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Preface

The purpose of this book is to give readers convenient
access to a collection of innovative applications of
econometric methods to data on health and health care.
The contributions are selected from papers presented at
the European Workshops on Econometrics and Health
Economics which have been published in Health Econ-
omics. The Workshops were established in York, with
meetings in 1992 and 1993. Since then they have taken
place annually, with locations in eight different
European countries. Publication of the present volume
marks the tenth anniversary of the Workshop series, the
overall aim of which is to provide a forum for the devel-
opment and dissemination of econometric methods in
health economics. When the Workshops were first estab-
lished, there were relatively few European researchers
at the frontiers of quantitative research in the area.
Advances in quantitative techniques and the increased
availability of datasets and computing technology had

created the potential for large returns from attracting
more researchers into health econometrics. There are in-
dications that these returns are now being reaped. Over
the years, there has been a steady rise in the quantity
and general quality of submissions received for each
Workshop.

We would like to thank everyone who has par-
ticipated in the Workshop series, whether as an author
or a discussant, and all of those who have reviewed pa-
pers for Health Economics. Our particular gratitude goes
to the local organisers of the Workshops: Eddy van
Doorslaer (Antwerp, 1994), Lise Rochaix (Paris, 1995),
Guillem Lopez-Casasnovas (Barcelona, 1996), Joao Per-
eira (Lisbon, 1997), Unto Hakkinen and Miika Linna
(Helsinki, 1998), Giacomo Pignataro and Ilde Rizzo
(Catania, 1999) and Maarten Lindeboom and France
Portrait (Amsterdam, 2000).
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The volume and range of applied econometric work in
health economics has increased dramatically over the
past decade. This trend can be expected to continue and,
probably, accelerate. The increasing emphasis on evi-
dence based policy, the wide availability of individual
level data and the recurring statistical issues of latent
variables, unobservable heterogeneity, and nonlinear
models combine to make health and health care a par-
ticularly rich field for the application of econometric
analysis. In this context, it has become increasingly im-
portant for the applied researcher in health economics to
have a good knowledge of relevant contemporary
econometric techniques. This volume is intended to con-
tribute toward such an understanding.

In terms of methodology, all the papers selected for this
volume fall within the broad heading of ‘microeconomet-
rics’; econometric analyses of individual level data. This
reflects the emphasis on microeconomic analysis in health
economics generally. Analyses of individual level survey
data require the use of a wide range of nonlinear models.
Examples include binary responses, multinomial re-
sponses, limited dependent variables, integer counts and
measures of duration. Such nonlinear models dominate
health econometrics and applications can be found across
the four parts of this volume. Given that the focus of the
volume is on providing examples of good econometric
practice in relation to issues arising with health and
health care data, the papers have been grouped according
to common econometric themes rather than by the sub-
ject matter of the applications. Hence, Part I deals with
latent variables and selection problems, Part II with
count data and survival models, Part III with flexible and
semiparametric estimators and Part IV with panel data.
The intention is to enable easy identification of papers
which deal with data problems and econometric issues
similar to those the reader might face in their own re-
search.

A peculiarity of the field is that the variables of interest,
such as health or quality of life, are often unobservable
and may only be measurable with error, for example,
through subjective reports. The estimation issues arising
are dealt with by the papers included in Part I, which
covers latent variables and selection problems. Modelling
the number of visits to a physician and the number of
medicine prescriptions received has been a major issue in
the health econometric literature. Part II contains three
papers on such count data models, as well as one on the
related econometric problem of modelling survival dur-
ation. Analysis of expenditure data is complicated when
there is a high proportion of observations with zero ex-
penditure in the sample, as is likely to be the case with
consumption of health care or cigarettes. The consistency
of standard approaches to the problem rest on the valid-
ity of distributional assumptions. The papers included in
Part III use flexible and non/semiparametric methods to
weaken required distributional assumptions while deal-
ing with the limited dependent variable problem. As in
other fields, the use of longitudinal data is becoming
increasingly prevalent in health economics research. The
chapters which constitute Part I'V all use panel data and,
within this context, deal with important issues for re-
search in health and health care such as dynamics, unob-
servable heterogeneity, endogeneity, binary response,
censoring and survival.

The remainder of this introduction expands on some of
the common econometric problems confronted when
analysing data on health and health care and, by refer-
ence to the individual chapters, identifies appropriate
techniques to deal with these problems.
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LATENT VARIABLES AND SELECTION
PROBLEMS

LATENT HEALTH

In health economics, empirical analysis is complicated by
the fact that theoretical models often involve inherently
unobservable (latent) concepts such as ‘health’ or ‘quality
oflife’. This latent variable problem is central to models of
the demand for health and to the construction of health
status indices. Information from observable indicators,
such as chronic illness or self-reported health status, must
be used to proxy the latent concepts. However, there may
be reason to suspect that the relationships between the
latent variables and their observable indicators differ sys-
tematically with observable or unobservable factors, po-
tentially leading to endogeneity problems. The papers
included in Part I address these issues.

Few papers in the health economics literature have
been more influential than Grossman’s demand for health
model [1]. However, empirical testing of the model is
complicated by the fact that the central concept, ‘health’,
is inherently unobservable and has to be proxied by
indicator variables. The multiple indicators multiple
causes (MIMIC) model, which can be estimated as linear
structural relationships (LISREL), has been widely used
to deal with the latent variable issue. This is the approach
adopted by both Wagstaff (Chapter 1) and Erbsland, Reid
and Ulrich (Chapter 2) to estimate Grossman-type de-
mand for health models.

In general, a MIMIC model of latent health has the
form,

H* = X,B, +¢, (1)
HI,=y;H* +¢,, j=1...J )

where H* is (latent) health capital, HI; is observable
health indicator j e.g. self-reported health (multiple indi-
cators) and the X, are exogeneous socioeconomic vari-
ables (multiple causes).

Identification requires some normalization of the par-
ameter vector y and restrictions on the covariances, such
that the latent H* is proxied by some linear combination
of the health indicators. Assuming joint normality of the
errors terms, estimation can be carried out by full infor-
mation maximum likelihood (FIML). This general model
might be used to estimate, for example, health production
functions, as well as the demand for health model.

Application to the demand for health requires supple-
mentation of Equations 1 and 2 with a demand for medi-
cal care equation,

My = H* + X, B t &3 k=1,...K (3)

where M, is medical care k e.g. physician visits and X, are
exogeneous socioeconomic factors. The latent health
variable is endogenous in Equation 3 and exclusion re-
strictions on X, are required for identification.

Equations 1-3 represent the basic structure of the em-
pirical models estimated by Wagstaff and Erbsland et al.
The latter focus on the health impact of the environment,
which is itself treated as a latent variable, proxied by
indicators of noise and air pollution. Consequently, a
measurement equation for quality of the environment,
analogous to Equation 2, is added to the model. Latent
environmental quality is included as a regressor in the
latent health Equation 1, where it is treated as exogenous
and found to have a significant positive effect.

