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Chapter 1

Regression Models

1.1 Introduction

Regression models form the core of the discipline of econometrics. Although
econometricians routinely estimate a wide variety of statistical models, using
many different types of data, the vast majority of these are either regression
models or close relatives of them. In this chapter, we introduce the concept of
a regression model, discuss several varieties of them, and introduce the estima-
tion method that is most commonly used with regression models, namely, least
squares. This estimation method is derived by using the method of moments,
which is a very general principle of estimation that has many applications in
econometrics.

The most elementary type of regression model is the simple linear regression
model, which can be expressed by the following equation:

Yo = P+ Bo Xy + wy. (1.01)

The subscript ¢ is used to index the observations of a sample. The total num-
ber of observations, also called the sample size, will be denoted by n. Thus,
for a sample of size n, the subscript ¢ runs from 1 to n. Each observation
comprises an observation on a dependent variable, written as y; for observa-
tion ¢, and an observation on a single explanatory variable, or independent
variable, written as X;.

The relation (1.01) links the observations on the dependent and the explana-
tory variables for each observation in terms of two unknown parameters, (3;
and (5, and an unobserved error term, u;. Thus, of the five quantities that
appear in (1.01), two, y; and Xy, are observed, and three, 31, (2, and wu, are
not. Three of them, y;, X;, and wu;, are specific to observation ¢, while the
other two, the parameters, are common to all n observations.

Here is a simple example of how a regression model like (1.01) could arise in
economics. Suppose that the index ¢ is a time index, as the notation suggests.
Each value of ¢ could represent a year, for instance. Then y; could be house-
hold consumption as measured in year ¢, and X; could be measured disposable
income of households in the same year. In that case, (1.01) would represent
what in elementary macroeconomics is called a consumption function.
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4 Regression Models

If for the moment we ignore the presence of the error terms, (3 is the marginal
propensity to consume out of disposable income, and 3 is what is sometimes
called autonomous consumption. As is true of a great many econometric mod-
els, the parameters in this example can be seen to have a direct interpretation
in terms of economic theory. The variables, income and consumption, do in-
deed vary in value from year to year, as the term “variables” suggests. In
contrast, the parameters reflect aspects of the economy that do not vary, but
take on the same values each year.

The purpose of formulating the model (1.01) is to try to explain the observed
values of the dependent variable in terms of those of the explanatory variable.
According to (1.01), for each ¢, the value of y; is given by a linear function
of X, plus what we have called the error term, u;. The linear (strictly speak-
ing, affine!) function, which in this case is 31 + ($2.Xy, is called the regression
function. At this stage we should note that, as long as we say nothing about
the unobserved quantity u:, (1.01) does not tell us anything. In fact, we can
allow the parameters 3; and (32 to be quite arbitrary, since, for any given 34
and (3, (1.01) can always be made to be true by defining u; suitably.

If we wish to make sense of the regression model (1.01), then, we must make
some assumptions about the properties of the error term u;. Precisely what
those assumptions are will vary from case to case. In all cases, though, it is
assumed that u; is a random variable. Most commonly, it is assumed that,
whatever the value of X;, the expectation of the random variable u; is zero.
This assumption usually serves to identify the unknown parameters ; and
(2, in the sense that, under the assumption, (1.01) can be true only for specific
values of those parameters.

The presence of error terms in regression models means that the explanations
these models provide are at best partial. This would not be so if the error
terms could be directly observed as economic variables, for then u; could be
treated as a further explanatory variable. In that case, (1.01) would be a
relation linking y; to X; and u; in a completely unambiguous fashion. Given
X; and uy, y; would be completely explained without error.

Of course, error terms are not observed in the real world. They are included
in regression models because we are not able to specify all of the real-world
factors that determine y;. When we set up our models with u; as a ran-
dom variable, what we are really doing is using the mathematical concept of
randomness to model our ignorance of the details of economic mechanisms.
What we are doing when we suppose that the mean of an error term is zero is
supposing that the factors determining y; that we ignore are just as likely to
make y; bigger than it would have been if those factors were absent as they
are to make y; smaller. Thus we are assuming that, on average, the effects
of the neglected determinants tend to cancel out. This does not mean that

LA function g(z) is said to be affine if it takes the form g(z) = a + bz for two
real numbers a and b.
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1.2 Distributions, Densities, and Moments 5

those effects are necessarily small. The proportion of the variation in y; that
is accounted for by the error term will depend on the nature of the data and
the extent of our ignorance. Even if this proportion is large, as it will be in
some cases, regression models like (1.01) can be useful if they allow us to see
how y; is related to the variables, like X, that we can actually observe.

