of �0.55 for custodial jobs. Note, however, that
these coefficients do not have the interpretation of marginal effects, not
even their signs, see (6.23). The marginal effects are analysed below in
part (iii). Panel 2 of Exhibit 6.5 contains the results of the model without
the variables education and minority. The corresponding LR-test on the joint
significance of education and minority has value LR ¼ 2(� 118:7þ 231:3)
¼ 225:2 (see Exhibit 6.5, Panels 1 and 2). This test corresponds to four
restrictions, and the 5 per cent critical value of the corresponding w2(4)
distribution is 9.49, so that the two explanatory variables are clearly jointly
significant.

(iii) Analysis of the marginal effects of education

In multinomial logit models the sign of the marginal effect of an explanatory
variable is not always the same as the sign of the corresponding coefficient.
We will now analyse the marginal effect of education on the probabilities to
attain a job in the three job categories. The coefficient of education (x2) is
b̂b22 ¼ �0:55 for custodial jobs and b̂b32 ¼ 1:63 for management jobs. For
administrative jobs the coefficient of education is by definition b12 ¼ 0, as
this is the reference category. For an individual with characteristics
xi ¼ (1, x2i, x3i)

0, the estimated marginal effects of education are obtained
from (6.23), with the following results.

@PMNL[yi ¼ 1]

@x2i
¼p̂pi1 b̂b12 �

X3
h¼2

p̂pihb̂bh2

 !
¼ p̂pi1(0:55p̂pi2 � 1:63p̂pi3),

@PMNL[yi ¼ 2]

@x2i
¼p̂pi2 b̂b22 �

X3
h¼2

p̂pihb̂bh2

 !
¼ p̂pi2(� 0:55(1� p̂pi2)� 1:63p̂pi3)< 0,

@PMNL[yi ¼ 3]

@x2i
¼p̂pi3 b̂b32 �

X3
h¼2

p̂pihb̂bh2

 !
¼ p̂pi3(0:55p̂pi2 þ 1:63 1� p̂pi3)ð Þ> 0:

Here we used the fact that the probabilities p̂pij satisfy 0 < p̂pij < 1. So we
conclude that additional education leads to a lower probability of getting a
custodial job and a higher probability of getting a management job, as could
be expected. The effect on the probability of attaining an administrative job
is positive if and only if 0:55p̂pi2 � 1:63p̂pi3 > 0—that is, as long as the
probability of a custodial job for this individual is at least 1:63=0:55 � 3
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times as large as the probability of a management job. The interpretation is
as follows. If someone is most suited to a custodial job, then additional
education may lead more quickly to a job in administration. On the other
hand, if someone already has some chances of a management job, then
additional education decreases the chance of an administrative job in favour
of a management job.

(a) Panel 1: MULTINOMIAL LOGIT
Method: Maximum Likelihood (Marquardt)
Sample: 1 474 IF (GENDER¼1)
Included observations: 258
Convergence achieved after 33 iterations
Cat Variable Beta Coefficient Std. Error z-Statistic Prob.
Cat 2 : C B2(1) 4.760717 1.268015 3.754465 0.0002

EDUC B2(2) �0.553399 0.114211 �4.845405 0.0000
MINORITY B2(3) 0.426952 0.488181 0.874578 0.3818

Cat 3 : C B3(1) �26.01435 2.717261 �9.573738 0.0000
EDUC B3(2) 1.633386 0.168697 9.682362 0.0000
MINORITY B3(3) �2.109115 0.636723 �3.312454 0.0009

Log likelihood �118.7360 Akaike info criterion 0.966946
Avg. log likelihood �0.460217 Schwarz criterion 1.049573
Number of Coefs. 6

(b) Panel 2: MULTINOMIAL LOGIT
Method: Maximum Likelihood (Marquardt)
Sample: 1 474 IF (GENDER¼1)
Included observations: 258
Convergence achieved after 10 iterations
Cat Variable Beta Coefficient Std. Error z-Statistic Prob.
Cat 2: C B2(1) �1.760409 0.208342 �8.449604 0.0000
Cat 3: C B3(1) �0.752181 0.141007 �5.334355 0.0000
Log likelihood �231.3446 Akaike info criterion 1.808873
Avg. log likelihood �0.896684 Schwarz criterion 1.836415
Number of Coefs. 2

(c) Panel 3: MARGINAL EFFECTS OF EDUCATION ON PROBABILITIES JOBCAT
JOBCAT ¼ 1 JOBCAT ¼ 2 JOBCAT ¼ 3

NON - MINORITIES �0.127 �0.030 0.157
MINORITIES 0.012 �0.062 0.049

Exhibit 6.5 Bank Wages (Example 6.4)

Multinomial logit model for attained job category of male employees (Panel 1: category 1
(administration) is the reference category, category 2 (custodial jobs) has coefficients B2(1),
B2(2), and B2(3), and category 3 (management) has coefficients B3(1), B3(2), and B3(3)),
multinomial model without explanatory variables (except constant terms for each job cate-
gory, Panel 2), and the marginal effects of education on the probability of attaining the three
job categories (Panel 3: the reported numbers are averages over the two subsamples of non-
minority males and minority males).
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(iv) Average marginal effects of education

Panel 3 of Exhibit 6.5 shows the average marginal effect of education on the
probabilities of having a job in each of the three categories. The estimated
marginal effects are averaged over the relevant subsamples of minority males
and non-minority males. With more education the chance of getting a
management job increases and of getting a custodial job decreases. For
management, the effects are much larger for non-minority males (around
16 per cent more chance for one additional year of education) than for
minority males (around 5 per cent more chance).

(v) Predictive performance

Panel 4 of Exhibit 6.5 shows actual against predicted job categories, where
an individual is predicted of having a job in the category with the highest

(d) Panel 4: PREDICTION-REALIZATION TABLE
Actual predicted

jobcat ¼ 1 jobcat ¼ 2 jobcat ¼ 3 total
jobcat ¼ 1 138 14 7 159

predicted jobcat ¼ 2 10 13 0 23
jobcat ¼ 3 9 0 67 76

actual total 157 27 74 258

random hit rate (157=258)2 þ (27=258)2 þ (74=258)2 ¼ 0:464
Z-value ¼ (218��119:6)= (

p
258 � 0:464 � 0:536) ¼ 12:28, P ¼ 0:0000
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Exhibit 6.5 (Contd.)

Prediction–realization table of the predicted and actual job categories for the multinomial
model of Panel 1 (Panel 4), and relation between the logarithm of the odds ratio (on the vertical
axis) against education (on the horizontal axis) for non-minority males (e) and for minority
males (f ).
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estimated probability. The predictions are quite successful for jobs in admin-
istration and management but somewhat less so for custodial jobs, as for
around half the people with custodial jobs it is predicted that they will work
in administration. If the estimated probabilities of having a custodial job are
added over all n ¼ 258 individuals, then the predicted total number is equal
to 27, but for fourteen individuals in job category 2 it is predicted to be more
likely that they belong to job category 1. The hit rate is equal to
(138þ 13þ 67)=258 ¼ 218=258 ¼ 0:845, whereas the expected hit rate
of random predictions is equal to (157=258)2 þ (27=258)2 þ (74=258)2 ¼
0:464. To test the classification success of the model, these hit rates can be
compared by

z ¼ (0:845� 0:464)=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:464(1� 0:464)=258

p
¼ 12:28, P ¼ 0:0000:

This shows that the model indeed provides significantly better predictions
than would be obtained by random predictions.

(vi) Odds ratios

Exhibit 6.5 gives the log-odds (as a function of education) of job category 3
against job categories 1 and 2, for non-minority male employees (e) and for
male employees belonging to minorities (f ). The odds ratios are higher for
non-minority males, and the odds ratios are larger with respect to category 2
than with respect to category 1. Recall that in the logit model the log-odds is
a linear function of the explanatory variables. The odds ratios become very
large for high levels of education. This corresponds to relatively large prob-
abilities for a management job, as could be expected.

E Exercises: T: 6.3; E: 6.13e, 6.14, 6.15c, d.

6.2.3 Ordered response

Model formulation

In some situations the alternatives can be ordered—for instance, if the
dependent variable measures opinions (degree of agreement or disagree-
ment with a statement) or rankings (quality of products). Such a variable is
called ordinal—that is, the outcomes are ordered, although their numerical
values have no further meaning. We follow the convention of labelling them
ordered alternatives by integers ranging from 1 tom. In the ordered response
model, the outcome yi is related to the index function
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y�i ¼ x0ibþ ei, E[ei] ¼ 0:

The observed outcome of yi is related to the index y�i by means of (m� 1)
unknown threshold values t1 < t2 < � � � < tm�1 in the sense that

yi ¼ 1 if �1 < y�i � t1,

yi ¼ j if tj�1 < y�i � tj, j ¼ 2, � � � ,m� 1,

yi ¼ m if tm�1 < y�i < 1:

The index y�i is not observed, and the measured response is yi ¼ j if the index
falls between the threshold values tj�1 and tj. The unknown parameters of
this model are b and the (m� 1) threshold values. The constant term should
be excluded from the explanatory variables xi, as otherwise the threshold
parameters are not identified. When there are only m ¼ 2 alternatives, this
gives the binary response model of Section 6.1.1, where the unknown thresh-
old value plays the role of the unknown constant term. Indeed, form ¼ 2 we
get P[yi ¼ 1] ¼ P[y�i � t1] ¼ P[ei � t1 � x0ib] ¼ F(t1 � x0ib), where F is the
cumulative distribution of ei.

As compared with the multinomial model (6.16) with Uj
i ¼ x0ibj þ eij, the

ordered response model has the advantage that it uses only a single index
function. Whereas the multinomial model contains (m� 1)k parameters, the
ordered response model has kþm� 2 parameters and this is considerably
less (for k � 2) if the number of alternatives m is large.

Marginal effects in ordered response models

Let F be the cumulative distribution function of ei, then

pij ¼ P[yi ¼ j] ¼ P[tj�1 < y�i � tj] ¼ P[y�i � tj]� P[y�i � tj�1]

¼ F(tj � x0ib)� F(tj�1 � x0ib), j ¼ 1, � � � ,m:
(6:24)

Here we use the notation t0 ¼ �1 and tm ¼ 1, so that P[yi ¼ 1]
¼ F(t1 � x0ib) and P[yi ¼ m] ¼ 1� F(tm�1 � x0ib). The marginal effects of
changes in the explanatory variables are given by

@P[yi ¼ j]

@xi
¼ f (tj�1 � x0ib)� f (tj � x0ib)
� �

b,

where f is the density function of ei. When x0ib increases, this leads to larger
values of the index y�i , so that the outcome of yi tends to become larger.
The probability of the outcome yi ¼ 1 will decrease, that of yi ¼ m will
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increase, and that of yi ¼ j for j ¼ 2, � � � ,m can increase or decrease, as at the
same time P[yi � j� 1] ¼ F(tj�1 � x0ib) decreases and P[yi � jþ 1] ¼
1� F(tj � x0ib) increases.
This is illustrated in Exhibit 6.6 for the case of m ¼ 3 possible outcomes

and two threshold values for index values 3.5 and 7.5. The left density in the
figure corresponds to x0ib ¼ 5, in which case the probabilities for the out-
comes 1 and 3 are both quite small. The right density in the figure corres-
ponds to x0ib ¼ 7, in which case the probability of the outcome 1 is nearly
zero. As compared with x0ib ¼ 5, the probability of the outcome 3 for x0ib ¼ 7
has becomemuch larger. And the probability of the outcome 2 has decreased,
because the loss in the right tail (to alternative 3) is larger than the gain in the
left tail (from alternative 1).

Estimation of ordered logit and probit models

The parameters in an ordered response model can be estimated by maximum
likelihood. The log-likelihood is

log (L(b, t1, � � � , tm�1)) ¼
Xn
i¼1

Xm
j¼1

yij log (pij) ¼
Xn
i¼1

log (piyi),

with pij as defined in (6.24) and with yij ¼ 1 if yi ¼ j and yij ¼ 0 if yi 6¼ j. The
function F should be specified, and in practice one often takes the standard
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Exhibit 6.6 Ordered response

Effect of changes in the x-variables (measured by y� ¼ x0bþ e on the horizontal axis) on the
choice probabilities (y ¼ 1 if y� � 3.5, y ¼ 2 if 3.5 < y� � 7.5, and y ¼ 3 if y� > 7.5).
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normal or the logistic distribution. These are called the ordered probit and
the ordered logit model respectively.

Diagnostic tests

Diagnostic tests for the ordered response model are similar to those for the
multinomial and conditional models discussed in Section 6.2.2. The joint
significance of the explanatory variables xi can be tested by the LR-test for
the hypothesis that b ¼ 0. The predictive quality can be evaluated by a
classification table. If an alternative is relatively rarely chosen in the sample,
then the corresponding estimated threshold values will have large standard
errors. Such an alternative can sometimes be better combined with neigh-
bouring alternatives.
Additional diagnostic tests can be obtained by dividing the ordered alter-

natives into two groups and by applying the diagnostic tools discussed in
Section 6.1.4 on the resulting two (groups of) alternatives.

Example 6.5: Bank Wages (continued)

We continue the analysis in Example 6.4 concerning the three job categories
of male employees of a bank.Wewill now treat the job category as an ordinal
variable and we discuss (i) the ordering of the three job categories, (ii) the
outcomes of the ordered logit model, (iii) the outcomes of the ordered probit
model, and (iv) the effect of additional education.

(i) Ordering of the three job categories

Instead of the multinomial logit model estimated in Example 6.4, we now
consider an ordered logit model. The three alternative job categories are
ordered so that yi ¼ 1 for custodial jobs (the former ‘second’ category),
yi ¼ 2 for administrative jobs (the former ‘first’ category), and yi ¼ 3 for
management jobs (the former ‘third’ category). This ordering is chosen as
this corresponds to increasing average wages.

(ii) Outcomes of the ordered logit model

The estimation results are in Panel 1 of Exhibit 6.7. TheML estimates show a
positive effect (0.87) of education and a negative effect (� 1:06) of minority.
The LR-test (LR ¼ 202 with P ¼ 0:0000) shows that the variables are jointly
significant. Exhibit 6.7, Panel 2, is a classification table comparing actual and
predicted job categories. The predictions are quite successful on average,
although too many employees are predicted of having a job in administration
(189 instead of 157) and too few in the other two categories. The estimated
probabilities sum up to the actual numbers of individuals in the three
categories. This always holds true for logit models.

E

XM604BWA
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(iii) Outcomes of the ordered probit model

For comparison, Panels 3 and 4 of Exhibit 6.7 show the results of the ordered
probit model. The estimates are in line with those obtained for the ordered
logit model, taking into account the scaling factor of around 1.6 to compare
probit with logit estimates. The classifications in Panel 4 are also very similar
to those of the ordered logit model in Panel 2. However, the estimated
probabilities no longer sum up to the actual totals per job category, although
the differences are very small.

(iv) Effect of additional education

The effect of having 16 instead of 12 years of education (approximately that
of having a university degree) for non-minority males in the probit model is
represented graphically in Exhibit 6.7 (e). The index y�i ¼ x0ibþ ei is on the
horizontal axis. The left density is for 12 years of education and the right
density for 16 years of education. In the probit model ei � N(0, 1), so that

(a) Panel 1: Dependent Variable: ORDERJOBCAT
Method: ML – ORDERED LOGIT; Number of ordered outcomes: 3
Sample(adjusted): 1 472 IF GENDER¼1; Included observations: 258
Convergence achieved after 9 iterations

Variable Coefficient Std. Error z-Statistic Prob.
EDUC 0.870026 0.089099 9.764700 0.0000

MINORITY �1.056442 0.375384 �2.814296 0.0049
Limit Points
LIMIT_2:C(3) 7.952259 1.004817 7.914141 0.0000
LIMIT_3:C(4) 14.17223 1.429637 9.913163 0.0000

Log likelihood �130.3198 Akaike info criterion 1.041239
Restr. log likelihood �231.3446 Schwarz criterion 1.096323
LR statistic (2 df) 202.0495
Probability (LR stat) 0.000000

(b) Panel 2: Dependent Variable: ORDERJOBCAT
Method: ML – ORDERED LOGIT
Sample(adjusted): 1 472 IF GENDER¼1; Included observations: 258
Prediction table for ordered dependent variable

Value Count
Count of obs
with Max Prob Error

Sum of all
Probabilities Error

1 27 23 4 27 0
2 157 189 �32 157 0
3 74 46 28 74 0

Exhibit 6.7 Bank Wages (Example 6.5)

Ordered logit model (Panel 1) for achieved job categories, ranked by the variable
ORDERJOBCAT (with value 1 for ‘custodial’ jobs, 2 for ‘administrative’ jobs, and 3 for
‘management’ jobs), with classification table of predicted job categories (Panel 2).
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(c) Panel 3: Dependent Variable: ORDERJOBCAT
Method: ML – ORDERED PROBIT; Number of ordered outcomes: 3
Sample(adjusted): 1 472 IF GENDER¼1; Included observations: 258
Convergence achieved after 5 iterations

Variable Coefficient Std.Error z-Statistic Prob.
EDUC 0.479043 0.046617 10.27624 0.0000

MINORITY �0.509259 0.213978 �2.379963 0.0173
Limit Points

LIMIT_2:C(3) 4.443056 0.556591 7.982620 0.0000
LIMIT_3:C(4) 7.843644 0.744473 10.53583 0.0000

Log likelihood �131.2073 Akaike info criterion 1.048119
Restr. log likelihood �231.3446 Schwarz criterion 1.103203
LR statistic (2 df) 200.2746
Probability(LR stat) 0.000000

(d) Panel 4: Dependent Variable: ORDERJOBCAT
Method: MI – ORDERED PROBIT
Sample(adjusted): 1 472 IF GENDER¼1; Included observations: 258
Prediction table for ordered dependent variable

Value Count
Count of obs
with Max Prob Error

Sum of all
Probabilities Error

1 27 23 4 27.626 �0.626
2 157 189 �32 156.600 0.400
3 74 46 28 73.773 0.227

(e)
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Exhibit 6.7 (Contd.)

Ordered probit model (Panel 3) for achieved job categories, ranked by the variable
ORDERJOBCAT (with value 1 for ‘custodial’ jobs, 2 for ‘administrative’ jobs, and 3 for
‘management’ jobs), with classification table of predicted job categories (Panel 4). (e) shows
the graphs of two probability distributions (corresponding to the ordered probit model) for
non-minority males, the left one for an education level of 12 years and the right one for an
education level of 16 years, with the index y� on the horizontal axis (the limit points 4.44 and
7.84 for the three job categories are taken from Panel 3).
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y�i � N(x0ib, 1), that is, both densities are normal with standard deviation 1,
the left density has mean x0ib ¼ 0:479 � 12� 0:509 � 0 ¼ 5:75 and the right
density has mean x0ib ¼ 0:479 � 16 ¼ 7:66. The estimated threshold value
between custodial and administrative jobs is 4.44 and that between
administrative and management jobs is 7.84. For 12 years of education the
probability of having an administrative job is by far the largest, whereas for
16 years of education the probabilities of having a management job or an
administrative job are nearly equally large. In Exercise 6.13 some further
aspects of these data are investigated where we also consider a binary logit
model obtained by joining administrative and custodial jobs into a single
category.

E Exercises: E: 6.13f, 6.15a.

6.2.4 Summary

We summarize the steps to model the underlying factors that influence the
outcome of a multinomial dependent variable. Note that, if the dependent
variable is a quantitative variable (so that the outcome values are not
simply qualitative labels but the actual quantitative measurement of
some quantity of interest), we should not use the methods discussed in
this section, as regression-based methods may be more informative. This is
discussed in Section 6.3, for instance, for quantitative dependent variables
that take only non-negative values.

. Determine whether the dependent multinomial variable is a nominal
variable (without a natural ordering of the outcomes) or an ordinal
variable (with a natural ordering).

. Determine the possibly relevant explanatory variables.

. For a nominal dependent variable, one can formulate either a multi-
nomial model (if no characteristics of the alternative choices are meas-
ured) or a conditional model (in case the characteristics of the
alternatives can be measured for each individual).

. Multinomial and conditional logit models are easily estimated by max-
imum likelihood. However, the use of the logit model requires that the
alternatives are sufficiently distinct from each other (the ‘independence
of irrelevant alternatives’). Otherwise one can estimate a multinomial or
conditional probit model by maximum likelihood, at the expense of
more involved numerical integration and optimization techniques.

. For an ordinal dependent variable, one can estimate an ordered logit or
ordered probit model. As these models are easier to estimate and inter-
pret than multinomial logit and probit models, it is advantageous to
exploit the ordered nature of the outcomes of the dependent variable.
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. All mentioned models can be evaluated in a similar way as binary
dependent variable models— for instance, by testing the individual
and joint significance of parameters, by determining (mean) marginal
effects of the explanatory variables, by plotting odds ratios, by evaluat-
ing the predictive performance, and so on. Some care is needed in
interpreting individual coefficients, especially in multinomial logit
models, and one often gets a better interpretation of the model by
computing the (mean) marginal effects instead.
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6.3 Limited dependent
variables

6.3.1 Truncated samples

E Uses Chapters 1–4; Section 5.6; Section 6.1.

Different types of limited dependent variables

In the two foregoing sections we considered models for qualitative, discrete-
valued (nominal or ordinal) dependent variables. Now we will investigate
models for limited dependent variables— that is, quantitative, continuous-
valued variables with outcomes that are restricted in some way. So the
dependent variable is an interval variable, in the sense that the numerical
differences in observed values have a quantitative meaning. However, in
contrast with the regression model discussed in Chapters 2–5, the dependent
variable cannot take any arbitrary real value, as there exist some restrictions
on the possible outcomes. We analyse four types of limited dependent vari-
ables. In this section we consider truncated samples where the observations
can be obtained only from a limited part of the underlying population. If the
selection mechanism can be modelled in some way, one can employ the
methods discussed in Section 6.3.3. Section 6.3.2 treats models for censored
data where the possible observed outcomes are limited to an interval. A
special case consists of duration data, discussed in Section 6.3.4. Although
least squares is not appropriate for these types of data, in Sections 6.3.1 and
6.3.2 we will pay detailed attention to the properties of least squares estima-
tors as this analysis provides suggestions for better estimation methods.

Truncated observations

Suppose that the dependent variable yi and the independent variables xi are
related by yi ¼ x0ibþ ei. A sample is called truncated if we know beforehand
that the observations can come only from a restricted part of the underlying
population distribution.

For instance, suppose that the data concern the purchases of new cars, with
yi the price of the car and xi characteristics of the buyer like age and income
class. Then no observations on yi can be below the price of the cheapest new
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car. Some households may want to buy a new car but find it too expensive, in
which case they do not purchase a new car and are not part of the observed
data. This truncation effect should be taken into account, for instance, if one
wants to predict the potential sales of a cheaper new type of car, because most
potential buyers will not be part of the observed sample.

A model for truncated data

The truncation can be from below (as in the above example of prices of new
cars), from above (so that yi cannot take values above a certain threshold), or
from both sides. We will consider the situation that the truncation is from
belowwith known truncation point. Other types of truncation can be treated
in a similar way (see Exercise 6.5). We further assume that the truncation
point is equal to zero, which can always be achieved by measuring yi in
deviation from the known truncation point. It is assumed that, in the
untruncated population, the relation between the dependent variable (y�i )
and the explanatory variables (xi) is linear. For later purposes it is convenient
to write the model as

y�i ¼ x0ibþ sei, ei � IID, E[ei] ¼ 0:

Here s is a scale parameter and ei is an error term with known symmetric and
continuous density function f . For example, if ei follows the standard normal
distribution, then s is the unknown standard deviation of the error terms. The
above formulation of the regression equation differs from the usual one in
Chapters 2–5, as it explicitly contains the scale factor s. This is convenient in
what follows, since by extracting the scale factorswecannowassume that the
density function f of the (normalized) error terms ei is completely known. The
observed data are assumed to satisfy this model, but the sample is truncated in
the sense that individuals with y�i � 0 are not observed. In the car sales
example, y�i may be interpreted as the amount of money that an individual
wants to spendonanewcar, and, if this is less than theprice of the cheapest car,
then this individual will not buy a new car. So the sample comes from a
subpopulation— that is,

yi ¼ y�i ¼ x0ibþ sei if y�i > 0,
(6:25)

yi is not observed if y�i � 0:

A graphical illustration of truncation

The effect of truncation is illustrated graphically in Exhibit 6.8. This corres-
ponds to the above truncated regression model, with y�i ¼ xi þ ei and
ei � NID(0, 1). If xi ¼ 1, then the corresponding value of yi is observed if
and only if ei > �1—that is, the error term comes from the standard normal
distribution truncated on the left at the value�1. In general, for a given value
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of xi, the density of ei is truncated at the value �xi. The scatter diagrams in
Exhibit 6.8 (b) and (c) illustrate that the truncation effect is large for small
values of xi and small for large values of xi. For small values of xi we get
observations only for relatively large values of the disturbances. This means
that, on the left part of the scatter diagram, the observed values tend to lie
above the model relation y ¼ x, whereas on the right part the observations
are scattered more symmetrically around this line. This leads, in this model
with a positive slope b ¼ 1, to a downward bias of the OLS estimator (see
Exhibit 6.8 (d)).

The truncated density function of the error terms

We now analyse the effect of truncation more generally for the model (6.25). In
the observed sample there holds y�i > 0, so that ei comes from the truncation of the
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Exhibit 6.8 Truncated data

(a) shows a truncated normal density with truncation from below (at x ¼ �1). (b)–(d) show
scatter diagrams illustrating the effect of truncation on the OLS estimates; (b) is the untrun-
cated scatter of y� against x, (c) is the truncated scatter of y against x, and (d) contains the two
regression lines (the DGP has slope b ¼ 1Þ:
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distribution f with ei > �x0ib=s. The cumulative distribution of the error term of
the ith observation is therefore given by

P[ei � tjei > �x0ib=s] ¼ 0 if t � �x0ib=s,

¼ P[� x0ib=s < ei � t]

P[ei > �x0ib=s]
¼ F(t)� Fð�x0ib=sÞ

F(x0ib=s)
if t > �x0ib=s:

Here F denotes the cumulative distribution corresponding to the density
f , and we used the continuity and symmetry of f so that P[ei > �a] ¼
P[ei < a] ¼ P[ei � a] ¼ F(a). The density function of the error terms ei of the
data generating process (that is, with observations yi > 0) is obtained by differen-
tiating the above cumulative distribution function with respect to the argument t.
This gives the truncated density function fi defined by

fi(t) ¼ 0 for t � �x0ib=s,

fi(t) ¼ f (t)

F(x0ib=s)
for t > �x0ib=s:

So the truncated density of the error terms is proportional to the ‘right part’ (with
t > �x0ib=s) of the original density f. The scaling factor F(x

0
ib=s) is needed to get a

density— that is, with
R
fi(t)dt ¼ 1.

Derivation of the truncated density function of the dependent

variable

The foregoing results for the density function of the error terms ei can be used to
derive the density function p(yi) of the dependent variable yi ¼ x0ibþ ei. As yi is
observed, this means that yi > 0, so that the error term comes from the truncated
distribution with ei > �x0ib=s. Let Fyi denote the cumulative density of yi; then for
t > 0 we get

Fyi(t) ¼ P[yi � t j ei > �x0ib=s] ¼ P[x0ibþ sei � t j ei > �x0ib=s]

¼ P[ei � (t � x0ib)=s j ei > �x0ib=s] ¼
F((t � x0ib)=s)� F(� x0ib=s)

F(x0ib=s)
:

The density function is obtained by differentiating with respect to t so that

p(yi) ¼ 1

s
f ((yi � x0ib)=s)

F(x0ib=s)
ðyi > 0Þ: (6:26)

This result can also be obtained by applying (1.10) (p. 22) for the transformation
yi ¼ x0ibþ sei ¼ g(ei), where ei has density f (t)=F(x0ib=s) for t > �x0ib=s.
The inverse transformation is ei ¼ h(yi) ¼ (yi � x0ib)=s with derivative
h0(yi) ¼ (1=s). Then (6.26) follows directly from (1.10).

T

6.3 Limited dependent variables 485



Derivation of systematic bias of OLS

The estimates of b obtained by applying OLS to (6.25) (for observations yi > 0
in the sample) are not consistent. Exhibit 6.8 illustrates this graphically.
More formally, inconsistency follows from the fact that the error terms with
distribution fi do not have zero mean, as E[eijy�i > 0] ¼ E[eijei > �x0ib=s] > 0.
For instance, if f ¼ f is the standard normal distribution with cumulative dis-
tribution F, then (using the notation zi ¼ x0ib=s) we get

E[eijy�i > 0] ¼
Z 1

�zi

t
f(t)
F(zi)

dt ¼ 1

F(zi)

Z 1

�zi

1ffiffiffiffiffiffi
2p

p te�
1
2t

2

dt

¼� 1

F(zi)

1ffiffiffiffiffiffi
2p

p e�
1
2t

2
1

�zi
¼ 1

F(zi)

1ffiffiffiffiffiffi
2p

p e�
1
2z

2
i

����
¼ f(zi)
F(zi)

¼ f(x0ib=s)
F(x0ib=s)

¼ li > 0: (6:27)

The term li is called the inverse Mills ratio, and this expression for the truncation
bias is specific for the normal distribution of the error terms ei. For observations in
the sample, the mean value of yi ¼ x0ibþ ei is not x0ib (as in the untruncated
regression model) but it is

E[yijy�i > 0] ¼ x0ibþ sE[eijy�i > 0] ¼ x0ibþ sli: (6:28)

Let !i ¼ yi � E[yijy�i > 0] ¼ ei � sli, then E[!ijy�i > 0] ¼ 0 and in the observed
sample (with y�i > 0) we can write

yi ¼ x0ibþ sli þ !i, E[!i] ¼ 0:

If we regress yi on xi, then the (unobserved) regressor li is neglected. This makes
OLS biased and inconsistent (see also Section 3.2.3 (p. 142–3) on omitted vari-
ables bias). Formally, the OLS estimator is

b ¼
X

xix
0
i

� ��1 X
xiyi

� �
¼ bþ 1

n

X
xix

0
i

� ��1
1

n

X
(sli þ !i)xi

� �
:

OLS is inconsistent because the probability limit plim 1
n

P
lixi

� � 6¼ 0, as li is a
function of xi. That is, the orthogonality condition is violated so that OLS is
inconsistent. The bias of OLS will be small if the terms li are small— that is, if the
terms x0ib=s are large (as f(zi) ! 0 and F(zi) ! 1 so that li ! 0 for zi ! 1). In
this case the truncation has only a small effect, as the condition that ei > �x0ib=s is
then hardly a restriction anymore.

Estimation by maximum likelihood

Consistent estimates of b are obtained by applying maximum likelihood, using the
correct truncated density functions fi for the error terms ei and the corresponding

T

T
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truncated density (6.26) of the observations yi. For the normal distribution, the
corresponding truncated density (6.26) is equal to

p(yi) ¼ 1

s
f((yi � x0ib)=s)

F(x0ib=s)
:

As the observations yi are assumed to be mutually independent, the log-likelihood
log (L(b, s)) ¼ log (p(y1, � � � , yn)) ¼

Pn
i¼1 log (p(yiÞ) becomes

log (L) ¼ � n

2
log (2p)� n

2
log (s2)� 1

2s2
Xn
i¼1

(yi � x0ib)
2 �

Xn
i¼1

log (F(x0ib=s)):

(6:29)

The last term comes in addition to the usual terms in a linear regression model (see
(4.30) in Section 4.3.2 (p. 227)) and represents the truncation effect. This last term
is non-linear in b and s, and the first order conditions for a maximum of log (L)
involve the terms li so that numerical integration is needed.

Marginal effects in truncated models

Some care is needed in interpreting the parameters b. They measure the
marginal effects on E[y] of the explanatory variables x in the (untruncated)
population. Therefore they are the parameters of interest for out-of-sample
predictions— that is, to estimate effects for unobserved values y� � 0. If one
is instead interested in within-sample effects— that is, in the truncated
population with y� > 0—then for the normal distribution the relevant mar-
ginal effects are

@E[yijy�i > 0]

@xi
¼ (1� l2i � lix0ib=s)b: (6:30)

This measures the effect of each explanatory variable on the expected value
of the response of an individual in the sample. The correction term in front of
b in (6.30) lies between zero and one (see Exercise 6.4). So the marginal
effects in the truncated population are closer to zero than those in the
untruncated population. For purposes of interpretation, the averages of
these effects over the sample can be reported. Note that the ratios bj=bh
continue to have the interpretation of the relative effect of the jth and hth
explanatory variables on the dependent variable (as the scalar factor in front
of b in (6.30) is the same for all the k elements of the vector of explanatory
variables xi). This implies that these relative effects are the same for the
untruncated and the truncated population.
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Example 6.6: Direct Marketing for Financial Product (continued)

In Example 6.1 we described direct marketing data concerning a new finan-
cial product. Of the 925 customers, 470 responded to the mailing by
investing in the new product. Now we analyse the truncated sample consist-
ing of these 470 customers. We will discuss (i) a truncated model for the
invested amount of money, (ii) results of OLS and ML, and (iii) some
comments on the obtained results.

(i) A truncated model for the invested amount of money

We relate the amount of invested money to characteristics of the customer—
that is, gender (1 for males, 0 for females), activity (1 if the customer already
invests in other products of the bank, 0 otherwise), and age (including also a
squared term to allow for non-linear effects). We consider the truncated data
set of 470 customerswho invested a positive amount ofmoney.As the variable
to be explained we take yi ¼ log (1þ invest), where ‘invest’ is the amount of
money invested. We take logarithms because the distribution of the amount
of invested money is very skewed. In the sample the investments are positive,
so that yi > 0. Let y� be the ‘inclination to invest’; then the model is given by
(6.25), where xi is the 5� 1 vector of explanatory variables (constant, gender,
activity, age, and squared age). This is a truncated regression model.

(ii) Results of OLS and ML

Exhibit 6.9 shows the results of OLS (without taking the truncation into
account, in Panel 1) and of ML in (6.29) (that is, using the truncated normal
density, in Panel 2). The outcomes suggest that the variables ‘gender’ and
‘activity’ do not have significant effects on the amount of invested money and
that age has a significant effect, with a maximum at an age of around 62
years (namely, where 0:0698� 2 � 0:0559 � (age=100) ¼ 0). This is somewhat
surprising, as one would normally expect the variable ‘activity’ to have a
positive effect on the invested amount and the effect of age to be maximal at
an earlier age.

(iii) Comments on the obtained results

The results of OLS and of ML are nearly equal. Exhibit 6.9 (c) and (d) show
the histogram of the values of zi ¼ x0ib=s, where b and s are the ML estimates
of b and s, and the histogram of the corresponding values of the inverseMills
ratio li ¼ f(zi)=F(zi). The zi values are positive and lie far away from the
truncation point zero, with minimal value 4.06. Consequently, the values of
li are very close to zero, with maximal value 0.0001. This means that the
correction term in the log-likelihood (6.29) is very small (for zi � 4:06 there
holds F(zi) � 1 and hence log (F(zi)) � 0). This explains that ML and OLS
are nearly equivalent for these data. As the estimates by OLS (neglecting the
truncation) and ML (with truncation) are close together, it is tempting to
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conclude that the truncation has no serious effects. However, this need not be
correct. To investigate these effects in a proper way we need further infor-
mation on the individuals who are excluded from the sample, here the
customers who did not invest. In the next section we consider the situation
where we also know the characteristics of the individuals who did not invest.

(a) Panel 1: Dependent Variable: LOGINV ¼ LOG(1 þ INVEST)
Method: Least Squares
Sample(adjusted): 1 1000 IF INVEST>0
Included observations: 470

Variable Coefficient Std. Error t-Statistic Prob.
C 2.854243 0.611331 4.668900 0.0000

GENDER �0.214029 0.115786 �1.848499 0.0652
ACTIVITY �0.132122 0.099673 �1.325556 0.1856

AGE 0.069782 0.024903 2.802193 0.0053
AGE^2/100 �0.055928 0.024156 �2.315258 0.0210

R-squared 0.047838
S.E. of regression 0.944256

(b) Panel 2: Dependent Variable: LOGINVEST ¼ LOG(1 þ INVEST)
Method: ML - Truncated Normal
Sample(adjusted): 1 1000 IF INVEST>0
Included observations: 470; truncated sample with left censoring value 0
Convergence achieved after 11 iterations

Variable Coefficient Std. Error z-Statistic Prob.
C 2.854157 0.608105 4.693525 0.0000

GENDER �0.214033 0.115170 �1.858412 0.0631
ACTIVITY �0.132126 0.099144 �1.332676 0.1826

AGE 0.069785 0.024771 2.817203 0.0048
AGE^2/100 �0.055931 0.024029 �2.327683 0.0199

Error
Distribution
SCALE: SIGMA 0.939228 0.030637 30.65627 0.0000
R-squared 0.047838
S.E. of regression 0.945272
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(c) (d)

Exhibit 6.9 Direct Marketing for Financial Product (Example 6.6)

Models for invested amount of money based on data of 470 individuals who made an invest-
ment, OLS (Panel 1) and ML in truncated model (Panel 2). (c) and (d) show histograms of the
values of z ¼ (x0bML)=sML (in (c)) and of the inverse Mills ratio l ¼ f(z)=F(z) (in (d)).
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As we will see in Example 6.7, we then get quite different conclusions (for
instance, on the sign of the effect of the variable activity and on the question
at what age the effect is maximal).

E Exercises: T: 6.4a, b; S: 6.9a, b.

6.3.2 Censored data

Tobit model for censored data

The dependent variable is called censored when the response cannot take
values below (left censored) or above (right censored) a certain threshold
value. For instance, in the example on investments in a new financial prod-
uct, the investments are either zero or positive. And, in deciding about a new
car, one has either to pay the cost of the cheapest car or abstain from buying a
new car. The so-called tobit model relates the observed outcomes of yi � 0 to
an index function

y�i ¼ x0ibþ sei

by means of

yi ¼ y�i ¼ x0ibþ sei if y�i > 0,

yi ¼ 0 if y�i � 0:
(6:31)

Here s is a scale parameter and the error terms ei have a known symmetric
density function f (so that f (t) ¼ f (� t) for all t) with cumulative distribu-
tion function F, so that

E[ei] ¼ 0:

In the tobit model, the functions f and F are usually chosen in accordancewith
the standard normal distribution (with f ¼ j and F ¼ F). The above model
for censored data is sometimes called the tobit type 1 model, to distinguish it
from the tobit type 2 model that will be discussed in the next section for data
with selection effects. In contrast with a truncated sample, where only the
responses for y�i > 0 are observed, it is now assumed that responses yi ¼ 0
corresponding to y�i � 0 are also observed and that the values of xi for such
observations are also known. In practice these zero-responses are of interest,
as they provide relevant information on economic behaviour. For instance, it
is of interest to know which individuals decided not to invest (as other
financial products could be developed for this group) or which individuals
did not buy a new car (as one could design other cars that appeal more to this
group). The tobit model can be seen as a variation of the probit model, with
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one discrete option (‘failure’, yi ¼ 0) and where the option ‘success’ is
replaced by the continuous variable yi > 0.

A graphical illustration of censoring

If one simply applies OLS by regressing yi (including the zero observations)
on xi, then this leads to inconsistent estimators. The reason is the same as in
the case of truncated samples— that is, E[yi] 6¼ x0ib.

Exhibit 6.10 provides a graphical illustration of the effect of censoring.
Here the data are generated by y�i ¼ xi þ ei with ei � N(0, 1) and yi ¼ y�i if
y�i > 0 and yi ¼ 0 if y�i � 0. For a given value of xi, the probability distribu-
tion of yi is mixed continuous-discrete. For instance, for xi ¼ 0, the probabil-
ity on the outcome yi ¼ 0 is P[ei � 0] ¼ 0:5, outcomes yi > 0 have a standard
normal density, and outcomes yi < 0 are not possible. Observed values yi
correspond to the uncensored model yi ¼ xi þ ei if and only if yi ¼ y�i —that
is, if and only if y�i ¼ xi þ ei > 0. Clearly, the condition ei > �xi is hardly a
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Exhibit 6.10 Censored data

(a) shows a censored normal density with censoring from below (at x ¼ 0), with a point mass
P[x ¼ 0] ¼ 0.5. (b)–(d) show scatter diagrams illustrating the effect of censoring on the OLS
estimates: (b) is the uncensored scatter of y� against x, (c) is the censored scatter of y against x,
and (d) contains the two regression lines (the DGP has slope b ¼ 1Þ:
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restriction if xi takes large positive values, but it is a strong restriction if xi
takes large negative values. In Exhibit 6.10 (c) the observed values yi (with
yi > 0 always) for small values of xi are systematically larger than the
corresponding values of the index y�i in (b) (which are often negative for
negative values of xi). This upward bias in the observations yi in the left part
of the scatter diagram in Exhibit 6.10 (c) leads to a downward bias in the
OLS estimator (see (d)).

Derivation of the distribution of a censored dependent variable

For given values of xi, the distribution of yi in the tobit model is mixed continuous-
discrete, with continuous density pyi(t) for outcomes t > 0 and with a positive
probability on the discrete outcome yi ¼ 0. We will now derive the explicit
expression for the probability distribution. First we consider the discrete part.
As the density f of the error terms is assumed to be symmetric, it follows that
F(� t) ¼ 1� F(t), so that

P[yi ¼ 0] ¼ P[ei � �x0ib=s] ¼ F(� x0ib=s) ¼ 1� F(x0ib=s):

Second, we consider the continuous part for yi ¼ t > 0. For t > 0 there holds

Fyi(t) ¼ P[yi � t] ¼ P[x0ibþ sei � t] ¼ P

�
ei � t � x0ib

s

	
¼ F

t � x0ib
s

� �
:

The density pyi(t) of yi > 0 is the derivative of this expression with respect to t—
that is, (1=s)f ((t � x0ib)=s). Summarizing the above results, the probability distri-
bution of a censored variable is equal to

P[yi ¼ 0] ¼ 1� F(x0ib=s),

pyi(t) ¼
1

s
f

t � x0ib
s

� �
for yi ¼ t > 0:

(6:32)

Derivation of systematic bias of OLS for censored data

We now investigate the effect of censoring in the model (6.31). In the
standard (uncensored) regression model there holds x0ib ¼ E[yi], but this does not
hold true for the censored regression model. In this case the model (6.31) implies
(as before, we interpret all expressions conditional on the given values of xi)

E[yi] ¼ 0 � P[yi ¼ 0]þ P[yi > 0]E[yijyi > 0]

¼ F(x0ib=s) x0ibþ sE[eijyi > 0]
� �

: (6:33)
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Here we used P[yi > 0] ¼ 1� P[yi ¼ 0] ¼ F(x0ib=s), see (6.32). In the expression
(6.33) there holds E[eijyi > 0] > 0 (as in the case of truncated samples) and
0 � F(x0ib=s) � 1. So E[yi] may be larger or smaller than x0ib—that is, the sign
of the bias term (E[yi]� x0ib) may depend on xi. As an example, let f ¼ f be the
standard normal distribution. Then the results in (6.27) and (6.33) imply that, in
this case,

E[yi] ¼ F(x0ib=s) x0ibþ sli
� � ¼ Fix

0
ibþ sfi, (6:34)

where

li ¼ f(x0ib=s)=F(x0ib=s)

is the inverse Mills ratio and we used the shorthand notation fi ¼ f(x0ib=s) and
Fi ¼ F(x0ib=s). Now the model (6.31) can be written as the regression equation
yi ¼ x0ibþ sZi, where Zi ¼ ei if y�i > 0 (that is, if ei > �x0ib=s) and Zi ¼ �x0ib=s
if y�i � 0 (that is, if ei � �x0ib=s). The result in (6.34) shows that, for given value
of xi,

E[Zi] ¼
1

s
E[yi]� x0ib
� � ¼ Fi � 1

s
x0ibþ fi:

In general, E[Zi] 6¼ 0, and the distribution of Zi depends on xi, so that OLS is
inconsistent. More precisely, define !i ¼ Zi � E[Zi] ¼ Zi þ 1�Fi

s x0ib� fi, then
Zi ¼ E[Zi]þ !i with E[!i] ¼ 0, and we can write the data generating process as

yi ¼ x0ibþ sZi ¼ x0ibþ F(x0ib=s)� 1
� �

x0ibþ sf(x0ib=s)þ s!i, E[!i] ¼ 0:

So in regressing yi on xi we neglect additional regressors, and, as the omitted
regressors are correlated with xi, this produces a systematic bias in OLS
(see Section 3.2.3 (p. 142–3) on omitted variables bias). As the regressors xi
are not orthogonal to the error term Zi of the regression equation, OLS is not
consistent.

Marginal effects in the tobit model

The marginal effects of the explanatory variables in the tobit model can be
split into two parts. If yi ¼ 0 and x0ib increases, then the probability that
yi > 0 increases— that is, the probability of a positive response increases.
Second, if yi > 0, then the mean response will increase. More formally, it
follows from (6.33) that

@E[yi]

@xi
¼ @P[yi > 0]

@xi
E[yijyi > 0]þ P[yi > 0]

@E[yijyi > 0]

@xi
: (6:35)
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For the case of the standard normal distribution, the first term is
fi(zi þ li)b and the second term is Fi(1� zili � l2i )b, where zi ¼ x0ib=s
(see Exercise 6.4). Substituting these results in (6.35) gives for the tobit
model

@E[yi]

@xi
¼ F(x0ib=s)b:

So in this case the marginal effects are not b but smaller, with reduction factor
0 � Fi � 1. The difference is small for large values of x0ib=s, as in this case
Fi � 1, but the difference is large for small values of x0ib=s, as then Fi � 0.
This is also intuitively clear. The condition for an observation yi > 0 is that
ei > �(x0ib=s). If (x

0
ib=s) takes a large positive value, then this is hardly a

restriction, so that yi ¼ y�i ¼ x0ibþ sei inmost cases. If we increase xi in such a
situation, then the marginal effect on yi will (in most cases) be b. On the other
hand, if (x0ib=s) takes a large negative value, then the condition ei > �(x0ib=s)
will not often be satisfied, so that in most cases yi ¼ 0. A marginal increase in
xi will have no effect in most cases, as yi ¼ 0 still has a large probability.

Estimation by maximum likelihood

The parameters of the tobit model can be estimated consistently by maximum
likelihood. Assuming that the observations are mutually independent, the log-
likelihood log (L) ¼P log (p yi)ð Þ is obtained from (6.32), so that

log (L(b, s)) ¼
X
i; yi¼0f g

log (1� F(x0ib=s))

þ
X
i; yi>0f g

� 1

2
log (s2)þ log f

yi � x0ib
s

� �� �� �
:

(6:36)

If we substitute f ¼ j and F ¼ F of the standard normal distribution, then this
becomes

log (L) ¼
X
i; yi¼0f g

log (1�F(x0ib=s))

þ
X
i; yi>0f g

� 1

2
log (s2)� 1

2
log (2p)� 1

2s2
(yi � x0ib)

2

� �
:

The term for the observations yi > 0 is as usual, and the first term corresponds to
the contribution of the observations yi ¼ 0. Note that this term differs from the
truncated sample correction term in (6.28). The tobit estimates are obtained by
maximizing this log-likelihood— for instance, by Newton–Raphson. The tobit
estimators have the usual properties of ML.

T
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Remark on the censored observations (yi ¼ 0)

The censored data are mixed continuous-discrete. For the continuous data
yi > 0, the regression model yi ¼ x0ibþ sei applies. However, b should not be
estimated by regressing yi on xi on the subsample of observations with yi > 0,
for two reasons. First, the observations with yi ¼ 0 contain relevant infor-
mation on the parameters b and s, as is clear from the contribution of these
observations in the log-likelihood (6.36). Second, in the subsample of obser-
vations with yi > 0 the error terms do not have zero mean as they come from
a truncated distribution. The results in Section 6.3.1 show that OLS on the
truncated sample is not consistent.

The Heckman two-step estimation method

An alternative estimation method is based on the idea that censored data
can be seen as a combination of a binary response (with possible outcomes
yi ¼ 0 and yi > 0), followed by a linear relation yi ¼ x0ibþ sei on the trun-
cated sample of observations with yi > 0. For the tobit model, the binary
response model is a probit model with P[yi > 0] ¼ F(x0ib=s) and
P[yi ¼ 0] ¼ 1� P[yi > 0]. Define the parameter vector g by g ¼ (1=s)b,
and let ~yyi ¼ 1 if yi > 0 and ~yyi ¼ 0 if yi ¼ 0. Then, as a first step, g can be
estimated consistently by ML in the probit model P[~yyi ¼ 1] ¼ F(x0ig). As a
second step, consider the truncated sample of observations with yi > 0. The
expected value of yi over this truncated sample— that is, E[yijy�i > 0]— is
given by (6.28). If we use the notation yþi for the random variable yi,
conditional on the information that yi > 0, this can be written as

yþi ¼ x0ibþ sli þ !i, li ¼ f(x0ib=s)
F(x0ib=s)

¼ f(x0ig)
F(x0ig)

, E[!ijyi > 0] ¼ 0:

The unobserved regressor li is replaced by the consistent estimator obtained
by substituting the probit estimate ĝg of g, so that l̂li ¼ f(x0iĝg)=F(x0iĝg). Then
OLS in the above equation for yþi on the truncated sample (with yi > 0) gives
consistent estimators of the parameters b and s. This is called the Heckman
two-step method, which can be summarized as follows.

Heckman two-step estimation method


 Step 1: Estimate the bias correction term by probit. Let ~yyi be the binary
variable with ~yyi ¼ 1 if yi > 0 and ~yyi ¼ 0 if yi ¼ 0. Estimate g by ML in
the probit model P[~yyi ¼ 1] ¼ F(x0ig). Estimate the bias correction term li by
l̂li ¼ f(x0iĝg)=F(x0iĝg).


 Step 2: Perform OLS in model with the estimated bias term as additional
regressor. Estimateb andsby applyingOLS in themodel yi ¼ x0ibþ sl̂li þ!i,
using only the observations in the truncated sample with yi > 0.
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This two-step estimation method is relatively simple as compared to
ML. However this method is not efficient, both because the two separate
steps neglect the parameter restrictions g ¼ (1=s)b and because the error
terms !i in the second step are non-normal and heteroskedastic. The
Heckman two-step method is useful, however, to obtain consistent initial
estimates for ML.

Diagnostic tests

The reliability of censored regressions depends crucially on the underlying
model assumptions. The ML tobit estimators become inconsistent in case of
omitted variables, heteroskedasticity, or wrong specification of the distribu-
tion of the error terms. A simple specification check is to compare the probit
estimate of g (in the first step of the Heckman method) with the estimated
values of (1=s)b obtained by ML in the tobit model. If the outcomes are
largely different, this indicates that the decision whether to be active or not
may be driven by other factors than the magnitude of the response yi (given
that yi > 0). In the tobit model, both the decision to respond and the
magnitude of the response are modelled in terms of x0ib. In the next section
we consider models where the decision process and the magnitude of the
response are modelled in different ways.

Example 6.7: Direct Marketing for Financial Product (continued)

We return to Example 6.6 of the foregoing section on a new financial
product. In Example 6.6 we considered only the customers of the bank
who decided to invest in the financial product. However, we also know the
individual characteristics of the customers who decided not to invest. We
will, therefore, construct a tobit model for the invested amount of money. We
will discuss (i) the data, (ii) the ML estimates of the tobit model, (iii) a
comparison with the results obtained in Example 6.6 for the truncated
sample, (iv) the estimates obtained by the Heckman two-step method, and
(v) a diagnostic check on the empirical validity of the tobit model.

(i) The data

The data set consists of 925 individuals, of whom 470 responded by making
an investment in the product and 455 did not respond. For individuals who
responded, the amount of money invested in this product is known. The
explanatory variables (gender, activity, age) are known for all 925 individ-
uals, hence also for the individuals that did not invest in the product. So the
dependent variable is censored, not truncated. As before, we take as depend-
ent variable yi ¼ log (1þ invest), where ‘invest’ is the amount of money
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invested. For individuals who did not invest (so that ‘invest’ is zero), we
get yi ¼ 0.

(ii) ML estimates of the tobit model

The tobit estimates (ML in the censored regression model) are in Panel 2 of
Exhibit 6.11. For comparison this table also contains the OLS estimates that
are obtained if the censoring is erroneously neglected (see Panel 1). The two
sets of estimates can be compared by the implied marginal effects— that is,
the estimates themselves in the OLS model and the average multipliers
in the tobit model obtained by averaging bF(x0ib=s) over the sample. The
tobit multipliers in Panel 2 of Exhibit 6.11 are somewhat larger than the OLS
multipliers. The variables ‘gender’ and ‘activity’ have a positive effect on
the amount of money invested, and age has a parabolic effect, with a
maximum at an age of around 53 years (namely, where 0:196� 2 � 0:185 �
(age=100) ¼ 0).

(iii) Comparison of tobit estimates with results for truncated sample

We compare the results of the tobit model in Panel 2 of Exhibit 6.11 with the
results for the truncated sample obtained in Example 6.6 (see Panel 2 of
Exhibit 6.9). The effect of ‘activity’ now has the expected positive sign
(instead of negative) and the maximum investments are around an age of
53 (instead of 62). Further, the tobit estimates indicate higher investments by
males as compared to females, whereas the reverse effect was estimated in the
truncated sample. As the information on individuals who do not invest is of
importance in describing the general investment behaviour, the results
obtained for the censored sample are more reliable than the ones for the
truncated sample. This illustrates the general point that it is always advisable
to include relevant information in the model. The truncated model of
Example 6.6 neglects the information on non-investing customers, and this
makes this model much less informative than the tobit model for the
censored data.

(iv) Heckman two-step estimates

Panels 4 and 6 of Exhibit 6.11 show the estimates obtained by the Heckman
two-step method. This gives much larger standard errors and less significant
results than ML. Because the error terms !i in the second-step regression are
heteroskedastic, the standard errors in Panel 6 are computed by the method
of White (see Section 5.4.2 (p. 324–5)). The estimated bias correction terms
l̂li obtained in step 1 of the Heckman method are much larger than the ones
estimated in Example 6.6 (see the histograms in Exhibits 6.9 (d) and
6.11 (e)). The minimum value of l̂li is now 0.41 (whereas in the truncated
model all values are around 0.00). We conclude that the bias terms are

6.3 Limited dependent variables 497



underestimated in the truncated sample. As the values of l̂li for the censored
data are quite large, this implies that OLS on the truncated sample is
seriously biased. Hence also the truncatedML estimates in Panel 2 of Exhibit
6.9 are biased, as these estimates are nearly the same as OLS for these data.
For instance, the effects of the variables ‘gender’ and ‘activity’ in the (con-
sistent) second step of the Heckman method in Panel 6 of Exhibit 6.11 are

(a) Panel 1: Dependent Variable: LOGINVEST ¼ LOG(1 þ INVEST)
Method: Least Squares
Included observations: 925

Variable Coefficient Std. Error t-Statistic Prob.
C �1.110803 0.956974 �1.160745 0.2460

GENDER 0.967838 0.174920 5.533017 0.0000
ACTIVITY 0.874305 0.198665 4.400908 0.0000

AGE 0.103027 0.038399 2.683045 0.0074
AGE^2/100 �0.095076 0.036670 �2.592709 0.0097

R-squared 0.069073
S.E. of regression 2.346782

(b) Panel 2: Dependent Variable: LOGINVEST ¼ LOG(1 þ INVEST)
Method: ML - Censored Normal (TOBIT), left censoring at 0
Included observations: 925
Convergence achieved after 7 iterations

Variable Coefficient Std. Error z-Statistic Prob. Average multiplier
C �5.936450 1.975280 �3.005371 0.0027 �4.096151

GENDER 2.126287 0.360378 5.900151 0.0000 1.479896
ACTIVITY 1.691490 0.373128 4.533269 0.0000 1.177277

AGE 0.195933 0.079056 2.478413 0.0132 0.136369
AGE^2/100 �0.184648 0.075808 �2.435718 0.0149 �0.128515

Error Distribution
SCALE: SIGMA 4.159631 0.155950 26.67282 0.0000
R-squared 0.060935
S.E. of regression 2.358299
Left censored obs 455 Right censored obs 0
Uncensored obs 470 Total obs 925
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(c)

0.00 0.25 0.50 0.75 1.00

Series: PHI
Sample 1 1000
Observations 925

Mean 0.696056
Median 0.859516
Maximum 0.998962
Minimum 3.11E-05

Exhibit 6.11 Direct Marketing for Financial Product (Example 6.7)

Models for invested amount of money based on data of 925 individuals (470 made an invest-
ment, 455 did not invest), OLS (Panel 1) and Tobit model (censored regression, Panel 2). (c)
shows the histogram of the values of F(x0bML=sML) (with sample mean 0.696; the average
multipliers reported in Panel 2 for the Tobit model are obtained by multiplying the estimated
coefficients by this factor).
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both positive, whereas these effects are negative if the bias correction term is
neglected (see Panels 1 and 2 of Exhibit 6.9 for the truncated sample).

(v) A diagnostic check on the tobit model

Finally, as a diagnostic check we compare the estimates ĝg of the
probit model in the first step of the Heckman method (Panel 4) with
the tobit ML estimates (1=s)b (obtained from Panel 2). Dividing the
values of b by s ¼ 4:160 gives (after rounding to three digits) the values
(1=s)b ¼ (� 1:427, 0:511, 0:407, 0:047, � 0:044)0. This does not differ

(d) Panel 4: Dependent Variable: RESPONSE
(1 ¼ does invest, 0 ¼ does not invest)
Method: ML - Binary Probit
Included observations: 925
Convergence achieved after 5 iterations

Variable Coefficient Std. Error z-Statistic Prob.
C �1.497584 0.536822 �2.789720 0.0053

GENDER 0.588114 0.096684 6.082811 0.0000
ACTIVITY 0.561167 0.111572 5.029656 0.0000

AGE 0.041680 0.021544 1.934636 0.0530
AGE^2/100 �0.040982 0.020607 �1.988730 0.0467

0
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200

300

400

(e)

0.4 0.6 0.8 1.0 1.2 1.4 1.6

Series: LAMBDA
Sample 1 1000
Observations 925

Mean 0.800354
Median 0.735736
Maximum 1.604517
Minimum 0.406706

(f ) Panel 6: Dependent Variable: LOGINVEST ¼ LOG(1 þ INVEST)
Method: Least Squares
Sample(adjusted): 1 500 IF INVEST>0; Included observations: 470
White Heteroskedasticity-Consistent Standard Errors & Covariance

Variable Coefficient Std. Error t-Statistic Prob.
C �0.628395 5.993881 �0.104839 0.9165

GENDER 0.535657 1.317266 0.406643 0.6845
ACTIVITY 0.489967 1.065880 0.459683 0.6460

AGE 0.123239 0.093687 1.315437 0.1890
AGE^2/100 �0.108606 0.092892 �1.169162 0.2429
LAMBDA 1.951267 3.380174 0.577268 0.5640

R-squared 0.048679
S.E. of regression 0.944855

Exhibit 6.11 (Contd.)

Heckman two-step method, probit model for investment decision (step 1, Panel 4), histogram
of the corresponding values of l (inverseMills ratio (e)), andOLS on the truncated sample with
l as additional regressor (step 2, Panel 6).
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much from ĝg ¼ (� 1:498, 0:588, 0:561, 0:042, � 0:041)0. So there is no
indication that the factors that determine the decision whether or not to
invest would be any different from the factors that determine the amount of
invested money. This supports the use of the tobit model.

E Exercises: T: 6.4c, 6.5; S: 6.9c–e; E: 6.16.

6.3.3 Models for selection and treatment effects

A model for selection

In truncated samples, the values of the dependent variable are observed only
in a certain interval (yi > 0 in the standard model). More generally, let zi be a
selection dummy that takes the value zi ¼ 1 if the ith individual is in the
sample and zi ¼ 0 if the individual is not in the sample. We assume that
yi ¼ x0ibþ sei applies for all individuals (observed and unobserved), and that
this model satisfies all the standard assumptions. Then the observed sample
can be described by

yi ¼ x0ibþ sei if zi ¼ 1,

yi is not observed if zi ¼ 0:
(6:37)

OLS, that is, regressing yi on xi for the observations with zi ¼ 1, is consistent
if and only if the selection is exogenous. This condition will be violated if the
selection variable zi depends on the error term ei. This is the case, for
instance, in truncated regressions where zi ¼ 1 if and only if yi > 0, since in
this case zi ¼ 1 if and only if ei > �(x0ib=s). In general, OLS on selected
samples is inconsistent if the selection process is endogenous in the sense
that the selection dummy zi depends on the error term ei.

The tobit (type 2) model for selection effects

In truncated regression models, an individual is unobserved if the index
function y�i ¼ x0ibþ sei takes negative values. That is, the factor x0ib that
influences the probability of being observed is the same as the factor
that influences the magnitude of the response yi ¼ y�i for y�i > 0. In some
cases these factors may be different. For instance, the decision to work or
not may be based on considerations other than the number of hours worked,
and the decision to buy a durable product or not may be influenced by factors
other than the amount of money spent by the buyers of this product.
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Let wi be a set of variables that influences the chance that yi is observed
(zi ¼ 1) or not (zi ¼ 0). A possible selection model is as follows.

zi ¼ 1 if w0
igþ !i > 0,

zi ¼ 0 if w0
igþ !i � 0:

(6:38)

The combined model (6.37) and (6.38) is called the tobit type 2 model. It
differs in the following respects from the standard (or tobit type 1) model
(6.31) of Section 6.3.2. First, in the tobit type 1 model the dependent variable
is censored (with yi ¼ 0 for zi ¼ 0 and yi > 0 for zi ¼ 1), whereas in the tobit
type 2 model yi is not observed for zi ¼ 0 and yi can take both negative and
positive values if zi ¼ 1. Second, the selection variables wi are (partly)
different from the regressors xi, whereas in the tobit type 1 model
wi ¼ xi, g ¼ b, and !i ¼ sei.

It is assumed that the data set consists of n observations of the variables
(xi, wi, zi), whereas the dependent variable yi is observed only for the obser-
vations with z1 ¼ 1. For instance, wemay have data of n individuals of whom
some have a job (zi ¼ 1) and others not (zi ¼ 0). If the dependent variable of
interest yi is the wage that an individual with characteristics xi would nor-
mally earn, then yi is not observed for the individuals without a job. Relevant
characteristics xi that may affect wage are, for instance, age and education,
and factors wi that may affect the chance that an individual works are, for
instance, age, education, and family composition. As another example, yi may
be the price of the new car bought by customer i during an action period. A
relevant explanatory variable xi may be the price of the current car of the
customer, andwi may be the age of the current car and themarketing effort for
this customer. The sales revenue yi is observed only for the customers who
decide to buy a new car (zi ¼ 1), whereas the characteristics (xi, wi) are
known for all customers.

Distinction between truncated and censored selection

Until now we have assumed that the dependent variable in the tobit type 2
model is truncated in the sense that yi is not observed if zi ¼ 0. Sometimes
one assigns instead the value yi ¼ 0 if zi ¼ 0, so that the dependent variable
becomes censored instead of truncated. For instance, the wage of non-
working people is zero, and the amount of money spent by non-buying
customers is zero. In estimation it does not matter which convention one
follows as, conditional on zi ¼ 0, the fact that yi ¼ 0 is a matter of definition
that provides no additional information. However, the truncated sample
interpretation is often more natural, since in this case yi can be seen as the
natural response that corresponds to xi. For individuals with yi ¼ 0, this

6.3 Limited dependent variables 501



response is due not so much to xi, but to wi that causes zi ¼ 0. For instance,
for non-working individuals the wage is ‘zero’ because they do not to work
(zi ¼ 0), and it is better to say that we do not observe the wage that would
normally be earned by individuals with the same characteristics xi.

Derivation of selection bias of OLS

The regression of yi on xi in the observed sample (with zi ¼ 1) provides consistent
estimates if the error terms !i in the selection equation are independent from the
error terms ei in the regression model. Otherwise OLS is inconsistent. To investi-
gate this in more detail, we assume that the values of (wi, xi) are fixed and that the
error terms (!i, ei) are independent for different observations, with joint normal
distribution with mean zero, variances E[!2

i ] ¼ 1 and E[e2i ] ¼ 1, and covariance
E[!iei] ¼ r. In this case

!i

ei

� �
� NID

0
0

� �
,

1 r
r 1

� �� �
, i ¼ 1, � � � , n:

As was discussed in Section 6.1.1, the variance of the error term !i should be fixed,
as otherwise the parameters g of the selection equation are not identified. The
variance of ei should also be fixed, because of the term s in the model (6.37). Let
Zi ¼ ei � r!i, then Zi is normally distributedwithmean zero, and, sinceE[Zi!i] ¼ 0,
it follows that Zi and !i are mutually independent. Writing ei ¼ r!i þ Zi, it there-
fore follows that E[eijzi ¼ 1]¼ E[eij!i > �w0

ig] ¼ rE[!ij!i > �w0
ig]. According to

(6.27), the last term can be written as rli, where li ¼ f(w0
ig)=F(w0

ig). This shows
that for observations in the sample (with zi ¼ 1) there holds

E[eijzi ¼ 1] ¼ E[!ij!i > �w0
ig] ¼ rli:

Also note that in the observed sample (with zi ¼ 1) x0ib is not equal to the mean
of yi, as

E[yijzi ¼ 1] ¼ x0ibþ sE[eijzi ¼ 1] ¼ x0ibþ rsli: (6:39)

Therefore OLS in yi ¼ x0ibþ ei is inconsistent, as this neglects the regressor li,
unless r ¼ 0— that is, unless the selection variable zi is independent of the error
term ei.

Derivation of log-likelihood in case of sample selection

The parameters (b, g, s, r) can be estimated consistently by ML. The likelihood
function is equal to the joint probability distribution of the dependent variables zi
(for i ¼ 1, � � � , n) and yi (for zi ¼ 1). If the observations are assumed to be
mutually independent, we get L ¼ Q i; zi¼0f g p(zi)

Q
i; zi¼1f g p(yi, zi ¼ 1), and as

p(yi, zi ¼ 1) ¼ p(yi)P[zi ¼ 1jyi] it follows that

T

T
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log (L(b, g, s, r)) ¼
X

fi; zi¼0g
log (p(zi))þ

X
i; zi¼1f g

log (P[zi ¼ 1jyi])

þ
X
i; zi¼1f g

log (p(yi)):

The last term in this expression stands for the contribution of the observed
values yi � N(x0ib, s). The first term in the log-likelihood can be evaluated
by using the fact that P[zi ¼ 0] ¼ P[!i � �w0

ig] ¼ F(�w0
ig) ¼ 1�F(w0

ig).
For the second term in the log-likelihood we use that P[zi ¼ 1jyi] ¼ P[!i >
�w0

igjyi] where yi ¼ x0ibþ sei, so that (!i, yi) follows the bivariate normal distri-
bution

!i

yi

� �
� N

0
x0ib

� �
,

1 rs
rs s2

� �� �
:

It follows from (1.22) that !ijyi � N( rs (yi � x0ib), 1� r2), so that

P[zi ¼ 1jyi] ¼ P[!i > �w0
igjyi] ¼ P

!i � r
s (yi � x0ib)ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p >
�w0

ig� r
s (yi � x0ib)ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p" #

¼ 1�F
�w0

ig� r
s (yi � x0ib)ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p !
¼ F

w0
igþ r

s (yi � x0ib)ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p !
: (6:40)

Because of these results, the log-likelihood of the model with selection effects can
be expressed as follows.

log (L(b, g, s, r)) ¼
X

{i; zi¼0}

log (1�F(w0
ig))

þ
X

{i; zi¼1}

log F
w0

igþ r
s (yi � x0ib)ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p ! !

þ
X

{i; zi¼1}

� 1

2
log (s2)� 1

2
log (2p)� 1

2s2
(yi � x0ib)

2

� �
:

Heckman two-step method

Consistent estimates of b can again also be obtained by means of a Heckman
two-step method. According to (6.39), for observed values of yi (that is, for
zi ¼ 1) the bias term is equal to E[yijzi ¼ 1]� x0ib ¼ rsli. Let
Zi ¼ yi � E[yijzi ¼ 1]; then we can write

yi ¼ x0ibþ rsli þ Zi, E[Zi] ¼ 0 (for zi ¼ 1):
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The two-step method is similar to the one described in Section 6.3.2 for
censored data. In the first step we use all n observations (wi, zi) to estimate
the parameters g of the probit selection model (6.38). Let ĝg be the obtained
estimates; then the inverse Mills ratios are estimated by l̂li ¼ f(w0

iĝg)=F(w0
iĝg).

In the second step consistent estimates of b and rs are obtained by regressing
yi on xi and l̂li, using only the subsample of observations with zi ¼ 1. A test
on the significance of selection bias (that occurs only if r 6¼ 0) can be
performed by testing whether the coefficient of the inverse Mills ratio l̂li is
significant. Since the error terms Zi are heteroskedastic, the conventional OLS
formulas for the standard errors are not valid. Consistent standard errors can
be obtained by White’s method (see Section 5.4.2 (p. 324–5)).

Remark on the explanatory variables wi and xi

It may well be that some of the variables wi that affect the selection variable
zi are also relevant in explaining the response yi. For instance, someone’s age
may influence the decision whether to work or not and, for someone who is
working, it may also affect the wage level. To avoid excessively large correl-
ations between the regressors xi and li, one usually requires that wi contains
at least one variable that is not present in xi.

Model for treatment effects

The above selection model can also be used for the analysis of treatment
effects. Consider the model

yi ¼ x0ibþ azi þ sei, ei � NID(0, 1),

where zi is a dummy variable with the value 0 (no treatment) or 1 (treatment).
It is assumed that the treatment selection can be described by (6.38). For
instance, yi may be the amount of money spent in a store and the treatment zi
may indicate whether the customer owns a credit card for the store or not.
The coefficient a is the treatment effect— that is, the additional purchases
that a customer makes because he or she owns a credit card for the store.

Derivation of treatment bias of OLS

If the treatment effect is estimated by regressing yi on xi and zi, then this gives
inconsistent estimators if the error term !i in the treatment selection is correlated
with the error term ei in the regression model. To analyse this in more detail, let
fi ¼ f(w0

ig), Fi ¼ F(w0
ig), and li ¼ fi=Fi; then under the same assumptions as

before we have E[eijzi ¼ 1] ¼ rli. Further, E[eijzi ¼ 0] can be obtained from the
fact that

T
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0 ¼ E[ei] ¼ P[zi ¼ 1]E[eijzi ¼ 1]þ P[zi ¼ 0]E[eijzi ¼ 0]

¼ Firli þ (1�Fi)E[eijzi ¼ 0],

so that E[eijzi ¼ 0] ¼ �rliFi=(1�Fi). Combining the results for zi ¼ 1 and
zi ¼ 0, we can write

E[eijzi] ¼ zi(rli)þ (1� zi)
�rliFi

1�Fi
¼ rli

zi(1�Fi)� (1� zi)Fi

1�Fi

¼ r
li(zi �Fi)

1�Fi
:

For given xi and zi, let Zi ¼ ei � E[eijzi]. Then E[Zijzi] ¼ 0 and ei ¼ Zi þ E[eijzi], so
that the model with treatment effects can be written as

yi ¼ x0ibþ azi þ sE[eijzi]þ sZi

¼ x0ibþ azi þ rs
li(zi �Fi)

1�Fi
þ sZi, E[Zijzi] ¼ 0:

The additional term E[eijzi] is the treatment bias term. Regression of yi on xi and
zi is inconsistent because the omitted regressor is correlated with the treat-
ment variable zi (note that li, fi, and Fi also depend on zi). OLS is consistent
only if r ¼ 0— that is, if the random effects !i in the treatment selection are
independent of the random effects ei in the outcome of yi. For instance, if individ-
uals with higher than average expenditure (ei > 0) also have a larger than average
chance of owning the store’s credit card (!i > 0) so that r > 0, then OLS will
overestimate the treatment effect. This is because the OLS estimate of a will
incorporate part of the effect of the omitted bias term that has a coefficient
rs > 0 in this case.

Estimation of treatment effects by ML and by the Heckman

two-step method

As before, consistent estimates can be obtained by ML. Again, we assume that the
values of (wi, xi) are fixed, or, equivalently, we use the likelihood function condi-
tional on the observed values of (wi, xi). The likelihood function is equal to the
joint probability distribution of the dependent variables zi and yi, i ¼ 1, � � � , n.
If the observations are assumed to be mutually independent, we get
L ¼ Qn

i¼1 p(yi) p(zijyi) and hence

log (L(a, b, g, s, r)) ¼
Xn
i¼1

log (p(yi))þ
Xn
i¼1

log (p(zijyi)):

As the selection model is again given by (6.38), the log-likelihood can be evaluated
in the same way as discussed above for the model with selection effects. By

T
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using (6.40) for P[zi ¼ 1jyi] and the fact that P[zi ¼ 0jyi] ¼ 1� P[zi ¼ 1jyi],
we get

log (L(a, b, g,s,r)) ¼
X
i; zi¼1f g

log F
w0

igþ r
s (yi � x0ib� a)ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p ! !

þ
X
i; zi¼0f g

log 1�F
w0

igþ r
s (yi � x0ib� a)ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p ! !

þ
Xn
i¼1

� 1

2
log (s2)� 1

2
log (2p)� 1

2s2
(yi � x0ib� azi)

2

� �
:

Maximum likelihood estimates can be computed by maximizing this log-
likelihood. A simpler way to get consistent estimates of the treatment effect a
is again to apply a Heckman two-step method. As before, in the first step we
use the observations (wi, zi) to estimate the parameters g of the probit selection
model (6.38). This gives consistent estimates of the bias term li(zi �Fi)=(1�Fi).
In the second step yi is regressed on the variables xi, zi, and the estimated bias
terms.

The overall difference between treated and non-treated subjects

The above analysis shows that, for an individual with characteristics xi, the
overall difference of the response yi between treated and untreated individ-
uals will in general not be equal to a, unless the treatments are applied
randomly over the sample (so that r ¼ 0). The expression for the overall
difference in response is

E[yijzi ¼ 1]� E[yijzi ¼ 0] ¼ aþ rs
li(1�Fi)

1�Fi
� li(0�Fi)

1�Fi

� �
¼ aþ rsli

1�Fi
: (6:41)

Here a is the actual treatment effect. If a ¼ 0, so that treatment has no
actual effect, then there is still a difference between treated and untreated
individuals if r 6¼ 0. For instance, if r > 0, then treated individuals already
have a tendency for higher responses, since E[eijzi ¼ 1] ¼ rli > 0 and
E[eijzi ¼ 0] < 0 in this case. If we neglect this bias and apply OLS of
yi on xi and zi, then in this case (with a ¼ 0) we might in general find
misleading significant values for âa, which would wrongly suggest that treat-
ment matters.
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Example 6.8: Student Learning (continued)

In this example we will analyse the (treatment) effects of additional calculus
courses on the grades that students obtain in intermediate micro- and macro-
economics. For this purpose we consider data on student learning that
were analysed by J. S. Butler, T. A. Finegan, and J. J. Siegfried in their
paper ‘Does More Calculus Improve Student Learning in Intermediate
Micro- and Macroeconomic Theory’, Journal of Applied Econometrics,
13/2 (1998), 185–202. Part of these student learning data was used as a
leading example in Chapter 1 (see in particular Example 1.1, where this data
set was introduced).
We will discuss (i) the data and the model for the grades, (ii) a selection

model for the attained level of calculus, (iii) the results for grades in micro-
economics, and (iv) the results for grades in macroeconomics.

(i) Data and model for the grades

We are interested in the question whether more calculus improves student
learning in intermediate micro- and macroeconomic theory. The data
consist of the results of 609 students in intermediate microeconomics and
of 490 students in intermediate macroeconomics of the Vanderbilt Univer-
sity. The dependent variable yi is the obtained grade (in intermediate micro-
economics or macroeconomics). These grades range from 0 to 4, and the
sample mean is 2.65. The explanatory variable of interest (zi) is the level of
calculus attained by the student prior to following the intermediate economic
theory course. This variable has the interpretation of a treatment variable.
We distinguish two levels of calculus, ordinary (3 or 4 credit hours, denoted
by zi ¼ 0) and high (6 to 12 credit hours, denoted by zi ¼ 1). The effect of the
level of calculus zi on the grades yi is modelled by the linear relation

yi ¼ x0ibþ azi þ sei, ei � NID(0, 1):

The explanatory variables (zi, xi) are listed in Exhibit 6.12. The treatment
variable zi is denoted by ‘mathhigh’, and the grade deflator is used to
compensate for possible differences between the different instructors who
graded the exams in intermediate economic theory.

(ii) Selection model for level of calculus

Because of possible selection bias, a direct regression of the grade yi in the
intermediate theory course on the explanatory variables (xi, zi) may give an
inconsistent estimate of the (treatment) effect a of additional courses in
calculus. This is because similar aptitudes and interests may lead students
to enrol and do well in both mathematics and economics. The level of

E
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calculus chosen by the student is explained by means of the probit model
(6.38), with !i � N(0, 1) and with the explanatory variables wi listed in
Exhibit 6.12 (b).

(iii) Results for grades in microeconomics

The parameters (a, b, g, s, r) of the joint model are estimated by the Heck-
man two-step method. In the first step we estimate g by a probit model for
zi in terms of the explanatory variables wi. The results are used to estimate
the bias correction terms li(zi �Fi)=(1�Fi). In the second step, the grade
yi is regressed on the explanatory variables (xi, zi) and the estimated
bias correction terms as additional regressor. The standard errors in the
second-step regression are computed by the method of White (see Section
5.4.2 (p. 324–5)), because the error terms in this regression are hetero-
skedastic. The results for microeconomics are given in Exhibit 6.13 (a–c).

(a)

xi and zi Explanatory variables for grade in economics

C Constant term
MATHHIGH ‘Treatment’, zi ¼ 0 if 3 or 4 credit hours, zi ¼ 1 if 6 to 12 credit hours
GRADELOW Grade in last calculus course if 3 or 4 credit hours
GRADEHIGH Grade in last calculus course if 6 to 12 credit hours
GRDFINT Grade deflator of instructors in intermediate theory course
GRMACRO1 Grade in introductory macroeconomics
GRMICRO1 Grade in introductory microeconomics
FRESHMAN Freshman grade point average
FEMALE Gender dummy, 1 for females and 0 for males
SATMATH/100 SAT mathematics score, divided by 100
SATVERB/100 SAT verbal score, divided by 100

(b)

wi Explanatory variables for level of calculus

C Constant term
SATMATH/100 SAT mathematics score, divided by 100
FEMALE Gender dummy, 1 for females and 0 for males
MAJORESH 1 if expected major in economics, social science, or humanity, 0 otherwise
MAJORNAT 1 if expected major in natural science, 0 otherwise
ADVMATH1 1 if 1 year of high school advanced maths, 0 otherwise
ADVMATH2 1 if 2 years of high school advanced maths, 0 otherwise
ADVMATH3 1 if > 2 years of high school advanced maths, 0 otherwise
PHYSICS 1 if physics in high school, 0 otherwise
CHEMISTRY 1 if chemistry in high school, 0 otherwise

Exhibit 6.12 Student Learning (Example 6.8)

Explanatory variables (xi, zi) for obtained grade in economics (a) and explanatory variableswi

for attained level in calculus (b). The variable MATHHIGH is the treatment variable zi.
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(a) Panel 1: Dependent Variable: MATHHIGH
Method: ML - Binary Probit
Included observations: 609 (MATHHIGH ¼ 0(1) for 224(385) observations)
Convergence achieved after 4 iterations

Variable Coefficient Std. Error z-Statistic Prob.
C �3.233952 0.694970 �4.653367 0.0000

SATMATH/100 0.443273 0.099780 4.442485 0.0000
FEMALE 0.158684 0.116379 1.363505 0.1727

MAJORESH �0.214143 0.137400 �1.558537 0.1191
MAJORNAT 0.386246 0.178288 2.166418 0.0303
ADVMATH1 0.173933 0.248937 0.698701 0.4847
ADVMATH2 0.878933 0.253796 3.463152 0.0005
ADVMATH3 0.691171 0.621522 1.112063 0.2661
PHYSICS 0.326966 0.118983 2.748005 0.0060

CHEMISTRY 0.139247 0.220568 0.631311 0.5278

0

20

40

60

80

(b)

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

Series: SELCORMICRO
Sample 1 609
Observations 609

Mean −8.19E-07
Median 0.274174
Maximum 1.530908
Minimum −2.200249

(c) Panel 3: Dependent Variable: GRINTERMICRO
Method: Least Squares; Included observations: 609
White Heteroskedasticity-Consistent Standard Errors & Covariance

Variable Coefficient Std. Error t-Statistic Prob.
C �1.313984 0.386882 �3.396346 0.0007

SELCORMICRO 0.022413 0.037716 0.594255 0.5526
MATHHIGH 0.987359 0.215678 4.577921 0.0000
GRADELOW 0.292158 0.065798 4.440232 0.0000
GRADEHIGH 0.060555 0.051076 1.185590 0.2363

GRDFINTMICRO 0.839083 0.102980 8.148048 0.0000
GRMACRO1 0.176453 0.052557 3.357358 0.0008
GRMICRO1 0.290380 0.046338 6.266522 0.0000
FRESHMAN 0.324305 0.101163 3.205755 0.0014
FEMALE 0.082313 0.059692 1.378972 0.1684

SATMATH/100 0.088795 0.054408 1.631999 0.1032
SATVERB/100 0.055464 0.041474 1.337304 0.1816

Exhibit 6.13 Student Learning (Example 6.8)

Heckman two-step estimate of the effect of additional courses in calculus (MATHHIGH, 0/1)
on grades in intermediate microeconomics, probit model for level of calculus (step 1, Panel 1)
with histogram of estimated bias terms (denoted by SELCORMICRO, i.e. li(zi �Fi)=(1�Fi)
in (b)) and OLS in model with this bias correction term included (step 2, Panel 3).
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The explanatory variables wi in the probit model have the expected signs.
The second-step regression in Panel 3 indicates that the selection effects (the
bias correction term denoted by ‘selcormicro’ in Panel 3) are not significant
(P-value 0.55). Further, a higher level of calculus has an estimated payoff
of 0.99 (the coefficient of the treatment variable denoted by ‘mathhigh’ in

(d) Panel 4: Dependent Variable: MATHHIGH
Method: ML – Binary Probit
Included observations: 490 (MATHHIGH ¼ 0(1) for 167(323) observations)
Convergence achieved after 4 iterations

Variable Coefficient Std. Error z-Statistic Prob.
C �2.534435 0.786598 �3.222019 0.0013

SATMATH/100 0.382440 0.110370 3.465072 0.0005
FEMALE 0.095552 0.133248 0.717101 0.4733

MAJORESH �0.116509 0.154365 �0.754767 0.4504
MAJORNAT 0.325960 0.201677 1.616247 0.1060
ADVMATH1 �0.050933 0.269884 �0.188723 0.8503
ADVMATH2 0.721165 0.276831 2.605076 0.0092
ADVMATH3 0.336540 0.661922 0.508429 0.6112
PHYSICS 0.330657 0.133081 2.484635 0.0130

CHEMISTRY 0.061545 0.284738 0.216147 0.8289
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(e)

Series: SELCORMACRO
Sample 1 490
Observations 490

Mean −1.44E-06
Median 0.254936
Maximum 1.370988
Minimum −2.124022

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0

(f ) Panel 6: Dependent Variable: GRINTERMACRO
Method: Least Squares; Included observations: 490
White Heteroskedasticity-Consistent Standard Errors & Covariance

Variable Coefficient Std. Error t-Statistic Prob.
C �0.086512 0.366548 �0.236019 0.8135

SELCORMACRO 0.034281 0.043518 0.787743 0.4312
MATHHIGH 0.021387 0.070944 0.301467 0.7632

GRDFINTMACRO 0.919443 0.161693 5.686344 0.0000
GRMACRO1 0.206147 0.054263 3.798994 0.0002
GRMICRO1 0.307535 0.050872 6.045269 0.0000
FRESHMAN 0.564736 0.089483 6.311126 0.0000
FEMALE 0.028948 0.063046 0.459166 0.6463

SATMATH/100 0.006629 0.054836 0.120892 0.9038
SATVERB/100 �0.022063 0.047101 �0.468414 0.6397

Exhibit 6.13 (Contd.)