Despite claims to the contrary, the links between the
theoretical and empirical sections of applied econometric
papers are often tenuous. This is not the case with the
Wagstaff and Erbsland et al. papers, which both give
careful consideration to the transition from Grossman’s
theoretical model to a feasible empirical specification of
it. Indeed, this is the primary concern of Wagstaff, who
argues that Grossman’s empirical formulation, the basis
of previous testing, fails to capture the dynamic character
of the theoretical model and that this inconsistency may
explain the apparent rejections of the model in earlier
empirical work. The issue concerns the structural impact
of health capital on the demand for medical care. From
the optimality conditions, this marginal impact is nega-
tive for plausible values of the depreciation rate (Erbsland
et al.). However, the restrictions imposed in order to
arrive at an empirical specification result in health capital
entering the structural demand for medical care equation
with a parameter of positive unity. The empirical esti-
mates presented in Chapters 1 and 2, as well as previous
results obtained by Wagstaff [2], all support the theoreti-
cal predictions of the model but are inconsistent with the
(Grossman) empirical specification. Wagstaff proposes an
alternative empirical formulation, which results in health
capital entering the structural demand for medical care
equation with a negative parameter. In this respect, it is
more consistent with the theory, although Erbsland et al.
question whether the specification can be derived explicit-
ly from the theoretical model. The formulation involves
linear, rather than log-linear, specifications of the invest-
ment identity and the demand for health equation and
relaxation of the neoclassical assumption of instan-
taneous adjustment of health stock to its desired level. As
a result, dynamics are introduced to the empirical model.

In general, Wagstaff finds observable health indicators
to be good proxies, latent health accounting for a mini-
mum of 34% (functional limitations) and a maximum of
90% (self-assessed health) of the variance of the indi-
cators. The proxies are less close in Erbsland et al.; for one
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indicator (duration of sick leave) only 11% of the vari-
ation is attributable to latent health and for two of the
remaining three proxies, the majority of their variance is
not attributable to latent health. Wagstaff’s estimate of
the variance in self-assessed health attributable to latent
health is more than twice that of Erbsland et al. The
source of such inconsistencies needs further attention
before the MIMIC model can be used to identify the most
reliable indicators of latent health. In both studies, a
substantial amount of the variation in the observable
health indicators cannot be attributed to latent health.
This raises the question of what accounts for the unex-
plained variation and the possibility that such measure-
ment error will create bias when observable indicators are
used to proxy unobservable health.

Kerkhofs and Lindeboom (Chapter 3) take up this
measurement error issue. As with Wagstaff and Erbsland
et al., self-assessed health is treated as an indicator of
unobservable health, but now allowance is made for the
possibility that the relationship between the indicator
and underlying latent concept varies with third factors.
Their focus is on the possibility of state-dependent report-
ing errors arising from financial incentives and/or social
pressures for non-workers to report ill health. This would
create bias if, for example, self-assessed health were in-
cluded as a regressor in a labour supply model or used to
examine income-related health inequalities.

Correction for state-dependent reporting errors in-
volves using an objective measure of health, H®, in this
case the Hopkins symptom checklist, plus socio-demo-
graphics, X,, to instrument the latent variable, H*.
Identification of reporting behaviour relies on the as-
sumption that, controlling for H® and X,, employment
status, S, contains no independent information on H*.
For example, there is no correlation between the unob-
servable determinants of employment and health, subject
to the stated conditioning. Then, controlling for H® and
X, any effect of S on self-assessed health, HI, can be
attributed to reporting behaviour.

Both reported and objective health are categorical
variables, which are assumed to be related to latent health
as follows,

H*=fH%+ X,B+¢e &~N(@O1) 4)
HlI=iify,_, <H*<yp, i=1,...m (5)
=9(5X,), i=1..m—1 (6)

Reporting errors are allowed for through the dependence
of the threshold values of the ordered probit, p, on S and
X ,. Comparison of Equations 4-6 with Equations 1 and 2
reveals that the basic structure of the models is the same.

The Kerkhofs and Lindeboom approach is more general
in the sense that the parameters of the measurement
equation are allowed to vary with observable characteris-
tics.

Normalizing on the reporting behaviour of the em-
ployed, early retirees understate and the unemployed
overstate their ill health to a moderate, but not signifi-
cant, extent. Reporting behaviour is more distinct among
those claiming disability insurance. Of the disability
claimants who reported their health to be bad, one-third
of them would not have done so had they been in employ-
ment, all else equal. There is no evidence that other
exogenous characteristics — gender, age, marital status,
education and religion — have an effect on misreporting.
This latter result is reassuring for the health economics
community which makes widespread use of the self-as-
sessed health indicator, but the scale of the reporting
biases deriving from disability status does give cause for
concern.

A limitation of the approaches described above is that
they treat health as a single latent concept and do not
allow for its multidimensionality. For this reason, re-
searchers might prefer to work directly with a range of
health indicators, rather than attempt to compress these
into a single latent index. So, it might be argued, that it is
better to enter a range of health indicators directly into an
utilization equation such as Equation 3. However, this
approach leads to collinearity, degrees of freedom and
interpretation problems when the number of indicators is
large. This is typically the case when modelling health/
social care utilization by the elderly when the researcher
may have a very large number of activities of daily living
(ADL) indicators. Portrait, Lindeboom and Deeg (Chap-
ter 15) measure health status by a method which com-
presses information from a large range of indicators but
preserves the multidimensionality of the concept. The
technique is the Grade of Membership (GoM) method of
Manton and Woodbury [3]. Its application is considered
in detail in an earlier paper by Portrait, Lindeboom and
Deeg [4]. The technique takes information from a range
of indicators and collapses these into different dimensions
of health status, or pure types. Simultaneously, it esti-
mates the degree to which an individual can be classified
by each of the pure types. These ‘Grades of Membership’
are represented by a set of weights, summing to one for
each individual across the different dimensions. For
example, Portrait et al. are able to collapse 21 indicators
of the health of a sample of the elderly into six pure types:
chronic pulmonary disease and cancers, other chronic
diseases, cognitively impaired, arthritis patients, car-
diovascular diseases and a healthy group. An individual’s
health status is measured, continuously and in a multi-
dimensional manner, by the set of weights indicating the
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extent to which they belong to each of the pure types.
For health applications, the GoM method has four
main advantages over other data reduction methods,
such as factor analysis or principal components. First,
estimation of the dimensions and the individuals’ attach-
ments to these is carried out simultaneously. Second, it is
nonparametric. Third, it respects the multidimensionality
of health, in the sense that individuals are not classified to
one type but are associated, to varying extents, with
various types. Finally, it respects the dynamic nature of
health, and so is suitable for longitudinal analysis, by
producing a health measure, i.e. the weights, which is
continuous. With such properties, the approach deserves
further attention in the health economics literature.

SELECTION

Lahiri and Song (Chapter 4) focus on a single dimension
of health —illness related to smoking. They recognize that
individuals may, rationally, self-select into and out of
smoking behaviour on the basis of their perception of
their own risk of contracting a smoking related illness.
Provided such perceptions are based on some true infor-
mation, which may come from changes in health over
time, failure to allow for self-selection will bias estimated
health effects of smoking based on comparisons between
the health of smoking and non-smoking samples.

Index functions for the decisions to start and stop
smoking are specified from comparisons of lifetime utili-
ties in respective states. These provide the means of cor-
recting for selection in estimation of health outcome func-
tions for non-smokers, ex-smokers and current smokers.
Outcomes are binary — whether the individual has con-
tracted a smoking-related disease. So, the model consists
of a set of three binary switching regressions (probits),
with sequential selection through the starting and stop-
ping decision functions. Trivariate normality is assumed,
facilitating estimation by FIML. The paper is instructive
for anyone interested in estimating selection models by
FIML. The authors describe how to go about testing for
endogeneity (trivariate), normality and heteroskedastic-
ity, as well as correcting for the latter. They also give
useful tips on how to specify the likelihood to increase
computational speed and aid convergence.

Evidence of substantial selection bias is found. The true
mean risk factor for current smokers is estimated at
around 20%, much higher than the observed risk factor
in the sample for this group of 16%. Individuals who
choose to continue smoking have a lower than average
underlying disposition to contract a smoking-related ill-
ness and so the incidence of disease amongst this group is
lower than would be found if there were random alloca-

tion to smoking. Given this, any estimation of the impact
of smoking on health through comparison of the inci-
dence of disease among smokers and non-smokers will be
downward biased. This is an important finding calling for
revision of previous estimates of the health costs of smok-
ing.