Much of the literature in econometrics, and therefore much of this book, is
concerned with how to estimate, and test hypotheses about, the parameters
of regression models. In the case of (1.01), these parameters are the constant
term, or intercept, (31, and the slope coefficient, 5>. Although we will begin
our discussion of estimation in this chapter, most of it will be postponed until
later chapters. In this chapter, we are primarily concerned with understanding
regression models as statistical models, rather than with estimating them or
testing hypotheses about them.

In the next section, we review some elementary concepts from probability
theory, including random variables and their expectations. Many readers will
already be familiar with these concepts. They will be useful in Section 1.3,
where we discuss the meaning of regression models and some of the forms
that such models can take. In Section 1.4, we review some topics from matrix
algebra and show how multiple regression models can be written using matrix
notation. Finally, in Section 1.5, we introduce the method of moments and
show how it leads to ordinary least squares as a way of estimating regression
models.

1.2 Distributions, Densities, and Moments

The variables that appear in an econometric model are treated as what statis-
ticians call random variables. In order to characterize a random variable, we
must first specify the set of all the possible values that the random variable
can take on. The simplest case is a scalar random variable, or scalar r.v. The
set of possible values for a scalar r.v. may be the real line or a subset of the
real line, such as the set of nonnegative real numbers. It may also be the set
of integers or a subset of the set of integers, such as the numbers 1, 2, and 3.

Since a random variable is a collection of possibilities, random variables cannot
be observed as such. What we do observe are realizations of random variables,
a realization being one value out of the set of possible values. For a scalar
random variable, each realization is therefore a single real value.

If X is any random variable, probabilities can be assigned to subsets of the
full set of possibilities of values for X, in some cases to each point in that
set. Such subsets are called events, and their probabilities are assigned by a
probability distribution, according to a few general rules.
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6 Regression Models

Discrete and Continuous Random Variables

The easiest sort of probability distribution to consider arises when X is a
discrete random variable, which can take on a finite, or perhaps a countably
infinite number of values, which we may denote as x1, xa,.... The probability
distribution simply assigns probabilities, that is, numbers between 0 and 1,
to each of these values, in such a way that the probabilities sum to 1:

ZP(%‘) =1,

where p(z;) is the probability assigned to x;. Any assignment of nonnega-
tive probabilities that sum to one automatically respects all the general rules
alluded to above.

In the context of econometrics, the most commonly encountered discrete ran-
dom variables occur in the context of binary data, which can take on the
values 0 and 1, and in the context of count data, which can take on the values
0, 1, 2,...; see Chapter 11.

Another possibility is that X may be a continuous random variable, which, for
the case of a scalar r.v., can take on any value in some continuous subset of the
real line, or possibly the whole real line. The dependent variable in a regression
model is normally a continuous r.v. For a continuous r.v., the probability
distribution can be represented by a cumulative distribution function, or CDF.
This function, which is often denoted F'(x), is defined on the real line. Its
value is Pr(X < x), the probability of the event that X is equal to or less
than some value z. In general, the notation Pr(A) signifies the probability
assigned to the event A, a subset of the full set of possibilities. Since X is
continuous, it does not really matter whether we define the CDF as Pr(X < x)
or as Pr(X < z) here, but it is conventional to use the former definition.

Notice that, in the preceding paragraph, we used X to denote a random
variable and x to denote a realization of X, that is, a particular value that the
random variable X may take on. This distinction is important when discussing
the meaning of a probability distribution, but it will rarely be necessary in
most of this book.

Probability Distributions

We may now make explicit the general rules that must be obeyed by proba-
bility distributions in assigning probabilities to events. There are just three
of these rules:

(i) All probabilities lie between 0 and 1;
(ii) The null set is assigned probability 0, and the full set of possibilities is
assigned probability 1;
(iii) The probability assigned to an event that is the union of two disjoint
events is the sum of the probabilities assigned to those disjoint events.
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1.2 Distributions, Densities, and Moments 7

We will not often need to make explicit use of these rules, but we can use
them now in order to derive some properties of any well-defined CDF for a
scalar r.v. First, a CDF F(x) tends to 0 as # — —oo. This follows because
the event (X < z) tends to the null set as © — —oo, and the null set has
probability 0. By similar reasoning, F'(x) tends to 1 when x — +o00, because
then the event (X < z) tends to the entire real line. Further, F'(z) must be
a weakly increasing function of x. This is true because, if 1 < x2, we have

where U is the symbol for set union. The two subsets on the right-hand side
of (1.02) are clearly disjoint, and so

Pr(X <z3) =Pr(X <z) 4+ Pr(z; < X < z).

