The model co ' 5 5 ‘
s thl{l:l% f?l course, be used to perform other forecasting experiments
, ects of a change in the propensity to consume could bc

mea i i
sured by changing the coefficient, multiplying disposable income net of

transfer i i i
payments in the consumption equation, and then simulating the model

EXERCISES

13.1 8 i i

2 equ:t(;{‘;;'l t?:t l11f A\ and A;) are both transient solutions to a model, i.e., both sati

s cOnsidercth a; (13.5‘), th.en the sum A)A] + 4,5 must also be a 'so.lu‘{ion Tt
e following simple multiplier-accelerator macroeconomic mo&el'

G = =
¢ =day + a ¥, I = by + by{(C — Cy) Vi=G+1L+G

Note that investment is now i
a funct i i
il ot ion of changes in consumption, rather than of
(a) Determine the characteristi i
stic i
Pl b i equation for this model, and find the associated
B Fi ; ;
" 1(1 ti)D 51:;.1(1 the éeiatxfmsmps between values of a, and b, that determine what kind
gt ll'rsxc:h 2 irv:;lll)la(lzltave. l?ra}tw a diagram that corresponds to that of Fig 13“11 o
 th multiplier correspondin: i 16 the
long-run multiplier corresponding to a chagge in g,t?? PR L e

13.3 The following equations descri i
s q ns describe a simple “cobweb” model of a competitive

Demand: QP=a+ap, a,<0
Supply: Q}s = bl i bzP,_l bz >0

When the market is in equilibri
quilibrium, Qf = @7. i
e es(ﬂmibﬂum' e g ;é = n(]?l;oggiﬁ suppose that the market is temporarily
a i i :
(a) Show that the price will converge stably to an equilibrium value if byla, < 1

(b) Show that the path to equilibri i i
B Mty quilibrium will be oscillatory if #, > 0 and will not be

PART A L AANL A

TIME-SERIES MODELS

we saw how econometric models—both single-

equation regression models and multi-equation models—can be constructed
and used to explain and forecast the future movements of one or more variables.
In Part Three we are again interested in constructing models and using them for
forecasting, but these models are quite different from those that we worked with
earlier. We no longer predict future movements in a variable by relating it to a
set of other variables in a causal framework; instead we base our prediction
solely on the past behavior of the variable.

As an example, consider the time series y(f) drawn in the figure on page 414,
which might represent the historical performance of some economic or business
variable—a stock market index, an interest ratc, a production index, or perhaps
the daily sales volume for some commodity. y(t) might have moved up or down
partly in response to changes in prices, personal income, and interest rates (0r s0
we might believe). However, much of its movement may have been due 0
factors that we cannot explain, such as the weather, changes in taste, or simply
seasonal (or aseasonal) cycles in spending.

It may be difficult or impossible to explain the movement of y(f) through the
use of a structural model. This might happen if, for example, data are nol
available for those explanatory variables which are believed to affect y(1). Or il
data were available, the estimation of a regression model for y () might result in
standard errors that are so large as to make most of the estimated coefficients
insignificant and the standard error of forecast unacceptably large.

Even if we could estimate a statistically significant regression equation for

y(t), the result may not be useful for forecasting purposes. To obtain a forecasl

for y(t) from a regression equation, explanatory variables that are not lagged
A13

In the first two parts of this book



musF themselves be forecasted, and this may be more difficult than forecasting
); it) 1tself.. The standard error of forecast for y(t) with future values of the e;psll::f'
exorjy; r::ttrcltables llmown may be small. ngever, when the future values of the
p ry variables are unknown, their forecast errors may be so large
make the total forecast error for y(t) too large to be acceptable =S
o Thus there are situations where we E;eek an alternative means of obtaining a
col:glast. of y(1). Ce.m we observe the time series in the figure and draw some
ik gglacl))rlis ;;t?;; :)t; }f:i;(?;hgvior that vyivould allow us to infer something about
‘ i ? For example, is there some kind of overall d
trend in y(tf) which, because it has dominated the past behavi e
might dominate its future behavior? Or does the s rip S o f)f i s
which we could extrapolate into the future? If syst:m?tiixggggvigilgﬁh?; ltflaVl(?r
g;‘fesent, we can attempt to construct a model for the time series which doeyspﬁcl;
repellirce; férllisctll)lar:g g:ﬁi?g??l? jovrv :; ltjlclehtavipr hin 1ielrms; of other variables but does
‘ . at might he i
;(::"c.lA tzme-;erz'es ;nodel accounts for patterns:g in thepp‘;:t ﬁfﬁ:ﬁéﬁt:ﬂ; ;evl;ig?:)‘l;
1 uses that information to predict its future m 5 i
:ﬁpes model is just a sophisticated method of extraggfggf)rr:%s\'fég ;s ;S: iflil? s[(lel:icr;
1;np:111;§5011; (t)l;i lz;)é)l;, it sc()lr'nt-:tlmes provic_les an effective tool for forecasting.
Ll RN DEek ave 1‘v1ded forecasting models into three general classes,
I.0':'30 w }11ch qulves a different level of comprehension about the real world
fegress;zs;rl t Ha:(’; é);‘lle is ';lrymg to mo'deI. In Bart One we discussed single-equation
A ;nl»;\; ezrrf; tilfee\;es:rl;‘l;i of mte.regi is explained by a single func-
¥ ; ory variables. In Part Two we examin
ggi:ioiglé?t(lggdmodﬁls, where two or more endogenous variables are related ig
i WhiChpsfrmaEs tolone Or mOre €x0genous variables) through a set of
e thi;d e gan 163 solved mmultanet:msly to produce forecasts over time.
o p e book we focus on time-series models, in which we have
. ructural knowledge about the real world causal relationships that affi
variable we are trying to forecast. ! B
e fon b Al ol e g G o
4 ay be difficult and will
how much we know about the workings of the real world gfgs;ci I}:l)?ltt ZTSI(S)’ gE

how much time and cnergy we can afford to spend on the modeling process, The
development of a single equation regression model may not be too difficult, but
the construction of a multl equation simulation model might require large ex
penditures of time and effort, The gains that result might include a better under
standing of the relationships and structure involved as well as the ability to make
a better forecast. However, in some €ases these gains may be outweighed by the
cost involved.

A time-series model will usually be chosen when little is known about the
determinants of the variable of primary concern and a sufficiently large amount
of data is available to construct a time series of reasonable length. An example
might be to forecast on a weekly or monthly basis a cyclical series for the
production of a commodity. One choice would be to build a regression model, a
second choice would be to build a time-series model, and a third choice is (0
combine time-series analysis with regression analysis. As we will see, one can
construct a regression model in which, say, an interest rate is related to several
economic variables and then construct a time-series model to explain the behav-
ior of the residual term from the regression.

The following chapters will present an introduction to the science and art of
developing time-series models for purposes of forecasting. The models that we
deal with are only a subset of a broader class of models and techniques for data
analysis that falls under the general rubric of time-series analysis. We do not
discuss, for example, recent developments in the theory of spectral analysis and its
application to economic modeling and forecasting. Instead we concentrate on a
class of linear time-series models introduced by Box and Jenkins that have

found wide application to economic and business forecasting.'

Since time-series analysis builds on the development of the single-equation
regression model, we treat time-series models in the last part of the book, even
though they are the “simplest’’ class of models in terms of their explanation of
the real world. To forecast a short-term interest rate, we might use a regression

model to relate that variable to GNP, prices, and the money supply. A time series
hat variable to its past values and to variables that

for interest rates would relate t
describe the random nature of its past behavior. The model, like most regression
t of coefficients that must be estimated.

models, is an equation containing a s¢
Unlike regression models, however, the equation is usually nonlinear in the

coefficients, so that a nonlinear version of ordinary least squares is necessary for
estimation purposes.

Part Three begins with a brief survey of simple extrapolation methods (in
effect deterministic models of time series), as well as methods for smoothing and
seasonally adjusting time series. Extrapolation techniques have been used
widely for many years and for some applications provide a simple and yel
adequate means of forecasting. Smoothing and seasonal adjustment are also
useful techniques, which in many instances can facilitate the forecasting o1

interpretation of a time series.

1 G. E. P. Box and G. M. Jenkins, Time Series Analysis (San Francisco: Holden-Day, 1970).




In Chapter 15 we present a brief introduction to the nature of stochastic time
series. We discuss how stochastic processes are generated, what they look like,
and most important, how they are described. We also discuss some of the chai
acteristics of stochastic processes and in particular develop the concept of sta
tionarity. Then we describe autocorrelation functions and show how they can be
used as a means of describing time series and as a tool for testing their propertics.
Finally, we discuss methods of testing for stationarity, and we discuss the con
cept of co-integrated time series. The concepts and tools developed in this chapte:
are essential to the discussion of time-series models in the chapters that follow.

Chapter 16 develops linear models for time series, including moving averagc
models, autoregressive models, and mixed autoregressive—moving averagc
models for stationary time series. We show how some nonstationary time series
can be differenced one or more times so as to produce a stationary series. This
enables us to develop a general integrated autoregressive—moving averagc
model (ARIMA model). Finally, we show how autocorrelation functions can be
used to specify and characterize a time-series model.

Chapters 17 and 18 deal with use of time-series models to make forecasts.
Chapter 17 explains how parameters of a time-series model are estimated and
how a specification of the model can be verified. Chapter 18 discusses how the
model can then be used to produce a forecast. We also show how time series are
adaptive in nature, i.e., how they produce forecasts in a way that adapts to new
information. The last part of Chapter 18 deals with forecast errors and shows
how confidence intervals can be determined for forecasts.

The last chapter of Part Three develops some examples of applications of time-
series models to economic and business forecasting. Here we lead the reader step
by step through the construction of several time-series models and their applica-
tion to forecasting problems.

CHAPTER l ‘i

SMOOTHING AND

EXTRAPOLATION OF
TIME SERIES

rt Three, a time-series model is a sophisti-
ere are times, however, when less sophis

ticated methods of extrapolation can be gsed for.foreclasung pu;ggifz;.qlﬁlj)i: . |i ]):,“L :”
pl, projecions for 4 lage mumber o B 2ol modeling echniques, o
tklllat tirrrrllie ahrtldbree:z):srgflst((i)oblé(l)iteszrg;t a particular time series follows ; Si-”:‘l,):-:
o o e el B e ol e, 1 L
. discussing some simple (and n ple) - pola
2;861; }?)’ctrapolatioi techniques represt?nt det.ermmzstzc modiﬁ of ttllrrrr:ee Z((;]r llt : o
There are also situations when it is gieslrab]é to smoo at.Orls bl
thereby eliminate some of the more volatile 'short-term ﬂuct}ra [1-1 one .Serim S
might be done before making a forecast or simply to néake tt e time s S.Camm
to analyze and interpret. Smoothing might also b.e oneti r?l e 0
fluctuations, i.e., to deseasonalize (or seasor}ally adjust) a e th{S ool
discuss smoothing and seasonal adjustment in the second section

As explained in the introduction to Pa
cated method of extrapolating data. Th:

14.1 SIMPLE EXTRAPOLATION MODELS | | |
that can be used to forecast a time series nn‘l 1‘
e models are deterministic in that n(.) refere:m" 1
f the underlying randomness in the scric:
n techniques that have been standar

forecasting for years. Although “w.
the modern stochast|

41

We begin with simple models
basis of its past behavior. Thes
made to the sources or nature O .
Essentially the models involve extrapollatm
tools of the trade in economic and busme_ss =
usually do not provide as much forecasting accuracy
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FIGURE 14.1

Discrete time series.

time-series models, they often provide a simple, inexpensive, and still quite
acceptable means of forecasting.

Most of the series that we encounter are not continuous in time; instead they
consist of discrete observations made at regular intervals of time. A typical time
series might be given by Fig. 14.1. We denote the values of that series by y,, so
that y, represents the first observation, y, the second, and y; the last observation
for the series.! Our objective is to model the series ¥ and use that model to
forecast y, beyond the last observation yr. We denote the forecast one period
ahead by yr.,, two periods ahead by $r+2, and [ periods ahead by fire;.

If the number of observations is not too large, the simplest and most complete
representation of y, would be given by a polynomial whose degree is 1 less than
the number of observations; i.e., we could describe y, by a continuous function
of time f(¢), where

fOy=ap+t at+ap+. . .4 ant" (14.1)

andn = T — 1. Such a polynomial (if the a’s are chosen correctly) will pass
through every point in the time series y,. Thus, we can be sure that f(t) will equal
Ve at every time ¢ from 1 to T. Can we, however, have any confidence that a
forecast of y, generated by f(#) will be at all close to its actual future value? For
example, will the forecast

f(T+ l) = dy # al(T+ I) + az(T+ 1)2 + -4 dT_](T"‘ l)T_l =ﬁT+1

be close to the actual future value yr, 1? Unfortunately, we have no way of
answering this question without additional prior information. The difficulty with
the model given by Eq. (14.1) is that it does not describe Yi; it merely reproduces
Vi It does not capture any characteristics of y, that might repeat themselves in the
future. Thus, although f(t) correlates perfectly with y,, it is of little use for
forecasting,

' In Part Three of the book we use small letters, for example, y,, to denote time series,

14.1.1 Simple Extrapolation Models

‘ X ; attern. If we believe that this
sic characteristic is its long-run growth patter:
One basic characteristic ol y, ! i : et
upward trend exists and will continue (and there may_nnl be any :L on L--,T. o
should), we can construct a simple model that describes that trend ¢ ¢

to forecast y,. . Baliose st s
use’lsihe simplest e);trapolation model is the linear trend model. 1f we believe that

i T > can
series y, will increase in constant absolute amounts each time period, we ¢@
J a
predict y, by fitting the trend line
=0+t (14.2)

here ¢ is time and y, is the value of y at time ¢. t is usually ghosen t}? eqya}qi)i \I’ |( 1
T‘gle base period (first observation) and to increase by 1 during each succes:
period. For example, if we determine by regression that

y, = 27.5 + 3.2t (14.3)
we can predict that the value of y in period ¢ + 1 will be 3.2 units higher than the

revious value. . . .
. It may be more realistic to assume that the series y, grows with constant

- : 5
percentage increases, rather than constant absolute increases. This assumptic
implies that y, follows an exponential growth curve:

v = f(t) = Ae™ (14.4)

Here A and r would be chosen to maximize the correlation between f(f) and y,.
A forecast one period ahead would then be given by

Pra1 = AerT+D (14.5)
and ! periods ahead by

Jrer = AeTH (14.6)
in Fi d r can be estimated by taking
isisi ted in Fig. 14.2. The parameters 4 an . . i
Elf.}sl:)sgl;lrliltshtﬁseof botﬁ sides of Eq. (14.4) and fitting the log-linear regression
equation?
log y; = ¢1 + oot (14.7)

wherec; = log Aand ¢, = r.

. . )
2 Note that in the exponential growth model the logarithm of y, is assumed to grow at a constan
rate. If y,,., = Ae", then y.../y, = €', and log y4; — log yy = 1.



FIGURE 14.2
Exponential growth curve,

A third extrapolation method is based on the autoregressive trend model

nh=a+ oy (14.8)

Inhl'lsilng such an extrapolation procedure, one has the option of fixing ¢, = 0, in
:Vi ic tcase Cf represents the rate of change of the series y. If, on the othiar ha;xd
> 1s set equal to 1, with ¢; not equal to 0, the | seri ;
; ; extrapolated series will i
“ . ' s will increase b
mzsiintleda.bsol}lte amount each time period. The autoregressive trend model iz
A ated in Fig. 14.1.3 for three different values of ¢, (in all cases ¢; = 1)
variation of this model is the logarithmic autoregressive trend model .

log y: = c1 + ¢z log - (14.9)
FIGURE 14.3

Autoregressive trend model.

¥ sors =15

If ¢, is fixed to be 0, then the value of ¢; Is the compounded rate of growth of the
series y. Both linear and compound extrapolation based on the autoregressive
model are commonly used as a simple means of forecasting.

Note that the four models described above basically involve regressing y, (or
log y,) against a function of time (linear or exponential) and/or itself lagged.
Alternative models can be developed by making the function slightly more
complicated. As examples, let us examine two other simple extrapolation
models, the quadratic trend model and the logistic growth curve.

The quadratic trend model is a simple extension of the linear trend model and

involves adding a term in #

ook gt o e (14.10)

If ¢, and ¢; are both positive, y: will always be increasing, but even more rapidly
as time goes on. If ¢; is negative and ¢; positive, y; will at first decrease but later
increase. If both ¢; and ¢; are negative, y; will always decrease. The various cases
are illustrated in Fig. 14.4 (¢; > 0 in each case). Note that even if the data show
that y; has generally been increasing over time, estimation of Eq. (14.10) might
yield a positive value for ¢; but a negative value for ¢,. This can occur (as shown
in Fig. 14.4) because the data usually only span a portion of the trend cirve.
A somewhat more complicated model, at least in terms of its estimation, is the

logistic curve, given by

1
= b > .
Y % + abt 0 (14.11)
FIGURE 14.4
Quadratic trend model.
Yi
c2>0,c3>0 c2<0,c3>0
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FIGURE 14.5
S-shaped curves.

Th%s equation is nonlinear in the parameters (k, a, and b) and therefore must be
e.stlmated using a nonlinear estimation procedure. While this can add computa-
tional expense, there are some cases in which it is worth it. As shown in Fig
14.5, Eq. (14.11) represents an S-shaped curve which might be used to represen£
the sales of a product that will someday saturate the market (so that the total

stoc_k_ of the good in circulation will approach some plateau, or, equivalently
additional sales will approach zero).? ’

Other S-shaped curves can be used in addition to the logistic curve. One very

simple function with an S shape that can be used to model sales saturation
patterns is given by

P D (14.12)

Note that if we take the logarithms of both sides, we have an equation linear in
the parameters & and B that can be estimated using ordinary least squares:

&

108,Vr=k1—'£- (14.13)

This curve is also shown in Fig. 14.5. Note that it begins at the origin and rises
more steeply than the logistic curve.

5 ; ol g 5 i
The following approximation to the logistic curve can be estimated using ordinary least squares:

Ay,

Vi =07 QY-
The parameter ¢, should always be less than 1 and w i i icini

aram c d . ould typically be in the vicinity of .05 to .5. Thi
equation is a dJs.crete-tl_me approximation to the differential equation dy/dt = ¢, ;](cl — y), and thltsf
solution to this differential equation has the form of Eq. (14.11). ’

Example 14.1 Forecasting Department Store Sales In this example
simple extrapolation models are used to forecast monthly retail sales of de-
partment stores. The time serles is listed below, where monthly observations
are seasonally adjusted and cover the period from January 1968 to March
1974, the units of measurement are millions of dollars, and the source of the
data is the U.S. Department of Commerce.

1968 1969 1970 1971 1972 1973 1974

January 2,682 2,839 3,034 3,287 3,578 4,121 4,456
February 2,621 2,876 3,029 3,342 3,650 4,233 4,436
March 2,690 2,881 3,045 3,336 3,664 4,439 4,699
April 2,635 2,967 3,066 3.427 3,643 4,167
May 2,676 2,944 3,077 3,413 3,838 4,326
June 2.714 2,939 3,046 3,503 3,792 4,329
July 2,834 3,014 3,094 3,472 3,899 4,423
August 2,789 3,031 3,053 3,511 3,845 4,351
September 2,768 2,995 3,071 3,618 4,007 4,408
October 2,785 2,998 3,186 3,664 4,092 4,357

November 2,886 3,012 3,167 3,641 3,987 4,485
December 2,842 3,031 3,230 3,607 4,008 4,445

One might wish to forecast monthly sales for April, May, and the months
following in 1974. For this example, we extrapolate sales for April 1974. The
results of four regressions associated with four of the trend models described
above are listed below. Standard regression statistics are shown with ¢ statis-
tics in parentheses:

Linear trend model:

SALES, = 2,463.1 + 26.70¢ (14.14
(84.9) (39.5)

R = 955 F(1/73) = 1,557 s =126.9 DW = .38
Logarithmic linear trend model (exponential growth):

log SALES, = 7.849 + .0077¢ (14.15
(1,000)  (52.6)

R? = 974 F(1/73) = 2,750 s =.027 DW = .56
Autoregressive trend model:

SALES, = 4.918 + 1.007 SALES,, (14.16
(09)  (65.05)

R? = 983 F(1/72) = 3,829 s = 78.07 DW = 2.82




Logarithmic autoregressive trend model:

0 v + .9987 lo SALES,_ 4
1E) o |4 S (14.17)

2 —
R¢ = 985 F(1/72) = 4,524 s =.021 DW = 2.80

and then used as the independe i
¢ e ;
o 5 nt variable. When ¢ = 75 is placed in the right-

SALES = 2,463.1 + 26.70¢ (14.18)

the resulting forecast is 4,465.8. The use

yields a forecast of 4,551.5. The third regr o e s o e equation

ession, based on an autoregressive

FIGURE 14.6
Simulated and actual sales,
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process, yields an extrapolated value for April 1974 of 4,736.8:
4,736,8 = 4,92 + 1.007 X 4,699

If the constant term were dropped from Eq. (14.17), the extrapolated value
would be 4,738.24. The fourth regression result is based on the logarithmic
autoregressive model. The extrapolated value in this case is 4,735.6. If one
were to calculate a compounded growth rate for the series and to extrapolate
on the basis that the growth rate remains unchanged, the extrapolated value
would be 4,739.3.

The simulated and actual series are plotted for each of the four extrapola-
tion models in Fig. 14.6a and b. One can see from the figure that the two
autoregressive models are closer to the actual series at the end of the period.
Of course, other trend models could be used to extrapolate the data. For
example, the reader might try to calculate a forecast based on a quadratic

trend model (see Exercise 14.1).

Simple extrapolation methods such as those used in the preceding examplc
are frequently the basis for making casual long-range forecasts of variables rang-
ing from GNP to population to pollution indices. Although they can be useful as
a way of quickly formulating initial forecasts, they usually provide little forecast-
ing accuracy. The analyst who estimates an extrapolation model is at least ad-
vised to calculate a standard error of forecast and forecast confidence interval
following the methods presented in Chapter 8. More important, one should
realize that there are alternative models that can be used to obtain forecasts with

smaller standard errors.

14.1.2 Moving Average Models

Another class of deterministic models that are often used for forecasting consists
of moving average models. As a simple example, assume that we are forecasting a
monthly time series. We might use the model

f() = %=1+ Y2t 0t Yim12) (14.19)

Then, a forecast one period ahead would be given by
Prer = Tyr+yr+ 0t yr-n) (14.20)
The moving average model is useful if we believe that a likely value for out

series next month is a simple average of its values over the past 12 months. I
may be unrealistic, however, to assume that a good forecast of y, would be given




by a simple average of its past values. It is often more reasonable to have more
recent values of y, play a greater role than earlier values. In such a case recen
values should be weighted more heavily in the moving average. A simple model

that accomplishes this is the exponentially weighted moving average (EWMA)
model:

Jre1 = ayr + a(l = a)yr—; + a(l - ) yr_y + - - -

= az (1 - a)'yr—f (1421}

=0

Here a is a number between 0 and 1 that indicates how heavily we weight recent
values relative to older ones. With a = 1, for example, our forecast becomes

Jrer = yr (14.22)

and we ignore any values of y that occurred before y;. As a becomes smaller, we
Place greater emphasis on more distant values of y. Note that Eq. (14.21) repre-
sents a true average, since

= o a o
“Z (-9 I--a (14.23)

so that the weights indeed sum to unity.

The reader might suspect that if the series has an upward (downward) trend,
the EWMA model will underpredict (overpredict) future values of Y:. This will
indeed be the case, since the model averages past values of JYr to produce a
forecast. If y, has been growing steadily in the past, the EWMA forecast r., will
thus be smaller than the most recent value yr, and if the series continues to grow
steadily in the future, Y71 will be an underprediction of the true value yr., . Thus
one ought to remove any trend from the data before using the EWMA tech-
nique. Once an untrended initia] forecast has been made, the trend term can be
added to obtain a final forecast.

If we want to make a forecast yr., more than one period ahead using an
exponentially weighted moving average model, we can modify Eq. (14.21) to

include a weighted average of the more recent short-run forecasts jr4,_,, Prii-a,
- » Jr+1. This logical extension of the EWMA model is given by
Iri1 = &freics + a(l — a)frysy + - - - + a(l = a)~2pr,,
Tl =) yr + ol - a)yr; + a1 - ayitly,,

+ a(l T C!)"+2yr_3 i s (1424)

As an example, consider a forecast two periods ahead (1 = 2), which would be
given by
Pror = afpyy + a(l = a)yr + a(l = a)’yr + - -
= alayr + a(l — a)yr + - - -1+ a(l —ayr

+a(l — a)lyr + - -
=23 (1- oy, +al-a) 2 (1 @)y,

S (14.25)
=a 2 (1 Y a)Tnyfr

7=0

i e-period forecast. The

g o e EWMA model a th same as they wer
b yT;: Jrle(;év éxltr.;lp’olaﬂng the average ahead an extra penoﬂd. I'n f Tl;
!)teit;orrl(:)'tbcﬁ;ﬁvgsg io show (see Exercise 14.4) that the /-period forecast yr., is alsc
i
givﬂ?;llebirfni?f‘irg 4;21):.::|ge forecasts represented by Egs. (14.2}(13), a( 111 i}.fnl;[,icz 11113
(14.24) are all adaptive forecasts. By ”adaptl\'fe” we mean tha? C;e reyfor e g

dj - t themselves to the most recently avaﬂable'dat?. Consider, e ample, &
i Jusle four-period moving average. Suppose Yo I Fig. 14.7 represen
i::lzle;t data point. Then our forecast will be given by

.26
J21 = 2(y20 + Y19 + Y18 + Y17) (14.26)

and a forecast two periods ahead will be given by

4.27
922 = 3(Fa1 + Y20 + V1o + y18) = Tayao + foy0 + s + teyir (1 )

FIGURE 14.7
Adaptive forecasts.
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These forecasts are represented by crosses in Fig. 14.7. If y,, were known, we
would forecast y,, one period ahead as

P22 = Hyu + Yao t Yio + yig)

This forecast is represented by a circled cross in Fig. 14.7. Now suppose that the
actual value of y,, turns out to be larger than the predicted value, i.e.,

Yar = ﬁz:

The actual value of y,, is, of course, not known, but we would expect that j,,
would provide a better forecast than §,, because of the extra information used in
the adaptive process. The EWMA forecast would exhibit the same adaptive
behavior,

Although the moving average models described above are certainly useful,
they do not provide us with information about Jorecast confidence. The reason is
that no regression is used to estimate the model, so that we cannot calculate
standard errors, nor can we describe or explain the stochastic (or unexplained)
component of the time series. It is this stochastic component that creates the
error in our forecast. Unless the stochastic component is explained through the

modeling process, little can be said about the kinds of forecast errors that might
be expected.

14.2 SMOOTHING AND SEASONAL ADJUSTMENT

Smoothing techniques provide a means of removing or at least reducing volatile
short-term fluctuations in a time series. This can be useful since it is often easier
to discern trends and cyclical patterns and otherwise visually analyze a
smoothed series. Seasonal adjustment is a special form of smoothing; it removes

seasonal (cyclical) oscillations from the series rather than irregular short-term
fluctuations.

14.2.1 Smoothing Techniques

In the last section we discussed moving average models (simple and exponen-
tially weighted) in the context of forecasting, but these models also provide a
basis for smoothing time series. For example, one of the simplest ways to smooth
a series is to take an n-period moving average. Denoting the original series by y,
and the smoothed series by j,, we have

g
=y it vt yin) (14.28)

Of course, the larger the #n the smoother the J: will be. One problem with this
moving average is that it uses only past (and current) values of y, to obtain each

" i ¢ e [ qverdge.
Ul‘ V‘ 'I‘hi‘v‘ pl“hl('”l I l'n“ e (“t‘d l,y LI “lH (¢ ((?’i‘f{ (d H’V”’J‘l’ ¢ '!
Yis : ] k] p | b 1 T n

lc  r » i¢ 1 Al
b pertod centered moving average is given by

For example, a five

4,29
Vi H‘Vru"l' ,Vru"'_Vr"'J’r'—l”‘“}'t‘-z) (! )

Bxponnil smoling sy invoves e e o e e e
Eg:'gll?tgs ta: erziitrrwlrzijlfes g; ;,.) The exponentially smoothed series y, is given by
Jy = oy + a(l — a)yi-1 +a(l — a2t (14.30)

extends all the way back through the

where the summation in Eq. (14.30) h more easily if we write

length of the series. In fact, y, can be calculated muc

I 14.31)
(1-—- a)fi-1 = a(l — a)yi-1 + a(l — a)2yi-2 + (

(14.31) from Eq. (14.30) we obtain a recursive formula for

Now subtracting Eq. _
the computation of j:
ﬁg = a); + (1 = a)j}:-—l (1432)
the more heavily the current value of y, is weig.hllm‘l
r values of « imply a more heavily smoothed scncT.
: . _\1
Sometimes one might wish to heavily smooth a serfle]; bu(tlr;o; zg)lvvev i\;;:lrg Tt:: ;
i the use of Eq. : a
i ast data points. In such a case i
W?gél totfouzp (say .1) would not be acceptable. Ifastead one thcaél 2?‘11;]:' ‘f)::m:
gpﬁnential smoothing. As the name implies, the singly smoothed s Vi

Eq. (14.32) is just smoothed again:

Note that the closer a is to 1
in generating J,. Thus smalle

1 33
fjr =af, + (1 — ) Vi-1 (14.33)

In this way a larger value of a can be used, and the resulting series y; will still be
n thi

heavily smoothed. . 32) can also be modi-

: ; formula of Eq. (14.32) : _

Zie mple FRAEIRE Smcc)}(:ctzl’rl:;f ir(: the long-run trend (secular increase o1

incorporating average ) ' ooth-
i(iiedh]DS;)lI;f tlt-lpe series. This is the basis for Holt's two-parameter exponent I:[ ilr:li()n‘i
i ECn?etht:)d 4 Now the smoothed series J; is found from two recfursggh 211 - lif
:fd depemis on two smoothing parameters, o and vy, both of w.

