
The model could, ofcourse, be uscd to perlbrm <.rthcr forccasting expcrimcnts.
For example, the effects of a change in the propensity to consumc could bc
measured by changing the coefflcient, multiplying disposable income net of,
transfer payments in the consumption equation, and then simulating the model.
Readers might want to use this model to perform their own simulation experi_
ments.

EXERCISES

lr.l Show that iI.4,),'1 and 12L! are both tansient solutions to a model, i.e., both satisfy
an equation such as (13.5), then the sum.ArIi + ,4rI, must also be a solution.
13.2 Consider the following simple multiplier-accelerator macroeconomic model:

C1 = a1* a2Y1_1

Note that investment is now
changes in total GNP.

supply: Ql: b1 + b2P,-y

I t= b1' l  b2(C'  -  Cpl l  \ :  q+ L+ Gt

a function of changes in consumption, rather than of

4z1O

bz) o

(a) Determine the characteristic equation for this model, and find the associated
characteristic roots.

(r) Find the relationships between values of c, and ,2 that determine what kind of
solution the model will have, Draw a diagram that corresponds to that ofFig. 13.1.

(c) What is the impact multiplier cofiesponding to a change in cr? What is the ,or4l
long-run multiplier corresponding to a change in Gr?
lr.t The following equations describe a simple ,,cobweb,' model of a competitive
market:

D€mand: Ql = a1 + a2p,

When the market is in equilibrium, qf = ef . Now suppose thar the market is temporarily
out of equilibrium, i.e., rhat el + ef temporafily.

(a) Show that the price will converge stably to an equilibrium vah)e if b2la2 < I.
(r) Show that the path to equilibrium will be oscillatory if ,, > 0 and will not be

oscillatory if ,2 < 0.

p^Rr I I f  r \J--r f - t

TIME-SERIES MODELS

In the first two parts of this book we saw how econometric models-both sittglc-

ffi;;;;;il;; 
-oJ"rt 

u"a multi-equation models-can be constructctt

and used to explain and forecast the i"ttltt 
-ou"rn"tt* 

of one or-more variablcs'

In Part Three we are again interested in constructing models and using thcm li)r

i#ffi;,il;;**T1.,':1H.;:f :1""-T,lifl '}ff .#ff #iff ilJ:
earlier. we no longer Predlct IuIl

set of other variables i" u tut'ttuf ituln"work; instead we base our predictiott

,ot.tn o.t the past behavior of the vadable'
- oi 

"" "l<""ior.. 
consider the time series / (l) drawn in the figure on page 4 l4'

*tri.t 
-igil.Jp.asent 

the historical performance of some economic or busirtcss

variable_a stock market index, u,' i,'..,.,'.u.., a production index, or pcrlrnl)s

,i.'lu v ,a", uorume_ for some commodity. y(r) might have moved up or dowrl

partly in response to changes ln pdces' perional income' and. interest rates (or so

we might believe). However' much of its movement may have been duc to

faclors tJrat we cannot explain, such aS the weather, changes in taste, or Sinlp|y

seasonal 1or aseasonal) cycles in spending'

It may be difficult ot irnpo"tol" to expiain *re movement of y-(t) through lltt'

"r;'#: 
;,^;;ui 

-oa.i. 
This might happen if, for. example. data alc rr('l

available for those explanatory ""ti"'Uftt 
*^ftitft are believed to affect y(t)' or il

i"i" *.t" 
"""ii"ule, 

the estimition of a regression model for /11) might result irl

standard errors that are so tu'g" *-to *Jkt Inot' of the €stimated coefficictrts

il:i;'##;J,h. iiuttauta-t..ot of forecast unacceptablv large'

Evenifwecouldest imateastat ist ical lysigni f icantregressionequat ion|() |
,(;"il;;i ;;;oi t" 

""rt'i 
iot forecasting purposes' ro obtain a forecasr

for v(t) from a regressron tqttuiiott' ttpluttutoliuuiiubles that are not laguc(l
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must themselves be forecasted, and this may be more difficult than forecastinJl
, (/) itself. The standard error of forecast for, (/) with future values of the explan
atory variables known may be small. However, when the future values of th('
explanatory variables are unknown, their forecast errors may be so Iarge as trr
make the total forecast error for r(t) too large to be acceptable.

Thus there are situations where we seek an alternative means of obtaining a
forecast of y(t). Can we observe the time series in the figure and draw somc
conclusions about its pasr behavior that would allow us to infer something about
ts ptobable future behavior? For example, is there some kind of overall upward
trend in 1l(t) which, because it has dominated the past behavior of the series,
might dominate its future behavior? Or does the seies exhibit cyclical behavior
which we could extrapolate into the future? If systematic behavior of this type is
present, we can attempt to construct a model for the time series which does not
offer a structural explanation for its behavior in terms of other variables but does
replicate its past behavior in a way that might help us forecast its future behav-
ior. A time-series model accounts for patterns in the past movements of a variable
and uses that information to predict its future movements. In a sense a time-
series model isjust a sophisticated method of extrapolation. Yet, as we will see in
this part of the book, it sometimes provides an effective tool for forecasting.

In this book we have divided forecasting models into three general classes,
each of which involves a different level of comprehension about the real world
processes that one is trying to model. In Pa One we discussed single-equation
regression models, where the variable of interest is explained by a single func-
tion (linear or nonlinear) of explanatory variables. In Pa Two we examined
multi-equation models, where two or more endogenous variables are related to
each other (and perhaps to one or more exogenous variables) t]rrough a set of
equations, which can be solved simultaneously to produce forecasts over time.
In this third part of the book we focus on time-series models, in which we have
no structural knowledge about the real world causal relationships that affect the
variable we are trying to forecast.

Often a choice must be made as to which type of model should be developed
to best make a forecast. This choice may be difficult and will depend not only on
how much we know about the workings of the real world process but also on

how t t t t t t  l t  l  i l t lc  , l l l (  l  r l l r l l {y wl  (  d l l  t l l l i ) I ( l  lo s l )c l l ( l  r  } t l  l l tc  t t t t t t l t ' l l t tg I l t  r t  t  r r"  l ' l t { ,
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In chapter l5 wc prcsc't a bricl i.rrod.ctior) to thc 
'alurc 

o[ srochastic tirrc
sedes. We discuss how stochastic processcs arc gcnerated, whaI thcy look Iikt,,
and most important, how they are described. We also discuss somc of thc char
acteristics of stochastic processes and in panicular develop the concept of sl,l
tionadty. Then we describe autocoffelation functions and show how thiy carr l,r,
used_as a means ofdescribing time series and as a tool for testing thelr propcrtrc\.
Finally, we discuss methods of testing for shtionarity, and we-discuss the corr
cept of co-integrated time series. The concepts and tooli developed in this chaprcr
are essential to the discussion of time-series models in the chapters that follow

Ciapter 16 develops linear models for time series, including movrng averag(.
models, autoregressive models, and mixed autoregressiveimoving averag(
mod€ls for stationary time series. We show how some nonstationary ume serrc,
can be differenced one or more times so as to produce a stationary series. This
enables us to develop a general integrated autoregressive_moving averagc
model (ARIMA model). Finally, we show how aurocoirelation functlons can bc
used to specif,, and characterize a time-series model.

Chapters i7 and l8 deal with use of time-series models to make forecasts.
Chapter l7 explains how parameters of a time-series model are estimated and
how a specification of the model can be verified. Chapter l8 discusses how the
model can then be used to produce a forecast. We also show how time series are
ad-aptive.in nature, i.e., how they produce forecasts in a way that adapts to new
information. The last part of Chapter tg deals with forecait errors and shows
how confdence intervals can be determined for forecasts.

The last chapter ofpart Three develops some examples ofapplications of time_
series models to economic and business forecasting. Here we lead the reader step
by step through the construction of several time-siries models and their applica_
tion to forecasting problems.

CHAPTER I =

SMOOTHING AND
EXIRAPOLATION OF

TIME SERIES

As explained in the introduction to Part Three' a Ume-series model is a sol)lrisli"

.i.i'"".itt.a 
"r.xtrapolating 

data There are times' however' when lcss sol)lris'

,1.",.J-aU"At 
"f 

extapolaiion can be used for forecasting purposes For cxlrll-

ffi';;;j::;ffi i;t uluie. 
""-u* 

of time series might be needed quicklv' s(t

that time and resources do not permit the use of formal modeling-techniqllcs' ol

il;il;";;1"".:b_"ly., ji:ilfi ';;ff ,l*il.*:::ili,ff ,ililillll
fiend, thus obviating the need

i.* Ut ait."tfi s"ome simple (and not so simple) methods of extrapolaliotl

it?i. a*t.upotrtion techniques represenl deterministic nodels of time :erit's'
"';;.;; '";; 

also siruations when ir is desirable to smoorh a time scrit's attt

ttr"t.Uyift-i"". some of rhe mnre volatile shoft-term fluctuations Smoothirlf

ligfri i. a""" t.f"re making a forecast or simply to make the dme series casr('

;?;"iy;; and interpret smoothing might also be done to remove scasorr'l

fluctuations, i.e', io deseasonauzi @7 s'io"otty adiustl a time series wc wil

iir."* t-."itti"g and seasonal adjustment in the second section ofthis chat)1('t

r4.T SIMPLE EXTRAPOLATION MODELS

We begin with simple models that can be used to forecast a- time series ('r) llt

illo".?iit'i,"" ilii"tioi. irtttt models are deterministic il that no referer)cc i

madetot}resourcesolnarureoftheunder ly ingrandomnessintheScr ic|
is.*.ffy,n. t""dels involve extrapolation techniquesthat have been stand'rt

tools of the trade in econol c and business forecasting for years Although tlrt'

"1""fiv 
a" not provide as much forecasting accuracy as the modern stochasl l
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time-series models, they often provide a simple, inexpensive, and still quiteacceptable mears of forecasdns.
Most of the series that we e;ounter are not continuous in time; instead theyconsisr of discrete observations mad"_ u, ,.grlu. i"i;_;r"r;;#. ; rypicat dmesenes might be given by Fig. t4. t,. We a"ri,rt. tn" ,"i*rlf tt 

"-t'r.ri., 
Uy y,, ,otnat y,. represents the firsr observation, ,2 the second, una y. ,nJj^, oUr"_urionIor_tre series.r our objecrive is [o modet rhe series ;;li l;;;r, modet rolorecast Jrr beyond the last observation y.. We Aerrote' ttr.*foil-casr one pe.ioOahead byll*,, two periods ahead by !i*'r, 

""a 
ip.n"u, tilj l, y,.,.If the number of observations is not roo large, the simf 

"ri 
uri?ort .o_pt.r"representation ofy, would be eiven by 

" 
p.ry;r;;l ;;;r;O"r*" 

" 
, less rhanthe number of observations; i- *" ..rra d.r.riu" ;;;;;.;ft;"r."s tunctionof time /(r), where

f  ( t l  = ao+ a\ t  + a2t2 + .  .+ ant" (14.1)

?X!.X.iJ,; j";,),y**?,"jr""":Tjl(if the a,s are chosen conecuy) wil passthrough every poinr it tttaii."a ra,--- 
J arc L.'uscl correcuy) will pass

y, ar everv time r fr.- , _^ '' ;r^1r 1. 
,1"s, we can be sure th"tf frt,*ifi"iu"i

';:::i:Y,Y::"Tnl::.,'cu"*e.tr-o*.u..:ffi ;;;#N:#i';::t::'::::t!:,fl":::x\*-ovr(rt*i'i""t'"il;d;i;;i::il'Jff ffi :?::iiT"iexample, will the forecaii

f (T + l )  = ao+ a\(T+ t)  + a2(T + l )2 +.  .  + ar_L(T + t ) r - , :  j r* t

De close to the actuaj furure value /r_r? Unfonunatelv. we hauanswerins fhis nrrFcri^- -,r+r.^,,*-^-r:.^. - , . --'e no way of
iffi*Xf H::ff :,:;, XlTi: ig1f ii,,i"r pi.. iJ"","l;;l;i: ffi :'",;,;,f,
li*::,.,j[1,,LiLl]1;l[t,lii;;F;:iffi ,,i1,]1,;,,ill,lil*']"i;E
il;IliT'"P."11J::."^1,1,:11".:",,i,-"r";;;;;J#;1ffi ::,';,fff [':
forecasting.fiJ:::;,::" arthoush iro'".."r"i* p",iJ;;';;fi;;:Ti:TTTil"j,'l H:

I In Part Tlx.ee of the book we use small letters, for example, /r, to denote time series.

14.l . l  Slmplc Extrapolat lon Models
one basic chara(tfrlstk ol'.y, ls lls long'rtln Srowth pattern. ll 'wc bcllcvc thal thls
upward trcnd cxisls attd will cotrtlnuc (and there may not be any rcason wlly wc
should), we can collstr'r.lct a silnplc model that describes that trcnd antl catt bc
used to forecast y,.

The simplest extrapolation model is tbe linear trend modtl If we belicvc that a
series y, will increase in constant absolute amounts each time period, we calr
predict yr by fitting the trend line

h= Cr+ C2I (  r4.2)

where I is time and y, is the value of / at time t. t is usually chosen to equal 0 itr
the base period (fust observation) and to increase by 1 during each successivc
period. For example, if we determine by regression that

h:  27 .5 I  3.2t (14.t)

we can predict that the value of/ in period t + I will be 1.2 units higher than thc
previous value.

It may be more realistic to assume that the series yr grows with constant
percentage increases, rather than constant absolute increases. This assumption
implies that y1 follows an exponmtial growth curve:

, ,  -  f1+\ -  
^-r l) t t -J\Lt-^. (14.4)

Ilere -4 and / would be chosen to maximize the correlation between/(r) and /,.
A forecast one period ahead would then be given by

Yr*, = /2rlT+ | | (  14.5 )

and / periods ahead by

ir+t : Ae{r+tl (14.6)

This is illustrated in Fig. 14.2. The parameters I and r can be estimated by taking
the logarithms of both sides of Eq. (14.4) and fltting the log-linear regression
eouation2

log yt: c1 t c2t

where c1 : log A and c2 : r.

(r4.7 |

'? Note that in the exponential growth model the logarithm oft' is assum€d to grow at a constanl
Iate.ll h*t = Ae", t}j.erl tnlyt = e', and IoE yt+r - log y = r.



FIGURE 14.2
Exponential growth curve.

A third extrapolation method is based on the autoregressive trend mod.el

\=q+c2yFt

log y, = c1 I c2log y7_1

In- using such an extrapolation procedure, one has the option of fixing c1 : Q, lp
which case c2 represents the rate of change of the series y. tf, on the other hand,
12 is set equal to l, with cr not equal to 0, the extrapolated series will increase by
the same absolute amount each time pedod. The iutoregressive uend model is
illusftated in Fig. f4.3 for three different values of c2 (in all cases c, = 11.

A variation of this model is Ihe logaithmic autoregressive trend model

(  14.8)

( r4.e)

lfcr is fixed to l)c 0, ll lcll lhc valltlr ol'fr ls the compotlnded ratc ol'growlh ol'thc

s.ri"r y. gurll l lrtt ',tr ntttl (\l lnpotln(l cxtrapolatlon bascd on thc auioregresslvc

modef arc comtrxrttly rlsc(l Rs n sllnplc mcans of forecasting.'

Note that thc lirui rnodcls tlcscrlbcd above basically involve regrcssing yr (or

los v,) asainsl a lunctiotr ol ti lnc (linear or exponential) and/or itsclf laBScd'

;tiJrilil ;;a.ts can bc dcveloped by making the funcrion slightly rrxrrc

a"r"ofi*,"a. As examples, let us examine two other simPle extrapolati()tl

-oa"ft, 
,tt. quadratic tiend model artd the logistic growth curve

- 
ift. orrua."t. rend model is a simple extinsion of the linear trend modcl an(l

involvei adding a term in t2

yt=q+c2t+Ctt2 ( r4. lo)

(14. l l )

If c2 and ca are both positive, y1 will always be increasing' but even more rapidly

"r',i-a 
goat o.t. if c2 is negative and ca positive' y, will at fust decrease but latcr

iara.""ral ff bo,h ,, and ca are negative, yl will always decrease' Th€ various cascs

ur" iU"tt.","a i" f ig. I4.4 (cr >b in eich case;' Note that even if the data show

tn"t yr t 
", 

genera$ been increasing over fime' esdmation of Eq' ( 14' I0) miSht

vield a posiiive ualue for cr but a negative value for 12 ' This car occur (as shown

ir" ilg. i+.al u..ruse re iata utuully only span.a ponionof the uend c'trvc'
- 

eio-"#n",.nore complicated r4odel, ai least in terms of its estimation' is thc

logistic cufle, given bY

b>QI
T+au

FIGURE 14.4
Ouadratic trend model.

c2<0,cr> 0



FIGURE'14.5
S-shaped curves.

This equation is nonlinear in the parameters (*, 4, and r) and therefore must be
estimated using a nonlinear estimation procedure. While this can add computa_
tional expense, there are some cases in which it is worth it. As shown i; Fis.
f4.5, Eq. (I4.I l) represents an S-shaped cuwe which might be used ro ,.pr"r.i
the sales of a product that will someday saturate the market (so that the total
stock of the good in circulation will approach some plateau, or, equivalently,
additional sales will approach zero).3

Other S-shaped curyes can be used in addition to the logistic curve. One very
simple function with an S shape that can be used to model salcs sarurauon
pattems is given by

(t4.r2l

Note that if we take the logarithms of both sides, we have an eouation linear in
the parameters a and p that can be estimated using ordinary liast squares:

k)togyt:  kt  -  - (14.13)

This curve is also shown in Fig. I4.5. Note that it begins at the origin and rises
more steeply than the logistic curve.

' The followl'rrg approxirnalro, to the logistic cuwe caII be estimated using ordinary least squares:

!= n- nr,- ,

The parameter c2 should always be less than I and would ti?ically be in the viciniry of.O5 ro .5. This
eqnation isa discrete-time approximation to the di{ferentiil equation dy/dt = c,y1q - y), and the
roturlor to this differential equation has the folm ofEq. (l4.fli.

Examplc 14.1 lor.o[tlng Dlp.rlmant gtolr g!lc! tn thls cxamplc

simplc cxtrapolatlotl ttlo(lcls 0re uscd to forecast monthly retall salcs ol'(lc'

ou.i-ent stores.'l 'hc lltnc scrlcs ls listcd below, where monthly obscrvatlons

ire seasonally atlittstcd and covcr the period from January 1968 to March

1g74,lhe units of mcasurcmcnt are millions of dollars, and the sourcc ol thc

data is the U.S. Department of Commerce.

'1968 '1969 1970 1971 1972 1373 197 4

January
February
L4arch
April
May
June
JUry
August
September
October
November
December

2,582 2,839
2,621 2,876
2,690 2,881
2,635 2,967
2,676 2,944
2,'714 2,939
2,834 3,014
2,789 3,031
2,768 2,995
2,785 2,998
2,886 3,012
2,842 3,031

3,034 3,287

3,045 3,336
3,066 3,427
3,077 3,413
3,046 3,503
3,094 3,472
3,053 3,511
3,071 3,618
3,186 3,554
3,167 3,641
3,230 3,607

3,578 4,121 4,456
3,650 4,233 4,436
3,664 4,439 4,699
3,643 4,167
3,838 4,326
3,792 4,329
3,899 4,423
3,845 4,351
4,007 4,406
4,092 4,357
3,937 4,485
4,008 4,445

one might wish to forecast honthly sales for April, May, and the months

following in 1974. For this example, we extrapolate sales for Apri'l 1974 Thc

results oi four relressions associated with four of the trend models describcd

above are listed below. standard regression statistics are shown with / statis-

tics in parentheses:

Linear ftend model:

SALESI = 2,46).1 + 26.74t
(84.e) (3e.5)

R2 : .955 F(r/B\ : 1,557 s : 126.9 DW : '38

Logarithmic linear trend model (exponential growth):

log SALEST = 7.849 + 'O077t
(1,000) l.52.61

R2 = .974 F(l/73\ : 2,75O s : .027 DW = .56

Autoregressive trend model:

SAIEST : 4.918 +
( 0e)

R2 : .98J Fll/721 : J,829

(  r4.  l4)

(r4. l  5

1.007 sAlEs,-r (14. i 6
(65.05)

s = 78.07 DW = 2.82



Logarithmic autorcgrcssivc trcn(l nro(lcl:

log SALEST = .0188 +
(.r6)

R2: .985 F(r /721 :  4,524

SALES :  2,463.t  + 26.70t

I

t9 l1

l
1913

l

1914

.9987 log SALES/_ r
i.70.)7)

( t4. t7)

r  = .021 DW = 2.80

In the first regression, a time variable running from o to 74 was constructe(jand then used as the independent variable. Whln r'=-z:"i, pl..itr,,ir. ,tgf,,_hand side of the equation

(14. l8)

the resulting forecast is 4,465.g. The use of the second log_linear equauonyields a forecasr of 4,j5t.j. The third regression, brr";;;;;;;;;.egressrve

FIGURE 14,6
Simulated and actoal sales.
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' 
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tosui I h n rc' au taresre ssive

Drttccss,  v i t ' l r ls  , l l l  rx l r , l l )o l r l lc( l  vnl l lc  l i ) I  Al)r i l  1974 ol  4 '7 l ( r ' l l :

4.7\6 ' l t  -  4 '92 1 1007 x 4 '699

If the constant tcnrl wclc tlrop|ctl lrom Eq (14 17)' (hc cxtrJlx)latc(i vnltl('

would be 4,7)8.24. Thc lirurth rcgression result is ba:ed on thc logarill ltrri(

autoregressive model. The extrapolated value in this case is 4'715 6 ll orrc

were tJ calculate a compounded growth rate for the series and to extrapolnl('

on ttre basls that the growth rate iemains unchanged' the extrapolatcd valtr('

would be 4,719.3.
Thesimulatedandactualsedesareplot tedfoleachofthefoulextraptt la.

tiot-t *oaatt in Fig. I4.6a and & One can see from the figure that thc tw()

urriot"gr.rdu. 
-o'dal, 

u.. closer to the actual sedes at the end of the pcriorl'

of;;;; other tend models could be used to extrapolate the data li)f

example, the reader miSht try to calculate a forecast based on a quadrali('

fiend model (see Exercise 14.-,'

Simple extrapolation methods such as those used in the preceding exanrltlt'

*a ft.i".",iy tna basis for making casual lorg-range forecasts ofvariables rang-

ing from GNi to population to poilution indices Although they can be usclitl as

" 
i'"v oi q"i.nv i.rmulating initial forecasts, they usually provide little fbrcca st -

;;;;;.y. T'he analyst who estimates an extrapolation model is at least arl-

viiea to calilrtate a stindard error of forecast and forecast confidence intcrval

following the methods presented in Chapter 8 More, important' one shotrl(l

realize that there are alternative models that can be used to obtain forecasts willl

smaller standard errors.

14.1.2 Moving Average Models

Another class of deterministic models that are often used for forecasting consi\l\

of moving average models. As a simple example, assume that we are forecastill! 'r

monthly time series. We might use the model

f (tl : i lY, t 'r !, z t ' 't ! '-nl

Then, a forecast one period ahead would be given by

( l4. le)

( r4.20)
!r*r: lz(y, t !r,,, -l . * Yr-rr )

The moving average model is useful if we believe that a likely value for ottr

series next m6ntn is a simple average of its values over the past t2 months ll

may be unrealistic, however, to assume that a Sood forecast ofy' would be givctr



by a simple average of its past values. It ls often more rcasonable to have morc
Iljlo. u,ut":r.9ry, play a greater,role ,h"" .;di., ;;t,r;r. ;il; 

" 
case recenrvalues should be weighred more heavily.in rhe ;ou;;;;#gel'a simpte mod"ttrat ?ccomplishes this is the exponefttially weighted-movini avirage (EWMAI

Here a is a number between O and I that indicates how heavily we weight recentvalues relative ro otder ones. wirh a = l, fo. .";;i";;;;?orL* u".o_.,

!r+r = alr + d.(l - a)yr_\ I a(I - al2yr_z -f

:o l t t - - t ' , , -

!r+t = lr

(14.2r)

(14.22)

(r4.23)

litj:^"_1ry:t" -y 
values of/ tha,t occufted before y1. As a becomes sma er, weprace greater emphasis on more r

sents a true average, since 
stant values ofl Note that Eq (14'2r) repre-

sr ._az\ t -4)r=------ : -_=l
r=o r  -  ( r  -  a)

so that the. weights indeed sum ro uruty.
The reader might suspect thar if the s'eries has an-upward (downward) fend,the EWMA model will undemredict joverpredia) fuiure val'ue-s of y,. This willindeed be rhe case, since the moo'.e_t averages ;;;;r;i;to produce arorecast. Ify, has been srowins steadly t" t#;;;iliiirilo,.".urryr*, *,,,rnus be sma q ttan rhe mosr recenr valy" y., j"a ir ri.l..i.iloii*,r". ,o g.o,vsteadily in rhe future, l.* , will be an ,"a.riri.,u.li.fli ,rr.'i-.li.r" yr* , . rt u,

:T :uqh, to remove any rend ftom the data U"t".. 
".i"g rt JnwMA tech_rnque. once an untrended initi"t forecast has be;;il, il: ili.oa ,.r_ 

""., 
u"added to obtain a ffnal forecast.

#,I:.[t';:,frffi;,fJ;T:111' more.than one period ahead using ani,,ir,,a.."*.igr,t.i;;;;#;ili jH:::.31$.k[:trj#:":fdi;!:,^i:]::,
. , !r*t. This logical ixrension ottrr. swrvre 

-#i 
;;;Hd,

)/rtt = qir+t_r. I all - aljTt;2 -t '+  a( l  -  ar t -2tr+l
+ d(l - qrt-tyr I a(I - altyT_1 + a(L - alt+ty7_2
'r q.(l - alt+2yr_1, * . 

G4.241

As an cxalnltlc, (\rttsltlcr a ltrrcc.li( lwo pcrlods ahcad (/ - 2), whlch wottld bc

glven by

l t t t= <rfutr  *  d( l  -  a)yr  + o( l  -  a) 'z) ' ' r - r  +

= alayT t s(l - alYr-t +

* c(l - c)'zy1-1 * '

, ,  , \ . r= o" L ( t  -  q l , l r  ,  + a(r  -  4)  z \ t  -  qt  f r . ,
r-o r-0

=dZ\t-dl ' ! r - t

. l+a( l -a)yr

Note that the two-period forecast is the same as the one-period forecast Tltc

weightings on!r, lr-r,. , in the EWMA model are the same as they wcrc

befJre, but we are now extrapolating the average ahead an extra period ln fact,

it is not difficult to show (see Exercise I4.4) that the /-period forecast fa11 is alstr

given by Eq. (14.25).
- 

fhe moving average forecasts represented by Eqs. (14'20), (14'21), and

(14.241 arc all adaptive forecasts. By "adaptive" we mean that they-automatically

idiust themselves to the most recently available data. Consider, for example, a

simple four-period moving average. Suppose y26 in Fig' I4.7 represents d:re most

recent data point. Then our forecast will be given by

(r4.251

lL4.26lln= L(Yzo + Ye+ Yft+ Yvl

and a forecast two periods ahead will be given by

gzz= I(gr * yzot yr" + yra) = i?yzo * t/rs * */rs + tyu (14.27)

FIGURE 14.7
Adaptive lorecasts,

t ,u I  I
i  &*; , ,

iJ
i , ,  " , ,



These lorecasts arc rcprcscntcd by crosscs in [,1g. 14.7. Il .y21 wcrc known, wc
would forecast y22 one period ahead as

izr :  t r (yt  + y2o + y)e + yB)

This forecast is represented by a circled cross in Fig. I4.7. Now suppose that thc
actual valte of/2r turns out to be larger than the predicted value, r.e.,

lzr ) lzr

The actual valte of y22 is, of course, not known, but \rye would expect that r2would provide a better forecast thanf22 because of the exfia information used in
the adaptive process. The EWMA forecast would exhibit the same adaptive
behavior.

, 
Although the moving average models described above are certainly useful,

they do not provide us with information about forccast conf.dence. The reason is
that no regression is used to estimate the model, so thai we cannot calculate
standard errors, nor can we describe or explain the stochastic (or unexplained)
component of the time series. It is this stochastic component that creates the
enol in our forecast. Unless the stochastic component i; explained through the
modeling process, little can be said about the kinds of forecist errors thathight
be expected.

I4.2 SMOOTHING AND SEASONAL ADJUSTMENT
Smoothing techniques provide a means of removing or at least reducing volatile
short-term fluctuations in a time series. This can be-useful since it is olten easier
to discern fiends and cyclical pattems and otherwise visualy analyze a
smoothed series. 

-seasonal 
adjustment is a special form of smoothing; rr removes

seasonal (cyclical) oscillations from the series rather than irregular short_term
fluctuations.

14.2.1 Smoothing Techniques
In the last section we discussed moving average models (simple and exponen-
tially weighted) in the context of forecasting, but these models also provide a
basis for smoothing time series. For example, one of the simplest ways to smooth
a senes is to take an n-period moving average. DenotJng the originai series by y,
and the smoothed series by i, we have

-  t .
h:;Ur+l t t ' l ' r  h-n+r )

Of course, the larger the z the smoother the y, will be. One problem with this
moving average is that it uses only /asl (and current) values ofy, to obtain each

( 14.28)

valuc ol t,. 'f ' ltfs lrrrrlrlcttt lr catlly lenlcdled by ttsing.a ce,ntercd,novlkfl dv(r(41(

i,"t.-tiitr",,r livc'pet.kxl ccllteicd movlng avcragc ls glvel) l)y

Exponential smoothing simply involves the use of the exponc'ntially wciShlc(l

J;:"; ;;;;;i: 1':*l':: :tT! if,Jffi i:,$il'*:#;i:1,:;l:l'-lllL;
weights to recent values oI /r ') r I

.1,-  l \ .Y, 'z l  Y, , t l  Y ' ' r  Y'  t*  Y'-z\

9t= al t I  ( l  -  d)( i t - r  + rr-r)

h=t( fu-  i - l l+ l1 -  : i l rFl

l t4.2el

(r  4.30)
j t  = slt  * a(I -  ct)y1-1 ' l  a( l  -  a\2Ytz I

where Ie summation in Eq (14'30) 9xt9nds. all t{It *1 
l1:l 'ntough 

thc

lenil ;fu;;;t. rn fact, i,can be calculated much more easilv if we wrirc

( I  -  a) . i , - ,  = a( l  -  o ly - t  I  a( l  -  a\2y1-2 * ( r4.1I  )

Now subtracting Eq. (Ia'31) ftom Eq' (14 30) we obtain a recursive formula for

the comPutation of f':

h= dl t t  ( l  -  a) l ' , t (r4.12)

i t :  a! ' r  ( I  -  a) f r - r ( r4.3r)

Notethatthecloser@iStol themoreheavi lythecurrentvalueof/ l isweightcd
;;#;;;:il,ri ,-uut'u"t''"' of a implv a more heavilv smoothed serics'
"' tt;;;il;Jilmight 

wish to heavily smooth a series but not 
-give 

very much

weighr to past data points ln t;;"-J"tt the use of Fq' (14'32) with a small

value ofc (say.l) would not ue atceprubtt' Instead one..can aPply dorblt'

exponential smoothing. a, tr,te nam. i-plies, the singly smoothed sedes i! fronr

E9. (14321is just smoothed again:

In this way a larger value of a can be used' and the resulting series i' will still bc

heavilv smoothed.*ffi 
til;;;onential smoolhing formula of E+ (-1412)ranralso be modi-

fied by incorporati ng 
^'"'ug' "o'g'i 

in dre.long-run trend lsecular increasc ttr

decline) of the series. rnis is tne.oa'si s for H,lt's two-parameter exponenti'l smoolh'

i,s ;;,h"a' Now the smoothed;:ru.t; : :,fl'l'#:;':'ff i,f ."H: :i'i l:
and depends 9". ry" :-9:TlT"ifi;;;^ilfie'heavier the smoothins):
between 0 and I (again, the sm

\t4.J4l

(14.)5)

",,"tioi$1!."1?f',$'J.::T#1|*$ff:Ti,X1,'J#':ff-qJ'ffif:iedrvlovins 

Averat'\"



Here rr is a slnoothcd scrics rcprcscnlitUl l l lc lrcn(|, i,c,, ,tvcr.tgc ralc ot i l lcrcasc,in rhe smoothed series i,. This trend is atldcd i,,r *ir.u .i,nipuli,f tn" ,nluu,1.,",i
::l.t.t 

i: Eq. (1a.la), thereby preventing l from Oeuiating corii,;e.abiy {!onrrecent values of the odginal series y,. This is pani."tu.ty ure"t t iiit.,e smoothingmethod is going to be used as a basis for forecasting. Ari f_p..ioJfo...u* .un 0.,generated from Eqs. (14.34) and (14.35) using

Thus the 1-period forecast takes the most recent smoothed value ,/r and adds inan expected increase /r1 based on the (smoothed) to"g--., i.".rA. (If the datahave been detrended, the trend should be ,dd.d ;;;;;;;;;."*.)
Smoothing merhods tend to be ad hoc, particularly *;;; ;;y are used togenerate forecasts. One problem is that wi ha,re no'way of a"t.._i.r,.rg tta"co[ect" values of the smoothing parameters, so trat theii cholce becomes

11ewha1 
arbitrary. If our objective is simply to smooth ;" ,;;;., to make iteasier to interprel or analyze, then this is not really u p.obt"_, stnce we canchoose the smoothing parameters to give us the extent orsmooitring oestea. wemust be careful, however. when using an equurio" [k; E;. 

^ai;.1i1 
,0, ror..u*-ing and recognize that the resulting forecast will be somewirat arbitrary.5

- 3.:ltl". r4.? qonlhry
nousing starts in the United states 

-provides 
u gooa a*u*pl. for the applica-tion of smoothing and seasonat uajrrt_.r.,t-,_,r'.tiid;;;;;;", flucruaresconsiderably and also exhibits strong seasonal variadon. tn this exampte wesmooth the series usinq rhe

methods_ 
_.! movrng average and exponential smoothing

we,begin by using three- and seven-period centered moving averages tosmo^oth the series; i.e., we generate the smoothed series y, from the originalsenes /r using

lrt : !7 1 lr7

t '  = 
iZ!r+t t tzt , - t ) - i

( r4.36)

{14.}7)

wnere n : 3 or 7. Note that since the moving average is centered, there is noneed to detrend the series before smoothinf ir. T#;;;gt;;i;;ries, togetherwith rhe rwo smoothed series, is shown in r-ig. r+.8. d"r;;1;" the use of

t For a detailed treatment of some other smoothrng lechniques, see C. W. J. cranger and p.Newbold, Forecasling E.onomic Tlhe Series*n",tu^sn . iii;,L,;s";;'r;;:;;;;;;i::,";:iii#,,i",il,.*ll'":r. and,s Makridakii and s i
" Ine of lBnal dala series is in lhou(ands of uni ls per month and is zor seasonallv adiusted.