Since all probabilities are nonnegative, it follows that the probability that
(X < 22) must be no smaller than the probability that (X < 7).

For a continuous r.v., the CDF assigns probabilities to every interval on the
real line. However, if we try to assign a probability to a single point, the result
is always just zero. Suppose that X is a scalar r.v. with CDF F'(z). For any
interval [a,b] of the real line, the fact that F'(x) is weakly increasing allows
us to compute the probability that X € [a,b]. If a < b,

Pr(X <b)=Pr(X <a)+Pr(a< X <0),
whence it follows directly from the definition of a CDF that
Pr(a < X <b)=F(b) — F(a), (1.03)

since, for a continuous r.v., we make no distinction between Pr(a < X <)
and Pr(a < X <b). If we set b = a, in the hope of obtaining the probability
that X = a, then we get F(a) — F(a) = 0.

Probability Density Functions

For continuous random variables, the concept of a probability density func-
tion, or PDF, is very closely related to that of a CDF. Whereas a distribution
function exists for any well-defined random variable, a PDF exists only when
the random variable is continuous, and when its CDF is differentiable. For a

scalar r.v., the density function, often denoted by f, is just the derivative of
the CDF:

f(z) = F'(x).
Because F(—oc0) = 0 and F(co) = 1, every PDF must be normalized to
integrate to unity. By the Fundamental Theorem of Calculus,

/_Oo f(z)dz = /_OO F'(x)dz = F(o0) — F(—o0) = 1. (1.04)

It is obvious that a PDF is nonnegative, since it is the derivative of a weakly
increasing function.
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Figure 1.1 The CDF and PDF of the standard normal distribution

Probabilities can be computed in terms of the PDF as well as the CDF. Note
that, by (1.03) and the Fundamental Theorem of Calculus once more,

b
Pr(a < X <b)=F(b)— F(a) = / f(z)dx. (1.05)

Since (1.05) must hold for arbitrary a and b, it is clear why f(x) must always be
nonnegative. However, it is important to remember that f(x) is not bounded
above by unity, because the value of a PDF at a point x is not a probability.
Only when a PDF is integrated over some interval, as in (1.05), does it yield
a probability.

The most common example of a continuous distribution is provided by the
normal distribution. This is the distribution that generates the famous or
infamous “bell curve” sometimes thought to influence students’ grade distri-
butions. The fundamental member of the normal family of distributions is the
standard normal distribution. It is a continuous scalar distribution, defined

Copyright (©) 1999, Russell Davidson and James G. MacKinnon



1.2 Distributions, Densities, and Moments 9
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Figure 1.2 The CDF of a binary random variable

on the entire real line. The PDF of the standard normal distribution is often
denoted ¢(-). Its explicit expression, which we will need later in the book, is

o(x) = (2m) /2 exp(— %:132) (1.06)
Unlike ¢(+), the CDF, usually denoted ®(-), has no elementary closed-form
expression. However, by (1.05) with a = —co and b = z, we have

B(x) = /_ " ) dy.

The functions ®(-) and ¢(-) are graphed in Figure 1.1. Since the PDF is the
derivative of the CDF, it achieves a maximum at x = 0, where the CDF is
rising most steeply. As the CDF approaches both 0 and 1, and consequently,
becomes very flat, the PDF approaches 0.

Although it may not be obvious at once, discrete random variables can be
characterized by a CDF just as well as continuous ones can be. Consider a
binary r.v. X that can take on only two values, 0 and 1, and let the probability
that X = 0 be p. It follows that the probability that X = 1is 1 —p. Then the
CDF of X, according to the definition of F'(z) as Pr(X < z), is the following
discontinuous, “staircase” function:

0 forz<O
F(x):{p for0 <z <1

1 for x> 1.
This CDF is graphed in Figure 1.2. Obviously, we cannot graph a corre-
sponding PDF, for it does not exist. For general discrete random variables,
the discontinuities of the CDF occur at the discrete permitted values of X, and
the jump at each discontinuity is equal to the probability of the corresponding
value. Since the sum of the jumps is therefore equal to 1, the limiting value
of F', to the right of all permitted values, is also 1.
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10 Regression Models