Heckman two-step estimate of the effect of additional courses in calculus (MATHHIGH, 0/1)
on grades in intermediate macroeconomics, probit model for level of calculus (step 1,
Panel 4) with histogram of estimated bias terms (denoted by SELCORMACRO, i.e.
li(zi �Fi)=(1�Fi) in (e)) and OLS in model with this bias correction term included (step 2,
Panel 6).

510 6 Qualitative and Limited Dependent Variables



Panel 3). This means a whole letter grade (the grades in the sample range
from 0 to 4 with sample mean 2.65). That is, additional calculus gives
significantly better results in intermediate microeconomics. The other ex-
planatory variables have the expected signs.

(iv) Results for grades in macroeconomics

The last three panels in Exhibit 6.13 (d–f ) show the results for intermediate
macroeconomics. The results of the probit model are comparable to that for
microeconomics. The second-step regression in Panel 6 indicates that selec-
tion effects (the bias correction term denoted by ‘selcormacro’ in Panel 6) are
again not significant (P-value 0.43). Further, a higher level of calculus has no
payoff (the coefficient of ‘mathhigh’ in Panel 6 is 0.02, with P-value 0.76).
That is, additional calculus does not affect the results in intermediate macro-
economics. The other explanatory variables have the expected signs (the
variables ‘gradehigh’ and ‘gradelow’ are omitted because of missing data
for this group of students). In the paper of Butler, Finegan, and Siegfried the
above questions are studied in more detail, with more explanatory variables
and with a finer distinction of the attained level of calculus (with seven
ordered levels instead of the above two levels). A further analysis of the
data is left as an exercise (see Exercise 6.15).

E Exercises: T: 6.4d; E: 6.15b.

6.3.4 Duration models

Duration data

A duration measures the amount of time that elapses before a certain event
takes place, or the amount of time that has passed since a certain event took
place. Examples are the time it takes for anunemployedperson tofind a job (or
the timeof unemployment if a jobhasnot yet been found), the time that elapses
between two purchases of the same product, and the length of a strike. Exhibit
6.14 (a) shows the duration (measured in days) of 62 finished strikes— that is,
the number of days between the start and the end of strikes (these data will be
further described and analysed in Example 6.9 (p. 516)). Themean duration is
43 days, the median duration 27 days, and the durations are positively
skewed. Exhibit 6.14 (b) shows the histogram of the logarithmic strike dur-
ations, which are more normally distributed.

Censoring aspect of duration data

In many cases duration data are right censored—namely, at the time of
measurement the duration may not yet be finished. This is the case, for
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instance, if the observed person is still unemployed, if the observed customer
has not bought the product again, or if the observed strike is still going on. It
follows from the results in Sections 6.3.1 and 6.3.2 that the application of
OLS to explain durations in terms of explanatory variables is inconsistent,
for two reasons. First, some of the durations may be censored (if the event
had not taken place at the time of measurement). Second, if the sample is
restricted to the durations that have finished (so that the event has taken
place before the time of measurement), then the effect of this truncation
should be taken into account.

The hazard rate

In practice the main interest often lies in the question of how long the
duration will continue, given that it has not finished yet. The hazard rate
measures the chance that the duration will end now, given that it has not
ended before. In the above examples, this can be interpreted as the chance to
find a job, to purchase a product, or the end of a strike. Duration models are
expressed in terms of hazard rates, and the econometric question is to
estimate hazard rates from observed duration data. Let the data consist of
a sample of n durations y1, � � � , yn. It is assumed that these durations consist
of a random sample from a population with density function f and corres-
ponding cumulative distribution function F. The survival function S(t) and
the hazard rate l(t) are defined by

S(t) ¼ P[yi > t] ¼ 1� F(t),

l(t) ¼ limd#0
P[t < yi � t þ d j yi > t]

d
:

Instead of estimating the density function f of the durations, one usually
estimates the hazard rate l, as this is of more practical interest. The survival
function and the density function can then be obtained as follows from the
hazard rate. Since
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Series: LOG(STRIKEDUR)
Sample 1 62
Observations 62

Mean 3.104456
Median 3.295837
Maximum 5.375278
Minimum 0.000000
Std. Dev. 1.294536
Skewness −0.448421
Kurtosis 2.431991

Jarque-Bera 2.911311
Probability 0.2332470
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Series: STRIKEDUR
Sample 1 62
Observations 62

Mean  42.67742
Median  27.00000
Maximum  216.0000
Minimum  1.000000
Std. Dev.  45.84070
Skewness  1.624063
Kurtosis

Jarque-Bera
Probability

 5.402414

 42.16496
 0.000000

(a) (b)

Exhibit 6.14 Duration data

Histogram of strike durations (measured in days (a) ) and of logarithm of strike durations (b).
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l(t) ¼ f (t)

S(t)
¼ � d log (S(t))

dt
,

it follows that

f (t) ¼ l(t)S(t), S(t) ¼ e
�
R t

0
l(s)ds

(6:42)

(see Exercise 6.6).

Models for the hazard rate

Several models for the hazard rate can be formulated according to whether
the hazard is constant or increases or decreases over time. For instance, the
probability of finding a job or purchasing a product may be constant over
time, but it may also increase or decrease as time progresses. The model with
constant hazard rate

l(t) ¼ g (for all t)

corresponds to the density f (t) ¼ ge�gt —that is, the exponential distribu-
tion. This is called the exponential hazard model. Several models with
positive or negative time dependence can be formulated. For example, the
Weibull distribution with density f (t) ¼ agta�1e�gta corresponds to the
(Weibull) hazard model

l(t) ¼ agta�1 (6:43)

(see Exercise 6.6). In this model, the hazard rate increases over time if a > 1,
it decreases if a < 1, and it remains constant if a ¼ 1. It may also be that the
hazard rate first increases and later decreases. This can be modelled, for
example, by the log-normal distribution, where the log-duration log (yi) is
normally distributed with mean m and variance s2. The corresponding
hazard rate is given by

l(t) ¼
f log (t)�m

s

� �
st 1�F log (t)�m

s

� �� � (6:44)

(see Exercise 6.6). In this case the hazard rate first increases and later
decreases, with turning point given by the solution of the equation
tsl(t) ¼ sþ ( log (t)� m)=s (see Exercise 6.6). Exhibit 6.15 shows graphs
of some of the above hazard rates.
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Proportional hazard model

The hazard rates may not be the same for all individuals and may depend on
individual characteristics. Let li(t) be the hazard rate that applies to the ith
duration yi. We assume that the individual hazard rates can be expressed as
li(t) ¼ gil(t), where the factor gi > 0 stands for the individual-specific
effects. If these effects are modelled by gi ¼ ex

0
ib, where xi are observed

variables that affect the hazard rate, then

li(t) ¼ ex
0
ibl(t):

This is called the proportional hazard model. As the baseline hazard rate l(t)
often contains a scale parameter, the constant term should be excluded from
xi. If we take logarithms, we get
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Exhibit 6.15 Hazard rates

Hazard rates, exponential with constant hazard rate l(t) ¼ g ¼ 1 (a), Weibull with g ¼ 1 and
l(t) ¼ �t��1 with� ¼ 1:5 ((b), increasing hazard rate) andwith� ¼ 0:5 ((c)), decreasing hazard
rate), and hazard rate corresponding to the log-normal distribution with � ¼ 2 and � ¼ 1 (d).
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log (li(t)) ¼ x0ibþ log (l(t)),

so that the log-hazard depends linearly on the explanatory variables. This
resembles the linear regression model somewhat, but a crucial difference is
that the log-hazard is not directly observed. The individual characteristics xi
are assumed to be constant over time. The parameters b measure the mar-
ginal relative effects of the explanatory variables on the hazard rate— that is,

b ¼ @ log (li(t))
@xi

¼ 1

li(t)
@li(t)
@xi

:

The survival function of the proportional hazard model is given by

Si(t) ¼ [S(t)]e
x0
i
b

, where S(t) is the survival function of the baseline hazard
rate l(t). For larger values of x0ib the hazard li(t) increases, and as
0 � S(t) � 1 the survival function Si(t) decreases in this case. That is, larger
values of x0ib correspond on average to shorter durations. If the baseline
hazard rate l(t) corresponds to the Weibull distribution in (6.43), then the
expected durations of the proportional hazard model are given by
E[yi] ¼ e�x0ib=am0, where m0 is the expected duration of the baseline. hazard
with xi ¼ 0 (see Exercise 6.6).

Estimation of the hazard rate model by maximum likelihood

The parameters of a (proportional) hazard model can be estimated by maximum
likelihood. To derive the likelihood function, it should be realized that some of the
observed durations y1, � � � , yn may be finished (the person found a job, or made a
purchase, or the strike ended, indicated by zi ¼ 1), but others may be censored
(the person is still unemployed, or has still not made a purchase, or the strike still
continues, indicated by zi ¼ 0), so that the finished duration will be larger than yi.
The probability that the ith duration is still unfinished is given by
P[zi ¼ 0] ¼ Si(yi), and the density for finished durations is given by pi(yi) ¼
li(yi)Si(yi). Assuming that the n observations are mutually independent, the log-
likelihood is therefore given by

log (L) ¼
X

{i; zi¼1}

log (pi(yi))þ
X

{i; zi¼0}

log (Si(yi))

¼
X

{i; zi¼1}

log (li(yi))þ
Xn
i¼1

log (Si(yi))

¼
X

{i;zi¼1}

x0ibþ log (l(yi))
� ��Xn

i¼1

ex
0
ib
Z yi

0

l(t)dt
� �

: (6:45)

Here we used the fact that Si(t) ¼ [S(t)]e
x0
i
b

, so that log (Si(yi)) ¼ ex
0
ib log (S(yi)) ¼

� ex
0
ib
R yi
0 l(t)dt. The log-likelihood (6.45) can be maximized to obtain ML esti-

mates of the parameters b and of the parameters of the baseline hazard rate l(t). For
instance, for a constant baseline hazard rate l(t) ¼ g, the log-likelihood becomes

T
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log (L(b, g)) ¼
X

{i;zi¼1}

x0ibþ log (g)
� ��Xn

i¼1

ex
0
ibgyi

� �
:

The estimated model can be visualized by making plots of the estimated hazard
rate functions li(t) against the time variable t, for different choices of the values of
the explanatory variables xi.

Diagnostic checks on hazard rate models

To describe a test on the correct specification of the model, let m � n be the
number of finished duration times in the sample. Suppose that the data are
ordered so that the firstm observations are finished and the remaining n�m
observations are censored. Then the generalized residuals are defined in
terms of the survival function by

ei ¼ � log (Si(yi)) ¼ ex
0
ib
Z yi

0

l(t)dt, i ¼ 1, � � � ,m,

where the ML estimates are substituted for b and for the parameters of the
baseline hazard rate l. If the model is correctly specified, then the random
variable Si ¼ Si(yi) has a uniform distribution on the unit interval and
ei follows the unit exponential distribution with density e�t (see Exercise
6.17). Note that this result does not depend on the functional form of the
hazard rate.

If the model is correctly specified, then the sample cumulative distribution
function of the outcomes Si(yi), i ¼ 1, � � � ,m should be close to the 458 line.
Alternatively, the sample distribution of the generalized residuals may be
compared with the unit exponential distribution. The (uncentred) sample
moments

Pm
i¼1 e

k
i =m can be compared with the corresponding moments of

the unit exponential distribution that has kth population moment
k! ¼ k � (k� 1) � � � 2 � 1 (see Exercise 6.17). If the sample contains no
censored observations— that is, if m ¼ n—then ML gives

Pn
i¼1 ei=n ¼ 1,

so that the comparison should be based on the second and higher order
moments (see Exercise 6.17).

Example 6.9: Duration of Strikes

We consider data on the duration of contract strikes in US manufacturing.
The data are taken from J. Kennan, ‘The Duration of Contract Strikes in
US Manufacturing’, Journal of Econometrics, 28 (1985), 5–28. We will
describe (i) the data, (ii) results of the log-normal distribution for the
strike durations, (iii) the results of different hazard models, (iv) a diagnostic
check in terms of the generalized residuals, and (v) the effect of censoring.

E

XM609DUS
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(i) The data

The data set consists of n ¼ 62 durations yi (measured in days) of finished
strikes. A histogram of these durations is given in Exhibit 6.14 (a). As possible
explanatory variable, an indicator xi of general economic activity during the
strike is used. Exhibit 6.16 (a) shows a histogram of this production indicator
and (b) a scatter diagramof log-durations against this indicator. This indicates
that strikes may last longer if economic conditions are worse.

(ii) Log-normal distribution for the durations

The histogram of the log-durations log (yi) in Exhibit 6.4 (b) shows that the
null hypothesis of normality is not rejected, as the Jarque–Bera test for
normality has a P-value of P ¼ 0:23. This motivates the use of the log-normal
density for the strike durations. The sample mean of the log-durations is
m̂m ¼ 3:10 and the sample standard deviation is ŝs ¼ 1:29 (see also Panel 3 in
Exhibit 6.16). The expected duration time of strikes is then estimated as
E[yi] ¼ E[elog (yi)] ¼ em̂mþ

1
2ŝs

2 ¼ 52 days (using the result in Exercise 5.2 (e) for
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(c) Panel 3: Least Squares; Dependent Variable: LOG(STRIKEDUR)
Variable Coefficient Std. Error t-Statistic Prob.

C 3.104456 0.164406 18.88284 0.0000
S.E. of regression 1.294536

(d) Panel 4: Least Squares; Dependent Variable: LOG(STRIKEDUR)
Variable Coefficient Std. Error t-Statistic Prob.

C 3.205657 0.160988 19.91236 0.0000
PROD �9.180774 3.404293 �2.696822 0.0091

S.E. of regression 1.232705

Exhibit 6.16 Duration of Strikes (Example 6.9)

Histogram of a production index (a), scatter diagram of strike durations (in logarithms)
against the production index (b), regression of strike durations (in logarithms) on a constant
(Panel 3) and on a constant and the production index (Panel 4).
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Exhibit 6.16 (Contd.)

Estimated hazard rate models without explanatory variable (exponential model in Panel 5
and Weibull model in Panel 7) and proportional hazard models with the production index
as explanatory variable (exponential model in Panel 6 and Weibull model in Panel 8).
(i) shows the empirical survival function of the durations and the survival function of the
estimated model of Panel 5, (j) shows the survival function of the estimated proportional
model of Panel 6 (for given value PROD ¼ 0 of the index), and (k) shows the scatter
diagram of the quantiles of the generalized residuals of the model of Panel 6 (on the
horizontal axis) against the theoretical quantiles (of the unit exponential distribution,
on the vertical axis).

(e) Panel 5: ML: EXPONENTIAL without explanatory variable
Parameter Coefficient Std. Error z-Statistic Prob.
GAMMA 0.023432 0.002793 8.389152 0.0000

Log likelihood �294.7275 Akaike info criterion 9.539598

(f) Panel 6: ML: EXPONENTIAL with production index as explanatory var.
Parameter Coefficient Std. Error z-Statistic Prob.
GAMMA 0.022902 0.003185 7.189665 0.0000

BETA (coef PROD) 9.333815 2.977868 3.134395 0.0017
Log likelihood �289.7647 Akaike info criterion 9.411765

(g) Panel 7: ML: WEIBULL without explanatory variable
Parameter Coefficient Std. Error z-Statistic Prob.
ALPHA 0.924688 0.111835 8.268300 0.0000
GAMMA 0.032183 0.015191 2.118483 0.0341

Log likelihood �294.4027 Akaike info criterion 9.561377

(h) Panel 8: ML: WEIBULL with production index as explanatory var.
Parameter Coefficient Std. Error z-Statistic Prob.
ALPHA 1.007855 0.122542 8.224586 0.0000
GAMMA 0.022160 0.011101 1.996139 0.0459

BETA (coef PROD) 9.405522 3.071885 3.061808 0.0022
Log likelihood �289.7617 Akaike info criterion 9.443926
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(l) Panel 12: TOBIT (censored normal); Dep. Var.: LOG(STRIKECENS80)
Right censoring at value 80

Variable Coefficient Std. Error z-Statistic Prob.
C 3.026027 0.150206 20.14582 0.0000

Error Distribution
SCALE: SIGMA 1.182725 0.106212 11.13553 0.0000

S.E. of regression 1.202275 Akaike info criterion 3.238035

(m) Panel 13: TOBIT (censored normal); Dep. Var.: LOG(STRIKECENS80)
Right censoring at value 80

Variable Coefficient Std. Error z-Statistic Prob.
C 3.113678 0.146893 21.19691 0.0000

PROD �7.951562 3.106232 �2.559874 0.0105
Error Distribution
SCALE: SIGMA 1.124777 0.101008 11.13556 0.0000

S.E. of regression 1.153019 Akaike info criterion 3.169821

(n) Panel 14: ML: EXPONENTIAL hazard (right censoring at value 80)
Parameter Coefficient Std. Error z-Statistic Prob.
GAMMA 0.023596 0.003000 7.865414 0.0000

Log likelihood �237.3338 Akaike info criterion 7.688188

(o) Panel 15: ML: EXPONENTIAL PROP. hazard (right censoring at value 80)
Parameter Coefficient Std. Error z-Statistic Prob.
GAMMA 0.021726 0.003073 7.070767 0.0000

BETA (coef PROD) 10.18983 2.979147 3.420386 0.0006
Log likelihood �232.5119 Akaike info criterion 7.564900

(p) Panel 16: ML: WEIBULL hazard (right censoring at value 80)
Parameter Coefficient Std. Error z-Statistic Prob.
ALPHA 0.890842 0.123693 7.202063 0.0000
GAMMA 0.035919 0.018397 1.952408 0.0509

Log likelihood �236.8438 Akaike info criterion 7.704639

(q) Panel 17: ML: WEIBULL PROP. hazard (right censoring at value 80)
Parameter Coefficient Std. Error z-Statistic Prob.
ALPHA 0.950645 0.127085 7.480377 0.0000
GAMMA 0.026287 0.013733 1.914126 0.0556

BETA (coef PROD) 9.915412 3.134831 3.162981 0.0016
Log likelihood �232.4195 Akaike info criterion 7.594179

Exhibit 6.16 (Contd.)

Hazard models (without and with explanatory variable) for strike duration data censored
at a maximum of eighty days, lognormal hazard models (Panels 12 and 13, corresponding
to tobit), exponential hazard models (Panels 14 and 15), and Weibull hazard models
(Panels 16 and 17).
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the mean of a log-normal distribution). The result of regressing log (yi) on a
constant and the production indicator is given in Panel 4 of Exhibit 6.16. The
production indicator is significant (P ¼ 0:009) and has the expected negative
sign (�9.18). That is, the average duration of strikes is shorter in periods of
high production than in periods of low production, possibly because strikes
are relatively more costly in periods of high economic activity.

(iii) Results of different hazard models

Next we estimate exponential andWeibull hazard models by maximizing the
corresponding log-likelihood (6.45). As the data are not censored, the term in
(6.45)with the summation over {zi ¼ 1} runs over all n observations. It is clear
from the outcomes in Panels 5–8 of Exhibit 6.16 that the hypothesis of a
constant hazard rate (a ¼ 1 in theWeibull models) is not rejected. The exhibit
shows the survival functions S(t) ¼ e�ĝgt of the exponential hazard model (in
(i), corresponding with Panel 5, that is, without xi) and of the proportional
exponential hazard model (in (j), corresponding with Panel 6, that is, with
explanatory variable xi; the plot is for xi ¼ 0). Exhibit 6.16 (i) and (j)
also show the empirical survival function— that is, Semp(t) ¼
(number of yi > t)=n. The survival functions of the estimated models are
quite close to the empirical survival function.
To obtain somewhatmore insight into the estimated proportional exponen-

tial hazardmodelwe compute the expected duration of strikes for three values
of the economic indicator— that is, when economic activity is minimal
(xi ¼ �0:10), neutral (xi ¼ 0), and maximal (xi ¼ 0:07). The expected dur-
ations are given byE[yi] ¼ e�bxim0 ¼ e�bxi=g. This gives expected durations of
111, 44, and 23 days respectively, so that the differences are quite consider-
able. Further, the probability that a strike will end today (that is, the hazard
rate) is ĝgeb̂bxi ¼ 0:023e9:33xi —that is, around 1 per cent if economic activity is
minimal, 2.3 per cent if economic activity is neutral, and 4.5 per cent if
economic activity is maximal.

(iv) Diagnostic check in terms of generalized residuals

Exhibit 6.16 (k) shows the generalized residuals of the proportional exponen-
tial hazardmodel— that is,with the production index as explanatory variable
so that ei ¼ 0:023yie

9:33xi . In Exhibit 6.16 (k), the quantiles of these residuals
ei, i ¼ 1, � � � , 62 are compared with the (62) quantiles of the unit exponential
distribution. In case of a perfect fit these quantiles should be the same, and the
diagram shows that the deviations are not large as the plot of the twoquantiles
lies close to the 458 line. This provides support for the proportional exponen-
tial hazardmodel. The first three samplemoments of the generalized residuals
are respectively 1, 1.91, and 4.88. This is quite close to the corresponding
population moments of the unit exponential distribution, which are respect-
ively 1, 2, and 6.
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(v) The effect of censoring

As discussed before, in many applications part of the durations are censored.
To illustrate the effect of censoring, we now suppose that all strikes with a
duration of eighty days or more are censored at the value of 80. In the data
set there are twelve such durations. For the log-normal model we estimate
tobit models (without and with explanatory variable) with known censoring
from above at eighty days. The outcomes do not differ much from those
obtained without censoring. We also estimate the exponential and Weibull
hazard models (both without and with the economic indicator) on the
censored data set. In this case the first term in the log-likelihood (6.45)
runs over the fifty uncensored durations (with yi < 80) and the second
term runs over all sixty-two durations (where the largest twelve durations
all have the value yi ¼ 80). The results in Panels 12–17 of Exhibit 6.16 show
that censoring does not lead to significant biases in the involved hazards. As
an illustration we compare the proportional exponential hazard models
li(t) ¼ gebxi . For the original (uncensored) data, the estimates in Panel 6 are
ĝg ¼ 0:023 (0.003) and b̂b ¼ 9:334 (2.978), with standard errors in paren-
theses. For the censored data, the tobit estimates in Panel 15 are ĝg ¼ 0:022
(0.003) and b̂b ¼ 10:190 (2.979). Although the censored data obviously
contain less information than the original data, this has hardly any
effect on the estimates and their standard errors in this example. The differ-
ences are so small because the exponential hazard model provides a
good description both for shorter (yi < 80) and for longer (yi > 80) strike
durations.
Some further aspects of these data are left as an exercise (see Exercise 6.17).

E Exercises: T: 6.6; E: 6.17.

6.3.5 Summary

We considered different situations where the dependent variable yi in the
regression equation yi ¼ x0ibþ ei is limited in some sense. The model
should be based on the relevant type of limited dependent variable. OLS
is not consistent for this type of data. The models can be estimated
consistently by maximum likelihood. In some cases also a two-step
method is possible, where in the first step the bias term of OLS is estimated
and in the second step yi is regressed on xi and the estimated bias term. We
paid attention to the following types of data.

. In truncated samples the observed data come from a selective part of the
population. This can be modelled in terms of truncated distributions for
the error term. The bias term of OLS can be expressed in terms of the
inverse Mills ratio.
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. Censored data arise if the dependent variable cannot take values below
(or above) a certain threshold value. This can be modelled by means of
the tobit (type 1) model in terms of distributions that are mixed continu-
ous-discrete. The continuous part applies to the non-censored out-
comes, and the discrete part to the censored outcomes. The tobit
model can be estimated by ML or by a Heckman two-step method.

. Sometimes the selection process that determines which data are ob-
served can be modelled by means of a probit model with additional
explanatory variables. This is called the tobit type 2 model, which can
be estimated by ML or by a two-step Heckman method. This model is
also useful to estimate treatment effects in case the assignment of
treatments is not blind but correlated with the dependent variable yi.

. A duration variable measures the time that elapses before a certain event
takes place. Such a variable can take on only non-negative values. The
observed values are censored if the relevant event has not yet taken place
at the time of observation. Durations are modelled in terms of hazard
rates that may depend on relevant explanatory variables.

. Some care is needed to interpret the estimated parameters in models for
truncated or censored data. It is more informative to determine (aver-
age) marginal effects. The marginal effects differ from (and are actually
smaller than) the estimated parameters. This is caused by the fact that
truncation and censoring lead to non-linearities in the observed rela-
tions between yi and xi. The difference E[yi]� x0ib is called the bias
correction term, and we derived explicit expressions for this term.
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Summary, further reading,
and keywords

SUMMARY

This chapter discussed econometric models for dependent variables that are
restricted in their domain of possible outcomes. Data of this type become
more and more widespread in empirical economic work on choices of
individual economic agents. In the year 2000, the Nobel prize in economics
was awarded to McFadden and Heckman, two pioneers in the econometric
modelling of this type of economic data. For binary data we discussed logit
and probit models, with extensions for (unordered or ordered) multinomial
data. Truncated and censored data can be described by truncated and mixed
continuous-discrete probability distributions, in particular tobit models. We
also described models for duration data and methods to estimate the hazard
rate. All models discussed in this chapter can be estimated by maximum
likelihood, and in some cases regression methods can be used by incorpor-
ating bias correction terms. As the models are non-linear, the marginal effects
of the explanatory variables on the dependent variable are in general not
constant over the population. We derived expressions for these marginal
effects. Further we paid attention to the intuitive interpretation of the models
and to methods for testing the empirical adequacy in practical applications.

FURTHER READING

Some of the textbooks mentioned in Chapter 3, Further Reading (p. 178–9),
contain chapters on the topics discussed here, in particular the three volumes of
the Handbook of Econometrics. Further there are many textbooks that deal
specifically with qualitative and limited dependent variables. Introductory text-
books are Cramer (2003) and Franses and Paap (2001), more advanced texts are
Maddala (1983), Amemiya (1985), and Ben-Akiva and Lerman (1985). Duration
models are discussed in Kiefer (1988) and Lancaster (1990).
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Exercises

THEORY QUESTIONS

6.1� (E Section 6.1.4)
Consider the binary logit model with heteroskedas-
tic error terms where si ¼ e�z0ig (here we use this
expression instead of si ¼ ez

0
ig of the text as this

simplifies some of the derivations, both models are
of course equivalent by reversing the signs of all
entries of the parameter vector g). By y ¼ (b, g) we
denote the vector of unknown parameters of the
model. We derive the LM-test for the null hypothesis
of homoskedasticity (g ¼ 0).

a. Compute the score vector s(y) consisting of the
subvectors @ log (L)=@b and @ log (L)=@g. Evalu-
ate s(y) at the ML estimators under the null hy-
pothesis that g ¼ 0.

b. Compute the Hessian matrix H(y) consisting of
the second order derivatives of log (L) with re-
spect to the parameters (b, g). Next compute the
information matrix In(y) ¼ �E[H(y)], evaluated
at the ML estimators under the null hypothesis
that g ¼ 0.

c. Show that the LM-test LM ¼ s0I�1
n s amounts

in large enough samples to LM ¼ nR2 of the
auxiliary regression (6.14), in the sense that
plim s0I�1

n s� nR2
� � ¼ 0.

6.2 (E Sections 6.1.2, 6.1.3)
In direct mailings the fraction of respondents is
often relatively small. To limit the database, one
sometimes keeps only a fraction f1 of the respond-
ents (with yi ¼ 1) and a fraction f1f2 of the non-
respondents (with yi ¼ 0) in the sample, where
0 � f1 � 1 and 0 � f2 � 1 are known. Let zi be the
selection variable with zi ¼ 1 for selected observa-
tions and zi ¼ 0 for deleted ones. The selection is
supposed to be random.

a. Show that the sample probabilities psi ¼ P yi ¼½
1jzi ¼ 1� are related to the population probabil-
ities pi ¼ P yi ¼ 1½ � by psi ¼ pi= pi þ f2ð 1� pið ÞÞ.

b. Suppose that the population probabilities
pi satisfy the logit model (with parameters

c. b1, b2, � � � , bk, where b1 is the constant term).
Show that the sample probabilities psi then
also satisfy the logit model, with parameters
b1 � log (f2), b2, � � � , bk.

c. Show that the individual rankings in the logit
model are not affected by selecting a subsam-
ple— that is, if pi > pj then also psi > psj .

d. Show that ML in selected subsamples remains
consistent, but that it is not efficient.

e. Suppose that there are relatively few respond-
ents (so that pi is close to zero). In the sample of
size n, let there be m respondents who are all
kept in the subsample, whereas from the n�m
non-respondents only m are chosen randomly.
So the sample size is reduced by a factor 2m=n.
Argue why the standard errors of the logit esti-
mators will in general increase by much less
than the factor

ffiffiffiffiffiffiffiffiffiffiffiffi
n=2m

p
, by using the expression

(6.11) for the information matrix.

6.3 (E Section 6.2.2)
a�. Prove the expressions for the probabilities pij in

(6.20) for the multinomial and the conditional
logit model when the error terms eij follow the
extreme value distribution with cumulative dis-
tribution e�e�t

.

b. Prove the expressions given in Section 6.2.2 for
the marginal effects @PMNL[yi ¼ j]=@xi in the
multinomial logit model and @PCL[yi ¼ j]=@xij
and @PCL[yi ¼ j]=@xih in the conditional logit
model.

c. Prove that the log-likelihood for themultinomial
logit model is given by (6.21). Prove also the
expressions for the gradient and Hessian matrix
given below (6.21).

d. Prove that the log-likelihood for the conditional
logit model is given by (6.22). Prove also the
expressions for the gradient and Hessian matrix
given below (6.22).
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6.4 (E Sections 6.3.1–6.3.3)
a. Illustrate the bias term sli in (6.28) by simulat-

ing a truncated sample from the model
yi ¼ 1þ ei, where xi ¼ 1 is constant and the ei
are random drawings from N(0, 1). The sample
is truncated by considering only the observa-
tions with yi > 0 and deleting all observations
with yi � 0. Compare the sample mean of the
remaining observations with the theoretical
value of the inverse Mills ratio li ¼ l in this
case.

b�. Prove the expression (6.30). Prove that the cor-
rection factor in front of b lies between zero and
one.

c. Compute the two terms in (6.35) for the case of
the standard normal distribution. Prove that,
when added, this gives Fib.

d. Illustrate, by means of a suitable simulation
experiment, that OLS is an inconsistent estima-
tor of treatment effects if the treatments are not
applied randomly. Use this simulation also to
check the result mentioned in Section 6.3.3 that
E[yijzi] ¼ x0ibþ azi þ rs li(zi�Fi)

1�Fi
(which leads to

(6.41)), by computing the sample means of yi
over the two subsamples (with zi ¼ 1 and with
zi ¼ 0) and by averaging the terms x0ibþ azi þ
rs li(zi�Fi)

1�Fi
over these two subsamples.

6.5 (E Section 6.3.2)
a. Suppose that the latent variable y�i satisfies

y�i ¼ x0ibþ sei with all the standard assump-
tions (in particular, with ei � NID(0, 1) ), and
that we observe yi ¼ y�i if c0 < y�i < c1 but that
yi ¼ c0 for y

�
i � c0 and yi ¼ c1 for y

�
i � c1, with

c0 and c1 given constants. Derive the expression
for the log-likelihood of this model.

b. Propose a consistent method to estimate the
model described in a when the threshold values
c0 and c1 are unknown.

c�. In some applications (for instance, in income
and budget studies of households) the data are
censored in the sense that a group of large values
is summarized by their sample mean. Suppose
that the data yi satisfy the following model,
where c0 is a known threshold value and the
error terms ei are NID(0,1). For y�i ¼ x0ibþ
sei � c0 we observe yi ¼ y�i , but for y�i ¼
x0ibþ sei > c0 we observe only the sample
mean of the values y�i and the sample mean of
the corresponding values of the explanatory
variables xi. Also the number of these large
observations is given. Derive the expression for
the log-likelihood of this model. What condition
is needed on c0 to be able to estimate the par-
ameters b and s by maximum likelihood?

d. Suppose that the threshold value c0 in the model
of c is unknown. Propose a consistent method to
estimate the parameters (b, s, c0) of the resulting
model.

6.6 (E Section 6.3.4)
a. Show the expressions in (6.42) concerning the

relations between the hazard rate, the survival
function, and the density function of duration
data.

b. Show the expression (6.43) for the hazard rate
corresponding to the Weibull density.

c. Show the expression (6.44) for the hazard rate
corresponding to the log-normal density. Derive
the equation given below (6.44) in Section 6.3.4
for the time instant where this hazard rate
reaches its maximum.

d. Prove that the expected duration in the propor-
tional Weibull hazard rate model is equal to
E[yi] ¼ e�x0ib=am0, where m0 is the expected dur-
ation in the baseline hazard model with xi ¼ 0.

EMPIRICAL AND SIMULATION QUESTIONS

6.7 (E Sections 6.1.2, 6.1.3)
a. Simulate a sample of n ¼ 200 data where xi ¼ i

and y�i ¼ �10þ 0:1xi þ ei with ei independent
drawings from N(0, 1), i ¼ 1, � � � , 200. Gener-
ate observed choices yi by yi ¼ 0 if y�i < 0 and
yi ¼ 1 if y�i � 0.

b. Compute the theoretical odds ratio
P[y ¼ 1]=P[y ¼ 0] for the following five values
of x: 60, 80, 100, 120, and 140. Compare this
with the odds ratios in the sample for the obser-
vations with x respectively in the intervals
55 � x � 65, 75 � x � 85, and so on, to
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135 � x � 145. Clarify these results with a scat-
ter diagram of y�i against x.

c. Perform a regression of yi on the constant and the
variable xi, with result ŷyi ¼ aþ bxi. Compute the
estimated odds ratios ŷyi=(1� ŷyi) for the five values
of x in b, and compare the outcomes with those
in b.

d. Estimate a probit model for the data xi, yið Þ,
i ¼ 1, � � � , 200. Compute again the estimated
odds ratios for the five values of x in b and
compare the outcomes with those in b and c.

e. Estimate a logit model for the data yi, xið Þ,
i ¼ 1, � � � , 200. Compare the estimated param-
eters of this model with those obtained for the
probit model in d.

f. Using the logit model in e, compute the estimated
odds ratios for the five values of x in b. Compare
the outcomes with those of the probit model in d.

6.8 (E Sections 6.1.3, 6.1.4)
Consider the following data generating process. The
variable xi consists of independent drawings from
N(100, 100), and y�i ¼ �10þ 0:1xi þ ei with ei in-
dependent drawings from N(0,1) that are independ-
ent of xi. The choices yi are generated by yi ¼ 0 if
y�i < 0 and yi ¼ 1 if y�i � 0. The observed data con-
sist of the values of xi, yið Þ for i ¼ 1, � � � ,n.
a. Generate samples with n ¼ 100, n ¼ 1000, and

n ¼ 10,000 from this process. For the resulting
three data sets, estimate the parameters of the
probit model. Compare the estimates with
the theoretical values of the data generating
process.

b. Estimate logit models for the three data sets.
Compare the estimated logit parameters with
the probit estimates. Explain why the logit esti-
mators are not consistent.

c. Perform heteroskedasticity tests on the standard-
ized residuals of the 6 models estimated in a
and b. Use the following specification of the
standard deviation: si ¼ egxi , with null hypoth-
esis H0: g ¼ 0.

d. Now generate ei by independent drawings from
the distribution N 0, s2i

� �
, where si ¼ exi=100, and

generate corresponding new values of y�i and yi.
Estimate logit and probit models for a sample of
n ¼ 10,000 observations from this process.

e. Comment on the outcomes in d. Why are the
probit estimators no longer consistent?

f. How can the parameters be estimated consist-
ently in this case, if it is given that si ¼ exi=100?
Estimate the parameters by adjusting for this het-
eroskedasticity and compare the resulting esti-
mates with the parameter values of the data
generating process.

6.9 (E Sections 6.3.1, 6.3.2)
Consider the following data generating process. The
variable xi consists of independent drawings from
N(100, 100), and y�i ¼ �10þ 0:1xi þ ei, with ei in-
dependent drawings fromN(0, 1) that are independ-
ent of xi. In Exercise 6.8 we considered binary data
related to y�i , but now we will consider truncated
and censored data, where yi ¼ 0 for y�i � 0 and
yi ¼ y�i for y

�
i > 0.

a. Suppose that the sample is truncated, so that the
data consist only of the observations (xi, yi) with
yi > 0. Generate a sample of n ¼ 100 truncated
observations. Estimate the parameters a (the con-
stant), b (the slope), and s (the variance of ei) by
regressing yi on a constant and xi. Estimate the
parameters also by ML by maximizing (6.29).

b. Relate the bias of the OLS estimator of the slope
parameter (b ¼ 0:1) in a to the result (6.30) on
marginal effects for truncated data.

c. Now suppose that the sample is censored, so that
the data consist of observations xi, yið Þ including
also the cases where yi ¼ 0. Generate a sample of
n ¼ 100 censored observations. Estimate the par-
ameters a, b, and s by regressing yi on a constant
and xi. Estimate the parameters also byML using
the standard normal distribution— that is, by
maximizing (6.36).

d. Relate the bias of the OLS estimator of the
slope parameter (b ¼ 0:1) in c to the result
(6.35) that implies (see p. 494) that for censored
data @E[yi]=@xi ¼ F x0ib=s

� �
b.

e. Compare the results of the ML estimates for the
truncated sample in a and for the censored model
in c. Which method produced the smallest (finite
sample) bias, and which the smallest
(large sample) standard errors? Could this be
expected or not?

6.10 (E Section 6.1.4)
We consider a (simulated) data set of 100
employees in the ICT sector who re-
sponded to a questionnaire on telework-
ing. For each employee we know the
answer to the question whether she or he wants to

XR610SIM
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make use of teleworking (yi ¼ 1 if yes, yi ¼ 0 if no),
the gender (x2i ¼ 1 for females and x2i ¼ 0 for
males), and the travel distance between home and
work (x3i, in miles).

a. Estimate the logit model P yi ¼1½ � ¼L b1 þð
b2x2iÞ. Does gender have a significant effect?
What is the hit rate of this model?

b. Estimate the logit model P[yi ¼ 1] ¼ L(b1þ
b2x2i þ b3x3i)— that is, including travel dis-
tance as additional explanatory variable. Does
gender have a significant effect? What is the hit
rate of this model?

c. Explain the possible cause of the differences in
the significance of the variable ‘gender’ in a and b.

d. Perform a Likelihood Ratio test on the signifi-
cance of the variable ‘travel distance’.

e. Make two plots (in a single diagram) of P[y ¼ 1]
as a function of the travel distance, one for
females and a second one for males. Comment
on the outcomes.

6.11 (E Section 6.1.3)
Consider the direct marketing data of
Example 6.1.

a. Let p̂pi ¼ L x0ib
� �

where b are the logit
estimates. Make a plot of p̂pi against the age of
active males (that is, with x2i ¼ 1 and x3i ¼ 1)
and also against the age of inactive males (with
x2i ¼ 1 and x3i ¼ 0). Do there exist segments
in the sample that show distinct response behav-
iour?

b. Answer the same questions as in a for the probit
model.

c. Plot the probit log-odds for active and inactive
males against their age, and compare this with
the corresponding curves estimated from the logit
model.

d. The data set in Example 6.1 contains 470 obser-
vations with yi ¼ 1 and 455 with yi ¼ 0. This
data set is drawn randomly from a much larger
set that contains 4988 observations with yi ¼ 1
and 100,321 observations with yi ¼ 0. What es-
timated values of b would you expect if a logit
model were to be estimated for the set of all
105,309 observations (use the result in Exercise
6.2 b)?

6.12 (E Section 6.1.5)
Consider again the direct marketing data
of Example 6.1.

a. Divide the 925 individuals into ten age groups,
with the youngest group having ages of 30 years
or less, the oldest with ages 71 or more, and the
other eight groups with ages in the five-year inter-
vals ranging from 31–35 to 66–70. Determine
the group sizes and the group means of the ex-
planatory variables (gender, activity, age) and the
explained variable (the fraction of respondents in
each group).

b. Estimate a logit model based on the G ¼ 10
observations of the grouped data in a. The ex-
planatory variables in this model are a constant,
the three group mean variables for gender, activ-
ity, and age, and finally the square of the mean
age per group.

c. Perform an LR-test on the five restrictions of the
logit model— that is, pj ¼ L(x0jb), j ¼ 1, � � � , 10,
where xj contains the values of the five explana-
tory variables for group j and b contains the five
model parameters.

d. Estimate the parameters of the logit model also
by applying FWLS to the grouped data.

e. Compare the outcomes in b and d with those
of the logit model for the individual data in
Example 6.2.

6.13 (E Sections 6.1.3, 6.1.4, 6.2.2,
6.2.3)

Consider the salary data (of male employ-
ees) of Examples 6.4 and 6.5. Instead of
considering three alternatives, let the job categories
1 (administration) and 2 (custodial) be joined in one
alternative, and define the binary variable yi by
yi ¼ 0 if the ith individual has an administrative or
custodial job and yi ¼ 1 for a management job.

a. Estimate a logit model for the binary variable y,
including as explanatory variables a constant and
the variables education, minority and previous
experience.

b. Distinguish between minority and non-minority
males, and compute the marginal effects (aver-
aged over the relevant subsamples) of education
on the probability to get a job in management.

c. Estimate the logit model of awithout the variable
‘previous experience’. Test for the significance of
the variable ‘previous experience’, both by the
t-test and by the LR-test. Also test for the possible
presence of heteroskedasticity with the model
si ¼ egzi where zi is the variable ‘education’.
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d. Compute the R2 and the hit rate (with corres-
ponding z-value) for the estimated logit model
of c (that is, without the variable ‘previous
experience’).

e. Compare this binary logit model with the multi-
nomial logit model in Example 6.4. Which model
do you prefer to predict the probability that a
male employee will have a management position?

f. The probability of a minority male having a
management job depends on his education. Com-
pute this probability for two levels of education,
12 years and 16 years, for the following three
models: the logit model of c (without the variable
‘previous experience’) and the multinomial and
ordered logit models in Examples 6.4 and 6.5.
Comment on the outcomes.

6.14� (E Section 6.2.2)
In Example 6.4 we considered a multi-
nomial logit model for the attained job
category of male employees. There are
three job categories, yi ¼ 1 for administrative jobs,
yi ¼ 2 for custodial jobs, and yi ¼ 3 for manage-
ment jobs. Female employees were excluded from
the analysis because there are no female employees
with a custodial job. We now consider two possibil-
ities to investigate the attained job categories for
males and females jointly. The first one is to formu-
late a multinomial model for males and females,
with gender as additional explanatory variable, the
second one is to combine the multinomial model for
males with a binomial model for females (excluding
the custodial jobs for females).

a. Formulate the multinomial logit model (for the
data set of all 474 employees, males and females)
for the attained job category, in terms of the
explanatory variables gender (with value 0 for
males and 1 for females), education, and minor-
ity. Take administration (the first job category) as
reference category.

b. The probability pi2 for a custodial job can be
made arbitrarily small for females by giving the
corresponding gender coefficient in b2 very large
negative values (where b2 is the 4� 1 vector of
parameters for custodial jobs). Explain that the
ML estimate of this coefficient in the multi-
nomial model is equal to �1. Describe a prac-
tical method for estimating the remaining seven
parameters of this model.

c. As an alternative, write down the log-likelihood
of the combined multinomial logit model (for
males) and binary logit model (for females, with
job categories 1 and 3 alone). Take the first job
category as reference category, and assume that
the parameter values in management jobs for
education and minority are the same for males
and females (so that the model contains in total
seven parameters, two for ‘education’, two for
‘minority’, two constants for males, and one con-
stant for females).

d. Estimate the parameters of the models in b and c
and compare the outcomes.

e. Perform diagnostic tests on the two models of d
and compare this with the results for males alone
in Example 6.4. In particular, compare the signs
and significance of coefficients and the hit rates of
the three models.

6.15 (E Sections 6.2.2, 6.2.3, 6.3.3)
In this exercise we consider some further
aspects of the data set on students of
the Vanderbilt University discussed in
Example 6.8. We consider the data of 609 students
following an intermediate course in micro-
economics.

a. In Example 6.8 the attained level of mathematics
was taken as a binary variable (‘mathhigh’). The
data in the file are more refined because seven
ordered levels of calculus courses are distin-
guished (see the variable ‘levelmath’ in the data
file). Estimate an ordered logit model for the
attained level of mathematics, with the variable
‘levelmath’ as dependent variable and with the
same explanatory variables wi as in Example 6.8
(see Exhibit 6.12 b for the list of variables).

b. Compare the estimates of the ordered logit
model in a with the binary probit model in
Example 6.8 (see the results in Exhibit 6.13,
Panel 1).

c. In Example 6.8 three expected majors were dis-
tinguished—namely in natural science, in the
areas of economics, social science, and humanity,
or in another field or an unknown major (the
reference category). The data are more refined,
as the file contains five majors by distinguishing
between majors in economics, social science,
and humanity. Estimate a multinomial logit
model for the expected major in terms of the
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following explanatory variables: the SAT scores
mathematics (SATM) and verbal (SATV), the
Freshman grade point average (FGPA), and
gender (FEM).

6.16 (E Section 6.3.2)
Consider the direct marketing data. In
Example 6.7 a tobit model is estimated
for the amount of money invested,
whereas in Example 6.2 a binary probit model is
estimated for the decision to invest.

a. Compare the estimated parameter vector (1=s)b
of the censored regression model with the esti-
mated parameter vector in the binary probit
model (that we denote by g). Do you find the
restrictions g ¼ (1=s)b of the tobit model accept-
able for these data?

b. Discuss possible methods to obtain a better
model for the joint decision to invest and how
much to invest.

6.17 (E Section 6.3.4)
In this exercise we consider some theor-
etical results for duration models and
their application on the strike data of
Example 6.9.

a. Show that for finished duration data the survival
values Si(yi) as defined in Section 6.3.4 are uni-
formly distributed.

b. Show that the corresponding generalized re-
siduals ei ¼ � log Si(yi)ð Þ have an exponential
distribution with density e�t and with kth
moment k! ¼ k � (k� 1) � � � 2 � 1.

c. Show that, if the sample contains no censored
durations, ML in (6.45) always gives a sample
mean of the generalized residuals ofPn

i¼1 ei=n ¼ 1.

d. For the censored duration data in Example 6.9
(with censoring from above at eighty days),
compute the generalized residuals of the model
with exponential hazard rate both for the case
without and for the case with explanatory
variable.

e. Make plots of the sample cumulative distribution
functions of the generalized residuals for the two
models of d, and compute the first three sample
moments of the generalized residuals. What is
your conclusion?

f. For the log-normal model log (yi) ¼ aþ bxi þ ei
estimated in Example 6.9, determine the hazard
rates after t ¼ 10 days for the values
xi ¼ �0:10, xi ¼ 0, and xi ¼ 0:07 of the produc-
tion index. At what time instant does the hazard
rate reach its maximum when xi ¼ 0 (it may be
helpful to plot l(t) as a function of t to determine
the location of the maximum graphically)?
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7

Time Series and
Dynamic Models

This chapter treats the modelling of variables that are observed sequentially
over time. The main focus is on univariate time series models for a single
economic variable, but we also discuss regression models with lags and
multivariate time series models. Time series analysis consists of several
phases. First, the dynamic structure of the model is selected and then the
parameters of the model are estimated. Diagnostic tests are performed to test
the model assumptions, and the outcomes may suggest alternative specifica-
tions of the model. When an acceptable model has been obtained, it can be
used, for example, to forecast future values of the variables. Many economic
time series contain trends that are of major importance in forecasting. The
series may also exhibit seasonal variation or a variance that changes over
time. Therefore we pay special attention to the modelling of trends, seaso-
nals, and the variance of economic time series.
Sections 7.1–7.3 are the basic sections of this chapter that are required

for the material discussed in Sections 7.4–7.7. Sections 7.4 and 7.5 can be
read independently from each other, Section 7.5 is required for Sections 7.6
and 7.7.



7.1 Models for stationary time
series

E Uses Chapters 1–4; Section 5.5.

7.1.1 Introduction

To get an idea of economic time series we consider two series that are used as
leading examples in this chapter.

Example 7.1: Industrial Production

In this section and in following sections we will consider a time series that
measures the quarterly industrial production in the USA. The data are taken
from the OECD main economic indicators. We will discuss (i) the data and
(ii) some useful transformations of the data.

(i) The data

Exhibit 7.1 (a) shows the quarterly index of total industrial production in the
USA. In time series plots, the horizontal axis always measures time (here
the years and quarters) and the vertical axis measures the values of the time
series. If we would follow the convention of scatter diagrams, the horizontal
axis should be labelled as ‘time’ and the vertical axis as the ‘observed series’.
However, in time series plots one usually places the name of the observed
variable on the horizontal axis as this is easier to read, but note that the
values of this variable are measured on the vertical axis. The series is indexed
so that the average of the four quarterly values of industrial production
over 1992 is equal to 100. The sample period runs from 1950.1 to 1998.3.
In our analysis of this series, the data prior to 1961.1 are used as
starting values and the data from 1995.1 to 1998.3 are left out to evaluate
the out-of-sample forecasting performance of proposed models. Therefore,
in modelling this series the effective sample ranges from 1961.1 to 1994.4
and contains n ¼ 136 observations. We denote the industrial production
index by xt. Here we follow the convention in the time series literature
to use the index t (instead of i), because the observations are naturally
ordered with time.

E
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(ii) Transformations of the data

The series xt shows exponential growth over time. Therefore we will con-
sider models for the logarithm of this series. We denote the resulting series by
yt ¼ log (xt). The series yt is shown in Exhibit 7.1 (b). It contains a clear
upward trend and some fluctuations that may be due to seasonal effects.
Models for the trend of this series are described in Examples 7.13 and 7.14
and the seasonal effects are discussed in Example 7.16. Exhibit 7.1 (c) shows
the quarterly series of annual growth rates, defined by

D4yt ¼ yt � yt�4 ¼ log
xt
xt�4

� �
¼ log 1þ xt � xt�4

xt�4

� �
� xt � xt�4

xt�4
:

This series contains no trend anymore and moves with gradual upward
and downward fluctuations around a long-term mean. Such fluctuations
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Exhibit 7.1 Industrial Production (Example 7.1)

Quarterly series of US industrial production (X in (a)), in logarithms (Y ¼ log (X) in (b)), and
the corresponding yearly growth rates (D4Y ¼ Y� Y(�4) in (c)).
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correspond to a business cycle with negative growth rates in the recession
periods, for example around the periods 1974–5 and 1980–2. This series of
quarterly growth rates will be further analysed in later examples in Sections
7.2.2–7.2.4.

Example 7.2: Dow-Jones Index

As a second example we consider the Dow-Jones Industrial Average. The
data are taken from the Internet database ‘Economagic’. We will discuss
(i) the data and (ii) some useful transformations of the data.

(i) The data

The observed series consists of the daily close of the Dow-Jones index over
the period 1990 (2 January) to 1999 (31 December). The series (denoted by
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Exhibit 7.2 Dow-Jones Index (Example 7.2)

Dow-Jones Industrial Average (DJ in (a)), series of logarithms of the Dow-Jones (LOGDJ in
(b)), series of daily returns (DLOGDJ, the series of first differences of LOGDJ in (c)) and years
((d); the observation number is measured on the horizontal axis).
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DJt) contains n ¼ 2528 observations and is shown in Exhibit 7.2 (a). The
days are numbered consecutively so that closing days (weekends and holi-
days) are not taken into account. Exhibit 7.2 (d) shows the years that
correspond to the observation numbers.

(ii) Transformations of the data

The Dow-Jones index shows an exponential trend with fluctuations that
become more pronounced for higher levels of the index. Exhibit 7.2 (b)
shows the logarithm of the index (which we denote by yt ¼ log (DJt)). The
fluctuations around the trend are now more stable. Exhibit 7.2 (c) shows the
series of daily returns of the index, defined by

Dyt ¼ yt � yt�1 ¼ log
DJt
DJt�1

� �
¼ log 1þDJt �DJt�1

DJt�1

� �
� DJt �DJt�1

DJt�1
:

The variance of the series of daily returns changes over time, with volatile
periods followed by periods with smaller fluctuations. The nature of the
trend in the Dow-Jones index is analysed in Section 7.3.3, and models for
changes in the variance are discussed in Section 7.4.4.

Structure of Sections 7.1–7.4

The actual modelling of univariate time series like the ones in the above two
examples is described in Sections 7.2 (for stationary series), 7.3 (for time
series with trends and seasonals), and 7.4 (for time series with non-linear
aspects). This requires some basic models and tools in time series analysis,
which are now discussed.

7.1.2 Stationary processes

Time series

When a variable is observed sequentially over time, the observations consti-
tute a time series. Such a time series consists of a set of realized values of
the relevant business or economic process that evolves over time. The fre-
quency of observation can, for example, be annual, quarterly (as in Example
7.1), monthly, or daily (as in Example 7.2). Time series data are often
strongly correlated over time. For example, if the current industrial produc-
tion index has a value of 100, then it is more likely that the next quarter
this index will be somewhere between 90 and 110 than that it will be as
high as, say, 200.
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Stationarity

A time series is called stationary if its statistical properties remain constant
over time. This means that, when we consider two different time intervals,
the sample mean and sample covariances of the time series over the two time
intervals will be roughly the same. More precisely, a time series yt is called
(second order) stationary if the following conditions are satisfied:

E[yt] ¼ m, E[(yt � m)2] ¼ g0, E[(yt � m)(yt�k � m)] ¼ gk (for all t):

Here m, g0, and gk are finite-valued numbers that do not depend on time t. So
the mean has to be constant over time, and, if the series has a trend, this
should be removed (see Section 7.3). Also the variance has to be constant,
and, if the series contains seasonal fluctuations or changing variance, this
should also be removed (see Sections 7.3.4 and 7.4). Finally, the covariances
are constant over time— for instance, the covariance between the industrial
production in two consecutive quarters is the same for all quarters and over
all years.

Autocorrelations of a stationary process

The autocorrelations of a stationary process are defined by

rk ¼
gk
g0

:

These correlations describe the short-run dynamic relations within the time
series, in contrast with the trend, which corresponds to the long-run behav-
iour of the time series. A time series model summarizes the correlations
between yt and the past values yt�k, k � 1, in terms of a limited number of
parameters. This differs from the models discussed in the foregoing chapters,
where the outcomes of the dependent variable were explained in terms of
other, independent variables. For instance, in the regression model the ex-
plained part of yt is given by x0tb, where b ¼ (X0X)�1X0y, which involves the
correlations between the dependent and the independent variables. In a
univariate time series model, it is the correlation with lagged values of the
explained variable that is of interest.

Time series prediction and the innovation process

To describe the correlations, we imagine that our observed time series comes
from a stationary process that existed before we started observing it. For
instance, in Examples 7.1 and 7.2 we use data on US industrial production
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from 1961 to 1994 and on the Dow-Jones from 1980 to 1999, but both
processes existed before the start of our observations. We denote the past of
the stationary process yt by Yt�1 ¼ yt�1, yt�2, � � �f g, where the ‘dots’ mean
that there is no clear-cut beginning of this past. Here Yt�1 is called the
information set available at time point (t � 1). The least squares predictor
of yt based on the past Yt�1 is the function f (Yt�1) that minimizes
E[(yt � f (Yt�1))

2]. This predictor is given by the conditional mean
f (Yt�1) ¼ E[ytjYt�1] with corresponding (one-step-ahead) prediction errors

et ¼ yt � f (Yt�1) ¼ yt � E[ytjYt�1]: (7:1)

The process et is also called the innovation process, as it corresponds to the
unpredictable movements in yt. If the observations are jointly normally
distributed, then the conditional mean is a linear function of the past obser-
vations—say,

E[ytjYt�1] ¼ aþ p1yt�1 þ p2yt�2 þ � � � :

Here a is included to model the mean E[yt] ¼ m of the series. From the above
equation we get m ¼ aþPpkm, so that m ¼ (1�P pk)

�1a. As the process is
assumed to be stationary, the coefficients pk do not depend on time and the
innovation process et is also stationary. It has the following properties (see
Exercise 7.1):

E[et] ¼ 0 for all t,

E[e2t ] ¼ s2 for all t,

E[eset] ¼ 0 for all s 6¼ t:

Here the variance s2 is constant over time. Such a process, with all auto-
correlations equal to zero, is called white noise. It has all the properties (zero
mean, homoskedastic, uncorrelated) of the disturbance term in the standard
regression model.

Autoregressive model for stationary time series

We can rewrite (7.1) as

yt ¼ aþ p1yt�1 þ p2yt�2 þ � � � þ et: (7:2)

This can be interpreted as a regression model with disturbance terms that
satisfy the standard assumptions of the regression model— that is, Assump-
tions 2, 3, and 4 of Section 3.1.4 (p. 125). The above model is called an
autoregressive model. The regressors consist of time lags of the dependent
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variable and are therefore stochastic. The regressors in this model are
exogenous, because, for all k � 1, yt�k belongs to the information set Yt�1,
so that

cov(yt�k, et) ¼ E[(yt�k � m)(yt � E[ytjYt�1])]

¼ E[(yt�k � m)yt]� E[E[(yt�k � m)ytjYt�1]]

¼ E[(yt�k � m)yt]� E[(yt�k � m)yt] ¼ 0:

General idea of estimation of time series models

The model (7.2) has many parameters, in principle as many as the number of
periods since the beginning of the process. In practice the data generating
process is unknown and the data consist of observations yt on a limited time
interval t ¼ 1, � � � , n. To estimate a time series model, the model (7.2) should
be approximated by models with fewer parameters. That is, the unknown
optimal prediction function f (Yt�1) has to be approximated by a model of
our choice. We denote the model by f (Yt�1, y), where f is a specified function
containing a limited number of unknown parameters y. In Sections 7.1.3 and
7.1.4 we discuss models that are often used for this purpose—namely,
ARMA models. The parameters y of the model can be estimated, for in-
stance, by minimizing the sum of squared prediction errors

S(y) ¼
Xn
t¼1

�
yt � f (Yt�1, y)

�2
:

If the model is properly specified in the sense that f (Yt�1, ŷy) �
E[ytjYt�1], then the prediction errors will be close to the innovations et.
This can be used as a basis for diagnostic testing, by testing whether the
model residuals are uncorrelated and have constant variance. Estimation,
diagnostic tests, and model selection are discussed in Section 7.2.

E Exercises: T: 7.1a.

7.1.3 Autoregressive models

Autoregressive process of order p: AR(p)

A simple model for a time series yt is obtained by choosing a specific finite
length of the autoregression (7.2). If p past values are included in the regres-
sion, this gives the model
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yt ¼ aþ f1yt�1 þ f2yt�2 þ � � � þ fpyt�p þ et, t ¼ pþ 1, 2, � � � , n: (7:3)

Here a and f1 to fp are unknown parameters. The process et is white noise
with the property that E[etyt�k] ¼ 0 for all k � 1. So the regressors yt�k in
(7.3) are exogenous, k ¼ 1, � � � , p. As the time series yt is observed for
t ¼ 1, � � � , n, the lagged explanatory variable yt�p is available only from
time t ¼ pþ 1 onwards. This model is called an autoregressive model of
order p, also written as AR(p).

The lag operator

For ease of notation one uses the lag operator L defined by

Lyt ¼ yt�1:

Repetitive application of this operator gives Lkyt ¼ yt�k. The AR(p) model
can then be written in a more concise form as

f(L)yt ¼ aþ et, f(L) ¼ 1� f1L� � � � � fpL
p: (7:4)

Stationarity condition

The statistical properties of the process (7.4) are determined by the values of
the parameters f1, � � � ,fp. For instance, the condition for stationarity can be
expressed in terms of the roots of the polynomial f(z) by factorizing this
polynomial in terms of its p (possibly complex valued) roots z ¼ 1=ai as

f(z) ¼ (1� a1z)(1� a2z) � � � (1� apz): (7:5)

The process is stationary if and only if jakj < 1 for all k ¼ 1, � � � , p—that is,
all the solutions of f(z) ¼ 0 should lie outside the unit circle in the complex
plane. Here we will clarify this in more detail for the case of an AR(1) model;
the general AR(p) model is left as an exercise (see Exercise 7.1).

Derivation of stationarity condition for an AR(1) process

We consider the first order autoregressive model

yt ¼ fyt�1 þ et, t ¼ 2, � � � , n: (7:6)

Here et is the innovation process and for simplicity of notation we write f for the
parameter f1 and we assume that a ¼ 0. By recursive substitution of the lagged
values of yt this can be rewritten as

T
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yt ¼ ft�1y1 þ
Xt�2

j¼0

fjet�j, t ¼ 2, � � � , n: (7:7)

An innovation at time t � j therefore affects the value of yt with multiplier
fj. If jfj > 1, then the impact of the innovations grows over time and the
time series displays explosive behaviour, whereas for jfj < 1 the impact dies out
over time. We will now show that the AR(1) process is stationary if and only if
jfj < 1.

First we suppose that the process yt is stationary with mean m and variance g0,
and we will prove that jfj < 1. Recall that et has mean zero and variance s2, that
et is uncorrelated with yt�1, and that g0 ¼ E[(yt � m)2] ¼ E[y2t ]� m2. It then
follows from (7.6) and (7.7) that

m ¼ E[yt] ¼ ft�1m,

g0 þ m2 ¼ E[y2t ] ¼ f2E[y2t�1]þ s2 ¼ f2(g0 þ m2)þ s2:

The first equality implies that m ¼ 0 or f ¼ 1, but in the last case the second
equality has no finite solution for g0 (because s

2 > 0). So we conclude that f 6¼ 1
and m ¼ 0. Then the second equality becomes g0 ¼ f2g0 þ s2 or f2 ¼ (g0 � s2)=g0,
so that jfj < 1. This shows that for a stationary process jfj < 1.

Now we prove the reverse— that is, if jfj < 1, then (7.6) has a solution process
yt that is stationary. We prove this by constructing the process yt. Let y1 be a
random variable with mean zero and variance s2=(1� f2) and let et be IID(0, s2)
for t � 2 and independent from y1. Further let yt for t � 2 be defined by (7.7).
Then it follows that E[yt] ¼ 0 for all t � 1, so that the mean m ¼ 0 is constant over
time. It remains to prove that the variance and covariances of this process are
constant over time. Using the fact that E[eset] ¼ 0 for all s 6¼ t, that E[y1et] ¼ 0 for
all t � 2, and that for jfj < 1 there holds

P1
h¼0 f

2h ¼ 1=(1� f2), we obtain from
(7.7) that for 0 � k � t � 1

E[ytyt�k] ¼ E ft�1y1 þ
Xt�2

j¼0

fjet�j

 !
ft�k�1y1 þ

Xt�k�2

h¼0

fhet�k�h

 !" #

¼ f2t�k�2var(y1)þ s2
Xt�k�2

h¼0

fkþ2h

¼ s2
f2t�k�2

1� f2
þ s2fk

X1
h¼0

f2h �
X1

h¼t�k�1

f2h

 !

¼ s2
f2t�k�2

1� f2
þ s2fk 1� f2(t�k�1)

1� f2
¼ s2

fk

1� f2
:

This shows that the variance of yt (obtained for k ¼ 0) is constant over time and
that the covariance between yt and yt�k does not depend on time t. This means
that the AR(1) process is stationary for jfj < 1, which concludes the proof.
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Variance and autocorrelations of an AR(1) process

The above derivation shows that the variance of a stationary AR(1) process
(with jfj < 1) is equal to

g0 ¼ s2

1� f2
:

The autocorrelations are given by

rk ¼
gk
g0

¼ fk:

The correlations tend exponentially to zero for k ! 1 with a speed that
depends on f. If this coefficient is very close to one, then the correlations die
out only very slowly. For f ¼ 1 the process yt is no longer stationary, it does
not have a finite variance, and it has trending behaviour, as will be further
discussed in Section 7.3.

Mean of an AR(p) process

The constant term a in (7.3) is included to allow for a non-zero mean
of the time series. Note, however, that this parameter is not equal to
the mean m ¼ E[yt] of the process. By taking expected values in (7.3) it
follows that (1�Pp

k¼1 fk)m ¼ a, or m ¼ a=(1�Pp
k¼1 fk). This can also be

written as

m ¼ E[yt] ¼ a=f(1),

where f(1) ¼ 1�Pp
k¼1 fk is the value obtained by evaluating the polyno-

mial f(z) of (7.4) at z ¼ 1. If f(1) ¼ 0—that is, if the polynomial f(z) of the
AR(p) model has a root at z ¼ 1 (called a unit root)— then the mean of the
process is not defined. This is in line with the fact that the process is not
stationary in this case.

Example 7.3: Simulated AR Time Series

As an illustration we consider three simulated time series. The series are
generated respectively by the white noise process yt ¼ et, by the stationary
AR(1) process yt ¼ 0:9yt�1 þ et, and by the stationary AR(2) process
yt ¼ 1:5yt�1 � 0:6yt�2 þ et. Exhibit 7.3 shows time plots of the three simu-
lated time series. The white noise process is uncorrelated, whereas the
AR(1) process is strongly correlated over time with rk ¼ (0:9)k, k � 0.

E
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The AR(2) process shows more or less steady oscillations. This is related to
the fact that the corresponding polynomial f(z) ¼ 1� 1:5zþ 0:6z2 has com-
plex roots z ¼ 1:25	 0:32i (where i is the complex number defined by
i ¼ ffiffiffiffiffiffiffi�1

p
).

E Exercises: T: 7.1b.

7.1.4 ARMA models

Moving average process of order q: MA(q)

A process yt is called a moving average process if it can be described by

yt ¼ aþ et þ y1et�1 þ � � � þ yqet�q, (7:8)

−4

−3

−2

−1

0

1

2

3

50 100 150 200 250 300 350 400 450 500

WN

−8

−6

−4

−2

0

2

4

50 100 150 200 250 300 350 400 450 500

AR1

(a) (b)

−12

−8

−4

0

4

8

50 100 150 200 250 300 350 400 450 500

AR2

(c)

Exhibit 7.3 Simulated AR Time Series (Example 7.3)

Simulated time series, white noise (a), AR(1) process (b), and AR(2) process (c).
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where et is white noise. This is called an MA(q) process. This process
is always stationary, with mean m ¼ E[yt] ¼ a, variance g0 ¼
s2
�
1þPq

j¼1 y
2
j

�
, and covariances gk ¼ s2

�
yk þ

Pq
j¼kþ1

yjyj�k

�
for k � q

and gk ¼ 0 for k > q.

Invertibility condition

In an MA model, the observed series yt is expressed in terms of current and
past values of the error terms et. In a sense, this is the inverse of the
autoregressive model (7.2), where et is expressed in terms of current and
past values of yt. If an MA model can be expressed as an (infinite order)
autoregressive model (7.2), then the MA model is called invertible. In this
case the error terms et in (7.8) are equal to the innovations (or one-step-ahead
prediction errors) et ¼ yt � E[ytjYt�1], so that

E[ytjYt�1] ¼ aþ y1et�1 þ � � � þ yqet�q:

Invertibility requires some restrictions on the parameters in (7.8). If
the MA polynomial is factorized as y(z) ¼ (1� b1z)(1� b2z) � � � (1� bqz),
then invertibility is equivalent to the condition that bj

�� �� < 1 for all
j ¼ 1, 2, � � � , q. Stated otherwise, all the solutions of y(z) ¼ 0 should lie
outside the unit circle. Here we will explain this condition in more detail
for the MA(1) model; the general case (with q � 2) is left as an exercise (see
Exercise 7.1).

Derivation of invertibility condition for MA(1) process

We consider the MA(1) model with mean a ¼ 0 described by

yt ¼ et þ yet�1:

Invertibility requires that et can be written in terms of current and past values
of the observed process— that is, in terms of yt�k with k � 0. Now et ¼
yt � yet�1, and similarly et�1 ¼ yt�1 � yet�2, and by further substitutions it follows
that

et ¼ yt � yyt�1 þ y2yt�2 � � � � þ (� y)t�2y2 þ (� y)t�1e1: (7:9)

Assuming that the process was the same before the observations started (that is,
for t � 0), this substitution can be continued. Invertibility requires that, in the
limit, the error term on the right-hand side vanishes. This is the case if and only if
�1 < y < 1. Under this condition the process is therefore invertible.

T
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Autoregressive moving average process: ARMA(p, q)

Every stationary process can be approximated with any desired degree of
accuracy by means of autoregressive models (by taking the order p of the
AR(p) model large enough) and also by means of moving average models (by
taking the order q of the MA(q) model large enough). However, good
approximations may require very large orders and hence many parameters.
It may then be more convenient to describe the process yt by the ratio of two
polynomials of relatively low order as yt ¼ y(L)

f(L) et. The resulting model is
written as

f(L)yt ¼ aþ y(L)et, (7:10)

with AR polynomial f(L) ¼ 1� f1L� � � � � fpL
p, MA polynomial y(L) ¼

1þ y1Lþ � � � þ yqLq, and where et is white noise. The above model is called
an autoregressive moving average model of order (p, q), also written as
ARMA(p, q). The constant term a is included to allow for a non-zero mean
m ¼ E[yt] ¼ a=f(1). An ARMA process is stationary if all the solutions of
f(z) ¼ 0 lie outside the unit circle, just as in the case of AR processes. An
ARMA model is invertible if all the solutions of y(z) ¼ 0 lie outside the unit
circle, just as in the case of MA processes.

In many cases, low order ARMA models provide an accurate approxima-
tion of much higher order AR and MA models. That is, ARMA models need
relatively few parameters to describe the process, so that ARMA models are
parsimonious in this sense.

Example 7.4: Simulated MA and ARMA Time Series

As an illustration we simulate three time series—namely, from the MA(1)
model yt ¼ et þ 0:9et�1, from the MA(2) model yt ¼ et þ 0:9et�1 þ 0:8et�2,
and from the ARMA(1,1) model yt ¼ 0:9yt�1 þ et þ 0:8et�1. All three
processes are stationary and invertible. Exhibit 7.4 contains graphs of the
three simulated series. Comparing the graphs in Exhibit 7.4 with those in
Exhibit 7.3, we see that it may not be easy to determine the appropriate
ARMA model from a time series plot. The next section discusses a tool to
select the orders of AR and MA models.

E
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E Exercises: T: 7.1c.

7.1.5 Autocorrelations and partial autocorrelations

Autocorrelation function

As mentioned before, the correlations between successive values of a time
series are of key interest in forecasting the future movements of the series.
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Exhibit 7.4 Simulated MA and ARMATime Series (Example 7.4)

Simulated time series, MA(1) process (a), MA(2) process (b), and ARMA(1,1) process (c).
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Therefore it is of interest to get insight in the correlations that are implied by
an ARMA model. The correlations have a direct meaning in terms of time
series properties, whereas the parameters in the ARMA model have only a
less direct interpretation. The autocorrelation function (ACF) of a time series
model is defined by the sequence of autocorrelations (for k ranging from
�1 toþ1)

rk ¼ corr(yt, yt�k) ¼
gk
g0

,

where gk ¼ E[(yt � m)(yt�k � m)]. There holds gk ¼ g�k and hence also
rk ¼ r�k, and r0 ¼ 1 always. So it suffices to consider the ACF only for
k � 1.

Derivation of autocorrelations of an ARMA process

Awhite noise process et is characterized by the property that rk ¼ 0 for all k � 1.
Now we consider the ACF of an ARMA model (7.10) that is stationary and
invertible, so that the roots of the polynomials f(z) ¼ 0 and y(z) ¼ 0 all lie
outside the unit circle. The stationarity condition on f(z) implies that yt can be
written as a linear function of et�k, k � 0—say,

yt ¼ mþ et þ c1et�1 þ c2et�2 þ c3et�3 þ � � � : (7:11)

This can be written as yt ¼ mþ c(L)et where c(z) ¼Pckz
k with c0 ¼ 1. As yt

also satisfies the ARMA model equation f(L)yt ¼ aþ y(L)et, it follows that
aþ y(L)et ¼ f(L)yt ¼ f(1)mþ f(L)c(L)et, where we used the fact that
f(L)m ¼ (1�PfkL

k)m ¼ (1�Pfk)m ¼ f(1)m. It follows that m ¼ a=f(1) and

f(z)c(z) ¼ y(z):

So the coefficients ck in (7.11) can be obtained from the parameters
(f1, � � � , fp, y1, � � � , yq) of the ARMA model by solving the equations
f(z)c(z) ¼ y(z) (for all powers zk, k � 0). Once the values of ck are determined,
the ACF can be computed by

gk ¼ E[(yt � m)(yt�k � m)] ¼ E
X1
j¼0

cjet�j

X1
h¼0

chet�k�h

" #
¼ s2

X1
h¼0

ckþhch:

Here we used the fact that et is white noise, so that E[et�jet�k�h] ¼ 0 for all
j 6¼ kþ h.

T
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Autocorrelations of AR(1) and MA(1) process

As an illustration, for the AR(1) model (7.6) with yt ¼ fyt�1 þ et we have
f(z) ¼ 1� fz and y(z) ¼ 1. Then the equation for c(z) becomes
(1� fz)c(z) ¼ 1, so that c(z) ¼ 1=(1� fz) ¼Pfkzk and ck ¼ fk. It then
follows that gk ¼ s2

P
c2
k ¼ s2fk=(1� f2) and rk ¼ fk. This agrees with earlier

results in Section 7.1.3 for the AR(1) process.
As another illustration, for the MA(1) model yt ¼ et þ yet�1 we have

f(z) ¼ 1 and y(z) ¼ 1þ yz. Then the equation for c(z) simply becomes
c(z) ¼ 1þ yz. So the coefficients are directly obtained as c0 ¼ 1, c1 ¼ y,
and ck ¼ 0 for all k � 2. So g0 ¼ s2(1þ y2), g1 ¼ s2y, and gk ¼ 0 for k � 2.
The autocorrelations are r1 ¼ y=(1þ y2) and rk ¼ 0 for all k � 2. This agrees
with earlier results in Section 7.1.4 for MA processes.

Further cases are treated in the exercises (see Exercise 7.2).

Characterization of MA processes in terms of autocorrelations

In theMA(q) process (7.8) the terms et are uncorrelated. This implies that the
ACF has the property

rk ¼ 0 for all k > q (MA(q)):

That is, the ACF of an MA(q) process cuts off after lag q. The reverse also
holds true— that is, if the ACF of a process has the property that rk ¼ 0 for
all k > q, then it can be written as an MA(q) process (see Exercise 7.3).
Therefore the ACF can be used to select the order of an MA model. If the
ACF of a process is zero for k > q, then it can be described by an MA(q)
model.

Characterization of AR processes in terms of partial
autocorrelations

For AR processes the ACF decays to zero exponentially, but the order of the
model cannot easily be detected from the ACF. The order of AR models can
be selected by considering the so-called partial autocorrelation function
(PACF). The partial autocorrelation at lag k, denoted by fkk, is defined as
the correlation between yt and yt�k that remains after the correlation due to
the intermediate values yt�j (1 � j � k� 1) has been removed. Formally, let
y�t ¼ yt � E[yt yt�1, � � � , yt�kþ1]j and yþt�k ¼ yt�k � E[yt�k yt�1, � � � , yt�kþ1]j
be the ‘residuals’ of predicting yt and yt�k from the intermediate values
yt�1, � � � , yt�kþ1f g; then the partial autocorrelation fkk ¼ corr (y�t , y

þ
t�k) is

the correlation between these two residuals. The two involved conditional
expectations are obtained by regressing yt and yt�k on the set of intermediate
values. It follows from the result of Frisch–Waugh in Section 3.2.5 (p. 146)
that fkk can also be obtained from the regression

T
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yt ¼ aþ fk1yt�1 þ fk2yt�2 þ � � � þ fkkyt�k þ !t (7:12)

(see Exercise 7.3). So fkk is obtained by an autoregression of lag length k—
that is, for each partial autocorrelation we need a different regression. An
AR(p) process is characterized by the following property (see Exercise 7.3).

fkk ¼ 0 for all k > p (AR(p)):

That is, the PACF of an AR(p) process cuts off after lag p. The intuitive
explanation is that, for the AR(p) process (7.3), yt is expressed in terms of
yt�1, � � � , yt�p, so that additional lagged regressors yt�k with k > p in (7.12)
have coefficient zero.

Sample (partial) autocorrelations

In practice the (partial) autocorrelations are unknown and have to be esti-
mated from the observed time series. The so-called sample autocorrelation
function (SACF) is obtained by replacing rk by the sample correlations

rk ¼
Pn

t¼kþ1 (yt � y)(yt�k � y)Pn
t¼1 (yt � y)2

,

where y ¼Pn
t¼1 yt=n is the sample mean of the series. The sample partial

autocorrelation function (SPACF) is obtained by replacing fkk by the esti-
mated coefficient f̂fkk of yt�k in the regression (7.12). Note that this involves
a different model for each coefficient— that is, f̂fkk is obtained by a regres-
sion in an AR(k) model.

Example 7.5: Simulated Time Series (continued)

As an illustration, we consider the six simulated time series that were gener-
ated in Example 7.3 (see Exhibit 7.3) and Example 7.4 (see Exhibit 7.4).
Panels 1 and 2 of Exhibit 7.5 show the SACF and the SPACF of these six
series. For the white noise series, the theoretical ACF and PACF are both
zero, and the SACF and SPACF are relatively small. Statistical tests for the
significance of sample (partial) autocorrelations are discussed in Sections
7.2.3 and 7.2.4. For the two generated AR series, the SPACF is small for
lags k > 1 for the AR(1) process and for lags k > 2 for the AR(2) process. For
the two generated MA series, the SACF is small for lags k > 1 for the MA(1)
process and for lags k > 2 for theMA(2) process. For the ARMA(1,1) process

E
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Panel 1 WN AR(1) AR(2)
Lag SACF SPACF SACF SPACF SACF SPACF
1 �0.010 �0.010 0.833 0.833 0.907 0.907
2 0.008 0.008 0.681 �0.045 0.713 �0.618
3 �0.114 �0.114 0.534 �0.072 0.481 �0.049
4 �0.074 �0.077 0.433 0.059 0.262 0.045
5 �0.034 �0.035 0.365 0.043 0.080 �0.056
6 0.038 0.026 0.312 �0.001 �0.060 �0.064
7 �0.087 �0.105 0.247 �0.062 �0.158 �0.017
8 �0.076 �0.096 0.215 0.076 �0.206 0.083
9 0.018 0.018 0.213 0.092 �0.211 �0.023

10 �0.001 �0.018 0.206 �0.022 �0.193 �0.081

Panel 2 MA(1) MA(2) ARMA(1,1)
Lag SACF SPACF SACF SPACF SACF SPACF
1 0.543 0.543 0.688 0.688 0.911 0.911
2 0.050 �0.347 0.353 �0.229 0.742 �0.513
3 0.002 0.248 0.014 �0.254 0.593 0.295
4 �0.025 �0.231 �0.017 0.325 0.480 �0.116
5 �0.037 0.162 �0.020 �0.118 0.401 0.126
6 0.018 �0.069 �0.012 �0.138 0.336 �0.137
7 0.009 0.012 �0.026 0.152 0.278 0.101
8 �0.075 �0.117 �0.074 �0.160 0.244 0.068
9 �0.080 0.064 �0.086 �0.017 0.233 0.023

10 �0.050 �0.094 �0.103 0.039 0.228 �0.021

Panel 3: Dependent Variable: AR1
Method: Least Squares
Sample(adjusted): 2 500; Included observations: 499
Variable Coefficient Std. Error t-Statistic Prob.

C �0.077447 0.044504 �1.740224 0.0824
AR1(�1) 0.835782 0.024710 33.82336 0.0000

Panel 4: Dependent Variable: AR1
Method: Least Squares
Sample(adjusted): 3 500; Included observations: 498
Variable Coefficient Std. Error t-Statistic Prob.

C �0.080056 0.044741 �1.789344 0.0742
AR1(�1) 0.874953 0.044910 19.48236 0.0000
AR1(�2) �0.046516 0.044931 �1.035273 0.3010

Exhibit 7.5 Simulated Time Series (Example 7.5)

First ten sample autocorrelations (SACF) and partial autocorrelations (SPACF) of time series of
length n ¼ 500 simulated from a white noise process (WN), an AR(1) process, and an AR(2)
process (Panel 1) and from an MA(1) process, an MA(2) process, and an ARMA(1,1) process
(Panel 2). The regressions in Panels 3 and 4 illustrate the computation of the first SPACF (Panel
3, value 0.836) and second SPACF (Panel 4, value �0.047) of the series AR1 (the reported
numbers in Panel 1 are 0.833 and �0.045, as EViews uses a slightly different method to
compute the SPACF).
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the SACF and SPACF decay relatively slowly. Panels 3 and 4 of Exhibit 7.5
contain two regressions to illustrate the calculation of the SPACF for the
AR(1) time series. The first sample partial autocorrelation f̂f11 ¼ 0:836 is
obtained by regressing yt on a constant and yt�1, and the second one
f̂f22 ¼ �0:047 by regressing yt on a constant, yt�1 and yt�2. Clearly, the
variable yt�2 in the last regression is not significant, as expected.

E Exercises: T: 7.2b, c, 7.3a–c.

7.1.6 Forecasting

One-step-ahead and multi-step-ahead forecasts

In this section we describe general methods to forecast future values of an
ARMA process by exploiting the correlation structure of the process. We
assume that the process is known, in the sense that all the parameters are
known and hence the correlations of the process are also known.We suppose
that the time series is observed on the time interval t ¼ 1, � � � , n so that the
available information is given by Yn ¼ y1, � � � , ynf g. The (least squares) one-
step-ahead forecast ŷynþ1 ¼ f (Yn) is given by f (Yn) ¼ E[ynþ1jYn], and the
h-step-ahead forecast is ŷynþh ¼ E[ynþhjYn]. We will restrict the attention to
linear forecasts— that is, to functions f (Yn) that are linear in the observa-
tions yt, t ¼ 1, � � � , n.