: -
between 0 and 1 (again, the smaller are and vy the heavier the smoothing)

(14.34)

Ji=ay+(1— @) (Ji-1 + 1i-1)
(14.35]

r=y:— Jed ¥ A1 = YT
ds by Exponentially Weighted Moving Averages,

4 ¢. C. Holt, “Forecasting Seasonals and Tren B L i, 1957,

unpublished research report, Carnegie Institute 0.




Here r; is a smoothed series representing the trend, i.e., average rate of increase,
in the smoothed series y,. This trend is added in when computing the smoothed
series j, in Eq. (14.34), thereby preventing y, from deviating considerably from
recent values of the original series i This is particularly useful if the smoothing
method is going to be used as a basis for forecasting. An /-period forecast can be
generated from Egs. (14.34) and (14.35) using

Jre1 = yr+ Irr (14.36)

Thus the /-period forecast takes the most recent smoothed value j; and adds in
an expected increase /r; based on the (smoothed) long-run trend. (If the data
have been detrended, the trend should be added back to the forecast.)

Smoothing methods tend to be ad hoc, particularly when they are used to
generate forecasts. One problem is that we have no way of determining the
“correct’”” values of the smoothing parameters, so that their choice becomes
somewhat arbitrary. If our objective is simply to smooth the series to make it
easier to interpret or analyze, then this is not really a problem, since we can
choose the smoothing parameters to give us the extent of smoothing desired. We
must be careful, however, when using an equation like Eq. (14.36) for forecast-
ing and recognize that the resulting forecast will be somewhat arbitrary.’

Example 14.2 Monthly Housing Starts The time series for monthly
housing starts in the United States provides a good example for the applica-
tion of smoothing and seasonal adjustment methods. The series fluctuates
considerably and also exhibits strong seasonal variation. In this example we
smooth the series using the moving average and exponential smoothing
methods.

We begin by using three- and seven-period centered moving averages to

smooth the series; i.e., we generate the smoothed series §, from the original
series y, using

Bl
Yo = ;} Vi (i2yn-1)~i (14.37)

1
n ']
where n = 3 or 7. Note that since the moving average is centered, there is no
need to detrend the series before smoothing it. The original series, together
with the two smoothed series, is shown in Fig. 14.8. Observe that the use of

* For a detailed treatment of some other smoothing techniques, see C. W. J. Granger and P.
Newbold, Forecasting Economic Time Series (New York: Academic, 1986), and S. Makridakis and S. C.
Wheelwright, Forecasting Methods and Applications (New York: Wiley, 1978).

® The original data series is in thousands of units per month and is not seasonally adjusted.
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Smoothing using moving averages.
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Weightlele origingl series unless we first detrend the series. Ttosiiahemauw
f)r;?gfnal series we assumed a linear trend (we could of course te

time trends), and ran the regression

38
y, = —156.81 + 1.2083t R? = 360 (14.38)

(—3.36) (5.37)

i i = .81 — 1.2083¢,
The residuals u, from this regression, that is, u, = Vi + 156.8
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14.2.2 Seasonal Adjustment

sonal indj

o usciz'rxlc;sﬂ(:élsaet fg;cjmpt to measure Fhe seasonal variation in the series) and
biad; 35 SealSoilcels tolde.seasanalz?e (i.e., seasonally adjust) the series by
e L R Z - variations. National economic data in the United States
i e Zdab]us}tled by the Census II method (or one of its variants)
by ansu yHt e Bureap of the Census of the U.S. Department of
e e s sad ;’rinethod is a rather detailed and complicated proce-
) digscylrl hoc), apd_ we therefore will not attempt to describe it
i (md'uding e nsssutS Iel )b:m; idea that lies behind all seasonal adjustment
i i e nd present a very simple method that in many

Seasonal adjustment t i
echniques are based on the i i
e idea that a i
be represented as the product of four components: Bilin g

W=LXSXCX] (14.39)

The Ceﬂsus II methﬂd i i
15 deSC bed i il i
: ill, ). ribed in detail inL. Salzman. ComputeJ ized Economic AHQJJ"ST.S (NEW

where 1 = value of the long-term secular trend in series
$ = value ol seasonal component
C = (long-term) cyclical component
[ = irregular component

The objective is to climinate the seasonal component S.

To do this we first try to isolate the combined long-term trend and cyclical
components L x C. This cannot be done exactly; instead an ad hoc smoothing
procedure is used to remove (as much as possible) the combined seasonal and
irregular components S X I from the original series y,. For example, supposc that
y, consists of monthly data. Then a 12-month average ¥, is computed:

ﬁr:ilz(%+6+' IR V0 S e ©F Wi-s) (14.40)

Presumably 7, is relatively free of seasonal and irregular fluctuations and is thus
an estimate of L X C.

We now divide the original data by this estimate of L X C 1o obtain an
estimate of the combined seasonal and irregular components § X I

I X § X CX1I Y
=S X === 4.4
L X C ! Vi ! VY

The next step is to eliminate the irregular component I as completely as
possible in order to obtain the seasonal index. To do this, we average the values of
S X I corresponding to the same month. In other words, suppose that y, (and hence
z,) corresponds to January, y, to February, etc., and there are 48 months of data.
We thus compute

L= tast st )
H=Ht+ 2t 2+ Zis) (14.42)

2= 3z12 + Zoa T Z36 T Zas)

The rationale here is that when the seasonal-irregular percentages z, are aver-
aged for each month (each quarter if the data are quarterly), the irregular fluctu-
ations will be largely smoothed out.

The 12 averages 7,, . . . , 212 will then be estimates of the seasonal indices.
They should sum close to 12 but will not do so exactly if there is any long-run
trend in the data. Final seasonal indices are computed by multiplying the indices
in Eq. (14.42) by a factor that brings their sum to 12. (For example, ifZ;, . . .
%, add to 11.7, multiply each one by 12.0/11.7 so that the revised indices will
add to 12.) We denote these final seasonal indices by 7\, . . ., 212.

The deseasonalization of the original series y; is now straightforward; jusi
divide each value in the series by its corresponding seasonal index, thereby
removing the seasonal component while leaving the other three components




Thus lh(i seasonally adjusted series y!' is obtained {rom Vi = /gy, y§ = y/i,
¢ Ly ad ¢ J e V2 = /T,
s o Vi2 S Vlan, Y = Y/, ¥ = 4l7,, elc.

Ex.ample 14.3 Monthly Housing Starts Let us now apply the seasonal
zligjgstn';ent tec%lm’que to our series for monthly housing starts (see Exalgg?e
yr um}ﬂg cln:: g-o(tllzsclvg)e :i]rlat f}(l)élrllpélit‘f:i 5612~1;110PLI1 I;I;annz.ra,t;e J: of the original series
that z, c_:ontains (roughly) the scasonajlitalfdyi;regitl;'ci)onr’igjc:g:rftts;fy ;ﬁg-ol\:io "
:llfl series. We remove the irregular component by averaging the values ofg 12

at correspond to the same month; i.e., we compute 7, 2 212 usi t
Eq. (14.42). We then compute the final seasonal indices é‘l y ’fz .. ’. 1221:1E§

multiplying the z, Z,b . _
Sy y a factor that bri th m
seasonal indices are as follows: S LI 16 L. Ehesh]

FIGUEE 14.10
Housing starts: seasonal indices.
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Seasonal adjustments of housing starts data.

Seasonal Indices

Month Index Month Index

January .5552 July 1.1900
February 7229 August 1.1454
March .9996 September 1.0675
April 1.1951 October 1.0823
May 1.2562 November .8643
June 1.2609 December .6584

These seasonal indices have been plotted in Fig. 14.10.

To deseasonalize the original series y, we just divide each value in the series
by its corresponding seasonal index, thereby removing the seasonal compo-
nent. The original series y, together with the seasonally adjusted series y{ are
shown in Fig. 14.11. Observe that the seasonal variation has been eliminated
in the adjusted series, while the long-run trend and short-run irregular fluctu-

ations remain.




EXERCISES

14.1 Go back to Example 14.1 and use the data for monthly department store sale

s o
estimate a quadratic trend model. Use the estimated model to obtain an e

Xtrapolated
value for sales for April 1974. Try to evaluate your model in comparison to the other four

estimated in Example 14.1, and explain how and why your forecast for April differs from
the other forecasts in the example.

14.2 Which (if any) of the simple extrapolation models presented in Section 14.1 do you
think might be suitable for forecasting the GNP? The Consumer Price Index? A short-
term interest rate? Annual production of wheat? Explain.

14.3 Show that the exponentially weighted moving average (EWMA) model will gener-
ate forecasts that are adaptive in nature.

14.4 Show that the EWMA forecast I

periods ahead is the same as the forecast one period
ahead, i.e.,

Irer=a X (1 = a)y,_,
7=0

14.5 Monthly data for the Standard & Poor 300 Common Stock Price Index are shown in
Table 14.1. The data are also plotted in Fig. 14.12,

(a) Using all but the last three data points (
€xponentially smooth the data using a value of .9
Remember that a moving average is always shorte
value of .2,

(b) Again using all but the last three data
Parameter exponential smoothin

i.e., April, May, and June of 1988),
for the smoothing parameter w. Hint:
r than the original series. Repeat for a

points, smooth the data using Holt's two-

g method. Seta = .2 and y = .2. Explain how and why
the results differ from those in (a) above. Now use Eq. (14.36) to forecast the series out 1,
2, and 3 months. How close is your forecast to the actual values of the S&P 500 index for
April to June 1988?

14.6 Monthly data for retail auto sales ar
are also plotted in Fig. 14.13.

(a) Use a 6-month centered movin
evident? Would you expect auto sale

(b) Using the original data in Ta
described in the text. Plot the 12 fin
explain the shape of the curve, Also
the original series,

e shown in Table 14.2 on page 438. The data

g average to smooth the data. Is a seasonal pattern
s to exhibit seasonal regularities?

ble 14.2, apply the seasonal adjustment procedure
al seasonal indices as a function of time and try to
plot the seasonally adjusted series and compare it to

TABLE 141

STANDARD & POOI 500 COMMON STOCK PRICE INDEX .
— ] 100 101.73
197901 9971 9823 10011 102.07 132.22 101.73
197907 10271 107.36  10B.60  104.47 to3ge 10778
198001  110.87 11534 10469  102.97 tor.ee 11450
198007  119.83 12350 12651  130.22 19565 13348
1981.01 13297 12840 13319  134.43 to17s 13228
108107 12913 12963 11827  119.80 12202 12079
198201 11728 11450 11084 11631 11635 10970
198207  109.38  109.65  122.43 1266 13810 10987
108301 14427 14680 151.88  157.7 LT
108307 16696 16242  167.16  167.65 leo20 16436
108401 16639 157.25  157.44  157.60 19655 15312
198407 15108  164.42  166.11 164.82 tozr 16448
108501 17161 180.88  179.42  180.6 i64g0 16859
108507 19254 18831 18406  186.18 19745 20728
198601 20819 21937 232.33  237.98 2046 24530
1986.07 24018 24500 23827  237.36 24509 24061
198701 26451 28093 20247  289.32 28012 01 %0
198707 31009 329.36 31866  280. 16 2501 20%
1088.01  250.48 25813 26574 2626 ;
Source: Citibase, Series FSPCOM.
E 14.12 ‘
gigr?dzrd & Poor 500 Common Stock Price Index.
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TABLE 14.2

RETAIL AUTO SALES (thousands of units)

Obs.
1979.01 774.00 832.00 1,104.00 976.00 1,042.00 894.00
1979.07 876.00 908.00 767.00 892.00 768.00 726.00
1980.01 806.00 812.00 895.00 743.00 697.00 702.00
1980.07 773.00 686.00 672.00 848.00 698.00 649.00
1981.01 648.00 764.00 963.00 751.00 734.00 724.00
1981.07 707.00 801.00 687.00 649.00 585.00 523.00
1982.01 535.00 632.00 777.00 669.00 774.00 651.00
1982.07 630.00 609.00 671.00 656.00 743.00 632.00
1983.01 596.00 628.00 821.00 762.00 837.00 904.00
1983.07 792.00 741.00 705.00 861.00 782.00 752.00
1984.01 778.00 841.00 964.00 896.00 1,047.00 958.00
1984.07 890.00 814.00 744.00 900.00 802.00 759.00
1985.01 835.00 839.00 970.00 988.00 1,075.00 925.00
1985.07 899.00 1,001.00 1,068.00 864.00 762.00 812.00
1986.01 870.00 832.00 897.00 972.00 1,072.00 1,001.00
1986.07 954.00 952.00 1,217.00 906.00 783.00 992.00
1987.01 626.00 781.00 936.00 938.00 887.00 943.00
1987.07 913.00 968.00 905.00 802.00 737.00 843.00
1988.01 765.00 888.00 1,006.00 901.00 974.00 1,010.00

Source: Citibase, Series RCAR6T.
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CHAPTER 1

PROPERTIES
OF STOCHASTIC
TIME SERIES
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15.1 INTRODUCTION TO S
e TOCHASTIC TIME-SERIES

Eﬁeat;u;; ;zr;tes r:mdels developed in this and the following chapters are all based
ant assumption—that the series to be fi

. orecasted has been .

ated by a stochastic process. In other words, we assume that each value J%GHJL:I

1r Y2,

440

., yr In the series Is drawn randomly from a probability distribution, In
modeling such a process, we attempt 1o describe the characteristics of its ran-
domness. This should help us to infer something about the probabilities associ-
ated with alternative future values of the series.

To be completely general, we could assume that the observed series yy, .« .,
yis drawn from a set of jointly distributed random variables. 1f we could somehow
numerically specify the probability distribution function for our series, then we
could actually determine the probability of one or another future outcome.

Unfortunately, the complete specification of the probability distribution func
tion for a time series is usually impossible. However, it usually is possible to
construct a simplified model of the time series which explains its randomness in
a manner that is useful for forecasting purposes. For example, we might believe
that the values of y;, . . ., yr are normally distributed and are correlated with
each other according to a simple first-order autoregressive process. The actual
distribution might be more complicated, but this simple model may be a reason-
able approximation. Of course, the usefulness of such a model depends on how
closely it captures the true probability distribution and thus the true random
behavior of the series. Note that it #need not (and usually will not) match the
actual past behavior of the series since the series and the model are stochastic. 1t
should simply capture the characteristics of the series’ randomness.

15.1.1 Random Walks

Our first (and simplest) example of a stochastic time series is the random walk
process.! In the simplest random walk process, each successive change in y, is
drawn independently from a probability distribution with 0 mean. Thus, y, is

determined by

V=Yt & (15.1)

with E(g,) = 0 and E(gsg;) = 0 fort # s. Such a process could be generated by
successive flips of a coin, where a head receives a value of +1 and a tail receives

a value of —1.
Suppose we wanted to make a forecast for such a random walk process. The

forecast is given by

Jre1 = E(.}’T+l|yT' . s 52 Y1) (15.2)

But yr+1 = yr T &r+1 18 independent of yr-1, . - .. J1- Thus, the forecast onc
period ahead is simply

$r+1 = yr + E(ers1) = Jr (15.3)

1 The random walk process has often been used as a model for the movement of stock market
prices. See, for example, E. E. Fama, “Random Walks in Stock Market Prices,” Financial Analysts

Journal, September-October 1965.




The forecast two periods ahead is

Vri2 = E(yrealyr, . . . e 1) = E(Yrer + &142)
=E(yr+ ers1 + er43) = 7 (15.4)

Similarly, the forecast / periods ahead is also Yr.

Although the forecast j;., will be the same no matter how large / is, the

variance of the forecast error wi
4 rror will grow as / becom

es lar i
forecast, the forecast error is given by B PRt

€1 = Y141 — Jrei
=Yr+ eri = yr = epy (15.5)

and its variance is j 341) = o
€ 1s just E(e7.,) = o?. For the two-period forecast,

€2 = Yre2 — Jr42
SVrterater, - yr=en + en, (15.6)

and its variance is

E —
[(ers1 + &7142)%] = E(s}iy) + E(e}42) + 2E(er+18742) (15.7)

Sinc i
yis fvirr;; I;smc! ET“;: are 1pdependent, the third term in Eq. ( 15.7) is 0 and the
Fadher, Smc: ;;ri'i:«;- OSrm}J}arIy, for the I-period forecast, the error variance is lo?
: r of forecast increases with the s e
Lk . quare root of /. We can
. ttélillzl ;onﬁdence mr'ervals. for our forecasts, and these intervals will become wtiltlig:
fOrecastorecastlhonzon Increases. This is illustrated in Fig. 15.1. Note that the
s are all equal to the last observation yr, but the confidence intervals

represented by 1 standard deviation i
eviation i
oot of 1. in the forecast error increase as the square

FIGURE 15.1
Forecasting a random walk.
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The fact that we can generate confidence intervals of this sort is an important
advantage of stochastic time-series models. As we explained in Chapter 8, policy
makers need to know the margin of error that has to be associated with a
particular forecast, so confidence intervals can be as important as the forecasts
themselves.

A simple extension of the random walk process discussed above is the ran
dom walk with drift. This process accounts for a trend (upward or downward) in
the series y, and thereby allows us to embody that trend in our forecast. In this
process, y, is determined by

.V:=.Vr—!+d+sf (13:8)

so that on the average the process will tend to move upward (for d > 0), Now
the one-period forecast is

Jre1 = E(yralyr, . - . ) =yrtd (133)

and the [-period forecast is
Jra=yr+ld (15.10)

The standard error of forecast will be the same as before. For one period,

er = Yr+1 — Vi1

zy7+d+81+1—y]'_d:81"+1 (I'SII)

as before. The process, together with forecasts and forecast confidence intervals,
is illustrated in Fig. 15.2. As can be seen in that figure, the forecasts increase
linearly with /, and the standard error of forecast increases with the square root
of L.

In the next chapter we examine a general class of stochastic time-series
models. Later, we will see how that class of models can be used to make forecasts
for a wide variety of time series. First, however, it is necessary to introduce some
basic concepts about stochastic processes and their properties.

15.1.2 Stationary and Nonstationary Time Series

As we begin to develop models for time series, we want to know whether or not
the underlying stochastic process that generated the series can be assumed to be
invariant with respect to time. If the characteristics of the stochastic process change
over time, i.e., if the process is nonstationary, it will often be difficult to represent
the time series over past and future intervals of time by a simple algebraic
model.2 On the other hand, if the stochastic process is fixed in time, i.e., if it is

2 The random walk with drift is one example of a nonstationary process for which a simple
forecasting model can be constructed.
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FIGURE 15.2
Forecasting a random walk with drift.

stationary, then one can model the process via an equation with fixed coefficients
that can be estimated from past data. This is analogous to the single-equation
regression model in which one economic variable is related to other economic
variables, with coefficients that are estimated under the assumption that the
structural relationship described by the equation is invariant over time (i.e., is
stationary). If the structural relationship changed over time, we could not apply
the techniques of Chapter 8 in using a regression model to forecast.

The models developed in detail in the next chapter of the book represent
stochastic processes that are assumed to be in equilibrium about a constant mean
level. The probability of a given fluctuation in the process from that mean level is
assumed to be the same at any point in time. In other words, the stochastic
properties of the stationary process are assumed to be invariant with respect to
time.

One would suspect that many of the time series that one encounters in
business and economics are not generated by stationary processes. The GNP, for
example, has for the most part been growing steadily, and for this reason alone
its stochastic properties in 1980 are different from those in 1933. Although it can
be difficult to model nonstationary processes, we will see that nonstationary

processes can often be transformed into stationary or approximately stationary
processes.

15.1.3 Properties of Stationary Processes

We have said that any stochastic time series Y1, . . ., yr can be thought of as
having been generated by a set of jointly distributed random variables; i.e., the

set of data points yy, . ., yp represents a nln!licull.lr nuu‘t'nm'”nfl tlu I:N:[,
probability distribution function p(y,, . . . Y1) .k.ulninlarly, alju.;u‘;le ()i);s.l}t;;:”l;””
yrey can be thought of as being generated by .II‘L"UHL{JHG‘!M." f’r"b‘f ?.z ity ”‘t'”- hon
function p(yrii|yr. . . .. yr), thatis, a probability distribution for _v-,-1 | Ll?’tll 8
past observations y,, . . ., yr. We define a stationary process, 11}011, as umj\.f ’l‘()hl
joint distribution and conditional distribution. bc)th. are szarmm W{Ih respect to
‘displacemenr in time. In other words, if the series y, is stationary, then

P+ o - Yisk) = PWrms o o o0 Yevktm) (15.12)

and p(ye) = PWeem) (15.13)

for any ¢, k, and m. . |
Note that if the series y, is stationary, the mean of the series, defined as

My = E(y1) (15.14)

must also be stationary, so that E(y;) = E(:+n), for any ¢ and m. Furthermore,
the variance of the series,

ol = E[(y: — m)?] (15.15)

must be stationary, so that E[(y; = py)?] = E[Viem — )1, and finally, for any
lag k, the covariance of the series,

ve = Cov (1, Yerk) = E[(r — ty) (Veek — )] (15.16)

i , so that Cov (¥, Yi+k) = COV (Vim. y[+m+k).4. _
mulfft:) ‘:tf)tj}tltic;rtliin];rocess is statif)};lary, the probab.ility distril_)utlon pl y,.) ;5 t]}t;
same for all time ¢ and its shape (or at least some of its properties) can b]f in cr:lL (‘
by looking at a histogram of the observations yy, . . ., Jr that ma ebup' I.L!
observed series. Also, an estimate of the mean p, of the process can be obtainec

from the sample mean of the series

T
y=12% (15.17)
TS
3 This outcome is called a realization. Thus y,, . s oeedT _represent one particular realization of the
stochastic process represented by the probability distribution p(y:. . . ., yr).

41t is possible for the mean, variance, and covariances of the se;ies to be stationary but‘ no‘1r :,ll:
joint probability distribution. If the probability distributions are statlonarg,tzvnc;l [fﬁ?sggezeﬁf;;se.;w
1 i iances are stationary, wi -SeMs
sense stationary. If the mean, variance, and covan_anc ; : : s
stationary. Nojze that strict-sense stationarity implies wide-sense stationarity but that the converse i

not true.




and an estimate of the variance o? ¢ i ;
estimate of the variance o can be obtained from the sample variance

ol
ay, =

A=

1 _
T (y: — 7)? (15.18)

i
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15.2 CHARACTERIZING TIME SER
IES:
THE AUTOCORRELATION FUNCTION

While it ‘is usually impossible to obtain a complete description of a stochastic
process .(1.e., act1_1ally. specify the underlying probability distributions), the af.llit(;‘t
(C)(f)réf;auon function is e}'(tremely useful because it provides a partial tiescription
R procelss.for mode%mg purposes. ?he.autocorrelation function tells us how

correlation there is (and by implication how much interdependency there

is) between neighboring data points i .
il i g points in the series y,. We define the autocorrelation

E[(y: — my) (Visx — Hy)] _ Cov (y1, Vi+x)

Pr = Y,
E[(y: — Ju'y)Z]E[(ka = I«’»y)z] Ty Ty,

(15.19)

_Foiha stationary process.the variance at time ¢ in the denominator of Eq. (15.19)
is the same as the variance at time ¢ + k; thus the denominator is just the
variance of the stochastic process, and

o (2y,;k_:=— )l (it

gy

Note that the numerator of Eq. (1 i i
e q. (15.20) is the covariance between y, and y+x, i,

= Yk
s (15.21)
and thus p, = 1 for any stochastic process.
Suppose that the stochastic process is simply

Y =& (15.22)

thhere g; is an independently distributed random variable with zero mean. Then
;5 léiii;y tt); see irolm Eq._( 1 5%20) that the autocorrelation function for this process
FEhen b t};}oo Lpe= 0 for k > 0. The.process of Eq. (15.22) is called white

; ere is no model that can provide a forecast any better than Jr+1=0

for all 1. Thus if the autocorrelaton function is zero (or close to zero) for all
k = 0, there is little or no value in using a model to forecast the series.

Of course the autocorrelation function in Eq. (15.20) is purely theoretical, in
that it describes a stochastic process for which we have only a limited number of
observations. In practice, then, we must calculate an estimate of the autocorrela-
tion function, called the sample autocorrelation function:

Tok
le e D ree = J)
i =

fr
L ;(J&'Tf)z

It is easy to see from their definitions that both the theoretical and estimated
autocorrelation functions are symmetrical, i.e., that the correlation for a positive
displacement is the same as that for a negative displacement, so that

B (15.24)

Then, when plotting an autocorrelation function (i.e., plotting p; for different
values of k), one need consider only positive values of k.

It is often useful to determine whether a particular value of the sample auto-
correlation function gy is close enough to zero to permit assuming that the frue
value of the autocorrelation function py is indeed equal to zero. It is also useful to
test whether all the values of the autocorrelation function for k > 0 are equal Lo
zero. (If they are, we know that we are dealing with white noise.) Fortunately,
simple statistical tests exist that can be used to test the hypothesis that p; = 0 for
a particular k or to test the hypothesis that p; = 0 for all k> 0.

To test whether a particular value of the autocorrelation function py is equal
to zero we use a result obtained by Bartlett. He showed that if a time series has
been generated by a white noise process, the sample autocorrelation coefficients
(for k > 0) are approximately distributed according to a normal distribution with
mean 0 and standard deviation 1/\V/T (where T is the number of observations in
the series).’ Thus, if a particular series consists of, say, 100 data points, we can
attach a standard error of .1 to each autocorrelation coefficient. Therefore, if a
particular coefficient was greater in magnitude than .2, we could be 95 percent
sure that the true autocorrelation coefficient is not zero.

To test the joint hypothesis that all the autocorrelation coefficients are zero wc
use the Q statistic introduced by Box and Pierce. We will discuss this statistic in
some detail in Chapter 17 in the context of performing diagnostic checks on

5 Gee M. S. Bartlett, “On the Theoretical Specification of Sampling Properties of Autocorrelated
Time Series,”” Journal of the Royal Statistical Society, ser. B8, vol. 27, 1946, Also see G. E. P. Box and
G. M. Jenkins, Time Series Analysis (San Francisco: Holden-Day, 1970).
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al.llmalcd time-series models, so here we only mention it in passing. Box and
Pierce show that the statistic

1

1

K
Q=T
k;pk (15.25)

g] (apli)roximately) distrib_uted as chi square with K degrees of freedom. Thus il
: egcsa culated value of Q is greater than, say, the critical 5 percent level, we c-an
€ 95 percent sure that the true autocorrelation coefficients p,, .

Dol R S ® o=
T

all zero. .+ P are nol L
In practice people tend to use the critical 10 percent level as a cutoff for this ; T NPT e

test. For example, if Q turned out to be 18.5 for a total of K = 15 lags, we w IJT B

observe that this is below the critical level of 22.31 and accept the h [}? - j [F

that the time series was generated by a white noise process. LS sal

I:et us now turn to an example of an estimated autocorrelation function for a =

statlonarg economic time series. We have calculated g, for quarterly data on real 5l

nonfarm inventory investment (measured in billions of 1982 dollars). The ti % i

s}elnes 1t§elf {covering the period 1952 through the first two quarters c;f 1988;ni§ -8t

!i 5?:1; Lrtlethﬁ. t1;.3», and the sarlnple autgcorrelation function is shown in Fig. j [ U UV O T G T U T U S N SO [ SO [

‘ 1at the autocorrelation function falls off rather quickly as the lag k ) ° = " % =

increases. This is typical of a stationary time series, such as inventory iI’lVCStIHe%lt FIGURE 15.4
) Nonfarm inventory investment: sample autocorrelation function.
FIGURE 15.3
Nonfarm inventory investment (in 1982 constant dollars).
Ve : ! :

75 In fact, as we will see, the autocorrelation function can be used to test whether
or not a series is stationary. If p, does not fall off quickly as k increases, this is an
indication of nonstationarity. We will discuss more formal tests of nonstationar-

50 ity (““unit root” tests) in Section 15.3.

If a time series is stationary, there exist certain analytical conditions which
place bounds on the values that can be taken by the individual points of the

251 autocorrelation function. However, the derivation of these conditions is some-
what complicated and will not be presented at this point. Furthermore, the
conditions themselves are rather cumbersome and of limited usefulness in ap-

0 plied time-series modeling. Therefore, we have relegated them to Appendix
15.1. We turn our attention now to the properties of those time series which arc
nonstationary but which can be transformed into stationary series.

—25
15.2.1 Homogeneous Nonstationary Processes
_sok Probably very few of the time series one meets in practice are stationary. Fortu-
nately, however, many of the nonstationary time series encountered (and this
includes most of those that arise in economics and business) have the desirable
_75 ! | . : ' ; property that if they are differenced one or more times, the resulting series will bv.
1955 1960 1965 1970 1975 1980 19185 t stationary. Such a nonstationary series is termed homogeneous. The number of
times that the original series must be differenced before a stationary series results




is called the order of homogeneity. Thus, ity is first-order homogenecous nonsta
tionary, the series

Wi =Y = Y1 = Ay, (15.26)
is stationary. If y, happened to be second-order homogeneous, the series
w, = A%y, = Ay, — Ay, (15.27)

would be stationary.

