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Preface

The purpose of this book is to give readers convenient
access to a collection of innovative applications of
econometric methods to data on health and health care.
The contributions are selected from papers presented at
the European Workshops on Econometrics and Health
Economics which have been published in Health Econ-
omics. The Workshops were established in York, with
meetings in 1992 and 1993. Since then they have taken
place annually, with locations in eight different
European countries. Publication of the present volume
marks the tenth anniversary of the Workshop series, the
overall aim of which is to provide a forum for the devel-
opment and dissemination of econometric methods in
health economics. When the Workshops were first estab-
lished, there were relatively few European researchers
at the frontiers of quantitative research in the area.
Advances in quantitative techniques and the increased
availability of datasets and computing technology had

created the potential for large returns from attracting
more researchers into health econometrics. There are in-
dications that these returns are now being reaped. Over
the years, there has been a steady rise in the quantity
and general quality of submissions received for each
Workshop.
We would like to thank everyone who has par-

ticipated in the Workshop series, whether as an author
or a discussant, and all of those who have reviewed pa-
pers for Health Economics. Our particular gratitude goes
to the local organisers of the Workshops: Eddy van
Doorslaer (Antwerp, 1994), Lise Rochaix (Paris, 1995),
Guillem Lopez-Casasnovas (Barcelona, 1996), Joa� o Per-
eira (Lisbon, 1997), Unto Hakkinen and Miika Linna
(Helsinki, 1998), Giacomo Pignataro and Ilde Rizzo
(Catania, 1999) and Maarten Lindeboom and France
Portrait (Amsterdam, 2000).
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Introduction
ANDREW M. JONES1 AND OWEN O’DONNELL2

�University of York, UK and �University of Macedonia, Greece

The volume and range of applied econometric work in
health economics has increased dramatically over the
past decade. This trend can be expected to continue and,
probably, accelerate. The increasing emphasis on evi-
dence based policy, the wide availability of individual
level data and the recurring statistical issues of latent
variables, unobservable heterogeneity, and nonlinear
models combine to make health and health care a par-
ticularly rich field for the application of econometric
analysis. In this context, it has become increasingly im-
portant for the applied researcher in health economics to
have a good knowledge of relevant contemporary
econometric techniques. This volume is intended to con-
tribute toward such an understanding.

In terms of methodology, all the papers selected for this
volume fall within the broad heading of ‘microeconomet-
rics’; econometric analyses of individual level data. This
reflects the emphasis on microeconomic analysis in health
economics generally. Analyses of individual level survey
data require the use of a wide range of nonlinear models.
Examples include binary responses, multinomial re-
sponses, limited dependent variables, integer counts and
measures of duration. Such nonlinear models dominate
health econometrics and applications can be found across
the four parts of this volume. Given that the focus of the
volume is on providing examples of good econometric
practice in relation to issues arising with health and
health care data, the papers have been grouped according
to common econometric themes rather than by the sub-
ject matter of the applications. Hence, Part I deals with
latent variables and selection problems, Part II with
count data and survival models, Part III with flexible and
semiparametric estimators and Part IV with panel data.
The intention is to enable easy identification of papers
which deal with data problems and econometric issues
similar to those the reader might face in their own re-
search.

A peculiarity of the field is that the variables of interest,
such as health or quality of life, are often unobservable
and may only be measurable with error, for example,
through subjective reports. The estimation issues arising
are dealt with by the papers included in Part I, which
covers latent variables and selection problems. Modelling
the number of visits to a physician and the number of
medicine prescriptions received has been a major issue in
the health econometric literature. Part II contains three
papers on such count data models, as well as one on the
related econometric problem of modelling survival dur-
ation. Analysis of expenditure data is complicated when
there is a high proportion of observations with zero ex-
penditure in the sample, as is likely to be the case with
consumption of health care or cigarettes. The consistency
of standard approaches to the problem rest on the valid-
ity of distributional assumptions. The papers included in
Part III use flexible and non/semiparametric methods to
weaken required distributional assumptions while deal-
ing with the limited dependent variable problem. As in
other fields, the use of longitudinal data is becoming
increasingly prevalent in health economics research. The
chapters which constitute Part IV all use panel data and,
within this context, deal with important issues for re-
search in health and health care such as dynamics, unob-
servable heterogeneity, endogeneity, binary response,
censoring and survival.

The remainder of this introduction expands on some of
the common econometric problems confronted when
analysing data on health and health care and, by refer-
ence to the individual chapters, identifies appropriate
techniques to deal with these problems.
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LATENT VARIABLES AND SELECTION
PROBLEMS

LATENT HEALTH

In health economics, empirical analysis is complicated by
the fact that theoretical models often involve inherently
unobservable (latent) concepts such as ‘health’ or ‘quality
of life’. This latent variable problem is central to models of
the demand for health and to the construction of health
status indices. Information from observable indicators,
such as chronic illness or self-reported health status, must
be used to proxy the latent concepts. However, there may
be reason to suspect that the relationships between the
latent variables and their observable indicators differ sys-
tematically with observable or unobservable factors, po-
tentially leading to endogeneity problems. The papers
included in Part I address these issues.

Few papers in the health economics literature have
been more influential than Grossman’s demand for health
model [1]. However, empirical testing of the model is
complicated by the fact that the central concept, ‘health’,
is inherently unobservable and has to be proxied by
indicator variables. The multiple indicators multiple
causes (MIMIC) model, which can be estimated as linear
structural relationships (LISREL), has been widely used
to deal with the latent variable issue. This is the approach
adopted by both Wagstaff (Chapter 1) and Erbsland, Reid
and Ulrich (Chapter 2) to estimate Grossman-type de-
mand for health models.

In general, a MIMIC model of latent health has the
form,

H*�X
�
�
�
� �

�
(1)

HI
�
� �

�
H*� �

��
, j� 1 . . .J (2)

where H* is (latent) health capital, HI
�

is observable
health indicator j e.g. self-reported health (multiple indi-
cators) and the X

�
are exogeneous socioeconomic vari-

ables (multiple causes).
Identification requires some normalization of the par-

ameter vector � and restrictions on the covariances, such
that the latent H* is proxied by some linear combination
of the health indicators. Assuming joint normality of the
errors terms, estimation can be carried out by full infor-
mation maximum likelihood (FIML). This general model
might be used to estimate, for example, health production
functions, as well as the demand for health model.

Application to the demand for health requires supple-
mentation of Equations 1 and 2 with a demand for medi-
cal care equation,

M
�
� �

�
H*�X

��
�
��

� �
��

, k� 1, . . .K (3)

whereM
�

is medical care k e.g. physician visits and X
�

are
exogeneous socioeconomic factors. The latent health
variable is endogenous in Equation 3 and exclusion re-
strictions on X

�
are required for identification.

Equations 1—3 represent the basic structure of the em-
pirical models estimated by Wagstaff and Erbsland et al.
The latter focus on the health impact of the environment,
which is itself treated as a latent variable, proxied by
indicators of noise and air pollution. Consequently, a
measurement equation for quality of the environment,
analogous to Equation 2, is added to the model. Latent
environmental quality is included as a regressor in the
latent health Equation 1, where it is treated as exogenous
and found to have a significant positive effect.

Despite claims to the contrary, the links between the
theoretical and empirical sections of applied econometric
papers are often tenuous. This is not the case with the
Wagstaff and Erbsland et al. papers, which both give
careful consideration to the transition from Grossman’s
theoretical model to a feasible empirical specification of
it. Indeed, this is the primary concern of Wagstaff, who
argues that Grossman’s empirical formulation, the basis
of previous testing, fails to capture the dynamic character
of the theoretical model and that this inconsistency may
explain the apparent rejections of the model in earlier
empirical work. The issue concerns the structural impact
of health capital on the demand for medical care. From
the optimality conditions, this marginal impact is nega-
tive for plausible values of the depreciation rate (Erbsland
et al.). However, the restrictions imposed in order to
arrive at an empirical specification result in health capital
entering the structural demand for medical care equation
with a parameter of positive unity. The empirical esti-
mates presented in Chapters 1 and 2, as well as previous
results obtained by Wagstaff [2], all support the theoreti-
cal predictions of the model but are inconsistent with the
(Grossman) empirical specification. Wagstaff proposes an
alternative empirical formulation, which results in health
capital entering the structural demand for medical care
equation with a negative parameter. In this respect, it is
more consistent with the theory, although Erbsland et al.
question whether the specification can be derived explicit-
ly from the theoretical model. The formulation involves
linear, rather than log-linear, specifications of the invest-
ment identity and the demand for health equation and
relaxation of the neoclassical assumption of instan-
taneous adjustment of health stock to its desired level. As
a result, dynamics are introduced to the empirical model.

In general, Wagstaff finds observable health indicators
to be good proxies, latent health accounting for a mini-
mum of 34% (functional limitations) and a maximum of
90% (self-assessed health) of the variance of the indi-
cators. The proxies are less close in Erbsland et al.; for one
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indicator (duration of sick leave) only 11% of the vari-
ation is attributable to latent health and for two of the
remaining three proxies, the majority of their variance is
not attributable to latent health. Wagstaff’s estimate of
the variance in self-assessed health attributable to latent
health is more than twice that of Erbsland et al. The
source of such inconsistencies needs further attention
before the MIMIC model can be used to identify the most
reliable indicators of latent health. In both studies, a
substantial amount of the variation in the observable
health indicators cannot be attributed to latent health.
This raises the question of what accounts for the unex-
plained variation and the possibility that such measure-
ment error will create bias when observable indicators are
used to proxy unobservable health.

Kerkhofs and Lindeboom (Chapter 3) take up this
measurement error issue. As with Wagstaff and Erbsland
et al., self-assessed health is treated as an indicator of
unobservable health, but now allowance is made for the
possibility that the relationship between the indicator
and underlying latent concept varies with third factors.
Their focus is on the possibility of state-dependent report-
ing errors arising from financial incentives and/or social
pressures for non-workers to report ill health. This would
create bias if, for example, self-assessed health were in-
cluded as a regressor in a labour supply model or used to
examine income-related health inequalities.

Correction for state-dependent reporting errors in-
volves using an objective measure of health, H�, in this
case the Hopkins symptom checklist, plus socio-demo-
graphics, X

�
, to instrument the latent variable, H*.

Identification of reporting behaviour relies on the as-
sumption that, controlling for H� and X

�
, employment

status, S, contains no independent information on H*.
For example, there is no correlation between the unob-
servable determinants of employment and health, subject
to the stated conditioning. Then, controlling for H� and
X

�
any effect of S on self-assessed health, HI, can be

attributed to reporting behaviour.
Both reported and objective health are categorical

variables, which are assumed to be related to latent health
as follows,

H*� f (H�) �X
�
�� �, ��N(0, 1) (4)

HI� i if �
���

�H*��
�
, i� 1, . . .m (5)

�
�
� g

�
(S,X

�
), i� 1, . . .m� 1 (6)

Reporting errors are allowed for through the dependence
of the threshold values of the ordered probit, �, on S and
X

�
. Comparison of Equations 4—6 with Equations 1 and 2

reveals that the basic structure of the models is the same.

The Kerkhofs and Lindeboom approach is more general
in the sense that the parameters of the measurement
equation are allowed to vary with observable characteris-
tics.

Normalizing on the reporting behaviour of the em-
ployed, early retirees understate and the unemployed
overstate their ill health to a moderate, but not signifi-
cant, extent. Reporting behaviour is more distinct among
those claiming disability insurance. Of the disability
claimants who reported their health to be bad, one-third
of them would not have done so had they been in employ-
ment, all else equal. There is no evidence that other
exogenous characteristics — gender, age, marital status,
education and religion — have an effect on misreporting.
This latter result is reassuring for the health economics
community which makes widespread use of the self-as-
sessed health indicator, but the scale of the reporting
biases deriving from disability status does give cause for
concern.

A limitation of the approaches described above is that
they treat health as a single latent concept and do not
allow for its multidimensionality. For this reason, re-
searchers might prefer to work directly with a range of
health indicators, rather than attempt to compress these
into a single latent index. So, it might be argued, that it is
better to enter a range of health indicators directly into an
utilization equation such as Equation 3. However, this
approach leads to collinearity, degrees of freedom and
interpretation problems when the number of indicators is
large. This is typically the case when modelling health/
social care utilization by the elderly when the researcher
may have a very large number of activities of daily living
(ADL) indicators. Portrait, Lindeboom and Deeg (Chap-
ter 15) measure health status by a method which com-
presses information from a large range of indicators but
preserves the multidimensionality of the concept. The
technique is the Grade of Membership (GoM) method of
Manton and Woodbury [3]. Its application is considered
in detail in an earlier paper by Portrait, Lindeboom and
Deeg [4]. The technique takes information from a range
of indicators and collapses these into different dimensions
of health status, or pure types. Simultaneously, it esti-
mates the degree to which an individual can be classified
by each of the pure types. These ‘Grades of Membership’
are represented by a set of weights, summing to one for
each individual across the different dimensions. For
example, Portrait et al. are able to collapse 21 indicators
of the health of a sample of the elderly into six pure types:
chronic pulmonary disease and cancers, other chronic
diseases, cognitively impaired, arthritis patients, car-
diovascular diseases and a healthy group. An individual’s
health status is measured, continuously and in a multi-
dimensional manner, by the set of weights indicating the
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extent to which they belong to each of the pure types.
For health applications, the GoM method has four

main advantages over other data reduction methods,
such as factor analysis or principal components. First,
estimation of the dimensions and the individuals’ attach-
ments to these is carried out simultaneously. Second, it is
nonparametric. Third, it respects the multidimensionality
of health, in the sense that individuals are not classified to
one type but are associated, to varying extents, with
various types. Finally, it respects the dynamic nature of
health, and so is suitable for longitudinal analysis, by
producing a health measure, i.e. the weights, which is
continuous. With such properties, the approach deserves
further attention in the health economics literature.

SELECTION

Lahiri and Song (Chapter 4) focus on a single dimension
of health — illness related to smoking. They recognize that
individuals may, rationally, self-select into and out of
smoking behaviour on the basis of their perception of
their own risk of contracting a smoking related illness.
Provided such perceptions are based on some true infor-
mation, which may come from changes in health over
time, failure to allow for self-selection will bias estimated
health effects of smoking based on comparisons between
the health of smoking and non-smoking samples.

Index functions for the decisions to start and stop
smoking are specified from comparisons of lifetime utili-
ties in respective states. These provide the means of cor-
recting for selection in estimation of health outcome func-
tions for non-smokers, ex-smokers and current smokers.
Outcomes are binary — whether the individual has con-
tracted a smoking-related disease. So, the model consists
of a set of three binary switching regressions (probits),
with sequential selection through the starting and stop-
ping decision functions. Trivariate normality is assumed,
facilitating estimation by FIML. The paper is instructive
for anyone interested in estimating selection models by
FIML. The authors describe how to go about testing for
endogeneity (trivariate), normality and heteroskedastic-
ity, as well as correcting for the latter. They also give
useful tips on how to specify the likelihood to increase
computational speed and aid convergence.

Evidence of substantial selection bias is found. The true
mean risk factor for current smokers is estimated at
around 20%, much higher than the observed risk factor
in the sample for this group of 16%. Individuals who
choose to continue smoking have a lower than average
underlying disposition to contract a smoking-related ill-
ness and so the incidence of disease amongst this group is
lower than would be found if there were random alloca-

tion to smoking. Given this, any estimation of the impact
of smoking on health through comparison of the inci-
dence of disease among smokers and non-smokers will be
downward biased. This is an important finding calling for
revision of previous estimates of the health costs of smok-
ing.

COUNT DATA AND SURVIVAL ANALYSIS

COUNTS, HETEROGENEITY AND ZEROS

Count data regression is appropriate when the dependent
variable is a non-negative integer-valued count,
y� 0, 1, 2, . . .. Typically these models are applied when
the distribution of the dependent variable is skewed to the
right, and contains a large proportion of zeros and a long
right-hand tail. The most common examples in health
economics are measures of health care utilization, such as
numbers of physician visits or the number of prescrip-
tions dispensed over a given period.

The basic approach to count data is to assume the
probability of observing a count of y events over a fixed
interval can be specified as a Poisson process. In order to
condition the outcome, y

�
, for observation i on a set of

explanatory variables, X
�

, it is usually assumed that,

E(y
�
�X

�
) ��

�
� exp(X

�
�) (7)

A peculiarity of the Poisson distribution is that both its
mean and variance are equal to its one parameter, �

�
.

Often, this restriction is inconsistent with data. In health
care applications, for example, there is usually evidence of
overdispersion, i.e. E(y

�
�X

�
) � Var(y

�
�X

�
). One conse-

quence can be under-prediction of the number of obser-
vations with zero counts; again, an empirical feature of
many health care applications. Additional dispersion, due
to unobservable heterogeneity, spreads the distribution
out to the tails. In this sense, the phenomenon of excess
zeros is no more than a symptom of overdispersion (see
Mullahy [5]).

Although overdispersion can account for excess zeros,
it may be that there is something special about zero
observations per se, and an excess of zero counts may not
be associated with increased dispersion throughout the
distribution. Two approaches place particular emphasis
on the role of zeros; zero-inflated models and hurdle, or
two-part, models. The ‘zero-inflated’ or ‘with zeros’ model
is a mixing specification which adds extra weight to the
probability of observing a zero. This can be interpreted
as a splitting mechanism which divides individuals
into non-users and potential-users; that is, one treats
the observations as being of fundamentally different
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types in relation to their demand for health care.
In contrast, the hurdle, or two-part, models, tend to be

motivated by a representation of the patient—doctor rela-
tionship as one of principal and agent. This makes a
distinction between patient-initiated decisions, such as
the first contact with a general practitioner (GP), and
decisions that are influenced by the doctor, such as repeat
visits, prescriptions, and referrals (see for example, Poh-
lmeier and Ulrich [6]). The consequence, in statistical
terms, is a hurdle model which allows the participation
decision, (0, 1), and the positive count, (1, 2, 3 . . .), to be
generated by separate probability processes. The two-
parts of the model can be estimated separately as a binary
process, e.g. probit, and a truncated at zero count process.

Grootendorst (Chapter 5) provides an empirical com-
parison of two-part and zero-inflated specifications. The
study uses data from the 1990 Ontario Health Survey to
analyse the impact of copayments on the utilization of
prescription drugs by the elderly, exploiting the fact that
individuals become eligible for zero copayments on their
65th birthday. Neither zero-inflated nor two-part models
(TPM) are parsimonious, often doubling the number of
parameters to be estimated. Since more complicated
models may be prone to over-fitting, Grootendorst uses
out-of-sample forecasting accuracy to evaluate their per-
formance. The models are estimated on a random sample
of 70% of the observations. The estimated models are
used to compute predictions for the remaining 30% (the
forecast sample). Models are then compared on the basis
of the mean squared error for the forecast sample. In
addition to the split-sample analysis, Voung’s non-nested
test is computed. The TPM outperforms the other specifi-
cations on all of the criteria.

Deb and Trivedi [7] introduce a different approach to
the zero count issue. Health care survey data are not
usually specific to a period of illness but to a period of
calendar time, during which the first recorded visit is not
necessarily the initial one in a course of treatment. In this
context, it is argued, a TPM specification cannot be justi-
fied by appeal to a principal—agent characterization of the
data generating process. Their alternative approach is
based on the argument that observed counts are sampled
from a mixture of populations which differ in respect of
their underlying (latent) health, and so demands for
health care. That is, there may be severely ill individuals,
who are high frequency users, at one extreme and perfect-
ly healthy individuals, who are non-users, at the other.
This characterization of the data can be captured by
latent class models, for example, the finite mixture model
(FMM) which postulates that each observation of a ran-
dom variable is drawn from a super-population which is
itself an additive mixture of C distinct sub-populations, j,
which appear in proportions, �

�
(Heckman and Singer

[8]). That is, the density of a C-point FMM takes the
form,

P(y
�
� ·) �

�
�
�	�

�
�
P
�

(y
�
� ·), 0 ��

�
� 1,

�
�
�	�

�
�
� 1 (8)

This density can serve as an approximation to any true
but unknown distribution. In this sense, the approach is
semiparametric. Specifying each of the P

�
(y

�
� .) as a separ-

ate negbin process, gives the negbin FMM. Estimation is
carried out by maximum likelihood, with the �

�
’s being

estimated simultaneously with the other parameters of
the model.

Deb and Trivedi [7] not only argue that their approach
is more consistent with the data generating process than
the TPM but that the zero-inflated models are a special
case of the general FMM with unobservable heterogene-
ity. That is, in the zero-inflated models, the zero counts
alone are presumed to be sampled from a mixture of two
sub-populations (non-users and potential users).

Deb and Holmes (Chapter 6) apply both a count and
continuous version of the FMM to mental health care
visits and expenditure data from the US National Medi-
cal Expenditure Survey. In each case, appealing to evi-
dence from Deb and Trivedi [7], they argue that two
points of support, i.e. C� 2, are sufficient to approximate
the underlying distribution. In addition to dealing with
the ‘zeros’ issue, they argue the FMM is better suited to
representing the behaviour of high frequency users, who
account for a large fraction of mental health care. While
the TPM distinguishes between non-users and users, it
makes no further distinction across the users. The FMM,
on the other hand, allows users to be comprised of a
variety of population types, one of which might be severe-
ly ill, high-dependency cases. Deb and Holmes seek a
model which can be used for capitation-based funding
and so are particularly concerned with a achieving a good
fit with the data, not only in respect of representing the
means of health care use among sub-populations but also
capturing the full distributions of use. The performance of
the count version of the FMM is compared with the
negbin hurdle model for mental health care visits, while
the continuous FMM is compared with the censored
lognormal regression for (positive) expenditures. Com-
parison is based both on in-sample model selection cri-
teria (Akaike and Bayesian information criteria) and
goodness-of-fit, plus out-of-sample forecasting to check
for over-parameterization. Both the in-sample and out-
of-sample comparisons consistently find in favour of the
FMM for both the count and continuous models. The
FMM appears to be particularly successful in represen-
ting high intensity use.
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Taking the results of Grootendorst and of Deb and
Holmes together, one might conclude that while the TPM
can out-perform a restricted version of the mixing model,
i.e. the zero-inflated model, this is no longer true when the
restriction on the mixing model is relaxed. However, one
should be cautious about drawing such conclusions given
the two studies differ not only in the specifications com-
pared but in the types of health care and countries exam-
ined. Jimenez, Labeaga and Martinez-Granado (Chapter
7) provide further valuable evidence on the relative per-
formance of the TPM and FMM specifications. They
estimate (reduced form) demand for health care equations
for 12 European countries using three waves of data from
theEuropeanCommunityHousehold Panel, distinguishing
between utilization of GPs and specialists.

The TPM and FMM estimated are the same as those
adopted by Deb and Holmes. Model selection is based on
Akaike and Bayesian information criteria. For GP visits,
the results suggest the FMM is more consistent with the
data than the TPM. This is true both when parameter
homogeneity is imposed across countries and for the vast
majority of comparisons on a country-by-country basis.
For specialists, a different picture emerges, for the homo-
geneous parameter specification, the TPM is favoured
and this is true for six of the 12 individual country com-
parisons. Aggregating the information criteria across
countries also favours the TPM.

Jimenez et al. rationalize the difference in the preferred
specification for GP and for specialist visits on the basis
that multiple spells of illness/treatment are likely to be
observed for GP visits but the survey data for specialist
visits are more likely to represent a single spell. Given
this, the TPM, with its rationalization through the princi-
pal—agent story, should be more suited to representing
specialist visit data than GP visit data. This is an import-
ant warning against the idea that there is one econometric
specification waiting to be discovered that is best suited to
modelling all types of health care utilization data. The
appropriate method can be expected to vary with, for
example, the type of health care, the nature and length of
the survey and the nature of the health care system.
Despite finding in its favour with respect to GP visits,
Jimenez et al. express some apprehension about the latent
class approach. It is somewhat of a statistical black-box,
the specification not being derived from an economic
theory of health care demand. The large number of par-
ameters to be estimated can also lead to problems of
non-convergence of the likelihood and over-parameteriz-
ation.

The primary motivation of Jimenez et al. is not to
compare econometric specifications but to examine het-
erogeneity in the demand for health care across European
countries. They examine both the extent to which the

behavioural response of health care utilization to certain
factors, such as health and income, varies across countries
and the impact of health system characteristics on utiliz-
ation. There are significant differences across countries,
the restriction of parameter homogeneity being rejected.
However, there are also similarities in the effect of vari-
ables such as the health stock, income or family structure
on utilization. Health system characteristics do have sig-
nificant effects on utilization. For example, a GP gate-
keeper system increases frequency of visits to GPs and
reduces those to specialists. Fee-for-service payment has
the opposite effect on the relative demand for GPs and
specialists, a finding consistent with induced demand the-
ory. Total health care expenditure, and the fraction ac-
counted for by the public sector, have no impact on GP
use but do raise demand for specialist visits.

EVALUATION OF TREATMENT EFFECTS

Evaluation is central to the health economics literature.
The goal of many researchers is to identify the impact of
some treatment on outcomes and compare this with the
cost of the treatment. The core of the problem is the
identification of the treatment effect. This is made difficult
by the fact that it is impossible to observe the counterfac-
tual. That is, we can observe the outcome for some indi-
vidual, i, with treatment, y

��
, but it is impossible to ob-

serve the outcome for the same individual, without
treatment, y

��
. Hence, individual specific treatment ef-

fects, y
��

� y
��

, are inherently unidentified. A way out is to
estimate a particular aspect of the distribution of treat-
ment effects; of which, the most popular choice is the
average treatment effect (ATE), given by E(y

��
� y

��
). This

is convenient because the linearity of the expectations
operator allows the statistic to be estimated through com-
parison of the two marginal means, i.e. E(y

��
�

y
��

) �E(y
��

) �E(y
��

). Confounding factors can be con-
trolled for either experimentally, by randomization, or
statistically, by suitable regression methods.

The ATE is, however, only one of many possible sum-
mary statistics of the distribution of treatment effects.
While it is likely to be of great policy interest, other
statistics may also be informative. Lee and Kobayashi
(Chapter 8) introduce two mean-based ‘proportional’
treatment effects which are particularly suitable when the
outcome variable is a count, to be modelled by an ex-
ponential regression function. The problem with using
the ATE in such a regression framework is that determi-
nants of the outcome which are common across the treat-
ments do not cancel out as they do with a linear re-
gression. Lee and Kobayashi’s solution is to define a
proportional ATE, i.e. E(y

��
� y

��
)/E(y

��
), which removes
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the nuisance terms irrespective of whether the regression
function is linear or exponential. This can be calculated
both conditional and unconditional on third factors
which interact with treatment. Lee and Kobayashi sug-
gest estimating the latter, which can be thought of as the
marginal treatment effect and may be of central import-
ance, by the geometric average, across the sample, of their
proportional ATE which can be calculated by evaluating
this statistic at the means of the data. Confidence inter-
vals are derived for this marginal effect.

The outcome variables in the Lee and Kobayashi study
are physician visits and hospital days and the ‘treatment’
is physical exercise. Two waves of the US Health and
Retirement Survey are used allowing the potential en-
dogeneity of exercise to be dealt with by first differencing.
This raises a potential problem of identification if the
treatment effects were to be a function of any time invari-
ant parameters. Foreseeing this, the authors interact exer-
cise, which is time varying, with all of the control vari-
ables. Light exercise has a positive short-run effect on
health care use and a negative long-run effect. Vigorous
exercise has a negative effect in both the short and long
run. However, none of the estimated treatment effects are
significantly different from zero.

DURATION ANALYSIS AND HETEROGENEITY

Count data models are, in general, dual to duration
models. This duality applies to particular parametric
models: if the count is Poisson, the duration is exponen-
tial; if it is negative binomial, the duration is Weibull. By
using more information — the continuous variation in
durations — duration models offer efficiency gains over
count models. In health economics, obvious applications
of duration analysis, or survival analysis as it is known in
the epidemiology and biostatistics literature, are to life-
span, mortality rates and length of hospital stay.

For example, let length of stay be a random variable M
with a continuous probability density function f (m),
where m is a particular realization of M. The probability
of a length of stay of at least m is given by the survival
function,

S(m) � 1 �F(m) � 1 ��
�

�

f (t)dt�P(M�m) (9)

A related concept is the hazard rate,

�(m) � lim
����

P(m�M�m��m �M�m)

�m

�
f (m)

S(m)
(10)

which, in this example, is the rate of discharge after a
length of stay of m, given a length of stay of at least m.

In a variety of contexts, there may be considerable
interest in the behaviour of the hazard rate over time. If
the hazard rate is increasing (decreasing) with time, there
is said to be positive (negative) duration dependence.
Disentangling duration dependence from the effects of
unobservable heterogeneity is a central problem in the
literature. To illustrate, imagine that length of stay data is
sampled from two groups, a ‘very ill’ group and a ‘less ill’
group, which differ in respect of their health status. The
hazard rates are constant (time invariant) for each group
but their magnitudes differ. As time goes by, the sample
will contain a higher proportion of those with the lower
hazard rate; as those with the higher hazard will have
been discharged. If the heterogenity is unobserved, this
will lead to a spurious estimate of negative duration
dependence.

Unobservable heterogeneity can be incorporated by
adding a general heterogeneity effect � and specifying the
survival function as,

S(m) ��� S(m � �)g(�)d� (11)

where the unknown distribution g(�) can be modelled
parametrically using a variety of distributions, the
gamma being a popular choice. Alternatively, returning
to the latent class model discussed above, the Heckman
and Singer [8] nonparametric approach can be adopted
by approximating the distribution of � by a discrete dis-
tribution, characterized by mass-points and probabilities,
that are estimated along with the other parameters of the
model.

Duration models can also be extended to allow for
multiple destinations, or competing risks. Hamilton and
Ho’s (Chapter 9) study of the surgical volume—outcome
relationship for hip fractures in Québec provides an
example that combines competing risks, unobservable
heterogeneity, and fixed effects. They use 3 years of hospi-
tal discharge data. The longitudinal nature of the data
allows control for quality of providers through hospital
specific fixed effects, while analysing within-hospital vol-
ume—outcome relationships. As a result, they can dis-
criminate between the ‘practice makes perfect effect’ and
‘selective referral effect’ (that hospitals with good out-
comes will get more referrals).

Their competing risks specification allows for a corre-
lation between the two outcomes; post-surgery length of
stay and inpatient mortality. This is important, ceteris
paribus, a death in hospital is more likely for a patient
with a longer length of stay. With two exhaustive and
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mutually exclusive destinations for discharges, alive (a) or
dead (d), the probability of exit to state r, after a length of
stay m, for patient i, in hospital h, at period t, with
observable characteristics X, is,

f
�
(m

��	
�X

��	
) ��

�
(m

��	
�X

��	
)

�
�

��

exp���
���	

�

�
�
(u �X

��	
)du� , r� a, d

(12)

This is a variant on Equation 10, rewritten with the exit
probability rather than the hazard rate on the left-hand
side. The first term on the right-hand side is the transition
intensity, the equivalent of the hazard rate in single desti-
nation models and the second term is the survivor func-
tion. A functional form for the transition intensity must
be chosen. Hamilton and Ho use the proportional haz-
ards specification, with a log-logistic distribution for the
baseline transition intensity. The distribution of unob-
servable heterogeneity (frailty) is approximated using the
Heckman-Singer nonparametric approach. Three mass
points are used (C� 3), the interpretation being that the
distribution is made up of three types of patients, and
their associated probabilities, �

�
, are estimated along with

the other parameters.
The results of the study show that when hospital fixed

effects are added to the model the coefficient on volume,
measured by the logarithm of live discharges, declines
substantially and becomes insignificant with respect to
live discharges. Volume does not have a significant effect
on inpatient deaths with or without hospital fixed effects,
although cruder models without unobservable hetero-
geneity and with fewer controls for co-morbidities do
show a significant effect. Allowance for hospital fixed
effects and individual unobservable heterogeneity is
therefore important in testing the ‘practice makes perfect’
hypothesis.

FLEXIBLE AND SEMIPARAMETRIC ESTIMATORS

FLEXIBLE ESTIMATORS

In health survey data, measures of continuous dependent
variables such as alcohol, tobacco or medical care expen-
ditures invariably contain a high proportion of zero ob-
servations and limited dependent variable techniques are
required. The Tobit model is the most basic of such
techniques. In this approach, both the participation (e.g.,
whether to start or quit smoking) and levels (e.g., how
much to spend on cigarettes) decisions are represented by
the same linear function of observables and unobser-

vables. The double hurdle approach is less restrictive, in
that the determinants of participation and of consump-
tion are allowed to differ. However, a limitation of the
standard double hurdle specification is that it is based on
the assumption of bivariate normality for the error dis-
tribution. Empirical results will be sensitive to misspecifi-
cation, and maximum likelihood (ML) estimates will be
inconsistent if the normality assumption is violated. This
may be particularly relevant if the model is applied to a
dependent variable that has a highly skewed distribution,
as is often the case with the applications mentioned
above.

A flexible generalization of the double hurdle model is
proposed by Yen and Jones (Chapter 10). The Box—Cox
double hurdle model allows explicit comparisons of a
wide range of limited dependent variable specifications
that have been used in the health economics literature. As
in the standard double hurdle model, the conditional
distribution of the latent variables is assumed to be bi-
variate normal, permitting stochastic dependence be-
tween the two error terms. Unlike the standard model, the
observed variable is related to the underlying latent vari-
able by a Box—Cox transformation. This relaxes the nor-
mality assumption on the conditional distribution of y.
This flexibility is at the price of making greater demands
on the data and care should be taken to check for evi-
dence of over-fitting.

Yen and Jones derive the log-likelihood function for a
sample of independent observations and show that the
general model can be restricted to give various special
cases:

1. The Box—Cox double hurdle with independent errors.
2. The standard double hurdle with dependence.
3. The generalized Tobit model with log(y) as dependent

variable in the regression part of the model. Then,
assuming independence between the two error terms,
gives the special case of the two-part model in which
normality is assumed and the equations are linear.

The Box—Cox double hurdle model is applied to data
on the number of cigarettes smoked in a sample of current
and ex-smokers from the British Health and Lifestyle
Survey. The estimated Box—Cox parameter (�) is signifi-
cantly different from both zero and one, indicating rejec-
tion of both the standard double hurdle and the general-
ized Tobit models.

SEMIPARAMETRIC ESTIMATORS

The Box—Cox model is a flexible specification in the sense
that, up to a point, the data are allowed to determine the
functional form, with linearity and log-linearity available
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as special cases to be tested, rather than imposed. How-
ever, it remains parametric, requiring the imposition of
particular distributional assumptions. In recent years, the
econometrics literature has seen an explosion of theoreti-
cal developments in nonparametric and semiparametric
methods, which relax functional form and distributional
assumptions. These are beginning to be used in health
economics, with the applications of the finite mixture
model in Chapters 6, 7 and 9, discussed above, providing
good examples.

Many non- and semiparametric methods are founded
on the Rosenblatt—Parzen kernel density estimator. This
method uses appropriately weighted local averages to
estimate probability density functions of unknown form;
in effect, using a smoothed histogram to estimate the
density. The kernel function provides the weighting
scheme; its bandwidth determines the size of the ‘window’
of observations that are used, and the height of the kernel
function gives the weight attached to each observation.
This weight varies with the distance between the observa-
tion and the point at which the density is being estimated.
Variants on this basic method of density estimation are
also used to estimate distribution functions, regression
functionals, and response functions (see e.g., Pagan and
Ullah [9]).

Blundell and Windmeijer (Chapter 11) provide an
example of the use of a semiparametric estimator to deal
with sample selection bias. The context for their analysis
is the design of a regression-based formula for the alloca-
tion of resources across geographic areas to hospitals in
the English NHS. Differences in average waiting times for
elective surgery are used to identify the determinants of
the demand for acute hospital services. The equilibrium
waiting time framework is used, but in order to identify
the impact of need variables on the demand for services
the analysis selects areas with low waiting times. This
creates the possibility of sample selection bias and, to add
robustness to the analysis, the standard Heckit two-step
estimator is compared to a semiparametric selection
model. This relies on the fact that the sample selection
model can be written as a ‘partially linear model’ (Robin-
son [10]),

y
�
�X

�
� � g(�

�
) � �

�
(13)

where �
�

is the linear index from a (probit) selection
equation.

Estimation of the partially linear model is handled by
taking the expectation of Equation 13 conditional on �
and then differencing to give,

y
�
�E(y

�
��

�
) � [X

�
�E(X

�
��

�
)]�� �

�
(14)

given the conditional moment conditions

E(� ��) �E(� �X, �) � 0. The conditional expectations
E(y

�
��) and E(X

�
��) can be replaced by nonparametric

regressions of y and each element of X on an estimate of
�. Then ordinary least squares (OLS) applied to Equation
14 gives �n-consistent and asymptotically normal esti-
mates of �, although the asymptotic approximation may
perform poorly in finite samples and bootstrap methods
are preferable.

Parkin, Rice, and Sutton (Chapter 12) examine age,
time and cohort effects on GP utilization and reported
morbidity with data from the British General Household
Survey (GHS). These relationships are likely to be highly
nonlinear and be subject to sampling variability. A stan-
dard regression approach can deal with the latter prob-
lem but cannot capture the nonlinearity well through a
linear specification or even polynomial generalizations.
On the other hand, simple histograms of, for example, GP
use against birth, age or survey years confound the non-
linearity with the sampling variability. Underlying pat-
terns may be obscured by data which are overly ‘rough’
because of noise associated with adjacent year fluctu-
ations.

The starting point for their analysis is a general rela-
tionship between GP utilization (y) and age (X),

y
�
� g(X

�
) � �

�
(15)

The relationship is presented graphically using a plot of
the lowess estimator. This is a kernel-based method that
extends the Nadaraya—Watson estimator by fitting local
polynomials. However most of the analysis uses an alter-
native method, roughness penalized least squares (RPLS).
This method minimizes a penalized sum of squares and is
implemented by replacing the ‘continuous’ variable, age,
by a full set of binary indicators for each year of age.
Simply regressing y on these dummy variables gives a
nonparametric regression estimate in the form of a (high-
ly discontinuous) step-function. The method of RPLS
imposes smoothness on this regression through the pen-
alty function. This puts restrictions on the coefficients for
adjacent years of age, in order to penalize large values of
the second derivative g	. The degree of smoothing is
determined by the weight given to the penalty function
and this is chosen by cross validation. The basic model
can be extended by adding a linear function of other
variables (Z),

y
�
�Z

�
� � g(X

�
) � �

�
(16)

so that the model takes the partially linear form discussed
above. Again estimation is done by RPLS. Parkin et al.’s
results show that linear age specifications are rejected for
all models and evidence of time heterogeneity is found in
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one of the morbidity measures, limiting long-standing
illness, and in GP utilization.

CLASSIC AND SIMULATION METHODS FOR
PANEL DATA

UNOBSERVABLE HETEROGENEITY IN
NONLINEAR MODELS

Applied work in health economics frequently has to deal
with both the existence of unobservable individual effects,
that are often likely to be correlated with observed ex-
planatory variables, and with the need to use nonlinear
models to deal with qualitative and limited dependent
variables. The combined effect of these two problems
creates difficulties for the analysis of longitudinal data,
particularly if the model includes dynamic effects such as
lagged adjustment or addiction.

Consider a nonlinear model, in which there are repeat-
ed measurements (t� 1, . . ., T) for a sample of n individ-
uals (i� 1, . . ., n), for example, a binary choice model
based on the latent variable specification,

y*
�	
�X

�	
� � �

�
� �

�	
, (17)

where y
�	
� 1 if y*

�	

 0, and 	

�
is an unobservable time

invariant individual effect. Then, assuming that the dis-
tribution of �

�	
is symmetric with distribution function

F(.),

P(y
�	
� 1 �X

�	
, 	

�
) �P(�

�	

�X

�	
� � 	

�
) �F(X

�	
�� 	

�
)

(18)

This illustrates the ‘problem of incidental parameters’,
that arises if the 	

�
’s are treated as parameters, or ‘fixed

effects’, to be estimated along with the �’s. As n� � the
number of parameters to be estimated (�, 	) also grows. In
linear models � and 	 are asymptotically independent,
which means that taking mean deviations or differencing
allows the derivation of estimators for � that do not
depend on 	. In general, this is not possible in nonlinear
models and the inconsistency of estimates of 	 carries
over into estimates of � (an exception to this general rule
is the conditional logit estimator).

Assuming that 	 and � are normally distributed and
independent of X

�	
gives the random effects probit model

(REP). In this case 	 can be integrated out to give the
sample log-likelihood function,

ln L �


�
�	�

ln�
�

��

�
�
		�

�[d
�	
(X

�	
� � 	)] f (	)d	 (19)

where d
�	
� 2y

�	
� 1. This expression contains a univari-

ate integral which can be approximated by Gauss-her-
mite quadrature (Butler and Moffitt [11]). This model is
widely used in applied work, but it relies on the main-
tained assumptions that 	 is normal and uncorrelated
with the regressors. Lopéz (Chapter 13) applies methods
that relax the assumption that the effects and regressors
are uncorrelated while Deb (Chapter 14) introduces a
semiparametric method, based on finite mixtures, that
relaxes the assumption of normality.

An approach to dealing with individual effects that are
correlated with the regressors is to specify E(	 �X) dir-
ectly. For example, in dealing with a random effects
probit model, Chamberlain [12] suggests using,

�
�
�X

�
� � u

�
, u

�
� iidN(0, 
�) (20)

whereX
�
� (X

��
, . . .,X

��
). Then, by substituting Equation

20 into Equation 17, the distribution of y
�	

conditional on
X

�
but marginal to 	

�
has the probit form,

P(y
�	
� 1) ��[(1 � 
�)�
(X

�	
��X

�
�)] (21)

The model could be estimated directly by ML, but Cham-
berlain suggests a minimum distance estimator. This
takes the estimates from reduced form probits on X

�
, for

each cross-section, and imposes the restrictions implied
by Equation 21 to retrieve the parameters of interest
(�, 
). Bover and Arellano [13] and Labeaga [14] devel-
op and apply the Chamberlain approach to deal with
situations that combine a dynamic model and limited
dependent variables. Bover and Arellano show that the
problem can be formulated in terms of an asymptotically
efficient GMM estimator. They also propose a less effi-
cient, but computationally convenient, two-step within-
groups estimator. This applies the standard within-
groups estimator, using the fitted values of the latent
variables from each of the T reduced forms.

López (Chapter 13) makes use of the within-groups
approach to estimate the demand for medical care using
the Spanish Continuous Family Expenditure Survey. The
dependent variable measures expenditure on non-refund-
able visits to medical practitioners, for which 60% of
households make at least one purchase during the eight
quarters that they are measured. This leads López to use
an infrequency of purchase specification, which allows a
separate hurdle for non-participation, identified as no
purchases during all eight quarters. In specifying the de-
mand for medical care López combines the logarithmic
version of the Grossman model with the partial adjust-
ment model used by Wagstaff (Chapter 1). The estimates,
for the impact of age, education, and the log(wage), show
that controlling for censoring and unobservable individ-
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ual effects does influence the results. This is to be ex-
pected, as unobservable heterogeneity is likely to be a
particular problem in the use of expenditure survey data,
which do not contain any direct measures of morbidity.

Deb (Chapter 14) develops a random effects probit
model in which the distribution of the individual effect is
approximated by a discrete density. This is another
example of the finite mixture model, as applied to count
data regressions by Deb and Holmes (Chapter 6). In this
case the sample log-likelihood is approximated by,

ln L �


�
�	�

ln�
�
�
�	�

�
�

�
�
		�

�[d
�	
(X

�	
�� 	

�
)]�,

0 ��
�
� 1,

�
�
�	�

�
�
� 1 (22)

Monte Carlo experiments are used to assess the finite
sample properties of the estimator. These show that only
three to four points of support are required for the dis-
crete density to mimic normal and �� densities sufficiently
well so as to provide unbiased estimates of the structural
parameters and the variance of the individual effect. An
empirical application, to data from the 1996 US Medical
Expenditure Panel Survey, shows that both observed
family characteristics and unobserved family-level het-
erogeneity are important determinants of the demand for
preventive care.

SIMULATION METHODS

The random effects probit model, as described in Equa-
tion 19, only involves a univariate integral. More complex
models, for example where the error term �

�	
is assumed to

follow an AR(1) process, lead to sample log-likelihood
functions that involve higher order intergrals. Monte
Carlo simulation techniques can be used to deal with the
computational intractability of nonlinear models, such as
the panel probit model and the multinomial probit (see
e.g., Hajivassiliou [15]). Popular methods of simulation-
based inference include classic maximum simulated likeli-
hood (MSL) estimation, as used by Portrait et al. (Chap-
ter 15), and Bayesian Markov Chain Monte Carlo
(MCMC) estimation, as used by Hamilton (Chapter 16).

The principle behind MSL estimation is to replace
population expectations with a sample analogue. As a
simple illustration, consider the example of the random
effects probit model. An individual’s contribution to the
sample likelihood function can be written in the form,

L
�
��

�

��


h(	)��(	)d	�E	h(	) (23)

where �(	) denotes the standard normal pdf. Then the
individual contribution to the corresponding simulated
likelihood function is,

L
�
� (1/R)

�
�
�	�

h(	
�
) (24)

where the 	
�
’s are draws from a standard normal and the

simulated likelihood is the average of h(	
�
) over R draws.

The MSL estimator finds the parameter values that maxi-
mize the simulated likelihood function.

Portrait et al. (Chapter 15) use the Longitudinal Ageing
Study Amsterdam (LASA) to analyse long-term care util-
ization by the Dutch elderly. They specify a model of the
need for long-term care, the use of informal care, formal
care at home, institutional care and attrition due to mor-
tality between the two waves of the panel. The use of these
care alternatives is modelled jointly, and stochastic de-
pendence is allowed between the various care options.
This requires the evaluation of higher order integrals and
the model is estimated by MSL. The results show strong
effects of health status, gender, socioeconomic variables,
and prices on utilization of long-term care services.

Hamilton (Chapter 16) uses a Bayesian panel data
Tobit model of Medicare expenditures for recent US
retirees, that allows for deaths over the course of the
panel. A Tobit model is used because the individual data
on monthly medical expenditures from the New Benefici-
ary Survey contains a high proportion of zeros. This is
combined with a probit equation for mortality to give a
simultaneous equations LDV model. Hamilton argues
that estimation can be conveniently handled by Bayesian
MCMC methods.

Bayesian MCMC provides an alternative to the high
dimensional integration required for classical ML
methods. The posterior density function of the par-
ameters of the model is simulated by taking repeated
draws from it, using Monte Carlo simulation methods.
Under appropriate conditions, a Markov chain, in which
draws are conditional on the previous iteration, should
converge to a stationary distribution that is independent
of the initial values. Gibbs sampling simplifies this pro-
cess when the joint posterior density can be decomposed
into full conditional densities for sub-sets of parameters.
A further attraction of the MCMC method, in the context
of LDV models, is the use of data augmentation. This
means that the observed values of the LDV (y) can be
replaced by the simulated values of the latent variable (y*)
and standard estimators for linear models can be used. In
Hamilton’s model the system of equations is estimated by
seemingly unrelated regression (SURE). The model is
implemented using a multivariate t distribution, rather
than normality, to allow for heavy tails in the distribution
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of medical expenditure. The results suggest that survival
effects are important, with a higher probability of mortal-
ity associated with higher medical expenditure in the last
year of life.

CONCLUSION

As pointed out at the beginning of this introduction, there
have been substantial developments in the use of
econometrics to analyse health and health care over the
last decade. The papers included in this volume demon-
strate the rich potential of the field and will hopefully
encourage its further development over the next decade.
We hope the volume will be instructive for existing con-
tributors to health econometrics and inspire others to
join the field. In this introduction we have aimed to
highlight some of the common econometric problems
which arise with health and health care data and, through
reference to the applications contained in the individual
chapters, demonstrate techniques available to confront
these problems.
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1

The Demand for Health: an Empirical
Reformulation of the Grossman Model

ADAM WAGSTAFF
TheWorld Bank,Washington DC,USA

Despite the acclaim with which The Demand For Health
[1] was greeted following its publication 20 years ago,
Grossman’s model of health capital accumulation has
been the subject of surprisingly few empirical tests. Of
course, many empirical studies of the demand for health
care and the demand for and production of health do
refer to Grossman’s ideas, but since very few actually set
up and test an empirical counterpart to Grossman’s
model, it is hard to tell just how far the results of these
studies support the predictions of the model.
The few studies that have been based on Grossman’s

formal model give conflicting results. All closely follow
Grossman’s own empirical formulation and employ
double logarithmic demand functions for health and
health care. The main difference between the studies is to
be found in the specification of the demand-for-health-
care equations: Grossman and Muurinen [2] estimated
reduced-form equations, while the author in an earlier
study [3] estimated both reduced-form and structural
equations. The reduced-form estimates of all three studies
were broadly consistent with the predictions of Gross-
man’s model, but the structural parameters of the
author’s earlier study were invariably the wrong sign.
This suggested that, in contrast to what was implied by
Grossman’s and Muurinen’s work, the available empiri-
cal evidence did not, in fact, support Grossman’s theoreti-
cal model.
The purpose of this paper is to examine the various

reasons for the apparent rejection by the data of the
Grossman model. To what extent is the rejection more
apparent than real? In other words, might the rejection be
due to the introduction of inappropriate assumptions in
moving from the theoretical model to the empirical
model?Might the apparent rejection be due, for example,
to an inappropriate specification of the demand-for-

health-care equation? Another line of enquiry concerns
the possibility that the apparent rejection may be due to
inappropriate assumptions in the theoretical model.
Might the result be due, for example, to a failure to take
into account in the theoretical model that adjusting to the
desired stock of health capital may not be instantaneous?

GROSSMAN’S MODEL

In Grossman’s theoretical model, individuals are as-
sumed to inherit a stock of health capital H

�
. Thereafter

their health stock evolves according to the relationship

H
�
�H

���
� I

���
� �

���
H

���
, (1.1)

whereH
�
is health stock at the beginning of period t, I

���
is gross investment during the period t� 1 and �

���
is the

rate of depreciation in operation during the same period.
In Grossman’s formulation — the formulation adopted in
the present paper — � depends only on the individual’s age
and is hence exogenous. The individual’s utility and in-
come are both increasing functions of the stock of health
capital, and in selecting the optimal time path of H

�
, the

individual bears these benefits in mind, along with the
costs of ‘holding’ health capital. The latter comprise inter-
est costs, depreciation costs and any offsetting capital
gains. All are increasing in the cost of new investment.
Formally, the equilibrium stock of health capital is de-
fined by the condition

�
�
� a

�
� �r� �

�
� ��

���
��

�
, (1.2)

where �
�
is the pecuniary marginal benefit of health capi-
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tal, a
�
is the non-pecuniarymarginal benefit, r is the rate of

interest, �
�
is the marginal cost of investment and ��

���
is

its percentage change.
Although it is the time profile of health that the individ-

ual selects, the means by which this is achieved is, of
course, the investment profile. If the individual wishes to
increase his health stock from one period to the next, or if
he wishes it to decrease by less than the amount of depre-
ciation, he must undertake some health investment. Since
health capital cannot be sold, investment cannot be nega-
tive. Themodel is ‘neoclassical’ in that stocks are assumed
to adjust instantaneously to their new equilibrium values.
The predictions of the effects on health and investment of
changes in the model’s parameters are derived from
Equations 1.1 and 1.2.

PREVIOUS EMPIRICAL WORK

Following Grossman, the approach to date in empirical
work has been to derive a double-logarithmic demand-
for-health and demand-for-health-care equations from
Equations 1.1 and 1.2.
The demand-for-health equation is derived by specify-

ing functional forms for �
�
(or a

�
), �

�
and �

�
, and by

assuming that r���
���
is either zero or some function of

time. In the case of the pure investment model, for
example, the estimating equation has the form

lnH
�
��

�
� lnw

�
��

�
� lnP�

�
��

�
�t

�
��

�
�E, (1.3)

where �(0� � � 1) is the elasticity of the MEC schedule
(the schedule relating �

�
to H

�
), w is the wage rate, P� is

price of medical care, t is age and E is education. The
parameter �

�
reflects the productivity of medical care in

the production of health investments and — given the
CobbDouglas production technology — ought to be posi-
tive but not larger than one. The parameter �

�
reflects the

effect of aging on depreciation and ought therefore to be
positive. The parameter �

�
reflects the productivity of

education in health production and is hypothesized to be
positive.
To obtain the demand-for-health-care equations, the

investment identity is log-linearized to obtain

ln I
���

� lnH
���

� ln �
���

� ln[(H�
�
/�

���
)� 1]. (1.4)

The term in square brackets is assumed to be zero (Gross-
man), invariant across the sample (Muurinen), or ran-
domly distributed across the sample (Wagstaff). The de-
mand-for-health-care equation proper is then obtained
by combining Equation 1.4 with the investment produc-
tion function (a Cobb-Douglas technology is assumed)

and the cost-minimization condition for gross invest-
ment. The structural demand-for-medical-care equation
thus has the form

lnM
�
� lnH

�
� (1��

�
)lnw

�
� (1��

�
)lnP�

�
� �

�
t
�
� �

�
E, (1.5)

where the coefficient of plus one on the log of health
capital reflects the derived demand hypothesis (an in-
crease in the desired stock of health capital ought to
increase health care utilization). Note that the signs of
coefficients are exactly the opposite of those in demand-
for-health equation. Thus the coefficient on education in
this equation reflects solely the productivity effect; i.e.,
holding health constant, the better educated ought to
demand less health care, since they are more efficient
producers of health. Rather than estimate Equation 1.5
directly, Grossman and Muurinen estimate instead a re-
duced-form demand-for-health-care equation, obtained
by substituting Equation 1.4 in Equation 1.5:

lnM
�
� [�

�
(�� 1)� 1]lnw

�
� [�

�
(�� 1)� 1]

lnP�
�
� �

�
(�� 1)t

�
� �

�
(�� 1)E (1.6)

In this equation, as in the demand-for-health equation,
the coefficients reflect not only the parameters of the
technology, but also the demand elasticity, �.
Broadly speaking, the parameter estimates obtained to

date for the demand-for-health and the reduced-form
demand-for-health-care equations lend support toGross-
man’s model. In the author’s earlier study, for example,
education entered these two equations with positive and
negative signs respectively, which is consistent with edu-
cation-efficiency hypothesis and with the demand elastic-
ity being less than one.
The parameter estimates of the structural demand-for-

health-care equation reported inWagstaff [3] tell a differ-
ent study, however. The coefficient on health was nega-
tive, which is inconsistent with the derived demand hy-
pothesis, and education had a positive coefficient in this
equation, contrary to what is predicted by theory. These
results, coupled with the reduced-form parameter esti-
mates, imply that the demand elasticity is outside the
admissible range, so that the two wrong signs whenmulti-
plied together give the right sign for the reduced-form
parameter. Similar results are obtained for other vari-
ables.

PROBLEMS WITH PREVIOUS EMPIRICAL WORK

Two possible responses to these results seem possible.
The first is that the theoretical model has not been tested

16 ECONOMETRIC ANALYSIS OF HEALTH DATA



properly due to the introduction of inappropriate as-
sumptions in moving from the theoretical model to the
empirical model. The second is that the theoretical model
has been tested properly and has been found to be want-
ing, suggesting that modifications might be in order.
The obvious weakness in Grossman’s empirical formu-

lation lies in the derivation of the demand-for-health-care
equation. The assumption that H�

�
/�

���
is zero is particu-

larly weak. It is at odds with the theoretical model and
eliminates entirely the inherently dynamic character of
the net investment identity. The implications of this as-
sumption can be most easily seen if instead of converting
Equations 1.1 and 1.2 to log-linear equations, one retains
the inherently linear nature of the net investment identity
and adopts a linear specification of the demand-for-
health equation. Thus let the latter be of the form

H
�
��X

�
� u

�
, (1.7)

whereX
�
is a vector of variables reflecting the arguments

of the first-order condition (i.e. Equation 1.2), such as age
and education, and � is a vector of coefficients. Substitu-
ting Equation 1.7 into Equation 1.1 and rearranging
yields

I
���

��X
�
� (1� �

���
)H

���
� u

�
. (1.8)

In terms of the variables included, Equation 1.8 is very
similar to the structural demand-for-health-care equation
implied by Grossman’s empirical formulation: in both
equations measures of investment are expressed as func-
tions of the arguments of the demand-for-health equation
and the stock of health capital, albeit lagged capital stock
in the case of Equation 1.8. The interpretation of the
parameters is, however, quite different. In contrast to
those in the structural equation, the coefficients on the
X-variables in Equation 1.8 ought to have the same sign
as their counterparts in the demand-for-health equation.
Moreover, the sign of the coefficient on health stock in
Equation 1.8 ought to be negative, whereas the coefficient
on (contemporaneous) health ought to be positive in
Grossman’s structural equation. Equation 1.8 suggests,
therefore, that the observed negative coefficient on health
stock in structural demand-for-health-care equations and
the positive coefficients on variables such as education in
these equations may, after all, be quite consistent with
Grossman’s theoretical model. The implication is, then,
that it is Grossman’s empirical formulation of his model
which is to be rejected, not the theoretical model itself.
An alternative line of enquiry is that it is the theoretical

model which requires some reformulation. One possibil-
ity, suggested by the author in his earlier paper, is that the
apparent inconsistency between the theory and the em-

pirical results may be due to a failure to recognize that
individuals are unable to adjust their health stocks in-
stantaneously.Although the assumption of instantaneous
adjustmentmaywell be unwarranted, it would appear, on
reflection, that it is unlikely to be the source of the appar-
ent inconsistency between the data and the model. To see
why, suppose that instead of assuming instantaneous ad-
justment, we assume a partial adjustment framework.
Thus assume that desired health stocks are generated
according to the process

H*
�
��X

�
� u

�
, (1.9)

where H*
�
are desired stocks, and that a fraction

�(0�� � 1) of the gap between desired and actual stocks
is closed each period. Thus

H
�
�H

���
��(H*

�
�H

���
), (1.10)

so that if �� 1, adjustment is instantaneous and actual
and desired stocks coincide, as in Grossman’s formula-
tion. Combining Equations 1.1, 1.9 and 1.10 yields

I
���

���X
�
� (�� �

���
)H

���
��u

�
. (1.11)

Examination of Equation 1.11 reveals that although the
signs of the coefficients on theX-variables are unaffected
by less-than-instantaneous adjustment, the sign of the
coefficient on lagged health stock could actually be posi-
tive (i.e., if � � �). Thus recognizing non-instantaneous
adjustment does not actually help to explain the negative
coefficient on health stocks in the structural demand-for-
health-care equation. On the contrary, non-instan-
taneous adjustment makes a negative coefficient less like-
ly.

AN ALTERNATIVE EMPIRICAL FORMULATION
OF GROSSMAN’S MODEL

The above suggests that any empirical test of Grossman’s
model ought to acknowledge the inherently linear char-
acter of the net investment identity and should not there-
fore involve a long-linearization of this equation. Since
any empirical model will need to include a demand-for-
health equation as well as an investment equation, this
implies that the former ought to be intrinsically linear. In
what follows it is assumed that it is actually linear, al-
though clearly this assumption could be relaxed in future
work to allow for squared, cubed and cross-product
terms and hence for a more flexible functional form. Since
non-instantaneous adjustment seems highly plausible, it
also seems desirable to allow for this in the empirical
model.
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Equations 1.1, 1.9 and 1.10 would therefore seem to be
a more sensible starting point for a test of the Grossman
model. The demand-for-health equation for this empiri-
cal formulation of the model is found by combining
Equations 1.9 and 1.10 to obtain

H
�
���X

�
� (1� �)H

���
��u

�
, (1.12)

so that, in contrast to Grossman’s formulation, lagged
health stocks affect the current demand for health. Gross-
man’smodel is the special case where � � 1. Note that the
coefficients on the X-variables in Equation 1.12 ought to
be equal to those in Equation 1.11: testing this restriction
provides a test of the derived demand hypothesis.
Suppose, for the moment, that � is invariant across

individuals. Then if health stocks and investment were
observable, one could proceed directly and estimate
Equations 1.11 and 1.12. This would generate estimates of
� and �. Of course, unrestricted estimation would leave �
and the variance of u

�
over-identified, since the two equa-

tions would give two different sets of estimates of these
parameters. The answer to this is to impose the appropri-
ate cross-equation equalities in the estimation process,
which, if the derived demand hypothesis is tenable, ought
to be accepted by the data.
This leaves the problem that � is unlikely to be invari-

ant across the sample. If it is assumed that � is affected
only by the person’s age, so that all other ‘environmental’
variables affect the efficiency of health production, the
answer would seem to be estimate separate models for
different age groups. If �were the only parameter which is
thought to vary with age, the appropriate cross-group
equalities ought to be imposed to ensure that parameters
other than � are the same for all age groups. In fact it
seems more plausible to assume that both � and � vary
with age, since it seems likely that the elderly find it
harder than the young to adjust their health stocks to
their desired levels.
All this assumes that health stocks and investment are

observable. Of course, in reality they are not, but their
unobservability can be overcome using a Multiple Indi-
catorMultiple Cause (MIMIC) latent variable model [4].
The unobservability of health capital can be overcome by
introducing health indicators and specifying additional
equations linking these to the stock of health capital.
Obvious indicators include responses to questions such
as ‘Do you suffer from any long-standing health prob-
lem?’ and ‘Do you consider your health to be excellent,
good, fair or poor?’ The unobservability of health invest-
ment can be overcome by introducing demand-for-
health-care equations. As theory requires, these equations
condition on health investment, as well as on other argu-
ments of the demand function for health care, such as

education (if education affects the efficiency of health
production), prices (including time prices) and possibly
supply factors (such as the availability of the relevant
facilities).
In what follows it is assumed that the answers to the

same survey questions on health are available at two
points in time. These two vectors of variables — denoted
below by y

�
and y

���
— are assumed to be linearly related

toH
�
and H

���
respectively according to the health indi-

cator equations

�
y
�
y
���
���

�
�
0

0 �
���
��
H

�
H

���
���

�
�

�
���
� (1.13)

where �
�
and �

���
are coefficient vectors and �

�
and

�
���
are vectors of error terms. To ensure identification, a

normalization is introduced into each of the coefficient
vectors; to ensure that H

�
and H

���
are measured in the

same units, the same normalization is introduced in both
�

�
and �

���
. Ideally one would allow for the possibility

that �
�
and �

���
are correlated, but identification prob-

lems were encounteredwhen this was attempted. It is also
assumed that information on health care utilization is
available for the intervening period. Denote byM

���
the

vector of health care utilization variables and by Z
���
the

vector of variables other than gross investment which
influence the demand for health care. Then, if the de-
mand-for-health-care function is linear, in addition to
Equation 1.10, we have

M
���

�BI
���

��Z
���

� e
���

(1.14)

where B and � are a vector and matrix of coefficients
respectively, and e

���
is a vector of error terms. Again, in

order to ensure identification, one normalization is intro-
duced into the vectorB. It is also assumed that some rows
of � are empty, i.e. that utilization of some types of health
care does not depend on the Z-variables.

DATA AND VARIABLE DEFINITIONS

The model consists of the demand-for-health equation
(Equation 1.12), the health investment equation (Equa-
tion 1.11), the health indicator equations (Equation 1.13),
and the demand-for-health-care equations (Equation
1.14). Data are required therefore on each of the variables
in each of these equations.
The data for the present empirical exercise are taken

from the Danish Health Study [5] (DHS). This followed
some 1000 households (1752 adults) over a period of 12
months, beginning October 1982. Data on health and
background variables (such as education) were obtained
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at the beginning and end of year, and detailed informa-
tion on morbidity and use of health services was obtained
for each week of the study by means of a diary. The rate of
attrition is relatively low (76% of households interviewed
at the start of the study completed the 12 months), al-
though there is evidence that the probability of complet-
ing the study was related to age, education and initial
health status [5].
Of the numerous health indicators available in the

DHS, three were selected for the present exercise:

∑ FUNLIM, a question relating to functional limita-
tions, defined as a dummy variable taking a value of
one in the year in question if the health of the person
limited them from doing anything they wanted to do:

∑ PAH, a question relating to physician-assessed health,
defined in terms of categorical responses to the state-
ment ‘According to the doctors I have seenmy health is
now excellent’, with the value 1 corresponding to ‘agree
entirely’, the value 2 to ‘agree’, the value 3 to ‘don’t
know’, the value 4 to ‘disagree’ and the value 5 to
‘disagree entirely’; and

∑ SAH, a question relating to self-assessed health, defined
in terms of categorical responses to the statement ‘My
health is excellent’, with values of 1 to 5 defined as in
PAH.

The values of these variables for 1982 are denoted below
by FUNLIM82, PAH82 and SAH82, and those for 1983
by FUNLIM83, PAH83 and SAH83. The two FUNLIM
variables have been chosen for the normalizations: the
relevant elements of �

�
and �

���
have been set equal to

�1.0, thus ensuring that the unobservable health vari-
ables are both increasing in good health.
The empirical model has been estimated for all adults,

irrespective of whether or not they are in paid employ-
ment. Four variables have been included in theX-vector:

∑ EQFAMINC, equivalent household pre-tax monthly
wage income in October 1982. The equivalence scale is
that discussed by Buhmann et al. [6], with a household
size elasticity of 0.5. It is regrettable, but no information
is available on household wage income at the end of the
study or on non-wage income at either date. EQ-
FAMINCwill thus substantially understate the pre-tax
incomes of pensioners, and will understate — but pre-
sumably to a lesser extent — the incomes of households
containing social security recipients:

∑ SCHOOL, the level of schooling attained, converted
into years of schooling.Measures of post-school educa-
tion were also included, but were found to be insignifi-
cant:

∑ MALE, a dummy taking a value of one for males;
∑ AGE, the individual’s age in years.
In Grossman’s pure investment and pure consumption

models, the relevant elements of � are expected to be
positive and negative for SCHOOL and AGE respective-
ly. In the pure consumption model, the relevant element
of � for EQFAMINC ought to be positive if EQ-
FAMINC is viewed as a proxy for the marginal utility of
initial wealth.
The indicators of health investment that have been

used are all measures of health care utilization. Other
forms of health investment have been excluded in the
present analysis. The indicators used include:

∑ GPCONS, the number of consultations over the year
with a general practitioner (GP). All consultations have
been included, irrespective of whether they were face-
to-face or telephone consultations, and irrespective of
where they occurred;

∑ HOSPDAYS, the number of days as an inpatient in
hospital over the year;

∑ SPCONS, the number of consultations over the year
with a specialist;

∑ PHYSIO, the number of sessions with a physiothera-
pist;

∑ OUTPATIENT, the number of outpatient visits dur-
ing the year;

∑ ACCEMER, the number of visits to a hospital accident
and emergency department.

It is assumed that the last two indicators depend only on
the amount of investment undertaken, and do not depend
on other factors.
Variables included in the Z-vector include SCHOOL,

but also several variables reflecting the availability of
health care facilities, as well as distance to GP:

∑ GP/1000, the number of GPs per 1000 population in
the individual’s district (kommune);

∑ SP/1000, the number of community specialists per 1000
population in the individual’s district;

∑ BEDS/1000, the number of hospital beds per 1000
population in the individual’s district;

∑ PHYS/1000, the number of physiotherapists per 1000
population in the individual’s district;

∑ DIST-GP, distance in km from the individual’s home
to his or her GP.

The first and last are assumed to affect only GPCONS.
The second is assumed to affect only SPCONS, BEDS/
1000 is assumed to affect only HOSPDAYS and PHYS/
1000 is assumed to affect only PHYSIO.

EMPIRICAL RESULTS

To take into account the possibility that � varies accord-
ing to age, the sample (consisting entirely of adults) was
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Table 1.1b ML estimates of health indicator equations for over 41s

FUNLIM82 PAH82 SAH82 FUNLIM83 PAH83 SAH83

H
���

�1.000 �1.183 �1.257
(20.75) (21.55)

H
�

�1.000 �0.998 �1.071
(23.56) (25.62)

R� 0.520 0.727 0.821 0.673 0.671 0.775

Note: t-values in parentheses.

Table 1.1a ML estimates of health indicator equations for under 41s

FUNLIM82 PAH82 SAH82 FUNLIM83 PAH83 SAH83

H
���

�1.000 �1.385 �1.622
(16.18) (16.39)

H
�

�1.000 �1.264 �1.310
(17.53) (17.72)

R� 0.342 0.656 0.900 0.427 0.684 0.736

Note: t-values in parentheses.

split into two sub-samples of roughly equal size, the first
comprising the under-41s (N� 707, after listwise dele-
tion) and the second comprising the over-41s (N� 655).
The most restrictive model is where only �� � varies
across the two age groups (and therefore only � varies,
since (1��) is invariant) and where the coefficients on
the X-variables are constrained to be equal in the de-
mand-for-health and investment equations. The least re-
strictive model is that in which all parameters — including
�

�
and �

���
— vary across the two age groups and the

equality constraints across the demand-for-health and
investment equations are not imposed.
Parameters were estimated using the computer pro-

gram LISREL [7]. Since the health indicators are all
ordinal variables and the health care utilization variables
are heavily concentrated around zero, the best estimation
strategy would be to explicitly recognize that the health
indicators are ordinal variables and treat the utilization
variables as censored variables. This can in principle be
done with LISREL by using Weighted Least Squares
(WLS) to analyse a matrix of polychoric correlations (i.e.,
estimates of the correlation in the latent bivariate normal
distribution representing the two ordinal variables), with
the asymptotic variances and covariances of the poly-
choric correlations as weights. In the present case this
proved infeasible: the program PRELIS [8] — which ac-
companies LISREL and computes the correlation and
covariancematrices required by LISREL —was unable to
compute the asymptotic covariance matrix. Instead, the
polychoric correlation matrix was analysed by means of
Maximum Likelihood (ML), since, of the various estima-

tionmethods available in LISREL, this tended to give the
best fit (i.e., the smallest chi-squared value).
Tables 1.1 and 1.2 present the parameter estimates of

the least restrictive model. The lack of t-statistics for
FUNLIM82 and FUNLIM83 in Table 1.1 and for OUT-
PAT in Table 1.2 reflects the fact that these indicators
have been used to scale the three latent variables, H

���
,

H
�
and I

���
.

Since all three health indicators are likely to be decreas-
ing in good health it is reassuring to find negative coeffi-
cients in both sets of health indicator equations. It is also
reassuring to find that the latent health variables explain
a substantial proportion of the variation in the health
indicators. The same is not true of the investment vari-
able. Although all utilization measures are increasing in
health investment, the Z-variables and health investment
combined account for a relatively small proportion of the
variation in the utilization variables, except in the case of
out-patient visits, where the R� is fairly high. It is, of
course, not uncommon to find low R� values in micro-
econometric health care utilization equations. But the
implication for the Grossman model is that health care
utilization may be a poor indicator of health investment.
This probably explains — at least in part — why the R� of
the investment equation in both sub-samples is very
low.
Turning to the parameter estimates of the equations in

Table 1.2, the coefficients of the demand-for-health equa-
tions have the expected sign, except in the case of the
coefficient on AGE in the under-41s equation. Although
this is not significant, the signs in the two sub-sample
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Table 1.2a ML estimates of structural equations for under 41s

H
�

I
���

OUTPAT ACCEMER GPCONS HOSPDAYS SPCONS PHYSIO

H
���

0.687 �0.265
(11.03) (4.18)

I
���

1.000 0.189 �0.442 �0.752 0.222 0.342
(3.14) (6.58) (8.42) (3.66) (5.37)

EQFAMINC 0.032 0.030
(1.43) (0.86)

SCHOOL 0.072 0.005 0.014 �0.054 0.025 �0.071
(3.01) (0.13) (0.38) (1.49) (0.66) (1.93)

MALE 0.000 �0.089
(0.02) (2.55)

AGE 0.023 �0.009
(0.98) (0.25)

GP/1000 0.077
(2.12)

SP/1000 0.027
(0.72)

BEDS/1000 0.012
(0.37)

PHYS/1000 �0.057
(1.57)

DIST-GP �0.037
(1.03)

cov(u
�
, u

�
) �0.074

(3.57)
� 0.313
� 0.048
R� 0.394 0.096 0.591 0.021 0.122 0.335 0.031 0.076

Note: t-values in parentheses. Cov(u
�
, u

�
) is covariance of error terms of first two equations.

equations suggest the possibility of a non-linear effect of
age. The coefficients on H

���
suggest that, contrary to

what is assumed in Grossman’s model, individuals do not
adjust instantaneously to their desired health stocks. The
results suggest, unsurprisingly, that the elderly adjust
more slowly to their desired stocks than do the young.
Turning to the investment equation, the results suggest
that in both samples �� �, but surprisingly the implied
value of � is smaller for the over-41s than for the under-
41s. Moreover, the value of � is actually negative for the
former group. One possible explanation of this is that �
has in effect been specified in two different ways in the
model: as a linear function of age in theX vector and as a
step function of age when (� � �) in Equation 1.7 is
allowed to vary with age. A more consistent treatment
(with the effect of age specified as a step function in both
cases) might yield more sensible results.
The coefficients on the X-variables in the investment

equation all have the expected sign, except that on EQ-
FAMINC in the over-41s sub-sample, but this is not
significant. As noted above, the derived demand hypoth-
esis can be tested by testing the restriction that the coeffi-
cients on theX-variables are the same in the demand-for-

health and investment equations. In the LISREL pro-
gram, this can be accomplished by comparing themodel’s
chi-squared values with and without the restrictions im-
posed. The relevant value is 18.58 with 8 degrees of free-
dom, which compare with tabular values at the 1% and
5% levels of 20.09 and 15.51. The restriction implied by
the derived demand hypothesis is therefore rejected at the
5% level but not at the 1% level. This contrasts with the
decisive rejection of the hypothesis in the author’s earlier
empirical work using Grossman’s own empirical formu-
lation.
Turning to the demand-for-health-care equations, it is

apparent that, again in contrast to the author’s earlier
empirical work, the results also lend some support to the
education-efficiency hypothesis. Holding the quantity of
investment constant, education tends to reduce the de-
mand for health care, as the Grossman model predicts.
Moreover, the negative sign of the coefficients on GP-
DIST lends support to the time-price hypothesis. The
availability of facilities also appears to have some effect
on utilization, with greater availability increasing utiliz-
ation except in the case of physiotherapy.
As indicated above, a chi-squared test does not reject
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Table 1.2b ML estimates of structural equations for over 41s

H
�

I
���

OUTPAT ACCEMER GPCONS HOSPDAYS SPCONS PHYSIO

H
���

0.849 �0.253
(15.98) (4.68)

I
���

1.000 0.246 0.526 0.763 0.279 0.513
(4.66) (9.63) (12.68) (5.29) (9.35)

EQFAMINC 0.074 �0.016
(2.51) (0.36)

SCHOOL 0.005 0.109 �0.102 �0.100 �0.045 0.012
(0.19) (2.73) (2.75) (2.81) (1.11) (0.33)

MALE 0.004 �0.117
(0.17) (3.17)

AGE �0.061 �0.005
(2.15) (0.13)

GP/1000 0.097
(2.68)

SP/1000 0.137
(3.41)

BEDS/1000 �0.020
(0.60)

PHYS/1000 �0.048
(1.31)

DIST-GP �0.068
(1.90)

cov(u
�
, u

�
) �0.16

(6.56)
� 0.151
� �0.102
R� 0.595 0.077 0.703 0.043 0.210 0.408 0.072 0.189

Note: t-values in parentheses. Cov(u
�
, u

�
) is covariance of error terms of first two equations.

the cross-equation restrictions implied by the derived
demand hypothesis. A further set of restrictions of interest
are the equality restrictions across the two age groups.
Are the data consistent, in other words, with only �
varying across age groups? The relevant chi-squared stat-
istic is 113.22, with 30 degrees of freedom. (The cross-
equation restrictions implied by the derived demand hy-
pothesis are imposed in both models.) The cross-group
restrictions are thus rejected by the data, suggesting that
there are parameters other than � which also vary across
age groups.

DISCUSSION

This paper has argued that the empirical formulation of
the Grossman model used in previous tests of the thoreti-
cal model is inappropriate, since it fails to take into
account the inherently dynamic character of the health
investment process. The fact that the author’s earlier
structural equations estimates were inconsistent with the
predictions of the theoretical model may not therefore

necessarily be a cause for concern. Indeed, the alternative
formulation of the empirical model proposed in the pres-
ent paper appears to be more consistent not only with
Grossman’s theoretical model but also with the data. In
contrast to the author’s earlier results obtained using
Grossman’s own empirical formulation, the results in the
present paper lend support to the derived-demand and
education-efficiency hypotheses. They also suggest, how-
ever, that, contrary to what is assumed in Grossman’s
theoretical model, individuals do not adjust their health
stocks instantaneously.
It remains to be seen, of course, whether these empirical

results can be replicated on other data-sets. The results
reported in van Doorslaer [9], suggest that such replica-
tions might well be successful. The equations estimated
there are different from those estimated in the present
paper, being health investment production functions
rather than demand equations, but there are similarities.
Van Doorslaer’s results add weight, for example, to the
finding that adjustment of health capital stocks is non-
instantaneous.
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In developed countries a substantial amount of the re-
sources available is devoted to health care. Indeed, the
provision of a broad range of high quality health care
services can safely be taken to play a major role in main-
taining and promoting the health of a given population.
While there is evidence for the significance of a sophisti-
cated system of health care, the potential importance of
other determinants of individual healthmust not be over-
looked. Among the first to observe this was Sir William
Petty in his investigations on ‘Political Arithmeticks’. As
early as the seventeenth century, he was able to demon-
strate the considerable influence of sanitary conditions on
human mortality. From the point of view of allocation
theory, non-medical determinants of health are import-
ant mainly with respect to the following two issues. First,
what is their specific contribution to the attainment of
health targets? And, second, to what extent is it possible,
by relying more on those other determinants, to reduce
consumption of health care?
Our paper investigates the influence of several vari-

ables on both individual health and consumption of
medical care in the Federal Republic of Germany. In the
course of our empirical analysis, we focus on the impact of
the quality of the environment since this is often hy-
pothesized to be an important factor affecting health in
industrialized countries. This observation notwithstand-
ing, with the exception of a paper by Cropper [1], the
interactions between environmental conditions, health
and health care have failed, in our view, to receive much
attention in the literature. Given that the quality of the
environment cannot be observed directly, we proceed by
modelling it as a latent variable which may be described

bymeans of suitable indicators. Amajor aim of our paper
is to provide answers to the questions raised above in the
context of the specific data set considered below. In as
much as environmental quality affects individual health
and/or consumption of medical care, this has implica-
tions for environmental policy as well. More precisely,
any policy geared at improving the quality of the environ-
ment needs to be evaluated with respect to its side effects
on health care.
The conceptual framework of our paper is given by the

notion, due to Mushkin [2], that an individual’s health
may usefully be considered as a capital stock which, in the
course of time, provides services to its owner. At the same
time, it is possible to augment this stock of capital by
means of gross investment which encompasses, among
other inputs, consumption of medical care. Thus, while
his stock of health represents the ultimate objective of a
rational individual, his demand for medical care can be
derived from it. One of the advantages of this approach is
to provide a clear distinction between health on the one
hand and use of medical care on the other. This enables us
to analyse the effects of the quality of the environment on
both variables separately.
Our paper is organized as follows. In section two we

present the basic Grossman model which formalizes
Mushkin’s ideas within the context of an intertemporal
utility maximization problem. From this we derive a
sub-model of much simpler structure which also provides
the background for our empirical specification. Section
three contains a brief description of the database underly-
ing our empirical analysis. Furthermore, we combine the
structural model of section two with a measurement
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model in order to account for the latent variables con-
sidered. Section four gives estimation results where we
also provide an interpretation for the more important
parameter estimates. In particular, we discuss our results
with respect to the impact of the quality of the environ-
ment. Finally, section five contains our conclusions while
also offering several suggestions for future research.