Forecasting an AR process

First we consider forecasting in the stationary AR(p) model (7.3) with
yt ¼ aþ f1yt�1 þ � � � þ fpyt�p þ et. The stationarity condition on the AR
polynomial implies that yt is a function of the past innovations (et�k, k � 0),
as in (7.11). For ynþ1 thismeans that enþ1 is uncorrelatedwith all observations
in Yn, so that the optimal one-step-ahead forecast is given by

ŷynþ1 ¼ aþ f1yn þ � � � þ fpynþ1�p:

The corresponding forecast error is ynþ1 � ŷynþ1 ¼ enþ1 and the forecast error
variance is s2. In a similar way, the two-step-ahead forecast is given by

ŷynþ2 ¼ aþ f1ŷynþ1 þ f2yn þ � � � þ fpynþ2�p:

The corresponding forecast error is ynþ2 � ŷynþ2 ¼ enþ2 þ f1(ynþ1 � ŷynþ1)
¼ enþ2 þ f1enþ1 with variance s2(1þ f2

1). Forecasts for three and more
steps ahead can be constructed in a similar way (see Exercise 7.4).
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Forecasting an ARMA process

For a stationary and invertible ARMA model f(L)yt ¼ aþ y(L)et, the fore-
casts can in principle be computed from the moving average representation
(7.11). The first step is to compute the parameters ck of this representation by
solving the equations f(z)c(z) ¼ y(z) (where f(z) and y(z) are given). Then we can
write

yt ¼ mþ et þ c1et�1 þ c2et�2 þ � � � ,

with m ¼ a=f(1) known. As the process is invertible, the innovation process has
the property that et is a function of the observations yt�k, k � 0. Assuming for the
moment that the process has been observed since the infinite past, this means that
the innovations et are known for all times t � n. It follows from the above moving
average representation that any linear h-step-ahead forecast ŷynþh (that is, any
linear function of yt, t � n) can be written in the form bþP1

k¼0 bken�k. As the
process et is uncorrelated, the mean squared prediction error of such a forecast is
equal to

E[(ynþh � ŷynþh)
2] ¼ (m� b)2 þ s2

Xh�1

k¼0

c2
k þ

X1
k¼h

(ck � bk�h)
2

 !
,

where c0 ¼ 1. This is minimized by taking b ¼ m and bk�h ¼ ck for all k � h. So
the optimal h-step-ahead forecast is given by

ŷynþh ¼ mþ chen þ chþ1en�1 þ chþ2en�2 þ � � � : (7:13)

The corresponding h-step-ahead prediction error (ynþh � ŷynþh) gives a forecast
variance of

SPE(h) ¼ E[(ynþh � ŷynþh)
2] ¼ s2

Xh�1

k¼0

c2
k:

The one-step-ahead prediction error is equal to the innovation enþ1. Therefore the
innovation process is also called the process of prediction errors. The forecast
variance increases if the forecast horizon h becomes larger. This is natural, as the
past observations contain more information for the immediate future than for
the future far ahead. For h ! 1 the forecast variance converges to the variance of
the process yt. That is, in the long run all information from the past eventually dies
out. This is because the correlations rk of a stationary process converge to zero for
k ! 1 , so that the past information is uncorrelated with the infinitely far ahead
future. Forecast intervals can be constructed if the process is assumed to be
normally distributed. For instance, a 95 per cent forecast interval for ynþh is
given by the interval

T
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ŷynþh � 1:96
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SPE(h)

p
� ynþh � ŷynþh þ 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SPE(h)

p
:

The forecast intervals are wider for larger horizons h, as the variance SPE(h)
increases for larger values of h.

Forecasting an MA process

The above forecasting method becomes particularly simple for an MA(q) model,
as f(z) ¼ 1 in this case, so that c(z) ¼ y(z) and ck ¼ yk for k � q and ck ¼ 0 for
k > q. For example, for an MA(2) model yt ¼ aþ y1et�1 þ y2et�2, the one-, two-,
and three-step-ahead forecasts are

ŷynþ1 ¼ aþ y1en þ y2en�1, ŷynþ2 ¼ aþ y2en, ŷynþ3 ¼ a:

AnMA(2) process contains no information (apart from the mean) on future values
for h > 2. This is sometimes expressed by saying that an MA(q) process has a
memory of length q.

Forecasting in practice

In the foregoing analysis we assumed that the process was observed since the
infinite past and that the ARMA parameters are known. In practice we do not
know these parameters and the time series is observed only on a finite time
interval. In the next section we discuss methods to estimate the ARMA parameters
from the observed time series. The forecast function (7.13) can then be approxi-
mated as follows. Estimates of the coefficients ck are determined from the esti-
mated ARMA parameters. Further, the infinite sum in (7.13) is replaced by a finite
sum

Pn�1
k¼0 ĉckþhêen�k, where the terms êet are the residuals (the estimated innov-

ations) of the estimated ARMA model.

Example 7.6: Simulated Time Series (continued)

As an illustration, we consider forecasts of three simulated time series of
foregoing examples—namely, for the AR(2) series of Example 7.3 (see
Exhibit 7.3 (c)) and for the MA(2) and ARMA(1,1) series of Example 7.4
(see Exhibit 7.4 (b) and (c)). Exhibit 7.6 shows the forecasts and 95 per cent
forecast intervals for estimated models for these three time series. The models
are estimated using the first n ¼ 450 values using methods to be discussed in
Section 7.2.2, and the estimated models are then used to forecast the last fifty
values of the series. The outcomes are as expected. The forecasts are more
accurate for short forecast horizons h, especially for the MA model, and the
forecast intervals become wider for larger forecast horizons. The intervals
contain the majority of the actual values in the forecast period.

T
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E Exercises: T: 7.4.

7.1.7 Summary

In this section we have discussed some concepts, models, and results that
are needed in later sections to construct econometric models for observed
time series.

. A time series is stationary if its mean, variance, and autocorrelations are
constant over time. Stationary time series can be described by autore-
gressive models, by moving average models, and by mixed ARMA
models.

. Stationarity requires restrictions on the autoregressive parameters (all
roots of the autoregressive polynomial should lie outside the unit circle).
Invertibility, which means that the error terms in an ARMAmodel have
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Exhibit 7.6 Simulated Time Series (Example 7.6)

Actual series, forecasts (1- to 50-step-ahead), and 95% forecast intervals for three time series,
AR(2) (a), MA(2) (b), and ARMA(1,1) (c).
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the interpretation of one-step-ahead forecast errors, requires restrictions
on the moving average parameters (all roots of the moving average
polynomial should lie outside the unit circle).

. The properties of stationary time series can be summarized in terms of
the autocorrelations of the process. A moving average process has the
property that the autocorrelations become zero after a certain lag. An
autoregressive process is characterized by the fact that the partial auto-
correlations become zero after a certain lag.

. For given parameters of the ARMA model, future values of the time
series can be forecasted from past values by exploiting the correlations
that are present between successive values in the process.
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7.2 Model estimation and
selection

E Uses Chapters 1–4; Section 5.5; parts of Sections 5.2, 5.3, 5.6; Section 7.1.

7.2.1 The modelling process

Iterative steps in modelling

In empirical time series analysis, a model is often obtained in an iterative
process of model specification, diagnostic testing, and model adjustments.
This was discussed in Section 5.1 for regression models (see Exhibit 5.1
(p. 276)). Exhibit 7.7 summarizes the main steps in time series modelling.
Here we assume that the purpose of the model is to produce forecasts, as is
often the case in time series analysis. Further we assume that the investigated
time series is stationary. In practice, stationarity is often achieved after appro-
priate data transformations, as will be discussed in Section 7.3.

Diagnostic
checking

Graphs of
the data

Identification of
lag structure

Estimation

Use the model
(e.g. in forecasting)

Exhibit 7.7 Steps in modelling

Iterative method of ARMA time series modelling.
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Iterative method to model stationary time series


 Step 1: Graphs of the data. Make graphs of the time series (time plots,
scatter plots against lagged values) and of transformations (like logarithms
and first differences). This gives a first impression of the properties of the
series— for instance, the presence of trends and cyclical fluctuations. In the
next steps it is assumed that the modelled time series is stationary, which
sometimes requires appropriate transformations of the original series.


 Step 2: Choice of lag structure. Compute the sample autocorrelations and
the sample partial autocorrelations to get an impression of the nature of the
correlations in the time series. This gives a first indication how to choose the
orders p and q of a possibly adequate ARMA(p, q) model.


 Step 3: Estimation of the model parameters. For the selected orders p and q,
estimate the parameters of the ARMA(p, q) model.


 Step 4: Diagnostic checking. Evaluate this model by diagnostic tests. In
particular, investigate whether the model captures the main correlations in
the time series and whether the model is able to produce reliable forecasts.


 Step 5: Improve the model. If the results of step 4 indicate that the model is
not satisfactory, then repeat steps 1–4 (graphs of the data, choice of lag
structure, estimation, and diagnostic checking). The model can be adjusted
along the lines suggested by the outcomes of the diagnostic tests. This may
lead to models other than ARMA—for instance, models with trends (see
Section 7.3) or non-linear models (see Section 7.4).


 Step 6: Use the model. Finally, when the final model performs well enough,
it can be used, for instance, to produce out-of-sample forecasts.

Steps 1 and 2 in this process constitute the so-called model identification
phase. This is an important phase, as the main problem in time series
modelling is often to find a good specification of the model. In practice the
diagnostic tests in step 4 help to construct a sequence of models where each
new model improves upon the former ones.

Overview of Section 7.2

Parts of steps 1 and 2 of the above iterative modelling method were discussed
in Section 7.1 (see in particular Section 7.1.5 on the identification of the lags
of AR andMAmodels). Section 7.2.3 describes some additional methods for
model identification. In Section 7.2.2 we consider step 3, the estimation of a
given ARMA model. Steps 4 and 5, diagnostic tests and their use in model
improvement, are discussed in Section 7.2.4. Finally, the forecasting of time
series in step 6 has already been treated in Section 7.1.6. In Section 7.2.4 we
present diagnostic tools to evaluate the forecast performance of the model on
a set of evaluation data, prior to the actual application of the model in
forecasting the future.
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Example 7.7: Industrial Production (continued)

We return to the series of industrial production in the USA described in
Example 7.1. We will discuss (i) step 1 and (ii) step 2 of the above modelling
method.

(i) Step 1: graphs of the industrial production data

This first step has already been made in Example 7.1 (see Exhibit 7.1).
The original series shows exponential growth. After we have taken loga-
rithms, the resulting series yt shows a more or less linear growth path with
some seasonal fluctuations. A time series that looks more like a stationary
series is obtained by considering the quarterly series of yearly growth
rates, denoted by D4yt ¼ yt � yt�4. A time plot of this series was given in
Exhibit 7.1 (c), and the series shows more or less regular fluctuations around
a stable mean.

(ii) Step 2: identification of lag structure

To get some idea of the involved correlations in the time series, Exhibit 7.8
shows the first twelve sample autocorrelations and sample partial auto-
correlations of this series. The SACF dies out more slowly than the SPACF,
and the SPACF values are small from lag three onwards. As a first guess,
this suggests specifying an AR(2) model for the series D4yt of growth rates.
We will investigate in the rest of this section whether this model gives
an acceptable description of this time series (see Examples 7.8, 7.10,
and 7.11).

E Exercises: E: 7.17a, 7.18a.

E

XM701INP

Lag SACF SPACF
1 0.851 0.851
2 0.594 �0.466
3 0.319 �0.119
4 0.072 �0.083
5 �0.082 0.117
6 �0.176 �0.134
7 �0.236 �0.104
8 �0.264 �0.030
9 �0.234 0.159

10 �0.182 �0.098
11 �0.152 �0.186
12 �0.121 0.062

Exhibit 7.8 Industrial Production (Example 7.7)

Sample autocorrelations (SACF) and partial autocorrelations (SPACF) of quarterly series of
yearly growth rates of US industrial production (D4yt).
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7.2.2 Parameter estimation

OLS estimator of AR(1) model

In this section we discuss the estimation of ARMA(p, q) models with given
orders for p and q. For simplicity of the exposition we restrict the attention to
processes with zero mean. The results can easily be extended to time series
with non-zero mean by including a constant term in the model. First we
consider the stationary AR(1) model

yt ¼ fyt�1 þ et, t ¼ 2, � � � , n: (7:14)

Here �1 < f < 1, and we assume for simplicity that the innovations et are
normally distributed. This model has the form of a regression model, but the
regressor yt�1 is stochastic. The OLS estimator of f is given by

f̂f ¼
Pn

t¼2 yt�1ytPn
t¼2 y

2
t�1

:

Derivation of asymptotic distribution of OLS estimator

As the finite sample distribution of f is rather involved, one usually takes the
asymptotic distribution as an approximation in sufficiently large samples. By
substituting the expression (7.14) for yt, it follows that

ffiffiffi
n

p
(f̂f� f) ¼

1ffiffi
n

p
Pn

t¼2 yt�1et
1
n

Pn
t¼2 y

2
t�1

: (7:15)

Some details of the next steps are left as an exercise (see Exercise 7.12). The term
1
n

Pn
t¼2 y

2
t�1 in the denominator of (7.15) is the sample mean of the correlated

terms y2t�1. As the correlations rk ¼ E[ytyt�k] ¼ fk converge to zero exponentially
fast, the probability limit of this term exists and plim 1

n

Pn
t¼2 y

2
t�1

� � ¼ E[y2t�1] ¼ g0.
Next we consider some properties of the sample average 1

n

Pn
t¼2 yt�1et related to

the numerator of (7.15). This is the sample mean of uncorrelated terms, because
for t > s the error term et is uncorrelated with yt�1, ys�1, and es, so that
E[yt�1etys�1es] ¼ E[yt�1ys�1es]E[et] ¼ 0. Each term has expected value E[yt�1et]
¼ E[yt�1]E[et] ¼ 0 and variance E[y2t�1e

2
t ] ¼ E[y2t�1]E[e

2
t ] ¼ g0s

2. Then the cen-
tral limit theorem (see Section 1.3.3 (p. 50)) implies that the numerator of (7.15)
has the property that

1ffiffiffi
n

p
Xn
t¼2

yt�1et ¼
ffiffiffi
n

p 1

n

Xn
t¼2

yt�1et !d N(0, g0s
2):

T
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Combining the above results on the numerator and denominator of (7.15),
and using the fact that g0 ¼ s2= 1� f2)

�
, we conclude that

ffiffiffi
n

p
(f̂f� f) con-

verges in distribution to a normal distribution with mean zero and variance
g0s

2=g20 ¼ s2=g0 ¼ 1� f2. That is,

ffiffiffi
n

p
(f̂f� f) !d N(0, 1� f2): (7:16)

So the least squares estimator is consistent and has an asymptotic normal distri-
bution.

Approximate distribution of OLS estimator

It follows from the foregoing results that the approximate finite sample
distribution of the OLS estimator f̂f in the AR(1) model is given by

f̂f � N f,
1� f2

n

 !
:

The hypothesis that the time series yt is uncorrelated— that is, that f ¼ 0—
can be tested by the t-test. The correlations are not significant (at an approxi-
mate 5 per cent significance level) if f̂f is less than 2=

ffiffiffi
n

p
in absolute value.

Note that for values of f � 1 the asymptotic variance 1� f2 approaches
zero. This suggests that for f ¼ 1 the OLS estimator converges at a higher
speed than

ffiffiffi
n

p
. This is indeed the case, as will be further discussed in

Section 7.3.3.

Estimation of AR(p) models

The parameters of a stationary AR(p) model

yt ¼ f1yt�1 þ f2yt�2 þ � � � þ fpyt�p þ et, t ¼ pþ 1, � � � , n

can also be estimated by OLS. The stationarity condition means that the
model can be written as an infinite moving average as in (7.11). This implies
that the error term et is uncorrelated with the p� 1 vector of regressors
xt ¼ (yt�1, � � � , yt�p)

0. Therefore the orthogonality condition is satisfied—
that is, the regressors yt�k in the AR(p) model are exogenous for all
k ¼ 1, � � � , p. Further, as the process yt is stationary, the matrix of second
order moments Qn ¼ 1

n

Pn
t¼pþ1 xtx

0
t converges in probability to the corres-

ponding matrix Q of population moments that is non-singular (see Exercise
7.3). It follows from the results in Section 4.1.4 (p. 197) that the OLS
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estimators are consistent and that the covariance matrix can be approxi-
mated by s2

�Pn
t¼pþ1 xtx

0
t

��1
. Under the assumption of normality, the OLS

estimators coincide with the ML estimators (or, better, the conditional ML
estimators, treating the initial values y1, � � � , yp as fixed).

Estimation of MA(1) model

The estimation of models with moving average terms is somewhat more
involved. To illustrate this we first consider the MA(1) model

yt ¼ et þ yet�1

with �1 < y < 1. The parameter y cannot be estimated by regressing yt on
et�1, because the regressor et�1 is not directly observed. Since�1 < y < 1, the
model is invertible, so that we can express et�1 in terms of the past observa-
tions yt�k, k � 1, by means of (7.9). Substituting this expression for et�1

(that is, applied at time instant t � 1) in the MA(1) model, we obtain

yt ¼ (yyt�1 � y2yt�2 þ y3yt�3 � � � � )þ et:

This is a non-linear regression model. The parameter y can be estimated by
NLS after truncating

P1
k¼0 (� y)kyt�1�k to the finite sum

Pt�2
k¼0 (� y)kyt�1�k.

Estimation of ARMA models by NLS and ML

Stationary and invertible ARMA models can be estimated in a similar way. The
ARMA(p, q) model f(L)yt ¼ y(L)et can be written in the form of the (infinite)
regression model (7.2) so that

yt ¼
X1
k¼1

pkyt�k þ et:

The parameters pk are (non-linear) functions of the (pþ q) ARMA
model parameters. If we write p(z) ¼ 1�P1

k¼1 pkz
k, then p(L)yt ¼ et so

that f(L)yt ¼ y(L)e(t) ¼ y(L)p(L)yt. So the relation between the regres-
sion parameters pk and the (pþ q) ARMA model parameters fk and yk are
given by

f(z) ¼ y(z)p(z):

This equation (in terms of polynomials) can be used to compute the values of pk for
given values of the ARMA parameters fk and yk. If the infinite regression is
truncated to a finite regression yt �

Pm
k¼1 pkyt�k þ et (with m � pþ q), then the

T
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ARMA parameters of f(z) and y(z) can be estimated by NLS. If the innovations et
are assumed to be normally distributed, then asymptotically NLS is equivalent to
ML. Indeed, suppose that et � NID(0, s2) and that the ARMAmodel is rewritten
as p(L)yt ¼ et as before. Then the conditional log-likelihood of the ARMA model
(treating the initial values as fixed) is given by

log (L(f1, � � � ,fp, y1, � � � , yq,s2)) ¼ �n� p

2
log (2p)� n� p

2
log (s2)� 1

2s2
Xn
t¼pþ1

e2t :

Conditional ML corresponds to maximization of this function with respect to the
parameters. So the ARMA parameters are obtained by minimizing

P
e2t , which

shows that ML in this case is equivalent to NLS for n ! 1 (as the effect of
treating the initial values as fixed then vanishes, provided that the roots of the
MA polynomial are not too close to the unit circle, as otherwise the effect of initial
values vanishes only very slowly). Standard errors of the estimates can be obtained
as usual from the information matrix, and tests (such as t-, F-, and LR-tests) can
be performed in the usual way.

Iterative estimation methods

Instead of direct optimization of the (non-linear) log-likelihood, one can also
apply simpler iterative methods. As an illustration we consider the stationary
and invertible ARMA(1,1) model

yt ¼ fyt�1 þ et þ yet�1:

The main idea is to estimate the parameters by two iterative regression steps, a first
step, where f is estimated for given value of y, and a second step, where y is
estimated for given value of f. The model can be written as yt ¼ fyt�1 þ y(L)et,
where y(L) ¼ 1þ yL. As the model is invertible, so that �1 < y < 1, it follows
that y(z)a(z) ¼ 1, where a(z) ¼ 1=(1þ yz) ¼P1

k¼0 (� y)kzk. In the first step it is
assumed that the MA parameter y is known. Define the process xt by xt ¼ a(L)yt,
so that xt ¼ �yxt�1 þ yt. As starting condition we take y0 ¼ 0, so that
xt, t ¼ 1, � � � ,n, can be computed from the observed time series yt, t ¼ 1, � � � , n,
for given value of y. Then xt follows an AR(1) process, since xt � fxt�1 ¼
(1� fL)xt ¼ (1� fL)a(L)yt ¼ a(L)y(L)et ¼ et —that is,

xt ¼ fxt�1 þ et:

In this AR(1) model, f can be estimated by OLS. Let the corresponding OLS
residuals be denoted by et ¼ xt � f̂fxt�1. In the second step, for given value of f̂f,
the MA parameter y can be estimated by regressing yt � f̂fyt�1 on et�1 in the
regression model

(yt � f̂fyt�1) ¼ yet�1 þ et:

T

7.2 Model estimation and selection 561



The estimated value of y can be used to perform step 1 again to obtain a new
estimate of f, which can be used to perform step 2 again, and so on until the
estimates converge. To start the iterations, we can take y ¼ 0 in step 1, so that
xt ¼ yt in this first round. The advantage of the above method is that the estimates
are obtained by iterative (linear) regressions, whereas ML and NLS need non-
linear optimization methods. Similar methods can be followed for ARMA models
with higher orders p and q.

Example 7.8: Industrial Production (continued)

We continue our analysis of the quarterly series of yearly growth rates D4yt
of US industrial production. In Example 7.7 we discussed steps 1 and 2 of
the modelling process of Section 7.2.1. Now we consider step 3— that is, the
estimation of the model parameters. We will discuss (i) the estimates of
the AR(2) model and (ii) an interpretation of the estimated model.

(i) Estimates of AR(2) model

For reasons discussed in Section 7.2.1, an AR(2) model is postulated for the
series D4yt. Therefore we estimate an AR(2), and we include an intercept
because the average growth rate is non-zero. The parameters of the AR(2)
model are estimated by regressing D4yt on a constant and the two lagged
values D4yt�1 and D4yt�2. The result is in Exhibit 7.9 and can be summarized
as follows (asymptotic standard errors of the parameters are in parentheses).

D4yt ¼ 0:007þ 1:332D4yt�1 � 0:546D4yt�2 þ et:

(0:002) (0:072) (0:072)
(7:17)

The considered data period is 1961–94, with n ¼ 4 � 34 ¼ 136 observations.
As was mentioned in Example 7.1, the values of yt are also known prior to
1961. This allows us to estimate the above regression equation using n ¼ 136
observations, since in the initial period the values of the required lagged
regressors (which involve values of yt back to 1959.3 to compute the first
value of D4yt�2) are known.

(ii) Interpretation of the estimated model

The estimated AR(2) polynomial f(z) ¼ 1� 1:332zþ 0:546z2 can be factor-
ized as in (7.5). This gives f(z) ¼ (1� a1z)(1� a2z) with a1, 2 ¼
0:68	 0:32i, so that ja1, 2j lies well below 1. This provides some support
for the stationarity of the series D4yt. The stationarity of this series will be
investigated by means of statistical tests in Example 7.16. The AR(2) model
can be used to determine the average annual growth rate— that is, to
estimate E[D4yt]. It follows from (7.17) that this growth rate (in percentages)
is estimated as

E
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100 � 0:007

1� 1:332þ 0:546
¼ 3:34%:

The quality of the AR(2) model for this series will be further evaluated in the
next two sections, where we will also consider alternative ARMA models
(see Examples 7.10 and 7.11).

E Exercises: T: 7.2a, 7.3d; S: 7.12a–e.

7.2.3 Model selection

Identification of ARMA model orders

The estimation of ARMA models requires first that the orders p of the
autoregressive part and q of the moving average part are chosen. The choice
of these orders is called the identification of the ARMA model (see step 2 of
the modelling method described in Section 7.2.1). We will now discuss some
tools for selecting the model orders p and q; related diagnostic tests are
described in the next section. The results in Section 7.1.5 show that the
sample (partial) autocorrelations are helpful for selecting the orders of MA
and AR models. The theoretical ACF becomes zero for an MA process and
the theoretical PACF becomes zero for an AR process. These correlations can
be estimated from the sample by the SACF (denoted by rk) and SPACF
(denoted by f̂fkk) (see Section 7.1.5). To select the orders we can plot the
correlations rk and f̂fkk against the time lag k. The plot of rk is called
the correlogram.

Dependent Variable: D4Y
Method: Least Squares
Sample: 1961:1 1994:4
Included observations: 136

Variable Coefficient Std. Error t-Statistic Prob.
C 0.007147 0.002161 3.307447 0.0012

D4Y(�1) 1.332025 0.072094 18.47633 0.0000
D4Y(�2) �0.545933 0.072174 �7.564120 0.0000

R-squared 0.821380 Mean dependent var 0.032213
Adjusted R-squared 0.818694 S.D. dependent var 0.049219
S.E. of regression 0.020958 Akaike info criterion �4.870824
Sum squared resid 0.058416 Schwarz criterion �4.806574
Log likelihood 334.2160 F-statistic 305.7993
Durbin-Watson stat 2.050254 Prob(F-statistic) 0.000000

Exhibit 7.9 Industrial Production (Example 7.8)

AR(2) model for the quarterly series of yearly growth rates of US industrial production.
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Significance of the first order sample autocorrelation coefficient

One way to select the orders of an AR or MA model is to test whether the
(partial) correlations differ significantly from zero. For this purpose we need
to know the (asymptotic) distribution of the sample (partial) autocorrela-
tions. We derive this distribution for the first order sample autocorrelation r1
of a white noise process. The value of r1 is obtained by regression in the
AR(1) model yt ¼ aþ fyt�1 þ et, and the asymptotic distribution is given
in (7.16). A white noise process has f ¼ 0, so that in large enough samples
there holds

r1 � N 0,
1

n

� �
if yt is white noise:

The null hypothesis of no autocorrelation (r1 ¼ 0) can be tested against the
alternative r1 6¼ 0. At (approximate) 5 per cent level, the null hypothesis is
rejected if

jr1j > 2ffiffiffi
n

p :

In this case the first order autocorrelation is significant.

Significance of S(P)ACF for AR and MA processes

The first order sample partial autocorrelation f̂f11 is obtained by the regres-
sion (7.12) with k ¼ 1—that is, by regression in the model yt ¼ aþ
f11yt�1 þ et. This means that f̂f11 ¼ r1, so that f̂f11 � N(0, 1=n) if the process
is white noise. Similar results hold true for higher order sample (partial)
autocorrelations. It can be shown that, for an MA(q) process, the SACF rk
for k > q are approximately normally distributed with mean zero and
variance

MA(q) : var(rk) �
1þ 2

Pq
j¼1 r

2
j

n
for all k > q:

The significance of rk can be tested by the t-test. If the SACF are not
significant beyond lag q, this indicates that an MA(q) model may be appro-
priate for the time series. For an AR(p) process, the SPACF for k > p are, for
large enough samples, approximately normally distributed with mean zero
and variance

AR(p) : var(f̂fkk) �
1

n
, for all k > p:
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The significance can again be tested by the t-test. If the SPACF are not
significant beyond lag p, this means that an AR(p) model can be appropriate
to describe the time series.

Model selection by means of tests and information criteria

The foregoing methods can be used to select the order of an AR model or of
an MAmodel. In general it is not easy to select the orders of a mixed ARMA
model from the S(P)ACF. One can instead estimate a collection of ARMA
models, for different orders of p and q, and then select a model from this
collection. Competing models can be compared by tests or by using infor-
mation criteria. If two competing models are nested, in the sense that one
model is a restriction of the other model (for example an AR(2) model versus
an ARMA(2,2) model), then one could select the best model by performing
an F-test or an LR-test on the parameter restrictions. If competing models are
not nested in this way, then one can use information criteria like AIC and
SIC, as discussed in Section 5.2.1 (p. 279), where the number of parameters
of an ARMA(p, q) model (with constant term) is k ¼ pþ qþ 1. One then
chooses the model that minimizes AIC or SIC.

Example 7.9: Simulated Time Series (continued)

To illustrate step 2 of the modelling process, we use the S(P)ACF of the six
simulated time series of Examples 7.3 and 7.4 to identify the model orders.
The SACF and SPACF of these six time series are given in Panels 1 and 2 of
Exhibit 7.5. The simulated time series have length n ¼ 500, so that the
approximate 5 per cent critical value for S(P)ACF is 2=

ffiffiffiffiffiffiffiffi
500

p ¼ 0:089. For
the white noise series, some of the correlations (for instance, r3 and f̂f33) are
marginally significant, but none of the correlations is far above 0:089. The
S(P)ACF indeed suggests that the series is white noise. For the AR(1) process
only the first SPACF is highly significant, and for the AR(2) process only the
first and second SPACF are highly significant. So the AR processes are well
identified by the SPACF. Similar results hold true for the SACF of the MA(1)
and MA(2) process. For the ARMA(1,1) process many of the S(P)ACF are
significant, so that this series is not well described by (low order) AR or MA
models. This indicates that the model is of mixed ARMA type.

Example 7.10: Industrial Production (continued)

We continue our analysis of the quarterly series of annual growth rates in US
industrial production (see also Examples 7.7 and 7.8). We now consider step
2 of the modelling process of Section 7.2.1 in more detail for this series. We
will discuss (i) the sample (partial) autocorrelations of the series and (ii) a
comparison of two models: AR(2) and ARMA(2,5).

E

E
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(i) Sample (partial) autocorrelations

Exhibit 7.8 contains the first twelve S(P)ACF of the quarterly series of yearly
growth rates in US industrial production. The quarterly data are considered
over the years 1961–94, giving n ¼ 136 observations. Therefore the standard
error of the SPACF is approximately 1=

ffiffiffi
n

p ¼ 0:086, and SPACFs are signifi-
cant if they are (in absolute value) larger than 0.172. The SACF in Exhibit 7.8
displays a somewhat cyclical pattern, and the SPACF suggests that an AR(2)
model is a good starting point because the SPACFs for lags 3–12 are relatively
small. Only the eleventh SPACF is significant, but this has no intuitive
meaning and may be due to random effects. Note that, at 5 per cent signifi-
cance level, on average one out of twenty sample correlations may be
significant if the theoretical correlations are zero.

(ii) Comparison of two models: AR(2) and ARMA(2,5)

The AR(2) model was estimated in Example 7.8. As an alternative we con-
sider an ARMA(2,5) model for these data, so that f(L)D4yt ¼ aþ y(L)et,

Panel 1: Dependent Variable: D4Y
Method: Least Squares
Sample: 1961:1 1994:4
Included observations: 136
Convergence achieved after 23 iterations
Backcast: 1959:4 1960:4

Variable Coefficient Std. Error t-Statistic Prob.
C 0.001657 0.000607 2.729598 0.0072

D4Y(�1) 1.395914 0.136396 10.23425 0.0000
D4Y(�2) �0.460286 0.126571 �3.636585 0.0004
MA(1) �0.076816 0.125279 �0.613155 0.5409
MA(2) 0.054674 0.037878 1.443424 0.1513
MA(3) �0.049391 0.035496 �1.391466 0.1665
MA(4) �0.867788 0.037032 �23.43334 0.0000
MA(5) �0.022209 0.115754 �0.191859 0.8482

R-squared 0.880726 Mean dependent var 0.032213
Adjusted R-squared 0.874203 S.D. dependent var 0.049219
S.E. of regression 0.017457 Akaike info criterion �5.201129
Sum squared resid 0.039008 Schwarz criterion �5.029796
Log likelihood 361.6768 F-statistic 135.0226
Durbin-Watson stat 1.979721 Prob(F-statistic) 0.000000

Panel 2: Wald Test
Null Hypothesis: C(4) ¼ 0, C(5) ¼ 0, C(6) ¼ 0, C(7) ¼ 0, C(8) ¼ 0
F-statistic 12056652 Probability 0.000000
Chi-square 60283262 Probability 0.000000

Exhibit 7.10 Industrial Production (Example 7.10)

ARMA(2,5) model for the quarterly series of yearly growth rates of US industrial
production (Panel 1; the two lagged values of D4Y before 1961.1 are available and the
five lagged values of the error terms before 1961.1 are ‘backcasted’ from the model) and
test on the joint significance of the 5 MA terms (Panel 2).
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where the AR polynomial f(z) has degree 2 and the MA polynomial y(L) has
degree 5. Panel 1 of Exhibit 7.10 shows theML estimates of this model. If we
compare the AIC and SIC of the ARMA(2,5) model in Panel 1 of Exhibit
7.10 with the AIC and SIC of the AR(2) model in Exhibit 7.9, we see that
both these selection criteria favour the ARMA(2,5) model. As the AR(2)
model is a restriction of the ARMA(2,5) model, we can test the null hypoth-
esis of an AR(2) model (the restricted model) against the alternative of an
ARMA(2,5) model. Panel 2 of Exhibit 7.10 shows the outcome of the F-test
on the joint significance of the five MA terms. This test has the F(g, n� k)
distribution, where g ¼ 5 is the number of restrictions (the five MA terms),
k ¼ 8 is the number of parameters of the ARMA(2,5) model (including a
constant term), and n ¼ 4 � 34 ¼ 136 is the number of observations (note
that pre-sample values before 1961 are available; see also our remarks on this
point in Example 7.8). The test shows that the five MA terms are jointly
significant. If we use the log-likelihood values in Exhibit 7.9 and Panel 1 of
Exhibit 7.10, the LR-test gives LR ¼ 2(361:68� 334:22) ¼ 54:92 with P-
value (obtained from the w2(5) distribution) equal to P ¼ 0:0000. So this
leads to the same conclusion— that is, the ARMA(2,5) model is preferred
above the AR(2) model. However, as we shall see in Example 7.11, the
ARMA(2,5) model corresponds to over-fitting, which leads to worse per-
formance in prediction as compared to the AR(2) model.

7.2.4 Diagnostic tests

Overview

Once the model orders have been selected and the parameters of the model
have been estimated, the resulting model should be tested to see whether the
model is correctly specified.Herewe discuss some of themain diagnostic tools
for time seriesmodels. Some of these tools are based on the diagnostic tests for
regression models discussed in Chapter 5, in particular tests based on the
model residuals and tests based on the predictive performance of the model.
The discussion of some specific time series tests is postponed till later sections.
In Section 7.3.3 we consider tests for the presence and nature of trends, and in
Section 7.3.4 we discuss tests for outliers in time series and for time varying
variance.

Check on stationarity

As a first step one should check that the modelled time series is stationary, as
all tests discussed below are based on this assumption. A time plot of the
series is useful to see whether the mean level and the variance are more or less
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stable over time. One can also split the time series into two parts and check
whether the mean, variance, and autocovariances are comparable in the two
periods. Many time series in business and economics show changes in levels
due to trends and seasonals. Such aspects should then first be modelled by
methods to be discussed in Section 7.3.

Graphical inspection of residuals

The model selection methods of Section 7.2.3 and the estimation methods in
Section 7.2.2 are based on the assumption that the error terms of the ARMA
model satisfy the standard assumption that et � NID(0, s2). That is, the
error terms are assumed to have constant mean zero and constant variance,
and they are uncorrelated and normally distributed.
It is always helpful to use graphical tools as a first step to analyse the

residuals, as this may indicate possible defects of the model. The time plot of
the residuals shows the mean and variance over time, the correlogram can be
used to check for residual correlation, and the histogram of the residuals can
be compared with the normal distribution.

Check for serial correlation

As the time series model tries to capture the correlations over time, it is of
particular importance to test for serial correlation of the model residuals
et, t ¼ 1, � � � , n. The residual autocorrelations rk(e), for k � 1, are given by

rk(e) ¼
Pn

t¼kþ1 etet�kPn
t¼1 e

2
t

:

In a correctly specified model the parameters are estimated consistently and
the residuals et converge to the innovations et. Asymptotically, the residuals
are then uncorrelated and rk(e) has mean zero and variance 1=n. The auto-
correlations are not significant (at approximate 5 per cent significance level)
if they are within the interval

� 2ffiffiffi
n

p � rk(e) �
2ffiffiffi
n

p :

Serial correlation test of Ljung–Box

The joint significance of the firstm residual autocorrelations can be tested by
the Ljung–Box test of Section 5.5.3 (p. 365)— that is,

LB(m) ¼ n
Xm
k¼1

nþ 2

n� k
r2k(e) � w2(m� p� q):
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Under the null hypothesis that the estimated ARMA(p, q) model is correctly
specified, this test asymptotically follows the w2(m� p� q) distribution.
Note that, in contrast with this test for the regression model in Section
5.5.3, now (pþ q) degrees of freedom are lost. This is because the
ARMA(p, q) model has (pþ q) parameters that affect the serial correlation
of the model residuals.

Serial correlation test of Breusch–Godfrey

Another useful test for residual autocorrelation is obtained by applying the
Breusch–Godfrey LM-test for serial correlation in regression models, de-
scribed in Section 5.5.3 (p. 364). If the estimated model is an AR(p) model
with residuals et, then the test for serial correlation is based on a regression of
the type

et ¼ aþ b1yt�1 þ � � � þ bpyt�p þ g1et�1 þ � � � þ gret�r þ !t:

Here r is chosen to incorporate possibly relevant correlations up to lag r. The
LM-test is given by LM ¼ nR2 of this regression, which is asymptotically
distributed as w2(r) under the null hypothesis that the AR(p) model is correct.
It is also possible to use the F-test on the joint significance of the parameters
g1, � � � , gr, and this is asymptotically equivalent to the LM-test. In a similar
way one can test for residual autocorrelation in ARMA(p, q) models by
adding lagged values of the residuals et as explanatory variables. For in-
stance, for an ARMA(1,1) model the test equation for second order residual
autocorrelation becomes

et ¼ aþ b1yt�1 þ g1et�1 þ g2et�2 þ !t þ b2!t�1:

This auxiliary equation corresponds to the general principle of the Breusch–
Godfrey test in Section 5.5.3 to add lagged residuals to the model equation
under the null hypothesis. Here the ‘regressors’ yt�1 and !t�1 correspond to
the chosen ARMA(1,1) model, and the lagged ARMA(1,1) residuals et�1 and
et�2 are the added regressors to test for the presence of serial correlation. To
perform the Breusch–Godfrey test for ARMA models, one first estimates
the postulated ARMA(p, q) model by ML, with residuals et, and then esti-
mates the test equation (again by ML, because of the presence of MA terms,
with corresponding fitted values êet). Then LM ¼ nR2 ¼ n(SSE=SST) ¼
n
�P

êe2t =
P

e2t
�
of the test equation.

Forecast performance on a hold-out set of data

It is always of interest to compare alternative models by their forecast
performance. In many situations the main purpose of a time series model is
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to produce out-of-sample forecasts. To simulate this situation, one should
leave out a part of the available observations, as was discussed in Section
5.2.1 (p. 280). Suppose that in total (mþ n) observations are available and
that the last m observations are left out for evaluation purposes. Models are
then identified, estimated, and tested on the basis of only the first n observa-
tions yt, t ¼ 1, � � � , n, and forecasts are produced for the time moments
t ¼ nþ 1, � � � , nþm. These forecasts can be made in two ways. One method
is to predict ynþh h-steps-ahead (‘dynamic’ forecasts), using only the obser-
vations until t ¼ n in producing the forecasts. Another method is to predict
ynþh one-step-ahead (‘static’ forecasts), using the observations until
t ¼ nþ h� 1 in forecasting ynþh. Here we will consider the case of dynamic
forecasts, as this is more relevant in actually predicting the future multiple
steps ahead.

Forecast evaluation criteria

The forecast performance may be checked, for instance, by the percentage of
the m observations in the hold-out sample that are within the 95 per cent
forecast intervals of the model. As was discussed in Section 5.2.1, different
models may, for instance, be compared by their root mean squared predic-
tion error (RMSE) and their mean absolute prediction error (MAE), that are
defined by

RMSE ¼ 1

m

Xm
h¼1

(ynþh � ŷynþh)
2

 !1=2

, MAE ¼ 1

m

Xm
h¼1

jynþh � ŷynþhj:

Two competing models can also be compared by the number of times B that
the absolute error jynþh � ŷynþhj of the first model is smaller than that of the
second model. If the models forecast equally well, then B has the binomial
distribution with m trials and with chance of success equal to 1

2. The first
model is preferred if B is significantly larger than 1

2, and the second model is
better ifB is significantly smaller than 1

2. One can test the hypothesis that both
models forecast equally well (that is, that this chance is 1

2) by means of the
binomial distribution. Ifm is large enough, then 1ffiffiffi

m
p (B� m

2 ) is approximately
normally distributed with mean zero and variance 1

4. That is, under the null
hypothesis of equal forecast quality

1ffiffiffiffiffi
m

p (2B�m) � N(0, 1):

For instance, one may choose for the first model if (2B�m)=
ffiffiffiffiffi
m

p
> 2 and for

the second model if (2B�m)=
ffiffiffiffiffi
m

p
< �2.
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Summary of diagnostic tests

Summarizing, in time series analysis the following diagnostic tests are useful
to check the empirical validity of the model. The model should be adjusted if
some of the tests lead to rejection of the null hypothesis that the time series
model is correctly specified. If several models pass the diagnostic tests, then a
choice can be based on the forecast performance of the models.

. Test the stationarity of the time series (time plot and correlogram of the
series, and tests described in Sections 7.3.3 and 7.3.4).

. Test for outliers and constant variance (time plot and histogram of the
series and of the model residuals, Jarque–Bera test and Breusch–Pagan test
on the model residuals; further tests described in Section 7.4).

. Test the lag structure of the ARMA model (S(P)ACF, t- and F-tests on
additional lags, AIC and SIC).

. Test for residual autocorrelation (SACF, Ljung–Box test, Breusch–Godfrey
test on model residuals; note that the Durbin–Watson test should not be
used, as the regressors are stochastic in a time series model).

. Evaluate the forecast performance (especially dynamic forecasts on a
hold-out sample), and compare this performance between competing
models.

We shall now illustrate this by means of an example. As most time series in
business and economics are characterized by trends and seasonal effects,
further empirical applications of the methods treated in Section 7.2 (that
are valid for stationary time series) are postponed until Sections 7.3.3
and 7.3.4.

Example 7.11: Industrial Production (continued)

We continue our analysis of the quarterly data of yearly growth rates of
industrial production in the USA. In terms of the modelling steps described in
Section 7.2.1, steps 1–3 were discussed in previous examples (see Examples
7.7, 7.8, and 7.10). Now we consider steps 4–6 and discuss (i) diagnostic
tests for the AR(2) model of Example 7.8, (ii) diagnostic tests for two
alternative models, ARMA(2,5) and AR(5), (iii) the forecast performance
of the AR(2) model, (iv) a remark on the computed forecast intervals, and (v)
a comparison of the forecast quality of the three considered models.

(i) Diagnostic tests for the AR(2) model

First we perform diagnostic tests on the AR(2) model that was our first
guess in Example 7.7 (see also Example 7.8). Exhibits 7.11 (a) and (b)
show the time plot and the histogram of the residuals of this model. The
assumption of normally distributed error terms is clearly rejected by the

E
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Jarque–Bera test. The residuals have excess kurtosis (around 5.9, as com-
pared with 3 for the normal distribution), which is due to some outlying
observations. The influence of outliers is further discussed in Example 7.17.
Panel 3 of Exhibit 7.11 shows the correlogram of the residuals. There are
n ¼ 136 observations, so that correlations are significant (at 5 per cent
significance level) if they are larger than 2=

ffiffiffiffiffiffiffiffi
136

p ¼ 0:172 in absolute
value. There is some evidence of residual correlation at lags 3, 4, and 8.
The Ljung–Box test has P-values close to 0.05 if eight or more lags are
included. The Breusch–Godfrey test for serial correlation, with four lags
included, has P-value 0.06 (see Panel 4).

(ii) Diagnostic tests for the ARMA(2,5) and AR(5) models

Because the residuals of the AR(2) model have some significant autocorrela-
tions (for instance at lag 4, corresponding to a lag of one year), it is worth-
while comparing this model with other models that allow for a richer
correlation pattern in the time series. This is achieved by adding extra lags
to the model. We consider the ARMA(2,5) model of Example 7.10 (with
parameter estimates in Panel 1 of Exhibit 7.10) and the AR(5) model (with
parameter estimates given in Panel 5 of Exhibit 7.11). Panel 6 of Exhibit 7.11
summarizes the outcomes of diagnostic tests for the three models— that is,
AR(2), ARMA(2,5), and AR(5). Of these three models, the ARMA(2,5)
model is preferred by the selection criteria AIC and SIC. However, normality
of the residuals is rejected for all models and the AR(5) model performs
relatively best in this respect. The non-normality is due to outliers, as will be
further investigated in Section 7.4.1.

(iii) Forecast performance of the AR(2) model

Next we consider the forecast performance of the AR(2) model estimated in
Example 7.8 (see (7.17)). This model was estimated with the data over the
years 1961–94, and now we will forecast the series over the period 1995.1–
1998.3 (this period contains fifteen quarters). First we consider the quality of
the model in forecasting the growth rate in the next quarter. Exhibit 7.12 (a)
shows the fifteen one-step-ahead point forecasts and corresponding 95 per
cent forecast intervals of D4yt for 1995.1 to 1998.3, together with the
actually realized growth rates. These forecasts are quite accurate and the
95 per cent forecast intervals include all the actual values. Next we consider
multi-step-ahead forecasts of the growth rate, ranging from one quarter
ahead (for 1995.1) to fifteen quarters ahead (for 1998.3). Exhibit 7.12 (b)
shows these fifteen h-step-ahead forecasts of D4yt. The forecasts converge to
the mean value of 3.34 per cent for increasing values of the horizon h. For
longer horizons the 95 per cent forecast intervals become very wide and even
include substantial negative growth rates.
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(c) Panel 3: Correlogram RESIDAR2
Sample: 1961:1 1994:4; Included observations: 136
Lag SACF LB-Statistic P-value
1 �0.064 0.5700 0.450
2 0.010 0.5850 0.746
3 0.172 4.7681 0.190
4 �0.191 9.9534 0.041
5 0.013 9.9777 0.076
6 0.066 10.599 0.102
7 0.023 10.676 0.153
8 �0.194 16.181 0.040
9 �0.053 16.596 0.055

10 0.116 18.613 0.045
11 �0.106 20.301 0.041
12 0.029 20.426 0.059

(d) Panel 4: Breusch-Godfrey Serial Correlation LM Test (4 lags included)
F-statistic 2.289063 Probability 0.063290
Obs�R-squared 9.013347 Probability 0.060767
Test Equation:
Dependent Variable: RESIDAR2
Method: Least Squares

Variable Coefficient Std. Error t-Statistic Prob.
C �0.001508 0.005028 �0.299866 0.7648

D4Y(�1) 0.152125 0.292653 0.519812 0.6041
D4Y(�2) �0.106304 0.183270 �0.580037 0.5629
RESID(�1) �0.191041 0.308317 �0.619624 0.5366
RESID(�2) �0.079094 0.258568 �0.305893 0.7602
RESID(�3) 0.116781 0.195341 0.597830 0.5510
RESID(�4) �0.181992 0.140802 �1.292540 0.1985

Exhibit 7.11 Industrial Production (Example 7.11)

Diagnostic tests on the residuals of the AR(2) model for the series D4Yof yearly growth rates
of US industrial production, time plot (a), histogram (b), correlogram and Ljung–Box test
(Panel 3), and Breusch–Godfrey test (Panel 4).
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Themodel can also be used to forecast the ‘levels’ yt (in logarithms) instead
of the growth rates D4yt of industrial production. Exhibits 7.12 (c) and
(d) show respectively the one-step (static) and multi-step (dynamic)
forecasts of the series yt obtained by this model. This shows that the AR(2)
model provides relatively good short-term forecasts (up to six quarters) but
that the model may be less useful in long-term forecasting as the uncertainty
becomes very large. For instance, fifteen quarters (around four years) ahead,
Exhibit 7.12 (d) shows that the 95 per cent forecast interval of yt (in
logarithms) has a width of 0.4. This corresponds to a factor of e0:4 ¼ 1:5 in
the actual level of industrial production— that is, an uncertainty of around
50 per cent.

(e) Panel 5: Dependent Variable: D4Y
Method: Least Squares
Sample: 1961:1 1994:4; Included observations: 136

Variable Coefficient Std. Error t-Statistic Prob.
C 0.006444 0.002295 2.807883 0.0058

D4Y(�1) 1.360621 0.082194 16.55380 0.0000
D4Y(�2) �0.650037 0.130812 �4.969235 0.0000
D4Y(�3) 0.365532 0.131069 2.788851 0.0061
D4Y(�4) �0.536124 0.121923 �4.397234 0.0000
D4Y(�5) 0.269831 0.078028 3.458135 0.0007

R-squared 0.844584 Mean dependent var 0.032213
Adjusted R-squared 0.838607 S.D. dependent var 0.049219
S.E. of regression 0.019773 Akaike info criterion �4.965862
Sum squared resid 0.050827 Schwarz criterion �4.837363
Log likelihood 343.6786 F-statistic 141.2934
Durbin-Watson stat 1.902114 Prob(F-statistic) 0.000000

(f) Panel 6: Overview of diagnostic tests
Criterion Diagnostic test AR(2) AR(5) ARMA(2,5)
Model fit R-squared 0.821 0.845 0.881

St.Dev. residuals 0.021 0.020 0.017
Sel. Crit. AIC �4.871 �4.966 �5.201

SIC �4.807 �4.837 �5.030
Normality Skewness �0.108 �0.300 �1.007

Kurtosis 5.896 4.936 5.738
Jarque-Bera 47.784 23.280 65.490

Ser. Corr. Ljung-Box (12 lags) P ¼ 0:059 P ¼ 0:055 P ¼ 0:113
Breusch-Godfrey (4 lags) P ¼ 0:063 P ¼ 0:025 P ¼ 0:004

RMSE one-step (95.1–98.3) 0.0085 0.0076 0.0093
multi-step (95.1–98.3) 0.0167 0.0152 0.0251

Exhibit 7.11 (Contd.)

AR(5) model for the series D4Y of yearly growth rates of US industrial production (Panel 5)
and overview of diagnostic tests for the AR(2), AR(5), and ARMA(2,5) models (Panel 6).
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(iv) Remark on the computed forecast intervals

The forecast intervals for D4yt are computed as discussed in Section 7.1.6, by
substituting the estimated values of the AR(2) model. These parameter
estimates are themselves uncertain, but this is not taken into account in
constructing the uncertainty bounds of the forecasts. For the case of regres-
sion models, the effect of parameter uncertainty on prediction intervals was
discussed in Section 3.4.3 (p. 171). For time series models this is more
complicated, as the regressors are themselves stochastic. Forecast intervals
can be estimated by simulation. However, in large samples the effect of
parameter uncertainty vanishes, and in practice one often neglects this effect.
The forecast intervals for yt are computed from those of D4yt.
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Exhibit 7.12 Industrial Production (Example 7.11)

One-step-ahead forecasts (a) and multi-step-ahead forecasts (b) of the yearly growth rates of
US industrial production (D4Y) generated by the AR(2) model, together with the 95% forecast
intervals and the actually realized growth rates. Further, implied forecasts of the logarithmic
levels (Y) of US industrial production: static forecasts (one-step-ahead (c)) and dynamic
forecasts (multi-step-ahead (d)), together with the 95% forecast intervals and the actual
values of Y.
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(v) Comparison of forecast quality of three models

Finally we compare the out-of-sample forecast quality of the three models,
AR(2), AR(5), and ARMA(2,5). Panel 6 of Exhibit 7.11 reports the RMSE of
the three models for static and dynamic forecasts of the series D4yt of growth
rates over the period 1995.1 to 1998.3. The AR(5) model gives the best
predictions. Note that this model did not perform best from the point of
within-sample residual diagnostics and that it was not selected by AIC and
SIC. This shows that within-sample criteria need not always give the best
model for out-of-sample purposes. It is therefore of importance to keep some
data out of the specification, estimation, and diagnostic phases for later
model selection purposes. This may in particular prevent the data from
being over-fitted by models that contain too many parameters. Such models
improve the fit over the estimation sample but provide worse forecasts. The
ARMA(2,5) model seems to suffer from this kind of over-fitting (see Panel 6
of Exhibit 7.11). The ARMA(2,5) model has the smallest in-sample residuals
(the standard deviation of the residuals is 0.017, which is smaller than that of
AR(2) and AR(5)), but it gives the worst forecasts (the RMSE of dynamic
forecasts is 0.0251, which is considerably larger than that of AR(2) and
AR(5)).

The overall conclusion is that the AR(5) model performs best in forecast-
ing, with the AR(2) model as a good alternative. The ARMA(2,5) model
seems to be somewhat less useful.

E Exercises: E:7.20e

7.2.5 Summary

In this section we have discussed a sequence of steps to obtain adequate
models for observed stationary time series.

. The modelling starts with graphical inspection of the time series and
possible transformations to obtain stationarity.

. Next the orders of an ARMA(p, q) model are chosen, with the help of
the sample (partial) autocorrelations.

. If the chosen model is purely autoregressive, then it can be estimated by
OLS, and, if the model contains MA terms, it is estimated by ML (or by
NLS or other asymptotically equivalent methods).

. One should check whether the estimated model is adequate. In particu-
lar, it is of interest to test whether the model residuals are uncorrelated
and whether the model performs well in producing forecasts on a hold-
out sample.
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. If the model does not perform well enough, one can improve the model
by selecting other orders of the ARMA model. The outcomes of diag-
nostic tests and model selection criteria help in finding better models.

. Finally, if one is satisfied with the obtained model, this model can be
used, for instance, to predict future values of the time series. In general,
the forecasts will perform better for the nearer future than for more
distant times.
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7.3 Trends and seasonals
E Uses Chapters 1–4; Section 5.5; parts of Section 5.3; Sections 7.1, 7.2.

7.3.1 Trend models

Deterministic trends

Many economic time series tend to grow over time— that is, they display
trending behaviour. This is the case, for example, for the level of industrial
production in Example 7.1 (see Exhibit 7.1 (a)) and for the Dow-Jones index
in Example 7.2 (see Exhibit 7.2 (a)). The logarithm of both series also
contains trends. Such time series do not satisfy the assumption of stationarity
that is required for the methods discussed in Sections 7.1 and 7.2. If the series
shows a more or less steady upward or downward trend, this can be mod-
elled by a deterministic trend. The simplest model is

yt ¼ aþ bt þ et, t ¼ 1, � � � , n: (7:18)

This corresponds to a linear trend. This model is clearly non-stationary (for
b 6¼ 0), because the mean E[yt] ¼ aþ bt varies over time. The non-stationar-
ity may also be detected from the autocorrelation function. For n ! 1 all
sample autocorrelations converge to one, and in finite samples the SACF
tends to zero very slowly (see Exercise 7.13). Other trend specifications may
also be of interest— for example, a quadratic trend with trend function
f (t) ¼ aþ bt þ gt2 or a trend with saturation such as f (t) ¼ aþ bt�1. The
above trend models can be extended by including (stationary) AR terms and
(invertible) MA terms. For instance, an ARMA model with linear determin-
istic trend is described by

f(L)yt ¼ aþ bt þ y(L)et, (7:19)

where f(z) and y(z) have all their roots outside the unit circle.

Estimation of models with deterministic trends

In the models (7.18) and (7.19) the trend term t is non-stationary and the
stability condition on the regressors that was used in the asymptotic theory of
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Chapter 4 is not satisfied. More precisely, Assumption 1� in Section 4.1.2
(p. 193) requires that the probability limit of 1

nX
0X exists. However, for the

regressor xt ¼ t we get 1
n

Pn
t¼1 x

2
t ! 1 for n ! 1. The consequence is that

the OLS estimator of the slope coefficient b is consistent at a speed that is
higher than the usual speed

ffiffiffi
n

p
—namely, n

ffiffiffi
n

p
(see Exercise 4.2).

A simple two-step estimation method is the following. First regress the
time series yt in the model (7.18), neglecting possible AR and MA terms. If
the trend is modelled correctly, the residuals are stationary and can be
modelled in the second step by ARMA models as discussed in Section 7.2.
Instead of this two-step approach, one can also directly estimate the ARMA
model (7.19) with the deterministic trend included. The asymptotic statis-
tical properties of the estimated ARMA parameters are the same as in the
stationary case discussed in Section 7.2.2, provided that the trend has been
modelled correctly.

The random walk model

The above trend models are called deterministic, as they impose a determin-
istic pattern on the time evolution of the mean of the time series. That is,
every time step the mean of the series increases by the same amount b.
Another type of trend models contains so-called stochastic trends. The
simplest model is the random walk

yt ¼ yt�1 þ et: (7:20)

Here et is white noise. The name ‘random walk’ originates from the fact that
the trend direction cannot be predicted, because for given value of yt�1 it is
equally likely that yt > yt�1 as that yt < yt�1. Indeed, the expected change
Dyt ¼ yt � yt�1 ¼ et in the time series, conditional on the past information
Yt�1 ¼ yt�1, yt�2, � � �f g, is equal to

E[DytjYt�1] ¼ E[et] ¼ 0:

So we cannot predict whether the time series will move upward
or downward. This differs from stationary series. For instance, for a station-
ary AR(1) model yt ¼ fyt�1 þ et with �1 < f < 1 we get Dyt ¼ (f� 1)yt�1

þet, and as (f� 1) < 0 it follows that

E[DytjYt�1] < 0 if yt�1 > 0, E[DytjYt�1] > 0 if yt�1 < 0:

As E[yt] ¼ 0, this means that a stationary series has the tendency to return to
the mean value of the process. A stationary process is, therefore, said to be
mean reverting. The random walk does not have this property.
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Stochastic properties of the random walk

A random walk series does not have a steady trend direction. However,
during some time intervals a sequence of particular values of et may lead to
local trendlike movements in the series yt. This can be explained by recursive
substitution in (7.20), which gives

yt ¼ y1 þ
Xt
s¼2

es:

This shows that a large value of es affects the values of the time series yt for all
t � s. The impact of a shock es on yt does not diminish over time. One
therefore says that the shocks in this model are persistent, in contrast with
stationary processes, where the effect of innovations eventually dies out. The
random walk process is non-stationary. For instance, if y1 ¼ 0 is given, then
the mean of the series is E[yt] ¼ 0, but the variance is equal to
var(yt) ¼ (t � 1)s2, which increases over time. For large values of t, the
correlation between yt and yt�k is approximately equal to t�k

t . So the SACF
will have values that are very close to 1 and that die out only very slowly (see
Exercise 7.13).

Integrated processes and ARIMA models

The AR polynomial of the model (7.20) is given by f(z) ¼ 1� z, which has
a root f(z) ¼ 0 at z ¼ 1. For this reason the random walk model (7.20) is
said to have a unit root. This shows once more that the random walk is
not stationary, as in Section 7.1.3 we derived the condition that all the roots
of the AR polynomial should be outside the unit circle for a stationary
process. The process yt is called integrated of order one, as yt is non-
stationary but the series of first differences Dyt ¼ (1� L)yt ¼ yt � yt�1 ¼ et
is stationary.
The randomwalk model can be extended by including a constant term and

by incorporating (stationary) AR and (invertible) MA terms. An
ARIMA(p, d, q) model has the property that Dkyt is non-stationary for all
k < d and that Ddyt is stationary and follows an ARMA(p, q) model. Such
models are described by

f(L)(1� L)dyt ¼ aþ y(L)et,

where f(z) and y(z) are polynomials of degrees p and q respectively that have
all their roots outside the unit circle. Such a process is called integrated of
order d, and the process is said to have d unit roots. Because series that are
integrated of order d ¼ 1 have the property that the difference yt � yt�1 is
stationary, such series yt are called difference stationary. For time series in
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business and economics, the cases d ¼ 0 and d ¼ 1 are of most importance.
Stationary series have d ¼ 0, and non-stationary series often become station-
ary after taking first differences. In some applications one may encounter
series that are integrated of order d ¼ 2—for instance, some nominal price
series may have this property. Higher orders of integration are very rare in
practice.

Estimation and diagnostic tests of models with trends

An ARIMA(p, d, q) model can simply be estimated and evaluated by
applying the results of Section 7.2 on the suitably differenced stationary
series (1� L)dyt. The question whether the trend is deterministic or stochas-
tic and, in the latter case, the question what is the order of integration is
treated in Section 7.3.3. The conventional statistical tests (such as t-tests and
LR-tests) and the diagnostic tests of Section 7.2.4 remain valid after the trend
has been appropriately removed (by regression in the case of a deterministic
trend or by differencing the data in the case of a stochastic trend). However,
if the model is misspecified because a deterministic trend is wrongly ex-
cluded or because the data are not properly differenced, then the results
of Section 7.2 do not apply anymore. That is, the conventional tests no
longer follow the standard distributions of the stationary case. This affects
all standard inference procedures. It is, therefore, of major importance to
model the trend appropriately before any further analysis of the data is
performed.

Random walk with drift

If a constant term is added in the random walk model (7.20), then we get

Dyt ¼ aþ et:

This is called a random walk with drift, and a is the drift term. By recursive
substitution this can be written as

yt ¼ y1 þ a(t � 1)þ
Xt
s¼2

es:

So the constant term a becomes the coefficient of a deterministic trend
component in the time series. This shows that the role of the constant term
in a model with a unit root is different from the one in stationary models.
The constant term has a similar trend interpretation in more general
ARIMA(p, 1, q) models that are integrated of order one. The key difference
from the deterministic trend model (7.19) is the stochastic trend termPt

s¼2 es.
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We summarize some of the properties of the random walk with
drift by comparing this model with the general AR(1) model
yt ¼ aþ fyt�1 þ et. If �1 < f < 1, then the series yt is stationary with
mean m ¼ a=(1� f). So in this case a ¼ (1� f)m, and we can rewrite the
model as yt�m¼f(yt�1�m)þet and also as Dyt¼D(yt�m) ¼(f�1) (yt�1�m)
þet. As f� 1 < 0 for the stationary series it follows that

E[DytjYt�1] < 0 if yt�1 > m, E[DytjYt�1] > 0 if yt�1 < m:

This shows again that a stationary series is mean reverting. On the other
hand, in the random walk with drift model we get

E[DytjYt�1] ¼ E[aþ et] ¼ a:

So in this case we always expect the series to move forward (upward if a > 0
and downward if a < 0). This shows that the process is not stationary.
Further, by writing the random walk with drift as yt ¼ y1 þ a(t � 1)þPt

s¼2 es, it follows that E[ytjy1] ¼ y1 þ (t � 1)a and var(ytjy1) ¼ (t � 1)s2,
so that both the mean and the variance are unbounded.

Trend stationary processes

Next we consider the model

yt ¼ aþ bt þ fyt�1 þ et: (7:21)

This model contains as special cases the stochastic trend model (7.20) (for
a ¼ b ¼ 0 and f ¼ 1) and the deterministic trend model (7.19) (if
�1 < f < 1). We consider the model with �1 < f < 1 in more detail.
In this case the AR polynomial f(z) ¼ 1� fz is stationary. Define
zt ¼ yt � d1 � d2t, where d2 ¼ b=(1� f) and d1 ¼ (a� fd2)=(1� f); then
it follows by direct substitution in equation (7.21) that zt ¼ fzt�1 þ et
and hence

(yt � d1 � d2t) ¼ f(yt�1 � d1 � d2(t � 1))þ et:

Because �1 < f < 1, the process zt is stationary, so that the effect of the
innovations et eventually dies out. So in this case f (t) ¼ d1 þ d2t is the long-
term trend in the series and deviations from this trend are transient. The
series returns to the trend f (t) in the long run. Therefore the series yt is called
trend stationary in this case. More generally, every process (7.19) with
stationary AR polynomial f(z) is trend stationary. On the other hand, if
f ¼ 1 and b 6¼ 0 in (7.21), then we can rewrite this as Dyt ¼ aþ bt þ et,
so that E[DytjYt�1] ¼ aþ bt. In this case the series is expected to exhibit
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changes that become larger as time progresses. This corresponds to quadratic
trend behaviour, and the model contains both a stochastic trend (as f ¼ 1)
and a deterministic trend (as b 6¼ 0).

A model with latent trend

As an alternative for deterministic and stochastic trend models, the trend can also
be modelled by a so-called latent trend variable. For example, let

yt ¼ mt þ et, mtþ1 ¼ aþ mt þ Zt, (7:22)

where et � N(0, s2e ) and Zt � N(0, s2Z) are independent white noise processes. The
trend component mt is unobserved and follows a random walk with drift. If
s2Z ¼ 0, this model reduces to a deterministic trend, as mt ¼ m1 þ a(t � 1) in this
case. If s2e ¼ 0, then the model reduces to a random walk with drift
yt ¼ aþ yt�1 þ Zt. If s2Z > 0, then the trend can be eliminated by taking first
differences. This gives

Dyt ¼ aþ et � et�1 þ Zt�1:

As the correlations of the composite error term on the right-hand side are zero for
all lags k > 1, it follows that Dyt is an MA(1) process. So yt is an ARIMA(0,1,1)
process and can be written as

Dyt ¼ aþ !t � y!t�1: (7:23)

The parameter y can be derived from s2e and s2Z, as follows. As et and Zt are
independent white noise processes, it follows that Dyt has variance g0 ¼ 2s2e þ s2Z
and first order covariance g1 ¼ �s2e . On the other hand, from the ARIMA(0,1,1)
model it follows that g0 ¼ (1þ y2)s2! and g1 ¼ �ys2!. Let l ¼ s2Z=s

2
e be the so-

called signal-to-noise ratio of the model; then the first order autocorrelation of Dyt
is given by

r1 ¼ E[(Dyt � a)(Dyt�1 � a)]

E[(Dyt � a)2]
¼ g1

g0
¼ �y

1þ y2
¼ �s2e

2s2e þ s2Z
¼ �1

2þ l
:

Because l > 0, it follows that y > 0, and the (invertible) solution (with y < 1) for y
in terms of l is given by y ¼ 1þ 1

2 l� 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ 4l

p
. In the next section we consider

the use of this trend model in trend estimation and forecasting.

Example 7.12: Simulated Series with Trends

We give a graphical illustration of the differences between trend stationary
and difference stationary processes by simulating time series from the model
(7.21), for different values of the parameters (a, b, f). Exhibit 7.13 shows
graphs of the following five simulated time series.

T

E
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Exhibit 7.13 Simulated Series with Trends (Example 7.12)

Simulated series of length 500 ((f)–(j)) and first fifty observations ((a)–(e)) generated by the
model yt ¼ aþ bt þ fyt�1 þet, where et are NID(0,1), for different values of the parameters
(a,b,f).
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. The first series has parameters (a, b, f) ¼ (1, 0, 0:8). This is a stationary
series without trend.

. The second series has parameters (a, b, f) ¼ (1, 0:01, 0:8). This series is
trend stationary. The series shows some short-term fluctuations but it
always returns to the long-term trend 1þ 0:01t.

. The third series is the random walk with parameters (a, b, f) ¼ (0, 0, 1).
This series has prolonged periods of up- and downward movements, but
there is no clear overall trend direction.

. The fourth series is a random walk with drift with parameters
(a, b, f) ¼ (0:1, 0, 1). This series shows an upward trend but the location
of the trend is not stable.

. The fifth series has parameters (a, b, f) ¼ (0, 0:001, 1). This series con-
tains a stochastic trend (as f ¼ 1) and a deterministic trend (as b ¼ 0:001).
The combination of these two trends results in quadratic trend behaviour,
since the growth Dyt ¼ 0:001t increases over time.

Exhibit 7.13 (f )–(j) show the series over a sample period of length n ¼ 500
where the differences are quite pronounced; (a)–(e) show the series for the
first fifty observations, and the differences are much less clear in this case.
Obviously, differences in trends can be distinguished only after a sufficiently
long observation period.

E Exercises: S: 7.13a, b.

7.3.2 Trend estimation and forecasting

Forecasting a deterministic trend

If a time series shows trending behaviour, this is of major importance in
forecasting.We consider the estimation and forecasting of the trendmodels of
the foregoing section— that is, trends that are deterministic, stochastic, or
latent. First we consider the linear deterministic trend model (7.18)— that is,

yt ¼ aþ bt þ et, t ¼ 1, � � � , n:

We suppose that the time series yt is observed at times t ¼ 1, � � � , n, and we
wish to forecast yt at time t ¼ nþ h. Let a and b denote theOLS estimates of a
and b, based on the data (y1, � � � , yn). The h-step-ahead forecast is given by

ŷynþh ¼ aþ b(nþ h):
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If we neglect the errors in the parameter estimates— that is, if we assume that
a ¼ a and b ¼ b—then the forecast error variance is s2 for all forecast
horizons. If the trend is deterministic, then the uncertainty about the future
does not depend on the forecast horizon. If the parameter uncertainty is
taken into account, then the results in Section 2.4.1 (p. 105) show that the
forecast variance is equal to

E[(ynþh � ŷynþh)
2] ¼ s2 1þ 1

n
þ nþ h� nþ1

2Pn
t¼1 t � nþ1

2

� �2
 !

� s2:

Here the last approximation is valid if the number of observations n is large
compared to the forecast horizon h. This motivates the usual practice to
neglect the parameter uncertainty in constructing prediction intervals.

Forecasting a stochastic trend

Next we consider the random walk with drift

yt ¼ aþ yt�1 þ et, t ¼ 2, � � � , n:

Let a be the OLS estimate of a. This estimate is obtained by regression in the
model Dyt ¼ aþ et, so that a is the sample average of Dyt with variance
s2=(n� 1). The h-step-ahead forecast is given by

ŷynþh ¼ yn þ ah:

If a ¼ a, then the forecast error is equal to ynþh � ŷynþh ¼
Ph

j¼1 enþj with
forecast variance hs2. Therefore, in contrast with a deterministic trend, for
series with a stochastic trend the forecast uncertainty grows for larger
forecast horizons. If the parameter uncertainty is taken into account, then
the forecast error is given by ynþh � ŷynþh ¼ h(a� a)þPh

j¼1 enþj. As the
estimate of a is based on the observations yt with t � n, all terms in this
error are uncorrelated. It follows that

E[(ynþh � ŷynþh)
2] ¼ s2 hþ h2

n� 1

� �
� hs2,

where the last approximation is valid if n is large compared to h. This again
motivates the usual practice of neglecting the parameter uncertainty in
constructing prediction intervals for the series yt.
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Forecasting of ARMA models with deterministic trends

The foregoing trend models are concerned only with the long-run trend and
neglect possible short-run fluctuations in the series. Now we consider fore-
casts for the ARMA model with deterministic trend

f(L)yt ¼ aþ bt þ y(L)et:

Here f(z) satisfies the stationarity condition and y(z) the invertibility condi-
tion. As in our analysis of (7.21) in Section 7.3.1, we can write the model in
the form

f(L)zt ¼ y(L)et, zt ¼ yt � d1 � d2t:

Here the parameters d1 and d2 are chosen in such a way that f(L)(d1 þ d2t)
¼ aþ bt. The parameters (d1, d2) are obtained from (a, b) by solving the
equation f(L)(d1 þ d2t) ¼ f(1)d1 þ (t �Pfk(t � k))d2 ¼ aþ bt. To obtain
forecasts of yt, we can first forecast the stationary series zt by the methods
discussed in Section 7.1.6. Then forecasts for yt are computed by

ŷynþh ¼ ẑznþh þ d1 þ d2(nþ h):

If the parameter uncertainty in d1 and d2 is neglected, then the forecast error
variance of yt is the same as that of zt, because ytþh � ŷytþh ¼ ztþh � ẑztþh in
this case.

Forecasting of ARIMA models

Next we consider the forecasting of time series that are integrated of order
1 and that are described by the ARIMA(p, 1, q) model

f(L)(1� L)yt ¼ aþ y(L)et:

The methods of Section 7.1.6 can be used to forecast the stationary variable
zt ¼ (1� L)yt. As ynþh ¼ yn þ

Ph
j¼1 znþj, it follows that the h-step-ahead

forecast of yt is given by

ŷynþh ¼ yn þ
Xh
j¼1

ẑznþj:

The forecast error is
Ph

j¼1

�
znþj � ẑznþjÞ. Using the notation of Section 7.1.6,

the forecast variance is given by SPE(h) ¼ s2
Ph

j¼1

�Ph�j
k¼0 ck

�2
(see Exercise

7.5).
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Trend forecasts by exponential smoothing (EWMA)

Next we consider trend forecasting in the model (7.22) with latent trend
variable mt. To derive the forecast formula we rewrite this model as the
ARIMA(0,1,1) model (7.23). For simplicity we assume for the moment
that the model contains no drift, so that a ¼ 0. The MA(1) model for
zt ¼ Dyt is then given by zt ¼ !t � y!t�1, where 0 < y < 1. Because the MA
model for zt is invertible, the results in Section 7.1.6 show that !t ¼ zt � ẑzt,
where the one-step-ahead forecast ẑzt of zt is equal to ẑzt ¼ �y!t�1. Since the
value of yt�1 is known at time (t � 1), it follows that ẑzt ¼ cDyDyt ¼ ŷyt � yt�1,
where ŷyt is the forecast of yt based on the observations (yt�k, k � 1). The
foregoing results for zt and ẑzt imply that !t ¼ zt � ẑzt ¼ yt � ŷyt and that
ŷyt ¼ yt�1 þ ẑzt ¼ yt�1 � y!t�1. So the one-step-ahead forecasts of yt are re-
lated by

ŷytþ1 ¼ yt � y!t ¼ yt � y(yt � ŷyt) ¼ (1� y)yt þ yŷyt:

Here 1� y is called the smoothing factor. If this factor is small (that is,
if y is close to one), then the old forecast ŷyt has relatively more weight
than the most recent observation yt. If the smoothing factor is large (so
that y is close to zero), then the new observation yt has a relatively large
weight. By repetitive substitution, the above forecast equation can be
written as

ŷytþ1 ¼ (1� y)
X1
j¼0

yjyt�j:

In the trend model (7.22) the term et is white noise, so that m̂mt ¼
E[mtjYt�1] ¼ ŷyt and hence

m̂mtþ1 ¼ (1� y)yt þ ym̂mt ¼ (1� y)
X1
j¼0

yjyt�j:

So in this latent trend model the trend is forecasted as a weighted average of
the past observations, with exponentially declining weights that sum up to
unity. This is called the exponentially weighted moving average (EWMA)
method of trend estimation. One also says that the trend is estimated by
exponential smoothing. The above forecast formula can also be used for
h-step-ahead forecasts, as ŷynþh ¼ m̂mnþh ¼ m̂mn. So the forecasts are the same
for all horizons. This shows that EWMA should be used only for series that
do not have a clear trend direction.
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Choice of smoothing factor in EWMA

In practice the infinite summation of the EWMA is truncated (as the time
series is not observed for t � 0). Further, the smoothing parameter y should
be specified by the user. Smooth trend estimates are obtained by choosing
small values for the smoothing factor— that is, for y � 1. For y � 0 the trend
follows the fluctuations in the time series quite rapidly. One possible method
to choose y is by minimizing the sum of squared one-step-ahead forecast
errors

Pn
t¼2 (yt � ŷyt)

2. If the error terms !t are normally distributed, this
corresponds to the ML estimate of y in the MA(1) model for Dyt. As this
criterion focuses on one-step-ahead forecasts, the obtained trend is often only
suitable for short-run forecasts. If long-run forecasts are needed, then other
values of y with smoother trends may provide better results.

Holt–Winters trend forecasts

In the above derivation of the EWMA we assumed that a ¼ 0 in (7.22), so
that the time series yt has no drift term in the trend. If the time series has a
clear overall trend direction, then this can be modelled by taking a 6¼ 0 in
(7.22), but instead one often uses a more flexible model that allows for
variations in the trend component a. This leads to the model

yt ¼ mt þ et, mtþ1 ¼ at þ mt þ Zt, atþ1 ¼ at þ zt:

Here the three noise processes (et, Zt, zt) are assumed to bemutually independ-
ent and normally distributed white noise processes. Least squares forecasts
and trendestimates canbedetermined inaway similar to themethoddiscussed
before for EWMA. This gives the so-calledHolt–Winters trend estimate

m̂mtþ1 ¼ (1� y1)yt þ y1(âat þ m̂mt), âatþ1 ¼ (1� y2)(m̂mtþ1 � m̂mt)þ y2âat:

To apply this method one should specify two smoothing factors,
0 < 1� y1 < 1 for the ‘level’ mt and 0 < 1� y2 < 1 for the ‘slope’ at in the
series. These parameters can be estimated, for instance, by ML in the corres-
ponding ARIMA(0,2,2) model for yt (see Exercise 7.5). Whereas the EWMA
forecasts are the same for all horizons, so that they lie on a horizontal line,
the Holt–Winters forecasts lie on a straight line (see Exercise 7.5).

Example 7.13: Industrial Production (continued)

We continue our analysis of the data on industrial production in the USA. In
Section 7.2 we considered the quarterly series D4yt of yearly growth rates.
The fourth difference removes the trend of the series, so that D4yt could be
modelled as a stationary series by means of ARMA models (see for instance

E

XM701INP
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Example 7.11). Instead of this differenced series, we will now consider the
series yt consisting of the logarithms of the index of US industrial production.
This time series was plotted in Exhibit 7.1 (b) in Example 7.1.Wewill discuss
several models for the trend of this series—namely (i) a deterministic trend
model, (ii) a stochastic trend model, and (iii) EWMA andHolt–Winters trend
estimates.

(i) Deterministic trend model

First we fit a deterministic linear trend. Exhibit 7.14 (b) and (c) show that the
series moves around this trend line but that deviations persist for relatively
long periods. This strong positive serial correlation is also indicated by the
very low value for the Durbin–Watson statistic (0.08) of the regression in
Panel 1 of Exhibit 7.14. Exhibit 7.14 (b) also shows the (dynamic) out-of-
sample forecasts over the period 1995.1 to 1999.4. Comparing these fore-
casts with the actual values over the period 1995.1 to 1998.3, we see that the
general direction is predicted quite accurately but that the forecast intervals
are quite wide. The intervals are equally wide for all horizons. The RMSE
over the period 1995.1 to 1998.3 is 0.0249.

(ii) Stochastic trend model

Next we estimate a random walk with drift. Panel 4 of Exhibit 7.14 shows
the corresponding regression, with residuals in (f ), and (e) shows the (dy-
namic) out-of-sample forecasts. The point forecasts are comparable to those
of the deterministic trend model. For short forecast horizons the forecast
intervals are narrower than for longer horizons. The RMSE over the period
1995.1 to 1998.3 is 0.0348. So the model with stochastic trend performs
worse in this respect as compared with the deterministic trend model.

(iii) EWMA and Holt–Winters trend estimates

Exhibit 7.15 (a) and (b) show the trend estimates obtained by EWMA. If the
smoothing factor is estimated by ML, this gives a value of 1� y ¼ 0:97 in
(a)— that is, the past is forgotten very fast. If we set this smoothing factor at
1� y ¼ 0:20 in (b), then the estimated trend becomes much smoother and
trend deviations in the series are followed only after longer delays. Further
note that in the EWMA the estimated trend always lags behind the observed
series. This indicates once more that this method is not suitable for trending
series. Exhibits 7.15 (c) and (d) show the Holt–Winters trend estimates, with
ML smoothing factors (1� y1 ¼ 1:00 and 1� y2 ¼ 0:02) in (c) and with
both smoothing factors equal to 0.20 in (d). The last trend estimate is
relatively smooth and it lags behind much less than the smooth EWMA
trend.
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(a) Panel 1: Dependent Variable: Y
Method: Least Squares
Sample: 1961:1 1994:4; Included observations: 136

Variable Coefficient Std. Error t-Statistic Prob.
C 3.781132 0.012345 306.2982 0.0000

@TREND(61.1) 0.007140 0.000158 45.16380 0.0000
Durbin-Watson stat 0.082816
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(b) (c)

(d) Panel 4: Dependent Variable: D(Y)
Method: Least Squares
Sample: 1961:1 1994:4; Included observations: 136

Variable Coefficient Std. Error t-Statistic Prob.
C 0.008400 0.001793 4.686264 0.0000
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Exhibit 7.14 Industrial Production (Example 7.13)

Deterministic trend model for the logarithm of US industrial production (Panel 1) with fitted
values over 1961.1–1994.4 and with forecasts for 1995.1–1999.4 with 95% forecast intervals
(b) and with corresponding residuals (c). Stochastic trend model (Panel 4) with similar graphs
((e) and (f ); the fitted values in (e) lag closely behind the actual values).
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E Exercises: T: 7.5a–c; E: 7.17b, 7.18e, 7.20c, d.

7.3.3 Unit root tests

Formulation of the testing problem

The analysis in the two foregoing sections shows that it is of importance to
model the trend in an appropriate way. In particular, one should distinguish
deterministic from stochastic trends. If the trend is deterministic, then the
series reverts to the trend line in the long run, innovation shocks have an
effect that diminishes over time, and the forecast variance is constant for all
horizons. On the other hand, if the trend is stochastic, then the series does not
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Exhibit 7.15 Industrial Production (Example 7.13)

Trend estimates obtained by EWMA ((a)–(b), with ML smoothing factor 1� y ¼ 0:97 in (a)
and with 1� y ¼ 0:2 in (b)) and by Holt–Winters ((c)–(d), with ML smoothing factors
1� y1 ¼ 1:00 and 1� y2 ¼ 0:02 in (c) and with 1� y1 ¼ 1� y2 ¼ 0:2 in (d)).
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revert to a long-term trend line, innovation shocks have a permanent and
non-vanishing effect, and the forecast variance increases for larger horizons.
In this section we discuss tests for the nature of the trend. In formulating
the testing problem, we should make sure that the models under the null
hypothesis and under the alternative hypothesis are reasonable competing
alternatives.
As a first step we can make a time plot of the series to see if it has any

trending pattern. In many cases it has. A simple test on the nature of the trend
can be based on the model (7.21)— that is,

yt ¼ aþ bt þ fyt�1 þ et,

where et is white noise. This model corresponds to a deterministic trend if
�1 < f < 1 and b 6¼ 0, and it corresponds to a stochastic trend if f ¼ 1 and
b ¼ 0. The case f ¼ 1 and b 6¼ 0 is somewhat less relevant, as this corres-
ponds to a quadratic trend pattern that does not occur so much in practice.
As the test of parameter restrictions is much easier than that of parameter
inequalities, one usually takes as null hypothesis that the trend is stochastic
and as alternative that the trend is deterministic. By subtracting yt�1 from
both sides of the above test equation, it can be rewritten as

Dyt ¼ aþ bt þ ryt�1 þ et, (7:24)

where r ¼ f� 1. The null hypothesis of a stochastic trend and the alterna-
tive hypothesis of a deterministic trend can be formulated in terms of the
following two parameter restrictions:

H0 : r ¼ 0 and b ¼ 0 (stochastic trend),

H1 : (� 2< ) r < 0 and b 6¼ 0 (deterministic trend):

The case r � �2, or equivalently f � �1, is of little practical importance, so
that the relevant alternative situation of a (trend) stationary time series
corresponds to r < 0.

Dickey–Fuller F-test

The above two parameter restrictions can be tested by the usual F-test.
Because of the lagged regressor yt�1, the equation has n� 1 effective obser-
vations and k ¼ 3 parameters under the alternative hypothesis. So the
F-statistic is given by
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F ¼ (e0ReR � e0e)=2
e0e=(n� 4)

:

Here e0e is the residual sum of squares in the model (7.24) without parameter
restrictions and e0ReR is the residual sum of squares in the stochastic trend
model with b ¼ r ¼ 0—that is, in the random walk with drift. The null
hypothesis of a stochastic trend is rejected for large values of the F-statistic.
However, the distribution of this statistic is non-standard as it is not equal to
the conventional F(2,n� 4) distribution, not even asymptotically. The
reason is that, under the null hypothesis, the series yt contains a unit root,
so that the regressor yt�1 in the test equation is non-stationary. That is, the
stability condition of Section 4.1.2 (p. 193) is not satisfied as
plim 1

n

Pn
t¼2 y

2
t�1

� � ¼ 1 for series with a stochastic trend.
Critical values for the test were obtained by Dickey and Fuller. The 5 per

cent critical values for this test are given in Exhibit 7.16 (a). For large samples,
the 5 per cent critical value of the standard F(2,n� 4) distribution is 3.00, but
in our trend testing problem the critical values are larger than 6. The 1 per
cent critical values range from 9.8 for n ¼ 50 to 8.2 for large samples, and
these values are also around twice as much as the 1 per cent critical value of
the F(2, n� 4) distribution that is 4.61 in large samples. Exhibit 7.16 also
contains critical values for other tests that will be explained below.