As an example of a first-order homogeneous nonstationary process, consider
the simple random walk process that we introduced earlier:

V=Yt & (15.28)

Let us examine the variance of this process:

Yo = E(y{) = E[(yi-1 + &)2] = E(y2,) + o2
= E(y~,) + 202 (15.29)

or Yo = E(yi,) + no? (15.30)

Observe from this recursive relation that the variance is infinite and hence
undefined. The same is true for the covariances, since, for example,

Y1 = E(Weyi-1) = E[yim1(yer + &)] = E(y2)) (15.31)

Now let us look at the series that results from differencing the random walk
process, i.e., the series

w,=Ay, =y, —y_,=¢g (15.32)

Since the &, are assumed independent over time, w, is clearly a stationary pro-
cess. Thus, we see that the random walk process is first-order homogeneous. In
fact, w, is just a white noise process, and it has the autocorrelation function p, =
1, but p, = 0 for k > 0.

15.2.2 Stationarity and the Autocorrelation Function

The GNP or a series of sales figures for a firm are both likely to be nonstationary.
Each has been growing (on average) over time, so that the mean of each series is
time-dependent. It is quite likely, however, that if the GNP or company sales
figures are first-differenced one or more times, the resulting series will be sta-

i

FIGURE 15.5
Stationary series.

tionary. Thus, if we want to build a time-series model to foreca:lt1 .Lhe GNF’.,]_i\iY:'
can difference the series one or two times, construc.t a model for this glelw hL{ [
make our forecasts, and then integrate (i.e., undifference) the model and its
ive back at GNP. '
forgjws\fsc;?l é*:)ffre“;lef:cide whether a series is stationary or‘determine the lai;‘)prj(uj r.|—l
ate number of times a homogeneous nonstationary series should be ;hf eanf:'f-
to arrive at a stationary series? We can begin by looking at a plot of the auu)cj(l _
relation function (called a correlogram). Figures 15._5 and 15.6 show zaiutf;mco;lrltnz{ _
tion functions for stationary and nonstationary series. The autocorre atlmn b:”
tion for a stationary series drops off as &, the numbeF of lags, becoréllg?; argei,n !
this is usually not the case for a nonstationarg series. If we aro&‘1 i ke_ren?El ! i.,htc
nonstationary series, we can test each succeeding difference by ;)od‘?flg he
autocorrelation function. If, for example, the second round of differencing

FIGURE 15.6 _
Nonstationary series.
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results in a series whose autocorrelation function drops off rapidly, we can
determine that the original series is second-order homogeneous. If the resulting

series is still nonstationary, the autocorrelation function will remain large even
for long lags.

Example 15.1 Interest Rate Often in applied work it is not clear how
many times a nonstationary series should be differenced to yield a stationary
one, and one must make a judgment based on experience and intuition. As an
example, we will examine the interest rate on 3-month government Treasury
bills. This series, consisting of monthly data from the beginning of 1950
through June 1988, is shown in Fig. 15.7, and its autocorrelation function is
shown in Fig. 15.8. The autocorrelation function does decline as the number
of lags becomes large, but only very slowly. In addition, the series exhibits an
upward trend (so that the mean is not constant over time). We would there-
fore suspect that this series has been generated by a homogeneous nonsta-
tionary process. To check, we difference the series and recalculate the sample
autocorrelation function.
The differenced series is shown in Fig. 15.9. Note that the mean of the

series is now about constant, although the variance becomes unusually high

FIGURE 15.7
Three-month Treasury bill rate.
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Interest rate—first differences: sample autocorrelation function. FIGURE 15.11

during the early 1980s (a period when the Federal Reserve targeted the
money supply, allowing interest rates to fluctuate). The sample autocorrela-
tion function for the differenced series is shown in Fig. 15.10. It declines
rapidly, consistent with a stationary series. We also tried differencing the
series a second time. The twice-differenced series, A’R; = AR, — AR, is
shown in Fig. 15.11, and its sample autocorrelation function in Fig. 15.12.
The results do not seem qualitatively different from the previous case. Our

conclusion, then, would be that differencing once should be sufficient to
ensure stationarity.

Example 15.2 Daily Hog Prices® As a second example, let us examine a
time series for the daily market price of hogs. If a forecasting model could be
developed for this series, one could conceivably make money by speculating
on the futures market for hogs and using the model to outperform the market.

¢ This example is from a paper by R. Leuthold, A. MacCormick, A. Schmitz, and D. Watts,

Three-month Treasury bill rate—second differences.

E 15.12 . :
:;lgll"'ezt rate—second differences: sample autocorrelation function.
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Sample autocorrelation functions of daily hog price data.

The seri ' i i
o If:;lesr iCOHSISt.S of 2'50 daily data points covering all the trading days in
o ho.gs 501}; i;e tﬁ:r:'lbllﬁ is the a\lzerage price in dollars per hundredweight of
ight regional markets in the Uni i
B : : nited States on a particu
. ey ﬁThe ;ample autocorrelation functions for the original price serigs and 11?ar
Obrst ifference of the series are shown in Fig. 15.13 Or
e fz;r;tieo‘;ll%; Itzle %nglipal series is clearly nonstationary. The autocorrela
y declines, even after a 16-period | ies i _
ever, first-order homogeneous, si i e
s, since its first difference is cl i
i : . is clearly stationary.
resemﬁ)a}zt,‘:}?tt only is t}.-le first-differenced series stationary, butyit appear?to
N I> e Slc;}(s)ec,i since the sample autocorrelation function gy is close to
: etermine whether the differenced series is i
! he series is indeed whi
st(;ﬁ:{j cle:t 11‘51 calcula-te the Q statistic for the first 15 lags. The value O;Vltlllltii
i 115e 3 1.65\} which, with 15 degrees of freedom, is insignificant at the 10
i 1? . We cap Itheref(.}re conclude that the differenced series is white
that the original price series can best be modeled as a random walk:

P=P_, + & (15.33)

As is th i
e case of most stock market prices, our best forecast of P, is its most

recent value, and (sadly) there i
-y ( y) there is no model that can help us outperform the

15.2.3 Seasonality and the Autocorrelation Function

We have just seen that the autocorrelation function can reveal information
about the stationarity of a time series. In the remaining chapters of this book we
will see that other information about a time series can be obtained from its
autocorrelation function. However, we continue here by examining the relation-

ship between the autocorrelation function and the seasonality of a time series.

As discussed in the previous chapter, seasonality is just a cyclical behavior
that occurs on a regular calendar basis. An example of a highly seasonal time
series would be toy sales, which exhibit a strong peak every Christmas. Sales of
ice cream and iced-tea mix show seasonal peaks each summer in response 10
increased demand brought about by warmer weather; Peruvian anchovy pro-
duction shows seasonal troughs once every 7 years in response to decreased
supply brought about by cyclical changes in the ocean currents.

Often seasonal peaks and troughs are casy to spot by direct observation of the
time series. However, if the time series fluctuates considerably, seasonal peaks
and troughs might not be distinguishable from the other fluctuations. Recogni-
tion of seasonality is important because it provides information about “regular-
ity’” in the series that can aid us in making a forecast. Fortunately, that recogni-
tion can be made easier with the help of the autocorrelation function.

If a monthly time series y; exhibits annual seasonality, the data points in the
series should show some degree of correlation with the corresponding data
points which lead or lag by 12 months. In other words, we would expect 10 s¢¢
some degree of correlation between y; and y;—2. Since y; and y,-1, will be corre-
lated, as will y;—12 and yr—24, W€ should also see correlation between and Y, 4.
Similarly there will be correlation between y, and yi—3q. Vi and y,_4s, €tc. These
correlations should manifest themselves in the sample autocorrelation function
pr, which will exhibit peaks at k = 12, 24, 36, 48, etc. Thus we can identify
seasonality by observing regular peaks in the autocorrelation function, even if
seasonal peaks cannot be discerned in the time series itself.

Example 15.3 Hog Production As an example, look at the time series for
the monthly production of hogs in the United States, shown in Fig. 15.14. It
would take a somewhat experienced eye to casily discern seasonality in that
series. The seasonality of the series, however, is readily apparent in its sample
autocorrelation function, which is shown in Fig. 15.15. Note the peaks that
occur at k = 12, 24, and 36, indicating annual cycles in the series.

A crude method of removing the annual cycles (““deseasonalizing” the
data) would be to take a 12-month difference, obtaining a new serics
Z = Y — Yi-12. As can be seen in Fig. 15.16, the sample autocorrelation
function for this 12-month differenced series does not exhibit strong seasonal-
ity. We will see in later chapters that z, represents an extremely simple time:
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Hog production: sample autocorrelation function of y; — Y12
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15.3 TESTING FOR RANDOM WALKS
d interest rates tend to

iables such as GNP, employment, an
ng-run trend following a shock, or do they follow random
walks? This question is important for two reasons. First, if these variables follow
on of one against another can lead to spurious results.
because a random

random walks, a regressi
m would not hold, for example,

[The Gauss-Markov theore
walk does not have a finite variance. Hence ordinary least squares (OLS) would
tor.] Detrending the variables beforc

not yield a consistent parameter estima
running the regression will not help; the detrended series will still be nonsta-

Do economic var
revert back to some lo



tionary. Only first-differencing will yield stationary series. Second, the answel
has implications for our understanding of the economy and for forecasting. If a
variable like GNP follows a random walk, the effects of a temporary shock (such
as an increase in oil prices or a drop in government spending) will not dissipatce
after several years, but instead will be permanent.

In a provocative study, Charles Nelson and Charles Plosser found evidence
that GNP and other macroeconomic time series behave like random walks.” T he
work spawned a series of studies that investigate whether economic and finan-
cial variables are random walks or trend-reverting. Several of these studies show
that many economic time series do appear to be random walks, or at least have
random walk components.? Most of these studies use unit root tests introduced by
David Dickey and Wayne Fuller.®

Suppose we believe that a variable ¥;, which has been growing over time, can
be described by the following equation:

Vi=a+ Bt+ p¥_, + ¢ (15.34)

One possibility is that Y, has been growing because it has a positive trend
(8 > 0), but would be stationary after detrending (i.e., p < 1). In this case, ¥,
could be used in a regression, and all the results and tests discussed in Part One
of this book would apply. Another possibility is that ¥, has been growing because
it follows a random walk with a positive drift (i.e., & > 0, B=0andp=1).In
this case, one would want to work with AY,. Detrending would not make the
series stationary, and inclusion of ¥; in a regression (even if detrended) could
lead to spurious results.

One might think that Eq. (15.34) could be estimated by OLS, and the ¢
statistic on f could then be used to test whether § is significantly different from 1.
However, as we saw in Chapter 9, if the true value of p is indeed 1, then the OLS
estimator is biased toward zero. Thus the use of OLS in this manner can lead one
to incorrectly reject the random walk hypothesis.

Dickey and Fuller derived the distribution for the estimator p that holds when
p = 1, and generated statistics for a simple F test of the random walk hypothesis,
i.e., of the hypothesis that 8 = 0 and p = 1. The Dickey-Fuller test is easy to

7 C. R. Nelson and C. I Plosser, “Trends and Random Walks in Macroeconomic Time Series:
Some Evidence and Implications,” Journal of Monetary Economics, vol. 10, pp- 139-162, 1982.

# Examples of these studies include J. Y. Campbell and N. G. Mankiw, ““Are Output Fluctuations
Transitory?,” Quarterly Journal of Economics, vol. 102, pp. 857—880, 1987; J. Y. Campbell and N. G.
Mankiw, “Permanent and Transitory Components in Macroeconomic Fluctuations,”” American Eco-
nomic Review Papers and Proceedings, vol. 77, pp. 111-117, 1987; and G. W. Gardner and K. P,
Kimbrough, “The Behavior of U.S. Tariff Rates,”” American Economic Review, vol. 79, pp. 211-218,
1989.

’D. A. Dickey and W. A. Fuller, “Distribution of the Estimators for Autoregressive Time-Series
with a Unit Root,” Journal of the American Statistical Association, vol. 74, pp. 427-431, 1979; D. A.
Dickey and W. A. Fuller, “Likelihood Ratio Statistics for Autoregressive Time Series with a Unit

Root,” Econometrica, vol. 49, pp. 1057—1072, 1981; and W. A. Fuller, Introduction to Statistical Time
Series (New York: Wiley, 1976).

TABLE 161

= 8
DISTRIBUTION OF F FOR (a, B, p) = (o 0, 1) IN Y, = et + B+ pYoos + & 38
Sample - Probability of a smaller value B
. —
g 01 025 .05 10 90 95 975 9
74 o0 108 133 591 724 8.6? 1(9)(;:
gg 76 93 111 137 5.61 6,73 ;?14 831
100 76 .94 112 138 647 6‘42 744 673
250 76 94 113 133 539 6.(:330 725 643
500 76 o4 113 133 536 6 7.2 634
- 22 e4 113 139 534 625 ;
058
Sti?fi?'d o004 004 003 004 015 020 082

Source: Dickey and Fuller, op. cit., Table Vi, p. 1063, 1981.

perform, and can be applied to a more general version of Eq. (15.34). It works as

follows.

Suppose Y; can be described by the following equation:

Y,=a+ Bt + pYi + MAY1 + & (15.35)

— Y,_,. (Additional lags of AY, can be included on the right-

e Using OLS, one first runs the unrestricted

hand side; the test is the same.)
regression

Y! o 1’1_1 =a + Bt + (p S 1)Y[71 + )\1 Athl (153())

and then the restricted regression
Y:!_ Y[-]=O’.+ AlAY{71 (1537)

F ratio to test whether the restrictions ( B - 0,
p = 1) hold.!® This ratio, however, is not distributed asdg Sti)nc:;?rdsth;)iT::E:!l‘l): ;
7 ; i d, one must use the distribution:
under the null hypothesis. Instead, . us e e am
i iti lues for this statistic are snow .
Dickey and Fuller. Critical va e e T
iti h larger than those in
e that these critical values are mu.c e
tabiOtFor example, if the calculated F ratio turns out to be 5.2 and there are

Then, one calculates the standard

10 Recall that F is calculated as follows:
F = (N — k) (ESSz — ESSue)/q(ESSus)
here ESSg and ESSyz are the sums of squared residuals in the restricted and unrestricted regres
where R UR

slons, IESPECtn’el ’ is the Ilulllbel Of observations, k is the number of EStIIIlated arameters I [§
uIlI'eStrlCth regressﬂon, and q1s the number Of parameter restrictions.




observations, we would easily reject the null hypothesis of a unit root at the 5 150 ¢
percent level if we used a standard ¥ table (which, with two parameter restric-
tions, shows a critical value of about 3.1 ), i.e., we would conclude that there is
no random walk. This rejection, however, would be incorrect. Note that we fail
to reject the hypothesis of a random walk using the distribution calculated by
Dickey and Fuller (the critical value is 6.49) 11

Although the Dickey-Fuller test is widely used, one should keep in mind that
its power is limited. It only allows us to reject (or fail to reject) the hypothesis
that a variable is not a random walk. A failure to reject (especially at a high

significance level) is only weak evidence in favor of the random walk hypothe-
sis.

10.0

7.5

Dollars per barrel

5.0
Example 15.4 Do Commodity Prices Follow Random Walks? Like

stocks and bonds, many commodities are actively traded in highly liquid spot
markets. In addition, trading is active in financial instruments such as futures 2.5
contracts that depend on the prices of these commodities. One might there-
fore expect the prices of these commaodities to follow random walks, so that l ] . 4 | | | | .
no investor could expect to profit by following some trading rule, (See Exam- 0 . ' - 19'00 1910 1920 1930 1940 1950 1960 1970 1980
ple 15.2 on daily hog prices.) Indeed, most financial models of futures, op- TaTe’ CIRE0 S

tions, and other instruments tied to a commodity are based on the assumption
that the spot price follows a random walk. 2

On the other hand, basic microeconomic theory tells us that in the long run
the price of a commodity ought to be tied to its marginal production cost. This
means that although the price of a commodity might be subject to sharp
short-run fluctuations, it ought to tend to return to a “normal”’ level based on
cost. Of course, marginal production cost might be expected to slowly rise (if
the commodity is a depletable resource) or fall (because of technological
change), but that means the detrended price should tend to revert back to a
normal level.

Atissue, then, is whether the price of a commodity can best be described as
a random walk process, perhaps with trend:

Pi=a+ Pt (15.38)

where ¢ is a white noise error term, or alternatively as a first-order auto-
regressive process with trend:

Po=a+ Bt + pP_, + g (15.39)

! For further discussion of the random walk model and alternative tests, see P. Perron, “Trends

FIGURE 15.18
Price of oil (in 1967 constant dollars).

Since any reversion to long-run marginal cost is likely to be dsl;)w, x;v};e ;\:tl'; (311 1;,1
iscrimi lternative models wi G

ble to discriminate between these two a : :
Egvaer a long time period (so that short-run fluctuations Wash o;n). Fortu

nately, more than 100 years of commodity price de.tta are available. e

Fi 1’1res 15.18, 15.19, and 15.20 show the real (in 1967 dollars) pnc:es7 H

crudg oil coppér, and lumber over the 117-year pengd 12157f() Itrtl) 1189880 .m

‘ i i d around $4 per barrel fro
Observe that the price of oil fluctuate B i
i 1980—-81 and then fell during

970 but rose sharply in 1974 and . _

i9805 Copper prices have fluctuated considerably but show a general dol:\:vx:1 [
ward t.rend while lumber prices have tended to increase, at least up to abo

50. : : i
i We ran a Dickey-Fuller unit root test on each price series by estimating the

unrestricted regression:

P[_P;—1:a+ﬁt+ (p_ 1)P1—1+AAP1_1+81

and the restricted regression:

Pb— P =a+ANAP_ 1+ &
and Random Walks in Macroeconomic Time Series: Further Evidence from a New Approach,”

Journal of Economic Dynamics and Control, vol. 12, pp. 297-332, 1988, and P. C. B. Phillips, “Time
Series Regression with Unit Roots,” Econometrica, vol. 55, pp. 277-302, 1987.

12 For a thorough treatment of commodity markets and derivative instruments such as futures
contracts, see Darrell Duffie, Futures Markets (Englewood Cliffs, N.J.: Prentice-Hall, 1989), and John
Hull, Options, Futures, and Other Derivative Securities (Englewood Cliffs, N.J.: Prentice-Hall, 1989).

13 The data for 1870 to 1973 are from Robert Manthgf/‘, A C‘engl{ry f‘{, rzl\;ag;r;c;:‘e};e;igc; I.ilt?ézrsrtrtlc;:

i i ity Press, 1978. Data after 1973 are from publicatl e Er )

fphni;{ezgl;lgif Il}lgergﬁfeau of Mines. All prices are deflated by the wholesale price index (now the
1011 D

Producer Price Index).
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FIGURE 15.19
Price of copper (in 1967 constant dollars).

FIGURE 15.20
Price of lumber (in 1967 constant dollars).
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TABLE 16.2
DICKEY-FULLER TESTS

Commodity o [ (p 1) A ESS

Copper (unrestricted) 11,357 -,0446 —.2417 0766 4,344.8
(3.228) (.0208) (.0631) (0941)

Copper (restricted) -.1969 —.0440 49135
(6098) (.0834)

Lumber (unrestricted) .8825 .0660 —.1560 1392 2,242.8
(.8689) (.0263) (.0515) (.0958)

Lumber (restricted) 2488 .0507 24286
(.4291) (.0938)

Qil {unrestricted) 4366 00895  —.2855 2548 100.09
(2188) (.00285) (.0459) (.0848)

Qil (restricted) —-.0262 1760 125.00
(.0973) (.0918)

We tested the restrictions by calculating an F ratio and comparing it to the
critical values in Table 15.1. Regression results (with standard errors in paren-
theses) are shown in Table 15.2.

In each case there are 116 annual observations. Hence, for copper the
ratio is (112)(4,913.5 — 4,344.8)/(2)(4,344.8) = 7.33. Comparing this to the
critical values for a sample size of 100 in Table 15.1, we see that we can reject
the hypothesis of a random walk at the 5 percent level. For lumber, the F ratio
is 4.64, and for crude oil, it is 13.93. Hence we can easily reject the hypothesis
of a random walk for crude oil, but we cannot reject this hypothesis for
lumber, even at the 10 percent level.

Do commodity prices follow random walks? More than a century of data
indicates that copper and crude oil prices are not random walks, but the price
of lumber is consistent with the random walk hypothesis.'*

1870 1880 1890 1900 1910 1920 1930

1940

1950

1960

1970 1980

154 CO-INTEGRATED TIME SERIES

Regressing one random walk against another can lead to spurious results, in that
conventional significance tests will tend to indicate a relationship between the
variables when in fact none exists. This is one reason why it is important to tesl
for random walks. If a test fails to reject the hypothesis of a random walk, onc
can difference the series in question before using it in a regression. Since many
economic time series seem to follow random walks, this suggests that one will
typically want to difference a variable before using it in a regression. While this is

14 The fact that copper and oil prices do not seem to be random walks does not mean that one car
earn an unusually high return by trading these commodities. First, a century is a long time, so ever
ignoring transaction costs, any excess return from the use of a trading rule is likely to be very small
Second, the mean-reverting behavior that we have found may be due to shifts over time in the risk-
adjusted expected return.




acceptable, differencing may result in a loss of information about the long-run

TABLE 1563

relationship between two variables. Are there situations where one can run a CRITICAL VALUES FOR TEST
regression between two variables in levels, even though both variables are ran- OF DW =0
dom walks? Significance  Critical value

There are. Sometimes, two variables will follow random walks, but a linear level, % of DW
combination of those variables will be stationary. For example, it may be that the " 511
variables x, and y, are random walks, but the variable z, = x, — Ay, is stationary. If 5 386
this is the case, we say that x, and y, are co-integrated, and we call A the co- 10 322

integrating parameter.'> One can then estimate A by running an OLS regression of

x; on y,. (Unlike the case of two random walks that are not co-integrated, here
OLS provides a consistent estimator of A.) Furthermore, the residuals of this
regression can then be used to test whether x, and y, are indeed co-integrated.

The theory of co-integration, which was developed by Engle and Granger, is
important for reasons that go beyond its use as a diagnostic for linear regres-
sion.'® In many cases, economic theory tells us that two variables should be co-
integrated, and a test for co-integration is then a test of the theory. For example,
although aggregate consumption and disposable income both behave as random
walks, we would expect these two variables to move together over the long run,
so that a linear combination of the two should be stationary. Another example is
the stock market; if stocks are rationally valued, the price of a company’s shares
should equal the present value of the expected future flow of dividends. This
means that although dividends and stock prices both follow random walks, the
two series should be co-integrated, with the co-integrating parameter equal to
the discount rate used by investors to calculate the present value of earnings.!”

Suppose one determines, using the Dickey-Fuller test described above, that x,
and y, are random walks, but Ax, and Ay, are stationary. It is then quite easy to

test whether x; and y, are co-integrated. One simply runs the OLS regression
(called the co-integrating regression):

Xxx=a+ By + & (15.40)

and then tests whether the residuals, ¢, from this regression are stationary. (If x,

' In some situations, x, and y, will be vectors of variables, and A a vector of parameters; A is then
called the co-integrating vector. Also, we are assuming that x, and y, are both first-order homogeneous
nonstationary (also called integrated of order one); i.e., the first-differenced series Ax, and Ay, are both
stationary. More generally, if x, and y, are dth-order homogeneous nonstationary (integrated of order
d), and z, = x, — Ay, is bth-order homogeneous nenstationary, with b < 4, we say that x, and y, are co-
integrated of order d, b. We will limit our attention to the case of d = 1 and # = 0.

!¢ The theory is set forth in R. F. Engle and C. W. J. Granger, “Co-Integration and Error Correc-
tion: Representation, Estimation, and Testing,”” Econometrica, vol. 55, pp. 251-276, 1987,

17 For tests of the present-value model of stock pricing, see J. Y. Campbell and R. J. Shiller,
“Cointegration and Tests of Present Value Models,” Journal of Political Econemy, vol. 95, pp. 1062—
1088, 1987. For other applications, see J. Y. Campbell, ““Does Saving Anticipate Declining Labor
Income? An Alternative Test of the Permanent Income Hypothesis,” Econometrica, vol. 55, pp. 1249—
1273, 1987, for a study of the co-integration of consumption and income; R. Meese and K. Rogoff,
““Was It Real? The Exchange Rate—Interest Differential Relation over the Modern Floating-Rate
Period,” Journal of Finance, vol. 43, pp. 933—947, 1988, for a study of the co-integration of exchange
rates and interest differentials.

and y, are not co-integrated, any linear combinati.on of lhemj whlll ]l;t 1:::‘13: .1 1
tionary, and hence the residuals e, will. be nonstatlogary.) Sfpu:lc (:.ah::;- ,m“m“.
the hypothesis that ¢, is not stationary, Le. the hypothesis o }qot o ;,g o

A test of the hypothesis that ¢, is nonstationary .can be dqne 1{1l WO [.V',;.i. 0;,,:.
a Dickey-Fuller test can be performed on the Iremdual series. .A ternz:i :-, : I“i"]rvg_
can simply look at the Durbin-Watson statistic from the_cg-tptegra é, gre:
sion. Recall from Chapter 6 that the Durbin-Watson statistic is given by

i 2L B
Ll 2(e)?

If ¢, is a random walk, the expected value of (e, — et_l) is lzero,ts:;l ;l;]e D(?J]b::x,
Watson statistic should be close to z€ro. Th1.1's, one can simp y tes Y}?own ‘ 1{1
that DW = 0. For 100 observations, the critical Values' for ths. test are s o
Table 15.3.8 For example, if after running the co—mtegrat;ng regl.'e::sélim“o“
obtain a value of DW of .71, we could reject the hypothesis of no co-integ

at the 1 percent level.

Example 15.5 The Co-integration of Consumptioq and I_nclou:.e , :\,n
interesting finding in macroeconomics is that many variables, mg uding 1‘1\-&
i i le income, seem to follow random walks.
regate consumption and disposab \
in;gong other things, this means that the effects of a temporary shock will n”'tr
tend to dissipate after several years, but instead will be permanent. Bulleiv: | \lti
consumption and disposable income are random wez.ll;s, t}ﬁe tw% sﬁ;)ulc] ! :1 I“,
is that over long periods, households €1
to move together. The reason 1S ; ; e o
i i heir disposable income. Thus, ov
consume a certain fraction of t ble . ‘ '
term consumption and income should stay in line with each other, i.e., they
should be co-integrated. ‘ _ ' o
We will test whether real consumption spending and real dl;posablln‘rn:’r
come indeed are co-integrated, using quarterly data for the third quarte

18 Erom R. F. Engle and C. W. J. Granger, op. cit., p. 269.




1950 through the first quarter of 1988. We first test whether each variable is a
random walk, using the Dickey-Fuller test described in the previous section.
For consumption, the unrestricted ESS is 21,203 and the restricted ESS is
22,737; with 151 observations, the F ratio is 5.32. Observe from Table 15.1
that with this value of F we fail to reject the random walk hypothesis, even at
the 10 percent level. For disposable income, the unrestricted ESS is 40,418
and the restricted ESS is 42,594, so the F ratio is 3.96. Again we fail to reject
the hypothesis of a random walk. (What about first differences of consump-
tion and disposable income? We leave it to the reader to perform a Dickey-
Fuller test and show that for first differences we can reject the random walk
hypothesis.)

We next run a co-integrating regression of consumption € against dispos-
able income YD.!? The results are as follows (standard errors in parentheses):

C = —133.82 + .9651YD
(6.109)  (.00346)

R? = .9981 s = 23.35 DW = 4936

We can use the Durbin-Watson statistic to test whether the residuals from this
regression follow a random walk. Comparing the DW of .4936 to the critical
values in Table 15.3, we see that we can reject the hypothesis of a random
walk at the 5 percent level. The residuals appear to be stationary, so we can
conclude that consumption and disposable income are indeed co-integrated.

APPENDIX 15.1 The Autocorrelation Function for a Stationary Process

In this appendix we derive a set of conditions that must hold for an autocorrela-
tion function of a stationary process. Let y, be a stationary process and let L; be
any linear function of y, and lags in y,, for example,

Li=ony + agyi-r + 0 0 agikr (A15.1)
Now since y; is stationary, the covariances of y, are stationary, and
Cov (Vi+is Yiti) = V)il (A15.2)

independent of t. Then, by squaring both sides of Eq. (A15.1), we see that the
variance of L, is given by

k+1 k+1

Var (L) = >, 2, &ia¥)si (A15.3)

i=1 j=1

1 For readers using Citibase data, the corresponding series are GC82 and GYD82.

' ' » Vil " N R y " tl
If the &'s are not all 0, the variance of L, must be greater than 0 and therelore w

must have, for all £ and J,

Vil = 0 fori = j (A15.4)

Now, for n observations, write the covariances of y, as a matrix:
’

Yo Y1 Y2 N T |
IRl O A Yn—2 (A15.3)
Yn-1 Yn-2 Ynu-3 Yo

This matrix must be positive definite because the variance of L, is always greatet
than zero. Note that

1 P1 P2 Pn—1
I,=o|pm 1 pi - Ppr2 | = OVPy (A15.0)
Pn-1 Pn-2 Pn-3 1

where P, is the matrix of autocorrelations, and is itself positive definite. Thus the
determinant of P, and its principal minors must be greater than 0.‘ ‘ .
As an example, let us consider the case of n = 2. The condition on the

determinant of P, becomes

det[l Pl‘] >0

(43
which implies that 1—-pi>0
or st g Al (A15.7)

Similarly, for n = 3, it is easy to se¢ that the following three conditions must all
hold:

=f e (A15.8)

2 < e g (A15.9)
i

BT ol R (A15.10)
l—pz],

Sets of conditions can also be derived for n = 4, n = 5, etc., but it s};(_n}l:il
become clear that as the number of observations n becomes large, the number ¢
conditions that must hold also becomes quite large. Although these conditions




can ide ical chee i
Wor}i(rr(.:Lv‘u‘iL an mml.ytlcal check on the stationarity of a time series, in applied
e Sér;e;sitm(l)fm lZ;p];a] to judge stationarity from a visual examination of both
self and the sample autocorrelation fi i
. unction. For our s it wi
o purposes it will
ufficient to remember that for k > 0, =1 < p, < 1 for a stationary process.