COUNT DATA AND SURVIVAL ANALYSIS
COUNTS, HETEROGENEITY AND ZEROS

Count data regression is appropriate when the dependent
variable is a non-negative integer-valued count,
y=0,1,2,.... Typically these models are applied when
the distribution of the dependent variable is skewed to the
right, and contains a large proportion of zeros and a long
right-hand tail. The most common examples in health
economics are measures of health care utilization, such as
numbers of physician visits or the number of prescrip-
tions dispensed over a given period.

The basic approach to count data is to assume the
probability of observing a count of y events over a fixed
interval can be specified as a Poisson process. In order to
condition the outcome, y,, for observation i on a set of
explanatory variables, X, it is usually assumed that,

E(y;| X;) = h; = exp(X;B) (7

A peculiarity of the Poisson distribution is that both its
mean and variance are equal to its one parameter, A,
Often, this restriction is inconsistent with data. In health
care applications, for example, there is usually evidence of
overdispersion, i.e. E(y;|X;) < Var(y;| X,). One conse-
quence can be under-prediction of the number of obser-
vations with zero counts; again, an empirical feature of
many health care applications. Additional dispersion, due
to unobservable heterogeneity, spreads the distribution
out to the tails. In this sense, the phenomenon of excess
zeros is no more than a symptom of overdispersion (see
Mullahy [5]).

Although overdispersion can account for excess zeros,
it may be that there is something special about zero
observations per se, and an excess of zero counts may not
be associated with increased dispersion throughout the
distribution. Two approaches place particular emphasis
on the role of zeros; zero-inflated models and hurdle, or
two-part, models. The ‘zero-inflated’ or ‘with zeros’ model
is a mixing specification which adds extra weight to the
probability of observing a zero. This can be interpreted
as a splitting mechanism which divides individuals
into non-users and potential-users; that is, one treats
the observations as being of fundamentally different
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types in relation to their demand for health care.

In contrast, the hurdle, or two-part, models, tend to be
motivated by a representation of the patient—doctor rela-
tionship as one of principal and agent. This makes a
distinction between patient-initiated decisions, such as
the first contact with a general practitioner (GP), and
decisions that are influenced by the doctor, such as repeat
visits, prescriptions, and referrals (see for example, Poh-
Imeier and Ulrich [6]). The consequence, in statistical
terms, is a hurdle model which allows the participation
decision, (0, 1), and the positive count, (1,2,3...), to be
generated by separate probability processes. The two-
parts of the model can be estimated separately as a binary
process, e.g. probit, and a truncated at zero count process.

Grootendorst (Chapter 5) provides an empirical com-
parison of two-part and zero-inflated specifications. The
study uses data from the 1990 Ontario Health Survey to
analyse the impact of copayments on the utilization of
prescription drugs by the elderly, exploiting the fact that
individuals become eligible for zero copayments on their
65th birthday. Neither zero-inflated nor two-part models
(TPM) are parsimonious, often doubling the number of
parameters to be estimated. Since more complicated
models may be prone to over-fitting, Grootendorst uses
out-of-sample forecasting accuracy to evaluate their per-
formance. The models are estimated on a random sample
of 70% of the observations. The estimated models are
used to compute predictions for the remaining 30% (the
forecast sample). Models are then compared on the basis
of the mean squared error for the forecast sample. In
addition to the split-sample analysis, Voung’s non-nested
test is computed. The TPM outperforms the other specifi-
cations on all of the criteria.

Deb and Trivedi [7] introduce a different approach to
the zero count issue. Health care survey data are not
usually specific to a period of illness but to a period of
calendar time, during which the first recorded visit is not
necessarily the initial one in a course of treatment. In this
context, it is argued, a TPM specification cannot be justi-
fied by appeal to a principal-agent characterization of the
data generating process. Their alternative approach is
based on the argument that observed counts are sampled
from a mixture of populations which differ in respect of
their underlying (latent) health, and so demands for
health care. That is, there may be severely ill individuals,
who are high frequency users, at one extreme and perfect-
ly healthy individuals, who are non-users, at the other.
This characterization of the data can be captured by
latent class models, for example, the finite mixture model
(FMM) which postulates that each observation of a ran-
dom variable is drawn from a super-population which is
itself an additive mixture of C distinct sub-populations, j,
which appear in proportions, m; (Heckman and Singer

[8]). That is, the density of a C-point FMM takes the
form,

C

P(y;|") = Z anj(yi‘.)ﬂ

C

O<m<l, Y m=1 (8)
i=1 j=1
This density can serve as an approximation to any true
but unknown distribution. In this sense, the approach is
semiparametric. Specifying each of the P;(y;|.) as a separ-
ate negbin process, gives the negbin FMM. Estimation is
carried out by maximum likelihood, with the n;’s being
estimated simultaneously with the other parameters of
the model.

Deb and Trivedi [ 7] not only argue that their approach
is more consistent with the data generating process than
the TPM but that the zero-inflated models are a special
case of the general FMM with unobservable heterogene-
ity. That is, in the zero-inflated models, the zero counts
alone are presumed to be sampled from a mixture of two
sub-populations (non-users and potential users).

Deb and Holmes (Chapter 6) apply both a count and
continuous version of the FMM to mental health care
visits and expenditure data from the US National Medi-
cal Expenditure Survey. In each case, appealing to evi-
dence from Deb and Trivedi [7], they argue that two
points of support, i.e. C = 2, are sufficient to approximate
the underlying distribution. In addition to dealing with
the ‘zeros’ issue, they argue the FMM is better suited to
representing the behaviour of high frequency users, who
account for a large fraction of mental health care. While
the TPM distinguishes between non-users and users, it
makes no further distinction across the users. The FMM,
on the other hand, allows users to be comprised of a
variety of population types, one of which might be severe-
ly ill, high-dependency cases. Deb and Holmes seek a
model which can be used for capitation-based funding
and so are particularly concerned with a achieving a good
fit with the data, not only in respect of representing the
means of health care use among sub-populations but also
capturing the full distributions of use. The performance of
the count version of the FMM is compared with the
negbin hurdle model for mental health care visits, while
the continuous FMM is compared with the censored
lognormal regression for (positive) expenditures. Com-
parison is based both on in-sample model selection cri-
teria (Akaike and Bayesian information criteria) and
goodness-of-fit, plus out-of-sample forecasting to check
for over-parameterization. Both the in-sample and out-
of-sample comparisons consistently find in favour of the
FMM for both the count and continuous models. The
FMM appears to be particularly successful in represen-
ting high intensity use.
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Taking the results of Grootendorst and of Deb and
Holmes together, one might conclude that while the TPM
can out-perform a restricted version of the mixing model,
i.e. the zero-inflated model, this is no longer true when the
restriction on the mixing model is relaxed. However, one
should be cautious about drawing such conclusions given
the two studies differ not only in the specifications com-
pared but in the types of health care and countries exam-
ined. Jimenez, Labeaga and Martinez-Granado (Chapter
7) provide further valuable evidence on the relative per-
formance of the TPM and FMM specifications. They
estimate (reduced form) demand for health care equations
for 12 European countries using three waves of data from
the European Community Household Panel, distinguishing
between utilization of GPs and specialists.

The TPM and FMM estimated are the same as those
adopted by Deb and Holmes. Model selection is based on
Akaike and Bayesian information criteria. For GP visits,
the results suggest the FMM is more consistent with the
data than the TPM. This is true both when parameter
homogeneity is imposed across countries and for the vast
majority of comparisons on a country-by-country basis.
For specialists, a different picture emerges, for the homo-
geneous parameter specification, the TPM is favoured
and this is true for six of the 12 individual country com-
parisons. Aggregating the information criteria across
countries also favours the TPM.