Unit root test and Dickey–Fuller t-distribution

Instead of the above F-test, in practice one often tests the single restriction
that f ¼ 1 against the alternative that f < 1. This is called a unit root test.
Then the null hypothesis of a stochastic trend against the alternative of a
deterministic trend corresponds to the one-sided test

H0 : r ¼ 0 (stochastic trend),

H1 : r < 0 (no stochastic trend):

The test is based on the t-value of r in the regression (7.24). This t-value is
denoted by t(r). The null hypothesis of a stochastic trend is rejected if t(r) is
significantly smaller than zero— that is, if it falls below the relevant (nega-
tive) critical value. For the same reasons as before, t(r) does not follow the
t-distribution, not even asymptotically. The distribution of t(r) in the test
equation (7.24) depends on the value of b. If the DGP actually has r ¼ 0 and
b ¼ 0, which is the relevant case under the null hypothesis of a stochastic
trend, then the distribution of t(r) in the test equation (7.24) is called
the Dickey–Fuller distribution. The 5 per cent critical values are given in
Exhibit 7.16 (a). Whereas the one-sided critical value of the conventional
t-distribution is around �1:645 in large samples, the Dickey–Fuller critical
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value is around �3:41 in large samples— that is, it is about twice as large
again. Simulation evidence of this large shift in the distribution is left as an
exercise (see Exercise 7.14). It has been shown that t(r) in the test equation
(7.24) has asymptotically the standard normal distribution if r ¼ 0 and
b 6¼ 0. However, this situation is not so relevant in unit root testing because
under the null hypothesis (with f ¼ 1 and b 6¼ 0) the series would contain a
quadratic trend.

Test for data without a clear overall trend direction

If the data show prolonged upward and downward patterns but no clear
overall trend direction, then the deterministic trend term can be dropped
from (7.24), so that the test equation simplifies to

Dyt ¼ aþ ryt�1 þ et:

(a)
DATA: TREND
Test equation: Dyt ¼ aþ b t þ r yt�1 þ et

Sample size (n) F-test: H0 : b ¼ r ¼ 0 t-test: H0 : r ¼ 0, H1 : r < 0
DGP has trend parameter b ¼ 0

50 6.73 �3.49
100 6.49 �3.45
500 6.30 �3.42
1 6.25 �3:41

The critical values apply for the DGP with b ¼ r ¼ 0 and do not depend on a.
The Dickey–Fuller t-test corresponds to the last column.
Bold numbers indicate the asymptotic test values that are used most often.

(b)
DATA: NO CLEAR TREND
Test equation: Dyt ¼ aþ ryt�1 þ et

Sample size (n) F-test: H0 : a ¼ r ¼ 0 t-test: H0 : r ¼ 0, H1 : r < 0
DGP has constant term a ¼ 0

50 4.81 �2.92
100 4.74 �2.89
500 4.65 �2.86
1 4.60 �2:86

The critical values apply for the DGP with a ¼ r ¼ 0.
The Dickey–Fuller t-test corresponds to the last column.
Bold numbers indicate the asymptotic test values that are used most often.

Exhibit 7.16 Unit root tests

Critical values (for 5% significance level) of unit root tests for data with a clear trend direction
(a) and for data without a clear trend direction (b). The critical values are obtained by
simulation.
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In Section 7.3.1 we showed that, for the stochastic trend model with r ¼ 0,
the parameter a introduces a deterministic trend in the series. As we started
from the assumption that the series has no clear overall trend direction, the
relevant parameter restrictions for a stochastic trend are that r ¼ 0 and
a ¼ 0. The alternative of a stationary process corresponds to �2 < r < 0,
and in this case a is included to model the possibly non-zero mean of the
process. So the testing problem becomes

H0 : r ¼ 0 and a ¼ 0 (stochastic trend),

H1 : (�2< ) r < 0 and a 6¼ 0 (no trend):

This can again be tested by the F-test. The distribution is again non-standard,
and the critical values differ from the ones obtained for the test (7.24) where a
deterministic trend is included. The 5 per cent critical values are in Exhibit
7.16 (b) and range from around 4.8 to 4.6 in large samples. This is approxi-
mately midway between the conventional F-values ( � 3) and the F-values
( � 6) that apply for the test equation (7.24) with trend term included.

Also in this case one often uses a t-test instead of the F-test, so that
H0 : r ¼ 0 is tested against H1 : r < 0. Under the null hypothesis of a stochas-
tic trend (r ¼ a ¼ 0), the t-value of r̂r in the test equation
Dyt ¼ aþ ryt�1 þ et again follows a non-standard distribution. The relevant
Dickey–Fuller distribution differs from the one that applies for the test
equation (7.24), as the deterministic trend term (bt) is now omitted. The 5
per cent critical values are now around �2:9, well below the conventional
value of �1:645 (see Exhibit 7.16 (b)). We mention that for r ¼ 0 and a 6¼ 0
the t-test of r̂r asymptotically has the standard normal distribution. However,
the case r ¼ 0 and a 6¼ 0 is not so relevant here, as in this case the series
contains a clear trend direction so that (7.24) with the deterministic trend
term (bt) included would be the correct test equation.

Choice of appropriate test equation

In practice it is sometimes not so clear whether the time series has a clear
overall trend direction or not. Then the question arises whether the trend
term (bt) in (7.24) should be included in the test regression or not. A possible
method is to start with this term included and to drop it if it is not significant.
However, if the series has a stochastic trend so that r ¼ 0 in (7.24), then the
t-statistic of b in (7.24) (with a constant, the deterministic trend t and yt�1

included as regressors) does not follow the standard t-distribution. The (two-
sided) 5 per cent critical value for b is around 3.1 instead of the conventional
value of 2.0.

In practice, often the best way to proceed is to plot the data and to exclude
the trend term (bt) only if there is no overall upward or downward trend. In
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particular, one should make sure not to exclude the trend term if the series
has a clear direction, as otherwise the alternative hypothesis of the test
corresponds to a stationary time series, so that the test has little chance of
rejecting the null hypothesis of a stochastic trend. Simulation evidence of this
is left as an exercise (see Exercise 7.14). Sometimes, for time series without
clear trend direction that move around the value zero, the test equation is
simplified even further by excluding both the constant and the trend so that
the test regression becomes

Dyt ¼ ryt�1 þ et:

The null hypothesis of a stochastic trend corresponds to r ¼ 0 and the
alternative of a stationary process to �2 < r < 0. This test equation makes
sense only if the series has no clear trend direction and the series moves
around a mean level zero. The reason is that, under the alternative hypoth-
esis, the series has mean zero. The (one-sided) 5 per cent critical value is
around �1:95 (instead of the conventional value of �1.645).

Overview of unit root testing

We summarize the above results. In most cases where one is interested in
investigating the nature of the trend in a series, the relevant test regression is
(7.24) or its generalization (7.25), which will be discussed in the sequel. The
null hypothesis of a stochastic trend is tested by the F-test on r ¼ b ¼ 0. As
an alternative, one can apply the Dickey–Fuller t-test on the single restriction
that r ¼ 0 against the alternative that r < 0. The null hypothesis of a
stochastic trend is rejected in favour of the alternative of a deterministic
trend if the F-test takes large values, or if the t-test takes large negative
values. The tests do not follow the conventional F- and t-distributions. In
large enough samples (n � 100) the critical values of the F-test are roughly
around 6.5 and those of the t-test around �3:5. As a rule of thumb, the
presence of a stochastic trend is rejected for F > 6:5 or for t < �3:5. Critical
values are given in Exhibit 7.16 (a).
For time series with prolonged up- and downswings but without clear

trend direction, the trend term (bt) can be dropped from the test equation
(7.24). The null hypothesis of a stochastic trend can then be tested by the
F-test on r ¼ a ¼ 0 or by the one-sided t-test on r ¼ 0 against r < 0. The
relevant critical values of these tests are in Exhibit 7.16 (b), with values (for
n � 100) of roughly 4.7 for the F-test and �2:9 for the t-test.

Phillips–Perron test

The above tests are valid under the assumption that the error terms et in the
relevant test equation are normally distributed white noise. In practice, time
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series are often also characterized by short-term fluctuations in the sense that
the detrended series is correlated over time. The above models neglect this, so
that the residuals will be serially correlated and the critical values will not be
valid. For the Dickey–Fuller t-test, we can apply a Newey–West correction
for serial correlation to compute the standard error of the estimated param-
eter r. This correction is based on the GMM method, as was discussed in
Section 5.5.2 (p. 359–60). If this correction is applied, the Dickey–Fuller
critical values remain valid asymptotically. The t-test based on the Newey–
West standard error of r is called the Phillips–Perron test.

Derivation of augmented Dickey–Fuller test equation

An alternative method is to model the short-run correlations by including lagged
values of yt in the test equation so that

f(L)yt ¼ aþ bt þ et,

where the AR-polynomial f(z) ¼ 1� f1z� � � � � fpz
p has degree p. We assume

that the series yt is either integrated of order 1 or trend stationary. The null
hypothesis of a stochastic trend corresponds to the case where b ¼ 0 and yt
is integrated of order 1. In this case, the AR polynomial f(z) should have
a unit root, so that f(1) ¼ 0. Then the polynomial can be factorized as
f(z) ¼ (1� z)c(z), so that yt is an ARIMA process. The alternative is that yt is
trend stationary— that is, b 6¼ 0 and the AR polynomial is stationary, so that all
the roots of f(z) ¼ 0 lie outside the unit circle. As f(0) ¼ 1, the requirement that
f(z) ¼ 0 has no solutions for jzj < 1 implies that f(1) > 0 in this case. Therefore
the testing problem can be formulated as follows in terms of the parameters b and
f(1) ¼ 1�Pp

k¼1 fk:

H0 :f(1) ¼ 0 and b ¼ 0 (stochastic trend),

H1 :f(1) > 0 and b 6¼ 0 (deterministic trend):

For the case of an AR polynomial of order p ¼ 1 we have f(1) ¼ 1� f, so that
f(1) ¼ 0 corresponds to f ¼ 1 and f(1) > 0 to f < 1, which is the case discussed
before in terms of the test equation (7.24).

The following technical results are helpful to write the above testing
problem for AR(p) models in a more convenient form. Define the polynomial
c(z) ¼ f(z)� f(1)z; then c(1) ¼ 0, so that c(z) can be factorized as
c(z) ¼(1� z)r(z) for some polynomial r(z) ¼ 1� r1z� � � � � rp�1z

p�1 of degree
(p� 1). Now define r ¼ �f(1) and rewrite the polynomial f(z) as

f(z) ¼ c(z)þ f(1)z ¼ f(1)zþ (1� z)r(z)

¼ �rzþ (1� z)� (1� z)
Xp�1

k¼1

rkz
k:

T
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If we use this result, the test equation f(L)yt ¼ aþ bt þ et can be written as
follows:

Dyt ¼ aþ bt þ ryt�1 þ r1Dyt�1 þ � � � þ rp�1Dyt�pþ1 þ et: (7:25)

Augmented Dickey–Fuller test

As r ¼ �f(1), the testing problem can be formulated as follows in terms of
the augmented Dickey–Fuller test equation (7.25):

H0 : r ¼ 0 and b ¼ 0 (stochastic trend),

H1 : r < 0 and b 6¼ 0 (deterministic trend):

The test can be performed by the F-test, or by the t-test on r. This is called the
augmented Dickey–Fuller (ADF) test. The test equation is simply obtained
from the basic test equation (7.24) by adding lagged values of Dyt as add-
itional regressors. Note that, under the null hypothesis of a stochastic trend,
the series yt is integrated of order 1, so that the added regressors Dyt�k are all
stationary. The asymptotic critical values (for n ! 1) of the ADF test are the
same as the ones for the Dickey–Fuller test reported in Exhibit 7.16. Al-
though the finite sample critical values are different, they are still approxi-
mately valid provided that the lag length p is relatively small compared to the
sample size n.
The lag order p in the ADF test equation can be selected, for instance, by

starting with a large value for p and then sequentially reducing the order by
testing for the significance of the coefficient rp�1 of the largest lag. As the
regressors Dyt�k are stationary, it can be shown that the t-tests for these
coefficients follow the standard t-distribution. Another method to select the
lag order p is to start with equation (7.24) and then to increase the order p
until the residuals have no significant autocorrelation anymore.

Testing for integration of order 2

The above results hold true for testing the null hypothesis that the process has
a single unit root against the alternative that it is stationary around a deter-
ministic trend. If the process Dyt is possibly non-stationary— that is, if yt is
possibly integrated of order 2— then one can proceed as follows. First test the
null hypothesis that yt is integrated of order 2 against the alternative that it is
integrated of order 1. This can be tested by considering the differenced series
zt, which is integrated of order 1 under the null hypothesis and (trend)
stationary under the alternative. For instance, one can apply the ADF test
equation (7.25) for the series zt. If the null hypothesis is rejected— that is, if zt
is trend stationary— then yt is integrated of order at most 1. As a second
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step, one can test whether yt is integrated of order 1 against the alternative
that it is (trend) stationary by applying the ADF test for the series yt.

Remark on critical values in unit root tests

Exhibit 7.16 shows that critical values of unit root tests depend on the
inclusion of deterministic components (constant, trend) in the equation.
The critical values also depend on other possible deterministic components,
such as breaks in the level a or in the trend slope b or the presence of seasonal
components. Therefore one should first make sure that such components are
modelled in an appropriate way before unit root tests are applied, as other-
wise the test outcomes may be misleading. The effect of breaks is further
discussed in Section 7.4.1.

Example 7.14: Industrial Production (continued)

We continue our analysis of the series yt consisting of the logarithm of US
quarterly industrial production. We will discuss (i) the data, (ii) the results
of Dickey–Fuller tests, and (iii) the results of Phillips–Perron and augmented
Dickey–Fuller tests.

(i) The data

Exhibit 7.1 (a) in Example 7.1 shows that this series is characterized by an
upward trend. In Example 7.13 we considered different trend models, and
now we will test for the nature of the trend of this series. Because of the clear
overall trend direction, we should always include a deterministic trend term
in testing the null hypothesis of a stochastic trend. Otherwise, if this trend
term is omitted, the alternative hypothesis would correspond to a stationary
process and there would be no chance of rejecting the null hypothesis in
favour of the alternative. We use quarterly data over the period 1961–94, so
that there are n ¼ 136 observations.

(ii) Dickey–Fuller tests

We start with the basic test equation (7.24). The results are in Panels 1 and 2
of Exhibit 7.17. The test values are F ¼ 5:46 (which is smaller than the 5 per
cent critical value of around 6.45) and t ¼ �2:80 (which is larger than the
critical value of around�3:44). Therefore the null hypothesis of a unit root is
not rejected (at 5 per cent significance). However, this test equation is not
well specified, as the residuals show serial correlation. Panel 3 of Exhibit 7.17
shows the values of the first five S(P)ACF of the OLS residuals of the regres-
sion (7.24). For instance, the correlations at lags four and five are significant,
indicating the possible presence of seasonal effects. Such effects could well be
present for quarterly production figures.

E
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Panel 1: ADF Test Statistic �2.797508 5% Critical Value �3.4433
Dickey-Fuller Test Equation; Dependent Variable: D(Y)
Sample: 1961:1 1994:4; Included observations: 136

Variable Coefficient Std. Error t-Statistic
Y(�1) �0.065763 0.023508 �2.797508
C 0.261410 0.088632 2.949402

@TREND(1961:1) 0.000397 0.000175 2.263446

Panel 2: F-test on Y(�1) and TREND
Null Hypothesis: C(1)¼0, C(3)¼0
F-statistic 5.459897

Panel 3: S(P)ACF of residuals of Dickey-Fuller regression
Sample: 1961:1 1994:4; Included observations: 136
Lag SACF SPACF Q-Stat Prob
1 0.086 0.086 1.0180 0.313
2 0.196 0.190 6.3727 0.041
3 �0.123 �0.160 8.5222 0.036
4 0.310 0.318 22.176 0.000
5 �0.298 �0.379 34.894 0.000

Panel 4: Phillips-Perron Test �2.897757 5% Critical Value �3.4433

Panel 5: ADF Test Statistic �2.879186 5% Critical Value �3.4433
Augmented Dickey-Fuller Test Equation; Dependent Variable: D(Y)
Sample: 1961:1 1994:4; Included observations: 136

Variable Coefficient Std. Error t-Statistic
Y(�1) �0.062996 0.021880 �2.879186

D(Y(�1)) 0.267290 0.080354 3.326419
D(Y(�2)) 0.111804 0.077854 1.436074
D(Y(�3)) �0.150127 0.076845 �1.953643
D(Y(�4)) 0.345637 0.076304 4.529756
D(Y(�5)) �0.289789 0.079154 �3.661092

C 0.247258 0.081971 3.016418
@TREND(1961:1) 0.000397 0.000166 2.398142

Panel 6: F-test on Y(�1) and TREND
Null Hypothesis: C(1)¼0, C(8)¼0
F-statistic 5.493062

Panel 7: S(P)ACF of residuals of Augmented Dickey-Fuller regression
Sample: 1961:1 1994:4; Included observations: 136
Lag SACF SPACF Q-Stat Prob
1 0.001 0.001 6.E-05 0.994
2 �0.104 �0.104 1.5259 0.466
3 0.049 0.049 1.8584 0.602
4 0.013 0.002 1.8826 0.757
5 �0.015 �0.004 1.9127 0.861

Exhibit 7.17 Industrial Production (Example 7.14)

Tests on the nature of the trend in the series of US industrial production (in logarithms):
Dickey–Fuller t-test (Panel 1) and F-test (Panel 2), S(P)ACF of residuals of test equation (Panel
3), Phillips–Perron test (Panel 4), ADF t-test (Panel 5) and F-test (Panel 6), and S(P)ACF of
residuals of ADF test equation (Panel 7).

7.3 Trends and seasonals 601



(iii) Phillips–Perron and augmented Dickey–Fuller tests

The foregoing results show that we should correct for the short-run correl-
ations that are present in the time series. Panel 4 of Exhibit 7.17 shows the
result of the Phillips–Perron test. The computed t-value is slightly lower
(�2:90 as compared to an OLS t-value of �2:80). Still, this is well above
the critical value of �3:44, so that the null hypothesis of a stochastic trend
is not rejected. Panels 5 and 6 of Exhibit 7.17 show the result of the
augmented Dickey–Fuller test with five lagged terms Dyt included in the test
equation. The relevant t-value is now �2:88, and again we cannot reject
the presence of a unit root. The F-test has value F ¼ 5:49, which is below the
5 per cent critical value (6.45), so the presence of a unit root is also not
rejected by the F-test. Panel 7 of Exhibit 7.17 contains the S(P)ACF of the
residuals of this ADF test equation. These residuals do not contain any
significant correlation anymore, so that this test equation is well specified.
The overall conclusion is that the logarithmic series of industrial production
contains a unit root— that is, the trend is stochastic. The modelling of the
seasonal components of this series is further discussed in Example 7.16 in
the next section.

Example 7.15: Dow-Jones Index (continued)

As a second example we consider the series yt consisting of the logarithm of
the daily Dow-Jones index. This series is shown in Exhibit 7.2 (b) in Example
7.2. The series contains a clear upward trend and consists of n ¼ 2528
observations. We will (i) test for the presence of a unit root, and (ii) test for
the presence of two unit roots.

(i) Test for the presence of a unit root

We use the ADF test equation (7.25) with five lagged terms. This is because
the series consists of daily data, so that the five lagged terms can pick up
possible weekly effects. Because of the large number of observations we
can use the asymptotic critical values (for n ¼ 1) in Exhibit 7.16. The
results in Panels 1 and 2 of Exhibit 7.18 show that the null hypothesis of a
stochastic trend cannot be rejected, as F ¼ 4:20 < 6:25 and t ¼ �2:54 >
�3:41. Panel 3 shows that the residuals of the test equation are not serially
correlated.

(ii) Test for the presence of two unit roots

Exhibit 7.2 (c) shows that the series of first differences Dyt does not display a
clear trend direction. We can test whether the series yt has two unit roots by
testing whether the series Dyt has a unit root. The ADF test equation (7.24) in
Panels 4 and 5 of Exhibit 7.18 give test values F ¼ 1189 and t ¼ �48:77. So
the presence of a second unit root is clearly rejected. The S(P)ACF of the
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Panel 1: ADF Test Statistic �2.539298 5% Critical Value �3.4142
Augmented Dickey-Fuller Test Equation; Dep. Variable: D(LOGDJ)
Sample(adjusted) 7 2528; Included obs 2522 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic
LOGDJ(�1) �0.004428 0.001744 �2.539298

D(LOGDJ(�1)) 0.030979 0.019923 1.554888
D(LOGDJ(�2)) �0.016979 0.019930 �0.851933
D(LOGDJ(�3)) �0.044691 0.019907 �2.245021
D(LOGDJ(�4)) �0.006859 0.019923 �0.344270
D(LOGDJ(�5)) �0.013512 0.019916 �0.678443

C 0.034227 0.013418 2.550807
@TREND(1) 3.04E-06 1.09E-06 2.787442

Panel 2: F-test on LOGDJ(�1) and TREND
Null Hypothesis: C(1)¼0, C(8)¼0
F-statistic 4.201230

Panel 3: S(P)ACF of residuals of ADF regression for LOGDJ
Sample: 7 2528; Included observations: 2522
Lag SACF SPACF Q-Stat Prob
1 0.000 0.000 0.0002 0.988
2 0.000 0.000 0.0004 1.000
3 �0.002 �0.002 0.0148 1.000
4 �0.001 �0.001 0.0167 1.000
5 �0.001 �0.001 0.0174 1.000

Panel 4: ADF Test Statistic �48.76587 5% Critical Value �3.4142
Augmented Dickey-Fuller Test Equation; Dep Variable: D(DLOGDJ)
Sample(adjusted) 3 2528; Included obs 2526 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic
DLOGDJ(�1) �0.970458 0.019900 �48.76587

C 0.000128 0.000355 0.361549
@TREND(1) 3.27E-07 2.43E-07 1.342188

Panel 5: F-test on DLOGDJ(�1) and TREND
Null Hypothesis: C(1)¼0, C(3)¼0
F-statistic 1189.055

Panel 6: S(P)ACF of residuals of ADF regression for D(LOGDJ)
Sample: 3 2528; Included observations: 2526
Lag SACF SPACF Q-Stat Prob
1 0.001 0.001 0.0008 0.978
2 �0.018 �0.018 0.7986 0.671
3 �0.046 �0.046 6.2523 0.100
4 �0.009 �0.010 6.4792 0.166
5 �0.013 �0.015 6.9391 0.225

Exhibit 7.18 Dow-Jones Index (Example 7.15)

Augmented Dickey–Fuller test on a unit root in the logarithms of the Dow-Jones (LOGDJ),
t-test (Panel 1), F-test (Panel 2), S(P)ACF of residuals of the ADF test equation (Panel 3),
and Dickey–Fuller test on a unit root in the series of first differences (DLOGDJ), t-test
(Panel 4), F-test (Panel 5), S(P)ACF of residuals of the DF test equation (Panel 6).
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residuals of this test equation in Panel 6 of Exhibit 7.18 indicates no serial
correlation, which justifies the use of the simple equation (7.24).

E Exercises: S: 7.12f, 7.14a–d; E: 7.17c, d, 7.20a, b, 7.21b, 7.23a, d, 7.24a.

7.3.4 Seasonality

Time series components

When time series are measured for instance every month or every quarter,
they may contain pronounced seasonal variation. The seasonal component in
a time series refers to patterns that are repeated over a one-year period and
that average out in the long run. The patterns that do not average out are
included in the constant and the trend components of the model. Whereas the
trend is of dominant importance in long-term forecasting, the seasonal
component is very important in short-term forecasting as it is often the
main source of short-run fluctuations. Seasonal effects may be detected
from plots of the time series, and also from plots of the seasonal series that
consist of the observations in the same month or quarter over the different
years. The autocorrelations of seasonal time series often show positive peaks
at the seasonal lag and its multiples— that is, at lags 12, 24, 36 (and so on)
for monthly series and at lags 4, 8, 12 (and so on) for quarterly series.

If trend and seasonal components are additive, then the time series may be
decomposed as

yt ¼ Tt þ St þ Rt:

Here Tt denotes the trend component and St the seasonal component. The
component Rt stands for a stationary process that consists of transient
deviations from the trend and seasonal components. If the effects are multi-
plicative this is modelled as yt ¼ TtStRt —that is, the three components
multiplied with each other produce the observed series. The multiplicative
model can easily be transformed to an additive model by taking logarithms,
so that log (yt) ¼ log (Tt)þ log (St)þ log (Rt). In this section we will there-
fore discuss only additive models.

Decomposition of time series and the Census X-12 method

Stated in general terms, for series with additive components the trend Tt can
be obtained by long-termmoving averages of the series yt. After the trend has
been estimated, the seasonal components can be obtained by averaging
the detrended values (yt � Tt) that pertain to the same period of the year
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(the same month or the same quarter). Finally, the stationary remainder
(yt � Tt � St) can be modelled by an ARMA process to take care of short-
term deviations of the series yt from the trend and seasonal patterns. Fore-
casts of the series yt can then be computed by adding the forecasts of the
trend, the seasonal component, and the stationary part. A well-known
method of this type is the so-called Census X-12 method to construct the
seasonal component St and the corresponding seasonally adjusted time series
(yt � St). For quarterly data with additive trend and seasonal components,
the idea is as follows. A simple first estimate of the trend is given by the
centred yearly average Tt ¼ 1

4 (
1
2 yt�2 þ yt�1 þ yt þ ytþ1 þ 1

2 ytþ2). The sea-
sonal indexQj of quarter j is then defined as the sample average of all values
of the trend-adjusted series (yt � Tt) that fall in the jth quarter, j ¼ 1, � � � , 4.
The seasonal component is defined by St ¼ (Qj �Q), where j is the quarter of
observation t and Q is the average of the four seasonal indices. The value of
Q is subtracted in computing the seasonal component St because this com-
ponent then sums up to zero over a year. The seasonally adjusted series is
defined by (yt � St). This adjusted series may be used as a starting point in a
second round to construct a new (longer term) estimate of the trend and
corresponding new estimates of the seasonal components. This method is
much used in practice, with modifications to take care of many kinds of
possible special properties of observed time series. A disadvantage of this
method is that it does not specify a statistical model, so that it is not possible
to apply statistical tests on the outcomes.

Model with deterministic seasonals

Now we discuss some parametric models for seasonal time series. As in the
case of trends, one should distinguish deterministic from stochastic seaso-
nals. For simplicity we consider again the case of quarterly data with additive
seasonals. The results can be generalized for other observation frequencies
(for instance, for monthly or weekly data) and for series with multiplicative
seasonals.
Deterministic seasonals can be modelled by seasonal dummies. For in-

stance, an AR(1) model for quarterly data with deterministic trend and
seasonal components is given by

yt ¼ aþ bt þ a2D2t þ a3D3t þ a4D4t þ fyt�1 þ et:

Here D2t is a dummy variable with D2t ¼ 1 if the tth observation falls in the
second quarter of a year and D2t ¼ 0 otherwise, and the dummies D3t and
D4t for the third and fourth quarters are defined in a similar way. If
�1 < f < 1, then this model can be estimated and evaluated by conventional
OLS methods, and more general ARMAmodels can be estimated as usual by
ML. If the trend is stochastic— that is, if f ¼ 1—then the parameters are
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easily estimated by regressing Dyt on a constant, the trend t, and the three
seasonal dummies. In order to perform a unit root test— that is, to test
whether f ¼ 1—the critical values of Dickey–Fuller also apply for this
model with deterministic seasonal dummies.

Model with stochastic seasonals

The simplest model with stochastic seasonals is given by the seasonal random
walk model

yt ¼ aþ yt�4 þ et:

This can be written as (1� L4)yt ¼ aþ et. The AR polynomial (1� z4) has a
unit root at z ¼ 1 and three so-called seasonal unit roots at z ¼ �1 and at
z ¼ 	i. As 1� z4 ¼ (1� z)(1þ zþ z2 þ z3), the series of fourth differences
can be written as (1� L4)yt ¼ (1� L)xt, where xt ¼ (1þ Lþ L2 þ L3)yt is
the year-total of the series yt over the last four quarters. So a model for yt
with stochastic seasonality implies that the series xt of year totals has a unit
root. This can be tested, for instance, by applying the ADF test on the series
xt of year-totals.

Seasonal ARIMA models and the ‘airline’ model

The above model with stochastic seasonal components can be generalized to
the class of so-called seasonal ARIMA or SARIMA models. For quarterly
data, a SARIMA(p, d, q) model is defined by

f(L4)(1� L4)dyt ¼ y(L4)et,

where f(z) and y(z) have all their roots outside the unit circle. This is an
ARIMA model where the value of yt is related only to the values of
yt�4, yt�8, yt�12 (and so on) of observations in the same quarter in former
years. This is motivated by the fact that seasonal time series often exhibit the
strongest correlations at the seasonal lags. If non-seasonal correlations are
also of importance, the seasonal model can be combined with an ARIMA
model. For instance, the so-called ‘airline model’ is given by

(1� L)(1� L4)yt ¼ (1þ y1L)(1þ y4L4)et:

The right-hand side is an MA(5) process with parameter restrictions, as
only lags 1, 4, and 5 are present. The advantage of this and other seasonal
ARIMA models is that they contain relatively few parameters to model
correlations over longer lags. Note that the above model contains a double
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root at unity— that is, the process is assumed to be integrated of order 2.
This makes sense, for instance, if the series (1� L)yt contains strong seasonal
correlations that die out only very slowly. An alternative is to consider
models with deterministic trends and seasonals or combinations of stochastic
trends with deterministic seasonals.

Choice between deterministic and stochastic trends and
seasonals

To choose among the various possible models, it is helpful to start by testing
for the order of integration of the series yt. In practice the order of integration
does not exceed two, and two unit roots may be present in the case of a
stochastic trend combined with a stochastic seasonal. However, in most cases
the order of integration is either one or zero. We can first test the null
hypothesis of integration of order 2 against the alternative of order 1. This
can be tested by an ADF test on the series of first differences (1� L)yt. If the
series contains two unit roots, this suggests incorporating a stochastic trend
and a stochastic seasonal in the model. If second order integration is rejected,
we can test the null hypothesis of first order integration against the alterna-
tive of (trend) stationarity. Deterministic components for trend and seasonals
can be included in the test equation. If the series is integrated of order 1, then
we can include either a stochastic trend with deterministic seasonals in the
model, or a stochastic seasonal with a deterministic trend. If the series is
trend stationary, we can include deterministic trend and seasonal terms in the
model.
Note that, if the series is integrated of order 1, the transformation

xt ¼ (1� L)(1� L4)yt involves over-differencing. This means that the
ARMA model for xt is not invertible (see Exercise 7.13). An indication of
possible over-differentiation can be obtained from the SACF of xt, as the
theoretical autocorrelations sum up to � 1

2 in this case (see Exercise 7.13).

Example 7.16: Industrial Production (continued)

We continue our analysis of the quarterly series yt of logarithms of US
industrial production. We will discuss (i) the order of integration of this
series, (ii) the nature of the seasonal component of this series, (iii) remarks
on two alternative models, and (iv) the time series decomposition obtained
by the Census X-12 method.

(i) Order of integration

In Example 7.14 in the foregoing section we concluded that the time series
has a unit root (see Exhibit 7.17). Now we investigate whether the series has
two unit roots— that is, we test whether the series Dyt of quarterly growth
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rates has a unit root. For this purpose we apply the ADF test on the series
zt ¼ Dyt. Four lags are included to account for possible seasonal effects. As
the series zt does not have a clear trend direction, we exclude the determinis-
tic trend component from the ADF test equation. The result is shown in Panel
1 of Exhibit 7.19. The relevant t-value is �5:67, which is much below the 5
per cent critical value of �2:88 (note that the test equation does not contain
the deterministic trend term). This means that zt does not have a unit root. So
we conclude that the series yt is integrated of order 1.

(ii) Nature of the seasonal component

Panel 2 of Exhibit 7.19 shows the correlogram of the series Dyt. The SACF
indicates the presence of seasonal effects. Panels 3 and 4 contain ADF tests
for the series of year-totals zt ¼ (1þ Lþ L2 þ L3)yt. The null hypothesis of
integration of order 2 is rejected (see Panel 4, the t-value is �3:89 < �2:89),
and the null hypothesis of integration of order 1 is not rejected (see Panel 3,
the t-value is �2:49 > �3:44). We conclude that the series zt is integrated of
order 1. So the series (1� L)zt ¼ (1� L4)yt ¼ D4yt is stationary. This result,
together with the seasonal correlation that is present in the series Dyt,
motivates using a model with stochastic seasonal for the series yt. This
motivates our analysis of the quarterly series of annual growth rates D4yt
in foregoing sections.
The series D4yt contains no trend and also no seasonal effects, as is clear

from the SACF in Exhibit 7.8 (see Example 7.7). This means that the trend
and the seasonal are both eliminated by transforming the series yt to the
series of annual growth rates D4yt ¼ (1� L4)yt. Models for the stationary
series D4yt were discussed in Example 7.11.

(iii) Remarks on two alternative models

It is left as an exercise (see Exercise 7.16) to estimate two alternative
models—namely, an AR(p) model with deterministic seasonals for the series
Dyt and an ‘airline’ model for the series yt. The models can be compared by
diagnostic tests and by comparing their forecast performance, as described in
Section 7.2.4.

(iv) Time series decomposition obtained by the Census X-12 method

Finally we describe the results of the Census X-12 method. We consider an
additive model for the series yt of logarithms of the industrial production.
This corresponds to a multiplicative model for the original production index
series. The seasonally adjusted series for the period 1980–94 is shown in
Exhibit 7.20 (a). The estimated seasonal components are relatively small, as
they are all below 0.01— that is, they are less than 1 per cent. As a conse-
quence, the seasonally adjusted series is very close to the original one. The
estimated seasonal components in Panel 2 of Exhibit 7.20 indicate some
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Panel 1: ADF Test Statistic �5.668179 5% Critical Value �2.8827
Augmented Dickey-Fuller Test Equation; Dependent Variable: D(DY)
Sample: 1961:1 1994:4; Included observations: 136

Variable Coefficient Std. Error t-Statistic
DY(�1) �0.786100 0.138687 �5.668179

D(DY(�1)) 0.070365 0.134332 0.523814
D(DY(�2)) 0.160678 0.114100 1.408224
D(DY(�3)) �0.020794 0.099616 �0.208744
D(DY(�4)) 0.322013 0.079909 4.029740

C 0.006605 0.001925 3.431268

Panel 2: Correlogram of DY
Lag SACF SPACF Q-Stat Prob
1 0.112 0.112 1.7472 0.186
2 0.212 0.202 8.0437 0.018
3 �0.098 �0.147 9.3999 0.024
4 0.325 0.332 24.430 0.000
5 �0.269 �0.372 34.775 0.000
6 0.059 0.082 35.272 0.000
7 �0.258 �0.159 44.928 0.000
8 0.091 �0.009 46.135 0.000
9 �0.295 �0.076 58.988 0.000

10 0.124 0.061 61.269 0.000
11 �0.193 �0.059 66.869 0.000
12 0.163 0.057 70.889 0.000

Panel 3: ADF Test Statistic �2.486805 5% Critical Value �3.4445
Augmented Dickey-Fuller Test Equation; Dep. Var.: D(YEARSUMY)
Sample(adjusted): 1962:2 1994:4; Included observations: 131

Variable Coefficient Std. Error t-Statistic
YEARSUMY(�1) �0.016469 0.006622 �2.486805

D(YEARSUMY(�1)) 1.306777 0.087579 14.92109
D(YEARSUMY(�2)) �0.594846 0.145276 �4.094604
D(YEARSUMY(�3)) 0.183889 0.144221 1.275052
D(YEARSUMY(�4)) �0.136339 0.085423 �1.596048

C 0.260355 0.099926 2.605466
TREND 0.000404 0.000192 2.102449

Panel 4: ADF Test Statistic �3.890236 5% Critical Value �2.8837
Augmented Dickey-Fuller Test Equation; Dep. Var.: D(DYEARSUMY)
Sample(adjusted): 1962:3 1994:4; Included observations: 130

Variable Coefficient Std. Error t-Statistic
DYEARSUMY(�1) �0.179666 0.046184 �3.890236

D(DYEARSUMY(�1)) 0.572717 0.078698 7.277444
D(DYEARSUMY(�2)) �0.080749 0.093386 �0.864676
D(DYEARSUMY(�3)) 0.239245 0.090181 2.652941
D(DYEARSUMY(�4)) �0.203484 0.084778 �2.400198

C 0.005857 0.002188 2.676967

Exhibit 7.19 Industrial Production (Example 7.16)

ADF test on the series of first differences Dyt (denoted by DY in Panel 1; here H0 : yt is I(2) is
tested against H1: yt is I(1)), correlogram of Dyt (Panel 2), ADF test on the quarterly series of
year-totals (Panel 3; here H0: YEARSUMY is I(1) is tested against H1: YEARSUMY is I(0)),
and ADF test on the first differences DYEARSUMY (Panel 4; here H0: YEARSUMY is I(2) is
tested against H1: YEARSUMY is I(1)).
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trends in the seasonal components. For all years, the effect of the third
quarter is positive and by far the largest. The effects of the second and fourth
quarters are slightly growing over time, and the first quarter is falling back.
Panel 3 of Exhibit 7.20 shows the forecasts for the four quarters in

1995 for the series yt. As the series consists of the logarithms of industrial
production, we conclude that the production level is predicted to be around
1.5 per cent higher (0.009�(�0.005)) in the third quarter than in the first
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(b) Panel 2: Estimated seasonal components
Year Quarter 1 Quarter 2 Quarter 3 Quarter 4
1980 0.002 �0.005 0.009 �0.005
1981 0.001 �0.005 0.009 �0.005
1982 0.001 �0.005 0.009 �0.005
1983 0.000 �0.004 0.008 �0.004
1984 0.000 �0.004 0.008 �0.003
1985 0.000 �0.004 0.007 �0.003
1986 0.000 �0.004 0.007 �0.002
1987 �0.001 �0.004 0.007 �0.002
1988 �0.002 �0.004 0.008 �0.002
1989 �0.004 �0.003 0.010 �0.002
1990 �0.005 �0.003 0.011 �0.003
1991 �0.005 �0.002 0.011 �0.003
1992 �0.006 �0.002 0.011 �0.003
1993 �0.005 �0.002 0.010 �0.003
1994 �0.005 �0.001 0.009 �0.003

(c) Panel 3: Predicted Seasonal Components one year ahead (1995)
Quarter 1 2 3 4 Average
Predicted Seasonal �0.005 �0.001 0.009 �0.003 0
Actual Production (in logs) 4.727 4.731 4.756 4.746 4.740
Actual Production (level) 112.9 113.4 116.3 115.2 114.5
(Actual – Average) / Average �0.014 �0.009 0.016 0.007 0

Exhibit 7.20 Industrial Production (Example 7.16)

Seasonally adjusted series obtained by Census X-12 for the logarithmic series y of US industrial
production ((a), 1980–94), estimated additive seasonal components (Panel 2), and forecasts
for 1995 together with the actual production (Panel 3).
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quarter of 1995. The actual production indices for 1995 are also given in
Panel 3 of Exhibit 7.20, which shows that the production in the third quarter
of 1995 actually was around 3 per cent higher (0.016�(�0.014)) than that in
the first quarter. Such deviations from previous patterns may be of interest to
predict further future developments in industrial production.

E Exercises: T: 7.2d, 7.5d; S: 7.13c, d; E: 7.16a–e, 7.17e–g, 7.18b, f, g.

7.3.5 Summary

Many time series in business and economics are characterized by trends
and seasonal fluctuations.

. To predict future developments one should make sure that the trend and
the seasonal effects in the time series are modelled in an appropriate
way.

. A time series with deterministic trend has the following properties. The
time series reverts to the trend line in the long run, and the effect of
shocks dies out when time progresses. Forecast intervals are equally
wide for all forecast horizons.

. A time series with stochastic trend is not trend reverting, shocks have a
permanent effect on the level of the series, the variance increases over
time, and forecast intervals become wider for larger horizons.

. The (augmented) Dickey–Fuller test can be used to test the null hypoth-
esis of a stochastic trend against the alternative hypothesis of a deter-
ministic trend. The corresponding (F- and t-) tests do not have a
standard distribution. The appropriate distribution depends on the
inclusion of constant term and trend term in the test equation.

. Trends and seasonals can be estimated and predicted by parametric
models with deterministic or stochastic trends and seasonal compon-
ents. It is also possible to use other methods— for instance, exponential
smoothing (EWMA), Holt–Winters, and Census X-12.
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7.4 Non-linearities and
time-varying volatility

E Uses Chapters 1–4; Section 5.5; parts of Sections 5.3, 5.4; Sections 7.1–7.3.

7.4.1 Outliers

Additive outliers

Trends and seasonals are the most dominant features of most time series in
business and economics. In addition the series may have other striking
features. For example, in Example 7.1 we considered the quarterly series of
industrial production, and Exhibit 7.1 shows that the observations in 1975.1
and 1975.2 correspond with an excessive slump in US industrial production.
Given the general pattern of the data before 1975, it seems unlikely that one
could construct an ARMA model with trend and seasonals that could fore-
cast these exceptionally large negative growth rates. Such observations are
outliers. If one does not correct for such outliers, they may have an excessive
impact on parameter estimates and forecasts.
One can distinguish different types of outliers in time series. Suppose

that

yt ¼ zt þ dDt(t),

where zt is a stationary but unobserved time series and Dt(t) is a dummy
variable with Dt(t) ¼ 1 and Dt(t) ¼ 0 for t 6¼ t. Then the observation yt (at
time t ¼ t) is called an additive outlier and d is the size of the outlier. An
additive outlier affects the measured value of the time series at one specific
point in time (t ¼ t), but there are no effects on the observations afterwards.
If additive outliers are neglected in modelling, then this may have serious
effects. For instance, suppose that zt follows a stationary AR(p) process.
Then the additive outlier at time t ¼ t affects all forecasted values of yt at
times t ¼ tþ 1, � � � , tþ p. So not only will the model produce a bad forecast
for the observation yt, but also the forecasts of the observations ytþj will be
affected for j ¼ 1, � � � , p. So this may produce a sequence of comparatively
large residuals. As a consequence, an additive outlier affects the estimated
parameters (that are obtained by minimizing the squared residuals) and the
quality of a sequence of forecasts. Additive outliers may also affect unit root
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tests, in the sense that the null hypothesis of a unit root is too easily rejected
(see Exercise 7.14).

Test for additive outliers

If the time instant t of the potential outlier is known, one can apply a t-test
for the significance of d. For instance, suppose that zt follows a stationary
AR(p) process, so that f(L)zt ¼ aþ et. If we substitute zt ¼ yt � dDt(t), it
follows that the relevant test equation is

yt ¼ aþ
Xp
j¼1

fjyt�j þ dDt(t)�
Xp
j¼1

dfjDt�j(t)þ et

Here Dt�j(t) is a dummy variable that has the value one at time
t ¼ tþ j and zero otherwise. This is a regression model with (2pþ 2)
regressors (1, yt�1, � � � , yt�p, Dt, Dt�1, � � � ,Dt�p) and (pþ 2) parameters
(a, d, f1, � � � ,fp). The parameters can be estimated by non-linear least
squares. If d is significant, this indicates the possible presence of an additive
outlier. One can also test whether the outlier is of this specific additive type.
For this purpose estimate the unrestricted model with (2pþ 2) parameters,
and test the p parameter restrictions corresponding to the additive outlier
model.

Innovation outliers

Another type of outlier is an innovation outlier where the outlier occurs in
the innovation process. An innovation outlier at time t in an ARMAmodel is
given by

f(L)yt ¼ y(L) et þ dDt(t)ð Þ:

For instance, for an AR(p) model this gives

yt ¼ f1yt�1 þ � � � þ fpyt�p þ dDt(t)þ et:

This shows that the forecast of yt is affected only at time t ¼ t. So an
innovation outlier will lead to a single large residual and will in general
have less severe effects on parameter estimates than an additive outlier. An
innovation outlier may affect unit root tests (see Exercise 7.14). If the time t
of a possible innovation outlier is known, one can apply a simple t-test on the
significance of d. One should check whether neighbouring residuals are not
also outliers, as otherwise an additive outlier may be more appropriate.
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Level shifts

If the series contains a stochastic trend, then an innovation outlier has a
permanent effect on the level of the series (see Exercise 7.14). For a stationary
series, a level shift at time t ¼ t can be modelled by

f(L)yt ¼ aþ dDþ
t (t)þ y(L)et:

Here Dþ
t is a dummy variable with Dþ

t (t) ¼ 0 for t < t and Dþ
t (t) ¼ 1 for

t � t. The mean of the series yt shifts from a=f(1) prior to the level shift to
(aþ d)=f(1) afterwards. Neglecting such a shift will lead to a sequence of
large residuals around t ¼ t. If the time t of the potential shift is known,
the presence of a level shift can simply be tested by the t-test on d. In some
cases the shift is more gradual and extends over several time periods. This can
be modelled by replacing the step functionDþ

t (t) by a more smooth function
of time.

Diagnostic checks

In practice one can detect possible outliers and breaks by considering plots of
the observed time series yt. It may also be instructive to estimate simple
models and to inspect the time series plot and the histogram of the resulting
series of residuals. Statistical tests can be applied by including appropriate
dummy variables in the model and by testing their significance. If the outliers
cannot be modelled in an acceptable way, then a possible alternative is to use
robust estimation methods that assign less weight to outliers. This was
discussed in Section 5.6.4 (p. 390).

Example 7.17: Industrial Production (continued)

We consider again the quarterly series D4yt of yearly growth rates of US indus-
trial production. We will discuss (i) a graphical inspection of outliers, (ii) a
model with dummies for the outliers, and (iii) diagnostic tests for this model.

(i) Graphical inspection of outliers

Exhibit 7.1 (c) in Example 7.1 shows a time plot of the series D4yt of yearly
growth rates. This exhibit shows that the series quite often takes values that
are far apart from the majority of observed growth rates. In Example 7.8 we
estimated an AR(2) model for this series (see Exhibit 7.9), and in Example
7.11 we applied diagnostic tests (see Exhibit 7.11). The residuals of this
model are not normally distributed. The time plot of the residuals is given
once more in Exhibit 7.21 (a), together with the 95 per cent confidence
bounds. This shows that there may be outliers in the quarters 1961.1,
1961.2, 1974.4, 1975.1, 1976.1, 1980.2, and 1981.4.
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(a)

(b) Panel 2: Dependent Variable: D4Y
Method: Least Squares
Sample: 1961:1 1994:4; Included observations: 136

Variable Coefficient Std. Error t-Statistic Prob.
C 0.007652 0.001687 4.536416 0.0000

D4Y(�1) 1.318387 0.057799 22.80998 0.0000
D4Y(�2) �0.515566 0.057037 �9.039201 0.0000
DUM611 �0.068627 0.015648 �4.385536 0.0000
DUM612 0.081021 0.016277 4.977700 0.0000
DUM744 �0.047186 0.015593 �3.026035 0.0030
DUM751 �0.054010 0.015859 �3.405648 0.0009
DUM761 0.069084 0.016130 4.282876 0.0000
DUM802 �0.052449 0.015568 �3.369090 0.0010
DUM814 �0.067683 0.015575 �4.345596 0.0000

R-squared 0.907760 Mean dependent var 0.032213
Adjusted R-squared 0.901171 S.D. dependent var 0.049219
S.E. of regression 0.015473 Akaike info criterion �5.428742
Sum squared resid 0.030167 Schwarz criterion �5.214576
Log likelihood 379.1545 F-statistic 137.7771
Durbin-Watson stat 2.035319 Prob(F-statistic) 0.000000
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Series: RESAR2DUM
Sample 1961:1 1994:4
Observations 136

Mean −4.65E-18
Median 1.04E-17
Maximum 0.037637
Minimum −0.040007
Std. Dev. 0.014948
Skewness −0.177092
Kurtosis 3.176925

Jarque-Bera 0.888243
Probability 0.641387

(c)

Exhibit 7.21 Industrial Production (Example 7.17)

(a) shows the time plot of the residuals of the AR(2) model (without dummies) for the
series D4yt of yearly growth rates (see also Exhibit 7.11), Panel 2 shows the results of the
AR(2) model with seven outlier dummies, and (c) contains the histogram of the residuals of
this model.
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(ii) Model with outlier dummies

We include separate dummy variables for the seven possible outlier obser-
vations in the AR(2) model for D4yt. The resulting estimates are shown in
Panel 2 of Exhibit 7.21. Each of the dummies is highly significant. The
estimated autoregressive parameters (with standard errors in parentheses)
are f̂f1 ¼ 1:318 (0:058) and f̂f2 ¼ �0:516 (0:057). If we compare these
outcomes with the ones of the original AR(2) model in Exhibit 7.9 of
Example 7.8, we see that the estimates do not change much, but that
the standard errors become considerably smaller after correction for the
outliers (the standard errors in Exhibit 7.9 are 0.072). Also the standard
error of regression reduces considerably, from s ¼ 0:021 in the model
without dummies to s ¼ 0:015 in the model with dummies. If the AR(2)
model with dummies is used in forecasting, then the point forecasts
of future values of the series are not much affected but forecast intervals
are narrower.

(iii) Diagnostic checks on model with outlier dummies

The histogram of the residuals of the AR(2) model with dummies is given in
Exhibit 7.21 (c). The assumption of a normal distribution of the residuals is
not rejected (the Jarque–Bera test has P-value 0.64). The kurtosis is 3.177,
which is close to 3, whereas the kurtosis of the residuals of the AR(2) model
without dummies is equal to 5.896 (see Panel 6 of Exhibit 7.11 in Example
7.11). This indicates that the non-normality of the residuals of the AR(2)
model may well be caused by outliers in the time series. It is left as an exercise
to investigate whether some sequences of successive outliers may be due to
additive outliers (see Exercise 7.16). Further non-linear aspects of this time
series are analysed in Example 7.18 in the next section.

E Exercises: S: 7.14e–h; E: 7.16f, 7.23f.

7.4.2 Time-varying parameters

Parameter variations in ARMA models

A sequence of outlying observations may be due to changes in the ARMA
parameters. Such changes can be caused, for instance, by different economic
regimes. For example, the speed of dynamic adjustments of an economic
process during a recession may differ from the speed in expansion periods. If
expansions are more common than recessions, then estimated models will in
general perform better for the expansion periods and may produce sequences
of outliers for recession periods. In such a situation the model should be
adjusted by allowing the parameters to vary over time.
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In Section 5.3 we discussed methods to model parameter variations and to
test for the presence of such variations. These methods— for instance, the
CUSUM and Chow tests—can also be applied in stationary ARMA models.
This is straightforward for AR models, as these models have the same
structure as regression models. If MA terms are present, then the Chow
tests can be performed by incorporating appropriate dummy variables
under the alternative hypothesis of a break. The recursive residuals needed
for the CUSUM test can be obtained from a sequence of ML parameter
estimates, where the observations ys for s < t are used to estimate the
model at time (t � 1) to make a one-step-ahead forecast for yt.

Threshold model

There are many ways to specify parameter variations in ARMA models. For
simplicity we consider the stationary AR(2) model to illustrate some possible
models. If the parameters have changed at a single and known time moment
(t ¼ t), then this can be modelled by

yt ¼ a1 þ f11yt�1 þ f21yt�2 þDþ
t (t) a2 þ f12yt�1 þ f22yt�2ð Þ þ et:

HereDþ
t is a dummy variable withDþ

t (t) ¼ 0 for t < t andDþ
t (t) ¼ 1 for t � t. So

the regime switches abruptly at the time instant t ¼ t. It may also be that the
regime is determined by past values of the process yt. For instance, if a recession
corresponds to a negative value of yt�1, then the regime may be defined by the sign
(positive or negative) of yt�1. A possible model with regime switches is then
obtained by replacing the dummy variable Dþ

t (t) in the above model by the
dummy variable Dt(yt�1) defined by

Dt(yt�1) ¼ 0 if yt�1 > 0, Dt(yt�1) ¼ 1 if yt�1 � 0:

The resulting model is

yt ¼ a1 þ f11yt�1 þ f21yt�2 þDt(yt�1) a2 þ f12yt�1 þ f22yt�2ð Þ þ et: (7:26)

This is called the threshold autoregressive (TAR) model. The above model is a
TAR(2) model with switching variable yt�1 and with threshold value zero between
the two regimes. This model can be extended to ARMA models with other
switching variables and other threshold values.

Smooth transition model

In the TAR model the shifts of regime are abrupt, because the switching function
Dt(yt�1) is a discontinuous function of yt�1. The transitions can also be modelled
more smoothly by means of a smooth transition autoregressive (STAR) model.
The STAR(2) model with switching variable yt�1 is given by

T

T
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yt ¼ a1 þ f11yt�1 þ f21yt�2 þ F(yt�1) a2 þ f12yt�1 þ f22yt�2ð Þ þ et: (7:27)

Here F is a smooth switching function. For instance, the logistic STAR(2)
model with switching variable yt�1 is defined by (7.27) with logistic switching
function

F(yt�1) ¼ 1

1þ e�g1(yt�1�g2)
:

The parameter g1 determines the speed of the parameter switches due to variations
in yt�1 around g2. For g1 ! 1 the switching function becomes very steep and the
model converges to the TAR model (7.26) (with g2 ¼ 0). If g1 is relatively small,
then the transitions are more smooth, and if g1 ¼ 0 the parameters do not change
at all. A Likelihood Ratio test for parameter variation of this type is obtained by
comparing the log-likelihood value of the non-linear model (7.27) with the log-
likelihood of the linear AR(2) model. One can also apply more general tests for
non-linearities— for instance, the RESETof Section 5.2.2 (p. 285). The advantage
of the STAR model is that it gives a clear economic interpretation of parameter
variations in terms of different economic regimes.

Example 7.18: Industrial Production (continued)

We continue our analysis of the quarterly series of yearly growth rates in US
industrial production. We will discuss (i) a smooth transition model, (ii) a
threshold model, and (iii) an interpretation of the threshold model for this
series.

(i) Smooth transition model

In Example 7.17 in the foregoing section we detected seven outliers in the
series of yearly growth rates D4yt in US industrial production. Six of these
outliers fall in quarters after a quarter with negative growth— that is, at
times twhere D4yt�1 < 0. This suggests modelling this series by means of two
different regimes to allow for different production adjustments in recession
periods. Instead of the AR(2) model considered in previous examples, we
now estimate the logistic STAR(2) model for D4yt with switching variable
D4yt�1. The results are reported in Panel 1 of Exhibit 7.22. The value of
ĝg1 ¼ 2361 is very large. As the switching variable has mean 0.03 with
standard deviation 0:05, the large value of g1 leads to very fast transitions.
However, the estimates ĝg1 and ĝg2 do not differ significantly from zero.

(ii) Threshold model

Since the transitions in the STAR model are very fast, this motivates the use
of a threshold (TAR) model with two regimes, expansion if the last observed
growth rate D4yt�1 is positive and recession if this growth rate is negative.We
model this by means of the dummy variable Dþ

t , which has value 1 during

E
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(a) Panel 1: Dependent Variable: D4Y
Method: Least Squares
Sample: 1961:1 1994:4; Included observations: 136
Convergence achieved after 98 iterations
D4Y ¼ C(1)þC(2)�D4Y(�1)þC(3)�D4Y(�2) þ (C(4)þC(5)�D4Y(�1)þC(6)

�D4Y(�2))/(1þ @EXP(�C(7)�(D4Y(�1)�C(8))))
Parameter Coefficient Std. Error t-Statistic Prob.

C(1) �0.006696 0.005367 �1.247760 0.2144
C(2) 1.174642 0.138134 8.503617 0.0000
C(3) �0.711489 0.113235 �6.283286 0.0000
C(4) 0.015946 0.006978 2.285306 0.0239
C(5) 0.069069 0.172454 0.400509 0.6894
C(6) 0.244899 0.145274 1.685779 0.0943
C(7) (¼ g1) 2360.688 10225.55 0.230862 0.8178
C(8) (¼ g2) 0.002389 0.001865 1.281076 0.2025

R-squared 0.836230 Mean dependent var 0.032213
Adjusted R-squared 0.827274 S.D. dependent var 0.049219
S.E. of regression 0.020456 Akaike info criterion �4.884093
Sum squared resid 0.053559 Schwarz criterion �4.712760
Log likelihood 340.1183 Durbin-Watson stat 2.172684

(b) Panel 2: Dependent Variable: D4Y
Method: Least Squares
Sample: 1961:1 1994:4; Included observations: 136
D4Y¼C(1)þC(2)�D4Y(�1)þC(3)�D4Y(�2) þ DUMPLUS�(C(4)þC(5)�

D4Y(�1)þC(6)�D4Y(�2))
Parameter Coefficient Std. Error t-Statistic Prob.

C(1) �0.006937 0.005423 �1.279223 0.2031
C(2) 1.172922 0.138174 8.488734 0.0000
C(3) �0.714031 0.112871 � 6.326091 0.0000
C(4) 0.014694 0.006739 2.180352 0.0310
C(5) 0.092095 0.170993 0.538589 0.5911
C(6) 0.247076 0.144471 1.710210 0.0896

R-squared 0.834945 Mean dependent var 0.032213
Adjusted R-squared 0.828597 S.D. dependent var 0.049219
S.E. of regression 0.020377 Akaike info criterion �4.905686
Sum squared resid 0.053980 Schwarz criterion �4.777186
Log likelihood 339.5866 Durbin-Watson stat 2.158046
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Series: RESTAR2
Sample 1961:1 1994:4
Observations 136

Mean 4.44E-18
Median −0.000278
Maximum 0.082829
Minimum −0.066517
Std. Dev. 0.019996
Skewness 0.207354
Kurtosis 5.503119

Jarque-Bera 36.47966
Probability 0.000000

(c) (d)

Exhibit 7.22 Industrial Production (Example 7.18)

STAR(2) model (Panel 1) and TAR(2)model (Panel 2) for quarterly series of yearly growth rates
in US industrial production; (c) shows the histogram of the TAR(2) residuals; (d) shows the time
plot of these residuals together with the expansion dummyDþ

t (denoted by DUMPLUS).
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expansions (D4yt�1 � 0) and value 0 during recessions (D4yt�1 < 0). The
results of the TAR(2) model are shown in Panel 2 of Exhibit 7.22. The
TAR(2) model is preferred above the STAR(2) model on the basis of AIC
and SIC. We can also compare these two models by the LR-test, as the TAR
corresponds to the two parameter restrictions g1 ¼ 1 and g2 ¼ 0 in the
STAR model (in this case F(z) ¼ 1 for z > 0 and F(z) ¼ 0 for z < 0, so that
F(D4yt�1) ¼ Dþ

t ). The test has value LR ¼ 2(340:12� 339:59) ¼ 1:06, and
the P-value corresponding to the w2(2) distribution is P ¼ 0:59. So the
TAR(2) model is not rejected. The TAR(2) model can also be tested against
the alternative of the AR(2) model with constant coefficients. The AR(2)
model is obtained from the TAR(2) model (7.26) by imposing the three
parameter restrictions a2 ¼ f12 ¼ f22 ¼ 0. The AR(2) model was estimated
in Example 7.8 (see Exhibit 7.9). If we compare the log-likelihood values of
both models, we obtain LR ¼ 2(339:6� 334:2) ¼ 10:8, with P-value corres-
ponding to the w2(3) distribution equal to P ¼ 0:013. So the LR-test rejects
the AR(2) model, and we conclude that the adjustment process in recessions
differs from that in expansions.

(iii) Interpretation of the threshold model

The estimated TAR(2) model in Panel 2 of Exhibit 7.22 can be used
to estimate the mean growth rates of industrial production during
expansion and recession periods. The mean growth in recession periods
(where Dþ

t ¼ 0) is equal to �0:007=(1� 1:17þ 0:71) ¼ �1:3 per cent,
whereas in expansion periods (where Dþ

t ¼ 1) it is 0:008=(1� 1:26þ 0:47)
¼ þ3:8 per cent. Exhibit 7.22 (d) shows the plot of the expansion dummyDþ

t .
This shows that expansions last for longer periods as compared to recessions.
The recessions in the periods 1961, 1974–5, and 1980–2 contain the obser-
vations that were earlier detected as outliers in the AR(2) model in Example
7.17. Exhibit 7.22 (c) and (d) show the residuals of the TAR(2) model. These
residuals still contain some outliers in recession periods (where Dþ

t ¼ 0).
Normality of the TAR(2) residuals is rejected because the kurtosis is still
large (with a value of 5.503, as compared to 5.896 in the AR(2) model in
Panel 6 of Exhibit 7.11).

Although the TAR model is not completely satisfactory from a statistical
point of view, it is of economic interest as it distinguishes between recessions
and expansions.

7.4.3 GARCH models for clustered volatility

Changing variance in time series

In the foregoing sections we considered lagged effects on the level E[ytjYt�1]
of the observed time series. It has been assumed until now that the innov-
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ations et all have the same variance s2. This is not always realistic, as there
may exist lagged effects in the conditional variance s2t ¼ var(ytjYt�1) of the
time series. As the variance is a measure of the uncertainty or risk on future
values of the variable, this is of importance for decisions in business and
economics that involve risk. For instance, in finance the price of options and
other financial instruments depends on the variance or volatility of price
movements in the market. Further, if the variance changes over time, then an
appropriate model for the variance also leads to more accurate forecast
intervals, with wider intervals in risky periods and narrower intervals in
stable periods.

Empirical evidence for changing variance

Many time series in business and economics exhibit changes in volatility over
time. This especially holds true for many financial time series. As an illustra-
tion, in Example 7.2 we considered the daily Dow-Jones index. The results in
Example 7.15 indicate that the series of daily returns D log (DJ) is uncorrel-
ated (see Exhibit 7.18). That is, the past returns contain no information on
the returns of tomorrow. Exhibit 7.2 (c) in Example 7.2 shows the time plot
of the returns. This shows that the variance in the returns changes over time.
There exist quiet periods with relatively small returns, but also very volatile
periods where large positive and negative returns follow each other. This
property is called clustered volatility. In this case the variance or risk in the
returns can be predicted to some extent. Exhibit 7.2 further indicates that
there are relatively many large positive and negative returns that cannot be
modelled well by the normal distribution.
Many financial time series have the above properties— that is, no auto-

correlation in the level (white noise), time-varying variance (clustered vola-
tility), and distributions with excess kurtosis (fat tails). In this section we
describe time series models that account for these properties.

Autoregressive conditional heteroskedasticity (ARCH)

If the variance of a time series depends on the past, we say that the series is
conditionally heteroskedastic. If this dependence on the past can be ex-
pressed by an autoregression, this gives the so-called model with autoregres-
sive conditional heteroskedasticity, abbreviated as ARCH. For instance, the
ARCH(1) model for a white noise series yt is given by

yt ¼ mþ et, etjYt�1 � N(0, s2t ), s2t ¼ a0 þ a1e2t�1: (7:28)

Here s2t ¼ var(ytjYt�1) is the conditional variance of the series, where
Yt�1 ¼ yt�1, yt�2, � � �f g denotes the available information set at time t � 1.
As variances are non-negative, we impose the conditions that a0 � 0 and
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a1 � 0. If a1 > 0, then the conditional variances are positively related, as s2t is
larger for larger values of the previous innovation et�1. This makes it possible
to predict the variance of the time series— that is, the risk that is involved in
future movements in the series.

Properties of ARCH processes

It is left as an exercise (see Exercises 7.6 and 7.7 (a)) to prove that
the ARCH(1) process (7.28) has the following properties if a1 < 1. It is
a white noise process with E[(yt � m)(ys � m)] ¼ 0 for all t 6¼ s. The mean
is E[yt] ¼ m. For 0 < a1 < 1 the (unconditional) variance E[(yt � m)2] ¼
a0=(1� a1) is constant over time, and for a1 ¼ 1 the process does not have
a finite (unconditional) variance anymore. Further, the series of squared
innovations e2t follows an AR(1) process— that is,

e2t ¼ a0 þ a1e2t�1 þ vt,

where vt ¼ e2t � s2t is a white noise process. This implies that the volatilities
are clustered if a1 > 0. Finally, the (unconditional) distribution of et is not
normal and has kurtosis larger than 3. So the ARCH(1) process has the three
aforementioned properties of many financial time series— that is, it is a white
noise process with clustered volatility and with fat tails. Simulation evidence
of these properties will be given in Example 7.19 at the end of this section.

In practice, extensions of the ARCH(1) model are needed because the
squared innovations e2t often show correlation patterns that cannot be mod-
elledwell by anAR(1)model. TheARCH(p)model has p lags in (7.28), so that

s2t ¼ E[e2t j Yt�1] ¼ a0 þ a1e2t�1 þ � � � þ ape2t�p: (7:29)

It is left as an exercise (see Exercise 7.6) to show that in an ARCH(p) model
the squared innovations e2t follow an AR(p) process.

Generalized ARCH models (GARCH)

Still more general correlation patterns are obtained by using ARMA models
for the series e2t . This leads to the class of so-called generalized ARCHmodels
(abbreviatedasGARCH).For instance, theGARCH(1,1)model isdescribedby

s2t ¼ a0 þ a1e2t�1 þ a2s2t�1,

with all three parameters non-negative. As before, let vt ¼ e2t � s2t ; then vt is
a white noise process (see Exercise 7.6). By substituting s2t ¼ e2t � vt in the
above equation we get
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e2t ¼ a0 þ (a1 þ a2)e2t�1 þ vt � a2vt�1:

So the process e2t follows an ARMA(1,1) process with AR polynomial
f(z) ¼ 1� (a1 þ a2)z and MA polynomial y(z) ¼ 1� a2z. The process e2t is
stationary if a1 þ a2 < 1, and it is integrated of order 1 if a1 þ a2 ¼ 1. In the
latter case the (unconditional) variance of the innovations e2t is not constant
over time if a0 > 0, because E[e2t ] ¼ a0 þ (a1 þ a2)E[e2t�1] ¼ a0 þ E[e2t�1] in
this case. The general GARCH(p, q) model contains p lags of s2t and q lags of
e2t in the above equation for the conditional variance s2t . Then e2t follows an
ARMA(m, p) process where m ¼ max (p, q).

Combined models for level and variance

The foregoing models are pure (G)ARCH processes— that is, the variance of
yt is predictable but the level of yt is not predictable (as yt is a white noise
process). We can also combine an ARMA model for the level of yt with
a GARCH model for the variance of the innovations et ¼ yt � E[ytjYt�1].
For instance, an AR(1)-ARCH(1) model is described by the equation
yt ¼ aþ fyt�1 þ et for the level,where etjYt�1 � N(0, s2t )with variance equa-
tions2t ¼ a0 þ a1e2t�1. Thismodel has four parameters and canbe described by

ytjYt�1 � N(aþ fyt�1, s2t ) ¼ N aþ fyt�1, a0 þ a1(yt�1 � a� fyt�2)
2

� �
:

(7:30)

In a similar way we can formulate mixed ARMA–GARCH models. In some
cases it is also of interest to consider clustered volatility models for the
error terms in regression models yt ¼ x0tbþ et. For example, suppose that
yt ¼ aþ bxt þ et and that etjYt�1 � N(0, s2t ), where s2t ¼ a0 þ a1e2t�1. Then
we get

ytjYt�1 � N(aþ bxt, s2t ) ¼ N aþ bxt, a0 þ a1(yt�1 � a� bxt�1)
2

� �
:

The use of GARCH error terms in regression models will be illustrated in
Example 7.22.

Example 7.19: Simulated ARCH and GARCH Time Series

We illustrate the above results by means of two simulations. The first time
series is generated by the ARCH(1) process (7.28) with parameter values
m ¼ 0, a0 ¼ 1, and a1 ¼ 0:9. So yt ¼ et with ytjYt�1 � N(0, s2t ) where
s2t ¼ 1þ 0:9y2t�1. This series is simulated as follows. First we draw
white noise terms Zt � NID(0, 1), and then the ARCH(1) process yt is
generated by recursively computing yt ¼ stZt where s2t ¼ 1þ 0:9y2t�1. The
results are in Exhibit 7.23 (a–f). The series yt shows clustered

E
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Exhibit 7.23 Simulated ARCH and GARCH Time Series (Example 7.19)

Time series simulated by an ARCH(1) process, innovations Zt (denoted by INNOV ((a)–(b))),
ARCH(1) series yt ¼ stZt (denoted by ARCH1 ((c)–(d))), time plot of conditional standard
deviation st (where s2t ¼ 1þ 0:9y2t�1 (e)), and S(P)ACF of the ARCH(1) series yt and of the
squared series y2t (f ).

(f )

Lag SACF yt SACF y2t SPACF y2t
1 0.112 0.587 0.587
2 0.070 0.353 0.013
3 0.056 0.229 0.026
4 �0.068 0.164 0.025
5 �0.072 0.181 0.105
6 �0.042 0.100 �0.086
7 �0.015 0.069 0.021
8 0.030 0.071 0.034
9 �0.081 0.040 �0.029

10 0.055 0.049 0.024
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Exhibit 7.23 (Contd.)

Time series simulated by a GARCH(1,1) process, innovations Zt (denoted by INNOV
((g)–(h))), GARCH(1,1) series yt ¼ stZt (denoted by GARCH1 ((i)–(j))), time plot of condi-
tional standard deviation st (where s2t ¼ 1þ 0:2y2t�1 þ 0:7s2t�1 (k)), and S(P)ACF of the
GARCH(1,1) series yt and of the squared series y2t (l).

(l)

Lag SACF yt SACF y2t SPACF y2t
1 0.073 0.489 0.489
2 0.052 0.228 �0.015
3 0.037 0.098 �0.011
4 �0.067 0.057 0.022
5 �0.082 0.092 0.077
6 �0.033 0.031 �0.061
7 �0.017 0.020 0.019
8 0.017 0.030 0.026
9 �0.082 0.011 �0.020

10 0.064 0.060 0.068
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volatility (see (c)) and has a kurtosis of 5.38 (see (d)). The exhibit also shows
the series of simulated conditional standard deviations st (in (e)), as well as
the correlograms of the series yt and of the squared series y2t (in (f )). The
SPACF of the series y2t indeed indicates that this is an AR(1) process.
In the second simulation we generate a time series from the GARCH(1,1)

model with parameter values m ¼ 0, a0 ¼ 1, a1 ¼ 0:2, and a2 ¼ 0:7. The
results are in Exhibit 7.23 (g–l). Again, the simulated series is white noise,
it has clustered volatility, and it has excess kurtosis.

E Exercises: T: 7.6, 7.7a.

7.4.4 Estimation and diagnostic tests of GARCH models

Two-step estimation of ARMA–GARCH models

If the process yt follows a GARCH process with mean m, then the squared
series (yt � m)2 follows an ARMA process. So the parameters of a GARCH
model can be estimated by estimating an ARMA model for the series
(yt � m)2 by the methods discussed in Section 7.2.2. If the mean m is un-
known, it can be replaced by the sample mean y. More generally, if the
process yt follows an ARMA process with innovations that are GARCH,
then the model parameters can be estimated in two steps. In the first step the
parameters of the ARMA model for yt are estimated as discussed in Section
7.2.2. Let the residuals of the ARMA model be denoted by et; then in the
second step the parameters of the GARCHmodel are estimated by estimating
an ARMA model for the series e2t of squared residuals. For example, for the
AR(1)–ARCH(1) model the first step consists of a regression of yt on a
constant and yt�1, and the second step of a regression of the squared residual
e2t on a constant and e2t�1. This two-step method provides consistent estima-
tors, but they are not efficient. This is because the error terms are not
normally distributed. For instance, in the AR(1)–ARCH(1) model, the
error terms et in the AR(1) model for yt are not normally distributed, so
that the AR parameters are not estimated efficiently in the first step. Also the
error terms vt ¼ e2t � s2t in the AR model for e2t are not normally distributed,
so that the ARCH parameters in the second step are also not efficiently
estimated.

Estimation by maximum likelihood

Consistent and efficient estimates are obtained by applying maximum likelihood
in correctly specified models. As an illustration we derive the log-likelihood for the
AR(1)–ARCH(1) model; the likelihood function for other models can be obtained
in a similar way. The likelihood derived in Section 7.2.2 for ARMA models does

T
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not apply in this case, because the innovations et are no longer normally distrib-
uted. To express the log-likelihood we use the fact that a joint density function can
be factorized as f (z1, z2) ¼ f (z1)f (z2jz1), where f (z2jz1) is the conditional density
of z2 conditional on z1. So the likelihood function can be factorized as

L ¼ p(y1, y2, � � � , yn) ¼ p(y1) p(y2jy1) p(y3jy1, y2) � � � p(ynjYn�1):

These conditional densities are normal (see (7.30)), so that

log (L(a, f, a0, a1)) ¼
Xn
t¼1

log p(ytjYt�1)

¼� n

2
log (2p)� 1

2

Xn
t¼1

log (s2t )�
1

2

Xn
t¼1

e2t
s2t

¼� n

2
log (2p)� 1

2

Xn
t¼1

log a0 þ a1(yt�1 � a� fyt�2)
2

� �
� 1

2

Xn
t¼1

(yt � a� fyt�1)
2

a0 þ a1(yt�1 � a� fyt�2)
2
: (7:31)

Because the values of (yt, t � 0) are unobserved, one often maximizes the condi-
tional log-likelihood (where the observations y1 and y2 are treated as fixed).
In this case the summations in (7.31) start at t ¼ 3 instead of t ¼ 1. The ML
estimators have the usual asymptotic properties if the ARMA process yt and
the GARCH model are both stationary. For instance, the ML estimators of the
AR(1)–ARCH(1) model are asymptotically normally distributed, provided
that �1 < f < 1 and 0 � a1 < 1.

Test for the presence of conditional heteroskedasticity

Correlations in the variance of a series can be exploited to forecast future
risks and to adjust the width of forecast intervals. Therefore it is of interest to
test for the presence of GARCH effects. This can be done, for instance, by
estimating an ARMA–GARCH model and applying an LR-test or an F-test
on the joint significance of the GARCH parameters. These tests have the
usual asymptotic distributions if the ARMA model and the GARCH model
are both stationary.
The Lagrange Multiplier test is somewhat simpler to perform. In this case

we need to estimate an ARMA model only under the null hypothesis that no
GARCH effects are present, so that we can apply the estimation methods of
Section 7.2.2. As an example, suppose that we wish to test the following
hypothesis on the disturbance terms et of an ARMA model. The null
hypothesis states that the terms et are independent, so that etjYt�1 �
N(0, s2). The alternative hypothesis is that the terms et are conditionally
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heteroskedastic according to the ARCH(p) process (7.29), so that
var(etjYt�1) ¼ s2t ¼ a0 þ

Pp
k¼1 ake

2
t�k. Then the null hypothesis of (condi-

tional) homoskedasticity corresponds to the p parameter restrictions

H0 : a1 ¼ � � � ¼ ap ¼ 0:

It is left as an exercise (see Exercise 7.7) to derive that, in an ARMA model
for yt, the LM-test for ARCH(p) disturbances can be computed by the
following steps.

LM-test for ARCH(p) error terms


 Step 1: Estimate the ARMA model. First estimate the ARMA model by
ML—that is, by OLS (for an AR model) or by NLS (if MA terms are
present). Let et be the corresponding series of (OLS or NLS) residuals.


 Step 2: Estimate the ARCH model. Regress the squared residuals e2t on a
constant and e2t�1, � � � , e2t�p.


 Step 3: LM ¼ nR2. Then the LM-test can be computed as LM ¼ nR2 of
the regression in step 2. Under the null hypothesis that no ARCH is present,
the LM-test asymptotically has the w2(p) distribution, and the null hypoth-
esis is rejected for large values of the LM-test.

ARCH LM-test as a general test for non-linearities

A significant value for LM ¼ nR2 in the ARCH LM-test does not necessarily
imply that GARCH is the correct alternative model. A significant R2 for the
squared residuals may also be caused, for example, by unmodelled non-
linearities in the functional relation (similar to the RESET) or by clusters of
outliers. Therefore, the ARCH LM-test can also be used as a general test for
possible non-linearities in the time series. If the interpretation of clustered
volatility is attractive— for instance, in financial applications— then one can
estimate a GARCH model. In other situations one may find other non-linear
models more useful— for instance, the models discussed in Sections 7.4.1
and 7.4.2.

Standardized residuals as diagnostic tool

The purpose of a GARCH model is to represent changes in the variance. To
check whether the volatility clustering is modelled correctly, let et denote the
series of residuals of the estimated ARMA–GARCH model. The so-called
standardized residuals are defined by et=ŝst, where ŝs2t is the estimated condi-
tional variance. If the model is correct, the standardized residuals should be
approximately uncorrelated and normally distributed with constant (condi-
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tional) variance. This can be checked by applying the Jarque–Bera test for
normality and the ARCH test for absence of heteroskedasticity on the series
of standardized residuals.

Use of GARCH models in risk modelling

In a GARCH model the conditional variance changes over time, so that the
forecast accuracy will also vary over time. The forecast interval can be based
on the point forecast plus or minus 2ŝst. In very volatile periods, where the
residuals et are large, the estimated conditional variances ŝs2t will also be
relatively large, so that the forecast intervals are wider. This reflects the fact
that in such periods there is more uncertainty about the future values of yt.
That is, large values of ŝst correspond to periods with higher risk. In Example
7.21 below we consider the use of GARCHmodels in predicting future risks.

Example 7.20: Industrial Production (continued)

We continue our analysis of the quarterly series of yearly growth rates in US
industrial production (see also Examples 7.17 and 7.18). We will discuss
(i) results of an AR–ARCH model and (ii) some diagnostic tests of this
model.

(i) AR(2)–ARCH(1) model

In Example 7.17 we observed that some of the outliers in the yearly growth
rates of US industrial production appear in clusters. Therefore we apply a test
for the possible presence of volatility clustering. As the growth rates show
correlations, we do not estimate a pure GARCH model for this series. We
model the growth rates by an AR(2) model. This model was estimated in
Example 7.8 (see Exhibit 7.9), but for convenience the estimatedAR(2)model
is shown once more in Panel 1 of Exhibit 7.24. The ARCH LM-test for
ARCH(1) effects in the disturbances of the AR(2) process is obtained as
LM ¼ nR2 of the regression of the squared residuals e2t of this model on a
constant and the lagged squared residuals e2t�1. This is shown in Panel 2 of
Exhibit 7.24. The LM-test has value LM ¼ nR2 ¼ 135 � 0:063 ¼ 8:5 with
P-value P ¼ 0:003 (one observation is lost of the 136 available residuals,
because of the term e2t�1 in the test equation). We conclude that the residuals
contain significant ARCH effects.
Panel 3 of Exhibit 7.24 shows the ML estimates of the AR(2)–ARCH(1)

model for D4yt. The AR parameters do not change much as compared to the
AR(2) model without ARCH, but the ARCH parameters are of interest in
predicting uncertainties in US industrial production. The ARCH parameter
âa1 ¼ 0:304 is relatively small but significant (P ¼ 0:016). Also the LR-test on
ARCH has a significant value, as the results in Panels 1 and 3 of Exhibit 7.24

E
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(a) Panel 1: Dependent Variable: D4Y
Method: Least Squares
Sample: 1961:1 1994:4; Included observations: 136

Variable Coefficient Std. Error t-Statistic Prob.
C 0.007147 0.002161 3.307447 0.0012

D4Y(�1) 1.332025 0.072094 18.47633 0.0000
D4Y(�2) �0.545933 0.072174 �7.564120 0.0000

R-squared 0.821380 Log likelihood 334.2160
S.E. of regression 0.020958

(b) Panel 2: ARCH Test:
F-statistic 8.973384 Probability 0.003268
Obs�R-squared 8.532634 Probability 0.003488
Test Equation: Dependent Variable: RESID^2
Method: Least Squares
Sample(adjusted): 1961:2 1994:4; Included observations: 135

Variable Coefficient Std. Error t-Statistic Prob.
C 0.000298 8.16E-05 3.651675 0.0004

RESID^2(�1) 0.233622 0.077989 2.995561 0.0033
R-squared 0.063205

(c) Panel 3: Dependent Variable: D4Y
Method: ML – ARCH
Sample: 1961:1 1994:4; Included observations: 136
Convergence achieved after 15 iterations

Variable Coefficient Std. Error z-Statistic Prob.
C 0.007454 0.002138 3.485798 0.0005

D4Y(�1) 1.406509 0.071004 19.80898 0.0000
D4Y(�2) �0.600541 0.076058 �7.895869 0.0000

Variance Equation
C 0.000288 3.24E-05 8.895637 0.0000

ARCH(1) 0.303640 0.126185 2.406315 0.0161
R-squared 0.819478 Log likelihood 342.6833
S.E. of regression 0.021229
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Series: Standardized
Residuals
Sample  1961:1 1994:4
Observations  136

Mean −0.038282
Median −0.030339
Maximum 3.353273
Minimum −3.997160
Std. Dev.  1.002961
Skewness −0.439976
Kurtosis 5.128773

Jarque-Bera  30.06729
Probability  0.000000

Exhibit 7.24 Industrial Production (Example 7.20)

AR(2) model for yearly growth rates in US industrial production (Panel 1), ARCH test on
residuals of this model (denoted by RESID, Panel 2), AR(2)–ARCH(1) model (Panel 3), test on
normality of the standardized residuals (d), and test on remaining ARCH in the standardized
residuals of the AR(2)–ARCH(1) model (Panel 5).

(e)

Panel 5: ARCH Test (one lag)
F-statistic 0.258530 Prob 0.611975
Obs�R-squared 0.261908 Prob 0.608812
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give LR ¼ 2(342:7� 334:2) ¼ 17:0 (with P-value according to the w2(1)
distribution P ¼ 0:000).

(ii) Diagnostic tests

Exhibit 7.24 (d) and (e) show some diagnostic tests on the standardized
residuals of the AR(2)–ARCH(1) model. The ARCH test (with one lag)
indicates that no ARCH effects remain in the AR(2)–ARCH(1) model
(P ¼ 0:61). However, normality is rejected (P ¼ 0:00) because the kurtosis
of 5.129 is still quite large. This is due to some isolated outliers that are not
captured well by the ARCH(1) process.

Example 7.21: Dow-Jones Index (continued)

As GARCHmodels are of particular interest in finance we now consider data
on the Dow-Jones index. We will discuss (i) some of the data properties of
this series, (ii) results of two GARCH models, (iii) prediction of the risk in
tomorrow’s returns, (iv) an evaluation of the quality of the risk predictions,
and (v) the prediction of high risks.