EXERCISES

15.1 Show that the random wal i ift i
e walk process with drift is first-order homogeneous nonsta-
15.2 Consider the time series 1, 2, 3

.2,3,4,5,6,. . . ,20.Is this series stati 7
the s.j;tmple autocorrelation function g, fork =1, 2, . . 5. Can athH«iﬂyn hodian
P e . o3, you explain the shape

15.3 The data series for the pri i
i e prices of crude oil, copper, and lumber are printed in Table

TABLE 15.4
PRICES OF CRUDE OIL, COPPER, AND LUMBER (in 1967 constant dollars)
Obs. Oil Copper Lumber Obs. Oil Copper Lumber
187
187? : g.;sg 41.61 913 | 1929 363  36.86 32.65
ter1 - 10s 47.54 970 | 1930 364 2921 29,84
ez 83 2(1). 247: 975 | 1931 247  21.54 29.39
1874 281 5468 g'gg :ggg Lo e e
1674 ! ; 271 2059 24.97
s o | Ao i B
; . . 317 2082
te7e 23.51
1877 ggi z; 1? 974 | 1936 348 2278 24.34
e a . 975 | 1937 355 2966 25,12
ez gg gggg 1043 | 1938 365 2469 24,59
. s 1009 | 1939 332 277 '
122; 274 4639 1090 | 1940 3.6 27:98 gggg
teg2 226  49.85 11.11 1941 328 26.16 27.47
1083 g‘gg ﬁ.g; 11.05 | 1942 301 2318 29.98
. . 11.79 | 1943 289 2 :
1885 295 3562 12.02 ‘ o L
: : 1944 291 2201
1886 242 3253 12.32 ' ik
: ; 1945 289 2161
1887 244  31.96 12,44 : e
; ) 1946 292 2212
lggg g.?; igg? 1203 | 1947 327 2745 ‘5122411
; ) 1203 | 1948  4.09 '
1890 300 5241 12.28 ' i iy
A : 1949 419 24.40
1891 233 4375 12.19 : | g
: : 1950 405 2592
1892 208  41.26 12.60 ‘ s
] . 1951 367  26.56
1893 244  38.18 12.55 ' e
: ; 1952 377 27.34
1894 324 3684 13.72 : A
: ‘ 1953 407 32
1322 :.gg 2‘11 ﬁ }g‘or 1954 421 33.3?1 gigf
. : 67 | 1955 418 4271 :
:ggg g ; Z jg.gg }3.17 1956  4.09  46.09 gigg
] : 332 | 1957 438 '
1899 480  63.20 13.68 ' A ol
: : 1958 423 272
1900 472 5517 1259 | 1950 4.11 32.92 g?f;i

TABLE 1564
PRICES OF CRUDE O, COPPER, AND | UMBER (in 1967 conslant dollars)
(Continued)
Obs. Oil Copper Lumber Obs. 0il Copper Lumber
1901 4.00 57.19 12.63 1960 4.07 33.83 52.57
1902 3.59 38.16 13.95 1961 4.10 31.64 50.89
1903 4.04 43.00 13.42 1962 410 32.28 49.43
1904 3.83 40.91 11.95 1963 4.1 32.38 50.03
1905 2.90 49.03 13.77 1964 4.09 33.79 51.58
1906 2.66 60.50 15.80 1965 3.99 36.23 52.09
1907 2.50 59,52 16.01 1966 3.89 36.27 50.46
1908 2.50 40.74 20.49 1967 3.90 38.20 51.17
1909 2.18 37.36 2017 1968 3.83 40.78 53.99
1910 1.85 34.99 18.29 1969 3.90 44.60 57.65
1911 2.03 37.01 22.12 1970 3.89 52.26 49.09
1912 2.39 45.79 20.98 1971 4.00 4513 57.88
1913 3.19 42.50 23.25 1972 3.84 42.49 65.20
1914 2.79 38.75 22.56 1973 3.99 43.73 74.21
1915 2.20 48.19 22.95 1974 5.56 46.81 50.57
1916 3.22 61.68 18.98 1975 5.64 35.11 45.27
1917 342 44.88 16.34 1976 5.82 36.22 52.35
1918 3.90 36.34 16.51 1977 571 32.48 57.54
1919 3.90 26.15 17.86 1978 5.61 30.23 64.23
1920 540 21.96 19.15 1979 6.98 37.77 62.77
1921 4.39 24.85 22.84 1980 10.34 35.99 4117
1922 4.21 26.85 22.53 1981 13.94 27.22 32.09
1923 3.24 27.75 21.91 1982 12.34 23.37 27.71
1924 3.58 25.69 26.13 1983 11.26 24.80 37.21
1925 410 26.22 31.33 1984 10.86 20.76 28.27
1926 4.67 26.74 29.94 1985 10.15 20.47 27.58
1927 3.50 26,22 30.12 1986 5.46 20.91 35.70
1928 3.37 29.26 26.75 1987 6.57 25.61 39.91

(a) Calculate the sample autocorrelation function for each series, and determine
whether they are consistent with the Dickey-Fuller test results in Example 15.4. Specifi-
cally, do the sample autocorrelation functions for crude oil and copper prices exhibit
stationarity? Does the sample autocorrelation function for the price of lumber indicate
that the series is nonstationary?

(b) How robust are the Dickey-Fuller test results to the sample size? Divide the
sample in half, and for each price series, repeat the Dickey-Fuller tests for each half of the
sample.

15.4 Go back to the data for the S&P 500 Common Stock Price Index at the end of the
preceding chapter. Would you expect this index to follow a random walk? Perform a
Dickey-Fuller test to se€ whether it indeed does.

15.5 Calculate the sample autocorrelation function for retail auto sales. (Use the data in
Table 14.2 at the end of Chapter 14.) Does the sample autocorrelation function indicatc

seasonality?




CHAPTER l

LINEAR TIME-SERIES
MODELS

We turn d .
b Ol;(;:\;t?l thﬁ'! main focus of the remainder of this book, the construction of
oLl i a}sl;tlcProceslses and their use in forecasting. Our objective is to
own pgst Sali;st atd f Xplairt’ the movement of 2 time serics by relating it 1o its
and to a weighted sum :
P— 8 of current and lagged random distur-
Whil .
e :t itc};ler?[ ﬁ_re many functional forms that can be used, we will use a linear
Easic ron. . is will allow us to make quantitative statements about the sto-
calculatg : p;:;f1 ées of lthe models and the forecasts generated by them (e.g., to
g am dot i ence intervals). In addition, our models apply to stationar)‘l I;ro
o homogeneous nonstationa ; B
. ry processes (which can be di
one or m ; : e differenced
e (());tz tlmﬁs ﬁto yleld' stationary processes). Finally, the models are written
S an}llt xed estl‘mated coefficients, representing a stochastic structure
of fonstatt Ongr;nge Qver tu}l:e. (Although models with time-varying coefficients
) processes have been de
this book.) veloped, they are beyond the scope of
In th E :
i3 am:;.’rﬁrst tv-vo sections of the chapter we examine simple moving average
ik egl:esswe models for stationary processes. In a moving average modgl
To i , ;
randlz)mcfisisstﬁrg;cczbe? co;npletely by a weighted sum of current and lagged
s. In the autoregressive model, th
weighted sum of its past v . the process depends on a
alues and a random dist
. j urbance term. I i
section ; : . In the third
e t‘ﬁg lntroduo.:e mlxed‘ autoregressive—moving average models. In these
T e o Pri)lcess isa funcnor-l of both lagged random disturbances and its past
nonsra’t' we _as a current disturbance term. Even if the original process is
P tﬁgilgry, lt‘often can be differenced one or more times to produce a new
Is stationary and for which a mixed autoregressive—moving average
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model can be constructed, This model can be used to produce a forecast one or
more periods into the future, after which the forecasted stationary series can be
times to yield a forecast for the original time series. The
—moving average model provides a general framework
ries.

integrated one or more
integrated autoregressive
for the modeling of homogeneous nonstationary time se

When building an integrated autoregressive—moving average model for a
nonstationary time series, we must first specify how many times the series is Lo
be differenced before a stationary series results. We must also specify the number
of autoregressive terms and lagged disturbance terms 10 be included. We have
seen in Chapter 15 that the autocorrelation function can be used to tell us how
many times we must difference a homogeneous nonstationary process in order
to produce a stationary process. Here we will see how the autocorrelation func-
tion can also be used to help determine how many lagged disturbance terms and
autoregressive terms should be included in the model.

16.1 MOVING AVERAGE MODELS
h observation y, is generated by a

In the moving average process of order q eac
back g periods. We denote this

weighted average of random disturbances going
process as MA(q) and write its equation as

yw=pt e — Dye o hers =i e 0.8—q (16.1)

where the parameters 6,, . . . . 6, may be positive or negative.!
In the moving average model (and also in the autoregressive model, which

will follow) the random disturbances are assumed to be independently distrib-

uted across time, i.e., generated by a white noise process. In particular, cach

disturbance term &, is assumed to be a normal random variable with mean 0,
variance o2, and covariance y; = 0 for k # 0.2 White noise processes may nol
occur very commonly, but, as we will see, weighted sums of a white noisc
process can provide a good representation of processes that are nonwhite.

The reader should observe that the mean of the moving average process is
independent of time, since E( ¥;) = p. Each g, is assumed to be generated by the
same white noise process, so that E(g;) = 0, E(e?) = o, and E(gg—«) = 0 for
k # 0. The process MA (q) is thus described by exactly 4 + 2 parameters, the

1 Following convention, we put a minus sign in front of 8, . . . , 6. In some textbooks, the

MA(g) model is written as
V= M + &+ et + 0,814

Be aware of this when reading and interpreting computer output, and as you proceed through the

rest of this book.
2 A5 we saw in the last chapter, the autoco
= {1 fork=10
Pe=10 fork#0

rrelation function for a white noise process is




mean u, the disturbance variance o2, and the parameters 6, ,, . . . , 6, that
determine the weights in the moving average.

Let us now look at the variance, denoted by e, of the moving average process
of order g:

Var (y;) = yo = E[(y; — )1

=E(ej+ 0fe1 + -« - + 022, ~ 26188 — - - )
=o;+ 0jo2+ - - -+ @22
=agX(l+602+6%+ - - «if 192) (16.2)

Note that the expected values of the cross terms are all 0, since we have assumed
that the &'s are generated by a white noise process for which y, = FE(gg,_;) = 0
for k # 0.

Equation (16.2) imposes a restriction on the values that are permitted for 6,,
-« ., 0,. We would expect the variance of J: to be finite, since otherwise a
realization of the random process would involve larger and larger deviations
from a fixed reference point as time increased. This, in turn, would violate our
assumption of stationarity, since stationarity requires that the probability of
being some arbitrary distance from a reference point be invariant with respect to
time. Thus, if y, is the realization of a stationary random process, we must have

i = (16.3)

1

q
=
In a sense this result is trivial, since we have only a finite number of 8/'s, and thus
their sum is finite. However, the assumption of a fixed number of 6/s can be
considered to be an approximation to a more general model. A complete model
of most random processes would require an infinite number of lagged distur-
bance terms (and their corresponding weights). Then, as g, the order of the
moving average process, becomes infinitely large, we must require that the sum
2007 converge. Convergence will usually occur if the s become smaller as i
becomes larger. Thus, if we are representing a process, believed to be stationary,
by a moving average model of order g, we expect the 8;'s to become smaller as {
becomes larger. We will see later that this implies that if the process is stationary,
its correlation function p; will become smaller as k¥ becomes larger. This is
consistent with our result of the last chapter that one indicator of stationarity is
an autocorrelation function that approaches zero.

Now we examine some simple moving average processes, calculating the
mean, variance, covariances, and autocorrelation function for each. These statis-
tics are important, first because they provide information that helps characterize
the process, and second because they will help us to identify the process when
we actually construct models in the next chapter.

We begin with the simplest moving average process, 1lhv moving :'\W‘""H"

process of order 1. The process is denoted by MA(1), and its equation is

nw=pot e = e (16.4)

This process has mean w and variance vy, = a2(1 + 01). Now let us derive the
covariance for a one-lag displacement, vy, :

v1 = E[(y: — m)(yr-1 — w)] = E[(e: — 018-1) (&1 — 6180-2)]

= —@,02 (16.5)
= TUU,

In general we can determine the covariance for a k-lag displacement to be

Y = El(e; = 0181 )(&-k — Or&x-1)] = 0 fork >1 (16.6)

Thus the MA(1) process has a covariance of 0 when the displacement is m-(:r:.‘
than one period. We say, then, that the process has a menory of only one pc'r:]('it-:,‘
any value y, is correlated with y,-, and with y.41, but with no other [lmg-'h:. ”:.
values. In effect, the process forgets what happened more than one period i the
past. In general the limited memory of a moving average process is 1mp0r1a:l | ]
suggests that a moving average model provides forecasting information only ¢

limited number of periods into the future. . : _
We can now determine the autocorrelation function for the process MA(1):

e vy
T o 1 (16.7)

pk:%_

0 k>1

An example of a first-order moving average process might be given by
vy, =2+ & + .88 (16.8)

The autocorrelation function for y, is shown in Fig. 16.1, and a typical realization

is shown in Fig. 16.2. . «
Now let us proceed by examining the moving average process of order 2. Th

process is denoted by MA(2), and its equation is
Y=+ g — g — 082 (16.9)
This process has mean u, variance o3(1 + 67 + %), and covariances given by

E[(e; — 6he-1 — 0:81-3)(g1-1 — 61812 — 0:e1-3)]

71
(16.10

—0,02 + 0,0,02 = —6,(1 — 6;)02




| ‘ FIGURE 16.1
k ﬁéutocorrelation function for y, = 2 + g +
OE-1.

Y2 = El(er — 6181 — B280-3) (65 — 018-3 — B:6,_4)]

— - 2
6.0 (16.11)
and =0 fork>2 (16.12)

The autocorrelation function is given by

Hpe —6i(1 — 6,)
1+ 67 + 63 (16.13)
pr=——0
1+ 62+ 62 (16.14)
and -

The process MA(2) has a memory of exactly two periods, so that the value of Vi is

FIGpHE 16.2
Typical realization of Yi=2+ g+ .85,

Y
5

w
I

S
FIGURE 16.3

6&;-1 - .38;_2 s

Autocorrelation function for y, = 2 + £,

influenced only by events that took place in the current period, one period back,

and two periods back.

An example of a second-order moving average process might be

nw=2+ g+ .68 — 3&;

(16.16)

The autocorrelation function is shown in Fig. 16.3, and a typical realization is

shown in Fig. 16.4.

We leave to the reader a proof that the moving average process of order ¢ has
a memory of exactly ¢ periods, and that its autocorrelation function p; is given

by the following (see Exercise 16.3):

'-—Bk- + G;Gkﬂ i i Bq_kﬂq
Oy == Yo :
0
FIGURE 16.4
Typical realization of y, = 2 + & + .Be-1 — 3&-2.

Y

Kl ol .

k>gq

5

g

(16.17)



We can now see why the sample autocorrelation function can be useful in
specifying the order of a moving average process (assuming that the time serics
of concern is generated by a moving average process). The autocorrelation func
tion p; for the MA () process has 4 nonzero values and is then 0 for k > ¢. As we
proceed through this and later chapters, we will attempt to give the reader an
understanding of how the sample autocorrelation function can be used to iden
tify the stochastic process that may have generated a particular time series.

16.2 AUTOREGRESSIVE MODELS

In the autoregressive process of order p the current observation y, is generated by a
weighted average of past observations going back p periods, together with a
random disturbance in the current period. We denote this process as AR( p) and

write its equation as
VT ¢;yz__~1:: w R R (16.18)

Here &8 is a constant term which relates (as we will see) to the mean of the
stochastic process.

16.2.1 Properties of Autoregressive Models

If the autoregressive process is stationary, then its mean, which we denote
by w, must be invariant with respect to time; that is, E(y) = E(y,_,) =

E(y1—3) =+ + - = . The mean w is thus given by
B=dp+ o+ + S (16.19)
or p= - o 16.20
T e k- g, (16.20)

This formula for the mean of the process also gives us a condition for sta-
tionarity. If the process is stationary, the mean w in Eq. (16.20) must be finite. If
this were not the case, the process would drift farther and farther away from any
fixed reference point and could not be stationary. (Consider the example of the
random walk with drift, that is, Yi=Yi-1 + 0+ . Here¢p; = 1, and u = x, and if

8 > 0, the process continually drifts upward.) If u is to be finite, it is necessary
that

Vud e b+ iy (16.21)

This condition is not sufficient to ensure stationarity, since there are other neces-
sary conditions that must hold if the AR(p) process is to be stationary. We
discuss these additional conditions in more detail in Appendix 16.1.

Now let us examine the properties of some simple autoregressive |Jt'(‘lt'('SHf.‘?‘.
Again we will determine the mean, covariances, etc., for each. We begin with
the first-order process AR(1):

Y=gyt 8+ g (16.22)

This process has mean

8

== (1().25)
H 1 - ¢

and is stationary if |¢,| < 1. Again, recall that the random walk with‘driilmis a
first-order autoregressive process that is not stationary. In that process ¢, h 1
and, as we saw in Chapter 15, the variance of the process becomes larger anc
lar%Eert Ij‘;l?oxt;fnégculate vo, the variance of this process about its mean. Assuminy
stationarity, so that we know that the variance is constant (for )| < l)), anc
setting 8 = 0 (to scale the process to one that has zero mean), we have

2 2
Yo = E[(¢y—1 + &)%] = E(iyi1 + & + 201-181) = diyo + O

ol

= 16.24)
so that Yo T qbf (
We can also calculate the covariances of y, about its mean:
_ b 16.25
Y1 = Ely-1(d1yi-1 + &)] = diyo = =0 (16.25)

pios
. 2 AL
v2 = ElYi—a(diyiz + drey + &)] = diye = PR e (16.26)

Similarly the covariance for a k-lag displacement is

k. 2
o b = PITE (16.27,
Yk 1Yo 1 e (}.’)2

1

The autocorrelation function for AR(1) is thus particularly simple—it begin:

i i i iati its mean, since if )
3 Setting 8 = 0 is equivalent to measuring y, in terms of dewanoEs about its me

ies J, = y, — J, = ¢, + &. The reader cai
Eq. (16.22), then the series jy = y, — u follovys the process y; = &1 : :
i?licle(é:?o sqée(that tl'ie result in Eq. (16.24) is also obtained (although with more algebraic manipula

tion) by calculating E[(y; — w)?] directly.
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FIGURE 16.5
Autocorrelation function for y, = 9y, , + 2 + ¢,.

at pp = 1 and then declines geometrically:
pr =50 = i (16.28)

Note that this process has an infinite memory. The current value of the process
depends on all past values, although the magnitude of this dependence declines
with time.*

An example of a first-order autoregressive process would be the process de-
fined by

Y= 9y + 2 + g (16.29)

The autocorrelation function for this process is shown in Fig. 16.5, and a typical
realization is shown in Fig. 16.6. The realization differs from that of a first-order
moving average process in that each observation is highly correlated with those
surrounding it, resulting in discernible overall up-and-down patterns.

Let us now look at the second-order autoregressive process AR(2):

V=it doyn + 8 + g (16.30)

#1It can be shown that if the AR(1) process is stationary, it is equivalent to a moving average
process of infinite order (and thus with infinite memory). In fact, for any stationary autoregressive
process of any order there exists an equivalent moving average process of infinite order (so that the
autoregressive process is invertible into a moving average process). Similarly, if certain invertibility
conditions are met (and these will be discussed in Appendix 16.1), any finite-order moving average
process has an equivalent autoregressive process of infinite order. For a more detailed discussion of
invertibility, the reader is referred to G. E. P. Box and G. M. Jenkins, Time Series Analysis (San
Francisco: Holden-Day, 1970); C. Nelson, Appiied Time Series Analysis (San Francisco: Holden-Day,
1973), chap. 3; or C. W. J. Granger and P. Newbold, Forecasting Economic Time Series (New York:
Academic, 1986).

Yy

20

N“MWI\VA‘MAVMW iy

FIGURE 16.6
Typical realization of the process y: = Oy + 2+ &

The process has mean

DR T (16.31)
Fo1-¢,— ¢

<17

iti ionarity is that ¢; + &:
and a necessary condition for stationarity b oo

Let us now calculate the variances and covariances of y;
in deviations form):

Yo = EVd1yi—1 + doyi2 + &)1 = b1 + bry: + OF (16.32)
y1 = Ep—1(bry-1 + dayi2 + &)1 = d1vo + ¢ (16.33)
v2 = E[Vi-2(@1yi-1 + $oya T &)1 = d1y1 + d2v0 (16.34)

and in general, for k = 2,

yi = Elimi(@ryi-1 + dayi—2 + &)1 = 1y + bavi-2 (16.35

We can solve Egs. (16.32), (16.33), and (16.34) simqltaneousiy to get ryy it
terms of ¢1, ¢,, and oz Equation (16.33) can be rewritten as

o i (16.36
i 1 - ¢
Substituting Eq. (16.34) into Eq. (16.32) yields
Yo = Gry1 + dadry1 + ddyo + 0 (16.37

5 Necessary and sufficient conditions are presented in Appendix 16




Now using Eq. (16.36) to eliminate y, gives us

_ v d2bTvo 2 2
W 1_¢2+I—¢2+¢2%+qe

which, after rearranging, yields

o = (1 — ¢2)o?

T 0+ )1 - ) - o7 (16.38)

These equations can also be used to derive the autocorrelation function py.

From Egs. (16.34) and (16.36),

pr=—_ (16.39)
1= (f’z
7
By o L (16.40)
1 - ¢,

From Eq. (16.35) one can see that for k = 2,

Pe = d1pr-1 + dapr—s (16.41)

and this can be used to calculate the autocorrelation function for k > 2.

A comment is in order regarding Egs. (16.39) and (16.40), which are called
the Yule-Walker equations. Suppose we have the sample autocorrelation function
for a time series which we believe was generated by a second-order autoregres-
sive process. We could then measure p1 and p, and substitute these numbers into
Egs. (16.39) and (16.40). We would then have two algebraic equations which
could be solved simultaneously for the two unknowns ¢, and ¢,. Thus, we
could use the Yule-Walker equations to obtain estimates of the autoregressive
parameters ¢, and ¢,.

Let us look at an example of a second-order autoregressive process:

W= 90— Ty + 2+ g (16.42)

The autocorrelation function for this process is shown in Fig. 16.7. Note that it is
a sinusoidal function that is geometrically damped. As we will see from further
examples, autocorrelation functions for autoregressive pracesses (of order
greater than 1) are typically geometrically damped, oscillating, sinusoidal func-
tions.

The reader should note that realizations of second- (and higher-) order autore-
gressive processes may or may not be cyclical, depending on the numerical
values of the parameters ¢,, ¢,, etc. Equation (16.30), for example, is a second-

1.0

FIGURE 16.7
Autocorrelation function for y, = Oy, — . 7y—2 + 2 + &.

order difference equation in y, (with an additive error term). We saw in.Chaplcr
13 that the values of ¢, and ¢, determine whether the solution to this difference

equation is oscillatory.

16.2.2 The Partial Autocorrelation Function

One problem in constructing autoregressive modelr? is- identifying the order .oI ‘I!Il(‘
underlying process. For moving average models t'h1s is less of a problem, smu‘ -lf
the process is of order g the sample autocorrelfitlons shoul‘d all be close to zug
for lags greater than g. (Bartlett’s formula provides approximate standard errors
for the autocorrelations, so that the order of a moving average process can be
determined from significance tests on the sample autocorrelations.) Althgugh
some information about the order of an autoregressive process can be obtained
from the oscillatory behavior of the sample autocorrelation funcno_n, much more
information can be obtained from the partial autocorrelation function. .

To understand what the partial autocorrelation function is and ho?v it can bc
used, let us first consider the covariances and autocorrelati.on func_uon.for the
autoregressive process of order p. First, notice that the covariance with displace-

ment k is determined from

Y = ElVi-i(@ryi—1 + oy + - - - Ppyip T &1)] (16.43)



Now letting k = 0, 1,. . . , p, we obtain the following p + 1 difference equa

tions that can be solved simultaneously for y,, y,, . . ., Vpi
Yo= byt dayvat - - -+ Gy, + 0
i=dvot dayi+ - 0+ dyy,m (16.44)
Yr = ¢17p—1 + ‘f)z')’p—z B ¢p70

For displacements k greater than p the covariances are determined from

Ye= GVt + Svia tc 0+ by, (16.45)

Now by dividing the left-hand and right-hand sides of the equations in Eq.
(16.44) by ,, we can derive a set of p equations that together determine the first
p values of the autocorrelation function:

............................... (16.46)
Pr = ¢’1Pp—1 t+ dpprt+ - -+ (f)p
For displacement k greater than p we have, from Eq. (16.45),
Pe = $1pr1 + apr—a + -+ -+ dooi, (16.47)
The equations in Eq. (16.46) are the Yule-Walker equations; if py, pz, . . . , p,

are known, then the equations can be solved for Di, D2y . o, Dy

Unfortunately, solution of the Yule-Walker equations as presented in Eq.
(16.46) requires knowledge of p, the order of the autoregressive process. There-
fore, we solve the Yule-Walker equations for successive values of p. In other words,
suppose we begin by hypothesizing that p = 1. Then Egs. (16.46) boil down to
P1 = ¢, or, using the sample autocorrelations, p1 = . Thus, if the calculated
value ¢, is significantly different from zero, we know that the autoregressive
process is at least order 1. Let us denote this value é, by a,.

Now let us consider the hypothesis that p = 2. To do this we just solve the
Yule-Walker equations [Eq. (16.46)] for 7 = 2. Doing this gives us a new set of
estimates ¢, and ¢, . If ¢, is significantly different from zero we can conclude
that the process is at least order 2, while if ¢, is approximately zero, we can
conclude that p = 1. Let us denote the value ¢, by 4,.

We now repeat this process for successive values of p. For p = 3 we obtain an
estimate of ¢; which we denote by a;, for p = 4 we obtain ¢4 which we denote
by a,, etc. We call this series a;, 4y, as, . . . the partial autocorrelation function
and note that we can infer the order of the autoregressive process from its
behavior. In particular, if the true order of the process is p, we should observe
that g; = 0 for j > p.

To test whether a particular g is zero, we can use the fact that it is approxi-
mately normally distributed, with mean zero and variance 1/T. Hence we can

check whether it is statistically significant at, say, the 5 percent level by deter-
mining whether it exceeds 2/VT in magnitude.,

Example 16.1 Inventory Investment In Chapter 15 we examined the
behavior of real nonfarm inventory investment over the period 1952 through
the second quarter of 1988. (The series itself is shown in Fig. 15.3, and its
sample autocorrelation function is shown in Fig. 15.4.) We con.cludlcd that
the series is stationary because the sample autocorrelation function falls to-
ward zero quickly as the number of lags increases. .

Figure 16.8 shows the partial autocorrelation function for our inventory
investment series. Observe that the partial autocorrelations become close to
zero after about four lags. Since there are 146 data points in the sample, a
partial autocoi:elation is statistically significant at the 5 percen.t level only if it
is larger in magnitude than 2/V'146 = .166. There are no partial autf)corrcla—
tions beyond four lags that are this large. We can conclude from this that to
the extent that inventory investment follows an autoregressive process, the
order of that process should not be greater than 4. We will take this informa-
tion into account when we construct a time-series model for inventory invest-
ment in Chapter 19.

FIGURE 16.8 _ ‘
Inventory investment: partial autocorrelation function.
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16.3 MIXED AUTOREGRESSIVE-MOVING AVERAGE
MODELS

Many stationary random processes cannot be modeled as purely moving average
or as purely autoregressive, since they have the qualities of both types of pro-
cesses. The logical extension of the models presented in the last two sections is
the mixed autoregressive—moving average process of order (p, q). We denote this
process as ARMA(p, q) and represent it by

= bt by, 8t e Bec -~ Oe, (1648)

We assume that the process is stationary, so that its mean is constant over
time and is given by

W=t Gt D

Fe g
M, 1 "'""b] ;_.‘ _“.

or (16.49)

il d)P
This gives a necessary condition for the stationarity of the process, that is,
b+t -t <l (16.50)

Now let us consider the simplest mixed autoregressive—moving average pro-
cess, the process ARMA(I, 1):

Ve = 1y + 8 + & — Oie (16.51)

The variances and covariances of this process are determined jointly as follows
(setting 8 = 0):

Yo = EDi(@ryi-1 + & — 618-1)] = E[(@1ye-1 + & — 618-1)°]
= ¢iyo — 2010,E[y,-18i-1] + o2 + G0 (16.52)
Since E(y,_18-,) = o, we have
Yo(l — ¢1) = o2(1 + 67 — 2¢,6,) (16.53)
so that the variance is given by®

_1+6f_2¢191 2
= e o2
1_¢’1

Yo (16.54)

¢ For || < 1.

T ™ e v

We can now determine the covariances vy, ya, . . . , recursively:

Y1 - H[Vr ]((f)LV, | -+ e — 0|Bf |H - (bl'}'l] - fh(r,‘f

_u- b,0,) (b — 0)) o? (16.55)
1 — ¢ ’
vy = E[yi—2(1yi-1 + & — bie-1)] = i (16.56)
and similarly, Vi = Oryi-1 k=2 (16.57)

The autocorrelation function, then, is given by

_ v _ (1= dibh) (¢ — 61) 16.58
P T 1t 63— 2400, (16.58)

and for displacement k greater than 1,
P =dipi-1 k=2 (16.59)

Thus, the autocorrelation function begins at its starting value p; (whicn 1s a
function of both ¢, and 8;) and then decays geometrically from this starting
value. This reflects the fact that the moving average part of the process has a

memory of only one period. .
Let us examine the autocorrelation functions of some typical ARMA(I1, 1)
processes. The autocorrelation function for the process

yi= 8y + 2+ & — e (16.60)

is shown in Fig. 16.9. The starting value p; is negative, and the function decays
toward 0 from this value.