THE GROSSMAN APPROACH

In this section, we present the theoretical model introduc-
ed by Grossman [3] as well as a submodel constituting a
special case of it from a theoretical point of view. On the
one hand, this will help to bring out clearly those addi-
tional restrictions which underlie our empirical analysis.
On the other hand, this provides a convenient opportun-
ity to characterize fully the main equations of the model
and the dynamics of the stock of health capital. In our
view, the literature up to now has failed to take those
latter two aspects adequately into consideration.
While, more recently, the Grossman model or general-

izations thereof have been presented mainly in continu-
ous time [1,4,5], we have chosen, following Grossman, to
work in discrete time. This implies a period analysis
which, among others, offers the advantage of being better
suited to empirical data referring to intervals of time. The
latter holds, for example, for the data collected by the
German Socio-economic Panel (SOEP), which supplies
the data base for our empirical analysis.
In his model Grossman combines both life cycle and

household production theory with the concept of health
as a capital stock which is subject to depreciation but can
be augmented by means of gross investment. In every
period, this health capital stock provides services accru-
ing as ‘healthy time’ which the individual is free to use
either as labour supply or as an input to his household
production.
More specifically, we consider an individual whose

decision problem is to choose, for the remainder of his
lifetime, time paths for his health capital as well as for
consumption of commodities in an optimal way. The
terminal time of this optimization problem is determined
endogenously, it is reached as soon as the stock of health
capital is equal to or falls below a given lower bound.
Some constraints of this problem are technological, this
concerns, in particular, the output from household pro-
duction activities. Further restrictions on the set of feas-
ible solutions are given by an intertemporal budget con-
straint, a flow equation for the stock of health capital and
an upper bound on the uses of time given by the length of
the period under consideration.
The starting point for the individual’s decision problem

is given by an intertemporal utility functionU as follows:

U�
�
�
���

m
�
u
�

(2.1)

u
�
� u(h

�
,Z

�
) (2.1a)

u
�
refers to utility in period t as generated by the pair

(h
�
,Z

�
), with h

�
representing the services of the health

capital (H
�
) stock and Z

�
the commodities produced by

the individual. As Equation 2.1 illustrates, total intertem-
poral utility is given by a weighted sum of the utilities u

�
.

Essentially, the weights m
�
are determined by the individ-

ual’s rate of time preference. Moreover, Equation 2.1
implies intertemporal separability of the utility function
U, which, in effect, leads to rather simple solutions in the
optimization problem considered below [6].
For the services of the health capital stock as measured

in units of healthy time, assume

h
�
� h(H

�
);

�h
�H

�

� 0, (2.2)

with the derivative expressing the positive influence of
health on healthy time.
The production of commodities takes place by trans-

forming consumption goods purchased in the market-
place with the help of an additional time input. For the
sake of simplicity, we focus on a single aggregate com-
modity whose production depends on an aggregate con-
sumption good G

�
and a time input T

�
. In addition, the

output of production activity is taken to be affected by an
exogenous parameterX

�
:

Z
�
�Z(G

�
,T

�
;X

�
) (2.3)

X
�
denotes the level of education of the individual, i.e. his

stock of human capital (excluding his health capital
stock). We assume the production function Z to be linear
homogenous with respect to (G

�
,T

�
) which implies con-

stant marginal costs of the production of commodities in
every period.
The change in the stock of health capital over time is

given by netting out gross investment I
�
with depreciation

of the existing stock:

�H
���

�H
���

�H
�
� I

�
� �

�
H

�
, (2.4)

where �
�
denotes the rate of depreciation taken to be

constant within a period. The individual is capable of
producing gross investment by combining medical care
M

�
and a time input TH

�
in the following way:

I
�
� I(M

�
,TH

�
;X

�
) (2.5)
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Just like the production of commodities, this household
production function exhibits parametric dependence on
X

�
. Furthermore, we assume I to be linear homogeneous

in (M
�
,TH

�
). Therefore, in any period, production of gross

investment takes place at a constant marginal cost.
In addition, it is necessary to observe another restric-

tion relating work income, expenditures on both the
aggregate consumption good and medical care to the
change in the individual’s wealth position. With respect
to period t, the budget constraint is given by

V
���

� (1� r)(V
�
� W

�
TW

�
�P�

�
M

�
�P�

�
G

�
), (2.6)

with V
�
denoting financial wealth, r the rate of interest

(taken to be constant over time), W
�
the wage rate, TW

�
working time andP�

�
(P�

�
) the price of medical care (of the

aggregate consumption good), all for period t. For the
present value change in financial wealth, one obtains the
following flow equation:

V
���

(1� r)���
�

V
�

(1� r)�
�

W
�
TW

�
�P�

�
M

�
�P�

�
G

�
(1� r)�

. (2.6a)

Finally, in every period, by definition the total time
budget � will be exhausted by healthy time h

�
on the one

hand and sick time TL
�
on the other:

�� h
�
� TL

�
. (2.7)

In the following, we assume h
�
to be spent exclusively on

the three uses of time already mentioned above. In other
words, h

�
covers either working time or the individual’s

time input to household production. Thus, we have:

�� TW
�
� TH

�
� T

�
� TL

�
. (2.7a)

Now the individual’s intertemporal optimization prob-
lem can be stated as a problem of discrete optimal control
[7]. The objective is to maximize

U�
�
�
���

m
�
u[h(H

�
),Z

�
]

subject to the restrictions given by Equations 2.3, 2.4, 2.5,
2.6a and 2.7a. The stock of health capital and the present
value of financial wealth represent state variables whose
values at time t� 0 constitute additional restrictions.
Moreover, a terminal condition — e.g., non-negativity —
will have to bemet for financial wealth, while the terminal
time of the optimization problem is determined en-
dogenously by the time path of health capital according
to:

n�min�i�N�H
�
�H

���
	 (2.8)

with N denoting the set of natural numbers and H
���

representing a lower bound on the stock of health capital.
As for the set of control variables, its composition will,

in general, depend on which specific problem one intends
to study. In what follows, we shall focus on M

�
and Z

�
.

Therefore, suppose an ‘interior solution’ holds for these
two variables and for TW

�
as well. Then, after performing

some algebraic manipulation, one obtains four necessary
conditions representing the core of the model:

�
m

�
(1� r)�

��
�

�u
�h

�

� W
��

�h
�H

�

��	
�	�

(1� r)��	
�
(1� �

�
)

(2.9)

m
�
(1� r)�

��
�

�u
�Z

�

� �

�

(2.10)
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���

�H
���

�H
�
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�P�
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	�

M
�
� �

�
H

�
(2.12)

��
�
is a time invariant costate variable which gives the

marginal utility of the present value of financial wealth,
while �	

�
(�


�
) represents marginal costs of gross invest-

ment (the commodity) in period t. In Equations 2.11 and
2.12, we have replaced I

�
because, due to the assumption

of an interior solution with respect toM
�
— which implies

an interior solution with respect to I
�
as well — one has,

according to Shepard’s lemma:

M
�
�

��	
�

�P�
�

I
�
, (2.13)

building on the homogeneity property of the production
function I.
Now suppose conditions sufficient for a maximum are

fulfilled. Then, the system of Equations 2.9 to 2.12 not
only determines an optimal value for ��

�
but also optimal

time paths for the stock of health capitalH
�
, the commod-

ityZ
�
, and the demand for medical careM

�
. In this general

case, Equations 2.9 and 2.10 contain H
�
, Z

�
and ��

�
as

endogenous variables, while the intertemporal budget
constraint Equation 2.11 gives an equation in H

�
, Z

�
and

M
�
. Finally, Equation 2.12 implicitly is an equation in all

endogenous variables. This can be made explicit by ap-
proximating �H

���
by an appropriate expression which

has been obtained by taking first differences of Equations
2.9 and 2.10.
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It is important to see that Equation 2.9 describes the
optimality condition for health capital in period t. If the
individual wishes to increaseH

�
by a marginal unit with-

out modifying the remainder of the corresponding time
path, gross investment in period (t� 1) will need to be
increased by a marginal unit as well. At the same time, I

�
can be reduced by (1� �

�
) because a higher stock of

health capital in period t allows for lower gross invest-
ment given that H

���
does not change. The costs asso-

ciated with this move are given by the right hand side of
Equation 2.9. The left hand side depicts the benefits asso-
ciated with a marginally higher H

�
resulting from an

increase in healthy time. The first term represents the
benefit due to a higher consumption of h

�
, while the

second term captures the benefit relating to the produc-
tive use of the additional time, either as working time or
as an input to household production. Although this
choice of terminology is not entirely satisfactory, it is
customary to describe these effects as the consumption
and the investment benefit, respectively, of a marginal
increase in the stock of health capital. To sum up, Equa-
tion 2.9 characterizes the optimal time path of health
capital by equilibrating marginal benefits and marginal
cost for every elementH

�
.

For an empirical analysis, it is useful to simplify the
rather complicated structure of the model given by Equa-
tions 2.9 to 2.12. Following Grossman, the literature has
focussed mainly on the analysis of two sub-models, each
taking into account only part of the marginal benefits of
health capital. As their names suggest, the pure consump-
tion model deals exclusively with the consumption bene-
fit, while the pure investment model emphasizes the in-
vestment benefit. It can be shown, however, that the pure
consumption model, by neglecting any investment bene-
fit, generates a number of extremely implausible implica-
tions. In particular, it takes the individual’s marginal
product of healthy time devoted to gross investment to be
no higher than zero while he derives no utility from
leisure at the margin [8]. Thus, the pure consumption
sub-model implies the individual to be satiated with re-
spect to leisure at an intertemporally optimal position.
This surely limits its usefulness in any applied work.
Therefore, in what follows we shall rely on the pure
investment model.
In the investment sub-model, the consumption benefit

of health — at the optimum position — is taken to be zero.
In other words, suppose:

�u
�h

�

� 0. (2.14)

This assumption is not quite as restrictive as it may

appear at first sight. In particular, any benefit derived
from the use of additional healthy time, either in house-
hold production or in labour supply, is already accounted
for.
Utilizing condition Equation 2.14 helps to simplify the

Grossman model considerably. The optimality condition
for the stock of health capital now reads:

W
�

�h
�H

�

���
�	�

(1� r)� �	
�
(1� �

�
). (2.9a)

Since it contains no other endogenous variables, this
equation alone determines the optimal stock of health
capital in period t. This implies that the change in health
capital, �H

���
, will not depend on any other endogenous

variable. Hence, in the pure investment sub-model, both
the stock of health capital and consumption of medical
care are determined by Equations 2.9a and 2.12 alone.
If one is interested only in the development of health

capital H
�
and medical care M

�
, the structure of the pure

investment model makes it possible to restrict the analy-
sis to Equations 2.9a and 2.12. This holds because the
optimal time paths for H

�
and M

�
are determined inde-

pendently of both ��
�
and the optimal time path for Z

�
.

For this reason, in what follows we will neglect Equations
2.10 and 2.11.
As regards comparative static analysis, it is useful to

distinguish between two categories of effects. In order to
see this, look at Equation 2.12 and let us investigate the
effects of a change in a parameter which determines the
stock of health capital according to Equation 2.9a. Since
any parameter affecting health capital is contained in
Equation 2.12 as well, the change under consideration
gives rise to two effects. First, there is a direct influence on
the demand for medical care, which captures the effect on
M

�
for a given stock of health capital. It is customary to

describe this effect as the direct effect of the parameter
variation. Apart from this, another effect operates
through the influence on the individual’s health. The
corresponding change in M

�
represents the indirect effect

of the parameter variation which is brought about solely
through its effect onH

�
. The total effect on the demand for

medical care is given by the sum of both effects, direct and
indirect.
On the way to a version of the model given by Equa-

tions 2.9a and 2.12which can be estimated empirically, we
still need to address two issues. First, both equations
exhibit a structure which is partly additive, and partly
multiplicative. Since we intend to estimate the model by
means of a linear approach, we shall introduce additional
assumptions such that the multiplicative structure ‘pre-
vails’. Second, for some variables such as, e.g., the rate of
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depreciation we need to give functional specifications
describing the influence of exogenous variables. In both
instances, we will follow previous work by Grossman,
Cropper andWagstaff to a considerable degree, although
our approach is slightly different [1,3,5].
Taking natural logarithms of Equation 2.9a yields:

lnW
�
� ln

�h
�H

�

� ln[�	
�	�

(1� r)��	
�
(1� �

�
)]. (2.9b)

Following Grossman, we choose as functional form for
the function h measuring the services provided by the
stock of health capital in units of healthy time:

h
�
� �� �

�
H	��

�
; �

�
� 0, �

�
� 0. (2.18)

This implies a concave h, i.e., decreasing marginal pro-
ductivity of health capital.
Transforming the right hand side of Equation 2.9b by

factoring out the product of the rate of depreciation and
the marginal cost of gross investment yields:

ln[�	
�	�

(1� r)� �	
�
(1� �

�
)]

� ln�	
�
�
�
� ln�1�

�	
�	��r�

��	
�

�	
�	�
�

�	
�
�
� � . (2.19)

The difference

�r�
��	

�
�	
�	�
�

compares the rate of return on an asset with the nor-
malized capital gains component of gross investment
I
�	�

. We assume that this term or, more precisely, the
whole expression

�	
�	��r�

��	
�

�	
�	�
� (�	

�
�
�
)	�

is close to zero. In addition, we take the corresponding
deviation to be distributed randomly over individuals.
Hence, the second term on the right hand side of Equa-
tion 2.19 may be interpreted as a stochastic error term.
Furthermore, let us suppose the production function

for gross investment is of the Cobb-Douglas type. Thus,
the logarithm of marginal cost can be expressed as a
weighted sum of the logarithms of factor prices, if one
takes into account the parametric influence of X

�
:

ln�	
�
��

�
lnW

�
� (1� �

�
)lnP�

�
��



X

�
; 0��

�
� 1. (2.20)

If the individual’s level of education as measured by X
�

exerts a positive influence on his investment productivity,
we should expect a negative sign for �



.

Finally, following Cropper, suppose the logarithm of
the rate of depreciation to be given by:

ln �
�
� ln �

�
��

�
t��

�
Y

�
, (2.21)

withY
�
representing a vector of parameters other than the

age factor that affect depreciation of health capital. In
particular, this vector contains an element describing en-
vironmental conditions. Given that we are going to
easure the quality of the environment negatively, we
should expect a positive sign for the corresponding el-
ement of the parameter vector �

�
.

With these assumptions, one obtains for Equation 2.9b,
solving for lnH

�
:

lnH
�
�

1

�
�
� 1

[k
�
� (1��

�
)lnW

�
� (1��

�
)lnP�
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�
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�
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�
] (2.9c)

where

k
�
� ln�

�
�
�
� ln �

�

and

u
�
� � ln�1�

�	
�	��r�

��	
�

�	
�	�
�

�	
�
�
� �

hold.
In order to get an estimable equation for the consump-

tion of medical care, take natural logarithms of Equation
2.12:

lnM
�
� ln

��	
�

�P�
�

� ln(�
�
H

�
��H

���
). (2.12a)

Utilizing the specification for the marginal cost of gross
investment, one obtains:

ln
��	

�
�P�

�

� ln(1��
�
)� ln �	

�
� lnP�

�

and, after replacing ln�	
�
:
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�P�

�

� ln(1��
�
)��

�
lnW

�
��

�
lnP�

�
��



X

�

 (2.22)

Furthermore, the second term on the right hand side of
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Equation 2.12b can be transformed as follows:

ln(�
�
H

�
��H

���
)� ln �

�
H

�
� ln�1�

�H
���

�
�
H

�
� . (2.23)

The fraction

�H
���

�
�
H

�

measures the change in health capital �H
���

relative to
depreciation occurring in period t. If, firstly, the
exogenous variables determining the stock of health capi-
tal change only slightly over time and, secondly, the rate
of depreciation is sufficiently bounded away from zero,
then this fraction will be close to zero.We followWagstaff
in assuming that the deviations of this fraction from zero
are distributed in a random manner over individuals [5].
Hence, the second term on the right hand side of Equa-
tion 2.23 may be interpreted as an error term. Conse-
quently, one arrives at the following specification for the
logarithm of the demand for medical care:

lnM
�
� k

�
��

�
lnW

�
��

�
lnP�

�

��


X

�
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�
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� lnH

�
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�
, (2.12b)

where

k
�
� ln(1��

�
)� ln �

�
and v

�
� ln�1�

�H
���

�
�
H

�
�

hold.
Apart from a minor aspect, the task of providing an

empirical specification appropriate for linear analysis has
been accomplished. As can be seen from Equation 2.12b,
our specification implies the logarithm of health capital
to influence the logarithm of medical care with a coeffi-
cient equal to one. In contrast to physical capital, for
example, it is characteristic of the stock of health capital,
however, that it cannot be observed directly but needs to
be captured by using appropriate health indicators. In
general, approaches to the measurement of health supply
values which are determined only up to some kind of (e.g.,
monotonic) transformation. In this sense, any empirical
measurement of health is subject to a certain degree of
arbitrariness. Therefore, it seems sensible not to deter-
mine the coefficient on lnH

�
on a priori grounds.

Thus, our final equation for the logarithm of consump-
tion of medical care reads as follows:

lnM
�
� k

�
��

�
lnW

�
��

�
lnP�

�

��


X

�
��

�
t� �

�
Y

�
��

�
lnH

�
� �

�
, (2.12c)

where we expect a positive sign for �
�
.

THE FULL EMPIRICAL MODEL

Since it is neither directly observable nor measurable, we
have chosen to model the stock of health capital as a
latent variable. The same is true for the other variable we
are primarily interested in, i.e., the quality of the environ-
ment. Due to the availability of only limited information
on this variable, it enters our empirical model as a latent
variable, too. Thus, the structural model outlined above
contains two latent variables. While health capital is de-
termined endogenously, environmental pollution is
treated as a latent exogenous variable which reflects its
role as a potential determinant of health.
The basic idea, therefore, is to supplement the struc-

tural model with a measurement model in which each
latent variable is described bymeans of a set of indicators.
For the stock of health capital, four indicators are avail-
able (HI). These are the degree of handicap, self-rated
health status, the duration of sick leave, and information
on chronic complaints, all as reported by the individual.
As regards the quality of the environment, we have been
forced to rely on only two indicators (EI). These are given
by the degree of noise pollution and the degree of air
pollution, as perceived by the individual. As it happens,
both these indicators measure the quality of the environ-
ment negatively. Thus, it is really environmental pollu-
tion that is reflected by our indicators. In what follows,
therefore, we shall refer to environmental pollution bear-
ing in mind that this is related to the quality of the
environment in an obvious way (i.e., inversely). For fur-
ther information on the range of the indicators of our
measurement model consult Table 2.1.
Our full empirical model is as follows:

lnHI
�
��


�
lnH*� �

�
, i� 1, 2, 3, 4, (2.24)

EI
�
��

��
E*� �

�
j� 1, 2, (2.25)

lnH*� �
��
E*� �

��
Z� �

�
(2.26)

and

lnM
�
�	

�
lnH*� �

��
E*� �

��
Z� �

�
, k� 2, 3, 4 (2.27)

where we have used an asterisk to denote latent variables
and the vector Z contains all those exogenous variables
other than environmental pollution which may influence
individual health. Figure 2.1 depicts the model given by
Equations 2.24 to 2.27 in terms of a path diagram.
Our data source is given by the third wave of the West

German Socio-economic Panel (SOEP), collected in 1986
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Table 2.1 Descriptive statistics (N� 3317)�

Standard
Variable Definition Mean deviation

Environmental indicators
CH07 noise pollution 1—5 2.0678 1.1010
CH08 air pollution 1—5 2.0932 1.0906

Health indicators
lnCP69 handicapped individual 1—3 0.2828 0.3872
lnCP70 chronic complaints 0.2140 0.3203
lnCP0101 self-rated health 1—11 1.9903 0.4033
lnCP7302 duration of sick leave (days) 1.5382 1.5278

Demand for health services
lnCP7102 number of visits to a general practitioner 0.7595 0.7176
lnFARZT number of visits to a specialist 0.9155 0.8523
lnCP7203 hospital days 1985 0.3695 0.9658

Z-variables
lnCP5202 net monthly income 7.4279 0.5442
CP8801 sex 0.4169 0.4931
CP8802 age in years 39.0865 11.6048
CPNAT nationality 0.2819 0.4500
CPSBIL education 1—3 2.0422 0.4692
CP0903 doing sports 1—4 2.0389 1.2742
CP6204 private insurance 0.0868 0.2816
CGGK community size 1—7 4.4540 1.7997
CH0603 accessibility of resident physician 1—4 1.8478 1.085

�Employees only; third wave of the Socio-economic Panel (SOEP); the variable names CH07, CH08, CP69, CP70, CP0101, CP7302, CP7102, CP7203,
CP8801,CP8802, CPNAT, CPSBIL, CP0903, CP6204, CGGK, andCH0603 correspond to the original description of the referencemanual (cf. Deutsches
Institut für Wirtschaftsforschung 1993); ln in front of a variable denotes the natural logarithm. If a zero value is possible for a variable, we have added one
before performing the log transformation.
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Figure 2.1. Path diagram of the model

[9—11]. Apart from standard questions which are repeat-
ed on a yearly basis, this particular wave additionally
contains self-rated information on environmental condi-
tions. In order to comply fully with the theoretical analy-
sis of the Grossman model, our sample is restricted to

those individuals who exhibit a positive demand for
health services. Since our empirical analysis includes
three demand variables, a positive demand for health
services is equivalent to at least one positive entry in any
of these components. In addition, we confine the analysis
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Table 2.2 Estimation results: measurement equations

Latent variables

Environmental
Indicators pollution (E*) Health capital (lnH*) R�

Noise pollution (CH07) 0.7539 0.5623
Air pollution (CH08) 0.8318 (4.1045) 0.6920
Duration of sick leave (lnCP7302) �0.3308 (�13.4703) 0.1094
Handicapped individual (lnCP69) �0.8140 (�23.8913) 0.6627
Self-rated health (lnCP0101) 0.6273 0.3936
Chronic complaints (lnCP70) �0.6493 (�22.2958) 0.4217

Total number of observations: 3317; t-values in brackets, based on robust standard errors. The coefficient of determination R� is one minus the ratio of
error and variable variance. The latter is equal to one in the standardized model.

Table 2.3 Estimation results: structural equations

Dependent variables

Number of visits
to a general Number of visits

Explanatory Health capital practitioner to a specialist Hospital days
variables (lnH*) (lnCP7102) (lnFARZT) (lnCP7203)

Health (lnH*) �0.2557 �0.2977 �0.2640
(�10.3470) (�11.6480) (�8.3756)

Environmental pollution �0.0909 �0.0001 �0.0018 �0.0567
(E*) (�3.5654) (�0.0052) (�0.0766) (�2.8219)

Income (lnCP5202) 0.0591 �0.0708 0.0485 �0.0145
(2.2741) (�3.5549) (2.4051) (�0.7330)

Sex (CP8801) �0.0188 �0.0823 0.1377 �0.0352
(�0.8103) (�4.2424) (6.9292) (�1.7756)

Age (CP8802) �0.2961 0.0513 �0.0876 �0.0465
(�13.2913) (2.6955) (�4.8428) (�2.2985)

Nationality (CPNAT) 0.0206 0.0578 �0.0661 0.0385
(0.9317) (2.9759) (�3.3930) (1.8505)

Education (CPSBIL) 0.0727 �0.0323 0.0338 0.0027
(3.2325) (�1.7002) (1.8240) (0.1451)

Doing sports (CP0903) 0.1075 �0.0281 0.0739 0.0026
(5.3503) (�1.6082) (4.2965) (0.1436)

Private insurance
(CP6204)

0.0163 �0.0343 0.0273
(0.8596) (�2.0653) (1.6408)

Community size (CGGK) �0.0412 �0.1519 0.1431 �0.0227
(�2.1259) (�8.7691) (8.4429) (�1.3164)

Accessibility of resident �0.0666 �0.0132
physician (CH0603) (�3.3909) (�0.7890)

R� 0.1383 0.1243 0.1284 0.0676

Total number of observations: 3317; t-values in brackets, based on robust standard errors. The coefficient of determination R� is one minus the ratio of
error and variable variance. The latter is equal to one in the standard model.

to the working population, since the use of the duration of
sick leave as health indicator makes sense only for work-
ing individuals. This leaves us with an actual sample of
3317 observations for our estimation. Table 2.1 summar-
izes the basic descriptive statistics of the variables used in
our study.

In order to scale the dimension of the latent variables
H* and E* we have restricted the parameters �


�
and �

��
.

This implies that the corresponding indicators act as
reference indicators for the respective latent variable.
While this constitutes a necessary precondition for identi-
fication, identification is obtained by imposing a number
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of additional zero-restrictions on the parameters of our
model which can be read off from Tables 2.2 and 2.3.
The disturbances are assumed to be independently nor-

mally distributed with zero expectation. These assump-
tions enable us to estimate Equations 2.24 to 2.27 by Full
Information Maximum Likelihood using the GAUSS-
module LINCS. Developed by Schoenberg and Arminger
[12], LINCS (Linear Covariance Structures) is a program
written inGAUSSwhich allows for flexible programming
and provides, for instance, heteroskedasticity-consistent
estimates of the standard errors.
Since in most applications the assumption of multivari-

ate normality of the data cannot be maintained, the pre-
condition for MLE no longer holds. Given that this is
true, e.g., for the dependent variables of our measurement
model, the validity of our estimation procedure may be
questioned. As Gouriéoux et al. point out [13], ML-
estimates based on the false distributional assumption
should more accurately be referred to as ‘Pseudo Maxi-
mum Likelihood Estimates’. More importantly, they
have shown thatML-estimates obtained under the erron-
eous assumption of multivariate normality are not mean-
ingless, however, since they minimize the Kullback infor-
mation criterion and can be interpreted as ‘Minimum-
Ignorance-Estimators’ [14]. While the consistency of the
parameter estimates may hold, estimates of the corre-
sponding standard errors using the false distributional
assumption are no longer valid. Thus, it is necessary to
use heteroskedasticity-consistent standard errors which
can be computed according to White’s proposal, given
the consistency of parameter estimates. More detailed
information on this correction may be found in the litera-
ture [12,15].

RESULTS

Tables 2.2—2.4 present the estimation results based on the
standardized solution. This implies that all variances are
equal to one [12,16].While Tables 2.2 and 2.3 contain our
estimates of the measurement sub-model and of the direct
effects of the structural sub-model, respectively, Table 2.4
provides information on both indirect and total effects of
the exogenous variables on the demand for medical servi-
ces.
Turning to the measurement sub-model first, it is reas-

suring to find that none of the coefficients is of the ‘wrong’
sign. As inspection of the coefficient of determination (R�)
reveals, the latent variable environmental pollution ex-
plains quite a substantial part of the variance of each
indicator. With respect to the stock of health capital, the
corresponding figures turn out to be lower, the exception
being the indicator ‘degree of handicap’, 66.2 percent of

whose variance is explained by variations in individual
health. On the other hand, health capital explains around
11 percent of the variation in the ‘duration of sick leave’.
The reason may be that this indicator is more likely to
reflect the individual’s satisfaction with his working con-
ditions rather than pointing to a specific illness.
Turning to the structural sub-model, our results are

broadly as follows. As for the health capital equation,
most of the coefficients are both of the correct sign and
statistically significant. With respect to the demand for
health care equations, however, our estimation results are
less satisfactory.
In particular, we obtain a negative coefficient on the

stock of health capital which is found to be significant in
all three equations. While this finding is in line with the
results of other studies, it clearly disagrees with our em-
pirical specification. It is tempting to conclude that, given
this discrepancy, the corresponding structural par-
ameters are of the ‘wrong’ sign [17]. This, however, would
be premature. Looking at Equation 2.12, it is straightfor-
ward to show that the impact of a marginal increase in
health capital on the demand for health care is given by

�M
�

�H
�

��
��	

�
�P�

�

(1� �
�
). (2.28)

If one takes reasonable values for �
�
to be restricted by

0� �
�
� 1, then the Grossmanmodel obviously implies a

negative influence of health on consumption of medical
care. Thus, while our empirical results certainly disagree
with our empirical specification, they do not provide
evidence against the Grossman model.
In a more recent paper, Wagstaff proposed a different

empirical specification of the Grossman model which
yields a negative sign for the coefficient on health capital
in the demand for health care equation [18]. Moreover,
his formulation also reverses the signs of the coefficients
on the exogenous variables in this equation which, again,
is in line with the results of most empirical studies. Thus,
although it is not quite clear how his specification can be
derived from the theoretical model, Wagstaff’s approach
surely represents a very interesting alternative for the
purpose of empirical research.
As expected, the latent variable environmental pollu-

tion E* exerts a negative impact on the stock of health
capital H*. Increasing environmental pollution goes
along with a higher rate of depreciation and, hence, indu-
ces a decrease in the stock of health capital. Contrary to
the prediction of our theoretical model, we find a negative
relationship between environmental pollution and health
care demand. However, the direct effects on the number
of GP visits and on specialist visits are not significant.
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Table 2.4 Indirect and total effects on the demand for health services

Demand for health services

Number of visits to a Number of visits to a
general practitioner specialist Hospital days
(lnCp7102) (lnFARZT) (lnCP7203)

Explanatory Indirect Total Indirect Total Indirect Total
variables effect effect effect effect effect effect

Environmental pollution 0.0232 0.0231 0.0271 0.0253 0.0240 �0.0327
(E*) (3.4068) (1.0989) (3.4750) (1.1410) (3.3614) (�1.3718)

Income (lnCP5202) �0.0151 �0.0859 �0.0176 0.0309 �0.0156 �0.0301
(�2.2360) (�4.1845) (�2.2913) (1.5316) (�2.2339) (�1.5257)

Sex (CP8801) 0.0048 �0.0775 0.0056 0.1433 0.0050 �0.0302
(0.8046) (�3.9031) (0.8083) (7.0917) (0.8083) (�1.5179)

Age (CP8802) 0.0757 0.1270 0.0881 0.0005 0.0782 0.0317
(7.8333) (7.1818) (9.2857) (0.0769) (7.2222) (1.6250)

Nationality (CPNAT) �0.0053 0.0525 �0.0061 �0.0722 �0.0054 0.0331
(�0.9333) (2.6551) (�0.9280) (�3.6069) (�0.9286) (1.5480)

Education (CPSBIL) �0.0186 �0.0509 �0.0216 0.0122 �0.0192 �0.0165
(�3.0870) (�2.6141) (�3.1440) (0.6377) (�3.0153) (�0.8715)

Doing sports (CP0903) �0.0275 �0.0556 �0.0320 0.0419 �0.0284 �0.0258
(�4.8438) (�3.1616) (�4.9767) (2.3932) (�4.5745) (�1.4130)

Private insurance (CP6204) �0.0042 �0.0385 �0.0049 0.0224 �0.0043 �0.0043
(�0.8548) (�2.2581) (�0.8647) (1.3114) (�0.8506) (�0.8506)

Community size (CGGK) 0.0105 �0.1414 0.0123 0.1554 0.0109 �0.0168
(2.1000) (�7.9437) (2.0714) (8.9634) (2.0714) (�0.6702)

Accessibility of resident 0.0170 0.0038 0.0198 0.0198 0.0176 0.0176
physician (3.2432) (0.2250) (3.2549) (3.2549) (3.2115) (3.2115)

Number of observations: 3317; t-values in brackets, based on robust standard errors.

The corresponding indirect effects of environmental polu-
tion on the three health care demand variables are both
positive and significant, i.e. the increased rate of depreci-
ation implies a higher consumption of medical services
(see Table 2.3). In this case, medical consumption may be
interpreted as a gross investment which tends to compen-
sate for the higher rate of depreciation.
With respect to the class of Z-variables, the coefficients

on the variables income, age, and education display the
theoretically expected impact on the latent variable
health capitalH*. As for their influence on the consump-
tion of medical care, our results are mixed. High income
earners consult a general practitioner less frequently, but
have more contacts with a specialist. If the general practi-
tioner treats only minor health problems, opportunity
costs might play an important part. There are controver-
sial opinions on the sign of the income variable. Van de
Ven and van der Gaag [19] report a negative effect of
income on the demand for medical services. On the one
hand, a high income results in a high demand (direct
effect), but, on the other hand, this leads to a higher level
of health capital which reduces consumption (indirect

effect). A priori the total effect is undetermined. Our esti-
mation results indicate that with regard to GP visits the
direct and the indirect effect are both significant and point
in the same direction, resulting in a negative total effect
(see Table 2.4). The direct and the indirect effect of income
on the number of specialist visits are of opposite signs,
while the resulting total effect is not significant.
The binary variable for the type of medical insurance is

only significant for visits to a general practitioner. Indi-
viduals that are privately insured pay fewer visits to a
general practitioner. This result reflects mainly the insti-
tutional setting of Germany, where the GP has no gate-
keeper function for privately insured patients. Unlike a
patient insured in the statutory health insurance, a pri-
vately insured patient can choose his physician(s) without
any restriction.
As expected, the age variable exerts a negative impact

on the stock of health capital. Puzzling are the direct
effects of age on the demand for health services, which
turn out to be both negative and significant as far as the
number of specialist visits and hospital days are con-
cerned. One explanation of this finding might be the way
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Table 2.5 Results of the specification tests

Model part to be analyzed Test statistics�

Value of the Hausman-type specification test HTST� 0.11
when analyzing structural parameters only DG� 44

Pr� 1.0
Value of Hausman-type specification test for all HTST� 1238.61
parameters DG� 55

Pr� 0.00

�HTST�Test statistic of the Hausman-type specification test; DG: degree of freedom; Pr:
Probability-level.

we have modelled the age effect. More precisely, we con-
sider only a linear age term although it is well known that
age possesses a convex relationship with respect to health
care demand. The latter implies that the number of phys-
ician consultations and hospital days first decreases and
then increases with age. Nevertheless, the total effect of
age on each component of health care demand has the
expected positive sign and is statistically significant for
both GP and specialist consultations.
Doing sports has a positive effect on the stock of health

capital. More ambiguous is the relationship between
sports and the consumption of medical services. The di-
rect effect in Table 2.3 is only significant for vists to
specialists and the positive sign indicates the conse-
quences of sport injuries. This result contrasts with the
indirect effects, which operate through the stock of health
capital and reduce the demand for health services (see
Table 2.4). Only for the number of specialist visits, the
resulting total effect is significant at the 5 percent level.
This increased demand for specialist services can be inter-
preted as gross investment which is to compensate for the
hazards potentially associated with doing sports.
Between community size and the number of specialist

consultations we find a positive direct effect which may
reflect the overproportional supply of specialists in larger
communities. In addition, the corresponding coefficient
in the GP equation is negative, indicating that GP servi-
ces are substituted by specialist services in larger commu-
nities and cities.
Finally, consider the impact of the accessibility of the

general practitioner. Since this variable measures the dis-
tance to his physician, it is an important determinant of
the individual’s time costs associated with the consump-
tion of medical care. Given that the actual money prices
of medical care — with only minor exceptions — are fully
covered by health insurance, the ‘accessibility of the gen-
eral practitioner’ therefore can be expected to act as a
proxy for the user price of medical care. This is confirmed
by its coefficient in the health capital equation which is

both negative and statistically significant. However, the
corresponding effect in the demand for GP consultations
equation fails to be significant.
In order to test for the consistency of our parameter

estimates, we apply a Hausman-type specification test. In
this modifiedHausman-test proposed by Schoenberg and
Arminger [12], the FIML-estimator which is consistent
and efficient under the null hypothesis but inconsistent
and inefficient under the alternative, is compared to a
weighted estimator which is consistent but inefficient un-
der both alternatives. The weights are introduced to in-
crease the power of the test. They are chosen such that
observations in which the endogenous variables are poor-
ly predicted get a higher weight than observations that
predict the endogenous variables well [12,20]. A suffi-
ciently well specified model should result only in small
differences between the two estimates. The test statistic of
theHausman-type specification test has a 
�-distribution.
Table 2.5 summarizes the results of the specification

tests. Note that there is no evidence of misspecification of
the structuralmodel, while the overall specification of our
model has to be rejected. An explanation for the strong
discrepancies in the test results might be the extremely
parsimonious specification of the covariance structure of
the disturbances.

CONCLUSION

Our analysis indicates that the quality of the environment
as measured negatively by the level of environmental
pollution is an important determinant of individual
health. On the other hand, the relationship between envi-
ronmental pollution and the demand for health care is
not clear-cut. We have found a negative direct effect on
health care demand but this is statistically significant only
in the case of hospital days. In contrast, the correspond-
ing indirect effect on all three demand variables is both
positive and significant, i.e., a higher level of environ-
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mental pollution as it operates through the stock of
health capital implies a higher consumption of medical
services.
These results suggest that any policy directed at im-

proving the quality of the environment is likely to gener-
ate benefits in the field of health care as well. More
precisely, due to its positive effect on health, a higher
quality of the environment ceteris paribus enables the
individual to enter any given periodwith a higher stock of
health capital. In this sense, then, any such environmental
policy can be interpreted in terms of preventive medicine,
too.
It is important to bear in mind that our primary inten-

tion has been to estimate the overall impact of the quality
of the environment on both health capital and the de-
mand for health care. In essence, this provides the main
reason for our focussing on the latent variable environ-
mental pollution. For the purpose of policy analysis, it
will usually make more sense to investigate the influence
of individual components of environmental pollution, i.e.,
one will be interested in the effects of, say, the level of air
pollution on the stock of health capital and the consump-
tion of medical care. This can be done without changing
the substance of the analysis presented above.
Finally, let us briefly comment on the results of the

Hausman-type specification test. While we find no evi-
dence for misspecification of the structural model, the
overall specification of our model has been rejected. We
suspect this may be due primarily to the limitations of our
measurement model. Unfortunately, household surveys
like the Socio-Economic Panel do not contain much
information on environmental factors. Thus, it is not
possible to achieve a satisfactory description of the qual-
ity of the environment.
In this vein, we take our results to indicate two further

aspects for future research on the relationship between
health, health care and the environment. First, an attempt
should be made to map latent variables by means of
indicators more accurately. Furthermore, in our view the
application of panel data is of special interest to cope with
the impact lag which characterizes the influence of envi-
ronmental pollution on both health and health care de-
mand.
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INTRODUCTION

While life expectancy increased and working conditions
and the quality of health care improved in the past dec-
ades, participation rates of elderly workers declined dra-
matically in most OECD countries. One is tempted to
relate this decline to the expansion of social security
systems over the same period. Yet the majority of non-
participating elderly report that health rather than finan-
cial incentives was the primary consideration in their
retirement behaviour. And indeed, inclusion of subjective
health measures in retirement models generally led to
large and dominant effects of health, and relatively small
effects of financial incentives on retirement behaviour.
This phenomenon generated a large number of contribu-
tions to the retirement literature, trying to explain the
dominant health effects, and propose solutions to the
problem (see for instance Lambrinos [1], Parsons [2],
Anderson and Burkhauser [3], Bazzoli [4], Butler et al.
[5], Stern [6] and Bound [7] for retirement models, or
Bartel and Taubman [8], Lee [9] and Chiricos and Nes-
tel [10] for earnings equations). The central argument is
that health should be treated as an endogenous variable
in retirement models. Health may be endogenous in the
‘classical’ sense that it is correlated with unobserved fac-
tors — such as the rate of time preference — that affect
retirement behaviour [11]. Others expect a causal rela-
tionship to run from participation to health; for example
throughwork-related injuries and stress, or the other way
round: ‘retirement per se causes bad health via boredom’
(Sickless and Taubman) [12]. Additionally, the en-
dogeneity of health measures may result from systematic
misreporting. It is argued that responses to questions
concerning health will be biased due to economic incen-

tives or that responses are adapted to conform to social
norms. Reporting health as the main reason for inactivity
is socially more accepted than expressing a relatively
strong preference for leisure. Furthermore, eligibility con-
ditions for some Social Security Allowances — notably
Disability Insurance Benefits — are contingent upon bad
health. Respondents may be worried about the confiden-
tiality of their answers or about political consequences of
the findings of the survey. Reporting errors may therefore
depend on the respondent’s labour market status. In re-
tirementmodels, this reversed causality will typically lead
to biased parameter estimates and misleading con-
clusions.
In the absence of state dependent reporting errors, the

endogeneity problems boil down to standard problems
for which solutions are readily available. So in a way the
main issue in the empirical analysis of the ‘Retirement-
Health Nexus’ (cf. Anderson and Burkhauser [3]) is the
state dependence of responses to health questions. The
objective of this paper is to assess the relative importance
of state dependent reporting errors in health measures.
In order to eliminate the subjective nature of responses

to questions about health, various authors have used
measures that are believed to be more objective, for in-
stance observed future death of respondents in the sample
[2,3], or sickness absenteeism records [13]. As pointed
out by Bazzoli [4] and Bound [7] the variable of interest
is the extent to which health impedes working and par-
ameter estimates in retirement models are subject to er-
rors in variable bias if these objective measures are not
perfectly correlated with work related health. The use of
lagged responses to health questions or an instrumental
variablemethod as proposed by Stern [6] or Aarts and de
Jong [14] are also of little help, since the state dependent
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reporting errors are not eliminated. Bound [7] elegantly
shows how in the context of a labour supply model in
which financial variables affect health-reporting, each of
the solutions proposed in the literature leads to different
biases. The use of mortality information as a proxy will
tend to underestimate the effects of health and overesti-
mate the effects of financial variables, whereas if it is used
to instrument subjective health measures the impact of
health is correctly estimated, but the effect of economic
variables is underestimated.On the other hand the sign of
the biases is ambiguous if subjective health measures are
used.
The objective of our model is to provide more insight

into the state dependence of self-reported health
measures. In section 3 we state a condition that enables us
to determine systematic response errors from the com-
parison of subjective and objective health measures
across four different groups of respondents: the employed,
the unemployed, the disabled and the early retired. The
procedure is attractive as it is relatively simple and does
not require the specification of a complete model of par-
ticipation or retirement decisions. This is an advantage,
as results obtained in previous analyses of the endogene-
ity of health variables were sensitive to misspecification of
the participation, retirement or earnings equations. Fur-
thermore, our model of self-reported health may be em-
bedded in a more complete retirement model.
The way in which we identify the state dependence of

reporting errors is related to the analysis by Butler et al.
[5]. They compare two dichotomous arthritis measures:
one subjective measure based on a direct question and an
objective measure derived from a more detailed list of
symptoms and indicators. The relation between these two
variables is investigated by running a regression of a
measure of the degree of association between the two
variables on a set of socio-economic variables. Their re-
sults indicate that the relationship between the measures
is significantly stronger for employed respondents than
for the others.
Although the motivation for this analysis is to study

the impact of endogenous reporting errors in health
measures that are typically used in labour-supply studies
— work-related health indicators — corresponding objec-
tive measures are less readily available than for an indi-
vidual’s general health status. In the empirical application
we will therefore limit our scope to the analysis of subjec-
tive general health measures. An individual’s response is
modelled as a function of a latent (true) health indicator,
based on an objectivemeasure and several other controls.
The ordered response model that translates this latent
variable into the observed categorical response is allowed
to differ across the four labour market states mentioned
above. In this way, the response distortionsmay be differ-

ent for the disabled than for the retired, employed or
unemployed. Explicitly modelling reported health as a
deviation from some underlying true health indicator
allows us to generate health measures free of state de-
pendent reporting errors.
In section 3 we present the model and discuss the

assumption underlying our approach. For the empirical
application we use data from a Dutch survey held in 1993
among approximately 4700 households of Dutch elderly.
The dataset is comparable in structure and contents to
the HRS of the University of Michigan Research Center,
and contains detailed information on health and retire-
ment issues. This dataset is discussed in section 4. Section
2 presents some information about the Dutch disability
allowance system. It is generally recognized that this
system has increasingly been used as a lay-off/quit route
that is financially attractive to both employers and em-
ployees. One would therefore expect misreporting to be a
particularly serious problem in Dutch data. Although the
model was not developed for that purpose, the estimates
provide some information as to the extent to which the
disability allowance was used inappropriately. In section
5we present the statisticalmodel and the empirical imple-
mentation. Section 6 discusses the results, and section 7
concludes.

THE DUTCH DISABILITY INSURANCE SYSTEM

The Dutch disability insurance system consists roughly
speaking of two programs: a general disability fund called
AAW that provides a disability benefit at a minimum
level and an additional program,WAO, that supplements
the disability allowance for private sector workers to 80%
of the gross wage they earned in their last job. For public
sector employees a similar supplementary allowance is
provided by the public sector pension fund. The philos-
ophy of these allowances is to insure workers against
losses in their earnings capacity that result from illness or
injury. A worker who has been on sickness-leave for a
period of 12 months can apply for a DI-allowance. De-
pending on the severity of the disability one may receive a
full or a partial allowance. The DI-system is a pay-as-
you-go system that is funded by contributions from em-
ployers (AAW) and workers (AAW andWAO).
The assessment of the degree to which a worker is

disabled is performed by a central medical service called
GMD. In determining the loss of earnings capacity the
GMDdoctors have to take the applicant’s labour market
opportunities into account as well as the fact that it is in
general extremely difficult for partially disabled to find a
job. Because of this difficulty and the fact that the organ-
izations of employers and the labour unions manage the
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Table 3.1 Percentage of affirmative responses to the
proposition ‘health restricts me severely or totally in
performing my job’

Age

43—47 48—52 53—57 58�

Employed 4.7 4.2 6.6 9.4
Self-employed 2.4 8.5 12.0 13.0
Early retired — — 5.3 14.2
Disabled 94.3 95.4 92.2 89.0
Unemployed 17.7 17.4 19.7 19.7
Others — — 13.0 26.2

Source: CERRA-I, October 1993.

institutions that administer the allowances, the applica-
tion procedures and the admittance criteria, it has be-
come common practice to treat partially disabled unem-
ployed as if they were fully disabled. In recent years it has
become clear that employers and workers have used the
DI-system as a financially attractiveway of ending labour
contracts with mutual consent. The employee receives the
DI-benefit for an indefinite period, whereas unemploy-
ment benefits run out after one year. In practice, em-
ployers have made the regulation even more attractive by
offering to supplement the DI-benefit to a higher percen-
tage of previous earnings. Especially for older workers the
DI-allowance appears to have served as an unofficial
early retirement scheme.
The growing popularity of the DI-programs can be

seen from the development of the number of recipients
over the previous decades: from 215 400 in 1970, 657 100
in 1980 to 880 800 in 1990 (the Dutch labour force was 5.7
million in 1990). Since 1983 the economic recovery has led
to a growth of the number of jobs and a steady decline in
the number of unemployed, but over these years the
number of DI-recipients continued to grow at a constant
speed. The unrealistically high number of disabled and
the costs associated gave rise to a parliamentary inquiry
in 1993. The conclusion of this inquiry was that the
DI-systemhas become overly generous. As a direct conse-
quence the GMD has started reexamination procedures,
reconsidering the applications of DI-recipients under 40.
In June 1994, 8684 benefits of DI-recipients younger than
35 had been reexamined. Only 50% of these allowances
was confirmed. In 7% of the cases the allowance was
reduced and 43% was rejected completely. It may be
expected that the percentage of rejections would be much
higher for DI-recipients of 50 years and older.
Some indirect evidence of this claim may be found in

the CERRA-data, that are used in the empirical applica-
tion of the model. The respondents were asked whether
their health severely or totally restricted them to perform

their job. Although the answers to this question are ex-
pected to suffer from systematic mis-reporting the general
pattern is clear. Table 3.1 contains the percentage of
affirmative answers for subsamples according to age and
labour market status. For all categories health problems
increase with age, except for the disabled. Of the group of
disabled aged 58 and older 11% admit that their health
does not seriously impede their ability to work. It there-
fore seems reasonable to expect reporting errors in self-
reported health measures to be a serious problem in
Dutch surveys from the period considered.

MODELLING REPORTING BEHAVIOUR

Inmodelling subjective healthmeasures we will introduce
a latent variable representing the true value of the health
measure. The reported health measure will be denoted by
H� and the corresponding latent true health is denoted by
H*. In the empirical application H� and H* will refer to
an individual’s general health status, such as the answer
to a survey question like ‘How good would you rate your
health? Very good, good, fair, sometimes good/sometimes
bad, or bad’. Rather than onemeasure,H* could refer to a
set of health measures. For ease of exposition we will
restrict ourselves to singlemeasures. Reporting errors will
be analyzed by comparing the subjective health measure
to an objective measure of the same health variable, de-
noted by H�. A physician-diagnosed report would be the
ideal objective measure of a respondent’s general health
condition. However, a professional diagnosis is typically
not available in survey data and we have to rely on other
sources of (more) objective health information.
With respect to a respondent’s general health status a

more objective measuremay be derived from an extensive
questionnaire on various health problems, diseases and
health-related impediments in performing a large number
of everyday activities. One such questionnaire is the Hop-
kins Symptom Checklist (HSCL). A score from that list
will be used in the empirical application in section 6. It
may be argued that this measure will probably still be
subject to systematic mis-reporting, but for our purposes
it is likely to be a sufficiently objective benchmark to
which the all-in answer H� can be compared. If H� also
suffers from state-dependent reporting errors our model
will only provide a lower bound to the extent of mis-
reporting. Alternative ‘objective’ measures that could be
used are observed mortality rates (in a panel) or the
number of visits to a doctor in the previous year. Both of
these measures are clearly objective, but are too specific
to serve as a measure for general healthH*.
The health variablesH� andH*may also refer to more

specific aspects of an individual’s health. For applications

39HEALTH MEASURES AND STATE- DEPENDENT REPORTING ERRORS



in labour supply and retirement models a work-related
measure should be used, denoting the restrictions an
individual perceives in performing his job. As it will be
more difficult to find objective measures that sufficiently
account for an individual’s work conditions, we will as a
first application use the model to analyze a general health
measure. Even then, the objective measure H� may be an
imperfect instrument for H*. For that purpose an addi-
tional set of exogenous variables X

�
is used to describe

H*. Typically, X
�
will contain variables such as age and

education. The role of these variables is to provide com-
plementary information in order to describe H* suffi-
ciently well. If H� and H* are more dissimilar, the role of
the exogenous variables in X

�
becomes more important.

In the model of the general health status, with the HSCL-
score as H�, one may expect a minor role for X

�
.

Modelling work-related health measures the role of X
�
-

variables will gain in importance.
In the introduction two types of endogeneity problems

were mentioned. First of all H* may be related to the
individual’s labour market status S (S� employed, un-
employed, disabled or early retired). This relation can be
a direct causal relationship: health problems caused by
work or inactivity. Alternatively, the relation betweenH*
and S could be indirect — the ‘classical’ endogeneity prob-
lem —when S andH* depend on common unobservables.
One way in which this type of endogeneity emerges is if
one’s health status and one’s career are considered to
result from simultaneous investment decisions regarding
education, work and health. We will refer to this kind of
dependence of H* on S as type I endogeneity. Secondly,
H� and S will be related due to state dependent reporting
errors. This kind of endogeneity will be denoted as type II
endogeneity. In a complete model of retirement decisions
both types of endogeneity have to be modelled explicitly.
In this analysis we are specifically interested in type II
endogeneity. We will therefore make an assumption
about the relationship between H* on the one hand and
H�, X

�
and S on the other. This assumption allows us to

abstract from type I endogeneity.

Assumption 1 the conditional probability distribution of H*
conditional on H�, X

�
and S is independent of S. Denoting

the conditional probability density by pdf(.):

pdf(H* �H�,X
�
, S)�pdf(H* �H�,X

�
).

Essentially this assumption states that the objective
health measure H� — if necessary assisted by the control
variablesX

�
— is a sufficient statistic for the impact of S on

H*. Put differently: type I endogeneity can be ruled out by
conditioning on H� and X

�
. This simply means that,

added to H� and X
�
, S provides no further information

about the latent true health variableH*. Any effect of the
current employment status S on H* (type I endogeneity)
is assumed to be sufficiently captured by the objective
measure H� and additional exogenous variables. As, by
the assumption, pdf(H* �H�,X

�
,S) is identical for all re-

spondents irrespective of their value of S, any effect of S
onH� — controlling for H� andX

�
— represents ‘reporting

behaviour’.
Although we specifically concentrate on the effect of

the labour market status S on reporting behaviour, other
exogenous variables may also affect reporting behaviour.
If a respondent with a university degree states that his
health is ‘good’ he may not mean the same as a non-
skilled respondent filling out the same box. This sort of
differences of expression or languagewill be captured by a
set of exogenous variablesX

�
. These exogenous variables

are assumed to affect H� and not H*. Reformulating the
above assumption accordingly:

pdf(H* �H�,X
�
, S,X

�
)�pdf(H* �H�,X

�
).

We can now specify the model as follows:

H*� f
�
(H�,X

�
, �

�
; �

�
) (3.1)

H�� f
�
(H*,S,X

�
, �

�
; �

�
). (3.2)

The variables �
�
and �

�
are random disturbances, f

�
de-

scribes the relationship between true health and its instru-
ments and f

�
represents reporting behaviour. Bound [7]

and Stern [6] model reporting errors as a relationship
between H� and the wage rate rather than the labour
market status S. In the Netherlands the unemployment
benefits, early retirement income and disability allowan-
ces are closely linked to previous earnings. We assume
that the labour market state S sufficiently describes the
income one receives relative to previous earnings. Only
disability allowances are contingent on the health status.
We may therefore expect the unemployed, early retired
and pensioners to respond in a manner similar to the
employed. This assumption will however not be imposed
in the model we estimate. Rather we will specify separate
functions for each state:

H�� f
���
(H*,X

�
, �

�
; �

�
). (3.3)

In this way we also take account of the fact that financial
motives are not the only cause of reporting biases. Using
S rather than the wage rate allows for these other sources
of state-dependent reporting. Early retired might find it
important to stress that they did not drop out and can
still do the work they used to. They may therefore exag-
gerate their health status. As we do not think that the
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wage rate (capturing the financial motives for systematic
mis-reporting) adds much to the effect of S, we do not
explicitly include it in f

�
. Any role would be as an element

ofX
�
.

The role of exogenous variables in this model triggers
the question whether an exogenous variable such as one’s
gender or level of education should be inX

�
or inX

�
. The

null-hypothesis that education affects true health rather
than reporting behaviour can clearly be tested. The oppo-
site hypothesis that education effects represent reporting
behaviour — people of different education levels speaking
different languages — and not real health differences is
fundamentally untestable as the effect of the variables in
X

�
on H� is more flexible than that of the X

�
-variables.

(Notice that even if no effect of education on H� is found,
it may be that significant health differences are cancelled
out by differences in reporting behaviour.) Determining
the role of the exogenous variables is important when it
comes to correcting for subjective reporting. For that
purposeX

�
-variates have to be treated in a way similar to

S.
If necessary we may for a specific health measure have

to use more than one objective measure or additional
exogenous variables X

�
. If, on the other hand, the objec-

tivemeasure is sufficiently good f
�
could be an identity. In

that case estimation of this model is only of theoretical
interest, as H� could be used in the retirement model
instead of H�. In general this will not be so or we cannot
be sure if it is the case. We will then have to use this model
of individual response behaviour in conjunction with the
retirementmodel or use the responsemodel to correct the
subjective measures.
To correct for state-dependent reporting errors we do

not have to determine who tells the truth and who lies. As
far as our model is concerned everyone lies or rather,
speaks a different language. The only thing we have to do
in order to correct for state dependence effects is to decide
upon a common language for all respondents. It may for
example be that early retirees are overly positive about
their health. Translating the subjective measures of re-
spondents in the other labour market states to the re-
sponse he or she would have given had he been early
retired, cleanses the subjectivemeasure of state dependent
reporting errors. In section 6 we will use the employed as
the reference group. For the exogenous variables in X

�
the health measure can be corrected in a similar way.

DATA

We use data from the first wave of a Dutch panel survey
called CERRA-I (Centre for Economic Research on Re-
tirement and Aging, wave I). The survey was developed

specifically for the analysis of retirement issues. In struc-
ture and content it resembles the Health and Retirement
Survey (HRS) of the Michigan Survey Centre. The data-
set consists of approximately 4700 households in which
the head of the household was between 43 and 63 years of
age. In each household both the head and — if available —
his or her partner were interviewed in October 1993. This
resulted in about 8000 individual records with extensive
information on labour market status, (sources of) income,
labour market history, housing, health status and a var-
iety of socio-economic variables. For the present pur-
poses we excluded the partners and the self-employed,
and focused on breadwinners that are Employed (E),
Unemployed (U), Disabled (D) or Early Retired (ER).
This leaves about 4300 observations. We distinguish be-
tween the four labour market states mentioned, rather
than between workers and non-workers, because we ex-
pect the three non-work states to be very different with
respect to biases in health reporting. A Dutch worker is
eligible for disability benefits if the worker is incapable of
performing any commensurate employment. Hence eligi-
bility of Disability Insurance is contingent upon bad
health. To obtain Unemployment Insurance benefits a
worker has to be involuntary unemployed and must —
prior to the unemployment spell — have been gainfully
employed for at least 39 consecutive weeks. An unem-
ployment benefit can only be received for a limited per-
iod, the length of which depends on the work history.
Eligibility conditions for the Early Retirement schemes
differ among industries, but are in general a function of
tenure and age. In each labour market state, health re-
porting is therefore affected by a different combination of
financial incentives and social pressure. The differences
between these combinations may be used to disentangle
the various sources of reporting errors.
After exclusion of incomplete and inconsistent records

3859 individuals remained for whichwe used the informa-
tion on health to construct various health measures. For
the current analysis we define H� and H� as referring to
general health.H� is defined as the answer to the question:
‘How good would you rate your health? very good (1),
good (2), fair (3), sometimes good sometimes bad (4), bad
(5)’.
The health measure H� is constructed using the Hop-

kins Symptom Checklist (HSCL). The HSCL is a
validated objective test of general health used in the medi-
cal sciences to assess the psychoneurotic and somatic
pathology of patients (respondents). The test, consisting
of 57 items, is known to have an excellent rate of internal
consistency: the test results are highly correlated with
objective medical reports on the patient’s health status.
The answers to these 57 items result in a mental score, a
physical score and a total health score. For the analysis
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we use the score results on total health, ranging from very
good (1) to very bad (7). Crosstabulations of the health
measures controlling for labour market states are given in
Table A1 in the appendix. From this table it can be seen
that for Employed, Unemployed and Early Retired the
bulk of the responses to H� is concentrated in the left tail
of the distribution (low values of H�, denoting good
health), whereas for the Disabled the distribution is
skewed to the right. A similar picture emerges for the
variable H�, the Disabled seem to be less health than
others. On the other hand, a lot of Disabled with low
scores for H� seem to be in bad health according to H�.
Finally the relationship between the two health measures
can be seen to be fairly similar for the Employed, Unem-
ployed and Early Retired.

STATISTICAL MODELS AND EMPIRICAL
IMPLEMENTATION

The health measures H� and H� are categorical variables
defined on different scales. It is therefore a natural choice
to use an ordered response framework. The specification
of f

�
, and f

�
in section 3 will be along the lines of an

ordered probit model, but in order to account for dif-
ferences in response behaviour, the threshold levels are
allowed to depend on S and X

�
. More specifically, the

latent health variable takes on the role of the index vari-
able:

H*� f (H�)�X�
�
� � u, u�N(0, 1). (3.4)

The health responseH� is now defined as

H�� i� c
���

�H*� c
�
, i� 1, . . ., n, (3.5)

where n is the number of answer categories and the
threshold levels c are allowed to be different for different
values of S and X

�
:

c
�
� g

�
(S,X

�
), i� 1, . . .,N� 1, (3.6)

(c
�
��� and c

�
� �). Various specifications of g

�
are

possible. Two specifications proved to be particularly
useful:

g
�
(S,X

�
)� �

���
�X�

�
�
�

and

g
�
(S,X

�
)�X�

�
�
���
.

In the first specification the threshold levels are shifted by

the exogenous variablesX
�
and by S independently. The

second more flexible specification allows the effect of X
�

on the threshold levels to be different for different labour
market states (the first specification is a special case of the
second in which only the intercepts may differ with S). To
limit the number of parameters it may be convenient to
assume �

���
� �

�
. In that case the exogenous variables

shift the threshold levels by the same amount, but the
shifts are allowed to differ over the labour market states.
For the disabled the threshold levels are expected to lie to
the left of those of employed respondents. Individuals
with identical true health H* will in that case respond
with a higher value of H� if they are disabled than if they
are employed.
f (H�) consists of a dummy variable for each level ofH�.

In order to identify the parameters we make the arbitrary
assumption that the parameter of the dummy for ‘H�� 1’
is zero. The usual normalization in ordered probit models
is to set c

�
equal to zero. In this model that would clearly

be too restrictive. As was pointed out in section 3
exogenous variables may play very different roles in this
model depending on whether they are inX

�
or inX

�
. The

X
�
variables are part of the index model (determining the

true health status), but we can rewrite the definition ofH�

as follows:

H�� i� g
���
(S,X

�
)�X�

�
� � f (H�)

� u� g
�
(S,X

�
)�X�

�
�. (3.7)

This formulation makes clear that we can never reject the
hypothesis that an exogenous variable should be in X

�
rather than in X

�
. The opposite hypothesis that an

exogenous variable such as gender does not affect re-
sponse behaviour and only affects the true health status
H* is more restrictive and can be tested. An exogenous
variable that should be in X

�
(and to emphasize the role

of state-dependence we would like this to hold for all
exogenous variables) will, when included in X

�
, shift all

threshold levels in the same way and the effect will be
identical for all labour market states. If one of these
properties fails to hold, the exogenous variable is at least
to some extent responsible for reporting errors.
A related problemwas mentioned byWagstaff and van

Doorslaer [15]. They find significant effects of education
on (reported) health. One would like to know if the ob-
served health differences between subsamples stratified
by the education level may be interpreted as differences in
health rather than differences in language or differences in
perception. In terms of the notation we adopt here one
would like to know whether education is in X

�
or in X

�
.

Wagstaff and van Doorslaer conclude that objective
health measures are called for and this is essentially the
way in which we identify reporting errors in this model. It

42 ECONOMETRIC ANALYSIS OF HEALTH DATA



can always be argued that education affects reporting
behaviour (this hypothesis is not testable), but if the effect
of education is independent of S and identical for each
threshold, the effect on reporting behaviour would be of a
very specific type and the alternative interpretation (edu-
cation having a real effect on health) may be adopted.
The fact that some exogenous variable has to be in X

�
rather than inX

�
may be undesirable or counterintuitive

but it never threatens the heart of our model. This is
different forH�. The role ofH� — be it a single variable or a
vector of health indicators — determines the interpretation
of the index H* as the true value of the health measure.
This variable is therefore firmly positioned in the index-
equation and should not affect the reporting behaviour
(just as S only affects reporting behaviour and not H*).
Like in the case of the exogenous variables, we may
therefore test whether H� should be in X

�
or not. If H�

affects the thresholds differently or interacts with S the
specification of the model is not satisfactory.
Two further comments are in order before we turn to

the estimation results. Firstly, unlike other studies we do
not include replacement ratios and or wages in the set of
exogenous variables. In the Netherlands only the eligibil-
ity conditions of Disability Insurance require poor health.
Hence, for those out of work, financial motives are only
part of the multiple sources of the reporting errors. Fur-
thermore, our model is a partial model, explaining ob-
served responses conditional on labour market state
S � �E,ER,U,D�. Conditional on S, there is no reason to
believe that there exists an independent effect of the re-
placement ratio on the probability to report with error.
Secondly, it may be tempting to include job character-

istics, in the set of exogenous variables. There are reasons
to believe that responses concerning health may typically
depend on the kind of (previous) work. It is however likely
that responses, on (self-reported) job characteristics are
subject to the same biases as the subjective health variable
H�. Non-working respondentsmay be inclined to respond
towards bad job characteristics. As a consequence inclu-
sion of such variables will bias the estimation results.

ESTIMATION RESULTS

The model was estimated by the maximum likelihood
method. The typical likelihood contribution is:

�(g
�
(S,X

�
)� f (H�)�X�

�
�)

��(g
���
(S,X

�
)� f (H�)�X�

�
�), (3.8)

where �(.) is the standard normal distribution function.
Table 3.2 reports estimation results for three model spec-
ifications (absolute t-values are in brackets). The esti-

mates in the first column do not use the latent health
measure (H*� u). Effectively, a separate ordered probit
model was estimated for each of the subsamples, with
S � �E,ER,U,D�. The threshold levels for the disabled are
systematically lower than for the other categories, imply-
ing that the reported health status of the disabled is on
average worse than for the employed, the unemployed
and the early retired. Ranking the other three groups, the
thresholds are lowest for the unemployed, followed by the
employed and the early retired respectively. The differen-
ces between these groups are however much smaller.
From these estimates we cannot deduce whether the

observed differences account for differences in true health
or for different reporting behaviour. For this purpose we
have to introduce H� as a more objective benchmark.
These estimates are in the second column of Table 3.2.
The changes in ĉ

�
result from the shift in the sample

average of H* (due to the normalization restriction that
the parameter for ‘H�� 1’ is equal to zero). Introduction
of H� moves the threshold levels of the four subsamples
closer together, but the disabled are still systematically
more negative in their health evaluation than the others.
The change in the value of the logarithm of the likelihood
indicates that the role of H� in this model is vital. Notice
that theH�-dummies are highly significent and determine
a monotonously increasing relation between H* and H�.
H� was constructed from the Hopkins Symptom Check-
list as a discrete variable with values on a scale from 1 to
7. More flexible transformations of the HSCL-score —
using higher order Legendre polynomials — have been
considered, but these did not significantly improve or
change the estimates.
In the third set of estimates in Table 3.2, age, gender,

education, marital status and religion are included in the
specification of the health index (through X

�
). Only the

education level is statistically significant (and has a very
high t-value). The negative sign of that parameter indi-
cates that more education corresponds to lower values of
H* and therefore a better health. Education is measured
on a scale from 1 to 7. Although this is an awkwardway of
modelling the impact of the level of education, it proved
not to be significantly worse than models in which each
education level had dummies of their own. Moreover, the
estimated parameters in these more flexible models were
very close to the linear specification. Because education is
the prime candidate for inclusion in X

�
, we have chosen

the more restrictive specification in order to keep the
number of parameters manageable. Though not signifi-
cant at the 5% level, the parameter estimates of age and
marital status are substantial. Apparently, one’s general
health condition deteriorateswith age.More surprisingly,
married individuals are ceteris paribus less healthy. The
introduction of the exogenous variables in X

�
alters the
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Table 3.2 Estimation results, exogenous variables in X
�

I II III

H�

1 — — — —
2 0.37 (7.1) 0.38 (7.2)
3 0.66 (12.7) 0.67 (12.6)
4 0.97 (14.6) 0.98 (14.6)
5 1.10 (11.5) 1.09 (11.3)
6 1.32 (16.1) 1.35 (16.0)
7 1.91 (19.4) 1.93 (19.2)

Exogenous variables (�)
age 0.006 (1.6)
female �0.008 (0.1)
education �0.072 (7.7)
married 0.084 (1.4)
religious �0.038 (0.8)

Threshold levels

Employed
c
�

�0.60 (21.9) �0.18 (4.2) �0.05 (0.2)
c
�
� c

�
1.59 (44.7) 1.72 (45.0) 1.74 (41.2)

c
	
� c

�
0.69 (15.8) 0.77 (16.7) 0.78 (16.5)

c


� c

	
0.67 (8.8) 0.75 (8.8) 0.76 (9.0)

Early Retired
c
�

�0.62 (14.3) �0.25 (4.5) �0.05 (0.2)
c
�
� c

�
1.82 (29.0) 1.95 (28.7) 1.96 (25.5)

c
	
� c

�
0.74 (7.1) 0.81 (8.6) 0.82 (8.3)

c


� c

	
0.82 (3.5) 0.93 (3.7) 0.95 (3.7)

Unemployed
c
�

�0.81 (14.3) �0.27 (3.7) �0.10 (0.4)
c
�
� c

�
1.39 (20.5) 1.56 (21.6) 1.58 (20.5)

c
	
� c

�
0.66 (9.8) 0.77 (11.0) 0.78 (11.1)

c


� c

	
0.83 (5.6) 0.95 (7.2) 0.95 (7.2)

Disabled
c
�

�1.84 (19.6) �1.10 (10.5) �0.89 (3.4)
c
�
� c

�
1.36 (14.7) 1.51 (15.0) 1.55 (14.9)

c
	
� c

�
0.79 (18.1) 0.89 (16.8) 0.90 (16.7)

c


� c

	
0.91 (14.9) 1.03 (15.5) 1.04 (15.5)

Log likelihood �4448.99 �4165.57 �4132.25

average value ofH* and the threshold levels shift accord-
ingly. Apart from this shift, the parameter estimates of the
coefficients of H� and the steps between the thresholds
ĉ
�
� ĉ

���
are robust.

The next step is to investigate whether education and
other exogenous variables should be in X

�
rather than

X
�
. The estimates for that more general model are in

Table 3.3. The latent health index is now equal to
f (H�)� u and the exogenous variables are all in X

�
. The

effects of S and X
�
are allowed to interact, but have an

identical effect on each threshold:

g
�
(S,X

�
)� c

���
�X�

�
�
�
.

Estimateswith separate �-vectors for each threshold (�
�
or

�
���
) were very similar to the ones in Table 3.3. The specifi-

cation with �
���
was rejected by a likelihood ratio test. The

estimates of f (H�) are close to those in Table 3.2. The
education variable has a significantly negative parameter
for all four subsamples. The only other significant
exogenous variable is age of the employed: older age
corresponding to more positive health reporting. This
variable may refer to age patterns, but also to a cohort
effect. The likelihood ratio test comparing specification
III in Table 3.2 to the estimates in Table 3.3 is in favour of
the more restrictive specification. The test-statistic is
15.48 whereas the 5% critical value for 15 restrictions
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Table 3.3 Estimation results, exogenous variables in X
�

H�

1 — —
2 0.37 (6.9)
3 0.67 (12.5)
4 0.97 (14.4)
5 1.09 (11.0)
6 1.35 (15.9)
7 1.93 (18.6)

Threshold levels E ER U D

Exogenous variables (�)
age 0.0096 (1.9) 0.021 (1.0) 0.01 (0.8) �0.014 (1.4)
female �0.011 (0.1) 0.34 (1.6) 0.044 (0.2) �0.026 (0.2)
education �0.073 (5.7) �0.047 (2.0) �0.064 (2.3) �0.11 (4.8)
married 0.000 (0.0) 0.059 (0.4) 0.29 (1.6) 0.13 (1.1)
religious �0.049 (0.7) 0.017 (0.2) 0.046 (0.3) �0.10 (1.0)

Intercepts (�
���
)

c
�

0.036 (0.3) 0.96 (0.7) 0.23 (0.4) �2.17 (3.8)
c
�
� c

�
1.74 (40.9) 1.97 (25.4) 1.58 (20.0) 1.58 (14.6)

c
	
� c

�
0.78 (16.2) 0.83 (8.2) 0.77 (10.6) 0.91 (16.7)

c


� c

	
0.76 (8.8) 0.96 (3.7) 0.93 (7.1) 1.05 (14.8)

Log likelihood �4121.825

equals 25.0. The hypothesis that the exogenous variables
should be in X

�
instead of X

�
can therefore not be rejec-

ted. This leaves the labour market status as the only
variable that significantly affects health reporting. This
surprisingly strong result may to some extent be caused
by the particularities of the Dutch DI-system at the time
of the interview. The next wave in the CERRA-panel is
planned for October 1995. Whether the specific circum-
stances of the Dutch DI-system are responsible for the
outcomes will become clear from estimates using those
data. Nevertheless, the idea of financial motives and
strong preferences for leisure as the driving forces behind
state-dependent health reporting originated in the US. It
would be interesting to see whether the model holds out
with data from other countries, the US in particular.
As a final check on the validity of the model, we allow

H� to interact with S. The estimates of this model are in
Table 3.4. The other parameters are hardly affected by
this change and the likelihood ratio tests against the
models in Table 3.3 and Table 3.2 (III) reject the interac-
tion. The LR-statistics are 16.36 and 31.82 with critical
values of 28.9 and more than 43.8 respectively.
Based on the likelihood ratio tests the preferred specifi-

cation is model III of Table 3.2: the model with state-
dependent thresholds and the other exogenous variables
working through the latent health index only. To further
examine the fit of the model an appropriate coefficient of
variation would be useful. McKelvey and Zavoina [16]
proposed an R� for the ordered probit model. This
measure is not suitable for the model in this paper be-

cause the threshold levels depend on exogenous variables,
notably the labour market situation. The goodness of fit
may be judged by comparing likelihood values between
the various specifications. Introduction of the exogenous
variables significantly improved the estimated model.
The corresponding value of the likelihood ratio test is
66.64 with a 5% critical value of 11.07, using the estimates
we can predict the response for each individual. Two such
predictors are the median and mode predictors. The
mode predictor selects the cell with the largest probabil-
ity, while the median predictor sets � equal to zero. Using
either predictor 54.1% of the values of H� are predicted
correctly. For 94.3% of the respondents the median pre-
diction differs at most 1 from the actual response. The
corresponding percentage is 93.0% for the mode pre-
dictor. Percentages as high as these are common in
models for polychotomous variables in which the re-
sponse frequencies are unevenly distributed. In such a
situation the frequency distribution of predicted re-
sponses is typically much more centred than the distribu-
tion of actual responses. Point predictions do little justice
to the probabilistic nature of the ordered response model.
In fact, an ordered response model defines for each indi-
vidual the probability that a specific response will be
given. Averaging these estimated probabilities over sub-
samples, we are able to see whether the model can repro-
duce the conditional sample distributions of the re-
sponses. The results for subsamples based on a respon-
dent’s labour market situation are depicted in Figure 3.1.
The diagram shows for each subsample and for each
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Table 3.4 Estimation results,H� and the exogenous variables in X� (H*� 0)

Threshold levels E ER U D

H�

1 — — — — — — — —
2 0.34 (4.9) 0.27 (2.4) 0.55 (3.5) 0.60 (3.0)
3 0.66 (9.3) 0.58 (4.9) 0.89 (5.7) 0.73 (4.1)
4 1.02 (10.5) 0.69 (3.7) 1.17 (6.7) 1.03 (5.5)
5 1.11 (7.5) 0.76 (2.8) 1.38 (5.4) 1.15 (5.2)
6 1.38 (9.8) 1.36 (4.3) 1.85 (8.0) 1.28 (6.8)
7 2.06 (9.7) 2.27 (5.4) 2.24 (9.2) 1.85 (9.2)

Exogenous variables (�)
age 0.0096 (1.9) 0.024 (1.2) 0.012 (1.1) �0.015 (1.6)
female �0.015 (0.1) 0.94 (1.8) 0.037 (0.2) �0.014 (0.1)
education �0.073 (5.6) �0.046 (2.8) �0.060 (2.2) �0.11 (4.7)
married 0.003 (0.0) 0.070 (0.4) 0.33 (1.8) 0.113 (0.9)
religious �0.046 (0.6) 0.022 (0.2) 0.048 (0.3) �0.089 (0.8)

Intercepts (�
���
)

c
�

0.033 (0.1) 1.04 (0.8) 0.58 (0.9) �2.17 (3.7)
c
�
� c

�
1.75 (40.2) 1.95 (24.8) 1.63 (19.4) 1.57 (14.6)

c
	
� c

�
0.79 (16.2) 0.83 (8.2) 0.79 (10.4) 0.90 (16.6)

c


� c

	
0.76 (8.8) 1.00 (3.7) 0.95 (7.1) 1.03 (15.1)

Log likelihood �4114.08

response category a cluster of 2 or 3 bars. The first of these
corresponds to the sample distribution of the actual re-
sponses H�. The second bars stand for the average pre-
dicted probabilities mentioned above. The predicted and
actual sample distributions are very similar and show no
evidence of misspecification.
The estimates in Table 3.2 (III) are used to compute so

called cleansed health-measures. For each individual we
have computed what their response would have been had
they been employed. This counterfactual simulation is
performed to gain more insight into the relative import-
ance of state-dependent reporting errors. The predictions
are conditional on the exogenous variables, as well as on
the value of H�. For employed — being the reference
category — the cleansed measure is identical to the actual
response. For the other three subsamples the frequency
distributions of the cleansed measures are represented by
the third bar in each cluster in Figure 3.1. In order to
compute the cleansed measures one may again use point
predictions or predicted response probabilities. The per-
centages used in Figure 3.1 (b) to (d) are computed as
average predicted probabilities. Roughly speaking, the
early retirees would be somewhat more negative about
their health, while unemployed would become more posi-
tive in their health reporting. The differences are small
however. Especially when compared to the results for the
disabled. Controlling for the effect of the labour market
status on reporting behaviour, the frequency distribution
of the responses of the disabled would severely shift to the

left. Although the resulting distribution still shows that
disabled are less healthy than other respondents, the rela-
tive frequencies in categories 3, 4 and 5 fall considerably,
leading to a sharp increase of the probability ofH�� 1 or
2. Of the disabled respondents rating their health as ‘bad’
(H�� 5) only one third would give the same answer if
theywould have been employed, other things being equal.

CONCLUDING REMARKS

The estimation results in the previous section bear strong
evidence of the presence of state-dependent reporting
errors. While other exogenous variables are not found to
have a statistically significant mis-reporting effect, the
labour market status —mainly the disabled relative to the
other categories — has a significant and robust effect on
reported health measures. Relative to a (more) objective
health measure this effect prevails, whereas no significant
difference between the reporting behaviour of employed,
unemployed and early retired respondents is found. If the
more objective measure is subject to the same type of
systematic reporting errors, the reporting errors found in
our estimates provide a lower bound of the actual extent
of mis-reporting. In contrast to this finding, the other
exogenous variables do not have a significant effect on
reporting behaviour. The only exogenous variable that
significantly effects reported health measure is the level of
education. The hypothesis that this effect is a real health
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Figure 3.1. Frequency distributions of reported, predicted and cleansed health measures for each labour market state

effect and does not reflect differences in perception or
language cannot be rejected.
Although the results from this analysis are more satis-

factory than could be expected, the analysis in this paper
remains a first attempt. The motivation for this analysis
was the use of health measures in retirement and labour
supply models. For those models more specific health
measures have to be used. These kind of work-related
healthmeasures will be subject to reporting errors similar
to those investigated in this paper, but objectivemeasures
will be more difficult to find. This entails a stronger role
for additional control variables (X

�
). First applications of

the model to work-related health measures confirm the
results of this paper. The exogenous variables in X

�
gain

in importance, but the labour market status is the only
significant variable related to reporting errors.
Apart from these applications the model has to be

applied to data from different countries to see if the strong

evidence of state dependent health reporting only holds
for the Dutch data and the period of time considered in
this analysis. Apart from this, the use of alternative objec-
tive health measures and control variables has to be
investigated. Another subject for further study is the
stochastic specification of the model. Although the results
in this paper provide no reason to suspect specification
problems, in the application to more specific health
measure it is expected that heteroskedasticity may be-
come important. The same holds for the assumed linear
dependence of H* on the exogenous variables. More
rigorously, semi-parametric estimation techniques pro-
vide an alternative to maximum likelihood estimation.
One alternative approach would be to extend the maxi-
mum score estimator to the ordered probit model with
variable thresholds that was used in this paper.
Finally, the model should be used for what it was

meant to do: correct for state dependent reporting errors.
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Table A3.1 Cross-tabulations of the health measures controlling for labour-market state

Employed Early retired

H� H�

H� 1 2 3 4 5 H� 1 2 3 4 5

1 225 305 21 2 1 1 82 132 7 2 0
2 167 335 47 9 3 2 57 123 15 4 0
3 116 305 71 29 4 3 31 124 19 4 1
4 25 97 48 10 3 4 9 26 11 1 0
5 6 37 13 9 0 5 3 12 2 2 0
6 6 32 17 12 3 6 1 6 5 1 0
7 0 8 11 4 5 7 0 2 2 2 1

Total 545 1119 228 75 19 Total 183 425 61 16 2

Unemployed Disabled

H� H�

H� 1 2 3 4 5 H� 1 2 3 4 5

1 44 49 4 2 0 1 7 30 8 4 1
2 25 70 14 4 0 2 5 27 28 14 4
3 25 68 28 5 4 3 4 60 63 32 8
4 8 50 15 11 1 4 4 28 39 36 11
5 2 12 7 3 1 5 0 12 18 13 6
6 2 9 9 11 1 6 1 27 35 43 15
7 1 4 12 10 3 7 1 8 16 36 28

Total 107 262 89 46 10 Total 22 192 207 178 73

One way would be to generate cleansed health measures.
The application of those measures is not straightforward
as the imputation of cleansed measures will lead to errors
in variables biases. It would therefore be interesting to
investigate whether the model of reporting behaviour can
be estimated simultaneously with a model of retirement
or labour supply decisions.
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APPENDIX

Definition of variables

Age Age of the respondent (January 1993)
Female Gender dummy, equals 1 if female
Education 1 Lower general

2 Lower vocational
3 Medium general
4 Medium vocational
5 Higher general
6 Higher vocational
7 Academic

Married Dummy for marital status equals 1 if
married or living together

Religious Dummy, equals 1 if respondent attends
the church at least once a week

H� Responses to question ‘How good would
you rate your health?’
1 Very good
2 Good
3 Fair
4 Sometimes good sometimes bad
5 Bad
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H� Hopkins symptom Checklist (HSCL)
score
1 Very good
2 Good
3 Above average
4 Average
5 Below average
6 Bad
7 Very bad
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The Effect of Smoking on Health Using a
Sequential Self-selection Model
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INTRODUCTION

Ever since a causal relationship between cigarette smok-
ing and coronary heart disease was reported at the Mayo
Clinic in 1940, the effect of cigarette smoking on health
has been extensively studied by both epidemiologists and
social scientists. Now cigarette smoking is considered to
be the number one source of preventable morbidity and
premature mortality in the United States (see [1]). Since
the 1960s, various public policy efforts have been devoted
to reducing the prevalence of cigarette smoking. Still over
25% of the population, or nearly 46.3 million adults in the
US and many more around the world smoke on a regular
basis [2].