Jimenez et al. rationalize the difference in the preferred
specification for GP and for specialist visits on the basis
that multiple spells of illness/treatment are likely to be
observed for GP visits but the survey data for specialist
visits are more likely to represent a single spell. Given
this, the TPM, with its rationalization through the princi-
pal-agent story, should be more suited to representing
specialist visit data than GP visit data. This is an import-
ant warning against the idea that there is one econometric
specification waiting to be discovered that is best suited to
modelling all types of health care utilization data. The
appropriate method can be expected to vary with, for
example, the type of health care, the nature and length of
the survey and the nature of the health care system.
Despite finding in its favour with respect to GP visits,
Jimenez et al. express some apprehension about the latent
class approach. It is somewhat of a statistical black-box,
the specification not being derived from an economic
theory of health care demand. The large number of par-
ameters to be estimated can also lead to problems of
non-convergence of the likelihood and over-parameteriz-
ation.

The primary motivation of Jimenez et al. is not to
compare econometric specifications but to examine het-
erogeneity in the demand for health care across European
countries. They examine both the extent to which the

behavioural response of health care utilization to certain
factors, such as health and income, varies across countries
and the impact of health system characteristics on utiliz-
ation. There are significant differences across countries,
the restriction of parameter homogeneity being rejected.
However, there are also similarities in the effect of vari-
ables such as the health stock, income or family structure
on utilization. Health system characteristics do have sig-
nificant effects on utilization. For example, a GP gate-
keeper system increases frequency of visits to GPs and
reduces those to specialists. Fee-for-service payment has
the opposite effect on the relative demand for GPs and
specialists, a finding consistent with induced demand the-
ory. Total health care expenditure, and the fraction ac-
counted for by the public sector, have no impact on GP
use but do raise demand for specialist visits.

EVALUATION OF TREATMENT EFFECTS

Evaluation is central to the health economics literature.
The goal of many researchers is to identify the impact of
some treatment on outcomes and compare this with the
cost of the treatment. The core of the problem is the
identification of the treatment effect. This is made difficult
by the fact that it is impossible to observe the counterfac-
tual. That is, we can observe the outcome for some indi-
vidual, i, with treatment, y,;, but it is impossible to ob-
serve the outcome for the same individual, without
treatment, y,;. Hence, individual specific treatment ef-
fects, y;; — yoi are inherently unidentified. A way out is to
estimate a particular aspect of the distribution of treat-
ment effects; of which, the most popular choice is the
average treatment effect (ATE), given by E(y,; — yo;)- This
is convenient because the linearity of the expectations
operator allows the statistic to be estimated through com-
parison of the two marginal means, ie. E(y,; —
Yoi) = E(y1;) — E(yo;)- Confounding factors can be con-
trolled for either experimentally, by randomization, or
statistically, by suitable regression methods.

The ATE is, however, only one of many possible sum-
mary statistics of the distribution of treatment effects.
While it is likely to be of great policy interest, other
statistics may also be informative. Lee and Kobayashi
(Chapter 8) introduce two mean-based ‘proportional’
treatment effects which are particularly suitable when the
outcome variable is a count, to be modelled by an ex-
ponential regression function. The problem with using
the ATE in such a regression framework is that determi-
nants of the outcome which are common across the treat-
ments do not cancel out as they do with a linear re-
gression. Lee and Kobayashi’s solution is to define a
proportional ATE, i.e. E(yy; — yo:)/E(yo;), which removes
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the nuisance terms irrespective of whether the regression
function is linear or exponential. This can be calculated
both conditional and unconditional on third factors
which interact with treatment. Lee and Kobayashi sug-
gest estimating the latter, which can be thought of as the
marginal treatment effect and may be of central import-
ance, by the geometric average, across the sample, of their
proportional ATE which can be calculated by evaluating
this statistic at the means of the data. Confidence inter-
vals are derived for this marginal effect.

The outcome variables in the Lee and Kobayashi study
are physician visits and hospital days and the ‘treatment’
is physical exercise. Two waves of the US Health and
Retirement Survey are used allowing the potential en-
dogeneity of exercise to be dealt with by first differencing.
This raises a potential problem of identification if the
treatment effects were to be a function of any time invari-
ant parameters. Foreseeing this, the authors interact exer-
cise, which is time varying, with all of the control vari-
ables. Light exercise has a positive short-run effect on
health care use and a negative long-run effect. Vigorous
exercise has a negative effect in both the short and long
run. However, none of the estimated treatment effects are
significantly different from zero.

DURATION ANALYSIS AND HETEROGENEITY

Count data models are, in general, dual to duration
models. This duality applies to particular parametric
models: if the count is Poisson, the duration is exponen-
tial; if it is negative binomial, the duration is Weibull. By
using more information — the continuous variation in
durations — duration models offer efficiency gains over
count models. In health economics, obvious applications
of duration analysis, or survival analysis as it is known in
the epidemiology and biostatistics literature, are to life-
span, mortality rates and length of hospital stay.

For example, let length of stay be a random variable M
with a continuous probability density function f(m),
where m is a particular realization of M. The probability
of a length of stay of at least m is given by the survival
function,

Sm)=1—Fm)=1— f " fode = POV = m) )

A related concept is the hazard rate,

. Pm<M<m+ Am|M > m)
Mm) = lim

Am—0 Am

_ f(m)
=St (10)

which, in this example, is the rate of discharge after a
length of stay of m, given a length of stay of at least m.

In a variety of contexts, there may be considerable
interest in the behaviour of the hazard rate over time. If
the hazard rate is increasing (decreasing) with time, there
is said to be positive (negative) duration dependence.
Disentangling duration dependence from the effects of
unobservable heterogeneity is a central problem in the
literature. To illustrate, imagine that length of stay data is
sampled from two groups, a ‘very ill’ group and a ‘less ill’
group, which differ in respect of their health status. The
hazard rates are constant (time invariant) for each group
but their magnitudes differ. As time goes by, the sample
will contain a higher proportion of those with the lower
hazard rate; as those with the higher hazard will have
been discharged. If the heterogenity is unobserved, this
will lead to a spurious estimate of negative duration
dependence.

Unobservable heterogeneity can be incorporated by
adding a general heterogeneity effect v and specifying the
survival function as,

S(m) = J S(m|v)g(v)dv (11)

where the unknown distribution g(v) can be modelled
parametrically using a variety of distributions, the
gamma being a popular choice. Alternatively, returning
to the latent class model discussed above, the Heckman
and Singer [8] nonparametric approach can be adopted
by approximating the distribution of v by a discrete dis-
tribution, characterized by mass-points and probabilities,
that are estimated along with the other parameters of the
model.

Duration models can also be extended to allow for
multiple destinations, or competing risks. Hamilton and
Ho’s (Chapter 9) study of the surgical volume—outcome
relationship for hip fractures in Québec provides an
example that combines competing risks, unobservable
heterogeneity, and fixed effects. They use 3 years of hospi-
tal discharge data. The longitudinal nature of the data
allows control for quality of providers through hospital
specific fixed effects, while analysing within-hospital vol-
ume—outcome relationships. As a result, they can dis-
criminate between the ‘practice makes perfect effect’ and
‘selective referral effect’ (that hospitals with good out-
comes will get more referrals).