FIGURE 16.9
Autocorrelation function for y, = .8y,_y + 2 + & — .Bey.
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FIGURE 16.10
Autocorrelation function for y, = —.8y,.; + 2 + & + .9g_4.

The autocorrelation function for the process

Y = _.8}7{_] A2k &; + .98rg1 (1661)

will exhibit oscillatory behavior, as shown in Fig. 16.10. Note that it oscillates
between positive and negative values, since ¢, is negative.

For higher-order processes, i.e., the general ARMA(p, g) process, the vari-
ance, covariances, and autocorrelation function are solutions to difference equa-

tions that usually cannot be solved by inspection. It can be shown easily, how-
ever, that

Ve = b1+ daVizt by, kZ g+ 1 (16.62)

and thus Pr = qblpk—l =+ ¢2pk—'2 e ‘bppk—p k= q + 1 (1663)

Note that g is the memory of the moving average part of the process, so that for
k= g + 1 the autocorrelation function (and covariances) exhibits the properties
of a purely autoregressive process.

This completes our discussion of models for stationary stochastic processes.
Before we turn to models for homogeneous nonstationary processes, it will be
useful to introduce a new notational device. Often it is convenient to write or
describe time lags using the backward shift operator B. The operator B imposes a
one-period time lag each time it is applied to a variable. Thus, Be, = &,_;, B2, =

€-2,. . . , B"¢ = g,. Using this operator, we can now rewrite Eq. (16.1) for
the MA(q) process as

yi=m+ (1—6,B—6,B2—- - -—0,B)s=pu+ 0B (16.64)

where 0(B) denotes a polynomial function of the operator B, Similarly Eq.
(16.18) for the AR(p) process can be rewritten as

(1= ¢B— B>~ - c= By =8t & (16.65)
or BH(B)y, = 8 + & (16.66)

Finally, Eq. (16.48) for the ARMA (p, g) process can be rewritten as

(1— ¢B— B> —+ " ~ ¢,B )y =38+ (1 - 6,B — 0,B> — - -+ — 6,BNe,
(16.67)
or ®(B)y, = 8 + 0(B)& (16.68)

164 HOMOGENEOUS NONSTATIONARY PROCESSES:
ARIMA MODELS

In practice, many of the time series we will wprk with are nonstationary, slo 1lll11:i|l
the characteristics of the underlying stochastic process ck}ange over tlmg. n m;
section we construct models for those nonstationary serics which can (; u;a li-,-
formed into stationary series by differencing one or more times. We say that y, it
homogeneous nonstationary of order d if

w, = A%y, (16.69)
is a stationary series. Here A denotes differencing, i.e.,
Ay, =y — Yim A%y, = Ay, — Ay
and so forth. A discussion of the autoregressive characteristics of homogeneous

i ies is gi i dix l6.1.
nonstationary series is given in Appen .
Observe that if we have a series w;, we can get back to y, by summing w; a total

of 4 times. We write this as
¥ = 24w, (16.70)
where £ is the summation operator:

t

Sowo= 2 w (16.71

i=—%

22 W= 2 2 wi (16.72




and so forth. Note that the summation operator 2 is just the inverse of the
difference operator A. Since Ay, = y, — y,-,, we can write that A = 1 — B, and
thus ¥ = A~! = (1 — B)~1.

When computing this sum for an actual time series, we begin with the first
observation on the original undifferenced series (y,) and then add successive
values of the differenced series. Thus if w, = Ay,, we would compute y, from

t

t 0
yt=2wr= E Wi=_2 wf+zwi=J’0+W1+Wz+'--+w,

f=—o i=—cw i=1
(16.73)

If y, had been differenced twice, so that w; = A?y,, we could compute y; from w,
by summing w, twice.’

After we have differenced the series y, to produce the stationary series w,, we
can model w; as an ARMA process. If w, = A%,, and w, is an ARMA(p, q) process,
then we say that y, is an integrated autoregressive—moving average process of order (p,
d, q), or simply ARIMA(p, d, q). We can write the equation for the process
ARIMA(p, d, q), using the backward shift operator, as

B(B)A%, = 8 + 6(B)e, (16.74)
with $(B)=1— B~ ¢;B>— - - - — ¢, B (16.75)
and 6(B)=1-0,B— 6,82 — - - - — §.B7 (16.76)

We call ¢(B) the autoregressive operator and 6(B) the moving average operator.
Note that the mean of w, = A%, is given by

» )
’Lw_l_¢l"¢2_"'_¢p (16'77)

Thus if 8 is not equal to 0, the infegrated series y, will have a built-in deterministic
trend. Suppose, for example, that 4 = 1 and & > 0. Then y, = Sw, will grow
linearly over time. An example of such a series might be the one drawn in Fig.
16.11. The series has a linear time trend that is independent of the random
disturbances, i.e., that is deterministic. The series drawn in Fig. 16.12, on the

7 Summing w, the first time gives us Ay,:

0 !
Ay,=2w,= Z wf+2w,-=Ay0+wl+w2+---+w,

i=—0 i=1
Now summing Ay, yields y,:
V=Z(Ay) = Z(Apo + wi + wy + - - “tw) =yot (Aot wi) + (Aygt wi + wy) + - - -
+ Ayt wtw,t+ 4w

FIGURE 16.11
An ARIMA process with d = 1.

other hand, has an average slope that is increasing Iinearly in time. This sg\‘n‘ics
might have been generated by a process that is ARIMA with d =2 alnd b - 0.
Thus w, = Ay, will have no time trend, Zw, = Ay, w1¥1 have a .hnear time trend,
and 3w, = y, will have a time trend whose rate of increase Is con;tam. ‘

It is possible that the stationary series w; will 'n(')t be mixed, i.c., w:‘ll be
completely autoregressive or moving average. If w, is just AR(p), Ithen we call ‘}/,
an integrated autoregressive process of order (p, d), and .denote it as ARI(;?,. d,
0). If w, is just MA(g), then we call y,; an integrated moving average process of
order (d, g), and denote it as IMA(O, 4, g).

16.5 SPECIFICATION OF ARIMA MODELS

We have seen that any homogeneous nonstationary time series can be modeled
as an ARIMA process of order (p, d, q). The practical problem is to choose the

FIGURE 16.12
An ARIMA process with d = 2.
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most appropriate values for p, d, and ¢, that is, to specify the ARIMA model. This
problem is partly resolved by examining both the autocorrelation function and
the partial autocorrelation function for the time series of concern.

Given a series y, that one would like to model, the first problem is to deter-
mine the degree of homogeneity 4, that is, the number of times that the series
must be differenced to produce a stationary series. To do this, we make use of the
fact that the autocorrelation function p, for a stationary series must approach O as the

displacement k becomes large. To see why, consider a stationary ARMA process of

order (p, q). We know that the autocorrelation function for the moving average
part of this process becomes 0 for k > g, as the process has a memory of only g
periods. Thus, if y, is MA(q), then p; = 0 for kK > q. We also know that the
autocorrelation function for the autoregressive part of a stationary ARMA process
is geometrically damped (see the examples in Figs. 16.5 to 16.7). Finally, the
autocorrelation function for the complete ARMA process has moving average
characteristics for the first ¢ — p periods, but after that it is autoregressive in
character; i.e., it has an envelope that declines geometrically.

To specify 4, first examine the autocorrelation function of the original series y,
and determine whether it is stationary. If it is not, difference the series and
examine the autocorrelation function for Ay;. Repeat this process until a value
for d is reached such that A%, is stationary; i.e., the autocorrelation function goes
to 0 as k becomes large.® One should also examine the time series itself; if it
appears to have an overall trend, it is probably not stationary.

After 4 is determined, one can work with the stationary series w, = A4y, and
examine both its autocorrelation function and itsipartial autocorrelation func-
tion to determine possible specifications for p and 4. For low-order processes this
is not too difficult, since the autocorrelation functions for processes such as
AR(1), AR(2), MA(1l), MA(2), and ARMA(1, 1) are easy to recognize and
distinguish from each other (see Figs. 16.1 to 16.10), However, if the time series
cannot be modeled as a low-order ARMA process, the specification of p and g
becomes more difficult and requires close inspection of the full and partial auto-
correlation functions. For example, spikes in the autocorrelation function are
indicative of moving average terms, and the partial autocorrelation function can
be used for guidance in determining the order of the autoregressive portion of
the process.

If both the autoregressive and moving average parts of the process are of high
order, one may at best be able to make only a tentative guess for p and 4. As we
will see later, however, it is possible to check that guess after the parameters in
the ARMA(p, g) model have been estimated. As a first step in this process of
diagnostic checking one can calculate the autocorrelation function for the residuals
of the estimated ARMA(p, q) model and determine whether those residuals
appear to be white noise. If they do not, a new specification can be tried. This
process of diagnostic checking will be discussed in more detail in Chapter 17.

8 Remember that in practice we have no guarantee that the time series being modeled is homoge-
neous nonstationary. If the time series is nonhomogeneous nonstationary, no matter how many times
it was differenced, the autocorrelation function would not damp down to 0.

Example 16.2 Price of Newsprint  As a first cxmmflv ()l‘||1'1(ult"l s':pc(.'iliv]a—‘
tion, let us examine a quarterly series for the average price of ncwsprml‘ m'l‘ u.
United States over the period 1965-2 through 1977:-3 (5.() d.ala.pmms). .Ih.(‘
series itself (not shown here) rises slcadily- over time, mdlczflmg Eh‘m .“ is
nonstationary. However, the differenced scncs.Ay, does appear 'Lu be sllgllfl?ll\-.
ary, as can be seen from its sample aulocorrelauo_n function in F‘l{;. ‘] 6. 1 . !1.(.
autocorrelation function has the damped sinusoidal sh_ape of a 5em‘m --”{:1( t-
autoregressive process and no spikes indicat?ve of moving allve?agc lcrml ! ul
partial autocorrelation function, shown in Fig. 16.14,' haS: mgmﬁcan't spi ;h|.1.
lags 1 and 2, confirming a second-order autoregressive interpretation ol tht
differenced series. We might thus estimate an ARI(2, 1, 0) model.

FIGURE 16.13 _
Newsprint price: autocorrelation

function of Ay;.
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T FIGURE 16.14 _
Newsprint price: partial autocor-
relation function of Ay,.
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Example 16.3 Interest Rates As a second example of model specifica-
tion, go back to the series for the 3-month Treasury bill rate that we examined
in Chapter 15. After differencing the series and examining the sample auto-
correlation functions, we established that it was probably first-order homoge-
neous nonstationary, so that 4 equals 1 in a specification of an ARIMA model.
Now if we examine the autocorrelation function for Ay, in Fig. 15.10 in more
detail, we see that it exhibits moving average properties that are first or
second order; i.e., it begins decaying after the point k = 2.

What about the autoregressive properties of the interest rate series? For
k = 1 none of the sample autocorrelations exceed .25 in magnitude, suggest-
ing that only a few autoregressive terms might suffice. Hence, one could begin
by estimating an ARIMA(2, 1, 2) model. On the other hand, the sample
autocorrelations remain significantly different from zero even for large values
of k, suggesting that many more autoregressive terms may be necessary. We
explore this possibility in the next chapter, where we estimate and compare
an ARIMA(2, 1, 2) model, an ARIMA(12, 1, 2) model, and also ARIMA
models that include additional moving average terms.

Example 16.4 Hog Production A third example is the monthly series for
hog production which was also examined in the last chapter. We took a 12-
month difference of the series to eliminate seasonal cycles.and then found
that differencing once was sufficient to ensure stationarity. The autocorrela-
tion function for (1 — B)(1 — B'2)y, is shown again in Fig. 16.15. Observe that

FIGURE 16.15
Monthly hog production: autocorrelation function of (1 =B)(1 - B2y,
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the sample autocorrelation function begins declining immediately at k = 1
and has peaks roughly once every three periods, We might thus HUSDLI‘L‘I that
(1 — B)(1 — B'?)y, is autoregressive of order 3, so that y, could be specified by

the model:

(1 — B — $,B* — :B°)(1 — B)(1 — B?)y, = ¢, (16.78)

Readers should not be disturbed at this point if they find this process of model
specification somewhat bewildering. We will go through several more examples

in Chapter 19.

APPENDIX 16.1 Stationarity, Invertibility, and Homogeneity

We saw before that a necessary condition for an ARMA(p, g) process 10 be
stationary is that

Gttt h <1 (A16.1)

We now present a necessary and sufficient condition for stationarity and use it to
demonstrate a particular property of homogeneous n{?nstatlonary processes.
Note that the process ARMA(p, ¢) can be written in the form

(1—¢B—+ " —¢B)ji=(1— 0B~ -~ 0B)e (Al62)

6(B)&; (A16.3)

Il

or &(B)J:

where B is the backward shift operator and j is the deviation of y, from its mean,
that is,

V=0T (A16.4)
Now let us rewrite Eq. (A16.3) as
j: = ¢~ '(B)8(B)& (A16.5)

If y, is a stationary process, then ¢~!(B) must converge. This requires that the
roots of the characteristic equation

¢(B) =0 (A16.6)

all be outside the unit circle.® Thus the solutions B,, . . . , B, t0 Eq. (A16.6) must
all be ggl:ater than 1 in magnitude.

9 See Box and Jenkins, op. cit., for a proof of this.




Now suppose that the process y; in Eq. (A16.3) is nonstationary but in such a
way that exactly d of the roots of ¢(B) are on the unit circle and the remainder
are outside the unit circle. This process can then be rewritten in the form

w(B)(1 — B)%, = 0(B) (A16.7)
where w(B) is a stationary autoregressive operator of order p — 4 and the

operator (1 — B) has 4 roots all equal to unity. But 1 — B is a Sirst-difference
operator, that is,

(1 = B}y, = Afiy = Ji — Y ' (Al16.8)

Thus Eq. (A16.7) can be rewritten as
w(B)A%, = 0(B)s, (A16.9)
or w(B)w, = 6(B)e, (A16.10)
where w, = A%, is stationary, since it resulted from differencing j, 4 times. We

call y, homogeneous nonstationary with order d, and we note the conclusion that
such a process has an autoregressive operator ¢(B) such that

#(B) = o(B)(1 — B)? (Al6.11)

where the roots of w(B) are all outside the unit circle.

Analogous to the stationarity condition for the autoregressive operator is the
invertibility condition for the moving average operator. We say that y, is invertible
if we can write Eq. (A16.3) as

6-1(B)b(B)j, = &, (A16.12)

Le., if the moving average part of the ARMA process can be inverted into a
purely autoregressive process. Now, if y, is invertible, §-!(B) must converge. This
requires that the roots of the characteristic equation

8(B) =1-6,B—6,B>—-+:— @8 =0 (A16.13)

must all lie outside the unit circle; i.e., the solutions B;, B, . . . , B, to Eq.
(A16.13) must all be greater than 1 in absolute value.!©

1% This invertibility condition is proved in detail in U. Grenander and M. Rosenblatt, Statistical
Analyses of Stationary Time Series (New York: Wiley, 1957). A brief discussion is also presented in Box
and Jenkins, op. cit.

As an example, consider the first-order moving average process (that s,
g = 1), whose characteristic equation is

1-6,B=0 (Al16.14)

Then the invertibility condition becomes

1
ok g (A16.15)
1Bl =157~
or |6, <1

For the second-order moving average process (¢ = 2) the characteristic equa-
tion is

p= 0TV +46 (A16.17)
and 20,

Both these values of B must be outside the unit circle, which implies that

6,+6,<1 (A16.18)
8, —6,<1 (A16.19)
o 16, < 1 (A16.20)

EXERCISES

16.1 Calculate the covariances y, for MA(3), the moving average process of ordL“r‘ 3.
Determine the autocorrelation function for this process. Plot the autocorrelation function

for the MA(3) process
W= 1+ &g + .88;—1 - 5, + e

16.2 What are the characteristics that one would expect of a realization of the following
MA(1) process?

n=1+¢g + .86

How would these characteristics differ from those of a realization of the following MA(1)
process?

\ w=1+g— .8,




l§.3 Show that the covariances v, of MA(q), the moving average process of order g, are
given by ‘

(_8k+818k+1+‘ ' -+6q_kﬂq)0'§ k=1,... . q

Ye =
0 k>g

and that the autocorrelation function for MA(g) is given by

=0 + 0104y + - ¢ -+ 8,40,
I+ 8+ @+~ +0

Pk
0 k>gq

as in Eq. (16.17).
16.4 Derive the autocorrelation function for the ARMA(2, 1) process

Y=yt a2+ — 018

ﬁat 1s determine p;, p,, etc., in terms of ¢,, ¢;, and @,. Draw this autocorrelation
nction for ¢, = .6, ¢, = .3, and 6, = .9. Repeat for ¢, = .6, ¢, = .3, and 6, = —.9
Repeat for ¢, = .6, ¢, = —.3,and #, = —.9. '

;6-5 Show that the autocorrelation function for the general ARMA(p, ¢) process is given
Y

Pe= d1pe-1 + daprat P, k=gt 1

as in Eq. (16.63).

16.6 Suppose that y, is first-order homo, i
geneous nonstationary, and that w, =
represented by the ARMA(1, 1) model . B GRae

w, = 9w, + g — .61 + 1

If y, = 0 for t = 0, what is E(y;) as a function of time?
16.7 Relate the summation operator to the backward shift operator by showing that

S=(1-B)'=1+B+B+B+ -

16.8 Refer to the tirx}e St?ries for nonfarm inventory investment in Fig. 15.3, its sample
autocorrelation function in Fig. 15.4, and its partial autocorrelation function in Fig. 16.8.

SC:earlil y;)u suggest one or more ARMA (p, g) processes that might have generated that time
es?

CHAPTER

ESTIMATING
AND CHECKING
TIME-SERIES MODELS

In this chapter we show how the parameters of an ARIMA model are estimated.
As we shall see, if the model contains moving average terms, this involves the
application of a nonlinear estimation method similar to that described in Chap-
ter 9. Following this we describe diagnostic checking, a procedure used to test
whether the model has been correctly specified (i.e., whether p, d, and g have
been chosen correctly).

The material on estimation is at a somewhat more advanced mathematical
level than that in the previous three chapters, so most of the details (which
involve matrix notation) have been put in Appendix 17.1. still, a basic under-
standing of estimation can be obtained by reading through the chapter and
paying special attention to the examples.

17.1 MODEL ESTIMATION

Suppose a tentative specification of the time-series model has been made, i.c.,
values of p, d, and g have been chosen for the ARIMA model,!

$(B)AY, = ¢(B)w; = 0(B)& (17.1)
with@(B) =1—¢B— B2 — -+ * — ¢,BPand §(B) =1 — 6:B— 6,82 —
— 6,B%. Now estimates must be obtained for the p autoregressive parameters ¢,
. . ., ¢,and the 4 moving average parameters 0y, . . ., 0;. As in the case of the

; ‘X{;aussume for simplicity here that 8 = 0, that is, that w; is measured as a deviation from its
mean value.
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regression model, we choose parameter values that will minimize the sum of

squared differences between the actual time series w, = Ady, and the fitted time
series w,.
To put this another way, rewrite Eq. (17.1) in terms of the error term series

g2

£ = 87YB)p(B)w, (17.2)

The objective in estimation is to find a set of autoregressive parameters (¢,
. . ., ¢,) and a set of moving average parameters (6,, . . ., 6,) that minimize
the sum of squared errors

Stebas oo s s B s 55 8= 3 8] (17.3)

We denote the sets of parameters that minimize Eq. (17.3) by (.. . ., cfbp) and

e s, 5 ,‘94 ). and the residuals associated with these parameter values by £, so
that & = 6~'(B)¢(B)w;. Thus,

S(r,. . ..y b1, .., 8)=2 & (17.4)

This estimation can be difficult if moving average terms are present, since then
Eq. (17.2) is nonlinear in the parameters. For this reason an iterative method of
nonlinear estimation must be used in the minimization of Eq. (17.3). In addi-
tion, the first error term in the series, &,, depends on the past and unobservable
values wo, w-y,. . ., W_py;and gy, -y, . . ., £-4+1. Thus some method must
be used to initialize the series (i.e., choose numbers for these unobservable
values) before the nonlinear estimation process is applied.

After the parameters of the model have been estimated, a procedure of diag-
nostic checking is used to test whether the initial specification of the model was
correct. We would expect the residuals £, t = 1,. . ., T, to resemble closely the
uue errors g, which, by assumption, are uncorrelated. A diagnostic check is
used to test whether these residuals are indeed uncorrelated. If they are not, we
would want to respecify the model (i.e., choose new values for p, 4, and gq),
estimate this new model, and perform another diagnostic check to determine if it
has been correctly specified. Once the model has been checked to satisfaction, it
can be used for forecasting future movements in the time series.

Let us examine the estimation procedure in more detail. We assume that a
total of T + 4 observations are available for the homogeneous nonstationary
time series of order 4, y,, and we denote these observations as y_4¢1,. . ., Yo, V1,

., yr. After differencing this series 4 times, we obtain a stationary series w,
with T observations w,, . . ., wr. The problem is to estimate the parameters for
the ARMA(p, q) model which has been specified for the series w;. To do this, we

& i It should be more clear now why we were concerned with the invertibility of 8(B) in Appendix

utilize the fact that (by assumption) the error terms £, . . ., £y are all normally

distributed and independent, with mean 0 and variance ol Then the conditional

log likelihood function associated with the parameter values (7 T o
.., 0, 0,) is given by

St 5 1 B Bia o« B
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L=-Tlogo,— (17.5)

We say that L is the conditional logarithmic likelihood function because the sum
of squared errors S depends on the past and unobservable values wy, w_,. . .,
W_pi1, Eas E—1,+ + -+ E—g+1- This can be seen by writing the equation for the first
observable error term &, in the expanded form of the ARMA model:

g1 = W — ¢]Wg - qbzwfl L (f)pw_p+] + 6180 + - -+ Bqa,q.<.. (I?.(!)

Setting aside for the moment the problem of determining the past values of w,
and &,, Eq. (17.5) makes it clear that the maximum-likelihood estimate of the
model’s parameters is given by the minimization of the sum of squared residuals
S. Thus, under the assumption of normally distributed errors, the maximum-
likelihood estimate is the same as the least-squares estimate.

17.1.1 Initialization of the Series

Because the sum-of-squares function S(¢y, . . ., ¢, 0, . . .. 6;) and thus the
likelihood function L are both conditional on the past unobservable values of w;
and g (W, . . ., W—p+1and g, . . ., &-4+1), the least-squares estimates that we
obtain depend on the choice of values made for wy, w-,, . . ., etc. For this
reason we must choose initial starting values for wy, w_, . . ., tobeused in the
minimization of the conditional sum-of-squares function.

The most common solution to this problem, and the one we recommend, is to
set Wy, . . ., W_pyy and &, . . ., E—gt1 equal to their unconditional expected
values. The unconditional expected values of gy, . . ., &4+ are all 0, and, if & =
0, the unconditional expected values of wy, . . ., W—pyy are 0 as well. This
solution will provide a reasonably good approximation to the correct procedure
if the actual values of ¢;, . . ., ¢, are not very close to 1 and if the number of
observations T is large relative to p and g.?

17.1.2 Nonlinear Estimation of Model Parameters

Our estimation problem is to find values of the parameters b1, . .. D 0y,
. . ., 0, that minimize the sum of squared errors S. Assuming that the initializa-

3 An alternative method of initializing the series is to determine conditional expected values for w,

. ., W_ps, that is, values that are conditional on the observed values of wy, . . ., wrand the
estimated values of £, . . ., &r. This procedure is technically difficult and its benefits may not be
substantial. We recommend using the unconditional expected values for wg, . . ., W1, that is,

setting them equal to 0 (when & = 0).




tion of the series is based, as we suggest, on the unconditional expected values

l(}Whlfh areall 0) of wy, . . ., w:,,.. ; and oy « vy EBegil, the time bounds would

et = 1 to T. Thus the problem is to pick ¢, . . ., ¢, 6,,. . ., 0, o minimize
T

§= ; eddre: + ooy o o8] (17.73

Now suppose that the model was purely autoregressive, i.e., was of the form
S(BIW = & (17.8)
or W= w1+ - Wiy + & (17.9)

Observe that since Eq. (17.9) is of the general form

Y=ot Bixut Baxnt - te (17.10)

it can be estimated simply as a linear regression. Although for a purely autore-
gressive model the estimation process is essentially a linear regression, the prob-
lem is more difficult if the model contains a moving average compone’nt as well
In that case we can represent the model as .

0-1(B)d(B)w, = &, (17.11)

Clc?arly, this “regression equation” is nonlinear in the parameters and cannot be
est}mated by a simple application of ordinary least squares. However, it can be
estimated by a general iterative nonlinear estimation routine. The ‘process is
nearly .identical to that discussed in Section 9.5 and used in standard nonlinear
regression programs.

The ‘nonlinear estimation process uses the first two terms in a Taylor series
expansion to linearize Eq. (17.11) around an initial guess for the parameter
values, A 1?near regression is then performed on this linearized equation, least-
sguares estimatesof ¢,,. . ., ¢,, 8,,. . ., 8, are obtained, and a new lineariza-
tion of Eq. (17.11) is made around these estimates. Again a linear regression is
Qerformed, a second set of parameter estimates is obtained, and a new lineariza-
tion of Eq. (17.11) is made around this second set of estimates. This process is
repeated iteratively until convergence occurs, i.e., until the estimates of the
parameters do not change after repeated iterations. In Appendix 17.1 we discuss
the actual mechanics of this process in detail.

17.1.3 Obtaining an Initial Guess for the Parameter Values

Before a nonlinear estimation can be performed on Eq. (17.11), an initial guess
must be made for the parameter values. Convergence of the estimation process

may be faster if the initial guess is a good one, i.e., close to the “true’” parameter
values. On the other hand, if the initial guess is very poor, it is possible that the
iterative process may not converge at all.

The sample autocorrelation function can sometimes be used to help produce
the initial guess. As one might expect, this may work for a low-order time-series
model, but it can be virtually useless if the model is at all complicated. For
example, if the series w, is modeled as first-order autoregressive, one need only
look at the sample value of p,. If that is, say, .9, a reasonable first guess for ¢ is
¢, = .9. If, however, our model for w;, is complex, this inspection method is
unlikely to produce much useful information.

Even if we cannot determine the initial guess by simply inspecting a correlo-
gram, we can still use the aumerical values for the sample autocorrelation func-
tion to obtain the initial guess. As we demonstrated in the last chapter, the
theoretical autocorrelation function can be related to the theoretical parameter
values through a series of equations. If these equations are inverted, they can be
used to solve for the parameter values in terms of the autocorrelation function. This
is straightforward in the case of a purely autoregressive model. As an example,
consider the autoregressive process of order p, and recall from Eq. (16.47) that
the difference equation for its autocorrelation function is given by

pi = G1pr—1 + d2pr—2 + 0 + dppPr—p

Using the fact that p, = p-¢, W€ Can rewrite this equation as a set of p simulta-
neous linear equations relating the parameters b1, . .. D t0Op, . Py

pr=¢1 +dprt T BpPpr

p2=¢pp+ P2+ + dppp-2 17:12)
pp = G1pp-1 + dapp2t - o F by
Using these Yule-Walker equations to solve for the parameters by, . .., Ppin

terms of the estimated values of the autocorrelation function, we arrive at the
Yule-Walker estimates of the parameters. These estimates can be used to provide a
reasonable first guess for the parameter values.* This first guess is, however, of
limited value, since the purely autoregressive model can be estimated by ordi-
nary least squares.

If the time-series model contains a moving average part, the Yule-Walker
equations that relate the values of the autocorrelation function to the values of
the parameters will not be linear. Recall, for example, that the process MA(1)

4 'Writing Eq. (17.12) in matrix notation
p=Pd
we can jolve for ¢ as simply ¢ = P7'p.




has the autocorrelation function

0 k>1

Suppose in this example that p; = .4 in the sample autocorrelation function.
Then
-1+=V1i-4p] -1+

i 2p; .8

(17.13)

Thus the first estimate for 8, is —2 or —.5. Since invertibility necessitates that
[6,] < 1, we select the value 6,, = —.5 for our first guess in the nonlinear
estimation process. Unfortunately, the solution for the §’s in terms of the p's
becomes more difficult as the moving average order g becomes larger. In fact, to
get initial estimates for the model MA(g), it is necessary to solve g simultaneous
nonlinear equations. As a result, we often try several initial guesses and see
whether our estimates converge to the same final parameter values.

One might ask why parameter values based on the Yule-Walker equations are
not sufficient for practical purposes. This would eliminate the use of the nonlin-
ear estimation method. One reason is that the sample autocorrelation function is
only an estimate of the actual autocorrelation function and thus is subject to
error. In fact, for small samples the sample autocorrelation function will be
biased (downward) from the true autocorrelation function. A second reason is
that the sample autocorrelation function does not contain as much information
as the actual time series. To use as much information as possible in the estima-
tion of the model’s parameters, we calculate our final estimates based on the
actual time series.

17.2 DIAGNOSTIC CHECKING

After a time-series model has been specified and its parameters have been esti-
mated, one must test whether the original specification was correct. This process
of diagnostic checking usually involves two steps. First, the autocorrelation
function for the simulated series (i.e., the time series generated by the model)
can be compared with the sample autocorrelation function of the original series.
If the two autocorrelation functions seem very different, some doubt may be cast
on the validity of the model and a respecification may be in order. If the two
autocorrelation functions are not markedly different (and this will most often be
the case), one can analyze the residuals of the model.