There have been two approaches to reducing the
prevalence of cigarette smoking: discouraging non-
smokers from initiating, and encouraging smokers to
quit. Even though smoking prevalence has steadily de-
creased since the 1960s, this decrease has been due to
more people quitting but not due to fewer people initiat-
ing [2]. Hence, a comprehensive model of smoking par-
ticipation that considers both initiation and cessation
behaviour and their health effects is essential for develop-
ing an effective public policy approach to reducing the
prevalence of smoking, and in estimating the proper hu-
man costs of cigarette smoking.

Unlike the consumption of a normal good, consump-
tion of cigarettes increases not only the immediate satis-
faction for smokers but also the probability of adverse
health effects in the future, neither of which are directly
observable. Hence, the subjective judgement on the costs
and benefits of cigarette smoking plays a crucial role in
smoking participation decisions. This subjective judge-
ment depends largely on the assessment of the probability

of the occurrence of side effects and the time preference
between the immediate benefits and the future side effects
of smoking.

An important factor affecting the initial smoking deci-
sion is an individual’s prior belief on risks and benefits
from smoking, which could depend on his demographic
and other socio-economic characteristics. Those who de-
cide to smoke gather additional information through
their experience of smoking, and update their prior be-
liefs. Based on the updated belief, a decision of continu-
ation or cessation is made. Therefore, individual risk
assessment of cigarette smoking takes a critical role in
each phase of the smoking cycle. Viscusi [3] studied
individual risk perception and smoking decision by ques-
tioning whether smokers are risk cognizants, and whether
the risk perception is reflected in smokers’ behaviour.
Viscusi [3] finds that the risk perception by the young is
quite high, but it has no significant influence on their
initiation behaviour.

Recently, the participation behaviours of smokers has
been empirically examined by Jones [4,5] and Hsieh et al.
[6]. In these studies, the role of health condition, health
knowledge, social interaction, and other demographic
characteristics are explored. There is another group of
studies that examines the various human costs of smok-
ing, such as health conditions, medical expenditures, and
other economic consequences. Miller et al. [7] estimates
medical care expenditures attributable to cigarette smok-
ing. Mattson et al. [8] calculate the long-term risk of
death contributed by individual smoking status for vari-
ous age groups. The later group of studies, however, treat
smoking status as exogenous, disregarding the dynamic
interaction between individuals’ health conditions and
their smoking behaviour.
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In this paper, we study the participation behaviour of
smokers, both initiation and cessation, and integrate
them into a model of health consequences of smoking. We
examine the possibility of the presence of any un-
measured heterogeneity bias in the probability distribu-
tions of smoking-related diseases for different smoking
groups, and we study whether the observed proportions
of smoking-related diseases in the sample correctly repre-
sent the risk factor associated with a particular smoking
behaviour. The second issue we examine is whether the
individual smoking choices are made in a way that is
consistent with economic optimality. The rational addic-
tion approach of cigarette smoking behaviour considers
smoking choice as the outcome of individual utility maxi-
mization under uncertainty (see [9,10]). Even though
there are several empirical studies on the rational addic-
tion model, they tend to focus on the role of price on the
demand for addictive goods without considering the role
of implicit health cost.

This paper is organized as follows. In ‘The Economet-
ric Model’ and ‘Data and Empirical Specifications’, we
develop a sequential selection model of smoking behav-
iour based on a typical smoking cycle. ‘Empirical Strat-
egy’ and ‘Empirical Estimates’ describe our data and the
econometric strategy and presents and discusses empiri-
cal findings, respectively, and the paper ends with ‘Con-
clusions’.

THE ECONOMETRIC MODEL

The smoking participation decisions, both initiation and
cessation, are modelled as outcomes of utility maximiza-
tion under uncertain occurrence of smoking-related dis-
eases (SRDs) using a random utility model. Our model is
based on the following fundamental premise: the baseline
(autonomous) and induced risk factors of cigarette smok-
ing are not always equal for all individuals, and that each
individual possesses a subjective prior belief concerning
the probability of occurrence of SRDs associated with
each smoking choice, and this belief is updated using the
information gained through the smoking experience and
the realization of changes in his/her health condition.

Consider a simple two-period model with a time-separ-
able indirect utility function. A rational individual lives
two periods indexed by t� 1, 2. At the beginning of each
period, individual i faces a decision to make a choice
between two alternatives: to not smoke or to smoke,
indexed by j� 0, 1 based on his own subjective judge-
ment of the costs and the benefits of the alternatives. The
length of each period varies across individuals. Let there
be two discrete states of health condition, good and bad,
indexed by l� 1, 2. The bad-health state indicates the

presence of any undesirable health condition, caused by
factors including smoking.

Individual i possesses a prior belief on the probability
of the occurrence of each health state for a given smoking
status. This probability is optimally updated each period.
Let P

��
be the individual’s subjective probability for lth

health state when the smoking status is j. There are four
possible states (S

��
) of the world an individual could be

falling into. Further let U�
���

be an unobservable indirect
utility of individual i choosing alternative j at period t
when his/her health condition is l. Then the expected
utility of each choice for each period t can be expressed as
the sum of the utilities in each health state weighted by its
probability:

EU�
��
�

�
�
���

P�
���
U�

���
(4.1)

At the beginning of each period, an individual chooses
alternative j over j� if and only if E

�
U

��
�E

�
U

���
. The

discounted sum of expected utilities for the two periods
realized at the beginning of period � is:

E�U��
�

�
�
���

����
�

�
�
���

P�
���
U�

���
(4.2)

where �
�

is an individual-specific time preference par-
ameter.

The initiation decision rule at the beginning of period 1
is governed by the sign of I*

��
�E

�
U

��
�E

�
U

��
. Once an

individual starts to smoke then another subsequent deci-
sion rule can be defined in a similar way. The cessation
decision rule for the second period is governed by the sign
of I*

��
�E

�
U

��
�E

�
U

��
. Thus, the selection criteria are:

Pr(choose to start smoking)� Pr(I*
��

� 0)

Pr(choose not to start) � Pr(I*
��

� 0)

Pr(choose to continue) � Pr(I*
��

� 0, I*
��

� 0)

Pr(choose to quit)� Pr(I*
��

� 0, I*
��

� 0)

I*
��

and I*
��

can be interpreted as present values of ‘net’
utilities at the time of initiation and cessation. They are
not observable; we observe only their binary outcomes,
I
��

and I
��

. There are three mutually exclusive outcomes
of the selection process:

Group I (nonsmoker, I
��

): I
��

� 0

Group II (ex-smoker, I
��

): I
��

� 1 and I
��

� 0

Group III (current smoker, I
��

):

I
��

� 1 and I
��

� 1
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The two selection equations are parameterized as:

I*
��

�Z
��
�
�
	 W

���
�
�
	 �

��

I*
��

�Z
��
�
�
	 W

���
�
�
	H

��
�
�
	 �

��
(4.3)

where (Z
��

,Z
��

) are individual characteristics and
(W

���
, W

���
) are the characteristics of the alternatives spe-

cific to the individual. The updated probability assess-
ment at the beginning of the second period depends on
the realization of a change in health conditions (H

��
)

which may or may not be related to the smoking status in
period 1, individual characteristics (Z

�
), and characteris-

tics of the alternatives specific to the individual (W
��
).

Finally, we specify an equation for the appropriate
response variable for measuring the effect of the initiation
and the cessation decisions. Since smoking participation
decisions heavily influence the probability of SRDs such
as lung diseases and various types of cancer, presence of
any SRDs is the most appropriate and direct outcome
variable for our purpose. Further, we will specify one
equation for each smoking group in order to capture the
full interactions among them (see [11]). The equations
are:

Y*
��

�X
��
�
�
	 �

��
: nonsmokers’ disease equation

Y*
��

�X
��
�
�
	 �

��
: ex-smokers’ disease equation

Y*
��
�X

��
�
�
	 �

��
: current smokers’ disease equation (4.4)

In Equations 4.3 and 4.4,Z
��

and W
���

areN�K
�

and
N�K

�
vectors of explanatory variables; �

�
and �

�
are

K
�
� 1 and K

�
� 1 vectors of unknown coefficients; Z
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,

W
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and H
��

are N
�
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� 1 vector of unknown coefficients; I*
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��
, Y*
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, Y*

��
and Y*
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are N� 1, N
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� 1 and N
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unobservable latent indices; N�N
�
	N



	N

�
and

N
�
�N



	N

�
. We observe binary outcomes Y

��
, Y

��
, Y

��
,

I
�

and I
�
.

This completes our econometric model as a set of
switching regressions with sequential self-selection rules.
In the remainder of this paper, subscript i is omitted to
avoid notational complexity. Also new variables C

�
and

C
�

will represent the independent variables in the first
and the second selection equations in Equation 4.3 with
coefficients �

�
and �

�
.

I*
�
�C

�
�
�
	 �

�
: initiation selection equation

I*
�
�C

�
�
�
	 �

�
: cessation selection equation

(observed, iff I
�
� 1)

Y*
�
�X�

�
	 �

�
: nonsmoker’s disease equation

(observed, iff I
�
� 0)

Y*
�
�X�

�
	 �

�
: ex-smoker’s disease equation

(observed, iff I
�
� 1, I

�
� 0)

Y*
�
�X�

�
	 �

�
: current smoker’s disease equation

(observed, iff I
�
� 1, I

�
� 1)

The two sequential self-selection rules sort people into
observed classes according to the expected present value
of indirect utility. Hence, the presence of SRDs actually
observed in each group are not random outcomes in the
population, but instead are self-censored nonrandom
samples. The initiation decision equation is defined over
the entire population, but the cessation decision equation
is defined only over the subset of observations for those
who have started to smoke.

DATA AND EMPIRICAL SPECIFICATIONS

We use data from Health and Retirement Study (HRS)
Wave I which was released in May 1995. The HRS is a
national longitudinal study on health, retirement, and
economic status focusing on individuals both between
1931 and 1941. A total of 12 652 individuals were inter-
viewed during 1993, among these 2372 are single respon-
dents and 5234 are paired (married or partnered) respon-
dents. Their ages vary from 23 to 85 as of 1993. Mean age
in the total sample is 55.6 and standard deviation is 5.66.
Out of 12 652 individuals, 4626 are nonsmokers, 4588 are
ex-smokers, and 3438 are current smokers.

The main advantage of this data set for our purpose is
that the sample consists mainly of individuals in their 50s.
The role of learning and regret throughout one’s smoking
cycle and the effects of smoking on health can be more
fully observed in this data set because most smokers
initiate smoking when they are relatively young. The
HRS also provides complete classification of individuals’
smoking status as nonsmoker, ex-smoker, and current
smoker. Further, HRS has extraordinary information on
current health conditions, health history, and various
socio-economic factors. As a result, we are able to investi-
gate the long-term health effects of 30—40 years of smok-
ing.

To take full advantage of the data set for our purpose,
we consider only individuals in the age group 52 and
over.� We also drop those individuals who had quit
smoking after they were diagnosed with various types of
cancers and other smoking-related diseases to control for
obvious endogeneity. As a result of these, our final sample
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for empirical analysis consists of 9109 individuals; among
them 3287, 3368 and 2454 are nonsmokers, ex-smokers,
and current smokers, respectively.�

The HRS data provides information that separate
never smokers from ever smokers, and ever smokers are
further subdivided into ex-smokers and current smokers.
Technically, nonsmokers in HRS are defined as those
individuals who smoked fewer than 100 cigarettes in his/
her entire life time. Even though we observe complete
outcomes of the two participation decisions, estimation of
these equations based on a single cross-sectional data set
requires careful thoughts. Fortunately, the data contain
large amounts of information on current as well as his-
torical health, socio-economic, and demographic factors.
Our variables are categorized as pure demographic, so-
cial status, economic status, family life, current health
condition and history, risk-taking behaviour, smoking
related, and employment related variables. Some of these
variables represent time invariant individual characteris-
tics, such as sex, race, place of birth, and parents’ educa-
tion. We also include some other variables which are
assumed to capture individuals’ characteristics when they
were young such as religion, tidiness, smoking status of
the spouse, and occupation. This inclusion is particularly
useful for our empirical model specification because our
model contains two decisions that were possibly made
many years ago.

We select the explanatory variables for each equation
based on previous empirical specifications, theory, and
data availability. From an economics standpoint, the
individual’s risk belief is assumed to have an important
influence on the smoking behaviour. Barsky et al. [12]
show that individual risk tolerance measured by HRS
data is positively related to risk-taking behaviour in
smoking and drinking. Their estimated preference par-
ameters are related to the behaviour of individuals, and
their risk tolerance estimates make prediction of smoking
behaviour at least qualitatively correct. Viscusi [13,14]
found some evidence that an individual’s smoking deci-
sion responds to his/her risk perception. Differences in
smoking behaviour among different demographic groups
are reported in various studies. The Surgeon Generals’
report of 1985 noted differences in smoking behaviour,
both initiation and cessation, between white-collar and
blue-collar workers. Breslau and Peterson [15,16] re-
ported that smoking cessation varies by sex, race, educa-
tion, and number of cigarettes smoked daily. They also
found that smoking and drinking habits are correlated.
The prevalence of alcohol abuse or dependence was sig-
nificantly higher in smokers than nonsmokers. For the
three SRD equations, we include occupation, smoking,
nutrition, demographic, socio-economic, and general
health-related variables. To control further for individual

heterogeneity, we include variables related to occupation,
occupational hazards, fundamental health condition in-
dicators, socioeconomic status, life-styles, and insurance
status.

Our key dependent variable is the presence of one of
the SRDs, which include various lung diseases and types
of cancers that are directly related to smoking such as
cancer of the abdomen, mouth, bladder, neck, nose, pan-
creas, brain, bronchia, cervix, oesophagus, stomach,
throat, tongue, kidney, liver, and lung. Selection of such
cancers is based on reports of the Surgeon General in
1982, 1983, and 1984 on the health consequences of smok-
ing and on various medical and public health literature
such as Bartecchi et al. [1], Mattson et al. [8], Yuan et al.
[17] and Fielding [18]. Thus, our definition of SRD is
very broad, giving us a reasonable sample size of people
having SRDs. Detailed definitions of variables are shown
in Appendix A and descriptive statistics by smoking
status for some key variables are summarized in Table
4.1.

EMPIRICAL STRATEGY

Our empirical strategy is to estimate the model first by a
two-step probit method using the Heckman—Lee two-
step method and to use the two-step estimates as starting
values for full information maximum likelihood (FIML)
estimation. The conditional expectations of the depend-
ent variables using the properties of truncated normal
density functions are:
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Table 4.1 Descriptive statistics for selected variables

Whole sample Nonsmoker Ex-smoker Current smoker
Variables mean mean mean mean

AGE 1.0000 0.9967 1.0088 0.9922
ALCHOLIC 0.0543 0.0179 0.0537 0.1039
ARTHRTS 0.3974 0.3836 0.4041 0.4067
BADFIN 0.2244 0.1926 0.1900 0.3142
BLOODPRS 0.4062 0.4061 0.4353 0.3663
BMI 1.0000 1.0116 1.0189 0.9586
CATHOLIC 0.2734 0.2616 0.2892 0.2673
CHOLSTRL 0.2401 0.2443 0.2553 0.2135
DIABTS 0.1123 0.1071 0.1232 0.1043
DISEASE 0.0974 0.0542 0.0941 0.1597
EVDRINK 0.6078 0.5196 0.6660 0.6459
EXDRINK 0.2031 0.0904 0.2524 0.2865
EXER 0.2098 0.2212 0.2432 0.1487
FEDINS 0.1671 0.1263 0.1859 0.1960
FINJOB 0.0520 0.0593 0.0454 0.0513
FORNBORN 0.0973 0.1238 0.0900 0.0717
GOODFAM 0.2211 0.2379 0.2396 0.1732
HAZWORK 0.2040 0.1552 0.2224 0.2441
HELTHINS 0.8572 0.8598 0.8893 0.8097
INVEST 0.6253 0.6660 0.6758 0.5016
IRA 0.4197 0.4551 0.4822 0.2865
JOGAMILE 0.1447 0.1618 0.1571 0.1047
LIFEINS 0.7098 0.6988 0.7527 0.6659
MALE 0.5003 0.3614 0.6161 0.5273
MARIDIST 0.5405 0.6109 0.5621 0.4165
MARIED 0.7508 0.7682 0.7975 0.6634
MILIT 0.2956 0.1935 0.3833 0.3121
MYOPIC 0.1829 0.1682 0.1609 0.2327
NETWORTH 1.0000 1.1744 1.0607 0.6834
NEVERW 0.0349 0.0554 0.0187 0.0297
PAREDU 0.2999 0.2823 0.3141 0.3040
RACEB 0.1634 0.1667 0.1443 0.1850
RACEW 0.7254 0.7037 0.7548 0.7143
RELIGS 0.5256 0.6413 0.5220 0.3757
RISKAVER 0.8717 0.8862 0.8735 0.8496
SALESJOB 0.1547 0.1363 0.1485 0.1879
SCHLYRS 1.0000 1.0202 1.0171 0.9494
SERVJOB 0.0924 0.0931 0.0852 0.1015
SPOSENSM 0.5117 0.5634 0.4840 0.4804
SPOSEXSM 0.2855 0.2778 0.3480 0.1968
TECHJOB 0.1277 0.1451 0.1455 0.0799
WESTB 0.0784 0.0803 0.0808 0.0725
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(·) are the standard g-variate normal distribu-

tion and density function, respectively.
Thus, we can rewrite the equations with new error

terms which have zero conditional means:
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Under the normality assumption, each of the above
equations can be estimated sequentially by five separate
probit regressions with the appropriate Heckman—Lee
corrections as specified in Equation 4.5. Note that the
error terms e

�
, e

�
, e

�
and e

�
are heteroskedastic by con-

struction, and if there are overlapping variables in the
selection and disease equations, the problem of significant
multicollinearity may result in the structural equations.

ENDOGENEITY OF SOME HEALTH VARIABLE

A recent debate between Jones [4,5], and Shmueli [19]
deals with the issue of endogeneity of health variables in
the cessation decision equation. The health variables in-
cluded in our equations are based more objectively on
physical activity limitations and health history, which are
expected to develop independent of smoking.

Blundell and Smith [20] provide a simple way to test
for endogeneity by a two-stage approach. The first stage
is to regress the suspicious variables on exogenous vari-
ables. The second step is to estimate the original probit
equation with the residuals from stage 1 as additional
regressors and to jointly test the hypothesis that coeffi-

cients of the residuals are zeros. Since our suspicious
health variables are binary, we generated probit general-
ized residuals (see [21,22]). The probit generalized resid-
uals for a model Y*

�
�X

�
�
�
	 �

�
are given by:
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We tested the endogeneity of EXER (exercises regularly),
JOGAMILE (can jog a mile with no difficulty),
BLOODPRS (blood pressure), CHOLSTRL (choles-
terol), ARTHRTS (arthritis), and DIABTS (diabetes) in
the cessation decision and BLOODPRS, CHOLSTRL,
ARTHRTS, and DIABTS in the switching disease equa-
tions.� The �� statistics for the null hypotheses that these
additional coefficients are zero for cessation, non-
smokers’, ex-smokers’ and current smokers’ equations are
obtained as 6.585 (df� 6), 3.474 (df � 4), 3.232 (df � 4)
and 3.123 (df � 4), respectively. These are not statistically
significant at the 5% level of significance. Our specifica-
tions originally included a few other health variables, but
we dropped them because they did not pass the en-
dogeneity test.� These variables were replaced by the
instruments used to test for their endogeneity, whenever
they were statistically significant. Thus, we interpret our
disease equations as purely reduced form specifications.

HETEROSKEDASTICITY

We examine the presence of heteroskedasticity using the
following formulation [23]:

Var(�
�
) �	�

�
� [exp(V

�

)]�

Y*
�
�X

�
� 	 �

�
(4.7)

where V
�

is 1 � p vector of observations on a subset of
variables, and � is a vector of corresponding parameters.
Then log of likelihood function is:
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Once this likelihood function is maximized, we can
easily check for heteroskedasticity by the likelihood ratio
test because 
� 0 implies homoskedasticity. Further, we
can identify the special structure of heteroskedasticity
and are able to correct it by feasible GLS [24]. The results
indicated that significant heteroskedasticity exists in all
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our equations at the 5% level. As a result, we specified our
equations after allowing for heteroskedasticity:
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and Vs are the variables which condition heteroskedastic-
ity for each equation. �*s are defined in the same way as
in Equation (5) with Gs replaced by Ds.

NORMALITY TESTS

Pagan and Vella [25] derived a normality test for the
tobit model with selectivity that can be directly applied to
our probit model with selectivity. Since our cessation and
nonsmokers’ disease equations involve a single selection,
we can apply the test developed by Pagan and Vella with
minor modifications. However, we want to estimate our
structural model by FIML, which requires evaluation of
trivariate CDFs. As a result, we use the normality test
based on Edgeworth expansion of CDF suggested by Lee
[26], generalized to the trivariate case by Lahiri and Song
[27]. Here we test for the bivariate normality of (�

�
, �

�
)

and the trivariate normality of (�
�
, �

�
, �

�
) and (�

�
, �

�
, �

�
).

The �� statistics were calculated as 12.97 (df � 9), 27.42
(df� 25), 31.64 (df � 25), respectively. Since these values
are less than the critical �� values at the 5% level of
significance, we did not reject the multivariate normality
assumption in our context. We should point out that
without the heteroskedasticity correction, the normality
assumption would have been resoundingly rejected in our
sample (see [27]).

FULL INFORMATION MAXIMUM LIKELIHOOD
ESTIMATION

The inefficiency of the two-step method relative to maxi-
mum likelihood has been critically examined by Nelson
[28], who suggested the more difficult MLE. The poor
performance of Heckman—Lee two-step method is also
reported in Nawata and Nagase [29] and Stolzenberg
and Relles [30]. Their results, based on Monte Carlo and
empirical examples, suggest that the two-step method
may not be a dependable estimator when there is strong
multicollinearity between independent variables (X) and
selectivity correction terms (�s). If there are no overlap-
ping variables in the selection and the outcome regression
equations, then the multicollinearity may not be very
high. Since we have overlapping variables, especially in
the second selection equation, we can not rule out the
possibility of significant multicollinearity. As a result, it is
advisable to estimate the model by FIML for correct
inferences (see [31] for further discussion).

The log of likelihood function for the model Equation
4.9 is:
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where �
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variate and trivariate densities, respectively. The par-
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the likelihood function. It is well known that 	
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��

are not identified because the likelihood function does
not depend on these parameters (for further discussion on
this issue see [32]). Another parameter, 	

��
, is also not

identified because the second selection equation is irrel-
evant for the nonsmoker group, and, hence, it is not in the
likelihood function. This is because our two selection
equations classify the sample not into four categories but
into three categories. Hence, an additional restriction
(	

��
� 0) on the variance covariance matrix is required

for identification. The rest of the parameters — (K
�
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) 	 6 	 (K
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) 	 7 	 3K
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gression coefficients �
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plus six elements of the covariance matrix 	
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,
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and 	
��
— are identifiable. It is well known that

the likelihood function of the multivariate probit model is
not globally concave, unlike that of the univariate probit
model. The complexity of the likelihood function makes
the FIML estimation difficult, and there is no ready-made
guarantee that one has reached the global maximum.

We estimate the model by FIML with starting values
from the Heckman—Lee two-step method with pre-tested
forms of heteroskedasticity using GAUSS (version 3.2.4).
FIML has seldom been used to estimate switching re-
gression models with double selection because of com-
putational difficulty. One useful tip to save a significant
amount of computing time is to arrange the data by each
of the six non-overlapping groups and maximize a form of
the log of likelihood function given in Equation 4.11
rather than Equation 4.10:
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If one wishes to maximize the likelihood function as

written in Equation 4.11, GAUSS will evaluate two bi-
variate normal CDFs and four trivariate normal CDFs
for each observation. In our estimation, we have saved
more than three quarters of the computing time by maxi-
mizing (4.7). We also found that a ‘good’ starting value is
critical to achieving smooth convergence. Further, we
normalized all continuous variables by their means to
prevent any possible interruption during the maximiza-
tion of the likelihood function. We use the Berndt—
Hall—Hall—Hausman (BHHH) algorithm for the FIML
estimation and it took 29 iterations (with running time
approximately 673 minutes in a 400 Hertz (Htz) PC) to
converge with a pre-set tolerance level of 0.00001.� The
variance—covariance matrix of the estimated structural
parameters is obtained from the final information matrix
on convergence. Interestingly, the estimates from the two-
stage method and the FIML were very close except for
the selectivity correction terms.�

EMPIRICAL ESTIMATES

SELECTION EQUATIONS

Table 4.2 presents heteroskedasticity corrected two-step
and FIML estimates of the first selection equation to-
gether with marginal effects and odd ratios associated
with different explanatory variables. To check for good-
ness-of-fit we compute various measures of pseudo R�.
Among those McKelvey and Zavonia’sR� is 0.23, and the
correct prediction rate is about 70%.

The initiation decision varies by different demographic
characteristics; males tends to initiate more often than
females. Participation in regular religious services (RE-
LIGS), having a stable marriage life (MARIDIST), and
having a nonsmoking spouse (SPOUSNSM) have high
negative correlation with initiation. Individual drinking
behaviour (EVDRINK, EXDRINK) has a significant
positive effect. We also find that the propensity to initiate
varies across different ethnic groups and education levels.
SCHLYRS (school years) has a significant nonlinear ef-
fect on the initiation decision.

The variables RISKAVER, MYOPIC, and INVEST
represent individuals’ attitudes toward risk and play a
major role in initiation. The variable RISKAVER repre-
sents individual risk aversion and MYOPIC represents
an aspect of individual’s time preference. For example, the
individual with MYOPIC� 1 may be considered as a
short-sighted individual who tends to prefer the immedi-
ate benefits of smoking over the future costs of health
deterioration. These risk variables, which we can take to
be largely time-invariant, turned out to have substantive
impact on the initiation decision; odd ratios and marginal
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Table 4.2 Estimates for the initiation equation

SE Odds Marginal
Variable Two-step FIML (FIML) ratio effect

Constant 0.8821 0.8964 0.1599 2.4508 0.3091
MALE 0.4142 0.4173 0.0451 1.5179 0.1452
RACEW 0.0871 0.0835 0.0559 1.0871 0.0305
RACEB 0.1053 0.1101 0.0754 1.1164 0.0369
FORNBORN �0.2378 �0.2483 0.0591 0.7801 �0.0833
WESTB �0.1118 �0.1104 0.0554 0.8955 �0.0392
SOUTHB 0.0189 0.0145 0.0339 1.1046 0.0066
SCHLYRS 0.5224 0.5205 0.2507 1.6829 0.1831
SCHLYRS2 �0.5048 �0.5071 0.1397 0.6022 �0.1769
PAREDU 0.0740 0.0784 0.0308 1.0816 0.0259
CATHOLIC 0.1495 0.1520 0.0362 1.1642 0.0524
RELGIS �0.2729 �0.2764 0.0341 0.7585 �0.0956
MILIT 0.1477 0.1487 0.0424 1.1603 0.0518
MARIDIST �0.3707 �0.3710 0.0354 0.6900 �0.1299
EVDRINK 0.2950 0.2996 0.0423 1.3493 0.1034
EXDRINK 0.8802 0.8823 0.1904 2.4165 0.3085
SPOUSNSM �0.3499 �0.3488 0.0343 0.7055 �0.1226
NETWORTH �0.0155 �0.0156 0.0057 0.9845 �0.0054
INVEST �0.1482 �0.1489 0.0354 0.8617 �0.0519
SALESJOB 0.1236 0.1270 0.0397 0.1354 0.0433
FINJOB �0.0698 �0.0691 0.0607 0.9332 �0.0245
TECHJOB 0.0787 0.0798 0.0477 1.0831 0.0276
SERVJOB 0.0408 0.0401 0.0469 1.0409 0.0143
NVRWORKD �0.2655 �0.2677 0.0778 0.7651 �0.0931
RISKAVER �0.0817 �0.0826 0.0428 0.9207 �0.0286
MYOPIC 0.0650 0.0678 0.0384 1.0702 0.0228
CLEAN �0.0763 �0.0773 0.0292 0.9256 �0.0267
BMI �0.3763 �0.3834 0.0820 0.6815 �0.1319

RACEB 0.3005 0.3088 0.0826
MARIDIST �0.2341 �0.2302 0.0602
EVDRINK 0.1838 0.1862 0.0586 Heteroskedasticity
EXDRINK 0.3354 0.3348 0.1334 Specification
SPOUSNSM �0.1738 �0.1677 0.0561

effects of RISKAVER, MYOPIC, and INVEST are (0.92,
1.07. 0.86) and (�0.029, 0.022, �0.05), respectively. This
evidence indicates that risk-average individuals tend not
to initiate and that individuals with higher time prefer-
ences for the immediate tend to initiate more often. Other
socio-economic status variables have significant explana-
tory power to explain individuals’ initiation decisions.
The direction of contributions from these variables are
consistent with previous studies.

Table 4.3 presents estimates from heteroskedasticity-
corrected two-step estimator of the second selection
equation (continuation decision) by FGLS and FIML
procedures together with the marginal effects and odd
ratios. McKelvey—Zavonia’s R� is 0.31 and the correct
prediction rate is again about 70%. In terms of the R�

measure, the fit of the second selection equation is slightly
better than that of the first selection equation. As one
would expect, spouse’s cessation decision (SPOSEXSM)

has very strong effect on individual’s cessation decision.
Spouse’s health status and the number of children in the
household were not significant.

An interesting finding is that the presence of current
good health conditions (EXER, JOGAMILE) and also
bad health conditions (BLOODPRS, CHOLSTRL, DIA-
BTS) have strong positive effects on the propensity for
cessation. When people realize that they have developed
some bad health conditions which might be aggravated
by smoking, they tend to quit (see [4,19]). Current
smokers who still enjoy good health sometimes quit in
order to maintain the good health. This evidence simply
implies that there are two groups of ex-smokers in our
sample — one group quits in order to restore better health
(curative), and the other group quite in order to maintain
good health (preventive).

Risk variables in the cessation decision equation also
have very interesting implications. RISKAVER, MY-
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Table 4.3 Estimates for the continuation equation

SE Odds Marginal
Variable Two-step FIML (FIML) ratio effect

Constant 0.9862 1.0069 0.2036 2.7371 0.3900
MALE �0.1056 �0.1202 0.0346 0.8867 �0.0417
RACEB 0.1491 0.1619 0.0701 1.1757 0.0590
RACEW 0.0917 0.1343 0.0662 1.1437 0.0363
FORNBORN �0.1211 �0.1094 0.0534 0.8964 �0.0479
CATHOLIC 0.0556 0.0489 0.0264 1.0501 0.0220
RELIGS �0.1972 �0.1968 0.0351 0.8214 �0.0779
MARRIED �0.1635 �0.1633 0.0451 0.8493 �0.0646
NOMARAGS 0.0450 0.0443 0.0197 1.0453 0.0178
HOUSE �0.0533 �0.0497 0.0250 0.9515 �0.0211
EXER �0.1408 �0.1485 0.0341 0.8620 �0.0557
ALCHOLIC 0.1896 0.1858 0.0495 1.2042 0.0749
CLEAN �0.1100 �0.1156 0.0267 0.8908 �0.0435
BADFIN 0.0799 0.0814 0.0287 1.0848 0.0316
SPOUSNSM �0.2940 �0.2873 0.0574 0.7428 �0.1163
SPOUSXSM �0.4094 �0.4209 0.0600 0.6565 �0.1619
OWNRV �0.1512 �0.1566 0.0654 0.8550 �0.0598
IRA �0.1353 �0.1465 0.0309 0.8637 �0.0535
LIFEINS �0.0373 �0.0408 0.0260 0.9600 �0.0148
RISKAVER �0.0498 �0.0486 0.0319 0.9526 �0.0197
HELTHINS �0.0872 �0.0827 0.0339 0.9206 �0.0345
SCHLYRS 0.5217 0.5413 0.2149 1.7182 0.2063
SCHLYRS2 �0.3956 �0.4102 0.1186 0.6635 �0.1564
JOGAMILE �0.1466 0.1696 0.0417 1.1848 �0.0580
BLOODPRS �0.0946 �0.0983 0.0266 0.9064 �0.0374
CHOLSTRL �0.0421 �0.0443 0.0254 0.9567 �0.0166
DIABTS �0.0356 �0.0383 0.0355 0.9522 �0.0141
ARTHRTS �0.0260 �0.0280 0.0226 0.9724 �0.0103
SALESJOB 0.0745 0.0725 0.0294 1.0752 0.0295
FINJOB 0.0946 0.0978 0.0492 1.1027 0.0374
MYOPIC 0.0691 0.0700 0.0296 1.0725 0.0273
ADDICTION 0.0595 0.0593 0.0142 1.0611 0.0235
BMI �0.7590 �0.8134 0.1165 0.4433 �0.3001
R12 0.1137 0.1590 0.1227

MALE 0.1671 0.1516 0.0671
RACEW �0.5697 �0.5365 0.0904
MARRIED �0.1372 �0.1209 0.0951 Heteroskedasticity
SPOUSNEM �0.2414 �0.2112 0.0832 Specification
OWNRV 0.2249 0.1994 0.1233

OPIC, IRA, LIFEINS, and HELTHINS are the variables
that can capture individual risk behaviour. Our results
show that those individuals who have higher time prefer-
ences for the current time continue to smoke. The vari-
ables LIFEINS and HELTHINS represent individuals’
attitudes towards health risk, and these variables also
have a meaningful interpretation. Individuals who have
individual retirement accounts (IRA) can be considered
to be more financially well planned, and the variable IRA
has a positive contribution to the cessation decision.
Schooling (SCHLYRS, SCHLYRS2) and Body Mass In-
dex (BMI) variables have significant non-linear effects on
the cessation decision. Another interesting variable is the

cigarette addiction variable (ADDICTION) which is de-
signed to capture the approximate strength of smokers’
cigarette addictions. As one would expect, our result indi-
cates that the stronger the addiction, the harder it is to
quit. Also a stable married life (MARRIED, NO-
MARAGS) and drinking habit (ALCOHOLIC) have sig-
nificant effects on the cessation decision. We also observe
variations in cessation propensity by different demo-
graphic, occupational, and economic classes, and they are
consistent with prior findings.
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Table 4.4 Estimates for the nonsmoker’s disease equation

SE Odds Marginal
Variable Two-step FIML (FIML) ratio effect

Constant �2.7242 �2.6669 0.9493 0.0695 �0.3230
MALE �0.0873 �0.0747 0.1033 0.9280 �0.0104
RACEB 0.2413 0.2329 0.1699 1.2623 0.0286
FORNBORN 0.4258 0.4149 0.1692 1.5142 0.0505
WESTB 0.6618 0.6488 0.2103 1.9132 0.0785
MARIDIST �0.0532 �0.0605 0.0898 0.9413 �0.0063
BLOODPRS 0.4400 0.4388 0.1589 1.5508 0.0522
CHOLSTRL 0.1947 0.1931 0.0760 1.2130 0.0231
DIABTS �1.0859 �0.0799 0.5215 0.3396 �0.1287
ARTHRTS 0.2126 0.2132 0.0787 1.2376 0.0252
EXDRINK �0.1684 �0.1548 0.1285 0.8566 �0.0200
BADFIN 0.2037 0.2042 0.0832 1.2265 0.0242
GOODFAM 0.0344 0.0324 0.1030 1.0329 0.0041
HAZWORK 0.3111 0.3122 0.0871 1.3664 0.0369
AGRIJOB 0.1120 0.1108 0.1879 1.1172 0.0133
SALESMAN �0.0824 �0.0806 0.1495 0.9226 �0.0098
SERVJOB �0.0907 �0.0885 0.1188 0.9153 �0.0108
NVRWORKD 0.5355 0.5319 0.1786 1.7022 0.0635
FEDINS 0.2415 0.2406 0.0933 1.2720 0.0286
LIFEINS 0.0312 0.0306 0.0808 1.0311 0.0037
RISKAVER �0.0051 �0.0081 0.1106 0.9919 �0.0006
MYOPIC �0.2119 �0.2067 0.1512 0.8133 �0.0251
SPOUSNSM 0.1722 0.1634 0.1291 1.1775 0.0204
SPOUSXSM 0.1780 0.1773 0.1281 1.1940 0.0211
NOJOBS �0.0264 �0.0256 0.0641 0.9747 �0.0031
NOMARAGS 0.1876 0.1884 0.0863 1.2073 0.0222
AGE 0.3834 0.3763 0.4647 1.4569 0.0455
SCHOLYRS �0.0697 �0.0741 0.1334 0.9286 �0.0083
NETWORTH �0.0426 �0.0433 0.0344 0.9576 �0.0051
BMI 0.1914 0.1863 1.2774 1.2048 0.0227
BMI2 0.0138 0.0144 0.5548 1.0145 0.0016
Rln �0.0247 0.0130 0.1791

RACEB �0.3961 �0.3923 0.1701
FORNBORN �0.5785 �0.5774 0.1665
WESTB �0.6623 �0.6529 0.2747
BLOODPRS �0.3126 �0.3127 0.1420 Heteroskedasticity
DIABTS 0.9055 0.9067 0.2777 Specification
NVRWORKD �0.7137 �0.7206 0.2851
MYOPIC 0.4190 0.4189 0.1356

SWITCHING DISEASE EQUATIONS

Tables 4.4—4.6 present estimates of the disease equations
by two-step and FIML methods for the three smoking
status groups. We specify our switching disease equations
using a number of demographic, occupational, economic,
and fundamental health condition variables. An interest-
ing variable is HAZWORK, which represents occupa-
tional exposure to hazards. In some sense, HAZWORK
also represents individual risk-taking behaviour as well.
The occupational exposure to hazards has significant
effect on the probability of the occurrence of the SRDs for
all three smoking groups. There are direct and indirect

effects of this variable. The direct effect in the contribu-
tion from the exposure. Some workers work in hazardous
occupations not because they prefer them, but because
they have no other choices. The indirect effect comes
because individuals who work in hazardous occupations
are often risk-takers (see [33]), and such attitudes can
have positive effects on the probability of SRDs. A part of
the indirect effect is expected to manifest itself through the
selectivity correction terms.

The variable FEDINS, which indicates health insur-
ance coverage by federal health insurance programs such
as Medicaid and VA, has a positive effect on the probabil-
ity of having SRDs for all three smoking groups. The
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Table 4.5 Estimates for the ex-smoker’s disease equation

SE Odds Marginal
Variable Two-step FIML (FIML) ratio effect

Constant �0.8954 �1.1841 0.8318 0.3060 �0.1379
MALE �0.1548 �0.1390 0.0948 0.8702 �0.0238
RACEB �0.1923 �0.1884 0.1025 0.8283 �0.0296
FORNBORN �0.5729 �0.5346 0.2005 0.5859 �0.0882
WESTB �0.0830 �0.0777 0.1117 0.9252 �0.0128
MARIDIST 0.0794 0.0886 0.0911 1.0926 0.0122
BLOODPRS �0.2342 �0.3002 0.1871 0.7407 �0.0361
CHOLSTRL 0.0018 0.0083 0.0692 1.0083 0.0003
DIABTS 0.1398 0.1355 0.0886 1.1451 0.0215
ARTHRTS 0.1581 0.1585 0.0647 1.1718 0.0244
EXDRINK 0.1066 0.0986 0.0784 1.1036 0.0164
BADFIN 0.0811 0.0602 0.0777 1.0620 0.0125
GOODFAM 0.2763 0.3265 0.1623 1.3861 0.0425
HAZWORK 0.4941 0.5138 0.1582 1.6716 0.0761
AGRIJOB �0.0056 �0.0026 0.1825 0.9974 �0.0009
SALESMAN �0.9838 �0.3988 1.3063 0.2469 �0.1515
SERVJOB �0.0651 �0.0654 0.0962 0.9367 �0.0100
NVRWORKD �0.2946 �0.2985 0.2684 0.7419 �0.0454
FEDINS 0.2136 0.2146 0.0838 1.2394 0.0329
LIFEINS �0.0581 �0.0461 0.0698 0.9549 �0.0090
RISKAVER �0.1243 �0.1189 0.0910 0.8879 �0.0191
MYOPIC 0.2735 0.3380 0.1666 1.4021 0.0421
SPOUSNSM 0.0467 0.0650 0.1030 1.0672 0.0072
SPOUSXSM 0.1109 0.1459 0.1039 1.1571 0.0171
NOJOBS �0.0631 �0.0683 0.0455 0.9340 �0.0097
NOMARAGS 0.1436 0.1392 0.0681 1.1494 0.0221
AGE 0.3400 0.3822 0.4096 1.4655 0.0524
SCHOLYRS �0.3158 �0.2746 0.1272 0.7599 �0.0486
NETWORTH �0.0209 �0.0196 0.0217 0.9806 �0.0032
BMI �1.8797 �1.6930 1.2346 0.1840 �0.2895
BMI2 0.8676 0.8014 0.5460 2.2287 0.1336
CIGARETS 0.2299 0.2219 0.0448 1.2484 0.0354
R1x 0.2359 0.2230 0.2485
R2x �0.2189 �0.3908 0.1743

BLOODPRS 0.2710 0.2659 0.1206
GOODFAM �0.4824 �0.4197 0.1386
HAZWORK �0.3551 �0.2886 0.1475 Heteroskedasticity
SALESMAN 0.6186 0.6660 0.4368 Specification
MYOPIC �0.3588 �0.3315 0.1439

marginal effect of FEDINS for nonsmokers, ex-smokers,
and current smokers are 0.03, 0.03, and 0.08, respectively,
implying that the interaction of smoking status and FED-
INS is a significant factor in the health production func-
tion (see [11]). Since FEDINS captures mostly people
with low socio-economic status, these estimates suggest
that smoking by individuals has a considerable social cost
as well. Unstable married life (NOMARAGS) also has a
significant impact on the presence of the diseases for all
three groups of smokers. We also find demographic vari-
ations in the incidence of SRDs.

One of the most significant findings of this study is the
presence of significant selectivity coefficients in previous

smokers’ and current smokers’ disease equations. Some of
the selectivity coefficients in FIML estimation turned out
to be substantially different from those in two-step esti-
mations — underscoring the importance of FIML ap-
proach in these kinds of models. The selectivity coefficient
in the nonsmokers’ equation turned out to be insignifi-
cant. The statistically significant selectivity coefficients in
the last two disease equations imply the endogenous na-
ture of switching in our structural model. We should
emphasize that we took utmost care to fully specify our
five equations such that the significance of the selectivity
terms is not due to the omission of observable explana-
tory variables. For instance, interaction of a number of
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Table 4.6 Estimates for current smoker’s disease equation

SE Odds Marginal
Variable Two-step FIML (FIML) ratio effect

Constant �0.9730 �0.8839 0.8575 0.4132 �0.1590
MALE 0.0275 �0.0065 0.1638 0.9935 0.0045
RACEB �0.5621 �0.5266 0.1262 0.5906 �0.0919
FORNBORN �0.6234 �0.6189 0.1976 0.5385 �0.1019
WESTB �0.2598 �0.2481 0.1523 0.7803 �0.0425
MARIDIST 0.0584 0.0569 0.0976 1.0585 0.0095
BLOODPRS 0.1616 0.1477 0.0811 1.1592 0.0264
CHOLSTRL 0.1864 0.1697 0.0915 1.1849 0.0305
DIABTS �0.1212 �0.0644 0.2057 0.9376 �0.0198
ARTHRTS 0.3358 0.3250 0.0798 1.3840 0.0549
EXDRINK 0.0223 0.0043 0.1047 1.0043 0.0036
BADFIN 0.2615 0.2610 0.0951 1.2982 0.0427
GOODFAM �0.2212 �0.2172 0.1306 0.8048 �0.0361
HAZWORK 0.2300 0.2224 0.0935 1.2491 0.0376
AGRIJOB 0.5055 0.4835 0.2286 1.6217 0.0826
SALESMAN �0.3303 �0.3215 0.1484 0.7251 �0.0540
SERVJOB �0.1556 �0.1485 0.1196 0.8620 �0.0254
NVRWORKD 0.5811 0.5481 0.1791 1.7300 0.0950
FEDINS 0.4773 0.4648 0.1025 1.5917 0.0780
LIFEINS �0.2028 �0.1435 0.1442 0.8663 �0.0331
RISKAVER �0.0055 �0.0086 0.1035 0.9914 �0.0009
MYOPIC 0.0855 0.0894 0.0869 1.0935 0.0140
SPOUSNSM 0.1659 0.1583 0.1065 1.1715 0.0271
SPOUSXSM 0.2418 0.2105 0.1355 1.2343 0.0395
NOJOB 0.0061 0.0026 0.0586 1.0026 0.0010
NOMARAGS 0.1321 0.1352 0.0590 1.1448 0.0216
AGE 1.0138 0.9496 0.5889 2.5847 0.1657
SCHOLYRS �0.2571 �0.2513 0.1692 0.7778 �0.0420
NETWORTH �0.0249 �0.0237 0.0414 0.9766 �0.0041
BMI �2.2286 �2.2623 1.0911 0.1041 �0.3642
BMI2 0.6494 0.6637 0.5072 1.9420 0.1061
CIGARETS 0.1854 0.1875 0.0682 1.2062 0.0303
R1c 0.1777 0.0931 0.3218
R2c �0.3443 �0.2373 0.1452

MALE �0.1564 �0.1497 0.1336
DIABTS 0.3646 0.3744 0.2216 Heteroskedasticity
NVRWORKD �0.8484 �0.9518 0.3737 Specification
LIFEINS 0.3288 0.3080 0.1316

statistically significant explanatory variables were not
found to be important in the specifications.

FURTHER IMPLICATIONS OF OUR FINDINGS

The model estimated in this paper provides a way to
identify the true risk of smoking by correcting the self-
selection problem in the observed proportions of SRDs in
different smoking groups. The evidence on the presence of
unobserved heterogeneity in ex-smokers’ and current
smokers’ disease equations suggests that the risk factor
for smokers may be different from that of nonsmokers,

even if smokers had never smoked. The coefficients
(	

��
, 	

��
) from the initiation equation are both positive,

but they are not significant at the 5% level. On the other
hand, the coefficients (	

��
, 	

��
) from the cessation equa-

tion are both negative and statistically significant at the
5% level. The significance of these terms suggests that the
observed relative frequencies of SRDs in the sample are
biased estimates of the true risk factors for the ex-smokers
and the current smokers. The observed proportions
based on our sample indicate that the probability of
getting SRDs for ex-smokers and current smokers are
9.41% and 15.97%, respectively. The signs of the coeffi-
cients (	

��
, 	

��
) indicate the direction of the selection bias.
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Table 4.7 Counter-factual risk factor predictions

Counter-factual smoking status

Observed smoking E[Y
�
� .] E[Y



� .] E[Y

�
� .]

status (None) (Ex.) (Current)

None (I
�
� 0) 0.054 0.056 0.111

Ex (I
�
� 1, I

�
� 0) * 0.094 0.214

Current (I
�
� 1, I

�
� 1) * 0.082 0.159

The observed risk factors have two components: risk
factor due to smoking and selectivity. The estimated
negative values of 	

��
and 	

��
capture an unobservable

negative correlation between the propensity of getting
SRDs and the propensity of continuing to smoke. Ignor-
ing this correlation, which manifests through the cessa-
tion selection, would yield an upward bias for ex-
smokers’ and downward bias for current smokers’ risk
factors. Since the signs of the selectivity coefficients allow
us to make other interesting inferences, we devote the rest
of this section to interpreting the results.

Our prediction shows that the true mean risk factor for
ex-smokers is about 6%, which is slightly more than that
for nonsmokers and much less than the observed risk
factor (9.41%). The risk factor for current smokers is
about 20%, which is much higher than the observed risk
factor for current smokers (15.9%).	 This finding has
significant implications for previous empirical studies on
the costs of cigarette smoking. For example, Miller et al.
[7] estimated medical care expenditures attributed to
cigarette smoking based on observed frequencies of
SRDs, without considering the unobserved heterogeneity
in the baseline risk factors of smokers. In order to esti-
mate the actual effect of cigarette smoking on health, this
unobserved heterogeneity first has to be controlled for.

Further, our model is useful for investigating whether
individual smoking participation decisions are consistent
with economic rationality or forward looking behaviour.
The counter-factual conditional mean risk factor predic-
tions are useful for this purpose (see [34]). Table 4.7
presents the probabilities for getting SDRs for non-
smokers, if they had chosen to be ex-smokers
(P[Y(

�
� 1 �X

�
, I

�
� 0]), and chosen to be current

smokers (P[Y(
�
� 1 �X

�
, I

�
� 0]); the probabilities for ex-

smokers, if they had chosen not to start smoking
(P[Y(

�
� 1 �X

�
, I

�
� 1, I

�
� 0]), and had chosen not to

quit smoking (P[Y(
�
� 1 �X

�
, I

�
� 1, I

�
� 0]); and finally

the probabilities for current smokers, if they had chosen
not to start smoking (P[Y(

�
� 1 �X

�
, I

�
� 1, I

�
� 1]), and

if they had chosen to quit smoking
(P[Y(

�
� 1 �X

�
, I

�
� 1, I

�
� 1]).
 However, P[Y(

�
� 1 �

X
�
, I

�
� 1, I

�
� 1] and P[Y(

�
� 1 �X

�
, I

�
� 1, I

�
� 0] are

not identifiable because our model can not identify 	
��

.
We find from Table 4.7 that the risk factor for an

ex-smoker had he/she not chosen to quit
(P[Y(

�
� 1 �X

�
, I

�
� 1, I

�
� 0]) is even higher than that of

a current smoker (P[Y
�
� 1 �X

�
, I

�
� 1, I

�
� 1]). This

evidence indicates that ex-smokers incorporate the haz-
ards of smoking into their beliefs based on private infor-
mation, and that they reverse their smoking behaviour
because they could foresee health deterioration. Current
smokers may not fully realize the hazards of smoking
because they have not yet run down their health stock
below the individual-specific critical threshold, are ignor-
ing the signs of health deterioration, or are unable to quit
simply because of addiction. This implies either that there
is an information failure that prevents current smokers
from smoking or that current smokers may not readily
accept the foreseeable adverse health effects due to addi-
tion. This apparent market failure requires different types
of policy interventions that are specifically targeted on
current smokers who continue to smoke for various dif-
ferent reasons.

Our empirical model can also examine the presence
and direction of comparative advantage (or more appro-
priately, ‘comparative risk’ in our context) in the initi-
ation and cessation decisions. Our empirical evidence has
indicated that self-selection has a non-ignorable effect on
the observed risk factors for both ex-smokers and current
smokers. Under self-selection, individuals will choose an
alternative for which they have a comparative advantage
(see [35—37]). The existence of comparative risk will sug-
gest a lack of forward looking behaviour in that choice.

First, we examine the presence of comparative risk in
the cessation decision by looking at the counter-factual
conditional mean risk predictions, P[Y(

�
� 1 �X

�
, I

�
� 1,

I
�
� 0] and P[Y(

�
� 1 �X

�
, I

�
� 1, I

�
� 1]. In the absence

of comparative risk in the cessation decision, we expect:

P[Y
�
� 1�X

�
, I

�
� 1, I

�
� 0]

P[Y
�
� 1�X

�
, I

�
� 1, I

�
� 1]

�
P[Y(

�
� 1�X

�
, I

�
� 1, I

�
� 0]

P[Y
�
� 1�X

�
, I

�
� 1, I

�
� 1]

.

The left hand side of the inequality indicates the mean
relative risk taken by observed quitters, whereas the right
hand side of the inequality indicates the relative risk
foregone by them. Based on the predictions presented in
Table 4.7, we see that the inequality holds, which suggests
rational risk-taking in the cessation decision.� Second, in
order to examine the existence of comparative risk at the
initiation stage, we obtain the following counter-factual
mean risks: P[Y(

�
� 1 �X

�
, I

�
� 1], P[Y(

�
� 1 �X

�
,

I
�
� 0], P[Y(

�
� 1 �X

�
, I

�
� 1], P[Y(

�
� 1 �X

�
, I

�
� 1],
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P[Y(
�
� 1 �X

�
, I

�
� 0] and P[Y(

�
�X

�
, I

�
� 1]. Since we

want to compare nonsmokers with ex-smokers and cur-
rent smokers in the initiation decision, the mean predic-
tion here excludes the effect of the second selection. If the
rational risk-taking behaviour is valid on the average at
the initiation stage, we expect the follow-up inequalities
to hold:

P[Y
�
� 1�X

�
, I

�
� 0]

P[Y(
�
� 1�X

�
, I

�
� 1]

�
P[Y(

�
� 1�X

�
, I

�
� 0]

P[Y(
�
� 1�X

�
, I

�
� 1]

,

and

P[Y
�
� 1�X

�
, I

�
� 0]

P[Y(
�
� 1�X

�
, I

�
� 1]

�
P[Y(

�
� 1�X

�
, I

�
� 0]

P[Y(
�
� 1�X

�
, I

�
� 1]

.

Each side of the inequalities has similar interpretations
as before. Our predictions show little evidence of forward-
looking behaviour in the initiation decision.�

These results are broadly consistent with those of Vis-
cusi [14] who found that young people have a high risk
perception but that this risk perception does not influence
their smoking behaviour. Most at the initiation stage are
too young to think about the hazard of smoking, which
may or may not happen until many years in the future. At
this age, they tend to experiment with various alternative
life styles. The lack of rationality in the initiation behav-
iour could be more transparent in our analysis because
the hazards of cigarette smoking were not very well
known to the public a few decades ago, and cigarette
smoking was a more acceptable social behaviour during
the period in which the smokers in our sample initiated.
Unlike the initiation decision, the rationality in the cessa-
tion decision is observed because individuals get first-
hand information on the risk and utility of smoking from
their past smoking experiences.

CONCLUSIONS

Almost all previous empirical studies on cigarette smok-
ing estimated a particular part of our structural model
and focused on the interpretation of the estimated coeffi-
cients. Thus, a particular association between a depend-
ent variable (smoking behaviour or the presumed effect of
smoking) and the covariates is the main issue in these
studies. They uncover many interesting empirical regular-
ities such as the demographic variations in smoking be-
haviour, and the correlation of smoking with drinking
habits. The estimation of our initiation and cessation
equations corroborates results which are consistent with
previous studies. However our objective is not to confirm

these previous findings using new data, but to go beyond
the mere interpretation of estimated regression coeffi-
cients. Fundamentally, our two selection equations ex-
plore individual attitudes towards risk, and how these
risk attitudes lead to different health outcomes that are
represented by the prevalence of SRDs. By combining
smoking motivation and its outcomes, our model reveals
many useful aspects of how individuals incorporate their
risk beliefs into smoking choices, and further it provides a
clear direction for future public policy.

We find significant evidence of self-selection effects on
both previous and current smokers’ probabilities for get-
ting SRDs. This indicates that previous studies on the
effects of smoking on health or medical expenditures
should be revisited after considering self-selection behav-
iour of smokers. We find that the true mean risk factor for
ex-smokers is about 6%, which is slightly more than that
of never-smokers and is much less than their observed
risk factor (9.4%) in the sample. The true mean risk factor
for the current smokers is about 20% which is much
higher than their observed risk factor (16%). Based on
counterfactual conditional mean risk factor predictions,
we find that the risk factor for an ex-smoker, had he not
chosen to quit, is even higher than that of a current
smoker. Our evidence also suggests that self-selection in
the cessation decision is consistent with economic ra-
tionality, but the same is not found in the initiation
decision. This finding underscores the importance of pub-
lic policy initiatives on teenage initiation. In addition, our
analysis suggests a direction for anti-smoking campaigns;
it should target those groups of individuals who tend to
initiate more easily, because those who tend to initiate
have higher risk factors for the diseases as well.
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APPENDIX

Variable names and definitions

Variable Definition

Unless otherwise noted, all variables denoted below are (0 1) dummies

Initiation Equation
Dependent variable Ever-smoker� 1, never smoker �0.
BMI Body Mass Index (weight/height�) normalized by sample mean (not a dummy).
CATHOLIC Religious preference, Catholic.
CLEAN Interior of the dwelling units is clean.
EVDRINK Ever drink any alcoholic beverages such as beer, wine, or liquor.
EVRSMOKD Ever smoked cigarette.
EXDRINK Excessive drinking habits.
FINJOB Worked in the business of finance, insurance, or real estate. (US Census Code: 700-712.)
FORNBORN Not born in the US.
INVEST Invests in stock, bond, real estate, or t-bill.
MALE Male.
MARIDIST First marriage and currently married.
MILIT Ever been in military service.
MYOPIC The most important financial planning horizon for the individual is the next few months.
NETWORTH Total net worth normalized by sample mean (not a dummy).
NVRWORKD Never worked for pay.
PAREDU Either mother or father has more than 12 years of schooling.
RACEB Black.
RACEW White/Caucasian.
RELIGS Attends religious services more than two or three times a month.
RISKAVER Would not take new job with a 50—50 chance of doubling income and 50—50 chance of cutting income by

half.
SERVJOB Service related job (US Census Code: 403-407, 413-427, 433-469).
SALESJOB Worked in the business of retail or whole sale.
SCHLYRS Years of schooling normalized by sample mean (not a dummy).
SCHLYRS2 SCHLYRS�
SOUTHB Born in southern states.
SPOUSNSM Individual’s spouse is nonsmoker.
TECHJOB Professional specialty operation and technical support job (US Census Code: 043-235).
WESTB Born in western states.

Continuation Equation
Dependent variable Current smoker� 1, ex-smoker �0.
BMI2 BMI�
ADDICTION Years of smoking times number of cigarettes smoked, normalized by sample mean (not a dummy).
ALCHOLIC Drinks more than 3 or 4 a day.
ARTHRTS Ever had arthritis.
BADFIN Dissatisfied with his/her financial condition.
BLOODPRS Ever had high blood pressure problem.
CHOLSTRL Ever had high cholesterol problem.
DIABTS Ever had diabetes.
EXER Does both light and heavy exercise more than three times a week.
FINJOB Worked in the business of fiance, insurance, and real estate (UK Census Code: 700-712).
HELTHINS Individual has health insurance policy, either federally funded, privately funded, or employer provided.
HOUSE Living in a detached single family house.
IRA Individual has an IRA account.
JOGAMILE Individual has no difficulty at all in running or jogging a mile.
LIFEINS Individual has one or more life insurance policies.
MARRIED Currently married.
NOMARAGS Number of marriages including current one normalized by sample. Mean (not a dummy).
OWNRV Owns a recreational vehicle (RV).
RACEB Race dummy for Black.
SPOSEXSM Individual’s spouse is ex-smoker.
R12(	

��
) Inverse of Mill’s ratio for the first selection equation (initiation).
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BMI, CATHOLIC, CLEAN, FINJOB, FORNBORN, MALE, MYOPIC, RELIGS, RISKAVER, SALESJOB, SCHLYRS,
SCHLYRS2, SPOUSNSM have already been defined above.

Disease equations
Dependent variable Ever had smoking related diseases� 1. Never had the disease� 0.

Smoking related diseases (SRDs): lung disease (not including asthma) such as chronic bronchitis or
emphysema, or any following type of the cancers of the abdomen, mouth, bladder, neck, nose, pancreas,
bronchia, cervix, esophagus, stomach, throat, tongue, kidney, liver, and lung.

AGE Age normalized by sample mean (not a dummy).
AGRIGJOB Work in the area of agriculture, forestry, and fishing (US Census Code: 010-031).
CIGARETS Number of cigarettes smoked per day normalized by sample mean.
SALESMAN Sales job (US Census Code: 243-285).
FEDINS Federally funded health insurance, such as Medicaid, CHAMPUS, VA, or other military programs.
GOODFAM Satisfied with family life.
HAZWORK Ever exposed and continuously exposed more than 1 year to dangerous chemicals or other hazards at

work.
NOJOBS Number of jobs including current one normalized by sample mean (not a dummy).
R12(	

��
) Inverse of Mill’s ratio for the first selection equation (initiate), ever-smoker.

R1n(	
�


) Inverse of Mill’s ratio for the first selection equation (not initiate), nonsmoker.
R1x(	

��
) Inverse of Mill’s ratio for the first selection equation (initiate), ex-smoker.

R2x(	
��

) Inverse of Mill’s ratio for the first selection equation (quit), ex-smoker.
R1c(	

��
) Inverse of Mill’s ratio for the first selection equation (initiate), current smoker.

R2c(	
��

) Inverse of Mill’s ratio for the first selection equation (continue), current smoker.

ARTHRITS, BADFIN, BLOODPRS, BMI, BMI2, CATHOLIC, CHOLESTRL, DIABTS, EXDRINK, FORNBORN, LIFEINS,
MARIDIST, MYOPIC, NETWORTH, NEVERW, NOMARAGS, RISKAVER, RACEB, SCHLYRS, SERVJOB, SPOSEXSM and
SPOSENSM have already been defined above.

NOTES

a. Thus, we will be estimating the effect of smoking on a
more homogenous group of individuals, for whom the
effect of aging will be similar.

b. We drop a total of 3543 individuals from our final
sample: 2407 individuals whose ages are less than 52,
269 individuals who quit smoking after they were diag-
nosed with various diseases, 96 individuals whose
household-level information is not available, and the
rest who have missing information in any one of our
variables. Of the 269 individuals who quit after they
were diagnosed with various diseases, only 54 had
developed SRDs as defined later in the paper. Argu-
ably, the 54 smokers who quit after being diagnosed as
having SRDs should be treated as current smokers and
the remaining 215 should be included in the ex-
smokers group for calculating the risk factors. This
would result in a slightly higher risk factor for current
smokers and a slightly lower risk factor for the ex-
smokers than the one reported later in the paper.
Following a suggestion of a referee, when we estimated
our model with this reclassification, the basic con-
clusions of this paper remained unchanged.

c. We use following variables as exogenous regressors for
the first stage probit regression: MALE, FORN-

BORN, WESTB, RACEW, RACEB, RACEA,
SCHLYRS, SCHLYTS2, PAREDU, CATHOLIC,
MILIT, MARIDIST, HOUSE, NOMARAGS, RIS-
KAVER, RELIGS, AGE and a few other obvious
exogenous variables like the regional dummies.

d. The variables were: self-reported current health status,
change in health condition during last year, presence
of various limitations on daily activities, presence of
asthma disease, and heart attack.

e. We found that the BHHH algorithm tends to converge
much faster than other Quasi-Newton methods, such
as Broyden—Fletcher—Goldfarb—Shanno (BFGS) or
Davidon—Fletch—Powell (DFP). In our experiments,
BHHH took nearly 30 iterations, whereas BFGS and
DFP took more than 150 iterations to converge at the
tolerance level 0.00001 with the starting values from
the Heckman—Lee two-stage method.

f. In order to make sure that our estimates maximize the
likelihood function globally, we experimented with
different starting values and also with the method of
simulated annealing (see [38]). Since this estimation
can take a very long time, we use FIML estimates as
starting values for the simulated annealing method.

g. Note that the risk factors for the ever smokers will be
slightly higher than that of the non-smokers if we
consider the differential sample attrition rates due to
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deaths for the three smoking groups. During the 2-year
period between waves 1 and 2, the annual mortality
rates in our sample for the non-smokers, ex-smokers,
and current smokers with SRDs (aged 52 and more)
were calculated to be approximately 0.40%, 0.50%,
and 1.50%, respectively.

h. Our conditional mean risk factor predictions are com-
puted in the following way:

P[Y(
�
� 1�X

�
, I

�
� 1, I

�
� 1]

(�
�
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�
, I*

�
, I*

�
, 	

��
, 	

��
, 	

��
)

�
�
(I*

�
, I*

�
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��
)

and similarly

P[Y(
�
� 1�X

�
, I

�
� 1] �

�
�
(X

�
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, I*

�
, 	

��
)

�
�
(I*

�
)

,

where i� n,x, c and j� n, x, c.
i. The results from our predictions are:

P[Y
�
� 1�X

�
, I

�
� 1, I

�
� 0]

P[Y(
�
� 1�X

�
, I

�
� 1, I

�
� 1]

�
0.094

0.082
� 1.146,

and

P[Y(
�
� 1�X

�
, I

�
� 1, I

�
� 0]

P[Y
�
� 1�X

�
, I

�
� 1, I

�
� 1]

�
0.214

0.160
� 1.33.

j. The results of our predictions are:

P[Y
�
� 1�X

�
, I

�
� 0]

P[Y(
�
� 1�X

�
, I

�
� 1]

�
0.054

0.088
� 0.614,

P[Y(
�
� 1�X

�
, I

�
� 0]

P[Y
�
� 1�X

�
, I

�
� 1]

�
0.039

0.067
� 0.582,

P[Y
�
� 1�X

�
, I

�
� 0]

P[Y(
�
� 1�X

�
, I

�
� 1]

�
0.054

0.111
� 0.486

and

P[Y(
�
� 1�X

�
, I

�
� 0]

P[Y(
�
� 1�X

�
, I

�
� 1]

�
0.099

0.205
� 0.483.

Since we are not conducting any statistical tests on the
validity of these inequalities, our results on compara-
tive risk are only suggestive.
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A Comparison of Alternative Models of
Prescription Drug Utilization

PAUL V. GROOTENDORST
St Joseph’s Hospital,Hamilton, Ontario, Canada

In Canada, public spending on prescription medicines is
one of the fastest rising components of overall health care
expenditures [1]. Nominal expenditures on the govern-
ment-funded Ontario Drug Benefit (ODB) program —
which provides 100% reimbursement on a formulary of
selected prescription medicines for seniors (aged 65 or
older) and those on welfare assistance — rose from
$212.2m in 1985 to $645.6m in 1992 [2]. Such expenditure
growth on government-funded drug plans has caused a
number of Canadian provinces, such as Ontario, British
Columbia, New Brunswick and Saskatchewan to actively
consider or implement some form of patient copayment
for prescription drugs among groups previously eligible
for subsidy. There is evidence from econometric time-
series studies in the UK [3—5] that increased charges are
associated with decreased utilization; this has also been
found in similar studies of US Medicaid programs [6,7],
US studies of managed care settings [8,9] and analysis of
data from the US RAND Health Insurance Experiment
[10]. The evidential base for policy on public drug insur-
ance coverage is, however, incomplete. While knowledge
of the fiscal impact of patient charges on program expen-
ditures is important, little is known about the health
and/or distributional consequences of prescription drug
copayments. Evidence from both Medicaid populations
[6,11] and enrolees in managed care organizations [8]
indicate that potentially needed medications are relin-
quished after the imposition of drug copayments. There is
no evidence, however, on the differential effect of copay-
ments on individuals with differing levels of health status.
Moreover, little is known about the effects of copayments
on drug utilization of older adults, who are by far the
largest consumers of medicines.
Universal health insurance in Canada provides first

dollar coverage for all citizens for medical services such as
hospital care and physician consultations. But universal
public insurance does not extend to out-of-hospital pre-
scription medicines. The ‘natural experiment’ analysed in
this study is the 65th birthday of Ontario residents, the
age at which they become eligible for zero copayment
medicines on the publicly-funded Ontario Drug Benefit
plan. Prior to this age of eligibility many Ontarians will
be paying some out-of-pocket amount for prescription
medicines, typically as copayments on employment-re-
lated plans, or in some cases 100% copayment for per-
sons without any insurance coverage for medicines [12].
After their 65th birthday Ontarians become relatively
homogeneouswith respect to the financial cost to them of
using medicines because they are all eligible for the gov-
ernment plan with zero copayment.
Data from the 1990 Ontario Health Survey (OHS) on

self-reported use of medicines in the past 4 weeks are used
to address how eligibility for ODB benefits by virtue of
turning 65 affects the expected number of different medi-
cines used per respondent. In order to assess the distribu-
tional effects of copayment, attention is paid to the effect
of eligibility for ODB benefits across individuals who are
heterogeneous in their levels of self-reported health
status.
The distribution of the dependent variable — the num-

ber of different medicines used per respondent — has
characteristics which may have implications for the
choice of estimation technique. The distribution is dis-
crete, contains a rather large number of zeroes, and has a
long right tail. The answers to the study questions appear
to depend on the estimation technique chosen. Several
estimation techniques suitable for estimation using data
with these characteristics are considered and are evalu-
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ated on the basis of within-sample forecasting perform-
ance and model selection tests. Candidate models include
the Poisson, negative binomial, zero altered negative bi-
nomial, and the two-part models. These are described
below.

METHODS

THE POISSON MODEL

One approach to dealing with the analysis of data involv-
ing counts of events per time interval is to use the Poisson
regression. Ordinary Least Squares (OLS) regression ad-
mits negative predictions which are inconsistent with
non-negative data. Moreover, the disturbance terms as-
sociated with OLS regression models of count data are
typically left-skewed, non-normal and heteroskedastic.
As counts must be integers as well as non-negative, maxi-
mum likelihood techniques based on discrete distribu-
tions are potentially more efficient, produce positive pre-
dictions, and may produce more powerful inference on
the estimated parameters than OLS or ad-hoc correc-
tions to OLS.
The contribution to the likelihood of the ith observa-

tion of a Poisson-distributed random variable Y is:

f (y
�
)�Pr(Y

�
� y

�
)�

���
�
exp(� �

�
)

y
�
!

, y
�
� 0, 1, 2, . . . (5.1)

The density of Y
�
is made conditional on the explanatory

variables x
�
by parameterizing the mean �

�
, as:

ln�
�
� x�

�
� (5.2)

This particular transformation ensures that the estimated
mean is positive. The Poisson model has the possibly
unattractive restriction that the first and second condi-
tional moments of the Poisson-distributed variable are
both equal to �

�
. Hence:

E[y
�
�x

�
]� Var[y

�
�x

�
]��

�
� exp(x�

�
�) (5.2a)

THE NEGATIVE BINOMIAL MODEL

Many types of count data are characterized by ‘overdis-
persion’ meaning that the (conditional) variance exceeds
the (conditional) mean. In these cases, the assumptions of
the Poisson model are not satisfied and a more general
specification should be adopted. Over-dispersion may be
due to unobservable individual heterogeneity in drug
consumption. The negative binomial regression model

arises if this heterogeneity is modelled using the gamma
probability distribution. The density of the negative bi-
nomial is derived by adding an error term to the condi-
tional mean of the Poisson (Equation 5.2):

ln�
�
� x�

�
� � � (5.3)

where exp(�) follows a gamma distributionwith mean one
and variance �. Substituting Equation 5.3 into Equation
5.1 and integrating � out of the expression yields the
negative binomial density:
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�
� 0, 1, 2, . . . (5.4)

where:

u
�
�

�

���
�

, ��
1

�
, �(·)� gamma function

The variance of the negative binomial distributed ran-
dom variable y

�
is:

Var[y
�
]�E[y

�
](1��E[y

�
]) (5.5)

The introduction of the extra parameter, �, permits the
mean to differ from the variance. The Poisson model is a
special case of the negative binomial in which the vari-
ance parameter � is equal to zero (in which case the
variance and mean of y

�
are identical). A test for over-

dispersion in the context of the Poisson model conveni-
ently reduces to a t-test on the significance of the es-
timated value of �.

A TWO-PART MODEL

According to simulation results reported by Duan et al.
[13], the ‘two-part model’ is well suited to model individ-
ual level health care utilization data characterized by a
large proportion of individuals who do not consume
drugs and skewness in the distribution of consumption
among user. The essence of the two-part model is to
decompose the number of different drugs taken (y

�
) into

two observed random components: ‘y
�
� 0’ and

‘y
�
� y

�
� 0’ and specify a probability model appropriate

for each part. Predictions from these two models, the
probability of any consumption: Pr(y

�
� 0 �x

�
), and ex-

pected number of drugs conditional upon any use:
E(y

�
� y

�
� 0,x

�
) are used to predict the mean number of

drugs used, E(y
�
�x

�
), conditional on the vector of covari-
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ates, x
�
, using the decomposition:

E(y
�
�x

�
)�Pr(y

�
� 0 �x

�
)E(y

�
� y

�
� 0,x

�
). (5.6)

To implement the model, the sample of n observations is
partitioned so that the first N observations have positive
expenses, and the last (n�N) observations have no drug
expenditures. The likelihood of theN users is:

L �Pr(y
�
� 0 �x

�
)� density(y

�
� y

�
� 0,x

�
), i� 1, . . .,N

(5.7)

The likelihood of the (n�N) individuals who do not
consume drugs is:

L
�
(�

�
)�Pr(y

�
� 0 �x

�
), i�N� 1, . . ., n (5.7a)

The likelihood of the entire sample is therefore:
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A convenient feature of the likelihood function is that it
factors into two multiplicative terms:

L1�
�
�
���

Pr(y
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� 0 �x
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�����

Pr(y
�
� 0 �x

�
) (5.7c)
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���

density(y
�
� y

�
� 0,x

�
) (5.7d)

As Duan et al. [13] note, the first term depends exclusive-
ly on parameters in the model of the binary outcome
equation: ‘y

�
� 0’; the second term depends exclusively on

parameters in the equation explaining expenditures of the
users. Because of this separability, maximizing the likeli-
hood is equivalent to maximizing the likelihood functions
Equations 5.7c and 5.7d separately. The two part model
has been used by Leibowitz and colleagues [10] to ana-
lyse drug expenditures data from the RAND study. In
that study, the probit model was used to model the prob-
ability of any use (Equation 5.7c), and OLS was used to
predict the log of expenditures (Equation 5.7d). For the
present model, the probit will be used to model the prob-
ability of any use. Because the consumption variable is
discrete, however, the negative binomial is used to model
the number of different drugs taken by users.

THE ZERO ALTERED MODEL

There is sometimes substantial heterogeneity between

individuals reporting zero levels of consumption. Non-
smokers, for example, will not smoke at any level of price
or income. For ‘potential smokers’ nonconsumption
might be a strictly economic decision. Similar heterogene-
ity might apply to those reporting no drug consumption.
Many people who are healthy would not consume drugs
at any price. Indeed, for otherwise healthy individuals,
drug consumptionmay even be hazardous. People with a
medical need, on the other hand, could experience a
health status improvement from prescription drug use.
Zero consumption could still arise, however, due to econ-
omic factors such as financial barriers to care.
If the process describing consumption behaviour of

healthy individuals differs from those who are ‘potential’
drug users, it makes sense to let the parameters differ
between the two sets of observations. If it were possible to
discern between these individuals on the basis of values of
observable variables, then standard methods (such as
estimating separate models) could be used. When this
information is not available, however, some other mech-
anismmust be used to discern between these groups. One
approach is to estimate conditional probabilities that
individuals are one of these two types. Models using
mixtures of discrete distributions proposed by Greene
[14], the zero altered Poisson and zero altered negative
binomialmodels, appears well suited for the estimation of
these models. The model consists of two behavioural
processes depicted in the schematic below:

∑ a splitting model which estimates a conditional prob-
ability that an individual is one of the two types dis-
cussed above: nondrug users and potential drug users,
and

∑ a Poisson or negative binomial model of the drug con-
sumption of the potential drug users.

Consume drugs or not?

Consumption
level

y + 0, 1, 2, ...

y = 0

Healthy-non
drug user Potential 

drug user

Zero consumption may arise in both regimes. For other-
wise healthy individuals, however, non-consumption is
automatic.Drug consumptionwould not be optimal even
at a zero price. Potential and actual drug users, on the
other hand, respond to prices and income in their con-
sumption decision. Zero consumption is but one possible
outcome at this stage. Formally, the probability q

�
of

being a non drug user is made conditional on a vector of
covariants z

�
:
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q
�
� prob(nondruguser)�F(z�

�
�) (5.8)

where F(z�
�
�) is a cumulative distribution function. The

Poisson or negative binomial density could be used to
model the consumption for potential drug users. For
either model, the mean of the distribution �

�
is made

conditional on another set of covariants, x
�
using the

transformation �
�
� exp(x�

�
�).

Defining f (.) as either the Poisson or negative binomial
density function, the sample densities for drug consump-
tion (y

�
) are as follows:

prob(yi� 0)� q
�
� (1� q

�
) f (y

�
� 0) (5.9a)

prob(yi� j� 0)� (1� q
�
) f (y

�
� j) (5.9b)

If the observed frequency of zeroes in the data exceeds
that predicted by the simple Poisson model, there are at
least two possible reasons. First, there could be unobserv-
able heterogeneity in drug use which causes zero to be
observed more frequently than expected. This could be
accommodated by employing the negative binomial
model. Alternatively, the additional zeroes could be gen-
erated by the presence of individuals for whom zero con-
sumption is automatic. In this case, the zero altered Pois-
sonmodel could be employed. Notice from Equation 5.9a
that the zero altered model has the effect of adding a
probabilitymass to observations on zero consumption. If
both unobservable heterogeneity and a splitting mechan-
ism are operational, then the zero altered negative bi-
nomial may be preferred.

MODEL SELECTION CRITERIA

With several plausible competing statistical models, some
mechanism must be established to choose among them.
In principle, it is possible to devise ‘goodness of fit’
measures that are comparable across the models. These
performance measures, however, favour more compli-
cated models that could over-fit the data [13]. The addi-
tional complications in the models might be simply fitting
artefacts of the particular sample and hence may not
generalize to other samples. Instead the ‘split sample
analysis’ was conducted to devise performance measures.
The set of observations was randomly partitioned into

estimation and forecast subsamples. All the models were
fitted to this estimation subsample, which consisted of
approximately 70% of all observations. Observations
from the forecast subsample were then used to calculate
predictions that could be compared to the actual values of
the dependent variable. The differences between the pre-
dicted and actual number of different drugs form the basis
of the mean squared error (MSE) performance measure.

The statistic is defined as:

MSE
�
�
1

n

�
�
���

(ŷ
��
� y

�
)� (5.10)

where the summation extends over the n individuals in
the forecast subsample, ŷ

��
is the predicted number of

different drugs of the ith individual using the jth estimator
and y

�
is the actual number of different drugs consumed.

MSE takes on values from zero (indicating no forecast
error) to positive infinity (indicating a rather poor fit).
The performance of the alternative models was as-

sessed using a secondmethod, the Vuong [15] non-nested
test. To test two competing probability models, f

�
and f

�
,

the statistic V is computed:

V �
N���m�

s
�

, where m
�
� log�

f
�
(y

�
)

f
�
(y

�
)� (5.11)

This statistic (which is asymptotically normal) tests the
null that E[m

�
]� 0. An attractive feature of this test is in

its ability to discriminate between the different models; a
large positive value (e.g. greater than 1.96) favours model
1, whereas a large negative value favours model 2.
As Greene [14] notes, testing the zero altered negative

binomial against the negative binomial using this statistic
allows us to make statements as to whether any excess
zeroes are a consequence of the splitting mechanism or
are due to unobserved heterogeneity. If the zero altered
model is rejected in favour of the negative binomial, then
the splitting model is rejected. If, in addition, the estimate
of the ‘heterogeneity’ parameter � in the negative bi-
nomial is found to be significant, then individual level
heterogeneitymay be at work. A finding that the negative
binomial is rejected in favour of the zero altered model
coupled with a finding that the estimate of � in the zero
altered model is significant would indicate that both the
splitting mechanism and individual heterogeneity in drug
consumption are operational.

THE ONTARIO HEALTH SURVEY

The Ontario Health Survey was a comprehensive survey
of Ontarians to assess population health status, disease
risk factors and use of health services. The target popula-
tion of the Ontario Health Survey was all residents of
private dwellings in Ontario over the survey period Jan-
uary through December 1990 [16]. Residents of Indian
reserves, inmates of institutions, foreign service personnel
and residents of remote areas were excluded. For the
purposes of sampling, the population of Ontario was
stratified by geographic regions known as Public Health
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Units (PHUs). Respondents were selected using a two-
stage stratified cluster sampling frame designed to obtain
1000 completed responses per PHU.
Once a household was selected for inclusion into the

survey, the questionnaire was administered in two stages.
The first stage was an in-person interview with one re-
spondent (referred to as the index respondent) in which
the health status, health care utilization and socio-demo-
graphic information of all household members was col-
lected. The index respondent responded both on behalf of
himself or herself (self-report) and on behalf of other
household members (acting as a proxy respondent).
Supplementary information was then collected through
self-completed written questionnaires left for each mem-
ber of the household (aged 12 and older). The response
rate for the interview part of the survey was 87% and the
response rate for the self-completed questionnaire was
also high (77%).