Using a CDF is a reasonable way to deal with random variables that are
neither completely discrete nor completely continuous. Such hybrid variables
can be produced by the phenomenon of censoring. A random variable is said
to be censored if not all of its potential values can actually be observed. For
instance, in some data sets, a household’s measured income is set equal to 0 if
it is actually negative. It might be negative if, for instance, the household lost
more on the stock market than it earned from other sources in a given year.
Even if the true income variable is continuously distributed over the positive
and negative real line, the observed, censored, variable will have an atom, or
bump, at 0, since the single value of 0 now has a nonzero probability attached
to it, namely, the probability that an individual’s income is nonpositive. As
with a purely discrete random variable, the CDF will have a discontinuity
at 0, with a jump equal to the probability of a negative or zero income.

Moments of Random Variables

A fundamental property of a random variable is its expectation. For a discrete

r.v. that can take on m possible finite values x1, s, ..., x,, the expectation
is simply
m
E(X) =) p(z:). (1.07)
i=1

Thus each possible value z; is multiplied by the probability associated with
it. If m is infinite, the sum above has an infinite number of terms.

For a continuous r.v., the expectation is defined analogously using the PDF:

o
E(X) E/ x f(x)dx. (1.08)
— 00
Not every r.v. has an expectation, however. The integral of a density function
always exists and equals 1. But since X can range from —oo to 0o, the integral
(1.08) may well diverge at either limit of integration, or both, if the density
f does not tend to zero fast enough. Similarly, if m in (1.07) is infinite, the
sum may diverge. The expectation of a random variable is sometimes called
the mean or, to prevent confusion with the usual meaning of the word as the

mean of a sample, the population mean. A common notation for it is p.

The expectation of a random variable is often referred to as its first moment.
The so-called higher moments, if they exist, are the expectations of the r.v.
raised to a power. Thus the second moment of a random variable X is the
expectation of X2, the third moment is the expectation of X3, and so on. In
general, the k'™ moment of a continuous random variable X is

mi(X) = /OO a" f(z) dx.

— 00

Observe that the value of any moment depends only on the probability distri-
bution of the r.v. in question. For this reason, we often speak of the moments
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1.2 Distributions, Densities, and Moments 11

of the distribution rather than the moments of a specific random variable. If
a distribution possesses a k'™ moment, it also possesses all moments of order
less than k.

The higher moments just defined are called the uncentered moments of a
distribution, because, in general, X does not have mean zero. It is often more
useful to work with the central moments, which are defined as the ordinary
moments of the difference between the random variable and its expectation.
Thus the k" central moment of the distribution of a continuous r.v. X is

i =B(x = B00) = [ @) fa)da,

— OO
where = E(X). For a discrete X, the k*® central moment is

e =B(X —E(X)" =3 plai)(z; — p)*.

=1

By far the most important central moment is the second. It is called the
variance of the random variable and is frequently written as Var(X). Another
common notation for a variance is o2. This notation underlines the important
fact that a variance cannot be negative. The square root of the variance, o,
is called the standard deviation of the distribution. Estimates of standard
deviations are often referred to as standard errors, especially when the random
variable in question is an estimated parameter.

Multivariate Distributions

A vector-valued random variable takes on values that are vectors. It can
be thought of as several scalar random variables that have a single, joint
distribution. For simplicity, we will focus on the case of bivariate random
variables, where the vector is of length 2. A continuous, bivariate r.v. (X1, X3)
has a distribution function

F(z1,32) = Pr((X; <) N (X2 < 22)),

where N is the symbol for set intersection. Thus F(x1,x5) is the joint proba-
bility that both X; < z; and X5 < x5. For continuous variables, the PDF, if
it exists, is the joint density function?

82F(l’1, ZIZQ)

f(xl,wZ) - 8:}018:1;2

(1.09)

2 Here we are using what computer scientists would call “overloaded function”
notation. This means that F(-) and f(-) denote respectively the CDF and the
PDF of whatever their argument(s) happen to be. This practice is harmless
provided there is no ambiguity.
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12 Regression Models

This function has exactly the same properties as an ordinary PDF. In partic-

ular, as in (1.04),
/ / f(.fl,.’lfQ) d.fldmg =1.