Remember that we have assumed that the random error terms &, in the actual
process are normally distributed and independent. Then if the model has been
specified correctly, the residuals & should resemble a white noise process. In

particular, we would expect the residuals to be nearly uncorrelated with cach
other, so that a sample autocorrelation function of the residuals would be close to 0
for displacement k = 1.

Recall that the residuals of the model are

~

& = 07" (B)p(B)w, (17.14)

Let us denote the sample autocorrelation function (for displacement k) of the
residuals as ;. It is calculated by

2 &b
o= ——=— (17.15)

2
i
t

&1

As we mentioned in Chapter 15, a very convenient test, based on statistical
results obtained by Box and Pierce, can be applied to this sample autocorrelation
function.® If the model is correctly specified, then for large displacements k (for exam-
ple, k > 5 for low-order models) the residual autocorrelations fi are themselves
uncorrelated, normally distributed random variables with mean 0 and variance 1/7,
where T is the number of observations in the time series. This fact makes it
possible to devise a simple diagnostic test. _

Consider the statistic Q composed of the first K residual autocorrelations 7,

. W@ fKZG
K
Q=T o1 (17.16)
k=1

This statistic is a sum of squared independent normal random variables, each
with mean 0 and variance 1/T and is therefore itself approximately distributed as
chi-square (see Chapter 2). We say ‘“‘approximately”” because the first few auto-
correlations 7,, 1, etc., will have a variance slightly less than 1/T and may
themselves be correlated. Box and Pierce demonstrate that the approximation is
quite close and that the statistic Q will be distributed as 3K —p—q) ie., c!}i
square with K — p — g degrees of freedom.” Therefore, a statistical hypothesis
test of model accuracy can be performed by comparing the observed value of Q
with the appropriate points from a chi-square table.

5G. E. P. Box and D. A. Pierce, “Distribution of Residual Autocqrrelatior}s'in Auto;egressiw-
Integrated Moving Average Time Series Models,” Journal of the American Statistical Association, vol,
65, December 1970.

6 For low-order models, K equal to 15 or 20 is sufficient. ;

7In Chapter 15 we said that the Q statistic is chi square with K degrees of ﬁ:eedom. Note,
however, that that was in reference to a test of the hypothesis that the original qum series (as qppoml
to the residuals from our estimated ARMA model) is white noise. For the original data series, p

q:.\




Suppose, for example, that we have specified an ARMA(L, 1) model for a
series w,, that the model has been estimated, and that the statistic Q is calculated
to be 31.5 with K = 20. From a chi-square table we see that the 90 percent point
for K — p — g = 18 degrees of freedom is 26.0, and the 95 percent point is 28.9.
Thus the statistic Q is too large and we can reject the model, since the probability
that the residuals are not white noise is at least 95 percent. Suppose that a new
model, ARMA(2, 2), is specified and estimated, and the statistic Q is now 22.0,
again with K = 20. From the chi-square table we see that the 90 percent point
for 16 degrees of freedom is 23.5. Thus we need not reject the hypothesis that the
residuals are white, and this second model would be acceptable.? To determine
the “best” specification, we might want to specify and estimate some other
ARMA models to see whether a lower chi-square statistic can be obtained.

If the calculated value of Q is between the 90 and 95 percent points of the chi-
square tail, some doubt would be thrown on the model. At the very least a
second test should be applied. This second test would involve observing the
individual values of 7, for all £ between, say, K/4 and K (in our example,
between k = 5 and k = 20). Since these #; are normal with variance 1/T, we can
test to see if they are all within two or three standard deviations from their
means of 0. If several of the 7, are larger than 2/V/T (two standard deviations of
the normal variable), evidence exists that the model is misspecified. In addition
the evidence might suggest how the model should be respecified. For example, if
for an ARMA(2, 1) model #; is very much larger than 2/ /T, this would indicate
that the model should be respecified with the inclusion of a third-order moving
average term.

In constructing a time-series model one often estimates several alternative
specifications. It may be the case that two or more specifications pass the diag-
nostic checks described above. In this case additional tests must be used to
determine the “‘best’’ specification. One test is to compare the “simulated series”’
(i.e., the time series generated by the model) for each specification with the
original series. The specification that yields the smallest rms simulation error
would then be retained. However, unless one specification has a markedly lower
rms error, we suggest retaining all the specifications (that pass the diagnostic
checks) and choosing among them based on their forecasting performance. The
generation and evaluation of forecasts from a time-series model are discussed in
the next chapter.

Example 17.1 Interest Rates In the last two chapters we began analyzing
a time series of monthly data for the interest rate on 3-month U.S. govern-
ment Treasury bills from the beginning of 1950 through June 1988, and a

¢ Note that this chi-square test is a ““weak’” hypothesis test. A value of Q below the 90 percent
point on the chi-square distribution indicates that it is not necessary to reject the hypothesis that the
residuals are white, since the probability that the hypothesis is true is less than 90 percent. It is thus
only an indirect test of the hypothesis that the residuals are not white.

time series of monthly data for U.S, hog production from the beginning of
1960 through the end of 1967. Let us now estimate some alternative AI::IMA
models for these two time series. We will begin with the interest rate series. In
order to allow for long enough lags, we will estimate models using a sample
period of February 1951 to June 1988.

Review the sample autocorrelation functions in Figs. 15.8, 15.10, and
15.12 for the series undifferenced, differenced once, and differenced lwiu.'.
We explained that these autocorrelation functions suggest that the series is
first-order homogeneous nonstationary, i.e., can be modeled as AlRH'\d{X( p 1,
4). But as we discussed in Chapter 16, a specification for p and q is difficult to
determine from the sample autocorrelations. A low-order model, SUCl.l as
ARIMA(2, 1, 2) may suffice, but the fact that the sample autocorrelgunns
remain significantly different from zero even for large lags suggests that it may
be necessary to estimate models of much higher order.

We begin with a low-order specification and estimate an ARIMA(2, 1, 2)
model. The result is

ARIMA(2, 1, 2):
(1 — .7834B + .0944B?) Ay, = .0115 + (1 — .3899B — 3170B%)e,
(17.17)

R? = .161 x2(4, 36) = 123.32

Note that while the R? of this equation is low, this does not necessarily mean
that the specification is a poor one. Remember that the R* measures fit in
terms of the dependent variable of the regression, which in this case is the
monthly change in the interest rate. A more revealing statistic is the chi square,
which is equal to 123.32. With 32 degrees of freedom (36 lags minus 4
estimated AR and MA parameters), this value is far above the critical 95
percent level. Thus one can conclude (with at least 95 percent certainty) that
the residuals from the ARIMA(2, 1, 2) model are autocorrelated, and higher-
order terms are needed for the model.

As a next step, we increase the number of parameters somewhat and
estimate an ARIMA (4, 1, 4) model. The result is

ARIMA(4, 1, 4):
(1 — .2542B + .0993B* — .3487B% — .3758B*) Ay,
= 0106 + (1 + .1620B — .0930B2 — 3949B> — .6387B%)g, (17.18)

R? = .204 x2(8, 36) = 85.12

While the chi-square statistic has dropped, it is still highly significant, leading
us to reject this specification.

\




We now try specifications that are of much higher order, beginning with
ARIMA(12, 1, 9):

ARIMA(12, 1, 9):
(1 + .0747B + .3600B% + .0821B° + .1673B* — .4822B° + .2760B°
— .0272B" — .1201B° — .3429B° + .1431B1° — .2679B!]
+ .0856B'%) Ay, = .0106 + (1 + .5072B + .3478B? + .1414B>

+ .0786B* — .3933B° — .1676B° — .1118B7 — .1891B° — .2835B%)s,
(17.19)

R? =296 x2(21, 36) = 26.70

The chi-square statistic has dropped considerably, to 26.70. However, there
are now only 15 degrees of freedom (36 lags minus 21 estimated parameters),
and this value is significant at the 95 percent level (though barely so). We
must now consider the possibility that we have included too many-parame-
ters; a somewhat sparser specification that saves degrees of freedom might
still account for almost as much of the variation in the change in interest rates.

As a next step, we reduce the number of moving average terms, and
estimate an ARIMA(12, 1, 3) model and an ARIMA(12, 1, 2) model. The
results are shown below:
ARIMA(12, 1, 3):
(1 + .2812B + .1335B% — .2649B% + .2526B* — .1463B° + .2321B°

+ .1394B7 + .0675B% — .2427B° + .0049B!° — ,0561B!!

+ .1649B8'%) Ay, = .0109 + (1 + .7143B + .2084B2 — .3142B%)e,

(17.20)

R*= 289  x2(15, 36) = 32.03
ARIMA(12, 1, 2):

(1 + .4211B + .4811B% — .0928B* + .2139B* — .0777B% + .2512B¢
+ .1490B7 + .1340B% — .1556B° — .0272BY — ,1171B!

mance can be compared. We will produce forecasts using the (12, 1, 2) model
in the next chapter.

Example 17.2 Hog Production Let us now turn to the series for monthly
hog production. Recall from the last chapter that we suggested that an appro-
priate model for the series might be

(1 = ¢1B — ¢B> — ¢3B*)(1 — B)(1 — B2)y, = ¢

This model was estimated over the period January 1960 to December 1967,
with the results

(1 + .6681B + .2015B* — .1298B%)(1 — B)(1 — B'?)y, = .0014 + &,
(17.22)

R*= 365 x2(3,20) = 12.83

The model is acceptable and will be used to forecast in the next chapter. The
reader might wonder, however, whether another model specification might
provide a better fit to the data. Perhaps, for example, the addition of moving
average terms would improve the model. To test this, we estimated a model
that includes first- and second-order moving average terms:

(1 + .6626B + .3945B82 — .01798%)(1 — B)(1 — B'?)y,
=.0015 + (1 + .0168B — .2191B%)¢, (17.23)

R*= 349  x2(5, 20) = 13.01

Inclusion of the moving average terms results in a slightly lower value for the
R?, Of greater importance, however, is the fact that the estimated values of ¢, ,
¢,, and ¢3 add up to a number greater than 1. The result is a nonstationary
model for a series that we believe to be stationary. We would thus reject this
model, and retain the model of Eq. (17.22).

+ .1559B!2) Ay, = .0109 + (1 + .8562B + .6257B)e, (17.21)
R2=.294  x2(14, 36) = 28.16

Of these, the ARIMA(12, 1, 2) model looks most promising. The chi-
square statistic is 28.16, which, with 36 — 14 = 22 degrees of freedom, is
insignificant even at the 90 percent level. In practice, sets of ex post forecasts
should be produced using several alternative models so that their perfor-

APPENDIX 17.1 Nonlinear Estimation of ARIMA Models

In this appendix we examine the iterative nonlinear estimation process in more
detail. Let the vector B represent the p + ¢ parameters (6, ¢) that we wish to




estimate. We wish to choose numerical values for g which minimize

ﬂﬁ=§@w&uiwﬁ (A17.1)

The notation [&;] means that the errors are conditional on the values of w and 8.
Now expand [g;] in a Taylor series around some initial guess By for the parame-
ter values:

_ o dle]
[ec] = ledw, Bol + 2 (Bi = Bio) 5|,
_I-P"'G' 6‘2[8;]
+ > ; (Bi — Bm)z 353 e -+ (Al17.2)

Here B;, is the value of the first guess for the parameter ;, and thus is the ith
component of the vector B,. We will approximate [e,] by the first two terms of
this Taylor series expansion. When we let

i ap; 1p=p (17:3)
and [eco] = [&]W. Bol (A17.4)
it follows that (approximately)

ptq
le] = [seo] = 2 (Bi — Bio)¥is (A17.5)
i=1
which can be rewritten as
ptq ptq
[e0] + 2 BioXie = X BiXie + [81] (A17.6)
i=1

i=1

The left-hand side of Eq. (A17.6) can be thought of as a composite dependent
variable, which will have different numerical values fort =1, 2,. . ., T. (Note
that [g, 0] is just the value of the error term at time ¢, given the first guess B;.) On
the right-hand side of Eq. (A17.6) are p + g independent variables (multiplied
by the p + g unknown parameters j3;) as well as an additive error term. It should
be clear, then, that the parameters 8; can be estimated from Eq. (A17.6) via a
linear regression. This ordinary least-squares regression is performed to produce
a new estimate of 8, which we call §,.

Next, using a new Taylor series expansion of [&/] around this ﬂ;, we obtain a
new version of Eq. (A17.6) which can also be estimated by ordinary least
squares to yield a new estimate ﬁ,,. This process is repeated over and over again
until

Bi— Bi-1=0 (A17.7)

We call k the convergence number, i.e., the number of iterations required until
convergence occurs. B will then be our final estimate of the parameters ¢,
.. ..¢,and 8, . . .. 06,

The standard errors and ? statistics for our parameter estimates would be
calculated from the last linearization, as is typically done in a nonlinear estima-
tion procedure. An R? can be calculated in the same way, and has similar
relevance.

There can be no guarantee that the estimation process described above will
converge at all to a final estimate of the parameters. It is quite possible for the
process to diverge, i.e., for the successive estimates 1, B, an B to be farther
and farther apart. Furthermore, it is also possible for multiple solutions 10 exist; in
this case convergence occurs, but different initial guesses result in different final
estimates for one or more of the parameters. Whether or not divergence or
multiple solutions occur would depend both on the specification of the ARIMA
model and on the data to which that specification is fitted.

Should divergence occur, the model can be reestimated using different initial
guesses. A new initial guess may result in convergence, although this need not
always be the case. If it turns out to be impossible to reach a convergent solution,
a new model specification must be chosen.

Even if convergence occurs on the first try, it is wise to test for multiple
solutions by reestimating the model with a different initial guess. If multiple
solutions do occur, the final estimate should be that which gives the smallest
value of the sum of squared errors. This estimate would correspond to the global
minimum of the sum of squared errors function, as opposed to one or more local
minima.

Example A17.1 Estimation of ARMA(1,1) As an example of the iterative
nonlinear estimation method described above, let us see how the estimation
of ¢, and 6, in an ARMA(1, 1) model for a stationary series w; would be
carried out. Writing the ARMA(1, 1) model in terms of Eq. (17.11), we have

_l—qblB

E; e 1 = BIB W; (A17.8)

This equation is nonlinear in 6, but it can be approximated by a Taylor series




expansion. This involves calculating the first derivatives of & with respect to
¢, and 6,, and evaluating them at the initial guess ¢, and 6, .

v = _ O g A17.9

1.t 9th) [0 010 1 — 0,0B ‘ ( i
dg; B - ¢l CPB2
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Numerical time series can be computed for x;, and x», (they will be used to
perform the linear regression) over the time period ¢t = 1 to T by expanding
Egs. (A17.9) and (A17.10). Taking Eq. (A17.9) for x,,, for example, we get

X = O10X1-1 T Wi (A17.11)

Setting wy = x;0 = 0, we can solve Eq. (A17.11) repeatedly to generate a
series for x, ;. The first value x,, would be equal to 0, the second value x, ,
would equal w,, the third value x, ; would equal 8, ow; + w;, etc. The same
thing is done for x,, by expanding Eq. (A17.10):

Xog = 201 0%2-1 — 010%2-2 — Wi T b1 oWi—2 (Al7.12)
We would begin the computation of x,, by setting
Xo) T Xpo = Wp=w-; =0 (A17.13)

Thus, the first value x,,, would just be equal to 0, while x, , would be equal to
—w,, X3 would be equal to 26, gpx;, — Wy + 1wy, €lC.

Finally, a time series must also be computed for &, for ¢ ranging from 1 to
T. This is done simply by writing

_1—¢0B
B0 = T 9,08 (A17.14)
and using the series for w; to obtain the series for €,,. Note that this is just a
series of residuals based on the first-guess estimates ¢, 5 and 6,,0.

We are now ready to perform a linear regression. Equation (A17.6) be-
comes

€10 + ¢)1'0x1,( + 61,0)(2’1 = d)lxl’, + lez,l + & (A].?].S)
Equation (A17.15) is a linear regression equation, and ordinary least squares

can be used to estimate ¢, and 8, . If these estimates of ¢, and 8, are signifi-
cantly different from the first guesses ¢ and 6, o, they are used as new first

guesses, and the entire process is repeated all over again, to yleld new estimates
for ¢, and 0,. Again, if the change is significant, then the process is repeated.
with luck, the estimates for ¢, and 6, will converge after a few iterations, but
we have no guarantee of this, nor, in fact, do we even have a guarantee that
the process will converge at all.

EXERCISES

17.1 Following the example in Appendix 17.1, show how the estimation of ¢, ¢b,, and
6, for an ARMA(2, 1) model would be carried out. Go through the steps of the Taylol
series expancion, show how the data series are generated, and indicate how the lincai
regressions are performed.

17.2 Suppose that an ARMA(0, 2) model has been estimated for a time series that has
been generated by an ARMA(1, 2) process.

(a) How would the diagnostic test indicate that the model has been misspecified?

(k) What will the residual autocorrelations 7, look like? What characteristics of these
autocorrelations might indicate that ARMA(1, 2) is a more correct specification?

17.3 Repeat Exercise 17.2 for an ARMA(O, 2) model estimated for a time series that has
been generated by an ARMA(2, 3) process.

17.4 Suppose that a particular homogeneous nonstationary time series y; can be modeled
as a stochastic process that is ARIMA(L, 1, 1).

(a) How would you calculate the sample autocorrelation functions for y, and its
differences and use them to verify that ARIMA(1, 1, 1) is indeed a proper specification
for y,?

(b) Suppose you did not have access to a computer package for nonlinear estimation.
How would you use a linear regression to obtain approximate estimates of the parameters in
the model? (Explain the steps involved clearly.)

17.5 Using data for the 3-month Treasury bill rate (Table 17.1 on pages 514-515) (or
some other short-term interest rate), specify and estimate alternative models to thosc in
Example 17.1. Experiment with higher-order ARIMA(p, 1. q) models, and also with
ARIMA (p, 2, q) models. How sensitive are your estimates to the choice of sample period?




TABLE 17.1 TABLE 171
y E. | TREASURY BILL RATE (Continued
THREE-MONTH TREASURY BILL RATE THREE-MONTH TREASL ( )
3-month rate
Obs. 3-month rate Obs.
7.96 8.33 8.23 7.90
1950.01 1.07 1,12 1.12 1.15 1.16 1.15 1974.01 7.77 7.12 2 L
1974.07 7.55 8.96 8.06 7.46 7. .
1950.07 1.16 1.20 1.30 1.31 1.36 1.34 P 5.34
1975.01 6.26 5.50 5.49 5.61 5.23 ;
1951.01 1.34 1.36 1.40 1.47 1.55 1.45 o 22
1975.07 6.13 6.44 6.42 5.96 ; ‘
1951.07 1.56 1.62 1.63 1.54 1.56 1.73 it e
1976.01 4.87 4.88 5.00 4.86 ! .
1952.01 1.57 1.54 1.59 1,57 1.67 1.70 g v
1976.07 5.23 514 5.08 4,92 : .
1952.07 1.81 1.83 1.71 1.74 1.85 2.09 PAs e
1977.01 4.62 467 4.60 4.54 : ;
1953.01 1.96 1.97 2.01 2.19 2.16 2.1 vy g
i 1977.07 5.19 5.49 5.81 6.16 : :
1953.07 2.04 2.04 1,79 1.38 1.44 1.60 o oo
1978.01 6.44 6.45 6.29 6.29 : .
1954.01 1.18 97 1.03 .96 76 64 ] o
1978.07 7.01 7.08 7.85 7.99 8.6 )
1954.07 72 92 1.01 .98 .93 1.14 o o o0
1979.01 9.35 9.32 9.48 9.46 : i
1955.01 1.23 1.17 1.28 1.50 1.45 1.41 b o
1979.07 9,24 952 1026 1170  11.79 !
1955.07 1.60 1.90 2.07 223 2.25 2.54 A o
1980.01 12.00 12.86 1520  13.20 . :
1956.01 2.41 2.32 2.25 2.60 2.61 2.49 AR
1980.07 8.06 9.13 1027 11862 . .
1956.07 2.31 2.60 2.84 2.90 2.99 3.21 ods s
= 1981.01 1502 1479 1336  13.69 : .
1957.01 3.1 3.11 3.08 3.06 3.06 3.29 P
1981.07 1495  15.51 1470  13.54 0. :
1957.07 3.16 3.37 3.53 3.58 3.29 3.04 e e
1982.01 1228 1348 1268 1270 ; :
1958.01 2.44 1.54 1.30 1.13 91 83 208 oo
1982.07 11.35 8.68 7.92 7.71 : .
1958.07 .91 1.69 2.44 2.63 2.67 2.77 s e
1983.01 7.86 8.11 8.35 8.21 i :
1959.01 2.82 270 2.80 2.95 2.84 3.24 a9 37
1983.07 9.08 9.34 9.00 8.64 : :
1959.07 3.20 3.38 4.04 4.05 415 4.49 28 i
1984.01 8.90 9.09 9.52 9.69 : :
1960.01 4.35 3.96 3.31 3.23 3.29 2.46 8.61 8.06
1984.07 1012 1047  10.37 9.74 : :
1960.07 2,30 2.30 2.48 2.30 2.37 2.25 48 6.95
1985.01 7.76 8.27 8.52 7.95 7. :
1961.01 2.24 2.42 2.39 2.29 2.29 2.33 4 710
1985.07 7.08 7.14 7.10 7.16 7.2 ;
1961.07 2.24 2.39 2.28 2.30 2.48 2.60 : 6.21
1986.01 7.07 7.06 6.56 6.06 6.15 .
1962.01 2.72 2.73 2.72 2.73 2.68 2.73 : 553
1986.07 5.83 5.53 5.21 5.18 5.35 :
1962.07 292 2.82 2.78 2.74 2.83 2.87 5.67
1987.01 5.43 5.59 5.59 5.64 5.66 :
1963.01 291 2.92 2.89 2.90 2.92 2.99 577
1987.07 5.69 6.04 6.40 6.13 5.69 ;
1963.07 3.18 3.32 3.38 3.45 3.52 352 o6 i o o o sa7
1964.01 352 3.53 3.54 3.47 3.48 3.48 1988.01 : : -

1964.07 3.46 3.50 3.53 3.57 3.64 3.84
1965.01 3.81 3.93 3.93 3.83 3.89 3.80
1965.07 3.84 3.84 3.92 4.03 4.09 4,38
1966.01 4.59 4.65 4.59 4.62 4.64 4.50
1966.07 4.80 4,96 5.37 5.35 5.32 4.96
1967.01 4.72 4.56 4.26 3.84 3.60 3.54
1967.07 4.21 4.27 4.42 4.56 4.73 4.97
1968.01 5.00 4.98 517 5,38 5.66 5.52
1968.07 5.31 5.09 518 5.35 5.45 5.96
1969.01 6.14 6.12 6.02 6.11 6.04 6.44
1969.07 7.00 6.98 7.09 7.00 7.24 7.82
1970.01 7.87 713 6.63 6.51 6.84 6.68
1970.07 6.45 6.41 6.13 5.91 5.28 4.87
1971.01 4.44 3.70 3.38 3.86 4.14 4.75
1971.07 5.40 4.94 4.69 4.46 4.22 4.01
1972.01 3.38 3.20 3.73 3.7 3.69 3.91
I 1972.07 3.08 4.02 4.66 4.74 4,78 5.07
1973.01 541 5.60 6.09 6.26 6.36 7.19
1973.07 8.01 8.67 8.29 722 7.83 7.45

Source: Citibase, Series FYGM3.
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CHAPTER 1 o

FORECASTING WITH
TIME-SERIES MODELS

Once a time-series model has been estimated and checked, it can be used for
forecasting. In this chapter we explain how to use the general ARIMA model

¢(B)A%, = 0(B)e, (18.1)

to obtain a forecast of y, for period T + [ (that is, / periods ahead, with / = 1). We
denote this forecast by jr(/), and call it the origin-T forecast for lead time I. We
assume for now that the true parameters of the model are known and examine
the properties both of the forecast and of the forecast error. Later we will see
how imperfect knowledge of the true parameter values increases the forecast
EITOr.

We begin this chapter by discussing the basis for making forecasts, after which
we go through the steps of actually computing a forecast. Then we discuss the
nature of forecast errors, showing how forecast confidence intervals can be
computed. In order to give the reader an understanding of the characteristics of
time-series forecasts, we examine in detail the properties of the forecasts of some
simple ARIMA models. Finally, we present two examples in which we generate
forecasts for an interest rate and for hog production using the time-series models
estimated at the end of the last chapter.

18.1 MINIMUM MEAN SQUARE ERROR FORECAST

Our objective in forecasting is to predict future values of a time series subject to
as little error as possible. For this reason we consider the optimum forecast to be
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that forecast which has the minimunt mean square forecast error. Since the forecast
error is a random variable, we minimize the expected value. Thus we wish to
choose our forecast §+(1) so that E{e3())] = E{lyr+ — Pr(1)]?} is minimized. We
show that this forecast is given by the conditional expectation of yr,;, that is, by

$r(l) = EQralyr, yr—10 o« < o 01) (18.2)

To prove that the minimum mean square error forecast is given by Eq. (18.2),
we begin by rewriting the ARIMA model in Eq. (18.1) above as

$(B)(1 — B)Y; = 0(B)z (18.3)

since A = 1 — B, as explained in Chapter 16. Therefore,

9 = ¢~Y(B)(1 — B)~0(B)e, = U(B)e: = 2 Yer-j (18.4)

Here we have expressed the ARIMA model as a purely moving average process
of infinite order.! Then

yrer = Yoerer + Yi&re + 0 0 e + Yrggra 0 0
= Yiokrs) + YiErem + 0 T YmiEra 2 e (18.5)
=0

In Eq. (18.5) we have divided the infinite sum into two parts, the second part
beginning with the term yyer and thus describing information up to and includ-
ing time period T.

Of course the forecast (/) can be based only on information available up to
time T. Our objective is to compare this forecast with the actual value yry; as
expressed in Eq. (18.5). To do so, we write the forecast as a weighted sum of
those error terms which we can estimate, namely, er, &r-1, - « « - Then, the
desired forecast is

Pr(l) = 20 Yier— (18.6)
=

where the weights y};; are to be chosen optimally so as o minimize the mean

L Any ARIMA process can be equivalently expressed as purely moving average or as purely
autoregressive. We could have, for example, rewritten Eq. (18.3) as ¢(B)(1 — B)¥0~(B)y, = &, O1
£(B)y, = . This is a purely autoregressive process of infinite order. The reason that we do nof
originally specify the ARIMA process as purely autoregressive or purely moving average (of infinite
order) is that we would then have an infinite number of parameters to estimate,




square forecast error. We can now write an expression for the forecast error, ep(/),
using Eqs. (18.5) and (18.6):

er(ly = yror — Jrll) = Yo&ryr + Ynerr + - - -+ e

+ 2 (W — Yfij)er (18.7)
j=0

Since by assumption E(eg;e;) = 0 for i # j, the mean square forecast error is

Elef(D] = (o + wi+ - - - +yli)ai + 2 (hy — ¥hy)os  (18.8)

Clearly this expression is minimized by setting the “optimum” weights
equal to the true weights s,;, forj =0, 1,. . . . But then our optimum forecast
Jr(l) is just the conditional expectation of yr4,;. This can be seen by taking the
conditional expectation of yr, in Eq. (18.5). The expected values of ey, . . .,
er4; are all 0, while the expected values of 7, er—;, . . . , are just the residuals
from the estimated equation. Thus we have

8

A~

Ir(h) = 2, Yijér—j = E(yrallyr. .+ ) (18.9)
0

fl

It

This provides the basic principle for calculating forecasts from our ARIMA
models. Now we apply this principle to the actual computation of forecasts.

18.2 COMPUTING A FORECAST

The computation of the forecast yr(/) can be done recursively using the esti-
mated ARTMA model. This involves first computing a forecast one period ahead,
using this forecast to compute a forecast two periods ahead, and continuing until
the l-period forecast has been reached. Let us write the ARIMA(p, 4, g) model as

W= diwmr + 0+ QWi + & — GiE — 0 c - — begg + 8 (18.10)
with = Z4w, (18.11)

To compute the forecast yr(/), we begin by computing the one-period forecast of
wy, wr(l). To do so, we write Eq. (18.10) with the time period modified:

Wrpp=¢wr+ - - -+ ¢pWT—p+1 T ien = v 087441 + &

(18.12)

We then calculate our forecast we(1) by taking the conditional expected value of
wryp in Bq. (18.12):
we(l) = H(W?'<-||W'.".- ) =dwe et ‘f);-WT Pl
= 9]{37‘ el UNSE gliéf"—qi'l + 8 (181 3)
where the &, ér_,, etc., are observed residuals. Note that the expected value ol

g1+ is 0. Now using the one-period forecast wr(1), we can obtain the two-period
forecast wr(2):

WT(Z) = E(WT+2|WT, i % .)
= dwr(l) + dawr + + © cF PWrpsr — b — - - - = Ofrgi0 + B
(18.14)

The two-period forecast is then used to produce the three-period forecast, and so
on, until the I-period forecast Wr(/) is reached:

(18.15)

Note that if / > p and [ > g, then this forecast will be
wr(l) = dr(l — 1) + - - - + (I — p) (18.16)

Once the differenced series w, has been forecasted, a forecast can be obtained
for the original series y, simply by applying the summation operation to w;, that
is, by summing w, d times. Suppose, for example, that d = 1. Then our /-period
forecast of y, would be given by

Pr(l) = yr + wr(l) + Wr(2) + - - -+ Wr(l) (18.17)

On the other hand, if the model for y, were ARIMA with 4 = 2, then the /-period
forecast y+(/) would be given by
Jr(l) = yr + [Ayr + Wwr(1)] + [Ayr + Wr(1) + Wr(2)] + - - -
+ [Ayr + Wr(1) + - - - + Wr(])]
= yr+ 1 Ayr + Wp(1) + (1 = L)r(2) + - - -+ r(l)  (18.18)

Here the summation operator has been applied twice. The procedure is similar
for larger values of 4.