OHS VARIABLES ON MEDICINES USE

The OHS asked each subject how many different drugs
they had taken in the past four weeks. An advantage of
this measure is that it probably suffers from a lower
degree of recall bias on the part of survey respondents,
than say nominal drug expenditures [17]. In addition,
this measure records actual consumption rates. Expendi-
tures, on the other hand, record the purchase of drugs,
which may not necessarily coincide with consumption.
The modelling approach used here is quite simple. No

behavioural model of medicines use is posited; instead a
reduced form equation is estimated relating the number
of drugs taken to insurance prices, health status and
demographic variables. Being reduced form, the estimates
are consistent with a number of structural models of
patient and physician behaviour. Given that a patient’s
access to prescription medicines is via a physician, an
association between changes in prescription copayment
and number of different drugs taken must work via
changes in patient-initiated factors, such as physician
consultations or compliance with prescription, via phys-
ician-initiated factors such as changes in the number or
type of prescriptions written or both of these factors.
Unfortunately, these cross-sectional data are not in-
formative enough to distinguish between these alternative
structures.Moreover, attempts to model supply effects on
utilization by including, say, physician visits as an ex-
planatory variable introduces the statistical problems as-
sociated with regressor endogeneity.

SAMPLE AND INDEPENDENT VARIABLE
SELECTION

The aim of the analysis was to isolate the effect of becom-
ing eligible for zero copayment medicines on ODB by
virtue of age; it was therefore necessary to identify other
groups eligible for ODB coverage in selecting the sample
of survey data and regression covariates. Individuals are
eligible for ODB by virtue of age (age 65 or older); income
(social assistance recipients); specific diseases (e.g., cancer,
diabetes); specific drugs (e.g., AZT, cyclosporin) or resi-
dency in a long-term care facility or recipient of home
care. To sharpen the focus on the effect of turning age 65
on drug use we dropped respondents from the OHS
sample if they had received social assistance in the past
year (and hence would have been eligible for ODB).With-
in the OHS data it was not possible to identify precisely
respondents with particular drugs or diseases that would
have made them eligible for ODB at the time of the
survey. However, persons in long-term care institutions
and eligible for ODB were not surveyed in the OHS.
Individuals were restricted to be between 55 and 75

years, inclusive. This avoided the problem of modelling
substantial age-related variation in drug use before age
55, especially among females of reproductive age. After
the age of 75, it appears that drug use declines slightly
with age. This may be an artefact of the sampling process:
to be eligible for inclusion, individuals must be healthy
enough to avoid institutionalization or death. Finally,
given the marked gender differences in health care utiliz-
ation, a likelihood ratio test for parameter homogeneity
between males and females was conducted using the
negative binomial estimator. The null was decisively re-
jected (LR� 82.09,P� 0.001); separate models for males
and females were therefore estimated. Dependent and
independent variables, for males and females, are detailed
in Table 5.1 and described below.

Age and ODB Eligibility

Non-parametric analysis suggested that the effect of age
on medicines use, controlling for other covariates, was
approximately linear over the age range 55—75 years. This
analysis consisted of plotting the coefficients associated
with age-specific dummy variables estimated from an
OLS regression in which the health status and demo-
graphic variables were also used as covariates. (The use of
age-specific dummy variables is a useful exploratory de-
vice since it does not impose any functional form restric-
tions on age, while at the same time controlling for the
effects of variables correlated with age.)
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Insurance Status

To identify the effect of eligibility for zero copayment
medicines on ODB by virtue of age, the binary indicator
variable AGE65 was constructed which was set equal to
one if the respondent’s age at the time of the surveywas 65
or older and equal to zero otherwise. To allow the effect of
eligibility for ODB to vary by health status level, interac-
tion terms were added, as described below. Data on re-
spondents’ birthdates and date of the survey were not
available. It was therefore not possible to determine if
individuals who were 65 years at the time of the survey
were eligible for zero copayment medicines during the
entire 4 week period prior to the survey. It was also not
possible to control for seasonal effects on drug use.
A possible source of confounding on the association

between public insurance for medicines at age 65 and
utilization is whether the respondent has private insur-
ance for prescription drugs from occupational or other
plans. The OHS did contain a question on private health
insurance coverage for ‘medicines and other health servi-
ces’. For persons responding positively to this question
we have defined a variable DRUGINS to take the value
one if they had such coverage and zero otherwise. Because
this question is non-specific to drug insurance it may
introduce measurement error, but insurance industry
sources suggest around 90% of persons who respond
positively to this item will have some form of private
prescription drug coverage [12]. This indicator variable
will also fail to capture any heterogeneity in the terms of
private drug insurance coverage.
It is possible that any drug utilization response ob-

served at age 65 for individuals who have additional
prescription drug insurance coverage is different from the
response by those with no such coverage. For example,
personswith no insurance coverage prior to age 65 will be
faced with the greatest reduction in out-of-pocket ex-
pense; persons with prior private coverage with zero
copayment face no change in the out-of-pocket cost of
medicines when they become eligible for ODB. To allow
the effect of eligibility for ODB to vary by insurance
coverage status, an interaction term between DRUGINS
and the AGE65 dummy variables was created.

Labour Force Participation

The financial cost of drugs is only one dimension of the
cost to patients of seeking care; another cost is the oppor-
tunity cost of time. Individuals who are employed, for
example, may incur a larger ‘time price’ of going to the
physician than non-employed [18,19]. Our models are
potentially confounded because, for many persons, the

typical age of retirement from work will also be age 65. In
other words, a reduction in the opportunity cost of time is
coincident with the removal of the prescription copay-
ment. This reduction in time price would be predicted to
increase the number of physician consultations and there-
fore the likelihood of medicines use. Fortunately not all
retirement fromwork inOntario appears to be coincident
with the 65th birthday; for example, 8% of our male
respondents and 6% females were still in paid employ-
ment at age 67. To explore this effect we have created a
variable called WORKING which takes the value one if
themain activity reported over the past year was working
at a job. To the extent that some persons do not retire at
age 65 this will enable us to disentangle, to some extent,
the impact of time price versus copayment on use of
medicines.

Health Status

Health status is typically an important predictor in em-
piricalmodels of health care utilization. AsManning et al.
[20] note in their review of the literature, health status
often explains most of the variance in regression models
of medical care utilization.More importantly, controlling
for it can affect the magnitude of other estimated coeffi-
cients because of the correlations between health status
and other regressors such as education, income and age.
The level of self-assessed health status was ascertained in
the OHS with the following survey question: ‘In general,
compared to other persons your age, would you say your
health is: excellent, very good, good, fair or poor’. The
five-point health status scale has been used successfully in
many other health care utilization studies [21] and this
type of measure has been shown to correlate well with
physician ratings of health [22—24] and other measures of
functional status [21,23]. The number of current chronic
health problems (NPROB) experienced by individuals
has also been used in a variety of empirical models of
health care utilization [25,26].
To allow the effect of eligibility on use to vary by health

status level, an interaction term between the number of
health problems and the age 65 variable (AGE65*NPROB)
was created. A positive coefficient on this interaction term
indicates larger increases in medicines use at age 65
among persons with a greater number of chronic health
problems.

Other Demographic Effects

Covariates on income and education were also used as
conditioning variables. These variables were included pri-
marily to avoid confounding with the variable of primary
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Table 5.2 Mean squared error statistics of alternative estimators: males and females

Mean squared error — Mean squared error —
Model male models female models

Poisson regression 6.983 4.821
Negative binomial regression 6.593 4.433
Zero altered — Probit and negative binomial 7.657 5.975
Two-part model — probit and negative binomial 6.168 4.375

interest AGE65 and to improve model fit. Given that the
model is a reduced form, it is difficult to interpret the
coefficients associated with these variables. For example,
income might have a positive association with drug use
via ability to pay, but a negative associationwith drug use
because income and health status are positively corre-
lated. Ths OHS questions on household income have
been grouped into four categories (see Table 5.1). Log
household size was also included to deflate income to per
person levels. Covariates on education are included with
highest level of education completed by the respondent in
five groups from ‘primary or lower’ through to ‘com-
pleted university degree’.

RESULTS

The results of the MSE estimator selection exercise ap-
pear in Table 5.2. A total of 1857 observations on males
(from 2644) were used for estimation; 2174 observations
on females (from a total of 3099) were used for estimation.
For both the male and femalemodels, the two-part model
consisting of a probit model for the binary outcome (use
vs. no use) and a negative binomial model for the drug use
on the subsample of drug users outperformed the other
candidates. Prediction errors were uniformly lower in the
models estimated using females data.
The zero altered model failed to converge when the

splitting model was a function of all of the regressors. To
remedy this, zero restrictions were placed on all but the
health status variables in the splitting model. The model
still predicted number of different drugs in the forecast
subsample substantially worse than the others. The zero
altered negative binomial model was also rejected when
tested against the negative binomial model using the
Vuong test statistic (V � �2.24 for males andV ��5.64
for females; 5% critical value��1.96). This suggests
that the conceptual distinction between ‘non drug users’
and ‘potential users’ may not be necessary for estimation
purposes, at least for individuals between 55—75. It does
appear to be the case, however, that there is substantial
unobserved heterogeneity in drug utilization. The Pois-
son models were found to substantially under-predict the
proportion of zeroes in the data (approximately 30%

underprediction for females and 20% for males). The
findings that the estimate of the parameter � in the nega-
tive binomial model was highly significant on the basis of
its t-ratio (t� 10.82 for males and t� 10.77 for females;
5% critical value� 2.01), together with the earlier rejec-
tion of the splitting function provide some support for
this view.
These tests appear to reject the zero altered negative

binomial and Poisson specifications in favour of the nega-
tive binomial model. It remained to be seen whether the
rankings from the mean squared error exercise are con-
sistent with the Vuong test. The negative binomial model
was therefore tested against the two-part model using the
Vuong test. The test provided unambiguous support for
the two-part specification (V ��8.39 for males and
V ��6.24 for females; 5% critical value� �1.96).

DIAGNOSTIC TESTS

A variety of diagnostic tests were performed on the two-
part models to ensure that the parameter estimates and
inferences drawn on them were reasonably robust to
potential misspecifications. Specifically, assumptions re-
garding the form of the variance in all of the models were
tested.
The first set of tests concern the probit models of drug

use-non use. The model generating the binary outcome I,
which equals one if any drugs are consumed, and zero
otherwise, can be thought of as arising from an underly-
ing latent model of drug utilization (p

�
), where z

�
is the

vector of conditioning variables and � is the vector of
associated parameters:

p
�
� z�

�
�� �

�

I
�
� 1 if p

�
� 0 and I

�
� 0 if q

�
� 0

�
�
	N(0, 1) (5.12)

An assumption implicit in the estimation of the probit
models of prescription drug utilization is that the disturb-
ances in the underlying latent model of drug utilization
has constant (unit) variance. The assumption that the
variance is constant across all observations (‘homo-
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Table 5.3 Likelihood ratio tests for heteroskedasticity

Female Male
Model subsample subsample

Probit model of prescription
drug use LR� 79.6 LR� 77.3

Negative binomial model of
prescription drug use by users LR� 105.6 LR� 65.2

Note: the five percent critical value: ��(5)� 11.07.

skedasticity’) may not, however, be realistic. Individuals
with lower levels of health status may have higher varia-
bility in the latent level of drug utilization (p

�
) than those

with higher levels of health status. Heteroskedasticity
affects the consistency properties of both the covariance
matrix and the vector of slope coefficients in the probit
and negative binomial models. It is therefore important
to test for its existence. These results contrast with both
nonlinear and linear regression models, in which hetero-
skedasticity does not affect the consistency of the es-
timated (slope) coefficients.
To accommodate heteroskedastic errors in the context

of the probit model, the variance of the disturbances in
the underlying model was generalized as follows (where
w
�
is the vector of covariates in the variance or ‘skedastic’

function):

�
�
	N(0, [exp(w�

�
�)]�) (5.12a)

The sample density for observations on users correspond-
ing to this model is:

Prob(I
�
� 1 � 	

�
�E(I

�
� 	

�
)�
�

z�
�
�

[exp(w�
�
�)]�� (5.12b)

When �� 0, Equation 5.12b reduces to the homoskedas-
tic probit model:

Prob(I
�
� 1 � 	

�
)�E(I

�
� 	

�
)�
(z�

�
�) (5.12c)

The null hypothesis of homoskedasticity is easily tested
using the likelihood ratio test. The vector of covariates in
the skedastic function, w

�
, was initially set equal to those

in the mean function z
�
. Significant variables in the ske-

dastic function were, however, limited to the four self
assessed health status dummies and the number of health
problems. In the interests of parsimony, these five vari-
ables were therefore used exclusively in all subsequent
skedastic function specifications. The negative binomial
model can be generalized in a similar manner.
The variance of the random variable y

�
in the standard

model is:

Var[y
�
]�E[y

�
](1��E[y

�
])

��
�
(1���

�
) (5.13)

As it stands now, the variance is not constant across
observations, but is increasing in �

�
. This variance process

may be further generalized by parameterizing �
�
�

exp(�
�
� z�

�
�). In essence the standard negative binomial

model restricts the pattern of heterogeneity in the occur-
rence rate �

�
to be constant across individuals. This gener-

alization allows the heterogeneity in �
�
to depend on the

vector of health status covariates unique to the individ-
ual. Again, when �� 0, the generalized model reduces to
the usual negative binomial model.
The results of the tests on assumptions concerning the

variances (i.e. �� 0) for both probit and negative bi-
nomial models for prescription drug use are reported in
Table 5.3. The null hypotheses are soundly rejected in
each case, which lend some support for the more general
specifications.

PARAMETER ESTIMATES – TWO-PART MODEL

Empirical results of the heteroskedasticity-adjusted two-
part models, estimated over both the females and male
subsamples are reported in Table 5.4. Pseudo R�

measures of model fit based on the sample size, n, the
maximized values of the log likelihood functions evalu-
ated at the unrestricted estimates (LU) and estimates
restricted to be zero (LR) were calculated using the for-
mula outlined in Magee [27]:

R�� 1� exp�
�2*(LU� LR)

n � . (5.14)

Pseudo R-squared measures were in the range 0.22—0.27,
which is typical goodness of fit for cross-sectional models
of health care utilization.
Estimates of the effect of publicly funded prescription

drug insurance on the number of prescription drugs taken
depends on both health status (NPROB: the number of
chronic health problems) and on whether or not the
individual has additional drug insurance coverage
(DRUGINS). Technically, if the estimated model is
QRX� a

�
� a

�
AGE65 � a

�
AGE65*NPROB � a

	
AGE65

*DRUGINS� other regressors, then the increase in utiliz-
ation at age 65 is approximated by: �QRX/
�AGE65 � a

�
� a

�
NPROB� a

	
DRUGINS. Testing the

hypothesis that there is no overall effect (�QRX/
�AGE65 � a

�
� a

�
NPROB� a

	
DRUGINS� 0) there-
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Table 5.4 Two-part model estimates of prescription drug utilization

Females Males

Negative Negative
Probit binomial Probit binomial

Covariate Coef. t-ratio Coef. t-ratio Coef. t-ratio Coef. t-ratio

Constant �0.841 �0.82 �0.074 �0.25 �2.631 �2.79 �0.127 �0.34
AGE65 0.133 0.55 0.097 1.24 �0.215 −0.91 �0.086 −0.85
AGE 0.006 0.36 0.006 1.36 0.024 1.66 0.007 1.24
DRUGINS 0.133 1.05 0.127 2.83 0.036 0.28 �0.058 −1.02
AGE65* �0.160 −0.78 �0.183 −3.09 0.086 0.45 0.085 1.12
DRUGINS
WORKING �0.143 −1.25 �0.045 −1.03 �0.073 −0.71 �0.059 −1.30
EXCLHLTH — — — — — — — —
VGHLTH 0.607 4.11 0.065 0.99 0.314 2.45 0.180 2.41
GOODHLTH 0.984 5.01 0.249 3.85 0.566 3.97 0.374 5.12
FAIRHLTH 1.459 4.11 0.441 6.52 0.935 3.91 0.692 8.79
POORHLTH 1.905 0.71 0.779 9.23 1.400 1.22 0.899 9.52
NPROB 0.929 8.35 0.065 5.76 0.857 7.63 0.079 5.51
AGE65* 0.255 2.78 0.037 2.70 0.249 2.67 0.033 1.80
NPROB
LHSIZE �0.038 −0.28 0.101 2.57 0.213 1.71 0.013 0.25
INC1 0.131 0.55 0.100 1.45 �0.281 −1.21 0.282 3.32
INC2 �0.084 −0.52 0.075 1.42 �0.168 −1.22 �0.058 −1.00
INC3 �0.145 −1.02 0.001 0.01 �0.064 −0.54 �0.036 −0.67
INC4 — — — — — — — —
PRIMARY �0.665 −2.88 �0.047 −0.64 0.031 0.19 0.067 1.01
SOMEHIGH �0.573 −2.67 �0.045 −0.63 0.090 0.57 0.019 0.29
COMPHIGH �0.381 −1.83 �0.070 −0.97 0.032 0.20 0.007 0.10
SOMEPOST 0.528 −2.43 �0.115 −1.54 0.179 1.03 �0.023 −0.32
UDEGREE — — — — — — — —

Skedastic function

Constant — — �0.709 −2.16 — — �17.959 −5.13
VGHLTH 0.118 0.97 �0.627 −1.70 0.012 0.09 15.739 4.49
GOODHLTH 0.133 1.05 0.063 0.19 �0.111 −0.78 16.300 4.66
FAIRHLTH 0.005 0.03 �1.887 −1.18 �0.309 −1.82 17.293 4.94
POORHLTH �0.245 −0.23 1.349 3.10 �0.279 −0.65 17.376 4.96
NPROB 0.206 8.55 0.752 5.80 0.239 8.68 �0.226 −3.55

Loglikelihood �1152.30 �4479.01 �1125.10 �3644.69
R Squared 0.22 0.23 0.25 0.27
n 3099 2495 2644 1959

fore depends on the estimated coefficients (a
�
, a

�
and a

	
)

and on specific values for the two covariates.
Likelihood ratio (LR) tests of the hypothesis that there

is no overall effect after the onset of eligibility for ODB
coverage were conducted on both parts of the two-part
models (Table 5.5). Six different restrictions were im-
posed, each with a different combination of number of
chronic health problems (NPROB� 0, 2, 4) and indicator
of other drug insurance coverage (DRUGINS� 0, 1). The
tests revealed that the statistical significance of the effect
of ODB coverage on the probability of using any medi-
cines increased, the greater the number of chronic health

conditions. Males and females reporting a total of four
chronic health conditions, for example, were found to
have positive, significant increases in the probability of
utilization, irrespective of their additional insurance
coverage (P� 0.01 in all tests). Individuals with no chro-
nic health conditions, on the other hand, had negligible
increases in probability of use after becoming eligible for
ODB. The results for the level of use equations were
mixed. Female drug users with no prior insurance cover-
age (DRUGINS� 0) but suffering from 2 or more health
problems had significant increases in utilization
(P� 0.01). Female drug users with prior insurance cover-
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Table 5.5 Likelihood ratio tests for zero increased use of drugs after eligibility for ODB, by level of health status,
prior drug insurance coverage and sex

Probability of any prescription drug use Number of drugs taken by users

Restriction Females Males Females Males

DRUGINS� 0, 0.2 1.0 1.5 0.7
NPROBS� 0 (P� 0.65) (P� 0.32) (P� 0.21) (P� 0.40)
DRUGINS� 0, 8.0 1.8 6.7 0.1
NPROBS� 2 (P� 0.01) (P� 0.18) (P� 0.01) (P� 0.81)
DRUGINS� 0, 12.8 6.4 14.7 0.3
NPROBS� 4 (P� 0.01) (P� 0.01) (P� 0.01) (P� 0.61)
DRUGINS� 1, 0.01 0.4 1.4 0.0
NPROBS� 0 (P� 0.98) (P� 0.53) (P� 0.24) (P� 0.99)
DRUGINS� 1, 5.8 4.4 0.0 0.8
NPROBS� 2 (P� 0.02) (P� 0.04) (P� 0.84) (P� 0.36)
DRUGINS� 1, 10.8 9.6 1.2 3.6
NPROBS� 4 (P� 0.01) (P� 0.01) (P� 0.28) (P� 0.06)

age (DRUGINS� 1), on the other hand, did not signifi-
cantly increase the number of drugs taken, irrespective of
the number of health problems (P� 0.24 in all tests). The
effects of ODB eligibility on the level of use by male drug
users was found to approach conventional levels of sig-
nificance only for individuals with four or more health
conditions and with additional insurance coverage
(P� 0.06).

PARAMETER ESTIMATES – POISSON, NEGATIVE
BINOMIAL AND ZERO ALTERED MODELS

Parameters estimated using the Poisson, negative bi-
nomial and zero altered negative binomial models are
reported in Tables 5.6A (females) and 5.6B (males). The
results obtained using the two-part specification do not
appear to be robust to the choice of estimator. For fe-
males, AGE65 was statistically significant on the basis of
its t-ratios in all models. The AGE65*NPROB interaction
was statisticaly insignificant and had the anticipated posi-
tive sign in only the zero altered model. Likelihood ratio
tests of the hypothesis that the onset of ODB eligibility
has no effect on utilization could only be rejected for an
individual with 4 health problems and no additional drug
insurance when estimated using the zero altered negative
binomial (P� 0.031). For males, tests of this hypothesis
were not rejected in any of the models (P� 0.137).

DISCUSSION

The efficiency and predictive ability of models of individ-
ual-level health care utilization data can often be im-
proved by using estimation techniques which take into

account the special characteristics of the data. The dis-
tribution of the utilization measure considered here — the
number of different drugs consumed — is typical of other
health care utilization data such as physician visits or
length of hospital stay. Specifically, the distribution is
discrete, contains a large proportion of zeroes (is left-
skewed) and has a long right tail. This distribution mir-
rors the stylized fact that a large proportion of individuals
do not consume any health care services; a small propor-
tion of individuals, on the other hand, use a large number
of services. An estimation technique advocated for
modelling individual-level data with these characteristics
— the two-part model [13] — was one of several candidate
estimators and was found to perform well according to
model selection tests. The model consists of a probit
model of the use vs. non-use of prescription medicines
and a negative binomial model of the number of different
drugs taken in the subsample of drug users. This two-part
model dominated the Poisson, negative binomial and the
‘zero altered’ negative binomial model on both the mean
squared error (MSE) and Vuong non-nested model selec-
tion criterion. Duan et al. [13] report success of this
technique in estimating models of continuous individual-
level medical care expenditure data.
One of the candidate estimation techniques — the zero

alteredmodel — is useful when there exists a large propor-
tion of zeroes and there is some evidence that there is
heterogeneity between individuals reporting no drug con-
sumption over the survey period. This was thought to be
the case with the number of different drugs taken, in so far
as some of the zeroes might represent individuals with no
medical need, who had no intention of seeking health
care, and others were individuals who may very well have
had medical need, but did not seek care because of lack of
insurance, or other reasons. The zero altered model is
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Table 5.6A Poisson, negative binomial, and zero altered negative binomial estimates of prescription drug utilization:
females

Zero altered
Poisson Negative binomial negative binomial

Covariate Coef· t-ratio Coef· t-ratio Coef· t-ratio

Constant �0.845 �3.06 �0.917 �2.58 �0.566 �1.45
AGE65 0.282 4.00 0.296 3.80 0.239 2.82
DRUGINS 0.154 3.70 0.151 3.24 0.174 3.37
AGE65* �0.212 −3.84 �0.207 −3.53 �0.214 −3.39
DRUGINS
WORKING �0.090 −2.20 �0.076 −1.47 �0.045 −0.75
VGHLTH 0.306 5.16 0.302 4.74 0.240 3.13
GOODHLTH 0.574 9.83 0.571 9.03 0.455 6.02
FAIRHLTH 0.810 12.98 0.811 11.43 0.671 8.23
POORHLTH 1.151 15.63 1.159 14.62 1.022 11.48
NUMBPRB 0.132 13.47 0.147 10.76 0.119 7.75
AGE65* �0.003 −0.22 �0.012 −0.72 0.029 1.56
NPROBS
LHSIZE 0.086 2.33 0.086 2.07 0.090 1.98
INC1 0.120 1.87 0.126 1.51 0.138 1.52
INC2 0.055 1.12 0.069 1.10 0.085 1.23
INC3 �0.041 −0.86 �0.036 −0.58 �0.026 −0.37
PRIMARY �0.157 −2.32 �0.187 −2.54 �0.101 −1.23
SOMEHIGH �0.154 −2.34 �0.193 −2.63 �0.114 −1.39
COMPHIGH �0.143 −2.16 �0.172 −2.29 �0.122 −1.45
SOMEPOST �0.219 −3.20 �0.258 −3.25 �0.230 −2.59
AGE 0.009 2.17 0.010 1.85 0.007 1.14
log alpha 0.187 17.89 0.165 13.54

Splitting function

NPROBS �0.688 −12.59

novel in that it models two separate processes which are
assumed to have produced the observed distribution of
drug utilization. First, a latent variable — the probability
that an individual is in need of health care — is made
conditional on a vector of covariates. Second, the mean
utilization by those who are in need of health care (that is
conditional on another set of covariates) is estimated.
Estimates from the zero altered model were consistent

with prior hypotheses. For example, a regressor which
appeared in both parts of the model, the number of health
problems afflicting the individual, was associated with a
lower probability that the individual was not in need of
prescription drugs and also associated with an increased
level of drug utilization by those deemed in need of pre-
scription drugs. This model was explicitly rejected, how-
ever, indicating that either the splitting function was mis-
specified or the conceptual distinction between nonusers
and potential users is not important, at least for older
adults.
The way in which health status was modelled in the

estimating models proved to be important. Specifically,

the standard homoskedastic probit models of prescrip-
tion drug use was found to be rejected in favour of probit
models in which the variance (of the disturbances of the
underlying latent variable) was a function of self assessed
health status and the number of health problems. This
adjustment resulted in modest changes to the estimated
parameters of the standard probit model. This generaliz-
ed model also indicates that both the conditional mean
and dispersion in the underlying latent level of drug use
are increasing in the number of health problems. One
reason is that those reporting lower levels of health status
might have either untreatable conditions (and report con-
suming only a few drugs) or be treatable with a large
number of different drugs. This latter effect could be
explained by the fact that therapeutic drugs may generate
side effects that induce additional prescriptions to ameli-
orate the side effects.
The empirical model examined the effects on drug util-

ization of eligibility for zero copayment medicines under
the Ontario Drug Benefit programme. This exogenous
change in the effective price of prescription drugs was
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Table 5.6B Poisson, negative binomial, and zero altered negative binomial estimates of prescription drug utilization:
males

Zero altered
Poisson Negative binomial negative binomial

Covariate Coef· t-ratio Coef· t-ratio Coef· t-ratio

Constant �1.493 �4.85 �1.567 �3.70 �1.421 �3.19
AGE65 0.082 1.00 0.036 0.41 �0.176 −1.86
DRUGINS �0.015 −0.33 �0.041 −0.93 �0.107 −2.37
AGE65* 0.056 0.90 0.107 1.48 0.204 2.78
DRUGINS
WORKING �0.092 −2.37 �0.077 −1.74 �0.067 −1.44
VGHLTH 0.422 5.71 0.415 4.74 0.364 3.57
GOODHLTH 0.761 10.57 0.736 8.64 0.644 6.53
FAIRHLTH 1.174 15.77 1.169 13.23 1.071 10.54
POORHLTH 1.328 15.84 1.328 12.36 1.271 10.67
NUMBPRB 0.163 14.50 0.183 12.44 0.106 6.87
AGE65* �0.008 −0.57 �0.003 −0.15 0.010 0.48
NPROBS
LHSIZE 0.112 2.61 0.088 1.59 0.092 1.60
INC1 0.269 3.93 0.214 3.01 0.296 3.98
INC2 �0.096 −1.92 �0.108 −2.06 �0.088 −1.60
INC3 �0.022 −0.49 �0.032 −0.57 �0.017 −0.28
PRIMARY 0.058 1.01 0.087 1.06 0.092 1.07
SOMEHIGH 0.013 0.22 0.030 0.37 0.028 0.32
COMPHIGH 0.000 −0.01 0.005 0.06 0.007 0.08
SOMEPOST 0.008 0.13 0.015 0.16 0.002 0.02
AGE 0.014 2.96 0.015 2.37 0.020 3.00
log alpha 0.309 18.25 0.268 14.64

Splitting function

VGHLTH �0.253 �1.00
GOODHLTH �0.618 �2.11
FAIRHLTH �0.597 �1.25
POORHLTH �0.595 �0.47
NPROBS �1.262 �5.48

exploited to investigate aspects of the drug utilization by
individuals aged 55—75. Consistent with the existing evi-
dence, the onset of full insurance was associated with an
increase in drug utilization. The focus of the analysis was,
however, on the incidence of the subsidy. Are the in-
creases in utilization observed concentrated among those
with lower health status? If the additional health services
are provided to seniors with lower health, then a policy of
subsidizing prescription drugs may be satisfying distribu-
tional criteria.
Estimates from the two-part model indicated that the

provision of public insurance favours individuals with
lower levels of health status. Increases in utilization after
the onset of public insurance were found to be higher
among individuals with lower levels of health status. It
should be noted, however, that these results were some-
what sensitive to the choice of estimator. Specifically,
other models did not predict this distributive effect.
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INTRODUCTION

Estimates of health care demand (and policy recommen-
dations based on such estimates) have been shown to
depend on the empirical specification used in the analysis.
If such specifications do not reflect the underlying behav-
ioural structures that drive health care utilization, esti-
mates will not accurately reflect actual use, and suggested
policies may have unintended consequences. In this pa-
per, we evaluate an innovative specification, the finite
mixturemodel (FMM), to estimate utilization and expen-
diture relationships in behavioural health care.
The FMM has the ability to distinguish between dis-

tinct classes of users of behavioural health care (for in-
stance, the severely mentally ill, who typically are high
intensity users, and persons without severe mental illness,
who are typically more moderate users of care). Mental
illness has been classified by diagnosis, severity of symp-
toms, aetiology and clinical course. Although adequate
for some purposes, for resource allocation purposes, it
may be preferable to group patients on the basis of utiliz-
ation. In applications where data exist in subgroups,
FMMs offer a number of advantages over standard spec-
ifications, including more accurate predictions of average
use and expenditure for each subgroup.
Mental health care is increasingly financed on a

capitated basis in the USA. Payment rates are usually set
according to some function of the mean cost of providing
treatment for a particular patient type, sometimes with an
adjustment for financial risk. While some jurisdictions set
rates through a competitive bid process (e.g. Medicaid in

Massachusetts and New York, although the latter had to
adjust such rates in 1996 to bring the rates into line with
provider costs), more commonly, rates are set through
some process of risk assessment and risk adjustment [1].
Multivariate techniques are usually used in the first stage
of this process to identify the relative importance of differ-
ent risk factors. For instance, the Medicare programme
uses model fit between historic costs and potential risk
stratifiers as one criterion for choosing risk adjusters [2].
Some states ‘carve-out’ mental health care from
Medicaid, and carve-out providers may or may not be
paid on a capitated basis. When they are paid on such a
basis, the rates are often set to reflect some measure of
projected or historical costs [3]. Because the FMM is
more flexible than standard specifications, fitted means,
variances and predicted distributions based on such esti-
mates may more accurately reflect the true distributions
of costs. These advantages could result in more rational
allocations of health care resources that are necessary to
ensure persons with severe mental illness are able to
receive adequate care.
The main objective of this paper is to determine if the

FMM does indeed provide a better fit of behavioural
health care data than the standard models currently used
in practice. We are particularly interested in the ability of
the FMM to predict the use and expenditures of care for
high intensity users. Standard models consistently fail to
accurately estimate the resource consumption needs of
this group [4].
We demonstrate the practical importance of correctly

specifying health care utilization relationships in the con-
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text of setting appropriate reimbursement rates in
capitated environments. Should capitation rates not re-
flect the true average costs of treating certain patient
groups, providers will have an incentive to cream-skim —
denying care to patient groups whose costs of treatment
systematically exceed the reimbursement rate and recruit-
ing patient groups whose costs of treatment are below the
reimbursement rate. Furthermore, if providers cannot
adequately pool risks across a sufficiently large client
base, care may also be denied to patients whose treatment
costs are highly variable unless reimbursement strategies
are also adjusted for financial risk. Thus, to ensure that
vulnerable populations are adequately served in such
financial environments (e.g. rural settings), payors need to
be able not only to predict accurately mean costs of care
for various patient populations, but also to predict the
distribution of these costs.
It is well documented that a minority of patients con-

sumes the larger share of outpatient behavioural health
care. In a review of the literature, Kent et al. [5] reported
most studies found 10—20%of patients could be classified
as ‘heavy users’, consuming between 50—80% of all men-
tal health services. For instance, Taube et al. [6] found
fewer than 10% of persons who used any outpatient
mental health care made more than 25 visits, and used
50% of all services. At the other extreme of the care
distribution, Howard et al. [7] found two-thirds of their
patients used less than one-quarter of all services. Such
distributions are endemic in a variety of behavioural
health care settings and insurance environments [8,9].
While economists have usually represented such phe-

nomena using a continuous distribution with extreme
skew, epidemiological analyses have found that behav-
ioural health care users empirically tend to fall into dis-
crete groupings. Ford et al. [10] determined depressives
could be classified into two groups (those patients with
major depression and those patients with depressed
mood) by use of health services. Perry et al. [11], in a
study of persons suffering from personality and affective
disorders, determined these patients fell into one of three
clusters of users. Smith and Loftus-Rueckheim [12]
identified four distinct groupings among mental health
care users in general, with degree of disability acting as a
critical stratifying variable. Unfortunately, such analyses
have tended to be exploratory in nature, and are of
limited use when predicting economically-relevant be-
haviours. These findings suggest, however, that users of
mental health care may indeed fall into distinct groups,
and that utilization behaviours may differ across user
groups.
Most economic analyses of health care utilization have

adopted the two-part empirical specification. Two-part
models represent the utilization decision with two equa-

tions: one to identify which factors affect the decision to
seek any care, and the second to determine how much
care is demanded among the subgroup of users. Such
specifications were developed and evaluated in general
health care applications by Duan et al. [13]. The model
has been recently adapted to accommodate count data,
appropriate when use is measured by number of contacts
rather than total cost of all contacts [14]. Two-part
models are also the standard specification in the analysis
of behavioural health care demand [15—19].
The performance of the two-part model is potentially

superior to single-equationmodels because it can accom-
modate possible heterogeneity between users and non-
users of (behavioural) health care. Statistical comparisons
of these two models suggests differences between users
and non-users are meaningful [15,16,18,20]. Because its
authors recognized that users and non-users of health
care might behave differently, they were able to predict
much more accurately the cost of care and responses to
various demand stimuli than could be obtained from
single equation models. However, behavioural health
care tends to be characterized by extreme distributions
that this model is unable to completely accommodate.
Other researchers have had to resort to truncating data at
some arbitrary amount in order to achieve satisfactory
statistical performance with standard models [4,21,22].
The FMM may be better able to predict the tail of the
distribution if that tail represents a unique group of users.
The two-part model forces a sharp dichotomy between

users and non-users of care. This is intuitively appealing
when examining episodes of care since the decision to
seek care is usually determined unilaterally by the patient,
whereas patient and provider jointly determine subse-
quent use. Such arguments do not apply when estimating
annual patterns of use, since multiple episodes of care
may occur in any given year. Thus, the structural appeal
of the standard two-part model is less obvious when the
goal is to predict annual costs as required for rate-setting
exercises. Furthermore, because all users of care are rep-
resented by one equation in the two-part model, it does
not allow for heterogeneity in behaviours between sub-
groups of users. If users of behavioural health care are
drawn from distinct groups (e.g. high, medium, and low
intensity users), the two-part model will not be able to
adequately represent demand for behavioural health care
services.
In this paper, we employ an innovative specification,

the FMM, to estimate the utilization of and expenditures
on behavioural health care. The FMMoffers a number of
potential advantages over standard specifications: two-
part count models for visits and the log repression as the
second part of the two-part model for expenditures. Not
only does the FMM accommodate heterogeneity be-
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tween types of users of behavioural health care, but the
model can serve as an approximation to any true, but
unknown, probability density [23,24]. Its growing popu-
larity is reflected in an increase in the number of recent
regression-based applications in economics that employ
the method [25—30]. To our knowledge, however, the
only published application of the FMM in health care
utilization analysis is the study byDeb and Trivedi on the
use of outpatient visits by the elderly [31].

ECONOMETRIC MODELS

Consider demand measured in terms of expenditures on
care (c) or utilization of specific services (e.g. number of
visits, v). Utilization and expenditures are assumed to
depend on a set of observable explanatory variables,
which is denoted by the vector, x.

COUNT DATA (VISITS)

The two-count models we wish to consider for visits are
the two-part model and the FMM. We choose the nega-
tive binomial density as the base-line density for both
classes of models. Of the densities available in the statisti-
cal literature for econometric models of count data, the
family of negative binomial densities is the most general
and flexible.
The negative binomial density is given by:
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. The parameter �

measures the degree of overdispersion relative to the
Poisson density (which is a special case obtained when
�� 0). Most health utilization data are strongly overdis-
persed and cannot be adequately represented by the Pois-
son model. While � measures the degree of overdisper-
sion, the choice of k dictates the functional relationship
between the mean and the variance of the random vari-
able. We choose k� 1 because of the evidence in its
favour demonstrated in previous studies [14,31]. While,
in general, it is possible to estimate k among with �, it is
not desirable for identification reasons.
We use the hurdle model [14] as the standard specifica-

tion for comparison purposes. The hurdle model belongs
to the class of two-part models in that it consists of a first
stage, that identifies factors that distinguish between
users and non-users of care, and a second stage, that
determines which factors affect the level of health care
chosen by users. The first equation of such models esti-

mates the dichotomous event of having zero or positive
health care use. For a model based on negative binomial
densities. (Equation 6.1), the first equation is defined by:
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A second equation is used to determine how much care is
demanded conditional on utilization being positive.
Hence, once the ‘hurdle’ of positive use is crossed, the data
are assumed to follow the density for a truncated bi-
nomial distribution given by:
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The second stage equation is estimated over the sub-
sample of users of care. The coefficients of both stages, �

�
and �

�
, can be estimated by maximum likelihood tech-

niques.
In a FMM, the random variable, v

�
, is postulated as a

draw from a superpopulation which is an additive mix-
ture of C distinct populations in proportions �

�
, . . ., �
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,
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where the mixing probabilities, �
�
, are estimated along

with all other parameters, denoted �
�
, and the f

�
(v � �

�
) are

defined by the density in Equation 6.1. Note that � and �
are allowed to vary across components, i.e. both location
and scale are freely estimated. In this paper, we consider
models with only two points of support, i.e. C� 2. The
results of Deb and Trivedi [31] suggest the two-point
FMM is sufficiently flexible to explain health care counts
quite well.

CONTINUOUS DATA (EXPENDITURES)

Most density functions for non-negative continuous ran-
dom variables (e.g. lognormal, gamma, Weibull) exclude
zero from their support. Moreover, continuous densities
do not allow positive mass at any particular value in their
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supports. Thus, in the continuous case, there exists no
density function that can represent the typical utilization
pattern in which a large number of people consume no
health care. Consequently, it is possible to devise a con-
tinuous version of the FMM, but only for positive expen-
ditures. For this reason, we limit our comparisons in the
continuous case to specifications that model only the
behaviour of the subpopulation of users of any behav-
ioural health care. We present a new approach to
modelling the second part of standard two-part models.
For continuous variables such as expenditures, the

second part of the two-part model is typically estimated
using a linear regression with the logarithm of expendi-
tures as the dependent variable. This approach provides
the same parameter estimates for regression coefficients
as a maximum likelihood approach that assumes expen-
ditures follow a lognormal distribution, i.e.:
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When the data are not lognormally distributed, linear
regression (or lognormal maximum likelihood) provides
consistent (but not efficient) coefficient estimates. Con-
sistent estimates of E(c

�
�x

�
) are typically obtained by the

homoskedastic smearing retransformation of Duan et al.
[13]. Such estimates of E(c

�
�x

�
) can be significantly biased

in the presence of heteroskedasticity so heteroskedastic
smearing transformations may be preferable [32]. If the
data can be stratified into groups such that the errors
within each group are homoskedastic, then heteroskedas-
tic smearing factors can be obtained by calculating a
separate smearing factor for each group.
In the FMM for expenditures, the density of c

�
is postu-

lated as a draw from a superpopulation which is an
additive mixture of C distinct populations in proportions
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where f
�
(c � �

�
) is the component lognormal density de-

fined by Equation 6.6. Both � and � are allowed to vary
across components.
Maximum likelihood estimates for all models are ob-

tained using the Broyden—Fletcher—Goldfarb—Shannoal-
gorithm in SAS/IML [33]. Robust standard errors (sand-
wich-type) of parameter estimates are reported.

MODEL SELECTION STATISTICS

Weuse three criteria to compare models in-sample. These

include two traditional model selection criteria based on
themaximized log-likelihood values with penalties for the
number of parameters. The Akaike information criteria
(AIC) is given by:

AIC��2LogL � 2K,

and the Bayesian information criteria (BIC) by:

BIC��2 logL �K log(N),

where logL denotes the maximized log-likelihood value,
K is the number of parameters in the model and N is the
sample size. Models with smaller AIC or BIC values are
preferred. These are valid even in the presence of mis-
specification [34]. In addition to the model selection
criteria, we evaluate the goodness of fit (GoF) of each
model using a chi-square test statistic that compares the
difference between sample and fitted cell frequencies in
general models with covariates [35]. The test is quite
general and is applicable to discrete and continuous data.
If a model adequately predicts the cell frequencies ob-
served in the data, the GoF statistic fails to reject the null
hypothesis of adequate fit. Smaller values of the test are
associated with models with better fit. Note that the GoF
test is based on the data density, hence requires no re-
transformation in the log ordinary least squares (OLS)
case. We also evaluate the ability of the two models to
estimate the conditional mean in the right tail of the
distribution by comparing fitted values from the standard
and FMMs for several upper-tail percentiles.
When highly non-linear models, such as the FMM, are

estimated, there is always a risk of over fitting the model,
i.e. in-sample comparisons may favour complex models
even when there may be no gains in out-of-sample fore-
casting. Although the AIC and BIC are designed to guard
against such possibilities, whenever possible, split-sample
analysis is desirable to compare the performance of the
competing models out of sample. Thus, we also estimate
themodels using 75%of the sample, holding back 25%of
the observations for out-of-sample analysis to check the
validity of our conclusions based on in-sample model
selection criteria. The log-likelihood value is the most
direct measure of out-of-sample fit of the model. Models
with larger log-likelihood values are preferred. The nega-
tive of the log likelihood may be interpreted as the Kull-
back—Leibler information criterion (up to a constant), a
powerful ‘badness’ criterion [36]. We also use a modified
version of the Andrews’ test as a heuristic with the expec-
tation that models with better fit will have smaller values
of the test statistic in the hold-out sample. In each case, we
repeat the split-sample analysis 100 times to assess the
robustness of our conclusions.
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Table 6.1 Summary statistics of patient characteristics

Mean or
Variable percentage

Age (years) 53.17
Gender (female� 1) 71.27

Diagnosis
Substance/alcohol abuse 4.64
Schizophrenia 1.82
Major affective disorder 1.88
Other mental illness 91.66

Location (urban� 1) 24.91

N� 1594.

DATA

We base our analysis on data from the 1987 National
Medical Expenditure Survey [37], a national probability
sample of the civilian, non-institutionalized population,
consisting of 38 000 individuals from 15 000 households.
We restrict our analysis to respondents aged 18 and older.
We believe the emotional disorders experienced by
children, and their pathways to care, are distinct from
those of adults with behavioural disorders. Data were
collected on self-reported health status, use of health care,
associated expenditures and respondent characteristics.
Data on use and expenditures were verified with
providers of these services. We base our analysis on a
sub-sample of 1594 individuals who had any medical
encounter, including prescription medications, with an
associated ICD-9 code indicative of a behavioural dis-
order (i.e. ICD-9 codes 290—319, 331).
No standard definition of a mental health visit exists in

the literature [38]. We identify office-based use of mental
health care when the respondent reported that mental
health was the main reason for seeking services. Since this
definition is likely to truncate less rather than more inten-
sive service users, it should minimize the observed dif-
ferences between groups of users. Thus, any findings of
distinct user groups should be robust to more liberal
definitions. Use of care is measured by a count of the
number of outpatient visits made in calendar year 1987.
Expenditures on care are measured as the total actual

payments made from all sources (paid directly by pa-
tients, or through public or private insurers) for all out-
patients modes of care and prescription drug expendi-
tures for which amental health condition was listed as the
main reason for seeking care. Consequently, every indi-
vidual in the sample has positive expenditures. However,
only 51% of these individuals sought office-based treat-
ment for a mental illness. Thus our visits variable includes
zeros, although our expenditure variable does not.
We restrict our set of covariates to variables that are

typically used to stratify expenditures for rate-setting pur-
poses: patient age, gender and diagnosis [39]. These vari-
ables are commonly available in different data sets. We
also include whether or not a patient resided in an urban
setting. This variable serves as a proxy for differences in
practice costs, which are usually higher in urban than
rural areas. Such adjustments for geographic differences
in practice costs are not uncommon in rate-setting exer-
cises, and are mandated for the Medicare programme in
the USA [40]. While a larger set of variables is often used
in a full demand specification (including, notably, price
and income), our purpose in this paper is not to study
demand relationships per se, but to predict expenditures
and utilization. Our decision to take the more limited

approach stems from our desire to improve the methods
by which expenditures and use are predicted for setting
appropriate reimbursement rates under capitation. As a
result, it is appropriate to limit our analysis to the set of
variables commonly used in such exercises.
Respondents were asked to report both age and gen-

der. Gender is represented by a dummy variable that
assumes a value of 1 if the respondent reported being
female, 0 otherwise. Respondents were also asked to pro-
vide diagnostic information, and their responses were
converted to International Classification of Diseases 9th
Revision (ICD-9) codes by trained transcribers. These
data may be less reliable than diagnoses available in
medical charts. To partially compensate for the impreci-
sion with which respondents may have reported their
diagnoses, we define our diagnostic categories very
broadly, e.g. substance/alcohol abuse (ICD-9 codes
303—305), schizophrenia (code 295), major affective dis-
orders (codes 291—292, 296—299) and all other mental
disorders. Furthermore, such broad categorizations are
typically used in rate-setting exercises. Location is a
dummy variables that assumes a value of 1 if the respon-
dent resided in an urban setting (metropolitan statistical
area), 0 otherwise.

RESULTS

Table 6.1 provides summary statistics for the personal
characteristics used in this analysis. The average age of
respondents was 53 years, with a range of 18—99 years.
Males made up 29% of the sample. The most common
diagnosis was other mental disorder (92%), followed by
substance and alcohol abuse disorders (5%), affective
disorders (1.9%) and schizophrenia (1.8%). Table 6.2 re-
ports summary statistics of the distribution of visits and
expenditures. The number of annual visits averaged
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Table 6.2 Summary statistics of use

Statistic No. visits Expenditures ($)

Mean 3.88 401.77
S.D. 11.59 1171.40
Skewness 8.08 9.37

Minimum 0 1.00
5% 0 10.00
10% 0 15.00
25% 0 34.00
50% 1 99.78
75% 3 297.60
90% 9 861.80
95% 18 1860.00
Maximum 218 22 385.00

N� 1594.

Table 6.3 Parameter estimates and model selection criteria of models for visits

Hurdle Finite mixture

Binary choice Positives Component 1 Component 2

Constant 1.492* 0.269 1.258* 3.392*
(0.127) (0.643) (0.254) (0.316)

Schizophrenia 0.573* 3.626* 1.057* 1.247*
(0.276) (0.597) (0.392) (0.231)

Major affective disorder 1.181* 2.415* 1.237* 1.752*
(0.362) (0.548) (0.306) (0.262)

Drug or alcohol abuse �0.159 0.303 �0.243 0.160
(0.174) (1.732) (0.295) (0.253)

Urban 0.253* 1.988* 0.045 0.824*
(0.084) (0.394) (0.150) (0.185)

Female �0.031 �0.443 0.053 0.011
(0.083) (0.321) (0.117) (0.167)

Age �2.967* �4.214* �2.600* �3.362*
(0.214) (0.923) (0.470) (0.590)

� 21.063* 1.896* 18.740*
(2.177) (1.208) (4.514)

� 0.666*
(0.091)

Log likelihood �3108 �3096�
AIC 6246 6226�
BIC 6326 6317�
GoF 75.8* 47.4*

*Significant at the 5% level.
�Model preferred by the statistic.
N� 1594, df of GoF� 19.
GoF� ( f�F)����( f�F), where f is anM� 1 vector denoting the empirical frequency of observations lying inMmutually exclusive
partitions of the range of the outcome variable (with the (M� 1)th partition exhausting the range), F is the vector of associated predicted
probabilities and � is the covariance matrix of the difference in frequencies. In the case of a count variable, each count value forms a natural
partition. All count values greater than the 95th percentile are aggregated into one partition because the data are very thinly distributed across
individual values in that range.

slightly less than four, and the average utilization was
$402. In both cases, however, a great deal of variability
can be observed, and the data are very skewed.
Manning [32] has shown that the performance of the

log regression model can be improved if any existing
heteroskedasticity is taken into account. In our data, an
analysis of the residuals from the log OLS regression
using theWhite test for heteroskedasticity shows that age
and urban status are strong sources of heteroskedasticity.
Therefore, we split the data into four groups stratified by
urban status and age (greater or less than 55). White tests
for heteroskedasticity conducted on the residuals within
each group show virtually no evidence of additional het-
eroskedasticity.
Tables 6.3 and 6.4 provide the parameter estimates and

model selection criteria of the standard and FMMs based
on the full sample for number of visits and positive expen-
ditures, respectively. Based on the full sample analysis,
both the BIC and AIC support the FMM specification
over the standard specification, including the hetero-
skedastic specification of the log regression model in the
case of expenditures. This result is further supported by
the Andrews GoF test. Although not tested formally, it is
also apparent that the impacts of some of the variables
are very different for different sub-groups of users. For
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Table 6.4 Parameter estimates and model selection criteria of models for expenditures

Finite mixture

Lognormal Component 1 Component 2

Constant 5.144* 3.936* 6.731*
(0.135) (0.193) (0.417)

Schizophrenia 1.877* 2.699* 0.875
(0.209) (0.435) (0.601)

Major affective disorder 1.580* 1.684* 1.394*
(0.267) (0.495) (0.305)

Drug or alcohol abuse 0.332 �0.168 0.716*
(0.217) (0.192) (0.247)

Urban 0.355* 0.164 0.546*
(0.091) (0.116) (0.148)

Female �0.154 �0.183 �0.241
(0.085) (0.113) (0.157)

Age �1.005* �0.187 �2.117*
(0.198) (0.268) (0.427)

� 1.486* 1.057* 1.241*
(0.025) (0.078) (0.073)

� 0.535*
(0.090)

Log likelihood �10333 [�10 321] �10299�
AIC 20682 [20 665] 20631�
BIC 20725 [20 724] 20722�
GoF 89.8* [74.3*] 25.6

*Significant at the 5% level.
�Model preferred by the statistic.
N� 1594, df of GoF� 19.
GoF� ( f�F)����( f�F), where f is anM� 1 vector denoting the empirical frequency of observations lying inMmutually exclusive
partitions of the range of the outcome variable (with the (M� 1)th partition exhausting the range), F is the vector of associated predicted
probabilities and � is the covariance matrix of the difference in frequencies. In the continuous case, successive decile values of expenditures (in
the full sample) are used as cutoff values to create the endpoints of each partition.
Values in square brackets are from the heteroskedastic log regression model.

instance, while an age gradient is apparent in the expendi-
ture equation for high intensity users, age has no signifi-
cant impact on expenditures for low intensity users. The
standard model cannot uncover such a pattern because it
assumes that all users come from the same population.
The ability of the two models to estimate the condi-

tional mean (fitted values) in the upper tail is important
for their use in the design of reimbursement strategies that
adjust for financial risk. Without such strategies, small
providers who cannot adequately pool risks across a
sufficiently large client base may also deny care to pa-
tients whose treatment costs are highly variable. For
visits, conditional means are calculated using the for-
mulae implied by the distributions underlying each
model. The conditional means for expenditures based on
the FMMare also calculated using expectation formulae.
In the case of the standard model for expenditures, re-
transformation from the log scale to the raw scale is
conducted using homoskedastic and heteroskedastic
smearing factors.

Figure 6.1 compares fitted values from the standard
and FMMs for several upper-tail percentiles. Although
fitted values from both models are much smaller than the
corresponding percentile values of actual use (to be ex-
pected given the small proportions of variance explained
by models with demographic covariates), the FMM does
considerably better than the standardmodel with homos-
kedastic retransformation, especially as higher percentile
values are considered. The standard model with hetero-
skedastic retransformation performs substantially better
than the model with homoskedastic retransformation
and compares favourably with the FMM except in the
extreme upper tail of the distribution. If the objective of
the statistical exercise is to estimate conditionalmeans for
‘typical’ individuals (not the sickest), the standard model
with heteroskedastic retransformation may be adequate.
But overall, in spite of using the same set of covariates, the
FMM has superior ability to predict the actual distribu-
tions of visits and costs, particularlly in the upper tail.
Table 6.5 reports statistics used to compare the per-
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Table 6.5 Model selection comparisons using split-sample replications

Visits (% cases in favour of finite mixture Expenditures (% cases in favour of finite
versus hurdle) mixture versus lognormal)

In-sample Out-of-sample In-sample Out-of-sample

Log likelihood 97 74 100 [100] 93 [88]
GoF 99 92 100 [100] 80 [73]

Values in square brackets are comparisons between the finite mixture and the heteroskedastic log regression model.

Table 6.6 Distribution of fitted means from finite mixture component densities

Visits Expenditures

Component 1 Component 2 Component 1 Component 2

Mean 1.1 9.5 102.5 750.1
S.D. 0.8 11.2 200.9 635.1
Min. 0.3 1.2 56.2 186.3
Max. 8.6 154.2 5378.4 8794.6

Figure 6.1. Upper tail of the distribution of fitted values. Light bars denote the standard model (for expenditures, homoskedas-
tic retransformation is applied to the standard model). Striped bars denote the standard model for expenditures with heteroskedastic
retransformation. Dark bars denote the FMM

formance of the different specifications using split-sample
analysis. As expected, the FMM does considerably better
than the standard model (even with heteroskedastic re-
transformation) across the 100 in-sample replications.
However, even based on out-of-sample results, the FMM
dominates the standard model in the vast majority of
cases, both in terms of improvement in log likelihood, and
the smaller GoF statistic. The size of the advantage of the
FMM over the standard specification can be represented
by the difference in the log likelihood of the twomodels as
observed in reeated split-sample analyses. In a Bayesian
context with equally likely priors of either the FMM or
the standard model being the true data generating pro-
cess, the difference in the log-likelihood values of the two
models is the log of the posterior odds ratio of the FMM

over the standard model given the data. The distribution
of these log odds ratios across the split-sample replica-
tions is displayed in Figure 6.2. Positive values indicate
the FMM fits the data better than the standard specifica-
tion. Depicted graphically, it becomes obvious not only
that the FMM dominates the standard model in the
majority of cases, but also that themodal log odds ratio of
the difference, even in the out-of-sample distribution, is
approximately 5 for both visits and expenditures. Taken
together, the in-sample and out-of-sample results provide
strong evidence that the standard model does not ad-
equately capture the hterogeneity amongst users of be-
havioural health care. Indeed, these results suggest that
there are (at least) two distinct groups of users of behav-
ioural health care.
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Figure 6.2. Log odds ratio of the likelihood of the data generating process being FMM relative to the standard model

Figure 6.3. Component densities of the FMM. The bold curves correspond to the density associated with the high average-use,
high variability group

Table 6.6 reports the distribution of fitted means from
the component densities of the FMM. In the case of visits,
low intensity users (about two-thirds of the sample) aver-
age 1.1 visits apiece, while high intensity users average 9.5
visits. Similarly, low intensity users average $102 in men-
tal health care expenditures, while high intensity users
average $750. Inspection reveals the group with distinctly
higher average use also has higher variance. Differences
in the higher moments are also apparent as can be seen in
Figure 6.3 which displays the average component den-

sities (average of densities at each point for all individuals
in the sample). In both cases, the right tail of the density
associated with the highmean and variance component is
considerably longer than the right tail of the density
associated with low-mean component. This pattern of
less predictable use in the high intensity group has signifi-
cant implications for the feasibility of capitated financing
of behavioural health care.
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AN APPLICATION TO RATE-SETTING

To demonstrate the practical importance of the differen-
ces in model fit, we compare the relative performance of
the two models in estimating risk-adjusted capitation
rates (which we assume are set equal to the predicted use
and costs for patients with particular diagnoses). Such
rates should mimic the distribution of non-parametric
estimates of group-specific averages over repeated
samples taken from the same population. In order to limit
potential cream-skimming of patients with certain diag-
noses, the estimated rates should not systematically be
above or below the non-parametric estimates. For this
exercise, we use the median value of rates calculated for
repeated samples as a (robust) measure of central ten-
dency. It is also desirable for the estimated rates to be
relatively precise: if a method generates sample means
that aremore variable than the non-parametric estimates,
it increases the chance that the model-based estimate will
result in a rate that will be considered too high or too low.
More precisely, let u

�
denote mental health care use (as

measured by visits and costs) for patient i. For each pair
of samples (all individuals and specific sub-groups) in the
split-sample analysis, we calculate rates using (i) the aver-
age of u

�
, (ii) the average of E(u

�
�x

�
) based on the FMM,

and (iii) the average of E(u
�
� x

�
) based on the standard

model. In the case of expenditures, conditional means
based on the standard model are calculated using homo-
skedastic and heteroskedastic smearing retransforma-
tions. Each of these three measures is calculated for all
persons with any behavioural disorder diagnosis, as well
as two subgroups (thosewith a diagnosis of schizophrenia
and those with a diagnosis of a major affective disorder).
Because (i) is a non-parametric estimate of the group
averages, it serves as the benchmark rate for the compari-
son.
To measure the precision of our estimates, we calculate

the 2.5th and 97.5th percentile values of the distribution
of estimated costs based on 100 bootstrap replications.
These may be somewhat imprecise, in general, given the
number of replications. Although precise standard devi-
ations (SDs) could be calculated using similar methods,
the percentile approach accommodates asymmetry in
confidence intervals. Since such asymmetry is likely in
data of this nature, we chose to report percentile-based
results rather than the more typical SDs. Note that while
more replications are generally recommended, the statis-
tics in this case are the percentiles of the distribution of
samplemeans, not of the distribution of individual values.
The former are considerably more stable than the latter
and we found 100 replications to be adequate for our
purpose.

Figure 6.4 displays the median values of the distribu-
tions of both the in-sample and out-of-sample non-par-
ametric and parametric means of visits and expenditures,
calculated for each of 100 replicated in-sample and out-
of-sample estimates from the split-sample analysis. The
dispersion of these means is represented by their 95%
confidence intervals over the 100 replications. The figure
shows that the FMM rates mimic the distribution of the
non-parametric means much better than means based on
the standard model for the severely ill, high-risk groups
(although the difference between the two models is small
for the overall sample). Median values of the means cal-
culated using standard models sometimes differ substan-
tially from the means based on non-parametric and
FMM methods. Furthermore, the confidence intervals
are considerably wider when the standard model rather
than the FMM is used to generate means. For expendi-
tures, there is little difference between rates set by homo-
skedastic and heteroskedastic retransformation methods.
The superior performance of the heteroskedastic retrans-
formation relative to the homoskedastic method in terms
of individual predictions does not appear to translate into
superior predictions of means across samples. This is
likely because standard model estimates are based on an
inferior distribution compared to FMM regardless of
type of retransformation. It appears that the superior
performance in terms of traditional measures of fit of the
FMM translates into stabler estimates of subgroup aver-
age visits and costs, and this has important implications
for rate-setting applications.
Reinterpreted in terms of rate-setting performance, the

first four columns of Figure 6.4 reveal that, taken over all
groups of patients, the average costs are about the same
regardless of method of estimation.While the FMMgen-
erates predicted costs that are higher for high-intensity
users than standard models, it also predicts lower costs
for lower-intensity users (hence, the overall average cost is
about the same). Given the FMM has better overall fit
than the standard models, we conclude that standard
models underestimate the resource requirements of this
high-use sub-population, which typically includes the
most severely and persistently mentally ill patients.

DISCUSSION

The objective of this paper was to compare the perform-
ance of the FMM to the standard two-part model used to
represent health care utilization in the past. In the case of
visits, the FMM is compared to the two-part count
model. In the case of expenditures, the FMM for positive
expenditures is compared to the second part of the stan-
dard two-part model, a log regression. One significant

96 ECONOMETRIC ANALYSIS OF HEALTH DATA



Figure 6.4. Distribution of mean predictions across split-sample replications.Median, 2.5th percentile and 97.5th percentile are shown.
‘smp’ denotes estimates based on the sample mean; ‘fm’ denotes mean predictions based on the FMM; ‘std’ denotes mean predictions
based on the standard model (lognormal with homoscedastic smearing retransformation); ‘het’ denotes mean predictions based on the
heteroscedastic standard model (lognormal with heteroscedastic smearing retransformation)

disadvantage of the two-partmodel is that it assumes that
all users come from the same population. A number of
descriptive studies in the behavioural health care arena
suggest that users of behavioural health care may belong
to distinct user classes stratified by illness severity. Be-
cause severity of illness is difficult to operationalize in a
meaningful way, it becomes an important source of unob-
served heterogeneity in health economic analyses. Unlike
standard two-part models, FMMs can, theoretically, ac-
commodate such latent differences in illness severity.
We evaluated the empirical performance of the FMM

against the standard specification using data from the
NationalMedical Expenditure Survey. Using a variety of
model evaluation strategies, we conclude that the FMM
does indeed provide a better fit of cost and use data than

the standard model, particularly in the upper tail of the
distribution.
Previous analyses have shown the inadequacy of estab-

lished models for risk adjustment purposes. Newhouse
[41] has argued that the future viability of capitated
payment structures will require improvements in risk
adjustment, either through expanding the set of stratify-
ing variables or by changing the estimation methods
used. Measurement issues limit the feasibility of the first
solution. In contrast, it appears that the FMM consti-
tutes a superior estimation strategy for setting capitation
reimbursement rates because it can more accurately pre-
dict overall expenditures than standard estimation stra-
tegies.
Our results suggest there are (at least) two distinct
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groups of users of behavioural health care. The high
intensity user group exhibited not only higher expected
expenditures, but less predictable expenditures as well. If
the costs of caring for this group are less predictable than
for the low intensity users, these patients may be at risk
for cream-skimming by risk averse providers, and may be
at higher risk of being denied care. Unlike standard
models, the FMM generates superior estimates of vari-
ance that are necessary to make such adjustments. Fur-
thermore, for variability that can be attributed to observ-
able characteristics (e.g. diagnosis), the FMM generates
superior estimates of subgroup average costs.
There are a number of caveats to these results. First,

there are many possible sources of unobserved heterogen-
eity of which illness severity is only one. Regardless of the
source of this heterogeneity, the FMM performs better
than the standard specification in its presence. However,
the source of the heterogeneity is important from a policy
standpoint: if the high intensity user group is also the
group of most severely ill patients, cream-skimming un-
der capitation will effectively deny care to the group in
greatest need.
Second, we restricted our analysis to a comparison of

the two-component FMM and the standard specifica-
tion. It may be that users of behavioural health care can
be stratified into more than two groups. We felt it was
inappropriate to consider a larger number of components
with a sample of this size. Further analysis involving a
larger number of observations is needed to determine
whether users of behavioural health care belong to more
than two groups. The results of this paper do support the
position that there are at least two groups of users, and
that the standard model that treats these two groups as
being from the same population is mis-specified.
Third, we have not evaluated the FMM against other

strategies for count [42] and continuous [43] data recent-
ly proposed in the literature. Although beyond the scope
of this paper, these new approaches may also have desir-
able properties and deserve further study.
Fourth, these results are based on data taken from a

period when behavioural health care was generally de-
livered on a fee-for-service basis. Further analysis is
needed to determine to what extent our results may de-
pend on institutional arrangements for the payment and
delivery of care.
In conclusion, it appears that the FMM may offer a

superior specification of behavioural health care use com-
pared to the two-part model that has been the standard
specification in the field for the past 15 years. The FMM
provides more accurate estimates of the distribution of
use and expenditures, particularly in the upper tail of the
distribution. As a consequence, the FMM provides a
more appropriate rate-setting method for capitated reim-

bursement. While our results are only preliminary, it
would appear that the advantages of the FMM could
result in a more rational allocation of health care re-
sources that would ensure persons with severe mental
illness are able to receive adequate care.

REFERENCES

1. Holahan, J., Rangarajan, S. and Schirmer M. Medicaid
managed care payment methods and capitation rates: results
of a national survey, 1999. Urban Institute Working Paper
OP-26 1999.

2. Office of Strategic Planning. Report to Congress: Proposed
method of incorporating health status risk adjusters into
Medicare� choice payments, 1999. Health Care Financing
Administration.

3. Mauch, D. Rhode Island: an early effort at managed care. In
Paying for Services: Promises and Pitfalls in Capitation,
Mechanic, D., Aiken, L.H. (eds). Jossey-Bass: San Francisco,
CA, 1989; 55—64.

4. Fowles, J., Weiner, J., Knutson, D., Fowles, E, Tucker, A.
and Ireland, M. Taking health status into account when
setting capitation rates: a comparison of risk-adjustment
methods. J. Am.Med. Assoc. 1996; 276: 1316—1321.

5. Kent, S., Fogarty,M. andYellowees, P. A review of studies of
heavy users of psychiatric services.Psychiatric Services 1995;
46: 1247—1253.

6. Taube, C., Goldman,H., Burns, B. andKessler, L. High users
of outpatient mental health services, I: Definition and char-
acteristics. Am. J. Psychiatry 1988; 145: 19—24.

7. Howard, K., Davidson, C., O’Mahoney, M., Orlinsky, D.
and Brown, K. Patterns of psychotherapy utilization. Am. J.
Psychiatry 1989; 146: 775—778.

8. Lavik, N. Utilization of mental health services over a given
period. Acta Psychiatrica Scand 1983; 67: 404—413.

9. Mustard, C., Derksen, S. and Tararyn, D. Intensive use of
mental health care.Can. J. Psychiatry-Rev.Can de Psychiat-
rie 1996; 41: 93—101.

10. Ford, D., Anthony, J., Nestadt, G., Romanoski, A. The Gen-
eral Health Questionnaire by interview: performance in rela-
tion to recent use of health services. Med. Care 1989; 27:
367—375.

11. Perry, J., Lavori, P. and Hoke, L. A Markov model for
predicting levels of psychiatric service use in borderline and
antisocial personality disorders and bipolar type II affective
disorder. J. Psychiatric Res. 1987; 21: 215—232.

12. Smith, M. and Loftus-Rueckheim, P. Service utilization pat-
terns as determinants of capitation rates. Hospital Commu-
nity Psychiatry 1993; 44: 49—53.

13. Duan, N., Manning, W., Morris, C. and Newhouse, J. A
comparison of alternative models for the demand for medi-
cal care. J. Business Econ. Stat. 1983; 1: 115—126.

14. Pohlmeier, J. and Ulrich, V. An econometric model of the
two-part decisionmaking process in the demand for health
care. J. Human Resources 1995; 30: 129—160.

15. Watts, C.A., Scheffler, R.M. and Jewell, N.P. Demand for
outpatient mental health services in a heavily insured popu-
lation: the case of the Blue Cross and Blue Shield Associ-
ation’s Federal Employees Health Benefits Program.Health
Services Res. 1986; 21: 267—289.

16. Horgan, C.M. The demand for ambulatory mental health

98 ECONOMETRIC ANALYSIS OF HEALTH DATA



services from speciality providers.Health Services Res. 1986;
21: 291—319.

17. Scheffler, R. and Miller, A. Demand analysis of mental
health service use among ethnic subpopulations. Inquiry
1989; 26: 202—215.

18. Haas-Wilson, D., Cheadle, A. and Scheffler, R. The demand
formental health services: an episode of treatment approach.
Southern Econ. J. 1989; 56: 219—232.

19. Wells, K.B., Keeler, E. and Manning, W.G. Patterns of out-
patient mental health care over time: some implications for
estimates of demand and for benefit design. Health Services
Res. 1990; 24: 773—789.

20. Holmes, A. and Seb, P. Provider choice and use of mental
health care: implications for gatekeeper models.Health Ser-
vices Res. 1998; 33: 1262—1284.

21. Kronick, R., Dreyfus, T., Lee, L. and Zhou, Z. Diagnostic
risk adjustment for Medicaid: the Disability Payment Sys-
tem.Health Care Financing Rev. 1996; 17: 7—33.

22. Weiner, J., Dobson, A., Maxwell, S., Coleman, K., Starfield,
B. and Anderson, G. Risk-adjusted Medicare capitation
rates using ambulatory and inpatient diagnoses.Health Care
Financing Rev. 1996; 17: 77—99.

23. Laird, N. Nonparametric maximum likelihood estimation
of a mixing distribution. J. Am. Stat. Assoc. 1978; 73:
805—811.

24. Heckman, J.J. and Singer, B. A method of minimizing the
distributional impact in econometric models for duration
data. Econometrica 1984; 52: 271—320.

25. Heckman, J.J., Robb, R. and Walker, M. Testing the mix-
tures of exponentials hypothesis and estimating the mixing
distribution by the method of moments. J. Am. Stat. Assoc.
1990; 85: 582—589.

26. Gritz, M. The impact of training on the frequency and
duration of employment. J. Economet. 1993; 57: 21—51.

27. Wedel, M., Desarbo, W., Bult, J. and Ramaswamy, V. A
latent class poisson regression model for heterogeneous
count data. J. Appl. Economet. 1993; 8: 397—411.

28. Geweke, J. and Keane, M. Mixture of normals probit
models, 1997; 237. Federal Reserve Bank of Minneapolis
Staff Report.

29. Morduch, J. and Stern, H. Using mixture models to detect

sex bias in health outcomes in Bangladesh. J. Economet.
1997; 77: 259—276.

30. Wang, P., Cockburn, I. and Puterman,M. Analysis of patent
data — a mixed Poisson regression model approach. J. Busi-
ness Econ. Stat. 1998; 16: 27—36.

31. Deb, P. and Trivedi, P. Demand for medical care by the
elderly: a finite mixture approach. J. Appl. Economet 1997;
12: 313—336.

32. Manning, W. The logged dependent variable, heteroscedas-
ticity, and the retransformation problem. J. Health Econ.
1998; 17: 283—295.

33. SAS Institute. SAS Language and Procedures — Introduction
(1st edn). SAS Institute: Cary, NC, 1990.

34. Sin, C.-Y. and White, H. Information criteria for selecting
possibly misspecified parametric models. J. Economet. 1996;
71: 207—225.

35. Andrews, D. Chi-square diagnostic tests for econometric
models. J. Economet. 1988; 37: 135—156.

36. Sakata, S. and White, H. High breakdown point conditional
dispersion estimation with application to S&P 500 daily
returns volatility. Econometrica 1998; 66: 529—568.

37. National Center for Health Services Research and Health
CareTechnologyAssessment.NationalMedical Expenditure
Survey, 1987. Westat Inc., Rockville, MD, 1989.

38. Olfson, M. and Pincus, H. Measuring outpatient mental
health care in the United States. Health Affairs 1994; 13:
172—180.

39. Ettner, S., Frank, R., McGuire, T., Newhouse, J. and Not-
man, E. Risk adjustment of mental health and substance
abuse payments. Inquiry 1998; 35: 223—239.

40. Health Care Financing Administration. Data Fact Sheet,
1999. http://www.hcfa.gov/medicare/datafact.htm [17 No-
vember 1999].

41. Newhouse, J. Patients at risk: health reform and risk adjust-
ment.Health Affairs 1994; 13: 132—146.

42. Cameron, A.C. and Johansson, P. Count data regression
using series expansions: with applications. J. Appl.
Economet. 1997; 12: 203—223.

43. Blough, D.K., Madden, C.W. and Hornbrook, M.C.
Modeling risk using generalized linear models. J. Health
Econ. 1999; 18: 153—171.

99ESTIMATES OF USE AND COSTS OF BEHAVIOURAL HEALTH CARE



7

Latent Class versus Two-part Models in the
Demand for Physician Services Across the

European Union
SERGI JIME� NEZ-MARTI� N1, JOSE� M. LEBEAGA2 ANDMAITE

MARTI� NEZ-GRANADO1

�Universidad Carlos III de Madrid, Getafe, Spain and �UNED,Madrid, Spain

INTRODUCTION

During the last two decades, many European countries
have been reviewing their health systems. Table 7.1 shows
that the health systems differ across EU countries in
many respects: as the type of payment and functional role
of the physicians, the governments contribution to health
expenditure and the amount of co-payments of the pa-
tients of the health expenditure. Similarities in the reforms
undertaken are in the changing role of the state in health
care, the decentralization of the systems, the changing
role of public health provision and the increase in pa-
tients’ choice (selection of doctors and hospitals). The
implementation of any of these reforms requires a clear
knowledge of the characteristics that determine the de-
mand for health across the EU countries. However, esti-
mates of health demand are known to depend on the
empirical specification used in the analysis. If such specifi-
cations do not correspond to the underlying behavioural
structures that drive the demand of health, policy recom-
mendations based on their estimation may not have the
desired effects.
This paper addresses this issue and estimates demand

for health equations for the twelve EU countries listed in
Table 7.1 (France, Finland and Sweden are excluded from
the analysis because of the lack of adequate and/or suffi-
cient data). The goal is to provide evidence on the suit-
ability of different econometric specifications for count
equations collecting both number of visits to general
practitioners (GP) and specialists (SP).
Theoretical analyses of medical care utilization suggest

two main empirical approaches for modelling the de-
mand of health. The first approach takes the traditional
consumer theory and views this demand as patient deter-
mined. One-step econometric models for count data
(Poisson or negative binomial) have been estimated as a
counterpart of these theoretical models although the em-
pirical results contradicted the theory in many cases (see
Grossman [1] or Wagstaff [2]). The second approach
uses a principal—agent set-up in which the physician
(agent) determines the frequency of a treatment once the
patient (principal) has made an initial contact. Empirical
counterparts of this second generation of theoretical
models are the so called two-part econometric models
(TPM): the first part of the econometric specification
treats the decision to seek care as a binary choice out-
come and the second part treats the number of visits of
the individuals to physicians as a truncated count model
(see Cromwell and Michell [3] or Pohlmeier and Ulrich
[4]). However, the more recent empirical evidence sug-
gests that TPM can not separately identify the par-
ameters driving the two decision processes described
above (Santos-Silva and Windmeijer [5]). A widespread
alternative to TPM are latent class models (LCM). LCM
are based on the standard count data specification de-
scribed above (Poisson or negative binomial) but they
allow for the presence of unobservable heterogeneity
among individuals, dividing the population among fre-
quent and infrequent health care users. The distribution
function of the unobservable characteristics is approxi-
mated by a finite mixture distribution function (Heckman
and Singer [6]). The results of Deb and Trivedi [7,8], Deb
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Table 7.1 Some characteristics of National Health Systems of EU countries

Total health expenditure Public participation in
Doctors Physicians/1000� (as % GDP)� total health expenditure�
type of GP

Country payment�� gatekeepers� 1995 1996 1995 1996 1995 1996

Germany F No 3.4 3.4 10.2 10.6 78.1 78.3
Denmark F Yes 2.9 2.9 8.2 8.3 82.6 82.4
Netherlands C Yes 2.6 2.6 8.9 8.8 72.5 67.7
Belgium F No 3.4 3.4 8.2 8.6 88.7 88.8
Luxembourg F No 2.8 2.9 6.3 6.4 92.4 92.8
UK C Yes 1.6 1.6 7.0 7.0 84.9 83.7
Ireland C Yes 2.1 2.1 7.4 7.2 72.7 72.5
Italy C Yes 5.4 5.5 8.0 8.1 67.7 67.8
Greece S No 3.9 4 8.3 8.3 58.7 58.7
Spain S Yes 4.1 4.2 7.0 7.1 78.3 78.5
Portugal S Yes 3 3 7.7 7.7 65.3 66.7
Austria F No 2.7 2.8 8.9 8.9 71.9 70.5

�Source: WHO (1997).
�Source: Health Data OECD (2000).
�F, fee for service: C, capitation; S, salary.

and Holmes [9] and Deb [10] suggest that these LCM
perform better than the TPM both in count equations
and also in equations for health care expenditures. Note
that other modelling alternatives to the TPM could be
used instead of the LCM, e.g. the joint Generalized
Method of Moments estimation of the parameters of the
two processes using the conditional mean of the total
demand, as in Santos-Silva and Windmeijer [11].
Using maximum likelihood we estimate two alterna-

tive econometric models: TPM and LCM. We estimate
equations for GP and for SP services, separately for males
and females and for the 12 European countries in Table
7.1. The results from the econometric specifications are
then compared and the performance of the models tested.
We use a sample of males and females drawn from the
three available waves of the European Community
Household Panel (ECHP). Although the ECHP focuses
on household income and living conditions across EU15
countries it also collects the necessary information to
estimate demand for health equations. In particular it
collects information about the general health situation of
the individuals (self-perceived health status, chronic con-
ditions, whether the individual was admitted as in-patient
in a hospital or whether the individual is hampered by
their health condition in its daily activities) and more
importantly, it records the individuals’ number of visits to
a GP and to a SP during the previous year.
The novelty of this paper is that it uses a homogeneous

and comparable data set to estimate a common model of
health services for a group of European countries. It
makes two contributions to the literature on demand for
health. First, this paper provides economic and statistical

evidence on the more appropriate econometric specifica-
tion for GPs and SPs health decision and count equa-
tions. The distinction between the demand of services
from these two types of physicians allows us to distin-
guish cases in which TPM perform better than LCM
which is different from previous findings in the literature
(Deb and Trivedi [7,8], Deb and Holmes [9], and Deb
[10]). In particular, the TPM are more appropriate to
model the visits to a SP and in countries where the access
to them is not direct but requires first visiting a GP. A
possible explanation of this finding is as follows. The
econometrician has access to data on the number of visits
to a physician during a given period of time (say 1 week
or, as in our case, 1 year) but not to the number of visits to
the physician during an illness spell, as the TPM models
require. Our result suggests that TPM tend to perform
better when the data used in the estimation is less likely to
violate the single illness spell assumption, as it happens
with the number of visits to a SP. Second, it sheds some
light on the empirical determinants of demand for phys-
ician services in Europe. There is little empirical evidence
on the demand for health across Europe. Exceptions are
Pohlmeier and Ulrich [4], who estimate demand for
health equations for Germany, Santos-Silva and Wind-
meijer [11] for the UK and Vera-Hernández [12] for
Catalonia. These papers use different data sets and differ-
ent model specifications, which makes the results difficult
to compare.
The rest of the paper contains four sections. In section 2

we set up the model in a theoretical framework, specify it
and explain the econometric techniques. Section 3 de-
scribes the data source. The model specification tests, a
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cross-validation exercise and some empirical results are
reported in section 4. Section 5 contains the conclusions.
Finally the data Appendix describes the variables used.

THEORETICAL FRAMEWORK, SPECIFICATION
AND ESTIMATION PROCESSES

Throughout the analysis we assume that medical care
(measured as the number of visits to a physician) is pur-
chased and used as an input in the household production
function of health. The demand of medical services is in
this context a derived demand, because services are not
consumed per se but required to maintain or improve
upon a certain health status. The patient perceives the
marginal product of the differentmedical services in order
to take his or her decisions about contacting different
physicians. In general, the consumer (the patient) decides
whether to visit a physician by comparing the marginal
benefits andmarginal costs of improving their health. The
duration of the treatment would be decided on a second
stage by both the patient, and more importantly the
physician. This second stage can be accommodated in the
context of a principal—agent framework in which the
agent (physician) could induce or not demand for his or
her services. Since the agent does not only offer their
services but can act as the principal’s advisor, inducement
could take place because of asymmetric information be-
tween the patient and the physician (see for instance,
Kenkel [13] and Grytten and Sørensen [14]).
Although probably this simple decision process can

adequately describe visits to a GP, this is not the case for
visits to the specialist. The reason is that a visit to the GP
is also a compulsory step for visiting a specialist, both
being normally covered by the National Insurance sys-
tems (see Table 7.1). At a second stage, the GP decides
upon a possible visit to a specialist and the specialist
decides at a third stage the number of visits. No attempt
to model this type of complex and interrelated process
has been made in this paper given the data we use. More-
over, throughout the paper we assume that the individual
only suffers an illness spell during the period covered by
the survey, which seems to be an important assumption
concerning the econometric models (see Santos-Silva and
Windmeijer [5]). This hypothesis is a necessary one for
TPM and our main aim for estimating LCM is not to
impose it on the data. In addition to these considerations,
the lack of sufficient data in the ECHP does not allow to
estimate a full structural model. On the contrary, we
assume a reduced form as follows:
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�����

(Z
����
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�����

) (7.1)
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where I
����

� 1(Y
����

� 0) is the binary index used for the
first decision (latent variable) with 1(A) indicating the
occurrence of event A. Y

����
is the number of visits of

individual i, belonging to country k and group j to phys-
ician l (l�GP and SP) and we omit the time sub-index, t,
for simplicity. Note that Y

����
only takes non-negative

integers as values. Finally,X andZ are conditions of both
dependent variables that can have common elements and
�
�
, �

�
are error terms.