-_ i r t l l  r l  | . l l l i

- -  - - -  |  pal l l rd movlnl  l ra la l !

. . . . , . ,  7 pcr l t  movlnl . lGt l la

FIGURE 14.8
Smoothing using rfovlng averages

the seven-period moving average heavily smoothes the series and even elinri-

nates some of the seasonal variation* 
w" ;;* use the exponendal smoothing method' i e- we apply Eq

(r+.i). i inc. tt. original series is growing over time and the exponentially

weighted moving ar,"rug. tr,to' t""ttred' the smoothed series will underesti-

ma; the originil series unless we first detrend the series To detrend rhc

"rini""i 
t.tl.i *. assumed a linear trend 1we could of course test alternativc

time rrends). and ran the regression

y: -156'81 + I .208l l  R'z:  360
( -1.36) (5 37)

( r4.38)

The residuals u, from this regression, that is' 
'r 

= yr + 156 81 - l2o8)t'

provide the deffended series.
"^ w. 

""t, ^ppfv 
axponential smoothing to this detrendedseries We use two

"rt.."",-i* 
,"r"., of the smoothing pu.i-.t"r, a = .8 (light smoothing) arl(l

; f .;l;;il;oott lngl' rinalllwe take the smoothed- detrended series ti'

u.ra iad tn" irend back in; i.e., we compute i t : th - 156'81 + 
.1 

2o8)t'
*--in" 

origi.tuf t".ies and the smoothed series are shown in Fig l4'9' obseruc

t o- itr. frgr.. that the seasonal variations' while reduced' are pushed for-

;;;; ;y h;"y ..ponential smoothing This occur-s because the exponentiallv

weighted moving average Is nor centered Thus if a series shows strong sea-

;;;:i;;;;;:"xponintial smoothins should be used onlv after the serics

has been seasonallY adjusted.
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139.1

-  or  Sini l  \ f r i l js

-  -  -  -  |Shr ly smoothed (0 = 8)

""" 'heavi ly smoorhed {a = 2)

127

FIGURE 14.9

114.)9)

Smoothing using exponential ly weighted moving averages

L:LxSxCxI

14.2.2 Seasonal Adjustment
seasonal adjusrmenr rechniques are basically ad hoc methods of compurrng.rea_sonal indices (that arrempr ro measure the siasonal ,".i;;;; ihe sertesl andthen usins those indicei to deseyo::ti:: (i .., ,;;;.;;il';;rrti tr,. s..i., uyremoving those seasonal variarions. National economic d;;;| united states
l:.j:1"]ll *.,-:"uy adjusred by the census n;;;;;; i;;;;^;; u, varianrs).
il1.y:r developed by the Bureau of rhe census .f ;" ;.;.;"p".rment ofcommerce. The Census II method,is a rather detailed u.ra.o_plr.u,.a pro."_
ll]:J:"0 

is amazinsly ad hoc), andwetr,"."ro." *irl noi;,;;i. describe irhere., Insread, we discuss the basic idea that lies befrf"J 
"jir.lr"ll"f ^djustmentmethods (includins census rr) and present 

" ";t;;;;;;thut i., *u.rycases ls quite adequate.

.^ *:::lt "{i*qent 
rechniques are based on the idea thar a time senes/, canDe represented as the product of four components:

""rllff":::#;11,:il?"J.is 
described in detail i nL satzma,. couputerized Eco omic Anatysis lNew

whclc / ,  "  vtr l t t t ' r t l  l l t t '  l t t t tg ' l t ' r t l t  scct t lar  t tet t t l  i t t  scr l t 's

S = val t tc t t l  sc, tst t l t , t l  col l l l )oncl l l

c = (lotl l . l- lcrl l l) cycllcal trrntpotrcttt

1 = i r lcgt l lar  col l ) lx) l lc l l l

The objective is to eliminatc thc seasonal componcnt S

fo do this we first try to isolate the combined long-term trcnd alr(l cycli( nl

components t x C. This cannot be done exactly; instead an 4'l 
'o' 

sl l)ooll l l l l l l

proa"drra is used to remove (as much as possible) the combincd scasotral attt l

irregular components s x 1 from the original series y, For examplc' stlppos(' l l l ' l l

y, consists of monthly data Then a l2'month average it is compulc(t:

i , :  t \ \y,*a + .  .+! ,* ! , t+ '  '+ l rs) (14.40)

Presumablyy, is relatively free of seasonal and irregular fluctuations and is llttr\

an estimate of L \ C.
we now divide the original data by this estimate of I x C to obtairr nt)

estimate of the combined seasonal and irregular components s x 1:

l ,xsxcxl
LXC

sxr=4,=2, 1t4.4 |  |

The next step is to eliminate the irregular component l as complctcly 'ls
possible in ordei to obtain the seasonal index. To do tl,is' we average the valuts trl
'S 

x I coftesponding to the same month.In other words, suppose that yr (and hcttr'c

z1 ) corresponds to January, y2 to February, etc', and there are 48 months of dald

We thus compute

Zt=i(zr lzo*zzslzvl

Zz:  i (zt  + 761 226 * zxl t1A l ) \

Zo: I(zn * 7ra * zY I zaal

Thelat ionalehereisthatwhentheseasonal- i r regularpercentagesaaleavcr-
aged for each month (each quarter if the data are quarterly)' the irregular flucttt-

ations will be largely smoothed out.
The 12 averages 4, . , Zl2 will then be estimates of the seasonal indiccs

They should s,rti-t clote to 12 but will not do so exactly if there is any long-rlttl

.,"nd i,'.1,. du'u. Final seasonal indices are computed by multiplying the indiccs

inEq. (14.42)by a factor that brings their sumto t2 (For example' if 4' "',

ZD udd to f L7, multiply each one by l2.o/lI 7 so that the revised indices will

add to tz.1 We denote these flnal seasonal indices by 7, ' ' 7n

The deseasonalization of the original series /r is now straightforward; jtrsl

divide each value in the series by its corresponding seasonal index' there[)]

removing the seasonal component while leaving the other three components



Thus thc scasonally adjusred scri
. . . . l iz = !tz/2r2, lit: r,,,/2,t,";,i:i:_tyr,::l;inetr.r'ronr 

v'i = vt/rt,.v'i = .v)/rt,

- liilr:_lls. ron,n,,
adJustrnent technique to our seri-es fo^r monthly housi.rg .ili; lree nra_pt"14.2). To do this we fusr compute a tz-month iverage i]of tt e J.igi.rut ,e.i",
-Li."ls 

Eq {14.40) and thendivide/., byi, rhat,r;ffi;;;;;: yy'r,. Notethat zr conrains (roughly) tt e rearotrit urra i.."guru;.o;ffi;n1s of the origr_
l"]-r:l"t 

We remove ,n. t...r::,f .g-Oonent by averaging the vatues of z,that conespond to the same ml
Eq. ra.a2l.we rhen compurc"'1T:t-1,'-li 

t"T\"\: ?'' z'' ' 212 using

-i.r,ipryG,r,"z,l':'.'.,i"i,rT'-,:l#'f::XT::;:'tr:,i',;fi ;";; j,i.Tseasonal indices are as follows:

FIGURE 14.10
Housing startst seasonal indices.
t .2609

r.1825

(e) ( t0)  ( l l ) (12)

1 t4.1

102.2

89.8

64.8
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39.8
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I

FIGURE'I4,11
Seasonal adjustments ol housing starts data.

January
February
l,,1arch
April
May
J une

.5552

.7229

.9996
1.1951
1.2562
1.2609

July 1.1900
August 1.1454
September 1.0675
October 1.0823
November .8643
December .6584

These seasonal indices have been plotted in Fig. 14 10.
To deseasonalize the original seriesy, we just divide each value in the series

by its corresponding seasonal index, thereby removing the seasonal compo-
nent. The odginal series /r together with the seasonally adiusted series yf are
shown in Fig. 14.I l. Observe that the seasonal variation has been eliminated
in the adjusted series, while the long-run trend and short-run irregular fluctu-
ations remain.

Seasonal Indices



EXERCISES
l4.l Go back to Example 14.l and use the data for monthly departmenr srorc satcs toesumate a quadratic trend model. Use_the estimated model to obtain an extrapotatcrlvalue forsales for April 1974. Try to evatuut. you. .noa.ii,i.o.ipliirin a ,n. o,r,., fn",estimared in Example r4. r. and ixolain h"* il;;;;;;;;;J"ii?o', iir,, o,rr.,, rro",the other forecasts in the examole.
14,2 which (if any) of &e simole extrapolation models presented in section I 4. I do youthink might be suitable for foiecasting the GNp? The consumer price Index? A short-rerm lnlerest.rate? Annual produclion of wheat? Explain.
.rq., )now that the exponendally weighted moving iverage (EWMA) model will g€ner_ate lorecasts that are adaptive in natwe.

lno.n"Of lll 
*" *. EWMA forecast / pedods ahead is the same as the forecasr on€ period

l\ - a)'yr-,c)

14.5 Monthly data for the Standard 6.poor 500 Common Stock price Index are shown inTabl: 11.t. The data are also plorted in Fig. 14.12.
(a) Using all bur the last three dara lolnts Iie., April, May, and June of 1988),exponentially smooth the data using a value of .9 for rhe ,_oorfrirrg-ju.urn., er a. Hmt:

ffT:Tro:j.*r " -oving 
average iialwuy,,r,o"..,r,J.,r,.;;;',;iJ#.r. Repedr for a

(r) Again using all but *l€ last three data points, smooth the data using Holt,s two_parameter exponential smoothine method. Sei c = .2 and 7 : .;. ;;;;; how and whythe resulrs differ from those in (aiabove. No_ ,r. rq. fi+.l.of ,"-io"##rhe series out r,2, and I months. How close is your forecast to the actual yalues ofthe S6p 500 index forApril to June 1988?
14,6 Monthly data for retail auto sales are shown in Table 14,2 on page 416. The dataare also ploued in Fig. l4.lt.

(4) Use a 6-month centered movi:widentz wourd you il;;;;;f,r;":f;fi1",:H:* ff i::irsa 
seasonar pattem

(r) Using the original data in Table 14.2, apply the seasonal adjustment proceduredescribed in rhe rext. plor rhe 12 fina-l seasonal'indices 
", " 

fu.roid oi'ii_. and try to
;i:Ilil,ff 

":H:f 

rhe curve Also plot tle seasonartv aa;us,J,ii.,l,'i .o-p",. i ,o

--

1982 1983 1984

TABLE 14.1
STANDARD & I'(X)ll In)0 ( lOM[/4oN IiIOOK l' l t lCL INDLX

1979.01 99.71 98 23
1979.07 10271 107 36
1980.01 110.87 115.34
1e80 07 119.83 123.50
1981.01 132.97 124.40
1981.07 129.13 129.63
1982.01 117.2A 114.50
1982.07 109.38 109.65
1983.01 144.27 146.80
1983.07 166.96 162.42
1984.01 166.39 157.25
1984.07 151.08 164.42
1985.01 17',1.61 180.88
1985.07 192.54 188.31
1986.01 208.19 219.37
1986.07 2401A 245.00
1987.01 264.51 280.93
1987.07 310.09 329.36
1988.01 250.48 258.13

100 11 102.07 99 73 101 73
108 60 104.47 103.66 107.78
104.69 102.97 107 69 114 55
126.51 1302? 135 65 133 46
133.19 134.43 131.73 132 28
118.27 119 80 12292 12379
110.84 1 16.31 116.35 109 70
122.43 132.66 138.10 139 37
151.88 157.71 164.10 166 39
167.16 167.65 165.23 164.36
157.44 157.60 156 55 15312
166.11 1e/.82 t6627 164 48
179.42 180.62 184 90 188 89
184.06 186.18 19/ 45 207 26
232.93 237.9A 238.46 245 30
238.27 237.36 245.09 248 61
292.4 | 2a932 2a9.12 301 38
318.66 280.16 245.01 240 96
265.74 262 61 25612 2/0 68

Sourcer Citibase, Series FSPCOfi,l

FIGURE 14.12
Standard & Poor 500 Comrnon Stock Price lndex'
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TABLE'I4.2
RETAIL AUTO SALES (thousands ot units)

1979.01 774.00
1979.07 876.00
1980.01 806.00
1980.07 773.00
1981.01 648.00
1981.07 707.OO
1982.01 535.00
1982.07 630.00
1983.01 596.00
'1983,07 792.00
1984.01 778.00
1984.07 890.00
1985.01 835.00
1985.07 899.00
1986.01 870.00
1986.07 954.00
1987.01 626,00
1987.07 913.00
1988.01 765.00

832.00 1,104.00 976.00
908.00 767.00 892.00
a12.OO 895.00 743.00
686.00 672.00 848.00
764.00 963.00 751.00
801.00 687.00 649.00
632.00 777.00 669.00
609.00 671.00 656.00
628.00 821.00 762.00
741.00 705.00 861.00
841.00 964.00 896.00
814.00 744.00 900.00
839.00 970.00 988.00

1,001.00 1,068.00 864,00
832.00 897.00 972.00
952.00 1,217.00 906.00
781.00 936.00 938.00
968.00 905.00 802.00
888.00 t,006.00 901.00

1,042.00 894.00
768.00 726.00
697.00 702.00
698.00 649.00
734.00 724.00
585.00 523.00
774.00 651.00
743.OO 632.00
837.00 904.00
7A2.OO 752.00

1,047.00 958.00
802.00 759.00

'1,075.00 925.00
762.00 812.00

1,072.00 1,001.00
783.00 992.00
887.00 943.00
737.00 843.00
974.00 1,010.00

Sourcer Citibase, Series RCAR6T.
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CHAPTER L )

PROPERTIES
OF STOCHASTIC

TIME SERIES

In the last chapter we discussed a number of simple extrapolation techniques. In
this chapter we begin our treatment of the construction and use of time_series
models. Such models provide a more sophisricated method of extrapolating time
series, in that they are based on the notion that the series to be forecasted has
been generated by a stochastic (or randoml process, with a structure that can be
characterized and described. In other words, a time-sedes model provides a
description of the random nature of the (stochastic) process that generated the
sample of observations under study. The description is given not in terms of a
cause-and-effect relationship (as would be the case in a regression model) but in
terms of how that randomness is embodied in the process.

This chapter begins with an introduction to the nature of stochastic time_
series models and shows how those models characterize the stochasuc srrucrure
of the underlying process that generated the particular series. The chapter then
turns to the propefties of stochastic time series, focusing on the concept of
stationarity. This material is important for the discussion of model construction in
the following chapters. We next present a statistical test (the Dickey_Fuller test)
for stationarity. Finally, we disc\ss co-integratel time series_series which are
nonstationary but can be combined to form a stationary series.

I'.I INTRODUCTION TO STOCHASTIC TIIVIB-SERIES
MODELS

The time-series models developed in this and the following chapters are all based
on an important assumption-dlat the series to be forecasted has been gener_
ated by a stochastic process. In other words, we assume that each value yr, yr,

440

. .  , .yt  i t r  l l lc  sel i ( 's  ls  t l tawtt  tat t t lot t t ly  l rot t t  a.  probabl l l ty , ( l l$tr l l ) t l l iorr '  l t l

modclillS sttch a ltltlcess, wc ill lctllIl to (lcscritrc lhc (llnLlrl(' l i\tl(s 0l lls tatt-

,lumn"ri. ' l 'his shoulcl hclp us ttt irrlct sontcthirtl; atxrttt l ltc Prrtlr;tbilitics assttt l-

ated with altcrnativc llttlrc valllcs ol thc scrics'

To be completcly gcncral, wc could assumc thal thc ot)scrvcd scrics v1' '

".itit-u*" 
iti- u sii of iointty distrifuted randofi variables llwccor ltl stttttt ' ltrtw

'.r,-r*..i.uttv specify the probability distribution function. li 'r Itr'rr scrics' ll l( 'rr w('

could actuiuy determine the probability Of onc rtr anothL'r.luttlre ortlrolll("
-- 

UJonu.ruiaty, the complete specification of the probability dislribrrtiorr lr I I r(

ti.;l;;; time series is usually impossible. Howevcr, it usually is t)os5il)l(' t()

constr.,ct a simptifled model of the time series which explains its ratrd<trnrtt'ss itt

u-*u.r.ra, trrut i, useful for forecasting purposes. For example, wc n.rigltt [rt'lit'vc

that the values of yr, , y, are normally distributed and are corrclalctl witlt

.i.irlrrt"i"l."taing to a simple first-order autoregressive process Thc n(ltl'll

distribution mightbe more complicated, but this simple model may bc a l('is()rr'

uUta upprorit ri,ion. of course, the usefulness of such a model depcnds ort ltow

;b;eiii; ."o,"t"t d:re true probability distdbution and.thus.the truc rantl'ttr

il;;i"; oiit. ,.ri"r. Nore drat it n;ed n,t (and usually will nor) marclr llrc

;;;-;;t; uehavior of the sedes since the series and the model are stochastit tl

rft"rlA ti-pfy capture the characteristics of the series' randomness

l5.l.l Random Walks

Our first (and simplest) example of a stochastic time series is the random wulk

pt*art.; i" irt" timplest random walk process' each succe^ssive charyle in y1 is
'Arawn independently from a probability distribution with O mean Thus' yr is

determined bY

\= l r r  t  Et

with E(e,) = O andE(ere,) :0fort+ s Such a process could be generatcd l)y

,"-"tt# nipt of a coin, where a head receives a value of + I and a tail rccciv('s

a value of - l.
-';;;;t" ;" *anted to make a forecast for such a random walk process'l ltc

forecast is given bY

(15. r )

( r5.2)
! r* t= E\!r*r lYr"  " ! r )

But/r+r: lrI er+ris independent oIyr- t '  '  'yI '  
Thus' the forecasl tttrt '

pedod ahead is simply

!r+t :  l r  *  E(e7a1l  = 17 (  1 5.1)

lTherandomwalkprocesshasoftenbeenusedasamodelforthemovemen!ofstocknralkfl

"rt..;.;;'f;;^;;;;lJ, 
r. r. ru-", "na"aot" wurrtt in srock Market rri.ces"' Fi'llhcial Anulvtt\

jourfial, septerr'bet'october 1965'



Similarly, the _forecast / periods ahead is also yr.
Although-the, forecast fr*1 will be the ,u-" .ro au,tar how large / is, thcvariance of the forecast error will grow as / become, lurg.i. Fo. th. one_periodforecast, the forecast error is given by

' l l r ( '  Iorc(a, i l  rw(r  lx . r i rx l \ . l l t ( . .1( l  i \

! r*z= E(yrnz)yr, .  . , ! r )  = El l r+t  + er+21
= E(Yr + er+t * er+z) = lr

€t:  l r+t  -  l r+r

: lr * ar+t - lr = Er+t

and its variance is just E(€?*r ) : oj. For the rwo_period forecast,

oz: !r+z - !r+z
: lr I er+t I ernz - lr: Er+r -r er+2

and its variance is

( r  5.4)

(r5.5)

(  r  5.6)

E[(e7a1 * er+z)2] :  E(ei+t l  + E(t i+2) + 2E(e7ap71l  (15.71

:ince 
€r1r and e?+2. are independent, the third term in Eq. (15.7) rs 0 and theerror variance is 2oj. similarly, for the 1-period forecast, tt J ei.o. uuriun.. is ld.Thus., the standard error offoreiast incr"ur", *i*, tfr" ,qulr"l"", .fj we can thusobtain confidence intervah for our forecasts, and these intervat, witiL.co-e *10..as the forecast horizon increases. This is illustrated i" fig.-i i.i. l,Iot. tt ut tt .forecasts are all equal to the last obsewado" y., Uui,fr! .o"n'dence intervalsrepresented by I standard deviation in the fo.e.irt.rro. i.r..aur"'ur rn" ,qrur"root of /.

FIGURE 15.1
Forecasting a random walk.

, | .1|( . Inf |  l l | . | l  w(.( ' . | | l  l . | ( . I t ( . | .1|( . t r t t t I i t | t . t t t . t ' i t t tc t .v. l l r  r r |  | | | |s  | ( ) | . |  is . | | l  i | | | | ' t ) |1, | | | |

at ivat t lagt ' t t l  s lot  l lnsl i (  i i t l lc-scl ic l i  t t tot lc ls.  As wt ' t 'xpl ' t i t tu l  i l l  ( l l t ' l l ) l ( ' I  t l '  l lo l i (  y

makcrs 'nqc(| l ( )kI l ( )wl | |ct t ta lg i t t t t | 'c I I ( ) r l l la l I t . rs l r t l r t .asst t t . i . t l t r Iwi | | t . t
part icuIaI I i ) IccaSt,s()c l r t l l i t |c t tcci I l tcrvalsCaIr [ )casi l l r l ) ( ) r l . l l )1.rs l I t t . | i t t , r . t ' ts ls
thcmselvcs.

A simplc cxtel ls ion ol  thc random walk proccss disct lssc( l  a lx)v( ' is  l l l ( '  r  ' r r l

dom walk with drift. This proccss accounts for a trcnd (tlpward oI (lowr lw'lr( | ) l lr

the sedes J./r and thereby allows us to cmbody that trcrld i l l  out- l i)r( '( i)sl l l l  l l l i \

process, .r/r is determined bY

yt=yLt+d+er (  I  ' , .8)

so that on the average the process will tend to move upward (for d > 0) Nolv

the one-period forecast is

| r* t :  Ejr*r l l r ,  '  ' , l r l= Yr+ a

and the /-period forecast is

i t  t  = yt  + Id

The standard error of forecast will be the same as before For one peri(xl'

€1 = !r+r - |r+t

:h*dlxrnt- l r -d-"r i (15. r  r )

( ls. t r1

(15.ro)

as before. The process, together with forecasts and forecast confidence in{crv'rls'

is illustrated in fig' ts Z. As can be seen in that figure' the forecasts ittcrt'rst

linearly with l, and the standard error of forecast increases with the squarc t rxrl

ofL
In the next chapter we examine a general class of stochastic timc-scrics

models. Later, we will see how that class of models can be used to make [orcc']rls

for a wide variety of time series First, however, it is necessary to introducc sorrr('

basic concepts aboul srochastic proce5ses and their propenies'

15.1,2 Stationary and Nonstationary Time Series

As we begin to develop models for time series, we want to know whether or rr('l

the unde;lying stochastic process that generated the series can be assume(l lo l'('

invariantwith.respecttotime.Ifthechalactedsticsofthestochasticptocesschattllt.
over time, i.e., if the process is n\nstationary, it will often be difficult to repr( 5( t I I

the time series ovei past and future intervals of time by a simple algcbr''rit

model.2 On the other hand, if the stochastic process is fixed in time' i'e ' il il i\

'zTherandomwalkwithdr i { t isoneexampleofanonstat ionaryprocessforwhichaslrrr l ' l ' '
forecastinq model can be constructed



FIGURE 15.2
Forecasting a random walk with dritt.

stationary, then one can model the process via an equation with fixed coefficients
that can be estimated from past data. This is anal,ogous to the single_equation
regression model in which one economic variable is related to other economic
variables, with coefficients that are estimated under the assumption that the
structural relationship described by the equation is invariant ovir time (i.e., is
staUonary). If the structural relationship changed over time, we could not apply
the techniques of Chapter 8 in using a regression model to forecast.

The models developed in detail in the next chapter of the book represent
stochastic processes that are assumed to be in equilibrium about a consrant mean
level. The probability of a given fluctuation in the process from that mean level is
assumed to be the same at any point in tirne . Irr other words, the stochastic
properties of the stationary process are assumed to be invariant with respect to
firne.

One would suspect thal many of the time series that one encounters in
business arrd economics are not generated by stationary processes. The GNp, for
example, has for the most pan been growing steadily, and for ttris reason alone
its stochastic properties in l98O are different ftom those in 1933. Although it can
be difficult to model nonstationary processes, we will see that nonstatronary
processes can often be transformed into stationary or approximately stationary
processes.

l5.l.l Properties of Stationary processes

JVe have said that any stochastic time series J./r. . , y1. can be thought of as
having been generated by a set ofjointly distributed random variables; i.e., the

set ol  ( lata lxr l t t ls  I / r ,  ,  '  ,  ,y1 r( 'Prcscl l ls  a l  l )ar l ic t l lar  ot l tc(nl lc ol ' lhc lo l l l (
probabi l i ry t i ls l  r l l r t  t l  k  r t t  l i t t lc t lot l  p( / r ,  . , .yr) . 'Si l r l i lar ly,a, / i ;urct t l tscrval iot t
yr+r can bc thorlSlll ol ns []clng Scllcratcd by a conditional probttbili ly dislrihklit '|

lunct ion plyr*r lyt ,  .  .  , . l r ) ,  lhat  is ,  a probabi l i ty  d istr ibul ion. lor  y l  r  I  g ivet l  t l l ( '

past obse;ad;ns / r , . . , !t '. We define a st4tio,ary proccss, thcn' as onc wllosc

ioint distribution and conditional distribution both are invatianl with ras,C(l lo
"displacement 

in time. \n other words, if the series y, is stationary. thcn

and

( r5.r2)

(15.11)

PU,, .  .  . , !*r )= PIL+^, ' ,Yf tk+n)

p(v ' l :  PlYn- l

for any t, k, and m.
Note thal if the series y1 is stationary, tl.e mean of the series, defined as

h :  E(Y,) (15.r4)

must also be stationary, so that E(y,) = E(y'*-\, for any I and m Fu hermorc'

the variance of the series,

,tj : El-(y, - ttyl'l (15.15)

must be stationary, so that E[(/, - ltr)'] : El!,*. - ltvl2l, and flnally' for any

lag k. the covariance of the series

7r : cov lY,, Y,**l : EUY, - P'vllY'*k - tt)l (15.16)

(  15.  l7)

must be stationary, so that Cov ly,, y*rl : Cov (y,a., yt*-*r1''

If a stochastic process is stationary, the probability distribution p(yr) is thc

same for all time tlnd its shape (or at least some ofits properties) can be inferrcd

by looking at a histogram of the observations i/r, . ' , /r that make up thc

oiserved ieries. Also, an estimate of the mean pn of the process can be obtaincd

ftom the sample mean of the serj.es

v:i2,,

r This outcome is calle d a realizatioft. Thus yr, . . . , rr represent one pafticular lealization oj thc

stochastrc process represented by the probability distribution p(yr, ' .' ' . y,r')'
4It is p;ssible fo; the mean, variance, and covariances of the series to be stationary but not thc

joint probability distribution. If the probability distibutions are stationary, we tej.m the series slricl

sense itationary.' tf ttre mean, variance, and covariances are stationary, we term the series r4lide'seflrf

rt4l,orary. Note that stdct-sense stationaity implies wide_sense stationaiity but that the conversc is

not tue,



and an cstinrate ol thc variancc <rj caD bc ol)taincd liotn tlrc sttnpk varianu,

(y' - ,)'z (15. l l r  )

I'.2 CHARACTERIZING TIME SERIES:
THE AUTOCORRELATION FUNCTION

While it is usually impossible to obtain a complete description of a stochastic
process (i.e., actually specify the underlying probability distributions), the auto_
correlation function is extremely useful because it provides a partial description
of the process for modeling purposes. The autocorrelation function tells us how
much correlation there is (and by implication how much interdependency therc
is) between neighboring data points in the series y,. We define the 4rlocorrelation
with lag k as

, j: +2

pr:-@-covlYr '  Y'+* l  (15.19)
V El,(y' - ltrl2lEI(!,-* - u,l ' l oy.ct,-.

For a stationary process the variance at time t in the denominator ofEq. (15.19)
is the same as the variance at time t * k; thus the denominator is iust the
variance of the stochastic process, and

fi'
( I5.20)

Note that the numerator of Eq. (15.20) is the covariance between y1 a nd yftk, ^yk,
so that

(  15.21)

and thus pe : I for any stochastic process.
Suppose that the stochastic process is simply

lr5.221

er=#

where e, is an independently distributed random variable with zero mean. Then
it is easy to see from Eq. (15.20) that the autocofielation function for this nrocess
is given by pe : l, po : 0 for ft ) 0. The process of Eq. (15.22) is called wftlre
zolie, and there is no model that can provide a forecast any better than ir+t = O

l i r t  a l l  / ,  ' l l r r rs i l  t l lc , l l l l t t ( { ) l t t ' l ' l l l t t t t  l t t t t t l iot t  is  z( ' l ( l  (or  t l t lsc l l t  zctrr)  l i r l  ' t l l

i ' t ' i i ,  i l ' " t . . i  is  I i l l lc  r r r  l r ,  v{ l l r lc  l l l  t ts l t tg ' t  t t t tx l t ' l  l .  l i ) rcc ' rs l  lh( '  s( ' I i * '

o l  corrr .sc l l t ( ,  nut(xt) f t ( , l , t l i0 l l  l l l l lc l io l l  in E(1.  (15.20) is l r t t lc ly l l tc t t r t ' t i t i t l '  i t t

that  i t  dcs(r i t )cs i l  s lo( l lnsl l (  l t r t t tess l i t t  which wc havc ot t ly  a l i l r l i l ( ' ( l  t r t l r t l l ) ( ' r  ( ) l

,,frr"ruu,i rnt. ltt placli(t ' , l l lcl l, wc trrust calculatc an stl l l t" l// ol t l lc 'rtt lotrrt l t l ' t

t ion function. callcd thc sampla dulocorrelation funclion:

It is easy to see from their definitions that both the theoretical and estinrattrl

autoconelation lunctions are symmetrical, i e ' that the cofieladon for a positiv('

a""fl..-."tft the same as th;t for a negative displacement' so that

( r5.2,)

(r  5.24 )

Then, when plotting an autocorrelation function (i e ' 
plotting pr for diflcrcrrt

"J".t 
ot t1. one neid consider only positive values of k'

tt i, often ,rs.t,l to determine wtrether a particular value of the sample auttt-

conetutio.t tu.rction pr is close enough to zero Io permit assuming that the lr"

rui"a oi *t. 
""r"aorreiation 

function-p1 is indeed equal to zero .It 
is.also useful ttr

iJrt-*rt.tft.. oll tfte values of the autocorreladon function for k > 0 are equal to

r.-. tii,f,t"V ate, we know that we are dealing with white noise ) Fortunatelv'

,l-prJ=r,"iirii.a iests exisr thar can be used ro resr the h!?othesis that p1 = 0 for

" 
olru.ufut k or to lest the hypothesis that pa = 0 lor all k > 0 .- "ro-tatt *t arttar a particul;i value of the autocorreladon function pl is equal

,o ,.ro *",rta a result obtained by Bartlett He showed that if a time series has

U.* gatt.rut.a Uy a white noise piocess' the sample autocorrelarion coefficients

ir"irl-t"t ol are apiroximately distributed according to a normal distribution wilh

;;;;; ;i,iu,id;Ja"uiu,iot' trl4 lwhere ris the number of observations itr

,it.l.tf"t f . t ift"t, if a particular series consists of' say' 100 data points' we cart

uttu.h u ,turrdu.d enoi of .I to each autocorrelation coefficient 
-Therefore' 

if a

Darticular coefficient was greater in magnitude than 2' we could be 95 percenl

iure that the true autocorrelation coefficient is not zero'

"fo test the ioint hypothesis tb:rat all the autoco(elation coefficients are zero wc

"r" 
ifr. O ,tutittl. i"ttoa"."d by Box and Pierce' We will discuss this statistic irr

r"-.-a.i"fi f" chapter 17 in the context of performing diagnostic checks ott

5seeM's.Baft lett , , ,ontheTheolet icalspecif icat ionofsamplingPlopeniesofAuloconelatc(l
ri^""i".i..,'; 'lrr-rl of ie Roydl stdtisticdl so;iery' seL 8!' vol 27 '^19-46 

Also see G E P Box an(l

i. lr. l"Ji.t, Time s;ies An;b'sis (san Francisco: Holden-Day' 1970)



cst i r l la l "cd t in lc-scr ics l t (x lc ls,  so l r t , r t '  wr.orr ly l t ( , l t ior)  i l  in
Pierce show tltat thc statistic

n -  rS rz

l ) , rsSi  l . l ,  l lox n| | ( l

( r  r .25)

is (approximately) distributed as chi square with K degrees of freedom. Thus il
the calculated value of Q is greater than, say, the critical 5 percent level, we carr
be 95 percent sure that the true autocorrelation coefficients pr, . . , pr are nor
all zero.

In practice people tend to use the cdtical l0 percent level as a cutoff for thjs
test. For example, if Q turned out to be 18.5 for a total of 1( : I 5 lags, we woul(l
observe that this is below the critical level of 22.31 and accept the hypothesis
that the time series was generated by a white noise process.

Let us now turn to an example of an estimated autocorrelation function for a
stationary economic time series. We have calculated pl for quarterly data on real
noniarm inventory investment (measured in billions of 1982 dollars). The timc
series itself (covering the period 1952 through the first two quarters of 1988) is
shown in Fig. 15.3, and lhe sample autocorrelation function is shown in Fis.
15.4. Note that the autoconelation function falls off rather quickly as the lag k
increases. This is typical ofa stationary time series, such as inventory invesrmenr.

FIGURE 15.3
Nonfarm inventory investment (in 1982 constant do ars).
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FIGURE 15.4
fulniarm inventory investfirent: sample autocorrelat on function

In fact, as we will see, the autocorrelation function can be used to test whclhct'

o. 
"oi 

u t".i.t it ttationary. ff Dr does not fall off quickly as k incre,ases' this is a tt

indication of nonstationadty. We will discuss more formal tests of nonstatiotrar-

ity ("unit root" tests) in Section I5'3'
'ti a time sedes is stadonary, there exist cenain analytical conditions whi(ll

pf-a-to""at on the values titat can be taken by the individual points ol llrc

autocorrelation function. However, the derivation of these conditions is sr rtrtr'

*frui .ornpti.ut"a and will not be presented at this loint . 
Furthermore' thc

.onJiriottt',tt.-t.lves are rather cumbersome and of limited usefulness in al)-

pii."a^ iit*-t"ti"t modeling. Therefore, we have relegated them to Appendix

i 5.1. w" ,,rrtt or,, attention now to the properties of those time series which arc

nonstationary but which can be transformed into stationary senes'

15,2.1 Homogeneous Nonstationary Processes

Probably very few of the time series one meets in practice are stationary' Forltt

;;;ly, ir";.;"., many of the nonstationary time series encountered (and this

incluies most of tfrose that arise in economics and business) have the desirablc

pr"p"iy 1it"f U they arc dilferenced one or more times' the rcsulting series wiLl b(

tr ii""oiy. such a nonstationary series is termed homogeneous The number ol

times that the original series must be differenced before a stationary sedes resull s



is  cal lcr l  lhc orr l r r , l  l t , r r r .grrrc i ty.  , l ,hrrs,  
i t  y ,  is  I i t .s l_or( l ( , r .  l to. t t ) l . l ( , 'c . rs 

'ot)st , ltionary, the series

wt: l t - ! , t=Alr

rs stationary. Ify, happened to be second_order homogeneous, the

w, = A2!t = Lrr - Ay, r

would be stationary.
As an example of a first-order homogeneous nonstationary process, considcr

the simple random walk process that we introduced earlier:

rr (15.28)

Let us examine the variance of this process:

(15.2(,)

scries

lr5.27|

l r5.2eJ

(15.30)

and hence

(r5.31)

() ,5.32)

yo= E(y?):  E[(y,-1 + e,)2]
:  E(yl- , )  + 2q1

yo=E(yl- , )+no!