More generally, the probability that X; and X5 jointly lie in any region is the
integral of f(x1,x2) over that region. A case of particular interest is

F(z1,25) = Pr((X; < 21) N (Xy < 25))
o po (1.10)
= /_ /_ f(y1,y2) dyidys,

which shows how to compute the CDF given the PDF.

The concept of joint probability distributions leads naturally to the impor-
tant notion of statistical independence. Let (X;, X3) be a bivariate random
variable. Then X; and X, are said to be statistically independent, or often
just independent, if the joint CDF of (X1, X2) is the product of the CDF's of
X7 and Xs. In straightforward notation, this means that

F(x1,22) = F(x1,00)F (00, x3). (1.11)

The first factor here is the joint probability that X; < x; and Xs < oo. Since
the second inequality imposes no constraint, this factor is just the probability
that X; < 1. The function F(x1,00), which is called the marginal CDF of
X1, is thus just the CDF of X; considered by itself. Similarly, the second
factor on the right-hand side of (1.11) is the marginal CDF of Xs.

It is also possible to express statistical independence in terms of the marginal
density of X; and the marginal density of X5. The marginal density of X is,
as one would expect, the derivative of the marginal CDF of X7,

f(z1) = Fi(21,00),

where Fi(-) denotes the partial derivative of F'(-) with respect to its first
argument. It can be shown from (1.10) that the marginal density can also be
expressed in terms of the joint density, as follows:

fla) = /OO f(@1,22) dzs. (1.12)

Thus f(x1) is obtained by integrating X5 out of the joint density. Similarly,
the marginal density of X5 is obtained by integrating X; out of the joint
density. From (1.09), it can be shown that, if X; and X5 are independent, so
that (1.11) holds, then

f(l‘l,m) :f<$1)f($2)- (1-13)

Thus, when densities exist, statistical independence means that the joint den-
sity factorizes as the product of the marginal densities, just as the joint CDF
factorizes as the product of the marginal CDFs.
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ANB

Figure 1.3 Conditional probability

Conditional Probabilities

Suppose that A and B are any two events. Then the probability of event A
conditional on B, or given B, is denoted as Pr(A | B) and is defined implicitly
by the equation

Pr(An B) =Pr(B)Pr(A|B). (1.14)

For this equation to make sense as a definition of Pr(A | B), it is necessary that
Pr(B) # 0. The idea underlying the definition is that, if we know somehow
that the event B has been realized, this knowledge can provide information
about whether event A has also been realized. For instance, if A and B are
disjoint, and B is realized, then it is certain that A has not been. As we
would wish, this does indeed follow from the definition (1.14), since AN B is
the null set, of zero probability, if A and B are disjoint. Similarly, if B is a
subset of A, knowing that B has been realized means that A must have been
realized as well. Since in this case Pr(A N B) = Pr(B), (1.14) tells us that
Pr(A|B) =1, as required.

To gain a better understanding of (1.14), consider Figure 1.3. The bounding
rectangle represents the full set of possibilities, and events A and B are sub-
sets of the rectangle that overlap as shown. Suppose that the figure has been
drawn in such a way that probabilities of subsets are proportional to their
areas. Thus the probabilities of A and B are the ratios of the areas of the cor-
responding circles to the area of the bounding rectangle, and the probability
of the intersection A N B is the ratio of its area to that of the rectangle.

Suppose now that it is known that B has been realized. This fact leads us
to redefine the probabilities so that everything outside B now has zero prob-
ability, while, inside B, probabilities remain proportional to areas. Event B
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Figure 1.4 The CDF and PDF of the uniform distribution on [0, 1]

will now have probability 1, in order to keep the total probability equal to 1.
Event A can be realized only if the realized point is in the intersection AN B,
since the set of all points of A outside this intersection have zero probability.
The probability of A, conditional on knowing that B has been realized, is thus
the ratio of the area of AN B to that of B. This construction leads directly
to (1.14).

There are many ways to associate a random variable X with the rectangle
shown in Figure 1.3. Such a random variable could be any function of the
two coordinates that define a point in the rectangle. For example, it could be
the horizontal coordinate of the point measured from the origin at the lower
left-hand corner of the rectangle, or its vertical coordinate, or the Euclidean
distance of the point from the origin. The realization of X is the value of the
function it corresponds to at the realized point in the rectangle.