Their competing risks specification allows for a corre-
lation between the two outcomes; post-surgery length of
stay and inpatient mortality. This is important, ceteris
paribus, a death in hospital is more likely for a patient
with a longer length of stay. With two exhaustive and
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mutually exclusive destinations for discharges, alive (a) or
dead (d), the probability of exit to state r, after a length of
stay m, for patient i, in hospital h, at period t, with
observable characteristics X, is,

Smg | X = Mmy, | X))

I1 exp[ - f " kk(ulXih,)du:|, r=a,d
0

kea,d
(12)

This is a variant on Equation 10, rewritten with the exit
probability rather than the hazard rate on the left-hand
side. The first term on the right-hand side is the transition
intensity, the equivalent of the hazard rate in single desti-
nation models and the second term is the survivor func-
tion. A functional form for the transition intensity must
be chosen. Hamilton and Ho use the proportional haz-
ards specification, with a log-logistic distribution for the
baseline transition intensity. The distribution of unob-
servable heterogeneity (frailty) is approximated using the
Heckman-Singer nonparametric approach. Three mass
points are used (C = 3), the interpretation being that the
distribution is made up of three types of patients, and
their associated probabilities, 7, are estimated along with
the other parameters.

The results of the study show that when hospital fixed
effects are added to the model the coefficient on volume,
measured by the logarithm of live discharges, declines
substantially and becomes insignificant with respect to
live discharges. Volume does not have a significant effect
on inpatient deaths with or without hospital fixed effects,
although cruder models without unobservable hetero-
geneity and with fewer controls for co-morbidities do
show a significant effect. Allowance for hospital fixed
effects and individual unobservable heterogeneity is
therefore important in testing the ‘practice makes perfect’
hypothesis.

J°

FLEXIBLE AND SEMIPARAMETRIC ESTIMATORS
FLEXIBLE ESTIMATORS

In health survey data, measures of continuous dependent
variables such as alcohol, tobacco or medical care expen-
ditures invariably contain a high proportion of zero ob-
servations and limited dependent variable techniques are
required. The Tobit model is the most basic of such
techniques. In this approach, both the participation (e.g.,
whether to start or quit smoking) and levels (e.g., how
much to spend on cigarettes) decisions are represented by
the same linear function of observables and unobser-

vables. The double hurdle approach is less restrictive, in
that the determinants of participation and of consump-
tion are allowed to differ. However, a limitation of the
standard double hurdle specification is that it is based on
the assumption of bivariate normality for the error dis-
tribution. Empirical results will be sensitive to misspecifi-
cation, and maximum likelihood (ML) estimates will be
inconsistent if the normality assumption is violated. This
may be particularly relevant if the model is applied to a
dependent variable that has a highly skewed distribution,
as is often the case with the applications mentioned
above.

A flexible generalization of the double hurdle model is
proposed by Yen and Jones (Chapter 10). The Box—Cox
double hurdle model allows explicit comparisons of a
wide range of limited dependent variable specifications
that have been used in the health economics literature. As
in the standard double hurdle model, the conditional
distribution of the latent variables is assumed to be bi-
variate normal, permitting stochastic dependence be-
tween the two error terms. Unlike the standard model, the
observed variable is related to the underlying latent vari-
able by a Box—Cox transformation. This relaxes the nor-
mality assumption on the conditional distribution of y.
This flexibility is at the price of making greater demands
on the data and care should be taken to check for evi-
dence of over-fitting.

Yen and Jones derive the log-likelihood function for a
sample of independent observations and show that the
general model can be restricted to give various special
cases:

1. The Box—Cox double hurdle with independent errors.

2. The standard double hurdle with dependence.

3. The generalized Tobit model with log(y) as dependent
variable in the regression part of the model. Then,
assuming independence between the two error terms,
gives the special case of the two-part model in which
normality is assumed and the equations are linear.

The Box—Cox double hurdle model is applied to data
on the number of cigarettes smoked in a sample of current
and ex-smokers from the British Health and Lifestyle
Survey. The estimated Box—Cox parameter (A) is signifi-
cantly different from both zero and one, indicating rejec-
tion of both the standard double hurdle and the general-
ized Tobit models.

SEMIPARAMETRIC ESTIMATORS

The Box—Cox model is a flexible specification in the sense
that, up to a point, the data are allowed to determine the
functional form, with linearity and log-linearity available
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as special cases to be tested, rather than imposed. How-
ever, it remains parametric, requiring the imposition of
particular distributional assumptions. In recent years, the
econometrics literature has seen an explosion of theoreti-
cal developments in nonparametric and semiparametric
methods, which relax functional form and distributional
assumptions. These are beginning to be used in health
economics, with the applications of the finite mixture
model in Chapters 6, 7 and 9, discussed above, providing
good examples.

Many non- and semiparametric methods are founded
on the Rosenblatt—Parzen kernel density estimator. This
method uses appropriately weighted local averages to
estimate probability density functions of unknown form;
in effect, using a smoothed histogram to estimate the
density. The kernel function provides the weighting
scheme; its bandwidth determines the size of the ‘window’
of observations that are used, and the height of the kernel
function gives the weight attached to each observation.
This weight varies with the distance between the observa-
tion and the point at which the density is being estimated.
Variants on this basic method of density estimation are
also used to estimate distribution functions, regression
functionals, and response functions (see e.g., Pagan and
Ullah [9]).

Blundell and Windmeijer (Chapter 11) provide an
example of the use of a semiparametric estimator to deal
with sample selection bias. The context for their analysis
is the design of a regression-based formula for the alloca-
tion of resources across geographic areas to hospitals in
the English NHS. Differences in average waiting times for
elective surgery are used to identify the determinants of
the demand for acute hospital services. The equilibrium
waiting time framework is used, but in order to identify
the impact of need variables on the demand for services
the analysis selects areas with low waiting times. This
creates the possibility of sample selection bias and, to add
robustness to the analysis, the standard Heckit two-step
estimator is compared to a semiparametric selection
model. This relies on the fact that the sample selection
model can be written as a ‘partially linear model’ (Robin-
son [10]),

yi=XB+9gMm) +g (13)
where m; is the linear index from a (probit) selection
equation.

Estimation of the partially linear model is handled by
taking the expectation of Equation 13 conditional on n
and then differencing to give,

yi— E(y;In) = [X; — E(X;|Im)1B + & (14)

given the conditional moment conditions

E(e|m) = E(e] X,m) = 0. The conditional expectations
E(y;|m) and E(X,|n) can be replaced by nonparametric
regressions of y and each element of X on an estimate of
1. Then ordinary least squares (OLS) applied to Equation
14 gives \/n-consistent and asymptotically normal esti-
mates of B, although the asymptotic approximation may
perform poorly in finite samples and bootstrap methods
are preferable.

Parkin, Rice, and Sutton (Chapter 12) examine age,
time and cohort effects on GP utilization and reported
morbidity with data from the British General Household
Survey (GHS). These relationships are likely to be highly
nonlinear and be subject to sampling variability. A stan-
dard regression approach can deal with the latter prob-
lem but cannot capture the nonlinearity well through a
linear specification or even polynomial generalizations.
On the other hand, simple histograms of, for example, GP
use against birth, age or survey years confound the non-
linearity with the sampling variability. Underlying pat-
terns may be obscured by data which are overly ‘rough’
because of noise associated with adjacent year fluctu-
ations.

The starting point for their analysis is a general rela-
tionship between GP utilization (y) and age (X),

Vi =9(X)) + ¢ (15)

The relationship is presented graphically using a plot of
the lowess estimator. This is a kernel-based method that
extends the Nadaraya—Watson estimator by fitting local
polynomials. However most of the analysis uses an alter-
native method, roughness penalized least squares (RPLS).
This method minimizes a penalized sum of squares and is
implemented by replacing the ‘continuous’ variable, age,
by a full set of binary indicators for each year of age.
Simply regressing y on these dummy variables gives a
nonparametric regression estimate in the form of a (high-
ly discontinuous) step-function. The method of RPLS
imposes smoothness on this regression through the pen-
alty function. This puts restrictions on the coefficients for
adjacent years of age, in order to penalize large values of
the second derivative ¢g”. The degree of smoothing is
determined by the weight given to the penalty function
and this is chosen by cross validation. The basic model
can be extended by adding a linear function of other
variables (Z),

Vi=ZB+9X)+eg (16)

so that the model takes the partially linear form discussed
above. Again estimation is done by RPLS. Parkin et al.’s
results show that linear age specifications are rejected for
all models and evidence of time heterogeneity is found in
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one of the morbidity measures, limiting long-standing
illness, and in GP utilization.