Suppose that we have a sample ofN
���

observations on
(Y

���
,w

���
), where the vector of covariates w

���
includes

variables both in X and Z that, following Winkelman
[15],may be disjoint or overlapping.We also assume that
Y

����
� 0 for N

����
observations and Y

����
� 0 for N

����
andN

���
�N

����
�N

����
. We are interested in explaining

the conditional expectation of the number of visits to
physician l by individual i, belonging to group j and
country k,Y

����
, given the covariates. In the TPM this

expectation can be decomposed in two terms: the prob-
ability of observing a positive outcome (part one or first
hurdle) times the conditional expectation of Y

����
given

that it is positive (part two or second hurdle). This decom-
position is made in two parametric models. The first
component is usually estimated assuming a discrete
choicemodel (probit or logit). The second component can
be seen as a count data model (Poisson or negative bi-
nomial).
The most common specification for the count model is

the Poisson regression. However, there are some unde-
sired features of themodel (because of data characteristics
or failures from Poisson distribution, see Cameron and
Trivedi [16,17]) and one of them is the equality of mean
and variance conditional on the explanatory variables.
This equi-dispersion property generally appears as re-
strictive in empirical applications. A negative binomial
(NB) model could be assumed for the data generating
process to overcome the previous assumption (see Haus-
mann et al. [18] or Cameron and Trivedi [19]). Under
these circumstances, if Y

����
follows a Poisson distribution

with mean �
���
, we can write the probability of y

����
visits

of patient i (belonging to group j in country k) to phys-
ician l as:
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),
and �

�����
represents unobserved heterogeneity which is

uncorrelated with the X’s by assumption. On the other
hand, the NB can be written as a mixture of a Poisson and
Gamma distributions. If we specify �

����
as a Gamma

distribution and make the integration over �
����

, we ob-
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tain a NB for Y
����

(see Cameron and Trivedi [16,17], for
details).
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(7.4)

� being a Gamma distribution with parameters y
����

and
�
����

. The moments of the resulting NB are

E(Y
����

)� �
����

, �
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� 0 and Var(Y
����

)� �
����

�
1

�
����

��
����

where we must understand E(.) and Var(.) as conditional
on covariates. Since �

����
� 0, the distribution derived in

this way allows for over-dispersion. Moreover, �
����

per-
mits to introduce a stochastic error term that captures
unobserved heterogeneity and possible measurement er-
rors. Finally, we could include conditioning variables
through �

���
, �

���
or both. In fact modelling in different

ways the variance yields different NB models. In this
work we consider the NB2, in the terminology of
Cameron and Trivedi [17].
However, the behaviour of individuals concerning de-

cisions and counts of visits to physicians, at least in the
light of the data or previous work with the ECHP by
Jiménez-Martı́n et al. [20], seems to follow a double
decision process: a process where the individual decides
to go to the practitioner and a process where the practi-
tioner has the decision to determine the length of the
treatment. The patient is also competent in this second
stage for many reasons: (i) a visit to a GP, for instance,
could have the sole purpose of obtaining information in
order to know to which specialist she needs to go (the
agent acts as the patient’s advisor); (ii) although the GP
has the facility to send patients to the specialist in most of
the countries, an individual can decide not to go; (iii) the
patient can also decide the number of visits independently
of the opinion of the physician.
From an econometric viewpoint it is very important to

note that the results provided by the previous models are
correct only when the process governing the discrete part
of the model (the zero observations) and the process
describing the positive counts are the same. Even when
the same determinants appear as important in the two
parts of the decision process, their effects and interpreta-
tions could be different. In this work we use, as in Pohl-
meier and Ulrich [4], the hurdle models for count data
proposed by Mullahy [21]. Unlike Mullahy, we assume
that the underlying distribution for the first stage is nor-
mal and we model that decision by a probit. For the

second stage, as suggested by a previous exploration of
the same data set, we opt for an NB process. If we further
assume absence of zeros in the second stage using a
truncated distribution for this second process, we can
write the log-likelihood function for the sample as:

L
��	�

�


�
���
� �
�	���

lnP(I
����

� 0 �Z
����

;�
����

��
����

)

� �
�	���

ln (1
P(I
����

� 0 �Z
����

; �
����

,��
����

))

� �
�	���

lnP(Y
����

�X
����

;�
����

,��
����

)


 �
�	���

lnP(Y
����

� 1 �X
����

;�
����

,��
����

)�
l�GP,SP (7.5)

where the first two terms in Equation 7.5 govern the
binary outcome and the last two terms the number of
visits once the first decision has been taken. The second
hurdle is governed by a truncated NB distribution. Note
that although we maintain sub-index j, it does not vary in
this model. Given the nature of the data that we have, the
Zero InflatedModel (see Cameron and Trivedi [16,17] or
Mullahy [21]) is not reasonable since we know that a
patient decides to contact a physician just when she
makes a visit. Therefore, the count for those that decide to
visit a physician in the first stage is always at least 1. The
likelihood implicit in Equation 7.5 has been expressed as
the product of two parametrically independent likelihood
functions for each country. The errors of the two parts of
the model can be assumed to be correlated, although this
would imply the use of a different method of estimation
(for instance, a Simulated Method of Moments, as in
Winkelman [15]). This specification of the log-likelihood
function for all the sample allows us to test among differ-
ent models by imposing simple restrictions on the par-
ameters (for instance, pooled estimates are easily ob-
tained by imposing appropriate restrictions in the
parameters of Equation 7.5).
A second problem we would like to deal with concerns

the impossibility of distinguishing different illness spells
in the data during the period information is collected.
This is known as the excess zeros problem (Cameron and
Trevedi [16,17] or Mullahy [21]). Although TPM allow
to deal with this problem by means of zero inflated NB,
i.e. without truncation at the second stage as above, they
only permit mixing with respect to zeros and not with
respect to positives, whereas the problem of unique spell
affects both positives and zeros. One could account for
this deficiency by using recent proposals in the health
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economics literature of Deb and Trivedi [7,8]. LCM are
expressed as mixing distributions and in particular finite
mixtures distributions. The log-likelihood function for
these models, when considering data from several coun-
tries, is given by,

L
�
	�

�


�
���

��
�
���

ln�
�
�
���

p
���
f
����

(Y
����

�X
����

; 	
����

)�
l�GP, SP (7.6)

where p
���

and f
����

(.) are respectively the mixing probabil-
ity and the density corresponding to group j, country k
and physician l and 	

���
is the set of parameters to esti-

mate. Note that the specification is restricted to the case
in which the number of groups is homogeneous across
countries. The mxing probabilities are unknown par-
ameters to be estimated jointlywith the rest of parameters
of the model. In order to identify all the parameters we
estimate subject to the restriction 1���

���
p
�
. If we spec-

ify f (.) as in Equation 7.4, the LCM allows for over-
dispersion. As in the case of Equation 7.5, this general
specification of the log-likelihood function for all the
sample allows us to specify a variety of testing procedures
as simple restrictions on the parameters of the model (for
instance, equality of the coefficients across countries and
equality of the coefficients across groups).
This approach has a number of advantages with re-

spect to TPM. First, the possibility of modelling unobser-
ved heterogeneity, which is accommodated in the model
through the density and permits unobservables to affect
the different types of groups in different ways. Second, the
approach is semiparametric because it does not require
distributional assumptions for the mixing variable and as
noted by Heckman and Singer [6], finite mixture models
may provide good numerical approximations even if the
underlying mixing distribution is continuous. They are
also useful if the data shows multimodality.
It is also worthwhile to mention that the LCM analysis

suffers from a few disadvantages. While TPM are natural
extensions of economic models (in the principal—agent
framework, for instance), LCM are forced by statistical
reasoning. This model has a long history in statistics
(Everitt and Hand [22]) but it is a very new proposal in
health economics. Second, it is sometimes difficult to
estimate (by maximum likelihood) due to over-par-
ameterization since the mixing distribution has to be
estimated jointly with the rest of parameters of the model.
There are, however, several recent approaches to deal
with the estimation using the EM procedure (Böhning
[23]). Third, misspecification of the density is as possible
in LCM as it is in TPM. Moreover, they are not nested
and we cannot answer whether the better adjustment of

LCM to the data is only a question of over-parameteriz-
ation, i.e. the subsets of observations belonging to the
different groups defined are statistically different. In our
view, unobserved heterogeneity is much more related to
economic issues (differences in tests, preferences, etc.) than
to statistical ones.

DATA AND VARIABLES

The data that we use is a sample of males and females
drawn from waves 1 to 3 of the ECHP. This panel survey
(see Peracchi [24] for a description of the features of the
ECHP), which has been carried out since 1994, contains
valid information, for the purposes of this paper, on 12
European countries. Given the reduced time span of the
panel we pool the three waves and use the longitudinal
nature of the data only to construct some explanatory
variables as explained below.
Despite that the ECHP focuses on household income

and living conditions across EU15 countries it still pro-
vides interesting information on individual health and
related issues. Apart from the traditionally asked ques-
tions on health status, such as self-statement on global
health or whether the person is hampered in daily activ-
ities, the survey includes some additional ones. More
specifically, it records whether the individual has any
chronic physical or mental health problem, illness or
disability. Individuals are also asked if they have been
admitted to a hospital as in-patients (the number of
nights spent in a hospital as in-patient are confidential
information for Germany and therefore will not be used
in this study). Finally, the survey collects information on
how many times an individual has consulted a doctor, a
dentist or an optician during the past 12 months (visits to
a doctor, optician or dentist are aggregated for the first
wave) which allows us to construct some measures of
demand as the quantity of health services purchased.
Let us concentrate on the latter peices of information

namely the counts of visits to GPs and SPs. Table 7.2
shows crude descriptive information on the zeros and
positive counts in the 12 countries that are analyzed
herein. Several remarks are in order as regards contacting
a physician. First, women more often visit doctors than
men. Although we do not report these figures in the
paper, this is so at practically all ages, as shown in
Jiménez-Martı́n et al. [20]. In all countries individuals
more often visit a GP than an SP. There is more over-
dispersion of GP counts than of SP counts. Notable
differences are detected by country, sex and kind of phys-
ician. Several reasons can be behind these figures. First,
there seems to be a strong relationship between visits to a
GP and per capita income, since individuals do visit a GP
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Table 7.2 Descriptive statistics of visits counts by sex and
country

General
practitioner Specialist

Country Female Male Female Male

Germany 0 visits (%) 21.63 26.31 29.39 54.00
1 visit (%) 13.85 17.87 18.31 15.23
Mean 4.457 3.644 3.618 2.269
st-dev 7.586 7.190 6.972 5.827

Denmark 0 visits (%) 20.74 36.80 69.22 76.41
1 visit (%) 19.80 25.93 12.64 11.29
Mean 3.287 1.936 1.040 0.679
st-dev 5.139 3.772 2.978 2.299

Netherlands 0 visits (%) 24.46 37.32 61.39 70.02
1 visit (%) 19.76 24.54 11.52 10.93
Mean 3.149 1.897 1.903 1.170
st-dev 4.657 3.633 5.054 3.460

Belgium 0 visits (%) 15.98 21.31 39.59 62.96
1 visit (%) 14.08 19.87 20.54 14.67
Mean 4.368 3.314 2.282 1.301
st-dev 6.311 5.483 4.295 3.446

Luxembourg 0 visits (%) 19.34 24.25 23.19 56.50
1 visit (%) 15.87 20.75 26.72 16.50
Mean 3.155 2.539 2.712 1.496
st-dev 3.610 3.752 4.137 3.370

UK 0 visits (%) 16.88 30.25 64.22 70.04
1 visit (%) 14.83 23.26 12.77 11.73
Mean 4.217 2.554 1.146 0.934
st-dev 5.534 4.326 3.169 2.756

Ireland 0 visits (%) 26.37 42.49 77.03 83.04
1 visit (%) 16.16 19.64 8.31 7.99
Mean 3.617 2.259 0.771 0.460
st-dev 5.985 4.898 2.331 1.897

Italy 0 visits (%) 24.30 36.02 58.61 74.29
1 visit (%) 12.52 15.88 16.05 11.22
Mean 3.851 2.648 1.296 0.777
st-dev 5.915 4.940 3.084 2.672

Greece 0 visits (%) 53.01 61.74 62.03 75.92
1 visit (%) 10.75 11.07 9.49 6.71
Mean 1.676 1.195 1.501 1.023
st-dev 3.311 2.554 3.342 3.499

Spain 0 visits (%) 33.96 44.84 53.79 69.56
1 visit (%) 13.69 16.47 16.65 11.35
Mean 3.681 2.354 1.792 1.141
st-dev 6.804 5.306 4.081 3.635

Portugal 0 visits (%) 33.35 48.32 60.56 77.72
1 visit (%) 10.39 13.30 11.81 7.81
Mean 3.172 1.888 1.349 0.714
st-dev 4.784 3.201 3.117 2.234

Austria 0 visits (%) 11.24 15.39 16.47 41.62
1 visit (%) 17.75 22.24 30.08 26.01
Mean 4.611 3.707 2.911 2.060
st-dev 7.299 5.965 5.532 4.919

substantially less frequently in southern countries and
Ireland. Second, the pattern for visits to the specialist is
less clear and differences may respond to accessibility
criteria, which varies from country to country. And third,
the differences by sex are more evident in the case of visits
to SP than in GP visits, probably because of the type of
physicians that the specialists include.
The explanatory variables used in the estimation can

be divided in three groups (see the Data Appendix for a
detailed description). The first group is formed by vari-
ables that affect the individual’s health perception. It
includes age and its square, and income and its square. It
also includes variables which try to pick the individuals’
health endowments or stocks (see Anderson and Burk-
hauser [25] for details on measures and problems of
health variables): a dummy for self-perceived good health,
a dummy for suffering a chronic condition, a dummy for
individuals that were accepted as in-patients at a hospital,
and a dummy for individuals hampered in their daily
activities. Finally, this group of variables also include
measures of the time opportunity cost, that is, variables
relating job status (dummies for employment, self-em-
ployment, unemployment, and retirement; dummies for
part-time jobs) and variables relating the family structure
of the individual (marital status, household size, and
dummy for heads of the household). We consider a sec-
ond group of variables that is composed by those that
affect the probability of having a health shock and the
knowledge of this likelihood (dummy for high education),
occupation (dummies for professional workers, for cleri-
cal workers, and for services workers; dummy for doing
any type of supervisory job; dummy for working in the
public sector), and risk of the job (dummy that equals one
if the individual perceives their job as risky).
In our empirical application, all the job, income, and

health-related variables are lagged, since they may be
endogenous to the processes of utilization of health servi-
ces. However, there is a notorious exception, since it is not
possible to have a lagged indicator of the chronic health
condition because it was not asked for in the first wave of
the survey. This does not cause major problems (except
through persistent individual heterogeneity) since the
chronic conditions today and yesterday are practically
collinear.

RESULTS AND DISCUSSION

This section discusses the model selection and main re-
sults of the estimation. We organize it into three sub-
sections. The first one presents a set of tests that are used
to select the econometric specification that fits better the
modelling of the visits to GPs and to SPs. The next one
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Table 7.3 Model selection and specification testing

Log-L: Male Log-L: Female AIC: Males AIC: Females

GP TPM LCM2 TPM LCM2 TPM LCM2 TPM LCM2

Germany 15 509.32 15 365.05 17 408.72 17 212.45 31 120.65 30 836.1 34 919.43 34 530.9
Denmark 6776.382 6737.44 8882.01 8816.929 13 654.76 13 580.88 17 866.02 17 739.86
Netherlands 11 616.83 11 517.37 15 884.59 15 781.16 23 335.65 23 140.74 31 871.18 31 668.32
Belgium 9690.668 9641.132 11 828.39 11 722.26 19 483.34 19 388.26 23 758.78 23 550.52
Luxembourg 3105.134 3068.428 3530.205 3504.675 6312.269 6242.856 7162.41 7115.351
UK 9129.753 9091.48 13 111.01 13 193.45 18 361.51 18 288.96 26 324.01 26 492.9
Ireland 11 104.38 11 040.6 13 842.94 13 776.57 22 310.76 22 187.2 27 787.89 27 659.14
Italy 26 910.96 26 733.21 32 188.7 32 023.89 53 923.92 53 572.42 64 479.4 64 153.79
Greece 10 591.94 10 623.10 13 814.71 13 844.21 21 285.87 21 352.21 27 731.43 27 794.42
Spain 20 531.2 20 386.96 25 943.59 25 816.3 41 164.4 40 879.93 51 989.17 51 738.61
Portugal 13 380.59 13 458.38 18 078.64 18 087.9 26 863.19 27 022.76 36 259.28 36 281.8
Austria 5200.213 5149.338 5909.753 5836.512 10 502.43 10 386.68 11 921.51 11 779.87
Sum of statistics
GP not 55 714.1 55 380.63 38 683.96 38 644.42 88 704.6 88 206.1 105 493.6 104 771.1
gatekeeper

GP gatekeeper 87 833.27 87 448.07 46 424.86 46 455.93 199 614.2 198 690.9 256 576.9 255 733.5
Sum het. 143 547.4 142 812.5 180 423.3 179 616.3 288 318.8 286 897 362 070.5 360 504.6
models

Pooled estimates
All countries 144 750.7 144 511.4 182 546.7 181 669.3 289 603.4 289 172.8 365 195.4 363 488.7

Specialist TPM LCM2 TPM LCM2 TPM LCM2 TPM LCM2

Germany 11 654.88 11 616.76 15 867.92 15 793.36 23 411.77 23339.51 31 837.84 31 692.71
Denmark 3568.955 3569.196 4769.909 4775.523 7239.909 7244.392 9641.818 9657.047
Netherlands 7742.829 7758.996 10 999.51 10 999.74 15 587.66 15623.99 22 101.02 22 105.48
Belgium 5805.509 5766.917 8985.694 8966.915 11 713.02 11639.83 18 073.39 18 039.83
Luxembourg 2291.633 2268.542 3287.04 3277.868 4685.265 4643.085 6676.08 6661.737
UK 5116.85 5108.83 6952.288 6932.71 10 335.7 10323.66 14 006.58 13 971.42
Ireland 4237.657 4259.97 5736.805 5774.681 8577.314 8625.94 11 575.61 11 655.36
Italy 13 249.31 13 216.62 19 328.78 19 302.30 26 600.14 26539.23 38 759.56 38 710.59
Greece 7926.225 7990.46 12 433.84 12 468.06 15 954.45 16086.92 24 969.67 25 042.12
Spain 13 160.99 13 167.09 18 781.98 18 746.06 26 423.97 26440.19 37 665.96 37 598.11
Portugal 7091.107 7134.228 11 906.61 11 985.52 14 284.21 14374.46 23 915.22 24 077.04
Austria 3262.886 3242.745 4718.412 4729.305 6627.772 6591.49 9538.824 9564.61
Sum of statistics
GP not 68 376.38 67 901.27 56 292.41 56 235.25 62 392.3 62 300.8 91 095.8 91 001.0
gatekeeper

GP gatekeeper 112 046.9 111 715 67 476.38 67 526.79 109 048.9 109 171.9 157 665.8 157 775.1
Sum het. 85 108.83 85 100.35 123 778.8 123 752.2 171 441.2 171 472.7 248 761.6 248 776.1
models

Pooled estimates
All countries 85 985.31 86 208.52 124 831.4 125 557.8 172 072.6 172 567 249 764.8 251 265.7

Countries without gatekeeper: Germany, Netherlands, Belgium, Luxembourg, Greece and Austria. With gatekeeper: the rest of the countries.

reports a cross-validation analysis of the results in the
previous section. The last one briefly summarizes the
results of the independent estimation by country of the
preferred models.

MODEL SELECTION

We first discuss the performance of two econometric

specifications, a TPM and a LCM characterized by a
finite mixture distribution with two points of support
(that is, a LCM with two components or latent classes).
The models are estimated by maximum likelihood by
country and separately for males and females. The reason
to estimate the models by country is that several tests
show that homogeneousmodels are not supported by the
data. For instance, in Table 7.3 the comparison of the sum
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of the likelihood from a fully heterogeneous model
against an homogeneous model strongly rejects the latter
(see Jiménez-Martı́n et al. [20] for further details). The
reason to estimate the models by sex is that differences in
behaviour regarding the demand of health can be ex-
pected, in particular differences on the visits to the
specialist which for females may be related to fertility. In
addition, we have conducted tests on the equality of the
coefficients among the male and female specifications and
the results confirm significant differences in 10 out of 12
countries in theGP equation and in all 12 countries in the
SP equations. The utilization behaviour differ for reasons
different to fertility or gender specific diseases as some
tests confirm. The results of such tests are available upon
request.
The specification of the TPM consists of a probit for

the first part (which represents the contact decision) and a
truncated NB for the second part (which represeents the
frequency of the visits). The specification of the LCM
allows for a different constant term, a different over-
dispersion parameter, and different slope coefficients in
the two components (LCM2). This last specification of
the LCM was preferred to more restrictive ones in which
only the constant or the constant and the over-dispersion
parameter were allowed to vary across classes. However,
it should be noted that although enriching the specifica-
tions using additional heterogeneous parameters help ex-
plain better the demand for health services, there is a
quantitatively small gain (in terms of likelihood) for using
the LCM2 instead of a specification where only the con-
stant and the over-dispersion parameter vary (see
Jiménez et al. [20]). This finding suggests that could be a
problem of over-parameterization that makes the unre-
stricted model more likely to be preferred.
To compare the performance of both the TPM and the

LCM models we use the Akaike Information Criterion
(AIC) and the Bayesian Information Criterion (BIC). The
former is defined as AIC�
2 lnL � 2K and the latter
as BIC�
2 lnL �K ln(N), where lnL is the value of
the log-likelihood function for either the TPM or the
LCM, K the number of parameters estimated and N the
sample size. We prefer those models with bigger values of
log-likelihood and smaller values of AIC and BIC. The
absolute values of lnL and AIC for each specification are
reported in Table 7.3. The values of BIC, which always
give the same results than AIC, are available upon re-
quest.
In the GP equation, both the AIC and the BIC criteria

clearly favour LCM when comparing the aggregated
values of the tests. They also support LCM when making
comparisons for individual countries, just with the excep-
tions of Greece and Portugal in the equations for males
and UK, Greece and Portugal in equations for females.

The result is not as clear in the SP equations as it is in the
GP ones. We do not reject the TPM model both in the
case of males and females in at least six out of 12 countries
(Denmark, the Netherlands, Greece and Portugal are
always in the list of countries where the TPM adequately
reflect the individuals’ decisions as regards utilization of
health services). More importantly the AIC (and BIC)
tests favour TPM for both men and women in the aggre-
gate measures we present, that is when adding up the
country specific AIC (BIC).
The results are highly coherent with the existent

econometric theory on the topic. Santos-Silva and Wind-
meijer [5] point out that the poor performance of the
TPM is due to the violation of the single illness spell
hypothesis on which those models are based. For Ger-
many they show evidence about the violation of this
single-spell assumption. In our data set the visits to GPs
are more likely to suffer from a multi-spell problem (see
Table 7.2) and in line with Santos-Silva and Windmeijer
[5] the TPM performs poorly relatively to the LCM.
Visits to SPs are however less frequent than visits to a GP
and consequently less likely to suffer from the same prob-
lem. This is especially true in our data for countries in
which the GP act as a gatekeeper, as a first stage before
accessing SPs (see Table 7.1). We see from the results that
for males four out of the six countries for which the LCM
are preferred to the TPM (Germany, Belgium, Luxem-
bourg and Austria) do not have GPs acting as gate-
keepers. This is not surprising since visits to SPs and GPs
have a similar structure in those countries (see Table 7.2).
For females the same results than for males hold in Ger-
many, BelgiumandLuxembourg.Greece does not use the
figure of the gatekeeper, although for this country the
TPM are preferred to the LCM for both the visits to GP
and to SP. However there is a lower frequency of visits to
GPs and SPs in Greece than in the rest of countries
without a gatekeeping mechanism: 63.8% of the women
and 72.8% of men visited their GP at most once during
the year previous to the interview and 71.5% of the
women and 82.7% visited a SP at most once during the
year previous to the interview. That could explain the
direction of the test for this country. As it can be seen from
the last two rows of Table 7.3, if we estimate the model on
an aggregate of countries using the gatekeeping criteria,
the results are even clearer: TPM are preferred to LCM
formodelling SP services in countries in whichGPs act as
gatekeepers of the health care system.

CROSS-VALIDATION

In the case of complicatedmodels, in-samplemodel selec-
tion methods may induce over-fitting and consequently
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Table 7.4 Cross-validation analysis

TPM preferred (AIC) (%) ln L
��



 lnL
��


GP SP GP SP

Training Holdout Training Holdout Training Holdout Training Holdout
Sample Sample Sample Sample Sample Sample Sample Sample

Males
Germany 0 1 0 8 
114.91 
28.62 
30.97 
6.12
Denmark 1 24 2 74 
29.59 
4.84 
6.74 5.61
Netherlands 0 1 98 51 
75.34 
22.14 13.41 0.03
Belgium 1 17 9 34 
40.35 
5.24 
24.28 0.02
Luxembourg 0 39 0 55 
26.77 0.80 
14.72 5.07
UK 1 28 26 53 
28.63 
2.59 
2.20 3.89
Ireland 0 14 98 87 
49.76 
12.06 16.94 9.14
Italy 0 1 2 25 
141.36 
36.85 
25.79 
5.77
Greece 100 82 99 98 24.45 8.24 15.90 8.63
Spain 1 2 66 50 
113.31 
28.70 5.63 2.33
Portugal 100 97 100 91 56.29 17.10 36.25 11.17
Austria 5 48 11 44 
69.71 1.32 
12.11 5.59
All 0 0 50 85 
608.99 
113.58 
28.67 39.59
GP not 0 5 29 73 
227.28 
23.49 
66.18 13.19
Gatekeeper

GP Gatekeeper 0 0 86 69 
381.71 
90.08 37.51 26.40

Females
Germany 0 0 0 0 
155.06 
39.17 
58.02 
15.70
Denmark 0 2 63 71 
54.22 
16.15 2.95 9.71
Netherlands 1 0 28 55 
80.99 
24.01 
0.45 2.64
Belgium 1 1 1 33 
89.94 
20.71 
16.41 
0.35
Luxembourg 0 36 29 64 
21.15 
0.42 
12.26 3.55
UK 0 0 9 42 
93.12 
23.07 
12.40 0.68
Ireland 0 2 100 93 
51.26 
12.44 34.94 14.22
Italy 1 2 2 33 
132.34 
30.82 
22.80 
1.50
Greece 96 93 100 97 39.09 13.50 64.25 18.01
Spain 0 0 2 20 
101.38 
25.16 
26.39 
5.33
Portugal 67 53 100 97 9.21 2.09 43.67 16.04
Austria 0 9 80 53 
57.74 
12.51 
36.15 
6.68
All 0 0 47 74 
788.89 
188.87 
39.06 35.29
GP not 0 0 41 51 
284.79 
59.31 
58.59 
1.18
Gatekeeper

GP Gatekeeper 0 0 63 81 
504.10 
129.57 19.53 36.46

The cross-validation exercise has been replicated 100 times. TPMpreferred%denotes the percentage of replications for which TPMare preferred to LCM
according to the AIC.

not choosing the best model. This bias can be avoided by
splitting the initial sample into two sub-samples and us-
ing the first sub-sample (the training sample) to estimate
the model and the second sub-sample (the hold-out
sample) to forecast comparisons.
In order to make a cross-validation study, we carried

out the following exercise. We divided the whole sample
in a training sample consisting in 80% randomly chosen
observations from the initial sample while the remaining
20% constituted the hold-out sample. The TPM and
LCM parameters were estimated on the training sample

and the measures of performance, log-likelihood and
AIC, calculated using the parameter estimates both for
the training and hold-out samples. The summary of the
results of repeating this experiment 100 times are pre-
sented in Table 7.4, in which we show the number of times
in which TPM was preferred to LCM according to each
criteria.
In general, the results are completely coherent with the

results in the previous section for bothmales and females.
In the training sample, LCM are preferred to TPM in
visits to GPs for most countries (exceptions are again
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Greece and Portugal) while the TPM are preferred to
LCM in visits to the SP for a set of countries (the Nether-
lands, Ireland, Greece, Italy, Spain and Portugal for
males, and Denmark, Ireland, Greece, Spain and Portu-
gal for females) and for the aggregation of the countries in
which there are not direct access to SPs. Furthermore, the
forecasting power of the TPM turns out to be better than
expected as the LCM are more often rejected in the
hold-out sample. Together the in-sample and cross-vali-
dation results cast some doubts about the general su-
periority of the LCM over the TPM and provide strong
evidence on the fact that the traditional failure of the
TPMmay be due to the violation of the single illness spell
requirement.

A FEW COMMENTS TO RESULTS FROM
COUNTRY-SPECIFIC ESTIMATES

Our country specific results are presented in Tables 7.5a,
7.5b, 7.6a and 7.6b. They suggest both important regulari-
ties and differences across countries. Among the latter we
find statistically significant differences in the behaviour of
men and women specially in the decision to visit and the
number of visits to SPs. As regards the effect of the
quadratic age controls, we find important differences by
gender, country and type of doctor.
Among the regularities we stress, first, that the health

stock variables are major determinants of the utilization
of health services, both for males and females, for GPs
and SPs and for the contact and frequency stages of the
decision process. Their effect is similar in the GP and SP
count equations: good self-perceived health has a nega-
tive effect on the frequency of the visits (also on the
probability of contacting the SP), and the rest of dummy
variables, which act as indicators of a low health endow-
ment, have a positive effect on the frequency of the visits
to them (and also on the probability of contacting a SP).
Among all health-related variables, the dummy for indi-
viduals hampered in their activities is the one less signifi-
cant across countries. The results for females are slightly
less precise but go in the same direction.
Second, we do not find any effect of income on the

number of visits to the GP, although income has a con-
cave effect on the decision to contact a SP. The positive
effect of income on the frequency of visits to the SP for
females could be explained as a form of induced demand.
Finally, as regards demographics, we find that household
size negatively affects the use of health services, thus
indicating economies of scale in the production of health
within the household. Education and some occupation
variables show a mixed effect of income (positive) and
efficiency (negative) in the production of health.

CONCLUDING REMARKS

In this work we analyze both the decision to visit a GP
and an SP for a sample of EU countries using data from
the ECHP. The major novelty of this chapter is that it
uses a homogeneous and comparable data set to estimate
a common model of demand for physician services for a
group of European countries. It contributes to the litera-
ture on utilization of health services, because it provides
economic and statistical evidence on the more appropri-
ate econometric specification for GPs and SPs health
demand equations, based on intuition, and tested using a
battery of diagnostics and a cross-validation exercise.
We have obtained indirect evidence that the multi-spell

problem, which is present in the ECHP, may crucially
influence the validity of TPM and LCM. In particular,
our results suggest that LCM are more appropriate than
TPM in the GP equations, more likely to suffer from the
multi-spell problem in our data set, while evidence of the
opposite is found as regards SP equations, since visits to
SPs are less likely to suffer from the multi-spell problem.
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DATA APPENDIX

The variables included in the analysis are grouped in the
following five categories:

1. Personal and household characteristics:

∑ Marital status: two dummies, one taking value 1 if the
individual is married, and the other equalling 1 if the
individual is separated/divorced/widowed.

∑ A dummy for the individual being head of the house-
hold, dated in wave 
1.

∑ Age and its square.
∑ Education: a dummy for the individual having a third
level of education recognized.

∑ Household size.
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2. Labour force status characteristics:

∑ Dummies controlling for self-employment, unemploy-
ment, retired part-time job and, working in the public
sector, dated in wave 
1.

∑ Occupational dummies: professionals, clerks, services
workers, dated in wave 
1.

∑ Risk at job, dated in wave 
1.

3. Health-related variables:

∑ A dummy if the individual reports himself as having
good health, dated in wave 
1.

∑ A dummy for individuals having a chronic physical or
mental health problem, current (since it was not asked
for in the first wave of the survey).

∑ A dummy if the individual is hampered in daily activ-
ities by any physical or mental health problem, illness
or disability, dated in wave 
1.

∑ A dummy for individual was admitted as in-patient in a
hospital during the previous year, dated in wave 
1.

4. Income variables:

∑ Household income and its squared (in 10� PPP units),
dated in wave 
1.

In Table 7.A1 we present summary statistics by sex
and by sex and country.
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INTRODUCTION

Rapidly increasing health care cost is a serious financial
problem for most developed countries. There are at least
three ways to reduce the health care cost. The first is
revamping the whole health care system, which, however,
takes time and often faces strong resistance from the
parties concerned. The second is making minor changes
in copayment rates or in health insurance coverage; most
health care studies estimate the health care demand elas-
ticity with respect to the copayment rates, and (quasi-)
experimental evidence suggests about 20% (Phelps [1])
although many other numbers have also appeared in the
literature. The third is health promotion programmes,
which encourage people to adopt a healthy lifestyle and
thus aim to reduce health care demand. There are many
aspects in a healthy lifestyle: no drinking, no smoking,
wearing a seat belt, exercise and so on. In this paper, we
focus on exercise: our goal is finding effects of exercise on
health care demand, which is a count response (the num-
ber of doctor office visits or hospitalization days). Note
that it is not always the unhealthy that demand health
care: healthy people may demand more health care, e.g. if
they are more concerned about health.

The literature on exercise effects on health care demand
is thin although there are countless papers on exercise
effect on health, because health has so many dimensions.
Leigh and Fries [2] observed 1558 Bank of America
retirees for 12 months and analysed relationships be-
tween healthy habits and subsequent medical costs. Their
results suggest that healthy habits such as absence of
smoking, excessive drinking and excess body mass and

increased exercise and seat belt use were associated with
roughly $372—598 of direct cost saving and $4298 of total
cost saving per person per year in the nominal term in the
year of their survey. Hofer and Kats [3] showed that
there is a positive association between the number of
healthy behaviours and use of preventive services such as
Pap smears, dental care and physical exams; this shows
that health concern matters. Both studies, however, pay
no attention to ‘endogeneity problems’, one of which is
that health habits including exercise may be chosen with
health care usage taken into account. Huijsman et al. [4]
mention the difficulties in analysing the effect of exercise
on health care demand in their English summary (the
paper is written in Dutch).

For our analysis, we use a ‘two-wave’ panel data drawn
from the Health Retirement Study. A single wave consists
of over 10 000 relatively old individuals. This is observa-
tional non-experimental data, and is thus subject to bi-
ases due to non-random selection of treatment (i.e. exer-
cise). However, using non-experimental data seems
unavoidable: even if one can do a randomized experi-
ment, it will be virtually impossible to force the subjects to
do exercise (a partial compliance problem) exactly as
prescribed. Worse yet, since exercise should be done over
some period of time, it will be impossible to control for
other factors; the most problematic would be the risk-
taking behaviour of the subjects: since they do exercise,
they may feel that they can afford to smoke or drink, just
as seat belt use can lead to faster driving. Despite being
observational, our data has some advantages. First, the
size of the data is quite big, and even after removing
observations with missing or imputed values, still a size-
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able number of observations remain. Second, the data are
in panel form and this has the following well-known
advantage over cross-section data.

Suppose we are interested in the effect of marriage on
health care demand. If we use cross-section data, we can
compare two people, one married and the other not. The
two people may differ in observed variables, which can be
controlled for by regression analysis or conditioning (or
grouping) approach; if not controlled for, the observed
difference can cause an ‘overt bias’. The two people may
differ also in unobserved variables, which can cause a
‘covert bias’. In panel data, we can compare a single
individual before and after the marriage, and thus there is
less room for changes in observed or unobserved vari-
ables, meaning less overt or covert bias. Putting it differ-
ently, one’s past is the better control for one’s future than
somebody else’s future is.

For old people, most of them have been married for a
long time. There may very well be an unobserved trait
characterizing people (un)-married long-term. The trait
may be (i) a cause (say, genes) for long-term (un)married
life, or (ii) an outcome of long-term (un)married life. If (ii)
is the case, we will be measuring a long-term effect of
marriage on health care demand by comparing married
and unmarried groups in cross-section data; the long-
term effect consists of the short-term ‘just-married’ effect
and the effect of staying in the marriage for a long time. If
(i) is the case, the cross-section data will give a biased
estimate (due to genes) for the short-run effect. In a panel
data spanning over a couple of years, we can control for
(or eliminate) the unobserved trait so long as it is time-
invariant over the span. That is, the panel data estimate
will render the short-term effect regardless of (i) or (ii). If,
however, two panel waves are far apart so that the unob-
served trait becomes time-variant, this advantage of the
panel data may not hold.

The rest of the paper is organized as follows. In the next
section, we introduce conditional and marginal treatment
effects for count data, which will be the basis for drawing
conclusions later. In the third section, data is described in
detail. In the fourth section, regression estimators used in
this paper are presented. In the fifth section, we present
our first data analysis using conditioning (or grouping)
approaches after selecting a few important variables to
control for. In the sixth section, we present the second
analysis using regression models. In the final section,
conclusions are drawn. The advantage of the condition-
ing approaches relative to the regression approaches is
allowing for unknown (non-parametric) ways the condi-
tioned variables can influence health care demand, where-
as the disadvantage is that we cannot condition on too
many variables (a dimension problem in practice); these
are why we apply both.

CONDITIONAL AND MARGINAL TREATMENT
EFFECTS FOR COUNT RESPONSE

Consider an observed response variable y
�
for an individ-

ual i and two treatments 0 and 1, with 0 being the base (or
no) treatment and 1 being the new treatment of interest.
Let y

��
, j� 0, 1, denote the ‘potential’ outcome when indi-

vidual i receives treatment j exogenously (i.e. when treat-
ment j is forced upon i rather than self-selected by i).
Typically only one outcome is observed while the other
(called ‘counter-factual’) is not; e.g. for the effects of a PhD
education on lifetime earnings, only one treatment (PhD
education or not) is available per person. The individual
treatment effect is y

��
� y

��
, which is however not identifi-

ed. In the rest of this paper, often we will omit i indexing
individuals.

Ideally, one would like to know the joint distribution
for (y

�
, y

�
), which is a tall order however. A little less

ambitious goal would be knowing the distribution of
y
�
� y

�
as in Heckman et al. [5]; but even this is hard.

Then one can look for some aspects of y
�
� y

�
, and the

most popular choice is the mean effect E(y
�
� y

�
), be-

cause E(y
�
� y

�
) �E(y

�
) �E(y

�
): the mean of y

�
� y

�
can be found from the two marginal means. This is thanks
to the linearity of E(·), which does not hold in general for
other functions such as quantiles. Although a headway
for median effect has been made by Lee [6], quantile
effects are not identified in general unless strong assump-
tions are imposed on (y

�
, y

�
). Nonetheless, considering

quantile effects brings up the obvious point: there are
many different interesting treatment effects other than
E(y

�
� y

�
). One extreme example is an income policy that

takes away incomes from all but one person and gives
them all to the single person; here the mean effect is zero
while median effect will be substantial. In the literature
(e.g. Heckman et al. [7]), indeed, the fact that there are
many interesting treatment effects has been emphasized,
but the focus has been on various conditional mean ef-
fects such as the mean effect on the treated, on the partici-
pants and so on. In the following, we introduce two
mean-based ‘proportional’ treatment effects; they are ap-
plicable for any y, but particularly well suited for count
responses with an exponential regression function. We
start with a cross-section model, and then move on to
panel data.

Let d
�
and x

�
denote an exercise variable and a covari-

ate vector, respectively for individual i. What is observed
is

x
�
, d

�
, y

�
( � (1 � d

�
)y

��
� d

�
y
��

), i� 1, . . .,N

Suppose that the potential response variables satisfy
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E(y
��
�x

�
) � exp(z�

�
�� j ·m�

�
�), j� 0, 1 (8.1)

where m
�
is a k

�
� 1 vector of components of x

�
interact-

ing with exercise while z
�
is a k

�
� 1 vector of components

of x
�
, and � and � are conformable parameter vectors;

both z
�

and m
�

always include 1. As an example of m
�
, a

dummy variable for heart-related illnesses may interact
with exercise, for people with heart problems tend to
consult their doctors for exercise.

Define a ‘conditional (on x
�
) treatment effect’ of exercise

on y
�
as

E(y
��

� y
��

�x
�
)/E(y

��
�x

�
)

�E(y
��

�x
�
)/E(y

��
� x

�
) � 1 � exp(m�

�
�) � 1 (8.2)

This effect differs from the usual conditional effect
E(y

��
� y

��
�x

�
) by the denominator E(y

��
�x

�
), which re-

moves the multiplicative term exp(z�
�
�) common to both

E(y
��

�x
�
) and E(y

��
�x

�
). In the usual linear regression, say

E(y
��
�x

�
) � z�

�
�� j ·m�

�
�, such common terms do not ap-

pear in the difference E(y
��

� y
��

�x
�
); the advantage of

Equation 8.2 is, regardless of whether y
��

is a count re-
sponse or not, removing multiplicative as well as additive
terms common for E(y

��
�x

�
) and E(y

��
�x

�
). Equation 8.2

shows the proportional change relative to the base level
E(y

��
�x

�
), and it varies across i: we can get as many as N

individual effects. Equation 8.2 is bounded from below by
�1; this is natural, for one cannot decrease health care
demand by more than the current level of the demand. In
the usual regression analysis, one would say that the
exercise has no effect if � � 0: this implies
exp(m�

�
�) � 1 � 0. In representing the effect of the treat-

ment, exp(m�
�
�) � 1 is better than �, for it is a proportional

change free of z
�
and it takes the values of the interaction

terms into account as well.
For an ‘unconditional (or marginal) effect’, m

�
should

be removed; one choice is integrating m
�
out:

E�exp(m�
�
�) � 1� (8.3)

the sample version of which is the arithmetic average
(1/N)�

�
�exp(m�

�
�) � 1�. For the exponential model, how-

ever, a better way to remove m
�
than the arithmetic aver-

age is the geometric average: with m� � (1/N)�
�
m

�
,

�
�
�
���

exp(m�
�
�)�

���
� 1 � exp(m� ��) � 1 (8.4)

which is the same as the conditional effect with m
�
evalu-

ated at m� . An estimate for this marginal, or (geometric)
average, effect is

exp(m� �a
�
) � 1

where a
�

is a consistent estimator for �. We will use this as
the treatment effect of interest in the remainder of this
paper.

Once we get the marginal effect, we will want to con-
struct a confidence interval (CI) for exp(m� ��) � 1. Taking
m� as an evaluation point, we will ignore the error
m� �E(m) and focus only on the error a

�
��; it goes

without saying that exp(m� �a
�
) � 1 is consistent for

exp(E(m)��)� 1. Let � � (��, ��)�, and suppose, for some
estimator b

�
for �, we have

�N(b
�
��) �N(0,C)

for an asymptotic variance matrix C consistently es-
timated by C

�
. There are a number of valid asymptotic

CIs for the marginal effect, but we will use the following
asymmetric 95% CI: with m̂� (0�

�	
,m� �)� where 0

�	
is the

k
	
� 1 zero vector,

[exp�m̂�b
�
� 1.96(m̂�C

�
m̂/N)����� 1,

exp(m̂�b
�
) � 1 � 1.96 exp(m̂�b

�
)(m̂�C

�
m̂�/N)���]

note that m̂�b
�
�m� �a

�
and m̂���m� ��. The upper bound

was based upon the usual Taylor’s expansion of exp(m̂�
�) � 1 around m̂�� � m̂�b

�
and the lower bound was ob-

tained by applying the transformation exp(·) � 1 to m̂�
b
�
� 1.96(m̂�C

�
m̂/N)���( � m̂�b

�
). Observe that the lower

bound was bounded below by �1 as exp(m̂��) � 1 is,
while the upper bound with 1.96 replaced by �1.96 does
not respect this bound �1, which explains why we used
the asymmetric CI.

So far, we took consistent estimator b
�

as given, which
we deal with now. Assume

E(y � x, d) � exp(z��� d ·m��) (8.5)

Under Equation 8.1, it will be shown shortly that Equa-
tion 8.5 is equivalent to

E(y
�
�x, d� j) �E(y

�
� x), j� 0, 1 (8.6)

which is the usual no ‘selection bias’ (or the mean-inde-
pendence of y

�
from d given x) condition: d is allowed to

be related to y
�
but only through x. With (5), it is easy to

find b
�
; e.g. a non-linear least squares estimator for �

using Equation 8.5 will do. Turning to the equivalence
between Equation 8.5 and Equation 8.6, first Equation
8.5 implies Equation 8.6 because

E(y
�
�x, d� j) �E(y �x, d� j)

� exp(z��� j ·m��) �E(y
�
�x) (8.7)
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second, Equation 8.6 implies Equation 8.5 because

E(y �x, d) � (1 � d) ·E(y �x, d� 0)

� d ·E(y � x,d� 1)

� (1 � d) ·E(y
�
�x, d� 0)

� d ·E(y
�
�x, d� 1)

� (1 � d) ·E(y
�
�x) � d ·E(y

�
� x)

� exp(z��� d ·m��) (8.8)

Although it is easy to find a consistent estimator under
no selection bias (i.e. no endogeneity of d), zero selection
bias may not be plausible. In panel data, there is a simple
way to relax this assumption. Consider panel data, and
assume, analogously to Equation 8.5,

E(y
�

�x

�

, d

�

, �

�
) � exp(z�

�

�� d

�

·m�

�

� � �

�
) (8.9)

where the additional subscript t is attached to all ob-
served variables, and �

�
is a time-invariant unobserved

term possibly related to components of x
�

. Analogously

to Equation 8.1, suppose

E(y
��


�x
�

) � exp(z�

�

� j ·m�

�

�), j� 0, 1 (8.10)

Under Equation 8.10, analogously to Equation 8.5 and
Equation 8.6, Equation 8.9 is equivalent to (omitting i)

E(y
�

�x



, d



� j, �) �E(y

�

�x



, �) (8.11)

d


is allowed to be related to y

�

through � as well as x



,

which is weaker than Equation 8.6. Since

E(y


� x



, d



)

� exp(z�


�� d



·m�



�) ·E(exp(�) � x



,d



) (8.12)

so long as E(exp(�) � x


,d



) is not a constant, the simple

cross-section non-linear least squares estimator of y


on x



and d



will be inconsistent. But in the panel data litera-

ture, ‘(first-)difference’-type estimators for � allow � to be
related to x



and d



in an arbitrary fashion.

Regardless of consistent estimation, the conditional
treatment effect Equation 8.2 applies also to panel data:
the conditional treatment effect at time t is, invoking
Equation 8.10,

E(y
�


� y
�


�x


)/E(y

�

�x



)

�E(y
�


�x


)/E(y

�

�x



) � 1 � exp(m�

�

�) � 1 (8.13)

Since the cross-section sample mean m�


varies over time,

evaluating Equation 8.13 at m�



shows the varying mar-
ginal effect of the treatment.

As well known, in (first-)difference panel data es-
timators, the coefficients of time-invariant regressors are
not identified. This means that E(t

�

� y

�

�x



) is not

identified so long as there is a single time-invariant re-
gressor. Our conditional effects Equation 8.2 and Equa-
tion 8.13 were in fact designed anticipating this problem:
since exercise is time-variant, the interaction terms are all
time-variant, and consequently � is identified even for
(first-)difference panel estimators.

DATA DESCRIPTION: HEALTH RETIREMENT
STUDY

The Heath and Retirement Study (HRS) from the Health
and Retirement Study Research Center in University of
Michigan is a nationwide longitudinal study focusing on
health, retirement and economic status of people born
mainly between 1931 and 1941. This survey has been held
every 2 years since 1992. Wave 1 (1992) and wave 2 (1994)
complete releases are available as of 1 October 1999. The
sample size of wave 1 and 2 is 12 652 and 11 596, respect-
ively, and there are 11 522 subjects who participated in
both surveys. The final data used for our analysis consists
of 8484 subjects in each wave, after removing subjects
with either missing or imputed values in the variables
selected for our analysis. Table 8.1 lists the variables used,
with their summary statistics provided in Table 8.2.

In HRS, two health care use variables are available: the
number of doctor visits (VIS) and hospital days (HOS);
here doctors include specialists (psychiatrists included
too) as well as general practitioners. But HOS has too
many zeros (88.6%), and as such it does not seem to be
appropriate for our regression approaches. We will use
only VIS for our regression approaches later, while both
VIS and HOS will be used for the conditioning (grouping)
approaches. In wave 1, VIS and HOS were asked for the
last 12 months, but they were asked in wave 2 for the
interval since the wave 1 interview. The interval varies
across individuals. To deal with this problem, we re-
defined wave 2 response y

��
as y

��
/�

�
where �

�
is the inter-

val for individual i with �
�
� 1 for 1 year interval so that

wave 1 response y
��

can be taken as y
��

/1. Since the
frequency in 2 years may not be twice the frequency in 1
year, which is a ‘duration dependence’, we will use �

�
and

��
�

as a regressor for our empirical analysis to account for
the duration dependence. The mean and standard devi-
ation (SD) of �

�
in wave 2 are 1.89 and 0.19, respectively.

In HRS, there are two variables on exercise: light exer-
cise (LEX) and vigorous exercise (VEX). LEX includes
walking, dancing, gardening, golfing, bowling, etc., and
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Table 8.1 Variables (other than responses and exercises)

�: Interval between interviews (years)
Age (year) J1: Managerial specialty operation
Married (1, 0) J2: Professional specialty operation and technical support
Job dummy (1, 0) J3: Sales
Work hour (per week) J4: Clerical, administrative support
Income ($1000) J5: Service: private household, cleaning, building
Schooling (year) J6: Service: protection
Male (1, 0) J7: Service, food preparation
Race (1, 0): Rc1: white J8: Health services

Rc2: black J9: Personal services
Rc3: Asian J10: Farming, forestry
Rc4: Hispanic J11: Mechanics and repair
R54: Native American J12: Construction trade and extractors

Hypertension (1, 0) J13: Precision production
Diabetes (1, 0) J14: Operators: machine
Lung diseases (1, 0) J15: Operators: transport, etc.
Heart diseases (1, 0) J16: Operators: handlers, etc.
Emotion/Nerve problem (1, 0) J17: Member of armed forces
Arthritis/Rheumatism (1, 0) Health insurance (1, 0): H1: Medicare
Pain (1, 0) H2: Medicaid
Residence (1, 0): Rs1: New England H3: CHAMPS/VA

Rs2: Middle Atlantic H4: Other government plan
Rs3: East North Central H5: Group insurance
Rs4: West North Central
Rs5: South Atlantic
Rs6: East South Central
Rs7: West South Central
Rs8: Mountain
Rs9: Pacific

VEX includes aerobics, running, swimming, bicycling,
etc. The question on exercise in wave 1 asks the frequency
for the last 12 months in five categories:

Never, less than once a month,

1—3 times a month,

1—2 times a week, 3 or more a week

The question in wave 2 asks the frequency for the
interval since the wave 1 interview: ‘How often do you
participate in physical activity?’ and ‘What interval was
that?’ We converted the frequency here into one appro-
priate for the five categories. But then we found that some
categories are not well defined with too few observations,
and that people change their exercise habits too much
across two waves, which may be a recollection error.
Given below are the transition probabilities for exercise:
in a given row, the transition probabilities from a given
exercise category at wave 1 to the categories at wave 2 are
presented (thus, the sum in a given row in one):

LEX transition matrix

t� 1�t�2 0 1 2 3 4

0 0.433 0.019 0.081 0.136 0.331
1 0.212 0.059 0.184 0.171 0.373
2 0.130 0.041 0.165 0.234 0.429
3 0.084 0.012 0.126 0.265 0.513
4 0.061 0.005 0.045 0.165 0.723

VEX transition matrix

t� 1�t�2 0 1 2 3 4

0 0.626 0.044 0.151 0.079 0.099
1 0.423 0.083 0.248 0.137 0.109
2 0.282 0.055 0.323 0.213 0.127
3 0.232 0.036 0.258 0.287 0.187
4 0.195 0.027 0.123 0.273 0.381
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Table 8.2 Summary statistics for variables

Wave 1 Wave 2

Mean SD Min. Med. Max. Mean SD Min. Med. Max.

HOS 0.60 3.40 0 0 91 0.65 2.88 0 0 76
VIS 3.64 6.01 0 2 80 3.34 4.91 0 2 78
� (interview interval) 1 0 1 1 1 1.89 0.19 1.31 1.88 2.60

LEX 0.75 0.44 0 1 1 0.78 0.41 0 1 1
VEX 0.24 0.43 0 0 1 0.30 0.46 0 0 1

Age 55.31 5.49 23 55 82 57.31 5.49 25 57 84
Married 0.83 0.38 0 1 1 0.81 0.39 0 1 1
Job dummy 0.69 0.46 0 1 1 0.64 0.48 0 1 1
Work hour 27.88 21.38 0 40 95 25.52 21.79 0 35 95
Income 55.72 48.78 �1.08 46 625.2 60.03 87.20 �4.9 42.28 1570
Schooling 12.19 3.18 0 12 17 12.19 3.18 0 12 17
Male 0.46 0.50 0 0 1 0.46 0.50 0 0 1

Hypertension 0.36 0.48 0 0 1 0.41 0.49 0 0 1
Diabetes 0.10 0.30 0 0 1 0.12 0.32 0 0 1
Lung diseases 0.07 0.26 0 0 1 0.09 0.28 0 0 1
Heart diseases 0.11 0.31 0 0 1 0.14 0.35 0 0 1
Emotion/Nerve 0.10 0.29 0 0 1 0.13 0.33 0 0 1
Arthritis/Rheumatism 0.36 0.48 0 0 1 0.44 0.50 0 0 1
Pain 0.23 0.42 0 0 1 0.25 0.43 0 0 1

H1 0.06 0.23 0 0 1 0.09 0.29 0 0 1
H2 0.03 0.17 0 0 1 0.04 0.19 0 0 1
H3 0.05 0.22 0 0 1 0.05 0.22 0 0 1
H4 0.00 0.07 0 0 1 0.01 0.10 0 0 1
H5 0.72 0.45 0 1 1 0.72 0.45 0 1 1

LEX� 1 and VEX� 1 columns have too small probabil-
ities compared with the other columns. Also, the tables
show too much variation in exercise habits over 2 years.

Facing these problems, we converted the five categories
into two: (0, 1, 2) becomes 0 while (3, 4) becomes 1; it may
take at least once a week frequency for the exercises to be
effective. With the conversion, 75% (24%) of the people
do LEX (VEX) in wave 1, and the new transition matrices
are:

LEX: (0, 1, 2) to 0, (3, 4) to 1

t� 1�t� 2 0 1

0 0.438 0.562
1 0.144 0.856

VEX: (0, 1, 2) to 0, (3, 4) to 1

t� 1�t� 2 0 1

0 0.786 0.214
1 0.423 0.577

One should not be too wary of this construction of the
dummy variables: we are merely redefining LEX and
VEX as ‘doing exercise at least once a week’. Had we
constructed the dummy variables differently, we would be
defining LEX and VEX (i.e. the treatments) differently,
and consequently measuring the effects of different treat-
ments. For instance, if we define exercise as at least once a
month, we should transform the five categories into two
by (0, 1) to 0 and (2, 3, 4) to 1, in which case the transition
matrix becomes

LEX: (0, 1,) to 0, (2, 3, 4) to 1

t� 1�t� 2 0 1

0 0.369 0.631
1 0.086 0.914

VEX: (0, 1,) to 0, (2, 3, 4) to 1

t� 1�t� 2 0 1

0 0.620 0.380
1 0.267 0.733
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Here, the right-most columns have more probability
masses than those in the preceding two matrices, because
exercise� 1 becomes easier with the ‘easier’ transform-
ation. In most of our empirical analysis later, we will use
the dummy variables (0, 1, 2) to 0 and (3, 4) to 1; when we
present regression results, we will show the estimates for
the other dummy variables ((0, 1) to 0 and (2, 3, 4) to 1) as
well.

Turning to the other variables, the average age of wave
1 is 55.31 indicating an old population; we added two to
the first wave age to get the second wave age, because the
actual second wave age that depends on the interview
date was not available. The age in wave 1 ranges from
23—82 because the respondents include spouses and part-
ners. The majority of the respondents are married: 83 and
81% in wave 1 and wave 2, respectively.

We use job dummy, work hour, income and job title (17
categories) as job-related variables. Simply having a job
or not may matter, say for mental health and for staying
active. A high work-hour means less chance to visit doc-
tors; the average work-hour per week among the workers
in wave 1 is 27.88 while the national average is 34.8
(Bureau of Labor Statistics). Income includes all kinds of
household income, not only wage and pension but also
capital gain (or loss); the average household income and
the median is $57 877 and $44 220, respectively. Job cate-
gories matter for health care demand; e.g. blue-collar
workers are subject to higher risk for job-related injuries.
For confidentiality, however, job categories in HRS have
been aggregated and available only in 17 categories; their
summary statistics are omitted to save space.

Schooling, top-coded at 17, shows the highest grade
competed; it is time-invariant in our data. There are 3906
males and 4578 females. The race variable consists of five
categories: ‘White’, ‘Black’, ‘Asian or Pacific Islander’,
‘Hispanic’ and ‘American Indian or Alaskan Native’. The
majority in the samples is White (74%), followed by Black
(15%), Hispanic (9%), Asian (1%) and American Indian
(1%). The proportions are not too far from the census
proportions: according to 1997 US Bureau of Census,
they are 72.6%, 12.1%, 11.0%, 3.6% and 0.7%, respect-
ively.

There are a large number of diseases and it is impossi-
ble to know exactly what kind of disease each respondent
has. Hypertension, diabetes, lung diseases, heart diseases,
emotion/nerve problems, arthritis/rheumatism and pain
are used as disease variables. Lung disease dummy in-
cludes chronic bronchitis and emphysema. Heart disease
dummy includes heart attack, coronary heart disease,
angina and congestive heart failure. Emotion/nerve
dummy includes emotional, nervous and psychiatric
problems. Those who have a cancer or experienced a
stroke are removed from the data, because they may be

too different in terms of health care demand from the rest
of the population (admittedly, this decision is somewhat
arbitrary). All disease variables show whether one has
ever gotten the disease or not; using ever variables instead
of the current status alleviates the endogeneity problem of
the disease variables. All disease variables increase over
time. Smoking variables are available, but unreliable: the
past smokers show the maximum number of cigarettes
per day and how long ago they quit, whereas the current
smokers show only the average number of cigarettes per
day but not when they started smoking. Thus, those who
tried smoking only once in a high school day and quit on
the same day has the maximum smoking equal to one,
which is also the case for a regular smoker smoking one
cigarette per day. Smoking will not be used in our empiri-
cal analysis.

Health care demand may be affected by residence be-
cause each state has its own health care policy. For confi-
dentiality, however, the residence variables in HRS have
been aggregated to 11 regions, two of which have no
respondents: ‘US NA state’ and ‘Not in a Census Divi-
sion’. The remaining nine regions are shown in Table 8.1.
The residence is available only in wave 1; in wave 2, there
is a question whether the respondent has moved since
wave 1 interview; less than 10% answered yes. But it is
unlikely that many of them moved out of their regions.
For these reasons, we treat residence as time-invariant.
To save space, summary statistics for residence are omit-
ted.

Health insurance matters for health care. About 16%
of the subjects are covered by public health insurance:
Medicare (for the old and the handicapped), Medicaid
(for the poor) and CHAMPS/VA (for military retirees).
About 72% are covered by insurance bought through
their or their partner’s companies or unions.

REGRESSION ESTIMATORS

In this section, we describe the regression estimators used
in this paper; more discussion can be found, e.g. in
Cameron and Trivedi [8] and Lee [9]. First, cross-section
regression estimators are presented, pooling two waves
into one big cross-section, which entails that indepen-
dence assumption across observations may fail. This is
often called a ‘group structure’ problem: each individual
is a group with two observations possibly related to each
other. Second, panel regression estimators are described.
In the literature, two strains of panel estimators are avail-
able: ‘random-effect’ and ‘fixed-effect’; we will use only the
latter in this paper, for it allows relationships between a
time-invariant error �

�
and regressors while the former

does not unless strong parametric assumptions are in-
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voked. Allowing the relationships is our only route
through which regressor endogeneity issue is addressed.
Although all methods described in this section were ap-
plied to our data, only about half the results will be
reported later for different reasons.

Let y
�


be the observed count response variable for
individual i at time t. Poisson regression specifies that y

�

given x

�

is drawn from Poisson(�

�

), where

�
�

� exp(x�

�

�) (8.14)

x
�


is a k
�
� 1 vector of regressors, and Poisson(�

�

) de-

notes Poisson distribution with parameter �
�

; the prob-

ability of y
�


given x
�


is given by

f (y
�

� x

�

) �

exp(��
�

)���


�

y
�

!

, y
�

� 0, 1, 2, . . .

Further assuming that (y
�

, x�

�

)�, t� 1, 2, i� 1, . . .,N are

iid (independent and identically distributed), the Poisson
maximum likelihood estimator (MLE) maximizes the
log-likelihood function:

�
�
���



�

��

[ � ln(y
�

!) � exp(x�

�

�) � y

�

x�
�

�] (8.15)

the first derivative is

�
�
���



�

��

�y
�

� exp(x�

�

�))�x

�

(8.16)

The Poisson MLE includes the restriction

E(y
�

�x

�

) � V(y

�

�x

�

) ��

�


In reality, the conditional variance often tends to be
bigger than the conditional mean; this is called an ‘over-
dispersion’ problem. Ignoring this problem renders too
small standard errors. Since Equation 8.16 � 0 is a
sample moment condition, the estimator using Equation
8.16� 0 only under E(y

�

�x

�

) ��

�

without specifying the

likelihood is a method of moment estimator (MME); we
will use this MME, not the Poisson MLE. The MME
does not require the iid assumption across t, while the
Poisson MLE requires iid across t as well as i. In the
MME, the asymptotic variance is to be estimated by
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�

�s
�
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	�
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(8.17)

where s
�
(b) � �
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�y

�

� exp(x�

�

b)�x

�

.

One way to allow for over-dispersion while staying
within MLE framework is introducing unobserved het-
erogeneity, say �

�

. Suppose y

�

� (x

�

, �

�
) follows Pois-

son(�	
�

),

�	
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�

), 	

�
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�

k, �
 0, where

�(a, b) denotes � distribution with parameters a and b, and
� and � are parameters to estimate, while k is typically set
at 0 or 1. With �

�

integrated out, y

�

� x

�

follows a negative

binomial distribution with parameters 	
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NB with k� 1 (k� 0) is called NB1 (NB2). This distribu-
tion allows over-dispersion:

E(y
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) � �
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����	�
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The variance is linear in �
�


if k� 1, and quadratic if
k� 0, which explains the names NB1 and NB2; either
way, the variance is greater than the mean. For NB1,
	
�

/(�

�

�	

�

) � 1/(1 ��) is a constant between 0 and 1;

for NB2, 	
�

/(�

�
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) is not a constant but 	

�

� 1/� is.

The Poisson MLE is included as a limiting case when
�� 0� since E�exp(�

�

) �x

�

� � 1 and V�exp(�

�

) �x

�

� �

��	�
�


.
Assuming that (y
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)�, t� 1, 2, i� 1, . . .,N are iid, the

NB log-likelihood function to maximize for � and � is
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There are different ways to parametrize NB (e.g. Win-
kelmann and Zimmermann [10]), and we followed Deb
and Trivedi [11]. For our empirical analysis later, we will
report the NB2 result, but not the NB1, for the maximized
log-likelihood value was bigger for NB2. Since NB2 is
based upon stronger assumptions than the MME, we will
focus on the MME when we interpret our empirical find-
ings.

124 ECONOMETRIC ANALYSIS OF HEALTH DATA



One problem with cross-section analysis is that there
may be an unobserved variable related to regressors and
the response variable at the same time, which renders
cross-section estimates inconsistent in general unless the
unobservable variable is integrated out as in NB1 in a
fully parametric framework. For example, some people
tend to be (genetically) weak or always worrying that they
use health care more often than others; such genetic factor
or tendency can be related to regressors. Those unobser-
ved components, if time-invariant as genes, can be con-
trolled for (i.e. eliminated) if panel data is used: the basic
idea is to first-difference the model (or variables) to elim-
inate them. For count responses, the so-called ‘condi-
tional Poisson’ (Hausman et al. [12]), being a panel ver-
sion of the cross-section Poisson, does this task. The
unobserved time-invariant variable �

�
, is often called

‘fixed-effect’, ‘unit-specific effect’ or ‘related-effect’ is the
literature; following Lee [13], we will adopt the last ex-
pression ‘related-effect’ for �

�
from now on. There can be

other sources of endogeneity, say through a time-variant
error, but the methods to be used in this paper cannot
deal with them; the latent-variable-based approach to
allow for endogeneity in Lee [14] and a related one in Lee
[15] are, in general, not applicable for count responses
(see also Windmeijer and Santos-Silva [16]).

In addition to the iid assumption across i, imposing
two assumptions that
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the conditional Poisson log-likelihood function to be
maximized for � is
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where �x
�
�

�x
�

� x

��
. The two assumptions listed

ahead are the restrictive features of the conditional Pois-
son.

Still maintaining the iid assumption across i, Hausman
et al. [4] assume
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to relax the Poisson part in the conditional Poisson; since
the first parameter p

�
is time-invariant, the NB here is of

type NB1. The resulting ‘conditional negative binomial’
log-likelihood function to be maximized for � is (both p

�
and �
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drop out in the conditioning)
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Wooldridge [17] shows that the conditional Poisson’s
restrictive assumption can be relaxed considerably. Sup-
pose
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where the first equality is ‘strict exogeneity’. So long as
this holds (along with minor regularity conditions), maxi-
mizing the conditional Poisson maximand Equation 8.19

yields a �N-consistent estimator for �. This ‘quasi-con-
ditional MLE (QCL)’ allows dependence among
y
��

, . . ., y
�


given x
��

, . . ., x
�


, �
�
, relaxing Equation 8.18.

The asymptotic variance of QCL can be estimated analo-
gously to Equation 8.17 with s

�
denoting the score func-

tion. QCL may be taken as a panel version of the MME
for the Poisson MLE. Since QCL is based upon the
weakest assumptions yet while allowing for a related-
effect, we take QCL as our main estimator.

It is not known whether analogous relaxation of as-
sumption is possible for the conditional negative bi-
nomial. For our empirical analysis, conditional negative
binomial converged not as well as QCL, and when it did,
it returned implausible values (with most absolute t-
values running over 50). For these two reasons, the condi-
tional negative binomial will not be reported later for our
empirical analysis.

RESULTS OF CONDITIONING
APPROACHES

In this section, we present our empirical analysis without
using the exponential regression function. Here, covari-
ates are controlled for by conditioning, and the variable
of interest (exercise) is used for grouping; inferences can be
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Table 8.3 Results of conditioning and pooled-data

A. LEX and VIS

VIS�LEX 0: Seldom do 1: Do Sum

0 89 (0.366) 241 (0.237) 330 (0.262)
1—5 140 (0.576) 723 (0.711) 863 (0.685)
6— 14 (0.058) 53 (0.052) 67 (0.053)
Sum 243 (1.000) 1017 (1.000) 1260 (1.000)
Test statistic: 17.831

B. VEX and VIS

VIS�VEX 0: Seldom do 1: Do Sum

0 226 (0.271) 104 (0.244) 330 (0.262)
1—5 558 (0.670) 305 (0.714) 863 (0.685)
6— 49 (0.059) 18 (0.042) 67 (0.053)
Sum 833 (1.000) 427 (1.000) 1260 (1.000)
Test statistic: 3.118

C. LEX and HOS

HOS�LEX 0: Seldom do 1: Do Sum

0 237 (0.975) 967 (0.951) 1204 (0.956)
1—5 5 (0.021) 45 (0.044) 50 (0.040)
6— 1 (0.004) 5 (0.005) 67 (0.005)
Sum 253 (1.000) 1017 (1.000) 1260 (1.000)
Test statistic: 2.919

D. VEX and HOS

HOS�VEX 0: Seldom do 1: Do Sum

0 796 (0.975) 408 (0.951) 1204 (0.956)
1—5 33 (0.040) 17 (0.040) 50 (0.040)
6— 4 (0.005) 2 (0.005) 6 (0.005)
Sum 833 (1.000) 427 (1.000) 1260 (1.000)
Test statistic: 0.001

then drawn from differences between the groups with
different exercise habits. The advantage of this condition-
ing approach is that there is no need to specify the re-
gression functional form nor distributions for the model
error terms. But a disadvantage is that we cannot control
for too many variables; if we do, there will be too few
observations left for the groups. Not being able to control
for all relevant variables means the risk of omitted vari-
able bias. In the following section, we present regression
approaches that can control for many covariates; but
then, there will be the risk of misspecified models. An-
other disadvantage of the conditioning approach is that
we will be learning only about the selected sub-popula-
tion, and there is no guarantee that the findings from the
sub-population can be applied to the other sub-popula-
tions. Despite this, since the effects of exercise are a con-
cern for everybody, not just for old people, we will extract
a sub-population representing relatively younger and
healthier group and analyse them.

The following is for the average health care demand
across exercise habits using all observations:

LEX � 0 LEX � 1 VEX� 0 VEX � 1

HOS 0.982 0.514 0.712 0.388
VIS 4.120 3.293 3.707 2.896

People who do exercise, LEX or VEX, having lower
health care demand. But since exercising people may
differ from non-exercising people in other variables, this
table does not show that the differences in health care
demand are due to differences in exercise habits.

To better control for covariates and get a homogenous
group of people, we select a healthy sub-population with
age 50—57 in wave 1 and the following characteristics
holding for both waves: married, all zero disease dum-
mies, no pain, working, no public health insurance, and
group insurance dummies being one. To the extent that
the unobserved variables are related to these covariates,
the unobserved variables and partially controlled for as
well. Given that we are looking at an old population, the
findings from this healthy sub-population stands a better
chance to be applicable to young and healthy people,
which was the main motivation to look at the particular
sub-population as already mentioned. The sample size of
the sub-population is 1260 (630

������
� 2

�����
) in the

pooled data.
Table 8.3 consists of four 3 � 2 contingency panels

showing the absolute frequencies and the relative fre-
quencies in a given column; at the bottom right of each
panel is the Pearson 
� test statistic; for the 3 � 2 classifi-
cation, the critical value for the test is 6.0 at size 5%.
Looking at the test statistics and the relative frequencies,

independence between VIS and LEX is rejected in the first
panel while we fail to reject independence in the other
panels. The relative frequencies however show that, if
anything, LEX increases both VIS and HOS, contrary to
the message of the above simple table with no covariates
controlled for; the effects of VEX are not clear. We can
think of some reasons for this surprising finding: en-
hanced health-awareness, exercise under doctors’ super-
vision, and the reverse causal effect of more exercise fol-
lowing doctor visits or hospitalization.

The preceding analysis is of cross-section type. To take
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Table 8.4 Exercise change and health care demand change

A. LEX and VIS changes

VIS-change�LEX change 0—0 0—1 1—0 1—1 Sum

Decreased 16 (0.308) 21 (0.276) 17 (0.270) 130 (0.296) 184 (0.292)
Same 17 (0.327) 20 (0.263) 21 (0.333) 139 (0.317) 197 (0.313)
Increased 19 (0.365) 35 (0.461) 25 (0.397) 170 (0.387) 249 (0.395)
Sum 52 (1.000) 76 (1.000) 63 (1.000) 439 (1.000) 630 (1.000)

B. VEX and VIS changes

VIS-change�VEX change 0—0 0—1 1—0 1—1 Sum

Decreased 100 (0.304) 34 (0.304) 20 (0.317) 30 (0.238) 184 (0.292)
Same 97 (0.295) 41 (0.366) 15 (0.238) 44 (0.349) 197 (0.313)
Increased 132 (0.401) 37 (0.33) 28 (0.444) 52 (0.413) 249 (0.395)
Sum 329 (1.000) 112 (1.000) 63 (1.000) 126 (1.000) 630 (1.000)

C. LEX and HOS changes

HOS-change�LEX-
change 0—0 0—1 1—0 1—1 Sum

Decreased 3 (0.058) 0 (0.000) 0 (0.000) 18 (0.041) 21 (0.033)
Same 47 (0.904) 68 (0.895) 62 (0.984) 398 (0.907) 575 (0.913)
Increased 2 (0.038) 8 (0.105) 1 (0.016) 23 (0.052) 34 (0.054)
Sum 52 (1.000) 76 (1.000) 63 (1.000) 439 (1.000) 630 (1.000)

D. VEX and HOS changes

HOS-change�VEX-
change 0—0 0—1 1—0 1—1 Sum

Decreased 8 (0.024) 3 (0.027) 5 (0.079) 5 (0.04) 21 (0.033)
Same 302 (0.918) 102 (0.911) 52 (0.825) 119 (0.944) 575 (0.913)
Increased 19 (0.058) 7 (0.063) 6 (0.095) 2 (0.016) 34 (0.054)
Sum 329 (1.000) 112 (1.000) 63 (1.000) 126 (1.000) 630 (1.000)

advantage of panel data, now we look at changes in
exercise habits and health care demand over two waves. If
a linear model were used, this would amount to first-
differencing the model to get rid of all time invariants,
which then would not affect analysis based on changes.
Table 8.4 lists four panels, analogously to Table 8.3.
There are four types of LEX or VEX across two waves:
0—0, 0—1, 1—0, and 1—1. VIS and HOS are now classified
into three: decrease, the same and increase. In Table 8.5,
many Pearson 
� test statistics are presented. For in-
stance, the entry at row 0—1 and column 0—0 of panel A is
1.202, which is the test statistic for the 3 � 2 contingency
panel consisting of panel A of Table 8.4 with all rows and
only two columns for 0—0 and 0—1.

In Table 8.5, there are four numbers greater than the
critical value 6 at 5%, but all four are for HOS. In panel
C, the first significant number 6.151 is based upon too few

observations as can be seen in the corresponding panel C
of Table 8.4, but the second significant number 6.135 (for
0—1 and 1—1) is based upon observations not as few, and
panel C of Table 8.4 indicates a positive association be-
tween HOS increase and LEX increase. In panel D of
Table 8.5, the first significant number is 6.498 (for 0—0 and
1—0), and the corresponding panel D of Table 8.4 shows
both decrease and increase in HOS, making inference
difficult. The second significant number in the panel D of
Table 8.5 is 8.158 for 1—0 and 1—1, but judging from the
corresponding panel D of Table 8.4, the number is based
upon too few observations.

In short, for the healthy sub-population with some
covariates controlled for, there is a positive association
between LEX and both VIS and HOS. For the same
sub-population, looking at changes over time, we have a
positive association between LEX and HOS changes.
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Table 8.5 Test statistics for exercise change and health care
demand change

0—0 0—1 1—0

A. LEX and VIS changes
0—1 1.202 — —
1—0 0.219 0.904 —
1—1 0.094 1.561 0.191

B. VEX and VIS changes
0—1 2.450 — —
1—0 0.869 3.502 —
1—1 2.282 2.068 2.761

C. LEX and HOS changes
0—1 6.151 — —
1—0 4.386 4.545 —
1—1 0.480 6.135 4.481

D. VEX and HOS changes
0—1 0.057 — —
1—0 6.498 3.354 —
1—1 4.284 3.775 8.158

These findings are in sharp contrast to the message of the
crude table with no covariates controlled for, and they
suggest that the healthy sub-population and the remain-
ing (unhealthy) sub-population may differ in terms of
exercise effects on health care demand.

Since the above tables are based only upon 630 � 2
cases, now we enlarge the healthy sub-population by
selecting the individuals from the pooled data with zero
disease dummies (all six of them) and zero pain dummy
(insurance, working, and marriage are not controlled for
now). Defining h

�
� 1 if healthy and 0 otherwise accord-

ing to this definition, we get P(h� 1) � 0.288, and

E(y � LEX � 0, h� 0) � 4.815


E(y � LEX � 1, h� 0) � 3.858

E(y � LEX � 0, h� 1) � 1.433


E(y � LEX � 1, h� 1) � 1.643

considerably more information may lurk in � for health,
but � is not observed and hence cannot be used for h. The
numbers show that, for the healthy sub-population, LEX
is indeed positively associated with y; for the unhealthy
sub-population, LEX is negatively associated with y.
Since the proportion of the healthy sub-population is low
(0.288), the unhealthy sub-population effect dominates to
results in the first simple table of this section.

RESULTS OF REGRESSION APPROACHES

In the preceding section, we showed our conditioning
approaches for a healthy sub-population. In this section,
we present three sets of regression model estimates:
MME, NB2 and QCL, where MME and NB2 are for
pooled cross-sections while QCL is for panel. As men-
tioned already, we use only VIS as health care demand in
this section, since HOS has too many zeros. Thanks to the
advantages of panel related-effect methods, QCL pro-
vides the most robust conclusions in the regression ap-
proaches, followed by MME, which is based upon as-
sumptions weaker than those for NB2. NB2 results are
provided (but de-emphasized) only for the sake of com-
parison; we will not mention NB2 any further other than
noting here that they are close to the MME estimates.

Table 8.6 shows the estimates and the t-values obtained
with the main exercise dummies, whereas Table 8.7 shows
those with the ‘easy’ exercise dummies constructed from
the original five categories as (0, 1) to 0 and (2, 3, 4) to 1; we
will focus on Table 8.6. To save space, the estimates for
the residence and job-dummies are omitted. As a refer-
ence, the last rows of Tables 8.6 and 8.7 show the maxi-
mized log-likelihood function values; for MME, it is the
Poisson log-likelihood at MME, and for QCL, it is the
conditional Poisson log-likelihood at QCL; constants
irrelevant for maximization in those log-likelihoods are
not included in the reported maximand values.

In Table 8.6, � and �� look insignificant for MME. But
we easily reject insignificance of � and ��, because the
Wald test statistic value is 126.4 with the p-value 0.000.
When only � is included in the MME model, the coeffi-
cient (t-value) for � is �2.73 (�11.56), meaning negative
duration dependence. This shows that the small t-values
for � and �� in MME are due to a high correlation
between � and ��. In QCL however, the duration effect is
positive, contradicting the negative effect in MME.

Both LEX and VEX look insignificant in MME and
QCL, but this is misleading, because some interaction
terms (e.g. heart disease-LEX in MME and QCL, and
emotion/nerve-VEX in QCL) are significant; so long as
there is at least one significant interaction term, LEX and
VEX are significant. The marginal effects for wave 1 and
wave 2 are in the following table where Lower (Upper)
stands for the lower (upper) bound for the 95% confi-
dence interval, Effect is the desired marginal effect, and
the numbers in (·) are the arithmetic mean effects Equa-
tion 8.3 provided here without confidence intervals only
for the sake of comparison:
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MME Lower Effect Upper QCL Lower Effect Upper

LEX LEX
t� 1 �0.068 �0.027 (�0.024) 0.015 t� 1 �0.026 0.031 (0.034) 0.089
t� 2 �0.068 �0.027 (�0.023) 0.015 t� 2 �0.025 0.031 (0.035) 0.089

VEX VEX
t� 1 �0.021 �0.010 (�0.009) 0.002 t� 1 �0.027 �0.010 (�0.009) 0.006
t� 2 �0.027 �0.013 (�0.012) 0.002 t� 2 �0.033 �0.013 (�0.011) 0.006

MME Lower Effect Upper QCL Lower Effect Upper

LEX LEX
t� 1 �0.119 �0.063 (�0.055) �0.006 t� 1 �0.037 0.044 (0.050) 0.128
t� 2 �0.118 �0.063 (�0.053) �0.007 t� 2 �0.027 0.052 (0.060) 0.134

VEX VEX
t� 1 �0.037 �0.022 (�0.021) �0.007 t� 1 �0.035 �0.014 (�0.014) 0.007
t� 2 �0.055 �0.034 (�0.033) �0.012 t� 2 �0.050 �0.021 (�0.020) 0.010

None of the effects is significant. But looking at the esti-
mates and the interval sizes on the positive and negative
sides, we can say that LEX has a small negative effect of
around �3% in MME and a small positive effect of
around 3% in QCL, whereas VEX has a small negative
effect of around �1% in both MME and QCL. The
arithmetic mean effects are little different from the geo-
metric mean effects. The effects do not change much over
time; for a longer panel, the time-varying pattern of the
effects would be more interesting.