For concreteness, let us assume that the function is simply the horizontal
coordinate, and let the width of the rectangle be equal to 1. Then, since
all values of the horizontal coordinate between 0 and 1 are equally probable,
the random variable X has what is called the uniform distribution on the
interval [0, 1]. The CDF of this distribution is

0 forz<O
F(l’):{x for0<z<1
1 forx>1.

Because F'(z) is not differentiable at * = 0 and x = 1, the PDF of the
uniform distribution does not exist at those points. Elsewhere, the derivative
of F(x) is 0 outside [0,1] and 1 inside. The CDF and PDF are illustrated in
Figure 1.4. This special case of the uniform distribution is often denoted the
U(0,1) distribution.

If the information were available that B had been realized, then the distri-
bution of X conditional on this information would be very different from the

Copyright (©) 1999, Russell Davidson and James G. MacKinnon



1.2 Distributions, Densities, and Moments 15

F(z) f()
3.0
1.0
2.0
0.5
1.0
I € T T xT
0.0 0.5 1.0 0.0 0.5 1.0
The CDF The PDF

Figure 1.5 The CDF and PDF conditional on event B

U(0,1) distribution. Now only values between the extreme horizontal limits
of the circle of B are allowed. If one computes the area of the part of the
circle to the left of a given vertical line, then for each event a = (X < x) the
probability of this event conditional on B can be worked out. The result is
just the CDF of X conditional on the event B. Its derivative is the PDF of
X conditional on B. These are shown in Figure 1.5.

The concept of conditional probability can be extended beyond probability
conditional on an event to probability conditional on a random variable. Sup-
pose that X; is ar.v. and X5 is a discrete r.v. with permitted values 21, ..., zp,.
For each i = 1,...,m, the CDF of X;, and, if X; is continuous, its PDF, can
be computed conditional on the event (Xo = z;). If X5 is also a continuous
r.v., then things are a little more complicated, because events like (Xo = x2)
for some real x5 have zero probability, and so cannot be conditioned on in the
manner of (1.14).

On the other hand, it makes perfect intuitive sense to think of the distribution
of X7 conditional on some specific realized value of X5. This conditional
distribution gives us the probabilities of events concerning X; when we know
that the realization of Xy was actually xzo. We therefore make use of the
conditional density of X; for a given value x5 of X5. This conditional density,
or conditional PDF, is defined as

f(l‘b $2)
flz2)

Thus, for a given value x5 of X5, the conditional density is proportional to the
joint density of X; and X5. Of course, (1.15) is well defined only if f(x3) > 0.
In some cases, more sophisticated definitions can be found that would allow
f(z1 | x2) to be defined for all 9 even if f(x2) = 0, but we will not need these
in this book. See, among others, Billingsley (1979).

f(@1]x2) = (1.15)
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Conditional Expectations

Whenever we can describe the distribution of a random variable, X7, condi-
tional on another, X5, either by a conditional CDF or a conditional PDF,
we can consider the conditional expectation or conditional mean of X;. If it
exists, this conditional expectation is just the ordinary expectation computed
using the conditional distribution. If x5 is a possible value for X5, then this
conditional expectation is written as E(X; | z2).

For a given value x5, the conditional expectation E(X; | x2) is, like any other
ordinary expectation, a deterministic, that is, nonrandom, quantity. But we
can consider the expectation of X; conditional on every possible realization
of Xs5. In this way, we can construct a new random variable, which we denote
by E(X; | X3), the realization of which is E(X; |z2) when the realization of
Xo is x9. We can call E(X; | X2) a deterministic function of the random vari-
able X5, because the realization of E(X; | X2) is unambiguously determined
by the realization of Xs.

Conditional expectations defined as random variables in this way have a num-

ber of interesting and useful properties. The first, called the Law of Iterated
Expectations, can be expressed as follows:

E(E(X:|X2)) =E(Xy). (1.16)

If a conditional expectation of X; can be treated as a random variable,
then the conditional expectation itself may have an expectation. According
to (1.16), this expectation is just the ordinary expectation of X;.