CLASSIC AND SIMULATION METHODS FOR
PANEL DATA

UNOBSERVABLE HETEROGENEITY IN
NONLINEAR MODELS

Applied work in health economics frequently has to deal
with both the existence of unobservable individual effects,
that are often likely to be correlated with observed ex-
planatory variables, and with the need to use nonlinear
models to deal with qualitative and limited dependent
variables. The combined effect of these two problems
creates difficulties for the analysis of longitudinal data,
particularly if the model includes dynamic effects such as
lagged adjustment or addiction.

Consider a nonlinear model, in which there are repeat-
ed measurements (t = 1,...,T) for a sample of n individ-
uals (i =1,...,n), for example, a binary choice model
based on the latent variable specification,

V=X + v + & (17)

where y, = 1 if y*, > 0, and v; is an unobservable time
invariant individual effect. Then, assuming that the dis-
tribution of g, is symmetric with distribution function
F(),

Py, =11X;,v) = Ple;; > — X;B — v) = F(X; B+ V)
(18)

This illustrates the ‘problem of incidental parameters’,
that arises if the v;’s are treated as parameters, or ‘fixed
effects’, to be estimated along with the f’s. As n —» oo the
number of parameters to be estimated (B, v) also grows. In
linear models B and v are asymptotically independent,
which means that taking mean deviations or differencing
allows the derivation of estimators for B that do not
depend on v. In general, this is not possible in nonlinear
models and the inconsistency of estimates of v carries
over into estimates of B (an exception to this general rule
is the conditional logit estimator).

Assuming that v and € are normally distributed and
independent of X, gives the random effects probit model
(REP). In this case v can be integrated out to give the
sample log-likelihood function,

InL = Z In J ’ le OLdi(X;f + v)]f(v)dv (19)

i=1 —owt=1

where d;, = 2y;, — 1. This expression contains a univari-
ate integral which can be approximated by Gauss-her-
mite quadrature (Butler and Moffitt [11]). This model is
widely used in applied work, but it relies on the main-
tained assumptions that v is normal and uncorrelated
with the regressors. Lopéz (Chapter 13) applies methods
that relax the assumption that the effects and regressors
are uncorrelated while Deb (Chapter 14) introduces a
semiparametric method, based on finite mixtures, that
relaxes the assumption of normality.

An approach to dealing with individual effects that are
correlated with the regressors is to specify E(v|X) dir-
ectly. For example, in dealing with a random effects
probit model, Chamberlain [12] suggests using,

v, = X0 + u, u; ~ iid N(0, ?) (20)

where X; = (X;,..., X;7)- Then, by substituting Equation
20 into Equation 17, the distribution of y;, conditional on
X, but marginal to v, has the probit form,

P(y, = 1) = O[(1 + 0% *(X;p + X 0)] 21

The model could be estimated directly by ML, but Cham-
berlain suggests a minimum distance estimator. This
takes the estimates from reduced form probits on X, for
each cross-section, and imposes the restrictions implied
by Equation 21 to retrieve the parameters of interest
(B, o). Bover and Arellano [13] and Labeaga [14] devel-
op and apply the Chamberlain approach to deal with
situations that combine a dynamic model and limited
dependent variables. Bover and Arellano show that the
problem can be formulated in terms of an asymptotically
efficient GMM estimator. They also propose a less effi-
cient, but computationally convenient, two-step within-
groups estimator. This applies the standard within-
groups estimator, using the fitted values of the latent
variables from each of the T reduced forms.

Lopez (Chapter 13) makes use of the within-groups
approach to estimate the demand for medical care using
the Spanish Continuous Family Expenditure Survey. The
dependent variable measures expenditure on non-refund-
able visits to medical practitioners, for which 60% of
households make at least one purchase during the eight
quarters that they are measured. This leads Lopez to use
an infrequency of purchase specification, which allows a
separate hurdle for non-participation, identified as no
purchases during all eight quarters. In specifying the de-
mand for medical care Lopez combines the logarithmic
version of the Grossman model with the partial adjust-
ment model used by Wagstaff (Chapter 1). The estimates,
for the impact of age, education, and the log(wage), show
that controlling for censoring and unobservable individ-
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ual effects does influence the results. This is to be ex-
pected, as unobservable heterogeneity is likely to be a
particular problem in the use of expenditure survey data,
which do not contain any direct measures of morbidity.

Deb (Chapter 14) develops a random effects probit
model in which the distribution of the individual effect is
approximated by a discrete density. This is another
example of the finite mixture model, as applied to count
data regressions by Deb and Holmes (Chapter 6). In this
case the sample log-likelihood is approximated by,

InL = i ln{ i T l—l (D[dit(XitB + Vj)]}a

i=1 t=1

C
O<m<IL, ) m=1 (22)
i=1

Monte Carlo experiments are used to assess the finite
sample properties of the estimator. These show that only
three to four points of support are required for the dis-
crete density to mimic normal and y? densities sufficiently
well so as to provide unbiased estimates of the structural
parameters and the variance of the individual effect. An
empirical application, to data from the 1996 US Medical
Expenditure Panel Survey, shows that both observed
family characteristics and unobserved family-level het-
erogeneity are important determinants of the demand for
preventive care.

SIMULATION METHODS

The random effects probit model, as described in Equa-
tion 19, only involves a univariate integral. More complex
models, for example where the error term g;, is assumed to
follow an AR(1) process, lead to sample log-likelihood
functions that involve higher order intergrals. Monte
Carlo simulation techniques can be used to deal with the
computational intractability of nonlinear models, such as
the panel probit model and the multinomial probit (see
e.g., Hajivassiliou [15]). Popular methods of simulation-
based inference include classic maximum simulated likeli-
hood (MSL) estimation, as used by Portrait et al. (Chap-
ter 15), and Bayesian Markov Chain Monte Carlo
(MCMC) estimation, as used by Hamilton (Chapter 16).
The principle behind MSL estimation is to replace
population expectations with a sample analogue. As a
simple illustration, consider the example of the random
effects probit model. An individual’s contribution to the
sample likelihood function can be written in the form,

L= J : {h(v)}d(v)dv = E h(v) (23)

where ¢(v) denotes the standard normal pdf. Then the
individual contribution to the corresponding simulated
likelihood function is,

L= (U/R) Y. hiv,) (4

where the v;’s are draws from a standard normal and the
simulated likelihood is the average of h(v;) over R draws.
The MSL estimator finds the parameter values that maxi-
mize the simulated likelihood function.

Portrait et al. (Chapter 15) use the Longitudinal Ageing
Study Amsterdam (LASA) to analyse long-term care util-
ization by the Dutch elderly. They specify a model of the
need for long-term care, the use of informal care, formal
care at home, institutional care and attrition due to mor-
tality between the two waves of the panel. The use of these
care alternatives is modelled jointly, and stochastic de-
pendence is allowed between the various care options.
This requires the evaluation of higher order integrals and
the model is estimated by MSL. The results show strong
effects of health status, gender, socioeconomic variables,
and prices on utilization of long-term care services.