Observe from this recursive relation that the variance is infinite
undefined. The same is true for the covariances, since, for example,

^yt :  E(h! ,  r ) :  Ely,  r ( -y,  r  *  e,) l  -  E(yl  )

Now let us look at the sedes that results from differencing the random walkprocess, i.e., the series

Since the e, are assumed independent over dme, w, is clearly a stationary pro-
cess. Thus, we see that the random walk process is first_order homogeneous. In
fact, w, is just a white noise process, and ii has the autocorrelation function po :
l ,butpn=0forf t>0.

15.2.2 Stationarity and the Autocorrelation Function
The. GNP or a series of sales figures for a firm are both likely to be nonsratronary.
Each has been growing (on average) over time, so that the mean of each series ls
time-dependent..It is quite likely, however, that if the cNp or company sales
figures are first-differenced one or more times, the resulting series will be sta_

FIGURE 15.5
Stationary series.

tionary. Thus, if we want to build. a time-series model to forecast the GNP' w('

can diiference the series one or two times, construct a model for this new sctit s'

make our forecasts, and then integrate (i.e , undifference) the model an(l ils

forecasts to anive back at GNP
How can we decide whether a series is stationary or determine the approl)ri'

atenumberoftimesahomogeneousnonstadonaryseriesshouldbediff.ercnct.rI
to anive at a stationary sedes? we can begin by looking at a plot of the autocor-

relation function \called a correlogram ). Figures I 5 ' 5 and 1 5 '6 show autocorrcla -

don functions for stationary and nonstationary series The autoconelation func'

don for a stationary series drops off as k, the number of lags, becomes large' bttt

this is usually not the case for a nonstationary series' If we are differencing a

nonstationary series, we can test each succeeding difference by looking at thc

autocorrelat ionfunct ion. I f , forexample, thesecondroundofdi f ferencing

FIGURE 15.6
Nonstationarv series



rcsults ir) a scrics wltosc aLrto(,orrclntion lirrrr,lkrrr drolrs oll rapidly, wc t.nrr
determine that thc original scrics is sccond-ordcr hornogcncous. lf tlrc rcsultirryi
series is stil l nonstationary, thc autocorrclation lunction will rcrnain larsc cvt.rr
lor long lags.

Example 15.1 Interest Rate Often in applied work it is not clear how
many trmes a nonstationary series should be differenced to yield a stationary
one, and one must make ajudgmentbased on expedence and intuition. As an
example, we will examine the interest rate on 3-month govemment Treasury
bills. This series, consisting of monthly data from the beginning of 1950
through June I988, is shown in Fig. |j.7, and its autocorrelation function is
shown in Fig. 15.8. The autocoffelation function does decline as the number
of lags becomes large, but only very slowly. In addition, the series exhibits an
upward trend (so that the mean is not constant over time). We would there_
fore suspect that this series has been generated by a homogeneous nonsta-
tionary process. To check, we difference the series and recalculate the samDle
autocorreladon function.

The differenced series is shown in Fig. 15.9. Note that the mean of the
series is now about constant, although the variance becomes unusually high

FIGURE 15,7
Three-month Treasury bill rate.
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FIGURE 15.10
lnterest fate-f irst difterencest sample autocorrelation function.

during the early t980s (a period when the Federal Reserve targeled the
money supply, allowing interest rates to fluctuate). The sample autocorrela_
tion function for the differenced series is shown in fig. ti.fo. It declines
rapidly, consistent with a srationary series. We also tr]ed differencing the
series a second Ume. The twice_differenced series, A2R, = Alir _ A&_r, is
shown in Fig. 15.1t, and its sample aubcorreladon function in Fig. 15.12.
The results do not seem qualitatively different from the previous case. Our
conclusion, then, would be that differencing once shouid be sufncient to
ensure stationarity.

Example 15.2,Daily Hog prices6 As a second example, let us examine a
time_sedes for the daily market price of hogs. If a forecaiting model could be
developed for this series, one could conceivably make monly by speculating
on the futures market for hogs and using the model to outperfirm the market.

6 This exampte is from a paper by R. leuthold, A Maccormick, A. Schmirz, and D. Watts,"Forecastilg Daily_Hog pricei ind e;antities: A study of Alremativ. f"*.irti-"g Techniques,,,Journal of the American Statistiul Atsociatioh, March 1976, Applicatio". i""ii.r" pp. SO_ fOZ.

FIGURE 15.11
Three-month Treasury bil i  rate-second ditferences

FIGURE 15.12
inGre-JraG-se"ono diflerences: sample autocorrelation function'
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FIGURE'15.13
Sample autocorrelation functions of daily hog price data

The series consists of 250 daily data points covering all the trading days in
1965. The price variable is the average price in dollars per hundredweight of
all hogs sold in the eight regional markets in the United States on a panicular
day. The sample autocorrelation functions for the odginal price series and for
the flrst difference ofthe series are shown in Fig. 15.13.

Observe that the original series is clearly nonstationary. The autocorela-
tion function barely declines, even after a l6-period lag. The series is, how-
ever, flrst-order hornogeneous, since its first difference is clearly stationary.

In fact, not only is the first-differenced series stationary, but it appears ro
resemble white noise, since the sample autocoffelation function /ir is close to
zero for all k > 0. To determine whether the differenced series is indeed white
noise, let us calculate the Q statistic for the first 15 lags. The value of this
statistic is 14.62, which, with l5 degrees offreedom, is insignificant at the t0
percent level. We can therefore conclude thar rhe differenced series is white
noise and that the original price series can best be modeled as a random walk:

(15.33)

As is the case of most stock market prices, our best forecast of pr is its most
recent value, and (sadly) there is no model that can help us outpedorm the
InAIKCI.

l ! .2.1 Scas<ln. l l l ly  dt l ( l  l l tc Art tocorrelal lon Funct lot t

Wc havc i t ts l  st 'c t r  l l r ' l l  l l lc  n l l l { r (1 ' r fc l ' l l lor l  l \ r t l r l ion:n" t : l l t . l l  i  lot l lu l lor l

about t l . tc  s lnt iotr , r l i ly  t ' f  ' t t r " t "  " ' ' l t t l '  
r t '  thc rr t r la in i r l f l  chal) tcIs ol  t l t is  lxrok wt '

wi l l  sce that ot l rct  i r l l i t r r r l ' l l iot l  n i" ' i t t  n t int"  scr ics catr  bc oblaincd l ionr i ls

autocorrelatioll l irnct ior t l lowt'vtir '  *"tuntinu" h"t" by-c'xaminilrg thc rclatitttt-

ship between thc a u tocorrcla tro'i i i 'ntt io" and the. seannal.rty^ol. a timc sclics

ASdiscussedinthcprcvlouschapter,seasonal i ty iSjusla 'cycl icalbchavi t l r
,#;;;;;;";egular calendar basis An example of a highlv scasonar trrrre

ililffiil;;;;i'I'zlx*'l1;:fi1?1i'.*f :ilf,il'lil,il;lxlil I I I
ice cream and iced-tea mtx sno'

;".r;# ffi;Jbrought about by warmer rveather; Peruvian-anchovv prr-

ducdon shows seasonat Eougn; #...,r"ry 7 years in response to dccrcas('(l

i l;;i;;;;;ght auour uv cvclical chanse' in the ocean currents'

ofren seasonal peatr rno r ro,-rgh, ;r? .rry ,o ,pot by direct obscrvati(ttl r)l l lt(

,i-'.'rJ.r. io*"uer, if the time" series fluctuates conside^rably' seasoTl pfa:t:5

H;,';;;';;ni norbe arstinguishable from.the 9]li:1T::".'t"' 
Recolrnr -

tion of seasonality i' trnponuttt 6"tu"se it provides information about "rcglrlnr-

itv., in the series that can aid 
"t 

i" ."uti"i u forecast. Fofiunately' that recogrri-

; : " : ; ; ' ; ; ; ; ;  easier * l r t r  rhe help or rhe autocorrelar ion runcrron

If a monthly time senes yt exhibits'an''ual seasonaliry-' the data point! irr lllc

series should show some Oegree of co-rrelation 1'l- :l.t^ ,t."^Tto"nding 
dal'r

r"t" *ftt.ft f""O or lag by 1i months ln other words' we would expect to st'c

"J#ilil;it;t"rutio" u"*t"" vlandv'-12 since yr and-vl'- r ' 
will be corrc-

lated, as will yr- r: u"o y,-2a ' *t Jo"td also see corelation between y' and y' r'r '

Similarlv there will bt tor'"tuttot' between y' and y' v' y' and /r-4s' etc Thcsc

:;#ili";;";iJ ,,'uttit"" tnJt*iues in ihe sample auto<orrelation functi.tr

p1, which will exhibit pturt' ui | : lz' 24' )6' 4i ' etc" thls"l've 
can idenlilv

seasonality by obsewtng 
"gutut 

ptuki it' the autocorrelation function' everl il

;";;;i';";it:,""ot ie discerned in the time sedes itself'

e'"rpt" 1 5'3 Hos Production +' ": :::lt]:*:i::,'::""ff ff ll'liEramPrc rvre "vY"-- : - - - -  n the uni ted i tatet .  shown in Fi8 l5 l4 l t
the monthly produdion ol hogs I r:--^-- --."^-.t irv in ihil
ll:ff1#y"'#".#;i ;''p.'i;il'v" to easirY discem sea:1i:'*: llj:iiwoulo raKe d 5u'rLvr'ql """.'.-^-' -n.*"u"r' 

is readily apparent in its sampl('
series. The seasonality ofthe serie-' rr.a na,k( rhilrsenes r'c sc'r)u'o!Lr - ' '^,. --^- 

o' 'r 'o*n in Fig t5 l5 Note the peaks thal
autocorreladon function, which i

il:"#i;:"i ;:;n.'""l ru. indicarins'""Y'r'1:T'. l,i*i.:::l':ur ar K - 
t 

"uttttuut cyiles l"deseasonalizing" tht'
A crude method of removing 

-ai' cpri,'\A CIU(rE urcurvu

a",?l'*""rJ-i.,o nke a l2+nonth d'i:":"?-":"t3:i:t,ii:I"'TJli:
l,' 3' rll "i-', I i' ., "'u.'". " 

-i" r'-t- . l?,1" *.L llf,tl: f:'::".L"]:* i lZt = lr - j/,-t: ns'"" : '  .: '";c;;;:r ies doesnotexhibitstrongseasonal'
function for this l2-month dll lere 

- ^--r-^*-rr, . innrp tim.'-
lil'i):";"tti ",i: ff i#;;;;;;z' represents an extremerv simpre timc'
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FIGURE 15.14
Hog productlon ( in thousands oi hogs per month). Time boundsl
January 1962 to December 1971.

series model for hog production, since it accounts only for the annual cycle.
We can complete this example by observing that the autocorrelation function
in Fig. 15.16 declines only slowly, so thar there is some doubt as to whether z,
is a stationary series. We therefore flrst-differenced this series, to obtain,yr =
Lzt : A(yt - y, r, ). The sample autocorreladon function of this sedes, shown
in Fig. 15.17, declines rapidly and remains small, so thar we can be confident
that ryr is a stationary, nonseasonal time sedes.

FIGURE'15.15
Sample autocorrelation function for hog production series.
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I'.3 TESTING FOR RANDOM WALKS
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t ior . r ry '  o. ly l i 's t -d i l l i ' r ' t ' rc i r rg wi l l  y ickl  sr . r r i ( , t t . r ry st , r i t .s .  st ,urnt i ,  t l l ( .answ(.1
has implications lilr uur rrrrtlcr.slarrding ol thc cconotny an(l li)r l.orccasll13. Il ,l
vadable like GNP follows a random walk, thc cllccts ol a tcmporary shock (sLrtlr
as an increase in oil prices or a drop in governmcnt spcnding) will not dissipat(.
after several years, but instead will be permanent.

In a provocative study, Charles Nelson and Charles plosser found evidencc
that GNP and other macroeconomic time series behave like random walks.z Thc
work spawned a series of studies that investigate whether economic and finan
cial variables are random walks or trend-reverting. Several ofthese studies show
that many economic time series do appear to be random walks, or at least havc
random walk components.8 Most of these studies use 

'l 
nit root tests inftoduced,by

David Dickey and Wayne Fuller.,
Suppose we believe that a vadable I,,, which has been growing over trme, can

be described by the following equation:

Y,= at  Bt I  pY,-1 le1 ( \5.34)

One possibility is that f, has been growing because it has a positive trend
(p > 0), but would be stationary after detrending (i.e., p < l). in this case, f,
could be used in a regression. and all the results and tests discussed in part One
ofthis book would apply. Another possibility is that y/ has been growing because
it follows a random walk with a positive drift (i.e., a > O, p : O, ana p : f 1. tnthis case, one would want to work with Ayr. Detrending would not make the
sedes stationary, and inclusion of yr in a regression (even if detrended) could
lead to spurious results.

One might think that Eq. (15.34) could be estimated by OLS, and the I
statistic on, could then be used to rest whether p is significantly different from l.
However, as we saw in Chapter 9. if the true value of p is indeed I, then the OLS
estimator is biased toward zero. Thus the use of OLS in this manner can lead one
to incorrectly reject the random walk hr,r:othesis.

Dickey and Fuller derived the distribuiion for the estimator d rhat holds when
p = l, and generated sktistics for a simple F tesr of rhe random walk hypothesis,
i.e., of the hypothesis that B : 6 and p : 1. The Dickey-Fuller tesr ls easy to

7 C. R. Nelson and C. I. plosser, ,,Trends and Random Walks in Macroeconomic Time Sedes:
Some Evidence and Implications," Jouftal of Monetary Eco ohlics, vol. I0, pp. t3g_t62, Da2.3 Examples ofthese studies inciude J. y. Campbell and N. G. Mankiw, ,,;re Output Fluctuations
Tr.ar\sitory?," Quarterly Jaurnal of Econonics, vol. 102, pp.857-880, 1987, J. y. Campbell and N. c.
Mankiw, "Permanent and Transitory Components in Macroeconomic Fl'ctuatio's,,, Americdll Eco
nofiic Review Papert and proceedings, vol.'77, pp. lll-117, 1987; and G. W. cardner and K. p.
Kimbrough, "The Behavior of U.S. Tarilf Rates," Americatl Ecanoftic Reyiew, voj. 79, pp. 2ll_2t8,
r989.

e D. A. Dickey and W. A. Fulier, ,,Dist bution of the Estimators for Autoregressive Time-series
with a Unit Roor," Jrrrkal of the American Statistic!2l Atsaciatioh, vol. 74, pp. qiZ_q: t, tglg; O. L
Dickey and W. A. Fuller, ',Likelihood Rario Sraristics for Aurotegressiv;-Time Series wirh a Unir
Root," Econometrica, vol. 49, pp. IO57-t072,1981; and W. A. F!i.ler, thtoAudio to Stat$trcat Time
Star'es (New York: Wiley, 19761.

TABLE 151
DlSlRlBtJl lON Ol /  l t ) l l  ( r r ,  /1,  1t) ( r r ,0,  1) lNY1 l t  l t l  ! / rYrI I r l

Probabil l ty ol a smaller valueSample
slze .99.10.05

.90
93
94
.94
.94
.94

25
50

100
250
500

74
.76
.76
.16
.76
.77

004

108
1.1 ' , ]

1 13

003

1.38
1.39
'1.39
1.39

.004

5 91

5.47
539

5.34

015

724
673
649
6.34
630
625

8.65
7 81
744
725
7.20
7.16

l0 i i r
93r
I73
B 43
834
B2/

Standard
error

.020 .032 058
.004

Sourcer Dickey and Fu ler  op c i l  '  
Table Vl  p '  1063'  1981

perform, and can be applied to a more general version of Eq ( 15 34) lt works 'l s

follows.^"'i""ppot. 
Y, can be described by the following equation:

Yy :  a I  Pt  + PYt- t*  t r r  A/r-r  *  er (15.]5)

where Ayr r:Yrt- yt 
'? ' 

(Addidonal lags of AY1 can be included on the righl'

hand side; the test is the same') Usingbts' one first runs the unrestriclc(l

resression

Yt -  Yr- , :  d + Bt + (P -  1)Y'  r  *  t r rAYr-r

and then the restricted regression

Yr- Yrt :  a *  \ rAYr r ( r r . r7)

Then, one calculates the standard F ratio to test whether the restrictions (B : 0'

;:liil;.i;ihis ratio, however, is nor distributed as.a standardl distribrtliorl

under the null hypothesis' tnsteal' one must use the distributions tabulatcd lly

il;;;ilil#: critical values for this statistic are shown in Table 15 1'
"'*;";;,h.;" 

critical values are much larger than_rhose in the standar(l i '

,"#;.;;;;;, if the calculated r ratio tur;s out to be 5 2 and there arc 100

ro Recall that P is calculated as follows:

F -  (N - ' t ) (ESSi -  ESSur)/4(ESSux)

where Essf and ESsu"1," $:-'::::tlJi:11":::'i'flrl;ffi:'Jff::H:1":ffiifi:;"jll'i;i
sions. respeclively, N is the numDer or o

,rnrestricted regression, and 4 is lhe number of palameler re'ttictions'

(15.16)



obscrvnlrons, wc wol l l ( l  c(rs i ly  r ( . jc( .1 t l rc rrul l  l ry l rot l t r ,s is ol  , r  r r r r i t  ror l l  , l  t l t ( ,  5
percent lcvel if wc usctl a starrtlartl l , t.t lr lr: lwlrir. lr, witlr tw0 l)nr.l lcl(,r r(,slt i(.
t ions,  shows a cr i t ical  valuc ol  about f . I  ) ,  i .c . ,  wc woult l  a, , , ,a lu, l "  t l ln l  l l lcrc i \
no random walk. This rejection, however, would be incorrcct. Note rtrat wc rail
to reject the hypothesis of a random walk using the disrribution calculatcd [)y
Dickey and Fuller (the crit ical value is 6.49).u

. 
Although the Dickey-Fuller resr is widely used. one should keep in mind thar

its power is_limited. It only allows us to rtject (or fail to reject) the hypothesis
that a variable is nrl a random walk. A fiilure to ,.i".t ilrpl.iuuy at a high
significance level) is only weak evidence in favor of rhe random watt hypothc_
sls-

Example 1S.4 Do Commodity prices Follow Random Watks? Likestocks and bonds, many commodities are actively traded in highly liquid spotmarkets. In addition, trading is active in financiaj instruments"such as futures
:-"_lrl1:ls 

rha,r depend o-n.rhe prices of these commodiries. One mighr there_rore expect the prices of these commodities to follow random walks, so thatno ilye-stor cguld gxpect to profit by following some trading rule. (see Exam-ple 15.2 on daily hog prices.) Indeed, most n"u".iut 
-oO".t, 

oi lutures, op-tions, and other instruments tied to a cornmodity are based on the assumption
that the spot price follows a random walk.12

On the other hand, basic microeconomic theory tells us that in the long runthe price_ of a commodity ought to be tied to its mirginut p.oar.iio., cort. firi,means rhat although the price of a commodity 
-igfriU" 

subject ro sharpshort-run fluctuations, it ought ro tend to return to a ,lro.-ui,l i!u"t bur.d o.,mst. Of course, marginal production cost might be expected to slowly rise (if
the commodity is a depletable resource) or fall (because of technological
change), but that means tbe detrended price should tend to revert back to anormal level.

At issue, then, is whether the price of a cornmodity can best be described asa random walk process. perhaps with trend:

Pt:ot+Prt+a! (15.18)

(15.19)

where e, is a white noise error term, or alternatively as a first-order auto-
regressive process with trend:

&:a-tBt+pPFt+el

.rr For Jurther discussion of the random walk model and alternative tests, see p_ perron, ,,Trends
and Random walks in Macroeconomic Time Seriesi r"rtfre. rulJ."ce 

-iiomi'llew 
epproach,,;Joumal of Ecanolnic Dy amics and Cantrot, vot. 12, pp. 297 _332, l raa, ;;J;,.;l ;. phillips, ,,Time

Sed€s Regression with tJnit Roots.,, Econoftetrica, vol. 55, pp. 277_j02, l9B7.L For a thorough treatment of commodity markets 
"r[i"ii"",i".lir"rr,nents 

such as fuftrescontracrs, see Darell Dvffre, Futures Ma&ets^lEnglewood Ctiffs, N.J.: frentice- ltatt, I ysg ), anO :ohnEvll, Optiant, Futures, a/xd Other Derivative Secuities (enstewooa Ctifi, N.J., prlrrii."_H"rr, fSsSi.
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FIGURE 15.18
Pr ce oi ol (ln 1967 constant do ars)

Since any reversion to long-run marglnal cost is likely to be slow' we will only

be able to discdminate between these two alternative models with data that

cover a long time period (so that short-run fluctuations wash out) Fortu-

nately, mori than ioO years of commodity price data are available'

Fiiures 15.1s, 15.19, and 15.20 show the real (in i967 dollars) prices ol

crudJ oil, copper, and lumber over the 1l7-year period 18rc to 1987 ''

Observe that tire price of oil fluctuated around $4 per barrel from 1880 to

1970 but rose shirply in 1974 and 1980-81 and then fell during the mid-

i980s. copper pricis irave fluctuated considerably but show a general down-

ward trend, while lumber prices have tended to increase' at least up to about

1950.
We ran a Dickey-Fuller unit root test on each price se es by estimating thc

u estrictedregression:

Pt -  Pt-r  = ot  + pt  + lp -  I IP'- t  *  ) '  Af l -1 *e1

and the restricted regression:

P'-Ptr=d+\APr-r+sr

r] The data foi 1870 to 1973 are from Robert Manthy, A cerltufy of Nataral Re\ource slatisttct

;of,r* nopfl* uniu".sity Press, 1978. Data after 1973 are ftom publications of th€ Eneigy Informa-

ii"" Ln..icv 
""a 

u.S. suieau of Mines. AII prices are deflated by the wholesale price index (now thc

Produier tiice Indexl.
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FIGURE 15.19
Price ol copper (in 1967 constant doltars).

FIGURE 15,20
Price of lumber (in 1967 constant dollars).
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TABLE 15,2
DICKEY-FUILIR ILS IS

Commodlty k, t )

Copper (unreslrlcted)

Copper (restr cted)

Lumber (unrestricted)

Lumber (restricted)

Oi (unrestrlcted)

Oil (reskicted)

.0660 .1560
(  0263) (0515)

.00895 .2355
( 00285) ( 0459)

0766 4.344 A
1 0941)

-  0440 4,913 5
10934)
.1392 2.242 I l

I 0958)

.0507 2.428 6
(0938)

2546 100 09
( 0848)

1760 125 00
(0s18)

11 357
t3 228)
-  1969
( 609e)

8825

2488
( 4291)
.4366

( 2r88)
.0262

(0973)

- 0446
(0208)

2417
(0631)

we tested the restrictions by calculating an F ratio and comparing il lo llr('

critical values in Table I 5. I . Regression results (with standard errors in Pa t c t t

theses) are shown in Table 15.2.
In each case there are 116 annual obseruations. Hence, for coppcr ll)c /;

rat io is (112)(4,913.5 -  4,344.8) / (2)14,344.8) = 7. l3 Comparin8 this to I I ) (

critical values for a sample size of IO0inTable 15.1, we see that we can r('ic(l

the hypothesis ofa random walk at the 5 percent level For lumber, thc /' ril i( '
is 4.64, and for crude oil, it is 13.93. Hence we can easily reject the hypol lr('sis

of a random walk for crude oil, but we cannot reject this hypothcsis lirt

lumber, even at the 10 percent level.
Do commodity prices follow random walks? More than a century of dal')

indicates that copper and crude oil prices are not random walks, but the pricc

of lumber is consistent with the random walk hypothesis''n

r',4 CO-INTEGRATED TIME SERIES

Regressing one random walk against another can lead to spurious results' in thal

coiventio-nal significance tests will tend to indicate a relationship between tltc

variables when in fact none exists. This is one reason why it is impoltant to tcsl

for random walks. If a test fails to reject the hypothesis of a random walk' otrr

can difference the sedes in question before using it in a regression Since matry

economic time series seem to follow random walks, this suggests that one will

typically want to difference a variable before using it in a regression While this is

14Thefactthatcopperandoi]pdcesdonotseemtoberandomwalksdoesnotmeanthatonc(.1| l
earn an unusually higir retum by trading these commodities First, a century is a long time' so cv( l

ienodns lransactron costs, anv excess rerurn from the use of a trading rule is likely to be vely srnnll

S-econdithe mean-reverting bahavior fiat we have found may be due !o shifts over time in thc risk

adjusted expected retum.



acccptablc,  d i l l f ' rc l rc i r rg rrray rcsrr l l  i r r  a loss ol  i r r I i I l r r I . r t iorr  atrorr t  t l rc krrrg-rrrrr
relationship bctwccr.t two variablcs. Arc thcrc silualions whcrc orrc (irr r lrn .r
regression between two variables in lcvcls, even though both variablcs arc ran-
dom walks?

There are. Sometimes, two vadables will follow random walks, but a linear
combination of those variables will be stationary. For example, it may be that thc
variables x, andy, are random walks, but the vadable a : xr - l,yr is stationary. I1
this is the case, we say that x, and yt arc co-integrated, and we call .1. the co-
integrating paramerer.It One can then estimate I by running an OLS regression of
xr on yr. (Unlike the case of two random walks that are not co-integrated, here
OLS provides a consistent estimator of .1.) Furthermore, the residuals of this
regression can then be used to test whether & and /r are indeed co-integrated.

The theory of co-integration, which was developed by Engle and Granger, is
important for reasons that go beyond its use as a diagnostic for linear regres-
sion.r6 In many cases, economic theory tells us that two variables should be co-
integrated, and a test for co-integration is then a test of the theory. For example,
although aggregate consumption and disposable income both behave as random
walks, we would expect these two variables to move together over the long run,
so that a linear combination of the two should be stationary. Another example is
the stock market; if stocks are rationally valued, the price of a company's shares
should equal the present value of the expected future flow of dividends. This
means that although dividends and stock prices both follow random walks, the
two series should be co-integrated, with the co-integrating parameter equal to
the discount rate used by investors to calculate the present value of earnings.rT

Suppose one determines, using the Dickey-Fuller test described above, that x,
and y, are random walks, but Ax, and Ay, are stationary. It is then quite easy to
test whether x, and, y, are co-integrated. One simply runs the OLS regression
(called the co -integfating regressionl:

&:q+Br+et (15.40)

and then tests whether the residuals, e,, from this regression are stationary. (If xr

t5 In some situations, x/ andyr will be vectors ofvadables, and tr a vector ofparameters; ), is then
c lled tbe co-integrating ve,tor. Also, we are assuming that x, andl, are both first"order homogeneous
nonstationary (also called i tegratea of order arle); i.e., the firsFdifferenced sedes Ax, and At, are both
staiionary. More generally, if .!andyr are dth-order homogeneous nonstationary (integrated oforder
dl, and z, = x, - Xytis bth-order homogeneous nonstationary, with , < l, we say that x, and /, are.r-
i tegrated of order d, ,. We will limit our attention to the case of d = | arrd b = O.

16 The theory is set forth in R. F. Engle and C. W. J. cranger, ,,Co-Integration and Errot CoIIec-
tion: Representation, Estimation, and Testir,g," Ecofiauetica, vol. 55, pp. 25t-276, 1987.

r7 For tests of the presenFvalue model of stock pncing, see J. y. Campbell and R. J. Shiller,
"Cointegration and Tests of Present Value Models," Jaumal of political Economy, vol. 9j, pp. 1062-
1088. 1987. For other applications, see J. Y. Campbell, "Does Saving Anricipare Declidng Labor
Income? An Altemative Test ofthe Pemanent Income Hypothesis," Econol etica, voL 55,pp.1249,
1273. 1987,lor a study of the co-integration of consumption and income; R. Meese and K. RogofT,
"Was It Real? The Exchange Rate-Interest Differential Reladon over the Modern Floating-Rate
Peiod," Joa al of Finance, vol. 47, pp. 9Jj-947, 1988, for a srudy ofthe co-integmtion of exchange
rates and interest differentials.

TABLE 15,3
CRITICAL VALUTS FOTI I[SI
OFDW.'0

Sloni l icance Cri t icalvalue
ievel, % of DW

386
322

1
5

10

and yr are not co-integrated, any l inear combination of them will l)c l lollsl '1-

;;fi;;;il.e thJ residuals e, will be nonstationary') specificallv' wc rcsl

the hypothesis that e, is not statronary' i'e ' the hypothesis of no-c()-intcgrat i( )r I
-;;';;;il; fi;",h;sis that e, is nonstationary can be done in two wavs lrirsr'

" 
;.k";:ilii;; i;i.utt bt pttto""td on the risidual series Alternativclv' rtttt'

.* t-*ofu look at the Durbin-watson statistic from the co-integrating rcgrcs-

il;l.ei;;; ahapter 6 that the Durbin-watson statistic is given bv

Dw =l#

If e, is a random walk, the expected value of (er - ei\) is zero' so the Du rbin-

iv",r"" ,,"iit,l. tf,ould be close to zero' Thus' one can simply test the hypothcsis

;;;;* = 0. For I00 observadons' the critical values for this test are shown itr

i"il- it.r.i" For example, if after running the co-integrating regressron wc

obtain a value of Dw of .7I, we could reject the hypothesis of no co-integratitllt

at the I Percent level.

Example 1s.s The co-integration 9t 9"1:i-TlT::,^and 
lncome Arr

interesting finding in macroe;nomics is that many variables' including ag-

;.#'J"s"uir;;io., u"a ai'po*ur" 1"'T":.11'.1 i^jll3w 
random warks

Amongotherthings,tnrsmeansthattheeffectsofatemporaryshockwillttttt
i';ff#l;;;fi", several vears' but instead will be permanent But cvcrr rr

."*"1p,1"i 
""a 

disposable income are random walks' the two should tt rtri

to move together' fnt 
"u'ot' 

i' that over long periods' households tcnrl to

consumeacertainhacionoftheirdisposableincome.Thus,overthcl() | | l ]
i"".- lo.rrn-ptio., and income should itay in line with each other' i e ' llrcv

should be co-integrated'
wewi l l testwhetherrealconsumptionspendingandrealdisposablc i r r , '

come indeed are co-integrated' using quanerly data for the third quartcr ol

rs From R. F. Engle and c w J Glanger' op cit ' 
p 269



I950 t l l rougl)  t l lc  l i rs l  ( luartcr  o l  t9f t8.W(' l i rs l lcs lwlr( ' l l l ( rcn( l lvnr i , r l ) l ( ' is . l
random walk, usiDg thc Dickcy-ljullcr tcst t lcscribctl in t lrc plcvi0trs sccti()n,
For consumption. the unrestricted ESS is 21,203 and thc rcstrictc(l ESS is
22.7j7:  wirh l5 l  obsewat ions, the Frat io is 5.32. observe from Tablc l5. l
that with this value of F we fail to reject the random walk hypothcsis, evcn at
the I0 percent level. For disposable income, the unrestricted ESS is 40,418
and the restricted ESS is 42,594, so the F ratio is 3.96. Again we fail to rejcct
the hypothesis of a random walk. (what about first differences of consump-
tion and disposable income? we leave it to the reader to perform a Dickey-
Fuller test and show that for flrst differences we can reject the random walk
hypothesis.)

We next run a co-integrating regression of consumption C against dispos-
able income YD.re The results are as follows (standard errors in parentheses):

C=-13).82+.965lYD
(6.109) (.00146)

R2: .9981 s:2).)5 DW = .49)6

Lt=al t+ q2yt r+ l  aty,  r* t (A 15.1)

Now since y, is stationary, the covaiances ofy, are stationary, and

Cov (yr+i ,  ! ,+11 = y,  t

We can use the Durbin-watson statistic to test whether the residuals from this
regression follow a random walk. Comparing the DW of .4936 to the critical
values in Table 15.3, we see that we can reject the hypothesis of a random
walk at the 5 percent level. The residuals appear to be stationary, so we can
conclude that consumption and disposable income are indeed co-integrated.

APPENDIX 15.1 The Autocorrelation Funclion for a Stationary Process

In this appendix we derive a set of conditions that must hold for an autocorrela-
tion function of a stationary process. Let /r be a stationary process and let tr be
any linear function ofy, and lags in y,, for example,

(Ar5.2)

independent of /. Then, by squaring both sides of Eq. (A15.1), we see that the
variance of l,r is given by

var{1,)=))o,arr , ,

re For readers using Citibase data, the conesponding series arc cC82 and cYD82.

(Ar5. l )

l l  l l lc .y 's, l Ic l l r t l  , l l l  (1,  I l l | ,  v ' t l l ' t t t t I  t t l  / ' r  t r I l l \1 l r ( ' l l l ( ' r l l ( ' r  I l l ' t l t  o ' t t t t l  
I l t t ' t t ' l i r t t '  wt '

lnust  l t . rv( ' ,  l r r t  , r l l  i  , t r r r l  l ,

7lr  r l  -o lot  i  i

Now, lo r tbservl l i t ' t ts  wrt l (  t t lc  ( t 'vJr id l lc( \  o i  v ls ' r  t l t ' t l r ix :

(A |  ' , .4 )

I ,=

12

1t
(A rs.5)

2 Yn-)

This matdx must be positive definite because the vadance of l ' '  is always grcatct

than zero. Note that

l,l1t

. .1..
v,[l,

. [ 'r" :  o i  
I  l t .  .
LP, I

P1 Pz

I p,

P,-t- l
o,  , l :  o lv,  (Ar5 6)

i l
Pn-z Pn-t

which implies that

where P, is the matdx ol autocorrelations' and is itselfpositive deflnite Thtr\ tlt(.