Another property of conditional expectations is that any deterministic func-
tion of a conditioning variable X5 is its own conditional expectation. Thus,
for example, E(Xs | X3) = Xo, and E(X3 | X5) = X2. Similarly, conditional
on Xo, the expectation of a product of another random variable X; and a
deterministic function of X5 is the product of that deterministic function and
the expectation of X; conditional on Xo:

E(X1h(X2) | X2) = h(X2) E(X; | X2), (1.17)

for any deterministic function h(-). An important special case of this, which
we will make use of in Section 1.5, arises when E(X; | X3) = 0. In that case,
for any function A(-), E(X;h(X2)) = 0, because

E(X1 h(Xg)) = E(E(X1 h(X2) | Xg))
= (h(Xg)E(Xl \Xg))
=E(0)=0.
The first equality here follows from the Law of Iterated Expectations, (1.16).
The second follows from (1.17). Since E(X; | X3) = 0, the third line then fol-

lows immediately. We will present other properties of conditional expectations
as the need arises.
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1.3 The Specification of Regression Models

We now return our attention to the regression model (1.01) and revert to the
notation of Section 1.1 in which y; and X; respectively denote the dependent
and independent variables. The model (1.01) can be interpreted as a model
for the mean of y; conditional on X;. Let us assume that the error term wu;
has mean 0 conditional on X;. Then, taking conditional expectations of both
sides of (1.01), we see that

E(ys | Xe) = 51+ 6o Xy + E(ug | Xe) = 51 + B2 X4

Without the key assumption that E(u;|X;) = 0, the second equality here
would not hold. As we pointed out in Section 1.1, it is impossible to make
any sense of a regression model unless we make strong assumptions about
the error terms. Of course, we could define u; as the difference between
yr and E(y; | X;), which would give E(u; | X;) = 0 by definition. But if we
require that E(u; | X;) = 0 and also specify (1.01), we must necessarily have
E(y: | Xi) = 61 + B2 Xq.

As an example, suppose that we estimate the model (1.01) when in fact
yr = B1 + Bo Xy + B3 X7 + vy (1.18)

with 3 # 0 and an error term v; such that E(v; | X;) = 0. If the data were
generated by (1.18), the error term wu; in (1.01) would be equal to 83 X7 + v;.
By the results on conditional expectations in the last section, we see that

E(ut | X;) = E(Bs X7 +ve | Xi) = B X7,

which we have assumed to be nonzero. This example shows the force of the
assumption that the error term has mean zero conditional on X;. Unless the
mean of y; conditional on X; really is a linear function of X;, the regression
function in (1.01) is not correctly specified, in the precise sense that (1.01)
cannot hold with an error term that has mean zero conditional on X;. It will
become clear in later chapters that estimating incorrectly specified models
usually leads to results that are meaningless or, at best, seriously misleading.

Information Sets

In a more general setting, what we are interested in is usually not the mean
of y; conditional on a single explanatory variable X; but the mean of y,; con-
ditional on a set of potential explanatory variables. This set is often called
an information set, and it is denoted €2;. Typically, the information set will
contain more variables than would actually be used in a regression model. For
example, it might consist of all the variables observed by the economic agents
whose actions determine y; at the time they make the decisions that cause
them to perform those actions. Such an information set could be very large.
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As a consequence, much of the art of constructing, or specifying, a regression
model is deciding which of the variables that belong to €2; should be included
in the model and which of the variables should be excluded.

In some cases, economic theory makes it fairly clear what the information set
; should consist of, and sometimes also which variables in 2; should make
their way into a regression model. In many others, however, it may not be
at all clear how to specify ;. In general, we want to condition on exogenous
variables but not on endogenous ones. These terms refer to the origin or
genesis of the variables: An exogenous variable has its origins outside the
model under consideration, while the mechanism generating an endogenous
variable is inside the model. When we write a single equation like (1.01), the
only endogenous variable allowed is the dependent variable, ;.

Recall the example of the consumption function that we looked at in Sec-
tion 1.1. That model seeks to explain household consumption in terms of
disposable income, but it makes no claim to explain disposable income, which
is simply taken as given. The consumption function model can be correctly
specified only if two conditions hold:

(i) The mean of consumption conditional on disposable income is a linear
function of the latter.

(ii) Consumption is not a variable that contributes to the determination of
disposable income.

The second condition means that the origin of disposable income, that is, the
mechanism by which disposable income is generated, lies outside the model for
consumption. In other words, disposable income is exogenous in that model.
If the simple consumption model we have presented is correctly specified, the
two conditions above must be satisfied. Needless to say, we do not claim that
this model is in fact correctly specified.

It is not always easy to decide just what information set to condition on. As
the above example shows, it is often not clear whether or not a variable is
exogenous. This sort of question will be discussed in Chapter 8. Moreover,
even if a variable clearly is exogenous, we may not want to include it in €2;.
For example, if the ultimate purpose of estimating a regression model is to
use it