(i) Data properties

We consider the series of daily returns of the Dow-Jones index over the period
1990–9. Panel 1 of Exhibit 7.25 shows the sample (partial) autocorrelations
of this series and of the squares of this series. The correlations in the returns
are very small, so that the returns cannot be predicted from their past.
However, the squared returns series contains significant correlations, so that
the risk in the returns is predictable to some extent. Further, the histogram of
the returns in (b) shows that the kurtosis is equal to 8.2, so that this series has
fat tails. These properties (no correlation in levels, clustered volatility, and fat
tails) motivate the use of GARCH models for the returns.

(ii) Results of two GARCH models

Panels 3 and 6 of Exhibit 7.25 show the results of two GARCH models. The
models are of the form yt ¼ mþ et, where m is the mean of the returns and et
follows an ARCH(5) process (in Panel 3) or a GARCH(2,2) process (in Panel
6). The ARCH and GARCH parameters are significant (except the first
lagged GARCH term in the GARCH(2,2) model). Exhibit 7.25 (d, e, g, h)
show histograms and ARCH tests (with five lags included) of the standard-
ized residuals of these two models. The standardized residuals contain no
ARCH anymore (P ¼ 0:47 in Panel 4 for the ARCH(5) model and P ¼ 0:61
in Panel 7 for the GARCH(2,2) model). The kurtosis has decreased (to
around 5.4 for the ARCH(5) model (see (e)) and 5.5 for the GARCH(2,2)
model (see (h))), but the standardized residuals are not normally distributed.
This is because the series of returns contains some isolated outliers that
cannot be modelled well by a GARCH model. Note that the sample mean
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of the daily returns is 0.056 per cent (see the histogram of the returns series in
Exhibit 7.25 (b)), but the mean daily return m is estimated as 0.067 per cent in
the ARCH(5) model in Panel 3 and as 0.062 per cent in the GARCH(2,2)
model in Panel 6. The estimates of the ARCH and GARCHmodels are more

(a)

Panel 1
Lag SACF yt SPACF yt SACF yt

2 SPACF yt
2

1 0.030 0.030 0.208 0.208
2 �0.017 �0.018 0.151 0.112
3 �0.046 �0.045 0.069 0.018
4 �0.011 �0.008 0.091 0.062
5 �0.013 �0.014 0.178 0.149
6 �0.004 �0.006 0.066 �0.011
7 �0.047 �0.048 0.137 0.093
8 �0.012 �0.011 0.057 0.001
9 0.041 0.039 0.078 0.027

10 0.039 0.032 0.055 0.002
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Series:  DJRET
Sample  2  2528
Observations  2527

Mean 0.000558
Median 0.000605
Maximum 0.048605
Minimum −0.074549
Std. Dev.  0.008917
Skewness             −0.409383
Kurtosis 8.201159

Jarque-Bera 2918.942
Probability 0.000000

(b)

(c) Panel 3: Dependent Variable: DJRET
Method: ML – ARCH
Sample(adjusted): 2 2528; Included observations: 2527
Convergence achieved after 15 iterations

Variable Coefficient Std. Error z-Statistic Prob.
C 0.000668 0.000165 4.044671 0.0001

Variance Equation
C 3.97E-05 1.67E-06 23.86055 0.0000

ARCH(1) 0.085180 0.017965 4.741323 0.0000
ARCH(2) 0.127996 0.014382 8.899731 0.0000
ARCH(3) 0.064421 0.020266 3.178738 0.0015
ARCH(4) 0.124051 0.019582 6.334810 0.0000
ARCH(5) 0.104425 0.020429 5.111540 0.0000

S.E. of regression 0.008928 Akaike info criterion �6.708544
Log likelihood 8483.245 Schwarz criterion �6.692381

(d)

Panel 4: ARCH Test on STRESID of ARCH(5)
5 lags included in the test equation
F-statistic 0.907729 Prob 0.474914
Obs�R-squared 4.541276 Prob 0.474380
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Series: Standardized
Residuals
of ARCH(5) model
Sample 2 2528
Observations 2527

Mean            −0.021353
Median         −0.007114
Maximum 5.677472
Minimum      −6.188729
Std. Dev. 1.000002
Skewness       −0.332833
Kurtosis 5.425713

Jarque-Bera 666.2010
Probability 0.000000

(e)

Exhibit 7.25 Dow-Jones Index (Example 7.21)

S(P)ACF of the daily Dow-Jones returns and of the squares of this series (Panel 1), histogram of
this series (b), ARCH(5) model (Panel 3), ARCH test on standardized residuals of this model
(Panel 4), and histogram (e).
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reliable, because the returns are not normally distributed so that the sample
mean is not an efficient estimator.

(iii) Prediction of tomorrow’s risk

Next we consider the use of these two models in predicting whether the next
day is risky or not. The models produce estimates of tomorrow’s risk
s2t ¼ var(ytjYt�1), which can be compared with the actually realized returns.
The risks are predicted well if the estimated risk ŝst is positively correlated
with the absolute return ytj j. Exhibit 7.25 (i) and (j) contain plots of the
estimated conditional standard deviations ŝst of both models. Panel 11 of
Exhibit 7.25 shows the correlations between these forecasted standard
deviations and the series of absolute returns. The correlations are positive
(0.26 for the ARCH(5) model and 0.29 for the GARCH(2,2) model). So the
models have some success in predicting the risks in the daily movements of
the Dow-Jones index. If the forecasted standard deviation for tomorrow is
large, then tomorrow the return will, on average, be relatively large (positive
or negative).

(f ) Panel 6: Dependent Variable: DJRET
Method: ML – ARCH
Sample(adjusted): 2 2528; Included observations: 2527
Convergence achieved after 26 iterations

Variable Coefficient Std.Error z-Statistic Prob.
C 0.000621 0.000154 4.040140 0.0001

Variance Equation
C 1.86E-06 4.11E-07 4.515180 0.0000

ARCH(1) 0.037997 0.011418 3.327782 0.0009
ARCH(2) 0.070522 0.008987 7.847085 0.0000
GARCH(1) 0.117028 0.130196 0.898860 0.3687
GARCH(2) 0.752955 0.121789 6.182480 0.0000

S.E. of regression 0.008926 Akaike info criterion �6.755778
Log likelihood 8541.926 Schwarz criterion �6.741925

(g)

Panel 7: ARCH Test on STRESID of GARCH(2,2)
5 lags included in the test equation
F-statistic 0.722747 Prob 0.606318
Obs�R-squared 3.617159 Prob 0.605739
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Series: Standardized
Residuals
of GARCH(2,2) model
Sample 2 2528
Observations 2527

Mean  −0.015458
Median −0.002054
Maximum  4.973832
Minimum −6.683131
Std. Dev.  1.000819
Skewness −0.451443
Kurtosis  5.520762

Jarque-Bera  754.8827
Probability  0.000000

(h)

Exhibit 7.25 (Contd.)

GARCH(2,2) model for the daily Dow-Jones returns (Panel 6), ARCH test on standardized
residuals of this model (Panel 7), and histogram (h).
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(iv) Evaluation of the risk predictions

To evaluate the quality of the risk forecasts in more detail, Panel 12 of Exhibit
7.25 contains a prediction–realization table, which is constructed as follows.
The sample mean and the sample standard deviation of the returns yt are
equal to y ¼ 0:0558 per cent and s ¼ 0:8917 per cent. As the standard
deviation is much larger than the mean, we take as one-day-ahead forecast
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GARCH(2,2) Cond. Std. Dev.
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ARCH(5) Cond. Std. Dev.

(i) (j)

(k) Panel 11: Correlations between absolute returns and conditional Std. Dev.
ytj j st (ARCH5) st (GARCH22)

ytj j 1.000000 0.255448 0.292503
st (ARCH5) 0.255448 1.000000 0.782080

st (GARCH22) 0.292503 0.782080 1.000000

(l) Panel 12: Prediction–realization table for large (absolute) returns
Real Total ARCH(5) GARCH(2,2)

st < s st > s st < s st > s
ytj j < s 1900 1392 508 1352 548
ytj j > s 627 352 275 306 321
yt > s 355 193 162 166 189
yt < �s 272 159 113 140 132

(m) Panel 13: Prediction–realization table for very large (absolute) returns
Real Total ARCH(5) GARCH(2,2)

st < 2s st > 2s st < 2s st > 2s
yt > 2s 64 58 6 56 8
yt < �2s 66 64 2 59 7
Total 130 122 8 115 15

Exhibit 7.25 (Contd.)

Estimated series of conditional standard deviations of ARCH(5) model (i) and of GARCH(2,2)
model (j), correlations between absolute returns ytj j and one-step-ahead predicted standard
deviations st (Panel 11), prediction–realization table for small and large (absolute) returns
against predicted standard deviations of the ARCH(5) and GARCH(2,2) model (Panel 12),
and prediction–realization table for very large (absolute) returns (Panel 13).
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ŷyt ¼ 0. We call a day risky if the squared return is larger than average— that
is, if y2t > s2 or equivalently if ytj j > s. A day is predicted to be risky if the
estimated conditional standard deviation ŝst > s. As a benchmarkwe consider
the forecasts generated by the model yt � NID(0, s2). In this model we
cannot predict tomorrow’s risk from the past. But we can randomly predict
that tomorrow is risky with probability p ¼ P[ ytj j > s] and that tomorrow is
non-risky with probability (1� p) ¼ P[ ytj j < s]. In this model y2t =s

2 � w2(1),
so that p ¼ P[y2t > s2] ¼ P[w2(1) > 1] ¼ 0:317. The benchmark model has
an expected hit rate of correctly predicting risky and non-risky days equal
to p2 þ (1� p)2 ¼ 0:567. For the ARCH(5) model, 275 out of 627 risky
days and 1392 out of 1900 non-risky days are predicted correctly, with
hit rate 1667=2527 ¼ 0:660. For the GARCH(2,2) model, 321 of the risky
days and 1352 of the non-risky days are predicted correctly, with hit
rate 1673=2527 ¼ 0:662. Both hit rates are larger than the benchmark,
so that both models are successful in predicting the amount of risk one
day ahead.
It is also of interest to distinguish between large positive returns yt > s

and large negative returns yt < �s, as this corresponds to different types
of risks. The ARCH(5) model correctly predicts 162 of the 355 large positive
returns (45.6 per cent) and 113 of the 272 large negative returns (41.5 per
cent). For the GARCH(2,2) model these numbers are 189 out of 355
(53.2 per cent) and 132 out of 272 (48.5 per cent) respectively. So the
GARCH(2,2) model performs somewhat better than the ARCH(5) model
in this respect.

(v) Prediction of high risks

In practice it is most relevant (and most difficult) to predict large future risks.
Panel 13 of Exhibit 7.25 contains results for very large returns
(yt > 2s and yt < �2s). Of the 2527 observed daily returns, 130 days involve
such large risks (64 days with yt > 2s and 66 days with yt < �2s). The
ARCH(5) model correctly predicts eight out of these 130 days (6.2 per
cent), in the sense that ŝst > 2s for such days. The GARCH(2,2) model
correctly predicts fifteen out of these 130 days (11.5 per cent). The hit
rates are small, but still better than what would be obtained by random
predictions from the model yt � NID(0, s2). In this model there holds
P[ ytj j > 2s] ¼ P[y2t =s

2 > 4] ¼ P[w2(1) > 4] ¼ 0:046. If we randomly predict
tomorrow to be very risky with probability p ¼ 0:046 and not very risky
with probability (1� p), then the hit rate for very risky days would be 4.6 per
cent. Summarizing, (G)ARCH models help in evaluating the risk of tomor-
row’s returns in financial markets.

E Exercises: T: 7.7b–f, 7.8; E: 7.18c, d, 7.19, 7.22, 7.23e.
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7.4.5 Summary

In this section we have considered different non-linear aspects that may be
relevant in time series modelling. The modelling of non-linear aspects like
switching regimes and changing volatilities helps to understand the dy-
namical structure of the process. The outcomes of estimates, diagnostic
tests, and forecasts depend on the proper modelling of such non-linear
aspects. We discussed

. outliers in time series (additive outliers, innovation outliers, level shifts)
and the modelling of outliers by means of dummy variables;

. changes in the parameters of ARMA models (sudden parameter breaks
or more smooth transitions);

. changes in variance (conditional heteroskedasticity) and the use of
(G)ARCH models in modelling financial time series, in constructing
forecast intervals, and in predicting future risks;

. the ARCH test for conditional heteroskedasticity, which can also be
used as a general test for the presence of non-linearities in observed time
series.
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7.5 Regression models with lags
E Uses Chapters 1–4; Sections 5.5, 5.7; Sections 7.1–7.3.

7.5.1 Autoregressive models with distributed lags

Time series models with explanatory variables

In the foregoing sections we considered the modelling of time series data of a
single variable yt, where the value of yt is explained in terms of lagged values
of this variable and possibly lagged values of the error term. If an explanatory
variable xt is available, then yt can in addition be explained by this variable
and its lagged values. If we add xt and r lagged values of xt to an ARMA(p, q)
model for yt, we obtain the model

yt ¼ aþ
Xp
k¼1

fkyt�k þ
Xr
k¼0

bkxt�k þ
Xq
k¼1

yket�k þ et: (7:32)

This is a dynamic regression model that incorporates both the autocorrela-
tion between successive observations of yt and the correlation of yt with the
explanatory variable xt and its lags. The model extends the regression model
of Chapters 2 and 3 (which is obtained if fk ¼ 0 and yk ¼ 0 for all k) and the
ARMA model of Section 7.1.4 (which is obtained if bk ¼ 0 for all k).

Autoregressive model with distributed lags

Of particular interest is the model without MA component— that is, with
q ¼ 0. This is called the autoregressive model with distributed lags, also
denoted as ADL(p, r). In this model, the effect of the explanatory variable
xt on the dependent variable yt is distributed over time. The model can be
written as

f(L)yt ¼ aþ b(L)xt þ et,

where f(z) ¼ 1�Pp
k¼1 fkz

k and b(z) ¼Pr
k¼0 bkz

k. We assume that the AR
polynomial is stationary— that is, that f(z) ¼ 0 has all its solutions outside
the unit circle. A change in xt has an effect on yt that is distributed over time.
The instantaneous or short-run multiplier is b0. The long-run multiplier (that
we denote by l) measures the long-run effect on E[yt] of a permanent change
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in the level of xt. If the level of xt increases by one unit for all times, then the
mean of yt increases by l ¼Pr

k¼0 bk= 1�Pp
k¼1 fk

� � ¼ b(1)=f(1) units. Note
that f(1) 6¼ 0, as it is assumed that the AR polynomial has all its roots
outside the unit circle.

The model (7.32) is easily extended to the case of more than one explana-
tory variable, but for simplicity we will restrict ourselves to a single ex-
planatory variable. A special case of the ADL(1,1) model was discussed in
Section 5.5.4 (p. 369)—namely, the regression model with AR(1) errors.
This corresponds to the ADL(1,1) model with the parameter restriction
b0f1 þ b1 ¼ 0, see (5.52) in Section 5.5.4. This model is sometimes used to
reduce some of the serial correlation in (static) regression models, but in
practice the residuals of this model often still contain much serial correlation.
In this section we discuss some other special cases of the model (7.32) that
have an interesting economic interpretation.

Partial adjustment

One of the possible reasons for dynamic effects in business and economic
processes is that economic subjects adjust themselves only gradually to
changing conditions. For instance, consumption habits are adjusted only
gradually to changes in income levels and prices. Similarly, the sales of a
new brand of a product may reach its equilibrium level only after a certain
period of time, when the brand has established its position in the market. For
given value of the independent variable xt, let the corresponding equilibrium
level of yt be given by y�t ¼ gþ dxt. Suppose that the actual level of yt is only
partially adjusted in the sense that

yt ¼ yt�1 þ l(y�t � yt�1)þ et,

where 0 � l � 1. For instance, if the current level yt�1 is smaller than the
equilibrium value y�t , then the series tends to be adjusted upwards. The
adjustment is complete if l ¼ 1, it is partial if 0 < l < 1, and there is no
adjustment if l ¼ 0. Substituting y�t ¼ gþ dxt in the above equation gives the
model

yt ¼ aþ fyt�1 þ bxt þ et,

where a ¼ lg,f ¼ (1� l), and b ¼ ld. This is an ADL(1,0) model. It is called
the partial adjustment model.

Adaptive expectations

It may also be that economic subjects decide on the level of yt on the basis of
expected values of xtþ1, denoted by x�tþ1. For instance, expenses on durable
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goods may depend on expected income, and the production of a new product
may be based on expected sales. The model is given by

yt ¼ gþ dx�tþ1 þ et:

The expectation of the future value of xtþ1 can be adjusted according to the
actual values of xt. The adaptive expectations model postulates that

x�tþ1 ¼ x�t þ l(xt � x�t ),

where 0 � l � 1. For instance, if the current value xt is larger than expected
(so that xt > x�t ), then this leads to an upward correction in future expect-
ations. The adaptation is complete if l ¼ 1 (as x�tþ1 ¼ xt in this case), it is
partial if 0 < l < 1, and expectations are not adapted if l ¼ 0 (as x�tþ1 ¼ x�t
in this case). In this model the expectations are obtained by exponential
smoothing (with smoothing factor 1� y ¼ l), so that this gives the optimal
forecasts if xt is an ARIMA(0,1,1) process (see Section 7.3.2). The unob-
served variable x�tþ1 in the above equation for yt can be eliminated by
using yt � (1� l)yt�1 ¼ lg þd(x�tþ1 � (1� l)x�t )þ et � (1� l)et�1, where
x�tþ1 � (1� l)x�t ¼ lxt, so that

yt ¼ aþ fyt�1 þ bxt þ et � fet�1,

where a ¼ lg,f ¼ (1� l), and b ¼ ld. This model is of the form (7.32) with
orders p ¼ 1, r ¼ 0, and q ¼ 1. The only difference with the partial adjust-
ment model is that the adaptive expectations model contains an additional
MA(1) term.

Error correction model

The ADL model can be rewritten in terms of changes of the variables— that
is, in terms of the first differences Dyt ¼ yt � yt�1 and Dxt ¼ xt � xt�1. We
consider this reformulation first for the ADL(1,1) model— that is, the model
(7.32) with p ¼ 1, r ¼ 1, and q ¼ 0. By subtracting yt�1 from both sides of
the equation (7.32), we can write this model as Dyt ¼ aþ (f� 1)yt�1 þ
b0Dxt þ (b0 þ b1)xt�1 þ et, or equivalently

Dyt ¼ b0Dxt � (1� f)(yt�1 � lxt�1 � d)þ et, (7:33)

with d ¼ a=(1� f) and where l ¼ (b0 þ b1)=(1� f) is the long-run multi-
plier. Note that the equilibrium relation y ¼ dþ lx is obtained if in the
ADL(1,1) model et ¼ 0 and the values of yt ¼ yt�1 ¼ y and xt ¼ xt�1 ¼ x
are fixed, as in this case y ¼ aþ fyþ b0xþ b1x, so that y ¼ a

1�f þ
b0þb1
1�f x ¼ dþ lx. The ADL(1,1) model written in the form (7.33) is called
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an error correction model (ECM). This shows that there are two systematic
effects on the changes Dyt of the dependent variable. The first effect is the
instantaneous multiplier effect b0Dxt that is due to changes in the explana-
tory variable. The second effect concerns deviations from the long-run
equilibrium relation yt�1 ¼ dþ lxt�1. For instance, suppose that yt�1 >
dþ lxt�1, so that the value of yt�1 is above the long-run equilibrium value
corresponding to xt�1. The stationarity assumption implies that f < 1, so
that (1� f) > 0, and hence this provides a negative effect on Dyt —that is, yt
will tend to move downwards in the direction of equilibrium. Therefore
the term �(1� f)(yt�1 � lxt�1 � d) takes care that deviations from equilib-
rium (the ‘errors’) are corrected. If f ¼ 1—that is, if the series yt has a unit
root— then the error correction term drops out from (7.33). In this case
there exists no long-run equilibrium for yt and the long-run multiplier is
infinitely large.

It is left as an exercise (see Exercise 7.9) to show that for higher order lags
the ADL model can also be written in error correction form. That is, the
ADL(p, q) model with stationary AR polynomial f(z) can be written as

Dyt ¼ b0Dxt � f(1)(yt�1 � lxt�1 � d)þ
Xp�1

k¼1

f�
kDyt�k þ

Xr�1

k¼1

b�kDxt�k þ et,

(7:34)

with f(1) ¼ 1�Pp
k¼1

fk > 0, d ¼ a=f(1), and where l ¼ b(1)=f(1) is the
long-run multiplier. As before, the relation y ¼ dþ lx corresponds to
the long-run equilibrium relation. Since f(1) > 0, deviations from this equi-
librium are again corrected in this model.

E Exercises: T: 7.9a, b.

7.5.2 Estimation, testing, and forecasting

Model assumptions

To estimate the parameters of the ADLmodel f(L)yt ¼ b(L)xt þ et, we make
the following assumptions. First, the disturbance terms et satisfy all the usual
assumptions— that is, they have mean zero and constant variance s2, and
they are mutually independent and jointly normally distributed. If this is not
the case, then the model should be adjusted (by including more lagged terms
of yt and xt or by including MA terms as in (7.32). Second, the explanatory
variables are exogenous, in the sense that all current and past values
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xt�k, k � 0f g are uncorrelated with the error term et. If this is not the case,
then one should instead specify a multiple equation model— for instance, a
vector autoregressive model, as will be discussed in Section 7.6. Finally, the
AR polynomial f(z) is stationary—that is, it has all its roots outside the unit
circle—and the process xt is stationary. These conditions imply that yt is a
stationary process. If the AR polynomial contains unit roots, then yt contains
stochastic trends and ADL models are not appropriate. The modelling of
series with stochastic trends is discussed in Section 7.6.3.

Estimation of ADL models

The ADL(p, q) model— that is, (7.32) without MA terms— is a regression
model with stochastic regressors. Under the above model assumptions, the
parameters can be estimated by least squares and the OLS estimators have
the standard statistical properties discussed in Section 4.1.4 (p. 197). That is,
under the above assumptions OLS is consistent and the conventional t- and
F-tests are valid asymptotically. Because the error terms are assumed to be
normally distributed, OLS is equivalent to ML and hence it is asymptotically
efficient. To analyse this in more detail, we consider for simplicity the
ADL(1,1) model. Let zt ¼ (1, yt�1, xt, xt�1)

0 be the vector of regressors in
this model. Then the stability and orthogonality conditions for stochastic
regressors formulated in Section 4.1 can be formulated as

plim
1

n

Xn
t¼2

etzt

 !
¼ 0, plim

1

n

Xn
t¼2

ztz
0
t

 !
¼ Qzz,

where Qzz is an invertible matrix. The first (orthogonality) condition is
satisfied because the explanatory variable xt and its lagged values are as-
sumed to be exogenous. The second (stability) condition requires the vari-
ables to have finite variances and covariances, and this is satisfied because the
processes yt and xt are assumed to be stationary. It is sufficient that the
process xt is stationary and that �1 < f < 1. If the process yt has a unit
root, then the stability condition is not satisfied. This is because in this case yt
has infinite variance for t ! 1 (see Section 7.3.1). Then the OLS estimators
do not have the standard properties discussed in Section 4.1 (see also the
discussion in Section 7.3.3 on unit root tests).

Estimation of models with MA terms

If the model (7.32) contains moving average terms, then least squares is
no longer consistent. For instance, in the case of single lags (so that
p ¼ q ¼ r ¼ 1) and with exogenous regressors xt and xt�1, the covariance
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between the regressor yt�1 and the error term et þ yet�1 in (7.32) is
equal to

cov(aþ fyt�2 þ b0xt�1 þ b1xt�2 þ et�1 þ yet�2, et þ yet�1) ¼ ys2 6¼ 0:

Models with MA terms should be estimated by maximum likelihood. The
standard asymptotic theory for ML estimators applies, provided that the
processes xt and yt are stationary.

Diagnostic tests

If the processes xt and yt are stationary, then the diagnostic tests described
before (in Chapter 5 for regression models and in Section 7.2.4 for stationary
time series) can all be applied to models of the form (7.32). For instance, the
lag lengths p, q, and r can be chosen by means of t-tests and F-tests on the
significance of additional lagged terms, and also by means of the selection
criteria AIC and SIC. The Breusch–Godfrey LM-test on serial correlation and
the ARCH LM-test on heteroskedasticity can be performed as before on the
residuals of the estimated model.

Forecasting

To use the model (7.32) in one-period-ahead forecasting we need to know or
to estimate the value of xnþ1 and we have to estimate the value of en. The best
we can do is to replace the unknown parameters by theirML estimates and to
take the resulting residual series as an estimate of the error terms et. For
instance, in the model with single lags (p ¼ q ¼ r ¼ 1), the forecast is then
given by ŷynþ1 ¼ f̂fyn þ b̂b0x̂xnþ1 þ b̂b1xn þ ŷyen, where en ¼ yn � ŷyn. The re-
quired forecast x̂xnþ1 of the explanatory variable can be obtained, for in-
stance, from a (univariate) time series model for xt as discussed in Section
7.1.6. For multi-period-ahead forecasts, the future values of yt that appear as
regressors on the right-hand side in (7.32) are themselves forecasted. Com-
bined with the additional uncertainty in the forecasts of the explanatory
variables xt, this implies that the forecast intervals will be wider than in the
case of known, non-stochastic regressors considered in Sections 2.4.1 (p. 106)
and 3.4.3 (p. 171).

Example 7.22: Interest and Bond Rates (continued)

To illustrate the use of the regression model with lags, we consider
the relation between the monthly changes yt in the AAA bond rate and the
monthly changes xt in the three-month Treasury Bill rate. These data were
also used in Chapter 5; see Example 5.11 (p. 322) for further motivation. The

E
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data cover the period 1950–99, leading to n ¼ 600 monthly observations.
We will subsequently discuss (i) the simple regression model, (ii) an ADL
model, (iii) an ADL model with GARCH error terms, (iv) interpretation of
the GARCH effects, and (v) some important remarks on further relevant data
properties.

(i) The simple regression model with AR(1) errors

In Chapter 5 we considered the simple regression model yt ¼ aþ bxt þ et for
these data. This model was analysed in Examples 5.19 (p. 354), 5.21 (p. 360),
5.22 (p. 365), and 5.24 (p. 370). The conclusion of this analysis was that the
residuals of the simple regression model show significant serial correlation
and that an AR(1) model for the error terms et is too limited to remove this
serial correlation. Therefore other models are needed that reflect the dynam-
ical relations between the two variables. For later comparison the estimation
results of the simple regression model (in Panel 1 of Exhibit 5.30 (p. 360)) are
given once more in Panel 1 of Exhibit 7.26.

(ii) ADL model

To model the dynamical relations between the bond rate yt and the interest
rate xt we now estimate ADL models. We start with an ADL(p, r) model
that contains enough lags so that the residuals are not serially correlated
anymore. It turns out that it is sufficient to include p ¼ r ¼ 6 lags. Next we
try to reduce the number of lags, by considering the significance of lagged
terms, by comparing SIC values, and by checking for serial correlation
in ADL models with lower orders for p and r. This leads to the ADL model
with p ¼ 3 lags of yt and r ¼ 4 lags of xt. The estimation results of the
ADL(3,4) model are given in Panel 2 of Exhibit 7.26. The correlations
of the residuals of this model are small, with a largest correlation of 0.078
at lag 6 (see Panel 3). The Breusch–Godfrey test on serial correlation gives
P-values of P ¼ 0:07 (with one lag included) and P ¼ 0:03 (with twelve lags
included). So, at the 1 per cent significance level (which is a reasonable choice
for n ¼ 600 observations), there is no significant serial correlation. We
conclude that the dynamic correlations between the changes in the AAA
bond rate and the three-month Treasury Bill rate are captured well by this
model. The short-run multiplier (the coefficient of xt) in the ADL(3,4) model
is 0:24. This is quite close to the estimated value of 0:27 in the simple
regression model.
It is of interest to test whether changes in the interest rate in the long run

lead to equal changes in the bond rate— that is, to test whether the long-
run multiplier is equal to 1. This corresponds to the parameter restriction

l¼P4
k¼0bk=

�
1�P3

k¼1fk

�¼ 1, or, equivalently, to
P4

k¼0bkþ
P3

k¼1fk ¼ 1:

Panel 4 of Exhibit 7.26 shows the outcomes of the F-test for this hypothesis.
The hypothesis is clearly rejected (F ¼ 119 with P ¼ 0:00).
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(iii) ADL model with GARCH error terms

The residuals of the ADL model are not serially correlated, but they exhibit
clustered volatility. This is clear from the time series plot of the residuals in
Exhibit 7.26 (e). The ARCH test (with four lags) on the residuals is very
significant (see Panel 6). Therefore we now estimate the ADL(3,4) model
with GARCH(1,1) error terms, with results in Panel 7 of Exhibit 7.26. The
residuals of the ADL(3,4)-GARCH(1,1) model do not contain clustered
volatility anymore (the ARCH LM-test with four lags gives P ¼ 0:087, see
Panel 8). Further note that the lagged values of xt have become jointly
insignificant in this model (the corresponding F-test has P ¼ 0:58, see
Panel 9). This means that the dynamic effects, which were attributed in the
ADL model to past changes in the Treasury Bill rate, are better described in
terms of clustered volatility of the AAA bond rate changes.

(iv) Interpretation of the GARCH effects

Exhibit 7.26 (j) shows the time series plot of the predicted standard devi-
ations obtained from the GARCH(1,1) model. The conditional standard
deviation shows much variation over time. In particular there seems to be a
break in the volatility around 1980. The GARCH(1,1) model captures the
variations in the volatility of the series much better than the models discussed
in Example 5.18 (p. 350–2) for these heteroskedastic data. Exhibit 7.26 (k)
shows the scatter plot of the absolute changes in the AAA bond rate against
the predicted standard deviation. These variables are positively correlated.
On average, if the predicted standard deviation is relatively large (small) then
the (absolute) change in the AAA bond rate is also relatively large (small). So
this model is helpful in predicting risky months— that is, months where the
AAA bond rates contain much uncertainty.

(v) Remarks on further relevant data properties

We will return later to these data to answer two remaining questions. The
first is why the model is formulated for the changes and not for the levels of
the two rates. The reason is that, in estimating the ADL model, it is assumed
that the series are stationary. We will analyse this issue further in Example
7.25 in the next section and especially in Example 7.27 in Section 7.6.3. It
will turn out that it is better to model the levels of the two time series, and not
the series of first differences. The second question is related to the possible
endogeneity of the Treasury Bill rate. Indeed, in Example 5.33 (p. 414–16)
we concluded that xt is endogenous. This means that a fundamental assump-
tion of the ADL model is violated, so that the results of the ADL model may
be misleading. Models that account for the joint endogeneity of both time
series are considered in Examples 7.26 and 7.32.
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(a) Panel 1: Dependent Variable: DAAA
Method: Least Squares
Sample: 1950:01 1999:12; Included observations: 600

Variable Coefficient Std. Error t-Statistic Prob.
C 0.006393 0.006982 0.915697 0.3602

DUS3MT 0.274585 0.014641 18.75442 0.0000
R-squared 0.370346 Mean dependent var 0.008283
S.E. of regression 0.171002 Akaike info criterion �0.690952
Sum squared resid 17.48658 Schwarz criterion �0.676296
Log likelihood 209.2857 F-statistic 351.7282
Durbin-Watson stat 1.446887 Prob(F-statistic) 0.000000

(b) Panel 2: Dependent Variable: DAAA
Method: Least Squares
Sample: 1950:01 1999:12; Included observations: 600

Variable Coefficient Std. Error t-Statistic Prob.
C 0.004909 0.006518 0.753160 0.4517

DAAA(�1) 0.376847 0.042230 8.923663 0.0000
DAAA(�2) �0.229060 0.044907 �5.100809 0.0000
DAAA(�3) 0.087534 0.042553 2.057033 0.0401
DUS3MT 0.240321 0.015169 15.84308 0.0000

DUS3MT(�1) �0.084951 0.018208 �4.665701 0.0000
DUS3MT(�2) 0.080341 0.018521 4.337855 0.0000
DUS3MT(�3) �0.061728 0.018403 �3.354288 0.0008
DUS3MT(�4) 0.055952 0.014510 3.856226 0.0001

R-squared 0.459580 Mean dependent var 0.008283
S.E. of regression 0.159358 Akaike info criterion �0.820443
Sum squared resid 15.00839 Schwarz criterion �0.754489
Log likelihood 255.1329 F-statistic 62.82430
Durbin-Watson stat 2.022425 Prob(F-statistic) 0.000000

(c) Panel 3: correlograms of residuals of ADL(0,0) and ADL(3,4)
Sample: 1950:01 1999:12; Included observations: 600

ADL(0,0) ADL(3,4)
Lag SACF Q-Stat Prob SACF Q-Stat Prob
1 0.276 45.932 0.000 �0.013 0.1064 0.744
2 �0.076 49.398 0.000 0.014 0.2288 0.892
3 0.008 49.441 0.000 �0.030 0.7695 0.857
4 0.034 50.126 0.000 0.021 1.0323 0.905
5 0.055 51.939 0.000 0.011 1.1061 0.954
6 0.101 58.189 0.000 0.078 4.8142 0.568
7 0.035 58.934 0.000 �0.013 4.9128 0.671
8 0.049 60.412 0.000 0.059 7.0251 0.534
9 0.044 61.610 0.000 0.032 7.6697 0.568

10 0.008 61.646 0.000 0.012 7.7540 0.653
11 0.032 62.289 0.000 0.045 8.9743 0.624
12 �0.062 64.624 0.000 �0.037 9.8041 0.633

Exhibit 7.26 Interest and Bond Rates (Example 7.22)

Simple regression of DAAA on DUS3MT (ADL(0,0) model, Panel 1) and ADL(3,4) model
(Panel 2) with correlograms of residuals (Panel 3).
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(d) Panel 4: Wald test on long-run multiplier
Null Hypothesis: C(2)þC(3)þC(4)þC(5)þC(6)þC(7)þC(8)þC(9)¼1
F-statistic 119.0438 Probability 0.000000
Chi-square 119.0438 Probability 0.000000
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(f ) Panel 6: ARCH Test on residuals of the ADL(3,4) model
4 lags of squared residuals included in the test equation
F-statistic 28.63848 Probability 0.000000
Obs�R-squared¼596�0.162360 96.76672 Probability 0.000000

(g) Panel 7: Dependent Variable: DAAA
Method: ML - ARCH
Sample: 1950:01 1999:12; Included observations: 600
Convergence achieved after 33 iterations

Variable Coefficient Std. Error z-Statistic Prob.
C 0.001375 0.002852 0.482058 0.6298

DAAA(�1) 0.395604 0.048109 8.223042 0.0000
DAAA(�2) �0.194726 0.045298 �4.298749 0.0000
DAAA(�3) 0.054381 0.042720 1.272948 0.2030
DUS3MT 0.144789 0.012544 11.54285 0.0000

DUS3MT(�1) �0.002217 0.016460 �0.134683 0.8929
DUS3MT(�2) 0.020133 0.016000 1.258328 0.2083
DUS3MT(�3) �0.020644 0.015003 �1.375931 0.1688
DUS3MT(�4) 0.000278 0.012548 0.022179 0.9823

Variance Equation
C 9.97E-05 2.09E-05 4.776163 0.0000

ARCH(1) 0.183616 0.028026 6.551611 0.0000
GARCH(1) 0.836600 0.021622 38.69214 0.0000

R-squared 0.389533 Mean dependent var 0.008283
S.E. of regression 0.169803 Akaike info criterion �1.560654
Sum squared resid 16.95374 Schwarz criterion �1.472716
Log likelihood 480.1962 F-statistic 34.10875
Durbin-Watson stat 1.991229 Prob(F-statistic) 0.000000

Exhibit 7.26 (Contd.)

Wald test on unit long-run multiplier (Panel 4), plot of residuals of the ADL(3,4) model (e),
ARCH(4) test on these residuals (Panel 6), and ADL(3,4) model with GARCH(1,1) disturb-
ances (Panel 7).
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E Exercises: E: 7.21a, d–f.

7.5.3 Regression of variables with trends

Danger of spurious regressions

In the foregoing section we described the estimation and testing of regression
models for time series data. The outcomes can be evaluated in the usual way,
provided that the sample is large enough, the explanatory variables are
exogenous, and both the dependent and the explanatory variables are station-
ary. If the variables contain stochastic trends, then the application of standard
regression techniques may lead to misleading results. That is, regression may
lead to nonsense correlations (seemingly significant correlations) or to spuri-
ous regressions (seemingly significant effects) that are due only to the presence
of neglected trends in the variables. We will illustrate this by means of a
historical example and by means of a simple simulation experiment.

(h) Panel 8: ARCH Test on residuals of the ADL(3,4) - GARCH(1,1) model
4 lags of squared residuals included in the test equation
F-statistic 2.045773 Probability 0.086559
Obs�R-squared ¼ 596�0.013657 8.139619 Probability 0.086596

(i) Panel 9: Wald Test on significance of lagged terms of DUS3MT
Wald Test C(6)¼0, C(7)¼0, C(8)¼0, C(9)¼0
F-statistic 0.711700 Probability 0.584132
Chi-square 2.846801 Probability 0.583781
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Exhibit 7.26 (Contd.)

ARCH(4) test on residuals of ADL(3,4)–GARCH(1,1) model (Panel 8), F-test on significance of
the four lagged terms of DUS3MT in this model (Panel 9), plot of one-month-ahead predicted
standard deviations of GARCH(1,1) (denoted by CONDSTDEV (j)), and scatter diagram of
absolute monthly changes in the AAA bond rate (denoted by ABSDAAA) against the predicted
standard deviation ((k), with regression line).
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Example 7.23: Mortality and Marriages

First we consider data from a historically influential paper on spurious
regressions. We will discuss (i) the data and (ii) the results of regressions
with these trending data.

(i) The data

Exhibit 7.27 (a) shows yearly data on the standardized mortality (per 1000
persons) in England and Wales and on the proportion of Church of England
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(b) Panel 2: Dependent Variable: STMORT; Sample: 1866 1911; Method: OLS
Variable Coefficient Std. Error t-Statistic Prob.

C �13.88367 1.573472 �8.823593 0.0000
CEMARR 0.046137 0.002249 20.51460 0.0000

R-squared 0.905346

(c) Panel 3: Dependent Variable: STMORT; Sample: 1866 1911; Method: OLS
Variable Coefficient Std. Error t-Statistic Prob.

C �20.70949 9.400182 �2.203095 0.0330
@TREND(1866) 0.030870 0.041907 0.736640 0.4653

CEMARR 0.054920 0.012135 4.525843 0.0000
R-squared 0.906525

(d) Panel 4: Dependent Var: D(STMORT); Sample(adj): 1867 1911; Method: OLS
Variable Coefficient Std. Error t-Statistic Prob.

C �0.132989 0.210475 �0.631852 0.5308
D(CEMARR) 0.011539 0.042687 0.270319 0.7882

R-squared 0.001696

Exhibit 7.27 Mortality and Marriages (Example 7.23)

Time plots of the standardized mortality per 1000 persons in England and Wales (STMORT)
and of the proportion of Church of England marriages per 1000 of all marriages (CEMARR)
((a), left axis for STMORT, right axis for CEMARR, horizontal axis for years 1866–1911),
regression without trend (Panel 2) and with deterministic trend (Panel 3) and regression of
the variables in first differences (Panel 4).
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marriages (per 1000 of all marriages) for the period 1866–1911. The data in
the file are reconstructed from figure 1 in G. U. Yule, ‘Why do we Sometimes
Get Nonsense-Correlations between Time-Series’, Journal of the Royal Stat-
istical Society, 89 (1926), 1–64, at p. 3. The sample correlation between
the two original variables reported in the paper is 0.9512, and for the
reconstructed data this correlation is 0.9515, which indicates that the recon-
structed data are quite close to the original ones.

(ii) Results of regressions

We perform a regression of mortality on the proportion of Church of
England marriages (either with a constant included or with a constant and a
deterministic trend included). The results are in Panels 2 and3 of Exhibit 7.27.
In both cases the effect of marriages on mortality is highly significant
(the t-value is 20.5 in the model without deterministic trend and it is 4.5 in
the model with deterministic trend). It seems quite unlikely that the way
people marry has anything to do with the mortality in the same year. The
positive association of both variables is due to their common decline over
the sample period. This becomes clear if we regress the variables after taking
first differences, to remove the stochastic trends in both variables. The results
in Panel 4 of Exhibit 7.27 show that the effect of changes in marriages on
changes inmortality is not at all significant (the t-value is 0.27withP ¼ 0:79).
Results like the above ones have inspired the practice to take first differences
of trended variables in order to prevent nonsense correlations.

Example 7.24: Simulated Random Walk Data

Next we illustrate the possibility of spurious regressions by means of a
simulation. We generate two independent random walks, yt ¼ yt�1 þ Zt
and xt ¼ xt�1 þ !t, where Zt and !t are two independent white noise pro-
cesses. So the two variables yt and xt are completely unrelated. The two series
are independent random walks. Exhibit 7.28 (a–d) show scatter diagrams of
yt against xt and Panels 5–8 show the outcomes of regressions of yt on xt for
different sample sizes (n ¼ 10, n ¼ 100, n ¼ 1000, and n ¼ 10, 000). For
larger sample sizes the effect of xt on yt becomes more and more significant if
measured by the t-value of the slope coefficient. TheR2 is also quite large and
suggests a significant relationship between xt and yt. Note, however, that the
estimated slope is negative for sample size n ¼ 1000 but positive for the other
three sample sizes. That something is wrong with these regressions is indi-
cated by the Durbin–Watson statistic, which comes very close to zero in large
samples. The estimated effects are, of course, spurious for these data. To
prevent this kind of nonsense regressions one can take first differences of
variables that contain stochastic trends. In our simulation this gives the two
white noise series Zt and !t, and the corresponding regressions are not at all
significant anymore.

E
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Statistical causes of spurious regressions

To obtain some understanding of the statistical reasons for possible spurious
results with trending variables we consider the above simulation in Example
7.24 in more detail. The data are generated by yt ¼ yt�1 þ Zt and
xt ¼ xt�1 þ !t, and the regression model is given by yt ¼ aþ bxt þ et. As
the two processes are independent, the data generating process corresponds
to a ¼ 0 and b ¼ 0. So the error terms of the model are equal to
et ¼ yt ¼ y1 þ

Pt
k¼2 Zk. This implies that the error terms are very strongly

correlated. For instance, if y1 ¼ 0 then var(et) ¼ (t � 1)s2 and
cov(et, es) ¼ (s� 1)s2 for t � s � 2. In the simulation this strong positive
serial correlation was indicated by the Durbin–Watson statistic, which is
close to zero. There are two reasons why the conventional t-test on signifi-
cance is misleading in this case. The first is that, in the case of serial
correlation, the t-value of the estimated slope does not follow the t-distribu-
tion anymore, as was discussed in Section 5.5.2 (p. 359). The second reason
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Exhibit 7.28 Simulated Random Walk Data (Example 7.24)

Scatter diagrams of two independent random walks for four sample sizes (n ¼ 10 in (a),
n ¼ 100 in (b), n ¼ 1000 in (c), and n ¼ 10, 000 in (d)).
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is that the regressor xt is non-stationary. In Section 4.1.4 (p. 197) we con-
cluded that, under the usual assumptions, the t-test is still valid asymptotic-
ally for stochastic regressors that are stable. However, in the simulation the
variable xt is a random walk that does not satisfy the stability condition
because plim 1

n

Pn
t¼1 x

2
t

� � ¼ 1. This also affects the distribution of the
t-value, as was discussed in Section 7.3.3.

Differencing to remove stochastic trends

The foregoing results motivate the practice to take first differences of vari-
ables with trends, in order to prevent spurious results. This is to protect
ourselves from claiming the existence of significant relations that are caused
only by neglected trends in the observed variables. However, by taking first
differences the interpretation of the model changes. The model is then
concerned with the short-run relationship between the variables, as their
long-run dependence is eliminated in this way. To explain this in more detail,
suppose that the two variables yt and xt are both integrated of order 1— that
is, they contain stochastic trends and the series Dyt and Dxt are stationary.
Suppose that we initially specify an ADL model to explain yt in terms of xt.

(e) Panel 5: Dependent Variable: Y; Sample: 1 10; Included obs. 10
Variable Coefficient Std. Error t-Statistic Prob.

C 15.90026 1.241768 12.80454 0.0000
X 0.434657 0.182335 2.383839 0.0443

R-squared 0.415320 Durbin-Watson stat 2.217163

(f ) Panel 6: Dependent Variable: Y; Sample: 1 100; Included obs. 100
Variable Coefficient Std. Error t-Statistic Prob.

C 16.47030 0.694868 23.70278 0.0000
X 0.204200 0.050861 4.014873 0.0001

R-squared 0.141249 Durbin-Watson stat 0.299211

(g) Panel 7: Dependent Variable: Y; Sample: 1 1000; Included obs. 1000
Variable Coefficient Std. Error t-Statistic Prob.

C 56.80644 0.428361 132.6135 0.0000
X �0.689132 0.029447 �23.40248 0.0000

R-squared 0.354328 Durbin-Watson stat 0.009218

(h) Panel 8: Dependent Variable: Y; Sample: 1 10000; Included obs. 10000
Variable Coefficient Std. Error t-Statistic Prob.

C 51.78272 0.455985 113.5623 0.0000
X 1.041574 0.007875 132.2616 0.0000

R-squared 0.636319 Durbin-Watson stat 0.002408

Exhibit 7.28 (Contd.)

Regressions corresponding to the scatter diagrams in (a–d).
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This model can be written in error correction form (7.34). If f(1) 6¼ 0, then
this model contains the error correction term (yt�1 � lxt�1), which has an
interesting economic interpretation in terms of the long-run equilibrium
between the levels of the two variables. If we were to follow the practice
of removing the trends and making an ADL model for Dyt in terms of Dxt,
then the error correction term would drop out of the model. This is a
correct procedure if f(1) ¼ 0, but we would omit an important regressor
if f(1) 6¼ 0.

Cointegrated time series

If the two variables yt and xt are both integrated of order 1— that is, if they
both contain stochastic trends— then the ECMmodel (7.34) has an interest-
ing interpretation for f(1) 6¼ 0. In this case the term (yt�1 � lxt�1 � d) in
(7.34) can be written as a linear combination of the stationary variables
et, Dyt, and Dxt and their lags. This implies that (yt�1 � lxt�1) is also sta-
tionary. That is, in this case the variables yt and xt are integrated of order 1,
but the linear combination (yt � lxt) is stationary. The series yt and xt are
then said to be cointegrated. Stated intuitively, if two series are cointegrated,
then they share one common trend that drops out in the linear combination
(yt � lxt). A regression of yt on xt is then not spurious, as the relation is
caused by one trend term that is common to the two variables. The regression
is even of the greatest interest, as it provides the long-run equilibrium relation
between the two series. So we should not take first differences if the variables
are cointegrated.

Summarizing, if the observed series contain stochastic trends, then we
should proceed as follows. If the series are not cointegrated, then we should
take first differences to prevent spurious results. But, if the variables are
cointegrated, we should estimate an error correction model to incorporate
the long-run relations between the variables. Tests for cointegration and the
modelling of cointegrated time series are further discussed in Section 7.6.3.

Example 7.25: Interest and Bond Rates (continued)

We continue our analysis of the interest and bond rate data of Example 7.22
in the previous section. We will discuss (i) the data (levels and first differ-
ences), (ii) an error correction model for these data, and (iii) the interpret-
ation of this model.

(i) The data

Exhibit 7.29 shows the monthly data on the AAA bond rate and the three-
month Treasury Bill rate, both in levels (in (a) and (c)) and in first differences
(in (b) and (d)). Both variables show prolonged upward and downward
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(e) Panel 5: Dependent Variable: DAAA
Method: Least Squares
Sample: 1950:01 1999:12; Included observations: 600
Convergence achieved after 4 iterations
DAAA ¼ C(1)�DUS3MT þ C(2)�(AAA(�1) – C(3)�US3MTBIL(�1) – C(4))

Parameter Coefficient Std. Error t-Statistic Prob.
C(1) (b0) 0.279889 0.014308 19.56179 0.0000
C(2) (� f(1)) �0.029131 0.005153 �5.653540 0.0000
C(3) (l) 1.097333 0.086078 12.74820 0.0000
C(4) (d) 1.611726 0.495352 3.253699 0.0012
R-squared 0.406423

(f ) Panel 6: Wald Test: Null Hypothesis: C(3)¼1
F-statistic 1.278621 Probability 0.258610
Chi-square 1.278621 Probability 0.258156

Exhibit 7.29 Interest and Bond Rates (Example 7.25)

Monthly time series of AAA bond rate and US three-month Treasury Bill rate (a) and of the
two series of first differences (b), two corresponding scatter plots ((c) and (d)), ADL(1,1) model
in error correction form (Panel 5), and test on unit long-run multiplier (Panel 6).
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movements and are non-stationary. However, the two series tend to stay near
to each other in the long run, so that they possibly share a common trend.
The series of first differences do not contain trends anymore. Clearly, model-
ling the (short-run) relation between the monthly changes in these rates is
something different from the possible (long-run) relation between the levels
of these two variables.

(ii) Error correction model

We estimate an ADL(1,1) model for these data. We estimate this model in the
error correction form (7.34). Because in the ADL(1,1) model p ¼ r ¼ 1, the
two summations in (7.34) are dropped in this model. The results are shown
in Panel 5 of Exhibit 7.29. The long-run elasticity l in (7.34) is estimated as
l̂l ¼ 1:097. The F-test on the restriction of a long-run elasticity equal to one
(l ¼ 1) in Panel 6 has P ¼ 0:26, so that this hypothesis is not rejected. The
coefficient of the error correction term in (7.34) is �f̂f(1) ¼ �0:029 (see
Panel 5). This differs significantly from zero, and the negative sign means
that deviations from equilibrium are corrected.

(iii) Interpretation of the model

The above results suggest that the two series may be cointegrated and (as
l ¼ 1) that a shift in the level of the three-month Treasury Bill rate leads, in
the long run, to an equally large shift in the level of the AAA bond rate.
However, these are only tentative conclusions, because the results could be
spurious if the variables are not cointegrated. In the next section we will
perform a statistical test for the presence of cointegration for these two series
(see Example 7.27), and we will reconsider the nature of the equilibrium
mechanism.

7.5.4 Summary

In this section we have considered the modelling of one time series variable
in terms of another time series variable. This involves a combination
of regression models (now with lagged dependent and lagged explana-
tory variables added) and univariate time series models (now with ex-
planatory variables added).

. The autoregressive model with distributed lags can be estimated and
evaluated in the usual way, provided that the time series are stationary
and that the explanatory variables are exogenous.

. This model can be written in error correction form, with interesting
interpretations in terms of long-run equilibria between variables and
adjustments in case the variables are out of equilibrium.
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. If the time series contain stochastic trends, then conventional methods
may lead to spurious results. This can be prevented by differencing the
variables until they are stationary. This should be done only if the
variables are not cointegrated, as otherwise the model misses long-run
equilibrium effects.
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7.6 Vector autoregressive models
E Uses Chapters 1–4; Sections 5.5, 5.7; Sections 7.1–7.3, 7.5; Appendix A.5.

7.6.1 Stationary vector autoregressions

Joint model for multiple observed variables

In the foregoing section we discussed regression models with lags to explain
the dependent variable yt in terms of an explanatory variable xt. A crucial
assumption in such models is that the variable xt is exogenous—stated
intuitively, that it does not depend on yt. Otherwise the parameters are not
estimated consistently and standard procedures for diagnostic testing and
forecasting are not valid anymore. This was discussed in Section 5.7, to
which we refer for further background on endogenous regressors. If the
variable xt is endogenous (so that it depends on yt), then we can try to
make a joint model for the two variables xt and yt, so that we get two
equations. Such models are called multiple equation models. In Section 7.6
we discuss the extension of univariate autoregressive models to the case of
more than one endogenous variable. We consider stationary time series in
Sections 7.6.1 and 7.6.2 and time series with trends in Section 7.6.3. In
Section 7.7 we briefly discuss three other types of multiple equation regres-
sion models—namely, seemingly unrelated regressions in Section 7.7.2,
models for panel data in Section 7.7.3, and simultaneous equation models
in Section 7.7.4.

Importance of correct choice of endogenous variables

To illustrate the possible danger of neglecting the endogeneity of explanatory
variables we consider a simple example. Suppose that the variables yt and xt
are generated by the model

yt ¼ fyt�1 þ Zt, xt ¼ gyt�1 þ !t:

We assume that 0 < f < 1 and g 6¼ 0 and that Zt and !t are independent
white noise processes. Then yt is an AR(1) process that is independent of xt,
and xt depends on the past of yt. In practice we do not know the DGP, and it
may be that we are interested to see whether the variable yt can be explained
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in terms of xt. Suppose that we (wrongly) assume that xt is exogenous in the
regression model yt ¼ bxt þ et and that we estimate b by OLS. In large
enough samples the regression coefficient then tends to plim(b) ¼
cov(xt, yt)=var(xt) 6¼ 0, because cov(xt, yt) ¼ cov(gyt�1 þ !t, fyt�1 þ Zt) ¼
gfvar(yt�1) 6¼ 0. So, if the endogeneity of xt is neglected, then this regression
gives the wrong impression that the variable xt would affect the variable yt.
This is caused by the fact that the regressor yt�1 is omitted in the regression
model for yt, whereas the wrong regressor xt (that is correlated with yt�1) is
included instead of yt�1.

Vector autoregressive model of order 1

Of course, in practice we do not know the data generating process. If the
explanatory variable is possibly endogenous, it is better to start with a model
that contains equations for both variables. In the above example the equa-
tions of the DGP can be written in matrix form as

xt
yt

� �
¼ 0 g

0 f

� �
xt�1

yt�1

� �
þ !t

Zt

� �
,

!t

Zt

� �
� IID

0
0

� �
,

s2! 0
0 s2Z

� �� �
:

In practice we do not know the parameter restrictions in this model, but we
can estimate the parameters in the unrestricted model

xt

yt

� �
¼ a1

a2

� �
þ f11 f12

f21 f22

� �
xt�1

yt�1

� �
þ e1t

e2t

� �
,

e1t
e2t

� �
� IID

0

0

� �
,

s11 s12
s12 s22

� �� �
:

We use the following notation. Usually capital letters denote matrices, but in
multiple equation models we will denote vectors of variables also by capital
letters— for instance Yt, to distinguish this from single variables like yt. Let
Yt denote the 2� 1 vector (xt, yt)

0, a the 2� 1 vector (a1, a2)
0, et the 2� 1

vector (e1t, e2t)
0, F the 2� 2 matrix of AR coefficients, and V the 2� 2

covariance matrix of the disturbance terms. Then the above model can be
written as

Yt ¼ aþFYt�1 þ et, et � IID(0, V): (7:35)

This is called a vector autoregressive (VAR) model of order 1, because it is a
direct generalization of the univariate AR(1) model to the case of a vector of
variables. The VAR(1) model for m variables is defined in a similar way, in
which case Yt is the m� 1 vector of variables, a is a m� 1 vector of
constants, and F and V are m�m matrices.
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Stationary VAR(1) process

AVAR process Yt is called stationary if it has a constant vector of means E[Yt] and
a finite and constant covariance matrix var(Yt) ¼ E[(Yt � E[Yt])(Yt � E[Yt])

0],
and if the autocovariance matrices cov(Yt,Yt�k) depend only on the lag k and
not on the time t. For the case of a single variable (m ¼ 1), it was shown in Section
7.1.3 that the AR(1) process is stationary if and only if �1 < f < 1. In the
multivariate model with m > 1 variables the stationarity condition is that F has
all its eigenvalues within the unit circle. To clarify this result, we rewrite the
VAR(1) model by repetitive substitution of the equation (7.35) as

Yt ¼ Ft�1Y1 þ
Xt�2

j¼0

Fjaþ
Xt�2

j¼0

Fjet�j:

The effects of the starting values Y1 and of the disturbances die out over time if
and only if Fj ! 0 for j ! 1. This is equivalent to the condition that F has all its
eigenvalues within the unit circle. In this case the mean and variance of the process
Yt are obtained from the above equation (for t ! 1), so that

E[Yt] ¼
X1
j¼0

Fja ¼ (I �F)�1a, var(Yt) ¼
X1
j¼0

FjV(F0)j:

The autocovariance matrix at lag k > 0 is equal to cov(Yt, Yt�k) ¼P1
j¼0 F

kþjV(F0)j. The stationarity condition can also be expressed in terms of
the polynomial matrix F(z) ¼ I �Fz for the VAR(1) model (7.35)— that is,
F(L)Yt ¼ aþ et where LYt ¼ Yt�1. The stationarity condition is that all the m
eigenvalues of the matrix F lie inside the unit circle— that is, all solutions of the
equation det(F� lI) ¼ 0 should satisfy jlj < 1. The roots of the polynomial
matrix F(z) are the solutions of the equation det(F(z)) ¼ det(I �Fz) ¼
(� z)mdet(F� z�1I) ¼ 0. So the roots of F(z) are the inverses of the eigenvalues
l, and the stationarity condition is that all roots of the VAR polynomial F(z) lie
outside the unit circle. This generalizes the stationarity condition of Section 7.1.3
for univariate AR(p) processes.

Derivation of implied univariate ARMA processes

If Yt follows a stationary VAR(1) process, then each of the individual components
of Yt follows a univariate ARMA(m, m� 1) process. To show this, we use
some results of Appendix A.5 on matrices. For simplicity we assume that a ¼ 0
and we write the VAR(1) model as (I �FL)Yt ¼ et. Let C(z) be the m�m
matrix of cofactors of the matrix (I �Fz). The elements of the matrix C(z)
consist of determinants of (m� 1)� (m� 1) submatrices of (I �Fz), so that
they are polynomials in z of degree (at most) (m� 1). The matrix C(z) further
has the property that C(z)(I �Fz) ¼ det(I �Fz)I ¼ d(z)I, where the (scalar)

T

T
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polynomial d(z) is the determinant of (I �Fz), which has degree (at most) m. If
we premultiply the model (I �FL)Yt ¼ et by C(L), then using C(z)(I �Fz) ¼
d(z)I we obtain

d(L)Yt ¼ C(L)et:

Note that d(z) is a scalar polynomial and C(z) is a matrix polynomial. In each of
the m equations, the right-hand side is an MA process of order (at most) (m� 1)
(because all elements of C(z) have degree at most (m� 1) ), and the left-hand side
is an AR expression (of order at mostm) in a single variable. Therefore, each of the
components of Yt follows an ARMA(m, m� 1) process (the orders may be lower
ifF satisfies certain parameter restrictions). The results in Section 7.1.3 show that
the univariate processes are stationary if and only if the (scalar) AR polynomial
d(z) ¼ det(I �Fz) has all its roots outside the unit circle. As we concluded before,
this is equivalent to the condition that F has all its eigenvalues within the unit
circle.

Illustration for VAR(1) process with two variables

As an illustration of the above technical results, we consider the case of m ¼ 2
variables Yt ¼ (xt, yt)

0 with disturbance terms et ¼ (!t, Zt)
0. In this case the matrix

of cofactors of (I �Fz) is equal to

C(z) ¼ 1� f22z f12z
f21z 1� f11z

� �
:

The determinant of (I �Fz) is equal to d(z) ¼ (1� f11z)(1� f22z)� f12f21z
2

¼ 1� (f11 þ f22)zþ (f11f22 � f12f21)z
2. Hence the implied univariate

models— that is, the two components of d(L)Yt ¼ C(L)et —become

xt ¼ (f11 þf22)xt�1 þ (f12f21 �f11f22)xt�2 þ !t �f22!t�1 þf12Zt�1,

yt ¼ (f11 þf22)yt�1 þ (f12f21 �f11f22)yt�2 þf21!t�1 þ Zt � f11Zt�1:
(7:36)

In both equations the composite error term is uncorrelated for lags 2 and larger, so
that this is an MA(1) process, and the autoregression involves two lags. So the
variables xt and yt follow ARMA(2,1) processes, and for some parameter restric-
tions on F the orders can be lower. The processes xt and yt are stationary if and
only if the AR polynomial equation 1� (f11 þ f22)zþ (f12f21 � f11f22)z

2 ¼
det(I �Fz) ¼ 0 has both its solutions outside the unit circle. This is equivalent
to the condition that det(F� lI) has both its solutions inside the unit circle. This
shows once more that stationarity is equivalent to the condition that the two
eigenvalues of F lie inside the unit circle.

T
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Stationary VAR(p) process

The VAR(1) model can be extended to the VAR(p) model by incorporating
additional lags so that

Yt ¼ aþF1Yt�1 þF2Yt�2 þ � � � þFpYt�p þ et, et � IID(0, V): (7:37)

HereFj (j ¼ 1, � � � , p) andV arem�mmatrices. The VAR(p) processYt is station-
ary if it has constant vector of means and constant autocovariances cov(Yt, Yt�k)
that depend on the lag k but not on the time t. Stationarity is equivalent to the
condition that the characteristic polynomial det(F(z)) has all its roots outside
the unit circle, where F(z) is the m�m polynomial matrix F(z) ¼ I �F1z
� � � � �Fpz

p. Under this condition each of the individual variables is a stationary
ARMA process with AR order (at most)mp andMA order (at most) (m� 1)p. The
mean of the process Yt is equal to m ¼ (I �Pp

j¼1 Fj)
�1a ¼ F(1)�1a. Note thatF(1)

is an invertible matrix if the characteristic roots ofF(z) all lie outside the unit circle.

Derivation of vector error correction model

A stationary VAR(p) process can be written in error correction form. For the
VAR(1) model (7.35) with a ¼ (I �F)m we can write

DYt ¼ (F� I)(Yt�1 � m)þ et:

This shows that deviations of Yt�1 from the long-run mean m are corrected by the
multiplier matrix (F� I) ¼ �F(1), where F(z) ¼ (I �Fz) is the VAR polynomial
of the model. This shows some similarity with the error correction representation
(7.33) of ADL models in Section 7.5.1, with the difference that now all m
variables are corrected simultaneously. The VAR(p) model can be written in a
similar form, as follows. The matrix polynomial F(z)�F(1)z is the zero matrix
for z ¼ 1, which implies that it can be factorized as F(z)�F(1)z ¼ (1� z)G(z).
Here G(z) is am�m polynomial matrix of order (p� 1), and the value at z ¼ 0 is
equal to G(0) ¼ F(0)�F(1) � 0 ¼ I. So we can write G(z) ¼ I �Pp�1

j¼1 Gjz
j. With

this factorization, and using the fact that F(z) ¼ F(1)zþ (1� z)G(z), the VAR
modelF(L)Yt ¼ aþ et can be written asF(1)Yt�1 þ DYt �

Pp�1
j¼1 GjDYt�j ¼ aþ et.

Here a ¼ F(1)m, where m is the vector of means of the process Yt, and by rearran-
ging terms we obtain

DYt ¼ �F(1)(Yt�1 � m)þ
Xp�1

j¼1

GjDYt�j þ et: (7:38)

This shows that the deviations of Yt�1 from the equilibrium value m are corrected
again by the multiplier matrix �F(1). The model written in this form is called a
vector error correction model (VECM). It shows some similarities with the error
correction model (7.34), with the difference that in general all the m variables are
affected by the correction process.

E Exercises: T: 7.9c, d; S: 7.15a, b.

T

T
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7.6.2 Estimation and diagnostic tests of stationary
VAR models

Estimation of stationary VAR models

In the foregoing section we showed that the individual variables of a VAR(p)
process follow (univariate) ARMAmodels. One could estimate these implied
ARMAmodels by means of the techniques discussed in Section 7.2.2, but this
is not efficient. The VAR(p) model contains mþ pm2 regression parameters,
whereas them univariateARMA(mp, (m� 1)p)models (eachwith a constant
term) contain in total mþ pm2 þ pm(m� 1) parameters. The difference
arises because the estimation of models for the individual univariate series
neglects the cross equation parameter restrictions between the different uni-
variate ARMAmodels. For instance, in the foregoing section we saw that the
AR polynomial is the same for each of them individual time series.Moreover,
this univariate approach also neglects the possible cross equation correlations
between the error terms et in case the covariance matrix V is not diagonal.
Efficient estimates are obtained by applyingML to the system ofm equations
(7.37). Suppose that the disturbance terms are normally distributed so that
et � NID(0, V)— that is, et follows the m-dimensional multivariate normal
distribution. The density p(et) of this distribution is given in (1.21) in Section
1.2.3 (p. 31), and it follows that log (p(et)Þ ¼ �m

2 log (2p)� 1
2 log (det(V))

� 1
2 e

0
tV

�1et. Therefore the conditional log-likelihood of the VAR(p) model
(7.37) (treating the initial values as fixed) is equal to

log(L) ¼ � (n� p)m

2
log (2p)� n� p

2
log (det(V))

� 1

2

Xn
t¼pþ1

Yt � a�
Xp
j¼1

FjYt�j

 !0
V�1 Yt � a�

Xp
j¼1

FjYt�j

 !
:

It is left as an exercise (see Exercise 7.10) to show that ML in this model is
equivalent to applying OLS on each of the m equations in (7.37) separately.
So the estimation of VAR models is quite straightforward. The covariance
matrix V can be estimated by V̂V ¼ 1

n�p

Pn
t¼pþ1 ete

0
t, where et is the m� 1

vector of residuals at time t. If some elements of the parameter matrices Fk

are restricted in some way, then OLS is still consistent but not efficient
anymore, and in large enough samples ML provides more accurate estimates
in this case.

Model selection

The OLS or ML estimators have the usual asymptotic statistical properties,
provided that the VAR process is stationary. So we can apply conventional
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t- and F-tests on the significance of the coefficients. For instance, the lag order
p of the VAR model can be selected by applying F-tests or LR-tests on the
significance of additional lags. These tests follow (asymptotically) the stand-
ard F- and w2-distributions respectively. Another method to select the lag
order is by minimizing the AIC or SIC, which are defined for VAR(p)
models by

AIC(p) ¼ log det V̂Vp

� �� �
þ 2

pm2

n
, SIC(p) ¼ log det V̂Vp

� �� �
þ log (n)

pm2

n
:

Here pm2 is the total number of coefficients of lagged regressors in the
VAR(p) model and V̂Vp is the estimated covariance matrix of the disturbances
in the VAR(p) model. In practice the order p of VAR models is often chosen
relatively small, as otherwise the number of parameters pm2 of lagged terms
quickly becomes large.

VAR models are less useful for large numbers of variables. The total
number of parameters in the VAR(p) model for m variables is mþ pm2 þ
1
2m(mþ 1)—namely,m for the vector of constants a, pm2 for them�m AR
matrices Fj (j ¼ 1, � � � , p), and 1

2m(mþ 1) for the symmetric m�m matrix
V. Estimation becomes infeasible for large numbers m of variables, because
the number of parameters increases with the square m2. This is called the
curse of dimensionality of multiple equation models.

Exogenous variables and model simplification

In practice VAR models are used only for a small number of variables, with
m ¼ 2 orm ¼ 3 in many andm � 10 in almost all applications. One method
to reduce the number of parameters is by considering the possible exogeneity
of some of the variables. For instance, in our example at the beginning of
Section 7.6.1, the variable yt is exogenous in the equation for xt, because in
the bivariate VAR(1) model (7.35) there holds f21 ¼ 0 and s12 ¼ 0. In this
case the effect of yt on xt can be estimated simply by regressing xt on yt and
neglecting the time series model for yt. This reduces the number of param-
eters from in total nine for the VAR(1) model (two for a, four forF, and three
for V) to four for the regression model (the constant, the two slope param-
eters f11 and f12, and the variance of the disturbance term). This may
improve the finite sample efficiency of the estimators. More generally, con-
sider the VAR(p) model where the m variables are split in two groups,
denoted by Yt and Xt, so that

F11(L) F12(L)
F21(L) F22(L)

� �
Yt

Xt

� �
¼ a1

a2

� �
þ e1t

e2t

� �
:
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Then the variables Xt are exogenous in the equations for Yt if

F21(z) ¼ 0 and V12 ¼ 0,

where V12 is the cross correlation matrix between e1t and e2t. Indeed, under
these assumptions the process Xt is described by the VAR model
F22(L)Xt ¼ a2 þ e2t, which is uncorrelated with the process e1t at all lags.
Therefore the regressorsF12(L)Xt in the equationsF11(L)Yt ¼ a1 �F12(L)Xt

þ e1t are uncorrelated with the disturbance terms e1t, so that these regressors
are exogenous in these equations. Consistent estimates are then obtained by
regressingYt on the appropriate lags ofYt andXt. This reduces the number of
involved parameters considerably. If F21(z) ¼ 0, then it is also said that Yt

does not cause Xt. The corresponding F-test on the parameter restrictions
F21(z) ¼ 0 is called theGranger causality test.

Diagnostics for stationary VAR models

Diagnostic tests of VAR models can be performed in a similar way, as was
discussed in Section 7.2.4 for univariate AR models. Since the main purpose
of the VAR model is to express the dynamic correlations between the vari-
ables, it is of particular importance to check whether them residual series are
white noise. A simple check is to perform tests on serial correlation for them
residual series separately. Note that the model allows for cross equation
correlations between the residuals of different equations at the same time
(if the off-diagonal elements of V are non-zero), but the residuals should not
be correlated with each other at different time moments.
One can apply further tests on the individual equations— for instance, on

possible parameter breaks, outliers, and ARCH effects. Competing models
can be compared by their forecast performance. For instance, for a VAR(1)
model the one-step-ahead forecast is given by ŶYnþ1 ¼ aþFYn with covar-
iance matrix of the forecast error equal to V. The two-step-ahead forecast is
ŶYnþ2 ¼ aþFŶYnþ1 ¼ (I þF)aþF2Yn, and the corresponding covariance
matrix is E[(Ynþ2 � ŶYnþ2)(Ynþ2 � ŶYnþ2)

0] ¼ VþFVF0. Similar expressions
can be derived for higher order VAR models and longer forecast horizons.

Example 7.26: Interest and Bond Rates (continued)

We continue our analysis of the interest and bond rates data. In Example
7.22 it was assumed that the changes in the Treasury Bill rate are exogenous
in the model for the changes of the AAA bond rate. Now we will discuss (i)
the motivation for a vector autoregressive (VAR) model for these data, (ii) the
estimation and selection of a VAR model, (iii) a test on the exogeneity of the
Treasury Bill rate, and (iv) some diagnostic checks on the model.

E

XM722IBR

7.6 Vector autoregressive models 663



(i) Motivation for a VAR model

In Example 7.22we estimated anADLmodel for the (endogenous) changes in
AAA bond rate in terms of the (supposedly exogenous) changes in the three-
month Treasury Bill rate. However, as we remarked at the end of Example
7.22, the changes in the Treasury Bill rate are possibly correlated with the
disturbance term in this equation. This is because the unobserved factors that
influence the AAA bond rate may very well also influence the Treasury Bill
rate. This was analysed in Example 5.33 (p. 414–16), where we concluded
that the Treasury Bill rate is indeed endogenous. Therefore we now estimate
VARmodels that treat the changes in both the Treasury Bill rate and the AAA
bond rate as endogenous variables.

(ii) Estimation and selection of a VAR model

Panel 1 of Exhibit 7.30 shows the first six autocorrelations of both variables
and also the cross correlations between the two variables. Some of the lagged
effects are significant, but it is not so easy to decide on the order of a VAR
model on the basis of these autocorrelations. We estimate VAR models for
orders p ¼ 1, 2, and 3. The resulting estimates are in Panels 2–4 of Exhibit
7.30 (the t-values are in parentheses). The Schwarz criterion selects the
VAR(2) model. By comparing the log-likelihoods we can test the null hypoth-
esis of the VAR(2) model against the alternative of the VAR(3) model, which
corresponds to four restrictions. The corresponding LR-test has value
LR ¼ 2(� 95:77þ 99:97) ¼ 8:4 with a P-value according to the w2(4) dis-
tribution of P ¼ 0:078. This means that the VAR(2) model is not rejected (at
5 per cent significance level, this is sufficiently convincing for the relatively
large sample size of n ¼ 600).

(iii) Test on exogeneity of the Treasury Bill rate

The VAR(2) model can be used to check for the possible exogeneity of the
Treasury Bill rate in the equation for theAAAbond rate. In theVAR(2)model,
this corresponds to the following three restrictions. The two coefficients of the
AAAbond rate (with lags 1 and 2) in the equation for the Treasury Bill rate are
zero, and the disturbances of the two equations are uncorrelated. The results
in Exhibit 7.30 can be used to test for these restrictions. In Panel 3 of Exhibit
7.30, the t-values of the two lagged AAA bond rate terms in the equation for
the Treasury Bill rate are 6.94 and�4.94. The Granger causality test in Panel
6— that is, the F-test on the joint significance of the two coefficients—gives
F ¼ 28:9 with P ¼ 0:0000. So we strongly reject the null hypothesis that the
AAA bond rate does not affect the Treasury Bill rate. Further, the cross
correlation between the two series of residuals is significant with a value of
0.54 (see Panel 5). We conclude that the Treasury Bill rate is not exogenous.
This is in line with our earlier conclusion in Example 5.33 (p. 414–16).

664 7 Time Series and Dynamic Models



Panel 1: autocorrelations and cross correlations
Sample: 1950:01 1999:12; Included observations: 600
Lag DAAA DUS3MT DAAAwith

past DUS3MT
DUS3MTwith
past DAAA

0 1.000 1.000 0.6086 0.6086
1 0.371 0.273 0.1523 0.3377
2 �0.087 �0.106 �0.0329 �0.0964
3 �0.084 �0.089 �0.0763 �0.1248
4 0.042 �0.036 0.0577 �0.0451
5 0.151 0.044 0.1496 0.0683
6 0.010 �0.183 �0.0975 �0.1024

Panel 2: VAR(1) model
Sample: 1950:01 1999:12; Included observations: 600

Variable Eq. for DAAA Eq. for DUS3MT
DAAA(�1) 0.442465 0.605146
t-value (9.27999) (5.64462)

DUS3MT(�1) �0.052705 0.106805
t-value (�2.45113) (2.20907)

C 0.005125 0.001369
t-value (0.62954) (0.07477)

R-squared 0.146332 0.121339
S.E. equation 0.199278 0.448077
Log Likelihood �133.8794
Akaike Information Criterion 0.466265
Schwarz Criterion 0.510234

Panel 3: VAR(2) model
Sample: 1950:01 1999:12; Included observations: 600

Variable Eq. for DAAA Eq. for DUS3MT
DAAA(�1) 0.529146 0.747457
t-value (11.0142) (6.93980)

DAAA(�2) �0.318410 �0.547129
t-value (�6.44597) (�4.94054)

DUS3MT(�1) �0.040867 0.165415
t-value (�1.91532) (3.45804)

DUS3MT(�2) 0.047549 �0.051966
t-value (2.24003) (�1.09198)

C 0.006676 0.004685
t-value (0.84884) (0.26573)

R-squared 0.206751 0.188312
S.E. equation 0.192419 0.431385
Log Likelihood �99.97261
Akaike Information Criterion 0.366575
Schwarz Criterion 0.439858

Exhibit 7.30 Interest and Bond Rates (Example 7.26)

Autocorrelations and cross correlations for the series of changes in the AAA bond rate and the
series of changes in the three-month Treasury Bill rate (Panel 1), VAR(1) model (Panel 2), and
VAR(2) model (Panel 3).
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(iv) Some diagnostic checks

We check whether the VAR(2) model captures the correlations that are
present in both series. Panel 7 of Exhibit 7.30 shows the first six autocorrela-
tions for the two series of residuals of the VAR(2) model. The correlations at
lags 1–4 are no longer significant, but some correlation at lags 5 and 6
remains present. Here we analysed the relation between the changes in the
two variables— that is, the short-run relations between the variables. In the
next section we will consider the long-run relationships between the levels of
these two variables (see Example 7.27).

E Exercises: T: 7.10d; S: 7.15c, d.

Panel 4: VAR(3) model (summary)
Log Likelihood �95.77027
Akaike Information Criterion 0.365901
Schwarz Criterion 0.468496

Panel 5 Covariances residuals Correlations residuals
DAAA DUS3MT DAAA DUS3MT

DAAA 0.036716 0.044631 1.000000 0.542195
DUS3MT 0.044631 0.184542 0.542195 1.000000

Panel 6: Pairwise Granger Causality Tests in VAR(2) model
Sample: 1950:01 1999:12
Null Hypothesis: Obs F-Statistic Probability
DUS3MT does not Granger Cause DAAA 600 3.70414 0.02519
DAAA does not Granger Cause DUS3MT 600 28.8526 1.1E-12

Panel 7: autocorrelations of residuals of VAR(2) model
Sample: 1950:01 1999:12; Included observations: 600
Lag SACF Eq 1

(DAAA)
Q-Stat Prob SACF Eq 2

(DUS3MT)
Q-Stat Prob

1 0.021 0.2754 0.600 0.009 0.0462 0.830
2 �0.019 0.5019 0.778 �0.019 0.2534 0.881
3 0.050 2.0435 0.563 0.012 0.3351 0.953
4 0.011 2.1115 0.715 �0.090 5.2399 0.264
5 0.131 12.579 0.028 0.063 7.6752 0.175
6 �0.006 12.600 0.050 �0.181 27.597 0.000

Exhibit 7.30 (Contd.)

Summary of outcomes of VAR(3) model (Panel 4), covariance matrix and correlation matrix of
the two residual series of the VAR(2) model (Panel 5), Granger causality tests (Panel 6), and
correlogram of the two residual series of the VAR(2) model (Panel 7).
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7.6.3 Trends and cointegration

Multiple time series with stochastic trends

The analysis of VARmodels in the foregoing sectionwas based on the assump-
tion that all m variables are stationary. If the variables contain deterministic
trends, then this can be modelled by incorporating appropriate time functions
as additional regressors in the VAR equations. However, if the variables
contain stochastic trends, then the standard properties of ML and related
tests are not valid anymore. This has already been discussed for univariate
time series in Section 7.3.3. Further, regressions of variables with stochastic
trendsmay lead to spurious results, as was discussed in Section 7.5.3. Asmany
economic variables contain stochastic trends, this suggests that VAR models
can be applied only after sufficient differencing of the variables to obtain
stationarity. This is indeed the way to proceed, unless the variables are coin-
tegrated. In this case the correlations between trended variables are not spuri-
ous, aswas explainedat the endof Section7.5.3. In this sectionweconsider this
situation in more detail. We describe tests for cointegration and the modelling
of cointegrated variables by means of vector error correction models.

Analysis of the VAR(1) model with two variables

To introduce the main ideas we first consider the VAR(1) model (without
constant terms) for two variables. The model Yt ¼ FYt�1 þ et can be written
in the form of the VECM

DYt ¼ PYt�1 þ et, P ¼ F� I:

In this model there are three cases of interest, according to whether the rank
of the 2� 2 matrix P is 0, 1, or 2. If the two variables in Yt are stationary,
this means that F has both its eigenvalues within the unit circle. This implies
that det(F� I) ¼ det(P) 6¼ 0, so that the matrix P has rank 2. On the other
hand, if P has rank 0, then P ¼ 0 and hence DYt ¼ et. Then both variables
follow random walks. In this case one says that there exist two stochastic
trends for the two variables. The variables are modelled in terms of their first
differences. A final possibility is that P has rank 1, so that 0 ¼ det(P) ¼
det(F� I). In this case the matrixF has one eigenvalue at z ¼ 1 and another
eigenvalue r 6¼ 1. As P has rank 1, this means that the second column is a
multiple of the first column, so that we can write

P ¼ a1 �ya1
a2 �ya2

� �
¼ a1

a2

� �
(1 �y) ¼ ab0,
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where a ¼ (a1, a2)
0 and b0 ¼ (1, � y). Let the two variables in Yt be denoted

by Yt ¼ (yt, xt)
0; then the VECM becomes

Dyt ¼ a1(yt�1 � yxt�1)þ e1t,

Dxt ¼ a2(yt�1 � yxt�1)þ e2t:

The rest of this section is devoted to the modelling of this kind of processes.

Cointegration in the VAR(1) model with two variables

We analyse the above VECM in more detail. This model corresponds to the
case that P has rank 1 and that the matrix F in the corresponding VAR(1)
model has an eigenvalue at z ¼ 1. We assume that the other eigenvalue z ¼ r
is stable— that is, that�1 < r < 1 (if r ¼ 1 then the process would have two
unit roots). We will show that in this case (that is, with one unit root and one
stable root) the individual variables yt and xt contain a stochastic trend, but
that (yt�1 � yxt�1) is stationary, so that the two variables are cointegrated.
The fact that the variables yt and xt are not stationary can be derived as
follows. The implied ARMA(2,1) models for yt and xt are given in (7.36),
with AR polynomial d(z)¼det(I�Fz)¼z2det(z�1I�F)¼z2(z�1�1)(z�1�r)
¼ (z� 1)(z� r). So both time series have a unit root— that is, yt and xt
contain a stochastic trend. Since we assumed that�1 < r < 1, it follows that
yt and xt are both ARIMA(1,1,1) processes. On the other hand,
(yt�1 � yxt�1) is stationary, which can be seen as follows. Because
P has rank 1, it follows that a1 6¼ 0 or a2 6¼ 0 (or both). The above VECM
then shows that the linear combination (yt�1 � yxt�1) is stationary,
because it can be expressed in terms of Dyt, Dxt, e1t, and e2t, which are all
stationary.

The above results show that the series yt and xt are cointegrated in this
case. The relation (yt � yxt) is called the cointegration relation, and yt ¼ yxt
is the long-run equilibrium relation between the two variables. The param-
eters a1 and a2 are called the adjustment coefficients. They describe how yt
and xt are adjusted if the variables are out of equilibrium. For instance, if
a1 < 0 and yt�1 > bxt�1, then this leads to a downward adjustment of yt in
the direction of equilibrium.

Cointegration in the VAR(p) model

Similar results hold true for VAR(p) models for m variables. Let P ¼ �F(1),
where F(1) is the m�m matrix obtained by substituting z ¼ 1 in the VAR
polynomial F(z) of the model. We rewrite the VECM (7.38) as follows, where
we define g ¼ F(1)m:

DYt ¼ gþPYt�1 þ G1DYt�1 þ � � � þ Gp�1DYt�pþ1 þ et, t ¼ pþ 1, � � � , n: (7:39)

T
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As before, the existence of cointegration and the number of stochastic trends
for the m series in Yt depends on the rank of the matrix P. We consider again
three cases—namely, rank(P) ¼ m, rank(P) ¼ 0, and rank(P) ¼ r with
1 � r � m� 1. If the variables are all stationary this means that F(z) has all its
roots outside the unit circle. In this case the matrixP has full rankm. There are no
stochastic trends in this case. On the other hand, suppose that P ¼ �F(1) ¼ 0.
Then the VAR polynomial F(z) contains m unit roots, and (7.39) is a VAR(p� 1)
model in the variables DYt. In this case there are m stochastic trends. Finally, if
rank(P) ¼ r with 1 � r � m� 1, then the polynomial F(z) has m� r unit roots.
Assuming that the other r roots of F(z) all lie outside the unit circle, this means
that the m variables have (m� r) common stochastic trends and that there are r
cointegration relations. This can be seen as follows. If the m�m matrix P has
rank r, it can be written as P ¼ AB0 ¼Pr

j¼1 ajb
0
j, where A and B are m� r

matrices of rank r with m� 1 columns aj and bj respectively, j ¼ 1, � � � , r. (In the
literature one often writes this matrix decomposition as P ¼ ab0 instead of
P ¼ AB0, but here we do not follow this convention, and we write P ¼ ab0 only
ifP has rank 1, in which case the matrices A and B reduce to column vectors.) The
VECM implies that each of the r linear combinations b0jYt is stationary, so that
there exist r linearly independent cointegration relations. It should be noted that
the matrices A and B in the decomposition P ¼ AB0 are not defined uniquely,
because P ¼ (AC�1)(BC0)0 ¼ AB0 for every invertible r� r matrix C. Therefore
the r cointegration relations are also not unique, since every linear combination
S
r
j¼1cjb

0
jYt is a cointegration relation for arbitrary constants cj, j ¼ 1, � � � , r.