;J;;;;;i P' and its principal minors must be sreater than 0'
*;;;;fii;,'i", 

u' 
^tot"iht' tht tu" of n = 2 Tl.',' condition on tnc

determinant of P, becomes

a., [ j ,  p, , ] 'o

l -Pi>o

1;r  
-11P, 1l  (A157)

Similarly, for n = j,it is easy to see that the following three conditions must nll

hold:

-1<P'<l

- l  {  p211

2

-1 a u--\ < 1
r -Pl

Sets of conditions can also be derived for n : 4' n = 5' etc ' 
but it shorrl(t

t.."4" af.-ift", as the number of observations n becomes large' the numbcr ol

;;;;t,;;;;;h;;;ust holo also becomes quite larse' Althoush these conditiorr\

(A15.8)

(Al5.e)

(Al5. lo)



car)  l ) rovi( ic an analy l i (n l  ( , l l ( , ( ,k ( ,  l l t ( 's t , l t io | l , l r i ly  o l  r  l in lc scl i ( ,s,  i t |  . l l ) l ) l ic( l
work,  i t  is  morc lypical  to iu( l ! ]c stat ionar i ly  l iot l r  a v isual  cxanl inal io l l  o l  tx) t l l
the series itselfand the sample autocorrclation lunction. For our purposcs i l wil l
be sufficient to remember that for k > 0, -l < pr < I for a statiouary proccss.

EXERCISES

l5.I Show that the random walk process with drift is fi$t-order homogeneous nonsla
tronary.
15.2 Consider the time series l,2.3,4, i,6,. . ,20.Isthisse es stationary? Calculal(,
the sample autocorrelation function /ir for k = l, 2, . , 5. Can you explain the shalx,
of this function?
15.1 The data sedes for the p ces of crude oil, copper, and lumber are pdnted in Tablc
r5.4.

TABLE 15.4
PRICES OF CRUDE OlL, COPPER, AND LUMBER (n j967 constant dol ars)

Copper Lumber Copper LUmOer

1870
1871
1872
1873
1474
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
'1886
1887
1888
1889
1890
'1891
1892
1893
1894
1895
1896
1897
1898
1899
1900

9.13
9.70
9.75
9.98
9.93
9.45
9.60
9.7 4
9.75

10.43
10.09
10.90
11.11
1105
1179
12.02
12.32
12.44

12.03
12.28
12.19
12.60
12.55
13 72
13.07
13.67
13.17

13.68
12.59

'1929
1930
1931
1932
1933
1934
'I935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959

3.63
3.64
2.47
350

3.52
3.17
3.48
355

3.28
3.01
289
2.91
2.89
2.92
3.27
4.09
419
4.05
3.67
3.77
4.O7
4.21
418
4.09
4.38
4.23

36.86
29 21
21.54
16.77
20.59

20.82
22.78
2S.66
24 69
27.71
27.90
26.16
23.18
22.1a
22.01
21 61
22.12
27.45

24.40
25.92
26.56
27.34
32.99
33.94
42 71
46.09
31.73
27.27
32.95

32.65
29 84
29.39
25.42
24.97
24.97
23.51
24.34
25.12
24 59

25.38
27.47
29.98
39.74
38.76
37 78
45.31
52.84
48.76
53.94
52.30
46.18
51.13
52.86
54 91
55 48
54.20
50.88
48.78
51 24

8.64 41.61
10.16 47.54
8.35 70.64
4.24 61.57
2.81 54.68
3.37 53.37
6.90 49.60
6.95 51.15
3.74 47.17
2.84 49.50
2.80 52.68
2.74 46.39
226 49.85
3.27 42.64
2.66 41.67
2.95 35.62
2.42 32.53
2.44 31.96
2.97 52.03
318 45.61
3.00 52 41
2.33 43.75
2.08 41.26
2.44 38.18
324 36.84
4.90 41.43
4.58 4417
3.17 45.42
3.64 46.00
4.80 63.20
4.72 55.17

TABLE 15,4
PRICES OF Ol l t  J l ) l
(Conlinuotl)

Obs. oi l Coppor LUmOer

ol l  ,  ( ;o l ' l r l  11,  ANI)  lL lMl lL l l  ( i r r  1$6/ (x)rrr i l i r r r l  (k) l l r r ts)

Coppor LumDor

1901
1902
1903
'1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
191 7
1918
1919
1920
1921
1922
1923
1924
'1925
1926
1927
1928

4.00
3.59
4.04
3.83
2.90
2.66
2.50
2.50
2.18
1.85
2.03
2.39
3.19
2.79
2.24
3.22
3.42
3.90
3.90
5.40
4.39
4.21
3.24
3.58
4.10
467
3.50
3.37

57 19
38.16
43.00
40.91
49.03
60.50
59.52
40 74
37.36
34.99
37.01
45.79
42.50
38.75
48.19
61.68
44.88
36.34
26.15
21.96
24.85
26.85
27.75
25.69
,A 22

26.7 4
26.22
29.26

12 53
13.95
13.42
1 1.95
13.77
15.80
16.01
20.49
2017
18.29
22.12
20 98
23.25
22.56
22.95
18.98
16.34

17.86
19.15
22.84
22.53
21 91

29.94
30.12
26.75

1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
19'/ 4
1975
1976
1977
1978
'1979
1980
1981
1982
1983
1984
1985
1986
1987

4.A7 33.83 52 5l
410 31.64 50.89
410 32.28 49 43
4.11 32 38 50 03
4.09 33 79 51 58
3 99 36.23 52 09
3.89 36.27 50 46
3.90 38 20 51 17
3.83 40.78 53 99
3.90 44.60 57.65
3.89 52.26 49 09
4.00 4513 57 88
3.84 42.49 65.20
3 99 43.73 74 21
5.56 46.81 50 57
5.64 35 11 45 27
5B2 36.22 52 35
5.71 32.48 57 54
5.61 30.23 64 23
6.98 37.'17 6277

10.34 35.99 41 17
13.94 27.22 32 09
12.34 23.37 27.71
11.26 248A 3-/ 21
10.86 20,76 28 27
10.15 20.47 27 58
5.46 20.9',1 35 70
6.57 25 61 39.91

(a) Calculate the sample autocorelation function for each series' and determinc

*ni ir.i i-t ]r-"* .""ristent with the oickey-Fuller test results in Example l 5 4 specili-

::,tt;;; ,u-pi. u,,,o.otttr"tio'' ft"ttiott' for crude oil and copp'er prices exhit)il

stationadty? Does the sample aurocorelation function for the pdce of lumber indicatc

that the sedes is nonstationary?
"'"ir;;;;-;il;; are the 6ickev-rutler test results to the sample size? Divide thc

sample in half, and fo, .utn p"tt 
"t't'' '"peat 

the Dickey-Fuller tests for each half of thc

sfrp?o 
uuct to ttte data for *re sEP 500 common stock Pice lndex at the end of lltc

preceding chapter. would you t"pttt-tfti' index to follow a random walk? Pedorm n

bi.t.v- r-uff.t i .t, to see whether i l  indeed does'

15.5 Calculate the sample autocorrelation function for retail auto sales 
"(Use 

the data iri

Table 14.2 at t}le end of chaptt' l+ iJott tftt tutnple autocoflelation function indical(

seasonality?



(JHAPTER T O

LINEAR TIME-SERIES
MODELS

We turn now to the main focus of the remainder of this book, the constuction ol
models of stochastic processes and their use in forecasting. Our objective is to
develop models that "explain,, the movement of a time series by relating it to its
own past values and to a weighted sum of current and lagged random distur_
bances.

while there are many functional forms that can be used, we will use a linear
specification. This will allow us to make quantitative statements about the sto_
chastic properties of the models and the forecasts generated by them (e.g., to
calculate confidence intervals). In addition, our models apply to stanonary pro-
cesses and to homogeneous nonstationary processes (which can be differenced
one or more times to yield stationary processes). Finally, the models are written
as equadons with fixed estimated coefficients, representing a stochastrc structure
that does not change over time. (Although models with time-varying coefficients
of nonstationary processes have been developed, they are beyond the scope of
this book.)

In the first two sections of the chapter we examine simple moving average
and autoregressive models for stationary processes. In a moving average model,
the process is described completely by a weighted sum of cuirent and lagged
random disturbances. In the autoregressive model. the process depends oi a
weighted sum of its past values and a random disturbance term. In the third
section we introduce mixed autoregressive-moving average models. In these
models the process is a function of both lagged random disturbances and its past
values, as well as a current disturbance term. Even if the original proceis is
nonstationary, it often can be differenced one or more times to produce a new
series *rar is stationary and for which a mixed a u t oregressive-movlng average
472

r t toth ' l  r ' , t t t  l ) ( ' ( r ) t l l , l l l l ( l f ( l  l t t isr t l rx l t ' l  t ' l t t  l r t ' t ts t ' t l  l ( ' l ) l (x l l l t ( "1 lofc( ' ls l  o l l (  l t l

r r , l , , 'a '  t " t i , t , l t  i r r to t l r t ' l i r t t t t r ' ,  a l i t ' r  wl t i ' ' l l  l l t t '  l i r t t ' tasl t ' r l  s lnt i ( l l l ' ) ry sct i t 's  r" t t t  l t t '

intcgratct l  o l lc  or  l l lo l ( ' l t r t t t 's  to y i t ' l t l  
' l  

l i ) rccasl  l i l  t l tc  ot ig i r ra l  l i t t t t ' r t r i t 's  l l t t '

; ; ; ; ; ; i l  ouu,r"1;r"r* iu"-" tovi t )11 avcragc nr. t lc l  1tr 'v i t lcs a gctrctal  l t ' r t t t .wrt t ' l i

for i ire motlcling ol htttttogcnctttts l lollslationary tl l l lc scrlc5'
'" ' i l ; ;;t i l i ;g 

a. intc:gratctl aut.regrcssivc'-nroving avcragc ttt.t l t ' l  l i tr ' t

nonstationary time scrrcs, wc must f irst ipccify 1xlw many tit l lc-s.t1c sclics i\ lo

be differenced before a stationary serics results. wc must also spccily lhc trrtt lt lrt ' t

; ;;;;;;;;;." terms and lagged disturbance tcrms to be includcd wt lt 'rvt '

,a* iat C"nup,", 15 that the autocorelation {unction can bc uscd lo tcll Lts ltow

-,r,*, 
ri-es-we must difference a homogeneous nonstadonary proccss lt l ol(l( ' l

;;;;;;; 
";;; i ;"ry 

process Here wi wil l see how the autocorrelatiotl rrrrr(

; i";;; ir;;; 
"red 

to'help determine how many lagged disturbarcc rcrr.s.rrrrl

u",ot.g..ttlu" terms should be included in the model'

16.T MOVING AVERAGE MODELS

In the moving avercrye process of order q each observadon yr is gencratc(l L)y 'l

;il#;;;".;" ot"iu,too- distttrbanies going back 4 periods we dctrotc rlris

o.oi"r, ut MA(4) and write its equation as

! t= l t*  Et-  0]Err ' |zerz- '  -  9qe'q (16.r)

where the paramete$ gr, ' . ,,da mav- be.positive ?: ":91lLt-1'-
In the moving average moqcr (l"O itso in the autoregressive model' whicll

*fi f;ii;;iih;;""dori disturbances are assumed to be independentlv distril)

;;;;;;; ii-., i."., generated bv a white rorie process' In 
-particular' 

caclr

;ttJ";.. term 
", 

is aisumed to be a 
"ormal 

random va able with mcan o'

lrariance o3, and covariance 7r : 0 for k + o'white noise processes may nol

oaa", taay" ao--only, but, as we will see' weighted sums of a white nois(

;;;;tt ;;;;;;ide a good representation of processes that are nonwhilc'
' itt. ,"ud". should observe that ttle mean of the moving average procc\\ i\

inAepenJeni of time, since E(.yr) = p' Each e' is assumed to be generated bv llr('

same white noise process, so rnat E(e,) = O' EG?J = c2"' and^E(e'et *) : 0 ftrt'

;;;: il;;;;;;; MA (a) is thus described bv exacttv q + 2 parameters' llrc

L Following convention, we pul a minus sign in front of dr ' ' 0a In some textbook\' llrr'

MAl4' model is writ ten a'

Yt- P a El+ oL€r l+ ' ' '  + v4EF4

Beawaleofthiswhenrea.I ingandintelplet ingcomputeloutput,andasyouproceedlhloughl| ' .
res( of rhis book r^. , 

-,hi'F 
ndis

2 As we saw in lhe last chaprer' me autocorelation function for a \4hite noise process rs

* = {a ';:t; 3



mcan /,., thc dislurtratrcc variarrcc 0f, aD(l th(, l)tranxl(,ts 0t, 0), .
determinc the weighrs in thc moving avcragc.

Let us now look at the vafiance, denotcd by 70, ol thc moving avcragc proccss
of order 4:

Var (r,r) : lo: E[(y, - ttl2l
= E le|  + 01e?_r+. .  .+ o]el_n -  20p,e,_1 _.  . l
=o3+o1ol+. . .+olo!
:  o2"1t  + 01 +03+.. .+l t r )  r .6.21

)o i=-

Note that the expected values of the cross terms are all O, since we have assumed
that the e,'s are generated by a white noise process for which 1 : EleFFkl _ O
fork* 0.

Equation (I6.2) imposes a restriction on the values that are permitted for Ar ,. . .. , 0q. We would expect the variance of y, to be flnite, since otherwise a
realization of the random process would involve larger and larger deviations
from a fixed reference point as time increased. This, ii turn, rvot'ild uiolut. orr.
assumption of stationarity, since stationarity requires that the probability of
being some arbitrary distance from a referenci point be invariant with respeit to
time. Thus, ify, is the realization of a stationary random process, we must have

, t , r  r l r i r l

(16.1)

In a sense this result is trivial, since we have only a finite number of0;,s, and thus
their sum is finite. However, the assumption of a fixed number of 0;,s can be
considered to be an approximation to a more general model. A complete model
of most random processes would require an infinite number of lagged distur_
bance terms (and their corresponding weights). Then, as 4, the order of the
moving average process, becomes infinitely large, we must require *rar dre sum
z;odi converge. Convergence will usually occur if the g,s become smaller as /
becomes larger. Thus, if we are representing a process, believed to De stationarv,
by a moving average modet of order 4, we expect the dls to become smaller as i
becomes larger. We will see later rhat this impiies that if the process is stationary,
its correlation function p1 will become smaller as k becomes larger. This is
consistent with our result of the last chapter that one indicator of stationariry is
an autocorrelation funclion that approaches zero.

Now we examine some simple moving average processes, calculating the
mean, variance, covariances, and autocorrelation function for each. These siatis-
tics are important, fust because they provide information that helps characterize
the process, and second because they wiJI help us to identify the process when
we actually construct models in the next chaDter.

Wc lr t 'g i t t  wl t l t  l l tc  s l t t tp lcst  t txtv i t tg avt ' r ' tgc pr l t t t 'ss '  l l t t ' t t t t tv i t t l l  ' tv t t ' tgt '
proccss t t l  t t t t l t ' r  l .  ' l ' l t t '  Prr tct 'ss is ( l ( ' l lotc( l  l )y MA(l) ,  n l l ( l  i ls  ( \ l l t i ) l io l l  is

l r= l t Iat-Utet t
( r6.4)

This process has mean g. and variance h = al\I + 0i) Now lct tts tlt 't ivt' l ltt '

covariance for a one-lag displacement, 7r:

vt= El( ! ,  -  t t l \ ! , - t  -  p) l  -  E[(e '  -  Orer-r)(er t -  Utor t ) l

= -Trcrf, ( I 6.'j )

In general we can determine the covariance for a k-lag displacement to ltc

l t :  El le,  -  0rer-r)(er-r-  01e1-1-1) l  = 0 fork> I  ( l ( r '6)

Thus the MA(I) process has a covadance of 0 when the displacement is trort

than one period. We say, then, that the process has a nt em orl of only one perio(l;

any value yr is conelated with /r r and with /r+r, but with no other time-scri('s

values. tn effect, the process forgets what happened more than one period in lltt'

past. In general the limited memory of a moving average process is importarll ll

iugg.rtJftut a moving average model provides forecasting information otlly .r

limited number of periods into the future.
we can now determine the autocorelation function for the process MA(l):

(16.7)

An example of a first-order moving average process might be given by

y,:2l ,e1 1.8a1 1 ( l  r , .8)

The autocorrelation function for/r is shown in Fig. 16 1, and a typical realizat iorr

is shown in Fig. 16.2.
Now let us proceed by examining the moving average process oforder 2 l'h(

process is denoted by MA(2), and its equation is

I t :  t t+ e1 -  0p;1 -  02a1 2 (16.e)

This process has mean p, vadance olll + Ol + 0'.2\, and covariances given [)y

yt:  El lx,  -  | fer-  lzet-z l (et- t  -  | f t  z-  9zet-))

:  -0p1 + 020sf,  = -6111 -  U,ro '

(  -0,

f ,  ) r+0iP*=;=l
L0

(  16.  r  { ) l



FIGURE 16.1
A 

t:t:co"elation 
function for y, = 2 + e, +

^lz: EIGI - |ft-r - 02e1 2)(e,,2 - 01e;1 - 02e,_a)f
= _Izal

and yk:O fork> 2

The autocorreladon function is given by

( r6.11)

(r6. t2)

( l6. l t )

(r6.141

(16.r5)
and

^ _-qt(r  -  021
r t - i l@a62,

-0,
Pr: -_--------:-

r+0i+03

tu:0 fork> 2

The process MA(2) has a memory of exactly two periods, so that the value ofj,,, is

FIGUBE 16.2
Typical real izat ion of yt = 2 + Et + .geF1.

FIGURE 16.3
Autocorrelation function foryr = 2 + tt I
6er-r - .3er z.

inlluenced only by events that took place in the current period, one period bat k,
and two periods back.

An example of a second-order moving average process might be

y,:  2 ' t  e,  I  .6er- t  -  .Jet  z (16.r6)

The autocorrelation function is shown in Fig. 16.1, and a typical realizatiotr is
shown in Fig. 16.4.

we leave to the reader a proof that the moving average process of ordcr 4 ltas
a memory of exactly 4 periods, and that its autoconelation function pr is !liv('ll
by the following (see Exercise 16.3):

(16.17)

FIGURE 16.4
Typical real izat ion ot yt = 2 + q + .6er-r - 3er-2

5t



wc car 'ow scc why rr lc sal l r r ) r ( , iarr( .orr( . lar io l t  r r r ( . t io,  ( r .  l ) ( ,  ,scf t r l  i 'specifying thc ordcr ol a rtrovirrg avctallc proccss (nssrrhlinll l l lat lc trllc s(.rif.,ol concern is generatcd by a m.ving avcragc proccss). Thc aulocorrclariol) lu l)(tion pr for the MA(4) process has 4 nonzero values and is theh 0 for k > 4. As w(,proceed through this and later chapters, we will attempt io give thc rearjcr arrunderstanding of how the sampre autocorreradon function can be used to idc'tlry me slochastic process thal may have generaled a panicular time series.

16.2 AUTOREGRESSIVE MODELS
In tlle au.toregressive process of order p. the current observation yr is generated by nweighted average of past observadons going back p pe.iodr, iJgether with lrandom disturbance in the current pe.iod. We denot. this process"as eR1pl anriwrite its equation ai

l t -  6J*t*  6zl t_z+. .+epy,p+6+ et  (16.18)

Here 6 is a constant term which relates (as we will see) to the mean of thestochastic process.

16.2.1 Properties of Autoregressive Models
If the autoregressive process is stationary, then its mean, whicq
by p, must be invariant with respect to time; that is, E(yt) :
E(Y,-zl = The mean p is thus given by

lL=6tp-6tF+. ,6pF.6

6t+62+.. .+60<1 (16.2r)

This condition is not sufficient to ensure statlonarity, since there are other neces_sary conditions that must hold if the AR(p) process is to be stattonary. Wediscuss these additional conditions in more detail in Appendix 16. t.

This formula for the mean of the process also gives us a condition for sta-tionarity. If the process is stationary, the mean p in"fq. (16.20) musr be finite. If
*l:1,.^:e^-:,-1::."se. 

the pro(ess would drift farther and farther away tiom anynxeo reterence point and could not be shtionary. (Consider the example of thirandom,walk with drift, that js,y, : 
-/r_r * 6 + e,. Here dr : t, and g, = oo, and ifo >_ u, rne process continually drifts upward.) If p is to be finite, it ts necessary

that

we denote
E(Y'- t l  =

(16.19)

( t6.20)

N0w l t ' l  r rs cx, t t t t l t t r ' l l t t ' l ) f { ) lx ' r l ics t t l  s t t t t t t 's i t l tp l t ' , l l t l ( l f ( ' l l f ( 'ss iv( ' I t t ' (x( 's5( 's.
Agairr  we wi l l  r lc lct t t t l t tc  l l t ( ' t t l ( \ l t l ,  coval i i l t lc( 's ,  e lc. '  l i t l  eat l t  Wt ' l r t 'g i r r  wi t l r

lhc l i rst-or( l ( ' r  prot t 'ss Al{(  l  ) ;

. \= Qrl t  r  + 6 + nr (16.22)

This process has mean

1-d'
(16.2J)

and is stationary if ]dr < L Again, recall that the random walk with drili is a
flrst-order autoregressive process that is ,4ol stationary. In that process dr I'
and, as we saw in Chapter 15, the vadance of the process becomes largcr attrl
larger with time.

Let us now calculate yo, the variance of this process about its mean. Assulllill!
stationadty, so that we know that the variance is constant (for l$11 < l), arrtl
setting 6 = 0 (to scale the process to one that has zero mean), we haver

fo:  Et l6] , - t  + e/) ' l  :  E@1yl- ,  + el  + 2$ry,-ra,)  = 61vo + ol

<rZ
7b= 

t  -  6r l
so that

We can also calculate the covariances ofyr about its mean:

(r6.24)

(r6.25)

(16.26]/

^rt :  EI l r  t ld. t l r t  -  
e,) l :  drTo =,  

* ,

Yz = EU,-z(61,!,-z * dt€,-t + 6,ll: O2tYo =

Similarly ttre covariance for a k-lag displacement is

yp: 6\vo = (16.27 )

The autocorelation function for AR(I) is thus panicularly simple-it begirr'

r setting 6 = o is equivalent to measuring yr in terms of deviations about its mean, since il .l
follows Eq. (16.22), then the sedes ir = y, - p follows the piocess y! = dr/!-r + 8,. The reader car
check to see that the result in Eq. (16.24) is also obtained (although with more alSebraic manipuln
tion) by calculating E[(y' - p)'] direcdy.



012

FIGURE 16.5
r0 |  i2 t3 14

FIGURE 16.5
Autocorrelation function foryl : .gyt 1+ 2 + Et.

aI po: l and then declines geometrically:

pr:#:  o\

Note that this process has an infnite memory. The current value of the process
depends on all past values, although the magnitude of this dependence declines
wirh time.a

An example of a first-order autoregressive process would be the process de_
fined by

yt=.9yFr+ 2+ et

(16.28)

(t6.291

( 16.30 )

The autocorielation function for this process is shown in Fig. 16.5, and a typical
realization is shown in Fig. 16.6. The realization differs from that ofa flrst_order
moving average process in that each observation is highly correlated with those
surrounding it, resulting in discernible overall up-and-down patterns.

Let us now look at the second-order autoregressive process AR(2):

l t :QJtr++2yF2+6+et

__-i] l_.: : .b:: .h. l^r i  
rhar i f  lhe AR{i).process is srarjondry, iL is equivatenr ro a movrng averaSe

process 01 inJinite orde'' (and thus with infinite memory). In fact, for any stationary auroregressrve
process oI any order there exists an equivalent moving average process oi infinite order (so that the
auloregressive pro<est is invedble inlo a moving average pro(essr. Simjlarly. il <eEtain ifive ibilit!
corlditions are met (and these will be discussed ln eppendii l6.l ), any finite'_order movrng average
process has an equivalent autoregressive process oflnfinite order. Foia more detailed discussion-of
mvertibifity, the reader is referred to G. E. p. Box and G. M. Jenkins, Tifie Seies Arlallsis \SanFrancisco: Holden-Day, 1970); C. Nelson, ,4pl lied_nme Seies Ahatysi, (San Francisco: ffolien_itay,
1973), chap. 3; or C. W. J. ctanger and p. Newbold, Forecastitlg-Ecotlo/hic Time Seies iNew york:
Academic. 19861.

FIGURE 16.6
Typical reallzation of the process yr = gyt 1 + 2 + {.t '

The process has mean

6
P-l-6r-6, ( r6.3r)

and a necessary condition for stationadty is that 0r * 9' ' ,l 
t

---iai 
n, .to* i"t.ulate the variances and covariances ofy' (wheny' is measurctl

in deviations form):

yo: Ely/6',-t t 6z!,-z I e)l : 6tvt + $272 + o!

"tr= EU,-t(6J,-t ! 6z!,-z t atll = Qtyo* 6zlr

^tz : Elltz(6Jt-r t 6z!,-z r e,ll: 6flt + 6z'lo

and in general, for k > 2'

^lr, = EU,-r(6ty,-r t Lzy'-z L e'11 : 6flrt' l 6z^lr'-z (16 15)

We can solve Eqs (16.32), (16.33)' and (16 34) simultaneously to get 70 it

terms of {1, 62, and o1. Equation ( I 6 33) can be rewritten as

6fl0"h:1-6,

Substituting Eq. (16.3a) into Eq (16'32) yields

/
/ ,": 6flr r 626flt * 61Yo + o?

t Necessary and sufncient conditions are presented in Appendix 16 l'

(16.12)

(  16.13 )

l r  6.)4)

\ r6.)6

(r6.)7 '



Now using Eq. (16.16) k)  c l i ln inatc 7r Sivcs us

h:fr ; .* ,+ s iye+ c!

which, after rearranging, yields

These equations can also be used to derive the autocorrelation function p1.
From Eqs. ( t6.14) and (r6.36),

P,:  
-0ft -Q2

pz= 6zt  
-4t  -  Q2

From Eq. (16.35) one can see that for k > 2,

Pp: 6lP.*- t  t  Qzp* z (16.4r)

l t=.9! t r - .7y,2* 2t  e,

and this can be used to calculate the autocorrelation function for k > 2.
_ A cgmmenr is in order regarding Eqs. (16.19) and (16.40), which are called
t}j:e Yuk-Walker equati|ns. Suppose we have the sample autocorrelation tunction
for a time series which we believe was generated bia second-order autoregres-
sive process. We could then measure p1 and p2 and iubstitute these numbers into
Eqs. (f6.39) and (I6.40). We would rhen have two algebraic equadons which
could be solved simultaneously for the two unknowns 6, ani Er. Thus, we
could use the Yule-Walker equations to obtain estimates oi the auroregressrve
parameters @, and $r.

Let us look at an example of a second-order autoregressive process:

(16.38)

(r6.Je)

(16.40)

(16.421

The autocorreladon function for this process is shown in Fig. 16.7. Note that it is
a sinusoidal function that is geometrically damped. As we will see from further
examples, autocorrelation functions for autoregressive processes (of order
greater than l) are tl?ically geometrically damped, oscillating, sinusoidal func_
ttons.

The reader should note that realizations of second- (and higher-) order autore-
gressrve 

-processes 
may or may not be cyclical, depending on the numerical

values of the paramercrs dr, d2, etc. Equation (f6.30), for eiample, is a second_

(1 +d,) [ (1 -6,)r-61]

FIGURE 16.7
Autocorrelat ion tunction foryr =.gyr 1 - .7yt-2 + 2 + et.

order difference equation inyr (with an additive error term). We saw in Chaplo'
ll that the values of dr and dz determine whether the solution to this differcttcc
equation is oscillalory.

16.2.2 T}re Partial Autocorrelation Function

one problem in constructing autoregressive models is identifying the ordar ol tlrc
underlying process. For moving average models this is less of a problem, sincc il
the process is of order 4 the sample autocorelations should all be close to zcrtt
for lags greater than 4. (Bartlett's formula provides approximate standard errors
for the autocorrelations, so that the order of a moving average process can l)c
determined from significance tests on the sample autocorrelations. ) Although
some information about the order of an autoregressive process can be obtaint(l
from the oscillatory behavior of the sample autocorrelation function, much morc
information can be obtained from the partial autocoftelation function.

To understand what the partial autocoffelation function is and how it can b('
used, let us flrst consider the covariances and autocorrelation function for th('
autoregressive process of order p. First, notice that the covariance with displacc-
ment k is determined from

I y*:  Ely,-r(6rh r t  6zl t  z * .  .*  6p! t  p+ e1) l  (16.4))



Now lct t ing k -  O, l ,  .  ,  l t ,  wa ol) t , l i r )  l l t ( ,  l i r l l rwirr l l  , t  1 I rli l l i 'rt.nr'e r.r;rr,rtions that can bc solvcd simultarrcously l)or yu, y,, .

fo:  6f l r  t  Qz"yz* .  . '  + $oy, + ol
I t :6t lo* 6zyr ' l  .  .  . !  6pfp-r

fp= 6. f lp- t  - f  dz" lp-zt .  . t  6ryo

For displacements k greater than p the covariances are determined from

tu:6f lp t*  6zfr  zt .  .*  QpYt-p

Pp : 60p t'f Qzpp-z * . . . -l 6t

For displacement k greater than p we have, from Eq. (16.45),

pr:6tprt t  6zprz1-.  .*  6ppt-p

Now by dividing the left-hand arrd right_hand sides of the equations in Eq.(\6.44) by lo,we can derive a set ofl equations that together determine the firstp values of the autocorelation functron:

h:61 + 6zh-r .  .  . t  6ppp-t

( t6.44)

(16.45)

(r6.46)

(16.47)/

The.equations in Eq. (16.46) are the.yule-Walker equati ons; if pt, p2, . . . ,ppar1]<n3wn, then rhe equations can be solved tor 6i,62, . . . ' , 'Op
Unfortunately, solution of the_yule-Walker equations as presented in Eq.(16.46) requires knowledge ofp, the order ofthe autoregressir.,e process. There_

fore, we solve the yule-Walker equatio ns for successive vaiues r/p. In other words,
suppose we begin by hlpothesizing that p = 1. Then Eqs. (16.46) boil down ropr.= @r or, using the sample autocorrelations, fr : S,. Thus, if the calculated
varue 0r is significantry different from zero, we know that the auroregressrve
process is at least ord.er l. Let us denote this value 6, by o, .
_. I"I lt us consider the hlpothesis that p : 2. fo aL tfris we jusr solve theYule-Wafker equations [Eq. lt6.46ll lor p = 2. Doing rhis gives us a new sel olesumates @1 and @2. I1 d, is signifcantly diflerent from zero we can conclude
tnat the process is at least order 2, while if @2 is approximately zcro, we can
conclude t}]al p : l. Let us denote the value $rby'ir-

J{e no}.y 
lepegt this process for successive valueJofp. For p : 3 we obtain an

esttmate ot 0r which we denote by a,, for p : 4 we obtain 64 which we denorc
by aa, etc. We call this series a1, dz, dt,. . . tlte partial auticorrelation lunctionand note that we can infer the order of the autoregressive process from its
behavior. In particular, if the true order of rhe pro..ri i, p, we should observe
thata.-gfor j>p.

-_ -T:, "" 
whether.a panicular a]-is zero, we can use the fact thar it is approxi_

mately norma y distribured, with mean zero and variance l/T. Hence we can

clrctk wlr t { l rcr ' l t  l$ st . r t ls t lc , r l ly  s lgnl l lcanl  ; l l ,  say,  thc 5 pcrccnt lcvel  l ry t lc t t , r . -
mit t i t tg wlr t ' t l rc l  l l  t 'xctuls 2/V7 ln l tagl i t l t ( lc ,

Example 16.'l Inventory Investment ln Chaprcr l5 wc cxanrirrcrl tlrt.
behavior ofreal nonfarm inventory investment over the period l9 52 tllr()lrgll
the second quarter of 1988. (The series itself is shown in Fig. 15.1. a||(l its
sample autocorrelation function is shown in Fig. 15.4.) We concludcd tlrar
the series is stationary because the sample autocorrelation function lalls to-
ward zero quickly as the number of lags increases.

Figure 16.8 shows the partial autocorrelation function for our invcrrtory
investment series. Observe that the partial autocorrelations become ckrsc lo
zero after about four lags. Since there are t46 data points in the sarnplc, .r
partial autocor^elation is statistically significant at the 5 percent level only il il
is larger in magnitu de thar. 2t\/ 146 = .166. There are no parrial autocorrcla -
tions beyond four lags that are this large. We can conclude from this that to
the extent that inventory investment follows an autoregressive process, tlrc
order of that process should not be greater than 4. We will take this inforn)a-
tion into account when we construct a time-series model for inventory i-lvcst-
ment in Chapter 19.

FIGURE 16.8
Inventory investmenti partial autocorre ation function.
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16.3 MIXED AUTOREGRESSIVE-MOVING AVERAGE
MODELS

Many stationary random processes cannot be modelcd as purcly moving avcrag('
or as purely autoregressive, since they have the qualities of both types of pro-
cesses. The logical extension of the models presented in the last two sections is
the mixed autoregfessive-moving average process of order (p, S). We denote this
process as ARMA(p, 4) and represent it by

l t= 6Jr-r  + . r  6ol t  p- l  6* et-Tf t r t  gq; , -q 116.48l

We assume that the process is stationary, so that its mean is constant over
time and is given by

t t :Qtt+."+gr1t+6

(r6.4e)

This gives a necessary condition for the stationarity of the process, that is,

Qt+Qz+. .+60<l ( r6.50)

Now let us consider the simplest mixed autoregressive-moving average pro-
cess, the process ARMA(1, l):

h=6Jt1*E*e,-01e1-1 (16.5r)

The variances and covariances of this process are determined jointly as follows
(setting 6 : 0):

yo= Ely l f tyFt *  e1 -  d1e1-1) l  :  El(6t ! , - r  t  e,  -  01e, 1)21

: 61yo - 2$fifilypp,-l + q3 + 01ol (16.52)

Since E(yr 1e,-1 ) : ol, we have

yo(r  -  d i )  :  o:( t  + 01 -  261et l

so that the variance is given by6

( r6.5r)

6 For l0r l  < l .

t+ ei-26.0,  _
Yo:----- : - - - , , - -q;r -o i

(r6.54l.

Wc can rrow dcle f l I l l t lc  lhc (r)vnr ln l lccs ?r ,  7r , , rccu rslvely:

6to - os!.

and similarly,

l t  -  F. l l r  tkbt . t ,  t  ' l  t ) r  -  dr t ) r  |  ) l  =

( l  -  d,d,  ) (or  -  dr  )  ,
= ---------.----- - (f;

I  -@t

h = E[h z(6] ,  t  - l  s ,  -  0ror,r  ) l  = 0r7r

f* :6f l r - t  k>2

(r6.55)

(r6,56)

( t6.57l .