How do we reconcile the difference between MME and
QCL for LEX? Suppose �

�
is the unobserved trait affected

by LEX; here we regard �
�

as unobserved health stock
built long-term. And recall our discussion on short-term
and long-term effects in the Introduction. According to
the discussion, the panel estimate shows the short-term
effect of LEX, while the cross-section estimate is a long-
term affect consisting of the short-term effect and the
effect through �

�
. The reconciliation is as follows. In the

short run, with both observed health and unobserved
health controlled for by the regression method and re-
lated-effect, respectively, LEX increases VIS by about 3%
perhaps due to consulting doctors or enhanced health
concern. But doing LEX for a long time will decrease VIS
by about 6% perhaps due to improved health which can
be a result of LEX itself as well as other adopted healthy
life style going along with LEX. This negative effect can-
cels the short-term positive effect to result in the long-
term effect, which is �3%. One caution is that, for the
interpretation of �

�
as unobserved health stock to be

coherent, we would expect a difference between short-run
and long-run effects for VEX, but the table shows the
identical numbers, which may be due to the statistical

insignificance; in the table presented below however, VEX
is seen to have different short-run and long-run effects.

Now we turn to the estimates of MME and QCL other
than those for LEX and VEX. Among the estimates sig-
nificant for both MME and QCL (hypertension, lung
disease, pain and heart-disease-LEX), the signs all agree,
and only the magnitude of pain in MME is twice as big as
that in QCL; the other magnitudes are close. As differ-
ence-type panel estimators typically have small absolute
t-values, QCL’s t-values are mostly smaller than those of
MME; the only variable that is significant in QCL but
not in MME is emotion/nerve-VEX (and diabetes-VEX).
In fact, the interaction terms with VEX are all insignifi-
cant other than emotion/nerve-VEX in QCL.

Age increases y in MME while decreasing y in QCL. If
we still interpret � as unobserved health stock, then with
observed and unobserved health cotrolled for, there is no
reason to believe that age should increase y. Marriage has
a negative effect, but insignificant and small in its magni-
tude. Schooling has a significant positive effect, possibly
reflecting health awareness aspect. Men demand substan-
tially lower health care than women, which is an almost
universal phenomenon. All disease variables increase y
other than the insignificant estimate for diabetes in QCL.
Heart-disease-LEX increases y, probably because heart
conditions require a doctor’s supervision for exercise.
Most health insurance variables increase y in MME while
they are all insignificant in QCL with mixed signs.

In Table 8.7, we present the results of the same analysis
but with the easy exercise dummies constructed from the
five categories as (0, 1) to 0 and (2, 3, 4) to 1. Tables 8.6 and
8.7 are little different other than in some interaction
terms. The marginal treatment effects are:
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Table 8.6 Estimation with the main exercise dummies

Variables MME (t-value) NB2 (t-value) QCL (t-value)

� 0.748 (69.12)
1 0.700 (1.08) 0.680 (1.77)
� �0.075 (�0.28) �0.040 (�0.20) 2.548 (1.76)
�� �0.066 (�0.75) �0.073 (�1.08) �0.745 (�1.96)
LEX �0.023 (�0.51) 0.000 (0.00) 0.068 (1.13)
VEX �0.044 (�1.15) �0.024 (�0.96) �0.029 (�0.55)

Age/10 0.297 (1.40) 0.172 (1.35) �3.141 (�1.69)
(Age/10)� �0.038 (�1.99) �0.025 (�2.14) 0.042 (0.51)
Married �0.050 (�1.58) �0.008 (�0.39) �0.081 (�0.74)
Job dummy 0.009 (0.09) �0.005 (�0.08) �0.024 (�0.14)
(Work hour)/10 �0.017 (�1.54) �0.012 (�1.63) 0.008 (0.44)
ln(income) 0.009 (0.83) 0.009 (1.87) 0.012 (1.00)

Schooling 0.010 (2.15) 0.013 (4.87)
Male �0.102 (�3.50) �0.154 (�9.62)
White �0.223 (�1.38) �0.145 (�2.18)
Black �0.142 (�0.88) �0.067 (�0.98)
Hispanic �0.163 (�1.01) �0.114 (�1.62)
Asian �0.221 (�1.24) �0.208 (�2.09)

Hypertension 0.301 (6.04) 0.349 (12.67) 0.411 (4.17)
Diabetes 0.290 (4.83) 0.353 (8.96) �0.186 (�1.48)
Lung disease 0.251 (3.98) 0.288 (6.31) 0.238 (1.91)
Heart disease 0.108 (1.66) 0.197 (5.32) 0.098 (0.75)
Emotion/nerve 0.211 (3.51) 0.264 (7.30) 0.152 (1.49)
Arthritis 0.242 (4.65) 0.234 (8.27) 0.046 (0.52)
Pain 0.551 (10.18) 0.604 (21.63) 0.276 (4.67)

Hypertension-LEX �0.008 (—0.15) —0.016 (�0.48) �0.050 (�0.69)
Diabetes-LEX 0.051 (0.71) 0.019 (0.39) 0.057 (0.55)
Lung disease-LEX 0.060 (0.74) 0.049 (0.89) �0.043 (�0.42)
Heart disease-LEX 0.221 (2.93) 0.195 (4.28) 0.200 (2.13)
Emotion/nerve-LEX 0.067 (0.90) 0.050 (1.13) �0.091 (�1.01)
Arthritis-LEX �0.077 (�1.25) �0.044 (�1.32) �0.013 (�0.18)
Pain-LEX �0.106 (�1.60) �0.124 (�3.75) �0.104 (�1.45)

Hypertension-VEX 0.038 (0.74) 0.038 (1.08) �0.054 (�0.79)
Diabetes-VEX �0.005 (�0.06) �0.016 (�0.28) 0.205 (1.88)
Lung disease-VEX �0.065 (�0.67) �0.013 (�0.17) �0.091 (�0.75)
Heart disease-VEX 0.018 (0.25) 0.041 (0.77) 0.131 (1.36)
Emotion/nerve-VEX 0.083 (0.96) 0.068 (1.27) 0.309 (2.98)
Arthritis-VEX �0.035 (�0.60) �0.049 (�1.41) �0.116 (�1.63)
Pain-VEX �0.025 (�0.34) �0.030 (�0.82) �0.051 (�0.61)

H1 0.230 (5.03) 0.280 (9.96) �0.076 (�1.07)
H2 0.318 (5.76) 0.346 (8.83) 0.015 (0.15)
H3 0.129 (2.50) 0.133 (3.93) �0.120 (�1.08)
H4 0.191 (1.83) 0.174 (1.97) 0.041 (0.32)
H5 0.149 (4.94) 0.178 (9.95) 0.079 (1.17)

Maximand (no constant) 22 393.825 35 995.033 �39 257.479

The short-term effect of LEX is now about 4—5%, while
the long-run effect of LEX is about �6% and significant.
The VEX effects of minus 2—3% are stronger than in the
preceding table; also differently from the preceding table,
the long-run effect of VEX is smaller than the short-run

effect. Collectively, these findings are rather surprising,
because the effects are overall stronger despite the weaker
definition of exercises. Nevertheless, the confidence inter-
vals in the two tables overlap, implying that the apparent
anomalies fall within the statistical margin of errors. The
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Table 8.7 Estimation with the easy exercise dummies

Variables MME (t-value) NB2 (t-value) QCL (t-value)

� 0.745 (69.22)
1 0.752 (1.16) 0.749 (1.96)
� �0.036 (�0.13) �0.011 (�0.06) 2.637 (1.79)
�� �0.076 (�0.85) �0.079 (�1.18) �0.767 (�1.99)
LEX �0.052 (�0.90) �0.023 (�0.72) 0.045 (0.58)
VEX �0.075 (�2.08) �0.060 (�2.56) �0.057 (�1.17)

Age/10 0.276 (1.30) 0.143 (1.14) �3.126 (�1.66)
(Age/10)� �0.036 (�1.89) �0.022 (�1.94) 0.031 (0.38)
Married �0.046 (�1.44) �0.001 (�0.07) �0.067 (�0.62)
Job dummy 0.010 (0.10) �0.007 (�0.10) �0.017 (�0.11)
(Work hour)/10 �0.018 (�1.60) �0.012 (�1.62) 0.004 (0.22)
ln(income) 0.011 (0.91) 0.009 (1.89) 0.013 (1.12)

Schooling 0.011 (2.32) 0.014 (5.27)
Male �0.105 (�3.64) �0.156 (�9.66)
White �0.230 (�1.43) �0.143 (�2.12)
Black �0.153 (�0.95) �0.070 (�1.01)
Hispanic �0.171 (�1.06) �0.112 (�1.58)
Asian �0.247 (�1.38) �0.216 (�2.16)

Hypertension 0.326 (5.13) 0.392 (11.64) 0.393 (3.58)
Diabetes 0.182 (2.55) 0.246 (5.21) �0.264 (�1.95)
Lung disease 0.181 (2.42) 0.265 (5.12) 0.277 (1.98)
Heart disease 0.109 (1.36) 0.220 (5.09) 0.071 (0.51)
Emotion/nerve 0.107 (1.53) 0.101 (2.17) 0.121 (1.03)
Arthritis 0.270 (4.10) 0.239 (7.04) �0.028 (�0.28)
Pain 0.613 (9.01) 0.685 (20.66) 0.332 (4.52)

Hypertension-LEX �0.044 (—0.63) —0.077 (�1.99) �0.029 (�0.34)
Diabetes-LEX 0.190 (2.34) 0.170 (3.08) 0.183 (1.68)
Lung disease-LEX 0.160 (1.78) 0.095 (1.59) �0.105 (�0.90)
Heart disease-LEX 0.199 (2.24) 0.144 (2.80) 0.233 (2.28)
Emotion/nerve-LEX 0.208 (2.54) 0.262 (4.98) �0.003 (�0.03)
Arthritis-LEX �0.110 (�1.49) �0.051 (�1.31) 0.059 (0.66)
Pain-LEX �0.193 (�2.48) �0.233 (�6.15) �0.191 (�2.24)

Hypertension-VEX 0.038 (0.82) 0.051 (1.62) 0.005 (0.08)
Diabetes-VEX �0.031 (�0.42) �0.068 (�1.37) 0.044 (0.44)
Lung disease-VEX �0.110 (�1.32) �0.085 (�1.34) 0.007 (0.06)
Heart disease-VEX �0.002 (�0.03) 0.037 (0.77) 0.028 (0.30)
Emotion/nerve-VEX 0.001 (0.02) �0.005 (�0.10) 0.081 (0.83)
Arthritis-VEX �0.006 (�0.12) �0.020 (�0.64) �0.026 (�0.41)
Pain-VEX 0.017 (0.26) 0.012 (0.35) 0.051 (0.72)

H1 0.221 (4.84) 0.271 (9.66) �0.078 (�1.09)
H2 0.328 (5.93) 0.355 (9.11) 0.033 (0.34)
H3 0.134 (2.61) 0.138 (4.11) �0.130 (�1.17)
H4 0.193 (1.85) 0.176 (2.01) 0.034 (0.27)
H5 0.153 (5.06) 0.182 (10.16) 0.081 (1.19)

Maximand (no constant) 22 504.112 36 017.682 �39 280.601

arithmetic means are more different from the geometric
means than in the preceding table; also the effects are
more time-variant.

Due to lack of instruments for potentially endogenous
variables (e.g., job dummy, income and exercise dummies

can be endogenous), the conclusions drawn in this section
should be taken with the limitation of our methods in
mind: the endogeneity is allowed as far as it operates
through the time-invariant error �

�
. To get better answers

to our questions, we need better data; e.g., if there is a
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randomized health intervention programme encouraging
exercise, the randomization dummy can be an effective
instrument for exercise.

CONCLUSIONS

In this paper, we defined and estimated various effects of
exercise (binary treatments) on health care demand
(count responses) using a two-wave panel: conditional
and marginal effects, light-exercise and vigorous-exercise
effects, and short-run and long-run effects. We found that
short-run light exercise increases health care demand by
3—5%, whereas long-run light exercise decreases it by
3—6%. Also, short-run vigorous exercise decreases health
care demand by 1—2%, whereas long-run vigorous exer-
cise decreases it by 1—3%. These findings suggest that it
will be hard to reduce health care cost by encouraging
people to do more exercise; i.e. the health care-cost saving
feature of health intervention programs or campaigns will
materialize only in the long-run at best.
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Estimating Surgical Volume – Outcome
Relationships Applying Survival Models:
Accounting for Frailty and Hospital Fixed

Effects
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�JohnM. Olin School of Business, Washington University in St Louis,MO,USA and �Centre for the Analysis
of Cost-Effective Care, Montreal General Hospital, Canada

INTRODUCTION

Past studies have found that patients receiving surgery in
a hospital performing a large number of surgeries have
better outcomes (shorter lengths of stay; lower probabili-
ties of in-hospital mortality) than do those undergoing
surgery in a low volume hospital (see Luft et al. [1] for a
summary of these studies). These results are particularly
pertinent in the context of the current health care debate
in many countries. For example, many Canadian prov-
inces are being faced with the decision to shut down
hospitals and/or reduce the number of hospital beds due
to declining health care budgets. To the extent that the
positive relationship between volume and outcomes is
valid, these governments may actually improve outcomes
by regionalizing surgery and closing low volume pro-
viders [2].

While the positive volume—outcome relationship has
been strongly established, substantial debate exists in the
literature as to the interpretation of this finding. Virtually
all of the empirical evidence is based on comparisons of
outcomes between high and low volume hospitals at a
point in time. That is, if hospital A performs more surger-
ies than hospital B, outcomes will be better for patients
admitted to A than for those admitted to B. This relation-
ship may reflect a ‘practice makes perfect’ effect in which
high volume providers are able to gain expertise in per-
forming the procedure, leading to improved outcomes.
On the other hand, the relationship between higher vol-

ume and better outcomes may simply represent a ‘selec-
tive referral effect’: high quality hospitals which have
better outcomes, ceteris paribus, are likely to get more
referrals from primary care providers. Consequently,
when regressing the outcome measure on surgical vol-
ume, the estimated coefficient on surgical volume is likely
to be biased, since volume is a proxy for hospital quality
as well as any practice makes perfect effect. Finally, some
have argued that the positive relationship reflects case-
mix differences between low and high volume hospitals
that are not adequately accounted for in the empirical
analysis [3].

In the light of this uncertainty regarding interpretation,
this paper re-examines the relationship between surgical
volume and outcomes using longitudinal data on patients
undergoing hip fracture surgery at acute care hospitals in
Quebec between 1991 and 1993. Hip fractures are a par-
ticularly relevant case study, given that these fractures are
the leading cause of hospitalization for injuries among the
elderly [4], and account for a disproportionately large
number of hospital bed days owing to the relatively long
recovery period associated with hip surgery. In addition,
examination of the volume—outcome relationship at Ca-
nadian hospitals is particularly timely, since the Cana-
dian health care system is currently facing substantial
cutbacks and reorganization and most volume—outcome
studies have examined hospitals in the USA. As a result,
with few exceptions little is known about the relationship
in Canada [5—7].
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Our empirical approach differs from that taken in pre-
vious studies, because we attempt to distinguish between
the various explanations hypothesized in the literature
concerning the volume—outcome relationship. First, be-
cause the same hospitals are observed over time in the
sample, these longitudinal data may be exploited to ac-
count for systematic differences in quality between hospi-
tals in a very general way using hospital-specific fixed
effects [8]. The period to period fluctuation in the number
of surgical procedures performed at each hospital then
identifies the effect of volume on outcomes, purged of any
difference in quality across hospitals that is fixed over
time. Our estimates of the volume—outcome relationship
thus rely on the variation in volume and outcomes within
hospitals over time, while almost all previous studies have
relied on variations in volume and outcomes between
hospitals to estimate the relationship. The results pre-
sented in this paper thus relate more closely to one of the
key questions faced by policy makers: what would hap-
pen to patient outcomes if the number of surgeries were
increased (or decreased) at a given hospital?

A second feature of the empirical framework is that the
outcome measures of interest, post-surgery length of stay
and inpatient mortality, are allowed to be correlated by
estimating a competing risk duration model in which the
individual may be discharged alive or dead. Previous
studies have assumed that these outcomes are indepen-
dent. The primary drawback of this assumption is that if
length of stay and in-hospital mortality are not indepen-
dent, then one may be more likely to observe an in-
hospital death for individuals with long hospital stays. To
account for this possibility, the duration model allows for
unobserved (to the econometrician) systematic differences
in frailty among patients at the time of admission to the
hospital using the non-parametric approach described in
Heckman and Singer [9]. Finally, we include much more
detailed controls for patient health status than have typi-
cally been used in the literature to account for case-mix
differences across patients.

Using this empirical methodology, we first estimate a
specification of the volume—outcome relationship which
does not control for fixed differences in hospital quality.
The estimation results show that higher volume is asso-
ciated with an increased conditional (on time in hospital)
probability of live discharge, although no significant ef-
fect is found on the conditional (on time in hospital)
probability of in-hospital mortality. However, when we
re-estimate the model accounting for fixed quality dif-
ferences between hospitals by including hospital-specific
dummy variables in the specification, the coefficient on
volume shrinks in magnitude and becomes insignificantly
different from zero. Consequently, better patient out-
comes in larger hospitals do not appear to be based upon

a volume/learning effect. Rather, the results are more
consistent with the hypothesis that higher quality hospi-
tals are able to draw more patient referrals.

The next section describes the data and presents de-
scriptive statistics on the volume—outcome relationship,
and the subsequent section outlines the statistical frame-
work. We present our results and concluding remarks in
the last two sections.

DATA AND PRELIMINARY EVIDENCE

This paper analyses data from theMED-ICHOdatabase,
which contains standardized information from hospital
discharge abstracts. All acute care hospitals in Quebec
report details of each discharge to the provincialMinistry
of Health and Social Services. All patients admitted to
acute care hospitals with a primary diagnosis of hip frac-
ture (ICD-9 codes 820.0—820.9, fracture of neck of femur;
transcervical, pertrochanteric or other unspecified) who
were admitted during or after April 1990 and discharged
before March 1993 are included in the sample. Because
information on patients whose hospital stays were still in
progress at the end of March 1993 was unavailable, we
may undercount the volume of surgeries performed in
February and March 1993. These patients were thus ex-
cluded from the analysis, although the results were vir-
tually identical when they were included. Patients admit-
ted for revision of prior hip fracture surgery were
excluded from our sample (1% of original sample). In
addition, 6% of patients admitted to the hospital with a
hip fracture did not undergo surgery. It appears that
many of these patients were admitted to hospitals that did
not perform hip fracture surgery and then transfixed to
another hospital. Since our goal is to examine the impact
of surgical volume on post-surgical length of stay, we
excluded patients not undergoing surgery from the analy-
sis.

For each patient, data were obtained on date of surgery
and date and type of discharge (live or dead) and were
used to construct post-surgery length of stay. Information
was also obtained on other covariates hypothesized to
affect post-surgery mortality and length of stay: age, sex,
marital status, type of hip fracture (transcervical, per-
trochanteric, other), whether or not the patient was ad-
mitted to a teaching hospital, year of admission, median
male income in postal code of residence and the number
and type of comorbidities at the time of admission.
Comorbidities coded as complications were not included
since these may be endogenous with respect to length of
stay. Information on comorbidities was used to construct
a Charlson comorbidity index [10] for each patient using
a codingmethodology developed specifically for adminis-
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Table 9.1 Differences in outcomes and case-mix between hospitals, by volume

Averages

Length of Fraction Fraction of
stay died in Number of Charlson hospitals

Average number of (days) hospital comorbidities index university
surgeries performed (1) (2) (3) (4) affiliated

(Low) �34 31.0 0.094 2.77 0.56 0.29
(Average) 34—71 25.9 0.083 2.37 0.55 0.47
(High) �71 21.8 0.065 1.90 0.54 0.67

Significance test:
p-value� 0.000 0.001 0.000 0.683 0.000

�p-value is from a test of the null hypothesis of equality of means across volume categories.

trative data [11]. This index has been validated as a
predictor of mortality in logitudinal studies.

MEASURING HOSPITAL SURGICAL VOLUME

Studies in the literature have typically measured surgical
volume as the number of surgeries (of the particular type)
performed in the hospital during the calendar year in
which the patient is admitted [1]. If the number of surge-
ries performed in each hospital frequently fluctuates, this
variable may not accurately measure the hospital’s
amount of cumulative experience at the time of surgery. A
more appropriate volume variable designed to capture
any practice makes perfect effect is a measure of the
number of operations performed by hospital h in the time
period prior to the current patient’s surgery. Consequent-
ly, we construct HVOL

��
to be equal to the total number

of surgeries performed in hospital h in the 12-month
period prior to the date (t) of the current patient’s surgery.
Because we cannot construct the number of surgeries
performed at each hospital prior to April 1990, the subse-
quent estimates are based on the sample of hip fracture
patients undergoing surgery at Quebec hospitals between
April 1991 and January 1993. Finally, like almost all
studies in the literature, we are unable to identify the
surgeon for all the patients in the sample and hence
cannot estimate the volume—outcome relationship at the
surgeon level.

PRELIMINARY TABULATIONS OF BETWEEN
AND WITHIN HOSPITAL DIFFERENCES

One of the primary goals of this paper is to distinguish
between variations in outcomes associated with differen-
ces in volume between hospitals and variations in out-
comes associated with fluctuations over time in volume

within hospitals. To provide a first look at the vol-
ume—outcome relationship between hospitals, we cal-
culated the average number of hip fracture surgeries per-
formed per 12-month period at each hospital in the
sample between April 1991 and March 1993. Mean surgi-
cal volume for the 68 hospitals was 53 surgeries per year.
Using this average volume measure, we divided hospitals
into three groups: low volume hospitals performing fewer
than 34 surgeries on average in a 12-month period (25%
of hospitals); average volume hospitals performing be-
tween 34 and 71 surgeries (50% of hospitals); and high
volume hospitals performing more than 71 surgeries
(25% of sample). Table 9.1 gives the average length of
stay, fraction of patients dying in-hospital, the average
number of comorbidities and Charlson index value by
volume category. The first row indicates that patients at
low volume hospitals had an average length of stay of 31
days, with 9.4% dying in-hospital. Moving down the
rows of the table, increasing surgical volume is associated
with lower average lengths of stay and mortality rates.
For example, length of stay is almost 10 days shorter at a
high volume hospital than at a low volume hospital.
Column 3 suggests that at least part of this decline could
reflect differences in case mix between hospitals: high
volume hospitals appear to have patients with significant-
ly fewer comorbidities. However, column 4 indicates no
significant difference in the average Charlson index score
across volume quartiles. Finally, the last column of Table
9.1 investigates the relationship between a commonly
cited measure of hospital quality, whether the hospital is
university affiliated and volume. Using this measure, high
volume hospitals appear to be of higher quality. Conse-
quently, some of the positive relationship found between
volume and average hospital outcomes is likely to reflect
differences between hospitals in quality and case-mix.

Given the large variations between hospitals in surgical
volume and outcomes shown in Table 9.1, our next task is
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Table 9.2 Differences in outcomes and case-mix across periods within hospitals, by differences in volume

Period t difference from hospital sample average
Percentage
difference in Length of Fraction Fraction of
period t volume stay died in Number of Charlson hospitals
from hospital (days) hospital comorbidities index university
sample average (1) (2) (3) (4) affiliated

(Below) ��10 0.50 0.006 0.05 0.02 0.51
(Average) �10 to 10 �0.39 �0.002 �0.03 0.002 0.56
(Above) �10 0.63 �0.002 0.03 0.01 0.48

Tests of the null hypothesis that the elements in columns 1—4 equal zero cannot be rejected in any case.

to describe the relationship between changes over time in
volume and outcomes within hospitals. To do so, we
construct the percentage difference between the number
of surgeries performed at the hospital in the 12 months
prior to date t and the average number performed per
12-month period at the hospital over the entire sample.
Thus, for each hospital at each date, we are able to
determine whether volume is above, equal to or below its
long-term average.We then divide this variable into three
categories: hospitals whose volume at date t was 10% or
more below its sample average (20% of sample); hospitals
whose volume at date t was within �10% of its sample
average (60% of sample); and hospitals whose volume
was more than 10% above its sample average at date t
(20% of sample). Once hospitals are classified into per-
iods of high, average and low volume, we calculate the
differences between mean outcomes (and case-mix) for
patients admitted to a particular hospital at date t and the
average outcome at that hospital over the same period.
Table 9.2 examines whether hospitals performing an
above or below average (for the particular hospital)
number of surgeries as of date t also have above or below
average outcomes and case mix for that particular period.

The first row of Table 9.2 shows that in hospitals with
surgical volumes at date t more than 10% below their
sample mean, average length of stay and in-hospital mor-
tality are both above the hospitals’ sample average, but
the difference is small and insignificant. The remainder of
columns 1 and 2 indicate surprisingly that patients admit-
ted during high volume periods have increased hospital
durations, although mortality is lower. Nevertheless,
these differences are statistically insignificant. Columns 3
and 4 show very small differences in hospital case mix
when hospitals perform above or below the average
number of surgeries as of date t. The final column shows
that hospitals experiencing relatively large fluctuations in
volume are less likely to be university affiliated, but again
the variation is small. Consequently, comparison of
Tables 9.1 and 9.2 suggests that the relationship between

outcomes and volume primarily reflects differences be-
tween hospitals, although it is not clear to what extent
this results from case mix and quality differences. From
these simple tabulations, it does not appear to be the case
that a hospital performing more surgeries in the 12
months prior to period t than its sample average experi-
ences significantly improved outcomes.

METHODOLOGY

While the summary statistics presented in Tables 9.1 and
9.2 are suggestive, they do not simultaneously control for
the multiple factors which may affect outcomes. This
section presents the empirical framework for examining
the impact of hospital surgical volume on the duration of
hospital stay after hip fracture and the probability of
inpatient mortality. This framework is constructed to
address two potential pitfalls in the estimation of the
relationship between surgical volume and outcomes: (1)
the possible correlation between length of stay and in-
patient mortality; and (2) fixed differences between hospi-
tals, such as quality, which may also be correlated with
volume.

Turning to the first issue, length of stay and discharge
destination are estimated jointly using a duration model
with multiple destinations. Studies in the literature have
estimated separate length of stay and inpatient mortality
regressions, hence assuming that these events are inde-
pendent. If this assumption is false, these regressions po-
tentially yield incorrect inferences regarding the effect of
surgical volume on outcomes. For example, suppose that
higher volume leads to shorter lengths of stay, but has no
effect on in-hospital mortality conditional upon length of
stay. A separate regression of mortality on volume may
still yield a significant effect, since high volume leads to
shorter lengths of stay and in-hospital deaths are less
likely to be observed for patients with shorter lengths of
stay when the outcomes are positively correlated. Conse-
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quently, the empirical framework must allow for the po-
tential non-independence between the unobservables af-
fecting length of stay and mortality.

Denote the duration of a hospital stay by m and sup-
pose that there exist two mutually exclusive and exhaus-
tive destinations indexed by r� a (discharged alive from
hospital), d (died in hospital). Let �

�
� 1 if the patient is

discharged to destination r and zero otherwise. The build-
ing block of the analysis is the transition intensity, �

�
(m),

defined as:

�
�
(m)� lim

�����

Pr[m�M�m��m, �
�
� 1�M�m]

�m
(9.1)

which is the probability that the patient is discharged to
destination r after m days in hospital, conditional upon
surviving in the hospital for at least m days. Suppose the
transition intensities depend upon a vector of individual
and hospital characteristics recorded at the date t when
patient i is admitted to hospital h,X

���
. Note that X

���
includes a measure of surgical volume, HVOL

��
. The

probability of observing an exit to r after a hospital stay
of length m is then

f
�
(m

���
�X

���
)� �

�
(m

���
�X

���
)

�
���		

exp��

����

�
�

�
�
(u �X

���
)du� , r� a, d (9.2)

The first term on the right-hand side of Equation 9.2 is the
transition intensity representing the probability that the
patient is discharged after m days in hospital to destina-
tion r given that his or her length of stay is �m. The
second term, the survivor function, is the probability that
the individual survives at least to time m in the hospital
and hence did not exit either alive or dead prior tom. The
product of the quantities defined in Equation 9.2 across
individuals provides the basis for the likelihood function.

ACCOUNTING FOR UNOBSERVED PATIENTS
FRAILTY

Unobserved patient characteristics are likely to impact
both the live discharge and in-hospital mortality transi-
tion intensities. For example, frailier patients are less
likely to be discharged alive and also more likely to die in
hospital. The typical approach used in the duration litera-
ture to account for unmeasured individual heterogeneity
is to suppose that the transition intensities depend on a

scalar random variable � in addition to observed charac-
teristics [12,13]. In our case, the unmeasured characteris-
tics � could reflect the unobserved health status of the
patient at the time of admission to the hospital, which
affects outcomes. The estimation approach conditions on
� and integrates it out of the likelihood function.

We are now able to construct the likelihood of observ-
ing a post-surgery length of stay of m and a discharge to
destination r, conditional upon both measured and un-
measured characteristics. Let G(�) be the distribution
function of �. Using Equation 9.2, if the length of stay
transition intensities are allowed to depend upon �, the
likelihood function for the model is given by:

L � �
�
� f�(m���

�X
���
, �)���f

	
(m

���
�X

���
, �)��	 dG(�) (9.3)

The first term of Equation 9.3 is the probability of observ-
ing a stay of m

���
days that results in a live discharge from

hospital h for individual i admitted at date t, while the
second term is the probability of observing a stay of m

���
days ending in an in-hospital death. The integral in Equa-
tion 9.3 reflects the fact that � is not observed andmust be
integrated out.

ACCOUNTING FOR FIXED DIFFERENCES
BETWEEN HOSPITALS

As noted in the Introduction, much controversy exists in
the literature as to whether the positive volume—outcome
relationship reflects a practice effect or differences in hos-
pital quality. Some studies have attempted to account for
quality differences by including proxies for quality, such
as whether the hospital is university affiliated or offers
certain facilities, in cross-sectional regressions [1]. How-
ever, hospitals may differ in a wide variety of quality
dimensions and it is unlikely that a set of three or four
variables will fully capture variations in quality between
hospitals.

The estimation strategy employed in the chapter to
address this issue is similar to that of Farley and Ozmin-
kowski [8] and relies on longitudinal hospital data. If
hospitals differ in quality and these hospital-specific dif-
ferences persist over the T periods in the sample, quality
differences across hospitals may be accounted for by in-
cluding a dummy variable for each hospital in the specifi-
cation. It does not seem unreasonable to assume that
hospital quality is relatively constant over a few years.
Variables typically used in the literature to measure hos-
pital quality, such as university affiliation and whether
the hospital offers particular services, generally remain
unchanged during a time period of this length. The coeffi-
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cients on the hospital dummy variables indicate which
hospitals have above or below average outcomes after
controlling for observed patient characteristics and the
number of surgeries performed at the hospital in the past
12 months. Hence, the hospital fixed effects reflect vari-
ations in outcomes between hospitals during the entire
sample period. The volume coefficient is then identified
by the relationship between outcomes and surgical vol-
umes within hospitals over time. For example, a positive
coefficient estimate on volume in the live discharge transi-
tion intensity when hospital specific dummies are in-
cluded in the model implies that a hospital performing
more surgeries in period t� 1 than in period t would also
have improved outcomes (shorter lengths of stay) in per-
iod t� 1, on average. When the hospital indicators are
excluded from the model, the coefficient on volume will
reflect both differences between high and low volume
hospitals and differences within hospitals over time.

SPECIFICATION OF FUNCTIONAL FORMS

The final step in the construction of the empirical model
involves the specification of the functional form of the
transition intensities in Equation 9.3. We follow a
common approach and adopt a proportional hazards
specification. In addition, the unmeasured component is
allowed to have different factor loadings in each transi-
tion intensity function, so that

�
�
(m

���
�X

���
, �)� exp(X

���
�
�
� �

��
��

�
�)�

��
(m

���
)

r� a, d (9.4)

where �
��

denotes the hospital-specific fixed effect and
�
��
(m) represents the baseline transition intensity func-

tion. Measured and unmeasured characteristics thus shift
the transition intensity above or below its baseline. Not
all of the factor loading in Equation 9.4 are identified, so
�
�
is normalized to 1. We also considered an alternative

specification which allowed for separate heterogeneity
components, �

�
and �

	
, for the live and dead discharge

transition intensities, respectively (all the �
�
are set to 1 in

this case). However, the results were virtually identical
with those presented below using this alternative specifi-
cation, so we adopted the simpler one factor specification
of the frailty distribution.

A variety of parametric and non-parametric methods
are available to estimate the baseline transition intensity
[12]. Some guidance as to the appropriate functional
form may be gained by examining the empirical transi-
tion intensities, shown in Figure 9.1. A parsimonious
specification of the baseline transition intensity which
allows for the non-monotonic behaviour shown in the

figure and which yields a reasonable fit of the data is the
log—logistic distribution:

�
��
(m)�

�
�
�
�
m�

�
�

1��
�
m�

�

�
�
� 0,�

�
� 0. (9.5)

When �
�
� 1,�

��
(m) has an inverted U shape reaching a

maximum at m� [(�
�
� 1)/�

�
]����. Equation 9.5 allows

the parameters of the baseline transition intensities to
differ for each destination.

Estimation of themodel requires that a functional form
be chosen for G(�). Pickles and Crouchley [13] describe a
variety of specifications for G(�). We adopt the non-par-
ametric approach suggested by Heckman and Singer [9]
and assume that G(�) may be approximated by a discrete
distributionwith a finite number of points of support. The
location of the points of support and their associated
probability mass are estimated jointly with the other
parameters of the model. With this specification of G(�),
the likelihood function may be written as

L � �
�
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where �
�
,K� 1, . . .,K are the points of support with asso-

ciated probabilities	
�
which sum to one. Empirical appli-

cations have shown that the value of K required to non-
parametrically represent G(�) is usually small, generally
K� 3 or 4.

EMPIRICAL RESULTS

This section presents the estimation results from the em-
pirical model described above. Primary interest focuses
on the impact of HVOL

��
on outcomes. To make our

estimates comparable to those in the literature, we use the
natural logarithm of HVOL

��
in the specifications, al-

though the results are similar when HVOL
��
is used as a

regressor. To account for differences across patients, indi-
cators for gender and marital status are included in X

���
,

as are patient age and income as measured by median
male income in 1988 in the postal code of residence.
Given the concern in the literature regarding the possible
correlation between patient case-mix and surgical vol-
ume, we include substantially more variables describing
the patient’s health status at the time of hospital admis-
sion than is typically found in the literature: X

���
includes

indicator variables for whether the patient has 0, 1, 2, 3 or
4—5 comorbidities (the omitted category is 6� comor-
bidities), in addition to 10 dummy variables correspond-
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Figure 9.1. Empirical transition intensities, by destination

ing to the comorbid conditions whichmake up the Charl-
son index. Finally, we include indicators for the type of
fracture and the year in which the surgery was performed.
The year dummies capture any common trend across
hospitals in outcomes over time.

Tables 9.3 and 9.4 present the parameter estimates of
the length of stay transition intensities from the compet-
ing risk model. Positive coefficients indicate that an in-
crease in the variable implies an increase in the transition
intensity. Regarding the frailty distribution, the data in-
dicated clustering around three points, so that G(�) was
approximated by a finite distribution with three points of
support (K� 3).

Table 9.3 presents the parameter estimates of the deter-
minants of length of stay resulting in a live discharge
(columns 1 and 2) and an in-hospital death (columns 3
and 4). The odd-numbered columns correspond to a spec-
ification which excludes the hospital dummies, while the
even-numbered columns allow for fixed differences across
hospitals. Both specifications allow for unmeasured (by
the econometrician) differences across patients. Turning
first to the live discharge transition intensities, the posi-
tive and precisely estimated coefficient on log(HVOL

��
) in

column 1 implies that after controlling for other potential
confounders, such as demographic characteristics and
observed comorbidities, patients undergoing surgery at a

high volume hospital have a significantly higher prob-
ability of leaving the hospital on day m, conditional upon
having survived in hospital at leastm days. This is consist-
ent with studies in the literature (e.g. Hughes et al. [14])
showing that hospitals performing a large number of hip
fracture surgeries have shorter lengths of stay in the USA.
The remainder of the coefficient estimates indicate that
older patients and those in poorer health at the time of
admission have lower conditional probabilities of leaving
the hospital on any particular day. Finally, the estimates
of the baseline hazard parameters � and � imply that the
live discharge transition intensity initially increases with
length of stay, peaks at approximately 20 days and then
declines thereafter.

The estimates in column 2 of Table 9.3 indicate that the
surgical volume-live discharge relationship found in the
first column primarily reflects fixed differences between
hospitals rather than a within-hospital effect. When hos-
pital fixed effects are included in the specification, the
coefficient on volume in the live discharge transitions
declines substantially and is insignificant. Consequently,
if the average hospital performs 10 more surgeries in the
previous 12 months than its sample 12 month average,
the conditional probability of live discharge will not
change significantly. On the other hand, the hospital
indicator variables, which capture permanent differences
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Table 9.3 Proportional hazard estimates (baseline hazard specification: log—logistic)

Exit destination

Live discharge (a) Died in hospital (d)

Variable (1) (2) (3) (4)

Log(HVOL
��
) 0.245 �0.085 �0.013 �0.329

(8.306) (�0.806) (�0.124) (�0.941)
Age �0.017 �0.019 0.072 0.069

(�16.281) (�15.843) (8.587) (9.037)
Male 0.013 0.022 0.580 0.547

(0.403) (0.625) (4.547) (4.434)
Married 0.054 0.041 0.073 0.105

(1.876) (1.289) (0.642) (0.891)
Income �0.020 �0.080 0.012 0.056

(�0.762) (�2.449) (0.113) (0.439)
Pertrochanteric fracture �0.221 �0.195 0.287 0.301

(�7.024) (�5.812) (2.318) (2.437)
Other fracture �0.100 �0.018 0.075 0.041

(�2.568) (�0.390) (0.464) (0.225)
0 Comorbidities 1.348 1.737 �1.820 �2.129

(16.615) (20.892) (�6.393) (�6.721)
1 Comorbidity 1.034 1.373 �0.641 �0.891

(13.493) (17.704) (�3.092) (�4.021)
2 Comorbidities 0.777 1.044 �0.407 �0.634

(10.422) (13.758) (�2.157) (�3.240)
3 Comorbidities 0.753 0.958 �0.378 �0.606

(9.963) (12.562) (�1.989) (�3.146)
4—5 Comorbidities 0.324 0.437 �0.132 �0.301

(4.544) (6.105) (�0.845) (�1.928)
Comorbidity types:
pvalue� 0.000 0.000 0.000 0.000
� 1 1 �2.664 �1.343

(�3.877) (�3.911)
� 0.0004 0.0003 0.015 0.015

(8.696) (8.621) (3.571) (4.049)
� 2.699 2.612 1.454 1.513

(49.910) (55.556) (10.989) (9.901)
Hospital dummies? No Yes No Yes
p-value� — 0.000 — 0.000

t-Statistics in parentheses. Each regression based on 7383 patient observations at 66 hospitals. Each regression
also includes a constant, dummy variables for year in sample and indicators for 10 co-morbidity types. The age
and income variables are deviations from their sample means.
�p-Value is from a test of the null hypothesis that the coefficients on the 10 comorbidity indicators are jointly zero.
�p-Value is from a test of the null hypothesis that the coefficients on the 65 hospital indicators are jointly zero.

between hospitals over the sample period, are jointly
strongly statistically significant.

Columns 3 and 4 show that surgical volume does not
have a significant effect on the conditional probability of
dying in hospital, although the volume coefficient in-
creases in absolute magnitude when the hospital fixed
effects are included in the specification. While Hughes et
al. [14] find a significant hip surgery volume-in-hospital
mortality link (not controlling for fixed differences be-
tween hospitals), they include only a small set of patient
comorbidity indicators; in contrast, our specification in-

corporates variables measuring the number and type of
comorbidities, as well as unobserved patient frailty. The
hospital fixed effects may capture some of the between-
hospital differences in case-mix.When we adopt a specifi-
cation similar to Hughes et al. which does not allow for
unobserved patient differences and hospital fixed effects
and only includes comorbidity indicators for diabetes and
heart disease, we also find that higher volume is asso-
ciated with significantly lower in-hospital mortality. Con-
sequently, we suspect that the significant volume—mortal-
ity link previously found in the literature reflects patient
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Table 9.4 Proportional hazard model heterogeneity
parameter estimates (baseline hazard specification: log—logistic)

Specification

No hospital dummies Hospital dummies
(Table 9.3, (Table 9.3,

Variable columns 1 and 3) columns 2 and 4)

�
�

� 1.704 0.336
�
�

�2.360 �0.722
(4.456) (2.102)

�



�2.862 �2.753
(3.114) (3.754)

	
�

0.714 0.796
(4.518) (4.369)

	



0.034 0.005
(1.153) (0.856)

Log-likelihood �30711.9 �30223.1

t-Statistics in parentheses. t-Statistics on �
�
(�



) is from a test of the

hypothesis that �
�
� �

�
(�

�
� �



).

case-mix differences across hospitals that are correlated
with volume. Note that the joint significance of the hospi-
tal dummies in column 4 suggests that the conditional
probability of in-hospital mortality differs across hospi-
tals, but this does not appear to be related to volume after
controlling for observed and unobserved patient hetero-
geneity.

The final notable finding in Table 9.3 is the significant
and negative estimate of �

	
in both columns 3 and 4,

implying that unobserved patient characteristics leading
to declines in the live discharge transition intensity are
associated with higher conditional probabilities of in-
hospital mortality. Therefore, treating length of stay and
mortality as independent outcomes is overly restrictive.

Table 9.4 presents the estimates of the unobserved
heterogeneity distribution for the specifications which
exclude and include the hospital fixed effects. For con-
venience, denote a realization of �

�
as a ‘type k’ patient.

One interpretation of the K� 3 support points is that
there are three types of patients. In the specificationwhich
includes hospital dummies, approximately 0.5% of the
sample are type 3 individualswho experience significantly
longer hospital stays and a substantially higher probabil-
ity of dying in hospital than do type 1 or type 2 patients.

In summary, surgical volume has a significant and
positive effect on the conditional probability of a live
discharge from the hospital and an insignificant effect on
the conditional probability of in-hospital mortality, thus
implying that higher volumes are associated with shorter
lengths of stay. However, this relationship appears to
primarily reflect differences between hospitals. After in-
cluding hospital-specific fixed effects, period to period

variation in volume within hospitals has no significant
impact on the transition intensities. These results appear
to be more consistent with explanations for the vol-
ume—outcome relationship that emphasize quality dif-
ferences between hospitals and casts doubt on the prac-
tice makes perfect hypothesis. This conclusion is further
strengthened if one believes that quality changes substan-
tially over time and is positively correlated with volume
as is usually assumed. In this case, the volume coefficients
in the fixed effects models would be an upper bound
(lower bound in the case of inpatient mortality) on the
practice effect, but of course the coefficients are small and
insignificant. However, given our short panel, the as-
sumption of relatively constant quality appears reason-
able.

DECOMPOSING THE LIVE DISCHARGE
OUTCOME

The live discharge outcome encompasses a wide range of
possible discharge destinations, including routine dis-
charges to home, discharges to chronic care facilities and
discharges to rehabilitation or other hospitals. While we
found no effect of volume on the conditional probability
of live discharge as a whole after accounting for hospital-
specific effects, it may be the case that this result hides a
significant effect of volume on a particular subset of live
discharges. To address this possibility, we decompose the
live discharge outcome into three subcategories: exits to
home (h), comprising 45% of total discharges; exits to a
chronic care facility (c), comprising 12% of discharges;
and exits to a rehabilitation (or other) hospital (b), com-
prising 35% of discharges. The impact of volume on the
transition intensities is then estimated using a likelihood
function similar to Equation 9.6, where the set of mu-
tually exclusive and exhaustive discharge destinations is
now r� h, c, b, d.

Themodel was re-estimated for the expanded set of exit
destinations including the set of patient characteristics
X

���
used previously, accounting for unobserved patient

heterogeneity as above. The first row of Table 9.5 presents
the coefficient estimate on the natural logarithm of surgi-
cal volume for each of the four transition intensities when
the hospital indicators are excluded from themodel. Since
our focus is on the volume—outcome relationship, the
parameter estimates for the other variables are not pres-
ented. The results indicate that the strong positive rela-
tionship between surgical volume and live discharge
shown in column 1 of Table 9.3 primarily reflects the fact
that increases in volume increase the conditional prob-
ability of discharge to a rehabilitation hospital. There is
little evidence to suggest that higher volumes lead to
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Table 9.5 Proportional hazard estimates of log(HVOL
��
) for expanded set of outcomes, excluding and including hospital indicators

Exit destination

Includes hospital Home Chronic care Rehabilitation hospital� Died in hospital
dummies? (h) facility (c) (b) (d)

(1) No 0.010 �0.091 0.750) 0.011
(0.270) (�1.171) (16.033) (0.123)

(2) Yes �0.140 0.010 �0.013 �0.333
(�1.061) (0.075) (�0.043) (�1.178)

Fraction discharged to 0.45 0.12 0.35 0.08
destination

t-Statistics in parentheses. Each regression based on 7383 patient observations at 66 hospitals. Each regression includes all of the variables shown in Table
9.3, and accounts for unobserved patient heterogeneity.
�Rehabilitation hospital includes other hospital.

speedier discharges to home, or have a significant impact
on the conditional probability of discharge to a chronic
care facility.

The second row of Table 9.5 presents the estimates of
the volume variable when hospital fixed effects are in-
cluded in the specification. The results are similar to those
presented in Table 9.3. When the hospital indicators are
included in the specification, the effect of surgical volume
on the conditional probability of discharge to a rehabili-
tation hospital becomes small and insignificant, implying
that fluctuations in volumewithin hospitals do not have a
substantial effect on this or any of the other transition
intensities. Consequently, these results suggest that low
and high volume hospitals differ in their propensity to
discharge patients to rehabilitation facilities. It may be
the case that larger hospitals have developed working
relationships with rehabilitation centres, which facilitate
placement in these institutions. Overall, the main thrust
of our results do not change when live discharges are
decomposed into subsets of destinations. The volume—
outcome relationship reflects differences between hospi-
tals, rather than within hospitals, for hip fracture patients
in Quebec.

CONCLUSIONS

This paper documents a significant relationship between
surgical volume and length of stay among hip fracture
patients at Quebec hospitals in the early 1990s. This
result is similar to those found for American patients
undergoing hip fracture surgery as well as surgery for a
variety of other procedures. However, in contrast to these
studies, which rely on cross-sectional samples of hospital
volume and outcomes, we utilize longitudinal data to
decompose the volume—outcome relationship into a

‘within’ hospital effect determined by period to period
changes in a hospital’s volume and a ‘between’ hospital
effect reflecting differences among hospitals. In addition,
we allow for potential correlation in live and dead dis-
charges by incorporating unobserved (by the researcher)
differences across patients at the time of hospital admis-
sion. Finally, we account for case mix differences between
hospitals by including a substantial number of comorbid-
ity variables. Our findings show that accounting for both
measured and unmeasured patient characteristics, period
to period fluctuations in a hospital’s volume have no
significant effect on length of stay or mortality. The sig-
nificant volume—outcome relationship found in the data
reflects differences between hospitals that are fixed over
time. This finding persists when we decompose live dis-
charges into exits to home, chronic care facilities or reha-
bilitation hospitals.

These results cast doubt on the practice makes perfect
hypothesis in the case of hip fracture surgery. The results
are more consistent with the hypothesis that higher qual-
ity hospitals attract more surgical volume, thus yielding
the positive volume—outcome relationship observed in
cross-sectional data. The results have important implica-
tions for health care providers and policy makers who
must make decisions regarding resource allocation across
hospitals. If declining budgets necessitate hospital clo-
sures or bed reductions, then closure of small, low quality
hospitals and regionalization of care at large, high quality
hospitals is likely to maintain or perhaps even improve
overall patient outcomes. On the other hand, if hospital
closures are not politically feasible, then reductions in
surgical volumemay be distributed amongst all hospitals,
with no significant detrimental effect on overall patient
outcomes. Of course, further information on the relation-
ship between volume and costs is necessary before mak-
ing such decisions.
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Table 9.A1 Summary statistics, patient characteristics

Variable Mean (SD)

Length of stay (m) 24.7 (29.7)
Died in hospital 0.077 (0.267)
Age 76.1 (13.9)
Male 0.27 (0.45)
Married 0.39 (0.49)
Income (median in postal code) 21 691 (5260)
Pertrochanteric fracture 0.49 (0.50)
Other fracture 0.18 (0.38)
Number of surgeries (HVOL) 70.1 (31.6)
Admitted to university-affiliated hospital 0.54 (0.50)
0 Comorbidities 0.26 (0.44)
1 Comorbidity 0.21 (0.41)
2 Comorbidities 0.17 (0.38)
3 Comorbidities 0.13 (0.34)
4 or 5 Comorbidities 0.14 (0.35)
Charlson index 0.55 (1.1)
N 7383

Our results suggest that the volume—outcome relation-
ship reflects fixed differences across hospital, such as
quality. Further research is necessary to examine more
deeply the determinants of between hospital variation.
For example, these differences may reflect the quality of
surgeons or the surgical team, treatment protocols or the
scale of production at the hospital. Understanding of
these issues may be important for making certain types of
detailed policy recommendations, such as standardizing
protocols. We intend to pursue these areas of investiga-
tion in future work.

Finally, our findings do not necessarily generalize to
other types of surgery. For example, while hip fracture
surgery is relatively routine, many government health
authorities and oversight boards require that surgeons
and hospitals performing operations such as PTCA must
meet a minimum per year surgical volume in order to
maintain competence and remain certified. For these
types of procedures, practice makes perfect effects are
clearly believed to be present [15]. However, it is the case
that studies of the volume—outcome relationship for these
procedures found in the literature rely on cross-sectional
data and are unable to distinguish between the practice
makes perfect and selective referral hypotheses [16].
Moreover, these studies have not controlled for the corre-
lation between length of stay and inpatient mortality; nor
have they accounted for potential differences in patient
frailty. The empirical methodology outlined in this paper
may be fruitfully applied to analysing the volume—out-
come relationship for these other procedures.
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APPENDIX

Summary statistics and patient characteristics are given
in Table 9.A1.
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Variable Approach
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Several recent studies have shown the relevance of the
double-hurdle approach for microeconomic analysis of
cigarette smoking [1—9]. At the same time, Becker and
Murphy’s [10] model of rational addiction has stimu-
lated research on the role of addiction in empirical analy-
sis of survey data on smoking [11—13]. Here we develop a
model of the simultaneous decisions of how many ciga-
rettes to smoke and whether to quit. This incorporates
the trade-off between the fixed costs of quitting, asso-
ciated with nicotine dependence, and the expected future
benefits of quitting in terms of health, wealth and self-
esteem. Unlike previous work on cigarette consumption
[11—13], the model identifies the separate influence of
addiction on consumption and participation.
Survey data, whether for individuals or households,

and whether based on expenditure or number of ciga-
rettes, invariably contain a high proportion of non-
smokers, and appropriate limited dependent variable
techniques are required to avoid biased and inconsistent
estimates. The special feature of the double hurdle ap-
proach is that, unlike the standard Tobit model, the
determinants of participation (whether to start or quit
smoking) and the determinants of consumption (how
many cigarettes to smoke) are allowed to differ. However,
a limitation of the standard double hurdle specification is
that it is based on the assumption of bivariate normality
for the error distribution. Empirical results will be sensi-
tive to misspecification, and ML estimates will be incon-
sistent if the normality assumption is violated [14,15].
This may be particularly relevant if the model is applied
to a dependent variable that has a highly skewed distribu-

tion, as is often the case with survey data on cigarette
consumption. In this paper we use a flexible generaliz-
ation of the model, the Box—Cox double hurdle model
introduced by Jones and Yen [16].
The Box—Cox double hurdle model provides a

common framework that nests standard versions of the
double hurdle model and also includes the generalized
Tobit model and ‘two-part’ dependent variable, as special
cases [2,7,9,17,18]. This allows us to make explicit com-
parisons of a wide range of specifications that have been
used in the microeconometric literature on smoking. Our
results are based on a sample of 3801 British adults from
the 1984—85 Health and Lifestyle Survey (HALS).

A MODEL OF SMOKING AND QUITTING

This section develops an empirical model of the simulta-
neous decisions of how many cigarettes to smoke and
whether to quit smoking. This model is based on the
trade-off between the expected benefits of quitting for the
smoker’s health, wealth and self-esteem and the fixed
costs of quitting associated with nicotine dependence and
withdrawal. For similar models of participation based on
the expected utility of smoking versus quitting, see Ip-
polito and Ippolito [19], Jones [20], Mullahy and Port-
ney [21], Viscusi [22] and Blaylock and Blisard [7].
Other studies of addiction based on survey data have
concentrated on the impact of addiction on the level of
cigarette consumption [11—13]. But because our data set
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contains information on individuals’ history of smoking,
irrespective of whether they are current smokers, we are
able to analyse the separate influence of addiction on
quitting as well as on consumption.
As our empirical application uses cross-section survey

data we use a stylized model of addiction that is essential-
ly a static framework. However the specification is in-
tended to include the expected future benefits of quitting
and could be interpreted in terms of intertemporalmodels
of rational addiction. Our cross-section data has no price
variation (either inter-temporal or inter-regional), so we
are not able to investigate the impact of past, current and
future cigarette prices. These cross-price effects play a key
role in the Becker—Murphy framework for distinguishing
between myopic and rational behaviour.
The development of nicotine dependence is often de-

fined in terms of tolerance, reinforcement and withdrawal
effects (see e.g. Ashton and Stepney [23], Becker and
Murphy [10]). In particular, Ashton and Stepney de-
scribe the onset of withdrawal effects as follows:

. . . an important stage in the development of drug dependence is
the move from taking the drug in order to feel better to taking it
in order to avoid feeling worse.

[Ashton and Stepney [23], p. 58]

Two stylised features of withdrawal effects stand out.
Firstly, the effects are asymmetric and only occur when
smokers try to cut down or quit. Secondly, once a thresh-
old has been passed, the role of consumption is not simply
to provide satisfaction but also to ward off the conse-
quences of withdrawal. In this respect withdrawal can be
interpreted as increasing the ‘efficiency’ of consumption
(see Jones [20]).
The influence of nicotine dependence and the asso-

ciated withdrawl effects can be modelled as a ‘fixed cost’
of quitting. In line with the literature on the economics of
addiction we assume that these expected fixed costs (A

�
)

will depend on the individual’s past consumption. In our
empirical application we use a measure of previous peak
cigarette consumption (Chaloupka [12], uses a similar
measure). However addition is not simply a function of
the individual’s past behaviour and an individual’s degree
of dependence will depend on their characteristics and
circumstances. Assume that,

A
�
� x

��
�
�
� �

��

where x
�
is a vector of variables, including past consump-

tion, that affect the expected fixed costs of quitting, �
�
is

the corresponding vector of parameters, and �
��
is a ran-

dom disturbance reflecting unobservable individual het-
erogeneity.

The expected benefits of quitting are likely to reflect the
health, financial and social consequences of the habit. For
example, Marsh and Matheson [24] suggest that the
decision to quit is typically based on the perceived bene-
fits of abstinence rather than the perceived harm of con-
tinuing smoking:

. . . More positive attitudes towards the benefits of giving up
smoking lead more smokers first to resolve and then to attempt
to give up. The attitudes most effective in this process concern
the likelihood of positive health benefits from giving up smoking.
Those concerned with money and greater self-esteem are also
effective, those with aesthetic and social aspects less so unless
linked to self-esteem.

[Marsh and Matheson [24], p. 132]

The 1990 British Social Attitudes Survey has a module on
attitudes to smoking. Its findings show that 87% of cur-
rent and ex-smokers cite health as being a ‘very or fairly’
important reason for wanting to give up smoking, 51%
say that it costs too much to continue smoking, and 43%
cite family pressure. In the Health and Lifestyle Survey
34% of men and 26% of women mention ill-health at the
time of the decision as the reason for stopping smoking.
Fear of future ill-health is mentioned 30% of men and
23% of women, and the expense is mentioned by 28% of
men and 27% of women. Other reasons all have less than
13% responses [26].
It is reasonable to assume that the expected benefits of

quitting, in terms of health, wealth and self-esteem will
depend on how much the individual would have smoked
otherwise. In particular it is likely that the benefits will be
increasing in the individual’s level of cigarette consump-
tion. The financial burden of heavier smoking is clear. As
regards the benefits of quitting for current and future
health, there is extensive evidence that the health risks of
smoking are perceived to be greater for heavy smokers
[24]. Also, the social pressures and associated stigmamay
be greater for heavy smokers than for occasional or ‘so-
cial’ smokers. This is likely to be exacerbated by increas-
ing restrictions on smoking in public places and attitudes
towards the risks of passive smoking [25].
We assume that there is a latent variable (y*

��
), which

characterizes the individual’s demand for cigarettes, such
that,

y*
��

� g(y
�
) or g��(y*

��
)

where y
�
is their observed level of consumption, and g(.) is

an increasing transformation. Then assume that the ex-
pected benefits of quitting are given by,

B
�
�B*(y*

��
)�B(g��(y*

��
))�B(y

�
)

with B�(.)� 0, so that the benefits of quitting are increas-
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ing in the level of desired and observed consumption. In
our empirical applicationwe use the Box—Cox transform-
ation for g(.); this introduces greater flexibility into the
standard double hurdle specification of cigarette con-
sumption.
The decision to attempt to quit smoking will depend on

the expected net benefit of quitting B�A. In other
words, on whether the benefits outweigh the fixed costs
caused by nicotine dependence. So the condition for an
individual not attempting to quit can be written,

y*
��

�A
�
�B

�
� 0.

Now let

y*
��

� x
��
�
�
� �

��

where x
�
are variables that determine the demand for

cigarettes, which may include the addiction effects of
tolerance and reinforcement on the level of consumption,
�
�
is the corresponding vector of parameters, and �

��
is a

random disturbance. For tractability, let B*(.) be the
identity, then,

y*
��

� x
��
�
�
� �

��
� x

��
�
�
� �

��

or

y*
��

� x
��
�
�
� �

��
(10.1)

where x, is the union of x
�
and x

�
. �

�
is the corresponding

parameter vector, where for variables that appear in both
x
�
and x

�
the elements of �

�
��

�
� �

�
, and �

��
�

�
��

� �
��
.

Equation 10.1 gives the first hurdle that the individual
must pass to be observed with a positive level of cigarette
consumption. But, in line with the double hurdle specifi-
cation, we also allow for the latent variable y*

��
to generate

zero observations. Then, the observed level of cigarette
consumption is,

y
�
� g��(y*

��
)

if y*
��

� 0 and g��(y*
��
)� g��(x

��
�
�
� �

��
)� 0 (10.2)

Notice that for variables that have no (or small) influence
on the fixed costs of quitting (�

�
� 0) we would expect

equal and opposite effects on the two decisions
(�

�
���

�
). This reflects the intuition that, conditional on

overcoming the fixed costs of quitting (A), it is the heavier
smokers who have the greatest incentive to quit.
Given the specification in Equation 10.1 and Equation

10.2 and assuming that �
��
and �

��
have zero mean, con-

stant variances (����
and ����

), and covariance ����
, the

covariance matrix for �
��
and �

��
is,

�
����

�����
� 2����

����
�����

����
�����

����
�

This gives a correlation coefficient,

�� �
����

� ����
���

�����
�����

� 2����

which will depend on the degree of correlation between
the unobservable elements of the fixed costs of quitting
(A

�
) and the desire to smoke (y*

��
). In the limit, if ����

� 0,

�� ��
���

�����
� ����

which implies a high degree of negative correlation be-
tween the two error terms. When ����

is small relative to
����
this expression will tend towards�1. To summarize,

this specification suggests that it would not be appropri-
ate to assume independence of the error terms in the
double hurdle model, if the benefits of quitting are asso-
ciated with the individual’s level of smoking.

THE ECONOMETRIC SPECIFICATION

To estimate the model we normalize the error distribu-
tion so that �

��
� 1, and assume bivariate normality.

Then the empirical model corresponds to the Box—Cox
double hurdle model of Jones and Yen [16]. Which can
be written as (the parameter vectors �

�
and �

�
are re-

placed by �
�
and �

�
, to reflect the normalization of the

variance),

y*
��

� x
��
�
�
� u

��
(10.3)

y*
��

� x
��
�
�
� u

��
(10.4)

where

(u
��
, u

��
)�BVN(0,�)

and

���
1 �

��
�
��

�� �
In other words, the conditional distribution of the latent
variables is assumed to be bivariate normal.
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For the function g(.) we use a Box—Cox transformation.
Then, the censoring mechanism implies that the observed
dependent variable (cigarette consumption, y

�
) is such

that,

y*
��

� (y�

�
� 1)/� � � 0

if y*
��

�� 1/� and y*
��

� 0

� log(y
�
) � � 0

y
�

� 0 otherwise (10.5)

This specification allows participation to depend on both
sets of regressors x

��
and x

��
and permits stochastic de-

pendence between the two error terms, as predicted by
ourmodel. In addition the use of the Box—Cox transform-
ation relaxes the normality assumption on the condi-
tional distribution of y

�
. In Jones and Yen [16] we show

that the likelihood function for a sample of independent
observations is,

L � �
��1���x��

,
x
��
�
�
� 1/�

�
,���

�����	

����
x
��
�
�
� (�/�)�(y�

�
� 1)/� �x

��
�
�
�

�1��� �
� y����	

�

1

�
��
(y�

�
� 1)/�� x

��
�
�

� ��
��

(10.6)

where� denotes a, univariate or bivariate, standard nor-
mal CDF, � denotes the univariate standard normal
PDF, � ��

��
/�, andD

�
is an indicator such thatD

�
� 1 if

y
�
� 0 and 0 otherwise. The advantage of this approach is

that it encompasses a wide range of standard limited
dependent variable models. The general model Equation
10.6 can be restricted to give various special cases (see
Jones and Yen [16] for full details):

(i) �
��

� 0

This gives the Box—Cox double hurdle with independent
errors.

L � �
��1��(x

��
�
�
)��

x
��
�
�
� 1/�

� ��
�����	

���(x����
)y����	

�

1

�
��
(y�

�
� 1)/�� x

��
�
�

� ��
��

(10.7)

(ii) �� 1

This gives the standard double hurdle with dependence,

L � �
�
�1���x����

,
x
��
�
�
� 1

�
,���

������	

����
x
��
�
�
� (�/�)�y

�
�x

��
�
�
� 1�

�1��� �
�
1

�
��

y
�
�x

��
�
�
� 1

� ��
��

(10.8)

This model is applied to UK data on household to-
bacco expenditure from the 1984 Family Expenditure
Survey (FES) in Jones [5], and to Spanish Family Expen-
diture Survey data for 1980—81 in Garcia and Labeaga
[6]. The special case in which the error terms are assumed
to be independent (�

��
� 0) is applied to FES data on

household tobacco expenditure in Atkinson, Gomulka
and Stern [1], UK data on individual cigarette consump-
tion from the 1980 General Household Survey (GHS) in
Jones [3], and to US data on wine consumption in
Blaylock and Blisard [27].

(iii) � � 0

In this case the likelihood function reduces to,

L � �
�

[1��(x
��
�
�
)]�����	

����
x
��
�
�
� (�/�)�log(y

�
)� x

��
�
�
�

�1��� �
�
1

�
��
log(y

�
)� x

��
�
�

� � y��
� �

��
(10.9)

This corresponds to the Type II or generalized Tobit
model with log(y

�
) as dependent variable in the regression

part of the model [28,29]. A variant on this specification
is used by Fry and Pashardes [9] model UK household
tobacco expenditure with pooled FES data. They use a
logit equation for participation and the Heckman two-
step estimator for the regression equation, with house-
hold budget shares as the dependent variable, and their
estimation is carried out in the context of a full demand
system.
Setting �

��
� 0 gives the so-called ‘two-part’ model.

This has been applied widely and is estimated as a probit
equation for participation, based on the regressors x

��
,

and conditional OLS of log(y
�
) on x

��
for the positive

observations. Studies of smoking based on the two-part
model include Lewit, Coate andGrossman [17],Mullahy
[2], Wasserman, Manning, Newhouse and Winkler [18],
and Blaylock and Blisard [7]. The issue of choosing
between the two-part specification and the Heckman
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two-stage sample selection model has also provoked con-
siderable debate in the literature on health care utiliz-
ation (see Hunt-McCool, Kiker and Ng [30] for a recent
contribution). The Box—Cox specification makes it clear
that the two-part model is a potentially restrictive special
case, which requires independence between the unobserv-
able factors underlying participation and consumption
(�

��
� 0), and the correct distributional assumption for

the conditional level of consumption (� � 0).

THE DATA

THE HEALTH AND LIFESTYLE SURVEY

The focus of this study is on individual smoking behav-
iour and, in particular, on the determinants of the joint
decisions of how many cigarettes to smoke and whether
to quit. Ourmodel emphasizes the role of addiction in the
decision to quit and, to apply it, we need data on past
consumption for both current and ex-smokers. Our
dataset is the 1984—85 Health and Lifestyle Survey
(HALS). TheHALS is a large representative cross-section
sample of British adults. The surveywas conducted by the
Office of the Regius Professor of Physics and the Depart-
ment of Psychiatry at the Cambridge University School
of Clinical Medicine, and the sample selection and field-
workwas carried out by Social andCommunity Planning
Research. The data were collected between autumn 1984
and summer 1985 at two home visits; a one hour inter-
view, followed by a nurse visit to collect physiological
measurements and tests of cognitive functions. The nurse
also gave out questionnaires to assess personality and
psychiatric status.
The response rate of 73.5% gives a usable sample of

9003 individuals, aged 18 and over, living in private
households. When information from the nurse visit and
questionnaire is included the response rate falls to 53.7%.
The survey was compared to the 1981 Census of popula-
tion to gauge its representativeness. There is a slight
excess of women, particularly elderly women, and some
under-representation of those with low incomes and less
education among respondents who completed all three
stages of the survey. Overall it was concluded that ‘the
study appears to offer a good and representative sample
of the population’ [26].

PRINCIPAL VARIABLES

Microeconomic studies of cigarette consumption that use
household expenditure data typically estimate a single
participation equation for whether or not individuals or

households are ‘smokers’ or ‘non-smokers’ [1,5,6,9]. In
contrast the HALS provides information that separates
non-smokers into those who have never smoked and
those who class themselves as ex-smokers. This allows the
analysis to be extended to distinguish between starting
and quitting. To estimate the double hurdle models the
sample is restricted to current and ex-smokers, so that
participation corresponds to the decision whether or not
to quit smoking. This follows the approach of Jones
[3,31]. The final sample consists of 3801 individuals. Of
these, 57 per cent are current smokers.
The dependent variable is the number of cigarettes

smoked per day (CIGDAY). This volume based depend-
ent variable is typical of health interview surveys and,
unlike an expenditure variable, does not control for dif-
ferences in the price or quality of cigarettes smoked.
However, as a measure of ‘typical’ consumption, it is less
likely to suffer from the problems of infrequency of expen-
diture and recall and response bias that are likely to arise
in expenditure surveys. It can also be argued that the
typical number of cigarettes is better suited for analysis of
the interaction between smoking and health (Jones [3]).
It should be stressed that HALS1 is a single cross-section
and that the participation variable measures the preva-
lence rather than the incidence of smoking and therefore
reflects the number of individuals who have quit up to the
time of the survey. The results should be interpreted in
terms of the stock of individuals who have quit rather
than the flow of new quits over a specific period.
The independent variables are intended to encompass

the determinants of the decision to quit smoking and the
level of cigarette consumption. Alongwith addiction, they
include measuring of social interaction, health and health
knowledge, and socio-economic status, all of which are
thought to be important influences on smoking.
TheHALS is a rich source of data to examine addiction

effects as it contains a number of variables that describe
an individual’s past behaviour. We use a measure of
previous peak consumption to proxy the ‘addictive stock’
it gives ‘the most you have smoked regularly per day’ in
numbers of cigarettes, and is available for both current
and ex-smokers (ADDICTION). Previous studies based
on UK survey data have not been able to analyse the
effect of lagged consumption, for example the 1980 GHS
data used in Jones [3] includes information on past
smoking, but only for those who were ex-smokers at the
time of the survey. The panel data studies by Chaloupka
[12] for the US and Labeaga [13] for Spain do allow
analysis of consumption dynamics.
The economic literature on social interaction and con-

sumer behaviour is rather sparse. The standard approach
is to introduce social interaction as a form of externality.
We adopt the externality approach, and assume that
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other people’s smoking has a direct influence on an indi-
vidual’s decision to quit. The appropriate HALS variable
is OTHER-SMOKERS, a dummy variable that equals 1
if there are other smokers in the individual’s household. A
similar variable proved to be important in Jones [3,31].
The HALS is a single cross-section and it is not poss-

ible to identify the impact of price, and hence tobacco
taxes, on consumption. Similarly it is not possible to
identify the impact of advertising and restrictions on
advertising, another policy instrument that has received
considerable attention in the time series literature on the
demand for cigarettes [32]. However our data does pro-
vide indirect evidence on a third area of anti-smoking
policy, the impact of health promotion and anti-smoking
advice. The HALS includes information on whether or
not an individual has received advice to quit smoking.
The survey asks: ‘Did anyone say that you should stop
smoking cigarettes completely?’ the list of possible re-
sponses is doctor, spouse, relative, and friend/workmate.
Only the highest response on the list is coded. We use a
dummy variable (ADVICE) that equals 1 if any advice to
quit was received. It should be stressed that this variable
is based on retrospective cross-section data and uses the
individual’s subjective response. With respect to the
medical advice to quit, this is a self-reported and unverifi-
able measure of exposure to a medical intervention, and
no allowance can be made for the nature and quality of
the advice, it could range from enrolment in a smoking
cessation programme to advice given during a routine
medical check-up.
As Kenkel [33] points out, the acquisition of health

knowledge, which may include the decision to seek out
and assimilate anti-smoking advice, is itself a choice. It
may also be subject to cognitive dissonance, in that the
individual may only seek or recall advice that is consist-
ent with their current behaviour. In addition the individ-
uals who are most likely to receive advice, particularly
where that entails the need to visit a doctor, may be those
who are most dependent on cigarettes and hence least
able to quit or cut-down. This kind of cross-section
dataset is not suitable to test hypotheses about the (clini-
cal) effectiveness of medical advice to quit smoking, and is
not a substitute for controlled intervention studies. Our
evidence simply provides a description of the prevalence
of smoking among those who have and have not received
advice to quit.
Unfortunately the HALS data for individual income

are based on a rather crude categorical scale and are
hampered by missing values. Instead, economic status is
measured by the Registrar General’s classification of
socio-economic group. This still allows us to make in-
ferences about the distributional implications of the
prevalence of smoking and levels of cigarette consump-

tion, and hence about the possible distribution of the
burden of tobacco taxes. Inevitably the use of proxy
variables for income will lead to measurement errors that
may be correlatedwith other variables, such as education,
and the results for the socio-demographic variables
should be viewed with caution.
There are three types of indicator of the individual’s

current health. Their self-assessed health is based on a
standard excellent/good/fair/poor scale. We are a binary
variable that equals 1 if the individual’s self-rating is fair
or poor (HEALTH). Measures of self-reported health
include reports of specific symptoms and experience of
specific illnesses.We use a binary variable for whether the
individual has a disability or long-standing illness (DIS-
ABILITY). Finally there are clinical measures of health.
We use three of these; lung function is measured by forced
expiratory volume in one second (HYFEV1), cardio-vas-
cular condition by the lowest pulse rate (LOWPULSE),
and general physique by Quetelet’s body mass index
(BMI). A full listing of the other socio-demographic vari-
ables used in the model is given in Table 10.1, these are
primarily indicators of education, marital status and
household composition.

EMPIRICAL METHODS AND RESULTS

ESTIMATION AND TESTING

Estimation of the Box—Cox double hurdle model was
done by maximizing the log-likelihood function corre-
sponding to Equation 10.6. To avoid evaluations of the
bivariate CDF’s, the Box—Cox double hurdle model with
independence and the generalized Tobit model were es-
timated using Equations 10.7 and 10.9 respectively. All
other restricted models were estimated by imposing the
relevant restrictions on model Equation 10.6 (see Table
10.2). The likelihood-ratio tests of the nested models are
presented in Table 10.2. All restricted models were rejec-
ted, each with a p-value of less than 0.0001. It should be
noted that the validity of the LR tests rests on the as-
sumption that the general model is not misspecified, in
particular that the assumptions of normality and homo-
scedasticity are not violated. We performed a RESET-
type misspecification test on the general model using the
second, third and fourth powers of the fitted values for the
consumption equation as extra regressors, the corre-
sponding LR statistic is less than 0.001 providing no
evidence of misspecification.
In estimating the full model we selected from a list of

explanatory variables in explaining the participation and
consumption decisions. This started with a specification
that included all the variables in both hurdles, relying on
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Table 10.1 Variable definitions and sample statistics (n� 3801)

Positive
Variable Full sample Mean Std. dev. Mean Std. dev.

D 1 if a smoker (0 otherwise) 0.569 0.495
CIGDAY Number of cigarettes per day 9.357 10.593 16.565 8.902

ADDICTION Most smoked regularly per day 22.606 15.151 24.154 14.119
OTHER-SMOKERS 1 if other smokers in household 0.542 0.498 0.678 0.467
ADVICE 1 if received any advice to quit 0.388 0.487 0.480 0.500
AGESTART Age started smoking 16.900 5.494 16.657 5.436
HEALTH 1 if self-rated health is poor/fair 0.316 0.465 0.362 0.481
FEV1 Forced expiratory volume in 1 sec. 2.652 0.924 2.662 0.907
PULSE Lowest pulse rate 71.440 11.345 73.099 11.147
DISABILITY 1 if disabled or long standing illness 0.319 0.466 0.279 0.448
BMI Quetelet’s body mass index (wt/ht�) 24.473 3.949 23.839 3.893
PROFESSIONAL Registrar General’s social class 1 0.047 0.212 0.028 0.165
MANAGERIAL Registrar General’s social class 2 0.209 0.407 0.176 0.381
OTHER
NON-MANUAL Registrar General’s social class 3 0.118 0.323 0.113 0.317

SEMI-SKILLED Registrar General’s social class 5 0.174 0.379 0.196 0.397
UNSKILLED Registrar General’s social class 6 0.061 0.239 0.073 0.260
ARMY Registrar General’s social class 11 0.008 0.090 0.007 0.086
WIDOW 1 if widow/widower 0.070 0.254 0.055 0.229
DIVORCED 1 if divorced 0.045 0.207 0.059 0.236
SEPARATED 1 if separated 0.026 0.158 0.032 0.175
SINGLE 1 if single 0.133 0.340 0.173 0.379
AGE Age in years 46.128 16.455 42.271 15.552
LONDON 1 if resident in Greater London 0.102 0.302 0.125 0.331
DEGREE 1 if individual has a degree 0.042 0.200 0.029 0.169

non-linearity for identification of the model. Insignificant
variables were gradually dropped from the list, with the
exclusion restrictions putting identification on firmer
ground (the likelihood ratio statistic for these restrictions
is 0.001). Our search concluded with a homoscedastic
specification. For comparisons, the same configuration of
variables was used in all restricted models. ML estimates
of the Box—Cox double hurdle model are presented in
Table 10.3. the parameter �

��
is significant at the 0.01

level, rejecting independence of errors. As suggested by
the fixed costs model, there is evidence of strong negative
correlation between the error terms.
The Box—Cox parameter (�) equals 0.562 which is sig-

nificantly different from both zero and one at the 0.01
level. Thus, both the standard double hurdle model and
generalizedTobitmodel are rejected. The value of 0.562 is
close to a square root transformation (although the esti-
mate is significantly different from 0.5). The square root is
a variance stabilizing transformation for Poisson data
[34]. This suggests that it may be more appropriate to
interpret the typical number of cigarettes as a count vari-
able rather than as a continuous dependent variable. For
example, the model could be estimated by the Negbin

hurdle model used by Pohlmeier and Ulrich [35]. The
problem with this approach is that these models do not
allow for dependence between the participation and con-
sumption equations, and hence for the selection bias im-
plied by the fixed cost model of addiction. Interestingly,
Wasserman et al. [18] estimate a two-part model using
the logarithmof cigarette consumption and they interpret
the model as a ‘pseudo-Poisson’ specification. However
theirmodel does not allow for selection bias and therefore
contradicts the fixed cost model.
In the full Box—Cox double hurdle model the predicted

impact of the individual regressors in x
�
and x

�
on the

probability of quitting and on the observed level of ciga-
rette consumption are complicated by the dependence
between the two hurdles and by the nonlinear transform-
ation between y*

�
and y. As a result the magnitude of the

coefficients �
�
and �

�
are difficult to interpret. To give a

more intuitive interpretation the marginal effects of the
continuous explanatory variables on participation and
consumption are explored by calculating elasticities.
Table 10.4 gives the elasticities of participation, the condi-
tional level of consumption, and the unconditional level
of consumption evaluated at sample means (see Jones and
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Table 10.2 LR tests for nested models�

MODEL 1: Box—Cox
double hurdle with
dependence
LL��8906.492

�
��

� 0 � � 1 � � 0

MODEL 2: Box—Cox MODEL 3: Standard MODEL 5:Generalized
double hurdle with double hurdle with Tobit for log(y)
independence dependence
LR� 191.59 LR� 119.91 LR� 383.63

� � 1 �
��

� 0 �
��

� 0

MODEL 4: Standard MODEL 6: Two-part
double hurdle with model for log(y)
independence
LR� 222.83 LR� 896.25

�LL, value of log-likelihood function.
LR, likelihood ratio statistic.

Yen [16] for details of the computation of these elastici-
ties, standard errors are computed by the delta method).
For the discrete regressors Table 10.5 presents average
effects, calculated as the value of the relevant variable
changes from zero to one.

INTERPRETATION OF THE RESULTS

The influence of addiction, measured by previous peak
consumption, has a positive effect on both the probability
of smoking and the level of consumption. The variable
ADDICTION is strongly significant in both equations,
the LR statistic for excluding the variable from the model
is ��(2)� 1181.53. A Smith and Blundell [36] type test
does not reject the exogeneity of ADDICTION, this is
calculated by including the residuals from a reduced form
equation for ADDICTION in both hurdles which gives
an LR statistic of 3.047 (p-value� 0.2179). This can only
be an imperfect test as our cross-section dataset does not
include a full set of appropriate lagged values to instru-
ment past consumption. Previous UK studies based on

microdata have not analysed the influence of lagged con-
sumption, but the positive effect on consumption is con-
sistent with the evidence from panel data in Chaloupka
[12] and Labeaga [13]. However these studies do not
identify the separate effect of past smoking on the prob-
ability of smoking or quitting. The evidence in Table 10.4
indicates that, on average, a 10 per cent increase in previ-
ous peak consumption will increase the probability of
remaining a smoker by around 3 per cent and increase the
level of current cigarette consumption by around 4 per
cent. This suggests that smoking habits persist and that
addiction does constrain individuals’ ability to quit. The
last result complements the finding in Jones [31] that past
consumption does not influence the desire to quit, as
measured by the individual reporting a ‘serious attempt’
to quit smoking, but does influence their success in quit-
ting.
In model 1, all of the other regressors show different

qualitative effects on participation and on consumption.
This is something that is consistent with the behavioural
model Equations 10.1 and 10.2, which suggests that the
parameters for variables that appear in both equations
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Table 10.3 Maximum likelihood estimates of the Box—Cox
double hurdle model�

Variable Probability Level

Constant 0.589** 3.129***
(0.247) (0.603)

ADDICTION 0.019*** 0.123***
(0.002) (0.013)

OTHER-SMOKERS 0.641*** �0.966***
(0.046) (0.141)

ADVICE 0.486*** �0.690***
(0.046) (0.125)

AGESTART 0.012*** �0.033***
(0.004) (0.011)

HEALTH 0.185*** �0.179*
(0.047) (0.113)

FEV1 �0.158*** 0.312***
(0.030) (0.081)

PULSE 0.013*** �0.017***
(0.002) (0.005)

DISABILITY �0.105*** —
(0.036) —

BMI �0.046*** 0.087***
(0.006) (0.016)

PROFESSIONAL �0.481*** 0.670**
(0.109) (0.298)

MANAGERIAL �0.173*** 0.474***
(0.055) (0.142)

OTHERNON-MANUAL �0.120** —
(0.047) —

SEMI-SKILLED �0.008 —
(0.042) —

SKILLED 0.116* —
(0.065) —

ARMY �0.129 —
(0.156) —

AGE �0.022*** 0.040***
(0.002) (0.006)

LONDON 0.214*** —
(0.054) —

WIDOW �0.082 —
(0.061) —

DIVORCED 0.359*** �0.640***
(0.102) (0.242)

SEPARATED 0.127 —
(0.094) —

SINGLE 0.096 �0.425***
(0.067) (0.164)

DEGREE �0.239*** —
(0.082) —

� 2.726*** —
(0.257) —

�
��

�2.627*** —
(0.242) —

� 0.562*** —
(0.036) —

Log-likelihood �8906.492 —

�Asymptotic standard errors in parentheses. Asterisks indicate levels of
significance: ***� 0.01, **� 0.05 and *� 0.10.