Summary of results for VAR(p) model

Summarizing the foregoing results, suppose that all individual variables in
them� 1 vector Yt are integrated of order at most 1. The appropriate way to
model the series Yt depends on the rank of them�mmatrixP in the VECM
(7.39). If the variables are jointly stationary, then the matrix P has full rank
m. In this case the series do not contain stochastic trends and one can
estimate a VAR model. If the matrix P has rank r ¼ 0, so that P ¼ 0, then
the series contain m stochastic trends and the variables are not cointegrated.
One should estimate a VAR model for the differenced variables DYt. If the
matrix P has rank 1 � r � m� 1, then the variables are cointegrated. There
exist r linearly independent cointegration relations and (m� r) common
stochastic trends. One should estimate the VECM (7.39) with the restriction
that the matrix P has rank r.

Estimation of VAR model with cointegration

For a given rank 1 � r � m� 1 of the matrix P, the parameters of the
VECM in (7.39) can be estimated by ML. This is in principle similar to
the estimation of stationary VAR models discussed in the foregoing section,
but of course one should incorporate the rank restriction on P. The
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corresponding log-likelihood can be maximized by so-called reduced rank
regressions. It is beyond the scope of this book to treat the details of this
optimization, but it is useful to know that no numerical optimization is
needed and that the maximum can be obtained by means of regressions.
The maximal value of the log-likelihood, for given rank r of the matrix P,
is equal to

log (Lmax(r)) ¼ c� n� p

2

Xr
j¼1

log (1� l̂lj):

Here c is a constant that does not depend on the chosen rank r, and the
(eigenvalues) l̂lj are ordered so that 1 � l̂l1 � l̂l2 � � � � � l̂lm � 0. The square

root l̂l1=2j of these values are the so-called (sample partial) canonical correl-

ation coefficients of the two m� 1 vectors DYt and Yt�1.

Interpretation of the eigenvalues l̂lj

The eigenvalues l̂lj in the above log-likelihood for the VECM have the following
intuitive interpretation. The series are cointegrated if there exist linear combin-
ations b0Yt�1 that are stationary. This is expressed in the VECM (7.39) by the
condition that P 6¼ 0— that is, a non-zero (partial) correlation of Yt�1 with the
stationary variables DYt (for given values of DYt�j, j ¼ 1, � � � , p� 1). The number
of cointegration relations— that is, the rank of P in the VECM (7.39)— is equal
to the number of non-zero correlations between linear combinations of Yt�1 and
DYt. The canonical correlations l̂l1=2j measure these correlations. The number of
stochastic trends is equal to the number of zero canonical correlations. This means
that in practice the number r of cointegration relations and the number (m� r) of
(common) stochastic trends can be determined by checking how many of the
canonical correlations differ significantly from zero. That is,

r ¼ (number of significant l̂lj), m� r ¼ (number of l̂lj � 0):

Note that the ADF test regression (7.25) for univariate time series resembles the
VECM (7.39). The null hypothesis of a unit root in (7.25) (that is, the presence of
a stochastic trend) corresponds to r ¼ 0. In this case Dyt and yt�1 are uncorrelated
(for given values of Dyt�j, j ¼ 1, � � � , p� 1). In a similar way, the null hypothesis
of no cointegration (that is, the presence of m stochastic trends) in the VECM
(7.39) corresponds toP ¼ 0. In this case the vectors DYt and Yt�1 are uncorrelated
(for given values of DYt�j, j ¼ 1, � � � , p� 1). This corresponds to the null hypoth-
esis that all the m eigenvalues lj are zero.

LR-test on the number of cointegration relations

The above results can be used for likelihood ratio tests on the number of
cointegration relations. Because the constant c in the above expression for

T
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the log-likelihood does not depend on the postulated rank, theLR-test for the
null hypothesis that rank(P) ¼ r against the alternative that rank(P) � rþ 1
is given by

LR(r) ¼ 2 log (Lmax(m))� log (Lmax(r))ð Þ ¼ �(n� p)
Xm
j¼rþ1

log (1� l̂lj):

(7:40)

This is called the Johansen trace test on the number of cointegration rela-
tions. The null hypothesis is not rejected if the LR-test gives sufficiently small
values— that is, if the values of l̂lj are sufficiently close to zero. In this case
the last (m� r) eigenvalues are not significant, so that there are at most r
significant eigenvalues and hence at most r cointegration relations. The trace
test can be used as follows to determine the number r of cointegration
relations.

Testing for the number of cointegration relations


 Step 1: Test H0 : r ¼ 0 against H1 : r � 1. First test the null hypothesis that
there is no cointegration and that there are m stochastic trends. This
corresponds to the hypothesis that l1 ¼ � � � ¼ lm ¼ 0, and the relevant
test statistic is (7.40) with r ¼ 0. If H0 is not rejected, then there is no
cointegration. If H0 is rejected, continue with step 2.


 Step 2: Test H0 : r ¼ 1 against H1 : r � 2. In a similar way as in step 1, apply
the test (7.40) with r ¼ 1. If H0 is not rejected then there is a single
cointegration relation and there are (m� 1) common trends. If H0 is
rejected, continue with step 3.


 Step 3: Iteratively test H0 : rank(P) ¼ r against H1 : rank(P) � rþ 1.
Repeat the test (7.40) iteratively, increasing the value of r by one in each
step. Continue until the first time that H0 is not rejected. Then the number
of cointegration relations is equal to r and the number of (common) trends
is (m� r).

The above LR-tests do not have the usual w2-distribution. This is because the
regressors Yt�1 in the test equations (7.39) contain stochastic trends under
the null hypothesis. The (asymptotic) distribution depends on the number of
variables m and on the cointegration rank r, and also on the presence of
deterministic components (such as constants and deterministic trends) in the
VECM test equations.
Below we will discuss three variants of the test equations that are

much used in practice. These three variants are based on considerations
that are similar to those for the three types of unit root tests discussed in
Section 7.3.3. Some critical values for the three types of cointegration tests
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(7.40) are given in Exhibit 7.31. The critical values are based on
the assumption that the VECM is correctly specified and that the error
terms are normally distributed. Under these assumptions, the critical values
depend on the type of cointegration test and on the number (m� r) of
stochastic trends, but they do not depend on the order p of the VECM.

Test equations for data with clear overall trend direction

The Johansen trace test (7.40) is based on the VECM (7.39), possibly
extended with deterministic trend terms. These trend terms and the constant
terms require special attention, because the relevant critical values of the
test (7.40) depend on the precise specifications of these deterministic
components.
As a first case we assume that the data display a clear general trend

direction. For such data we should include constant terms in the VECM
and a deterministic trend in the cointegration equations. It is useful to rewrite
the resulting VECM in another form. If the coefficient matrix P of Yt�1 in
(7.39) has rank r, it can be written as P ¼ AB0, where A and B are m� r
matrices of rank r. Further we decompose them� 1 vector g in the VECM as
g ¼ g1 � Ag2 where g2 ¼ �(A0A)�1A0g and g1 ¼ (I � A(A0A)�1A0)g, so that
the two components g1 and Ag2 are orthogonal as g01Ag2 ¼ 0 (this corres-
ponds to the OLS decomposition y ¼ Xbþ e ¼ HyþMy of Section 3.1.3
(p. 123), replacing y by g, X by A, b by �g2, and e by g1). With this notation,
P ¼ AB0 and g ¼ g1 � Ag2, the relevant test equation for cointegration of
trending data can be written as

Data properties and
VECM assumptions

m� r ¼ 1 m� r ¼ 2 m� r ¼ 3 m� r ¼ 4 m� r ¼ 5

Linear trend in data;
constant and trend in CE

12.25 25.32 42.44 62.99 87.31

Linear trend in data;
constant, no trend in CE

3.76 15.41 29.68 47.21 68.52

No clear trend in data;
constant, no trend in CE

9.24 19.96 34.91 53.12 76.07

CE denotes the Cointegration Equations.
m is the number of variables and r is the number of cointegration relations.
m� r is the number of unit roots— that is, the number of common stochastic trends for the
m variables.

Exhibit 7.31 Cointegration tests

The 5% critical values for the Johansen trace test on the number of cointegration relations (r)
for three types of DGP—that is, one for data with a clear trend direction and with a trend in
the cointegration relations, another for data with a clear trend direction but without a trend in
the cointegration relations, and finally one for data without a clear trend direction (and no
trend in the cointegration relations). For trending data one should start by including constant
and trend in CE (this trend term could be dropped if it is not significant).

672 7 Time Series and Dynamic Models



DYt ¼ g1 þ A(B0Yt�1 � g2 � dt)þ G1DYt�1 þ � � � þ Gp�1DYt�pþ1 þ et:

The constants g1 are drift terms for the stochastic trends in the variables Yt.
The cointegration relations or long-run equilibria are described by the r
equations B0Yt�1 � g2 � dt ¼ 0. One usually expresses this by saying that
there is a linear trend in the data (if g1 6¼ 0) and a constant and linear trend in
the cointegration equations (if g2 6¼ 0 and d 6¼ 0). The LR cointegration test
for data with clear trends is based on the above test equations, with trends in
the data and in the cointegration equations.

Model for cointegration relations without trend

For the economic interpretation of equilibria it is sometimes relevant to
consider the restricted model with d ¼ 0, because in this case the linear
combinations B0Yt move around a constant equilibrium value g2 in the long
run. The corresponding VECM is given by

DYt ¼ g1 þ A(B0Yt�1 � g2)þ G1DYt�1 þ � � � þ Gp�1DYt�pþ1 þ et:

In this case one says there is a linear trend in the data and a constant but no
trend in the cointegration relation. The best approach is to determine the
cointegration rank r first by means of the VECM with deterministic trend
included in the cointegration relations, as it is worse to omit relevant terms (if
d 6¼ 0) than to include irrelevant ones (if d ¼ 0). One can then test for the
significance of the trend coefficients d. If these are not significant, one can
redo the tests and estimate a VECM without trend in the cointegration
relations.

Test equations for data without clear trend direction

If the variables display no clear trend direction, then the drift terms g1 can
also be removed from the model. So the relevant test VECM for non-trended
data becomes

DYt ¼ A(B0Yt�1 � g2)þ G1DYt�1 þ � � � þ Gp�1DYt�pþ1 þ et:

One says that there is no trend in the data and in the cointegration
relation.

Overview of modelling of multiple time series with trends

We summarize the steps needed to model a set of trended variables. Here we
assume that the variables are either integrated of order 0 (so that Yt is trend
stationary) or integrated of order 1 (so that DYt is stationary).
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. Step 1: Test for the nature of the trends in the time series. Test whether the
trend of the variables is deterministic or stochastic, by the methods dis-
cussed in Section 7.3.3. If the null hypothesis of stochastic trends is rejected
and the trends are deterministic, then estimate a VAR model with deter-
ministic trend terms included as regressors. If the trends are stochastic,
then continue with step 2.

. Step 2: Test for the presence of cointegration. If the variables contain
stochastic trends, then test for the presence of cointegration by means of
the Johansen trace test. Choose the relevant VECM test equation (with or
without constant terms and deterministic trends), starting with constants
and trends included. If the null hypothesis of no cointegration is rejected,
then continue with step 3, and if this hypothesis is not rejected, continue
with step 4.

. Step 3: Estimation of VECM with cointegration. If the series are cointe-
grated, then determine the number r of cointegration relations by applying
the Johansen trace test iteratively until the null hypothesis of r relations
against the alternative of at least (rþ 1) relations is not rejected. Estimate
the corresponding VECM—that is, (7.39) where P has rank r and with
relevant constants and trend terms included.

. Step 4: Estimation of VAR for DYt in absence of cointegration. If the series
are not cointegrated, then take first differences of the data and estimate a
VAR model for the stationary variables DYt.

It is also possible to combine the tests in the above four steps, as follows.
Perform the Johansen trace test iteratively, starting with r ¼ 0 and increasing
r until the null hypothesis is not rejected anymore. If r ¼ 0 is not rejected,
then the series are not cointegrated, so continue with step 4. If r ¼ m is not
rejected, then them series are jointly (trend) stationary, so continue with step
1 (VAR model). If 1 � r � m� 1, then the series are cointegrated and con-
tinue with step 3 (VECM).

Example 7.27: Interest and Bond Rates (continued)

We continue our analysis of the monthly series of the AAA bond rate,
denoted by yt, and the three-month Treasury Bill rate, denoted by xt. In
Example 7.26 in the foregoing section we estimated a VAR model for the
differenced series Dyt and Dxt —that is, we performed step 4 of the above
approach without testing for the possible presence of cointegration. Now
we investigate whether these two series are cointegrated. We follow the
above steps and discuss (i) the nature of the trends in the two time series,
(ii) the outcomes of cointegration tests, (iii) the results of a VECM with
one cointegration relation, and (iv) an interpretation of the cointegration
relation.

E
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(i) Nature of the trends in both series

In step 1 we test for the presence and nature of trends in the data. The graphs
of the levels of the two rates were given in Example 7.25 (see Exhibit 7.29
(a)). This indicates that the series are not stationary and that they do not have
a clear long-term trend direction. The results of ADF t-tests are in Panels
1 and 2 of Exhibit 7.32, both for the test equation with deterministic trend
included and for the test equation without deterministic trend term. Neither
of the two tests can reject the presence of a unit root for the two series. The
ADF tests on the series of differences Dyt and Dxt show that these series do
not contain a unit root. We conclude that the series yt and xt are integrated
of order 1.

(ii) Cointegration tests

In step 2 we apply the Johansen test on cointegration. We test this in two
models. First we use the general VECM with linear trend in the data and
deterministic trend in the cointegration relation. Nextwe consider the VECM
without trend in the data and in the cointegration relation. The results are in
Panels 3 and 4 of Exhibit 7.32. For the VECMwith trends, the first eigenvalue
l̂l1 ¼ 0:061 differs significantly from zero but the second one l̂l2 ¼ 0:007 not.
For theVECMwithout trends the first eigenvalue l̂l1 ¼ 0:058 is significant but
the second one l̂l2 ¼ 0:006 not. We conclude that the two series are cointe-
grated and that there exists one common stochastic trend.

(iii) VECM with one cointegration relation

In step 3 we estimate the VECM with one cointegration relation. Panels 5
and 6 of Exhibit 7.32 show the estimates for two VECMs, with and without
trend terms. The trend in the cointegration relation is not significant
(t ¼ �1:52 in Panel 5) and the drift terms are also not significant (the t-values
are 0.90 for the AAA equation and 0.23 for the Treasury Bill equation, see
Panel 5). This motivates the use of the VECMwithout drift terms and with a
constant (but no trend) in the cointegration relation. Panel 6 of Exhibit 7.32
shows the resulting estimated model:

Dyt

Dxt

� �
¼ �0:0188

0:0338

� �
(yt�1�1:151xt�1�1:276)þ 0:5137 �0:0437

0:7780 0:1699

� �
Dyt�1

Dxt�1

� �
þ �0:3333 0:0364

�0:5175 �0:0324

� �
Dyt�2

Dxt�2

� �
þ e1t

e2t

� �
:

In this model, the long-run equilibrium relation is estimated as yt � 1:15xt
�1:28 ¼ 0 (where yt and xt are both measured in percentages), or

yt ¼ 1:15xt þ 1:28:
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This means that, in equilibrium, the AAA bond rate is higher than the three-
month Treasury Bill rate. For instance, if xt ¼ 5 per cent, then in equilibrium
yt ¼ 7:03 per cent. The adjustment coefficients are�0:019 for the AAA bond
rate and 0:034 for the Treasury Bill rate. For instance, if the two rates are out
of equilibrium in the sense that yt > 1:15xt þ 1:28, then this leads to a
downward adjustment of yt (of 1.9 per cent of the difference) and an upward
adjustment of xt (of 3.4 per cent of the difference). This means that the rates
are adjusted in the direction of equilibrium. The adjustment is rather slow, as

(a) Panel 1: ADF t-tests for AAA and for D(AAA)
AAA (const and trend) t ¼ �1:266009 1% Critical Value �3.9779
6 lags included 5% Critical Value �3:4194
AAA (const but no trend) t ¼ �1:615880 1% Critical Value �3.4437
6 lags included 5% Critical Value �2:8667
D(AAA) (const but no trend) t ¼ �8:770391 1% Critical Value �3:4437
6 lags included 5% Critical Value �2:8667

(b) Panel 2: ADF t-tests for US3MT and for D(US3MT)
US3MT (const and trend) t ¼ �1:974514 1% Critical Value �3.9779
6 lags included 5% Critical Value �3.4194
US3MT (const but no trend) t ¼ �2:053994 1% Critical Value �3.4437
6 lags included 5% Critical Value �2.8667
D(US3MT) (const but no trend) t ¼ �11:97861 1% Critical Value �3.4437
6 lags included 5% Critical Value �2.8667

(c) Panel 3: Johansen test on cointegration
Test assumption: Trend in the data, trend and constant in coint relation
Series: AAA US3MT
Sample: 1950:01 1999:12; Included observations: 600; Included lags: 4
Eigenvalue

(l)
Likelihood
Ratio test

5 Percent
Critical Value

1 Percent
Critical Value

Hypothesized
No. of CE(s)

0.061070 (l1) 41.82298 25.32 30.45 None (r ¼ 0)
0.006668 (l2) 4.014194 12.25 16.26 At most 1 (r � 1)
LR test indicates 1 cointegrating equation at 5% and at 1% significance level

(d) Panel 4: Johansen test on cointegration
Test assumption: No trend in the data, constant but no trend in coint relation
Series: AAA US3MT
Sample: 1950:01 1999:12; Included observations: 600; Included lags: 4
Eigenvalue

(l)
Likelihood
Ratio test

5 Percent
Critical Value

1 Percent
Critical Value

Hypothesized
No. of CE(s)

0.058389 l1ð Þ 39.90205 19.96 24.60 None (r ¼ 0)
0.006320 l2ð Þ 3.804047 9.24 12.97 At most 1 (r � 1)
LR test indicates 1 cointegrating equation at 5% and at 1% significance level

Exhibit 7.32 Interest and Bond Rates (Example 7.27)

Unit root tests for the series of the AAA bond rate (Panel 1) and for the three-month Treasury
Bill rate (Panel 2), and Johansen cointegration tests (with trend in data and with constant and
trend in cointegration relation in Panel 3, and without trends in Panel 4).
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(e) Panel 5: VECM with trends and with 1 cointegration relation
Sample: 1950:01 1999:12 (600 observations)
Cointegrating Eq: Coefficient Std. Error t-Statistic

AAA(�1) 1.000000
US3MTBIL(�1) �1.051707 0.09014 (�11.6670)

@TREND(1950:01) �0.002080 0.00137 (�1.51513)
C �0.234493

Error Correction
Model

Equation for
D(AAA) t-Statistic

Equation for
D(US3MT) t-Statistic

Coint. Equation �0.022650 (�3.43266) 0.039050 (2.62909)
D(AAA(�1)) 0.513984 (10.7490) 0.773596 (7.18723)
D(AAA(�2)) �0.331826 (�6.75667) �0.523998 (�4.74004)

D(US3MTBIL(�1)) �0.044806 (�2.11576) 0.172205 (3.61252)
D(US3MTBIL(�2)) 0.034777 (1.62788) �0.029947 (�0.62275)

C 0.007015 (0.89989) 0.004101 (0.23373)
R-squared 0.222181 0.197649
Log Likelihood �79.22656
Akaike Information Criterion 0.314089
Schwarz Criterion 0.424012

(f ) Panel 6: VECM without trends and with 1 cointegration relation
Sample: 1950:01 1999:12 (600 observations)
Cointegrating Eq: Coefficient Std. Error t-Statistic

AAA(�1) 1.000000
US3MT(�1) �1.150871 0.08209 (�14.0192)

C �1.275931 0.46790 (�2.72690)
Error Correction

Model
Equation for
D(AAA) t-Statistic

Equation for
D(US3MT) t-Statistic

Coint. Equation �0.018831 (�3.32220) 0.033829 (2.65473)
D(AAA(�1)) 0.513660 (10.7291) 0.777986 (7.22849)
D(AAA(�2)) �0.333304 (�6.77534) �0.517504 (�4.67940)

D(US3MT(�1)) �0.043715 (�2.06522) 0.169932 (3.57109)
D(US3MT(�2)) 0.036440 (1.71060) �0.032351 (�0.67553)
R-squared 0.220254 0.197719
Log Likelihood �80.26316
Akaike Information Criterion 0.310877
Schwarz Criterion 0.406144

(g) Panel 7: ADF Test t ¼ �3.264717
5% Critical Value �2.8667
Variable: AAA � US3MT
constant but no trend, 6 lags included

−4

−2

0

2

4

6
(h)

50 55 60 65 70 75 80 85 90 95

AAA − US3MT

Exhibit 7.32 (Contd.)

VECM for the series of the AAA bond rate and the three-month Treasury Bill rate (model with
trends in Panel 5 and model without trends in Panel 6), unit root test on the difference of the
two rates (AAA – US3MT, Panel 7) and time plot of this difference (h).
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only around 5.3 per cent of the gap from equilibrium is adjusted within the
period of one month.

(iv) Interpretation of the cointegration relation

The slope coefficient of 1.15 in the cointegration relation is quite close to 1,
which suggests that the spread (yt � xt) between the two rates may be sta-
tionary. This can be tested by anADF test on this series. The results in Panels 7
and 8 of Exhibit 7.32 show that the spread (yt � xt) is indeed stationary (at
5 per cent significance level). This equilibrium relation has a clear financial
interpretation. In the long run the difference between the two rates stays
constant. This means that the additional risk premium of AAA bonds, as
compared to that of Treasury Bills, remains unaltered in the long run.

Example 7.28: Treasury Bill Rates

As a second example we consider three series that we expect to be linked
together in the long run—namely, Treasury Bill rates for three different
maturities. We will discuss (i) the data, (ii) a test for the number of trends,
(iii) a VECM with two cointegration relations (that is, with one common
trend for the three series), and (iv) an interpretation of the two cointegration
relations.

(i) The data

The three considered time series are the three-month, one-year, and ten-year
Treasury Bill rates in the USA, with monthly observations over the years
1960–99. The data are measured in percentages and are taken from the
Federal Reserve Board of Governors. The time plot of the three series is in
Exhibit 7.33 (a). This graph suggests that the three series do not have a clear
trend direction and that they possibly follow a random walk with one
common stochastic trend.

(ii) Test for the number of trends

We test for the number of cointegration relations by applying the Johansen
trace test. It turns out that the drift terms and the trend in the cointegration
relation can be omitted. Therefore we present the results for the VECM
without trends in Panel 2 of Exhibit 7.33. The test gives eigenvalues
l̂l1 ¼ 0:078, l̂l2 ¼ 0:041; and l̂l3 ¼ 0:008. The first two eigenvalues differ
significantly from zero (at 5 per cent significance), but the third one does
not. This means that the matrix P in the VECM for these three series has
rank r ¼ 2. So there are two cointegration relations between the variables
and there is one common stochastic trend that drives all three interest rates.

E
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Panel 2: Johansen test on cointegration
Test assumption: No deterministic trend in the data
Series: T_3M, T_1Y, T_10Y
Sample: 1960:01 1999:12; Included observations: 475; Included lags: 4
Eigenvalue

(l)
Likelihood
Ratio test

5 Percent
Critical Value

1 Percent
Critical Value

Hypothesized
No. of CE(s)

0.077817 (l1) 62.51845 34.91 41.07 None (r ¼ 0)
0.041226 (l2) 24.03773 19.96 24.60 At most 1 (r � 1)
0.008470 (l3) 4.040461 9.24 12.97 At most 2 (r � 2)
LR test indicates 2 cointegrating equations at 5% significance level

(c)

Panel 3: VECM without trends and with 2 cointegration relations
Sample(adjusted): 1960:04 1999:12 (477 observations)

Cointegrating
Equation:

Coefficients
Coint Eq 1 Std. Error t-Statistic

Coefficients
Coint Eq 2 Std. Error t-Statistic

T_3M(�1) 1.000000 0.000000

T_1Y(�1) 0.000000 1.000000

T_10Y(�1) �0.882970 0.08490 �10.3999 �0.972623 0.07585 �12.8233

C 0.574733 0.65977 0.87111 0.595891 0.58941 1.01099

Error Correction

Model

Equation for

D(T_3M) t-Statistic

Equation for

D(T_1Y) t-Statistic

Equation for

D(T_10Y) t-Statistic

CointEquation 1 �0.138592 �2.07326 0.052581 0.79810 0.116110 2.82168
CointEquation 2 0.124560 1.61478 �0.092694 �1.21928 �0.115427 �2.43089

D(T_3M(�1)) 0.048494 0.41095 �0.114026 �0.98042 �0.082522 �1.13602

D(T_3M(�2)) 0.011969 0.10133 0.170775 1.46689 0.136141 1.87226

D(T_1Y(�1)) 0.362771 2.21719 0.401741 2.49133 0.070020 0.69520
D(T_1Y(�2)) �0.143895 �0.86784 �0.291773 �1.78547 �0.134795 �1.32065

D(T_10Y(�1)) 0.156030 1.08619 0.322656 2.27904 0.398285 4.50414

D(T_10Y(�2)) �0.221795 �1.53246 �0.185207 �1.29841 �0.188165 �2.11202

R-squared 0.219135 0.214765 0.190565

Exhibit 7.33 Treasury Bill Rates (Example 7.28)

Time plot of three US interest rates (three months, one year, and ten years (a)), Johansen
cointegration test (Panel 2), and VECM (Panel 3).
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(iii) VECM with two cointegration relations

Panel 3 of Exhibit 7.33 shows the estimated VECM with two cointegration
relations. The long-run equilibrium relations are estimated as

r3m ¼ 0:88r10y � 0:57, r1y ¼ 0:97r10y � 0:60:

Here the index of the Treasury Bill rate r denotes the maturity, three months
(3m), one year (1y), or ten years (10y). The outcomes are in line with
financial theory, since in equilibrium the interest rates should be higher for
longer maturities.

(iv) Interpretation of the two cointegration relations

The slope coefficients of the cointegration equations are quite close to one.
Therefore we test whether the three series of interest spreads (r10y � r1y),
(r10y � r3m), and (r1y � r3m) are stationary. We apply ADF tests, with a
constant term but without deterministic trend in the test equation. The
outcomes in Panel 7 of Exhibit 7.33 show that the null hypothesis of a unit
root can be rejected for all three spreads. So the spreads are stationary and
move up and down along a long-run equilibrium value. The graphs of the
spreads in Exhibit 7.33 (d–f ) indeed indicate the existence of such equilibria
over long time horizons, although deviations may persist for considerable
time. For instance, note that in the early 1980s the spreads were negative so
that long-term interest rates were lower than short-term interest rates. How-
ever, this disequilibrium situation has been corrected over time.

E Exercises: S: 7.15e; E: 7.17h, i, 7.20f, 7.21c, 7.23b, c, 7.24b–d.
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(d) (e) (f )

(g) Panel 7: ADF t-tests for three interest spreads
Constant, but no trend in test equation, and 4 lags included

spread ADF t-Statistic 5% Critical Value
r10y � r1y �3.259773 �2.8679
r10y � r3m �3.657539 �2.8679
r1y � r3m �4.983038 �2.8679

Exhibit 7.33 (Contd.)

Time plot of three interest spreads ((d)–(f )) and unit root tests (Panel 7).
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7.6.4 Summary

In this section we have considered the joint modelling of a set of mutually
dependent time series variables.

. If the variables are (trend) stationary, one can estimate a vector auto-
regressive model by means of least squares. The estimated model can be
analysed by means of the usual diagnostic tests for regression models
and AR time series models. The model can be rewritten in error correc-
tion form, which provides insight in the correction mechanisms between
the time series.

. If the variables contain stochastic trends, then one should investigate
whether the variables are cointegrated. The appropriate cointegration
test equation for the Johansen trace test depends on the data properties
(clear overall trend direction or not, deterministic trend in cointegration
relations or not).

. If the series are not cointegrated, then regressions of the variables in
levels may lead to spurious results. Therefore the model should be
estimated only after the stochastic trends have been removed by taking
first differences of the data.

. If the series are cointegrated, then one should estimate a VECM (with
reduced rank of the matrix P of the regressor Yt�1). If there are m
variables and rank(P) ¼ r, then there are r cointegration relations and
(m� r) common trends. The estimated model has a clear interpretation
in terms of long-run equilibria and adjustment mechanisms that pre-
serve these equilibria.
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7.7 Other multiple equation
models

E Uses Chapters 1–4; Sections 5.4, 5.5, 5.7; Sections 7.1–7.3, 7.6.

7.7.1 Introduction

Combined cross section and time series data

Many data sets of practical interest consist of a large number of variables that
are observed on a sequence of successive moments in time. Examples are
yearly time series observations of the production of a large number of firms,
weekly purchases of a large number of households, and quarterly develop-
ments in gross national product of a large number of countries. In such cases
the data concern a cross section of units (firms, households, countries), and
for each unit a time series of observations is available. If the information
consists of such a combination of cross section and time series data, then one
says that the data are pooled. Such data are also called panel data, where the
panel refers to the cross section (of firms, households, countries, and so on).

The vector autoregressive model of Section 7.6 is an example of a model
for a number of observed time series variables. However, as was discussed in
Section 7.6.2, this model is not suitable for a large number of time series,
because the number of parameters in the VAR model grows with the square
of the number of time series. In practice, pooled data sets often contain a
large number of units (dozens of countries, hundreds of firms, thousands of
households). For instance, if the data set consists of fifty weekly observations
of 1000 households, then a VAR(1) model for these 1000 series has more
than a million parameters. Such data sets should be analysed in another way.

General model formulation

We suppose that the data set consists of time series observed at n time
moments (t ¼ 1, � � � , n) for a numberm of units (i ¼ 1, � � � , m). The variable
to be explained is denoted by yit and we assume that there are (k� 1)
explanatory variables xit, where i denotes the unit and t the time moment.
In all that follows we exclude the constant term from xit, as this term plays a
special role in the models that we will discuss in this section. The considered
models are of the following general form:
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yit ¼ ait þ x0itgit þ eit, i ¼ 1, � � � , m, t ¼ 1, � � � , n, var(e) ¼ V:

Here V denotes the mn�mn covariance matrix of the mn� 1 vector e of
disturbances eit. This model is far too general to be of practical use, as it
contains more parameters than observations. The number of observations is
mn and the number of parameters is kmnþ 1

2mn(mnþ 1) (namely, mn for
the constants ait, (k� 1)mn for the slopes git, and

1
2mn(mnþ 1) for the

symmetric matrix V). Therefore, to be practically useful we have to impose
restrictions on the regression parameters (ait, git) and on the covariance
matrix V.

Three models of special interest

In the rest of this section we pay attention to three specifications that are of
much practical interest. In Section 7.7.2 we consider the seemingly unrelated
regression model that is characterized by the restrictions that

ait ¼ ai, git ¼ gi, E[eitejt] ¼ sij, E[eitejs] ¼ 0 (for all i, j, and t 6¼ s):

So the parameters differ between units, but they are constant over time for
each given unit. Further, the error terms are uncorrelated over time, but the
error terms are correlated between units at the same moment of time. This
model contains in total mkþ 1

2m(mþ 1) parameters. As we shall see in
Section 7.7.2, this model can be used only if n � m—that is, the length of
the time series should be at least as large as the number of units. In practice
the number of units may be very large, in which case panel data models are
appropriate. This is discussed in Section 7.7.3. The panel data model (with
fixed effects) corresponds to the restrictions

ait ¼ ai, git ¼ g, V ¼ s2I:

So the slope parameters are constant across units, and the error terms
are uncorrelated (also between units at the same moment of time) and
homoskedastic. In this way the number of parameters is drastically
reduced, to mþ k. Finally, in Section 7.7.4 we consider simultaneous
equation models. These models have the same structure as the seemingly
unrelated regression model. The crucial difference is that some of the ex-
planatory variables are endogenous, as the dependent variable yit of one
unit plays the role of an explanatory variable in the equations for yjt of
other units.
In the following sections we briefly describe some of the salient features of

these models. For further details we refer to the textbooks mentioned in the
Further Reading section at the end of this chapter.

7.7 Other multiple equation models 683



7.7.2 Seemingly unrelated regression model

Motivation of the SUR model

Suppose that the data set consists of time series for a number of units. It is
assumed that the marginal effects of the explanatory variables differ per unit,
but that these effects are constant over time. In terms of the general model in
Section 7.7.1, this means that ait ¼ ai and git ¼ gi. Further it is assumed that
the disturbances of each unit are not serially correlated. However, at a given
time the disturbances of the different units may be correlated. This reflects
the possibility that unobserved influences may affect all units simultaneously.
The assumptions on the error terms are E[eitejs] ¼ 0 for all t 6¼ s and for all
i, j, and E[eitejt] ¼ sij is possibly non-zero. One says that the error terms
contain contemporaneous correlation. If the explanatory variables xit are
exogenous, the resulting model

yit ¼ ai þ x0itgi þ eit,

E[eitejt] ¼ sij, E[eitejs] ¼ 0 (for all i, j, and t 6¼ s),

is called the seemingly unrelated regression (SUR) model. The equations for
different units seem to be unrelated, as all parameters are different. However,
the observations yit and yjt are related if sij 6¼ 0. So the relations between the
units are modelled implicitly via the correlation of the error terms. For
instance, future expectations may influence the behaviour of all households
in the data set, and changes in the state of the world economy may affect the
profit of all firms or the national income of all countries in the data set.
Influential factors like future expectations and worldwide prospects are
difficult to measure, and their influence on all units is incorporated in the
unobserved error terms eit.

Model formulation in matrix form

Let the observations be ordered per unit, and per unit let the observations be
ordered with time. We denote the data for unit i by the n� 1 vector yi and by the
n� k matrix Xi, with corresponding k� 1 parameter vector bi ¼ (ai, g0i)

0 and
n� 1 vector of disturbances ei. The model for unit i can then be written as

yi ¼ Xibi þ ei:

The parameters bi could be estimated by applying OLS per unit separately.
However, this is not efficient if the disturbances contain contemporaneous correl-
ation. By combining the models for the m units, the SUR model can be written
in matrix form as follows, where e ¼ (e01, � � � , e0m)0 is the mn� 1 vector of disturb-
ances.

T
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y1

y2

..

.

ym

0BBBBB@

1CCCCCA ¼

X1 0 � � � 0

0 X2 � � � 0

..

. ..
. ..

.

0 0 � � � Xm

0BBBBB@

1CCCCCA
b1

b2

..

.

bm

0BBBBB@

1CCCCCAþ

e1

e2

..

.

em

0BBBBB@

1CCCCCA,

E[e] ¼ 0, var(e) ¼ V ¼

s11I s12I � � � s1mI

s12I s22I � � � s2mI

..

. ..
. ..

.

s1mI s2mI � � � smmI

0BBBBB@

1CCCCCA:

(7:41)

Here I denotes the n� n identity matrix. This is a regression model in standard
matrix form, but the error terms may be heteroskedastic and they may be correl-
ated. Because of the block-diagonal structure of the matrix of explanatory vari-
ables, the OLS estimator of the mk parameters bi, i ¼ 1, � � � , m, in the above
model is equivalent to applying OLS per unit. However, this is not the best linear
unbiased estimator, because themn�mn covariance matrixV of the model is not
of the form s2I. In what follows we describe a general method to estimate
regression models for which the covariance matrix V does not have the standard
form (the SUR model is a special case).

The method of generalized least squares

An efficient estimator is obtained by transforming the model such that the covar-
iance matrix becomes of the form s2I. This is called generalized least squares
(GLS). The idea is similar to the method of weighted least squares discussed in
Section 5.4.3 (p. 327–30) for a diagonal covariance matrix V. As the covariance
has another structure here, we need to apply another type of transformation to
estimate the SUR model. The general idea is to transform the model y ¼ Xbþ e
(where e has mean 0 and covariance matrix V) by means of an invertible matrix A
to Ay ¼ AXbþ Ae in such a way that the transformed error vector Ae (that has
mean 0) has covariance matrix I. As Ae has covariance matrix AVA0, the condi-
tion on A is that AVA0 ¼ I, in which case V ¼ A�1(A0)�1 ¼ (A0A)�1. If we write
y� ¼ Ay, X� ¼ AX, and e� ¼ Ae, then y� ¼ X�bþ e� with E[e�] ¼ 0 and
var(e�) ¼ I. Therefore, the best linear unbiased estimator of b is given by

bGLS ¼ (X0
�X�)�1X0

�y� ¼ (X0V�1X)�1X0V�1y,

where we used the fact that A0A ¼ V�1. This is called the generalized least squares
estimator.

Methods to compute the transformation matrix

There are different methods to compute the transformation matrix A. A
general method is the following. According to the matrix results in Appendix

T

T
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A (Sections A.5 and A.6), the positive definite covariance matrix V can be
written as

V ¼ VDV 0,

whereD is a diagonal matrix with the positive eigenvalues lit ofV on the diagonal
and where V is an orthogonal matrix with columns that are eigenvectors ofV and
with the property that V 0V ¼ I. Now define A ¼ D�1=2V 0, where D�1=2 is the
diagonal matrix with elements 1=

ffiffiffiffiffi
lit

p
on the diagonal. Then AVA0 ¼ I, which

follows by writing out this matrix product and using that V 0V ¼ I and
D�1=2DD�1=2 ¼ I. This general method is not always the most convenient way
to find a transformation matrix A, as the involved matrices V and A are of
size mn�mn. This is often too large to be practically feasible. Note that the
mn�mn matrix V in (7.41) is sparse, in the sense that it contains many zero
elements. Special methods have been developed to obtain transformations A for
sparse matrices V, but here we will not discuss these computational aspects
any further.

Feasible GLS

The above GLS estimator bGLS can be computed only if the covariance
matrix V is known, but this is not the case in practice. The feasible GLS
estimator (FGLS) of the SUR model is computed in two steps. In the first step
the matrix V is estimated by least squares methods, and in the second step
this estimated covariance matrix is used in GLS. This approach is similar to
the method of feasible WLS for heteroskedastic error terms discussed in
Section 5.4.4 (p. 335–6).

Two-step feasible generalized least squares (FGLS)

. Step 1: Estimate the covariance matrixV. Applym regressions, one per unit
to estimate bj by OLS, j ¼ 1, � � � , m. Let ei be the n� 1 vector of OLS
residuals for unit i; then the (co)variances sij are estimated by
sij ¼ 1

n

Pn
t¼1 eitejt. The mn�mn matrix V̂V is estimated by replacing sij in

(7.41) by sij.

. Step 2: Estimate the parameters bj jointly by GLS. The FGLS estimator is
obtained by substituting the estimated covariance matrix V̂V of step 1 into
the expression for the GLS estimator, so that

bFGLS ¼ (X0V̂V�1X)�1X0V̂V�1y:

It can be shown that this estimator has the same (optimal) asymptotic
properties as ML in (7.41) if the error terms are normally distributed, the
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number of time series observations n ! 1, and the number m of units is
fixed. In particular, if n is large enough then

bFGLS � N(b, (X0
�X�)�1) � N(b, (X0V̂V�1X)�1):

This can be used to perform t- and F-tests, provided that the length n of the
time series is large enough. The first step in the above FGLS method is not
efficient, as it neglects the fact that the error terms are heteroskedastic and
correlated. One can iterate the FGLS steps, using the residuals of step 2 to
make a new estimate of V in step 1 and a corresponding new GLS estimate
in step 2. This can be iterated until the estimates converge. This is called
iterated FGLS.

SUR requires a limited number of units

The SURmodel can be estimated only if the number of unitsm is not larger than the
number of time series observations n per unit. This can be derived as follows. To
compute the SUR estimator bFGLS (in step 2), the estimated covariancematrix V̂V (of
step 1) should be invertible. Here V̂V is anmn�mn block-diagonal matrix with the
m�mmatrix S on the diagonal, where S has elements sij ¼ 1

n e
0
iej with ei the n� 1

vector of OLS residuals of unit i. Therefore V̂V is invertible if and only if S is
invertible— that is, if and only if rank(S) ¼ m. Now define the n�m matrix
E ¼ (e1, � � � , em); then S ¼ 1

n E
0E and m ¼ rank(S) ¼ rank(E) � n. So S and V̂V can

be invertible and bFGLS can be computed only if m � n. If the number of units
present in the data set exceeds the length of the observation period per unit, then
SUR cannot be applied.Models that are appropriate for such data sets are discussed
in the next section.

Cases where OLS is efficient

There are two situations for which the GLS estimator in the SUR model boils
down to the OLS estimator per unit. This happens if the different units are
uncorrelated so that sij ¼ 0 for all i 6¼ j, or if all units have the same regressor
matrix in the sense thatXi ¼ X is the same for all i ¼ 1, � � � , m (see Exercise 7.10).
In these cases OLS per unit is efficient.

The null hypothesis of uncorrelated units can be tested by means of the OLS
residual vectors ei. Let the sample correlation of the residuals of units i and j be
defined by rij ¼ sij=

ffiffiffiffiffiffiffiffi
siisjj

p
, with sij as defined in step 1 of the FGLS method. If

sij ¼ 0, then rij � N(0, 1
n ), and the LM-test for the absence of cross-unit correl-

ations (sij ¼ 0 for all i 6¼ j) is given by

LM ¼ n
Xm�1

i¼1

Xm
j¼iþ1

r2ij � w2
1

2
m(m� 1)

� �
:

T

T
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This is similar to the Box–Pierce test (5.50) for serial correlation. If the null
hypothesis is not rejected, then one can apply OLS per unit without loss of
efficiency; otherwise FGLS is preferred.

Example 7.29: Primary Metal Industries

To illustrate some of the foregoing methods we consider yearly production
data of m ¼ 26 firms in the US primary metal industries (SIC33) over the
period 1958–94, so that n ¼ 37. The data are taken from the National
Bureau of Economic Research (E. J. Bartelsman and W. Gray, The NBER
Manufacturing Productivity Database, National Technical Working Paper
205, 1996). We will discuss (i) the data, (ii) the estimates of an SURmodel for
a subset of three firms, (iii) the SUR estimates for the full set of twenty-six
firms, and (iv) comments on the outcomes.

(i) The data

The dependent variable yit is the output (value added) and the explanatory
variables are the input factors Lit (labour, production worker wages) and Kit

(capital stock, both structures and equipment), all measured in millions of
1987 dollars. The Cobb–Douglas production function is yit ¼ L

bi
it K

gi
it e

ai eeit ,
and by taking logarithms this can be written as

log (yit) ¼ ai þ bi log (Lit)þ gi log (Kit)þ eit:

The data (all in logarithms) are shown in Exhibit 7.34. Although some firms
have a growing or declining output over time, this is by no means a general
characteristic of the data. Here we will not incorporate trends in the model.
Further, although the firms operate in the same industry sector, we allow for
different labour elasticities (bi) and capital elasticities (gi). The constants (ai)
represent the production efficiency of the firms— that is, the output for given
levels of labour and capital, and this efficiency is also allowed to vary
between firms.

(ii) SUR estimates for a subset of three firms

The full SUR model contains mk ¼ 26 � 3 ¼ 78 parameters and will be
discussed in part (iii) below. For simplicity we first consider the SUR model
for a subset of three firms, neglecting the data of the other twenty-three firms.
So in this case there arem ¼ 3 units with n ¼ 37 time series observations per
unit. Panels 1 and 6 of Exhibit 7.35 show the results of OLS and of SUR
(two-step FGLS) for the three firms. The OLS estimates are close to the
SUR estimates, but most of the standard errors are smaller in the SUR
model, so that the parameters are somewhat more efficiently estimated by

E

XM729PMI
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LOGPROD

(1-6, 7-12, 13-18, 19-24, 25-26)

(a)

(b)

(c)

LOGLAB

(1-6, 7-12, 13-18, 19-24, 25-26)

LOGCAP

(1-6, 7-12, 13-18, 19-24, 25-26)

Exhibit 7.34 Primary Metal Industries (Example 7.29)

Yearly production data over the period 1958–94 of twenty-six firms in the US primary metal
sector, value added (a), labour input (b), and capital stock (c), all in logarithms.
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(a) Panel 1: Dependent Variable: LOGPROD
Method: Pooled Least Squares (OLS)
Sample: 1958 1994; Included observations: 37
Number of cross-sections: 3; Total panel (balanced) 111 obs.

Variable Coefficient Std. Error t-Statistic Prob.
C_1 �1.087911 0.504532 �2.156275 0.0334
C_2 1.363460 0.500062 2.726584 0.0075
C_3 �0.339983 0.383163 �0.887306 0.3770

LOGLAB_1 0.961796 0.034245 28.08564 0.0000
LOGLAB_2 0.922977 0.169924 5.431716 0.0000
LOGLAB_3 1.330223 0.300807 4.422174 0.0000
LOGCAP_1 0.272703 0.074273 3.671644 0.0004
LOGCAP_2 0.005695 0.080226 0.070987 0.9435
LOGCAP_3 0.180628 0.074909 2.411288 0.0177

R-squared 0.950496 Log likelihood 62.90914
S.E. of regression 0.143215
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(e) Panel 5: Residual correlation matrix OLS
OLSRES_1 OLSRES_2 OLSRES_3

OLSRES_1 1.000000 0.053386 0.221128
OLSRES_2 0.053386 1.000000 0.376310
OLSRES_3 0.221128 0.376310 1.000000

(f ) Panel 6: Dependent Variable: LOGPROD
Method: Seemingly Unrelated Regression (2-step FGLS)
Sample: 1958 1994; Included observations: 37
Number of cross-sections: 3; Total panel (balanced) 111 obs.

Variable Coefficient Std. Error t-Statistic Prob.
C_1 �1.048012 0.336424 �3.115150 0.0024
C_2 1.478908 0.634286 2.331612 0.0217
C_3 �0.394136 0.275345 �1.431427 0.1554

LOGLAB_1 0.960662 0.022609 42.49061 0.0000
LOGLAB_2 0.954174 0.214414 4.450154 0.0000
LOGLAB_3 1.355261 0.201169 6.736918 0.0000
LOGCAP_1 0.266874 0.049581 5.382560 0.0000
LOGCAP_2 �0.012646 0.101660 �0.124391 0.9013
LOGCAP_3 0.184460 0.052020 3.545939 0.0006

R-squared 0.950448 Log likelihood 77.99390
S.E. of regression 0.143284

Exhibit 7.35 Primary Metal Industries (Example 7.29)

Cobb–Douglas production functions of three firms estimated by OLS (Panel 1) with time plots
of the three corresponding residual series ((b)–(d)) and their correlation matrix (Panel 5), and
model estimated by SUR (two-step FGLS, Panel 6); the firms (1, 2, and 3) are indicated by an
underscore (_1, _2, and _3).
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FGLS. Exhibit 7.35 (b–d) show time plots of the three series of OLS re-
siduals. They follow different patterns and the cross correlations between
the three series are relatively small (0.05, 0.23, and 0.38, see Panel 5). The
LM-test for the significance of contemporaneous cross correlations is
LM ¼ n(r212 þ r213 þ r223) ¼ 37( (0:05)2 þ (0:22)2 þ (0:38)2) ¼ 7:15 � w2(3)
with corresponding P-value P ¼ 0:07. So the null hypothesis that sij ¼ 0 for
i 6¼ j is not rejected. This explains that the SUR and OLS estimates are close
together.

(g) Panel 7: Residual correlation matrix SUR model
SURRES_1 SURRES_2 SURRES_3

SURRES_1 1.000000 0.051879 0.226467
SURRES_2 0.051879 1.000000 0.381129
SURRES_3 0.226467 0.381129 1.000000
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Series: GAMMA
Observations 26
Mean
Median
Maximum
Minimum
Std. Dev.

0.199899
0.235525
1.141769

−0.776134
0.368876

Series: T-value ALPHA
Observations 26

Mean
Median
Maximum
Minimum
Std. Dev.

−1.633901
−1.935003
9.351207

−13.34567
4.812166

(h) (i)

(j) (k)

(l) (m)

Exhibit 7.35 (Contd.)

Contemporaneous residual correlation matrix corresponding to the SUR model of Panel 6
(Panel 7) and SUR estimates (two-step FGLS) of Cobb–Douglas production functions of
twenty-six firms, histograms of resulting twenty-six estimates of the constant term a (h), the
labour elasticity b (j), and the capital elasticity g (l), together with histograms of the twenty-six
corresponding t-values ((i), (k), and (m)).
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(iii) SUR estimates for the full set of twenty-six firms

The results of SUR (two-step FGLS) on the full set of m ¼ 26 firms are
summarized in Exhibit 7.35 (h–m) by means of histograms of the resulting
twenty-six estimates of ai, bi, gi, and their t-values. The estimated capital
elasticities (gi) vary considerably across firms. Several of these coefficients are
not significant and some are even negative (the minimum elasticity is �0:78,
the maximum 1.14). The estimated labour elasticities (bi) vary less (min-
imum 0.65, maximum 1.20) and are all significant.

(iv) Comments on the outcomes

The SURmodel in part (iii) contains a large number of parameters. There are
mk ¼ 78 regression parameters. The mn�mn ¼ 962� 962 covariance
matrixV is block-diagonal, with symmetric 26� 26 matrices (with elements
sij) on the diagonal. This gives 1

2m(mþ 1) ¼ 351 additional parameters. In
total, the SUR model uses mn ¼ 962 data to estimate (78þ 351) ¼ 429
coefficients. So the number of parameters is large as compared to the amount
of data information, and this causes a lack of significance in some of the
obtained estimates. More significant results can be obtained by imposing
parameter restrictions on the model, as will be discussed in the next section
(see Example 7.30).

E Exercises: T: 7.10a–c; E: 7.25a, b.

7.7.3 Panel data

Panel model with fixed effects

In some data sets— for instance, in consumer panels— the number of units
(m) is much larger than the number of observations (n) per unit. In such
situations one speaks of panel data or longitudinal data. For such data sets
the SUR model cannot be applied, as this requires that m � n. The SUR
model should then be simplified to reduce the number of parameters. One
way to get a manageable model is to assume that the marginal effects of the
explanatory variables on the dependent variable are the same for all units.
This corresponds to the restriction that the slopes gi ¼ g are constant across
units. To account for differences between the units, the constant terms ai are
allowed to vary among units. These constant terms stand for all unobserved
aspects that distinguish the units from each other. For instance, in a consumer
panel this may capture differences in unobserved wealth of the households,
and in a panel of firms it may represent differences in management style. A
further simplification is obtained by the additional assumption that the
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random variables eit are homoskedastic and uncorrelated, both over time and
across firms. Under the above assumptions, the model becomes

yit ¼ ai þ x0itgþ eit, eit � IID(0, s2):

Here xit is a (k� 1)� 1 vector of explanatory variables that does not include
a constant term. This is called the panel model with fixed effects, as the
difference between the units is modelled in terms of the unit-specific, fixed
(but unknown) parameters ai. The model has (mþ k) parameters (m for
ai, (k� 1) for g, and 1 for s2). As compared with the SUR model, which
has mkþ 1

2m(mþ 1) parameters, this is a considerable simplification even
for moderate values of m.

Fixed effects model in matrix form

The model can be written as a standard multiple regression model with constant
coefficients by incorporating unit dummies, defined by Dit(j) ¼ 1 if i ¼ j and
Dit(j) ¼ 0 if i 6¼ j. Then the model becomes

yit ¼
Xm
j¼1

ajDit(j)þ x0itgþ eit, eit � IID(0, s2):

This can also be written in matrix form, as follows. Let yi be the n� 1 vector with
the values yit, t ¼ 1, � � � , n, let ei be defined in a similar way in terms of eit, and let
Xi be the n� (k� 1) matrix with tth row x0it, t ¼ 1, � � � , n. Further let i be the
n� 1 vector with all elements equal to 1. Then the equation for the ith unit is
yi ¼ iai þXigþ ei. Now stack these equations for i ¼ 1, � � � , m, and write y for the
mn� 1 vector consisting of the stacked yi, e for the mn� 1 vector of stacked ei,
and X for the mn� (k� 1) matrix of the stacked Xi. Further, let D be the
following mn�m matrix built from the n� 1 vectors i and 0.

D ¼
i 0 � � � 0
0 i � � � 0
..
. ..

. ..
.

0 0 � � � i

0BB@
1CCA:

Let a ¼ (a1, � � � , am)0; then the model can be written in matrix form as

y ¼ XgþDaþ e, e � N(0, s2I):

Fixed effects regression by numerically efficient methods

In the above model, the regressors xit are assumed to be exogenous. As
var(e) ¼ s2I, efficient estimators of the parameters (g and a) of this model are

T

T
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obtained by OLS. Direct application of OLS involves the inverse of the
(mþ k� 1)� (mþ k� 1) matrix (X D)0(X D). If the number m of units is
large, then the computation of the inverse of such a large matrix is numerically
cumbersome. We now describe a computationally simpler method that is based on
the partial regression result of Frisch–Waugh in Section 3.2.5 (p. 146). This result
states that the slope parameters g can be estimated by means of the following two
steps. In step 1, regress y andX onD and determine the ‘cleaned’ variables— that
is, the residuals of these two regressions. These residuals are given by MDy and
MDX, whereMD ¼ I �D(D0D)�1D0. This is easy to compute, sinceD0D ¼ nI, so
that (D0D)�1 ¼ 1

n I. The ‘cleaned’ variable MDy has elements yit � yi, where
yi ¼ 1

n

Pn
t¼1 yit is the average over the ith unit. In a similar way,MDX has elements

xit � xi. In step 2 of partial regression, the OLS estimates of g are obtained by
regressing MDy on MDX. This gives

ĝgOLS ¼ (X0MDX)�1X0MDy

¼
Xm
i¼1

Xn
t¼1

(xit � xi)(xit � xi)
0

 !�1 Xm
i¼1

Xn
t¼1

(xit � xi)(yit � yi)

 !
:

This regression involves only (k� 1) parameters, and we need to compute only
the inverse of the matrix X0MDX that has size (k� 1)� (k� 1) that does not
depend on the number m of units. This greatly simplifies the computations.
The OLS estimates of the constants ai can be obtained as follows. One of the
normal equations in the matrix model reads D0XĝgþD0Dâa ¼ D0y, so that
âa ¼ (D0D)�1(D0y�D0Xĝg). By writing this out we obtain

âai ¼ yi � x0iĝg:

Properties of fixed effects estimators

Under the above assumptions, the OLS estimators have the usual properties
discussed in Chapter 3. This means that t- and F-tests can be applied in the usual
way. Here the variance s2 should be estimated as 1

mn�(mþk�1)

Pm
i¼1

Pn
t¼1 e

2
it, as the

regression model hasmn observations and (mþ k� 1) regression parameters. For
instance, the null hypothesis of absence of unit-specific effects (a1 ¼ � � � ¼ am) can
be tested by the F-test with (m� 1) and (mn� (mþ k� 1)) degrees of freedom.
If the above two-step estimation method is used, then the standard errors and
t-values obtained in the second step should be corrected, as the second-step
regression has only (k� 1) parameters instead of (mþ k� 1) (see Exercise 3.9).

The OLS estimator of g is consistent if mn ! 1. It suffices that m ! 1 with n
fixed, so that the marginal effects g can also be estimated accurately if the number
of observations per unit is small. This is because these effects are assumed to be the
same for all units. The OLS estimator of a is consistent only for n ! 1, as
increasing the number of units does not help to estimate the constant terms of
previous units.

T
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Panel model with random effects

In the panel model with fixed effects, all unit-specific characteristics that are
constant over time are absorbed in the constant terms ai. For instance, in a
consumer panel that extends over a limited number of weeks we cannot
discriminate between variables like the sex and the living area of the con-
sumer. If we were to add these variables as additional regressors, we would
obtain perfect collinearity, so these individual-specific effects cannot be
estimated in the fixed effects model. In such situations it is helpful to adjust
the model for the constant terms ai —for instance, by assuming that they
consist of independent drawings from an underlying population. This is a
realistic assumption in many cases, because the units (say households) in the
sample are often randomly drawn from a larger population of units. Suppose
that ai� IID(a, s2a) and that these effects are independent of the disturbances
eit. Then we can write ai ¼ aþ Zi with Zi� IID(0, s2a), and

yit ¼ aþ x0itgþ !it, !it ¼ eit þ Zi:

This is called the panel model with random effects. As before, the (k� 1)� 1
vector of regressors xit excludes the constant term. In this model the regres-
sors xit may contain variables that are constant over the observed time
interval but vary between units, such as the sex and living area of consumers
or the location and management style of firms. The above model has k
regression parameters, as compared to (kþm� 1) in the panel model with
fixed effects. If the number of units is large, this leads to a considerable
reduction in the number of parameters. However, compared to the fixed
effects model, the disturbances !it are more complex, as (within units) they
are correlated over time. Under the above assumptions there holds

E[!it] ¼ 0, E[!2
it] ¼ s2 þ s2a , E[!it!is] ¼ s2a (for t 6¼ s),

E[!it!js] ¼ 0 (for all t, s, and i 6¼ j):

Random effects FGLS estimation by numerically efficient methods

The parameters (a and g) in the random effects model can be estimated consist-
ently by OLS. However, the OLS estimators are not efficient and the usual OLS
formulas for the standard errors are not valid, because of the cross correlations
between the disturbances for the same unit at different moments of time. Efficient
estimates can be obtained by two-step FGLS. The general FGLS method was
discussed in the previous section. Note, however, that the mn�mn covariance
matrix V of the disturbances !it in the random effects model contains many zero
elements and that V depends on only two parameters, s2 and s2a . This simple
structure of V can be exploited to compute the estimates in a numerically efficient
way. We will illustrate this by considering the first step of the FGLS method in

T
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more detail. That is, we describe a simple method to estimate the two variance
parameters s2 and s2a . Once these two parameters are estimated, the second step of
FGLS can also be performed in a straightforward way, but we do not present the
computational details of this second step.

The unit-specific disturbance Zi is fixed for unit i, so it can be removed by taking
the observations in the ith unit in deviation from the sample mean in this unit. This
leads to the following relation between the de-meaned variables:

yit � yi ¼ (xit � xi)
0gþ (eit � ei):

We can estimate this model by OLS, using in total mn de-meaned observations.
For each unit, one degree of freedom is lost as the n de-meaned observa-
tions of the ith unit add up to zero. Let ĝg be the OLS estimator of g obtained
from the mn de-meaned data; then the variance s2 of the disturbances eit can be
estimated by

ŝs2 ¼ 1

m(n� 1)

Xm
i¼1

Xn
t¼1

yit � yi � (xit � xi)
0ĝgð Þ2:

Next, to estimate the variance s2a between units, we consider the averages per unit
so that

yi ¼ aþ x0igþ ei þ Zi, i ¼ 1, � � � , m:

The error terms of this equation have (between-units) variance s2B ¼
var(ei þ Zi) ¼ 1

ns
2 þ s2a . Let ŝs

2
B ¼ 1

m�k

Pm
i¼1 (yi � âa� x0iĝg)

2 be the estimated vari-
ance in the above equation. Then the variance s2a ¼ s2B � 1

n s
2 can be estimated by

ŝs2a ¼ ŝs2B � 1

n
ŝs2:

The above estimates of s2 and s2a can be substituted in the covariance matrix V
and used in the second step of FGLS to get efficient estimates of the parameters a
and g.

Comments on panel models

Panel data sets are becoming increasingly popular in many fields of business
and economics. In this way, both common and individual characteristics of
individuals (in marketing), of firms (in finance), and of countries (in inter-
national economics) can be measured and incorporated in one model.
The above panel models can be extended in several ways. For instance,

time-specific effects that are the same for all units can be modelled by
including n time dummies in the regression model. All the usual diagnostic
tests discussed before are of equal importance in panel data models. Tests
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for exogeneity, heteroskedasticity, correlation, lagged effects, unit roots, and
so on, can be performed in panel data models. The required methods
and computations can often be simplified by exploiting the special structure
of the panel models. Of special interest are possible selection effects,
discussed in Section 6.3.3 (p. 500–4). In the random effects model it
is assumed that the units that are present in the observed panel are
randomly selected, but this is often not the case. For instance, firms that
go bankrupt or individuals that stop buying a certain product fall out of
the panel, and this selection may very well be endogenous. The models
discussed in Section 6.3.3 can be extended to deal with selection effects
in panel data.

Example 7.30: Primary Metal Industries (continued)

We continue our analysis of the production data ofm ¼ 26 firms over n ¼ 37
years, introduced in Example 7.29 in the foregoing section. We will discuss
(i) the panel model with fixed effects, (ii) the panel model with random
effects, (iii) the results of OLS on a restricted model, and (iv) comments on
the obtained results.

(i) Panel model with fixed effects

We assume that the labour elasticity (b) and the capital elasticity (g) are
constant across firms. Then the panel data model with fixed firm effects
becomes

log (yit) ¼ ai þ b log (Lit)þ g log (Kit)þ eit:

Here ai can be interpreted as a measure of production efficiency of firm i,
because the larger it is the more the firm produces for given input levels of
labour and capital. The estimated parameters of this panel model are shown
in Panel 1 of Exhibit 7.36. The estimated labour elasticity is 0.84 (with
standard error 0.021) and the estimated capital elasticity is 0.17 (0.020).
The constants ai differ significantly across firms. This is visualized by means
of a histogram in Exhibit 7.36 (c), and the F-test for equal constants in Panel
2 has P-value P ¼ 0:000.

(ii) Panel model with random effects

Next we estimate the panel model with random effects. The corresponding
FGLS estimates are reported in Panel 4 of Exhibit 7.36. The estimated
elasticity of labour is 0:82 (with standard error 0.019) and that of capital is
0:16 (0.018). These results are very close to the ones obtained in part (i) in
the fixed effects model.

E

XM729PMI
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(a) Panel 1: Dependent Variable: LOGPROD
Method: Panel data model (FIXED EFFECTS) OLS
Sample: 1958 1994; Included observations: 37
Number of cross-sections: 26; Total panel (balanced) observations: 962

Variable Coefficient Std. Error t-Statistic Prob.
LOGLAB 0.839131 0.021278 39.43618 0.0000
LOGCAP 0.174129 0.020315 8.571613 0.0000

C_1 �0.242098 0.234578 �1.032058 0.3023
C_2 0.013008 0.149059 0.087267 0.9305
C_3 0.103623 0.149092 0.695030 0.4872
C_4 0.080292 0.155827 0.515261 0.6065
C_5 0.099636 0.152249 0.654429 0.5130
C_6 �0.283235 0.186157 �1.521489 0.1285
C_7 �0.331813 0.140583 �2.360265 0.0185
C_8 �0.008232 0.133647 �0.061594 0.9509
C_9 �0.187380 0.161702 �1.158795 0.2468
C_10 0.294013 0.153477 1.915677 0.0557
C_11 0.237625 0.115523 2.056952 0.0400
C_12 �0.086367 0.135793 �0.636019 0.5249
C_13 0.150745 0.177403 0.849735 0.3957
C_14 0.254307 0.141531 1.796823 0.0727
C_15 0.272252 0.150234 1.812182 0.0703
C_16 0.040844 0.161199 0.253374 0.8000
C_17 �0.138201 0.173634 �0.795935 0.4263
C_18 �0.132822 0.160190 �0.829154 0.4072
C_19 0.059361 0.127754 0.464654 0.6423
C_20 0.229970 0.149753 1.535659 0.1250
C_21 0.221035 0.170087 1.299545 0.1941
C_22 �0.163537 0.159114 �1.027793 0.3043
C_23 �0.045883 0.133522 �0.343636 0.7312
C_24 �0.004967 0.135952 �0.036532 0.9709
C_25 0.111176 0.143650 0.773934 0.4392
C_26 0.176474 0.135686 1.300602 0.1937

R-squared 0.954206
S.E. of regression 0.247219

(b) Panel 2: Wald Test: Equality of constants (25 restrictions)
F-statistic 15.98583 Probability 0.000000

0
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4
(c)
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Series: CONST
Observations 26

Mean   0.027686
Median 0.050102
Maximum 0.294013
Minimum −0.331813
Std. Dev. 0.181042
Skewness −0.323889
Kurtosis 2.073341

Jarque-Bera 1.384841
Probability 0.500363

Exhibit 7.36 Primary Metal Industries (Example 7.30)

Estimated production function of twenty-six firms in panel data model with fixed effects (Panel
1, the constants ai are denoted by C_i), F-test on equality of the twenty-six firm-specific
constants (Panel 2), and histogram of these twenty-six constants (c).
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(iii) Results of OLS on a restricted model

Next we impose the restriction that all firms are equally efficient, so that ai is
constant across firms. The corresponding OLS estimates (with mn ¼ 962
observations) are given in Panel 5 of Exhibit 7.36. The elasticity of labour is
estimated as 0.76 (with standard error 0.015), that of capital as 0.18 (stand-
ard error 0.015). Panels 6 and 7 of Exhibit 7.36 show the results of cross
section regressions for the first year 1958 and for the last year 1994 in the
sample (both with m ¼ 26 observations). The results do not show large
variations in the estimated elasticities for different years. In all cases, the
labour elasticity is much larger than the capital elasticity.

(d) Panel 4: Dependent Variable: LOGPROD
Method: Panel data model (RANDOM EFFECTS) FGLS
Sample: 1958 1994; Included observations: 37
Number of cross-sections: 26; Total panel (balanced) observations: 962
Variable Coefficient Std. Error t-Statistic Prob.

C 0.133174 0.128244 1.038439 0.2993
LOGLAB 0.818331 0.018680 43.80877 0.0000
LOGCAP 0.162876 0.018043 9.027196 0.0000

(e) Panel 5: Dependent Variable: LOGPROD
Method: Pooled Least Squares (all coefficients constant across firms)
Sample: 1958 1994; Included observations: 37
Number of cross-sections: 26; Total panel (balanced) observations: 962
Variable Coefficient Std. Error t-Statistic Prob.

C 0.036817 0.094349 0.390220 0.6965
LOGLAB 0.764332 0.015065 50.73630 0.0000
LOGCAP 0.184513 0.014828 12.44331 0.0000

(f ) Panel 6: Dependent Variable: LOGPROD
OLS; Sample: 1958 1958; Number of cross-sections: 26; Total obs: 26
Variable Coefficient Std. Error t-Statistic Prob.

C 0.214441 0.341991 0.627037 0.5368
LOGLAB 0.804157 0.070529 11.40184 0.0000
LOGCAP 0.136557 0.058223 2.345402 0.0280

(g) Panel 7: Dependent Variable: LOGPROD
OLS; Sample: 1994 1994; Number of cross-sections: 26; Total obs: 26
Variable Coefficient Std. Error t-Statistic Prob.

C �0.159270 0.825574 �0.192920 0.8487
LOGLAB 0.730405 0.097399 7.499110 0.0000
LOGCAP 0.241949 0.120829 2.002401 0.0572

Exhibit 7.36 (Contd.)

Estimated production function of twenty-six firms in panel data model with random
effects (FGLS, Panel 4), OLS estimates in panel model with all coefficients (including the
constant term) fixed across firms for the full data period (Panel 5), for the first year (1958,
Panel 6), and for the last year in the sample (1994, Panel 7).
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(iv) Comments on the obtained results

The above results remain basically the same if trends are incorporated in the
model. Note that simpler models— that is, models with less parameters—
give more significant estimates (higher t-values) of the labour and capital
elasticities. For the OLS model with all parameters fixed across firms the t-
values are (50.7, 12.4), for the random effects model (43.8, 9.0), and for the
fixed effects model (39.4, 8.6), whereas for the SUR model in Example 7.29
the averages of the t-values over the twenty-six firms are (21.9, 4.6). Smaller
models often have larger t-values, because the use of less parameters provides
a gain in degrees of freedom. However, the required parameter restrictions
are not so much supported by the data. For instance, in Example 7.29 the
elasticities vary considerably across firms, so that the panel data model is not
supported. And the constants in the fixed effects panel model differ signifi-
cantly, so that the regression model with fixed parameters (a, b, g) involves
unrealistic restrictions. For these data, the SUR model is most appropriate
to model the differences between firms. Both panel models (with fixed or
random effects) give a useful description of the average structure of produc-
tion in primary metal industries and of possible differences in efficiency
between firms.

E Exercises: E: 7.25c–f.

7.7.4 Simultaneous equation model

Model formulation

Historically, the first type of multiple equation models that was developed
within econometrics is the simultaneous equation model (SEM). This model
has the same structure as the SUR model yit ¼ ai þ x0itgi þ eit, but the crucial
difference is that in the equation for yit some of the regressors xit consist of
endogenous variables yjt, j 6¼ i. We split the set of all variables that appear in
the m equations into two groups, the group of m endogenous variables yjt
and a group of k exogenous variables zjt (including the constant term). Then
the equations can be written as

yit ¼
X
j6¼i

gijyjt þ
Xk
j¼1

bijzjt þ eit, i ¼ 1, � � � , m, t ¼ 1, � � � , n:

This model contains an equation for each of the m endogenous variables. If
all the coefficients gij are zero, then the model reduces to the SUR model. The
model is called simultaneous if gij 6¼ 0 for some j 6¼ i, because in this case yit
depends on the endogenous variable yjt that itself is explained by another
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equation in the model. In particular, if for some j 6¼ i both gij 6¼ 0 and gji 6¼ 0,
then yit and yjt depend on each other simultaneously.

Inconsistency of OLS

Because the equations of the SEM contain endogenous regressors, OLS is not
consistent. This was analysed for single equation regression models in
Section 5.7. To illustrate this for the SEM, we consider the model with
m ¼ 2 equations where g12 6¼ 0 and g21 6¼ 0. The model equations are

y1t ¼ g12y2t þ
Xk
j¼1

b1jzjt þ e1t,

y2t ¼ g21y1t þ
Xk
j¼1

b2jzjt þ e2t:

The regressor y2t in the first equation is endogenous (that is, it is correlated
with the error term e1t), as it depends on y1t and hence on e1t because of the
second equation. OLS is inconsistent because y1t and y2t depend on each
other simultaneously.
Historically, SEM are mostly used for yearly macroeconomic data where

variables like national income, consumption, imports, and exports depend
mutually on each other. Before we discuss the general simultaneous equation
model further, we first consider a simple simulation example to illustrate the
main ideas.

Example 7.31: Simulated Macroeconomic Consumption and
Income

We simulate data from a simple macroeconomic model that consists of two
equations, a consumption equation and an income equation. We will discuss
(i) the model and the parameter of interest, (ii) an analysis of the OLS bias,
(iii) the simulated data, (iv) the results of OLS and IV, and (v) a graphical
interpretation.

(i) The model and the parameter of interest

The variables are consumption (denoted by Ct), disposable income (denoted
by Dt), and government expenditures (denoted by Gt), and the model is

consumption equation: Ct ¼ aþ bDt þ e1t,

income equation: Dt ¼ Ct þGt þ e2t:

E
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Here the government expenditures are assumed to be exogenous (that is,
independent of e1t and e2t), and the (endogenous) dependent variables are
consumption and income. The error terms e1t and e2t are mutually independ-
ent. The parameter of interest in this simple Keynesean model is the multi-
plier—that is, the average effect of government expenditures on income. To
determine this effect, we substitute the first equation in the second one and
solve for Dt, with the result that

Dt ¼ a
1� b

þ 1

1� b
Gt þ e1t þ e2t

1� b
: (7:42)

So the multiplier is equal to 1
1�b.

(ii) Analysis of the OLS bias

The multiplier can be obtained by estimating the marginal effect b of income
on consumption. If we would neglect the income equation and estimate b
simply by applying OLS to the consumption equation, then the resulting
estimator is not consistent. The reason is that the regressor Dt in the con-
sumption equation is not exogenous. This follows from (7.42), which shows
thatDt is correlated with the error term e1t. The (asymptotic) bias of OLS—
that is, plim(b)� b—follows from

plim(b) ¼ plim

P
(Dt �D)(Ct � C)P

(Dt �D)2

 !
¼ bþ plim

1
n

P
(Dt �D)(e1t � e1)
1
n

P
(Dt �D)2

 !

¼ bþ cov(Dt, e1t)
var(Dt)

:

Let s21 be the variance of e1t, s22 that of e2t, and s2G that of Gt. Since
cov(Gt, e1t) ¼ 0 by assumption, as Gt is exogenous, and since e1t and e2t
are assumed to be independent, it follows from (7.42) that cov(Dt, e1t) ¼
s21=(1� b) and var(Dt) ¼ (s2G þ s21 þ s22)=(1� b)2. We conclude that

plim(b) ¼ bþ (1� b)s21
s2G þ s21 þ s22

:

So the inconsistency of OLS is relatively small if s2G is large compared to
s21 — that is, if the systematic variation (due to the variable Gt) is large
compared to the random variation e1t in the consumption function.

(iii) Simulated data

We simulate n ¼ 100 observations from this model, as follows. As parameter
values we take a ¼ 0 and b ¼ 0:5, so that the multiplier 1

1�b ¼ 2. The error
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(a) Panel 1: Dependent Variable: CONS
Method: Least Squares
Included observations: 100
Variable Coefficient Std. Error t-Statistic Prob.

C �3.041052 0.417545 �7.283168 0.0000
INC 0.656743 0.021417 30.66457 0.0000

(b) Panel 2: Dependent Variable: CONS
Method: Instrumental Variables
Included observations: 100
Instrument list: C GOV
Variable Coefficient Std. Error t-Statistic Prob.

C �0.136355 1.018765 �0.133843 0.8938
INC 0.505148 0.052938 9.542177 0.0000
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Exhibit 7.37 Simulated Macroeconomic Consumption and Income (Example 7.31)

Results of simulated consumption and income data in a simultaneous equation model,
OLS estimate of the consumption function (Panel 1) and IV estimate (Panel 2); ((c)–(d)) show
scatter diagrams of the consumption and income data and the lines fitted by OLS (c) and IV (d);
((e)–(f )) show the two DGP relations (e) and these relations together with the estimated OLS
line (f ).
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terms e1t and e2t are independently drawn from the standard normal distri-
bution, and Gt is independent from e1t and e2t and drawn from the normal
distribution with mean 10 and variance 1. Then Dt is obtained from (7.42),
and finally Ct is obtained from the consumption equation. As b ¼ 0:5 and
s21 ¼ s22 ¼ s2G ¼ 1, it follows from (ii) above that plim(b) ¼ 0:5þ (0:5=3) ¼
0:67. That is, if we estimate b by OLS, we can expect to find a multiplier
1=(1� b) of around 3, whereas the actual multiplier is only 2. So OLS greatly
overestimates the effects of government spending on income.

(iv) Results of OLS and IV

Panel 1 of Exhibit 7.37 shows the results of OLS for the simulated data. The
estimated value of b is b ¼ 0:657 with corresponding multiplier
1=(1� b) ¼ 2:9. As was discussed in Section 5.7.2 (p. 404–5), consistent
estimators can be obtained by the method of instrumental variables. As the
consumption equation contains two parameters (a and b), we need two
instruments. Since the government expenditures are assumed to be exogen-
ous, we can takeGt and the constant term as instruments. The corresponding
two-stage least squares estimates are shown in Panel 2 of Exhibit 7.37. The
IV estimate of b is bIV ¼ 0:505 with multiplier 1=(1� bIV) ¼ 2:0, so that
these estimates are much more reliable than OLS.

(v) Graphical interpretation

Exhibit 7.37 (c) and (d) show the scatter diagrams of the simulated consump-
tion and income data, together with the fitted OLS and IV lines. Clearly, the
IV line fits the scatter less nicely than the OLS line. However, the location of
the points (Ct, Dt) in the scatter is determined not only by the consumption
equation, but also by the income equation. Exhibit 7.37 (e) shows the two
equations that result for e1 ¼ 0, e2 ¼ 0 and Gt ¼ 10—that is, by substitut-
ing the mean values of these random variables in the two model equations. In
our simulation example, these relations become Ct ¼ aþ bDt ¼ 0:5Dt for
the consumption equation, and Dt ¼ Ct þ 10 or equivalently Ct ¼ Dt � 10
for the income equation. The data (Ct, Dt) satisfy both these equations
(apart from random variations in e1t, e2t and Gt). The first equation has
slope 0.5, but the second equation has slope 1. As OLS tries to find the line
closest to the scatter, the resulting OLS line has a slope somewhere between
0.5 and 1. This is illustrated in Exhibit 7.37 (f ).

Estimation by 2SLS and the order condition

Now we return to the general simultaneous equation model. In Section 5.7.1
(p. 398–400) we described the method of instrumental variables to get
consistent estimators of the parameters of an equation with endogenous
regressors. In an SEM this method can be applied per equation with the
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exogenous variables zjt as instruments. This is called the two-stage least
squares (2SLS) method. For each equation i ¼ 1, � � � , m, the parameters of
that equation are estimated by the following two steps.

Estimation of simultaneous equation model by 2SLS


 Step 1: Regress the endogenous regressors on the exogenous ones. For each
of the regressors yjt that appear in the model equation (that is, for which
gij 6¼ 0), perform a regression of yjt on the set of all k exogenous variables
(zjt, j ¼ 1, � � � , k). Let ŷyjt be the fitted values of these regressions.


 Step 2: Regress yit on ŷyjt and zjt. In the equation for yit, replace the regressors
yjt by the fitted values of step 1 and estimate the parameters by OLS in the
equation yit ¼

P
j6¼i gijŷyjt þ

Pk
j¼1 bijzjt þ eit, t ¼ 1, � � � , n.

As was discussed in Section 5.7.1, this method requires that the number of
instrumental variables that do not appear in the equation is at least as large as
the number of endogenous regressors in the equation— the so-called order
condition. Letmi be the number of endogenous regressors yjt (j 6¼ i) and let ki
be the number of exogenous regressors zjt that appear on the right-hand side
of the equation for yit. Then the order condition is that

k� ki � mi:

Equivalently, the condition is that (k� ki)þ (m�mi � 1) � (m� 1), where
(k� ki) is the number of exogenous variables and (m�mi � 1) is the number
of endogenous variables that do not appear in the ith equation. In words, the
order condition means that the total number of excluded variables from the
ith equation should be at least (m� 1). That is, for every equation at least
(m� 1) of the (m� 1þ k) parameters appearing on the right-hand side of
that equation should be set equal to zero. Such restrictions are called exclu-
sion restrictions or identification restrictions. The restrictions should be
based on economic theory.

Estimation by 3SLS

The 2SLS method is a single equation method that neglects the possible contem-
poraneous covariances sij ¼ E[eitejt] between the error terms eit and ejt. Therefore
the 2SLS estimators are consistent but not (asymptotically) efficient. In the SEM,
the error terms eit are assumed to be uncorrelated over time but possibly contem-
poraneously correlated across the m equations. The SEM then has the same
structure as the SUR model (7.41) of Section 7.7.2, with the difference that
some of the regressors are endogenous. The cross equation correlations can be
treated in a similar way to that discussed in Section 7.7.2 for the SUR model, by
applying two-step FGLS to the system of equations. This leads to the following
systemmethod for the joint estimation of the parameters of allmmodel equations.

T
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Estimation of simultaneous equation model by 3SLS

. Steps 1 and2:Apply 2SLS. Apply 2SLS to each of them equations separately.
Estimate themn�mn covariance matrix of the system, as described in step
1 of the two-step FGLS estimator for SUR models in Section 7.7.2.

. Step 3: Apply GLS to the system of equations. Apply step 2 of the two-step
FGLS estimator for SUR models in Section 7.7.2.

This is called the three-stage least squares (3SLS) method. This method is asymp-
totically efficient, as it is equivalent to ML (if the error terms are jointly normally
distributed, as discussed in Section 7.7.2). Note that the 3SLS method uses the
1
2m(mþ 1) estimated cross covariances sij that are based on the 2SLS residual
series of length n. If the sample size n is not so large, then these covariances may
not be estimated very reliably. Therefore in practice, when the available sample
size is not so large, one often uses 2SLS. The 2SLS method also has the advantage
that the estimator for the ith equation remains consistent if another equation j 6¼ i
is not correctly specified. On the other hand, 3SLS uses allm equations to estimate
the ith equation, and, if one equation is wrongly specified, then in general all
parameters are estimated inconsistently. Summarizing, 3SLS is a good method if
one has enough confidence in the specification of all the model equations and if
sufficiently long time series of the variables are available. Otherwise 2SLS is
preferred.

Dynamic simultaneous models

In some cases the SEM equations contain not only endogenous variables
yjt (j 6¼ i) and exogenous variables zjt as regressors, but also lagged values of
yjt (j ¼ 1, . . . ,m). This is called a dynamic simultaneous equation model.
The lagged endogenous variables yj, t�k (with k � 1) are (contemporan-
eously) uncorrelated with the disturbance terms eit so that they provide
proper instruments. The 2SLS estimates can be computed as before, taking
as instruments all exogenous and all lagged endogenous variables. A dynamic
SEM can also be written as follows, where we bring all current and lagged
endogenous variables to the left-hand side of the equations:

F(L)Yt ¼ Bzt þ et, F(L) ¼ G�
Xp
j¼1

FjL
j,

where the m�m matrix G has elements 1 on the diagonal and elements �gij
for i 6¼ j (the sign changes because the current endogenous variables are
shifted from the right-hand side to the left-hand side of the equations).
This is a VAR model with m endogenous variables Yt ¼ (y1t, . . . , ymt)

0 and
with k exogenous variables zt ¼ (z1t, . . . , zkt)

0. The only distinction is that
in the standard VAR model the polynomial matrix F(L) is of the form
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F(L) ¼ I �Pp
j¼1FjL

j, whereas in the SEM the identity matrix is replaced by
the unknown invertible m�m matrix G, which contains the parameters
gij, j 6¼ i. A standard VAR model is obtained if the matrix equations are
premultiplied by the inverse of the matrix G. After this transformation, the
resulting VAR model can be estimated as described in Sections 7.6.2 and
7.6.3. However, in case one is interested in the parameters gij, then 2SLS
provides more information, since the matrix G is lost in the transformed VAR
model.

Example 7.32: Interest and Bond Rates (continued)

We continue our previous analysis of the changes in the AAA bond rate Dyt
and in the three-month Treasury Bill rate Dxt. In Example 7.26 we con-
sidered a VAR model for these stationary data. Now we will discuss (i) the
motivation of a simultaneous model for these data, (ii) estimation by 2SLS,
and (iii) interpretation of the outcomes.