(  16.58)

(16.5e)

The autocorrelation function, then' is given by

yt  ( l  -  dr0r)(Or -  dr)p,= 
i :  

_ l  
+E_ ,6pr

and for displacement k greater than 1,

Pp:6tPrt  k>2

Thus, the autocorrelation function begins at its shning value pr (whicn is a

function of both dr and dr ) and then decays geometrically ftom this starting

value. This reflects lhe fact that the moving average part of the process has a

memory of only one period.
Let us examine the autocorrelation functions of some typical ARMA( l, I )

Drocesses. The autoconelation function for the process

l t :  .8! t r  *  2 *  e1 -  '9e;1 (16.60)

is shown in Fig. 16.9. The starting value pi is negative, and the function decays

toward 0 from this value.

FIGURE 16.9
Autocorrelation functionlot h=.9y-l + 2 + er - 9€r r '



FIGURE 16.10
Autocorrelatiof lunction ior yr : -.8y1 1 + 2 + €r + .9s/ r.

The autocorrelation function for the process

( r6.61)

will exhibit oscillatory behavior, as shown in Fig. 16.10. Note that it oscillates
between positive and negative values, since dr is negative.

For higher-order processes, i.e., the general ARMA(p, 4) process, the vari-
ance, covadances. and autocorrelation function are solutions to difference equa-
tions that usually cannot be solved by inspection. It can be shown easily, how-
ever, that

I r :6f l*_rt  6z* z*.  . t  6p7t_p k>q+I (16.621

and thus pt= 6tp*- t t  6zpt-2r. .  - i  6ppr-p k>q+1 (16.63)

Note that 4 is the memory of the moving average pan of the process, so that for
k > q + | the autocorelation function (and covariances) exhibits the properties
of a purely autoregressive process.

This completes our discussion of models for stationary stochastic processes.
Before we turn to models for homogeneous nonstationary processes, it will be
useful to introduce a new notational device. Often it is convenient to wdte or
describe time lags using the backward shift operator B. T]ne operator B imposes a
one-period time lag each time it is applied to a variable. Thus, B€r : a;1, B2s, =
€rz, . . . , Bnq = eFn. Using this operator, we can now rewrite Eq. (16.1) for
the MA(q) process as

I r  = - .8 j1- t  I  2 i  e,  I  .9e,  I

h: t r t  ( l  -  9tB -  0zB2 - .  . -  |nBq)e, :  p,+ O(Ble,  (16.64)
2'* ,=

whcrc t  ( / t )  ( lcr lotcs n l t t r ly t t t t t t t la l  l i t t t t l l t t t l  o l  l l l ( '  o l ) ( ' r ' l lor  / : i  Sl l l l l lnr ly l i ( l '

(16.18) lbr  thc Al t (p)  t ) r ( )ccts catr  l )c rcwri t lcn as

( l  -  dr ts -  6tB'  -  ' -  4 ' , ' ts t '1y '  = 6 *  
' ' '  

(16 65)

or d(B)Y'  = 6 + e '  (16 66)

Finally, Eq. (16.48) for the ARMA(p' 4) process can be rcwriltcn as

(r-drB -  6z82- '  -  6rB' \y,= 6 + (1 -0$-0282- ' -  0"8 ' t \ t : '

(16.67)

d(B)/ ,=6+o(B)s '
(  l ( r .6t t )

16.4 IIOMOGENEOUS NONSTATIONARY PROCESSES:

ARIMA MODELS

In pracdce, many of the time series we will work with are nonstationary' so I lrnl

;.';;;;;;;;tt,i;t ofthe underlying stochastic process change- over timc lrr llris

;.".,1'or, *. .o""-ct models for th-ose nonstationary sedes which can bc rrans-

i"r-"0 i"i" *il"nary series by differencing one or more imes we say that vr is

homoqeneous nonstati,nary of order d lf

w, = Ld!'

is a stadonary series. Here A denotes differencing' i e"

!, : 2dw'

where ) is the summation operaror:

> w,= .) .  wi

(16.6e)

Ly,: Y, - Y,-, L'Y, = LYt - LYt-'

and so forth. A discussion of the autoregressive characteristics of homogencrttts

nonstationary series is given in Appendix 16 1

observethat i fwehaveasenes'w,,wecangetbacktoytbYsummingwla| \ ' | | , . | |
of d times. We wdte this as

(16.70)

s s ,,,.

(16.711

i.|6.7 2



and so lt)rth. Nolc tllat ll lc srrnt laliol| op(.tator X is iust lhe tnycrsr 0l tltc
diflercnce operator A, Sincc Ay, = lt - lt t, wc cat) lvritc thal A = I - B, an(l
thus>:A- ' : ( l *B) r .

When computing this sum for an actual time serics, we beqin with the firsl
observation on the original undifferenced series (yo) and then add successivc
values of the differenced sedes. Thus if w,: Ay1, we would compute y, from

l t :  )  w,: \ w2-f  -  .  .  + wl

(16.731

If1 had been differenced twice, so that ry, = L2y1, we could compute y, from w,
by summing wt twice-?

After we have differenced the series y, to produce the stationary senes wr, we
can model r, as an ARMA process . If w, : Ady,, and w, is an ARIvIA(p, ql process,
then we say that yt is an integrated autoregressive-moving average process of order lp,
d, ql, or simply ARIMA(p, d, q). We can write the equation for the process
ARIMA(p, d, ql, wing the backward shift operator, as

Zwi + Zwi=yo+ wr+

and

with d(B) = l-d,a*QaBt-.  . -  hpBP

1-qtB-0282-.  . -  qnBo

Z w,* Zw,=Lto.wt+w2+. .+wt

0(Bl:

( t  6.74)

( t6.751

(\6.761

(16.77 |

We call d(B) tbe autoreg/essive operator and 0(Bl the moving average operator,
Note that the mean of w,: Adyl is given by

Thus if 6 is not equal to O, the integrated series y, willhave ab:ullt-in deterministic
trend. Sxppose, for example, t}j'ar d : l and 6 ) 0. Then y, : )w, will grow
linearly over time. An example of such a series might be the one drawn in Fig.
16.ll. The series has a linear time trend that is independent of the random
disturbances, i.e., that is deterministic. The series drawn in Fig. 16.12, on the

7 Summing ,r the firsr time gives us Ay,:

l -d ' -62-" ' -6p

Ay'=2*,=

Now summing A, yields J4 i

r ,= >l{y)  = >(AJ,o + / r  *  wz+. .  .  + wt)  = la+ (AJ,o + ur)+ l / ryo + wt+ w,t  + .
+(A/o+rr+w2+., ,+W)

FIGURE 16.11
An AR MA process with d : 1

other hand, has an average slope that is increasing linearly in time This sctit s

might have been generated by a process that is ARIMA with d = 2 and 6 > 0

Thirs w,: A'zy, wii l have no dme trend, )wr: Ay, wil l have a l inear time trcrr(l '

and ))w, : y, will have a time trend whose rate of increase is constant

It is possitle dlat the stationary series w, will not be mixed, i e ' will h'

completely autoregressive or moving average. If w' is iust AR(p), then we call v/

an integrated autoregressive process of order (p, d), and' denote it as ARI(p' /'

0). If u; is just MA(4), then we call J'lr an integrated moving average proccss ttl

ofier ld, q\, and denote it as IMA(o, d, 4).

16.' SPECIFICATION OF ARIMA MODELS

We have seen that any homogeneous nonstationary time series can be modelcd

as an ARIMA process of order lp, d, ql. The practical problem is to choose thc

FIGURE 16.12
An ARIMA process with d = 2



r rx)$t  apl)r( ,pr i i r lc  v.r lU( 's lo l  / ,  , / ,  ar l t l  4,  t l tat  i : ' ,  lo Vtr l l ly  l l lc  n RIMA l t t r t t l t '1.  l l t i r
problem is part ly rcsolvcd by cxant in ing [x) t l l  t l ]c .1ulo(orrc lat i r t t t  l i t t tc l i t t t t  at t t l
the partial autocorrelation lunction lbr thc titnc scrics ol cotrccrtt.

Given a series yr that one would likc to rnodel, the first problcm is to dctcr'
mine the degree of homogeneity d, that is, the number of times that thc scrics
must be differenced to produce a stationary sedes. To do this, we make use of thc
fa(l rJTat the autocorrelation function pkfor a stati1nary series must approach 0 as thr
displacement k becomes large. To see why, consider a stationary ARMA process ol
order (p, q). We know that the autocorrelation function lor the moving average
part of this process becomes 0 for k > 4, as the process has a memory of only 4
periods. Thus, if yr is MA(4), then p1 : 0 for k > 4. we also know that the
autocorrelation function for the arloregressive part of a stationary ARMA process
is geometrically damped (see the examples in Figs. 16.5 to 16 7). Finally, the
autocorrelation function for the complete ARMA process has moving average
characteristics for the first 4 - p periods, but after that it is autoregressive in
character; i.e., it has an envelope that declines geometrically.

To specify d, first examine the autoconelation function of the original series y'
and determine whether it is stationary. If it is not, difference the seies and
examine the autocorrelation function for Ayr. Repeat this process until a value
for d is reached such that Ar'lr is stationary; i.e., the autocorrelation function goes
to 0 as k becomes large.8 One should also examine the time series itself; if it
appears to have an overall trend, it is probably not stationary.

After d is determined, one can work with the stationary series w, = Adyr and
examine both its autocorrelation function and its,partial autocoffelation func-
tion to determine possible specifications for p and 4. For low-order processes this
is not too difficult, since the autocorrelation functions for processes such as
AR(l) ,  AR(2),  MA(i) ,  MA(2),  and ARMA(1. I )  are easy to recognize and
distinguish from each other (see Figs. I6. t to I6. 1o)i However, if d:re time series
cannot be modeled as a low-order ARMA process, the specification of p and. q
becomes more difficult and requires close inspection of the full and partial auto-
correlation functions. For example, spikes in the autocorrelation function are
indicative of moving average terms, and the panial autocorrelation function can
be used for guidance in determining the order of the autoregressive portion of
the process.

If both the autoregressive and moving average pa s ofthe process are ofhigh
order, one may at best be able to make only a tentative guess for p and 4. As we
will see later, however, it is possible to check that guess after the parameters in
the ARMA(p, 4) model have been estimated. As a first step in this process of
diagnostic checking one can calculate the autocorrelation function for the residuals
of the estimated ARMA(p, 4) model and determine whether those residuals
appear to be white noise. If they do not, a new specification can be tried. This
process of diagnostic checking will be discussed in more detail in Chapter 17.

3 Rememberthat in practice we have no guarantee that the time seies being modeled is homoge-
neous nonstationary. Ifthe time sedes is ,torromogefieous nonstationary, no matter how many times
it was differenced, the autocorrelation function would not damp down to 0.

l];i";'ilil';;ci,i',.1'*."4'rqas-2 throtrglr te77-3 \5.o (lara.poirrrs) 'llrc

serics itsclf (not shown hcrc) nscs stcadily ovcr t:** 
"tttl::t]]]l 

that il is

:'j;';i",ad.;;*"".r, ,t 
" 

ttiftcrc,,ce,t scrics Ay, ttoes appcar ro l)(, srnli().

ary, as can be seen liom its sample autocorrclation functk)n in FiS l 6 l l  ' l  lr( '

;fiili;;i";crion has the damped sinusoidal shape of a sccond-orrlct'

;;;;;;;;;,' u"o t-'o 
'pitt"' 

ittdicative of movins ave ragc lcrms l ltt'

pal t ia lautocorelat ionfunct ion,showninFig. l6 ' l4.hassigni f icantspikcs. t l
laes I and 2, confirming u .".ondload.. auiregressive interpretation ol llrc

atif"*"..d *t*. we,ftgnt tn"s estimate an ARI(2' I' 0) model

Exampre 1s.2 l,rT :l l::':::1,::,,,ii,,.I:l'1,:;l'il*:ljliX*i;Illi:ii1ii"
( ion,  lc l  t ls  cxan) i t r ( '  a ( l t la cr ly s(  , , , , i , r , (  \  ' r . r , i ,

FIGURE 16.13
Newsprint pricei autocorrelallor i
lunction ot ayl

FIGURE'16,14
Newsprint Price: Partial autocor
relaiion function ol aY'



Example 16.3 Interegt Raies As a sccot)(i cxrnll)lc ol tn(xlcl sl)ccilic.r_
tion. go back to the series for thc j-month Trcasury bill ratc that wc cxarnincrl
in Chapter 15. After differencing the serics and examining the samplc auto-
correlation functions, we established that ir was probably flrst-order homogc_
neous nonstadonary, so that d equals I in a specification ofan ARIMA model.
Now if we examine the autocofelation function for Ay, in Fig. I5.tO in morc
detail, we see that it exhibits moving average properties that are first or
second order; i.e., it begins decaying after the point k : 2.

What about the autoregressive propenies of the interest rate series? For
,k > I none of the sample autocorrelations exceed .25 in magnitude, suggest_
ing that only a few autoregressive terms might suffice. llence, one could bigin
by estimadng an ARIMA(2, l, 2) model. On the orher hand, the sample
autocorrelations remain significantly different from zero even for large values
of k, suggesting that many more autoregressive terms may be necessary. We
explore this possibility in the next chapter, where we esdmate and compare
an ARIMA(2, t, 2) model, an ARIMA(I2, 1,2) model, and also ARIMA
models that include additional moving average terms.

Example 16.4 Hog Production A rhird example is the monthly series for
hog production which was also examined in the last chapter. We took a 12_
month difference of the series to eliminate seasonal cycies and then found
that differencing once was sufficient to ensure stationarity. The autocorrela_
tion function for (l - B) (l - Br2 )y, is shown again in Fig. 16.15. Observe thar

FIGURE 16,15
Monthly hog productionr autocorrelat ion function of (1 - BX1 - Br?)yr.

t l l ( '  sanl t ) l ( '  , t r t l tx . t t r te l . t l i r t t t  l t t t t t l l t t t t  l tcgl l ts t l t ' t l i t r l r lg l l l l l l l ( ' ( l ia l ( ' ly  i l l  t  I

anti It irs ltcaks xtttglt ly ttttcc cvcry thrcc l lcritxls We Ilt lght t lttts sLlsPccl l lr ir l

( l - lJ)(l - , l lrr )/, is autorcll lcssivc ol ttrdcr l, so t hat y, cottlt l  bcspccil icd by

thc modcl:

( l  -  d,B -  618'  -  drB')( l  -  Bl l t  -  Bt '1 lyt  = t \  (16 7t t )

Readers should not be disturbed at this point if they find this proccss ol In(xlcl

specification somewhat bewildering. we will go through several more cxatttPlt s

in Chapter 19.

APPENDIX 16.1 Stationarity, Invertibillty, and Homogeneity

We saw before that a necessary condition for an ARMA(p' 4) process to lrt'

stationary is that

6r+6r+. '+00<I (Al6.r)

we now present a necessary and sufficient condition for stationarity and use it to

demonstrate a particular property of homogeneous nonstatronary processes

Note that thi process ARMA(p, 4) can be written in the form

(1 -  d 'B 6pBPl! , :  ( r  -  0IB -  '  '  ' -  9oBqlel  \A16'21

6@1fl = qlBlet (Al6.r)

where B is the backward shi{t operator and it is the deviation of/r from its mean'

that is,

i t= h- l t

Now let us rewrite Eq. (,416.3) as

(A16.4)

f l  = 6-t@le@ltt (Ar6.5)

Ify, is a stationary process, then d-r(B) must converge This requires that thc

roots of tlre characteistic equation

d(B) = 0 (Ar 6.6)

al|be outside the unit circle.e Thus the solutions Br, . . . , Bp to Eq' (Al6'6) must

all be greater than I in magnirude.

e See Cox and Jenkins, op. cit., for a proof of this



Now suppose thar thc proccss ,r ln Eq. (A 16.3 ) ls nonstationary but ln such a
way that exacrly / of the roots of d(B) are on thc unit circle and rhe remaindcr
are outside the unit circle. This process can then be rewdtten in the form

<r.r(8)(I - Bldi, = o(Ble, (A16.7)

where or(B) is a stationary autoregressive operator of order p - d and the
operator (t - 8)d has d roots all equal to uniry. Bur I - B is a first-diference
operator, that is,

where u/r : Ad;[, is stationary, since it resulted from differencing y, d times. We
call !, homogeneous nonstationary with order d, and we note thelonclusion that
such a process has an autoregressive operator d(B) such that

(r  -  Bt i ,  = L&: j ,  _ i t_t

Thus Eq. (A16.7) can be rewritten as

a(Blldfl : 0(B)ey

a(Blw, :  0(Ble,

$(B)=a(Bl(r-Bld

0- ' (816@)1, :  e,

0(B):  |  -  qtB- 02P2 - .  . -  qr tBq: O

must all lie outside the unit circle; i.e., the solutions Br, 82,
(AI6.l3) must all be greater than I in absolute value.ro

where the roots of @(B) are all outside the unit circle.
Analogous to the stationarity condition for the autoregressive operator is the

invertibilitt condition for the moving average operator. We say that yr is invertible
if we can wdte Eq. (A16.3) as

(A16.8)

(A16.9)

(A 16.10)

(A16.11)

(Al6.r2)

(Al6. t3)

. , Bqlo Eq.

i.e., if the moving average pan of the ARMA process can be inverted into a
purely autoregressive process. Now, ify, is invertible, g r(B) must converge. This
requires that the roots of lhe chalacteristic e7uation

'o This,invenibility condirron is proved in detail in U. crenander and M. Rosenblaff, Stdttiri?/
Anal!_ses.of Slationary Tiftt? S?rier (New york: Wiley, 195 7). A bdef discussion is also presented in Box
and Jenkins. oD. cit-

As arr  cxnt l tp lc,  (o l ls ldcr thc l l rst-ordct  ntovlng

4 = l), whosc charactcrlstic cquatioll ls

I  -  0rB = Q

Then the invertibility condition becomes

and

D_ >l (A l6.  l5)

or ld, l< I

For the second-order moving average process (4 = 2) the characteristic c(lua-

tion is

l -0$-0282:O

o = -o, t !6+ +0,
" 20t

Both these values of B must be outside the unit circle, which implies that

avcr0Sc l ) Ioccss ( lhal  ls ,

(A r6,  r4)

(Al6.r6)

(Al6.  l7)

(A16. ln)

(Al6. le)

(A16.20)

02+0t<l

02-0t<l

lo,  <t

I

loJ

and

EXERCISES

16.l Calculate the covadances 7r for MA(l), the moving average process of ordcr l'

Determine the autocofielation function for this process Plot the autocorrelation functiotl

for the MA(3) process

/r :  1 + 6r *  8e1-1 -  ' 'et  2+ ' )eFt

16.2 What are the characteristics that one would expect of a realization of the followirrll

MA(l) process?

Y=l*ar* '8err

How would these characteristics differ from those of a realization of the following MA( I )

process?

! r=11'er- ,8err



l6.f  Show that thc covarian(cs 7r ol MA(4), t l lc nxrvhrg nvfr g( '  l rr(xt( l | i r i  ol  of( lcr 4, irr(,
given by

. + 04 Lqqlol .qI  l -0r + o$ur + '

[0

(
I

Pr= 1
t

k> q

and that the autocorrelation function for MA(4) is given by

. i  0o-k0q-0k+ o$k+t+.

r+e1+01+. ^2

k> q

,q

as in Eq. ( 16.17).
16.4 Derive the autocorrelation function for the ARMA(2, l) process

lt: 6lct * 6z!, z * et - qpt I

that is, determine h, p2, etc., in terms of 0r, 02, and dr. Draw this autocorrelation
tunction for dl : .6,62 = .j, and 0t = .9. Repeat for 0r : .6,62 = .3, and Ar = -.9.
Repeat for dr = .6,62 = -.3, and 0r : -.9.
16.5 Show that the aubcorrelation function for the general ARMA(p, 4) process is given
by

p*= 60r- t t  6zp*-z*.  . t6pp*-p kzq+l

as in Eq. (16.61).
16,6 Suppos€ that, is first-order homogeneous nonsiationary, and thar r{,, = Ayr can be
represented by the ARMA(I, l) model

wt: ,gwFt+e,- .6er l+l

Ifyr : 0 for t = O, what is E(/r) as a function of time?
16.7 Relate lhe summation opemtor to the backward shift operator by showing that

> = ( l  -  B)- t  = I  + B + 82 + Br + '

16.8 Refer to the time series for nonfarm inventory investment in Fig. 15.3, its sample
autocoffelation function in Fig, 15.4, and its partial autocorrelation function in Fig. 16.8.
Can you suggest one or more ARMA(p, q) processes that might have generated that time
series?

CHAPT'ER I I

ESTIMATING
AND CHECKING

TIME-SERIES MODELS

In this chapter we show how the parameters of an ARIMA model.are estimatc(l'

e, *. ,t uit see, if the model contains moving average terms, this involve s llrc

aDDlication of a nor inear esdmation method similar to that described in Chap-

iJ.'s. ;olio*i"g this we describe diagnostic checking ' a procedure used to tcsl

whether the m;del has been correctly specified (i e ' whether p' d' and 4 havc

been chosen correctly)
The material on eitimation is at a somewhat more advanced mathematical

level than that in the previous three chapters, so most of the details (which

i.ruotu..uui" notatio;) have been put in Appendix 17 l Still' a basic undcr-

;;;til ;i estimation can be obtained by reading through the chapter an(l

paying special attention to the examples'

r7.I MODBL ESTIMATION

Suppose a tentative specification of the time-sedes model has been made' i c '
uif".r of p, d, and 4 irave been chosen for the ARIMA model'r

Q$)Ldy, :  6plw, = 0(Blet (r7.  l  )

wi thd(B) :  I  -drB -  6z82 -  '  '  -  6pBp and' l (B) :1-  0$- 0zB2 -

l-ordr]io* .ui-ute, _urt be obtained for the p autoregressive paramerers dr ,

. . I , 6, and the 4 moving average parameters 0r ' ' 
gn ' As in the case of thc

I i\ assume for simplicity here that 6 = O that is' that w! is measured as a deviation fro ils

mean vaNe 

4gg



rcglc: is i ( )  n l (x lc l ,  wc cl r (x lse l ) .1ra| l l ( ' l ( ' !  vnlu( 's l l la l  wi l l  n l in i r l r iz( '  l l l ( 'sunr ol
squarcd diffcrcnccs bctwccr] thc actual timc scrics Wl : A'tr ar)d thc littcd linr(
series l?,.

To put this another way, rewrite Eq. (17.1) in terms of thc error tcrm scrics
^.2

e, = o- ' (B)o(B)wl l r7.2J

The objective in estimation is to find a set of autoregressive parameters (dr,
. . . , Opl and a set of moving average parameters (0r, . . ,0q) that minimize
the sum of sauared errors

s(d' ,  .  .  . ,6r '  0, . ,  .  .  . ,Oo) :2 
"?

We denote the sets of parameters that minimize Eq. (17.1) by 1$1,. . ., fi land
(4, , . . . ,00 ), and the residuals associated with these parameter values by 61, so
that i, - d '(B)6(B)wl. Thus,

s(d, , .  .  . ,Q0, 0, , .  -  . '65 =) e?

( t7.J l

l r7.4l

This estimation can be difficult if moving average terms are present, since then
Eq. (17.2) is nonlinear in the parameters. For this reason an iterative method of
nonlinear estimation must be used in the minimization of Eq- (I7.3). In addi-
tion, the flrst error term in the series, e1, depends on the past and unobservable
valueswo,w-t , .  , ,w-ra1 drtde9,6 r , .  . ,e q+1. Thus some method must
be used to initialize the series (i.e., choose numbers for these unobservable
values) before the nonlinear estimation process is applied.

After the parameters of the model have been estimated, a procedure of dl4r-
nostic checking is used to test whether the initial specification of the model was
correct. We would expect the residuals A,l : l, . . , T, to resemble closely the
lrue enors e,, which, by assumption, are uncorrelated. A diagnostic check is
used to test whether these residuals are indeed uncorrelated. If they are not, we
would want to respecifu the model (i.e., choose new values for p, d, and q),
estimate this new model, and perform another diagnostic check to determine if it
has been correctly specified. Once the model has been checked to satisfaction, it
can be used for forecasting future movements in the time series.

Let us examine the estimation procedure in more detail. We assume that a
total of T + d observations are available for the homogeneous nonstationary
time series of order d, y,, and we denote these observations as y-a+ r , . .,!0,!r,
. . , !r. After differencing this series d times. we obtain a stationary series wr
with T observationS r{/r , . . , w1. The problem is to estimate the parameters for
the ARMA(p, 4) model which has been specified for the series wl. To do this, we

2 lt should be more clear now why we were concerned with the invenibility ofd(-B) in Appendix
16.1.

t f t i l izc t l rc ln( l  f l f , l l  ( l ty  , lsst l l l l I l io l l )  l l l ( ' ( ' r lo l ' lcr ' l l ls  r : r ,  ,  r  1 i f | t ' ' t l l  mrut l lv

dist  t ihul( .1 a t  t t l  i t t t lc l t t ' t t t l t ' t  t l ,  wi l t t  t l t t i r t t  0, t t1( l  v, l l i , r l ) ( \ ' r r i  ' l l l t ' t t  l l rc rot tL l i t io dl

Iog l ik t l ihood l  nt ior l  assrt t i . r lu l  wi l l t  l l r t '  l tarart tc l t ' r  val t t t 's  ( r f1,  ,  < l t r ,01'

.  .  ,  0,1, o. ) is givcrt l tY

,  ,HUI ( r7.5)L- Tbgo"-

we say that L is ttre conditional logarithmic l ikelihood function becattsc l ltt 'sttttt

of squared errors S depends on the past and unobservable values wo' w t ' ' '
w p+r,  eo,a-r ,  .  . ,  € q+r.  This canbe seenby wri t ing the equat ion l i ) r  l l l ( '  l i fs l

obiervable error tern e1 in the expanded form of the ARMA modcl:

at : wt - 6two - 6zw-r $pw-p*r I 9fo -f + o,re qt t  \17.( t l

Setting aside for the moment the problem of determining thePast valucs ()l w'

and e,, n--q. (17.5) makes it clear that the maximum-likelihood estimate ol tlrt '

modei's pirameters is given by the minimization of the sum of squared rcsitltrals

S. Thus, under the assumption of normally distibuted errors, the maxinltrtrr-

likelihood estimate is the same as the least'squares estimate'

l7.l.l Initialization of the Series

Because the sum-of-squares funct ion s(dr,  .  .  . ,6r ,0r , .  ,04) and thus t l lc

likelihood function t are both conditional on the past unobservable valucs ol wr

and a, (wq, . ,w-p+\ and es, . . , e-a+r ), the least-squares estimates thal wc

obtain depend on the choice of values made for wo, w-1' , etc For this

reason we must choose initial staning values for wo, !') t, ' ',tobeusedinlltt '
minimization of the conditional sum-of-squares function'

The most common solution to this problem, and the one we recommend' is lo

set rto, . , w-p+1 z[Id e0, , € 4+r eQUdl to ttreft unmnditional expul(Ll

values. The unconditional expected values ofee, . . ' , E q+t are all0, and' il 6

0, the unconditional expected values of wo, . . . , r)t)-p+r xr€ 0 as well Tltis

solution will provide a reasonably good approximation to the correct proccdtrrc

if the actual values of $1 , . . , f, are not very close to I and if the numbcr rtl

observations T is large relative to p and 4.r

17.1,2 Nonlinear Estimation of Model Parameters

Our estimation problem is to find values of the parameters 6r, ' ' ' 6r' 0t '
. . , 04 that mi;imize the sumof squared errors S Assuming that the initialir'r'

r An alternative method of initializing the seies is to determine artlditiohal axpected values l:ot $,' ,
tha! is, values lhat rre conditional on the obseryed values of wr, , wt and thc

estirnated'vaiues of e,, . . , €r. This procedure is technically difficult and its benefits may nol b('

substantial. we recommend using the unconditional expected values fonvo, ' w-p*r' lhnl r\'

setting them equal to 0 (when 6 = 0).

s(0' ,  .



t ion ol l.hc scrics is [)ascd. as wc sull l lcst, on l l)c un(onditio|lnl cxl)(,(1(\l vnlt|cs
(whichare al l  0)  ofu/0, .  . ,w t , t t  and o11,.  . , r , ,11,(hct inrcbotrnt lsworr l r l
bel :1toT. Thus the problem is to pick S1 ,  .  .  . ,4r , ,4, , .  ,  ,1 i , lo mirr i rn izt '

ls , l6r , .  .  . ,5, ,  6, , .  .  . ,4n1 1t7.7)
T

c_\

Now suppose that the model was purely autoregressive, i.e., was of the form

O@)wr:  er

or wr= 6rwrr +.  .+ $rw,-r*  et

Observe that since Eq. (17.9) is of the general form

h= Fo* ptx l t+ p2x2t +.  .+ €r

(  17.8 )

(17.e)

(17.10)

it can be estimated simply as a linear regression. Although for a purely autore-
gressive model the estimation process is essentially a linear regression, the prob-
lem is more difflcult if the model contains a moving average component as well.
In that case we can reDresent the model as

q-t(Bl+(Blw :  et (17.r  1)

Clearly, this "regression equation" is nonlinear in the parameters and cannot be
estimated by a simple application of ordinary least squares. However, it can be
estimated by a general iterative nonlinear estimation routine. The process is
nearly identical to that discussed in Section 9.5 and used in standard nonlinear
regressron programs.

The nonlinear estimation process uses the first two terms in a Taylor series
expansion to lineadze Eq. (l7.ll) around an initial guess for the parameter
values. A linear regression is then performed on this linearized equation, least-
squares estimates of 6 , . . , 6r, 0, , . . . , 0, are obtained, and a new lineariza-
tion of Eq. (t 7.I 1) is made around these estimates. Again a linear regression is
performed, a second set of parameter estimates is obtained, and a new lineariza-
tion of Eq. (17.1t) is made around this second set of estimates. This process is
repeated iteratively until convergence occurs, i.e., until the estimates of the
parameters do not change after repeated iterations. In Appendix I7.1 we discuss
the actual mechanics of this process in detail.

17,1.3 Obtaining an Initial Guess for the Parameter Values
Before a nonlinear estimation can be performed on Eq. ( 17.11), an initial guess
must be made for the parameter values. Convergence of the estimation process

rnay l r t '  laslct  i l  t l lc  i r r i t ia l  gt tcss is a gtxxl  ot t t "  i  c  '  t  l t tsc lo t l l ( " ' l t l lc"  p ' l r ' l l l l ( { ( ' l

uor i , . i * .  O,r  the ol l rcr  l rarx l ,  i l  t l rc i r r i t i , r l  grrcss is vt ' ry 1xxrr ,  i l  is  In)ssi l ) le thnl  l l r ( '

i tcrat ivc l t r r t tcss l l l , ly  l l l r l  c( t t lv(  r l l (  ' l l  ' l l l---iha 
rontpl" auto(ilrrclatioll l irrrctiorr catr solncti l l les [rc ttscd ltt l tclp ptlxlttr ' t '

the init ial gucss. As otrc ntight cxpccl' thi-s Inay work l itr a lrw-trrrlcr l i l l lc-scrics

;;;; i:-;"i i t can bc vinually usclcss it thc modcl is at rl l  c()rnplicatc(l l ior

"t"-"fa,l i 
,tt.*ries w, is modeled as first-order autoregrcssivc' ollc l lcc(l orl ly

i l;;;;i l;;i. uutrl" otp' If that is' sav' 9' areasonable firstSuess li)f ([| is

;,;': '.;.-i, h;*ever, our model for w, is complex' this inspection Inclho(l is

unl'ik.ly to produce much useful information'_nu". ' i t * .cannotdetelminetheini t ia lguessbysimplyinspectulgac()r l ( ' l ( )

er;, we can stilt use the numerical valueifor the sample autocorrclatio. litttt -

,"; ;r"l;;t" i.ti iul g,t",, As we demonstrated in the last chaptcr' lhc

,ir**rJ autocorrelation function can be related to the theoretical paranrct('r

uuirr", ,t .o,rgtt u ,edes of equadons lf these equations are inverted' they ca n [x

used to solve for the parameter valu es in terms of the autocorre-lation f ncti1n ll\is

" 
r""ittif".*-a in'the case of a purely autoregressive model As an examplc'

consider the autoregressrve process of order p, and recal] flom Eq. (I6.47) tllal

,tra ain t"".a equaiion for its autocofelation function is given by

D* =61pt 1|62P+z- '  ' '6pP*p

Using the fact that pk = p-k,we can rewrite this equadon as a set of p simulta-

;;"r il;t equations ielating the parameters 6r, ' ' $o to p1' ' p':

h= 6r + 6zr l+.  t  6pPp-t

Pz: 6tPr *  4z + .  .+ 6ppp-a l r7. t2)

pp:6f ip- t*  6zpp_zl  -  .+ Qp

Using these Yule'Walker equations Io solve for the parameters dr ' ' @' tlr

i.r-! 
"ilf* "ti. 

ated values o{ the autocorrelation function' we arrive at ll.rc

i)i-wott r, ,rti*ot€J of the parameters These estimates can be used to providc a

;;;;";i; fiist gu.rs for the parameter values a This first guess is' however' ttl

iil;J;;l";, since the purely autoregressive model can be estimated bv ordi-

nary least squares.^--ii 
it. ti-._r.ries model contains a moving average part, the Yule-walkcr

ao,.rutioo, tttut relate the values of the autocorielation function to the values ol

;i;;;;;;; ;lii .tot t. linear' Recall, for example' that the process MA( I )

4 Wrir ing Eq. {17.t2) in matrix notat ion

p=po

we can 
folve 

for O as simply O = P-'P



has thc autocorrc lat ion l t r r r t l iorr

or={;h, 
't = I

l0 & > 1

Suppose in this example that pl : .4 in the sample autocorrelation function.
Then

( l7. l r )

Thus the fust estimate for dy is -2 or -.5. Since invertibilitv necessitates that
ldr < t, we select the value 0r,o = -.5 for our first guess in the nonlinear
estimation process. Unfortunately, the solution for the 0's in terms of the p's
becomes more difficult as the moving average order 4 becomes larger. In fact, to
get initial estimates for the model MA(4), it is necessary to solve 4 simultaneous
nonlinear equations. As a result, we often try several initial guesses and see
whether our estimates converge to the salne flnal parameter values.