Table 10.4 Estimated elasticities�

Variable Probability Cond. level Uncond. level

ADDICTION 0.298*** 0.435*** 0.733***
(0.027) (0.033) (0.020)

AGESTART 0.144*** �0.200*** �0.057**
(0.049) (0.060) (0.028)

FEV1 �0.295*** 0.345*** 0.050
(0.057) (0.072) (0.038)

PULSE 0.657*** �0.633*** 0.023
(0.096) (0.123) (0.073)

BMI �0.782*** 0.901*** 0.118**
(0.095) (0.125) (0.072)

AGE �0.697*** 0.796*** 0.100
(0.061) (0.085) (0.062)

�Asymptotic standard errors in parentheses. Asterisks indicate levels of
significance: ***� 0.01, **� 0.05 and *� 0.10.

Table 10.5 Estimated average effects

Cond. Uncond.
Variable Probability level level

OTHER-SMOKERS 0.249 �6.801 �0.089
ADVICE 0.188 �4.388 �0.019
HEALTH 0.072 �1.448 0.132
DISABILITY �0.041 0.584 �0.243
PROFESSIONAL �0.190 6.302 �0.072
MANAGERIAL �0.068 2.509 0.373
OTHERNON-MANUAL �0.047 0.662 �0.276
SEMI-SKILLED �0.003 0.041 �0.019
UNSKILLED 0.045 �0.518 0.271
ARMY �0.051 0.716 �0.296
LONDON 0.083 �0.992 0.502
WIDOW �0.033 0.472 �0.191
DIVORCED 0.135 �3.067 �0.257
SEPARATED 0.049 �0.612 0.296
SINGLE 0.038 �1.673 �0.476
DEGREE �0.095 1.565 �0.549

will tend to have opposite signs. The implication is that,
after controlling for the fixed costs associated with addic-
tion, the more someone smokes the more likely they are
to try to quit, as the potential benefits of quitting are
greater. Hence the model predicts that variables which
increase the level of smoking will decrease the likelihood
of remaining a smoker.
To investigate this result further, we compare the esti-

mates for each of the models (Equations 10.1—10.6) for
both the ‘addiction’ and ‘non-addiction’ specifications
(i.e. where ADDICTION is omitted from both equa-
tions). For all of the twelve models the sign of the �

�
’s are

the same for virtually all of the regressors, indicating that
the participation part of the model is highly robust. In the
other two addiction models that allow for dependence
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between the error terms (Equations 10.3 and 10.5), the
signs of the �

�
’s are the same as model 1. However, for the

models that assured independence (Equations 10.2, 10.4
and 10.6) and for all of the models that omit ADDIC-
TION the �

�
’s are not consistent with Equation 10.1 and

show no clear pattern of opposing signs. To summarize,
controlling for addiction and the selection bias associated
with the decision to quit does influence the estimates of
the demand for cigarettes.
One striking feature of Tables 10.4 and 10.5 is that due

to the offsetting effects on participation and consumption
the net effect of most of the variables on the unconditional
level of consumption is very small. From a policy perspec-
tive attention would probably focus on the size of the
effects on quitting, as this is of most relevance for public
health objectives.
Jones [3,31] shows that those with smokers in their

households are less likely to have quit. This result is
confirmed here, but the double hurdle specification re-
veals that, conditional on participation, the variable has
the opposite effect on the level of smoking. A similar
pattern emerges with the impact of advice to quit (AD-
VICE). This variable has a positive effect on participa-
tion, a counter-intuitive result which can be attributed to
the problems of self-selection and heterogeneity bias de-
scribed above. But the double hurdle model shows that,
conditional on remaining a smoker rather than quitting,
those who have received advice to quit tend to smoke
fewer cigarettes. This result does not hold in the models
that assume independence and do not control for the
selection bias. We experimented with a dummy variable
for whether individuals have received a doctor’s advice to
quit, but the variable was found to be statistically insig-
nificant.
The indicators of the individual’s current health sug-

gest that those with poorer current health, measured by
HEALTH, FEVI and PULSE are more likely to smoke,
but tend to smoke fewer cigarettes. The opposite effect is
revealed with respect to the individual’s physique (BMI)
and whether they suffer from a disability or long-standing
illness (DISABILITY). It should be emphasized that the
approach adopted here is to condition current health-
related behaviour (in this case smoking) on measures of
current health in order to control for individual hetero-
geneity in health status. The objective of this study is not
to analyse the impact of current smoking on future health.
With appropriate longitudinal data it would be possible
to explore the interactions between an individual’s de-
mand for health, their measured health, and their health-
related behaviour, including smoking.
For socio-economic group, those in higher groups are

more likely to have quit but, conditional on smoking,
they smoke more. This is similar to the pattern of income

effects revealed in Jones [3]. One interpretation is that
there is a conventional income effect on the level of con-
sumption, but that differences in participation are asso-
ciated with differences in attitudes towards health, and
risk and time preference across socio-economic groups.
Alternatively the pattern of consumptionmay be a cohort
effect, reflecting the fact that a higher proportion of
smokers have quit in the more affluent groups, and those
that remain tend to be confirmed heavy smokers.

CONCLUSIONS

Becker and Murphy’s [10] model of rational addiction
has stimulated empirical analysis of survey data on smok-
ing habits. But survey data on smoking invariably con-
tains a high proportion of zero observations, and the use
of limited dependent variable models is often required.
Misspecification in functional form, parameterization
and distributional assumptions in the LDV models can
lead to inconsistent estimates. We propose a model of the
simultaneous decisions of whether to quit and how much
to smoke which incorporates the ‘fixed costs’ of addiction
associated with withdrawal effects. This leads to an em-
pirical model that allows more flexible parameterization
and distributional assumptions than previous studies.
The Box—Cox double hurdle model nests the standard

double hurdle, as well as the logarithmic generalized To-
bit model and the ‘two-part’ model. The model is applied
to data on smoking from the 1984—85 UK Health and
Lifestyle Survey, and the Box—Cox specification is shown
to out-perform all the nested models that have been used
extensively in the empirical literature.
Addiction, measured by previous peak consumption, is

shown to have a significant effect on both the probability
of quitting and the level of smoking. The results for the
impact of social interaction, anti-smoking advice, health
and socio-economic status are consistent with our model
which suggests that, after controlling for the effects of
addiction and the interaction between quitting and the
level of consumption, there will be an inverse relationship
between the determinants of participation and consump-
tion.
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Identifying Demand for Health Resources
Using Waiting Times Information
RICHARD BLUNDELL1 AND FRANKWINDMEIJER2

�University College London, London,UK and �Institute for Fiscal Studies, London,UK

INTRODUCTION

The aim of this paper is to consider the specification and
estimation of a statistical model for health care utiliz-
ation. Our model draws on the recent literature which
relates waiting times to the demand and supply of services
(see, for example, Lindsay and Feigenbaum [1], Gravelle
[2] and Goddard et al. [3]). In this model, waiting time
acts as a hassle cost to treatment and in equilibrium, the
waiting time costs will be just sufficient to reduce demand
to equal the supply of services. For example, suppose
there is an increase in demand, waiting timeswill increase.
Some individuals already on the list will drop out and
others who had thought of joining will not join. Similarly
for a change in supply. Waiting time essentially plays the
role of a price, with people looking for alternative care,
possibly private, or no care at all when the waiting time
becomes too long. Provided waiting times adjust fairly
rapidly, then this equilibrium framework seems reason-
able. Martin and Smith [4] use this model to estimate
demand and supply models for elective surgery in the UK
and find that waiting time is indeed negatively correlated
with demand.
The standard equilibrium waiting time approach rests

on two assumptions: (1) the observed data are in equilib-
rium; (2) waiting times accurately measure waiting time
costs. Both assumptions may be strong and are not
necessary for the central approach taken in this paper. If
there is a higher than expected demand then we still
observe supply, but demand and waiting times may not
have adjusted to equilibrium. This is equivalent to the
min�demand, supply� condition in standard disequilib-
rium models (see Gourieroux et al. [5]). Our approach is
to select areas in which the waiting times are reasonably

low and use these to estimate the determinants of de-
mand. This approach is, therefore, robust to disequilib-
rium in highwaiting time areas and reduces the sensitivity
to systematicmeasurement error in the tails of the waiting
time distribution. Our aim is limited: simply to recover
characteristics that influence demand for health services
at low waiting time costs. The objective is not to estimate
a model of both demand and supply but rather to exam-
ine the determinants of demands, or needs, abstracting
from distortions caused by supply side constraints in
health care provision. We use the determinants of supply
as instruments for the waiting time to correct for the
potentially endogenous selection of low waiting times
areas in which services may be more likely to reflect
demand. However, we do contrast our results with those
for the standard equilibrium specification for demand.
The model we use is based on a regression specification

for normalized level of health care utilization. It is precise-
ly this kind of model that is used in the allocation of NHS
funds in the UK (see Smith et al. [6]); and our application
is to the demand for acute hospital care at the local (ward)
level in the UK. We introduce the idea that some wards
may be supply constrained, so that a regression on needs
variables alone on the whole sample will not correctly
identify demand parameters. Insteadwe suggest the use of
average waiting time by ward as an indicator of supply
rationing.We use wards with relatively low waiting times
to capture demandwhen the time costs of waiting are low.
Even within the equilibrium waiting time framework of
Lindsay and Feigenbaum [1] this still seems a good idea,
since at high waiting times, the waiting time variable will
surely interact in quite a complicated way with needs
variables. For example, suppose at low waiting times,
richer young people place a high demand on resources
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but drop out if there are high time costs, then at high
waiting times, the income and age effects will be different.
Our choice of areas with low waiting times implies that

there will be few people who came on the list from the past
and who thus reflect demands from earlier periods. Ad-
ded to this we are worried about systematic reporting
bias in the waiting time variable, as there are obvious
incentives for providers to underreport high waiting
times, and that this variable may not be a good measure
of waiting time costs. Also, if individual demands are
non-linear in waiting time, then the aggregate demand in
a ward will not depend only on the average waiting time
(as Martin and Smith [4] point out, there are many
measures of waiting time). However, we do also estimate a
simple parametric model, which includes the waiting time
variable as an endogenous determinant of demand, and
show that, when selecting wards with reasonable low
levels of waiting times, this variable does not appear to
influence demand. This contrasts dramatically with the
results for higher waiting time areas, where waiting time is
found to be a strongly significant determinant of demand.
The central specification we estimate is a selection

model that estimates needs variables for wards that have
an average waiting time below some specified cut-off.
Since the model estimates are likely to be sensitive to
parametric distributional assumptions we check the ro-
bustness of our results using semi-parametric selection
methods in estimation (see Newey et al. [7]). The fact that
we have a number of excluded supply side variables that
strongly determine waiting times and have a wide varia-
tion across the data makes this application well suited to
the use of semi-parametric selection methods.
The rest of the paper is organized as follows. In the next

section we develop the model. The third section presents
the data and estimation results. As the important out-
come of the demand model is the actual resource alloca-
tions over the regions, we also look at the impact of the
various estimation procedures on the estimated regional
need indices. Some conclusions appear in the fourth sec-
tion.

MODEL AND ESTIMATION

AN EMPIRICAL SPECIFICATION OF THE
DEMAND FOR SERVICES

Let O
�
represent the outflow rate from a particular medi-

cal service in ward i and I
�
represent the corresponding

inflow rate onto the service register for that ward. In any
given ward in a given time period, the waiting time, W

�
,

will be a function of current and past net inflow rates.

There may exist a waiting time, W*
�
, at which the two

rates are equilibrated

I
�
�O

�
� W

�
� W*

�
.

In this framework, the waiting time acts like a price of
services, reducing demand as W

�
rises. Demand for servi-

ces will depend on characteristics of the local population
x�
�
(needs variables), the waiting time level W

�
and unob-

servables u�
�

y�
�
� f (x�

�
,W

�
)� u�

�
. (11.1)

The inflow rate will be directly related to y�
�
. Therefore,W

�
and y�

�
will be simultaneously determined.

Two approaches are available for estimation. One
could assume a parametric form for Equation 11.1, for
example

y�
�
� ��x�

�
� �W

�
� u�

�
(11.2)

and estimate directly. However, note that since W
�
is

endogenous to demand, a suitable instrument will be
required. An obvious choice of instrument would be some
determinant of supply. However, current fluctuations in
supply could be correlated with unobservables in de-
mand. A safer instrument would be a lagged supply vari-
able or lagged waiting times. We discuss particular choi-
ces in the empirical application below. Martin and Smith
[4] estimate demand Equation 11.2 within a full equilib-
rium model.
A number of potential difficulties arise with this ap-

proach. First, it is likely that reported waiting time levels
W

�
, especially at the upper end of the distribution, are

likely to be systematically biased. Secondly, it is likely
that when waiting times are long, the waiting time vari-
able will interact in quite a complicated way with the
needs variables. Thirdly, at low waiting time levels, say
below W�, it is less likely that W

�
will influence demand.

Given that the aim of this paper is rather modest — to
evaluate the importance of different needs variables, not
to estimate the impact ofW

�
on demand directly —we take

a slightly different, and hopefully more robust, approach.
We specify that demand for services takes the form

y�
�
� ��x�

�
� u�

�
for W

�
� W�, (11.3)

where W� will be in the lower quantiles of the observed
waiting time distribution. To check whether W

�
does

indeed not influence demand at low levels of waiting
times, we also estimate Equation 11.3 with W

�
included in

the model. We further check the robustness of our results
to different choices of cut-off point W�.
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Even in this approach endogeneity arises in estimating
Equation 11.3. In particular, there is endogenous selec-
tion on W

�
, which in turn depends on demand for services

through the net inflow rate. Therefore, using this frame-
work, the demand parameters � can be identified from the
wards with low average waiting time, while taking care of
the endogenous selection rule. If W� is known, standard
(semi-)parametric techniques can be applied, utilizing
limited information on the average waiting times in the
sense that only the information whether W

�
is larger or

smaller than W� is used. As we argued above, the waiting
time information is likely to be subject to systematic
measurement error especially towards the upper tail.
Consequently, the use of the limited information will
reduce the impact of this measurement problem.

AN APPROACH TO ESTIMATION

The estimators we utilize in this paper for the standard
selection model are a parametric two-step estimator
(Heckman [8]), and a semi-parametric estimator as pro-
posed by Robinson [9]. The first step in estimation is to
specify a binary indicator for the average waiting time:

w
�
� 1 if W

�
� W�

w
�
� 0 if W

�
� W�.

This is assumed to follow some simple linear index prob-
ability model

Pr[w
�
� 1]�Pr[��z

�
� �

�
� 0].

Under normality, the parameters �/��, where �� is the
standard deviation of �, can be consistently estimated by
the standard Probit maximum likelihood estimator. The
standard Heckman [8] two-step estimator specifies the
model of demand for services in wards with low waiting
times as

y�
�
� ��x�

�
�E[u�

�
�W

�
� W�

�
]���

�

� ��x�
�
��

�(��z
�
/��)

1��(��z
�
/��)

���
�
,

where � ���
���
/��, and �

���
is the covariance of u� and

�, which are assumed to be jointly normally distributed.
The two-step procedure then amounts to substituting the
probit estimate �/��� for �/��, and estimating the par-
ameters � and � by ordinary least-squares (OLS).
Given the initial estimate for �/��, the semi-parametric

estimator of Robinson [9] proceeds as follows. Let
v
�
���z

�
/��, then the conditional model can be written as

y�
�
� ��x�

�
� g(v

�
)� ��

�

where g(.) is some unknown function. Subtracting the
conditional expectation of y�

�
given v

�
results in

y�
�
�E[y�

�
� v

�
]� ��(x�

�
�E[x�

�
� v

�
])� ��

�
, (11.4)

which is no longer a function of g(v
�
), and OLS estimation

of Equation 11.4 gives consistent and asymptotically nor-
mal estimates for � (excluding the constant). The condi-
tional means E[y�

�
� v

�
] and E[x�

�
� v

�
] are estimated non-

parametrically using kernel regressions. The kernel es-
timator of E[x � v� c] is a weighted average of x for v in
the neighbourhood of c, given by (see e.g. Härdle and
Linton [10])

E#
�
[x � v� c]�

1

N

�
�
���

K
�
(c� v

�
)x

�

1

N

�
�
���

K
�
(c� v

�
)

,

where

K
�
(c� v

�
)�

1

h
K�

c� v
�

h � ,
K is a kernel function, which is continuous, bounded and
symmetric andwhich integrates to 1, and h is a bandwidth
parameter decreasing with sample size N. In estimating
Equation 11.4 using kernel regressions to estimate the
conditional mean terms, some trimming may be required
to remove areas of the data where the density of v is too
sparse.

DATA AND ESTIMATION RESULTS

The data for the estimation of the models as described in
the second section are the same data as have been used by
Smith et al. [6] for the construction of the allocation
formula of NHS revenues. In their work, the final needs
regression results are based on the hospital utilization of
all wards. The waiting times data are the same as in
Martin and Smith [4].
The dependent utilization variable is the standardized

estimated costs of acute care in 1991—1992 (ACCOS91).
The waiting time data are the average numbers of days
waited for routine surgery in 1991—1992 (WT91). Supply
and demand variables are measured in 1990—1991. In the
timing of the utilization we differ from the approach of
Smith et al. [6]. In their study, the utilization variable was
the average utilization per ward in the years 1990—1991
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Table 11.1 Descriptive statistics

All wards WT91� 100
N� 4955 N� 1296

Variable Description Mean SD Mean SD

WT91 Average waiting time routine surgery in days 117.08 26.18 85.74 11.10
ACCOS91 Standardized estimated costs 1991—1992 acute care 100.63 23.01 102.07 23.09
ACCNHS NHS hospital accessibility 2.34 0.75 2.34 0.76
ACCGPS GP accessibility 0.53 0.13 0.53 0.12
HOMES* 1-proportion of 75� in nursing and residential homes 0.94 0.06 0.95 0.05
ACCPRI Private hospital accessibility 0.17 0.13 0.18 0.18
SMR074 Standardized mortality ratio ages 0—74 99.46 23.16 101.52 23.16
HSIR074 Standardized illness ratio ages 0—74, for residents in

households only
99.01 30.59 104.15 31.99

MANUAL Proportion of persons with head in manual class 0.46 0.15 0.49 0.14
OLDALONE Proportion of those of pensionable age living alone 0.33 0.06 0.33 0.05
S—CARER Proportion of dependants in single carer households 0.19 0.06 0.20 0.06
UNEMP Proportion of the economically active that is unemployed 0.09 0.05 0.10 0.05
NOCAR Proportion of residents in households with no car 0.24 0.14 0.25 0.14

Note: in the regressions, natural logarithms are taken of all variables.

Table 11.2 Results for probit regression

Weighted regression;
dependent variable
WT91� 100 N� 4955 R�� 0.14

Variable B SE B T

ACCNHS �0.1651 0.1027 �1.6074
ACCGPS 0.1901 0.1212 1.5687
ACCPRI �0.2361 0.0625 �3.7784
HOMES* �0.0130 0.3267 �0.0398
OLDALONE 0.3400 0.1784 1.9059
S—CARER �0.2461 0.1466 �1.6784
UNEMP 0.2912 0.1070 2.7217
HSIR074 �0.3113 0.2078 �1.4979
SMR074 �0.2106 0.1730 �1.2174

LR test for supply variables: 34.51, p value� 0.0000.
Dummies included for RHA.
Observations weighted by ward population.

and 1991—1992, and the supply variables had to be in-
strumented. We avoid the problem of endogeneity by
using lagged values of the supply measures.
Table 11.1 gives descriptions and summary statistics of

the variables we use in this study. For a further descrip-
tion and guide to the construction of these variables, see
Martin and Smith [4], Martin [11] and Carr-Hill et al.
[12]. As can be seen from the table, the average waiting
time for routine surgery in 1991—1992 was 117 days.
There are four supply variables, namely NHS hospital
accessibility (ACCNHS), general practitioner accessibil-
ity (ACCGP), the proportion of the 75 years and older not
in nursing and residential homes (HOMES*) and private
hospital accessibility (ACCPRI). The needs variables con-
sidered are the standardized mortality ratio ages 0—74
(SMR074), a standardized illness ratio ages 0—74
(HSIR074), the proportion of persons in manual class
(MANUAL), the proportion of persons of pensionable
age living alone (OLDALONE), the proportion of de-
pendants in single carer households (S—CARER), the
proportion of the economically active that are unem-
ployed (UNEMP) and the proportion of residents in
households with no car (NOCAR). Table 11.1 also re-
ports summary statistics for those wards that have wait-
ing times less than 100 days, and that will be used in our
estimation of the demand Equation 11.3 below. The aver-
age waiting time in these wards is 86 days. The summary
statistics of the other variables in the selected sample are
all very similar to those in the full sample.
Table 11.2 presents the probit estimates of the waiting

time model with a cut-off point of 100 days, utilizing the

same supply and needs variables as identified by Smith et
al. [6] to determine utilization. After consulting health
experts at the King’s Fund, we chose 100 days as the
cut-off point, as we were advised that this length of wait-
ing time is seen by health care providers as a reasonable
time to go through the system. It is clear from the likeli-
hood ratio test that the supply variables are informative
for waiting times. Better access toNHS and private hospi-
tals decreases the average waiting time for routine sur-
gery, whereas more GPs in the area has the effect of
increasing the average waiting time.
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Table 11.3 Results for needs regressions

Weighted regression; dependent variable ACCOS91

OLS full sample OLS selected sample Two-step estimator Semi-parametric estimator

N 4955 1296 1296 1296
R� 0.50 0.57 0.57 0.53
Variable B SE B B SE B B SE* B B SE* B

OLDALONE 0.1191 0.0190 0.1391 0.0369 0.1670 0.0426 0.1532 0.0409
S—CARER 0.0036 0.0180 0.0755 0.0393 0.0468 0.0301 0.0431 0.0306
UNEMP 0.0248 0.0114 0.0227 0.0202 0.0593 0.0391 0.0490 0.0425
HSIR074 0.2848 0.0241 0.2053 0.0399 0.1595 0.0411 0.1734 0.0449
SMR074 0.1342 0.0219 0.1135 0.0384 0.0831 0.0437 0.1097 0.0469
� �0.1865 0.0650

Dummies included for RHA.
SE*: Standard deviation of 100 bootstrap estimates.
Observations weighted by ward population.

Table 11.4 Population weighted need indices

Full sample Selected sample Selected two-step Selected semi-
Cluster summaries OLS OLS (%) (%) parametric (%)

Inner London 112.3 1.10 1.68 1.28
Mixed status London 100.3 0.76 1.66 1.25
Outer London 94.3 1.10 2.01 1.62
Inner city deprived 113.2 �0.80 �1.30 �1.11
Urban areas 107.9 �1.22 �2.10 �1.72
Resort and retirement areas 96.0 1.07 1.23 0.96
High-status suburban 93.5 0.62 1.14 0.97
High-status rural 88.5 0.29 1.29 1.08
High-status urban 98.0 �0.30 �0.37 �0.25
Rural areas 95.9 0.26 0.09 0.11
Dormitory towns 106.2 1.32 1.55 1.34

Table 11.3 presents four sets of results for the demand
equation as specified in Equation 11.3. The first column
presentsOLS results based on the full sample. The second
column gives OLS results on the subsample of wards with
an average waiting time less than 100 days. In the third
column, the two-step estimation results are presented,
and finally in the fourth column, the semi-parametric
estimates using the Robinson method are presented. In
the Robinson method, the kernel function is specified as
the standard normal and the bandwidth is set equal to
N���	. For the OLS estimators, the reported standard
errors are robust to general heteroscedasticity. For the
two-step and semi-parametric estimators, the standard
errors are estimated using bootstrap resamplingmethods.
The estimators, including the probit, are calculated for
100 bootstrap samples, and the reported standard errors
are the standard deviations of these estimates. The results
of the two-step estimator indicates that the selection is
indeed endogenous, as the coefficient on the correction
term is significant. It is furthermore negative, indicating

that the unobservables u� in the demand equation and the
unobservables � in the waiting times model are positively
correlated, which is as expected. The coefficient estimates
from the two-step estimator are quite different from the
OLS results based on the full sample, especially the coeffi-
cient on HSIR074 is significantly smaller. The results of
the semi-parametric selection estimator are very similar
to those of the two-step estimator, indicating that the
normality assumption is not violated.
Table 11.4 gives the impact of the four different results

for the allocation of resources to the regions. The first
column gives the population weighted need indices for a
selected clustering of wards, based on the simple OLS
regression results of the demand equation using the full
sample of wards. Deprived inner city areas and wards in
inner London have the highest need indices, whereas
rural areas have the lowest. The next columns in Table
11.4 give the percentage change in need indices based on
the other three estimation results and show some marked
differences. Using the two-step and semi-parametric esti-
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Table 11.5 Results for probit regression

Weighted regression;
dependent variable
WT91� 100 N� 4955 R�� 0.14

Variable B SE B T

ACCNHS �0.1530 0.1073 �1.4264
ACCGPS 0.1743 0.1288 1.3529
ACCPRI �0.2325 0.0626 �3.7137
HOMES* �0.1034 0.3370 �0.3066
OLDALONE 0.2274 0.2104 1.0810
NOCAR 0.1192 0.1055 1.1295
MANUAL �0.0222 0.1003 �0.2210
HSIR074 �0.2377 0.2032 �1.1699
SMR074 �0.1581 0.1734 �1.9118

LR test for supply variables: 30.24, p value� 0.0000.
Dummies included for RHA.
Observations weighted by ward population.

Table 11.6 Results for needs regressions

Weighted regression; dependent variable ACCOS91

OLS full sample OLS selected sample Two-step estimator Semi-parametric estimator

N 4955 1296 1296 1296
R� 0.51 0.57 0.58 0.49
Variable B SE B B SE B B SE* B B SE* B

OLDALONE 0.0916 0.0235 0.0979 0.0423 0.1258 0.0499 0.1224 0.0464
NOCAR 0.0475 0.0101 0.0629 0.0185 0.0775 0.0232 0.0630 0.0214
MANUAL 0.0371 0.0106 0.0433 0.0227 0.0565 0.0237 0.0541 0.0219
HSIR074 0.2166 0.0226 0.1722 0.0390 0.1192 0.0518 0.1482 0.0504
SMR074 0.1259 0.0216 0.1049 0.0379 0.0752 0.0456 0.0996 0.0435
� �0.2256 0.0621

Dummies included for RHA.
SE*, standard deviation of 100 bootstrap estimates.
Observations weighted by ward population.

mation results, the wards in greater London have a higher
needs index than before, whereas primarily the inner city
and urban areas have a lower index. Note that the actual
allocation formula that is currently in use is based on
multi-level model estimates that take account of 186 Dis-
trict Health Authorities (DHA). As we believe that these
district effects are correlated with the explanatory vari-
ables, they should be modelled as fixed effects dummy
variables (see Blundell and Windmeijer [13]). This is
complicated for the non-linear probit model, and we do
not pursue it in this paper. The allocation results as
presented here are, therefore, not a direct comparison
with current practice.
The results presented above were based on the model

specification of Smith et al. [6], which were selected with-
out using multi-level modelling procedures. Our results
are different for various reasons. Firstly, we used a differ-
ent dependent variable, the utilization in 1991—1992, and
not the average of the years 1990—1991 and 1991—1992.
Secondly, we estimated the demand equation using only
those wards with low waiting times, correcting for the
endogenous selection. As is clear from the results as pres-
ented in Table 11.3, not all demand variables have a
significant impact on utilization using our modelling ap-
proach. We therefore performed a specification search,
selecting needs variables using the two-step selection
method. The need variables identified in this way are very
similar as before, but the variables S—CARER and UN-
EMP are replaced by NOCAR and MANUAL. Tables
11.5—11.7 present the set of results for this model. Again
the sample selection term in the two-step estimator is
significant with the expected sign, and the parametric and
semi-parametric estimates are very similar. In compari-
son with the first model, however, the needs indices for
London are substantially lower, whereas those for the
rural areas are higher.
As stated in the previous section, our modelling strat-

egy assumes that waiting times do not affect demand
when they are smaller than W�. In Table 11.8 we present
instrumental variables estimation results for the demand
equation that includes the (log of ) the waiting times lin-
early in the model, as specified in Equation 11.2. The
endogenous waiting times are instrumented by the four
lagged supply variables. The first column presents results
for the full sample, and the waiting time has a significant
negative effect on demand. The second column presents
the results for the selected sample including the Heckman
sample selection correction. In this case, the effect of
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Table 11.7 Population weighted need indices, as compared
with first model, Table 11.4, columns 3 and 4

Selected Selected
two-step semi-parametric

Cluster summaries (%) (%)

Inner London �2.36 �2.18
Mixed status London �1.19 �1.18
Outer London �0.65 �0.79
Inner city deprived �0.59 �0.40
Urban areas 0.42 0.55
Resort and retirement �0.11 �0.14
area

High-status suburban �0.05 �0.13
High-status rural 0.69 0.47
High-status urban 0.20 0.19
Rural areas 0.93 0.82
Dormitory towns �2.36 �2.33

Table 11.8 Results for IV estimator with WT91 included

Weighted regression; dependent
variable ACCOS91 Full sample,N� 4955 Selected sample,N� 1296

Variable B SE B B SE* B

OLDALONE 0.2381 0.0846 0.1025 0.0701
NOCAR 0.0773 0.0356 0.0765 0.0271
MANUAL 0.0922 0.0355 0.0568 0.0282
HSIR074 �0.0017 0.0958 0.0736 0.0739
SMR074 0.1350 0.0611 0.1225 0.0758
WT91 �2.4851 0.6750 �0.7449 0.8128
� �0.1863 0.0921

Instrumented by lagged supply variables.
Dummies included for RHA.
SE*, standard deviation of 100 bootstrap estimates.
Observations weighted by ward population.

waiting time is small and insignificant, supporting our
initial assumptions. The latter model is identified as there
are four instrumental variables that instrument both the
selection correction term and the waiting times variable.
We have chosen the cut-off point of 100 days as that is

seen by health care providers as a reasonable time to go
through the system. When we repeat the instrumental
variables regression, including waiting times but for dif-
ferent selected samples for different values of W�, we find
that the waiting time variable is significantly negative for
values of W� of 117 and higher, and insignificant for
values ofW� lower than 117. In the light of this, it appears
that the cut-off point of 100 days is appropriate.However,
to check robustness of the results, we present in Table
11.9 estimation results for a selected sample with a cut-off
point of 110 days waiting. The sample size in this case is

much larger. The results, however, are very similar to
those as presented in Table 11.6.

CONCLUSIONS

The aim of this paper was to recover the determinants of
demand for hospital services in a framework that ac-
knowledges the importance of supply constraints in the
public sector provision of health care. Waiting times are
assumed to act as a hassle cost that chokes off demand
when resources are constrained. In the full equilibrium
model, waiting times act like a price that maintains full
equilibrium. Because our interest has been in the determi-
nants of demandwe do not fully model supply but simply
use the determinants of supply as instruments for waiting
time in our specification of demand.
To measure the determinants of demand we chose, as

our central specification, a model that selects only those
areas with low waiting times. Our results are then correc-
ted for this endogenous selection.We argue that the focus
on demand at low waiting times avoids systematic
measurement error at high waiting times and also avoids
the specification of the interactions between needs vari-
ables at higher waiting times. In estimation, we compare
our specification to alternative models.
We have applied our approach to a sample of ward

level data from the UK and study the demand for acute
care. We contrast our model estimates, and their implica-
tions for health services resource allocations in theUK, to
more standard allocationmodels.We find that correcting
for supply constraints through the selection of low wait-
ing time areas changes allocation formulae in important
ways.
Allocation formulae that are based on models relating

165IDENTIFYING DEMAND USING WAITING TIMES INFORMATION



Table 11.9 Results for needs regressions; selected sample, WT91� 110

Weighted regression; dependent
variable ACCOS91 Two-step estimator Semi-parametric estimator

N 2016 2016
R� 0.57 0.54
Variable B SE* B B SE* B

OLDALONE 0.1056 0.0487 0.1094 0.0515
NOCAR 0.0868 0.0223 0.0859 0.0248
MANUAL 0.0574 0.0250 0.0616 0.0257
HSIR074 0.1296 0.0502 0.1288 0.0551
SMR074 0.0740 0.0457 0.0766 0.0484
� �0.3505 0.1216

Dummies included for RHA.
SE*, standard deviation of 100 bootstrap estimates.
Observations weighted by ward population.

needs to use require the explicit modelling of the process
by which use is determined. In the case of the NHS,
identifying needs from acute hospital care utilization data
should take into account the method of rationing by
waiting times.
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INTRODUCTION

Many population health and health care related indi-
cators vary over time and across age and sex groups.
Aggregate measures of health service use and population
health status observed at a particular time may differ by
year-of-age (an age effect), year-of-observation (a time
effect) and year-of-birth (a birth-cohort effect). The pat-
terns of these variations are complex and highly non-
linear, such that modelling them requires methods which
are flexible. This paper examines a set of non-parametric
and semi-parametric techniques which are of value in
revealing underlying patterns and trends in repeated
cross-sectional health and health care data.
The value of an in-depth appreciation of the patterns of

variation of such variables is in creating tools to guide
public health policy, direct future planning of services,
develop management strategies and allocate resources
fairly. It is not uncommon in, for example, explorations of
age and sex effects on health service utilization to see
crude calculations such as mean utilization rates within
arbitrarily defined age—sex groupings compared for dif-
ferent years. More sophisticated analyses rely on par-
ametric specifications of the underlying relationships us-
ing, for example, a dummy variable to specify a sex effect
and a quadratic or cubic term for age. However, such

methods provide, at best, summaries of currently ob-
served heterogeneity, but cannot identify subtle nuances
within the underlying patterns and trends. Their value is,
therefore, limited.
A problem with such population data is that they are

subject to special kinds of ‘noise’ which may mask the
underlying relationships. In particular, there may be con-
siderable year-to-year fluctuations, both over time and
over ages, which may obscure patterns and trends. Such
‘roughness’ in the data requires ‘smoothing’ before the
underlying relationships of interest can be properly
understood. The non-parametric estimation technique
used in this paper is based on ordinary least squares but
includes a roughness penalty to incorporate the desired
level of smoothing across age and time. The technique can
also be extended to analyse the class of generalized linear
models proposed by Nelder and Wedderburn [1]. This
paper also explores a semi-parametric equivalent es-
timator permitting both smoothing over age and time
and estimation of the relationship between smoothed
variables.
The methods are illustrated using data from successive

years of the British General Household Survey (GHS).
Non-parametric estimation is used to explore age and sex
heterogeneity for the use of general practitioner (GP)
services and self-reported morbidity. Semi-parametric
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Figure 12.1. Use of GP services per year averaged over
1984—1995/6 by age for women and men with lowess smoothers

estimation includes the morbidity variables as indepen-
dent predictors in a regression of GP utilization, permit-
ting analysis of how the specification of age and time
heterogeneity influences the estimated effects of morbid-
ity on health care use.

DATA

The data are taken from 12 waves of the GHS, covering
the period 1984—1995/6 inclusive. The GHS is an annual,
nationally-representative survey of over 20 000 individ-
uals living in private households in Great Britain. Re-
spondents are interviewed in their own homes and pro-
vide information on demographic and socioeconomic
characteristics, health status, health care utilization and
lifestyle.
Two self-reported healthmeasures are used: whether or

not an individual has a limiting long-standing illness (LS);
and whether or not an individual believes that they have
had good health in general in the 12 months prior to the
interview. The measure of utilization relates to the num-
ber of contacts with a GP under the National Health
Service (NHS) over the fortnight prior to the interview.
The analysis is undertaken on cell means rather than

individual-level data, with each cell representing a par-
ticular year-of-age in a particular survey year. In addi-
tion, analyses are restricted to those aged 16—80 years and
the data for women andmen are analysed separately. The
data were weighted to reflect the different sizes of survey
year and year-of-age cells in the GHS. This is an approxi-
mation based on the assumption that data within a par-
ticular cell, from which a cell mean is calculated, is drawn
from a distribution with the same variance as data within
other cells.
The reason cell means were used is that the methods

adopted are computationally extremely demanding.
Dummy variables are required for each year-of-age and
survey year combination, requiring the estimation of a
large number of parameters. For these data, analysis of
individual-level data would involve over 130 000 data
points and estimation of a large vector of parameters. The
methods applied also require numerous complex matrix
manipulations as well as repeated estimations to imple-
ment search procedures. In addition, limited dependent
variable models would be required since utilization is
measured on a count scale and self-reportedmorbidity on
a categorical scale. Together, these requirements make
the analysis of individual-level data computationally in-
feasible.

METHODS

The rationale for the adopted method can be seen by
reference to Figure 12.1, which plots separately mean
utilization rates against years of age for women and men.
A model based solely on goodness-of-fit criteria would
simply join the various points in succession, which would
add nothing to our understanding of the underlying
trends and fail to summarize the data adequately. Super-
imposed upon this is a plot of a lowess estimator [2]
which incorporates a degree of smoothing. Clearly, these
lines offer a summary of the data, but one that is flexible
enough to detect subtle perturbations in underlying
trends across age. Simple parametric specificationswould
not offer the degree of flexibility required to track these
data.
Lowess is one of a wide range of smoothing techniques

available. However, this paper follows Chesher [3,4] in
employing a bivariate thin spline smoother, using a dis-
cretized version of roughness penalized least squares
(RPLS). The advantage of RPLS is that it has the ability
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to extend data analyses to the class of generalized linear
models, including additional predictor variables which
may be specified either non-parametrically or parametri-
cally.
The non-parametric analysis has three main elements:

estimation of smoothed functions for the utilization and
morbidity measures using RPLS; testing of the appropri-
ate degree of smoothing through cross-validation; and
testing of restrictions on the estimated parameters. An
extension to the non-parametric approach applied to GP
utilization by incorporating parametric specifications of
self-reported morbidity measures is also considered. The
resulting estimator is semi-parametric, but retains the
same general properties of the non-parametric approach.

ROUGHNESS PENALIZED LEAST SQUARES
(RPLS)

A thorough account of RPLS estimation as an approach
to non-parametric regression, together with descriptions
of alternative approaches, can be found in literature such
as Green and Silverman [5], Hardle [6] and Bowman
and Azzalini [7]. The classic RPLS approach is, for the
univariate case, based on a general model:

y� g(x)� �, (12.1)

where y is the variable to be smoothed, x is the variable
across which smoothing is to take place, g is an undefined
curve function, and � is an error term. Given any twice-
differentiable function g, defined in the interval [a, b], a
penalized weighted sum of squares can be defined as:

�
�
(g)�

�
�
���

w
�
�y

�
� g(x

�
)�����

�

�

�g�(x)��dx, (12.2)

where w
�
are weights attached to each observation and �

is a parameter representing the degree of smoothing re-
quired. The weights are defined as the number of observa-
tions on which each cell mean is estimated and is directly
analogous to weighting an OLS model by multiplying

both sides of the equation by �w
�
. The penalized least

squares estimator, ĝ, is the minimizer of �
�
(g) over all

twice-differentiable functions g.
The cost �

�
(g) of a particular curve is, therefore, deter-

mined not only by its goodness-of-fit, defined by the
conventional weighted residual sum of squares, but also
by its roughness, defined by summed squared second
derivatives. The smoothing parameter � determines the
relative importance attached to residual error and local
variation. If � is infinitely large, then the dominating
expression in Equation 12.3 is the roughness term, and

hence theminimizer of�
�
(g) will display very little curva-

ture and will approach a linear regression fit. As � tends
to zero, ĝ will approach the interpolation curve that
simply joins consecutive data points. Formally, this is the
amount of smoothing afforded by binning into annual
age and time groups.
Applying this approach in practice gives a specific form

to the general model in Equation 12.1. It is necessary for
the model to be bivariate, because it is necessary to
smooth over both age and time, and also discrete, because
of the nature of the data employed. For all of the variables
of interest the aim is to estimate the generic model:

y
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�
�
�
���

�
�
���

�
��
X

��
� �

��
, (12.3)

where y is the variable of interest, a� year-of-age,
t� year-of-observation, X

��
� age and survey year bi-

nary indicators, �� random errors with conditional
mean of zero, and � is the parameter to be estimated.
(Since we have 12 survey years (1984—1995/6) and 65
years-of-age (16—80), the analysis is undertaken on 780
(12� 65) observations and the same number of indepen-
dent (dummy) variables.)
The discretized bivariate roughness penalty is
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where g
��
, g

��
and g

��
are own and cross second-differen-

ces:
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The actual estimation method was to apply weighted
least squares (WLS) to a data set augmented by a
‘smoothing matrix’ of dummy observations. Full details
of this are given in the Appendix. The weights for the data
are, as stated, cell sizes; the weights for the set of aug-
mented dummy observations are set to one.

CROSS-VALIDATION

A free choice may be exercised over the size of parameter
� and it is, therefore, necessary to define criteria for choos-
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ing a particular value. A non-statistical method is to use
an ‘eyeball test’ according to the appearance of the
smoothed data when plotted. However, it is also possible
to estimate � using Green and Silverman’s [5] method of
cross-validation (CV). Essentially, CV is based upon a
‘jack-knife’ procedure whereby the predicted value of
each observation from a particular model is compared
with the predicted value derived from an estimation omit-
ting that observation from the data set. Such a procedure
would be computationally extremely cumbersome, but a
shortcut is available making use of the ‘hat’ or projection
matrix,P, which has the property that whenmultiplied by
observed values results in predicted values, that is
YP� Y# . The method, therefore, involves choosing the
value for � which minimizes CV(�) as given by:

CV(�)�
�
�
���

�
�
���

w
���

y
��

� ĝ(x
��
)

�I�A
�
(�)�

��
�
�
, (12.5)

where I is the identity matrix of size n� n (where
n� l�m) and A

�
(�) is the n� n projection matrix for

weighted smoothing. The term �I�A
�
(�)�

��
represents

the elements on the leading diagonal of the square matrix
I�A

�
(�), such that when t� 1 and a� 1, n� 1; when

t� 1 and a� 2, n� 2; when t� 1 and a�m, n�m;
when t� 2 and a� 1,n�m� 1, etc. until n�m� n
when t� 1 and a�m. The CV-minimizing value for � is
located using a grid search in increments of 50 for ��.
Estimates are obtained using OLS on the weighted

data:

�J � ĝ� (X�X� ��S�S)	�X�y*, (12.6)

in which y* is the vector of observations weighted for

sample size, such that y*
��

��w
��

� y
��
. X represents the

vector of age—year dummy variables, again weighted ap-
propriately for sample size. The roughness penalty term
in Equation 12.3 above can be represented by a matrix S
which is shown in the Appendix.
The variance of �J is given by

var(�J )

� (X�X� ��S�S)	�X��X(X�X���S�S)	�, (12.7)

where �� diag(�
��

�x). The corresponding projection
matrix that transforms the matrix of actual observations
into a matrix of predictions is:

A
�
(�)�X(X�X���S�S)	�X�. (12.8)

Connectionswith classical regression allow us to define
equivalent df for the penalized least squares estimator.

This measure provides an indication of the effective
number of parameters that are fitted for any particular
value of the smoothing parameter �. If we consider a
parametric regression with two explanatory variables
and a constant term, then the number of df for the resid-
ual sum of squares is simply n� k, where n is the number
of observations and k� 3. Assuming the parameters are
identifiable on the basis of available observations, the hat
matrixA is then the projection onto a space of dimension
k, the number of parameters fitted, and hence its trace is
also equal to k. Therefore, the model df k, are equal to the
trace of the hat or projectionmatrix, whilst the residual df
are equal to tr(I�A) (tr representing the trace). By
analogy to the simple regression case, we define the equiv-
alent df for the non-parametric penalized least squares
model considered here as:

EDF� tr�I�A
�
(�)� (12.9)

�EDF� tr(I)� tr(X(X�X���S�S)	�X�). (12.10)

TESTING RESTRICTIONS

Three types of restrictions were tested relating to age,
time and cohort effects.

Age effects

The functional form for age heterogeneity was tested
using four functional forms: linear, quadratic, cubic and
4th order polynomial. The tests are a form of the Chow
test [8] with the switch-point in the middle of the age
interval.
In the linear case the first derivative of the dependent

variable with respect to age is constant. This can be tested
using the following restriction on the estimated �J par-
ameters.
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which simplifies to

�J
����

� 2�J

���

��J
����

� 0. (12.11a)

The quadratic functional form assumes the second de-
rivative with respect to age is constant and can be tested
using the following restriction:
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��J
���
]
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Table 12.1 Non-parametric analysis of general practitioner (GP) utilization and morbidity measures: smoothing parameters,
equivalent df and F-test statistics for age, time and cohort restrictions

Women Men

LS GH GP LS GH GP

� 41.8 33.2 94.9 42.4 24.5 186.7
EDF 731 720 755 733 704 765
Age effect — linear 21.81 11.00 1.77 9.85 12.13 7.39

(p	 0.001) (p	 0.001) (p� 0.049) (p	 0.001) (p	 0.001) (p	 0.001)
Age effect — quadratic 0.84 0.67 2.23 1.34 0.98 0.45

(p� 0.612) (p� 0.781) (p� 0.009) (p� 0.192) (p� 0.465) (p� 0.943)
Age effect — cubic 0.62 1.61 0.95 1.01 0.46 2.46

(p� 0.825) (p� 0.084) (p� 0.495) (p� 0.438) (p� 0.935) (p� 0.004)
Age effect — 4th order 0.81 0.50 1.11 0.99 0.48 0.87
polynomial (p� 0.637) (p� 0.914) (p� 0.348) (p� 0.453) (p� 0.926) (p� 0.575)

Time effect 1.44 1.16 1.38 1.39 0.99 1.74
(p� 0.015) (p� 0.186) (p	 0.001) (p� 0.027) (p� 0.506) (p	 0.001)

Cohort effect 1.17 1.11 0.83 0.86 1.19 0.88
(p� 0.190) (p� 0.284) (p� 0.796) (p� 0.755) (p� 0.175) (p� 0.721)

LS� limiting long-standing illness; GH� general health.
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which simplifies to
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The cubic functional form is rested using the following
restriction on the following discrete approximations to
the third derivative:


�
�

����

[�J
�	
��

� 2�J
�	���

� 2�J
�	���

��J
���
]

�
��
�

��
�

[�J
�	
��

� 2�J
�	���

� 2�J
�	���

��J
���
]� 0 (12.13)

which is equivalent to
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Finally, the age-polynomial of order four is tested using
the following restriction on the estimated parameters:
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which simplifies to an expression involving 24 of the �J
parameters. The age restrictions can be undertaken for
any combination of the survey years. The results pres-
ented in Table 12.1 represent simultaneous testing of
these restrictions across all 12 survey years (1984—1995/6
inclusive).

Time effects

Time effects were investigated by comparing the values
for particular ages in the first and second 6 survey years:

�
�

�

���
�
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The restriction can be imposed for any combination of
ages. The results in Table 12.1 relate to a joint-test for
ages 16—80.

Cohort effects

In a matrix with rows representing ages and columns
representing survey years, cohorts can be followed by
moving diagonally through the matrix. For example, a
cohort aged 16 years in the 1984 survey is aged 17 in 1985,
18 in 1986 and so on. A cohort effect can be investigated
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by comparison with terms adjacent to the diagonal.
In a comparison of 2 survey years, a birth-year cohort

effect is represented by rejection of the following restric-
tion:

�J
�	���	�

��J
���

��J
�	���

��J
���	�

� 0. (12.16)

We undertake tests for cohort effects following birth-
years through all 12 survey years. The results in Table
12.1 relate to a joint-test for each age 16—68 in 1984. Note,
however, that this test is rather weak and is conditional
on finding age and/or time effects since Equation 12.16
can be re-expressed as the difference between two age
effects ((�J

���
��J

�	���
)� (�J

���	�
� �J

�	���	�
)), or the differ-

ence between two time effects ((�J
�	���	�

�

�J
�	���

)� (�J
���	�

� �J
���
)). If there are no age or time effects,

or if the effects of time and age are independent of one
another, then Equation 12.16 will not detect evidence of
cohort effects.

Semi-parametric analysis

The method of RPLS can be easily extended to enable
estimation of a model in which a response variable has a
linear relationship with some explanatory variables and a
non-parametric (smoothing) relationship with others.
The underlying model is

y
��

� Z
��
� � g(X

��
)� �, (12.17)

where y
��
,X

��
, g and � are as defined earlier, Z

��
is a vector

of explanatory variables and � is a vector of linear par-
ameters to be estimated. The penalized sum of squares (cf.
Equation 12.2) is, therefore, defined as:
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The response variable y
��
was defined to be the number of

GP consultations. The ‘splined’ explanatory variables a
and t are age and time as before, and the ‘linear’ explana-
tory variables Z

��
are the two self-reported morbidity

variables.
The weighted ROLS estimation used the CV-minimiz-

ing value for � obtained in the non-parametric analysis.
For comparison, three different specifications for an ordi-
nary linear model using WLS were estimated. One ex-

cluded age and time effects entirely. The others included
age effects, using two different functional forms.

RESULTS

NON-PARAMETRIC ANALYSIS OF AGE AND
TIME VARIATIONS

Figure 12.2 shows an example of the effect of bivariate
smoothing on the data when the extent of smoothing is
guided by visual inspection of the predicted values. How-
ever, the main focus of this paper is on the derivation of
the smoothing parameter � and the testing of the es-
timated effects rather than the output from the smoothing
procedure itself. It is noticeable that in all cases the extent
of smoothing indicated by the CV-minimizing approach
is less than is suggested by eye-balling the resulting plots.
This result was also found by others using these tech-
niques [4].
Table 12.1 shows the results of the non-parametric

analysis for self-reported limiting LS, self-reported gen-
eral health (GH) and consultations with a GP. For each
variable, the value of the smoothing parameter � and the
estimated equivalent df are given. The CV procedure
suggests that, for both women and men, the GP variable
can be smoothed the most and the GH variable the least.
Correspondingly, for both women and men, the equival-
ent df are greatest for the GP variable.
Table 12.1 also shows F-test statistics for the various

functional form restrictions on age and time heterogene-
ity. For the age effects, only the linear functional form can
be rejected. This result is surprising because the period-
averaged data shown in Figure 12.1 suggest complex
non-linearities which could not be represented by par-
ametric functional forms. Our restrictions may suffer
from the familiar problem with this type of test that the
choice of the wrong switch-point does not affect the valid-
ity of the tests under the null but can have serious conse-
quences for the power of the test [9]. This is particularly
the case for the GP variable for women, since there seems
to be substantial non-linearitywithin the lower age range.
For both women and men, significant changes over

time are observed for LS and the number of consulta-
tions, but not for the reporting of ‘not-good’ GH. For
both women and men, LS and GP utilization have in-
creased over time. No evidence of cohort effects in any of
the variables is apparent. However, our comparisons in-
volved adjacent birth-years and it may be that cohort
effects are manifest for broader age groups, suggesting
that there may be some value in comparing birth-years
which are further apart.
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Table 12.2 General practitioner (GP) consultations by women regressed on limiting long-standing illness (LH), ‘not-good’ general
health (GH) and different specifications for age and time heterogeneity

Model (1) Model (2) Model (3) Model (4)

WLS — 4th order
WLS — no age WLS — quadratic age polynomial in age WRPLS — �� 94.9

Dependent variable: average
number of consultations Coefficient t value Coefficient t value Coefficient t value Coefficient t value

Constant 0.180 19.197 0.216 12.155 �0.387 �5.339 — —
LS �0.124 �2.760 0.109 2.008 0.187 3.551 0.146 2.921
GH 0.165 3.724 0.213 4.678 0.192 4.307 0.218 5.183
Age �0.0027 �4.594 0.058 7.681 — —
Age� 5.71e	� 0.729 �0.0020 �7.553 — —
Age� 0.00003 7.031 — —
Age
 �1.38e	� �6.497 — —

Test of joint significance of age terms
F(2, 775) 36.69 p	 0.01
F(4, 773) 41.45 p	 0.01

WLS�weighted least squares.

Table 12.3 General practitioner (GP) consultations by men regressed on limiting long-standing illness (LS), ‘not-good’ general
health (GH) and different specifications for age and time heterogeneity

Model (1) Model (2) Model (3) Model (4)

WLS — 4th order
WLS — no age WLS — quadratic age polynomial in age WRPLS — �� 186.7

Dependent variable: average
number of consultations Coefficient t value Coefficient t value Coefficient t value Coefficient t value

Constant 0.049 10.612 0.091 8.043 0.032 0.545 — —
LS 0.195 5.734 0.164 4.331 0.172 4.286 0.179 4.565
GH 0.144 4.688 0.084 2.412 0.091 2.561 0.042 1.212
Age �0.0017 �3.664 0.0037 0.594 — —
Age� 0.00003 4.309 �0.00014 �0.619 — —
Age� 2.04e	� 0.587 — —
Age
 �8.57e	
 �0.460 — —

Test of joint significance of age terms
F(2, 775) 9.31 p	 0.01
F(4, 773) 5.22 p	 0.01

WLS�weighted least squares.

SEMI-PARAMETRIC ANALYSIS OF MORBIDITY
EFFECTS ON GP UTILIZATION

Table 12.2 presents parametric and semi-parametric esti-
mates for women. When we do not allow for age hetero-
geneity, LS is estimated to reduce GP utilization. The
incorporation of age terms reverses this effect but the
coefficient on LS remains more sensitive to the functional

form which is chosen for time and age variations than is
‘not-good’ GH.
Table 12.3 shows a similar set of results for me. Both

self-reported morbidity variables are estimated to in-
crease GP utilization. However, in this case it is the
coefficient on ‘not-good’ GH which is sensitive to the
allowance made for age and time heterogeneity. In the
weighted RPLS regression, the coefficient on ‘not-good’
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Figure 12.2. The effect of bivariate smoothing on the predicted proportion of women reporting ‘not-good’ general health
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GH is not significantly different from zero. The coefficient
on LS changes very little across the various specifications
and the weighted RPLS value is similar to that for
women. The estimated effect of ‘not-good’ general health
is quite different for men and women.

DISCUSSION

Non- and semi-parametric methods have a number of
advantages in analysing time series data from pseudo-
panels such as those used throughout this paper, whose
variables reflect non-random variations over time, age
and cohort in ways unlikely to be modelled well by im-
posed parametric functional forms. The added flexibility
afforded by the lack of imposition of a more simple par-
ametric formulation is valuable. Their results might sim-
ply be used to inspire an informed parametric formula-
tion, which may have some purpose or advantages for
inference. However, where complex relationships unfold,
calls for simplicity will largely be fruitless and the non- or
semi-parametric estimates will remain the best way to
summarize patterns in the data.
Many different non- and semi-parametric techniques

are available, for example, alternative spline methods or
kernel smoothing estimators. However, broadly speaking
all of these methods are equivalent, and the roughness
penalty approach appeals because of its simplicity and
intuitiveness.More importantly it has the desirable prop-
erty that it can be applied in the broader context of
generalized linear models in a straightforward manner.
Although flexibility of functional form is a virtue of the

analysis, it is necessary to maintain a framework within
which competing forms can be judged. In this paper, two
of these were examined — the method of cross-validation
to structure the otherwise arbitrarily-chosen smoothing
parameter, and the testing of restrictions on the par-
ameter estimates to investigate the nature of time and age
heterogeneity.
In general, the CV method proved valuable, albeit

computationally time-consuming. However, the ‘optimal’
level of smoothing selected using CV did not coincide
with what an ‘eyeball test’ of smoothness would produce.
This appears to be a reasonably consistent finding in the
applied literature [4] and a degree of subjectivity in se-
lecting the appropriate level of smoothing seems sensible.
The restriction testing was, however, less successful, since
the age effect analysis did not pick up the clear non-
linearities in the data. This is likely to be due to the weak
power of the tests resulting from the chosen switch-point.
In future work it may be better to compare the estimated
year-of-age coefficients with those estimated using par-

ametric functional forms or undertake a randomly se-
lected series of year-of-age comparisons. Silverman [9]
has described a number of alternative methodological
approaches to making confidence statements about
quantities of interest such as cohort effects, for example,
making inferences based on a Bayesian framework, poss-
ibly through the use of Markov Chain Monte Carlo
methods.
Although theoretical literature on smoothing estima-

tion has existed for a number of years, few applications in
health care have been reported. However, the methods
are accessible and are particularly suited to problems
where complex relationships requiring flexible functional
forms are being interrogated. Analyses of relationships
between health experience, demands for health care and
utilization of health services and age could benefit greatly
from thesemethods. Smoothing is essential if complex age
and time profiles are to be retrieved from what may
otherwise appear as extremely noisy, heterogenous data,
and the analyses reported in this paper suggest that
roughness penalty-based methods are well-suited to this
task. In particular, theymay permit the analysis of repeat-
ed cross-sectional population surveys such as theGHS by
regarding them as pseudo-panels defined on birth-year
[10].
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APPENDIX: CONSTRUCTION OF SMOOTHING
MATRIX

The data contain l survey years, and m years-of-age and
are ordered as an (l�m) by (l�m� 1) matrix of the
form

[y D w],

where y is a vector of observations consisting of elements
y
��
, ordered from a� 1 to 1 and t� 1 to m; w is an
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identically ordered vector of weights; and D is an (l�m)
by (l�m) dummy variable matrix of the form

�
I 0 . . . 0

0 I . . . 0

: : :

0 0 . . . I� ,
where I is an identitymatrix and 0 is a null matrix, both of
size m�m.
To these data is appended a matrix of dummy observa-

tions of the form

[0 S I],

where S is a smoothing matrix consisting of three stacked
matrices:

S��
S1

S2

S3
� .

S1 is a second-difference matrix of size (l�m� 2) by m
which penalizes differences between the estimated par-
ameters for adjacent years-of-agewithin each survey year:

S1��
Q 0 . . . 0

0 Q . . . 0

: : :

0 0 . . . Q� .
Q and 0 are sub-matrices of size m�m� 2. 0 is a null
matrix and Q is a second-difference matrix with the fol-
lowing structure:

Q��
1 �2 1 0 . . . . 0 0 0

0 1 �2 1 . . . . 0 0 0

: :

0 0 0 0 . . . . 1 �2 1� .
S2 is a second-difference matrix of size [(l�
m)� 1][m� (l� 2)], which penalizes differences be-
tween the estimated parameters for adjacent survey years
within each year-of-age:

S2��
I �2I I 0 . . . 0 0 0 0

0 I �2I 0 . . . 0 0 0 0

: : : : : : : :

0 0 0 0 . . . I �2I I 0

0 0 0 0 . . . 0 I �2I I� ,
where I is an identitymatrix and 0 is a null matrix, both of
size m�m.
S3 is a first-difference matrix of size [(l�

m)� 1][(m� 1)(l� 1)] which penalizes differences be-
tween the estimated parameters for adjacent years-of-age
in adjacent survey years and, therefore, smoothes across
birth-year cohort:

S3��
F �F 0 . . . 0 0 0

0 F �F . . . 0 0 0

: : : : : :

0 0 0 . . . F �F 0

0 0 0 . . . 0 F �F� ,
where F and 0 are sub-matrices of size (m)(m� 1). 0 is a
null matrix and F is a first-difference matrix with the
following structure:

F��
1 �1 0 . . . . 0 0

0 1 �1 . . . . 0 0

: :

0 0 0 0 1 �1� .
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Unobserved Heterogeneity and Censoring in
the Demand for Health Care

ANGEL LO� PEZ-NICOLA� S
Departament d’Economia i Empresa,Universitat Pompeu Fabra, Barcelona, Spain

INTRODUCTION

Health care takes one of the largest shares of the public
budget in countries such as Spain, where citizens have
access to subsidized assistance in both publicly and pri-
vately owned centres, enjoy several copayment schedules
in the purchase of medicines and are also able to claim a
15% tax deduction for all expenses on health care. Re-
cently, measures such as the exclusion of a substantive
range of medicines from the list of products within the
copayment schedules have been implemented in order to
curb public expenditure. The concern about the distribu-
tional effects of this and related potential policy changes
on the population has brought the debate on fiscal mat-
ters associated with health care to the attention of both
academics and decision-makers. In particular, the effects
of the tax expenditure associated with the deductions
mentioned above are worth analyzing. Who do these
deductions benefit? Could they be replaced by some kind
of tax expenditure related to demographic structure?
In this paper we provide an empirical account of the

consumption of one of the components in the vector of
health care inputs of Spanish households: privately pur-
chased medical services. This category of consumption
includes all expenditure on visits to practitioners, special-
ists or surgery related to all types of treatments except
dental care. The study of the patterns of consumption for
this component of private health care is partly motivated
by the fact that these services are available in the public
network at nomonetary cost. The data shows clearly that
only a portion of the population participates in the pur-
chase of these services, and it is conceivable that the
benefits of greater promptness of delivery [1] and/or
perceived quality are enjoyed by households in the upper

part of the income distribution. This raises the question of
whether the associated tax deduction is regressive. In
parallel, it is interesting to assess how price sensitive this
type of demand is, for a withdrawal of the tax expendi-
tures can lead to substantial reductions in usage, part of
which might have to be absorbed by the public sector.
In order to shed some light on the questions posed

above, we estimate a demand for private medical services
equation based on the tradition of Grossman’s [2] de-
mand for health model. This model motivates not only
the choice of the variables that we use in order to explain
the variation in demand but also the incorporation of
unobserved heterogeneity in the econometric specifica-
tion. A second econometric issue arises due to the fact
that the category of expenditure that we examine is (i) not
universally consumed and (ii) is purchased infrequently.
As is well-known, standard estimators for limited depend-
ent variable models such as the tobit are not appropriate
in these circumstances.
In the second section we briefly comment upon the

economic model on which our empirical analysis will be
based and highlight the fact that Grossman’s formulation
leads naturally to an econometricmodel with unobserved
heterogeneity. In the third section we discuss the data on
which we estimate the model and describe the nature of
the censuring processes before proposing an estimator
related to the family of multivariate models analyzed by
Blundell and Meghir [3] that deals simultaneously with
the possibility of no participation and the noise induced
by infrequent purchases. In this section we also describe
the way in which the LDV estimates are used in order to
deal with the unobserved heterogeneity problem. The
fourth section presents the empirical results and the fifth
section concludes.
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THE DEMAND FOR PRIVATE MEDICAL
SERVICES AS A HEALTH CARE INPUT

The demand for private medical services we are about to
specify is related to the demand for health care in Gross-
man’s model. Recall that, according to the latter, agents
maximize the life-cycle discounted sum of utilities defined
over sick time and consumption subject to an asset accu-
mulation constraint and a particular technology in the
production of health capital. The first order conditions
for the desired stock of health in this intertemporal prob-
lem equate the marginal benefits (both pecuniary and
non-pecuniary) of health capital to its marginal cost. In
order to fulfil this condition over the life-cycle, agents use
time and medical care to generate health capital. Under
the pure investment version of the model, and assuming a
Cobb—Douglas production function for the health stock,
an operational [4] representation of the reduced form of
the demand for health care equation implied by themodel
is given by

lnM(t)��
�
� �

�
lnw(t)� �

�
lnP���

�
E��

�
X

��
�
t� ln�1�

H� (t)

�(t)�� (13.1)

where w(t) is the wage rate, P� is the price of medical
services, E is education, t is a time index andX is a vector
of conditioning variables picking up environmental con-
ditions. The terms involving the stock of health,H, are (i)
its relative change over time H� (t)�H� (t)/H(t), (ii) its rate
of depreciation � and (iii) �, a partial adjustment par-
ameter reflecting the potential inability of individuals to
adjust to their desired health capital stock instantaneous-
ly. Althoughwe followWagstaff [5] in the introduction of
partial adjustment, we retain the log-linearization of the
investment schedule originally proposed by Grossman in
order to arrive at the demand for health care equation.
Equation 13.1 forms the basis of the econometric

model that we estimate in this paper, as private medical
services are a component of health care in general. To the
extent that the rate of change of the health stock relative
to the depreciation rate is not available to the researcher,
and more so if no information whatsoever on health state
can be used as a proxy, the model above will have to be
estimated in the presence of unobserved heterogeneity.

DATA AND ECONOMETRIC SPECIFICATION

THE CENSORING PROBLEM

The data we use is taken from the Spanish Continuous

Family Expenditure Survey (CFES). This is a quarterly
expenditure survey where a (stratified) random sample of
3200 households is rotated 1/8 every quarter. This allows
the construction of panels with information on house-
holds covering up to 8 quarters. In particular we use a
balanced panel of 6100 households observed during 8
time periods. The time periods range from the first quar-
ter of 1986 to the last of 1987 for the first households that
entered the survey and the third quarter of 1992 to the
second quarter of 1994 for the most recent entrants in our
sample.
Apart from detailed demographic information, the sur-

vey contains records on 11 categories of health related
expenditures, namely medicines with and without pre-
scription, other pharmaceutical products, therapeutical
material with and without subsidy, medical services, den-
tal services, nursing services, hospital services, insurance
premia and a residual category. The quality of the infor-
mation contained in these records varies according to the
monitoring period (the length of time over which the
household is asked to report expenditures, which in this
survey can be either 1 week, 1 month or 1 quarter). In
some cases, such as prescribed medicines, it is just 1 week
and we find that 70% of households are not observed
spending on this category in any of the 8 periods. To some
extent this is due to the fact that the copayment for
prescriptions is zero for a substantial part of the popula-
tion. But the problem of infrequent purchases is perva-
sive: even if all households have to face the full cost of self
prescriptions, only 43% report a positive expenditure
over any other 8 periods. Further, more than half of these
(23% of the total) have one positive record only.
The situation improves when the monitoring period is

1 month, as is the case with our object of study. In Table
13.1 we present the pattern of observed positive expendi-
tures on private medical services and the mean and me-
dian of the purchases by number of observed purchases.
The table shows that 42.7% of the 6100 households are
never observed purchasing this category of health care.
The rest of households are observed incurring positive
purchases at least once and roughly one-third of the total
are observed purchasing more than once. The median
expenditure is 15 000pta per quarter and themean level is
around 25 000pta per quarter.
For the rest of the categories the percentage of house-

holds who never report a positive expenditure are 68%
(dental services), 91% (nursing services), 98% (hospital
services), 96% (therapeutical material with subsidy), 57%
(therapeutical material without subsidy), 79% (insurance
premia) and 99% (residual category).
The econometrics literature distinguishes three main

causes for the existence of zero records in micro-expendi-
ture surveys, namely no participation in the consumption
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Table 13.1 Pattern of observed positive expenditures on medical services in estimating sample

Proportion of households reporting
positive records in � quarters Median expenditure Mean expenditure
(N� 6100) (%) � quarters (pta per quarter) (pta per quarter)

42.7 0 — —
23.78 1 15000 27163
15.41 2 15000 23809
8.30 3 15000 24052
5.51 4 15000 23299
3 5 15000 24659
0.7 6 15000 20647
0.44 7 15000 27322
0.16 8 15000 34408
57.3 Any quarter 15000 24792

of the relevant commodity, corner solutions and infre-
quent purchases. In many applications it is reasonable to
assume from the outset which cause operates. For in-
stance, in studies on the demand for clothing it would be
reasonable to assume infrequency of purchase to be the
main explanation. Similarly, in the case of the demand for
tobacco, abstention (no participation) will explain a sub-
stantial proportion of zero records [6,7]. For some goods,
however, there is no clear cut cause and, in a cross-section
of households, more than one or even the three causes
might induce the existence of zero records. The case of
expenditures on health care are a paradigmatic example
of this type of situation. Even if it can reasonably be
argued that all households participate in the consump-
tion of some form of health care (i.e. there are no non-
participants in the sense applicable to tobacco consump-
tion or labour force participation), the existence of differ-
ent types of copayment policies, substitutes at zeromoney
cost and the difference between monitoring periods and
the period for which information in the survey is sup-
posed to be representative, leads to the existence of a high
percentage of zero records when disaggregated categories
are examined.
In the particular case of household expenditure on

private medical services in Spain, the existence of a free
substitute will clearly induce some households to never
consume this type of service. This free substitute is the
coverage given by the social security contributions, which
is provided either through publicly owned outlets — the
case for most households — or the private sector — the case
for some of the households who are entitled to choose
which provider their contributions are directed to (civil
servants). Similarly, households who buy private insur-
ance on top of the compulsory scheme will rarely be
observed paying for this service unless there exists a
copayment contract. Concerning the latter group, only
20% of the households who ever purchase private medi-

cal services are observed ever paying for an insurance
premium. However, the survey pools together policies
that cover medical assistance with those that provide
compensation from death so it is not possible to know
whether the latter group of households are really covered
for medical assistance. In any case the presumption that a
portion of the population does not participate in the
consumption of this category is consistent with the evi-
dence shown in Table 13.1, which suggests that there are
some households who never purchase private medical
services and can be classified as non participants, and,
moreover, we are able to identify them. The data also
suggest that those who participate in the consumption of
this commodity do not do so every month. For these
households, a pattern of alternating positive and zero
records is observed. This structure for the data generating
process implies that, first, a household decides whether to
participate in the consumption of this service and then, if
the decision is to do so, how often to make the purchases.
Finally, the amount of service purchased is decided. In
this sense the corresponding econometricmodel is trivari-
ate: it contains a process for participation, a process for
the frequency of purchase and a process for the amount of
purchases.
Let us start with the first of the processes, which we

assume is ruled by a latent index such as in the standard
probit model (individual subscripts are omitted for nota-
tional simplicity).

H*��r� �

H� l(H*� 0)

��N(0, 1) (13.2)

where l is the indicator function.
Focusing now on participating households let y*�

exp(�x� e), where e is a random error, denote latent
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consumption of private medical services and y its obser-
vational expenditure counterpart. Following Blundell
and Meghir [3] in assuming that E(y*)�E(y) and ex-
panding the last expectation, we obtain

E(y �D� 1)P(D� 1)�E(y*) (13.3)

where we assume that

D*� �z�w

D� l(D*� 0)

w�N(0, 1) (13.4)

is a probit type process determining whether a purchase is
made during the monitoring period. The relationship
between latent consumption and observed expenditure is
then given by

y� (y*/P(D� 1))exp(v)

v�N(0,��
�
) (13.5)

and taking logarithms

log y� log y*	 logP(D� 1)� v

��x	 log�(�z)� u

u� e� v

u�N(0,��
�
) (13.6)

Even though the model is trivariate, only two ‘hurdles’
have to be passed in order to observe a positive expendi-
ture: the participation one and the purchase one. The
model does not accommodate standard corner solutions.
That is, conditional on being a participant, y* cannot be
zero. This is a model of ‘first hurdle dominance’ in the
terminology of Jones [6]. Given that we allow for a
separate participation process, it makes sense to treat
zeros in the observed counterpart of consumption as a
result of the semidurable nature of this category of con-
sumption only. The use of a logarithmic specification for
the consumption equation (which is justified by the skew-
ness of observed expenditures) also rules out values of
zero of y*.
Under independence of the three stochastic errors �, w

and u, the sample log likelihood for this data generating
process is given by

logL � �
�
�

log(1	 �(�z)�(�r))� �
���

	 log�
�

� log�((logy� log�(�z)	 �x)/�
�
)

� log�(�z)� log�(�r) (13.7)

As discussed above, an important feature of the panel
format of the data is that it provides sample separation
information: we have identified which households do par-
ticipate in the consumption of private medical services.
Under the assumption of independence this implies that
the model can be estimated as a separate probit for par-
ticipation on the whole sample and an infrequency of
purchase model for the subsample of participants [6].
The likelihood function for the latter is easily obtained
from Equation 13.7:

logL � �
�
�
�
�

log(1	�(�z))� �
���
�
�

	 log�
�

� log�((logy� log�(�z)	�x)/�
�
)

� log�(�z) (13.8)

INDIVIDUAL EFFECTS

From the discussion in the second and third sections, we
can conclude that the econometric representation of
Equation 13.1 belongs to the general class of models
given by

log y*
	

���X

	

� 	

	

� 


	

(13.9)

where 	
	

is an unobserved individual effect, y* is not

directly observable and 

	

is a purely random error term.

Given that the time span during which all households
stay in the survey is 2 years, we may treat the individual
effect as a fixed unobserved heterogeneity term and drop
the time subscript. In previous studies of demand for
health care based on Grossman’s model, this term has
been assumed to be either zero, invariant across individ-
uals or randomly distributed. The latter is the least re-
strictive of these assumptions and if we interpret this term
as an individual effect uncorrelated with the rest of re-
gressors, only problems of efficiency will arise when using
a cross-section to retrieve the parameters of interest.
However, in the context of a demand for health care
model, there are intuitive grounds to expect that these
individual effects are correlated with some of the re-
gressors, especially age, education and the environmental
variables (in fact, the recognition of the potential correla-
tion of the rate of depreciation and the speed of adjust-
ment with demographic characteristics led Wagstaff [4]
to carry out separate analyses for different age groups). In
these circumstances, standard cross-sectional estimation
techniques will yield biased parameters.
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Our aim is to obtain consistent estimates in the pres-
ence of both the type of censoring described above and
the potential correlation of the individual effects with the
regressors. In order to do so we resort to a variation of
Chamberlain’s [8] Minimum Distance method proposed
by Arellano and Bover [9] and applied, in the context of
dynamic demand equations, by Labeaga [10]. In particu-
lar, Chamberlain explicitly models the relation between
individual effects and regressors in the following way:

E(	
	
�X

	
,R

	
)� 	�� 	�

�
X

	�
� 	�

�
X

	�
� · · ·� ��

�
X

	�
� 	�

�
R

	 (13.10)

that is, individual effects are a function of lead and lags of
all explanatory variables (the vector X) and interactions
of the latter with demographics, and nonlinear terms, the
vector R.
Our model can then be written as

E(logy*
	
�W

	
)� ��W

	
(13.11)

where W contains X and R. This is used to obtain a
prediction for log y*

	
in each one of the T periods making

up the panel by means of the limited dependent variable
estimator discussed in the section on the censoring prob-
lem. Once such predictions have been obtained, we can
recover the parameters of interest by applying the within-
groups estimator to the following equation:

�log y*
	

��x

	

� 	

	
� �

	

(13.12)

where�log y*
	

is the predicted value of log y*

	

and � is a

purely random term. This estimator is consistent, but less
efficient than the minimum distance method originally
proposed by Chamberlain.

EMPIRICAL RESULTS

ECONOMETRIC ESTIMATES

In Table 13.2 we present the estimates for the model. The
first three columns show the maximum likelihood esti-
mates of: the probability of participation (I), the fre-
quency of purchase process (II) and the consumption
equation (III). These estimates are corrected for the cen-
soring problem but not the unobserved heterogeneity
problem. Column (IV) presents the estimates for the con-
sumption equation using the within groups estimator
with censoring for the full panel. Finally column (V)
shows the OLS estimates of the consumption equation
for comparison purposes. The results for participation in
column (I) are obtained from a probit on the cross section

of 6100 households at their first interview, whereas the
results in columns (II) and (III) are obtained from the
maximum likelihood estimator (whose likelihood func-
tion is given in Equation 13.8) on the subsample of 3494
participating households at first interview. The results in
column (IV) are obtained from the full panel of 27 952
participating households and those in (V) from the pool of
all households over the eight periods. For the within-
group censored panel estimator, we have maximized the
likelihood function in Equation 13.8 on each of the 8
waves of the panel including all leads and lags, interac-
tions and power terms (up to the cube) of the regressors in
both the frequency of purchase process and the consump-
tion process in a first step. This produces a prediction for
log y* according to Equation 13.11 for each household,
which is then used as the dependent variable in Equation
13.12. The table includes statistics for the null hypothesis
of no fit and the relevant measures of goodness of fit.
The specification for participation (column I) includes

variables that proxy situations which pose a threat to
health such as the risks involved in child bearing and
neonatal related diseases and the existence of smokers in
the household. Both of these significantly increase the
probability of participation with respect to the reference
household. A higher level of current household income
affects positively the probability of participation for two
reasons: higher ability to pay and a higher opportunity
cost for the waiting time due to foregone earnings. Em-
ployment, in whichever form but more so for white collar
workers, increases the probability of participation with
respect to the reference households where the head is not
active or unemployed. Owner occupiers were expected to
be more likely to participate due to the correlation of this
characteristic with lifetime wealth and thus ability to pay
and the results shows a significant (at the 10% level)
positive impact. The observation of a payment for insur-
ance premia is not associated with any significant effect
on the probability of participation. As mentioned before,
the premia payments that we observe in the survey in-
clude life insurance policies and consequently are an im-
perfect indicator for the existence of coverage for private
medical services.
Concerning the process for frequency of purchases (in

column II), we have included the size of the household as
a proxy for the frequency with which the need to purchase
the service arises. The corresponding estimate suggests a
positive and significant impact. The presence of babies of
less than 1 year of age or a pregnant woman also seem to
affect positively the frequency of purchases. Household
income (excluding income from capital), the availability
of private transport, and the participation of the spouse in
the labour market have been included in the specification
for the frequency of purchase in order to proxy the oppor-
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Table 13.2 Model estimates

I II III IV V
ML ML ML WGC OLS

Household size 0.043 0.102 0.081 0.090
(2.73) (3.51) (22.57) (13.92)

Baby or pregnancy* 0.167 0.167 	0.234 	0.064 0.133
(2.07) (2.45) (	1.17) (	7.82) (3.34)

Smoking members* 0.121
(3.33)

Head of household has secondary 	0.015 0.103 0.195 	0.020
education* (	0.37) (1.82) (25.36) (	0.86)

Head of household has university 0.117 0.168 0.224 0.139
education* (1.89) (1.36) (15.59) (3.91)

Log total household real income 0.118 	0.031 	0.472 0.018 	0.115
(4.85) (	0.94) (	3.68) (3.04) (	3.25)

Log total household real income 0.048 0.019 0.021
squared (4.34) (30.19) (6.90)

Log real price of private medical 1.152 	0.414 0.408
services (2.26) (	9.21) (3.17)

Age of head of household 	0.004 	0.003 0.002 0.005 	0.003
(	2.26) (	1.61) (0.65) (9.32) (	4.00)

Quarter 1* 0.085 0.083 0.019 0.026
(1.34) (0.68) (6.47) (0.99)

Quarter 2* 0.087 0.088 0.146 0.096
(1.37) (0.72) (49.15) (3.67)

Quarter 4* 0.080 0.162 0.062 0.051
(1.24) (1.29) (21.28) (1.94)

Spouse in employment* 0.056
(1.24)

Car available* 0.027
(0.52)

Head of household is self-employed* 0.191
(3.40)

Head of household is blue collar 0.180
worker* (2.79)

Head of household is white collar 0.247
worker* (4.66)

Owner occupier household* 0.076
(1.18)

Under coverage of private insurance* 0.054
(1.32)

Constant 	0.850 	0.405 4.290 1.979 0.307
(	4.01) (	1.31) (6.41) (50.84) (2.26)

N 6100 3494 3494 27 952 48 800
Chi squared (df in parenthesis) 233 (11) 7165 (21) 7165 (21)
F (111,�) 17.90 8.20
Pseudo R�/R� 0.02 0.49 0.49 0.23 0.07

*Variables are binary (dummy) indicators.

tunity cost (foregone earnings and/or leisure) of visits, but
neither seems to exert a significant effect.
Turning to the consumption equation, note that while

OLS estimates suggest that every decade there is a de-
crease in consumption of 3% and the ML estimator
suggest an insignificant effect, the censored panel es-
timator (column IV) suggests a significant increase of 5%

every decade. Once the effect of participation is netted
out, both the ML and the censored panel estimator (the
latter in a significant way) show a negative effect asso-
ciated with the presence of babies or pregnancy on the
consumption schedule. It is interesting to note that while
the two latter factors affect participation positively, they
reduce consumption conditional to participation. This
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might be caused by the income effect associated with a
larger family size. Both categories of education are asso-
ciated with a greater (and by a sizeable percentage) con-
sumption with respect to households headed by an indi-
vidual with basic schooling. Note also that both the ML
and OLS estimators show a U profile for the effect of
household income on consumption. However the profile
shown in column IV always has a positive slope, and
moreover, this slope is increasing with the level of (log)
income. Thus the associated elasticity of expenditure with
respect to income increases with the latter. The estimated
value at the mean of income is 0.34, which reveals the
necessity (conditional upon participation) nature of the
service under consideration.
Concerning the estimated price elasticity, note that

since our dependent variable is expenditure, it is obtained
by subtracting one to the coefficient on the logarithm of
prices. The censored panel estimate is 	1.41. The price
sensitivity that this estimator suggests is very much
greater than the one associated with the OLS estimator
(	0.6).
It seems clear, therefore, that ignoring the censoring

processes and unobserved heterogeneity can lead to sub-
stantially different results, apart from ignoring relevant
information such as the separate effects on participation
and rate of consumption that some factors may have.