(i) Motivation of a simultaneous model

In Chapter 5 we considered the equation Dyt ¼ aþ bDxt þ et. We concluded
that the residuals of this equation are serially correlated (see Example 5.22
(p. 365)) and that the regressor Dxt is endogenous (see Example 5.33
(p. 414–16)). We add lagged variables to account for the serial correlation
and we add an equation for Dxt to account for the endogeneity of this
variable. We consider the following dynamic SEM, which contains a con-
stant and lagged endogenous variables (but no other exogenous variables) as
explanatory variables:

Dyt ¼ a1 þ g12Dxt þ b11Dyt�1 þ b12Dxt�1 þ e1t,

Dxt ¼ a2 þ g21Dyt þ b21Dyt�1 þ b22Dxt�1 þ e2t:

(ii) Estimation by 2SLS

We estimate the above equations by OLS (as would be appropriate if the two
ADL equations would not be simultaneous) and by 2SLS, using the data over
the period from January 1990 to December 1999 (so that n ¼ 120). Both
equations contain four parameters, and in 2SLS we use five instruments (the
constant and Dyt�1, Dyt�2, Dxt�1, and Dxt�2). The results are in Exhibit
7.38. The OLS estimates of g12 (in Panel 1) and g21 (in Panel 3) suggest
significant contemporaneous effects between Dxt and Dyt (the t-value is
4.08). However, if this is the case, then the OLS estimators are biased and
the OLS standard errors are wrong. So the results of OLS cannot be trusted.
On the other hand, the 2SLS estimates show that the contemporaneous
effects are not at all significant (ĝg12 has t ¼ �0:03 in Panel 2 and ĝg21 has
t ¼ �0:08 in Panel 4). Therefore the matrix G is diagonal, so that the model

E
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reduces to a VAR model. In Example 7.26 we estimated VAR models for
these data (see Panels 2–4 of Exhibit 7.30).

(iii) Interpretation of the outcomes

The result of this example is illustrative for many applications. The mutual
dependence between variables can often be modelled well in terms of a VAR,
where each variable depends on the past of all other variables but not on the

Panel 1: Dependent Variable: DAAA
Method: Least Squares
Sample: 1990:01 1999:12; Included observations: 120

Variable Coefficient Std. Error t-Statistic Prob.
C �0.003077 0.013533 �0.227360 0.8205

DUS3MT ĝg12 ¼ 0.330442 0.080906 4.084257 0.0001
DUS3MT(�1) �0.126609 0.084199 �1.503688 0.1354
DAAA(�1) 0.307879 0.090652 3.396253 0.0009

Panel 2: Dependent Variable: DAAA
Method: Two-Stage Least Squares
Sample: 1990:01 1999:12; Included observations: 120
Instrument list: C DAAA(�1) DAAA(�2) DUS3MT(�1) DUS3MT(�2)

Variable Coefficient Std. Error t-Statistic Prob.
C �0.006983 0.015690 �0.445016 0.6571

DUS3MT ĝg12 ¼ �0.013614 0.524615 �0.025951 0.9793
DUS3MT (�1) �0:033164 0.167148 �0.198409 0.8431
DAAA(�1) 0.385929 0.152556 2.529756 0.0128

Panel 3: Dependent Variable: DUS3MT
Method: Least Squares
Sample: 1990:01 1999:12; Included observations: 120

Variable Coefficient Std. Error t-Statistic Prob.
C �0.008754 0.014502 �0.603618 0.5473

DAAA ĝg21 ¼ 0.380471 0.093156 4.084257 0.0001
DAAA(�1) 0.081194 0.101716 0.798248 0.4264

DUS3MT(�1) 0.285623 0.087285 3.272314 0.0014

Panel 4: Dependent Variable: DUS3MT
Method: Two-Stage Least Squares
Sample: 1990:01 1999:12; Included observations: 120
Instrument list: C DAAA(�1) DAAA(�2) DUS3MT(�1) DUS3MT(�2)

Variable Coefficient Std. Error t-Statistic Prob.
C �0.012350 0.021047 �0.586807 0.5585

DAAA ĝg21 ¼ �0.146298 1.938574 �0.075467 0.9400
DAAA(�1) 0.282863 0.749923 0.377190 0.7067

DUS3MT(�1) 0.266205 0.121696 2.187460 0.0307

Exhibit 7.38 Interest and Bond Rates (Example 7.32)

Two estimates of the equation that explains the changes in the AAA bond rate in terms of the
changes in the three-month Treasury Bill rate and lagged values (OLS in Panel 1, 2SLS
in Panel 2), and two estimates of the equation that explains the changes in the three-month
Treasury Bill rate in terms of the changes in the AAA bond rate and lagged values (OLS in
Panel 3, 2SLS in Panel 4).
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present values of these variables. An advantage of VARmodels is that they do
not need the exclusion restrictions that are required in an SEM to satisfy the
order condition for each equation. However, for models with a large number
of endogenous variables, a VAR is not feasible anymore, as it contains too
many parameters. In such situations a dynamic SEM may be preferred,
provided that one can specify credible exclusion restrictions.

E Exercises: T: 7.11; E: 7.26.

7.7.5 Summary

In this section we have considered econometric models for data sets that
consist of combined cross sections of time series variables.

. In SURmodels, the effects of the explanatory variables on the dependent
variable are different for all units. The relation between different units is
modelled by the contemporaneous correlation between the error terms.
This model requires that the number of units in the data set does not
exceed the length of the observed time series per unit.

. Panel models are used for data sets with a large number of units. The
effect of explanatory variables is the same across all units, and
the differences between units are modelled by the constant term. In the
fixed effects model each unit has its own parameter for the constant
term; in the random effects model these parameters are supposed to be
drawn from an underlying population.

. The simultaneous equation model consists of a set of equations for a
number of endogenous variables that influence each other simultan-
eously. Estimation requires that the equations are identified in the
sense that each equation excludes a sufficient number of variables.

. Apart from differences in the regression equations, the above models are
each characterized by special structures of the covariance matrix of the
error terms. A general estimation method for models with such covar-
iance structures is (F)GLS. The actual computations can be simplified by
exploiting the specific error structure of SUR models, panel models, and
simultaneous equation models.
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Summary, further reading,
and keywords

SUMMARY

In this chapter we discussed the modelling of time series data. Many eco-
nomic time series display trending behaviour and sometimes also seasonal
fluctuations and structural breaks. These aspects of the data should be
modelled in a proper way to be able to draw reliable conclusions from
estimated time series models. In the year 2003, the Nobel prize in economics
was awarded to Engle and Granger, two pioneers in the econometric model-
ling of trends and changing volatility in time series. For univariate time series
we discussed methods to model trends, seasonals, parameter variations, and
changing volatility. Further we considered the modelling of stationary time
series by means of ARMAmodels. Several of the diagnostic tests of Chapter 5
can be applied to investigate the empirical adequacy of estimated time series
models. We also considered time series models with exogenous variables and
multiple time series models. The proper modelling of trends is again of
crucial importance to obtain reliable results. If the variables contain stochas-
tic trends, then one can estimate a vector autoregressive model for the first
differences of the variables, unless they are cointegrated, in which case a
vector error correction model is more appropriate. Finally we paid attention
to data where the number of variables is large compared to the length of the
observation period. We discussed the SUR model and the method of general-
ized least squares, models for panel data, and simultaneous equation models.

FURTHER READING

For further background on the topics of this chapter we provide some references.
The three volumes of the Handbook of Econometrics mentioned in Chapter 3,
Further Reading, contain chapters on panel data and simultaneous equation
models. The fourth volume in this series, edited by Engle and McFadden (1994),
contains chapters on many time series topics, including trends and unit roots, VAR
models and cointegration, and ARCH models. From the many textbooks on time
series we mention Brockwell and Davis (1997), Granger and Newbold (1986),
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Franses (1998), Hamilton (1994), and Harvey (1991). A textbook with applica-
tions is Patterson (2000), the theory of VAR models is described in Lütkepohl
(1991), and cointegration in Johansen (1995). The SURmodel, panel data models,
and SEM are discussed in most of the econometric textbooks mentioned in
Chapter 3, Further Reading (p. 178–9), and Baltagi (1995) deals exclusively
with panel data.

Baltagi, B. H. (1995). Econometric Analysis of Panel Data. Chichester: Wiley.
Brockwell, P., and Davis, J. (1997). Time Series Analysis. Berlin: Springer.
Engle, R. F., and McFadden, D. L. (1994). Handbook of Econometrics, Volume
IV. Amsterdam: Elsevier.

Franses, P. H. (1998). Time Series Models for Business and Economic Forecasting.
Cambridge: Cambridge University Press.
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Hamilton, J. D. (1994). Time Series Analysis. Princeton: Princeton University
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Exercises

THEORY QUESTIONS

7.1� (E Sections 7.1.2–7.1.4)
a. Let et ¼ yt � E[ytjYt�1] be the innovations of a

stationary process yt that is jointly normally dis-
tributed. Show that the process et can be written
as a linear function of the past observations
yt�k, k � 0f g and that it has mean zero and con-
stant variance. Show that all the autocorrelations
rk (k 6¼ 0) of the process et are zero.

b. Show that an AR(p) process f(L)yt ¼ et (with
et the innovation process) is stationary if and
only if all the solutions of f(z) ¼ 0 lie outside
the unit circle. (This was shown in Section 7.1.3
for p ¼ 1; use this result to prove the statement
first for order p ¼ 2 by the factorization
f(z) ¼ (1� a1z)(1� a2z), and then repeat this
idea for orders p > 2.)

c. Prove that an MA(q) process yt ¼ y(L)et is in-
vertible if and only if all the solutions of
y(z) ¼ 0 lie outside the unit circle. (This was
shown in Section 7.1.4 for q ¼ 1; use the factor-
ization idea of b to show this for q > 1.)

7.2 (E Sections 7.1.5, 7.2.2, 7.3.4)
a. Show that the ACF of an MA(1) process with

parameter y is the same as that of an MA(1)
processwith parameter 1=y. Discuss the relevance
of this finding for maximum likelihood estima-
tion of (AR)MAmodels.

b. Show that in a stationary AR(2) process
yt ¼ f1yt�1 þ f2yt�2 þ et there holds that
f2 6¼ 1, that E[yt�ket] ¼ 0 for all k > 0, and
that E[ytet] ¼ s2. Use these results to prove that
g0 ¼ f1g1 þ f2g2 þ s2, g1 ¼ f1g0 þ f2g1, and
gk ¼ f1gk�1 þ f2gk�2 for k � 2. Show that the
autocorrelations are given by r1 ¼ f1=(1� f2),
r2 ¼ f2

1=(1� f2)þ f2, and rk ¼ f1rk�1 þ
f2rk�2 for k � 3.

c. Derive the first four autocorrelations of the (sta-
tionary and invertible) ARMA(1,1) process
yt ¼ fyt�1 þ et þ yet�1.

d. Derive the ACF of zt ¼ DD4yt in the ‘airline’
model zt ¼ (1þ y1L)(1þ y4L4)et and show that
r2 ¼ 0 and that r3 ¼ r5. Derive the ACF if
y1 ¼ y4 ¼ �1.

7.3� (E Sections 7.1.5, 7.2.2)
a. If yt is a stationary process with the property that

the autocorrelations cut off (so that rk ¼ 0 for
k > q), then show that yt can be written as an
MA(q) process. (The reverse statement was
proven in Section 7.1.5.)

b. Show that a stationary process yt can bewritten as
an AR(p) process if and only if the partial auto-
correlations cut off (so that fkk ¼ 0 for k > p).

c. Show that the regression in (7.12) provides the
partial autocorrelations by using the result of
Frisch–Waugh of Section 3.2.5.

d. If OLS is applied in an AR(p) model with con-
stant term, then the regressors are given by
x0t ¼ (1, yt�1, � � � , yt�p). Show that, if the process
is stationary, the matrix of second order
moments Qn ¼ 1

n

Pn
t¼pþ1 xtx

0
t converges in prob-

ability to a non-singular matrix.

7.4 (E Section 7.1.6)
a. Derive formulas for the h-step-ahead forecasts of

an AR(1) process yt ¼ aþ fyt�1 þ et and for the
corresponding forecast error variances, in terms
of the parameters f, a, and s2.

b. Derive formulas for the 3- and 4-step-ahead fore-
casts and corresponding forecast error variances
of an AR(p) process.

c. Derive formulas for the h-step-ahead forecasts
and forecast error variances (h ¼ 1, � � � , 4) of a
(stationary and invertible) ARMA(1, 1) process.

7.5 (E Sections 7.3.2, 7.3.4)
a. Section 7.3.2 states the formula SPE(h) ¼

s2
Ph

j¼1

�Ph�j
k¼0 ck

�2
for the forecast error vari-

ance of an ARIMA(p, 1, q) process yt in terms
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of the representation zt ¼
P1

k¼0 cket�k of the
stationary series zt ¼ (1� L)yt. Prove this result.

b. Show that the out-of-sample h-step-ahead fore-
casts produced by EWMA are constant, inde-
pendent of the forecast horizon h.

c. Show that the Holt–Winters model with
changing level mt and slope at can be written as
an ARIMA(0, 2, 2) model by eliminating mt and
at. Show that the h-step-ahead forecasts of this
model lie on a straight line.

d. Consider the model with changing level mt and
seasonal st defined by yt ¼ mt þ st þ et, where
mtþ1 ¼ mt þ Zt and stþ1 ¼ �st � st�1 � st�2 þ zt
and where all error terms are independently and
normally distributed white noise processes. Show
that DD4yt is an MA(5) process. Investigate
whether the series yt can be described by an
‘airline’ model.

7.6� (E Section 7.4.3)
a. Let et follow an ARCH(1) process with condi-

tional variance s2t ¼ a0 þ a1e2t�1. Show that et
has zero mean, that et is a white noise process
with (unconditional) variance a0=(1� a1), and
that e2t follows an AR(1) process.

b. Let et follow an ARCH(p) process. Show that et is
white noise and that e2t follows an AR(p) process.

c. Let et follow a GARCH(1, 1) process with condi-
tional variance s2t ¼ a0 þ a1e2t�1 þ a2s2t�1. Show
that et is white noise and that e2t follows an
ARMA(1, 1) process.

d. Show that the process e2t of c is stationary if
0 < a1 þ a2 < 1 but that it is integrated of order
1 if a1 þ a2 ¼ 1.

7.7� (E Sections 7.4.3, 7.4.4)
In this exercise we derive the ARCH LM-test of
Section 7.4.4 for the null hypothesis of no ARCH
against the alternative of an ARCH(1) process. The
model for the observed time series yt is formulated
as ytjYt�1 ¼ stZt where Yt�1 ¼ (yt�s, s ¼ 1, 2, � � �)
(for simplicity of the analysis we assume that this
information extends infinitely far in the past),
s2t ¼ a0 þ a1y2t�1, and Zt is a series of independent
variables with the N(0, 1) distribution. It is given
that a0 > 0 and 0 < a1 < 1. In Exercise 7.6 it was
shown that yt is a white noise process (so that
E[ytyt�k] ¼ 0 for all k 6¼ 0) and that y2t is an AR(1)
process.

a. Give a simple argument (without calculations) to
prove that the process yt cannot be normally
distributed. Next show that the probability dis-
tribution of yt has kurtosis larger than 3.

b. The log-likelihood is given by (7.31) with
a ¼ f ¼ 0. Derive the first and second order de-
rivatives of this functionwith respect to a0 and a1.

c. Use the results in b to compute the LM-test for
the null hypothesis of conditional homoskedasti-
city (a1 ¼ 0) by means of the general formula
(4.54) in Section 4.3.6 for the LM-test.

d. Show that this test can be computed as LM¼nR2

of the regression of y2t on a constant and y2t�1.

e. Prove the validity of the following method for the
ARCH LM-test for the error terms in the regres-
sion model yt ¼ x0tbþ et. First regress yt on xt
with residuals et, then regress e2t on a constant
and e2t�1 and let LM ¼ nR2 of this regression. (It
may be helpful to prove first that the information
matrix for the parameters (a0, a1, b0)0, evaluated
at the restrictedML estimates, is block-diagonal.)

f. Let yt ¼ x0tbþ et, where et follows an ARCH(1)
process. Use the previous results to show that
OLS is the best linear unbiased estimator of b
but that it is not (asymptotically) efficient.

7.8 (E Section 7.4.4)
Consider the so-called bilinear process
yt ¼ 1

2 et�1yt�2 þet, where et are independent draw-
ings from N(0, s2). As starting conditions are given
e0 ¼ 0 and y�1 ¼ y0 ¼ 0.

a. Prove that yt is an uncorrelated process. Is it also
a white noise process?

b. Prove that y2t is not an uncorrelated process.

c. Prove that yt cannot be forecasted by linear func-
tions of past observations yt�k (k � 1) but that it
can be forecasted by non-linear functions of
these past observations.

d. Simulate n ¼ 200 data from this process. Perform
a Ljung–Box test and an ARCH test on the
resulting time series. What is the relevance of
this result for the interpretation of ARCH tests?

7.9 (E Sections 7.5.1, 7.6.1)
a. Rewrite theADLmodel (7.32) (with yk ¼ 0 for all

k) in error correction form (7.34). It is helpful to
consider the AR polynomialf(z)¼1�Pp

k¼1fkz
k

and to prove that f(z)� f(1)z ¼ (1� z)f�(z),
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where f�(z) is a polynomial of degree p� 1 with
f�(0) ¼ 1.

b. Show that the coefficient �f(1) of the ‘error’
(yt�1 � lxt�1 � d) in (7.34) is negative if the AR
polynomial f(z) is stationary (has all its roots
outside the unit circle). Discuss why this is
needed for error ‘correction’.

c. In Section 7.6.1 we derived the general VECM
(7.38). Compute this representation explicitly for
a VAR(2) model.

d. Explain that stationarity of the VAR polynomial
matrix F(z) corresponds to correction in the dir-
ection of equilibrium in the sense that deviations
(Yt�1 � m) 6¼ 0 in (7.38) die out in the long run.
Give an explicit proof of this fact for the VECM
(7.38) with p ¼ 1 (so that the terms GjDYt�j drop
out of this equation).

7.10 (E Sections 7.6.2, 7.7.2)
a. Prove that GLS in the SUR model (7.41) with

sij ¼ 0 for all i 6¼ j (so that V is diagonal) boils
down to OLS per unit.

b. Prove this also in case V is non-diagonal but the
regressor matrix Xi ¼ X is constant across all
units i ¼ 1, � � � ,m. For simplicity consider only
the case of m ¼ 2 units.

c. If a or b holds true, then explain why OLS is
more efficient than FGLS for finite samples (and
equally efficient asymptotically).

d. Write the VAR(p) model with m variables in
terms of the SUR model— that is, with separate
equations for each of the m variables
yit, i ¼ 1, � � � ,m, t ¼ pþ 1, � � � , n, and ordered
as in (7.41). What is the structure of the

m(n� p)�m(n� p) covariance matrix of the
corresponding m(n� p)� 1 vector of error
terms? Explain that ML in the VAR(p) model is
equivalent to applying OLS per equation.

7.11 (E Section 7.7.4)
Consider the simultaneous equation model

y1t ¼ g12y2t þ e1t,

y2t ¼ g21y1t þ b21z1t þ b22z2t þ e2t,

where y1t and y2t are endogenous variables and z1t
and z2t are exogenous variables. The disturbances e1t
and e2t are jointly normally distributed with mean
zero and 2� 2 covariance matrix V and they are
uncorrelated over time. For n ¼ 100 observations,
the following matrix of sample moments around
zero is given (for instance, 1

100

P100
t¼1 y2tz1t ¼ 4).

Variable y1 y2 z1 z2

y1 10 20 2 3
y2 20 50 4 8
z1 2 4 5 5
z2 3 8 5 10

a. Prove that the first equation of this SEM satisfies
the order condition but the second equation not.

b. Compute the 2SLS estimate of g12.

c. Compute the large sample standard error of this
estimate, using formula (5.76) of Section 5.7.2 for
the asymptotic distribution of the 2SLS estimator
and replacing the error variance s11 ¼ E[e21t] by
the estimate ŝs11 ¼ 1

n

Pn
t¼1 (y1t � ĝg12y2t)

2.

EMPIRICAL AND SIMULATION QUESTIONS

7.12 (E Sections 7.2.2, 7.3.3)
In this exercise we consider the properties of theOLS
estimator f̂f in the AR(1) model yt ¼ fyt�1 þ et (dis-
cussed in Section 7.2.2) in some more detail. As a
formal statistical analysis is involved, we perform a
simulation study with f ¼ 0:9 and s2 ¼ 1.

a. Generate a sample of length n ¼ 1000 of this
process, with starting condition y0 ¼ 0 and with
et independent drawings from N(0, 1).

b. Compare the sample mean of yt and of y2t with
the theoretical mean and variance of the AR(1)
process.

c. Define the process zt ¼ yt�1et. Test whether there
exists significant serial correlation in the process
zt.

d. Repeat the simulationexperiment ina1000 times.
For each simulation, compute 1ffiffi

n
p
Pn

t¼1 yt�1et andffiffiffi
n

p
(f̂f� f).
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e. Compare the sample distributions of the two
statistics in d with the distributions
N 0, s4=(1� f2)
� �

and N(0, 1� f2) respectively
that were mentioned in Section 7.2.2 (see (7.16)).

f. Repeat the 1000 simulations in d with f ¼ 1
instead of f ¼ 0:9. Compare the sample distribu-
tions of the two statistics in d with the normal
distributions mentioned in e. Explain the out-
comes.

7.13 (E Sections 7.3.1, 7.3.4)
a. Generate a sample of size n ¼ 400 from the de-

terministic trend model yt ¼ 1þ t þ et, where et
is normally distributed white noise with mean 0
and variance s2 ¼ 2500. Plot the time series yt,
the correlogram of yt, and the scatter diagram of
yt against yt�1. Plot also the differenced series
Dyt, the correlogram of Dyt, and the scatter dia-
gram of Dyt against Dyt�1.

b. Generate a sample of size n ¼ 400 from the sto-
chastic trend model yt ¼ yt�1 þ et, where y0 ¼ 0
and et is normally distributed white noise. Make
the same plots (for yt and for Dyt) as in a and
compare the outcomes with those in a.

c. Suppose that yt follows a stationary and invert-
ible ARMA process. Show that the differenced
series xt ¼ (1� L)yt follows an ARMA process
that is not invertible. Show also that the auto-
correlations of xt have sum

P1
k¼1 rk ¼ �1=2.

d. Illustrate the result in c by means of a suitable
simulation experiment.

7.14 (E Sections 7.3.3, 7.4.1)
In this exercise we simulate data from the model
Dyt ¼ aþ ryt�1 þ et, where y0 ¼ 0 and where et
are independent drawings from N(0, 1).

a. Simulate a series of length n ¼ 100 from the
model with parameters (a, r) ¼ (0, 0). Estimate
r by OLS (including a constant in the equation)
and compute the t-value of r.

b. Repeat a 10,000 times and make histograms of
the resulting 10,000 estimates of r and of the
t-values of r. Determine the left 5% quantile of
these t-values and compare the outcome with the
corresponding critical value in Exhibit 7.16.

c. Repeat b, for the DGPwith a ¼ 0:5 and r ¼ 0 (so
that Dyt ¼ 0:5þ et) and with test equation
Dyt ¼ aþ bt þ ryt�1 þ et (including constant
and trend term in the test equation).

d. For each of the 10,000 simulated data sets in c,
estimate r and compute the t-value of r by re-
gression in the (wrongly specified) model Dyt ¼
ryt�1 þ et (that is, excluding both the constant
and the trend term in the test equation). Deter-
mine the left 5% quantile of the resulting 10,000
t-values. Explain the relation of the outcomes
with the possible dangers of misspecification of
the Dickey–Fuller test equation.

e. Contaminate the 10,000 series of b by a single
additive outlier of size 20 at time t ¼ 50. How
many times does the Dickey–Fuller test (with
constant included) now reject the null hypothesis
of a unit root (using a significance level of 5%)?
Give an intuitive explanation of this difference
with the outcomes in b.

f. Now contaminate the 10,000 series of b by an
innovation outlier of size 20 at time t ¼ 50.
Answer the same questions as in e.

g. Generate 10,000 series of the model with param-
eters (a, r) ¼ (1, � 0:1) and with a single innov-
ation outlier of size 20 at time t ¼ 50. Answer the
same questions as in e.

h. Illustrate, by means of a simulation, that an in-
novation outlier in a random walk model gener-
ates a time series with a permanent level shift.

7.15 (E Sections 7.6.1–7.6.3)
Consider the following VAR(2) model in the two
variables xt and yt:

xt

yt

� �
¼ 1

0

� �
þ 0:5 0:1

0:4 0:5

� �
xt�1

yt�1

� �
þ 0 0

0:25 0

� �
xt�2

yt�2

� �
þ e1t

e2t

� �
,

where (e1t, e2t)
0 � NID(0, I) with I the 2� 2 iden-

tity matrix.

a. Show that this process is stationary and compute
the mean values of the two variables.

b. Simulate a series of length 105 from this VAR
model by taking as starting values xt ¼ yt ¼ 3 for
t ¼ 1, 2 and computing the values for t � 3 by
means of the two VAR equations and simulated
values for the two independent white noise pro-
cesses e1t and e2t.

c. Estimate a VAR(2) model and also a VAR(1)
model, on the basis of the first 100 observations.
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d. Compare the two models of c by means of an
LR-test on the significance of second order lags
and also by means of AIC and SIC. Compare also
the forecast performance for the forecast period
t ¼ 101, � � � , 105.

e. Perform an appropriate Johansen cointegration
test and give an interpretation of the outcomes.

7.16 (E Sections 7.3.4, 7.4.1)
In this exercise we consider some alterna-
tive models for the series yt of US indus-
trial production (in logarithms) discussed
in Example 7.16. For estimation use again the data
over the period 1961.1 to 1994.4.

a. Estimate AR(p) models with deterministic sea-
sonal dummies for the series Dyt, for orders
p ¼ 0, 1, � � � , 8. Which model is preferred by
the AIC and SIC criteria? For the AR(5) model,
perform tests on normality and serial correlation
of the residuals.

b. Estimate an ‘airline’ model— that is, estimate
the MA parameters in the model DD4yt ¼
(1þ y1L)(1þ y4L4)et. Perform tests on normality
and serial correlation of the residuals. Check
whether the series DD4yt is possibly over-
differenced.

c. Compute sequential one-step-ahead forecasts
and also h-step-ahead forecasts (with
h ¼ 1, � � � , 15) for the variable yt over the period
1995.1 to 1998.3, for the AR(5) model of a and
for the airline model of b.

d. In Section 7.2.2 an AR(2) model was estimated
for the series D4yt. Use this model to compute
sequential one-step-ahead forecasts and also
h-step-ahead forecasts (with h ¼ 1, � � � , 15)
for the variable yt over the period 1995.1 to
1998.3.

e. Compare the forecast performance of the three
models in c and d. Which model do you prefer?

f. In Section 7.4.1 an AR(2) model for D4yt was
estimated with seven dummies. Now add two
dummies (one for 1961.3 and one for 1975.2)
and estimate the corresponding AR(2) model
with nine dummies. Test whether the two groups
of three sequential outliers in the periods
1961.1–1961.3 and 1974.4–1975.2 can be mod-
elled by means of two additive outliers (this gives
in total four parameter restrictions on the nine
dummy variables).

7.17 (E Sections 7.2.1, 7.3.2–7.3.4,
7.6.3)

The data file contains monthly produc-
tion data of nine Japanese passenger
car industries over the period 1980.1–2001.3. The
data are taken from ‘DataStream’. In this exercise
we consider the largest industry, Toyota, and
we denote the corresponding time series by yt. The
data over the period 1980.1–1999.12 should be used
in estimation and diagnostic testing; the remaining
observations are used to evaluate the forecast per-
formance of models.

a. What conclusionsdoyoudraw fromthe timeplot,
the sample autocorrelations, and the sample par-
tial autocorrelations of yt? Argue why it does not
seem necessary to take logarithms of this series.

b. Estimate the trend of this series by means of the
Holt–Winters method. What are the estimated
values of the level mt and the slope at in Decem-
ber 1999? Forecast the production of Toyota for
the twelve months in 2000.

c. Perform an augmented Dickey–Fuller test for this
series (include four lags, and motivate your
choices concerning constant and trend term).
Generate the residual series (with name ‘resdf4’)
of the corresponding test equation.

d. In the Dickey–Fuller test in c you made use of
critical values. What assumptions on the series
‘resdf4’ are needed to use these critical values?
Which of these assumptions is clearly violated?
Make use of the correlogram of ‘resdf4’.

e. Regress yt on a constant and eleven seasonal
dummies. Generate the forecasted values (the
seasonal components) of this model for the year
2000 (for later use in g). Generate also the re-
sidual series (with name ‘restoy’) and perform an
ADF test on ‘restoy’. Show that this test suffers
less from the problems mentioned in d.

f. Follow the methodology of Section 7.2.1 to con-
struct an ARIMA model for the series ‘restoy’.
Perform diagnostic tests on your favourite
model.

g. Use the model of f and the estimated seasonal
components in e to construct (dynamic) forecasts
of the production of Toyota for the twelve
months in 2000. Compare the quality of the
forecasts with those obtained in b.

h. Let xt be the monthly series of Japanese passen-
ger car production, excluding Toyota. Test
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whether the series xt and yt are cointegrated, and
provide an economic interpretation of the
results.

i. The common movements in the series xt and yt
could be caused solely by monthly patterns in
production. Regress xt on a constant and eleven
seasonal dummies and let ‘restot’ be the residuals
of this regression. Test whether the deseasona-
lized series ‘restoy’ and ‘restot’ are cointegrated,
and compare the result with that obtained in h.

7.18 (E Sections 7.2.1, 7.3.2, 7.3.4,
7.4.4)

The data file contains monthly energy
production data of the USA for different
sorts of energy. The data are taken from ‘Economa-
gic’. Here we consider the series yt of nuclear electric
power generation with data from 1973.1 to
1999.11.

a. Plot the series over the full sample and also over
the sample 1990.1–1999.11. What conclusions
do you draw from this?

b. Regress the series log (yt) on a constant, a deter-
ministic trend, and 11 seasonal dummies, using
the data over the period 1990.1–1998.12. Give
an interpretation of the estimates of the seasonal
effects.

c. Follow the method of Section 7.2.1 to construct
an ARMA model for the series et of residuals of
the model in b. Perform tests on normality, auto-
correlation, ARCH effects, and parameter breaks
on your favourite model.

d. Combine the models in b and c—that is, esti-
mate the model of b including error terms that
follow your ARMAmodel of c. Perform the tests
of c also on this model.

e. Use the model of d to forecast the series log (yt)
over 1999.

f. Until nowwe have used a deterministic trend and
seasonal for the series.Performanappropriate test
for this assumption. Estimate also a model for
D12 log (yt) (that is, with stochastic seasonal), in-
cluding (seasonal and non-seasonal) AR and MA
terms in themodelandusing theobservationsover
1990.1–1998.12.

g. Use the model with stochastic seasonal in f to
forecast the series log (yt) over 1999 and com-
pare the forecast quality of this model with that
of the deterministic trend model in e.

7.19 (E Section 7.4.4)
Consider the monthly series of the three-
month Treasury Bill rate rt of Example
7.25 (in levels, as in Section 7.5.3) with
the model rt � rt�1 ¼ b1 þ b2rt�1 þ et. In this exer-
cise we consider ARCH models (7.29) for the error
term et. The data file contains monthly observations
over the period 1950.1–1999.12, which are taken
from ‘Economagic’.

a. Estimate b1 and b2 by OLS and perform an
ARCH test on the residuals. Also plot the corre-
logram of the residuals et and of the squared
series e2t .

b. Estimate the parameters ak of ARCH models
(7.29) of orders p ¼ 1, � � � , 4, by regressing e2t
on a constant and e2t�1, � � � , e2t�p. Which order
of p do you prefer?

c. Now estimate b1 and b2 in the model with
ARCH(p) error terms by maximum likelihood,
for p ¼ 1, � � � , 4. Compare the estimates of
b1, b2, and of ak in (7.29) with those obtained
in a and b.

d. Perform tests to choose the order p of the ARCH
model, based on the outcomes in c.

e. Construct the series of estimated variances ŝs2t
obtained from (7.29) by substituting the esti-
mates of the parameters ak of the preferred
model in d and by replacing the terms e2t by
(e�t )

2, where e�t is the series of residuals of the
preferred model in d. Compare the series ŝs2t
with the series (e�t )

2 to evaluate the quality of
the forecasted risks in interest rate changes.

f. Perform a test on the presence of remaining
ARCH effects and a test on normality of the
standardized residuals e�t =ŝst. What conclusions
do you draw from these outcomes?

7.20 (E Sections 7.2.4, 7.3.2, 7.3.3,
7.6.3)

The data file contains yearly data on the
gross national product (GNP) for a
number of countries. We consider the series yt con-
sisting of the natural logarithm of US GNP over the
period 1870–1993. The data are taken from
A. Maddison, Monitoring the World Economy
1820–1992 (OECD, 1995).

a. Investigate the nature of the trend in the series yt
over the full sample period, by means of ADF
tests (both t and F).
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b. Investigate the nature of the trend also over the
three subperiods 1870–1929, 1900–49, and
1950–93.

c. Use the data over the period 1950–89 to estimate
the yearly growth rate of US GNP by means of
two simple models, the deterministic trend
model yt ¼ aþ bt þ et and the stochastic trend
model yt ¼ yt�1 þ aþ et.

d. Use the two models of c to forecast yt for the
period 1990–3 and compare the forecast quality.

e. Try to improve on the forecast results of d by
adding ARMA terms for the short-run fluctu-
ations to the trend models for yt. The model
selection should be based on the data over the
period 1950–89.

f. The data file also contains GNP data for Ger-
many, Japan, and theUK. Investigate the presence
of cointegration between the four GNP series
(in logarithms), both for the period 1950–93
and for the period 1870–1993. Motivate your
choice of cointegration test and comment on the
outcomes.

7.21 (E Sections 7.3.3, 7.5.2, 7.6.3)
In this exercise we consider yearly data on
gasoline consumption in the USA over the
period 1970–99. The data file contains
data on gasoline consumption (GC), gasoline price
(PG), and disposable income (RI), all measured in
real terms and taken in logarithms. These data were
previously discussed in Examples 5.31 and 5.34
(p. 402–4, 416–18). In Example 5.31 we considered
the regression GCt ¼ aþ bPGt þ gRIt þ et, and
now we will consider whether this regression is
possibly spurious due to trends and whether lags
should be added to this model. Use a significance
level of 5% in all tests of this exercise.

a. Regress GC on a constant and the variables PG
and RI.

b. Test for the presence of stochastic trends in the
variables GC, PG, and RI. Include a constant
and deterministic trend in the test equations.

c. Test for the presence of cointegration between
the three variables. Compare the price elasticity
b of the estimated cointegration relation
GCt ¼ aþ bPGt þ cRIt þ dt with the estimate
of a.

d. Test for the presence of residual correlation in the
model of a. Estimate two ADL models, including

p ¼ 1 or p ¼ 2 lags of the variables GCt, PGt,
and RIt as additional regressors.

e. Which of the three models of a and d is preferred
on the basis of LR-tests on the significance of the
additional lagged terms? And which model is
preferred by SIC? Test the selected model(s) for
the presence of residual correlation.

f. Compute the long-run elasticities of price and
income of the preferred ADL model(s) of e and
rewrite this in error correction form. Give an
interpretation of the outcome.

7.22 (E Section 7.4.4)
The data file contains monthly data for
the UK on the returns in the sector of
cyclical consumer goods (denoted by yt)
and in the market (denoted by xt) over the
period 1980.01–2000.03. The CAPM postulates
a linear relation between the returns— that is,
yt ¼ aþ bxt þ et. The data are taken from ‘Data-
Stream’ and were analysed previously in Examples
5.27 and 5.28 (p. 384–6, 387–8).

a. Estimate the CAPM, using data only over the
period 1980.01–1999.12. Investigate the series
of residuals et, in particular a time plot and the
correlograms of et and of the squared series e2t .

b. Perform tests to show that et has no serial correl-
ation but that it has significant ARCH. Estimate
an ARMA model for the squared residuals e2t ,
with orders based on the test outcomes.

c. Obtain a new estimate of the CAPM
yt ¼ aþ bxt þ et together with the GARCH
model of b for the error terms et. That is, estimate
this combined model by ML (instead of the two-
step approach in a and b). Use again the data
over 1980.01–1999.12.

d. Test for normality, serial correlation, and ARCH
effects in the (standardized) residuals of the
model in c. Compare the outcome of the Jarque–
Bera test on normality with the test results in
Section 5.6.3 (p. 387–8) for the CAPM without
GARCH, and explain the differences.

e. Compare the estimates of c with those obtained
in a and b. Comment on the similarities and
differences. Make scatter diagrams of the returns
yt against the predicted values ŷyt and of the risk
êe2t against the estimated variance ŝs2t (the esti-
mated value of the variance s2t ¼ E[e2t ] obtained
from the model).
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f. Use the model of c to forecast yt and s2t ¼ E[e2t ]
for the first three months in 2000 (use the actual
values of xt in these months). Use this model also
to construct 95% forecast intervals and compare
the outcomes with the actual values of yt in these
months.

7.23 (E Sections 7.3.3, 7.4.1, 7.4.4,
7.6.3)

The data file contains monthly data on
price levels and exchange rates for a
number of countries. The data are taken from ‘Inter-
national Financial Statistics’. We consider the data
for Germany and the UK and we denote the con-
sumer price indices by PG and PUK, the exchange
rate of the DeutscheMark to 1 US Dollar byXG and
the exchange rate of the British Pound to 1 US
Dollar by XUK. The nominal exchange rate of
the Mark against 1 Pound is equal to XG=XUK and
the relative price level of Germany against the UK
is PG=PUK. The Purchasing Power Parity (PPP)
hypothesis of international economics states
that XG=PG ¼ XUK=PUK, or equivalently that
XG=XUK ¼ PG=PUK. In the following questions we
consider data for the four series PG, PUK, XG and
XUK over the period 1975.1–1994.12. The PPP
hypothesis is usually written as log (XG=XUK) ¼
log (PG)� log (PUK). Use a significance level of 5%
in all tests of this exercise.

a. Make a plot of the two price series PG and PUK

and also of the two exchange rate series XG and
XUK.

b. Test for the presence of unit roots in the four
series (all in logarithms) and test also for the
presence of cointegration.

c. Perform the two tests of b also for the set of three
series log (XG=XUK), log (PG), and log (PUK).
For reasons of economic interpretation, do
not include a trend in the cointegration equa-
tion.

d. The PPP can be formulated in econometric terms
by the hypothesis that log (XG=XUK)� log (PG)
þ log (PUK) should be a stationary time series.
Test this hypothesis, compare the outcome with
the one obtained in c, and give an economic
interpretation.

e. Let yt ¼ D log (XG=XUK) be the series of monthly
relative changes in the exchange rate between
Germany and the UK. Perform tests for autocor-
relation and for ARCH in the series yt.

f. Test for the presence of outliers in the series yt of
e. Discuss the possible relevance of this for the
analysis of PPP in d.

7.24 (E Sections 7.3.3, 7.6.3)
The data file contains yearly data on the
Standard and Poor index yt and dividends
xt, both in real terms, over the period
1871–1987. The data are taken from R. J. Shiller,
Market Volatility (MIT Press, 1989). The Present
Value theory of financial economics states that the
stock price yt is determined by the expected future
dividends. Let d be the discount factor; then this can
be formulated as yt ¼

P1
i¼1 d

iE[xtþi]. If the expected
dividends would be constant so that xtþi ¼ x
then the corresponding equilibrium value of yt is
y ¼P1

i¼1 d
ix ¼ d

1�dx. A further finding in financial
economics is that stock prices often follow random
walks, in which case the equilibrium relation
y ¼ d

1�d x corresponds to the presence of cointegra-
tion between the series yt and xt.

a. Make a time plot of the series yt and xt. Test for
the presence of unit roots in both series by means
of appropriate ADF tests.

b. Test for the presence of cointegration between
the series yt and xt. Include a deterministic
trend in the cointegration relation.

c. Estimate a vector error correction model for the
series Yt ¼ (yt, xt)

0. Include an appropriate
number of lagged terms DYt�k and take as error
correction term (yt�1 � yxt�1 � a� bt).

d. Give an interpretation of the adjustment coeffi-
cients of the VECM in c. Give also an interpret-
ation of the estimated parameter y by computing
the corresponding value of the discount factor d
in the Present Value model.

7.25 (E Sections 7.7.2, 7.7.3)
The data file contains quarterly fashion
sales data of a US retailer with multiple
specialty divisions over the period
1986.1–1992.4. This is a panel data set with m ¼ 5
units and n ¼ 28 observations. The first two div-
isions specialize in high-priced fashion apparel, div-
ision 3 in low-priced clothes, and divisions 4 and 5 in
specialities like large sizes, undergarments, and so on
(the data of division 1 were previously analysed in
Example 5.6 (p. 305–7)). The data consist of the
quarterly sales Sit of the divisions, the purchasing
ability At, and the consumer confidence Ct. Motiv-
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ated by the results in Section 5.3.1 we formulate the
model

log (Sit) ¼ ai þ ai2D2t þ ai3D3t þ ai4D4t

þ bi log (At)þ gi log (Ct)þ eit

where i ¼ 1, � � � , 5 denotes the division and
t ¼ 1, � � � , 28 the observation number and where
Djt are seasonal dummies (j ¼ 2, 3, 4, the first quar-
ter is taken as the reference season).

a. Estimate the above model (with thirty regression
parameters) by OLS. Check that there exists sig-
nificant contemporaneous correlation between
the residual terms for the five divisions in the
same quarter.

b. Estimate the model also by SUR. Compare the
outcomes with a, and explain.

c. Estimate a panel model with fixed effects and
with different parameters for the seasonal dum-
mies. This means that the parameters bi and gi
are constant across the divisions, so that the
model contains in total twenty-two parameters.
Compare the results with a and b.

d. Estimate the model of c with the restriction of
equal seasonal effects aij across the divisions but
with different fixed effects ai, so that the model
contains in total ten regression parameters. Com-
pare the estimated seasonal effects with the esti-
mates in c.

e. Perform an LR-test of the twelve parameter re-
strictions that reduce the model in c to the model
in d.

f. Explainwhy itwouldmake little sense to estimate
a random effects panel model for these data.

7.26 (E Section 7.7.4)
The data file contains fifty yearly data on
the market for oranges in the USA over
the period 1910–59. The data are taken
from M. Nerlove and F. V. Waugh, ‘Advertising
without Supply Control: Some Implications of a
Study of the Advertising of Oranges’, Journal of

Farm Economics, 43 (1961), 813–37. The variables
are the quantity traded (Q), the price (P), real
disposable income (RI), current advertisement
expenditures (AC), and past advertisement expend-
itures (AP, averaged over the past ten years).
First we assume that the supply Q is fixed and that
the price is determined by demand via the price
equation

log (Pt) ¼ aþ g log (Qt)þ b log (RIt)þ et:

a. Estimate the price equation by OLS. Test the null
hypothesis of unit price elasticity (g ¼ �1).

b. Estimate the price equation also by IV, using as
instruments a constant, log (RIt), log (ACt), and
log (APt). Test again the null hypothesis of unit
elasticity.

c. Perform the Hausman test for the exogeneity of
log (Qt) in the price equation.

d. Investigate the quality of the instruments— that
is, whether they are sufficiently correlated with
log (Qt) and uncorrelated with the price shocks et
(take the IV residuals as estimates of these
shocks).

e. Answer questions b, c, and d also for the n ¼ 45
observations obtained by excluding the data over
the period 1942–6.

Next we consider the simultaneous model for price
and quantity described by the following two equa-
tions. We exclude the two advertisement variables
(AC and AP) from the analysis in f and g.

(demand) log (Pt)¼ a1 þ g1 log (Qt)þ b1 log (RIt)þ e1t,

(supply) log (Pt)¼ a2 þ g2 log (Qt)þ e2t:

f. Is the demand equation identified? Estimate this
equation by OLS. What is your interpretation of
the outcomes?

g. Is the supply equation identified? Estimate this
equation by a method that you find most appro-
priate, and motivate your choice.
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Appendix A. Matrix Methods

In this appendix we summarize some matrix methods and some results on func-
tions of several variables. At the beginning of each section we state in which
chapters or sections the discussed topics are used. For more background on these
topics there exist numerous textbooks on linear algebra and calculus. See, for
instance, G. Strang, Linear Algebra and its Applications (San Diego: Harcourt
Brace Jovanovich, 1988); D. C. Lay, Linear Algebra and its Applications (Read-
ing: Addison-Wesley, 1997); and J. R. Magnus and H. Neudecker, Matrix Differ-
ential Calculus with Applications in Statistics and Econometrics (Chichester:
Wiley, 1999).

A.1 Summations

E Used in Chapters 1–7.

Sum notation

Many computations in econometrics involve summations of large amounts of
numbers. For convenience of notation such summations are often denoted
by the summation symbol

P
. The sum of the n numbers y1, y2, � � � , yn is

denoted by

Xn
i¼1

yi ¼ y1 þ y2 þ � � � þ yn:

Sometimes, if the value of n is clear from the context, we write
P

yi instead
of

Pn
i¼1 yi. In a similar way,

Pn
i¼1 y

2
i denotes the sum of the squared

values y21 þ y22 þ � � � þ y2n, and
Pn

i¼1 yixi is the sum of products y1x1 þ y2x2
þ � � � þ ynxn.

Properties of summations

By writing out the involved summations one can verify that, for any constants
a and b that do not depend on i, there holds

Pn
i¼1 a ¼ na,

Pn
i¼1 ayi ¼ a

Pn
i¼1 yi,

and
Pn

i¼1 (ayi þ bxi) ¼ a
Pn

i¼1 yi þ b
Pn

i¼1 xi. We often work with numbers in



deviation from their (sample) mean denoted by y ¼ 1
n

Pn
i¼1 yi. The following

properties are useful:

Xn
i¼1

(yi � y)¼ 0,
Xn
i¼1

(yi � y)2 ¼
Xn
i¼1

y2i � ny2,
Xn
i¼1

(yi � y)(xi � x)¼
Xn
i¼1

yixi � n�yy�xx:

Example A.1: Simulated Data on Student Learning

We consider (hypothetical) values of the scores of five students for their Freshman
Grade Point Average (FGPA) and for their SAT mathematics test (SATM) and

E

XMA01SIM

Panel 1: scores

STUDENT FGPA SATM SATV

1 1.8 4 4
2 2.4 6 5
3 2.9 6 7
4 3.0 7 6
5 3.5 8 7

Panel 2: operations on FGPA scores

STUDENT FGPA FGPA_M FGPA_S FGPA_MS

1 1.8 �0.92 3.24 0.8464
2 2.4 �0.32 5.76 0.1024
3 2.9 0.18 8.41 0.0324
4 3.0 0.28 9.00 0.0784
5 3.5 0.78 12.25 0.6084

SUM 13.6 0 38.66 1.6680
MEAN 2.72 0 7.732 0.3336

Panel 3: operations on FGPA and SATM scores

STUDENT FGPA FGPA_M SATM SATM_M FGPA�SATM FGPA_M�SATM_M

1 1.8 �0.92 4.0 �2.2 7.2 2.024
2 2.4 �0.32 6.0 �0.2 14.4 0.064
3 2.9 0.18 6.0 �0.2 17.4 �0.036
4 3.0 0.28 7.0 0.8 21.0 0.224
5 3.5 0.78 8.0 1.8 28.0 1.404

SUM 13.6 0 31.0 0 88.0 3.680
MEAN 2.72 0 6.2 0 17.6 0.736

Exhibit A.1 Simulated Data on Student Learning (Example A.1)

Panel 1 contains scores on FGPA (on a scale from 1 to 4) and on SATM and SATV (on a scale
from 1 to 10) of five (hypothetical) students; Panel 2 shows the scores on FGPA, the scores in
deviation from the mean (FGPA_M), the squares of FGPA (FGPA_S), and the squares of FGPA
in deviation from the mean (FGPA_MS); and Panel 3 shows the scores on FGPA and SATM,
the scores in deviation from the mean (FGPA_M and SATM_M), the products of the FGPA and
SATM scores, and the products of the transformed values FGPA_M and SATM_M.
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verbal test (SATV). The scores are in Panel 1 of Exhibit A.1, and Panels 2 and 3
report the results of some operations on these numbers. (For a real data set on
student learning of 609 students, we refer to Example 1.1 (p. 12); here we restrict
the attention to five students to get small matrices that are convenient as an
introduction.) We denote the five students by the index i ¼ 1, � � � , 5, their FGPA
by yi, and their SATM by xi. For instance, y2 ¼ 2:4 and x4 ¼ 7. The computations
in Exhibit A.1 show that y ¼ 2:72, that

P5
i¼1 (yi � y) ¼ 0, and thatP5

i¼1 (yi � y)2 ¼ 1:668, which is equal to
P5

i¼1 y
2
i � ny2 ¼ 38:66� 5(2:72)2.

The computations in Panel 3 of Exhibit A.1 further show thatP5
i¼1 (yi � y)(xi � x)¼ 3:68 which is equal to

P5
i¼1 yixi � n�yy�xx¼ 88� 5 � 2:72 � 6:2.

A.2 Vectors and matrices

E Used in Chapters 1, 3–7.

Data table

In econometrics we are concernedwithmodelling observed data. Inmany cases the
number of numerical data is large (several hundreds or thousands of observations
on a number of possibly interesting variables) and all the data should be handled
in an organized way. Many data sets are stored in a spreadsheet where each
column corresponds to a variable and the length of the column is equal to the
number of observations of that variable. For instance, the data on FGPA, SATM,
and SATV of five students in the example in the foregoing section can be repre-
sented by the following table.

Student FGPA SATM SATV

1 1.8 4 4
2 2.4 6 5
3 2.9 6 7
4 3.0 7 6
5 3.5 8 7

Data matrix

The real data information consists of the five paired scores on FGPA, SATM, and
SATV and we can summarize these data by the following array of numbers:

1:8 4 4
2:4 6 5
2:9 6 7
3:0 7 6
3:5 8 7

0BBBB@
1CCCCA:

Such a rectangular block of numbers is called a matrix. The above matrix has five
rows and three columns. In econometrics we often work with matrices, and of
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course we should always remind ourselves and other users what is the meaning
of the columns and rows (in this case, the correspondence between columns and
variables and between rows and students, so that the number 2.9 in column
1 and row 3 is known to correspond to the FGPA of the third student).

Matrix notation

More generally, let A be a matrix with p rows and q columns; then we say the A is
a p� qmatrix and we denote the number in row i and column j by aij. The matrix
is then of the form

A ¼

a11 a12 � � � a1q
a21 a22 � � � a2q

..

. ..
. ..

. ..
.

ap1 ap2 � � � apq

0BBB@
1CCCA:

For instance, the matrix in the student example has p ¼ 5 rows and q ¼ 3 columns
and a12 ¼ 4 and a21 ¼ 2:4, and so on.

Matrix notation in econometrics

In this appendix we follow the convention of matrix algebra to denote the element
on row i and column j by aij. However, in econometrics we often denote this
element by aj; i —that is, the first index refers to the variable (that is, the column)
and the second index to the observation number (that is, the row), and for
shorthand notation we then often even write aji for this number (see, for instance,
Section 3.1.2 (p. 120)). This may be somewhat confusing in the beginning, but in
essence it does not matter which convention we follow as long as we are clear
what we mean by our notation. Therefore, in this appendix we follow the
convention of matrix algebra books to make it easier to consult books that are
specialized in this topic, but in the main text we follow the convention of most
econometricians.

Special matrices

A square matrix is a matrix that has an equal number of rows and columns— that
is, with p ¼ q. A diagonal matrix is a square matrix with the property that aij ¼ 0
for all i 6¼ j—that is, all elements are zero except possibly the elements aii on the
diagonal (with equal row and column index). A special case of a diagonal matrix is
the identity matrix that has aii ¼ 1 for all i ¼ 1, � � � , p, and aij ¼ 0 for all i 6¼ j. The
p� p identity matrix is denoted by Ip or simply by I. A zero matrix is a (square or
non-square) matrix with all its elements equal to zero— that is, aij ¼ 0 for all i
and j. The p� q zero matrix is denoted by Opq or simply by O.

A matrix with only one column— that is, a p� 1 matrix— is called a
column vector, and a 1� q matrix is called a row vector. A column vector
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is often simply called a vector. Whereas matrices are denoted by capital
letters (A, B, and so on), vectors are usually denoted by lower-case letters (a, b,
and so on).

A.3 Matrix addition and multiplication

E Used in Chapters 1, 3–7.

Matrix addition

This section and the next one contain a number of operations on matrices that are
much used in econometrics. Let A be a p� q matrix with elements aij and let B
also be a p� q matrix with elements bij. Then the sum C ¼ Aþ B of the two
matrices is defined by the p� q matrix with elements cij ¼ aij þ bij in row i and
column j (i ¼ 1, � � � , p, j ¼ 1, � � � , q). Note that A and B should have the same
number of rows and also the same number of columns.

Matrix multiplication

LetA be a p� qmatrix with elements aij (i ¼ 1, � � � , p, j ¼ 1, � � � , q) and let B be a
q� r matrix with elements bjk (j ¼ 1, � � � , q, k ¼ 1, � � � , r). Then the product
C ¼ AB of the two matrices is defined by the p� r matrix with elements

cik ¼
Xq
j¼1

aijbjk ¼ ai1b1k þ ai2b2k þ � � � þ aiqbqk

(i ¼ 1, � � � , p, k ¼ 1, � � � , r). So the element in row i and column j of the product
matrix AB is obtained by multiplying the ith row of A (element-wise) with the jth
column of B. This requires that the number of columns of the matrix A is equal to
the number of rows of the matrix B, otherwise the product AB is not defined.

If the p� qmatrixA is multiplied with the q� 1 vector b, then the productAb is
a p� 1 vector. If in addition a is a row vector so that p ¼ 1, then the product ab of
a row vector with a column vector is a 1� 1 vector— that is, a scalar number.
Note that the product ba of the column vector b with the row vector a is a p� q
matrix. Let A be a p� q matrix with elements aij (i ¼ 1, � � � , p, j ¼ 1, � � � , q) and
let d be a real number; then the scalar multiple dA is defined as the p� q matrix
with elements daij (i ¼ 1, � � � , p, j ¼ 1, � � � , q).

Calculation rules

The following calculation rules hold true for matrix products and scalar multiples
(we use the notation (p� q) to denote the number of rows and columns of a
matrix).
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Although some of the operations on matrices have the same properties as corres-
ponding operations on (scalar) numbers, this does not hold true for all operations.
In particular, if A is a p� qmatrix and B a q� rmatrix, then AB (which is a well-
defined p� rmatrix) is not the same as BA. The product BA is not even defined if
r 6¼ p, and even if r ¼ p then AB has p rows and columns whereas BA has q rows
and columns, and even if in addition p ¼ q then still (except in special cases)

AB 6¼ BA:

Example A.2: Simulated Data on Student Learning (continued)

We illustrate the use of matrices and vectors as an efficient tool for data organiza-
tion by considering again the data on scores of five students. Let yi denote the
FGPA score of student i and let xi be the SATM score and zi the SATV score of this
student. As a simple model for the explanation of FGPA in terms of SATM and
SATV we consider the linear relationship

yi ¼ b1 þ b2xi þ b3zi, i ¼ 1, � � � , 5:

If we substitute the numbers for yi, xi, and zi given in Exhibit A.1 and collect the
results for the five students in a 5� 1 vector we obtain

1:8
2:4
2:9
3:0
3:5

0BBBB@
1CCCCA ¼

b1 þ 4b2 þ 4b3
b1 þ 6b2 þ 5b3
b1 þ 6b2 þ 7b3
b1 þ 7b2 þ 6b3
b1 þ 8b2 þ 7b3

0BBBB@
1CCCCA ¼

1 4 4
1 6 5
1 6 7
1 7 6
1 8 7

0BBBB@
1CCCCA

b1
b2
b3

0@ 1A:

Let y denote the above 5� 1 vector of FGPA scores, let b be the 3� 1 vector with
elements b1, b2, b3, and let X be the above 5� 3 matrix with the first column
consisting of ones, the second of the SATMscores, and the third of the SATV scores.
Then the above model can be written in terms of the given data vector y and the
given data matrix X as y ¼ Xb where

E

A(p� q), B(q� r), C(q� r)

A(p� q), B(p� q), C(q� r)

A(p� q), B(q� r), C(r� s)

A(p� q)

A(p� q)

A(p� q), B(p� q), d(scalar)

A(p� q), B(q� r), d(scalar)

A(Bþ C) ¼ ABþ AC

(Aþ B)C ¼ ACþ BC

A(BC) ¼ (AB)C

IpA ¼ AIq ¼ A

OrpA ¼ Orq, AOqr ¼ Opr

d(Aþ B) ¼ dAþ dB

d(AB) ¼ (dA)B ¼ A(dB)
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X ¼

1 4 4
1 6 5
1 6 7
1 7 6
1 8 7

0BBBB@
1CCCCA:

This is a system of five equations (one for each student) and three unknowns (the
values of b1, b2, b3). There does not exist a solution for the three unknowns so
that all five equations are exactly satisfied. Approximate solutions can be obtained
by least squares— that is, by minimizing

P5
i¼1 (yi � b1 � b2xi � b3zi)

2. Let
ei ¼ yi � b1 � b2xi � b3zi be the error of the equation for student i; then this
corresponds to minimizing

P5
i¼1 e

2
i by choosing appropriate values for

b1, b2, b3. We will later come back to this (see Example A.11).

A.4 Transpose, trace, and inverse

E Used in Chapters 1, 3–7.

Transpose of a matrix

Let A be a given p� q matrix with elements aij, i ¼ 1, � � � , p, j ¼ 1, � � � , q. Then
the transpose ofA, denoted byA0, is the q� pmatrix with the value of aij placed in
row j and column i. For instance, the transpose of the 5� 3 matrix X in Example
A.2 is the 3� 5 matrix

X0 ¼
1 1 1 1 1
4 6 6 7 8
4 5 7 6 7

0@ 1A:

A square p� p matrix A is called symmetric if A0 ¼ A—that is, if aij ¼ aji for
all i ¼ 1, � � � , p, j ¼ 1, � � � , p. Some calculation rules for transposed matrices are

(A0)0 ¼ A, (Aþ B)0 ¼ A0 þ B0, (AB)0 ¼ B0A0:

If a is a p� 1 vector, then a0a ¼Pp
i¼1 a

2
i is a scalar number equal to the sum of the

squares of the elements ai of the vector a.

Partitioned matrix

In some cases it is convenient to work with partitioned matrices— that is, matrices
that are split up in parts. For instance, let A be a p� q matrix and let A1 be the
p� s submatrix consisting of the first s columns of A and A2 the p� (q� s)
submatrix consisting of the remaining (q� s) columns of A; then we write
A ¼ (A1 A2). Let the rows of the q� r matrix B be split in a similar way in the
s� r submatrix B1 consisting of the first s rows of B and the (q� s)� r submatrix
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B2 consisting of the remaining rows of B so that B ¼ B1

B2

� �
. Then

AB ¼ A1B1 þ A2B2. More in general, let the jth column of the p� q matrix A
be denoted by aj (a p� 1 vector) and let the jth row of the q� r matrix B be
denoted by b0j (a 1� r row vector), j ¼ 1, � � � , q, then AB ¼Pq

j¼1 ajb
0
j.

Trace of a square matrix

The trace of a square p� pmatrix A, denoted by tr(A), is defined as the sum of its
diagonal elements— that is,

tr(A) ¼
Xp
i¼1

aii:

The following calculation rules hold true (assuming that the shown matrix sums
and products are square matrices):

tr(Aþ B) ¼ tr(A)þ tr(B), tr(AB) ¼ tr(BA), tr(A0) ¼ tr(A):

Inverse of a square matrix

A square p� p matrix A is called invertible if there exists a p� p matrix B such
that AB ¼ BA ¼ Ip, the p� p identity matrix. Such a matrix B is called the inverse
matrix of A and is denoted by A�1.

If A is a given invertible p� p matrix and b is a given p� 1 vector, then
there exists a unique p� 1 vector c such that Ac ¼ b—namely, c ¼ A�1b. The
following computation rules apply, where A and B are square p� p invertible
matrices:

(AB)�1 ¼ B�1A�1, (A0)�1 ¼ (A�1)0, (A�1)�1 ¼ A:

Not every square matrix is invertible— for instance, if A ¼ O is a square zero
matrix then it has no inverse. A square matrix A is invertible if and only if its
determinant is non-zero, as is further discussed in the next section.

Example A.3: Simulated Data on Student Learning (continued)

In Example A.2 we mentioned that, for given observations collected in the 5� 1
vector y and the 5� 3 matrix X, least squares corresponds to choosing values for
b1, b2, b3, such that the sum of squares of the errors ei ¼ yi � b1 � b2xi � b3zi is as
small as possible. Let e be the 5� 1 vector with elements ei; then we can write
e ¼ y�Xb and

X5
i¼1

e2i ¼ e0e ¼ (y�Xb)0(y�Xb):

E
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This expression can be worked out by using (y�Xb)0 ¼ y0 � (Xb)0 ¼ y0 � b0X0

so that (y�Xb)0(y�Xb) ¼ y0(y�Xb)� b0X0(y�Xb) ¼ y0y� y0Xb� b0X0yþ
b0X0Xb. As y is a 5� 1 vector, X a 5� 3 matrix, and b a 3� 1 vector, it follows
that y0Xb is a scalar (1� 1 matrix), which is of course symmetric, so that
y0Xb ¼ (y0Xb)0 ¼ b0(y0X)0 ¼ b0X0y. Combining these results, the sum of squared
errors becomes

(y�Xb)0(y�Xb) ¼ y0y� 2b0X0yþ b0X0Xb:

We can use the numerical values in Exhibit A.1 to compute y0y ¼P5
i¼1 y

2
i ¼ 38:66

and

X0y ¼
1 1 1 1 1
4 6 6 7 8
4 5 7 6 7

0@ 1A
1:8
2:4
2:9
3:0
3:5

0BBBB@
1CCCCA ¼

13:6
88:0
82:0

0@ 1A,

(A:1)

X0X ¼
1 1 1 1 1
4 6 6 7 8
4 5 7 6 7

0@ 1A
1 4 4
1 6 5
1 6 7
1 7 6
1 8 7

0BBBB@
1CCCCA ¼

5 31 29
31 201 186
29 186 175

0@ 1A:

The matrix X0X is symmetric, which also follows from (X0X)0 ¼ X0(X0)0 ¼ X0X.
The above results lead to the following expression for the sum of squared errors,
which will be of later use.

(y�Xb)0(y�Xb) ¼38:66� 2(b1 b2 b3)

13:6

88:0

82:0

0B@
1CAþ (b1 b2 b3)X

0X
b1

b2

b3

0B@
1CA

¼38:66� 27:2b1 � 176b2 � 164b3 þ 5b21 þ 201b22

þ 175b23 þ 62b1b2 þ 58b1b3 þ 372b2b3: (A:2)

The computation of the inverse of X0X will be considered in the next section (see
Example A.5).

A.5 Determinant, rank, and eigenvalues

E Used in Sections 1.2, 5.7, 7.6, 7.7.

As the results of this section are mostly of a computational nature, readers can
skip the details without much cost and leave the actual computation of inverses,
determinants, and eigenvalues to (matrix) software packages. Some of the details
are needed in Section 7.6.
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Determinant of a square matrix

A square p� p matrix A is invertible if and only if its determinant is non-zero.
Here the determinant, denoted by det(A), is a scalar number that can be computed
from the elements aij (i ¼ 1, � � � , p, j ¼ 1, � � � ,p). For a scalar (1� 1) matrix
A ¼ (a11) the determinant is simply defined by det(A) ¼ a11. For a 2� 2 matrix
the determinant is defined by

det
a11 a12
a21 a22

� �� �
¼ a11a22 � a12a21,

and for a 3� 3 matrix the determinant is defined by

det

a11 a12 a13

a21 a22 a23

a31 a32 a33

0B@
1CA

0B@
1CA ¼ a11a22a33 þ a12a23a31 þ a13a21a32

� a11a23a32 � a12a21a33 � a13a22a31:

Example A.4: Simulated Data on Student Learning (continued)

The determinant of the 3� 3 matrix X0X in (A.1) is equal to 5(201)(175)þ
31(186)(29)þ 29(31)(186)� 5(186)(186)� 31(31)(175)� 29(201)(29) ¼ 107.

Computation of determinant

The determinant of a p� p matrix A can be computed from the determinants of
smaller-sized submatrices by expansion according to any of the rows or columns of
A. Let Aij be the (p� 1)� (p� 1) matrix obtained by deleting the ith row and the
jth column of A and let the cofactor Cij be defined by Cij ¼ (� 1)iþjdet(Aij), then

det(A) ¼
Xp
j¼1

aijCij ¼
Xp
i¼1

aijCij:

The first expression is valid for any choice of i and corresponds to an expansion
according to the ith row ofA, and the second expression is valid for any choice of j
and corresponds to an expansion according to the jth column of A. Whatever
choice we make for i or j, the above expansions always lead to the same numerical
outcome. For example, the determinant of a 4� 4 matrix A can be obtained by
expansion according to the first row as a11C11 þ a12C12þ a13C13 þ a14C14, where
each of the four cofactors C1j, j ¼ 1, � � � , 4, involves the determinant of a 3� 3
submatrix of A that can be computed as indicated above.

Computation of inverse matrix

A matrix is invertible if and only if its determinant is non-zero, and the (i, j)th
element of the inverse matrix can be computed by

E
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Cji=det(A),

that is, the element on row i and column j of A�1 is equal to the cofactor Cji

divided by the determinant of the full p� p matrix A. For instance, the inverse
of a 2� 2 matrix A can be computed as follows. The cofactors are equal to
C11 ¼ a22, C12 ¼ �a21, C21 ¼ �a12, and C22 ¼ a11, so that

a11 a12
a21 a22

� ��1

¼ 1

a11a22 � a12a21

a22 �a12
�a21 a11

� �
:

A direct computation shows that indeed AA�1 ¼ A�1A ¼ I2. Let C be the p� p
matrix with elements Cij; then CA ¼ AC ¼ det(A)I—that is, the p� p diagonal
matrix with the value det(A) on the diagonal.

The following computation rules apply for determinants, where A and B are
square p� p matrices:

det(A0) ¼ det(A), det(AB) ¼ det(A)det(B), det(A�1) ¼ 1=det(A):

Example A.5: Simulated Data on Student Learning (continued)

As the determinant of the matrix X0X is non-zero (see Example A.4), it has an
inverse. Let the 2� 2 cofactors of X0X be denoted by Cij (i ¼ 1, 2, 3, j ¼ 1, 2, 3),
then the (i, j)th element of (X0X)�1 is equal to Cji=det(X

0X) ¼ Cji=107. The nine
cofactors are easily obtained from (A.1)— for instance, C11 ¼ (� 1)2(201 � 175�
1862) ¼ 579, C12 ¼ (� 1)3(31 � 175� 186 � 29) ¼ �31, and so on. This gives

(X0X)�1 ¼ 1

107

579 �31 �63
�31 34 �31
�63 �31 44

0@ 1A: (A:3)

From working out the matrix products it follows that (X0X)(X0X)�1 ¼
(X0X)�1(X0X) ¼ I3. Note that X0X is a symmetric matrix and that (X0X)�1 is
also symmetric.

Rank of a matrix

If the determinant of a square matrix A is zero, then there does not exist an inverse
matrix of A. Such a matrix is called non-invertible or singular.

The rank of a p� q matrix A is equal to the largest number r for which there
exists a square submatrix of A of size r� r that has a non-zero determinant. Here
square submatrices of size r� r are obtained by choosing the elements on the cross
points of r chosen rows of the p rows of A and r chosen columns of the q columns
of A. The rank of a p� q matrix A satisfies rank(A) � min(p,q) and the rank of
the product of two matrices satisfies rank(AB) � min(rank(A), rank(B) ).

If a p� q matrix A has rank r < q, then there exists a non-zero q� 1 vector b
such that Ab ¼ 0. One then says that the q columns of A are linearly dependent.
If a square p� p matrix A has det(A) ¼ 0, then rank(A) < p and there exists a

E
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non-zero p� 1 vector b such that Ab ¼ 0. If A is invertible, then the only vector b
for which Ab ¼ 0 is b ¼ 0. If a p� p matrix A has rank r < p, then there exist
p� r matrices B and C with rank(B) ¼ rank(C) ¼ r such that A ¼ BC0.

Example A.6: Simulated Data on Student Learning (continued)

Consider the 3� 5 matrix

X0 ¼
1 1 1 1 1
4 6 6 7 8
4 5 7 6 7

0@ 1A:

The 3� 3 submatrix consisting of columns 2, 4, and 5 has determinant
(49þ 40þ 36� 48� 42� 35) ¼ 0, but the submatrix consisting of the first
three columns has determinant (42þ 24þ 20� 30� 28 �24) ¼ 4 6¼ 0. This
shows that rank(X0) ¼ 3. As X0 has five columns, there exists a non-zero 5� 1
vector b so that X0b ¼ 0. For instance, b ¼ (�2, 5, 1,�4, 0)0 is such a vector. The
five columns ci (3� 1 vectors, i ¼ 1, � � � , 5) of X0 are linearly dependent— for
instance, c3 ¼ 2c1 � 5c2 þ 4c4.

Eigenvalues and eigenvectors

A (possibly complex) number l is called an eigenvalue of the square p� p matrix
A if det(A� lIp) ¼ 0. When seen as a function of the (complex) variable
z, f (z) ¼ det(A� zIp) is a polynomial in z of order p. This is called the characteris-
tic polynomial ofA and it has p (possibly non-distinct) roots li, i ¼ 1, � � � , p—that
is, values for which f (li) ¼ 0. These roots are the eigenvalues of A, and for each
root li there exists a (possibly complex-valued) non-zero p� 1 vector vi such that
(A� liIp)vi ¼ 0— that is, such that Avi ¼ livi. So if the vector vi is multiplied by
the matrix A, then the resulting vector is a multiple of vi. Such a vector is called an
eigenvector of the matrix A corresponding to the eigenvalue li.

Let the square p� pmatrix A have eigenvalues l1, � � � , lp; then the determinant
of A is equal to the product

Qp
i¼1 li and the trace of A is equal to the sum

Pn
i¼1 li.

Further, let Ak be the matrix product A� A� � � � � A (with k terms A); then
Ak ! 0 for k ! 1 if and only if all eigenvalues li lie inside the unit circle in the
complex plane.

Eigenvalue decomposition of a symmetric matrix

If the matrix A (with aij real-valued for all i, j) is symmetric, then all its eigenvalues
are real-valued. Moreover there exist p real-valued eigenvectors vi such that
Avi ¼ livi with the properties that v0ivi ¼ 1 for all i ¼ 1, � � � ,p, and v0ivj ¼ 0 for
all i 6¼ j. Let V be the p� pmatrix with ith column vi; then it follows that V 0V ¼ I
so that V�1 ¼ V 0. Such a matrix is called orthogonal. Further let D be the p� p
diagonal matrix with the values l1, � � � , lp on the diagonal; then there holds
AV ¼ A(v1 � � � vp) ¼ (Av1 � � �Avp) ¼ (l1v1 � � � lpvp) ¼ (v1 � � � vp)D ¼ VD and hence
A ¼ VDV�1 ¼ VDV 0. Summarizing, every symmetric p� p matrix A (with real-
valued elements aij) can be written as

E
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A ¼ VDV 0, (A:4)

where D is a diagonal matrix and V an orthogonal matrix with the property that
V 0V ¼ VV 0 ¼ Ip.

Example A.7: Simulated Data on Student Learning (continued)

We consider the symmetric matrix X0X in (A.1). If the calculation rule for the
determinant of the 3� 3 matrix X0X� zI3 is applied, the characteristic polyno-
mial is obtained as

f (z) ¼ det(X0X� zI) ¼ �z3 þ 381z2 � 657zþ 107:

Exhibit A.2 shows the values of this polynomial for real values of z. It is seen
that this polynomial has three positive roots. So the three eigenvalues are real
and positive, with (rounded) values l1 ¼ 0:18208, l2 ¼ 1:54946, and l3 ¼

E
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Exhibit A.2 Simulated Data on Student Learning (Example A.7)

Characteristic polynomial f(z) of the 3�3 matrix X0X (a) with details on two subintervals,
one near the roots 0.18 and 1.55 (b) and the other near the root 379.27 (c).
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379:26846. Corresponding eigenvectors v1, v2, v3 are given by the columns of the
following matrix V (again only the rounded values are given; more precise values
can be obtained by matrix software packages):

V ¼ (v1, v2, v3) ¼
0:99246 0:04813 0:11270
�0:04929 �0:68522 0:72667
�0:11220 0:72675 0:67768

0@ 1A:

By computing the respective matrix products one can directly verify that (up
to rounding errors) X0Xvi ¼ livi (i ¼ 1, 2, 3) and that V 0V ¼ VV 0 ¼ I3 and
VDV 0 ¼ X0X, where D is the diagonal matrix with the elements l1, l2, l3 on the
diagonal.

A.6 Positive (semi)definite matrices and projections

E Used in Chapters 1, 3, 5, 7.

Positive (semi)definite matrix

Let A be a square p� p symmetric matrix; then for every p� 1 vector b the
product b0Ab is a 1� 1 matrix— that is, this product is a scalar number. A
symmetric matrix A is called positive definite if b0Ab > 0 for every non-zero
vector b. It is called positive semidefinite if b0Ab � 0 for all vectors b. It is called
negative definite if b0Ab < 0 for every non-zero vector b and it is called negative
semidefinite if b0Ab � 0 for all vectors b. Let A be a p� q matrix; then AA0 and
A0A are positive semidefinite matrices. For instance, for every q� 1 vector b there
holds b0A0Ab ¼ (Ab)0(Ab) ¼ c0c ¼Pp

j¼1 c
2
j � 0, where cj (j ¼ 1, � � � , p) are the

elements of the p� 1 vector c ¼ Ab. If rank(A) ¼ q, then the q� q matrix A0A
has rank q and it is positive definite.

Square root of a positive definite matrix

If the symmetric matrix A is positive definite, then it has an inverse A�1 and this
matrix is also positive definite. Further, if A is a p� p symmetric positive definite
matrix, then there exist a p� p matrix B and p� p symmetric positive
definite matrices C1 and C2, such that

BAB0 ¼ Ip, C1C1 ¼ A, C2C2 ¼ A�1:

This can be proved by means of the decomposition A ¼ VDV 0 in (A.4), where V is
an orthogonal matrix with VV 0 ¼ V 0V ¼ Ip and D is a diagonal matrix with
elements l1, � � � , lp. Let vi be the ith column of V; then, because A is positive
definite, it follows that v0iAvi ¼ li > 0. Let D1=2 be the diagonal matrix with
elements

ffiffiffiffi
li

p
on the diagonal and let D�1=2 be the diagonal matrix with elements

1=
ffiffiffiffi
li

p
on the diagonal. Then B ¼ D�1=2V 0, C1 ¼ VD1=2V 0 and C2 ¼ VD�1=2V 0
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have the properties mentioned above. The matrix C1 is called a square root of the
matrix A and C2 is a square root of A�1.

Example A.8: Simulated Data on Student Learning (continued)

The 5� 3 matrix X has rank three, and the foregoing results imply that X0X and
(X0X)�1 are positive definite. We check this for the matrix X0X in (A.1) and leave
the other one as an exercise (use the numerical values for (X0X)�1 obtained in
(A.3) in Example A.5). Let b be a 3� 1 vector with elements b1, b2, b3, then

b0X0Xb ¼ 5b21 þ 201b22 þ 175b23 þ 62b1b2 þ 58b1b3 þ 372b2b3

¼ 5(b1 þ 6:2b2 þ 5:8b3)
2 þ (201� 5(6:2)2)b22 þ (175� 5(5:8)2)b23

þ (372� 10(6:2)(5:8) )b2b3

¼ 5(b1 þ 6:2b2 þ 5:8b3)
2 þ 8:8b22 þ 6:8b23 þ 12:4b2b3

¼ 5(b1 þ 6:2b2 þ 5:8b3)
2 þ 8:8 b2 þ 6:2

8:8
b3

� �2

þ 6:8� 8:8
(6:2)2

(8:8)2

 !
b23

¼ 5(b1 þ 6:2b2 þ 5:8b3)
2 þ 8:8 b2 þ 3:1

4:4
b3

� �2

þ 10:7

4:4
b23:

As this is a sum of three squared terms with positive weights it follows that
b0X0Xb � 0, and b0X0Xb ¼ 0 if and only if all three terms are zero. The last term
in the sum shows that then b3 ¼ 0, the middle term then implies that b2 ¼ 0, and
subsequently the first term implies that also b1 ¼ 0. Stated otherwise, for b 6¼ 0 we
have b0X0Xb > 0 and this shows that X0X is positive definite.

Projection matrix

A square p� pmatrix A is called idempotent if AA ¼ A. A symmetric idempotent
matrix is called a projection matrix. A projection matrix is positive semidefinite
because A ¼ AA ¼ A0A. If A is a p� qmatrix with rank(A) ¼ q, so that A0A is an
invertible q� q matrix, then P ¼ A(A0A)�1A0 is a p� p projection matrix with
rank(P) ¼ q. Because PA ¼ A this means that every column of A remains un-
changed when multiplied by P, so that P has q eigenvalues equal to one. The other
(p� q) eigenvalues of P are zero. A p� p projection matrix A with rank(A) ¼ r
can be written as A ¼ K0K for an r� pmatrix Kwith KK0 ¼ Ir. To construct K, let
A ¼ VDV 0 be the decomposition (A.4), where the diagonal matrixD contains the
eigenvalues of A—that is, the diagonal contains r times a one on the diagonal
followed by (p� q) times a zero. Let Vr be the p� r submatrix consisting of the
first r columns of V; then K ¼ V 0

r has the stated properties.

Example A.9: Simulated Data on Student Learning (continued)

The 5� 3 matrixX that we considered before has rank 3 (see Example A.6). If we
use the result for the inverse (X0X)�1 in (A.3) in Example A.5, the matrix
P ¼ X(X0X)�1X0 is equal to

E
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P ¼

1 4 4

1 6 5

1 6 7

1 7 6

1 8 7

0BBBBBB@

1CCCCCCA
1

107

579 �31 �63

�31 34 �31

�63 �31 44

0B@
1CA 1 1 1 1 1

4 6 6 7 8

4 5 7 6 7

0B@
1CA

¼ 1

107

83 34 12 4 �26

34 41 �17 30 19

12 �17 101 �2 13

4 30 �2 35 40

�26 19 13 40 61

0BBBBBB@

1CCCCCCA:

Clearly, P is symmetric and one can check by direct computation that PP ¼ P, so
that P is also idempotent. So P is a projection matrix. According to earlier results
tr(P) ¼P5

i¼1 li ¼ 3, as P has three eigenvalues equal to one and two eigenvalues
equal to zero. It is easily checked that the trace of the above matrix P is indeed
equal to three. By applying a matrix software package to determine the eigenvec-
tors of P, we can compute the following (rounded) 3� 5 matrix K (here we do not
show the calculation of the required eigenvalues and eigenvectors to compute
K ¼ V 0

r):

K ¼
�0:08169 �0:53396 0:42535 �0:52027 �0:50657

�0:84091 �0:29451 0:08260 0:07297 0:44045

0:24880 0:10645 0:86959 0:22606 0:34566

0B@
1CA:

It is a matter of direct computation to check that (up to rounding errors) K0K ¼ P
and KK0 ¼ I3.

A.7 Optimization of a function of several variables

E Used in Chapters 1–7.

Notation

An econometric model often contains a number of unknown parameters that are
estimated by optimizing a numerical criterion. Examples are least squares (dis-
cussed in Chapters 2 and 3) and maximum likelihood (discussed in Chapter 4). We
denote the unknown parameters by the p� 1 vector b and the criterion function
by f (b), where f (b) is a real number that depends on the value of b. For instance, in
our example of student scores the least squares criterion (A.2) is a function that
takes on non-negative values that depend on the chosen values of the three
parameters b1, b2, b3.
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Continuous and differentiable functions

First we summarize some concepts and results for functions of a single variable—
that is, with p ¼ 1. A function f (b) of a single variable b is called continuous if, for
every value of b0, the function values f (b) are close to f (b0) if b is close to b0. This
is written as limb!b0 f (b) ¼ f (b0), and the formal definition is that for every
number d1 > 0 there exists a number d2 > 0 with the property that
f (b)� f (b0)j j < d1 for all b� b0j j < d2. The function f is called differentiable if,
for every value of b0, there exists a value (say a0), such that

limh!0
f (b0 þ h)� f (b0)� a0h

h
¼ 0:

We will write this as f (b0 þ h)� f (b0)� a0h � 0 if h � 0, or also as
f (b0 þ h) � f (b0)þ ha0 if h � 0. The value a0 is called the derivative of f at b0
and is written as df

db (b0), and the function df
db (b), seen as a function of b, is called the

derivative of f . Writing b ¼ b0 þ h, we obtain from the foregoing that

f (b) � f (b0)þ df

db
(b0) � (b� b0) if b � b0:

For fixed value of b0 the right-hand side of the above expression is a linear function
of b, which is called the linear approximation of the function f at b0.

Maxima and minima

The function f is said to have a global maximum at b0 if f (b0) � f (b) for all values
of b. The function f has a local maximum at b0 if f (b0) � f (b) for all b close to b0,
formally, if there exists a d > 0 such that f (b0) � f (b) for all b� b0j j < d. The
function f has a global (local) minimum at b0 if f (b0) � f (b) for all b (respectively
for all b close to b0). If f is differentiable, then

df

db
(b0) ¼ 0

for all values of b0 where f has a (global or local) maximum or minimum. This is
called the first order condition for a maximum or minimum of the function f . To
distinguish between maxima and minima we consider the second derivative of
f —that is, the derivative of df

db , where we assume that this is a differentiable
function. The second derivative is denoted by d2f

db2
� The function f has a local

maximum at b0 if df
db (b0) ¼ 0 and d2f

db2
(b0) < 0, and it has a local minimum if

df
db (b0) ¼ 0 and d2f

db2
(b0) > 0.

Continuity of a function of several variables

Now we extend the concepts above to functions f(b) of several variables— that is,
where b is a p� 1 vector with p > 1. The function f(b) is called continuous if, for
every given p� 1 vector b0, the function values f(b) are close to f (b0) if b is close to
b0. Formally, the function is continuous at b0 if for every d1 > 0 there exists a
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d2 > 0 such that f (b)� f (b0)j j < d1 for all b� b0k k < d2. Here b� b0k k denotes
the distance between the two p� 1 vectors b and b0, defined by
b� b0k k ¼ Pp

i¼1 (bi � b0i)
2

� �1=2
, where bi and b0i denote the components of b

and b0 respectively.

Differentiability of a function of several variables

The function f (b) is said to be partially differentiable with respect to the ith
component bi if, for every given p� 1 vector b0 ¼ (b01, � � � , b0p)0, the function
g(bi) ¼ f (b01, � � � , b0i�1, bi, b0iþ1, � � � , b0p) is a differentiable function of the
(single) variable bi. The ith partial derivative of f at b0 is defined as dg

dbi
(b0) and

is denoted by @f
@bi

(b0). If the function f is partially differentiable with respect to all
its p components, then the gradient of f at b0 is defined as the p� 1 vector with the
p partial derivatives as elements. The gradient is denoted by @f

@b , so that

@f

@b
(b0) ¼

@f
@b1

(b0)
@f
@b2

(b0)

..