One might ask why parameter values based on the Yule-Walker equations are
not sufficient for practical purposes. This would eliminate the use of the nonlin-
ear estimation method. One reason is that the sample autocorrelation function is
on\y an estimate of the actual autocorrelation function and thus is subject to
error. In fact, for small samples the sample autocoffelation function will be
biased (downward) from the true autocorrelation function. A second reason is
that the sample autocorrelation function does not contain as much information
as the actual time sedes. To use as much information as possible in the estima-
tion of the model's parameters, we calculate our final estimates based on the
actual time series.

r7.2 DIAGNOSTIC CHECKING

After a time-series model has been specified and its parameters have been esti-
mated, one must test whether the original specification was correct. This process
of diagnostic checking usually involves two steps. First, the autocorrelation
function for the simulated sedes (i.e., the time series generated by the model)
can be compared with the sample autocorrelation function of the original sedes.
If the two autocorrelation functions seem very different, some doubt may be cast
on the validity of the model and a respeciflcation may be in order. If the two
autocorrelation functions are not markedly different (and this will most often be
lhe case), one can analyze the residuals ol'the model.

Remember that we have assumed that the random error terms ar in the actual
process are normally distributed and. independent. Then if the model has been
specifled correctly, the residuals 6, should resemble a white noise process. In

- r ! \4-4p' ,
2Pt

- l  i  .6

.8

part ic lar ,  w( 'w(, t l l ( l  ( 'x l )c( l  l l t r  tcsl t l t ta l r  l t t  l t t '  t t ' :ur ly I t t t t t t t t ( l t l t l  wi l l l  c ' l ( l l

otlrcr, so lllal a sd,rlltlt ' d ttltttt,t t t ' lnl in lit,ttthrtt tl l (ltc rcsitlttals wottltl [rt'tloscloo

for displaccmcnt k > L
Recall that thc residuals ol ll lc rr){xlcl arc

t ,= A'@)6(alwt \ t7. t4)

Let us denote the sample autocorrelation function (for displaccmcnt t) ol tlrc

residuals as 4. It is calculated bi

\ : r

"  S:2
(17. l5)

As we mentioned in Chapter I5, a very convenient test, based on slalisti('rl

results obtained by Box and Pierce, can be applied to this sample autocorcla t i( )r I

function.5 If the model is correctly specified, then for large displacements k \for cxattl,'

ple, k > 5 for low-order models) lfta residual autocorrelati1ns tk ne thems(lv(

uncorrelated, normally distributed random variables with mean 0 and variancc I I l

where T is the number of observations in the time series This fact makcs it

possible to devise a simple diagnostic test.
Consider the statistic Q composed of the first K residual autocorrelatiorrs ir ,

(17.16)

This statistic is a sum of squared independent normal random variables, caclr

with mean O and vadance I /T and is therefore itself approximately distributcd as

chi-square (see Chapter 2). We say "approximately" because the first few aulo-

correlations t1, r2, €](,., will have a variance slightly less than 1/T and may

themselves be correlated. Box and Pierce demonstrate that the approximation is

quite close and that the statistic Q will be distdbuted as 1'?(.K - p - ql, i'e', chi

square with I( - p - q degrees of freedom.T Therefore, a statistical hypothcsis

teit of model accuracy can be performed by comparing the observed value of Q
with the appropriate points from a chi-square table.

5G.E.P.BoxandD.A.Pierce,"Distr ibutionofResidualAutocorelalonsinAutoiegrcssivc
I"t"giut"d i"i*i"g auerage Time se es Models," Jo,mal of the Afieicatx Statistical Assaciatiotl vtl'

65, December 1970.
6 For low-order models, ( equal to 15 or 20 is sufficient'
t i"-ftr"pri is *" tuia th;t ihe Q surisric is chi 

-square 
with r( degr€es. of {reedom Nol(

however, thit that was in reference to a test of rhe hypotheiis that the oriliftal data series \as oppos\\l

io ir," iiiiauir, to- our esrimated ARMA model) is whire noise. For the original dara sedes, I
q=o.

rS;?



Supposc, l i r r  cxart tp lc.  t l ln l  wc l ) rvc s l tcr . i l ic t l  , r t t  ARMA( l ,  |  )  t t lo( lc l  l i ) r  , l
series w,, that thc modcl has bccn cstimatcd, and that thc statistic Q is crlrulatc(l
to be 31.5 with 1( = 20. From a chi-squarc tablc wc scc tlrat thc 90 pcrccnt poinl
for K - p - q : 18 degrees of freedom is 26.0, and the 95 pcrccnt point is 28.9.
Thus the statistic Q is too large and we can reject the model. since thc probability
that the residuals are not white noise is at least 95 percent. Suppose that a new
model, ARMA(2, 2), is specified and estimated, and the statistic Q is now 22.0,
again with K: 20. From the chi-square table we see that the 90 percent point
for I6 degrees of freedom is 23.5. Thus we need not reject the hypothesis that thc
residuals are white, and this second model would be acceptable.s To determinc
the "best" specification, we might want to speciry and estimate some other
ARMA models to see whether a lower chi-square statistic can be obtained.

If the calculated value of Q is between the 90 and 95 percent points of the chi-
square tail, some doubt would be thrown on the model. At the very least a
second test should be applied. This second test would involve observing the
individual values of f1 for all k between, say, K/4 and K (in our example,
between k = 5 and k : 20). Since these ir are normal with variance 1/T, we can
test to see if they are all within two or three standard deviations from their
means of 0. If several of the 11 arclaryer tan 2/li (two standard deviations of
the normal variable), evidence exists that the model is misspecified. In addition
the evidence might suggest how the model should be respecified. For example, if
for an ARMA(2, I ) model l3 is very much larger dran 2/V I. this would indicate
that the model should be respecifled with the inclusion of a third-order moving
average term.

In constructing a time-series model one often estimates several alternative
specifications. It may be the case that two or more specifications pass the diag-
nostic checks described above. In this case additional tests must be used to
determine the "best" specification. One test is to compare the "simulated series"
(i.e., the time series generated by the model) for each speciflcation with the
original series. The specification that yields the smallest rms simulation error
would then be retained. However, unless one specification has a markedly lower
flns enor, we suggest retaining all the specifications (that pass the diagnostic
checks) and choosing among them based. on their forecasting performance. The
generation and evaluation offorecasts from a time-sedes model are discussed in
the next chapter.

Example 17.1 lnterest Rates In the last two chapters we began analyzing
a time series of monthly data for the interest rate on 3-month U.S. govern-
ment Treasury bills from the beginning of 1950 through June 1988, and a

3 Note that this chi-square test is a "weak" hypothesis test. A value of Q below the 90 percent
point on the chi-square distribution indicates that it is not necessary to iEecr the hypothesis that the
residuals aie white, since the probability thar rhe hyporhesis is true is less than 90 percent. It is thus
orrly an ifldirect test of the hypoth€sis rhar the residuals are not white.

t i  lc  s( , r i ( ,s 0l  r r ro| | l l t ly  ( l . t ln lor  LJ.S. l t t lg l l r rx l t tc l i t t l t  l I ( t t l l  l l lc  l r ( ' l l i l l l l i l lE ol

l9{r t )  thr , , l . ,g l t  l l te ct t t l  r t l  t967. l , ( ' l  t ls  l l ( lw csl i t l ln lc sol l lc  a l lcr t l ' l l iv( 'Al l lMA

motlcls lirr ihcsc two lirrrc sclics. Wc will trcgirl with ll lc irrtcl'csl rate sclics lrr

,rrJc. to allow litr lottg cltottglt Iags, wc will eslilnatc ll lodcls ttsitrg a s'rttrplt'

period of February 195 t to Junc 1988'

Review the sample autocorrelat ion funct ions in Figs l58'  l5 l0 '  nrr( l

I5.12 for the series undifferenced, diffcrenced once' and diffcrcnccd twi(r'

We explained that these autocorrelation functions suggest that the scrics is

flrst-oider homogeneous nonstationary, i'e', can be modeled as ARIMA(p' I '

Sj. St t ut *" aitiussed in Chapter 16, a specification for p and 4 is difficult lrr

i.te.-i.te from the sample autocorrelations A low-order model' such as

lnmetz, 1,2) may sufhce, but the fact that the sample autocorrelatiotls

ie-uin .lgnlfl.utttly different from zero even for large lags suggests that it may

be necessary to estimate models of much higher order'

we begin with a low-order specification and estimate an ARIMA(2' I' 2)

model. The result is

ARrMA(2, 1,2):

( I -  '78?,48 + .og44B2l Avr = 0115 + 0- 38998 -  3r7oB2)e1

(r7.17)

R'? :  .16l  A'@,361 :  121.)2

Note that while the R'z of this equation is low, this does not necessarily mean

that the speciflcation is a poor one. Remember that the R2 measures fit in

i.*t ot tit" dependent variable of the regression, which in this case is thc

monthly change ,fi-lhe interest rate. A more revealing statistic is the chi squarc'

which is eqiral to l2).j2. With 32 degrees of freedom (36 lags minus 4

estimated AR and MA parameters), this value is far above the critical 95

percent level. Thus one can conclude (with at least 95 percent c€rtainty) that

the residuals from the ARIMA(2' I, 2) model are autocorrelated' and higher-

order terms are needed for ,the model.
As a next step, we mcrease the number of parameters somewhat and

esdmate an ARIMA(4, 1, 4) model. The result is

ARIMA(4, 1,4):

(r  -  .25428 + .O9gtB2 -  ' )487 B1 -  )7588^l  Lvr

: .0106 + (1 + .16208 -  .09308'z -  .39498t -  '$87Bale:  ( r7 ' l '81

R2 = .2O4 X' ] (8,  16) = 85.12

While the chi-square statistic has dropped, it is sti highly significant' leading

us to reject this specification.



Wc now try specificatiotrs tlrat arc ol rnrrch higlrcr ordcr', bcginnitrl,; witlr
ARIMA(I2,  I ,9) :

ARIMA( 12, I ,9) :

(t + .07478 + .)60082 + .082lBr + .rc7J84 - .48228t + .276086

- .o272i7 - .t2otBs - 34298e + .t4flBt, - .26797.t\

+ .O8568t2| A/': .0106 + (l + .50728 + 347882 + .l4I4B1

+ .078684 -  . j93)Bt -  . t67686 -  . I1I8B7 -  . t89tB8 -  .28358e\e,
(17.19\

R2 = .296 X'zQl, )6\ : 26.79

The chi-square statistic has dropped considerably, to 26-70. However, there
:lre now only 15 degrees offreedom (36 lags minus 2 ] estimated parameters),
and this value is significant at the 95 percent level (though barely so). We
must now consider the possibility that we have included too many:par.rme-
ters; a soniewhat sparser specification that saves degrees of freedom might
still account for alrnost as much ofthe variation in the change in interest rates.

As a next step, we reduce the number of moving average terms, and
estimate an ARIMA(\2, 1, 3) model and an ARIMA(|2, 1, 2) model. The
results are shown below:

ARIMA( 12, I, ]):

(I + .28128 + .t13582 - .2649,.3 + .252684 - .14638' + .232t86

+ .1)9487 + .06758.8 - .2427 Be + .0049810 - .O56lBrt

+ .16498t21A/, = .0109 + (I + .71438 + .208482 - 31428)\et

(r7.20l'

R2 :  .289 xr(15,36]r  = i2.03

ARrMA( 12, t ,2) :

(r + .42IlB + .48lIB2 - .0928F + .211984 - .077785 + .25\286

+ .149087 + .I)40,8 - .t556Be - .0272Bt0 - .1l71Bu

+ .15598121Ay, = .OtOg + ( l  + .85628-r  .6257821e1 (r7.2rl

R2 = .294 X2(r4,36]r = 28.16

Of these, the ARIMA(I2. I, 2) model looks most promising. The chi-
square statistic is 28.16, which, with 36 - 14 : 22 degrees of fteedom, is
insignificant even at the 90 percent level. In practice, sets of ex post forecasls
should be produced using several altemative models so that their perfor-

Inancc can [r t ' r r r rup.r l t . r l .  Wt,wi l l  p l rx l r r te l i r rcr ls ls rrs i r r1,1 l l t f  (  12,  l ,2)  r r r rx l t . l
in thc ncxt  c l la l ) lcr .

Example 17.2 Hog Production Let us now turn to thc scrics lirr rnorrllrly
hog production. Recall from the last chapter that we suggcstcd that aIl al)l)r(,
priate model for the series might be

(I  -  drB -  6z8'-  d:Br)( l  -  Bl( I  -  Bt2)y = Er

This model was estimated over the period January 1960 to Decembcr l9()7,
with the results

( I  +.66818 + .2OI5B2 - . r298,Br)(r  -  B)( I  -  B12ly1 : .O0r4-r  t : '

\ t7 .22) '

R2 : .J65 X,O, 2Ol : 12.8)

The model is acceptable and will be used to forecast in the next chapter. Tll('
reader might wonder, however, whether another model specification mighl
provide a better fit to the data. Perhaps, for example, the addition of moving
average terms would improve the rnodel. To test this, we estimated a modcl
that includes first- and second-order moving average terms:

lr + .66268 + .j94582 - .Or79Bt)(I - Bl(t - Bt2)yt

:  .0015 + ( l  + .01688 -  .2 l9 lB2le1 l t7.2t)

R2: .J49 X2(5,20) = 13.01

Inclusion of the moving average terms results in a slightly lower value for thc
R2. Of greater importance, however, is the fact that the estimated values of 4' r .
Sr, and $1add up to a number greater than l. The result is a nonstationary
model for a series that we believe to be stationary. We would thus reject ris
model, and retain the model of Eq. (I7.22).

APPENDIX 17.1 Nonllnear Estimation of ARIMA Models

In this appendix we examine the iterative nonlinear estimation process in morc
detail. Let the vector B represent the p + q parameters (e, O) thal we wish to

)



cst imalc.  Wc wish (o ( l l (x)s( ' l l t t t l lcr i (n l  vnl l lcs l i ) r  p wl t ic l l  t t t i l t i t t t izc

s(F) = > to,lw, Fl '  = ) t", l '
l= l  r - l

r - r - r -  r - \ ra -4.- \vturt  -  tor .ot  z2 tPt  Pt.ut^t l

which can be rewritten as

(Al7.r)

The notation [sr] means that the errors are conditional on the values of w and p

Now expand [e1] in a Taylor series around some initial guess po for the paramc-

ter values:

^ ,  d[€, ]
-  Pio I  a l i  p 'Bo

*)T w,-  o,"r !p lu=^+ '+

P+q

[€,] = [a' w, Fo1 + ) (P'
i= l

Here p;,q is the value of the first guess for the parameter B;, and thus is the i th

component of the vector pe. We will approximate [Er] by the first ft^/o terms of

this Taylor series expansion. When we let

'  -  -  a le ' l
^it - a7i )B=p"

and [er.o] : [erlw, Fo]

it follows that (approximately)

(A17.2)

(Ar7 .3)

(.-t7.4)

(A17.5)

le!ol  + Z Pt axi t : B;x1., t le'f \Al7 6l

The left-hand side of Eq. (A17.6) can be thought of as a composite dependent

variable, which will have different numerical values for t = 1, 2, , ? (Note

that [ero] is just the value ofthe error term at time /, given the first guess po ) On

the riglrt-hand side of Eq. (Al7.6J arc p + 4 independent variables (multiplied

by thi p + 4 unknown parameters pi) as well as an additive error term lt should

be clear, then, that the parameters p; can be estimated from Eq' (A17 6) via a

linear regression. This ordinary least-squares regression is performed to produce

a new estimate of B, which we call P' .

Ncxl,  l ts i t l l l  , l  l l ( 'w l , ly l t t r  st ' t t t 's  t 'x l l ' t t t r i t t t t  r t l  lo l  l  ' t rot t t t t l  l l t is  f1 '  wt ' r t l r t ' r i t t  ' t

, ' , "*  ur . j t r i , , , t  o l  lk l .  (4t7.6) wlr i t l t  tat t  a lst t  l r t ' t 's l i t l ta lct l  l )y or( l i l l ' l ly  lc ' l \ l

s( l l rar( 's  to y ic l t l  a t r t 'w csl i r l ratc B,, .  l l t is  ptoccss is lc lx 'a lc( l  ovcr i l r l ( l  ovcl  ' r ! ' l l l l

unt i l

i to Fo '=o
(^ r7.7)

1-6,88'= T=dEw,

We call k the convergence number, i.e,, the numbcr of itcratiol.ts rctluircd ttttl i l

convergence o..rtt. po will then be our final estimate of the paramclcfs 4)r'

.  .  ,  dp and or,  '  on'-
The standard errors and I statistics for our parameter estimalcs wortltl lrt

calculated from the L?.tl linearization, as is tlTically done in a nonlincat cslittta-

tion procedure. An R2 can be calculated in the same way' and has sitll i l 'tt

relevance.---ihl." 
.u.t be no guarantee that the estimation process described abovc will

converge at all lo a flnal estimate of the parameters lt^is quite p^ossible for llrc

prof"tia diverge, i.e.,for the successive esdmates Bt' B'' ' ' B1 to be fartltct'

and fanher apait. Furthermore, it is also possible for multiple solutions ro exisl; ir)

if,ir art. .o"u..g"nce occurs, but different inilial guesses result in different fittal

estimates for orie or more of the parameters. whether or not divergercc ()r

;ultiple solutions occur would depend both on the. sp^ecification of the ARIMA

modei and on the data to which that specification is fitted'

ihould divergence occur, the model can be reestimated using different initial

gre;.s. e ,,e*"ittitial guess may result in convergence' although this need rtol

llways be the case. Ifitiurns out to be impossible to reach a convergent solutiotr'

a new model specifi.cation must be chosen'
Even if convergence occurs on the first try, it is wise to test for muhiPlc

,olrrio.r, by reest"imating the model with a different initial guess lf multiplc

Solut ionsdooccur, thef lnalest imateshouldbethatwhichgivesthesmal lcsl
value of the sum of squared errors. This estimate would corespond to the glol)nl

minimum ofthe sum of squared errors function, as opposed to one or more local

minima.

ExampleA17.1 Estimation oIARMA(I,1) As an example of the iterativc

nonlinear estimation method described above' let us see how the estimatiorr

oJ O, u.ta 0i in an ARMA(I, 1) model for a stationary series w' would be

carried out. Wdting the ARMA( 1' 1) model in terms of Eq' (17 1 I)' we havc

(At7.8)

This equation is nonlinear in gt, but it can be approximated by a Taylor serics



cxpansion. This involvcs calctl l .r l i l l l l  t l lc l irsl d('r ivativcs ol .:r witl l  r( 'sl)ccl lo

$1 and 01, and cvaluat in l l  them at lhc i r r i l . ia l  gucss <Dr.o at td 0r.0.

der I  B

ddr d," .d '"  I -0toB

de, I  B -  6 'o82
xz' :  -  

io, la," ,  "  
= -  

11 _ 6;uy 
* '

x2.t: 20t,ox2,t t - 01,ox2,,-z - 1,L r -l 6yotrt-z

we would begin the computation of x2.r by setting

(Al7.e)

(Al7. l0)

Numerical time sedes can be computed for 4,t and x2,, (they will be used to
perform the linear regression) over the time pedod / : 1 to T by expanding
Eqs. (A17.9) and (Af7.t0). Taking Eq. (Al7.9l for xtj, for example, we ge1

x1,,  = 01,ex. !  r+ wr- l (Al7. l1)

Setting wo : Xt.o : O, we can solve Eq. (A17.11) repeatedly to generate a

series for xr !. The first value xr.r would be equal to 0, the second value xr.2

would equal lvr, the third valuexr,r would equal 01.6w1 r w2, etc. The same
thing is done for x2,,by expanding Eq. (A17.10):

(Ar7.r2)

XZ.t = Xt,o = Wo = l,t j : 0 (Ar7. l l )

Thus, the first value x2.r would just be equal to 0, while x2.2 would be equal to
-wy, X23 would be equal to 2gr,ox2,2 - w2 + ft,ow\, etc.

Finally, a time series must also be computed for er,o for l ranging from I to
?. This is done simply by writing

I  -  6r .o8
Eto= 

r-  otoB 
wL (4.17.14)

and using the series for wl to obtain the series for e,,6. Note that this is just a
series of residuals based on the first-guess estimates {1.6 and 01.e.

We are now ready to perform a linear regression. Equation (A17.6) be-
comes

x,,s I $y,sxr,, I qyoXz.,t: $1x1,' I 0621 * e1 (Ar7.15)

Equation (A17.15 ) is a linear regression equation, and ordinary least squares
can be used to estimate 6r and 01 . If these estimates of dr and 01 are signifl-
cantly different from the first guesses {1.6 and 01,e, they are used as traw first

gttcsscs, attt l l l le ( ',1/i l1' l 'r( '( l 'JJ ls rrTrr'trtt 'r l  'r l l  lrvcr agallt '  t() ylclt l l l t 'w csli l l lnles

i i r r , l r ,  a ' rd 1)1.  Agair t ,  i l  l l tc  ch.rr tgc is s ig l l i l icant,  thcl l  lhc proccss is tc l rcalct l '

With luck,  thc csl i r r tatcs l i r r  { r1 artd 01 wi l l  convcrgc al icr  a lcw i tcr ' t t iorrs '  bt l l

we havc tt0 Suarantcc ol this, nor. in fact, do wc cvclt lravc a l lrraral]lcc tl lnl

the process wil l convcrge at all.

EXERCISES
l7,I Following the example in Appendix 17.1, show how the estimation oI d | '  

(,) '  'rr rr I
g, for an ARMA(2, l) model would be carried out Go through the stcps of thc lnyl()t

series expan:ion, show how the data series are geneiated, and indicate how thc lirrc'rl

regressions are performed
l7-.2 Suppose that an ARMA(O, 2) model has been estimated for a time serics lhat lt'rs

been generated by an ARMA(1,2) process.

1af no* *ouid the diagnostic test indicate that the model has been misspccific(l/

{ri What will the residual autocorrelations lr look like? What characteristics ol th(\(

autocofelations might indicate that ARMA(1, 2) is a more co(ect specificatiorl?

l7.l Repeat Exercise 17.2 for an ARMA(o, 2) model estimated for a time series th'l lr 'r\

be€n generated by an ARMA(2, 3) process

l7.4 iuppose thit a particular homogeneous nonstationary time sedes yl can bc mo(lclc(l

as a stochastic process that is ARIMA(1, 1, l).
(a) How would you calculate the sample autocorrelation functions for y/ atl{i ils

differences and use them to vedfy that ARIMA(1, l, l) is indeed a proper specilicnliorr

fot yt?
(r) Suppose you did not have access to a computer package for nonlinear estimallotr'

How wouid you use a linear regression to obta:l:. approximate estimates of the para me lcr\ irr

the model? (Explain th€ steps involved clearly.)
I7.5 Using data for the }-month Treasury bil l  rate (Table 17 l on pages 514-515) (()t

some other short-term interest rate), specify and estimate alternative models to thosc irr

Example 17.1. Experiment with higher-order ARIMA(P, l, 4) models, and also wil l l

ARIMA( p, 2. 4 ) models. How sensitive are your estimates to the choice of sample pcrit xl 
"



TABLE 17.1
THREE.MONTH TREASURY BILL RATE

3-month rate

1950.01
1950.07
1951.01
1951.07
1952.01
1952.O7
1953.01
1953.07
1954.01
'1954.07
1955.01
1955.07
1956.01
1956.07
1957.01
1957.07
1958.01
1958.07
1959 01
1959.07
1960.01
1960.07
1961.01
1961.07
1962.01
1962.07
1963.01
'1963.07
'1964.01
1964.07
1965.01
1965.07
1966.01
1966.07
1967.01
1967.07
1968.01
1968.07
1969.01
1969.07
1970.01
1970.07
'1971.01
1971.07
1972.01
1972.07
1973.01
1973.07

1 .07

1.34

1.81

2.04
1.18

1.23
1.60
2.41
2.31
3.11
3.16
2.44

2.82
3.20
4.35
2.30
2.24
2.24
2.72
2.92
2.91
3.18
3.52
3.46
3.81
3.84
4.59
4.80
4.72
4.21
5.00

7.OO
7.47

4.44
5.40
3.38
3.98
5.41
8.01

1.20
1.36
1.62
1.54
1.83
1.97
2.04
.97
.92

1.17
1.90

2.60
3.11
3.37
1.54

2.70
3.38
3.96
2.30

2.39
2.73
2.82
2.92
3.32
3.53
3.50
3.93
3.84
4.65
4.96

4.27
498
5.09
6.12
6.98
7.13
6.41
3.70
4.94
3.20
4.02
5.60
8.67

1.12
1.30
1.40
1 .63
1.59
1.71
2.01
1.79
1.03
1.01
1.28
2.07
2.25
2.84
3.08

1.30
2.44
2.80
4.04
3.31
2.48
2.39
2.2A
2.72
2.78
2.89
3.38
3.54
3.53
3.93
3.92
4.59
5.37
4.26
4.42
5.17
5.19
6.02
7.09
6.63

3.38
4.69

6.09
8.29

1 15
1 31
1.47
154
1.57
1.74

1.38
.96
.98

1.59
2.23
2.60
2.90
3.06
3.58
1.13
263
2.95
405

2.30
2.29
2.30
2.73
2.74
2.SO

3.93
4.03
4.62
5.35
3.84
4.56
5.38
5.35
6.11
7.00

5.91
3.86
4.46
3.71
4.74
6.26
7.22

1.16
1.36

1.67

2.16
1.44

.93

2.61
2.99
3.06
3.29
.91

2.67
2.84
4.15
3.29
2.37
2.29
2.48
2.68
2.83
2.92
3.52
3.48
364
3.89
4.09
4.64
5.32
3.60
4.73
566

6.04
7.24
6.84
5.28
4.14
4.22
3.69
4.78

7.83

1 l5
134
1.45

1.70
2.09

1.60
.64

2.54
2.49
3.21
3.29
3.04
.83

2.77
3.21
4.49
2.46
2.25
2.33
2.60
2.73
2.87
2.99
3.52
3.48
3.84
380
4.38
4.50
4.96

4.97
5.52
5.96
6.44
7.82

4.87

4.01
3.91
5.07
7.19

TABLE 17..I
IHREE-MONll l  l l i f  ASUl lY l ] l l  I  nAl f  (Orr l r r r i ( r ( / )

3-month rate

1974.0'1 7 77
197 4.07 7.55
1975 01 6.26
1975.07 613
1976.01 4.87
'1976.07 5.23
1977.01 4.62
1977.07 5.19
1978.01 6.44
1978.07 7.01
1979.01 9.35
1979.07 9.24
1980.01 12.00
'1980.07 8.06
1981.01 15.02
1981.07 14.95
1982.01 12.28
1982.01 11.35
1983 01 7.86
1983.07 9.08
1984.01 8.90
1984.07 10.12
1985.01 7.76
1985.07 7.08
1986.01 7.07
1986.07 5.83
1987.01 5.43
1987.07 5.69
1988.01 5.81

7.12 7 96
I96 8.06
5.50 5.49
6.44 6.42
4.88 5.00
514 5.08
4.67 4 60
5.49 5.81
6 4s 6.29
7.08 7.85
9.32 9.48
9.52 10.26

12.86 15.20
9.13 10.27

14.75 13.36
15.51 14.70
13.48 12.68
8.68 7 .52
8.11 8.35
9.34 9.00
9.09 9.52

10.47 10.37
8.27 8.52
7.14 7.10
7.06 6 56
5.53 5.21
5.59 5.59
6.04 6.40
5.66 5.70

8.33 823 790
7.46 7.47 7.15
5 61 52s 5.34
5.96 5.48 5 44
4.A6 5.20 5.41
492 4.75 4.35
454 4 96 502
6.16 6.10 6 07
6.29 6.41 6.73
7 39 164 9.08
9.46 9.61 I06

'1 1 .70 11.79 1204
13.20 8.58 7.O7
11 62 13 73 15.49
13.69 16.30 14 73
13.54 10.86 10.85
12.70 12.09 12.47
7.71 8.07 7.94
8.21 819 8.79
8.64 8.76 I00
9.69 9.83 9.87
9.74 8.61 8.06
7.95 7.48 6.95
7.16 7.24 7.10
6.06 6.15 6.21
5.18 5.35 5.53
5.64 5.66 5.67
6.13 5.69 5,77
5.91 6.26 6.46

Sou/cer Citibase, Series FYGM3



CHAPTER I O

FORECASTING WTTH
TIME-SERIES MODELS

once a time-series model has been estimated and checked, it can be used for
forecasting. In this chapter we explain how to use the general ARIMA model

6$)AdY: o(B)et (18.1)

to obtain a forecast ofl,, for period T+ / (that is, I periods ahead,with/> I). we
denote this forecast by ir(1), and call it the origin-T forecast for lead time l. We
assume for now that the true parameters of the model are known and examine
the properties both of the forecast and of the forecast error. Later we will see
how imperfect knowledge of the true parameter values increases the forecast
error.

We begin this chapter by discussing the basis for making forecasts, after which
we go through the steps of actually computing a forecast. Then we discuss the
nature of forecast errors, showing how forecast confidence intervals can be
computed. In order to give the reader an understanding of the characteristics of
time-series forecasts, we examine in detail the properties ofthe forecasts of some
simple ARIMA models. Finally, we present two examples in which we generate
forecasts for an interest rate and for hog production using the time-series models
estimated at the end of the last chaDter.

I8.I MINIMUM MEAN SQUARE ERROR FORECAST

Our objective in forecasting is to predict future values of a time series subject to
as little error as possible. For this reason we consider the optimum forecast to be

516

t l lnt l i)r(,(,, lsl WIrlr ' lr l tAr lht' tninintttt ttttrttt s4tttt tt . l ttrt ' l tS/ r:rrrrr, SlttCc l ltt '  l i l lct Ast

crrtrr is a rattrlottt v,rt i.rblt ' , wt' ttt i t l i l l t izc l l l t: txl ltt ld vdltlc ' l 'htls wc wirl l lo

ch<xrsc rrur l irrccast l1(/) K) lhat /] l/ i(/) l -- l l ly| t - !r(l l l ' \  is rrinimized w('

show that this lorccast is givcn by tl la condil ional expaclalion of /rr r, that is' lry

! , ( l l  = E(Y,* lYr '  Y,- , , ,  ! t ) ( l l { .2)

To prove that the minimum mean square error forecast is given by Eq ( |8 2)'

webeginby rewri t ing the ARIMA model in Eq (18. I )above as

0(B)( I  -  B\dY, :  O(Bley

since A : I - B, as explained in chapter 16. Therefore,

!r+t 
: {oer+t * ry'lerai-1 *

: *osr+l * {f-r+t-t  I

I $p7 * r!1aP7-1 'l'

*  { t-r€r+t t QtneT- '  (18.5 )

(  18.3 )

(  18.6 )

to minimize the mean

/,  = d- ' (B)( I  -  B)-d|@let:  t@le' { iet j  (  18.4)

Here we have expressed the ARIMA model as a purely moving average proccss

of infinite order.t Then

_\t'Z)

In Eq. (18.5) we have divided the infinite sum into two parts, the second part

beginning with the term {rr€r and thus describing information up to and includ-

ing dme period T'
bf .o.tit. the forecast ir(l) can be based or y on information available up ttr

time T. Our objective is to compare this forecast with the actual value /r+r as

expressed in Eq. (1S.5). To do so, we write the forecast as a weighted sum ol

those error tefis which we can estimate, namely, er, lr_t, ' Then' thc

desired forecast is

!,(tl *t1"r-t

where the weights ry'i are to be chosen optimally so as

_\-Z)

t Any ARIMA process can be equivalently expressed as purely moving average or as purcly

autoregiessive. We could have, for example, rewrittentq 
-( 

18 3 ) as 0(a)(l ' Bldg- | \B)y = et, ol

€lBly,-= e,. This is a purely auloregressive process of infinite ordel- The rcason that we do nol

onginally specify the ARIMA procesi as purely autoregressive or purely moving average (of infinilc

order) is that we would then have an infinite number of parameten to estimate



sq Lt a rc .lbru:Llsl c, '/.d/. Wc cnn |low wli lc nIl cxl)rcssion loI l lrc l i)rc(ast clr 'or,.,r(/),
using Eqs. ( I8.5) and (18.6):

er( l )  = lut  -  l r l l l  = {eer*1 *  r f i ler* / . -1 + + 0/ . rer |

*  )  t { , , - ,  - { f ,1)e7 i  (18.7)

Since by assumption E(s;e;) = O for i + j, the mean square forecast error is

Elei(t) l  :(+6 +,/, i  + .  .  .  +,! l- , lo!* ) (u,-,  - ,1, i*,1,o1 (18.s)
j=o

Clearly this expression is minimized by setting the "optimum" weights {,i*/
equal to the true weights {1*j, forJ = 0, 1, . . But then our optimurn forecast
ir(/) is just the conditional expectation of /?+1. This can be seen by taking the
conditional expectation of.r,r+1 in Eq. ( 18.5 ). The expected values of er1i, . ,
€711ilr€all 0, while the expected values ofer, er t,. , arejust the residuals
from the estimated eouation. Thus we have

This provides the basic principle for calculating forecasts from our ARIMA
models. Now we apply this pdnciple to the actual computation of forecasts.

I8.2 COMPUTING A FORECAST

The computation of the forecast ir(/) can be done recursively using the esti-
mated ARIMA model. This involves flrst computing a forecast one period ahead,
using this forecast to compute a forecast two periods ahead, and continuing until
the lperiod forecast has been reached. Let us write the ARIMA(p, d, 4) model as

wr:6twt-r  +.  .+ $rw;o *  e,  -  0ror-r  -  -  1qs,-q + 6 ( t8. t0)

sr.
i / t l= >h ; i7- '= E(Yt t lY, . . ' t t \

!, : 2dwt

(18.e)

with ( r8.11)

To compute the forecast lr(/), we begin by computing the one-period forecast ol
w, fr'r(l\. To do so, we write Eq. (18.I0) with the time period modified:

wr+t:6rwr + '  '+ Qpwr-tr  I  Er+r-  9pr 0qe7 qa1 l6

( r8.12)

Wc lhe| |  cnl(ul , r l ( '0 l r r  l i r r ( ' (nsl  O/ (  |  )  t ty lakirrB tht '  t r r t t t l l l lot t . t l  t 'xPct lct l  val t t t ' t t l

wr ' ,  I  in l i ( | .  (  I t t .  |  2) :

t i t l ( lJ  = I i \w1' ,1r , , .  . )  = (hf l r  I  1 $t ,w, t " r

-  0,6,  -  '  dr i r  , r+r + 6 (18. l  ] )

where the 6r, 6r-i, etc., are observed residuals Note that the expcctcd valtr(' ol

e711 is 0. Now using the one-period forecast ri 'r(l), we can obtain the lwo'pt:riol

forecast Or(2):

titr(2| : Elwr+zlwr, . .l

= drf , r ( t )  + O2w.t  + '  ' t  Qpwr,p*,  -  0z6r- '  ' -  0q67 q*2'+ 6

( 18. l4)

The two-period forecast is then used to produce the three-period forecast, and so

on, until the 1-period forecast r?r(/) is reached:

( r8.  l5)

Note that if I > p and / > 4, then this forecast will be

titr(ll: $1ttu7( - l) + '+ Optirr(l - p) (18.16)

Once the differenced se es w, has been forecasted, a forecast can be obtainc(l

for the original series y, simply by applying the summation operation to wr, thal

is, by summing w, d times. Suppose, for example, that d : 1. Then our '/-periotl
forecast ofr/ would be given bY

lr l t l  = yr+ f r (1)  + t | rQl  + ' ' '  + l i t r ( l (18. l7)

On the other hand, if the model fory! were ARIMA with d = 2, then the l-periql

forecast l7(/) would be given bY

9r(ll:y, + [a.yr + r?r(1)] + [Ay1 + fr(l) + 1i/rl2)l + " '

+ [A/r  + f r ( l )  + "  '+ f r ( / ) ]

:  yrr  I  L,y7 + t t t r1t)  + l l -  I l t tur?l  + '  + Or( l )  (18.18)

Here the summation operator has been applied twice The procedure is similar

for larger values of d.