Hamilton (Chapter 16) uses a Bayesian panel data
Tobit model of Medicare expenditures for recent US
retirees, that allows for deaths over the course of the
panel. A Tobit model is used because the individual data
on monthly medical expenditures from the New Benefici-
ary Survey contains a high proportion of zeros. This is
combined with a probit equation for mortality to give a
simultaneous equations LDV model. Hamilton argues
that estimation can be conveniently handled by Bayesian
MCMC methods.

Bayesian MCMC provides an alternative to the high
dimensional integration required for classical ML
methods. The posterior density function of the par-
ameters of the model is simulated by taking repeated
draws from it, using Monte Carlo simulation methods.
Under appropriate conditions, a Markov chain, in which
draws are conditional on the previous iteration, should
converge to a stationary distribution that is independent
of the initial values. Gibbs sampling simplifies this pro-
cess when the joint posterior density can be decomposed
into full conditional densities for sub-sets of parameters.
A further attraction of the MCMC method, in the context
of LDV models, is the use of data augmentation. This
means that the observed values of the LDV (y) can be
replaced by the simulated values of the latent variable (y*)
and standard estimators for linear models can be used. In
Hamilton’s model the system of equations is estimated by
seemingly unrelated regression (SURE). The model is
implemented using a multivariate ¢ distribution, rather
than normality, to allow for heavy tails in the distribution
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of medical expenditure. The results suggest that survival
effects are important, with a higher probability of mortal-
ity associated with higher medical expenditure in the last
year of life.

CONCLUSION

As pointed out at the beginning of this introduction, there
have been substantial developments in the use of
econometrics to analyse health and health care over the
last decade. The papers included in this volume demon-
strate the rich potential of the field and will hopefully
encourage its further development over the next decade.
We hope the volume will be instructive for existing con-
tributors to health econometrics and inspire others to
join the field. In this introduction we have aimed to
highlight some of the common econometric problems
which arise with health and health care data and, through
reference to the applications contained in the individual
chapters, demonstrate techniques available to confront
these problems.
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Despite the acclaim with which The Demand For Health
[1] was greeted following its publication 20 years ago,
Grossman’s model of health capital accumulation has
been the subject of surprisingly few empirical tests. Of
course, many empirical studies of the demand for health
care and the demand for and production of health do
refer to Grossman’s ideas, but since very few actually set
up and test an empirical counterpart to Grossman’s
model, it is hard to tell just how far the results of these
studies support the predictions of the model.

The few studies that have been based on Grossman’s
formal model give conflicting results. All closely follow
Grossman’s own empirical formulation and employ
double logarithmic demand functions for health and
health care. The main difference between the studies is to
be found in the specification of the demand-for-health-
care equations: Grossman and Muurinen [2] estimated
reduced-form equations, while the author in an earlier
study [3] estimated both reduced-form and structural
equations. The reduced-form estimates of all three studies
were broadly consistent with the predictions of Gross-
man’s model, but the structural parameters of the
author’s earlier study were invariably the wrong sign.
This suggested that, in contrast to what was implied by
Grossman’s and Muurinen’s work, the available empiri-
cal evidence did not, in fact, support Grossman’s theoreti-
cal model.

The purpose of this paper is to examine the various
reasons for the apparent rejection by the data of the
Grossman model. To what extent is the rejection more
apparent than real? In other words, might the rejection be
due to the introduction of inappropriate assumptions in
moving from the theoretical model to the empirical
model? Might the apparent rejection be due, for example,
to an inappropriate specification of the demand-for-

health-care equation? Another line of enquiry concerns
the possibility that the apparent rejection may be due to
inappropriate assumptions in the theoretical model.
Might the result be due, for example, to a failure to take
into account in the theoretical model that adjusting to the
desired stock of health capital may not be instantaneous?

GROSSMAN’S MODEL

In Grossman’s theorctical model, individuals are as-
sumed to inherit a stock of health capital H,. Thereafter
their health stock evolves according to the relationship

H —-H_,=1_ 76t71Ht71’ (1.1)

where H, is health stock at the beginning of period ¢, I,
is gross investment during the period t — 1 and §, _, is the
rate of depreciation in operation during the same period.
In Grossman’s formulation — the formulation adopted in
the present paper — d depends only on the individual’s age
and is hence exogenous. The individual’s utility and in-
come are both increasing functions of the stock of health
capital, and in selecting the optimal time path of H,, the
individual bears these benefits in mind, along with the
costs of ‘holding’ health capital. The latter comprise inter-
est costs, depreciation costs and any offsetting capital
gains. All are increasing in the cost of new investment.
Formally, the equilibrium stock of health capital is de-
fined by the condition

T, +a,={r+3 —%_mn, (1.2)

where 7, is the pecuniary marginal benefit of health capi-
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tal, g, is the non-pecuniary marginal benefit, r is the rate of
interest, 7, is the marginal cost of investment and &, _ is
its percentage change.

Although it is the time profile of health that the individ-
ual selects, the means by which this is achieved is, of
course, the investment profile. If the individual wishes to
increase his health stock from one period to the next, or if
he wishes it to decrease by less than the amount of depre-
ciation, he must undertake some health investment. Since
health capital cannot be sold, investment cannot be nega-
tive. The model is ‘neoclassical’ in that stocks are assumed
to adjust instantaneously to their new equilibrium values.
The predictions of the effects on health and investment of
changes in the model’s parameters are derived from
Equations 1.1 and 1.2.

PREVIOUS EMPIRICAL WORK

Following Grossman, the approach to date in empirical
work has been to derive a double-logarithmic demand-
for-health and demand-for-health-care equations from
Equations 1.1 and 1.2.

The demand-for-health equation is derived by specify-
ing functional forms for 1, (or a,), §, and w, and by
assuming that r — &, _, is either zero or some function of
time. In the case of the pure investment model, for
example, the estimating equation has the form

InH, = o,elnw, — o eln P} — a,et, + o3¢eE, (1.3)

where (0 < & < 1) is the elasticity of the MEC schedule
(the schedule relating t, to H,), w is the wage rate, P™ is
price of medical care, t is age and E is education. The
parameter o, reflects the productivity of medical care in
the production of health investments and — given the
Cobb Douglas production technology — ought to be posi-
tive but not larger than one. The parameter o, reflects the
effect of aging on depreciation and ought therefore to be
positive. The parameter oy reflects the productivity of
education in health production and is hypothesized to be
positive.

To obtain the demand-for-health-care equations, the
investment identity is log-linearized to obtain

Inf,_; =InH,_, +Ind_, +In[(A/5,_,)+1]. (14

The term in square brackets is assumed to be zero (Gross-
man), invariant across the sample (Muurinen), or ran-
domly distributed across the sample (Wagstaff). The de-
mand-for-health-care equation proper is then obtained
by combining Equation 1.4 with the investment produc-
tion function (a Cobb-Douglas technology is assumed)

and the cost-minimization condition for gross invest-
ment. The structural demand-for-medical-care equation
thus has the form

InM,=InH,+ (1 —o)lnw, — (1 —oy)ln P
+ o,t, — o3 E, (1.5)

where the coefficient of plus one on the log of health
capital reflects the derived demand hypothesis (an in-
crease in the desired stock of health capital ought to
increase health care utilization). Note that the signs of
coefficients are exactly the opposite of those in demand-
for-health equation. Thus the coefficient on education in
this equation reflects solely the productivity effect; i.e.,
holding health constant, the better educated ought to
demand less health care, since they are more efficient
producers of health. Rather than estimate Equation 1.5
directly, Grossman and Muurinen estimate instead a re-
duced-form demand-for-health-care equation, obtained
by substituting Equation 1.4 in Equation 1.5:

InM, =[o,(e — 1) + I]lnw, — [o,(e — 1) + 1]
InP}* 4+ a,(e — 1)ty + as(e — 1E (1.6)

In this equation, as in the demand-for-health equation,
the coefficients reflect not only the parameters of the
technology, but also the demand elasticity, €.