.

@f
@bp

(b0)

0BBBBB@

1CCCCCA:

From the results for functions of a single variable it follows that
f (b) � f (b0)þ @f

@bi
(b0) � (bi � b0i) if bi � b0i and bj ¼ b0j for all j 6¼ i—that is, if

only the ith component of b varies. The function f is called differentiable if for
every p� 1 vector b0 there exists a p� 1 vector a0 such that

limh!0
f (b0 þ h)� f (b0)� a00h

khk ¼ 0:

Here h denotes a p� 1 vector and h ! 0 means that khk ¼ Pp
i¼1 h

2
i

� �1=2! 0. In
particular, if we take h ¼ (0, � � � , 0, hi, 0, � � � , 0)0 with a single element hi on the
ith position and zeros elsewhere, then f (b0 þ h) is a function only of the ith
component of b, so that a0i ¼ @f

@bi
(b0) and a0 is the gradient of f at b0. Let

b ¼ b0 þ h; then we can write the above result as

f (b) � f (b0)þ @f

@b
(b0)

� �0
(b� b0) if b � b0:

This is called the linear approximation of the function f at b0.

Example A.10: Simulated Data on Student Learning (continued)

We consider the sum of squares f (b) ¼ (y�Xb)0(y�Xb) of p ¼ 3 variables
defined in (A.2) in Example A.3— that is,

f (b) ¼ 38:66� 27:2b1 � 176b2 � 164b3 þ 5b21 þ 201b22 þ 175b23
þ 62b1b2 þ 58b1b3 þ 372b2b3:

E
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The gradient of f at b is equal to

@f

@b
¼

@f
@b1

@f
@b2

@f
@b3

0BBB@
1CCCA ¼

�27:2þ 10b1 þ 62b2 þ 58b3

�176þ 402b2 þ 62b1 þ 372b3

�164þ 350b3 þ 58b1 þ 372b2

0B@
1CA

¼
�27:2

�176

�164

0B@
1CAþ

10 62 58

62 402 372

58 372 350

0B@
1CA b1

b2

b3

0B@
1CA: (A:5)

If we compare this with (A.1) in Example A.3, then we see that the gradient of the
least squares criterion (y�Xb)0(y�Xb) ¼ y0y� 2b0X0yþ b0X0Xb can be written
as

@(y�Xb)0(y�Xb)

@b
¼ �2X0yþ 2X0Xb:

Maxima and minima of functions of several variables

The function f is said to have a global (local) maximum at b0 if f (b0) � f (b) for all
b (respectively for all b close to b0), and a global (local) minimum if f (b0) � f (b)
for all b (respectively for all b close to b0). If the function f is differentiable, then it
satisfies the following p first order conditions in all points b0 where f has a local
maximum or minimum:

@f

@b
(b0) ¼ 0:

This corresponds to p equations in the p variables b0. To distinguish between
maxima and minima we assume that the function f is twice differentiable— that
is, that each of the p functions gi(b) ¼ @f

@bi
(b) is a differentiable function of b. Then

the p2 second order partial derivatives of f are defined by @2f
@bj@bi

¼ @gi
@bj

for
i ¼ 1, � � � , p, j ¼ 1, � � � , p. The Hessian matrix of f at b0 is the p� p matrix of
second order derivatives defined by

@2f

@b@b0
(b0) ¼

@2f
@b1@b1

(b0)
@2f

@b1@b2
(b0) � � � @2f

@b1@bp
(b0)

@2f
@b2@b1

(b0)
@2f

@b2@b2
(b0) � � � @2f

@b2@bp
(b0)

..

. ..
. ..

. ..
.

@2f
@bp@b1

(b0)
@2f

@bp@b2
(b0) � � � @2f

@bp@bp
(b0)

0BBBBBB@

1CCCCCCA:

The function f has a local maximum at b0 if it satisfies the first order conditions at
b0 and the Hessian matrix at b0 is negative definite. This maximum is global if the
Hessian matrix is negative definite for all p� 1 vectors b. The function has a local
minimum at b0 if it satisfies the first order conditions at b0 and the Hessian matrix
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at b0 is positive definite, and the minimum is global if the Hessian matrix is
positive definite for all values of b.

Example A.11: Simulated Data on Student Learning (continued)

We continue our analysis of Example A.10 of the sum of squares function
f (b) ¼ (y�Xb)0(y�Xb) in (A.2). To determine the minimum of this function
we first solve the first order conditions @f

@b ¼ 0. According to the foregoing analysis
in Example A.10, the gradient can be written as �2X0yþ 2X0Xb ¼ 0. So the first
order conditions correspond to the three linear equations X0Xb ¼ X0y. These are
called the normal equations. We saw before that X0X is an invertible matrix and
we computed the inverse matrix in Example A.5 (see (A.3)). The vector X0y was
computed in Example A.3 (see (A.1)). If we use these results, it follows that the
first order conditions are satisfied for the unique vector b given by

b ¼ (X0X)�1X0y ¼ 1

107

579 �31 �63
�31 34 �31
�63 �31 44

0@ 1A 13:6
88:0
82:0

0@ 1A ¼ 1

107

�19:6
28:4
23:2

0@ 1A:

To prove that these values of b provide a minimum of f (b) we have to prove that
the Hessian matrix at this point is positive definite. From the gradient in (A.5) in
Example A.10 we obtain

@2f

@b@b0
¼

@2f

@b1@b1

@2f

@b1@b2

@2f

@b1@b3

@2f

@b2@b1

@2f

@b2@b2

@2f

@b2@b3

@2f

@b3@b1

@2f

@b3@b2

@2f

@b3@b3

0BBBBBBB@

1CCCCCCCA ¼
10 62 58

62 402 372

58 372 350

0B@
1CA:

So the Hessian matrix is equal to 2X0X with X0X given in (A.1). We have already
checked in Example A.8 that X0X is positive definite. As the Hessian matrix does
not depend on the value of the 3� 1 vector b, it follows that the computed value of
b ¼ � 19:6

107 ,
28:4
107 ,

23:2
107

� �0
is a global minimum of the least squares criterion f (b). The

E

XMA01SIM

Dependent Variable: FGPA
Method: Least Squares
Included observations: 5

Variable Coefficient
CONSTANT �0.183178

SATM 0.265421
SATV 0.216822

Sum Squared Residuals 0.014766

Exhibit A.3 Simulated Data on Student Learning (Example A.11)

Output of an econometric software package for the least squares coefficients and the corre-
sponding sum of squares for the data of Exhibit A.1 on the scores FGPA, SATM, and SATVof
five students.
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vector b is called the least squares estimate of the parameters b1, b2, b3 for the score
data of the five students, and the corresponding model is given by y ¼ � 19:6

107 þ
28:4
107 xþ 23:2

107 z � �0:183þ 0:265xþ 0:217z, where y stands for FGPA, x for SATM,
and z for SATV. The corresponding minimum sum of squares is obtained from
(A.2) in Example A.3, with (rounded) value f � 19:6

107 ,
28:4
107 ,

23:2
107

� � � 0:0148.
For comparison, Exhibit A.3 contains the output of an econometric software

package.

A.8 Concentration and the Lagrange method

E Used in Chapter 4.

Method of concentration in optimization

To determine the maximum or minimum of a function of several variables it is
sometimes helpful to use the so-called concentration method. Let f (b) be a
function of the p� 1 vector b and let this vector be split in two parts, a p1 � 1
vector b1 and a (p� p1)� 1 vector b2, so that f (b) can be written as f (b1, b2). For
given values of b1 the function f (b1,b2) can be viewed as a function of b2. Let
m(b1) ¼ maxb2 f (b1, b2) be the maximum (with respect to b2) of f (b1, b2) for given
values of b1; then the maximum value m(b1) is a function of b1 that can be
maximized (with respect to b1). There holds

maxb1, b2 f (b1,b2) ¼ maxb1 maxb2 f (b1, b2)
� �

:

A similar result holds true for the minimum of a function. The advantage of the
concentration method is that the two minimizations involve less variables
((p� p1) and p1 respectively) than the one-shot minimization of f with respect
to all its p components.

Method of Lagrange

As a final topic we consider the maximization or minimization of functions under
restrictions. Let f and gj (j ¼ 1, � � � , r) be differentiable functions of p variables b,
and suppose we wish to determine the maximum or minimum of the function f (b)
under the restrictions that gj(b) ¼ 0 for all j ¼ 1, � � � , r. We suppose that the
derivatives of f and gj (j ¼ 1, � � � , r) are all continuous functions and that the
p� r matrix with columns

@gj
@b (j ¼ 1, � � � , r) has rank r. The method of Lagrange

states that the constrained maxima and minima of f (b) satisfy the first order
conditions for the Lagrange function L(b, l) defined by

L(b, l) ¼ f (b)�
Xr
j¼1

ljgj(b):

The corresponding set of first order conditions is given by
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@L

@bi
¼ @f

@bi
�
Xr
j¼1

lj
@gj
@bi

¼ 0, i ¼ 1, � � � ,p,

@L

@lj
¼ gj(b) ¼ 0, j ¼ 1, � � � , r:

Solutions for this set of (pþ r) equations in the (pþ r) unknowns (b, l) can be
obtained by numerical methods.

Interpretation of the Lagrange multipliers

Let (b0, l0) be a solution of the above set of (pþ r) equations; then the Lagrange
multipliers l0j have the following interpretation. Let h be a p� 1 vector with small
entries such that g1(b0 þ h) ¼ a1 6¼ 0 and gj(b0 þ h) ¼ 0 for all j ¼ 2, � � � , r. This
corresponds to relaxing the first restriction. As h is small, it follows that
a1 ¼ g1(b0 þ h) � � @g1@b (b0)

�0
h and 0 ¼ gj(b0 þ h) � � @gj@b (b0)

�0
h for j ¼ 2, � � � , r,

and from the first p first order conditions of the Lagrange function it follows that

f (b0 þ h) � f (b0)þ @f

@b
(b0)

� �0
h ¼ f (b0)þ

Xr
j¼1

l0j
@gj
@b

(b0)

 !0
h � f (b0)þ l01a1:

That is, l01 measures the marginal effect on the value of the function f when the
first restriction is relaxed. In a similar way, l0j measures the marginal effect on the
function value due to relaxing the jth restriction. For this reason, in business and
economics the Lagrange multipliers l0 are also called the shadow prices of the r
restrictions.

Example A.12: Simulated Data on Student Learning (continued)

We consider again the scores of the five students and we minimize the sum of
squares f (b) ¼ (y�Xb)0(y�Xb) in (A.2) of Example A.3 under the two restric-
tions that b2 ¼ 0 and b3 ¼ 0. That is, we impose the model restriction that SATM
and SATV do not affect the FGPA scores. The corresponding Lagrange function is
L ¼ f (b)� l1b2 � l2b3, and, using the expression (A.5) in Example A.10 for the
gradient of f , we obtain the following first order conditions:

@L

@b1
¼ @f

@b1
¼ �27:2þ 10b1 þ 62b2 þ 58b3 ¼ 0,

@L

@b2
¼ @f

@b2
� l1 ¼ �176þ 62b1 þ 402b2 þ 372b3 � l1 ¼ 0,

@L

@b3
¼ @f

@b3
� l2 ¼ �164þ 58b1 þ 372b2 þ 350b3 � l2 ¼ 0,

@L

@l1
¼ b2 ¼ 0,

@L

@l2
¼ b3 ¼ 0:

E
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Substituting b2 ¼ b3 ¼ 0 in the first equation gives b1 ¼ 2:72 with corresponding
sum of squares f (2:72, 0, 0) ¼ 1:668. The second and third equation give
l1 ¼ �7:36 and l2 ¼ �6:24. For instance, if we relax the first restriction to
b2 ¼ a1 ¼ 0:001, then f (2:72, 0:001, 0) ¼ 1:660841 and the ‘increase’ in the
sum of squares is 1:660841 � 1:668 ¼ �0:007159 � �0:00736 ¼ l1a1. In a simi-
lar way, relaxing the third restriction to b3 ¼ a2 ¼ 0:001 gives f (2:72, 0, 0:001) ¼
1:661935, with corresponding ‘increase’ in the sum of squares 1:661935
�1:668 ¼ �0:006065 � �0:00624 ¼ l2a2.
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Exercise

Consider the data on FGPA (denoted by y), SATM
(denoted by x), and SATV (denoted by z) of the five
students in Exhibit A.1. In the text we discussed the
model y ¼ b1 þ b2xþ b3z. In this exercise
we analyse this model without the constant
term—that is,

y ¼ c1xþ c2z:

a. Write this model in the form y ¼ Zc where y is
the vector of FGPA scores and Z the matrix with
SATM and SATV scores and where c is the 2� 1
vector with the coefficients c1 and c2.

b. Compute the matrix Z0Z and its inverse (Z0Z)�1.

c. Check that the matrices Z0Z and (Z0Z)�1 are
both positive definite.

d. Compute the two eigenvalues of the matrix Z0Z
and check that the sum and product of these two
eigenvalues are respectively equal to the trace
and the determinant of this matrix.

e. Write f (c1, c2) ¼ (y� Zc)0(y� Zc) as a function
of c1 and c2. Derive the gradient and the Hessian
matrix of this function.

f. Use the results in e to compute the minimum of
the function f (c1, c2) and prove that this is a
global minimum.

g. Check that the global minimum in f is obtained
for c ¼ (Z0Z)�1Z0y.

h. The model of this exercise corresponds to the
original model y ¼ b1 þ b2xþ b3z under the re-
striction that b1 ¼ 0. The values of c1 and c2
computed in f minimize the function
g(b1,b2,b3)¼

P5
i¼1 (yi�b1�b2xi�b3zi)

2 under
the restriction that b1 ¼ 0. Write down the La-
grange function L(b1,b2, b3, lÞ that corresponds
to this restricted minimization problem, and
derive the four first order conditions for a min-
imum of the function L.

i. Solve the four equations of h and check that the
restricted estimates of b2 and b3 are equal to
the computed values of c1 and c2 in f. What is the
shadow price of the restriction b1 ¼ 0? Give an
interpretation of the shadow price,
using the results of Example A.11.

j. Use a software package to check the
computed values of c1 and c2 in f. XMA01SIM
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Appendix B. Data Sets

This appendix describes the data sources and the definitions of the variables of all
empirical data sets used in the examples and in the empirical exercises.1 The
numerical data can be downloaded from the web site of the book. All econometric
analysis in the examples and exercises in the book is performed with the software
package EViews (version 3 suffices), but other packages can also be used in most
cases.

The names of the data files start with XM for examples and with XR for
exercises, followed by three digits indicating the chapter and the example or
exercise number, and concluded with three letters to indicate the data content.
For instance, the file XR210COF contains the data of Exercise 2.10 on coffee
sales. If a data set is used in different chapters, then separate data files are included
for each chapter, because in some cases different variables are analysed in the
different chapters. Some of the original data sources contain additional variables
that are not mentioned if they are not used in this book. Missing values in the
original data sources are not deleted.

The list on p. 748 facilitates the use of this appendix. For instance, if you need
further information on the data in the file XR210COF, the list shows ‘COF’
(Coffee Sales) as the 4th data set described in this appendix. For each data set,
this appendix gives information on

. the topic of the data set,

. the type of data,

. the source of the data,

. the meaning of the variables,

. a list of examples and exercises where the data are used in the book.

The data sets are ordered according to their first appearance in the book.

1 In this appendix we do not discuss simulated data sets (which have extension SIM) because
the main text describes the simulation set-up explicitly for each case. Some simulated data sets
can be downloaded from the web site of the book—that is, the data needed for Exercises 4.12,
5.23, and 6.10, and for the examples in Appendix A.



List of Data Sets

(The chapters where the data set is used are in parentheses.)

1. STU: Student Learning (Chapters 1–3, 6).

2. BWA: Bank Wages (Chapters 1–6).

3. SMR: Stock Market Returns (Chapters 2, 4, 5, 7).

4. COF: Coffee Sales (Chapters 2–5).

5. PMI: Primary Metal Industries (Chapters 3, 7).

6. MGC: Motor Gasoline Consumption (Chapters 3, 5, 7).

7. FEX: Food Expenditure (Chapters 4, 5).

8. FAS: Fashion Sales (Chapters 5, 7).

9. IBR: Interest and Bond Rates (Chapters 5, 7).

10. INP: Industrial Production (Chapters 5, 7).

11. TOP: Salaries of Top Managers (Chapter 5).

12. USP: US Presidential Election (Chapter 5).

13. DMF: Direct Marketing for Financial Product (Chapter 6).

14. DUS: Duration of Strikes (Chapter 6).

15. DJI: Dow-Jones Index (Chapter 7).

16. MOM: Mortality and Marriages (Chapter 7).

17. TBR: Treasury Bill Rates (Chapter 7).

18. CAR: Car Production (Chapter 7).

19. NEP: Nuclear Energy Production (Chapter 7).

20. GNP: Gross National Product (Chapter 7).

21. EXR: Exchange Rates (Chapter 7).

22. STP: Standard and Poor Index (Chapter 7).

23. MOR: Market for Oranges (Chapter 7).

748 Appendix B. Data Sets



1. Student Learning (STU)

Topic. Scores of students of the Vanderbilt University in the USA.

Type of data. Cross section, 609 observations, 4 variables.

Source. J. S. Butler, T. A. Finegan, and J. J. Siegfried, ‘Does More Calculus
Improve Student Learning in Intermediate Micro- and Macroeconomic Theory?’,
Journal of Applied Econometrics, 13/2 (1998), 185–202 (data obtained from the
journal data archive on the Internet site qed.econ.queensu.ca/jae).

Variable Meaning

FGPA overall grade point average at end of freshman year (on a scale
from 0 to 4)

SATM score on the SAT Mathematics test divided by 100 (on a scale
from 0 to 10)

SATV score on the SAT Verbal test divided by 100 (on a scale from
0 to 10)

FEM gender (1 for females, 0 for males)

Datafile Used in

XM101STU2 Examples 1.1–1.7, 1.12, 1.13
XR111STU3 Exercises 1.11, 1.12, 2.14
XR314STU Exercise 3.14
XM608STU4 Example 6.8
XR615STU5 Exercise 6.15

2 Some examples use the variable SATA, the average SAT score defined by SATA ¼
0:5(SATMþ SATV).

3 This is a subset of ten randomly selected students out of the group of 609 students.
4 Whereas the previous data sets of 609 students concerned the microeconomics course, this

data set contains additional data of 490 students on the macroeconomics course (the data for
microeconomics and those for macroeconomics are contained in two separate files). The data set
contains several additional variables, such as GRINTERMICRO and GRINTERMACRO
(obtained grades in microeconomics and macroeconomics, on a scale from 0 to 4) and
MATHHIGH (the level of calculus of the student, 0 if 3–4 credit hours, 1 if 6–12 credit
hours). See Exhibit 6.12 for a complete list of the variables.

5 This is basically the same data set as the data set for microeconomics (with 609 students) in
XM608STU, with the difference that this data set distinguishes seven attained levels of math-
ematics (instead of two) and five majors (instead of three).
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2. Bank Wages (BWA)

Topic. Wages of employees of a bank in the USA.

Type of data. Cross section, 474 observations, 8 variables.

Source. SPSS, version 10, 2000, data file bank2.sav (with thanks to SPSS).

Variable Meaning

SALARY current yearly salary (in dollars)
LOGSALARY (natural) logarithm of SALARY
EDUC education (number of finished years)
SALBEGIN yearly salary at employee’s first position at same bank

(in dollars)
LOGSALBEGIN (natural) logarithm of SALBEGIN
GENDER gender variable (0 for females, 1 for males)
MINORITY minority variable (0 for non-minorities, 1 for minorities)
JOBCAT job category (1 for administrative jobs, 2 for custodial jobs,

3 for management jobs)

Datafile Used in

XR113BWA6 Exercise 1.13
XM202BWA7 Examples 2.2, 2.6, 2.9, 2.11; Section 2.1.4
XM301BWA8 Examples 3.1–3.3, 4.1; Sections 3.1.1, 3.1.7, 3.3.2,

3.3.4, 3.4.2, 3.4.4; Exercises 3.13, 3.16
XR414BWA Example 4.1; Exercises 4.14, 4.15
XM501BWA9 Examples 5.1, 5.2, 5.4, 5.5, 5.8–5.10, 5.12, 5.15, 5.17;

Exercises 5.24, 5.25
XM513BWA10 Examples 5.13, 5.17
XM604BWA11 Examples 6.4, 6.5
XR613BWA12 Exercise 6.13
XR614BWA13 Exercise 6.14

6 Contains only the data on current salary and education.
7 Contains only the data on current salary and education.
8 For simplicity the logarithm of current salary is denoted by LOGSAL (instead of

LOGSALARY).
9 This data set contains dummy variables (DUMJCAT2 and DUMJCAT3) to denote the job

category, where the first category is taken as reference category.
10 This file contains grouped data obtained by dividing the 474 employees into twenty-six

groups. The group mean of LOGSALARY is denoted by MEANLOGSAL and that of EDUC by
MEANEDUC.

11 This file contains the data of the 258 male employees. Example 6.5 uses the ordinal variable
ORDERJOBCAT for the job category (instead of the nominal variable JOBCAT), with values
1 for custodial jobs, 2 for administrative jobs, and 3 for management jobs.

12 Contains only the data for the 258 male employees and contains the additional variable
PREVEXP, the previous experience (in months).

13 This file is comparable to XM604BWA and contains the data of all 474 employees. As
males are the reference category in this exercise, the variable GENDER is now redefined as 0 for
males and 1 for females.
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3. Stock Market Returns (SMR)

Topic. Monthly excess returns in the UK for the sector of cyclical consumer goods.

Type of data. Time series, monthly data over the period 1980–99 (240 observa-
tions), 2 variables.

Source. DataStream (data obtained from this database in 2000, with thanks to
Ronald van Dijk).

Variable Meaning

RENDCYCO excess returns on an index of 104 stocks in the sector of cyclical
consumer goods (household durables, automobiles, textiles,
and sports) in the UK (in percentages)14

RENDMARK excess returns on an overall stock market index of the total
market in the UK (in percentages)

Datafile Used in

XR201SMR Examples 2.1, 2.5; Exercises 2.1, 2.2, 2.11, 2.12
XR215SMR15 Exercise 2.15
XM404SMR Examples 4.4, 4.5, 4.7; Section 4.4.6
XR417SMR16 Exercise 4.17
XM527SMR Examples 5.27, 5.28
XR530SMR17 Exercise 5.30
XR722SMR Exercise 7.22

14 The excess returns are defined as follows. Let pi be the closing price of the index at the last
trading day in month i and let ri be the one-month interest rate at the start of month i. Then the
return vi of the index over month i is defined by vi ¼ (pi � pi�1)=pi�1 and the excess return is
defined by vi � ri. The reported numbers in the data file are percentages— that is, 100(vi � ri).
For ri we take the so-called middle rate.

15 This file also contains the excess returns of stock indices of three other sectors—namely,
Noncyclical Consumer Goods (RENDNCCO), Information Technology (RENDIT), and Tele-
communication, Media and Technology (RENDTEL).

16 This file contains the excess returns for the sector of Noncyclical Consumer Goods
(RENDNCCO) and the market returns (RENDMARK).

17 This file also contains the excess returns of the stock index for the sector of Noncyclical
Consumer Goods (RENDNCCO).
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4. Coffee Sales (COF)

Topic. Effect of price reductions on coffee sales in suburban areas in Paris.

Type of data. Cross section data of weekly coffee sales for two brands of coffee in
a controlled marketing experiment, 12 observations, 3 variables.

Source. A. C. Bemmaor and D. Mouchoux, ‘Measuring the Short-Term Effect of
In-Store Promotion and Retail Advertising on Brand Sales: A Factorial Experi-
ment’, Journal of Marketing Research, 28 (1991), 202–14 (data for two brands of
regular ground coffee (RGC1 and RGC2) are obtained from table 3 on p. 206).18

Variable Meaning

QUANTITY quantity of coffee sold (weekly total unit sales of the
considered shops)

PRICE price of coffee (indexed, usual price has value 1, price is 0.95
for 5% price reduction and 0.85 for 15% price reduction)

DEAL deal rate (with values 1, 1.05, and 1.15, defined by
DEAL ¼ 2� PRICE)

Datafile Used in

XR210COF19 Examples 2.3, 2.7; Exercise 2.10
XR317COF20 Exercise 3.17
XM402COF21 Examples 4.2, 4.6; Section 4.2.5
XR413COF22 Exercise 4.13
XM507COF23 Example 5.7
XR526COF24 Exercise 5.26

18 The experiment contains six weeks with no actions, six weeks with price reductions
without advertisement, and six weeks with price reductions combined with advertisement. The
basic data set considers the twelve weeks without advertisement.

19 This file contains data for the second brand of coffee (RGC2) for the twelve weeks without
advertisement.

20 This file contains data for the first brand (RGC1) with eighteen observations (instead of
twelve), including the six observations for weeks with advertisement. The file also contains the
variable A (advertisement dummy with value 1 in weeks with advertisement and 0 in weeks
without advertisement).

21 This file contains twenty-four observations, twelve observations for each of the two brands
of coffee (RGC1 and RGC2) for the twelve weeks without advertisement. It contains as
additional variables LOGQ1 and LOGQ2 (the logarithms of the sold quantities for the two
brands), D1 and D2 (the deal rates for the two brands) and LOGD1 and LOGD2 (the logarithms
of D1 and D2).

22 This file contains the data for the second brand of coffee (RGC2) for the twelve weeks
without advertisement.

23 This file contains the same twenty-four observations as the file XM402COF. Apart from the
variables QUANTITY, PRICE, and DEAL, it also contains the variables LOGQ (the logarithm of
the sold quantity) and DUMRGC1 and DUMRGC2 (dummy variables that indicate the brand).

24 This file contains data for the first brand (RGC1) for the twelve action weeks, six weeks
with price reductions without advertisement and six weeks with price reductions combined with
advertisement. It contains as additional variables A (advertisement dummy, 1 in weeks with
advertisement and 0 otherwise) and DP (price dummy, 1 in weeks with 15 per cent price
reduction and 0 in weeks with 5 per cent price reduction).

752 Appendix B. Data Sets



5. Primary Metal Industries (PMI)

Topic. Production in the US Primary Metal Industries (SIC33).

Type of data. Pooled annual data of 26 firms over the period 1958–94 (37
observations per firm), 3 variables.

Source. E. J. Bartelsman and W. Gray, ‘The NBER Manufacturing Productivity
Database’, National Bureau of Economic Research, NBER Technical Working
Paper 205 (1996), 30 pp. (data obtained from the Internet site www.nber.org in
1998, with thanks to Piet Lesuis).

25 Contains the three variables in logarithms, denoted by LOGY (for production), LOGL (for
labour), and LOGK (for capital). The data set consists of a cross section of the twenty-six firms
for the single year 1994.

26 Pooled data set; contains the logarithms of the three variables (denoted by LOGPROD,
LOGLAB, and LOGCAP) and the nominal variable ID (indicating the firm, ranging from
1 to 26).

Variable Meaning

PRODUCTION value added (in millions of 1987 dollars)
LABOUR total payroll of production worker wages (in millions of

1987 dollars)
CAPITAL capital stock, both structures and equipment (in millions of

1987 dollars)

Datafile Used in

XR315PMI25 Exercise 3.15
XM729PMI26 Examples 7.29, 7.30
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6. Motor Gasoline Consumption (MGC)

Topic. Consumption of motor gasoline in the USA.

Type of data. Time series, yearly data over the period 1970–99 (30 observations),
7 variables.

Source. Economic Report of the President 2000 (statistical tables obtained from
the Internet site w3.access.gpo.gov/eop in 2000)27 and Census Bureau and De-
partment of Energy (data obtained from the database Economagic at the Internet
site www.economagic.com in 2000).28

27 The variable INC is taken from file b29, the variable PALL from file b60, and the variables
PPUB, PNCAR, and PUCAR from file b59b.

28 The variable SGAS is obtained from the Census Bureau (retail sales by kind of business,
gasoline service stations) and the variable PGAS from the Department of Energy (energy prices,
motor gasoline retail prices, all types). The original monthly data for SGAS are aggregated to
yearly data and the original monthly data for PGAS are averaged to yearly data. The data for
PGAS are given in Economagic for the years 1978–99; the values for 1970–77 are obtained from
W. H. Greene, Econometric Analysis (3rd edn., Prentice Hall, 1997), p. 328, after appropriate
scaling.

29 The exercises use several variables that are defined directly in terms of the variables
mentioned above, by taking variables in real terms (instead of nominal) and by taking loga-
rithms.

30 This file contains the following variables in real terms, and taken in logarithms:
GC ¼ log (SGAS=PGAS) (gasoline consumption), PG ¼ log (PGASS=PALL) (real price of
gasoline), RI ¼ log (INC=PALL) (real income), RPT ¼ log (PPUB=PALL) (real price of public
transport), RPN ¼ log (PNCAR=PALL) (real price of new cars), and RPU ¼ log (PUCAR=PALL)
(real price of used cars).

31 This file is the same as XM531MGC.

Variable Meaning

SGAS nominal retail sales of gasoline service stations (in millions
of dollars)

PGAS motor gasoline retail price (US city average, in cents per gallon)
INC nominal personal disposable income (in billions of dollars)
PALL consumer price index (indexed so that the average value over

the years 1982–84 is equal to 100)
PPUB consumer price index of public transport (indexed in the

same way)
PNCAR consumer price index of new cars (indexed in the same way)
PUCAR consumer price index of used cars (indexed in the same way)

Datafile Used in

XR318MGC29 Exercises 3.18, 3.19
XM531MGC30 Examples 5.31, 5.34; Exercise 5.31
XR721MGC31 Exercise 7.21

754 Appendix B. Data Sets



7. Food Expenditure (FEX)

Topic. Household expenditure on food and beverages.

Type of data. Cross section, 54 observations,32 5 variables.

Source. J. R. Magnus and M. S. Morgan (eds.), ‘The Experiment in Applied
Econometrics’, Journal of Applied Econometrics, 12/5 (1997), 651–61, special
issue (data obtained from Experiment Information Pack of the editors, file
BS50US, see the journal data archive at the Internet site qed.econ.queensu.ca/jae).

32 The data are group averages of 12,448 households (divided into fifty-four groups). The
household data are obtained by an interview survey in 1951 in the USA on income and
expenditure over the whole year of 1950.

33 The original data source contains the variables TOTCON and FOODCON measured
in dollars per year, here we use TOTCONS ¼ TOTCON=10,000 and FOODCONS ¼
FOODCON=10,000:

34 Contains restricted data set of forty-eight groups obtained by deleting the six smallest
groups (with SAMPSIZE < 20). The data set is ordered in segments according to the variable
AHSIZE, and for groups within the same segment according to the variable TOTCONS (for
details see Example 5.20 (p. 356–8)). The data can also be ordered randomly, and the random
ordering discussed in the book corresponds to the variable RAND in the data file.

Variable Meaning

TOTCONS total consumption expenditure (in 10,000 dollars per year)
FOODCONS food and beverage consumption expenditure (in 10,000

dollars per year)
FRACFOOD fraction of expenditure spent on food

(FOODCONS/TOTCONS)33

AHSIZE household size (average in the group of households)
SAMPSIZE number of households in the group

Datafile Used in

XR416FEX Example 4.3; Exercise 4.16
XM520FEX34 Examples 5.20, 5.23, 5.25; Exercise 5.27
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8. Fashion Sales (FAS)

Topic. US retail sales of high priced fashion apparel.

Type of data. Time series, quarterly data over the period 1986–92 (28 observa-
tions), 3 variables (and 6 derived variables).

Source. G. M. Allenby, L. Jen, and R. P. Leone, ‘Economic Trends and Being
Trendy: The Influence of Consumer Confidence on Retail Fashion Sales’, Journal
of Business and Economic Statistics, 14/1 (1996), 103–11 (data obtained from the
journal data site ftp://www.amstat.org/ JBES_View/).35

35 The original monthly data are aggregated to quarterly data. See p. 105 of the article for a
detailed definition of the variables.

36 Pooled data with twenty-eight quarterly sales data for each of five speciality divisions. The
divisions 1 and 2 specialize in high-priced fashion apparel (division 1 corresponds to the data set
XM506FAS), division 3 in low-priced merchandise, and divisions 4 and 5 in specialities like large
sizes, undergarments, and so on.

Variable Meaning

SALES real fashion sales (in millions of dollars per thousand square feet
of retail space)

PURABI purchasing ability (real personal disposable income divided by
consumer price index for apparel)

CONFI consumer confidence (an index of consumer sentiment of the
University of Michigan Survey Research Center)

LOGSALES logarithm of SALES
LOGA logarithm of PURABI
LOGC logarithm of CONFI
D2, D3, D4 quarterly dummy variables for quarters 2, 3, 4

Datafile Used in

XM506FAS Example 5.6
XR725FAS36 Exercise 7.25
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9. Interest and Bond Rates (IBR)

Topic. Treasury Bill rate and AAA bond rate in the USA.

Type of data. Time series, monthly data over the period 1950–99 (600 observa-
tions), 2 variables.

Source. Federal Reserve Board of Governors (data obtained from the database
Economagic at the Internet site www.economagic.com in 2000).37

37 The Treasury Bill rate is the three-month rate (auction average) and the AAA bond rate is
Moody’s Seasoned AAA, a monthly average over long-term bonds of firms with AAA rating.

38 If the value of the rate in month i is denoted by ri and that of the previous month by ri�1,
then the change DUS3MTi in month i is defined by ri � ri�1.

39 This file also contains the dummy variable DUM7599 with value 1 for 1975–99 and value 0
for 1950–74, which is used in Examples 5.16 and 5.18.

40 This file contains the monthly levels (in percentages) of the three-month Treasury Bill rate,
denoted by US3MTBIL, so that DUS3MTi ¼ US3MTBILi � US3MTBILi�1. The data period is
January 1985 to December 1999 (180 observations).

41 Apart from the first differences DUS3MT and DAAA, this file also contains the level
US3MTBIL of the three-month Treasury Bill rate and the level AAA of the AAA bond rate that
are used in Examples 7.25 and 7.27 and in Exercise 7.19 (both levels are in percentages). This file
contains monthly data over the period 1948–99, so that the values in 1948 and 1949 can be used
as pre-sample values to estimate models for the period 1950–99.

Variable Meaning

DUS3MT monthly change in the three-month US Treasury Bill rate
(in percentages)38

DAAA monthly change in the AAA corporate bond yield
(in percentages)

Datafile Used in

XM511IBR39 Examples 5.11, 5.12, 5.14, 5.16, 5.18, 5.19, 5.21, 5.22, 5.24,
5.30, 5.32, 5.33

XR528IBR40 Exercise 5.28
XM722IBR41 Examples 7.22, 7.25–7.27, 7.32; Exercise 7.19
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10. Industrial Production (INP)

Topic. Index of total industrial production in the USA.

Type of data. Time series, quarterly data over the period 1950.1–1998.3 (195
observations),42 1 variable.

Source. OECD Main Economic Indicators (data obtained from the database
DataStream in 1999).

42 In most of the analysis the data prior to 1961.1 are used as starting values and the data from
1995.1–1998.3 are left out for forecast evaluation purposes, in which case the effective sample
ranges from 1961.1 to 1994.4 with 136 observations.

43 This file contains the variables X (this is IP, the level of the index), Y (defined by
Y ¼ log (X), the logarithm of the series IP), and D4Y (defined by D4Y ¼ Y� Y(� 4) ¼
log (X=X(� 4) ) � (X�X(� 4) )=X(� 4), the yearly growth rate of the series IP). In addition,
in Example 7.16 we use the variable YEARSUMY (the year total Yþ Y(� 1)þ Y(� 2)þ
Y(� 3) over the last four quarters) and in Example 7.17 we use some dummy variables for
specific observations (for instance, the dummy variable DUM611 has value 1 for the first quarter
of 1961 and value 0 for all other quarters).

Variable Meaning

IP total industrial production index (indexed so that the average
value over the four quarters of 1992 is equal to 100)

Datafile Used in

XM526INP Example 5.26; Exercise 5.29
XM701INP43 Examples 7.1, 7.7, 7.8, 7.10, 7.11, 7.13, 7.14, 7.16–7.18,

7.20; Exercise 7.16
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11. Salaries of Top Managers (TOP)

Topic. Salaries of top managers and profits of the 100 largest firms in the Nether-
lands in 1999.44

Type of data. Cross section, 100 observations, 3 variables.

Source. Annual reports of firms (data obtained from the Dutch newspaper
Volkskrant at the Internet site www.volkskrant.nl in 2000).

44 The set includes firms such as ABN–AMRO, Ahold, ING, Philips, Shell, and Unilever.
45 One missing value (in sector of social services), three firms with negative profits (in

telecommunication sector), ninety-six firms with positive profits.
46 Thirteen missing values (in banking and insurance sector).
47 The model is formulated in terms of logarithms of the variables (denoted by LOGSALARY,

LOGPROFIT, and LOGTURNOVER). In most cases the analysis is restricted to the ninety-six
firms with positive profits, the total turnover of the four dropped firms is less than 1 per cent of
the total turnover of the 100 firms. In one case we use the variable TURNOVER; this leaves
eighty-four observations.

Variable Meaning

SALARY average yearly salary in 1999 of top managers of the same
firm (in thousands of Dutch guilders)

PROFIT45 profit of the firm in 1999 (in millions of Dutch guilders)
TURNOVER46 turnover of the firm in 1999 (in millions of Dutch guilders)

Datafile Used in

XM535TOP47 Example 5.35; Exercise 5.32
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12. US Presidential Election (USP)

Topic. US presidential election in 2000, results for the state Florida.

Type of data. Cross section, observations for 67 counties in Florida,48 10 variables
(and 2 derived variables).

Source. CBS (data obtained via the Internet site www.cbsnews.com in 2000, with
thanks to Ruud Koning).49

48 The reported values are the number of votes on each candidate counted automatically,
before recounting by hand, and excluding votes by mail.

49 Similar data, of the 10 November recount, are discussed by B. E. Hansen (see the Internet
site www.ssc.wisc.edu/�bhansen/vote for further information). The data differ somewhat be-
cause of the recounts.

50 Defined as the sum of the number of votes on the ten mentioned candidates.

Variable Meaning

BROWNE number of votes for candidate Browne
BUCHANAN idem for Buchanan
BUSH idem for Bush
GORE idem for Gore
HAGELIN idem for Hagelin
HARRIS idem for Harris
MCREYNOLDS idem for McReynolds
MOOREHEAD idem for Moorehead
NADER idem for Nader
PHILLIPS idem for Phillips
TOTAL total number of votes in the county50

DUMPALM dummy variable for the county Palm Beach (1 for county
50 (Palm Beach), 0 for the other 66 counties)

Datafile Used in

XR533USP Exercise 5.33
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13. Direct Marketing for Financial Product (DMF)

Topic. Response of customers of a commercial bank to direct marketing campaign
for a new financial product (‘click funds’).

Type of data. Cross section, 925 observations,51 5 variables.

Source. P. H. Franses, ‘On the Econometrics of Modeling Direct Marketing
Response’, RIBES report 97–15, Rotterdam, 1997 (with thanks to Robeco).

51 The original database contains more than 100,000 observations.
52 The file contains the additional variable LOGINV defined by LOGINV ¼ log (1þ

INVEST).

Variable Meaning

RESPONSE response (dummy variable, 1 if customer invests in the new
product and 0 otherwise)

INVEST amount of money invested by the customer in the new
product (in hundreds of Dutch guilders)

GENDER gender (1 for males, 0 for females)
ACTIVITY activity indicator (1 if customer already invests in other

products of the bank and 0 otherwise)
AGE age of customer (in years)

Datafile Used in

XM601DMF52 Examples 6.1–6.3, 6.6, 6.7; Exercises 6.11, 6.12, 6.16
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14. Duration of Strikes (DUS)

Topic. Duration of contract strikes in US manufacturing.

Type of data. Cross section, 62 observations, 2 variables.

Source. J. Kennan, ‘The Duration of Contract Strikes in US Manufacturing’,
Journal of Econometrics, 28 (1985), 5–28 (the data are in table 1 on pp. 14–16
of this paper).53

53 The data concern official strikes in US manufacturing industries for the period 1968–76,
involving 1000 workers or more, with major issue classified as general wage changes by the
Bureau of Labor Statistics. Attention is restricted to strikes beginning in June of each year to
remove seasonal effects (see Kiefer (1988), listed in the Further Reading of Chapter 6 (p. 524)).

54 The file contains the additional variable STRIKECENS80, which is obtained by censoring
the actual durations at a maximum of 80 days, so that STRIKECENS80 ¼ min(STRIKEDUR,
80).

Variable Meaning

STRIKEDUR strike duration (length of finished strikes, measured in days)
PROD index of unanticipated industrial production in manufacturing

(the value 0 corresponds to normal conditions)

Datafile Used in

XM609DUS54 Example 6.9; Exercise 6.17
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15. Dow-Jones Index (DJI)

Topic. Dow-Jones industrial average.

Type of data. Time series, daily data from 1990 (2 January) to 1999 (31 Decem-
ber), 2528 observations, 1 variable.

Source. Economagic (data obtained from the stock price indices at the Internet site
www.economagic.com in 2000).

55 The days are numbered consecutively so that closing days are not counted.
56 The file contains variables derived from the Dow-Jones index—namely, LOGDJ (the

logarithm of DJ) and DLOGDJ (the daily differences of LOGDJ— that is, the daily returns on
the Dow-Jones index). For the purposes of Example 7.21 it also contains the derived variables
DJRET (the daily returns; this is the same series as DLOGDJ but the two names are useful in
different settings) and DJABSRET (the absolute returns, defined as the absolute value of DJRET).
The file further contains the auxiliary variables DD (day of the month, 1–31), MM (month of the
year, 1–12), and YEAR (year, 1990–1999) to relate the time series to calendar time.

Variable Meaning

DJ55 Dow-Jones Industrial Average index (daily close)

Datafile Used in

XM702DJI56 Examples 7.2, 7.15, 7.21
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16. Mortality and Marriages (MOM)

Topic. Mortality in England and Wales and proportion of Church of England
marriages.

Type of data. Time series, yearly data 1866–1911 (46 observations), 2 variables.

Source. G. U. Yule, ‘Why do we Sometimes Get Nonsense-Correlations between
Time-Series?’, Journal of the Royal Statistical Society, 89 (1926), 1–64 (the data
are reconstructed from figure 1 on p. 3 of this paper; see the comments in Example
7.23 (p. 648–9)).

Variable Meaning

STMORT standardized mortality in England and Wales
(per 1000 persons)

CEMARR proportion of Church of England marriages (per 1000 of all
marriages)

Datafile Used in

XM723MOM Example 7.23
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17. Treasury Bill Rates (TBR)

Topic. Treasury Bill rates in the USA for three different maturities.

Type of data. Time series, monthly data over the period 1960–99 (480 observa-
tions), 3 variables.

Source. Federal Reserve Board of Governors (data obtained from the database
Economagic at the Internet site www.economagic.com in 2001).57

57 The 3-month Treasury Bill rate is the secondary market series; the 1-year and 10-year
Treasury Bill rates are the constant maturity series.

58 The file also contains the three spreads between the Treasury Bill rates— that is, the
three differences DIFF_T10YT1Y ¼ T_10Y � T_1Y, DIFF_T10YT3M ¼ T_10Y � T_3M,
and DIFF_T1YT3M ¼ T_1Y � T_3M:

Variable Meaning

T_3M 3-month Treasury Bill rate (measured in percentages)
T_1Y 1-year Treasury Bill rate (measured in percentages)
T_10Y 10-year Treasury Bill rate (measured in percentages)

Datafile Used in

XM728TBR58 Example 7.28
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18. Car Production (CAR)

Topic. Production of Japanese passenger cars.

Type of data. Time series, monthly data over the period 1980.1–2001.3 (255
observations), 2 variables.

Source. DataStream (data obtained from this database in 2001).

59 The file also contains the variable ALLMINTOY¼ JPOUTPUT� TOYOTA. In addition it
contains production volumes of passenger cars of eight other industries (Daihatsu, Fuji, Honda,
Isuzu, Mazda, Mitsubishi, Nissan, and Suzuki) that are not used in the exercise but that can be
analysed in a similar way as the series of Toyota.

Variable Meaning

TOYOTA production volume of passenger cars by Toyota (number of cars)
JPOUTPUT total volume of produced passenger cars in Japan

(number of cars)

Datafile Used in

XR717CAR59 Exercise 7.17
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19. Nuclear Energy Production (NEP)

Topic. Generation of electricity from nuclear electric power in the USA.

Type of data. Time series, monthly data over the period 1973.1–1999.11 (323
observations), 1 variable.

Source. Department of Energy (data obtained from the database Economagic at
the Internet site www.economagic.com in 2000).

60 The file also contains some additional energy production series (of petroleum, of natural
gas, and of electricity generated by geothermal energy and by hydropower, as well as a total
energy production series for the USA). These series are not used in the exercise but they can be
analysed in a similar way as the series of nuclear electric power.

Variable Meaning

NUCEP net generation of electricity from nuclear electric power (in Tbtu)

Datafile Used in

XR718NEP60 Exercise 7.18
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20. Gross National Product (GNP)

Topic. Gross national product of four countries.

Type of data. Time series, yearly data over the period 1870–1993 (124 observa-
tions), 4 variables.

Source. A.Maddison,Monitoring theWorld Economy 1820–1992 (OECD, 1995)
(the data are taken from table C.16 on pp. 180–3).

61 The series for Japan has missing values for 1871–84, leaving 110 observations.
62 The file also contains the logarithms of the four GNP series, denoted by LOGGER,

LOGJAP, LOGUK, and LOGUSA.

Variable Meaning

GERMANY real gross domestic product of Germany (in millions of
Geary–Khamis dollars)

JAPAN61 real gross domestic product of Japan (same units)
UK real gross domestic product of UK (same units)
USA real gross domestic product of USA (same units)

Datafile Used in

XR720GNP62 Exercise 7.20
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21. Exchange Rates (EXR)

Topic. Exchange rates and price indices of Germany and the UK.

Type of data. Time series, monthly data over the period 1957.1–1998.4 (496
observations, the exercise uses only the 240 observations of the years 1975–94),
4 variables.

Source. International Financial Statistics (data obtained from the database Data-
Stream in 2000).

63 The file also contains the logarithms of the four series (denoted by LOG_X_UK,
LOG_X_G, LOG_P_UK, and LOG_P_G), as well as nominal exchange rates and consumer
price indices for Canada, France, Japan, and the Netherlands, together with the consumer price
index of the USA.

Variable Meaning

X_UK nominal exchange rate of British Pound to 1 US dollar
X_G nominal exchange rate of Deutsche Mark to 1 US dollar
P_UK consumer price index for the UK (indexed so that the average

over 1990 is equal to 100)
P_G consumer price index for (Western) Germany (indexed in the

same way)

Datafile Used in

XR723EXR63 Exercise 7.23
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22. Standard and Poor Index (STP)

Topic. Standard and Poor composite stock price index.

Type of data. Time series, yearly data 1871–1987 (117 observations), 2 variables.

Source. R. J. Shiller,Market Volatility (MIT Press, 1989) (the data are taken from
tables 26.1 and 26.2 on pp. 440–3).

64 The file contains several other variables, in particular SP (nominal stock price), DIV
(nominal yearly dividends), and PP (producer price index). The real variables are defined by
REALSP ¼ SP/PP and REALDIV ¼ DIV/PP. The file also contains the series of earnings (EAR),
interest rate (INT), real consumption (RC), and consumer price index (CPI).

Variable Meaning

REALSP stock price of Standard and Poor index (January, in real terms)
REALDIV yearly dividends on Standard and Poor index (in real terms)

Datafile Used in

XR724STP64 Exercise 7.24
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23. Market for Oranges (MOR)

Topic. Relation between price of oranges and quantity traded in the USA.

Type of data. Time series, yearly data 1910–59 (50 observations), 5 variables.

Source. M. Nerlove and F. V. Waugh, ‘Advertising without Supply Control: Some
Implications of a Study of the Advertising of Oranges’, Journal of Farm Econom-
ics, 43 (1961), 813–37 (data obtained from table 1 on p. 827). See also E. R.
Berndt, The Practice of Econometrics: Classic and Contemporary (Addison-
Wesley, 1991), 417–20.

65 This variable is defined by PRICE ¼ REV/QTY, where REV is the per capita real revenue
from sales of oranges (in dollars).

66 The variables CURADV and AVEADV concern advertising expenditures for oranges by
Sunkist Growers and the Florida Citrus Commission.

67 This file contains some additional variables—namely, REV (per capita real revenue from
sales of oranges), POP (population of the USA, in millions), and CPI (consumer price index used
to produce the real series). Further it contains the logarithmic variables LOGQT (the log of
QTY), LOGPT (the log of PRICE), LOGRIT (the log of INC), LOGAC (the log of CURADV),
and LOGAP (the log of AVEADV).

Variable Meaning

QTY quantity of oranges sold (number of boxes per capita)
PRICE65 real price of a box of oranges (year average, in dollars)
INC real disposable income per capita (in dollars)
CURADV66 current year real advertising expenditures (in cents per capita)
AVEADV average real advertising expenditures (in cents per capita,

averaged over the ten preceding years)

Datafile Used in

XR726MOR67 Exercise 7.26
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Index

2SLS (see two-stage least squares) 400, 705
3SLS (see three-stage least squares) 706
absence of serial correlation 93
accuracy of least squares
multiple regression 152–60
simple regression 87–98

ACF (see autocorrelation function) 546
adaptive expectations 639
adding or deleting variables 134–51
additive heteroskedasticity 327
additive outlier 612
additive seasonal 604
ADF (see augmented Dickey–Fuller test) 599
adjusted R-squared 130–1
adjustment coefficient 668
ADL (see autoregressive distributed lag) 637
AIC (see Akaike information criterion) 279, 565
airline model 606
Akaike information criterion (AIC) 279, 565
alternative hypothesis 55
approximate finite sample distribution
ML 228
OLS 197

AR (see autoregressive model) 362, 539
ARCH (see autoregressive conditional

heteroskedasticity) 621–2
ARIMA (see autoregressive integrated moving

average) 580
ARMA (see autoregressive moving average

model) 544, 546
assumptions
regression model 92–3, 125–6
simple regression model 92–4
weaker, in regression 103–4

asymptotic analysis 188
regression model 188–201

asymptotic approximation 197
asymptotic covariance matrix 229, 256
asymptotic distribution 50
ML 228

normal 50, 207
of b 196–7
OLS 197

asymptotic normality (OLS) 196–8
asymptotic properties 48, 193
conditions, NLS 207
estimation methods 47–54
maximum likelihood 51–3, 228–30

asymptotically efficient 228
asymptotically normal 207, 228
augmented Dickey–Fuller test (ADF) 599
autocorrelation 536, 545–8
Breusch–Godfrey LM-test 569
Ljung–Box test 568
partial 547
sample 548

autocorrelation coefficient 361
autocorrelation function (ACF) 546
partial 547
sample 548, 564

autoregressive conditional heteroskedasticity
(ARCH) 621–2

generalized 620–3, 626–9
LM-test 628

autoregressive distributed lag (ADL) 637
autoregressive disturbances (in regression

model) 369
autoregressive integrated moving average

(ARIMA) 580
autoregressive model (AR) 362, 539
smooth transition 617
stationarity condition 539
stationary 539
threshold 617
time series 538–42, 558–9
with distributed lags 637–47

autoregressive moving average model
(ARMA) 542–6

ARMA-GARCH 623
diagnostic tests 567–71



autoregressive moving average model (Contd.)
estimation 560–2
explanatory variables 637
identification 556, 563
stationary 544

autoregressive moving average process
(implied by VAR) 658–9

auxiliary regression 140, 216
LM-test 215–6, 239

backward elimination 281
bandwidth (Newey–West) 360
bandwidth span 291
bank wages (data set 2) 750
baseline hazard 514
Bayes information criterion (BIC) 279
Bernoulli distribution 29
best linear unbiased estimator (BLUE) 97–8,

127
BHHH (see method of Berndt, Hall, Hall,

and Hausman) 226
bias 43, 278
and efficiency, trade-off 145, 277–8
censoring, OLS 492–3
correction term 495
omitted variable 143
selection, OLS 502
treatment, OLS 504
truncation, OLS 486

BIC (see Bayes information criterion) 279
bilinear process 714
binary response 438–62
grouped data 459–61
latent variable 441
marginal effect 440
model 438–43
parameter restriction 441
summary 461–2
utility 442

binary variable 438
binomial distribution 29
bisquare function (robust estimation) 430
BLUE (see best linear unbiased estimator) 97–8,

127
bootstrap 65
bottom-up approach 281
Box–Cox transformation 297
Box–Pierce test 364
break point 315
break test (Chow) 315
Breusch–Godfrey test 364, 569
computational scheme 364

Breusch–Pagan test 345
computational scheme 345

BWA (see bank wages, data set 2) 750

calculation rules for matrices 728
canonical correlation coefficient 670
capital asset pricing model (CAPM) 91
CAPM (see capital asset pricing model) 91
CAR (see car production, data set 18) 766
car production (data set 18) 766
Cauchy distribution 33
CDF (see cumulative distribution function) 20
censored data 490–500
censored distribution 492
normal 491, 493

censored variable 490
censoring bias (OLS) 492–3
Census X-12 605
central limit theorem 50
generalized 51

centred moment 22
ceteris paribus 140, 274
changing variance (time series) 621
chi-square distribution 32
Chow break test 315
Chow forecast test 173–4, 316
CL (see conditional logit model) 466–70
classification table 453
clustered volatility 621
Cochrane–Orcutt method 369
coefficient of determination 83, 129–31
COF (see coffee sales, data set 4) 752
coffee sales (data set 4) 752
cointegrated time series 652
cointegration 652, 667–74
analysis 667–80
VAR model 667–74

cointegration relation 668
number 671
vector error correction model 668–9

cointegration test (Johansen) 671–3
critical values 672

column vector 726
common trend 652
comparison of tests (F, LM, LR, W) 240–2
computer science 1–2
concentration 231, 743
conditional distribution 24
conditional expectation 24
conditional heteroskedasticity 621–35
autoregressive 621–2
generalized autoregressive 620–3, 626–9

774 Index



conditional interpretation (stochastic
regressors) 438

conditional logit model (CL) 466–70
marginal effect 468

conditional model 464
conditional prediction 107
conditional probit model 465
conditional variance 24–5, 621–3
consistency (OLS) 193–6
consistent 194, 228
estimator 48
test 56

constant coefficients (test) 315
constant DGP (test) 171–2
constant term 120
contemporaneous correlation 684
continuous function 739–40
continuous random variable 20
controlled experiment 92
convergence in distribution 50
convergence in probability 48
correlation
contemporaneous 684
matrix 18
nonsense 647
serial 354–77, 637–55

correlation coefficient 23
canonical 670
sample 18

correlogram 361, 563
covariance 23
sample 18

covariance matrix 126
asymptotic 229, 256
robust 258

covariate 79
Cramér–Rao bound 43
critical region 56
critical values
cointegration tests 672
unit root tests 595

cross section data 749–50, 752, 755, 759–62
cumulative distribution function (CDF) 20
sample 13, 20

cumulative sum of squares test (CUSUMSQ)
314

cumulative sum test (CUSUM) 313
curse of dimensionality 662
CUSUM test (cumulative sum) 313
CUSUMSQ test (cumulative sum of squares) 314,

343

data
deviation from sample mean 147–8
graphs 12–15
matrix 725
transformation 296–301

data generating process (DGP) 42, 87
test on constancy 171–2

data sets
list 748
overview and description of variables 747–71

decomposition of time series 604
degrees of freedom 129
deleting or adding variables 134–51
density
function 20
logistic 443
standard normal 443
symmetric 441–2
truncated 485

dependence (random variables) 17
dependent variable 79
lagged 637–42
qualitative 438–81

derivative 739
partial 740

descriptive statistics 12–19
determinant (matrix) 732
determination (coefficient of) 83, 129–31
deterministic seasonal 605
deterministic trend 578
detrending 148
deviations from sample mean 147–8
dfbetas 383
dffits 383
DGP (see data generating process) 42, 87
diagnostic tests 275
logit and probit 452–7
time series 567–71
time series, summary 571

diagnostic tests and model adjustments
(summary, further reading, keywords)
424–6

diagonal matrix 726
Dickey–Fuller
augmented 599
critical values 595
distribution 594
F-test 593–6
t-test 594–6

difference operator 297, 580
difference stationary 580
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differencing (stochastic trends) 651–2
over-differencing 607

differentiable function 739–40
direct effect 140
direct marketing for financial product (data set

13) 761
discrete choice 438–81
discrete random variable 20
distributed lag 637
distribution (probability) 20
asymptotic, OLS 197
asymptotic normal 50, 207
Bernoulli 29
binomial 29
Cauchy 33
censored 492
censored normal 491, 493
chi-square 32
conditional 24
exponential 516
extreme value 466
F 34
finite sample, ML 228
finite sample, OLS 197
joint 23
large sample 206, 228–30
log-normal 513
marginal 23
mixed continuous-discrete 491
multivariate normal 30
non-standard 594
normal 29, 31
standard normal 30
Student t 32
t 32
truncated normal 486–7
Weibull 513

disturbance 88, 93, 125
assumptions 93, 125
distribution 378–95
distribution, summary 394–5
variance, estimate 127–9

DJI (see Dow-Jones index, data set 15) 763
DMF (see direct marketing for financial product,

data set 13) 761
Dow-Jones index (data set 15) 763
drift term (random walk) 581
dummy variable 303
observation 379
seasonal 303, 605
use 303–10

duration 511

duration model 511–16
duration of strikes (data set 14) 762
Durbin–Watson test 362
Durbin–Wu–Hausman test 410
DUS (see duration of strikes, data set 14) 762
dynamic forecast 570
dynamic models (summary, further reading,

keywords) 710–12
dynamic simultaneous equation model 706–7

ECM (see error correction model) 639–40
econometric modelling 1–3, 87, 274–6
economics (modelling) 1–3, 274–6
efficiency (simple regression) 97–8
efficient 43
asymptotically 228

eigenvalue (matrix) 734
eigenvalue decomposition 734–5
eigenvector 734
elasticity 296
constant 203
varying 203–4

empirical cycle 276
endogeneity 396–7
endogenous regressors 396–418
summary 418

endogenous variable 79
error correction model (ECM) 639–40
error of the first type 56
error of the second type 56
error term 88
estimate 38
interval 64
interval, in regression 100
point 63–4
significance 99

estimation methods 38–42
asymptotic properties 47–54
comparison 41, 222
non-parametric 289–95
statistical properties 42–7

estimation sample 170, 280
estimator 38
evaluation (model) 274–6
EWMA (see exponentially weighted moving

average) 588
exactly identified parameter 253
exchange rates (data set 21) 769
exclusion restriction 705
exogeneity 409
test 409–12

exogenous 194
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exogenous variable 79, 398
expectation 21
conditional 24

experiment (controlled) 92
experimental data 140
explained sum of squares (SSE) 83, 130
explained variable 79
explanatory variables 79
choice 277–85
stability condition 193
summary 302

exponential distribution 516
exponential hazard model 513
exponential smoothing 588
exponentially weighted moving average

(EWMA) 588
EXR (see exchange rates, data set 21) 769
extreme value distribution 466

FAS (see fashion sales, data set 8) 756
fashion sales (data set 8) 756
fat tails 223–4
F-distribution 34
feasible generalized least squares (FGLS) 686
feasible GLS (FGLS) 686
feasible weighted least squares (FWLS) 335
approximate distribution 336
computational scheme 335
grouped binary response 460

FEX (see food expenditure, data set 7) 755
FGLS (see feasible generalized least squares) 686
finite sample distribution
approximate, ML 228
approximate, OLS 197

finite sample properties 197, 228
first difference 297
first order autocorrelation coefficient 361
first order condition 739
fitted value 80
fixed effects (panels) 693
fixed regressors 92, 125
food expenditure (data set 7) 755
forecast
dynamic 570
multi-step-ahead 550
one-step-ahead 550
static 570
see also prediction

forecast performance (time series) 569–70
forecast test (Chow) 173–4, 316
forecasting
ADL 642

dynamic 570
Holt–Winters 589
static 570
stationary time series 550–3
time series with trends 585–9

forward selection 281
Frisch–Waugh 146–7
F-test 161–6
basic form 162
geometric interpretation 163
IV estimation 406–7
with R-squared 163

full rank assumption 122, 125
functional form
non-linear 285–9
summary 302

FWLS (see feasible weighted least squares) 335

GARCH (see generalized ARCH) 620–3, 626–9
Gauss–Markov theorem 98, 127
Gauss–Newton method 211–12
generalized ARCH (GARCH) 620–3, 626–9
generalized autoregressive conditional

heteroskedasticity (GARCH) 620–3, 626–9
diagnostic tests 627–9
estimation 626–7
use in risk modelling 629

generalized least squares (GLS) 685
feasible 686
two-step feasible 686

generalized method of moments (GMM) 250–65
computational scheme 254, 258–9
estimator 258–9, 325
motivation 250–1
simple regression 260–2
standard error 255–9
weighting matrix 254, 256, 259

generalized residuals 516
general-to-specific method 281
geometric interpretation
F-test 163
OLS 123–5

global maximum 739
global minimum 739
GLS (see generalized least squares) 685
GMM (see generalized method of

moments) 250–65
GNP (see gross national product, data set 20) 768
Goldfeld–Quandt test 343
goodness of fit 453
gradient 740
outer product 226
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Granger causality test 663
gross national product (data set 20) 768
grouped data 459
binary choice 459–61
heteroskedasticity 328–9

growth rate 297

HAC (see heteroskedasticity and autocorrelation
consistent) 360

hat matrix 123
Hausman test 410
computational scheme 411

hazard
baseline 514
proportional 514

hazard rate 512
exponential 513

Heckman two-step method 495
computational scheme 495, 503–4

Hessian matrix 741
heteroskedasticity 93, 320–53
additive 327
conditional 621–35
consequences for OLS 324
estimation by ML and FWLS 334–7
GMM 261–2
grouped data 328–9
LM-test, computational scheme 457
logit and probit 455
multiplicative 327
summary 352–3

heteroskedasticity and autocorrelation consistent
(HAC) 360

histogram 12
hit rate 453
hold-out sample 276
Holt–Winters forecast 589
homoskedastic 93, 125
homoskedasticity (tests) 343–6
Huber criterion 391
hypothesis 55
alternative 55
null 55

hypothesis test 55–67

IBR (see interest and bond rates, data set 9) 757
idempotent matrix 737
identically and independently distributed (IID) 39
identification (ARMA model) 556, 563
identification restriction (SEM) 705
identified parameter 206
exactly identified 253

over-identified 253
identity matrix 726
IID (see identically and independently

distributed) 39
independence (random variables) 25
conditions 34–5

independence of irrelevant alternatives 469
independent variable 79
qualitative 303–4

index function 441
indirect effect 140
industrial production (data set 10) 758
inefficient 144
influential data 379
influential observation 378, 384
information criteria 279
information matrix 45, 228
alternative expressions 243

initial values 560–1, 661
innovation outlier 613
innovation process 537
INP (see industrial production, data set 10) 758
instrument 398
validity 412–14
weak 405

instrumental variable (IV) 398
estimation 396–404
estimation, statistical properties 404–9
estimator 399
motivation 396
summary 418

integrated process 580
integration order 580–1
interaction term 286
intercept 79
R-squared in model without 84

interest and bond rates (data set 9) 757
interval estimate 64
regression 100

invariant 40
inverse matrix 730
computation 733–4

inverse Mills ratio 486
invertibility condition 543
invertible (MA process) 543–4
invertible matrix 730
irrelevant alternatives (independence of) 469
iterated FGLS 687
iterated FWLS 337
iterative optimization (computational scheme)

209
IV (see instrumental variable) 398
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Jacobian matrix 27
Jarque–Bera test 387
Johansen trace test 670–3
joint distribution 23
joint random variables 23–7
joint significance 164
J-test 258

kernel 360
kernel function 292
kernel method 292
kurtosis 16, 386

LAD (see least absolute deviation) 390
lag operator 539
lagged dependent variable 637–42
lagged variable (regression model) 368
Lagrange method 213, 743–4
Lagrange multiplier 212–18, 744
interpretation 744

Lagrange multiplier test (LM) 214–18, 235–8,
240–2

auxiliary regression 215
computational scheme 215, 218, 240
linear model 213, 238–40
relation with F-test 216

large sample approximation 229
large sample distribution 206, 228–30
large sample standard error 228–30, 448
latent trend 583
latent variable (binary response) 441
law of large numbers 50
least absolute deviation 390
least squares 39
accuracy, multiple regression 152–60
accuracy, simple regression 87–98
computational scheme 122
criterion 80, 121
disadvantages 222, 381
estimator 95–6, 121–2
generalized 685
geometry 124
matrix form 118–33
multiple regression 118–51
non-linear 205–8
ordinary 80, 121–2
recursive 310–13
restricted 181–2
seen as projection 123–4
simple regression 76–87
terminology 79
three-stage 706

two-stage 400, 705
unbiased 95, 126
variance 96, 126
weighted 290, 327–30

leave-one-out method (outliers) 380
level shift 614
level variable 297
leverage 379
likelihood function 40, 225
likelihood ratio test (LR) 230–2, 240–2
limited dependent variables 482–522
summary 521–2
summary, further reading, keywords 523–4

linear dependence 733
linear model 93
linear probability model 439
linear restriction 165
linearization 210–12
Ljung–Box test 365, 568
LM-test (see Lagrange multiplier test) 214–18,

235–8, 240–2
local maximum 739
local minimum 739
local regression 289
computational scheme 292–3

logarithmic transformation 296
logistic density 443
logit and probit model 443–6
comparison 444

logit model 444
conditional 466–70
diagnostic tests 452–7
estimation and evaluation 447–50
heteroskedasticity 455
marginal effect 445
multinomial 466–70
scaling 445

log-likelihood 52, 225
log-linear model 296
log-normal distribution 513
log-odds 446, 469
longitudinal data 692–7
long-run multiplier 637
LR-test (see likelihood ratio test) 230–2, 240–2

MA (see moving average) 542–3, 547, 560, 564
MAE (see mean absolute error) 280
marginal distribution 23
marginal effect
binary choice 440
dummy variable in binary choice 445–6
logit and probit 445
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marginal effect (Contd.)
multinomial and conditional logit 468
non-constant 286
ordered response 475–6
tobit 493
truncated model 487

market for oranges (data set 23) 771
mathematics 1–2
matrix
addition 727
calculation rules 727–8
data 725
multiplication 727
notation 726
notation in econometrics 120, 726
regression in matrix form 120

matrix methods (overview) 723–46
maximum 739, 741
global 739
local 739

maximum likelihood (ML) 40, 222–49
asymptotic properties 51–3, 228–30
computational scheme 230
linear model 227
motivation 222–4
quasi 259–60

McFadden’s R-squared 453
mean 21
sample 16

mean absolute error (MAE) 280
mean absolute prediction error 570
mean reverting process 579
mean squared error (MSE) 43
measurement error 191, 268
median 16
method of Berndt, Hall, Hall, and Hausman

(BHHH) 226
method of moments 39, 252
generalized 250–65

MGC (see motor gasoline consumption, data set
6) 754

minimal variance 127
minimum 739, 741
global 739
local 739

misspecification test 275, 286
mixed continuous-discrete distribution 491
ML (see maximum likelihood) 40, 222–49
MNL (see multinomial logit model) 466–70
model 38
model adjustment (serial correlation) 368–70

model adjustments and diagnostic tests (summary,
further reading, keywords) 424–6

model evaluation 274–6
model identification 556
model selection 274–6
time series 563–5
time series, summary 576–7
VAR model 661–2

modelling 274
multiple time series with trends 673–4
time series 555

MOM (see mortality and marriages, data set
16) 764

moment 22
centred 22
generalized method of moments 250–65
method of moments 39, 252
non-centred 516
sample, centred 16
sample, uncentred 516

moment conditions 253
test 258

MOR (see market for oranges, data set 23) 771
mortality and marriages (data set 16) 764
motor gasoline consumption (data set 6) 754
moving average (MA) 542–3, 547, 560, 564
invertible 543–4

MSE (see mean squared error) 43
multicollinearity 158–9
multinomial data 463–81
summary 480–1

multinomial logit model (MNL) 466–70
marginal effect 468

multinomial model 464
multinomial probit model 465
parameter restriction 466

multiple equation models 682–709
summary 709

multiple regression 118–51
assumptions 125–6
efficiency 127
F-test 161–6
geometric interpretation 123–5
interpretation 140–1, 147
prediction 169–74
statistical properties 125–7
summary, further reading, keywords 178–9
t-test 152–4, 164

multiplicative heteroskedasticity 327
multiplicative model 296
multiplicative seasonal 604
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multiplier
Lagrange 212–18, 744
long-run 637
short-run 637

multi-step-ahead forecast 550
multivariate normal distribution 30
multivariate time series models 656–709
error correction 660
fixed effects panel 692–4
random effects panel 695–7
seemingly unrelated regression 684–8
simultaneous equations 700–9
stationary vector autoregression 656–66
trends and cointegration 667–81

nearest neighbour fit 290
negative definite matrix 736
negative semidefinite matrix 736
neglected dynamics 354
NEP (see nuclear energy production, data set

19) 767
Newey–West standard error 360
Newton–Raphson method 210, 226
NID (see normally and independently

distributed) 35
NLS (see non-linear least squares) 206
nominal variable 463
non-centred moment 516
non-centred R-squared 456
non-experimental data 140
non-invertible matrix 733
non-linear functional form 285–9
non-linear least squares (NLS) 205–8
computational scheme 208
properties 206–8

non-linear methods (summary, further reading,
keywords) 266–7

non-linear optimization 209–12, 226
non-linear regression 202–21
non-linear regression model 205
motivation 202–5

non-linearities of time series (summary) 636
non-parametric estimation 289–95
non-parametric model 289
nonsense correlations 647
non-standard distribution 594
non-stationary process 578–82
normal distribution 29
asymptotic 207, 228
properties 31

normal equations 82, 121

non-linear 206, 394
normal random sample 35–7
normality
assumption 93, 126
asymptotic, OLS 196–8
test 386–7

normally and independently distributed (NID)
35

notation
Greek and Latin symbols 91
matrix, econometrics 120, 726
random variables 20–1

nuclear energy production (data set 19) 767
null hypothesis 55
number of cointegration relations (computational

scheme) 671
numerical method 209–12
numerical optimization 209–12, 226
numerical precision 84

odds ratio 446
OLS (see ordinary least squares) 80, 121–2
omitted variable 142–3
bias 143

one-sided test 60
one-step-ahead forecast 550
optimization 738–44
iterative 209
non-linear 209–12, 226
numerical 209–12, 226

order condition 398, 705
order of integration 580–1
ordered
alternatives 474
data 310
response data 474–7
variable 463

ordered logit model 477
ordered probit model 477
ordered response model 474
diagnostic tests 477
marginal effect 475–6
threshold values 475

ordinal variable 474
ordinary least squares (OLS) 80, 121–2
geometric interpretation 123–5
properties 92–8, 125–7
properties under heteroskedasticity 324–5
properties under serial correlation 358–61

orthogonality condition 194
outer product of gradients 226
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outlier 379
additive 612
innovation 613
leave-one-out method 380
limitation OLS 381
time series 612–14

out-of-sample performance 170–4, 280, 569–71
overall significance (regression) 164
over-differencing 607
over-identified parameter 253
over-identifying restrictions 258

PACF (see partial autocorrelation function) 547
panel data 682, 692–7, 753, 756
panel model
fixed effects 693
random effects 695

parameter 29, 38, 93, 125
constancy 93, 125
estimation 38–54
estimation, time series 558–62
exactly identified 253
identified 206
over-identified 253
penalty term 279
restriction, binary response model 441
restriction, multinomial probit 466
scale 483
stability test 314–16
time-varying 303, 616–18
varying 303–19

partial adjustment model 638
partial autocorrelation 547
sample 548, 564

partial autocorrelation function (PACF) 547
sample 548, 564

partial derivative 740
partial regression 145–8
computational scheme 146
scatter plot 148

partitioned matrix 729
penalty term (number of parameters) 279
Phillips–Perron test 597–8
piece-wise linear relation 304
pivotal (statistic) 36
plim (see probability limit) 48–9
PMI (see primary metal industries, data set 5) 753
point estimate 63–4
point prediction 105
polynomial model 282
pooled data 682, 753, 756
pooled estimator of variance 182

positive definite matrix 736
positive semidefinite matrix 736
power 56
practical significance 57
precision of reported results 84
prediction
conditional 107
error 537
interval 106, 171
multiple regression 169–74
out-of-sample 280
point 105
sample 170, 280
simple regression 105–10
unconditional 107
variance of errors 105–6, 170–1
see also forecast

predictive performance 169, 280
present value theory 720
primary metal industries (data set 5) 753
probability distribution 20, 29–35
probability limit (plim) 48
calculation rules 49

probability value (P-value) 60, 153
probit and logit model 443–6
comparison 444

probit model 444
conditional 465
diagnostic tests 452–7
estimation and evaluation 447–50
heteroskedasticity 455
marginal effect 445
multinomial 465
scaling 445

process (see stationary process, non-stationary
process)

product (matrices) 727
projection (least squares) 123–4
projection matrix 737
properties of OLS 92–8, 125–7
under heteroskedasticity 324–5
under serial correlation 358–61

proportional hazard model 514
purchasing power parity 720
P-value (see probability value) 60, 153

QML (see quasi-maximum likelihood) 259–60
qualitative dependent variables 438–81
summary, further reading, keywords 523–4

qualitative independent variable 303–4
quasi-maximum likelihood (QML) 259–60
computational scheme 260
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Ramsey’s RESET 285
random 20
disturbance 92, 125
effects, panels 695
regressors 193

random sample 35
normal 35–7

random variable 20–37
continuous 20
discrete 20
independent 25
joint 23–7
notation 20–1
transformation 22, 27

random walk 579
with drift 581

rank (matrix) 733
rank condition 398
rate of convergence 201
recursive least squares 310–13
recursive residuals 311
redundant variable 143–5
reference quarter 304
regimes 616
regression
auxiliary 140, 216
auxiliary, LM-test 215–16, 239
local 289, 292–3
non-linear 202–21
overall significance 164
partial 145–8
seemingly unrelated 684–8
significance 164
spurious 647, 650–2
subset 315
summary of computations 154
trending variables 647–54
see also simple regression, multiple regression

regression coefficients (interpretation) 139–42
regression diagnostics 379–84
regression model
assumptions 92–3, 125–6
asymptotic analysis 188–201
lagged variables 637–55
matrix form 120
restricted and unrestricted 135–9
weaker assumptions 103–4

regression results (way of presentation) 102, 155–6
regression specification error test (RESET) 285
regressor 79
conditional interpretation 438
endogenous 396–418

fixed 92, 125
random 193
stable 193, 199–201
stochastic 191–3

regularization 210
rejection region 56
reparametrization 225
reported results
precision 84
regression 102, 155–6

RESET (see regression specification error test) 285
residuals 82–3, 121
generalized 516
recursive 311
restricted 135–7
standardized 352, 454, 628
studentized 380
variance 96

restricted least squares estimator 181–2
restricted model 135–7
restricted residuals 135–7
restriction 135, 165
risk modelling (GARCH) 629
RMSE (see root mean squared error) 280
robust covariance matrix 258
robust estimation 388–94
scaling 393

robust standard error 258
root mean squared error (RMSE) 280
root mean squared prediction error 570
rounding error 84
row vector 726
R-squared 83
adjusted 130–1
F-test 163
geometric picture 130
McFadden’s 453
model without intercept 84
non-centred 456

rule of thumb (t-test) 100

SACF (see sample autocorrelation function) 548,
564

salaries of top managers (data set 11) 759
sample autocorrelation 548
sample autocorrelation function (SACF) 548, 564
sample correlation coefficient 18
sample covariance 18
sample cumulative distribution function

(SCDF) 13, 20
sample mean 16
deviations from 147–8
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sample moment
centred 16
uncentred 516

sample partial autocorrelation 548, 564
sample partial autocorrelation function

(SPACF) 548, 564
sample selection 500–4, 525
sample standard deviation 16
sample statistics 16–19
sample variance 16
sandwich estimator 258
Sargan test 413
computational scheme 413

SARIMA (see seasonal ARIMA) 606–7
scale parameter 483
scaling 296
logit and probit 445
robust estimation 393

scatter diagram 13, 77–80
partial regression 148
simple regression 76–9

SCDF (see sample cumulative distribution
function) 13, 20

Schwarz information criterion (SIC) 279, 565
score test 235
seasonal
additive 604
multiplicative 604

seasonal adjustment 605
seasonal ARIMA (SARIMA) 606–7
seasonal component 604
seasonal dummies 303, 605
seasonality 604–7
seasonals
deterministic 605
stochastic 606
summary 611

second order derivatives (matrix) 741
second order stationary 536
seemingly unrelated regression (SUR) 684–8
selection bias (OLS) 502
selection effects (model) 500–4
SEM (see simultaneous equation model) 700–7
serial correlation 354–77, 637–55
absence 93, 125
causes and interpretation 354, 368
consequences for OLS 358–9
model adjustment 368–70
summary 376–7
tests 361–5

shadow price 744
short-run multiplier 637

SIC (see Schwarz information criterion) 279, 565
significance 153
estimate 99
joint 164
practical 57
rule of thumb 100
statistical 57

significance level 56
significance of S(P)ACF 564
significance of the regression 164
significance test (simple regression) 99–104
significant 60, 100
similar test 56
simple regression 76–87
assumptions 92–4
efficiency 97–8
model, examples 91–2
model, interpretation 94
prediction 105–10
scatter diagram 13, 77–80
significance test 99–104
statistical properties 94–7
summary, further reading, keywords 111–12
t-test 99–100

simulation 87–9
simulation experiment 46, 87–91
simulation run 46
simultaneous equation model (SEM) 700–7
dynamic 706–7

single random variable 20–2
singular matrix 733
size 56
skewness 16, 386
slope coefficient 79
t-value 100

smooth transition autoregressive model
(STAR) 617

switching function 618
smoothing factor 588
SMR (see stock market returns, data set 3) 751
SPACF (see sample partial autocorrelation

function) 548, 564
span 291
specification error (test) 285
specific-to-general approach 281
spurious regression 647, 650–2
statistical causes 650

square matrix 726
square root (matrix) 736
SSE (see explained sum of squares) 83, 130
SSR (see sum of squared residuals) 83, 130
SST (see total sum of squares) 83, 130
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stability condition (explanatory variables) 193
stability test (parameters) 314–16
stable regressor 193, 199–201
standard and poor index (data set 22) 770
standard deviation 22
sample 16

standard error 60, 128
GMM 255–9
large sample 228–30, 448
Newey–West 360
of b 100
of the regression 100, 128
robust 258
White 325

standard normal density 443
standard normal distribution 30
standardized residuals 352, 454, 628
STAR (see smooth transition autoregressive

model) 617
static forecast 570
stationarity condition
AR model 539
VAR model 660

stationary process 535–8
AR 539
ARMA 544
difference 580
second order stationary 536
time series models 532–54
time series models, summary 553–4

stationary trend 582
stationary vector autoregression 656–60
statistic 38
statistical properties (estimation methods) 42–7
maximum likelihood 51–3, 228–30
multiple regression 125–7
simple regression 94–7

statistical significance 57
statistics (summary, further reading,

keywords) 68–70
stochastic regressor 191–3
conditional interpretation 438

stochastic seasonal 606
stochastic trend 579
differencing 651–2

stock market returns (data set 3) 751
STP (see standard and poor index, data set 22) 770
structural change 313–16, 616–17
STU (see student learning, data set 1) 749
student learning (data set 1) 749
Student t-distribution 32
studentized residuals 380

submatrix 729–30
subset regression 315
sum (matrices) 727
sum notation 723
sum of squared residuals (SSR) 83, 130
summation operator 723
SUR (see seemingly unrelated regression) 684–8
survival function 512
switching function (STAR model) 618
symmetric density function 441–2
symmetric matrix 729

TAR (see threshold autoregressive model) 617
TBR (see treasury bill rates, data set 17) 765
t-distribution 32
test
comparison of F, LM, LR, W 240–2
diagnostic 275, 424–6
distribution, chi-square or F 242
hypothesis 55–67
mean and variance 59–63
one-sided 60
set of linear restrictions 166
significance 99–104
similar 56
two-sided 59

test statistic 56
Theil criterion 181
three-stage least squares (3SLS) 706
computational scheme 706

threshold autoregressive model (TAR) 617
threshold values (ordered response model) 475
time series
cointegrated 652
decomposition 604
diagnostic tests 567–71
forecast evaluation 569–70
forecasting 550–3
integrated 580
model selection 563–5, 576–7
modelling 555
non-linearities 636
outlier 612–14
stationary 532–54
summary, further reading, keywords 710–12
varying parameters 616–18

time series data 751, 754, 756–8, 763–71
time series modelling (ARMA) 555
computational scheme 556

time-varying parameters 303, 616–18
time-varying volatility 620–9
summary 636
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TMSP (see total mean squared prediction
error) 278

tobit estimate 494
tobit model 490
marginal effect 493
type 1 501
type 2 501

TOP (see salaries of top managers, data set 11) 759
top-down approach 281
total effect 140
total mean squared prediction error (TMSP) 278
total sum of squares (SST) 83, 130
trace (matrix) 730
trace test (Johansen) 670–3
transformation
data 296–301
logarithmic 296
random variable 22, 27

transformed model 327
transpose (matrix) 729
treasury bill rates (data set 17) 765
treatment (overall effect) 506
treatment bias (OLS) 504
treatment effect 504–6
trend 297, 578–604
cointegration 667–80
common 652
deterministic 578
deterministic or stochastic 607
latent 583
stochastic 579
summary 611

trend forecasting 585–9
trend models 578–85
trend stationary 582
trending variables (regression) 647–54
tricube weighting function 291
true model 87–8, 142
truncated density 485
truncated normal distribution 486–7
truncated sample 482–90
marginal effect 487

truncation bias (OLS) 486
t-test 153
mean 60
multiple regression 152–4, 164
relation with Wald test 235
rule of thumb 100
simple regression 99–100

t-value 37, 153
slope coefficient 100

two-sided test 59

two-stage least squares (2SLS) 400, 705
computational scheme 400, 705

two-step feasible generalized least squares
(computational scheme) 686

two-step feasible weighted least squares
(computational scheme) 335

type I error 56
type II error 56

unbiased 43, 95, 126
best linear estimator 97–8, 127
least squares 95, 126

unconditional prediction 107
uncontrolled (variable) 140
uncorrelated 24
unit root 580
unit root test 592–600
choice of test equation 596–7
critical values 595

unordered response data 463–6
unordered variable 463
unrestricted model 135–7
US presidential elections (data set 12) 760
USP (see US presidential elections, data set 12) 760
utility
binary choice 442
stochastic 463

validity of instruments 413
test 412–14

VAR (see vector autoregressive model) 656–81
variable
data sets, overview 747–71
dependent 79
endogenous 79
exogenous 79, 398
explained 79
explanatory 79, 277–85, 302
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