I8.3 THE FORECAST ERROR

As we saw before, if we express the ARIMA model as a purcly moving .tv('r.ttlc
process of infinite order, the forecast error / periods ahead is given by

erll) = yr*t - lr(l l  : rf ieerll * rfr1er11-1 *

Remember that the weights {j are determined from

ELel\ t ) l  = ( , rd +,1, i  + .  -Qi t )q l

* ty ' r  rer*r  (18.19)

0(B) :  d- I (B)(1 -  Bl  de@) ( r8.20)

We assume that the model parameters dr,  .  . ,$oand , .  . ,d,areknown
exactly and therefore the weights {o, rlt,, . . . , are also known exactly. In this
case t}j,e variance of the forecast error is given by

( 18.2 1)

Therefore, the algebraic form for the forecast error variance depends on the
particular ARIMA speciflcation that has been adopted. In the next section we
examine the forecast error in more detail for some simple ARIMA models. For
now, however, there are two things that the reader should observe.

First, we know from the deflnition of ll,r (B) above that ll,o = 1.'z Therefore, for
ar?y ARIMA specification, we know that the forecast error one period ahead. is jttst

e1( 1) = eral \r8.221

and this has variance o!. Thus the forecast error vatiance one period ahead is the
variance of the error term.

Second, we must keep in mind the fact that our calculation of the forecast
error was based on the assumption that we knew the parameter values f1, . . ,
$, and, 01, . , 0n wlt]:l certainty. But the parameters are estimated via a
nonlinear least-squares regression, and the estimates are random variables with
means and vadances. Therefore t}j.e actual forccasl error variance will be larger
than the variance calculated above. To determine exactly how much larger, we
must know the variances of the parameter estimates in the ARIMA model.
Because the parameters are estimated nol inearly, however, the best we could
do. in fact. would be to calculate standard errors based or.the last iteration of t}jre
nonlinear estimation procedure.

The difflculty here is that the standard errors for the linearization in the Iast
(or any particular) iteration are not "true" estimates of the actual standard effors
for the parameter values. As a practical matter, one has the choice of using these
standard errors in the calculation of the forecast eror variance or ignoring them
and simply calculating the forecast error vadance based on Eq. (I8.21) above.

'z Remember that the ARIMA model (with 0 mean) isu,,=orq t+. .  .+Oe|\ e+ et- 0ft1 t-
' . - oa€!-a. The or y unlagSed term on the dght-hand side is e, (which has a weight of l). Thus 

'y'omust equal I  in Eq. (18.4).

42- (  11.2 
' )T-p-q

Here T - p - 4 is the number of degrees of freedom in-the linear regressiorr' Wc

seefromEq. (18.2I)andthefactthat{-,o = | that a confdence interval of nsldtnliti l

deviations aiound a forecast / periods ahead would be given by

c,=ir{ !n( l (18.24)

I8,4 FORECAST CONFIDENCE INTERVALS

Bcl i r rc wc catt  calct t la lc a t r r t t l i t l t ' t l t t '  intcrval  l i r t  t t t t t  l i r t t 'cast '  wc l lc f ( l  n l l

" r i in lot"  
a" ' l i ) r  t l lc  v i l r ia l lcc ol  t l tc  d is l t l rbat tcc lcrr l  Tl l is  csl in- la lc wot l l ( l  loFi-

cal ly bc bascd (nlr  l l lc  strrrr  ur  , ,1, ,ot" t t  rcsi t luols S(<i1 '  ' ' i ' , "  i ' '  
t i '1

oliuinaa uit", f inal cstimatcs of the paramctcrs havc bcctt obtairrcd:

As expected, this interval gets larger as the lead time I becomes larger' althotrglt

the exact pattern depends on the weights Uj'
Forecaits ofy,, together with a typical 66 percent confidence intenal ( : l)

and 95 percent confi lence interval (n = 2), are shown for a-hypothetical AIlMA

model id = 0) in Fig. 18.1. Note that the forecasts (denoted by crosses) firsl afc

increusing bui then decline to the constant mean level of the series Wc ktrow

that the firecast will approach the mean of the sedes as the lead time I becotrtcs

FIGTJRE 18.1
ioiecasts ano confidence interva s lor a statlonary ARMA process

S:2

*'i,!i)'' ' e.



largc bccaLrst ' l l rc plotcss is s la l iorrary. ' l l tc  urrr l i r icr t tc i r r tc lvals,  o l  urrr lsr ' ,  i r r
crcasc as thc Ii)rccast lcad tirrrc tlccorncs l()rrut'r',

I8.' PROPERTIES OF ARIMA FORECASTS

We now examine the properties of the forecasts derived from some simplc
ARIMA models. In all the cases that follow we assume that the parameters of thc
particular ARIMA model are known with certainty.

18.5.1 The AR(l) Process

Let us begin with the stationary first-order autoregressive process, AR(l ):

! t :6J,  I  + E + er

For this process the one-period forecast is

(18.25)

i r ! )  :  E(yr*r lyr ' .  .  . , t r l  :  dr l r  *  6

j rQl :  6Jr0l  + 6:  61yr + (dr + l )E

(18.26)

(r8.27)

(  r  8.2e)

Similarly,

And the /-period forecast is

(18.28)

Note that in the limit as / becomes large. the forecast converges to the value

g, l t l  = 6\y,  + (df '+ 6 ' l '+.  . .  + d1 + l )a

\r1gtt l :  ai oi = t 'r :  r,

We see, then, that the forecast tends to the mean of the series as / becomes large
[recall Eq. (16.2]) for the mean of the AR(l) processl. Of course this is not
surprising, since the series is stationary. As the lead time / becomes very large,
there is essentially no useful information in recent values of the time series, y1,
t r-r, etc., that can be used to adjust the forecast away from the mean value. Thus
for a very large lead time the best forecast is the stationary mean of the series.

Let us now calculate the forecast error for this Drocess. The forecast error /
periods ahead is given by

er]l : rr*t - jr(ll = 6Jr*t-r * 6 + er17 - j1(/)

:  Q1!r* t - ,  + (dr + l )D t  e7*1 ' l  $p7*1 1- j7Q)

:6\ t r+ (6 ' ; ,  + A' ; ,  +.  + dr + l )6

* e711 * $1sr+i-r  + .  .+ $1r ' " r t r -  i r l l )

Now s l  I  I  I  s I  i  I  I  I  I  i  |  |  l l  l i l  l  ( l8 l8)  l i r t  t / ( i  ) ,  wc I lc l

r , r ( / )

which has a variallcc

El,e+(t) l  = ( l+di+di+ +. .b l '  ' ) " : (18. l  |  )

Note that this forecast error vallance incleases (nonlinearly) as / bccotrres l 'rt gt't

18.5.2 The MA(l) Process

Nowletusexaminethesimplef i rst-ordermovingaverageprocess'MA(l) :

/ r :6*sr-0rer-r

The one-period forecasl lor d:ri\ process is

h0\:  E(Yr*, IY,"  " ! r )  
= 6 -  oGr ( l l t . ] l )

where 6r is the actual residual from the current (and most Iecent) otlselvatlorl'

On the other hand, the l-period forecast' for I > l' is just

! r \ l \  = E(yr*r lyr , .  .  . , ! )  - -  E(6 *  ar11 -  01e111 1) = 0 (18 14)

This isalsoasexpected,sincetheplocessMA(l) t lasamemoryofonly. l r te
;;;;. il;t;;d data are of no help in making a forecast two or more pe riods

Itr.ua, u"a the best forecast is the mean of the series' 6'
' 

The variance ofthe forecast e orforMA(I)isolfortheone-pe od forecasl,

and for the /-period forecast, / > l ' it is given bY

Ele\ \ t ) l :  E{ lvr* t  -  ! ,1\ l ' l  :  E[(oror -  lqr t r - r \2]  = (1 + d?)cr:  (18 3t)

Thus the tbrecast error vanancc ls the same for a forecast two pedods ahca(l'

tt*" patJJt 
"ft.ad, 

etc. The forecast confidence intewals would appcar 'ls

shown in Fig. I8.2.

18.5.1 The ARMA(I, l) Process

Let us now calculate and examine the forecasts generated by the simplest mixctl

autoregressive-moving average process' ARMA( l' 1 ) :

I : t \ l  I  t l r l t r t  t t  I (  l  l3.  to)

(18.12)

h: fJ,- t  *  6 *  er  -  0rer-L ( 18.16 )



T T+l r+2

FIGURE'18,2
Forecasts and confidence intervals for an MA(1) process

The one-period forecast for the ARMA(1, l) model is given by

9r(11 = E(bryr + 6+ sr+r -  9pr)  = $ry7t 6- 0167 l \8.)71

The two-period forecast is

l rQl :  E(6Jr*r  + 6 + or+2 -  drsr*r)  :0r i r (1)  + 6

:  61y, + (0, + I)6 - 6,0,6, ( r8.18)

Finally, the /-period forecast is

| r ( t ) :6. , i , ( t  -  r )  +6
:6\yr+ (d, i '+.  .+ d,*  l )6 _ dFlr0r6r (1s.39)

Note that the limiting value of the forecast as / becomes large is again the mean
of the series:

(18.40)

Examining these forecasts for different Iead times, we see that the current distur-
bance helps to determine the one-period forecast and, in turn, serves as a start-
ing point from which the remainder of the forecast proflle, which is autoregres-
sive in character, decays toward the mean 6/(l - dr ).

A
rfru y|tr, - -:------------ - u,l
/ -@- r-Or

' l l rc  l , tc l  t l l , t l  l i r l ( ' ( i ts ls l to l l l  n l lMA l l l (x l ( ' ls . tppto, ' t t l l  l l lc  ( (o l )s lnt l l )  l r lcnl l

valr tc t t l  l l tc  scr ies as l l lc  lea( l  t in lc t rcct t t t tcs la lgt ' l t l t l icatcs a l i t t t i lat iot t  o l  l l tcst '

modcls.  As wc wi l l  scc i l t  thc cxantpl t 's  i r l  th is chaptcr at l t l  thc I lcxt '  l l l l lc-scr l ( 's

modcls arc bcst l i)r sl lort-tcrrlr forccaslinS. For a loug l irrccaslit lg l lorizotl '  'r

structural cconomctric motlcl is l ikcly to bc morc usclul '

18.t.4 The ARI(f, r' 0) Process

Now we examine a simple nonstationary process' the integrated autorcgrcsslv('

Drocess ARI(1,  1,0):

with

wt=Orwt- t+6+Et

tut :  Lh:  l t  -  Yrt

(18.4r)

(r8.42)

Forecasts for y, are related to forecasts of the differenced series wr as follows:

i7( \ ) :Y7+t i t7( I l

and !r( l :  y,  + f r ( l )  +" + i r r ( l l

Since the differenced process 1'r is AR(l), its forecasts are given by

f r r ( l :6\wr + (dl  '+ 6 ' l '+ "  +dr+ 1)6

= $\yr  -  6\yr- ,  + (d". '  + '  '  '+ 0r + 1)0 (18.45)

Then the one-period forecast for y, is

i r l r l  = yr+ 6, lyr-  "Jzr-r)  *  D: ( l+ 6r lyr-  6yr- t ' r  6 (1846)

The two-period forecast for Y1 is

!r(21 :y, + ,r(1) + ttu7Q) = irll) + tttr(2)

:  i r11l  + f lwr + ({1 + 1)6

= 11+ dr + 611y,-  l i l+ 61)vr r+(dr+ l )E+6 (18 47)

A more instructive way to look at this forecast, however' is in terms of ils

changes . Since

f i r l2 l : f1frr( I l+6

we can write the forecast ir(2) as

(18.48)

(18.4r)

(  18.44)

! , (21 : ! r0 l+ol f i r ( r )  +6 (18.4e)
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Now let us examine thc propcrtics ol this fbrccast. Sincc ,v/ is aD Alt( | )
we know from Eq. (18.29) that

(  ln.50)

l)roccss,

(18.51)
A

l rmrvr( / )  =,  - ,
r  -  9t

Thus as the forecast horizon / becomes large, the forecast profile approaches a
straight line with slope 6/( I - S1). In other words, as the horizon becomes large,
the forecast becomes dominated by the deterministic drift of the process. For a
short forecast horizon this would not be so. It might have been the case, for
example, that the last few differences wr, wr t, wr_z were negative although 6
was positive, so that the series had an overall upward drift. In this case the short_
term forecasts ir(l) and firl2l might be negative, even though r?7(1) would
tend toward 6/(l - @1) as / became larger. The forecasts fory,, then, would flrst
be decreasing but t}:'en woluld, change direction, ultimately approaching a straight
line with slope 6i(l - d1). This hypothetical ARI(I, t, O) forecast is shown
graphically in Fig. t 8.3.

One thing that becomes immediately clear about ARIMA forecasts is that they
arc adaptive. As can be seen from Fig. 18.3, the forecast makes use of the most
recent data and adapts accordingly. Another example of the adaptive nature of

FIGURE 18,3
Hypothetical forecasts for an ARt(1, 1, 0) process.

nore wr, wr t, vtT 2 nefatire

n.1e.hdDt/ t  tn di . .  rbn

FIGURE 18.4
Adaptive nature of ARI(1 1, 0) forecast.

ARIMA forecasts is shown in Fig' 18.4. This process is also ARI(l '  l '  0) an(t is

identical to the process in Fig. 18.3 lor t < T. The crosses in Fig' 18 4 reprcscrrl

the forecasts made at dme ?. Now suppose that ttre series increLses in periods ? t

l ,T+ 2,andT+ I  and a new set of  forecasts is made in per iod T+ l  Thc\c

forecasts are denoted by circles, and, as can be seen in Fig I8 4' they first incrltlsr

and then decrease. IJlrimately they will also approach a ddft line This new titili

line will have the same slope as before but will be slightly higher as a result ol lht'

new data points. what we obsewe, then, is that the forecast has "adapted" ttt

ttre new data that became available in periods T+ )',T+ 2'andT+ 3 Not'(( '

that the values of this forecast for a long lead time have adapted as well

18,5.i Confidence Intervals for the ARI(1, I, O) Forecast

we now calculate the forecast error and its variance for the ARI ( I ' 1' 0 ) proccss '
so that we can obtain a forecast confidence interval As we will see' the forecasl

confldence interval for y, is related to the forecast confidence interval for th(

differenced series u.
We besin with the forecast error for the one-period forecast, ir( L ):

er( l l  :  yr* t  -  ! r ( l )  = yr  + wr+t -  l r  -  fur \ l l

= wr+t - ,41(Il = e711

.X

(  18.521



which has a variarrcc oj. ' lhc two-pcrl(xl ti)recast crror ls glvcn by

er(21 : yr*z - !r(2) = yr I wr+r * wr*t - y7 - titrlt) - tltT(2|

: lwr*t - li/rllll + lwh, - 1i/rl2)l

:  ( l  *  @1)e1q1 * s112 (18.53)

and this has a variance

Elei?l l  = o: [ ( r  + d,) ,  + 1] (18.54)

Note that this forecast error (and its variance) is cumulative; i.e., it is equal to the
two-period error for 1i/r(2) in addition to the one-period error for ir( l ). Thus the
effor inir(2) is an accumulation ofthe errors in Or(I) and in 1?r(2). Now observe
this cumulative phenomenon in the /-period forecast:

eTl l l :1w741- f r ( l ) l  + lwr+2 -  l i r r? l l  + .+ lwr+t -  t ih l l ) l

= €r+r *  (e1*2 * $1e1*,)  + .+ (er*7 *  {1er*1 r  * .  .*  d i - 'er* , )
=( l+dr+41 + .  .*  d l - ' ) " r* ,  + ( t  + dr +.  .+ 6tr . l r rn,

+. .+ ( l  *@1)er17 1*e7*1

1t- i
_\^ \ r r- z2 cf+l 22 \P l

r=l  j=0

and this has a variance

(18.55)

(  18.5 6)

Thus the error in ir(/) is an accumulation of errors in lirl l),l i/re),. . . , itr(l).
This can be seen graphically in Figs. 18.5 and 18.6, which compare confidence
intervals for forecasts of the differenced series w, with confidence intervals for
forecasts ofyr. Note the relationship between the forecasts of the differenced
series 4 and the forecasts ofl/. wr-2 and w7 I are decreasing, and wr rs negauve,
so that Or(1) and, itr(21 are also negative [i.rlt) and ire) are decreasing], fr(3 ),
thrl4), etc., are positive [ir(3) is larger thanll(2)], and finally Or(/) approaches
the mean 6/( 1 - {1) as / becomes large [so that irll) approaches the ddft line].
Observe that the confidence interval for ir(/) grows rapidly, since it must ac-
count for the accumulation of forecast effors in the differenced senes.

We have examined the forecast properties of only the simplest of ARIMA
models, but some of our conclusions apply to more complicated (i.e., higher-
order) models. In particular, note that a moving average model of order 4 has a
memory of olrly 4 periods, so that the observed data will affect the forecast only

Ete+(t)t = 
": > (i ol)'

FIGURE 18,5
ConJldence interval for i4'r(/) for AR (1, 1 0) process'

if the lead time I is less than 4' An autoregressive model has a memory of ir.t[ittitt

L"gin, to tnut uff past observations will have some effect on the forecast' cvctr il

ttre"lead time I is tong. But although all past observations have some effect on tltt

forecast, onJy more;ecent observations wil l have a large effect Thus evcn wrll '

autoregressive (or mixed autoregressive-moving average) models' past obscrvn

FIGURE 18.6
Confidence lnteryal lor ir(i ) for ARI(1 1, 0) process



t ions havc l i t t lc  c l l ( 'c l  o| |  t l t ( '  l i ) fc( i l : i l  i l  t l tc  l t 'ar l  t i r t | ( .  is  l0r ] ( ,  I , l l r rs AI MA
modcls are bcst suitcd to sh\rt"tcnn Jbrcutin!, i.(., l0r.ccitst iDg wit h a lcatl t irrrr, /
not much longer than p + 4.

I8.5 TWO EXAMPLES

In the last chapter we estimated ARIMA models for two time series. We fountl
that the first series, which consisted of monthly data for the interest rate on 3_
month Treasury bills, could be represented using an ARIMA(12, l, 2) model.
The estimated equation is

(l + .42tIB + .48ttB2 - .0928p + .21J984 - .077785 + .251286

+ .149087 + . IJ40B8 * . t556Be _ .O272Bto _ . I l7 lBrr

+ . r559B12l\h =.0109 + ( t  + .85628 + .6257821e, (17.21)

The second time series consisted of data on monthly hog production in the
United Stares, which we represented by applying an ARIMA(3, l, 0) model to a
twelfth-diflerencing of the original series. The estimated version of thar model is

( l  +.66818 + .20158'  -  . t298B1l l t  -  B)( l  -  Bt2)y1 = .001.4-r  e,

07.22\

Recall that the twelfth-differencing (1 - Br2) accounts for seasonal (annual)
cycles in the data. We now generate forecasts of the interest rate and hog pro-
duction using these two ARIMA models.

Example 18.1 Interest Rate Forecast Recall that the ARIMA(12, 1, 2)
model for the 3-month Treasury bill rate was estimated usinq data that ran
through June 1988. In this example we generare three ex posi forecasts that
cover the end of the estimation pedod. The forecasts are presented in terms of
the differenced series and are compared wirh rhe actuai data.

A 24-month forecasr (from July 1986 to June 1988) is shown in Fig. 18.7,
a l2-month forecast (July 1987 to June 1988) is shown in Fig. 18.8, and a 6-
month forecast (January 1988 to June 1988) is shown in Fig. 18.9. Nore that
in all of these figures we are examining forecasts of the monthly clza nge in the
interest rate, rather than its level.

An evaluation of this model as a forecasting tool is somewhat difficult
because the 1980s was a period of very volatile interest rates. What we can
see, however, is that the ARIMA model captures trends but fails to predict
sharp turns, especially for the longer forecasts. For example, the 24-month
forecast failed to capture the steep drop in rhe interest iate that occurred

I
1987

I

1988

6
1981I986

FIGURE'18.7
Monthly changes in Treasury bil l  rate, 24-month forecast versus actual

FIGURE 18.8
lvlonthly changes in Treasury bi I rate, 12-month forecast versus actual
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FIGURE 18.9
\,4onthly changes in Treasury bil rate 6-month forecast versus actual.

FIGURE 18.10
Three-month Treasury bil rate, 6-month iorecast versus actual.
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FIGURE 18.11
lvlonthly changes in Treasury bill rate, ex arte lorecast

dudng July to September of 1986, the temporary increase that occurred in thc
summer of 1987, and the decrease that occuned in the fall of 1987. Likewisc,
the l2-month forecast failed to predict any of the sharp movements lhat
occurred during the year. Only the 6-month forecast captures turning points
in the interest rate, although even here interest rate changes are fitst over- a tll
then underpredicted. This can also be seen in Fig. 18.10, which plots thc 6-
month forecast and actual values in terms of the level oI the interest ratc,
rather than first differences.

Figure 18.I1 s}jrows an ex ante l8-month forecast that extends from Jantr
ary 1988 to June I989. (This figure is again in terms offirst differences.) Hcrc
the cyclical changes in the interest rate that occurred (and were predicted by
the model) for the flrst half of 1988 are predicted to continue occurrinll
through the following 12 months. we leave it to you to check the data ar\l
determine how accurate this forecast was.

The usefulness of an ARIMA model such as this one as a forecasting tool
can be seriously evaluated only in comparison with other available tools. lrr
the case of a short-term interest rate, particularly during a period when ratcs
were fluctuating considerably, one might expect a structural regression modcl
to show a better forecasting performance than a time-series model. In thc
next chapter we will see how a time-series model can be combined with a
regression model to improve the forecast of interest rates.



Example 18.2 Hog Product lon Forocast l tccal l  t l ra l  l l lc  nRIMA r) l (x l ( . |
for hog production in Eq. (17.22) was cstintatcd using data liorrr thc bcgirr,
ning of 1960 to the end of 1967. We generatc our lbrccast out ovcr a 2-ycar
horizon, beginning in January 1968 and ending in January 1970. Sincc daln
on hog production are available for this period, we can compare thc 25
months of forecasted production with the actual data.

The forecasted and actual series for hog production are shown in Fig.
18.12. Observe that our model has generated forecasts which are quite accu-
rate. The model not only correctly forecasts changing trends in the series but
also picks up the broad seasonal cycle (as it should, since the model includes a
twelfth-difference of the series to explain seasonality). Usually the forecast is
within I0 or 15 percent of the actual series and reproduces most of the
tuming points. This model would be quite acceptable as a forecasting tool.
Unlike our interest rate example, hog production can probably be forecasted
better using a time-series model than by using a single-equation regression
model. The reason is that the economics ofhog production is cornplicated and
cannot be represented easily by a single structural equation. Although hog
production could probably be modeled rather well by a multi-equation simu-
lation model, constructing such a model might be diificult and time-consum-
ing. The dme-series model, on the other hand, can be constructed easilv and
quickly and does a reasonable job of forecasting.

FIGI.JRE'18.12
Two-year (2s-rronl l-) Iorecasl ol hog productron l ime bou.lds:
January 1968 to Januarv 1970
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as appl icr l  to plotr lcrus i t t  ct t t t t t t t t t i t  , t t t t l  l t t ts i t t t 'ss lo lc( . ls l i l l l l  l l l  ( ' , r (  l r  ( i1sc w( '

wi l l  go lh lor . rg l r  t l lc  cor l t l ) lc lc prt t t t 'ss ol  s l rcci ly i l lg,  csl i t l la l i l l l l ,  at td c l tctk i t tg at t

ARIMA nlodcl, antl wc wil l t l)cD Ltsc tl lc I lto(lcl to prttt lttcc l i)rccasls ' l  his slloll l( l
provide the readcr with morc tlfa lceling lt lr thc propcrtics an(l chala(tcrisl i(s ol

t ime-sedes models and lorecasts.

EXERCISES

l8.I Wdte the equation that determines the forecastir(1) intermsol l ir(l), l, i i(2),. ,
for a third-order homogeneous nonstationary process; i e., derive the cquivalctl l  (,1 l l t l
(18.18) for an ARIMA model with d : l.
18.2 Does it seem reasonable that for any ARIMA specification the foreaast crtof vnri
ance one period ahead is always the va ance of the error term? Offcr aD irlltrilivr
explanation for why Eq. (18.22) must always hold.
l8,J Derive expressions for the one-, two-, and three-pe odforecasts,ir(l), i7(2),.rtr(i

,r(3), for the second-order moving average process MA(2). What are the va anccsol I lr(
errors for these forecasts? what is the variance of the error for the /-pe od forecasl, willl
l>)?
18.4 Dedve expressions for the one-, two-, and three-period forecasts for the sccotl(l'
order autoregressive process AR(2). What are the e(or vadances of these lbrecasts?
I8.5 Repeat Exercise 18.4 for the ARMA(2, l) process.
18.6 suppose that a particular nonstationary time series y, can be modeled as a stoclrasti(
process that is ARIMA(1. l, 1).

(4) After you have estimated the model's parameteE, how would you forecast y, otrt'
period ahead? Express this one-pedod forecast,ir(t), as a function of observable data lrr

what sense is this forecast adaptive?
(r) How would you calculate the standard error of the one-period forecast ir(l)

assuming that the pdrameters of the moAel arc known pefectu? Note that this is analogous lo
calculating the standard error of a regression forecast under the assumption that lh(
coefficients B are knoln perfectly.

(c) what will be tte dffirence between the l-period forecast i,(1) and the (l + I )-
period forecast r!(/ + Il when I is very large?
18.7 In Exercise 17.5 we asked you to estimate alternative ARIMA models for the ]'
month Treasury bill rate. Now use your models to generate forecasts comparable to thos(
in Example 18.1. Have you been able to construct a model whose forecasting perfbr'

mance is better?



CHAPTER LY

APPLICATIONS OF
TIME-SERIES MODELS

We have seen that econometric model building is in part an art. Even with a
simple single-equation model one must make judgments as to which explana-
tory variables to include, the functional form for the equation, how the statistical
fit of the model should be interpreted, and how useful the resulting model is for
forecasting or explanation purposes. The situation is much the same with time-
series models. It is usually not obvious what the proper specification for an
ARIMA model should be. Many different specifications might be reasonable for
a single time series and its autocorrelation function, so that sound judgment
must be used together with a certain amount of experimentation. As in the
regression case, one will often specify and estimate more than one ARIMA
model and check each individually. In general, the usefulness of an ARIMA
model for forecasting purposes is difficult to ascertain. While confidence inter-
vals can be determined for the model's forecasts, one must still decide whether
any signiflcant structural change in the determination of the variable under
study might occur and thus alter the future movement of the time series.

In this chapter we present several examples of the construction and use of
time-series models. We hope that these examples will help convey a better
understanding of the modeling process and will acquaint the reader with the
usefulness of time-sedes models in applied forecasting problems. We will see
that time-series models can be used in forecasting applications not only by
themselves but also in combination with regression models.

We will begin with a model for an aggregate economic variable, nonfarm
inventory investment, and then turn to a model for forecasting seasonal tele-
phone data. One might argue that inventory investment can be better explained
by a structural econometric model, but such a model can be difficult and time-
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At a nnut upptiaatioll, wc show ill two exanlplcs llow it is possiblc k) colll l)i l1('

a time-series model with a stt uctural cconometric model To do so' wc lilsl

.on*., a regression model and then develop a time-series modcl for tlrc t c-

siession resid;als (i.e., for the unexplained noise terms) This combincd rcgn's-

ii""_ri-.-r".i., 
"iodel 

is sometimei called a transfer function model, a'(l il il is

used properly, it can provide a very effective forecasting tool'

I9.T REVIEW OF THE MODELING PROCESS

We begin by briefly reviewing the steps involved in the construction' e vJltr':rl i{ 't I

and usle of time-seiies models' one bigins with the specification of thc modcl l'lris

frrt i.q"i..t a decision as to the degree of homogeneity in the.time serics' i e '
t o* 

-u.ty 
ti-"t it must be differenied to yield a stationary series- Thc dccisiorl

is 
-ua" 

UV looking at the autocorrelation functions for the series and its dillcr-

ences. (Wi have seen, however, that the degree of homogeneity is not always

olrrio,rt.) Then the orders of the moving average and the auto^regressive pafls ol

the model must be determined. One can get some guidance from the total arr(l

p".ii"f t""tpf" 
"",ocorrelation 

functions, but often the correct choice will not bt'

ilear and several alternative speciflcations must be estimated'
---O.tc" 

u 
-oael 

(or a group oi models) has been specifiedit must.be estimale d ' ll

the number of obiewaiio.ti in the time series is large relative to the order ol tlrc

model, this estimation process involves a straightforward nonlinear regressi(rtr'

Aft..*urd, one performs a diagnostic check' This involves looking at the autocor-

relation function ofthe residuals from the estimated model A simple chi-squarc

i.ri.u.t t. parto.*ed to determine whether or not the residuals are themselvcs

uncorrelated.Inaddi t ion,oneshouldcheckthattheparametelest lmatesarc
consistent with stationarity, e.g., that the autoregressive parameters sum 1() a

number smaller than t in magnitude'
ii ttt. lnoaet passes the diagnostic check, it must ther\be evaluated to delcr-

mine its ability t; forecast accurately and to provide a better understanding ol its

forecasting properties. For example, the model may pass a diagnostic check btrt

;;;;6;.;t 
"atistical 

fit' and this would limit its usefulness for forecastins'

rt tta *od.t't esdmated parameters have large standard errors' the standard

error of forecast will be large.
One means of model evaluation and analysis is to perform a histlrical simuln'

tlon beginning at different points in time One can then examine such statistics as

tn..-!,i-uiutio" error;nd the Theil inequality coefficient and its decomposi-

iio.t. (s". cttupt.t 12 for a review ofthese and other model evaluation statistics )

In adiition, one can perform an ex post forecast, comparing the forecast to actr-lal

data to evaluate its performance. ihis can help the researcher decide how far

lrrio tt . rut.,r" tn" m;del can be used for forecasting. This is extremely important

iia time-series model is to be used in conjunction with a structural econometriL
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vcry short terrn, brrt t l tc structrrlal cconoll)etric rnotlcl wil l plovitlc a trc er
forecast over the longer term.

r9.2 MODELS OF ECONOIVIIC VARIABLES: INVENTORY
INVESTMENT

In this section we construct and examine some time-sedes models for the level of
real (I982 constant dollar) nonfarm inventory investment. This variable is diffi-
cult to explain and forecast using structural econometric models, so that the
construclion of an ARIMA model seems appropriate.

Our sample consists of qua erly data from 19i0-l to 1988-1. In order to
allow for sufficient lags in our ARIMA models, estimation will be based on the
time period I952-l rc 1988-t. The time sedes is shown in Fig. 19.1, and its
sample autocorrelation function is showrr in Fig. 19.2. When we flrst examined
this time series in Chapter 15, we noted that the sample autocorelation function
exhibits the properties of a stationary series. (After a displacement lag k of 3, it
quickly falls toward zero.) in addition, the series itself seems stationary since
there are no long-run trends either upward or downward.

Nonetheless, as a check we also difference the sedes once. The differenced
series and its sample autocorrelation function are shown in Figs. 19.3 and I9.4.

FIGURE 19,1
Nonfarrn inventory investment (in 1982 constant dollars)
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FIGURE'19.2
Noniarm inventory invesimentl sampLe autocorlelation function

FIGURE 19,3
inventory lnvestment-i lrst dli lerences (in 1982 constant dollars)
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FIGURE 19.4
Inventory investment-f irst differencest samp e autocorrelation function.

Note that the autocorreladon function drops immediately to a value of -.2, and
then it oscillates between values of roughly a.l. There is little in the way of a
pattern here, making it difficult to specify an ARIMA model. It seems reasonable
to assume that our series is stationary, i.e., to specify and estimate ARIMA
(p, 0, 4) models.

In Example 16.l we examined the panial autocorrelation function for this
inventory investment series. We noted that the partial autocorrelations became
close to zero after four lags, suggesting that the autoregressive component of an
ARIMA model could be limited to fourth-order. The fact that the samnle auto-
correlation function also becomes close to zero by k : 3 or 4 suggest;that any
moving average terms should also be of low order. We therefore choose to
estimate the following three specifications: ARIMA(2,0,2), ARIMA(4, O, 0),
and ARIMA(4, 0, 2). The results are as follows:

ARIMA(2, 0, 2):

( l  + .26758 -  .5941B21y,:  t5.57O + ( \  + .B92tB -  .O426B2let  (1.9. t )

R2: .396 Xr l4,24) = 16.60
ARIMA(4, 0, 0):

( l  -  .6t8IB -  .0 l l9B'? -  .15868r + .23928a)yt  = 15.629 + e,  ( I9.2\

24

R2 : .423 X'@, 24) = 10.77

Ar MA(4,0,2):

FIGURE 19.5
Autocofielation function ot ARIMA(4, 0, 2) residuals.

\ t  -  . ta7l4l l  I  .5010/Jr -  . l l l l4/JJ + .2) \ )91t4) vt

:  15.580 + ( l  -  .268211 I  .3792 t) ' l r : ,  l l t )  t l

R2 = .429 y'z18, 241 : 7 .29

All of these chi-square statistics (with 22, 20, and, l8 degrccs ol lrct 't l ttttr,

respectively) are insigniflcant even at the 90 percent level, allowing tts itt t i tt l t

case to accept the hypothesis that the residuals are white noise. 11 is clcar l l l ' l l

inventory investment can be described by a low-order ARIMA mo(lcl llr('

ARiMA(4, O, 2) model seems most promising because it has the lowcrl t lt i-

square statistic, even adjusting for degrees of freedom. Figure 19.5 shows llr('

sample autocorrelation function for the residuals ofthis model; note that all t lr('

autoconelations are extremely small.
Before proceeding, we estimate an ARIMA(6, 0, 4) model as a mcatts ol

exploring the possibility that adding more AR and MA terms to the modcl rlriSlrl

improve its fit. The results of that estimation are as follows:

0r1.