18.3 THE FORECAST ERROR

As we saw before, if we express the ARIMA model as a purely moving average
process of infinite order, the forecast error / periods ahead is given by

er(l) = yror — Jr(l) = boerss + Yr&psp-1 + + + -+ Yoierey (18.19)

Remember that the weights yj; are determined from

W(B) = ¢~'(B)(1 — B)™"6(B) (18.20)
We assume that the model parameters ¢y, . . ., ¢,and 6, . . ., 6, are known
exactly and therefore the weights i, ¥, . . ., are also known exactly. In this

case the variance of the forecast error is given by
Eled()] = (Yo + YT+ - -+ Uiy)o? (18.21)

Therefore, the algebraic form for the forecast error variance depends on the
particular ARIMA specification that has been adopted. In the next section we
examine the forecast error in more detail for some simple ARIMA models. For
now, however, there are two things that the reader should observe.

First, we know from the definition of {s(B) above that ¢, = 1.2 Therefore, for
any ARIMA specification, we know that the forecast error one period ahead is just

er(l) = ers) (18.22)

and this has variance o-2. Thus the forecast error variance one period ahead is the
variance of the error term.

Second, we must keep in mind the fact that our calculation of the forecast
error was based on the assumption that we knew the parameter values ¢,,. . .,
¢pand 6, . . ., 6, with certainty. But the parameters are estimated via a
nonlinear least-squares regression, and the estimates are random variables with
means and variances. Therefore the actual forecast error variance will be larger
than the variance calculated above. To determine exactly how much larger, we
must know the variances of the parameter estimates in the ARIMA model.
Because the parameters are estimated nonlinearly, however, the best we could
do, in fact, would be to calculate standard errors based on the last iteration of the
nonlinear estimation procedure.

The difficulty here is that the standard errors for the linearization in the last
(or any particular) iteration are not ‘‘true’’ estimates of the actual standard errors
for the parameter values. As a practical matter, one has the choice of using these
standard errors in the calculation of the forecast error variance or ignoring them
and simply calculating the forecast error variance based on Eq. (18.21) above.

2 Remember that the ARIMA model (with 0 mean) isw, = ¢;w,—; +- - -+ oW, + & — 018, —
+ — 0,&-4. The only unlagged term on the right-hand side is &, (which has a weight of 1). Thus v,
must equal 1 in Eq. (18.4).

18.4 FORECAST CONFIDENCE INTERVALS

Before we can calculate a confidence interval for our forecast, we need an
estimate @2 for the variance of the disturbance term. This estimate would logi-
cally be based on the sum of squared residuals S(¢y, . . ., by, 01 . 0y)
obtained after final estimates of the parameters have been obtained:

&
S 2 &

I w— (18.23)

7T T-p-q T-p-4

Here T — p — ¢ is the number of degrees of freedom in the linear regression. We

see from Eq. (18.21) and the fact that s, = 1 thata confidence interval of n standard

deviations around a forecast  periods ahead would be given by

=1 112
C,=Jr(l) £ n (1 + 2 1bf) G, (18.24)
j=1

As expected, this interval gets larger as the lead time ! becomes larger, although
the exact pattern depends on the weights ;.

Forecasts of y,, together with a typical 66 percent confidence interval (n = 1)
and 95 percent confidence interval (n = 2), are shown for a hypothetical ARMA
model (4 = 0) in Fig. 18.1. Note that the forecasts (denoted by crosses) first are
increasing but then decline to the constant mean level of the series. We know
that the forecast will approach the mean of the series as the lead time !/ becomes

FIGURE 18.1 _
Forecasts and confidence intervals for a stationary ARMA process.
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large because the process is stationary. The confidence intervals, of course, in-
crease as the forecast lead time becomes longer.

18.5 PROPERTIES OF ARIMA FORECASTS

We now examine the properties of the forecasts derived from some simple
ARIMA models. In all the cases that follow we assume that the parameters of the

particular ARIMA model are known with certainty.
18.5.1 The AR(1) Process
Let us begin with the stationary first-order autoregressive process, AR(1):
wW=diy- + 6+ g (18.25)
For this process the one-period forecast is
Jr(1) = E(yralyr, . . .. y1)) =dyr + 8 (18.26)
Similarly, $0(2) = dir(1) + 8 = iyr + () + 1)8 (18.27)
And the /-period forecast is
Ir(ly = lyr + (b7 + 177+ - -+ i+ 1)8 (18.28)
Note that in the limit as / becomes large, the forecast converges to the value

a8
L Loy w 5; e (18.29)

j=0

We see, then, that the forecast tends to the mean of the series as / becomes large
[reca]_l .Eq. (16.23) for the mean of the AR(1) process]. Of course this is not
surprising, since the series is stationary. As the lead time / becomes very large
there is essentially no useful information in recent values of the time series, y '
¥r-1. €tc., that can be used to adjust the forecast away from the mean value ThL:S
for a very large lead time the best forecast is the stationary mean of the s:eries

Let us now calculate the forecast error for this process. The forecast error ‘l
periods ahead is given by

er(l) = yrvt — Jr(1) = d1yrei-1 + 8 + &4y — J1(1)
= ¢%J/T+.’—2 + (¢ + 1)8 + &1y T d18741-1 — Jr())

=¢iyr+ (1 + TP+ - 4 ¢'; + i)é
+ e+ Griere 0 0+ D ey — Pr(l)

Now substituting Eq. (18.28) for yr(/), we gel

er(l) = epyy + 16y 0 0 0 1 B e (18.30)
which has a variance

Eled()) = (1 + o1 + of+ -+ di 7)ol (18.31)

Note that this forecast error variance increases (nonlinearly) as [ becomes larger.

18.5.2 The MA(1) Process
Now let us examine the simple first-order moving average process, MA(1):

y =8+ & — 618 (18.32)
The one-period forecast for this process is
9r(1) = E(yredlyrs -« - 1) =8 — Oiér (18.33)

where &7 is the actual residual from the current (and most recent) observation.
On the other hand, the /-period forecast, for [>1,isjust

yr(l) = E(YTHl_VTr o wEdh)E= E(6 + &74 — 6,6741-1) = B (18.34)

This is also as expected, since the process MA(1) has a memory of only one
period. Thus recent data are of no help in making a forecast two or mor¢ periods

ahead, and the best forecast is the mean of the series, 8.

The variance of the forecast error for MA(1) is o2 for the one-period forecast,

and for the /-period forecast, / > 1, it is given by
E[e3(D)] = E{Uyre: — $r(17} = El(erss = iora1)’] = (1 + 81)os (1835)

Thus the forecast error variance is the same for a forecast two periods ahcad,
three periods ahead, etc. The forecast confidence intervals would appear as
shown in Fig. 18.2.

18.5.3 The ARMA(], 1) Process

Let us now calculate and examine the forecasts generated by the simplest mixed
autoregressive—Imoving average process, ARMA(1L, 1):

yi=¢y-1 + 8+ & — 018 (18.36)
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FIGURE 18.2
Forecasts and confidence intervals for an MA(1) process.

The one-period forecast for the ARMA(1, 1) model is given by

Jr(1) = E(dr1yr + 8 + 141 — bh&r) = diyr + 8 — 6167 (18.37)
The two-period forecast is
J1(2) = E(d1yrer + 8 + &r42 — O16741) = @1 Jir(1) + 8
= ¢iyr + (¢ + 1)8 — ¢16:4r (18.38)
Finally, the /-period forecast is
yr(l) = d1jr(l — 1) + 8
=¢lyr+ (@7 + -+ d+ 1)8 - 04, (18.39)

Note that the limiting value of the forecast as / becomes large is again the mean
of the series:

T 8
Im gl =1 _"g =t (18.40)

Examining these forecasts for different lead times, we see that the current distur-
pance helps to determine the one-period forecast and, in turn, serves as a start-
ing point from which the remainder of the forecast profile, which is autoregres-
sive in character, decays toward the mean &/(1 — ¢,).

The fact that forecasts from ARMA maodels approach the (constant) mean
value of the series as the lead time becomes large indicates a limitation of these
models. As we will see in the examples in this chapter and the next, time-series
models are best for short-term forecasting. For a long forecasting horizon, a
structural econometric model is likely to be more useful.

18.5.4 The ARI(1, 1, 0) Process
Now we examine a simple nonstationary process, the integrated autoregressive
process ARI(1, 1, 0):

Wr=¢1wt—l+6+8¢ (184|)

with w, = Ay, = Y — Vi (18.42)
Forecasts for y, are related to forecasts of the differenced series w, as follows:

Jr(1) = yr + wr(1) (18.43)
and Pr(l) = yr + wr(1) + - - -+ Wr(]) (18.44)
Since the differenced process w; is AR(1), its forecasts are given by

Wr(l) = dhwr + (@7 + TP+ -+ di+ 1)
=dlyr— dlyra + (@ + -+ di+ 1) (18.45)

Then the one-period forecast for y, is
Pr(1) =yr + d1(yr — yr-1) + 8= (1 + d)yr = o yr-1 + 8 (18.46)
The two-period forecast for y, is

Jr(2) = yr + Wr(1) + Wr(2) = Jr(1) + Wr(2)
= (1) + diwr + (o1 + 1)8
=1+ ¢+ dHyr— (1 + dllyra + (4 + 13+ 3 (1847)

A more instructive way to look at this forecast, however, is in terms of its
changes. Since

we can write the forecast jr(2) as

Pr(2) = jr(1) + $ubr(l) + 8 (18.49)




Similarly, Pr(l) = Dol = 1) + dyr(! = 1) + & (18.50)

Now let us examine the properties of this forecast. Since w, is an AR(1) process,
we know from Eq. (18.29) that

lim wp(l) = —

1= 1 -_qbl (18.51)

Thus as the forecast horizon / becomes large, the forecast profile approaches a
straight line with slope 8/(1 — ¢,). In other words, as the horizon becomes large,
the forecast becomes dominated by the deterministic drift of the process. For a
short forecast horizon this would not be so. It might have been the case, for
example, that the last few differences wr, wy—;, wr_, were negative although &
was positive, so that the series had an overall upward drift. In this case the short-
term forecasts wr(1) and Wr(2) might be negative, even though () would
tend toward 8/(1 — ¢,) as I became larger. The forecasts for y,, then, would first
be decreasing but then would change direction, ultimately approaching a straight
line with slope 8/(1 — ¢,). This hypothetical ARI(1, 1, 0) forecast is shown
graphically in Fig. 18.3.

One thing that becomes immediately clear about ARIMA forecasts is that they
are adaptive. As can be seen from Fig. 18.3, the forecast makes use of the most
recent data and adapts accordingly. Another example of the adaptive nature of

FIGURE 18.3
Hypothetical forecasts for an ARI(1, 1, 0) process.
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FIGURE 18.4
Adaptive nature of ARI(1, 1, 0) forecast.

ARIMA forecasts is shown in Fig. 18.4. This process is als.o A}_RI( 1, 1, 0) and is
identical to the process in Fig. 18.3 for t = T. The crosses in Fig. .18.4 r‘ffpr('th"III
the forecasts made at time T. Now suppose that the series increases in permdsj I. +
1, T+ 2, and T + 3 and a new set of forecasts is made in period T + 3.. These
forecasts are denoted by circles, and, as can be seen in Fig. 18.4}, they ﬁrst increase
and then decrease. Ultimately they will also approach a drift line. This new L‘l rift
line will have the same slope as before but will be slightly higher as a‘ result ol, l he
new data points. What we observe, then, is that the forecast has “adapted ‘l‘n
the new data that became available in periods T + 1, T+ 2, and T + 3. Notice
that the values of this forecast for a long lead time have adapted as well.

18.5.5 Confidence Intervals for the ARI(1, 1, 0) Forecast

We now calculate the forecast error and its variance for the AI.QI( 1,1,0) proccss,
so that we can obtain a forecast confidence interval. As we will see, the forecas!
confidence interval for y, is related to the forecast confidence interval for the

differenced series w,. : Y .
We begin with the forecast error for the one-period forecast, yr(1):

er(1) = yre1 — $r(1) = yr + wre — yr — Wr(l)

= Wy — Wr(l) = &r41 (18.52




= -

which has a variance o{. The two-period forecast error is given by
er(2) = yr+2 — Jr(2) = yr + wrer + wriz — yr — Wr(l) — Wr(2)

= [wrer = Wr(1)] + [wre2 — Wr(2)]

= (1 + ¢1)ers1 T 742 (18.53)
and this has a variance

E[er(2)] = oi[(1 + ¢1)2 + 1] (18.54)

Note that this forecast error (and its variance) is cumulative; i.e., it is equal to the
two-period error for Wr(2) in addition to the one-period error for wy(1). Thus the

error in yr(2) is an accumulation of the errors in Wwr(1) and in w(2). Now observe
this cumulative phenomenon in the [-period forecast:

er(l) = [Wrr1 — Wr(1)] + [Wrey — Wr(2)] + - - - + [Wry; — Wr(l)]
= &re1 + (Brea + Gi8rey) t 0 0 ot (eru + drerm + 0 0+ S )
=(l+¢+di+: +d e+ (L+di+- - -+ b )er
t+ o+ (1 + d)ery + oery
I =i
=N ep 3 & (18.55)
i=1 j=0

and this has a variance

i I=i A2
EGD] = 02 Y (3 o) (18.56)
i=1 %j=0
Thus the error in fr(/) is an accumulation of errors in (1), Wwr(2), . . ., Wr(l).

This can be seen graphically in Figs. 18.5 and 18.6, which compare confidence
intervals for forecasts of the differenced series w, with confidence intervals for
forecasts of y,. Note the relationship between the forecasts of the differenced
series w; and the forecasts of y;. wr_, and wr_, are decreasing, and wr is negative,
so that (1) and Wr(2) are also negative [j7(1) and jir(2) are decreasing], Wwr(3),
Wr(4), etc., are positive [jr(3) is larger than §7(2)], and finally Wwr(I) approaches
the mean 8/(1 — ¢,) as / becomes large [so that (/) approaches the drift line].
Observe that the confidence interval for yr(/) grows rapidly, since it must ac-
count for the accumulation of forecast errors in the differenced series.

We have examined the forecast properties of only the simplest of ARIMA
models, but some of our conclusions apply to more complicated (i.e., higher-
order) models. In particular, note that a moving average model of order ¢ has a
memory of only g periods, so that the observed data will affect the forecast only

Il =) fF——

FIGURE 18.5
Confidence interval for w{!} for ARI(1, 1, O) process.

if the lead time [ is less than g. An autoregressive model has a memory of infinit ¢
length, so that all past observations will have some effect on the forecast, evcn] i
the lead time /is long. But although all past observations have some effect on U “.
forecast, only more recent observations will have a large effect. Thus evcn‘ YYIH
autoregressive (or mixed autoregressive—moving average) models, past observa-

FIGURE 18.6
Confidence interval for y7(/) for ARI(1, 1, O) process.
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tions have little effect on the forecast if the lead time is long. Thus ARIMA
models are best suited to short-term forecasting, i.c., forecasting with a lead time /
not much longer than p + q.

18.6 TWO EXAMPLES
In the last chapter we estimated ARIMA models for two time series. We found
that the first series, which consisted of monthly data for the interest rate on 3-
month Treasury bills, could be represented using an ARIMA(12, 1, 2) model.
The estimated equation is
(1 +.4211B + .4811B% — .0928B% + .2139B* — .0777B° + .2512B°¢
+ .1490B7 + .1340B% — .1556B° — .0272B'0 — ,1171B!!
+ .1559B12)Ay, = .0109 + (1 + .8562B + .6257B%)s, (17.21)
The second time series consisted of data on monthly hog production in the
United States, which we represented by applying an ARIMA(3, 1, 0) model to a
twelfth-differencing of the original series. The estimated version of that model is
(1 + .6681B + .2015B% — .1298B%)(1 — B)(1 — B'?)y, = .0014 + &,
(17.22)
Recall that the twelfth-differencing (1 — B'?) accounts for seasonal (annual)

cycles in the data. We now generate forecasts of the interest rate and hog pro-
duction using these two ARIMA models.

Example 18.1 Interest Rate Forecast Recall that the ARIMA(12, 1, 2)
model for the 3-month Treasury bill rate was estimated using data that ran
through June 1988. In this example we generate three ex post forecasts that
cover the end of the estimation period. The forecasts are presented in terms of
the differenced series and are compared with the actual data.

A 24-month forecast (from July 1986 to June 1988) is shown in Fig. 18.7,
a 12-month forecast (July 1987 to June 1988) is shown in Fig. 18.8, and a 6-
month forecast (January 1988 to June 1988) is shown in Fig. 18.9. Note that
in all of these figures we are examining forecasts of the monthly change in the
interest rate, rather than its level.

An evaluation of this model as a forecasting tool is somewhat difficult
because the 1980s was a period of very volatile interest rates. What we can
see, however, is that the ARIMA model captures trends but fails to predict
sharp turns, especially for the longer forecasts. For example, the 24-month
forecast failed to capture the steep drop in the interest rate that occurred
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Monthly changes in Treasury bill rate, 24-month forecast versus actual.

FIGURE 18.8 .
Monthly changes in Treasury bill rate, 12-month forecast versus actual.
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FIGURE 18.10 Monthly changes in Treasury bill rate, ex ante forecast.
Three-month Treasury bill rate, 6-month forecast versus actual,
R, during July to September of 1986, the temporary increase that occurred in the
6.5, summer of 1987, and the decrease that occurred in the fall of 1987. Likewise,
/] the 12-month forecast failed to predict any of the sharp movements that
6.4 // occurred during the year. Only the 6-month forecast captures turning points
Vi in the interest rate, although even here interest rate changes are first over- and
631 /// then underpredicted. This can also be seen in Fig. 18.10, which plots the 6-
// month forecast and actual values in terms of the level of the interest rate,
6.2} / rather than first differences.
/ Figure 18.11 shows an ex ante 18-month forecast that extends from Janu-
61} ary 1988 to June 1989. (This figure is again in terms of first differences.) Here
the cyclical changes in the interest rate that occurred (and were predicted by
6.0 the model) for the first half of 1988 are predicted to continue occurring

through the following 12 months. We leave it to you to check the data and
determine how accurate this forecast was.
The usefulness of an ARIMA model such as this one as a forecasting tool

forecast

5.9

5.8 can be seriously evaluated only in comparison with other available tools. In

e S the case of a short-term interest rate, particularly during a period when rates

57F M. e were fluctuating considerably, one might expect a structural regression model

TR to show a better forecasting performance than a time-series model. In the

5.6 | l J ] L : next chapter we will see how a time-series model can be combined with a
1987.12 1988.01 1988.02 1988.03 1988.04 1988.05 1988 06 regression model to improve the forecast of interest rates.
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Example 18.2 Hog Production Forecast Recall that the ARIMA model
for hog production in Eq. (17.22) was estimated using data from the begin-

ning of 1960 to the end of 1967. We generate our forecast out over a 2-year

horizon, beginning in January 1968 and ending in January 1970. Since data
on hog production are available for this period, we can compare the 25
months of forecasted production with the actual data.

The forecasted and actual series for hog production are shown in Fig.
18.12. Observe that our model has generated forecasts which are quite accu-
rate. The model not only correctly forecasts changing trends in the series but
also picks up the broad seasonal cycle (as it should, since the model includes a
twelfth-difference of the series to explain seasonality). Usually the forecast is
within 10 or 15 percent of the actual series and reproduces most of the
turning points. This model would be quite acceptable as a forecasting tool.
Unlike our interest rate example, hog production can probably be forecasted
better using a time-series model than by using a single-equation regression
model. The reason is that the economics of hog production is complicated and
cannot be represented easily by a single structural equation. Although hog
production could probably be modeled rather well by a multi-equation simu-
lation model, constructing such a model might be difficult and time-consum-
ing. The time-series model, on the other hand, can be constructed easily and
quickly and does a reasonable job of forecasting.

FIGURE 18.12

Two-year (25-month) forecast of hog production. Time bounds:
January 1968 to January 1970.
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In the next chapter we will look at some other examples of time-series models
as applied to problems in economic and business forecasting. In cach case we
will go through the complete process of specifying, estimating, and checking an
ARIMA model, and we will then use the model to produce forecasts. This should
provide the reader with more of a feeling for the properties and characteristics of
time-series models and forecasts.

EXERCISES

18.1 Write the equation that determines the forecast yr({) in terms of (1), Wy (2),. . .
for a third-order homogeneous nonstationary process; i.e., derive the equivalent of FEq.
(18.18) for an ARIMA model with d = 3.

18.2 Does it seem reasonable that for any ARIMA specification the forecast error vari
ance one period ahead is always the variance of the error term? Offer an intuitive
explanation for why Eq. (18.22) must always hold.

18.3 Derive expressions for the one-, two-, and three-period forecasts, (1), Pr(2), and
$r(3), for the second-order moving average process MA(2). What are the variances ol the
errors for these forecasts? What is the variance of the error for the I-period forecast, with
[>3?

18.4 Derive expressions for the one-, two-, and three-period forecasts for the second:
order autoregressive process AR(2). What are the error variances of these forecasts?
18.5 Repeat Exercise 18.4 for the ARMA(2, 1) process.

18.6 Suppose that a particular nonstationary time series y, can be modeled as a stochastic
process that is ARIMA(1, 1, 1).

(a) After you have estimated the model’s parameters, how would you forecast y, onc
period ahead? Express this one-period forecast, y,(1), as a function of observable data. Ir
what sense is this forecast adaptive?

{b) How would you calculate the standard error of the one-period forecast y,(1)
assuming that the parameters of the model are known perfectly? Note that this is analogous t¢
calculating the standard error of a regression forecast under the assumption that the
coefficients 8 are known perfectly.

(c) What will be the difference between the /-period forecast §;(/) and the (I + 1)-

period forecast §i,(I + 1) when [ is very large?
18.7 In Exercise 17.5 we asked you to estimate alternative ARIMA models for the 3
month Treasury bill rate. Now use your models to generate forecasts comparable to those
in Example 18.1. Have you been able to construct a model whose forecasting perfor
mance is better?



CHAPTER

APPLICATIONS OF
TIME-SERIES MODELS

We have seen that econometric model building is in part an art. Even with a
simple single-equation model one must make judgments as to which explana-
tf)ry variables to include, the functional form for the equation, how the statistical
fit of the model should be interpreted, and how useful the resulting model is for
forlecasting or explanation purposes. The situation is much the same with time-
series models. It is usually not obvious what the proper specification for an
ARIIMA n_lodel should be. Many different specifications might be reasonable for
a single time series and its autocorrelation function, so that sound judgment
must b.e used together with a certain amount of experimentation. As in the
regression case, one will often specify and estimate more than one ARIMA
model and check each individually. In general, the usefulness of an ARIMA
model for forecasting purposes is difficult to ascertain. While confidence inter-
vals can be determined for the model’s forecasts, one must still decide whether
any significant structural change in the determination of the variable under
study might occur and thus alter the future movement of the time series

. In this chapter we present several examples of the construction and ;.ISE of
time-series models. We hope that these examples will help convey a better
understanding of the modeling process and will acquaint the reader with the
useful_ness of time-series models in applied forecasting problems. We will see
that time-series models can be used in forecasting applications not only b
themselves but also in combination with regression models. !
. We Will. begin with a model for an aggregate economic variable, nonfarm
inventory investment, and then turn to a model for forecasting seasonal tele-
phone data. One might argue that inventory investment can be better explained
by a structural econometric model, but such a model can be difficult and time-
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consuming to build. The seasonal telephone data that we examine are cyclical,
highly fluctuating, and difficult to explain using a structural econometric model,
5o that a time-series model provides a natural vehicle for forecasting,.

As a final application, we show in two examples how it is possible to combine
a time-series model with a structural econometric model. To do so, we first
construct a regression model and then develop a time-series model for the re-
gression residuals (i.e., for the unexplained noise terms). This combined regres-
sion—time-series model is sometimes called a transfer function model, and il it is
used properly, it can provide a very effective forecasting tool.

19.1 REVIEW OF THE MODELING PROCESS

We begin by briefly reviewing the steps involved in the construction, evaluation,
and use of time-series models. One begins with the specification of the model. This
first requires a decision as to the degree of homogeneity in the time series, i.c.,
how many times it must be differenced to yield a stationary series. The decision
is made by looking at the autocorrelation functions for the series and its differ-
ences. (We have seen, however, that the degree of homogeneity is not always
obvious.) Then the orders of the moving average and the autoregressive parts of
the model must be determined. One can get some guidance from the total and
partial sample autocorrelation functions, but often the correct choice will not be
clear and several alternative specifications must be estimated.

Once a model (or a group of models) has been specified it must be estimated. 1f
the number of observations in the time series is large relative to the order of the
model, this estimation process involves a straightforward nonlinear regression.
Afterward, one performs a diagnostic check. This involves looking at the autocor-
relation function of the residuals from the estimated model. A simple chi-square
test can be performed to determine whether or not the residuals are themselves
uncorrelated. In addition, one should check that the parameter estimates are
consistent with stationarity, e.g., that the autoregressive parameters sum 1o a
number smaller than 1 in magnitude.

If the model passes the diagnostic check, it must then be evaluated to deter-
mine its ability to forecast accurately and to provide a better understanding of its
forecasting properties. For example, the model may pass a diagnostic check but
have a very poor statistical fit, and this would limit its usefulness for forecasting.
If the model’s estimated parameters have large standard errors, the standard
error of forecast will be large.

One means of model evaluation and analysis is to perform a historical simula-
tion beginning at different points in time. One can then examine such statistics as
the rms simulation error and the Theil inequality coefficient and its decomposi-
tion. (See Chapter 12 for a review of these and other model evaluation statistics.)
In addition, one can perform an ex post forecast, comparing the forecast to actual
data to evaluate its performance. This can help the researcher decide how far
into the future the model can be used for forecasting. This is extremely important
if a time-series model is to be used in conjunction with a structural economeltric




model. Typically, the time-series model will provide a better forecast over the
very short term, but the structural econometric model will provide a better
forecast over the longer term.

19.2 MODELS OF ECONOMIC VARIABLES: INVENTORY
INVESTMENT

In this section we construct and examine some time-series models for the level of
real (1982 constant dollar) nonfarm inventory investment. This variable is diffi-
cult to explain and forecast using structural econometric models, so that the
construction of an ARIMA model seems appropriate.

Our sample consists of quarterly data from 1950-1 to 1988-1. In order to
allow for sufficient lags in our ARIMA models, estimation will be based on the
time period 1952-1 to 1988-1. The time series is shown. in Fig. 19.1, and its
sample autocorrelation function is shown in Fig. 19.2. When we first examined
this time series in Chapter 15, we noted that the sample autocorrelation function
exhibits the properties of a stationary series. (After a displacement lag k of 3, it
quickly falls toward zero.) In addition, the series itself seems stationary since
there are no long-run trends either upward or downward.

Nonetheless, as a check we also difference the series once. The differenced
series and its sample autocorrelation function are shown in Figs. 19.3 and 19.4.

FIGURE 19.1
Nonfarm inventory investment (in 1982 constant dollars).
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FIGURE 19.2

Nonfarm inventory investment: sample autocorrelation function.

FIGURE 19.3

Inventory investment—first differences (in 1982 constant dollars).
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FIGURE 19.4
Inventory investment—first differences: sample autocorrelation function,

Note that the autocorrelation function drops immediately to a value of —.2, and
then it oscillates between values of roughly =.1. There is little in the way of a
pattern here, making it difficult to specify an ARIMA model. It seems reasonable
to assume that our series is stationary, i.e., to specify and estimate ARIMA
(7. 0, g) models.

In Example 16.1 we examined the partial autocorrelation function for this
inventory investment series. We noted that the partial autocorrelations became
close to zero after four lags, suggesting that the autoregressive component of an
ARIMA model could be limited to fourth-order. The fact that the sample auto-
correlation function also becomes close to zero by k = 3 or 4 suggests that any
moving average terms should also be of low order. We therefore choose to
estimate the following three specifications: ARIMA(2, 0, 2), ARIMA (4, 0, 0),
and ARIMA(4, 0, 2). The results are as follows:

ARIMA(2, 0, 2):
(1+ .2675B — .5943B%)y, = 15.570 + (1 + .8921B — .0426B%¢, (19.1)

R2= 396  x%(4, 24) = 16.60
ARIMA (4, 0, 0):

(1 - .61818 — .0119B% — .1586B° + .2392B%y, = 15.629 + 5, (19.2)

R2= 423  x%(4,24) = 10.77

ARIMA(4, 0, 2):

(1 — .8714B + .50308* — 38148 + .2399B%)y,
= 15.580 + (1 — .2682B + .3792B%¢, (19.3)

R2= 429  x2(8,24) = 7.29

All of these chi-square statistics (with 22, 20, and 18 degrees of f]'f‘('(h!lll,
respectively) are insignificant even at the 90 percent level, allowing us in cach
case to accept the hypothesis that the residuals are white noise. It is clear lyllml
inventory investment can be described by a low-order ARIMA model. lh.v
ARIMA(4, 0, 2) model seems most promising because it has the lowest chi-
square statistic, even adjusting for degrees of freedom. Figure 19.5 shows the
sample autocorrelation function for the residuals of this model; note that all the
autocorrelations are extremely small.