Broadly speaking, the parameter estimates obtained to
date for the demand-for-health and the reduced-form
demand-for-health-care equations lend support to Gross-
man’s model. In the author’s earlier study, for example,
education entered these two equations with positive and
negative signs respectively, which is consistent with edu-
cation-efficiency hypothesis and with the demand elastic-
ity being less than one.

The parameter estimates of the structural demand-for-
health-care equation reported in Wagstaff [ 3] tell a differ-
ent study, however. The coefficient on health was nega-
tive, which is inconsistent with the derived demand hy-
pothesis, and education had a positive coefficient in this
equation, contrary to what is predicted by theory. These
results, coupled with the reduced-form parameter esti-
mates, imply that the demand elasticity is outside the
admissible range, so that the two wrong signs when multi-
plied together give the right sign for the reduced-form
parameter. Similar results are obtained for other vari-
ables.

PROBLEMS WITH PREVIOUS EMPIRICAL WORK

Two possible responses to these results seem possible.
The first is that the theoretical model has not been tested
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properly due to the introduction of inappropriate as-
sumptions in moving from the theoretical model to the
empirical model. The second is that the theoretical model
has been tested properly and has been found to be want-
ing, suggesting that modifications might be in order.

The obvious weakness in Grossman’s empirical formu-
lation lies in the derivation of the demand-for-health-care
equation. The assumption that H,/5,_, is zero is particu-
larly weak. It is at odds with the theoretical model and
eliminates entirely the inherently dynamic character of
the net investment identity. The implications of this as-
sumption can be most easily seen if instead of converting
Equations 1.1 and 1.2 to log-linear equations, one retains
the inherently linear nature of the net investment identity
and adopts a linear specification of the demand-for-
health equation. Thus let the latter be of the form

H, = BX, + u, (1.7)

where X, is a vector of variables reflecting the arguments
of the first-order condition (i.e. Equation 1.2), such as age
and education, and f is a vector of coefficients. Substitu-
ting Equation 1.7 into Equation 1.1 and rearranging
yields
I, =BXI_(1 _6t—1)Ht—1+ut’ (1.3)
In terms of the variables included, Equation 1.8 is very
similar to the structural demand-for-health-care equation
implied by Grossman’s empirical formulation: in both
equations measures of investment are expressed as func-
tions of the arguments of the demand-for-health equation
and the stock of health capital, albeit lagged capital stock
in the case of Equation 1.8. The interpretation of the
parameters is, however, quite different. In contrast to
those in the structural equation, the coefficients on the
X-variables in Equation 1.8 ought to have the same sign
as their counterparts in the demand-for-health equation.
Moreover, the sign of the coefficient on health stock in
Equation 1.8 ought to be negative, whereas the coefficient
on (contemporaneous) health ought to be positive in
Grossman’s structural equation. Equation 1.8 suggests,
therefore, that the observed negative coefficient on health
stock in structural demand-for-health-care equations and
the positive coefficients on variables such as education in
these equations may, after all, be quite consistent with
Grossman’s theoretical model. The implication is, then,
that it is Grossman’s empirical formulation of his model
which is to be rejected, not the theoretical model itself.
An alternative line of enquiry is that it is the theoretical
model which requires some reformulation. One possibil-
ity, suggested by the author in his earlier paper, is that the
apparent inconsistency between the theory and the em-

pirical results may be due to a failure to recognize that
individuals are unable to adjust their health stocks in-
stantaneously. Although the assumption of instantaneous
adjustment may well be unwarranted, it would appear, on
reflection, that it is unlikely to be the source of the appar-
ent inconsistency between the data and the model. To see
why, suppose that instead of assuming instantaneous ad-
justment, we assume a partial adjustment framework.
Thus assume that desired health stocks are generated
according to the process

H} = BX, + u, (1.9)

where Hj are desired stocks, and that a fraction
(O < p < 1) of the gap between desired and actual stocks
is closed each period. Thus

H,—H, , = uHf —H,_,), (1.10)
so that if p = 1, adjustment is instantaneous and actual
and desired stocks coincide, as in Grossman’s formula-
tion. Combining Equations 1.1, 1.9 and 1.10 yields
I =pBX, — (0 —8_)H, | + pu,. (1.11)
Examination of Equation 1.11 reveals that although the
signs of the coefficients on the X-variables are unaffected
by less-than-instantaneous adjustment, the sign of the
coefficient on lagged health stock could actually be posi-
tive (i.e., if p < §). Thus recognizing non-instantaneous
adjustment does not actually help to explain the negative
coefficient on health stocks in the structural demand-for-
health-care equation. On the contrary, non-instan-
taneous adjustment makes a negative coefficient less like-

ly.

AN ALTERNATIVE EMPIRICAL FORMULATION
OF GROSSMAN’S MODEL

The above suggests that any empirical test of Grossman’s
model ought to acknowledge the inherently linear char-
acter of the net investment identity and should not there-
fore involve a long-linearization of this equation. Since
any empirical model will need to include a demand-for-
health equation as well as an investment equation, this
implies that the former ought to be intrinsically linear. In
what follows it is assumed that it is actually linear, al-
though clearly this assumption could be relaxed in future
work to allow for squared, cubed and cross-product
terms and hence for a more flexible functional form. Since
non-instantaneous adjustment seems highly plausible, it
also seems desirable to allow for this in the empirical
model.
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Equations 1.1, 1.9 and 1.10 would therefore seem to be
a more sensible starting point for a test of the Grossman
model. The demand-for-health equation for this empiri-
cal formulation of the model is found by combining
Equations 1.9 and 1.10 to obtain
H, = upX, + (1 —wH,_, + pu, (1.12)
so that, in contrast to Grossman’s formulation, lagged
health stocks affect the current demand for health. Gross-
man’s model is the special case where 1 = 1. Note that the
coefficients on the X-variables in Equation 1.12 ought to
be equal to those in Equation 1.11: testing this restriction
provides a test of the derived demand hypothesis.

Suppose, for the moment, that  is invariant across
individuals. Then if health stocks and investment were
observable, one could proceed directly and estimate
Equations 1.11 and 1.12. This would generate estimates of
pand 3. Of course, unrestricted estimation would leave 8
and the variance of u, over-identified, since the two equa-
tions would give two different sets of estimates of these
parameters. The answer to this is to impose the appropri-
ate cross-equation equalities in the estimation process,
which, if the derived demand hypothesis is tenable, ought
to be accepted by the data.

This leaves the problem that § is unlikely to be invari-
ant across the sample. If it is assumed that 6 is affected
only by the person’s age, so that all other ‘environmental’
variables affect the efficiency of health production, the
answer would seem to be estimate separate models for
different age groups. If 8 were the only parameter which is
thought to vary with age, the appropriate cross-group
equalities ought to be imposed to ensure that parameters
other than d are the same for all age groups. In fact it
seems more plausible to assume that both 6 and p vary
with age, since it seems likely that the elderly find it
harder than the young to adjust their health stocks to
their desired levels.

All this assumes that health stocks and investment are
observable. Of course, in reality they are not, but their
unobservability can be overcome using a Multiple Indi-
cator Multiple Cause (MIMIC) latent variable model [4].
The unobservability of health capital can be overcome by
introducing health indicators and specifying additional
equations linking these to the stock of health capital.
Obvious indicators include responses to questions such
as ‘Do you suffer from any long-standing health prob-
lem? and ‘Do you consider your health to be excellent,
good, fair or poor?” The unobservability of health invest-
ment can be overcome by introducing demand-for-
health-care equations. As theo