( l  *  .74958 + .10398'  *  .2t71Bt + . t8 l tB4 * .o7tJ2 U\ + .0775 Bt) .v l
= 15.6)7 + ( l  -  .146JB + .05018, -  .03608r + . t57tBa)t ,  119.4\

R2 = .4)0 X2(t0,24) = 7. jB

There is clearly little beneflt to increasing the order of the model. The R2 is only
very slightly higher, and the chi-square statistic has increased; and accountinr:
for degrees of freedom it is much more significant than was the case with rhc
ARIMA(4,0,2) model. We will therefore use the ARIMA(4,0,2) model to
forecast inventory investment.

We flrst generate a l2-quarter ex post forecasl from l9g5-2 to lggg-i. The
forecasted and actual series are shown in Fig. 19.6. Although the forecast follows
the overall trend in inventory investment, it does not capture the cyclical fluctu_
ations that occurred during this period. Might a shorter forecast perform better?
Figure 19.7 shows a four-quarter ex post forecasr from lg87-2 to l gSg- l. While
the forecasted series moves in the same directions as the actual series, the fore-
cast does not capture the extent ofthe fluctuations. Finally, Fig. l9.g shows an ex
ante forecasl that extends from 1988-l to 1990-1. We leave it to you to deter_
mine the accuracy of this forecast.

FIGURE 19,6

ARIMA(6,0,4):

Twelve-quarter forecast of inventory invesrmenr rorecasl versus actual
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FIGURE 19.7
Four-quarter forecast of inventory investment Jorecast versus actua.

The inability of our ARIMA model to predict sharp downturns and uptunrs irr
inventory investment limits its value for forecasting. But before it is discartlcd .rs
a forecasting tool, it must be compared with alternative forecasting tools that af('
available. Many single- and multi-equation regression models have been corr"
structed to forecast inventory investment, some with a performance not rnrrt lr
better than that of our simple ARIMA model. Because inventory investmcrl is
dependent on several other macroeconomic variables, which are themsclvcs
dependent on inventory investment, it can probably best be explained ancl lirlc'
casted using a complete simultaneous-equation macroeconometric model. S 0( il
a model, however, is time-consuming and costly to build, so that a time-scri(.s
model might provide an economical forecasting alternative.r

'There have been several sudies made oftime-series models as a forecasting alternative to l.rrlr
scale econometric models of the macroeconomy. The more interesting and illuminaling slu(li(,\
include C. R. Nelson, "The Prediclion Perlormance of the FRB-MIT-PENN Model of the U.S. li orl
omy," American Econofiic Reliew, vol. 62, December 1972, and T. H. Naylor, T. G. Seaks, an(l I). w
Wichern, "Box-Jenkins Methods: An Alternative to Econometric Mode]ls," International Stdl lt^nl
Reriew, vol. 40,r.o.2, 1972. In both these studies the authors found that time-series models carr oll. I
provide better forecasts ofmacroeconomic variables than some ofthe better-known large ecoDoIrrl
dc models. It is hard to say whether this should be taken as a compliment to time-series analysi\ or ,l
corrment on the state ofthe an ofmacroeconomet c modeling!A more detailed discussion (i (l (l
ing examples) of the use of dme-series models for macroeconomic forecasting is given in (:. ll.
Nelsom, Applied Tike Sefies Anhlysis lsanFrancisco: Holden'Day, 1971), and C. W. J. Grangcr an(] l'
Newbold, Forecastitq Ecanotnic Tirfie Series,2rrd ed. (New York: Academic Press, 1986).
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FIGURE 19.8
Ex anle forecast of inveftory investmefiL.

I9.3 FORECASTING SEASONAL TELEPHONE DATA
An article by Thompson and Tiao provides another interesting case study of
time-series analysis.2 In the study forecasting models were conitructed ibr the
inward and outward station movements of the Wisconsin Telephone Company
using monthly data from January t951 to October 1966. Th; inward station
movement ln a given month is the sum of residence anrl business telephone
installations, while the outward station movement consists of removals and
disconnects of telephones. It is important to the telephone company to obtain
reasonably accurate forecasts of station movements, since these forecasts are
used as fundamental inputs to both short- and long-term company planning.
The difference between inward and outward station;ovements represents the
net increase (or decrease) of telephones in service, so that an expeated positive
difference would lead to a sequence ofcapital expenditures. Unde;estimating the
difference might create a shonage in the supply of telephones and associated
facilities, while overestimating it would result in i premature expansion offacili_
ties and thus added cost to the company.

- 'zH. E, Thompson and G. C. Tiao, ,,Analysis of Telephone Data: A Case Study of ForecastingSeasonal Time Series," BelI Joar aI of Eaonomics and Manarement kience, vol. 2, no. 2, Aul.|lllrn lg7l.

t95r t952 1954 1956 1958 1960 1962 196' ,

FIGURE 19,9
Month y inward station movements January 1951 to October 1966 (8e11 Jawnal of Ecorxvtttr 

"
and l\4anagement Sciences, vol.2, no.2, Autunn 1971 )

The data used by Thompson and Tiao for inward and outward stalion rrrov(

ments are shown in Figs. 19 9 and 19.10. The data show a very distinct scasorr'r l

pattern, with a peak and a trough reached each year' Note that the 1sve1 ol c'r(lr

series tends to increase over time Lnd that the variance ofthe data tends to inLrt'dr(

as the level increases, In order to reduce this dependence of the variance otl tlrt'

level, the authors applied a logarithmic transformation to both series Thus, IIrc

analysis that follows is given in terms of transformed logarithmic data (Lo8'r-

rithmic transformations are often used in time-series analysis as a mear)s {)l

removing growth over dme of the variance of the data.)

Time-series models can easily be constructed to account for seasonality; irr

fact, we fteated seasonality earlier when we constructed a time-sedes rnodcl lirr'

hog production. It is reasonable to expect a seasonal pattern in station mov('-

FIGURE 19,10
MonthLy outward stat on movements, January 1951 to Octobej '1966 (yJ (Bell Jaurnal ol Eco
nonics and Managemellt Sclences, vol 2, na 2, Autunn 1971 )
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Thus, wc would cxpcct obscrvations l2 pcriotls ap.rrt to bc highly cor.rclatr.tl (as
in our hog production example). Wc can cxprcss this scasonal rclationshil) witlr
the simple autoregressive model

( l -$*Bt21y'=s, ( re.5)

where e, is a random shock. While this equation explains observations berwccn
years, observations in successive months may also be dependent. This depen_
dence might be represented by a second autoregressive model:

( t  -  $Ble '  :  s ' (  1e.6 )

where e, is a random shock. Equation (19.5) can be substituted into (l9.6) to
el iminare p, :

( l  -  d*B' 'z)( t  -  6B)y,= e, ( te.7)

h- Qit- t -  Q*! , - r ,  t  66*! ' -  r ' :  e, (  1e.8 )

( r  e.9)

Equation ( 19.8) is a simple autoregressive model. It serves to describe. however.
both seasonal and nonseasonal dependence between observations.r

In this case we present Thompson and Tiao,s model of the loqarithmic outward
series. (The reader interested in the rest of their resuhs may ref;r ro the odginal
paper.) We represent the logarithm of monthly outward station movemen$ by
the variable y,. The sample autocorrelation function of /r is shown in Fig. l9.l i.
Note that this autocorrelation function peaks at & : 12, 24, and 36, which is not
surprising in view of the seasonal pattem in the data. We thus calculate 12_
period differences in the series and call this new series w,:

w: (r  _ Bl2lyt

The sample autocorrelation function for w, is shown in Fig. Ig.12. Note that the
seasonal dependence between years has been removed and the magnitude ofthe

r This equation can be generalized to yield a class of models for seasonal series.

$ (Bt\6p@)tr  -  Bt , )a ' l r  _ B)d(y,  _ p):  qa\B)Et

where d;r(B''z) is a polynomial in BL of order pj, aDd,6plB) is a polynomial of order p. The
1"tiT"J.l:,9i. 

. . . , dir can be called seasonai autoregr'eisive pu.i-it"r.. In rhe preliminary
mooeJ-Durldrng srage. pa(icular arrenlion is given to peaks in the sample autocorrelation functioni
whch occur at mulrip,es oI 12 lags. Generally, differencing 12 periods apart (one or more trmes) is
needed when pr is persistenrly large for k = 12, 24, J6. .  .

FIGURE 19,11
Sample autocofielat ion lunction oi yr. (Bel l  Jawnal of Ecanomics and Managemenl Sc rx:t ! : l
vol 2, no. 2, Autunn 1971.)

autoconelat ions has been dampened considerably. Also. note that t l l is al l lo(r, l

relation function has peaks at every third lag. thus suggesting the autore8r( \\iv(
model4

( I -  Q$1)w1 :e1 ( r9.  ro)

Thompson and Tiao fltted a third-order autoregressive model to tllc scri( s t1'
and then calculated the autocorrelation function for the residuals of this motlcl
They found peaks atk: 9, 12, and 13, suggesting the addition of threc movitrtl
average parameters. Thus, their final ARIMA model for y! was of the lbrnl

(1 -  drBr)( I  -  6rrB,t)y, :  ( \  -  qeBe -  0rrB" -  0rrB'r)€,  (19.  I  l )

FIGURE 19.12
Sample autocorre atlon iunction for wr. (Bell Jaunal af Economics and l"4anagement Scicn,J)s
val. 2, na. 2, Autumn 1971.)

a Cycles cvery third period could also be generated by a second- order autoregressivc mo(lc | ( w I I | |
the proper parameter values). The autho$ may have tested a second-order model and foun(l lltl
( I9.l0) to be preferable. In general, however, if a distinct peak occurs in the autocorelatioD Itrrr( lii,rl
at every rlth lag, we suggest including an rth-order autoregressive term in the specificali(nr ol llr(
ARIMA model.
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FIGURE 19.13

No!.  1968 No! 1969

Forecasts of og outward series ior the 36 months, November 1966 to October 1969, made ln
October 1966 (Bell  Jaurnal of Economics and Managemerf Sclences, vol.2, na.2, Autumn
1971.)

The five parameters 6t, 6n, 0e, 012, and 0r3 were estimated, and the resulting
model was used to forecast the logarithmic outward sedes for the 16 months
from November 1966 to october 1969. The forecast, together with the 95 per-
cent confidence interval, is shown in Fig. 19.13.

Note that the model does a rather good job of forecasting outward station
movements, even over a period of 36 months. In fact, it seems to perform
considerably better than our models of inventory investment did. The reason for
this is that the telephone data used in Thompson and Tiao's study were pa icu-
larly amenable to time-series analysis. Time-series analysis works best when a
persistent pattem (seasonal or otherwise) exists in the data, and such a pattem is
present in the telephone data.

I9.4 COMBINING REGRESSION ANALYSIS WITH A
TIME-SERIES MODEL: TRANSFER FUNCTION MODELS

At the end of Chapter 17 we estimated a time-sedes model for a short-term
interest rate. Although we used the model to produce a forecast in chapter 18,
we suggested that a better forecast could have been obtained by using a single-
equation structural regression model (as in Chapter 8). In fact, time-series analy-
sis and regression analysis can be combined to produce a betler forecast than
would be possible through the use of either of these techniques alone.

Suppose that we would like to forecast the variable yr using a regression
model. Presumably such a model would include those independent variables
which can explain movements in yr but which are not themselves collinear.
Suppose that our regression model contains two independent variables, x1 and

x2, as l i r l l r tws:

This equatbn has an additivc crror tcrm that accounts fior unexplained variancc

in y,; that is, it accounts for that part of the variance of/r that is not explairrcd l)y

x1 and x2. The equation can be estimated, and an R2 will result which (unlcss lty

some chance y, ii perfectly correlated with the independent vadables) will bc lcss

than l. The equation can then be used to forecasty,. As we saw in Chaptcr 8, orr('

source of forecast error would come from the additive noise telm whosc lillLllc

va.lues cannot be predicted.
One eflective application of time-series analysis is to construct an AlllMA

model for the residual series llr of this regression we would then substitutc lhc

ARIMA model for the implicit error term in the original regression equatioll'

When using the equation to forecast y,, we would also be able to make a forccast

of the error term er using the ARIMA model. The ARIMA model provides sotrlc

information as to what fuure values of e, are likely to be; i e , it helps "explairr"

the unexplained variance in the regression equation. The combined regression-

time-series model is

11 
= t l t t  l '  L l txt t  + A2X t  El

\= aol  arxt t+ a2xzt + b-t(Blq(B)nt

!t : v I lBlalBlxt + $- LIB)0(Blnl

( re.  r2)

( le.  l  r )

( le.r4)

where 4r is a normally distributed error term which may have a different vari-

ance from e,. This model is likely to provide better forecasts than the regression

equation (19.12) alone or a time-series model alone since it includes a structural

(economic) explanation of that part of the variance ofyr that can be explaincd

itructurally, and a dme-series "explanation" of that part ofthe variance of/, that

cannot be explained structurally.
Equation irs. r r) it an example of what is sometimes referred to as a nansfer

function model or, alternatively, a multivaiate autoregressive-moving average m,del

lfrlen-nne model). A transfer function model relates a dependent variable to

iagged values of itself, current and lagged values of one or- more independcnl

viriables, and an error term which is panially "explained" by a time-serics

model. Thus the general form for a univariate (only one independent variablc)

transfer function model could be written as

The tecbrfque of transfer function modeling involves examination of partial an(l

total autocorrelation functions for the independent vadable x! as well as thc

dependent variable y1 in an effon to specify the lag polynomials z(B)' r'r(Il)

61r;, and 0(B).t one problem with the technique, however, is that the specili-

t The techniques are discussed in detail in G. E P. Box add G M Jenkins' Time Series ArLalytt

lSan fiancisco: ifolden-Day, 1970), chaps. t0 and I t, and c. w. J Gianger and P Newbold' op cll'



cat iotr  ( ) l  thc st luctural  l )ar l  ( t l  l l r ( '  r lxx l ( '1,  i  c  ,  l l l t '  lxr ly l lot l l i . l ls  , /  (  / i )  n l l ( l  ( , r  ( / l ) ,  is
donc mechanically, rathcr thatt Lry appcal to ccollolll ir tlrcory atltl lttgit Strttt-
tural models that are consistent with intuition and ccttttttlrric thcory arc tlstlally
more reliable (and defensible) than models in which thc structurc is artivcd at
mechanically. For this reason we suggest that models of the form of Eq. ( 19 14)
be used, but that the structural pa of the model be arrived at through lhc
mixture of economic theory and econometdc method discussed in Part Onc,
while the time-series pa of the model, that is, d(B) and d(B), be ardved al
through an analysis of the residuals of the structural model.

Let us now turn back to the simple model of Eq. (19.13). First, note that
specifying a time-series model for the error term is just a generalization of the
technique described in Chapter 8 for forecasting with regression models that
have serially correlated errors. [If the dme-series model is AR(l ), it is exactly
equivalent to forecasting with first-order serially conelated erors.l Second, note
that the parameterc 6s, a1, dnd a2 of the structural regression equation and the
parameters 6r, . . . , $, and 01, . , 0q of the time-sedes model should be
estimated simultaneously. (Fai\ue to estimate all the parameters simultaneously
can lead to a loss of efficiency.) Unfortunately, the simultaneous estimation of all
the parameters is sometimes computationally difflcult and in such cases is not
done.

This combined use ofregression analysis with a time-series model of the error
term is an approach to forecasting that in some cases can provide the best ofboth
worlds. To demonstrate the technique and its use, we turn to two examples.

r9.' A COMBINED REGRESSION_TIME.SERIES MODEL
TO FORECAST SHORT-TERM SAVINGS DEPOSIT FLOWS

Our first example that combines time-series analysis with regression analysis is
based on a study by Ludwig6 to forecast the monthly flow of deposits into
Massachusetts mutual savings banks. A regression model is first constructed (to
explain deposit flows), and then a time-series model is developed to "explain"

the residual series (i.e., the error term) in the regression equation.T
We begin with a regression equation that provides a structural explanation of

mutual savings deposit flows. Ludwig used the ratio of deposit flows S to per-
sonal wealth I4 as the dependent variable, and he chose monthly Massachusetts
personal income as a proxy variable for wealth. His best regression equation had
three explanatory variables: the effective percentage retum (including divi-
dends) on mutual savings deposits r^, the interest rate on 3-month Treasury
bills r,, and the ratio of the previous month's stock of mutual savings deposits

6 R. s. Ludwig, "Forecasting shoft_Term Savings Deposit Flows: An Application of Time series
Models and a Regional Analysis," unpublished Master's thesis, sloan School of Management,
M.I.T., June 1974.

7 At the time this study was done, simultaneous estimation of the regression and time-se es
parameters was computationally difficult and so was not performed-

/  I  t0 t l ) ( ,wenl l l t  v i  l , t l r lc '  l l ls  r ( l  n l lo ,  ( ,s l l  l i l tc( l  t ts i l t l l  l t rot t t l t ly  t lat , l  f t r t  l l tc

statc ol  Massacl l t lsc l ls  ( )v( ' t  l l t t 'Dt ' t lot l  l r ( 'b luary 1968 to l t r l lc  197],  is

:  .  r( '  r  .0 t9r,, , ,  -  .o l  l  r ,"  -  .oJ2 +
""  1t . l r1 l2.r)81 l -527t {-2.21)

R2: .4t  SER = .016 F = 14.42 DW = 1.55

( le.rs)

As one would expect, there is a positive relationship between savings dcl)('sil

flows and the effective percentage return on deposits' The interest ratc orl l-

month Teasury bills, used as a market rate of interest, represents lhe rcttlrlr ()ll

competing risk-free investment alternatives for savings, and thus shoultl ltavt'a

negative i-mpact on savings deposit flows. Finally, the negative relationsllil) t)c-

t*-e"t-t depotit flows and the stock of deposits represents a stock adjustntcttl

effecu savings deposits should be proportional to that part of personal wcalllr

that has not already been placed in a savings bank; i e,

St:  A'-  A1 v= a(W1 - A1-11 ( le.  l6)

so that

s,=
wt

( re.  t7 l

A histodcal simulation of Eq' (19.15) is shown in Fig 19'14, and an ex post

forecast over the period July 1973 to October 1973 is shown in Fig l9'l5 Thc

historical simulation has an rms percent efior of 75 '1, and the ex posl forecast has

an rms percent ellor of 157. observe that the simulation tracks the gencral

movemint of the series but leaves much of the variance unexplained Thc rc"

FIGURE 19, '14
Historical simulat ion of Eq. (1915) for deposit f lows

5,

2
197l
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FIGURE 19.15
Ex post forecast of Eq (19.15) for deposit lows.

gression model does well in forecasting deposit flows in July 1971 but fails to
capture the sharp drop in deposits in August of that year.

Let us now see how to improve the forecast by constructing a time-se es
model for the residual series of the regression equation. The sample autocorrela-
tion function for the residual series is shown in Fig. 19.16. Observe that high-
order correlations damp toward 0, so that the residual series can be considered
stationary. The autocorrelation function does. however, contain peaks at
monthly Iags which are multiples of 12, indicating annual seasonality. Figure
19.17 shows the sample autocorrelation function for a l2-month difference of
the original residual series, i.e., for the series (l - 812)2,. This autocorrelation
function has a damped sinusoidal shape which is indicative of a purely autore-
gressive process of order 2 or greater.

FIGURE 19. '16
ALrtocorre at ion function of residuals urfrom Eq. (19.15).

i ,

l
1973

l

FIGURE 19. '17
iu-iJ"orrerution function of 12-month d flerence of residuaLs (1 - Bi'z)ur'

Ludwig estimated a variety of autoregressive models for this residual scrics

and found the best model to be of the form

(l  -  dr2Br,)( l  -  618 -  QrBt -  6z8) -  6nBn -  6tBt -  QuBulu,--  n '

(19.  l8)

which in its expanded and estimated form is

0 -  ] )68 -  .02582- .0558r - .00984+ . l toB5 - '12886 - '7828t2

+ .5)28t3 + .O8lB14 + . r25Btt  -  .2r)Bt6 -  IO3BI7 -  'O608t8)4 = 'q l

l l9.19)

R2 : .78 X2 = 14.5

A historical simulation of the time-series model alone is shown in Fig 19 lS

Observe that the residual series is reproduced closely'
- -No* 

ttt. time-series model for thi residual series can be combined with thc

regression model of Eq. ( 19.15). A historical simulation of the combined rcgrcs-

;i;-dme-seies mod;l is shown in Fig tg lg Note that savings deposits arc

tract.a 
-.,ctt 

more closely than before' Indeed' the rms percent error has bcctr

reduced by a factor of more than 3, to 29 3'.- 
n""ifv,'"" t" prst forecast of savings flows is made using- the combined regrcs-

sion-time-seriei model, again for the 4-month period July 1973 to Octobcr

tqZl. thi, fo.".urt, shown in Fig lg'2o, is closer to the actual data than whctt

rh" iag..rrio., model alone was used (The rms percent errol has been reducctl

it.- iii to 118.) Although the forecast does not capture the extent of thc
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FIGURE 19,18

t9 l l  t912 1912 1973 1913

Historical simulal ion of t lnre-series model iof resldua s.

downturn in savings deposit flows in August 1973, it does capture general
movements in the variable.

I9.5 A COMBINED REGRESSION-TIME-SERIES MODEL
TO FORECAST INTEREST RATES
As a second example ofthe combined use ofregression analysis with time-series
models, we construct a model to forecast, on a monthly basis, the interest rate on

FIGURE 19.19
Historica slmu ation ot combined regression-time-serles model lor
savings deposit f lows.
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deposit flows 'rs rg conbined
regression-tlme-series model

f -month Treasury bills' We will begin with a simple regression model that

.rpi"i* ,f,t. i",.."st rate as a functio""of ittdrrtttiul ptoduction'-inJlation' and thc

rate of growth of the money supply' all lagged- We will then examine thc

.liilat:';i ;;; fiei i'a'nt u" enwre rnoa'l to them Finallv' we will

t.ar,f-"a 
"fi,h" 

pur"-ar.., of the combined regression-time-series modcl

rffiil;;;ry]; tl.p trtut *" did not take in the previous example)'3

we use thJ following notadon: R is the Treasury bill rate (in percenr per

""""Li, 
iplt ,rt.l"dex'of Industrial Production' GM is the monthly percentaSc

#;;;;;;h;i;. (narrowlv aefi"ed; *ottev supplv-' and INF is the monthlv

#;,"";;;;;;i;rowtrr ot ttte proaucer Price Index' we estimated our regres-

;;;;"1;;;;nthlv data from January le6o to March le88 and obtained

(t statistics in Parentheses):

R : -.80I0 - 21.g24GM-t + .o74glP -t - 24 608(AIP-rAP-'z)t '  
t - isol  \ -  9J (r4 9e) (-2 l r )

+ 3l.968INF-r + l9.7l0INF 
' 

+ 45'475INF-r + 39'828INF-a (19'20)

iiiur \2321 (2 65) \2'2eJ

R2:.528 s=2.O)6 F = 51. j6 DW= 125

Fisurelg.2lshowstheactualandfittedseries,togetherwith-rhelegression
t"ri;";i;. i.i"" ,l"i ir*i.tra"als appear to have a high.degree of positive auto-

correlation, which i, .orrrirt"rrt *iii the very Iow Durbin-wa$on statistic. Also

s In the first and second editiars of this book we wrote that "Unfortund€-ly' the simultaneous

estimation of all the parameters tu" totittiltt eniail ionsiderable computational expense' ar){l

lherefore js oflen not done 
'n 

p'ututtl:'i 
-ioti 

of compuling has. fa llen 
.dramatically 

sincc llx'

oubticarion of our second eOirion rn isgi' and better sohware has also-become avaitable Tlx

estimations in lhis exampte were oone.quiie eiiily using tullcrorsr and (analso be done easily u'itu

rhe micro ve$ion of SffeZ,qU, as weu'aiother microiompurer and mainframe packages
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FIGURE 19,21
Three-month Treasury bill rate, actua, fitted, and residua s.

note that the model fits the data reasonably well during the 1960s, less well
during the 1970s, and rather poorly during the I980s. This is not surpdsing,
given that interest rates became extremely volatile beginning in the late 1970s
(in part because of a change in Federal Reserve operating policy). In fact, most
large econometric models failed miserably to predict interest rate changes during
this period. Our regression model does no better in predicting rates. FiqJ]Je 19.22
shows a 3-month tx poJl forecast for April, May, and June of 1988; the forecast is
clearly way off the mark.

Let us now examine the residuals from this regression. Figure 19.23 shows
the sample autocorrelation function for the residuals, which declines steadily
toward zero, indicative of a stationary sedes. Figure 19.24 shows the sample
autocorrelation function for the residuals after they have been first-differenced;
all the autocorrelations are close to zero. We will work with the undifferenced
residuals.

After some experimenting, we fit the following ARIM A(12, O, 2l model to the
series of residuals, which we denote by z,:

( l  -  1.10898 + .Jt5782 -  . t t59Bt + .188684 -  .40768'

+ . )69J 86 -  . lO75B7 -  .06j5 B8 -  - t786Be + .2202 810 -  .08508"

+.0O)8812\h:  - .3528 + ( I  -  .00078 + .O025B2lnt  (19.21)

R' = .900 X'z(14,36) : 25.27 1.0

5 1988.0(
1988.0t

FIGURE 19.22
Regresslon mode; 3-month lorecast of Treasury bl rate

FIGUBE 19,23
Regression reslduals: sample autocorrelation functlon

1.0 r



FIGURE'I9.24
First differences of regression residualsi sample autocorrelation function.

With 36 - 14 : 22 degrees of freedom, the chi-square statistic is insignificant at
the 90 percent level, so that we can accept the hypothesis that the residuals of
this ARIMA model are whire noise.

We now have an ARIMA specification for the residuals which seems to flt
well. However, rather than use this ARIMA model together with the regression
model as they stand, we combine the two and reestimate all the parameters
simultaneously. In other words, we estimate the parameters of the following
model:

Rt:  ao+ 4rGM,_r +.  .  + 47INF/-4 + g-t(B)0(B)r1,  l t9.22l
where d(B) :  I  -  drB -  6z82 - '  . -  6rzBt2,  and0(B) = |  -  | tB -  0282.
The results of this estimation are as follows:

&= -17.7)5 + I3.974cMt t+ . t779lPt_t  -  8.0116(AIpr r / Ipr_r)
(3.2r) o.e6l \ -2.59)

+ I3.9742INFI_r + 6.7157INF,_, + 6.2660INF/_3 - 3.l522INF/_4
12.J8) (1.18) (1.28) (  - .87)

+ {( l  + .21408 -  .2755821/I  -  1. t7728 + .  388'  + . t87681

-.043084 - .l804Bt + .284686 - .024787 - .284488

-.02078e + .1960810 -  .O)91Btt  _ .OO8lAt2)hr (19.231

R2:.97j8 s: .4863 F:545.5 DW = 2.OOl

A,, l l ,

65

FIGURE 19,25
Thiee-month Treasury bil l  rate, actua, f itted, and residuals (combined regression-
time-series model).

FIGUBE 19,26
Combined regression-t ime-series modell  3-month ex post lorecast

6.4

6.3

6.1

5.0

5.8

,"r"*r, /r''
/ /.' 

actual

l9E8.0l



Sou/ce. Cilibase, Sefles cVU82.

Nolc l l l r t  t l rc / i . r is  r r ,w l r r r r t , l r  l r ig l r t ' r , .1 ' ( l  t l ) ( ' l )W is vt . r .y t t rsr .  lo 2. . l . l tc  sn l l ) lc
autocorrclatiors l i lr thc rcsiduals ol t lr is c(lualiolr (r)or sl)ow ht rt.1 .r r.t. .r l l  vcry
close to zero, so that thc rcsiduals appcar to bc wlritc r()isc. Fi,tLtrc 19.25 shows
the fitted and actual interest rate series, as well as thc rcsiduals. Unlikc tlrc
simple regression model that we started with, the fit of this equation is cxcellcnl
throughout the sample period, and the residuals exhibit no autocorrclation.,)

Finally. Fig. 19.26 shows an ex post forecast for the last three months of thc
sample period. Note that the forecasted values of the interest ratc are now quttc
close to the actual values. This combined regression-time-series model seems to
be a much better forecasting tool than the simple regression model, and it also
forecasts better than the pure ARIMA model that we developed and used in our
earlier interest rate examples.

EXERCISE
l9.l The data for nonfarm inventory investment are reproduced below in Table 19.1.

(a) Try to develop an ARIMA model that improves on the forecasting performance of
lhe one presented in Seclion 19.2.

(r) Develop your own combined regression-time-series model of inventory invest_
ment. Can you improve on the forecasting performance of the pure ARIMA model?

TABLE 19.'I
REAL NONFARI\,1 INVENTORY INVESTMENT

Obs. Obs.

1950 10.00
1951 26.40
1952 13.10
1953 8.70
1954 7.60
1955 1 1.30
1956 18.90
1957 5.50
1958 -16.90
1959 14.60
1960 25.50
1961 -8.00
1962 19.50
1963 13.90
1964 18.60
1965 31 00
1966 33.60
1967 31.40
1368 11.90
1969 24.10

13 40 45.40
28.40 12.10
10.00 13.20
3.80 - t  1.30

-8.10 .10
16.30 19.70
13 70 1210
6.30 -9.40

-1.20 9.90
3.90 17.20
9.10 15.50

16.10 14.50
15 40 4.90
17.80 10.00
15.90 18.90
22.70 16.60
34.50 45.60
32.30 31.50
27.20 15.10
29.90 22.60

1970 1.30
1971 26.00
1972 8.80
1973 37.00
1974 34.10
1975 27.80
1576 26.40
1977 29.90
1978 34.20
1979 19.40
1980 9.10
1981 22.80
1982 19.90
1983 -33.20
1984 68.30
1985 15.80
1986 35.20
1987 43.90
1988 39.40

8.50 16.50 3.30
16.10 16.80 5.50
21.70 28.60 18.10
30.10 22.00 4a.70
38.30 17.60 43.60
29.70 -1.30 2.40
34.70 25.00 16.90
28.00 45.90 20.00
38.30 31.00 41 10
25.80 4.00 -7 50
9.30 -19.00 -B 40

10.60 30.60 1 1.90
-9.50 -12.70 -50.40
-2.40 14.80 2A.50
61.50 62.60 3B 70
12.40 3.20 16.70
23.90 10 2.30
22 70 12.10 51.50

14.70
41.20
-4.70
11.20

- 10.00
17.50
16.20
5.10

-15.10
27.50
6.30
1.10

13.80
15.40
16.80
21.50
34 40
13.80
27.50
20.90

eThe residuals do, however, exhibit heteroscedasticity. One could correct for this wllcn eslrmaF
ing the model, but we have not chosen to do so.
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TABLE 1
STANDARDIZED NORN,4AL DISTRIBUTION

.00 .09.08.07.06.05,03.02.01 .04

.0 .5000

.1 .4602

.2 4207

.3 .3821

.4 .3446

5 .3085
.6 2743
.7 2420
.8 .2119
.9 .1841

1.0 .1587
1.1 1357
1 .2 .1 151
1 3 .0S68
1.4 0808

1.5 .0668
1 6 .0548
1.7 .0446
1.8 .0359
1 9 .0287
2.0 .0228
2.1 .0179
22 .0 '139
2.3 0107
2.4 .0082
25 .0062
2.6 4047
2.7 .0035
2.8 .0026
2.9 0019
3.0 .0013

.4960 4920
4562 .4522
.4168 .4129
.3873 .3745
.3409 3372

3050 .3015
.2709 .2676
.2389 .2358
.2090 .2061
1814 .1788

1562 .1539
1335 .1314

.1131 .1112

.0951 .0934

.0793 .0778

.0655 0643
0537 .0526
.0436 .0427
.0351 4344
0281 .0274

.0222 .0217

.0174 0170
0136 .0132
.0104 .0102
.0080 .0078

.0060 .0059

.0045 .0044

.00s4 .0033
0025 .0024
.00181 .0018
.0013 .0013

.2877 .2843

.2546 2514

.2236 2206

.1949 1922
1685 .1660

2810 2/ lr
.2483 24!t l
.2217 ?14t1
.1894 l lJ{ i  /
.1635 l ( i l  I

.4880 4840 .4801

.44a3 .4443 .4404

.4090 .4052 4013
3707 .3669 .3632
.3336 3300 .3264

.2981 .2946 2912
2643 .2611 .2578
2327 .2296 .2266
2033 .2005 .1977
.1762 .1736 .1711

.1515 1492 .1469

.1292 .1271 .1251
1093 .1075 .1056
.0918 0901 .0885
.0764 .074e .0735

.0630 .0618 .0606

.0516 .0505 .0495

.0418 .0409 0401
0366 .0329 .0322
.0268 .0262 .0256

0212 .0207 0202
.0166 .0162 .0158
.0129 .0125 .0122
.0099 .0096 0094
0075 .0073 .0071

.0057 .0055 .0054

.0043 .0041 0040
0032 .0031 .0030
.0023 .0023 .0022
.0017 .0016 .0016
0012 .0012 .001 1

.4761 4721 .4681 41,41
4364 .4325 4686 4',/4 /
.3974 .3936 3897 l l l l l r l )
.3594 3557 .3520 lJ4l l i r
.3228 .3192 .3156 :J l i r  l

.1446 1423 1401 I l i  /{J
1230 .1210 .1190 1 l  /0

.1038 .102A 1003 0{) l l j i

.0869 0853 .0838 olJ; ' , i l

.0721 .0708 .0694 0(i1l I

.0594 0582 0571 01,111)

.0485 .A475 0465 04lr lr

.0392 .0384 .0375 oiJ{)/

.0314 0307 0301 021)4
0250 .0244 .0239 O2il l l

.0197 .0192 0188 0l lJ l i

.0 '154 0150 0146 01411
0119 .0116 .0113 0I  11)
.0091 .0089 .0087 0(Jl l4
.0069 .0068 0066 ix){ i4

0052
.0039
.0029
.0021
.0015
.0011

.0051 .0049 00411

.0038 .0037 00:l(;

.0028 0421 (x) l ' ( ;

.0020 .0020 0011r

.0015 .0014 0014

.0010 0011 {) l )  |  l )

The tab e plols the cumu at ive probabl l i ly  z > z
Sourcer p;oduced from Edward J Kane Econamic Statistics and Ecanomettics: An lnttoduction to Qutltn r1r,'

Ecoromtcs (New York Harper&Row 1968).
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