Before proceeding, we estimate an ARIMA(6, 0, 4) model as a means ol
exploring the possibility that adding more AR and MA terms to the model might
improve its fit. The results of that estimation are as follows:

FIGURE 19.5 .
Autocorrelation function of ARIMA(4, 0, 2) residuals.
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ARIMA(6, 0, 4):

(1 —.7495B + .1039B? — .2171B% + 3833B* — .07028° + 0775B°%) y,
= 15.637 + (1 — .1463B + .0501B82 — .0360B* + .1571B%)¢, (19.4)

R?= 430  x2(10, 24) = 7.58
There is clearly little benefit to increasing the order of the model. The R? is only
very slightly higher, and the chi-square statistic has increased: and accounting
for degrees of freedom it is much more significant than was the case with the
ARIMA(4, 0, 2) model. We will therefore use the ARIMA(4, 0, 2) model to
forecast inventory investment.

We first generate a 12-quarter ex post forecast from 1985-2 to 1988-1. The
forecasted and actual series are shown in Fig. 19.6. Although the forecast follows
the overall trend in inventory investment, it does not capture the cyclical fluctu-
ations that occurred during this period. Might a shorter forecast perform better?
Figure 19.7 shows a four-quarter ex post forecast from 1987-2 to 1988-1. While
the forecasted series moves in the same directions as the actual series, the fore-
cast does not capture the extent of the fluctuations. Finally, Fig. 19.8 shows an ex
ante forecast that extends from 1988-1 to 1990-1. We leave it to you to deter-
mine the accuracy of this forecast.

FIGURE 19.6
Twelve-quarter forecast of inventory investment, forecast versus actual,
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FIGURE 19.7

Four-quarter forecast of inventory investment, forecast versus actual.

The inability of our ARIMA model to predict sharp downturns and upturns in
inventory investment limits its value for forecasting. But before it is discarded as
a forecasting tool, it must be compared with alternative forecasting tools that are
available. Many single- and multi-equation regression models have been con-
structed to forecast inventory investment, some with a performance not much
better than that of our simple ARIMA model. Because inventory investment is
dependent on several other macroeconomic variables, which are themselves
dependent on inventory investment, it can probably best be explained and fore-
casted using a complete simultaneous-equation macroeconometric model. Such
a model, however, is time-consuming and costly to build, so that a time-serics
model might provide an economical forecasting alternative.!

! There have been several studies made of time-series models as a forecasting alternative to large
scale econometric models of the macroeconomy. The more interesting and illuminating studics
include C. R. Nelson, “The Prediction Performance of the FRB-MIT-PENN Model of the U.S. Econ-
omy,” American Economic Review, vol. 62, December 1972, and T. H. Naylor, T. G. Seaks, and D. W,
Wichern, “Box-Jenkins Methods: An Alternative to Econometric Models,” International Statistical
Review, vol. 40, no. 2, 1972. In both these studies the authors found that time-series models can often
provide better forecasts of macroeconomic variables than some of the better-known large economet
ric models. It is hard to say whether this should be taken as a compliment to time-series analysis or a
comment on the state of the art of macroeconometric modeling! A more detailed discussion (includ
ing examples) of the use of time-series models for macroeconomic forecasting is given in C. R.
Nelson, Applied Time Series Analysis (San Francisco: Holden-Day, 1973), and C. W. J. Granger and I,
Newbold, Forecasting Economic Time Series, 2nd ed. (New York: Academic Press, 1986).
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FIGURE 19.8

Ex ante forecast of inventory investment.

19.3 FORECASTING SEASONAL TELEPHONE DATA

An article by Thompson and Tiao provides another interesting case study of
time-series analysis.? In the study forecasting models were constructed for the
inward and outward station movements of the Wisconsin Telephone Company
using monthly data from January 1951 to October 1966. The inward station
movement in a given month is the sum of residence and business telephone
installations, while the outward station movement consists of removals and
disconnects of telephones. It is important to the telephone company to obtain
reasonably accurate forecasts of station movements, since these forecasts are
used as fundamental inputs to both short- and long-term company planning.
The difference between inward and outward station movements represents the
net increase (or decrease) of telephones in service, so that an expected positive
difference would lead to a sequence of capital expenditures. Underestimating the
difference might create a shortage in the supply of telephones and associated
facilities, while overestimating it would result in a premature expansion of facili-

ties and thus added cost to the company.
“Analysis of Telephone Data: A Case Study of Forecasting

2H. E. Thompson and G. C. Tiao,
Seasonal Time Series,” Bell Journal of Economics and Management Science, vol. 2, no, 2, Autumn 1971,
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FIGURE 19.9 ,
Mc?nlgh\y inward station movements, January 1951 to October 1966. (Bell Journal of Economics
and Management Sciences, vol. 2, no. 2, Autumn 1971.)
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The data used by Thompson and Tiao for inward and outwarq stlalion Move-
ments are shown in Figs. 19.9 and 19.10. The data show a very distinct sca§(>|1f1l
pattern, with a peak and a trough reached each year. Note that the level (.)I ‘v.‘u !1,
series tends to increase over time and that the variance of the data renlds to increase
as the level increases. In order to reduce this dependence of the variance on the
level, the authors applied a logarithmic transformation to bqth series. Thus, the

analysis that follows is given in terms of transformc?d loganth;mc data. (Ln‘gn—l‘
rithmic transformations are often used in time-series analysis as a means o

removing growth over time of the variance of the data.) -
Time-series models can easily be constructed to account for seasonality; in

fact, we treated seasonality earlier when we constructed a timel-series‘ model for
hog production. It is reasonable to expect a seasonal pattern in station move-

E 19.10
E:Snt#rﬁy outward station movements, January 1951 to QOctober 1966 (y,). (Bell Journal of Eco
nomics and Management Sciences, vol. 2, no. 2, Autumn 1971.)
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ments, i.e., similarities in observations of the same month in different years,
Thus, we would expect observations 12 periods apart to be highly correlated (as
in our hog production example). We can express this seasonal relationship with
the simple autoregressive model

(1 —¢*B?)y = ¢ (19.5)

where ¢, is a random shock. While this equation explains observations between
years, observations in successive months may also be dependent. This depen-
dence might be represented by a second autoregressive model:

(1 — ¢Ble =g (19.6)

where ¢, is a random shock. Equation (19.5) can be substituted into (19.6) to
eliminate ¢,:

(1 — ¢*B3)(1 — ¢pB)y, = & (19.7)

or

Y= Yoy — d*yiin + ddFy 3 = g (19.8)

Equation (19.8) is a simple autoregressive model. It serves to describe, however,
both seasonal and nonseasonal dependence between observations.?

In this case we present Thompson and Tiao’s model of the logarithmic outward
series. (The reader interested in the rest of their results may refer to the original
paper.) We represent the logarithm of monthly outward station movements by
the variable y,. The sample autocorrelation function of Y is shown in Fig. 19.11,
Note that this autocorrelation function peaks at k = 12, 24, and 36, which is not
surprising in view of the seasonal pattern in the data. We thus calculate 12-
period differences in the series and call this new series w,:

Wi={1— B¥)y, (19.9)

The sample autocorrelation function for w, is shown in Fig. 19.12. Note that the
seasonal dependence between years has been removed and the magnitude of the

* This equation can be generalized to yvield a class of models for seasonal series:
$1(B) dp(B) (1 = B2)(1 = B)(y, — ) = 6,(B)e,

where ¢;1(B'?} is a polynomial in B'? of order p;, and ¢,(B) is a polynomial of order p. The
parameters ¢}, . . . , ¢, can be called seasonal autoregressive parameters. In the preliminary
model-building stage, particular attention is given to peaks in the sample autocorrelation functions
which occur at multiples of 12 lags. Generally, differencing 12 periods apart (one or more times) is
needed when p, is persistently large for k = 12, 24, 36, . . . .

1.0

w

0 L

FIGURE 19.11 _
Sample autocorrelation function of y,. (Bell Journal of Economics and Management Sciences,
vol. 2, no. 2, Autumn 1971.)

autocorrelations has been dampened considerably. Also, note that this autocor-
relation function has peaks at every third lag, thus suggesting the autoregressive
model*

(1 = &:BYw, = & (19.10)

Thompson and Tiao fitted a third-order autoregressive model to thc. series w,
and then calculated the autocorrelation function for the residuals of this mm.lvl.
They found peaks at k = 9, 12, and 13, suggesting the addition of three moving
average parameters. Thus, their final ARIMA model for y, was of the form

(1= ¢:B8°)(1 = $12B")y, = (1 = 6,8 = 61282 = 6,,B7)e; (19.11)

FIGURE 19.12 , o
Sample autocorrelation function for w,. (Bell Journal of Economics and Management Sciences,

vol. 2, no. 2, Autumn 1971.)
IE’J,-
5

o
1

4 Cycles every third period could also be generated by a second-order autoregressive model (w1‘|||
the proper parameter values). The authors may have tested a secon_d-order model anfi foumll ‘|"l|‘
(19.10) to be preferable. In general, however, if a distinct peak occurs in [hIe autocorre?atmp functior
at every nth lag, we suggest including an nth-order autoregressive term in the specification of the

ARIMA model.
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Forecasts of log outward series for the 36 months, November 1966 to October 1969, made in

?;tob)er 1966. (Be!l Journal of Economics and Management Sciences, vol. 2, no. 2, Autumn
71.

The five parameters ¢s, ¢, 0, 015, and 6,53 were estimated, and the resulting
model was used to forecast the logarithmic outward series for the 36 months
from November 1966 to October 1969. The forecast, together with the 95 per-
cent confidence interval, is shown in Fig. 19.13,

Note that the model does a rather good job of forecasting outward station
movements, even over a period of 36 months. In fact, it seems to perform
considerably better than our models of inventory investment did. The reason for
this is that the telephone data used in Thompson and Tiao’s study were particu-
larly amenable to time-series analysis. Time-series analysis works best when a
persistent pattern (seasonal or otherwise) exists in the data, and such a pattern is
present in the telephone data.

19.4 COMBINING REGRESSION ANALYSIS WITH A
TIME-SERIES MODEL: TRANSFER FUNCTION MODELS

At the end of Chapter 17 we estimated a time-series model for a short-term
interest rate. Although we used the model to produce a forecast in Chapter 18,
we suggested that a better forecast could have been obtained by using a single-
equation structural regression model (as in Chapter 8). In fact, time-series analy-
sis and regression analysis can be combined to produce a better forecast than
would be possible through the use of either of these techniques alone.
Suppose that we would like to forecast the variable y, using a regression
model. Presumably such a model would include those independent variables
which can explain movements in y, but which are not themselves collinear.
Suppose that our regression model contains two independent variables, x, and

X, as follows:

Vo= dap o a Xyt oaxxy toe (19.12)

This equation has an additive error term that accounts for unexplained variance
in y;; that is, it accounts for that part of the variance of y, that is not explained by
x, and x;. The equation can be estimated, and an R? will result which (unless by
some chance y, is perfectly correlated with the independent variables) will be less
than 1. The equation can then be used to forecast y,. As we saw in Chapter 8, one
source of forecast error would come from the additive noise term whose future
values cannot be predicted.

One effective application of time-series analysis is to construct an ARIMA
model for the residual series #, of this regression. We would then substitute the
ARIMA model for the implicit error term in the original regression equation.
When using the equation to forecast y,, we would also be able to make a forecast
of the error term &, using the ARIMA model. The ARIMA model provides some
information as to what future values of ¢, are likely to be; i.e., it helps “explain”
the unexplained variance in the regression equation. The combined regression-—
time-series model is

y, = ag + ayxy, + axxp; + ¢71(B)6(B)n: (19.13)

where 7, is a normally distributed error term which may have a different vari-
ance from &,. This model is likely to provide better forecasts than the regression
equation (19.12) alone or a time-series model alone since it includes a structural
(economic) explanation of that part of the variance of y, that can be explained
structurally, and a time-series “‘explanation” of that part of the variance of y, that
cannot be explained structurally.

Equation (19.13) is an example of what is sometimes referred to as a transfer
function model or, alternatively, a multivariate autoregressive—moving average model
(MARMA model). A transfer function model relates a dependent variable to
lagged values of itself, current and lagged values of one or more independent
variables, and an error term which is partially “‘explained” by a time-series
model. Thus the general form for a univariate (only one independent variable)
transfer function model could be written as

y, = v~ 1(B)w(B)x + ¢ (B)8(B)n, (19.14)

The technique of transfer function modeling involves examination of partial and
total autocorrelation functions for the independent variable x, as well as the
dependent variable y, in an effort to specify the lag polynomials »(B), w(B)
$(B), and 8(B).*> One problem with the technique, however, is that the specifi-

s The techniques are discussed in detail in G. E. P. Box and G. M. Jenkins, Time Series Analysis
(San Francisco: Holden-Day, 1970), chaps. 10 and 11, and C. W. J. Granger and P. Newbold, op. cit




cation of the structural part of the model, i.e., the polynomials v (B) and w(B), is
done mechanically, rather than by appeal to economic theory and logic. Struc-
tural models that are consistent with intuition and economic theory are usually
more reliable (and defensible) than models in which the structure is arrived at
mechanically. For this reason we suggest that models of the form of Eq. (19.14)
be used, but that the structural part of the model be arrived at through the
mixture of economic theory and econometric method discussed in Part One,
while the time-series part of the model, that is, ¢(B) and 6(B), be arrived at
through an analysis of the residuals of the structural model.

Let us now turn back to the simple model of Eq. (19.13). First, note thal
specifying a time-series model for the error term is just a generalization of the
technique described in Chapter 8 for forecasting with regression models that
have serially correlated errors. [If the time-series model is AR(1), it is exactly
equivalent to forecasting with first-order serially correlated errors.] Second, note
that the parameters a,, 4,, and a, of the structural regression equation and the
parameters ¢y, . . . , ¢, and 6;, . . . , 8, of the time-series model should be
estimated simultaneously. (Failure to estimate all the parameters simultaneously
can lead to a loss of efficiency.) Unfortunately, the simultaneous estimation of all
the parameters is sometimes computationally difficult and in such cases is not
done.

This combined use of regression analysis with a time-series model of the error
term is an approach to forecasting that in some cases can provide the best of both
worlds. To demonstrate the technique and its use, we turn to two examples.

19.5 A COMBINED REGRESSION-TIME-SERIES MODEL
TO FORECAST SHORT-TERM SAVINGS DEPOSIT FLOWS

Our first example that combines time-series analysis with regression analysis is
based on a study by Ludwig® to forecast the monthly flow of deposits into
Massachusetts mutual savings banks. A regression model is first constructed (to
explain deposit flows), and then a time-series model is developed to “explain”
the residual series (i.e., the error term) in the regression equation.’

We begin with a regression equation that provides a structural explanation of
mutual savings deposit flows. Ludwig used the ratio of deposit flows S to per-
sonal wealth W as the dependent variable, and he chose monthly Massachusetts
personal income as a proxy variable for wealth. His best regression equation had
three explanatory variables: the effective percentage return (including divi-
dends) on mutual savings deposits 7., the interest rate on 3-month Treasury
bills r,,, and the ratio of the previous month’s stock of mutual savings deposits

6 R. S. Ludwig, ““Forecasting Short-Term Savings Deposit Flows: An Application of Time Series
Models and a Regional Analysis,” unpublished Master's thesis, Sloan School of Management,
M.LT., June 1974.

7 At the time this study was done, simultaneous estimation of the regression and time-series
parameters was computationally difficult and so was not performed.

A, to the wealth variable, His equation, estimated using monthly data for the
state of Massachusetts over the perfod February 1968 to June 1973, is

S A "
—:.MkUWm—.MMﬁ.m%# (19.15)
(1.89) (2.98) (—5.27) (—2.23)

R?= 41 SER = .016 F=14.42 DW = 1.55

As one would expect, there is a positive relationship between savings deposit
flows and the effective percentage return on deposits. The interest rate on 3-
month Teasury bills, used as a market rate of interest, represents the return on
competing risk-free investment alternatives for savings, and thus should have a
negative impact on savings deposit flows. Finally, the negative relationship be-
tween deposit flows and the stock of deposits represents a stock adjustment
effect; savings deposits should be proportional to that part of personal wecalth
that has not already been placed in a savings bank; i.e.,

S, = A — Ay = a(W, — Aiy) (19.16)
so that
S Ay
— =g —a— 19.17
W, a—a m ( )

A historical simulation of Eq. (19.15) is shown in Fig. 19.14, and an ex posi
forecast over the period July 1973 to October 1973 is shown in Fig. 19.15. The
historical simulation has an rms percent error of 75.1, and the ex post forecast hat
an rms percent error of 157. Observe that the simulation tracks the general
movement of the series but leaves much of the variance unexplained. The re-

FIGURE 19.14
Historical simulation of Eq. (19.15) for deposit flows.
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FIGURE 19.15
Ex post forecast of Eq. (18.15) far deposit flows.

gression model does well in forecasting deposit flows in July 1973 but fails to
capture the sharp drop in deposits in August of that year.

Let us now see how to improve the forecast by constructing a time-series
model for the residual series of the regression equation. The sample autocorrela-
tion function for the residual series is shown in Fig. 19.16. Observe that high-
order correlations damp toward 0, so that the residual series can be considered
stationary. The autocorrelation function does, however, contain peaks at
monthly lags which are multiples of 12, indicating annual seasonality. Figure
19.17 shows the sample autocorrelation function for a 12-month difference of
the original residual series, i.e., for the series (1 — B'?)u,. This autocorrelation
function has a damped sinusoidal shape which is indicative of a purely autore-
gressive process of order 2 or greater.

FIGURE 19.16

Autocorrelation function of residuals u; from Eg. (19.15).
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FIGURE 19.17
Autocorrelation function of 12-month difference of residuals (1 - B'?) u;.

=1

Ludwig estimated a variety of autoregressive models for this residual series
and found the best model to be of the form

(1 — ¢12B)(1 — 1B — B2 — 3B — PuB* — bsB® — ¢sBOYu, = m
(19.18)

which in its expanded and estimated form is

(1 — 7368 — .025B — .055B> — .009B* + .310B° — .1288° — .782B"2
4 53281 + .081B% + .125B'> — .213B'¢ — .103B'7 — .060B'*)u, = ),
(19.19)

R?=.78 x? = 145

A historical simulation of the time-series model alone is shown in Fig. 19.18.
Observe that the residual series is reproduced closely.

Now the time-series model for the residual series can be combined with the
regression model of Eq. (19.15). A historical simulation of the combined regres-
sion—time-series model is shown in Fig. 19.19. Note that savings deposits ar¢
tracked much more closely than before. Indeed, the rms percent error has been
reduced by a factor of more than 3, to 29.3.

Finally, an ex post forecast of savings flows is made using the combined regres-
sion—time-series model, again for the 4-month period July 1973 to October
1973. This forecast, shown in Fig. 19.20, is closer to the actual data than when
the regression model alone was used. (The rms percent error has been reduced
from 157 to 118.) Although the forecast does not capture the extent of the
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Historical simulation of time-series model for residuals.

downturn in savings deposit flows in August 1973, it does capture general
movements in the variable.

19.6 A COMBINED REGRESSION-TIME-SERIE
= SM
TO FORECAST INTEREST RATES e

As .:;11 second example of the combined use of regression analysis with time-series
models, we construct a model to forecast, on a monthly basis, the interest rate on

FIGURE 19.19
Historical simulation of combined regression—time-seri
savings deposit flows. T PR R e
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FIGURE 19.20

Ex post forecast of savings deposit flows using combined
regression—time-series model.

3.month Treasury bills. We will begin with a simple regression model that
explains the interest rate as a function of industrial production, inflation, and the
rate of growth of the money supply, all lagged. We will then examine the
residuals of that model and fit an ARIMA model to them. Finally, we will
reestimate all the parameters of the combined regression—time-series model
simultaneously (a step that we did not take in the previous example).®

We use the following notation: R is the Treasury bill rate (in percent per
annum), IP is the Index of Industrial Production, GM is the monthly percentage
rate of growth of the (narrowly defined) money supply, and INF is the monthly
percentage rate of growth of the Producer Price Index. We estimated our regres-
sion model using monthly data from January 1960 to March 1988 and obtained
(¢ statistics in parentheses):

R = —.8010 — 21.924GM_, + 07491P_, — 24.608(AIP_,/IP_)

(—1.86) (—.93) (14.99) (-2.11)
+ 31.968INF_; + 39,730INF_, + 45.475INF_; + 39.828INF_4 (19.20)
(1.86) (2.32) (2.65) (2.29)

R?> = 528 s = 2.036 F = 5336 DW = .125

Figure 19.21 shows the actual and fitted series, together with the regression
residuals. Note that the residuals appear to have a high degree of positive auto-
correlation, which is consistent with the very low Durbin-Watson statistic. Also

8 In the first and second editigns of this book we wrote that “Unfortunately, the simultaneous
estimation of all the parameters can sometimes entail considerable computational expense, and
therefore is often not done in practice.” The cost of computing has fallen dramatically since the
publication of our second edition in 1981, and better software has also become available. The
estimations in this example were done quite easily using MicroTSP and can also be done easily using
the micro version of SHAZAM, as well as other microcomputer and mainframe packages.
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FIGURE 19.21

Three-month Treasury bill rate, actual, fitted, and residuals.

note that the model fits the data reasonably well during the 1960s, less well
during the 1970s, and rather poorly during the 1980s. This is not surprising,
given that interest rates became extremely volatile beginning in the late 1970s
(in part because of a change in Federal Reserve operating policy). In fact, most
large econometric models failed miserably to predict interest rate changes during
this period. Our regression model does no better in predicting rates. Figure 19.22
shows a 3-month ex post forecast for April, May, and June of 1988; the forecast is
clearly way off the mark.

Let us now examine the residuals from this regression. Figure 19.23 shows
the sample autocorrelation function for the residuals, which declines steadily
toward zero, indicative of a stationary series. Figure 19.24 shows the sample
autocorrelation function for the residuals after they have been first-differenced;
all the autocorrelations are close to zero. We will work with the undifferenced
residuals.

After some experimenting, we fit the following ARIMA(12, 0, 2) model to the
series of residuals, which we denote by u;:

(1 — 1.1089B + .3157B% — .1159B> + .1886B* — .4076B°

+ .3693B¢ — .1075B7 — .0635B% — .1786B° + .2202B'° — .0850B"!

+ .0038B2)u, = —.3528 + (1 — .0007B + .0025B%)n, (19.21)
R?=.900  x2(14, 36) = 25.27

torecust
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FIGURE 19.22

Regression model: 3-month forecast of Treasury bill rate.

FIGURE 19.23 _ ‘
Regression residuals: sample autocorrelation function.
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FIGURE 19.24

First differences of regression residuals: sample autocorrelation function.

With 36 — 14 = 22 degrees of freedom, the chi-square statistic is insignificant at

the 90 percent level, so that we can accept the hypothesis that the residuals of
this ARIMA model are white noise.

We now have an ARIMA specification for the residuals which seems to fit
well. However, rather than use this ARIMA model together with the regression
model as they stand, we combine the two and reestimate all the parameters
simultaneously. In other words, we estimate the parameters of the following
model:

R = ag+ aiGM;-; + . . . + a;INFy + ¢~1(B)0(B)n, (19.22)

Where ¢(B) =]l (;‘S]B = ¢ZBZ S e q‘th[Z' and G(B) =l H]B T 9232.
The results of this estimation are as follows:

R = —17.735 + 13.974GM,-; + .17791IP,_, — 8.0316(AIP,_,/IP,_,)

(—.83) (3.21) (3.96) (—2.59)
+ 13.9742INF,_; + 6.7157INF,_; + 6.2660INF,_; — 3.3522INF,_4
(2.38) (1.38) (1.28) (-.87)

+{(1 + .2140B — .2755B%)/(1 — 1.1772B + .1138B2 + .1876R3
—.0430B* — .1804B° + .2846B% — .0247B7 — .2844B®
—.0207B° + .1960B'° — ,0393B!! — .0081B!2)}y, (19.23)
R? = 9738 5 = .4863 F=5455 DW = 2.001
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FIGURE 19.25 _ ‘ _
Three-month Treasury bill rate, actual, fitted, and residuals (combined regression—
time-series model).

FIGURE 19.26 )
Combined regression—time-series model: 3-month ex post forecast.
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Note that the R is now much higher, and the DW is very close to 2. The sample
autocorrelations for the residuals of this equation (not shown here) are all very
close to zero, so that the residuals appear to be white noise. Figure 19.25 shows
the fitted and actual interest rate series, as well as the residuals. Unlike the
simple regression model that we started with, the fit of this equation is excellent
throughout the sample period, and the residuals exhibit no autocorrelation.’
Finally, Fig. 19.26 shows an ex post forecast for the last three months of the
sample period. Note that the forecasted values of the interest rate are now quite
close to the actual values. This combined regression—time-series model seems to
be a much better forecasting tool than the simple regression model, and it also

forecasts better than the pure ARIMA model that we developed and used in our
earlier interest rate examples.

TABLE 1
STANDARDIZED NORMAL DISTRIBUTION )

EALRER z .00 01 02 .03 04 05 .06 07 08 09

19.1 The data for nonfarm inventory investment are reproduced below in Table 19.1. ?
: .4801 4761 4721 4681 4641
(a) Try to develop an ARIMA model that improves on the forecasting performance of (1) 3282 iggg iggg ﬁgg :i:g 4404 4364 4325 4686 Azt
the one presented in Section 19.2. ‘ ! : X < i ) 3936 3897 859

: 4129 4000 4052 4013 3974 . ;
(b) Develop your own combined regression—time-series model of inventory invest- g ggg: g;gg 3745 3707 3669  .3632 3594 3557  .3520 3483
ment. Can you improve on the forecasting performance of the pure ARIMA model? 4 :3 446 :3 409 3372 3336 3300 3264 3008 3192 3156 101
2843 2810 2776
5 .3085 .3050 .3015 .2981 .2946 2912 2877 : ’

TAB . ' 2451
REAIl: Iiié)?ﬂllAHM INVENTORY INVESTMENT B jgma 2700 . PEI6 26As CESH oA o g5M8 B 2B S

7 .2420 2389 .2358 2327 .2296 .2266 .2236 .2206 2217 Wy ,.
Obs Obs 8 2119 2000 2061 2033 2005  .1977  .1949 1922 1894 186/
' : 9 1841 1814 1788 1782 1736  .i711  .1685 1660  .1635 1611
1950 1000 1470 1340 4540 | 1970 1.30 850  16.50 3.30 10 1587 1662 1539 1515 1492 1469 1446 1423 1401 1379
1951 26.40 41.20 28.40 1210 | 1971 26.00 16.10 16.80 5.50 11 1357 1335 1314 1292 4271 .1251 1230  .1210  .1190 11 /t':
1952 1310  -870  10.00  13.20 | 1972 880  21.70 2860  18.10 12 4151 1131 1112 1093 1075 .1056  .1038 1020  .1003 0985
1953 870  11.20 380 —11.30 | 1973  37.00  30.10 2200 4870 13 0968 0951 0934 0918 0901 0885 0863 0853 .8232 (l :i*e ‘.:
i A o ol R B RN R O 3 {4 os08 0793 0778 0764 (0749 0735 0721 0708 . oo
1956 1890 1620 1370 1210 | 1976 2640 3470 2500  16.90 LE B s - 0. 0ROD 618 oREN TR R L s
1957 5.50 510 630  -9.40 | 1977 2990  28.00 4590  20.00 16 0548 063 beee. 0alb .oiog ‘0401 0392 0384 0375 0367
1958 -1690 ~-1510 120 990 | 1978 3420 3830  31.00 4110 R B e A M < -
1959 1460  27.50 390 1720 | 1979 1940  25.80 400  -7.50 18 0359 0351 0344 0366 0329 ‘0956 0250 0244 0239 0233
1960  25.50 630 910 1550 | 1980 910 930 -1900  —B.40 19 0287 0281 0274 0268 0262 . : i el
1961 —8.00 1.10 16.10 14.50 1981 22.80 10.60 30.60 11.90 2.0 .0228 0222 .0217 0212 .0207 .0202 .0192 .0150 ‘0145 (JM.‘t
1962 19.50 13.80 15.40 4.90 1982 —19.90 -9.50 —-12.70 -50.40 2.1 .0179 0174 .0170 .0166 .0162 .0158 ‘01?9 .01 4 ‘0113 i “\}
1963 13.90 15.40 17.80 10.00 1983  -33.20 —-2.40 14.80 20.50 2.2 .0139 .0136 .0132 .0129 0125 0122 0 1 Iooag .0087 <
1964 18.60 16.80 15.90 18.90 1984 68.30 61.50 62.60 38.70 2.3 0107 .0104 .0102 .0099 .0096 .0094 .009 .0058 .0065 ‘(mm

1965 31.00 21.50 22.70 16.60 1985 15.80 12.40 3.20 16.70 2.4 .0082 .0080 .0078 0075 .0073 .0071 .0069 ; ; ‘
1966 3360 3440 3450 4560 | 1986 3520  23.90 10 2.30 25 0062 0060 0059 0057 0055 0054 0052 0051  .0049 0048
1967  31.40 1380 3230 3150 | 1987 4390 2270 1210  51.50 26 .0047 0045 0044 0043 0041 0040 0039 0038 0037 0036
wed  wE0 ImB0 - anEn 1840 | j9BR  BOAN 27 0035 0034 0033 .0032 .0031 0030 .0029  .0028 0027 007G
B8 ®I0 0 0 He R 28 0026 0025 0024 0023 0023 0022 0021 0020 0020 0010
e : 2.9 .0019 .0018 ¥ .0018 .0017 .0016 0016 0015 .0015 .0014 0014
Source: Citibase, Series GVUS82. 2.0 0013 0013 0013 0012 0012 0011 0011 0010 0011 0010
he table plots th ulative probability Z = z. ‘ ) ‘
? The residuals do, however, exhibit heteroscedasticity. One could correct for this when estimat- ;Oirfe_. ?’r?)c?u?:edeff;r: Edwardpd‘ Kane, Fconomic Statistics and Econometrics: An Introduetion to Quantitative
ing the model, but we have not chosen to do so.
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