IMPLICATIONS FOR HEALTH AND FISCAL
POLICIES

The results suggest that the probability of participation in
the consumption of private medical care is positively
associated with two relevant characteristics from the
point of view of fiscal policy, namely wealth (proxied by
income, occupational category and home ownership
status) and fertility (pregnancy and presence of small
children). Conditional on participation, income exerts a
positive effect on the rate of consumption too. It would
seem, therefore, that the tax deduction associated with the
consumption of private medical care is regressive, at least
in the sense that the absolute amounts deducted are
greater for richer households. Withdrawing or reducing
these deductions would penalize households within fertil-
ity periods. But the existing deductions for children could
be increased to compensate this effect.
As far as second round effects (behavioural responses)

are concerned, the estimated elasticity of	1.41 suggests
that increases in prices would lead to more than propor-
tional changes in demand for private medical services. A
withdrawal or reduction of the deduction is very much
equivalent to an increase in prices (even if its effect is not
perceived until tax forms are filled), so it would be reason-

able to expect a substantial reduction in demand for
private medical services should the government eliminate
it completely. Whether a parallel increase in demand at
public outlets would ensue is something that our es-
timatedmodel cannot produce inferences about. The cru-
cial issue here is the extent to which Spanish households
perceive private medical services as a close substitute for
their public counterparts, and this is an issue whichmerits
further research.
The ability of these results to provide insights into the

likely consequences of revisions in the copayment policies
of other categories of health care currently provided by
the Spanish public health network is also limited. How-
ever, in connection with the recent government plans for
the withdrawal of the subsidy for a substantial number of
medicines, a policy relevant message might be extracted:
participation in the consumption of private health care is
associated with ability to pay. Thus the maintenance of
close substitutes within the subsidized list would cushion
the effects of the policy change on households at the
bottom of the income distribution.

CONCLUSION

In this paper we have estimated a demand for private
medical services equation based in the tradition of Gross-
man’s model of demand for health using data for a panel
of Spanish households.We have paid particular attention
to the censored nature of the data and the existence of
unobserved heterogeneity and our results suggest that
ignoring these issues has a significant impact on the size,
sign and significance of the parameters of the model. The
estimated demand equation offers useful policy evidence
on the likely effects of altering expenditure deduction
schemes currently applicable in the Spanish tax system.
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A Discrete Random Effects Probit Model
with Application to the Demand for

Preventive Care
PARTHA DEB

Department of Economics, Indiana University-Purdue University Indianapolis, IN, USA

INTRODUCTION

Random effects models in which individuals who belong
to a given group share a common intercept have become
increasingly popular in applied research. In the case of
linear regression, estimation and inference in such models
are conducted using the well-established framework for
panel data models. In situations involving non-linear
models (e.g. for discrete, count and duration data) there is
no standard methodology.
The standard random effects probit (REP) model as-

sumes that the random intercept is normally distributed.
In the maximum likelihood estimation of this model,
numerical integration [1] or stochastic integration [2]
methods are typically used to integrate over the distribu-
tion of the random intercept in order to calculate the
value of the objective function. A two-step method [3] is
also available. In this paper, I have developed an alterna-
tive REP model in which the true density of the random
intercept is approximated by a discrete density. The dis-
crete REPmodel is appealing for twomain reasons. First,
it eliminates the need for numerical or stochastic integra-
tion, both of which are computationally complex and
time consuming. Only summation over the discrete
points of support is required. Second, if the random inter-
cept is not normally distributed, the standard model is
misspecified. The discrete REP model, which is a special
case of finite mixture models, is semiparametric. Under
suitable regularity conditions, the discrete density of the
random intercept can serve as an approximation to any
probability density [4,5].
Although the discrete representation of the density of

the random group effect is conservatively framed as an
approximation to the underlying continuous density, the
discrete formulation itself may be a natural and intuitive-
ly attractive representation of heterogeneity. In this rep-
resentation, groups are drawn from a finite number of
latent classes or ‘types’. The vast majority of studies using
finite mixture models find that two to four latent classes
adequately describe the data. A similar finding for the
REP model would make this interpretation especially
attractive. Moreover, in standard REP analysis, the
strength of the group effect is typically summarized by the
variance of the distribution of the group effect. Specific
group effects are not identified unless a fully Bayesian
analysis of the REP is undertaken. In the discrete ap-
proach, one can classify each group as a particular type
using Bayesian posterior analysis after classical maxi-
mum likelihood estimation. Once classified, types may be
related to group characteristics.
In this paper, the discrete REP is used to analyse the

effects of family characteristics on the demand for preven-
tive care. Because preventive care involves planned visits
to a medical facility, characteristics other than health
status are more important in determining such demand
than medical care demand in illness events. Moreover,
family characteristics are likely to play an important role
in determining whether or not preventive care is taken.
Although some observable family characteristics are con-
trolled for as covariates in typical studies, other import-
ant sources of family-level effects are excluded. Random
effects models provide an opportunity to test for the
existence and strength of such excluded family-level ef-
fects after controlling for observable ones.
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In recent studies of preventive care, Gordon et al. [6]
and Potosky et al. [7] examine the determinants of cancer
screening tests. Saag et al. [8] examines tertiary preven-
tion in the Medicare population with at least one chronic
disease for which specific tertiary prevention measures
have been shown to reduce or eliminate disease pro-
gression or illness-related dysfunction. In each of these
studies, covariates are measured at the individual level;
no attempt is made to ascertain whether family character-
istics matter. I examine the determinants of blood press-
ure checks, cholesterol checks, influenza shots and physi-
cal examinations with explicit attention to observed
family-level covariates and unobserved family-level ran-
dom effects. The data are obtained from the 1996Medical
Expenditure Panel Survey (MEPS) [9], which provides
national representative estimates of health care utiliz-
ation, expenditures, sources of payment and insurance
coverage for the US non-institutionalized population.
Random effects models for discrete data with discretely

distributed random intercepts have been recently applied
in other areas of research. Pudney et al. [10] estimate a
discrete random effects logit model in an analysis of farm
tenures. Jain et al. [11] and Kim et al. [12] estimate
discrete random effects multinomial logit models to as-
sess features of consumer brand preferences. To the best
of my knowledge, there is no published application of a
discrete random effects model in health economics. There
are numerous potential applications of such models in
health economics, however, in contexts where individual
decisions are made within families, where individual deci-
sions are made within hospitals, etc.
The discrete REP model is developed in the following

section. Although there are a few applications of similar
discrete random effects models, their finite sample prop-
erties have not been examined in controlled conditions.
Therefore, I conduct Monte Carlo experiments to exam-
ine the ability of the discrete REP model to provide
unbiased estimates when the true source of the unobser-
ved heterogeneity is continuously distributed. These are
described in the third section, entitled ‘Monte Carlo Ex-
periments’. The empirical analysis of the determinants of
preventive care is described in the fourth section, entitled
‘Empirical Example’. I conclude in the final section.

THE MODEL

Consider the following latent variable specification of a
REP model in which the random effect results from a
group-specific error term, i.e.

y*
��
� x

��
�� z

�
�� u

�
� �

��
(14.1)

for groups j � 1, 2, . . .,J and individuals i � 1, 2, . . .,N
�
in

each group for a total of �
�
N

�
� N observations. x

��
is a

vector of individual-specific covariates and z
�
is a vector

of group-specific covariates. The random effect u
�
is as-

sumed to be uncorrelated with x
��
and z

�
. The �

��
are i.i.d.

normal errors and are orthogonal to the group specific
errors u

�
. As is standard in probitmodels, I assume that �

��
is drawn from a normal density with unit variance with-
out loss of generality. The sign of the latent variable
determines the observed binary outcome variable, i.e.
y
��
� 1 if y*

��
� 0; y

��
� 0 otherwise.

Let f be the density of u. In the standard REP model, f
is a normal density. For notational convenience, let
d
��
� 2y

��
� 1, i.e. d

��
is an indicator variable that takes the

value 1 when y
��
� 1 and�1 when y

��
� 0. The contribu-

tion of the jth group to the log likelihood is given by

l
�
� ln��

�

��

���
���

�[d
��
(x

��
� � z

�
�� u

�
)] f (u

�
) du� (14.2)

where �(.) denotes the standard normal cumulative den-
sity function. Integration over u

�
marginalizes the likeli-

hood function with respect to the random group effect.
The sample log likelihood is given by

l �
�
�
���

l
�

(14.3)

In the standard REP, as with many other reasonable
choices for f, the integral given in Equation 14.2 does not
have a closed form solution. Butler and Moffitt [1] show
that this integral can be effectively evaluated using a
Gauss—Hermite quadrature; this is the most commonly
used procedure. Other numerical integration procedures
are also feasible. The integral may also be approximated
by stochastic simulation using random draws from f (u) as
the underlying basis. Gouriéroux andMonfort [13] show
that consistent estimates of model parameters can be
obtained by maximizing such a simulated approximation
of the log likelihood function.

DISCRETE REP MODEL

In the discrete REPmodel, f (u) is assumed to be a discrete
density. Specifically, u has S points of support with values
u
�
, u

�
, . . ., u

�
and associated probabilities �

�
,�

�
, . . .,�

�
, re-

spectively. Then the contribution of the jth group to the
log likelihood is given by

l
�
� ln�

�
�
���

�
�

���
���

�[d
��
(x

��
� � z

�
�� u

�
)]� (14.4)

where 0��
�
,�

�
, . . .,�

�
� 1 and ��

���
�
�
� 1. If there is an
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Table 14.1 Monte Carlo experiments: data generating
processes (d.g.p.)

d.g.p. � � � ��
�

��
�

S/N

1 0 1 1 0.4 0.7 1
2 0 1 1 0.4 1.4 2
3 0 1 1 0.8 0.9 1
4 0 1 1 0.8 1.8 2

The signal-to-noise (S/N) ratio is calculated as S/N� 2��
�
/(��

�
� ��

�
).

intercept in the model, i.e. if x
��
includes a vector of ones,

the mean of u is not identified without a normalization. I
chose one point of support u

�
such that the mean of u is

zero, so

u
�
��

1

�
�

���
�
���

�
�
u
�
. (14.5)

Note that this normalization gives the typical zero-mean
property of errors, but identification may be achieved in
other ways.
Post-estimation, one can calculate the variance of the

distribution of the group-specific effect as Var(u)�
��
���

�
�
u�
�
. But if one takes the latent class interpretation of

the random intercept, each point of support and asso-
ciated probability describes a latent class. The posterior
probability that a particular group, j, belongs to a par-
ticular class, c, can be calculated as

Pr[ j � class c � x
��
, y

��
]

�

�
	

���
���

�[d
��
(x

��
�� z

�
�� u

	
)]

�
�
���

�
�

���
���

�[d
��
(x

��
� � z

�
�� u

�
)]

;

c � 1, 2, . . ., S (14.6)

These posterior probabilities may be used to classify
each group into a latent class in order to study the prop-
erties of the classes further (see Deb and Trivedi [14] for
an example). Note that, although the random effect itself
is uncorrelated with the covariates, the posterior prob-
ability of class membership is, in general, a function of the
values of the covariates.
The estimation of finite mixture models and REP

models raise a number of difficult computational issues.
One issue involves the possible existence of multiple local
maxima in finite mixture models. The second issue in-
volves computer precision of products of cumulative nor-
mals, a necessary calculation in maximum likelihood esti-
mation of random effects probit models. Since parameter
estimates of discrete REP models may be sensitive to
these issues, strategies to minimize any detrimental effects
are discussed in the Appendix.

MONTE CARLO EXPERIMENTS

In this section, I describe Monte Carlo experiments that
examine the ability of the discrete REP model to provide
unbiased estimates of the model parameters and variance
of the random intercept when, in fact, the true source of

the unobserved heterogenity is continuously distributed.
In other words, the experiments evaluate the extent to
which the discrete REP model with a small number of
points of support is able to mimic the underlying continu-
ous distribution of the random intercept.

DESIGN

Consider, once again, the latent variable specification of a
REP model,

y*
��
��� x

��
� � z

�
�� u

�
� �

��
(14.7)

for groups j � 1, 2, . . .,J and individuals i � 1, 2, . . .,N
�
in

each group, for a total of �
�
N

�
� N observations. I evalu-

ate performance for small (N
�
� 10) and large (N

�
� 100)

group sizes with J � 500 and J � 50 respectively. The
overall sample size is held fixed (N � 5000), rather than
the number of groups, because such group size/number
trade-offs are typical in data available to empirical re-
searchers. Moreover, I limit the experiments to balanced
panel designs for simplicity. Although unbalanced panels
are common in practice, the results of these experiments
should directly apply to unbalanced panels.
In the data generating process (d.g.p.), both x

��
and z

�
are drawn fromN(0,��

�
) although z

�
takes the same value

for each observation within a group. The �
��
are drawn

fromN(0, 1) and u
�
from f (0,��

�
). In the first set of experi-

ments, f is a normal density; in the second f is a chi-
squared density with four degrees of freedom (shifted to
have a zero mean). The main model parameters are fixed
at � � 0, � � 1, and �� 1 throughout the experiment.
The ratio of the variance of the group-level random effect,
u
�
, to the variance of the idiosyncratic noise, �

��
, takes two

values (0.4 and 0.8). The signal-to-noise ratio, defined as
the ratio of the variances of the observed and unobserved
components in Equation 14.7, also takes two values (1
and 2). The values of ��

�
and ��

�
are chosen accordingly.

The parameters of the data generating process for each
group size and error density are summarized in Table
14.1. For each design point, 400 replications are used to
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Table 14.2 Monte Carlo experiments: normally distributed random intercept

J � 500, N
�
� 10 J � 50, N

�
� 100

d.g.p. � � � ��
�

� � � ��
�

Density with three points of support
1 �0.001 0.996 0.992 0.385 �0.003 0.979 0.920 0.335

(0.036) (0.035) (0.048) (0.043) (0.090) (0.033) (0.160) (0.071)
2 �0.001 0.998 0.995 0.388 �0.004 0.981 0.943 0.341

(0.038) (0.031) (0.042) (0.048) (0.090) (0.030) (0.130) (0.074)
3 �0.001 0.984 0.956 0.708 �0.004 0.960 0.858 0.618

(0.046) (0.034) (0.060) (0.062) (0.124) (0.033) (0.192) (0.124)
4 �0.001 0.983 0.969 0.722 �0.005 0.960 0.892 0.631

(0.050) (0.031) (0.048) (0.072) (0.123) (0.030) (0.149) (0.132)

Density with four points of support
1 �0.001 1.000 1.001 0.415 �0.006 0.900 0.934 0.411

(0.037) (0.035) (0.047) (0.083) (0.091) (0.034) (0.163) (0.285)
2 �0.001 1.002 1.002 0.408 �0.005 0.992 0.949 0.426

(0.039) (0.032) (0.042) (0.060) (0.091) (0.031) (0.133) (0.318)
3 0.000 0.998 0.994 0.791 �0.005 0.980 0.903 0.713

(0.048) (0.035) (0.059) (0.099) (0.124) (0.033) (0.178) (0.147)
4 �0.001 0.997 0.996 0.792 �0.007 0.982 0.929 0.752

(0.051) (0.032) (0.049) (0.095) (0.125) (0.030) (0.152) (0.375)

Density with five points of support
1 �0.003 1.000 1.002 0.442 �0.009 0.996 0.972 0.537

(0.038) (0.036) (0.048) (0.265) (0.090) (0.034) (0.153) (0.614)
2 �0.001 1.002 1.002 0.415 �0.008 0.998 0.977 0.525

(0.039) (0.032) (0.042) (0.177) (0.090) (0.030) (0.112) (0.576)
3 �0.001 1.001 1.003 0.870 �0.010 0.991 0.936 0.814

(0.051) (0.035) (0.058) (0.407) (0.127) (0.034) (0.163) (0.474)
4 �0.001 1.001 1.002 0.831 �0.008 0.993 0.967 0.843

(0.052) (0.032) (0.048) (0.270) (0.127) (0.031) (0.130) (0.526)

evaluate the finite sample properties of the discrete REP
estimator.

RESULTS

Results for the normal density are reported in Table 14.2
and results for the chi-squared density are reported in
Table 14.3. The results for 500 groups with 10 observa-
tions per group are displayed in columns 2—5 of Table
14.2. They show that the parameter estimates of the indi-
vidual and group-level variables are unbiased through-
out. The implied values of the variance of the random
effect, ��

�
, are also unbiased when four or five points of

support are used but they appear to be underestimated
(although not in a statistically significant way) when three
points of support are used. More striking is the fact that
the precision of the estimated random effect variance
decreases three- to fourfold when five points of support
are used for the density of the random effect. It appears
that three to four points of support may be sufficient to
capture the key characteristics of the underlying normally

distributed random intercept. Models with five points of
support may be under-identified in some cases. When the
data consist of only 50 large groupswith 100 observations
per group, displayed in columns 6—9 of Table 14.2, the
precision of the estimates of the parameter associated
with the group-level covariate decreases considerably.
Although the main parameter estimates are not signifi-
cantly biased, the implied values of the variance of the
random effect are too small when three points of support
are used in the discrete density. The variance estimates
improve when four or five points of support are used but,
once again, the estimates from models with five points of
support have greater dispersion.
Overall, three to four points of support in the discrete

density adequately capture the salient features of the
underlying normal density in both cases. As expected,
precision of the group-level parameters falls when there
are fewer groups in the data. In the case of 50 groups,
discrete densities with five points of support seem to be
useful more often. If within group sample sizes were held
constant, this finding would be counterintuitive. But they
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Table 14.3 Monte Carlo Experiments: ��(4) distributed random intercept

G� 500, N


� 10 G� 50, N



� 100

d.g.p. � � � ��
�

� � � ��
�

Density with three points of support
1 0.000 0.001 0.995 0.393 0.007 0.983 0.949 0.347

(0.037) (0.035) (0.046) (0.099) (0.095) (0.032) (0.118) (0.170)
2 �0.000 0.998 0.995 0.393 0.010 0.983 0.960 0.362

(0.038) (0.031) (0.038) (0.074) (0.098) (0.029) (0.090) (0.234)
3 �0.004 0.991 0.976 0.710 �0.009 0.961 0.873 0.572

(0.049) (0.034) (0.052) (0.169) (0.040) (0.011) (0.054) (0.052)
4 �0.003 0.988 0.979 0.725 0.005 0.967 0.922 0.631

(0.048) (0.032) (0.044) (0.097) (0.130) (0.030) (0.117) (0.182)

Density with four points of support
1 0.005 1.006 1.006 0.452 0.019 0.994 0.963 0.434

(0.040) (0.035) (0.047) (0.165) (0.099) (0.031) (0.120) (0.269)
2 0.002 1.004 1.004 0.433 0.017 0.996 0.974 0.425

(0.038) (0.032) (0.040) (0.104) (0.100) (0.030) (0.090) (0.245)
3 0.008 1.002 1.000 0.879 0.026 0.985 0.924 0.821

(0.056) (0.035) (0.051) (0.308) (0.136) (0.031) (0.135) (0.356)
4 0.003 1.002 1.001 0.843 0.029 0.981 0.944 0.798

(0.050) (0.032) (0.043) (0.206) (0.131) (0.029) (0.111) (0.297)

Density with five points of support
1 0.007 1.006 1.006 0.465 0.017 1.001 0.984 0.454

(0.041) (0.035) (0.046) (0.232) (0.101) (0.032) (0.129) (0.209)
2 0.003 1.005 1.004 0.434 0.017 1.000 0.988 0.456

(0.038) (0.032) (0.040) (0.107) (0.102) (0.031) (0.093) (0.275)
3 0.008 1.002 1.000 0.879 0.026 0.996 0.950 0.885

(0.056) (0.035) (0.051) (0.308) (0.137) (0.031) (0.143) (0.419)
4 0.005 1.005 1.007 0.880 0.024 0.995 0.959 0.871

(0.050) (0.033) (0.045) (0.325) (0.139) (0.029) (0.105) (0.392)

are not; instead the experiments with J � 50 have many
more observations per group. This increases the relative
importance, in the likelihood function, of groups located
in the tails of the normal density, which manifest in the
discrete approximation as the existence of an additional
point of support.
Similar results are obtainedwhen the random intercept

is generated from a chi-square density with four degrees
of freedom. Although the distribution of the random
effect is substantially skewed in this case, the parameter
estimates are unbiased throughout. Models with three
points of support tend to underestimate the variance of
the random effect, especially in the cases in which the true
underlying density has a relatively large variance (d.g.p.s
3 and 4). Unlike the normal case, there is only a small
deterioration in performance, as measured by precision,
in going from a discrete density with four points of sup-
port to one with five points of support. It appears that
densities with five points of support may be necessary in
cases where the underlying random effect density is highly
skewed.

Overall, the results of the Monte Carlo experiments
demonstrate that the estimation of discrete REP models
is feasible and provides reliable estimates in a variety of
circumstances. Although the true density of the random
intercept is specified using a continuous distribution, rela-
tively few points of support are necessary to achieve
adequate approximation. Indications are that three to
five points of support for the discrete density may be
sufficient in many empirical applications.

EMPIRICAL EXAMPLE

In this section, the discrete REP model is used to deter-
mine the effects of family and individual characteristics on
the demand for preventive care. The discrete REP model
is used to test for the existence and strength of excluded
family-level effects after controlling for observable char-
acteristics.
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Table 14.4 Frequency distribution of family group sizes

Size Number Frequency

2 2919 51.71
3 1229 21.77
4 970 17.18
5 360 6.38
6 109 1.93
7 29 0.51
8 21 0.37
9 4 0.07
10 3 0.05
13 1 0.02

DATA

The data for this analysis are taken from the 1996MEPS
[9], henceforth referred to as MEPS, which are publicly
available through the Agency for Health Research and
Quality (AHRQ). The MEPS is being conducted to pro-
vide national representative estimates of health care util-
ization, expenditures, sources of payment and insurance
coverage for the US non-institutionalized population.
The first round of the MEPS, conducted in 1996, consists
of a sample of 23 230 individuals in 10 639 households. In
this paper I consider the subsample of individuals who
are at least 16 years of age because the use of preventive
care was not ascertained for individuals who were less
than 16 years old. There are 12 442 individuals in 5645
families in the sample used for estimation. Table 14.4
reports the frequency distribution of family sizes. Al-
though just over half the families have two members, the
largest has 13 adults.
The four general preventive care measures available in

the dataset are blood pressure and cholesterol checks,
influenza shots and physical exams. Precise definitions
and summary statistics of these variables are provided in
Table 14.5. Among the individual level covariates are
measures of health status given by dummy variables for
functional disability (FUNCLIM) and self-perceived
levels of health (HLTH—E, HLTH—V, HLTH—F and
HLTH—P). The demographic variables include AGE, age
squared (AGE2), a dummy variable for whether the per-
son is a child of the head of the family (CHILD), ethnicity
(BLACKandHISPANIC), gender (MALE), years of edu-
cation (EDUC), and whether the person is INSURED.
Family-level covariates include urban status (URBAN),
family size (FAMSIZE), family income (FAMINC),
whether the spouse of the head of the family is present
(SPOUSEPR) and the years of education of the family
head (HEADEDUC). Definitions and summary statistics
for the individual and family-level covariates are also
presented in Table 14.5. Given the computational com-

plexity of REP models with exogenous covariates, poten-
tial endogeneity of health status and insurance are as-
sumed away to keep the complexity manageable.

ESTIMATES

In order to ascertain the number of components in the
discrete density necessary to adequately describe the
underlying distribution of the random intercept, I present
likelihood ratio (LR) statistics and values of the Akaike
information criterion (AIC) in Table 14.6. The distribu-
tion of the LR test is non-standard but the usual null ��(k)
distribution is likely to under-reject the null hypothesis
[15,16]. On the other hand, the use of the AIC for model
selection has a formal justification for finite mixture
models [17]. Nevertheless, the results of the LR tests
using a conservative �� criterion to assess statistical sig-
nificance dramatically demonstrate the existence of fam-
ily-level unobserved heterogeneity. There is also signifi-
cant improvement in going from a model using a density
with two points of support to one with three points of
support. Adding a fourth point of support provides insuf-
ficient improvement to merit further consideration. The
AIC provides results that are completely consistent with
the LR tests. Consequently, I focus on results from the
model with three points of support in subsequent analy-
sis.
Parameter estimates and marginal effects of individual

and family-level characteristics are displayed in Table
14.7. In general, the parameters are statistically signifi-
cant across types of preventive care. Individuals who are
insured are substantially more likely to seek each type of
preventive care. The effect of health status is monotonic;
individuals in poor health are most likely to seek preven-
tive care and those in excellent health are least likely to do
so. Although Hispanics and Blacks are just as likely to
receive blood pressure checks and influenza shots as indi-
viduals of other ethnicities, they are substantially more
likely to receive cholesterol checks and physical examin-
ations. Age has u-shaped quadratic effects on the demand
for blood pressure checks, influenza shots and physical
examinations. The marginal effect of age reaches its mini-
mum between 30 and 34 years and rises steeply thereafter.
The effect of age on cholesterol checks, however, is mono-
tonically increasing.
At the family level, the presence of the spouse of the

head of the family in the household increases the likeli-
hood of all preventive care services except influenza shots
by over three percentage points. Although the individ-
ual’s education does not seem to matter, the effect of the
education of the head of the family is significant and
substantial in each case. Preventive care, which is gen-
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Table 14.5 Summary statistics

Variable Definition Mean SD

Dependent variables (N � 12 442)
Blood pressure check 1 if person checked in the past year 0.772 0.419
Cholesterol check 1 if person checked in the past 2 years 0.626 0.484
Influenza shot 1 if person had a shot in the past year 0.277 0.447
Physical exam 1 if person had an exam in the past year 0.506 0.500

Individual-level covariates (N � 12 442)
AGE Age in years/10 4.195 1.665
AGE2 Age squared 20.371 15.622
FEMALE 1 if person is female 0.525 0.499
HISPANIC 1 if person is Hispanic 0.196 0.397
BLACK 1 if person is non-Hispanic African American 0.118 0.323
CHILD 1 if the person is a child of the family head 0.147 0.354
EDUC Years of education 12.198 3.106
HLTH—E 1 if person reports being in excellent health 0.308 0.462
HLTH—V 1 if person reports being in very good health 0.302 0.459
HLTH—F 1 if person reports being in fair health 0.100 0.300
HLTH—P 1 if person reports being in poor health 0.039 0.193

Good health is the omitted category
FUNCLIM 1 if the person has difficulty performing an activity of daily living 0.208 0.406
INSURED 1 if the person has health insurance 0.805 0.397

Family-level covariates (J � 5645)
URBAN 1 if the family resides in a metropolitan area 0.781 0.414
SPOUSEPR 1 if the spouse of the family head is present 0.743 0.437
HEADEDUC Years of education of the family head 12.416 3.190
FAMINC Family income in $’000 48.111 37.251
FAMSIZE Family size 2.889 1.162

Table 14.6 Selection criteria for number of support points

Blood pressure Cholesterol Influenza Physical
check check shot exam

LR tests
REP(2) versus no RE 148.09* 386.62* 457.18* 336.80*
REP(3) versus REP(2) 8.36* 25.50* 81.56* 14.99*
REP(4) versus REP(3) 0.02 0.07 2.35 0.34

AIC
No RE 6055.62 7429.26 6479.44 8248.44
REP(2) 5983.58 7237.95 6252.85 8082.04
REP(3) 5981.40 7227.20 6214.07 8076.55
REP(4) 5983.38 7229.16 6214.89 8078.38

REP(s) denotes the random effects discrete density.
*Statistically significant at the 0.05 level.

erally a planned activity, is significantly affected by the
presence and education of primary adult decisionmakers.
Finally, all else equal, individuals in larger families are
less likely to receive preventive care.
The parameters associated with the discrete density of

the random effect are generally well determined. The
variances of the distributions of the random effect range
from 0.452—1.837. These are quite large relative to the

variance of the individual-level idiosyncratic error, which
is scaled to have unit variance, thus highlighting the
importance of unobserved family-level characteristics in
examinations of the demand for preventive care. The
implied intra-family correlations are also substantial,
ranging from 0.31—0.65.
The characteristics of the latent classes displayed in

Table 14.8 provide insight into the types of families

195A DISCRETE RANDOM EFFECTS PROBIT MODEL – THE DEMAND FOR PREVENTIVE CARE



Table 14.7 Parameter estimates and marginal effects

Blood pressure check Cholesterol check Influenza shot Physical exam

� �Pr(y � 1)

�x
�

�Pr(y � 1)

�x
�

�Pr(y � 1)

�x
�

�Pr(y � 1)

�x

Individual-level effects
AGE �0.243 �0.056 0.160 0.043 �0.733 �0.159 �0.304 �0.094

(0.067) (0.071) (0.092) (0.064)
AGE2 0.039 0.009 0.014 0.004 0.114 0.025 0.046 0.014

(0.007) (0.008) (0.011) (0.007)
FEMALE 0.459 0.107 0.116 0.031 0.052 0.011 0.173 0.054

(0.031) (0.028) (0.030) (0.026)
HISPANIC �0.137 �0.032 0.138 0.037 �0.136 �0.030 0.125 0.039

(0.047) (0.050) (0.054) (0.046)
BLACK �0.030 �0.007 0.419 0.112 �0.152 �0.033 0.479 0.148

(0.054) (0.060) (0.061) (0.053)
CHILD 0.186 0.043 0.322 0.086 0.593 0.128 0.383 0.119

(0.060) (0.063) (0.071) (0.060)
EDUC 0.009 0.002 0.016 0.004 �0.010 �0.002 0.002 0.001

(0.008) (0.008) (0.009) (0.007)
HLTH—E �0.284 �0.066 �0.234 �0.063 �0.066 �0.014 �0.170 �0.053

(0.043) (0.043) (0.048) (0.040)
HLTH—VG �0.117 �0.027 �0.103 �0.028 0.002 0.000 �0.112 �0.035

(0.042) (0.041) (0.047) (0.038)
HLTH—F 0.319 0.074 0.222 0.059 0.352 0.076 0.193 0.060

(0.064) (0.061) (0.065) (0.055)
HLTH—P 0.470 0.109 0.519 0.139 0.300 0.065 0.346 0.107

(0.105) (0.097) (0.095) (0.082)
FUNCLIM 0.119 0.046 0.042 0.011 �0.010 �0.002 0.061 0.019

(0.047) (0.044) (0.048) (0.040)
INSURED 0.511 0.119 0.488 0.131 0.306 0.066 0.388 0.120

(0.043) (0.043) (0.051) (0.042)

Family-level effects
URBAN 0.033 0.008 0.263 0.070 �0.030 �0.007 0.120 0.037

(0.041) (0.045) (0.048) (0.039)
SPOUSEPR 0.139 0.032 0.314 0.036 0.002 0.000 0.109 0.034

(0.043) (0.044) (0.049) (0.040)
HEADEDUC 0.035 0.008 0.024 0.007 0.037 0.008 0.021 0.007

(0.008) (0.008) (0.010) (0.008)
FAMINC 0.002 0.000 0.003 0.001 0.000 0.000 0.001 0.000

(0.001) (0.001) (0.001) (0.000)
FAMSIZE �0.084 �0.019 �0.034 �0.009 �0.053 �0.012 �0.042 �0.013

(0.015) (0.016) (0.021) (0.015)

Discrete random effect density
u
�

0.943 1.186 1.982 1.111
(0.597) (0.241) (0.258) (0.302)

u
�

�0.395 �0.184 0.493 �0.033
(0.159) (0.125) (0.090) (0.146)

�
�

0.315 0.244 0.097 0.197
(0.200) (0.074) (0.036) (0.103)

�
�

0.669 0.653 0.685 0.683
(0.184) (0.052) (0.028) (0.071)

Variance 0.452 0.642 1.837 0.565
Intra-family 0.311 0.391 0.648 0.361
correlation

Numbers in parentheses are asymptotic standard errors.
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Table 14.8 Characteristics of latent classes

Blood pressure check Cholesterol check Influenza shot Physical exam

� Pr(y� 1) � Pr(y� 1) � Pr(y� 1) � Pr(y� 1)

Class 1 0.315 0.955 0.244 0.920 0.097 0.763 0.197 0.848
Class 2 0.669 0.701 0.653 0.591 0.685 0.293 0.683 0.484
Class 3 0.016 0.175 0.103 0.161 0.218 0.006 0.120 0.065

present in the sample. For each of the three points of
support in the discrete random effects density, the pre-
dicted probability of seeking care, Pr(y � 1), is calculated
as the sample average over all individuals in the sample.
Althoughmost families (latent class 2) have average prob-
abilities of seeking care that are close to those calculated
by crude relative frequencies (reported in Table 14.5), a
number of families (latent class 1) have substantially high-
er probabilities of seeking preventive care while others
(latent class 3) have substantially lower probabilities of
seeking care. Therefore, the population can be segregated
into three types of families with low, average and high
propensities to seek preventive care. In what follows, I use
this terminology to describe the latent classes.
These differential propensities probably arise from dif-

ferences in unobservable risk aversion or taste character-
istics of different families. Nevertheless, a posterior analy-
sis of class membership may reveal useful information on
observable characteristics of family types. In order to do
so, the posterior probability (Equation 14.6) of belonging
to each of the three classes was calculated for each family,
conditional on observed covariates and outcomes. Next,
each family was classified as a high, average or low type
on the basis of the maximumposterior probability. Final-
ly, sample averages were calculated for each covariate
stratified by family classification. The results show con-
sistent patterns across measures of preventive care for
four covariates: AGE, HLTH—E, HLTH—P and FUN-
CLIM. Sample averages for each of these covariates by
family type are displayed in Figure 14.1. Pairwise dif-
ferences between the sample means are statistically sig-
nificant. Families with older members tend to have low
propensities to seek preventive care. Healthy families,
measured by self-perceived health and the existence of a
functional limitation, tend to have high propensities to
seek preventive care. In other words, healthy and young
families are either more risk averse or have greater prefer-
ence for preventive care. The effect of health status, at first
glance, appears to contradict its effect obtained from the
basic model parameters. These parameters, reported in
Table 14.7, show that individuals in better health are less
likely to seek preventive care. In fact, the findings are not
contradictory. Although healthy individuals are less like-
ly to seek preventive care, ceteris paribus, they tend to

belong to families who have high unobservable-based
propensities to seek such care.
Do these findings contradict the random effects as-

sumption? Specifically, since the random intercept is as-
sumed to be uncorrelated with the covariates, why are the
covariate averages significantly different across latent
classes? A closer look at the definition of the posterior
probability (Equation 14.6) reveals that the random ef-
fects assumption is consistent with posterior inferences
regarding a relationship between covariates and class
membership. The a priori assumption regarding the rela-
tionship between the random intercept and the covariates
is conditional only on the covariates. The posterior rela-
tionship, however, is conditional on covariates and out-
comes. In other words, armed with only knowledge of an
individual’s covariates, it is not possible to infer anything
about the type of family to which this individual belongs.
But once the outcome is known for each family member,
this additional information makes it possible to infer
features of the type of family.

CONCLUSION

In this paper, I develop a REP model in which the dis-
tribution of the random component is approximated by a
discrete density. The experimental evidence shows that
discrete densities with only three to four points of support
mimic normal and chi-squared densities sufficiently well
so as to provide unbiased estimates of the structural
parameters and the variance of the random effect. This is
important because models that use discrete densities can
become quite cumbersome to estimate if the number of
points of support required to produce adequate approxi-
mations is large.
Themodel is applied to the demand for preventive care.

Although individual-level covariates are significant, fam-
ily-level covariates are also important determinants of the
demand for preventive care. Moreover, unobservable
family-level effects, captured through the discretely distri-
buted random intercept, are also important. In fact, a
substantial portion of the total variance of the unobser-
ved components is due to the family-level unobserved
component.
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Figure 14.1. Characteristics of individuals by posterior class assignment

Although the model developed in this paper is for
binary choice, the general method can easily be extended
to discrete formulations of random effects models for
multinomial, count and duration data. The computa-
tional issues, testing and model selection principles, and
finite sample performance described in this paper are
likely to be of value to researchers conducting analyses in
those related frameworks.
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APPENDIX: COMPUTATIONAL ISSUES

Estimation of finite mixture models is not always
straightforward. The likelihood functions of finite mix-
ture models can have multiple local maxima so it is
important to ensure that the algorithm converges to the
global maximum. In general, random perturbation or
grid search techniques, or algorithms such as simulated
annealing [18], designed to seek the global optimum,
should be utilized. Moreover, if a model with too many
points of support is chosen, one or more points of support
may be degenerate, i.e. the �

�
associated with those den-

sities may be zero. In such cases, the solution to the
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maximum likelihood problem lies on the boundary of the
parameter space. This can cause estimation algorithms to
fail, especially if unconstrained maximization algorithms
are used. Constrained maximization algorithms are pre-
ferred. Such cases are a strong indication that a model
with fewer components adequately describes the data.
Therefore, a small-to-large model selection approach is
recommended, i.e. the number of points of support in the
discrete density should be increased one at a time starting
with a model with only two points of support. In this
paper, I estimate the discrete REP models by maximum
likelihood using the Broyden—Fletcher—Goldfarb—
Shanno quasi-Newton constrained maximization algo-
rithm in SAS/IML [19]. Models with two, three and four
points of support are successively estimated.
The performance of the maximum likelihood es-

timators of standard and discrete REP models given by
Equation 14.2 and Equation 14.4, respectively, may not
be satisfactory for large group sizes, N

�
, since the log

likelihood involves the integration or summation over a
term involving the product of cumulative normals for all
group members. Borjas and Sueyoshi [3] point out that
with 500 observations per group, and assuming a gener-
ous likelihood contribution per observation, the product
would be well below standard computer precision. They
speculate that group sizes over 50 may create significant
instabilities if the model has low predictive power. Based
on Monte Carlo experiments, they find that such com-
putational problems lead to quite inaccurate statistical
inference on the parameters of the model. Lee [20] pro-
vides two methods that considerably alleviate this com-
putational problem, both of which involve interchanging
the inner product with the outer summation.
In the first method, the likelihood function (Equation

14.4) is evaluated as

l
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�
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for all j � 1, 2, . . .,J. The weights �

�	�	
can

be computed recursively. Computational efficiencies can
be realized if the computer programmingmakes use of the
fact that the formulation of the log likelihood in Equation
14.A1 contains the denominator term of Equation 14.A2.

In the second method, the likelihood function Equa-
tion 14.4 is evaluated as
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for all s � 1, 2, . . .,S and j � 1, 2, . . ., J. Denote p
�
�

max	h
��
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. Then
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Note that this formulation requires the calculation of the
maximum of h

��
for each group, but does not involve a

recursion.
In a Monte Carlo setting, Lee [20] shows that both

methods are numerically stable for large group sizes. The
choice, therefore, depends on computational efficiency.
Although Lee [20] reports that Equation 14.A1 is com-
putationally quicker than Equation 14.A2, I find the op-
posite result when the algorithms are programmed in
SAS/IML. In Equation 14.A1, the programming com-
plexity arises from the recursion, which requires a loop. In
Equation 14.A3, no loops are required but maximal ele-
ments of vectors must be calculated. The relative com-
putational speed depends on the efficiency with loops are
executed relative to that of calculation of maximal ele-
ments in the computer software used. For the estimation
in theMonte Carlo and empirical sections of this paper, I
used the algorithm in Equation 14.A3.
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INTRODUCTION

During the past decades, the elderly population of most
Organization for Economic Co-operation and Develop-
ment (OECD) countries has increased both in absolute
terms and as a percentage of the full population. In the
mid-1950s in the Netherlands, for instance, about 7% of
the population consisted of individuals aged 65 and older.
Since then, this fraction has doubled, and is expected to
rise to about 25% in the year 2040 [3]. This trend to-
wards ageing is expected to have a large impact on many
aspects of current society — elements of social security and
the health care system being the most prominent ones.
With respect to the health care system, expenditures cur-
rently add up to 8.2% of the Dutch gross domestic prod-
uct. This percentage is one of the highest among the
European countries. Long-term care is a major compo-
nent of the health care system, as it currently accounts for
approximately 23% of total Dutch health care expendi-
tures [21]. Long-term care is provided when individuals
experience disabilities or chronic diseases and is, by con-
sequence, largely reserved for the elderly, and generally
provided until the end of life. By consequence and in view
of the expected growth of the Dutch elderly population,
the needs for long-term care services may greatly increase
in the next decades, and largely exceed the available
resources. There is already some evidence that the Dutch
long-term care system is currently supply constrained.
Therefore, the sustainability of the existing long-term care
system is questionable. Sensible reforms require insight
into the forces that determine the use of these services.
The main objective of the present paper is to gain a better

understanding of the process underlying the utilization of
long-term care services by the Dutch elderly.
A large number of care alternatives is available to the

elderly in the Netherlands. In our analyses, three compre-
hensive categories of long-term care services are consider-
ed, namely, informal care, formal care at home, and for-
mal care in institutions for the elderly. Briefly, informal
care means ‘unpaid, non-organized assistance given to an
ill or disabled person offered within the social network’
[20], and formal care is professionally organized paid
help. The bulk of care assistance is provided informally
and, consequently, informal care plays a major role in the
support of older populations. Informal care has often
been ignored in the economic literature on use of long-
term care services, which generally focuses on institu-
tional care, with a few studies concentrating on formal
home assistance [4]. However, there is some evidence
that some kinds of formal care and informal care are close
substitutes [15]. In consequence, informal and formal
care should definitely be analyzed jointly in studies on use
of long-term care. For an extensive survey of long-term
care, see Norton [14].
The main trigger for use of care services is the recogni-

tion of a need for care. In a context of supply limitations —
waiting lists exist for all types of formal care in the Neth-
erlands — access to care services may be restricted. Ob-
served utilization is thus likely to differ from actual needs.
In the present paper, the use of care arrangements is
conditional on the perception of a need for care. Only
individuals with a need for care are likely to make use of
care services, the needs of some of them being unmet as a
result of supply restrictions. The utilization of the
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different care arrangements, measured by discrete vari-
ables, is modelled here jointly. Unobserved preferences —
such as the wish to maintain familiar surroundings — or
general attitudes towards receiving care may affect the
individual choices towards these care options, and may
cause these to be stochastically related. This specification
is, thus, technically speaking, a conditional multiple dis-
crete choice model with correlated unobservables. This
model does not have a simple analytical form and its
estimation requires the evaluation of higher order inte-
grals. To circumvent this numerical difficulty, estimation
methods based on ‘simulated maximum likelihood’ tech-
niques will be used [7].
Research has often shown that needs for long-term care

services — and their use — depend primarily on the health
conditions of the elderly population [10,22]. Health
status is not a well-defined concept, but it can be safely
stated that it is multidimensional and dynamic. Most
previous research on determinants of health care utiliz-
ation at older ages uses a small set of indicators to
measure different aspects of health status — themajority of
these indicators focusing on physical limitations [10,21].
In addition to the physical dimension, aspects of emo-
tional and cognitive health should simultaneously be
considered. Research has indeed often shown significant
influences of emotional and/or mental disabilities — such
as depressive complaints and loneliness — on long-term
care utilization [1,10,25]. In Portrait et al. [16], we dis-
cussed methods that summarize the multidimensional
and dynamic health status — measured by a large set of
indicators — into a limited number of valid and reliable
indices. The grades of membership (GoM) approach, in-
troduced by Manton and Woodbury in 1982 is the most
suitable candidate for this procedure [11,12]. The
method simultaneously identifies all dimensions of the
concept of interest and derives individual GoM, i.e. the
degree to which an individual belongs to each dimension.
In Portrait et al. [16], we applied the GoM method to a
set of 21 health indicators from the Longitudinal Ageing
Study Amsterdam (LASA) data set [5,6]. Six health di-
mensions were identified. The degrees to which an indi-
vidual belongs to these types (i.e. GoM) were derived for
both waves of the LASA data set. These GoM character-
ize the health status of the LASA respondents, and are
used in the present analysis to determine which health
dimensions are the most predictive of long-term care
utilization.
While the health status of the elderly highly influences

the utilization of care, this relationship also holds in the
opposite direction. Hence, the health status of older indi-
viduals at a certain point in time is not independent of
their use of care services. This potential endogeneity
should be addressed to avoid biased estimates. As far as

we know, this problem has often been ignored in the
empirical literature on the utilization of health care servi-
ces. Major exceptions are the studies based on the theory
of production of health originally formulated by Gross-
man [9]. In our analyses, health status is treated explicitly
as an endogenous variable. The potential endogeneity of
health status is addressed using a procedure introduced
by Mundlak in 1978 [13], in which the correlation be-
tween unobservables and the included regressors is cap-
tured through the use of instrumental variables.
This analysis is conducted within a longitudinal con-

text, using a unique panel survey of the LASA data set.
Panel data analyses indeed control for the presence of
individual time-constant unobservables and this is rele-
vant for our study, as unobserved time-constant individ-
ual characteristics — such as care preferences, general
attitudes towards care, genetic factors or life style — may
play an important role in determining the need for care
and/or the use of care. However, longitudinal data —
especially on the elderly — are likely to suffer from attri-
tion because mortality and exclusion of the deceased
respondents may result in non-random selection. As far
as we know, recent longitudinal studies on use of care by
elderly populations do not correct for this potential
sample selection effect. The present paper goes one step
further and proposes panel data analyses — corrected for
attrition owing to mortality — of the determinants of the
utilization of care services at older ages.
The second section briefly describes the Dutch long-

term care system. The third section presents the data set
and gives some information on the variables used in
subsequent sections. The following section is devoted to
the development of an appropriate framework to analyse
the process of use of informal help, formal care at home,
and institutional care by the Dutch elderly. The next
section presents the results of our analyses. Special focus
is on an analysis of the discrepancies between the need for
and the use of care services. The final section discusses the
results and concludes the paper.

LONG-TERM CARE IN THE NETHERLANDS

Long-term care consists of informal care and formal care.
Briefly described, informal care is unpaid assistance pro-
vided from within a person’s social network, and formal
care is professionally organized help, financed mostly by
national insurance systems. Both types of care can be
provided either at home or in an institutional setting.
However, in institutions for the elderly, informal care is
negligible compared with the predominant role of formal
help.
Informal caremay be supplied by the partner, children,
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other family members, neighbours and acquaintances. A
substantial part of the Dutch older population — about
30% of the elderly aged 65 and more [25] — receive some
kind of informal care. This percentage inceases to 40% for
the eldest old, i.e. individuals aged 85 and more. In case of
the absence of an adequate social network, or reluctance
to ask for help from relatives, disabled elderly individuals
may ask for formal care. Formal care is generally divided
into community and institutional care. Of Dutch individ-
uals above 65 years, close to 30% receive formal care at
home and 8.6% live in an institution [25]. Community
care consists, for the most part, of home care and nursing
care, but is also likely to be provided by the personnel of
institutions for the elderly. The bulk of institutional care
is provided in residential and nursing homes — geriatric
units and general or psychiatric hospitals supplying the
remaining part. Residential homes provide living assist-
ance only, whereas nursing homes provide both personal
care and living assistance. The health condition of clients
in nursing homes is generally much poorer than those of
residential home occupants. However, the differences in
health status between these two types of intramural care
have faded during the last decades — with their client
populations, mostly elderly individuals in need of inten-
sive care, overlapping more and more [20].
It is important to mention that the availability of for-

mal long-term care services is cururently highly regulated.
The service capacity within a specific region is strongly
related to the budget received by local authorities — with
the distribution of this budget depending on the number
of inhabitants aged 75 and more. During recent decades,
national governments have promoted the increase of
community help capacity and the decrease of the number
of beds in institutional care. However, expansion of com-
munity care has been restricted by a shortage of govern-
mental funding and of manpower. Therefore, and given
the recent expansion in the elderly populations, the
Dutch long-term care system is currently supply con-
strained, as waiting lists exist for all kinds of care. Accessi-
bility to formal long-term care services is also strongly
regulated. The choice of formal care in the Netherlands is
free only for those who pay the costs themselves. In all
other cases, a person has to apply for formal care to a
Municipal Committee on Need Assessment. The appli-
cant may be rejected or, in a context of supply constraint,
put on a waiting list. If the request is granted, a (large)
share of the costs incurred for formal care utilization is
covered by national insurance systems. Individual
charges for home care are primarily related to the volume
of care received. They also depend on the size of the
household and are income-related, with a minimum per
week of $2 and a maximum of $113. Since 1997, the
regulations regarding costs are very similar for recipients

of nursing or residential care. A part of the elderly’s
monthly income is protected, but the rest of their income,
up to a maximumof $1565, is fully retained by the institu-
tion. Since 1997, the costs of living in a nursing home have
considerably increased. The costs for institutional care
are high, and generally not paid by public and private
insurances. Two-thirds of the Dutch elderly population
are covered by public insurance, with one-third privately
insured. Thus, virtually all the Dutch elderly are health
insured. Being privately or publicly insured is income-
related, as only individuals with an income below a speci-
fic threshold may benefit from public insurance.

DATA

SAMPLE

Our data come from the LASA [5,6]. This interdisciplin-
ary study is intended to lead to policy relevant informa-
tion on the ageing population in the Netherlands. It
follows a representative sample of non-institutionalized
and institutionalized adults older than 55 years over an
extended period of time. Currently, two waves are avail-
able (the 1992—1993 wave and the 1995—1996 wave). Data
have been gathered on health status, on factors that are
expected to predict changes in health status, and on utiliz-
ation of care services. Health status is assessed by a broad
set of objective and subjective instruments, including cli-
nical assessments. A total of 3107 respondents par-
ticipated in the first wave of the survey. Of this first wave,
we selected all individuals of 65 years and older. Two
thousand, one hundred and forty-one respondents re-
main, 1659 of whom also participated in the second wave.
Respondents were given either a complete or a short
interview, according to their ability to sustain a lengthy
interview. Of interest for our analyses is that the bulk of
the sample attrition is caused by the mortality of respon-
dents in the time intervening between the two waves.
Seventy-nine percent of the 482 non-respondents to the
second wave died in the 3-year time period.

NEED FOR CARE AND ACTUAL UTILIZATION

Need for care

In our model, the utilization of care services is assumed to
be driven by the recognition by the elderly of a need for
care. The need for care is related to the person’s (in)ability
to perform some daily tasks. However, the person’s gen-
eral attitude and evaluation of his or her health status
also influence the perception of the need for care. In our
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Table 15.1 Summary statistics for need for care and actual use in wave I of the LASA data set

Informal Formal Both types Institutional
Need for care Frequency No care care only care only of care care

No difficulties with 857 527 330 — — —
daily activities

Some difficulties 385 141 94 114 24 12
Severe difficulties 284 43 79 82 42 38
Recoded 246 5 111 82 24 24
Total respondents 915 (100.0%) 189 (20.6%) 289 (31.6%) 273 (29.8%) 90 (9.8%) 74 (8.1%)
needing care

Total 1772 716 330 — — —
Missing values 369 — — — — —

study, need for care is, therefore, measured by a combina-
tion of subjective and objective factors.
Elderly individuals who report difficulties in daily ac-

tivities are considered to be experiencing a need for care.
The variable indicating the need for care can take the
values 0, if the respondent does not report any difficulties
in daily activities, 1, if he or she reports some difficulties,
and 2, if he or she reports severe difficulties. However,
given the self-reported nature of the variable, it probably
measures the respondent’s perception of his or her ability
to perform daily activities. Therefore, for individuals ex-
periencing no difficulties in daily activities, but with some
indication of objective needs, the need variable is con-
structed as follows.
Clearly, the health status of personal care recipients is

generally poor. Therefore, these respondents are con-
sidered to suffer from severe difficulties in daily activities.
For these individuals, the variable indicating the need for
care services matches the score (2). Likewise, elderly indi-
viduals with no perceived need for care, but receiving
formal housekeeping assistance, are considered in our
study to have a need for care�. As a matter of fact, in a
context of supply restrictions, individuals receiving for-
mal care services may be validly considered as needing
care, even if they have a recorded score of 0 for the
variable, indicating perceived difficulties in daily activ-
ities. Finally, older people receiving domestic assistance
fromnon-householdmembers are also considered as hav-
ing actual needs for care.

Actual utilization of care

It is worth recalling that, in our analyses, three broad
categories of caregivers are considered — namely informal
caregivers, formal caregivers at home, and formal
caregivers in an institutional setting. Private help is ex-
cluded from our analyses. Utilization of long-term care is
measured by a set of three binary variables indicating

whether respondents make use of these services or not.
Information on the volume of care used is only available
for respondents with a complete interview, and could,
therefore, not be included in our analyses. Elderly indi-
vidualsmay clearly opt for a combination of informal and
formal services to more adequately meet their needs for
care. It is important to note that about 20% of our
respondentswith needs for care do not receive any kind of
assistance.
Table 15.1 gives some details on the variables indica-

ting need for care and actual utilization.

INDEPENDENT VARIABLES

Health status

Health conditions have repeatedly been shown as the
primary determinant of use of care services [14]. A major
issuewhen dealing with health status is how tomeasure it.
The elderly’s health status is clearly multidimensional
and dynamic. Therefore, a large set of indicators is re-
quired to capture all its aspects, and it is difficult to
handle all these variables in statistical analyses. TheGoM
technique, introduced by Woodbury and Manton (1982),
is a flexible non-parametric method specifically designed
to summarize the multidimensional and dynamic health
status — measured by a large set of indicators — into a
limited number of valid and reliable indices [11,12]. GoM
identifies simultaneously latent multidimensional profiles
and the degrees to which the respondent’s features fit
these profiles. The degrees of similarity between pure
types and respondents, viz. GoM, are described by
weights constrained to fall in the interval [0, 1] and that
sum to unity over all profiles. So the method recognizes
that health status of the elderly is a concept of graded
participation into several aspects of health status. Several
types of health disorders exist and different degrees of
impairment in these types are possible, and should be
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allowed for. In Portrait et al. [16], the GoM method is
applied to summarize the health information given by the
set of 21 health variables from the LASA data set. We
refer to this paper for the technical details. The empirical
results of this study revealed that the health concept can
be described by six underlying health dimensions which
can be described as follows.
The first group is characterized by the prevalence of

two life threatening diseases: chronic obstructive pulmon-
ary diseases and cancer. Group I members are also char-
acterized by physicial limitations, and are more likely to
be depressed than other pure types. The functional status
of second pure types is very good. However, group II is
characterized by the presence of ‘other chronic diseases’:
these are mainly diseases which are not specific to the
elderly, and generally not too serious. Examples of these
are hypertension, back troubles or diseases of the stom-
ach or intestines. The third type is physically healthy but
has poor cognitive function. The fourth type is character-
ized by the prevalence of serious arthritis (almost all
respondents follow a continuous medical treatment).
Moreover, the probability of having another chronic dis-
ease besides arthritis is very high. Pure type IV is physi-
cally impaired and often depressed. The cognitive func-
tion of pure type IV is also relatively poor. The presence
of cardiovascular diseases (heart diseases, atherosclerosis,
stroke and diabetes) characterizes the fifth pure type. For
this group, vision is much poorer than the mean, likely
because of the presence of diabetes and stroke. Finally the
sixth group is the healthy one.
The degrees to which an individual belongs to these

types (i.e. GoM) were successively derived for both waves
of the LASA data set. These GoM characterize the health
status of the elderly and are used, in the present analysis,
to determine which health dimensions are the most pre-
dictive of long-term care utilization.

Other independent variables

In addition to the health status of the elderly, the out-of-
pocket prices of close substitutes and available economic
resources are major factors explaining long-term care
utilization [14]. Monthly maximum individual payments
related to formal home care and institutional care are,
therefore, included in the present study. As mentioned in
the section ‘Long-term care in the Netherlands’, Dutch
individual payments for long-term care utilization de-
pend on family size, income, and the volume of care
received. No information on the volume of care used is
available in the data set. Therefore, we calculate the pay-
ments as the maximum payable based on family size and
income�. The means and standard errors equal $152 and

$150, respectively, for home care, and $682 and $516 for
institutional care. Information on income is also used in
our analyses. Respondents were asked to assign their
monthly total income — derived from pension, savings,
dividends, and other sources — to four categories ($),
namely 0—794 (in line with the Dutch minimum income),
795—1134, 1134—1815 andmore than 1815.Missing values
for income were relatively frequent (14.61%), and were
imputed on the basis of the results of regression analyses.
Looking only at total incomes may mask the level of
economic status experienced by older adults during their
lives [19]. The level of economic status is also likely to
influence individual decisions towards care arrange-
ments. A categorical variable indicating the level of educa-
tion attained is used as a supplementarymeasure of socio-
economic status. Education is determined by the follow-
ing question: ‘Which is the highest education level at-
tained?’ Nine categories were reported, varying from ‘ele-
mentary education not completed’ to ‘university edu-
cation’.
Utilization of long-term care services is also related to

demographic variables — in particular age and gender. As
a consequence, these variables are used in our analyses.
The characteristics of household size, as well as the size of
the social network, reflecting social conditions related to
living arrangements, are also included in the study.
Household size is represented by the binary variable ‘liv-
ing alone’ (1) versus ‘not living alone’ (0). In the equations
modelling utilization of institutional care, this variable is
replaced by a variable indicating marital status. Institu-
tional care utilization is indeed likely to be more affected
by the marital status of the respondents, than by his or
her current living situation. Marital status gives some
information on the household size of the elderly before
entering the institution, and is represented by the binary
variable ‘married’ (1) versus ‘notmarried’ (0). The variable
‘network size’ [24] indicates the number of network mem-
bers — including children, other family members, friends,
and neighbours — who have regular contacts with the
elderly person. Previous studies indicate that having
children is one of the best predictors of formal and infor-
mal care [14]. Our network variable includes this. We
opted for the variable ‘network size’ instead of a set of
variables measuring the number and gender of children,
because ‘network size’ excludes children with whom el-
derly individuals do not have any contact, or who do not
support their parents.
The presence of special housing adaptations — such as

lowered doorsteps, an alarm system, handgrips — may
allow old persons to remain independent in their own
environment for a longer period of time. A categorical
variable determining the number of special housing adap-
tations in the dwelling is included in our study. The
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degree of urbanization of the area where respondents live
is an indicator of the external living conditions, and may
influence positively or negatively the use of care services
in the elderly population through a variety of mediating
factors — such as feelings of insecurity and availability of
both formal and informal caregivers. Therefore, a vari-
able reflecting the degree of urbanization of the municipal-
ity where respondents live is also used in our analyses.
We have already mentioned the presence of possible

supply restrictions in the availability of formal care. In the
absence of relevant data on waiting lists and to correct for
possible differences in availability of care services across
municipalities, a set of ten binary variables indicating the
municipality in which the respondent lives is included in
our analyses.

A MODEL FOR LONG-TERM CARE
UTILIZATION

THEORETICAL BACKGROUND

Only elderly individuals with a need for care are actually
likely to express a demand for informal care (I), formal
care at home (FH), and/or institutional care (FI). Needs
for care can be modelled as a function of health status and
demographic and socio-economic variables, namely:

N
�
� f (g,x � �

�
)

N
��

� f (g,x � �
��
)

N
��

� f (g,x ��
��
) (15.1)

where N
�
is a variable measuring the needs for care

servicesK,K � �I, FH,FI� . g is a set of GoM, characteriz-
ing the health status of respondents, and x is a set of
observed variables. In the Netherlands, needs for care are
assessed by governmental experts (see section ‘Long-term
care in the Netherlands’). Positive recommendations of
the state committees are required tomake use of any kind
of subsidized formal care. Recommendations are exclus-
ively based on the current needs of the applicant — namely
his or her health status and social situation — and does not
take into account actual supply conditions.More formal-
ly, say that recommendations are governed by the con-
structs R
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and R
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:
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The parameters � are decided by governmental regula-
tions. Assume that individuals get a positive recommen-

dation for care servicesK ifR
�
� 0 and are not allowed to

make use of care servicesK if R
�
� 0, for K � �FH,FI�.

I, FH and FI refer to the total market capacity of
informal care, formal care at home, and institutional care,
respectively. The volume of formal care services on the
market is not left to market forces, but decided by the
Dutch cabinet. Therefore, and given the significant delay
required by the set-up of new formal care services, the
supply of formal care services can be safely considered as
fixed in the short-term. Informal care is free care offered
within the social network of the elderly. In this paper, the
volume of informal care available to elderly individuals is
considered as fixed in the short-term — we ignore events
like the death or illnesses of caregivers. The modelling of
these events goes beyond the scope of this paper. An
additional major feature of the long-term care market is
that the price paid by consumers is fixed by governmental
regulations, and will not vary to clear the market. The
supply restrictions can be expressed in terms of the
Models (Equations 15.1 and 15.2). Say that demand
would exceed current availability of care resources in a
given time period:
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Clearly the length of the waiting lists is given by
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care at home, and (�
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	FI) for institutional care.

In the context of supply restrictions, where price and
supply are fixed, it is likely that only individuals with the
most urgent situation actually make use of care. In this
case, it is neither the price nor the supply of care services
that vary to clear the market, but the standards required
to make use of long-term care services. The standards
used on themarket are actuallymore severe than the ones
used by the governmental committees. More formally,
say that utilization is governed by the constructsU

��
and

U
��
:

U
��

� g��
��

� x��
��

� y��
��

U
��

� g��
��

�x��
��

� y��
��

(15.3)

where y refers to additional explicative variables indica-
ting, for instance, the current supply conditions. The par-
ameters � refers to the standards required on the market
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to make use of care services. Assume that individuals
actually use formal care services K if U

�
� 0 and that

theymake no use of care servicesK ifU
�
� 0. A compari-

son of the parameters of the state committees � with the
use parameters � gives insights into the effects of supply
restrictions on the needs for the elderly, with a positive
recommendation for care.

EMPIRICAL SPECIFICATION

Need for long-term care

Our variable measuring needs for care (see section ‘Data’)
does not specify the kind of care required. This informa-
tion is not recorded in our data set. Consequently, the
three equations (Equation 15.1) collapse into a unique
equation, indicating needs for any kinds of care services.
The constructed variable to measure the need for care can
take the values 0; no difficulties with daily activities, 1;
experiencing some difficulties with daily activities, and 2;
suffering from severe difficulties with daily activities. The
modelling for the need for care is a longitudinal ordered
probit specification, in which the need for care is deter-
mined by observed and unobserved characteristics. More
specifically:

N�*� g���
�
�x���

�
� �

�
� u�

�
(15.4)

where N�* is the latent continuous counterpart of the
discrete variableN� and measures the underlying inclina-
tion of needing care in period t. t accounts for a specific
wave of the data set and can take the values 1 and 2.
Currently, we only have access to two waves of the survey
and we, therefore, abstract from time effects. N�* is a
latent variable and is unobserved.What we do observe is:

N�� 0 ifN�*� 0

N�� 1 if 0�N�*� l
�

N�� 2 if l
�
�N�*

In Equation 15.4, g� is a set of GoM, characterizing the
health status of respondents in wave t. So N��

(N�
�
�N�

��
�N�

��
). x� is a set of demographic and socio-

economic variables in wave t. l
�
is an unknown parameter

and has to be estimatedwith the other parameters. Unob-
served individual effect �

�
is assumed to be normally

distributed, and to have zero mean. Residuals u�
�
are

assumed to be independently and normally distributed
with mean zero and unit variance. Individual effect �

�
is

also assumed to be independent of u�
�
.

Unfortunately, we do not have sufficient information

to estimate parameters ofModel 2 (Equation 15.2).We do
not observe the recommendation for care given by gov-
ernmental experts for the LASA respondents. We refer to
a forthcoming study by Portrait [18], in which the stan-
dards used by the Municipal Committees on Need As-
sessment are analysed and estimated.

The use of long-term care

A separate equation is used to model the utilization of
informal care (I), formal care at home (FH), and formal
care in an institutional setting (FI). The dependent vari-
able indicating the use of long-term care services can take
the values 0, if the respondent receives no care, and 1, if he
or she receives some type of care. The modelling for the
use of each type of care is, thus, simply a discrete choice
model. We opted for a probit specification.Model (Equa-
tion 15.5) specifies the use of informal care, formal care at
home, and institutional care. It is given by using the same
notation as before:
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where U�*
�
, U�*

��
and U�*

��
are the latent continuous

counterpart of the discrete variablesU�
�
,U�

��
andU�

��
, and

measure the underlying inclination for individuals to re-
ceive informal care, formal care at home and institutional
care in period t. y� is the set of the remaining independent
variables described in the subsection ‘Independent vari-
ables’. Individual effects �

�
, �

��
and �

��
are assumed to be

normally distributed, to have zero mean, and to be freely
correlated. u�

�
, u�

��
and u�

��
are assumed to be independent-

ly and normally distributed with mean zero and unit
variance. The individual effects are also assumed to be
independent of u�

�
, u�

��
and u�

��
. It is important to point out

that care alternatives are assumed to be correlated —
unobserved determinants of care services being stochasti-
cally related. In Model 5, elderly individuals are allowed
to opt for a combination of informal and formal services
to more adequately meet their needs for care. Because of
supply limitations, the needs of some elderly individuals
may be unmet. This is represented in our model by N*
strictly greater than zero, and U*

�
, U*

��
, U*

��
smaller than

zero.

Endogeneity of health status

The health status of respondents in wave t is character-
ized by the set of GoM g�

�
, for k� 1, . . ., 6, representing the
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degree of involvement in specific health dimensions. As
discussed above, health status of the elderly is a poten-
tially endogenous variable. Health status affects the need
for care, which, in turn, determines whether one is ob-
served to receive some kind of care. The causality may
also run in the opposite direction — receiving care may
influence observed health status at a given point in time.
Furthermore, unobserved individual factorsmay relate to
observed health status, as well as to the need for and the
choice of care arrangements. Either way, the GoM g� in
Equations 15.4 and 15.5 will be correlated with the unob-
servables, and direct estimation of this model would re-
sult in biased estimates of the parameters of interest.
In our model, GoM g� are assumed to be correlated

with individual effects �
�
, �

�
, �

��
and �

��
, and uncor-

related with u
�
, u

�
, u

��
and u

��
. A way to deal with this is

to specify the correlation between g� and the unobserved
individual components directly, or to use a fixed effect
approach�. In the fixed effect approach, the unobser-
vables are allowed to be correlated with the included
regressors, but are known to lead (in general) to a large
number of nuisance parameters that have to be estimated
along with the other parameters of the model. A way to
deal with this, in the context of a qualitative choicemodel,
is to use a conditional likelihood approach [2]. The fixed
effects are eliminated from the specification by condition-
ing them on a sufficient statistic. The sum of the individ-
ual outcomes of the endogenous variable over the time
span (for instance, for informal care, �

�
U�

�
) is a sufficient

statistic that is known to lead to consistent estimates in
the logit model�. A drawback of this conditional likeli-
hood approach is that, effectively, only observations for
which a change in the endogenous variable has occurred
are included in the analyses. In surveys with relatively
short time spans, such as ours, this would mean that the
majority of the observations need to be dropped from the
analyses. Furthermore, as we will discuss below, a signifi-
cant fraction of our initially selected respondents dies
between the two waves. We will argue that this selection
mechanism is endogenous in our model, and, therefore,
needs to be explicitly modelled. As far as we know, a fixed
effect estimator for the logit specification does not exist in
the context of a qualitative sample selection model. As an
alternative to the fixed effect approach, a random effect
approach could be used. The correlation between the
individual effects and the GoMs g� is specified by aug-
menting the model with a separate model for g�. However,
estimation of an unrestricted model for N, U

�
, U

��
, U

��
and g

�
with k� 1, . . ., 6 requires evaluation of the inte-

grals of dimension 11, which will make the estimation
extremely cumbersome. Moreover, other independent
variables, such as income, network size, and the number
of housing adaptations are potentially endogenous. This

will further complicate our random effects model and
make it even less tractable. Another alternative for esti-
mation of models with potentially endogenous variables
has been suggested by Mundlak in 1978 [13]. In this
approach, the correlation between individual effects of
Equations 15.4 and 15.5 and the included regressors is
specified directly. Assume that the individual effects are
linearly related to a set of instruments z:

�� z�� ��	

where � is a set of parameters to be estimated and �	
represents the residuals. Usually, z is taken to be the
averages over time of the potentially endogenous vari-
ables. In our case, z would include the average GoM g� �,
and, possibly, averages over time of other potentially
endogenous variables, such as income, network size, or
housing adaptations. An advantage of this approach is
that it is relatively simple to implement. A disadvantage is
that the linear specification z�� may be too restrictive to
fully capture the correlation and that, when z includes
time averages of the potentially endogenous variables,
colinearity of z with x and g may obscure the estimation
of the parameters of interest.
In the section ‘Results’, we will discuss estimates of our

model, using the instrumenting procedure suggested by
Mundlak [13]. Before that point, we will first discuss the
consequences of mortality in the sample for our specifica-
tion, present the full model, and report some estimation
issues.

Correction for mortality between the two waves

A selection equation is added to our model of use of
long-term care services to correct for attrition resulting
frommortality between the two waves. A significant frac-
tion (22.5%) of the initially selected respondents of our
survey is indeed observed not to participate in the second
wave. Seventy-nine percent of the 482 non-respondents
for the second wave died in the 3-year time period. Mor-
tality between the two waves is related to a range of
demographic and socio-economic variables of wave I.
The mortality equation is then given by:

M*�x��
�

� u
�

using the same notation as before, and where M* is the
latent continuous counterpart of the discrete variableM
and measures the underlying inclination for individuals
to stay alive between the two periods. Individuals drop
out of the panel (die, M� 1) if the latent index M*� 0
and stay in the panel (M� 0) if the latent indexM*� 0.
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u
�
is assumed to have zero mean and a variance equal to

two. As the focus of this paper is not on the determinants
of mortality — we refer to Norton [14] for these issues — a
reduced form equation is employed.

Full model for long-term care utilization

The complete model, in which we correct for attrition
through mortality, combines information on the need for
and the use of long-term care services from both waves of
the data set. Using the instrumental procedure suggested
by Mundlak [13], in which the correlation between indi-
vidual effects and the included regressors is formulated
explicitly, the complete model can be written as:

N�*� g���
�
�x�

�
��
�
� z�

�
� �

�
� u�

�

U�*
�

� g���
�
	x���

�
� y���

�
� z�



�
��

�
� u�

�

U�*
��

� g���
��

�x���
��

� y���
��

� z�


��

��
��

� u�
��

U�*
��

� g���
��

�x���
��

� y���
��

� z�


��

��
��

� u�
��

M*�x��
�

� u
�

(15.7)

with the same notation as before. z is a set of instruments
including the averages over time of the GoM g�

�
, for

k� 1, . . ., 5 of the monthly income, of the network size,
and of the number of housing adaptations. Residuals u�

�
,

u�
�
, u�

��
and u�

��
for t� 1, 2 are assumed to be independent-

ly distributed. All individual effects are assumed to be
independent of u�

�
, u�

�
, u�

��
and u�

��
. The co-variances be-

tween the individual effects and u
�

are crucial for the
problem at hand, as, when all variances match the score
zero, this implies that both the need for and the use of care
are distributed independently from mortality, and that,
hence, attrition resulting from mortality between wave I
and II has no influence on the parameters of interest. It is
important to note that the regressors and individual ef-
fects are, at present, assumed to be uncorrelated.
Standard likelihood methods are not appropriate for

the estimation of Model 7 (Equation 15.7), as its likeli-
hood function does not have any simple analytical form,
as shown below. The individual effects are correlated
across equations, and their presence, therefore, means
that the whole set of equations should be jointly es-
timated. These individual effects are not observed and
must be integrated out, introducing the presence of inte-
grals of high dimension in the likelihood functions. The
next subsection presents ‘simulated maximum likelihood’
methods that allow us to estimate Model 7 (Equation
15.7) by approximating integrals of high dimensions.

ESTIMATION PROCEDURE

As a first step, write u
�
in the mortality equation into a

part u
��

that is correlated with the unobserved individual
components of the need and use equations and a part,
u
��

, that is not. Both u
��

and u
��

are assumed to be
independent of the noises u

�
, u

�
, u

��
and u

��
.

The sample likelihood function that needs to be opti-
mized consists of the product of joint probabilities of
observed needs for care and uses of care, as well as mor-
tality. More specifically, we can write the likelihood con-
tributions for deceasedM� 0 and survivorsM� 1 as:

L��
	�

��

· · ·�
	�

��
� 

�
�



��
�

f (N�,M ��
�
, u

��
)

� 

�
�



����

f (N�,U�
�
,U�

��
,U�

��
,M � �

�
,�

�
,�

��
,�

��
, u

��
)

� 

�
�



��
�

f (N�,M � �
�
, u

��
)

� 

�
�



����

f (N�,U�
�
,U�

��
,U�

��
,M ��

�
, �

��
,�

��
, u

��
)�

��
�
��(��

,�
�
, �

��
,�

��
, u

��
) d�

�
d�

�
d�

��
d�

��
du

��
(15.8)

where�
�
�� is the multivariate normal density (zero mean

and covariance matrix �
�
) of the time constant unobser-

ved individual effects and of u
��

. The unobservables �
�
,

�
�
, �

��
, �

��
and u

��
need to be ‘integrated out’ of the

likelihood, and the likelihood function needs to be opti-
mized with respect to the remaining parameters. Condi-
tional on these unobserved components, each individual
contribution to the likelihood boils down to a simple
product of univariate densities with unknown parameters
�, �, � and �. Using more concise notation, the generic
problem for estimation of the model is to evaluate:

E( f (N�, . . .,M ��, u
��

))

��
�

��

f (N�, . . .,M � �, u
��

)�
�
��(�, u��

) d�du
��

where � � (�
�
, �

�
,�

��
,�

��
). There is no explicit expression

for this integral, and optimization of the likelihood func-
tion requires simulated maximum likelihood techniques.
Simulatedmaximum likelihoodmethods [7,23] are based
on an approximation of the actual likelihood function.
The basic idea is to draw random variables from�

�
�� and
use these to compute a sample mean of f, conditional on �
and u

��
. The simulatedmaximum likelihood estimator of

the parameters to be estimated, denoted by �, is thus
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given by:

�
�
�Argmax�



�
�
�

ln
1

S
�

�
�
�
�

f (N�
�
, . . .,M

�
���

�
,	�

��
, �) (15.9)

where R is the total number of observations. S accounts
for the number of simulations and s indicates each simu-
lation. The following steps should be taken in order to
estimate Model 4 (Equation 15.4). First of all, expression
for the distribution f conditional on u

��
and on the

individual effects have to be derived. Second, the random
variables u

��
, �

�
, �

�
, �

��
and �

��
have to be simulated.

S� (�
�
, �

�
, �

��
, �

��
, u

��
) is assumed to be normally

distributed with expectation zero and covariance matrix
�
�
. It is well-known that matrices can be written as the

product L � L�� �
�
, where L is an upper triangular

matrix. In order to simulate S, we first simulate a matrix 

of standard normally distributed variables. It follows
from standard statistical theory that the random vari-
ables (L
) are normally distributed with expectation zero
and variance �

�
. Coefficients of the matrix L are thus

estimated and used to calculate the covariance between
u
��

and the individual effects. Expression 9 is tractable
using available computers. Antithetic acceleration [23] is
an effective variance reduction method, and is used in the
estimation procedure to reduce the computational time.
It should be added that all independent variables have

been scaled by dividing them by the maximum of each
variable, so that size of coefficients reflect the relative
importance of these variables.

RESULTS

DETERMINANTS OF LONG-TERM CARE NEED
AND UTILIZATION

Table 15.2(a) and (b) report parameter estimates for
Model 7 (Equation 15.7).
It is important to emphasize that parameters asso-

ciated with the potentially endogenous variables are not
easy to interpret. One way to compute their marginal
effects on the latent variables N*, U*

�
, U*

��
and U*

��
, is

given by the following expression:

�N*
�E

��
�
�

�
�
�
�
2

�U*
�E

� �


�

�
�


�
2

(15.10)

where E refers to the set of potentially endogenous vari-
ables, i.e. GoM g

�
, for K� 1, . . ., 5, monthly income, net-

work size and number of housing adaptations. The two
terms composing the marginal effects in Equation 15.10
can be interpreted as a short- and a long-term effect,
respectively. The parameters � and � are not reported in
Table 15.2(a). Only the total marginal effects, namely
���/2 of the endogenous variables, as well as their
t-values, estimated using the delta method [8], are re-
ported in Table 15.2(a).

Need for care

In the need equation, a positive sign indicates that high
values of the included variables are associated with high
needs for care. Not surprisingly, age and health disorders
are found to be the major determinants of needs for care.
After controlling for age and health status, females are
found to have a lower need for care than males. Older
individuals with higher GoM in pure type IV (serious
arthritis), pure type I (chronic obstructive pulmonary
diseases and cancer) and pure type V (cardiovascular
diseases) face higher risks of needing assistance. Suffering
from cognitive disorders or from chronic diseases related
to pure type II also increases — but to a lesser extent — the
probability of needing care. These diseases are generally
not too serious and not typical for the elderly. Finally,
individuals with high income tend to have lower needs for
long-term care services.

Utilization of care services

Positive coefficients are here associated with greater util-
ization of care services. Remarkably, the emergence or
aggravation of physical disabilities affects negatively the
probability of receiving informal care. Pure types I (chro-
nic obstructive pulmonary diseases and cancer), III (cog-
nitively impaired) and at a lesser extent, IV (arthritis), are
characterized by serious physical and cognitive limita-
tions. High GoM in these health dimensions are signifi-
cantly related to lower probabilities of receiving informal
care. On the other hand, individuals with higher GoM in
pure types IV (arthritis) and V (cardiovascular diseases)
have greater uses of formal care, both at home and in an
institutional setting. Individuals with higher GoM in
pure type III (cognitive impairment) are also observed to
have an increased probability of being institutionalized.
We refer to the section ‘Probabilities of use on long-term
care services’ for more details.
With respect to age, we find that, after controlling for

health status, age is still associated with an increased
probability of getting care services. It is noteworthy that
the effect of age on use of formal care is stronger than on
informal care. Possible explanations for this finding
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Table 15.2

(a) Parameter estimates of Model 7 (controlled for region)�

Equations Independent variables Parameters t-values

Need Constant 	3.40 	5.78
g
�

2.46 12.79
g
�

0.79 0.79
g
�

0.88 4.89
g
�

2.57 5.25
g
�

2.16 16.98
Age 3.97 6.98
Female 	0.55 	3.63
Education 	0.29 	1.53
Income 	0.90 	3.71
l
�

1.05 26.87
Institutional care Constant 	7.71 	4.30

g
�

1.09 1.41
g
�

	0.25 	0.32
g
�

1.16 2.65
g
�

1.51 2.67
g
�

1.35 2.25
Age 10.79 6.42
Female 	1.12 	3.10
Married 	1.88 	3.07
Network size 	0.56 	0.65
Degree of urbanization 1.59 0.96
Education 0.62 1.44
Income 	2.79 	3.55
Home care maximum individual payments 3.91 2.95
Institutional maximum individual payments 	5.79 	2.62

Informal care Constant 	1.48 	1.65
g
�

	0.85 	2.86
g
�

	0.45 	1.51
g
�

	0.59 	1.79
g
�

	0.43 	1.87
g
�

	0.22 	0.82
Age 2.40 3.10
Female 	0.34 	1.93
Living alone 	0.63 	5.33
Network size 	0.05 	0.12
Education 	1.40 	4.66
Income 0.68 1.03
Degree of urbanization 	0.35 	0.27
Housing adaptations 	0.24 	0.73
Home care maximum individual payments 0.11 0.24
Institutional maximum individual payments 	0.53 	0.78

Formal care at home Constant 	6.62 	6.95
g
�

0.51 1.62
g
�

0.02 0.07
g
�

	0.29 	0.90
g
�

0.80 3.25
g
�

0.53 1.95
Age 5.03 6.05
Female 0.35 1.82
Living alone 0.67 5.50
Network size 0.79 1.64
Degree of urbanization 	0.14 	0.12
Education 1.08 3.85
Income 0.27 1.86
Housing adaptations 0.79 1.64
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Table 15.2 (cont.)

(a) Parameter estimates of Model 7 (controlled for region)�

Equations Independent variables Parameters t-values

Home care maximum individual payments 	0.91 	2.10
Institutional maximum individual payments 1.51 2.61

Attrition Constant 	6.49 	8.44
Age 7.38 9.90
Female 	0.87 	4.29
Education 	0.37 	1.48
Income 	0.61 	1.90

(b) Covariance matrix of Model 7; t-values in parentheses (calculated using the delta method)

1 	0.16 0.20 0.29 	0.39
(	1.91) (3.10) (6.93) (	11.52)
1 	0.18 	0.08 	0.36

(	1.73) (	0.84) (	3.31)
1 	0.81 	0.29

(	10.73) (	4.00)
1 	0.06

(	8.76)
1

�Only the total effect of the endogenous variables is reported here (t-values calculated using the delta method).

� �
include the fact that the oldest old needs more formal
care, as he or she becomes more vulnerable. Not surpris-
ingly, age is a very strong predictor for being in an institu-
tion.
After controlling for age differences, health status and

living situation, women are found to have lower risks of
being institutionalized than men. Women are also less
likely to receive informal care. It is likely that women are
more able to perform domestic tasks, and they, therefore,
need less domestic assistance than men. Moreover, it is
observed that elderly care recipients living alone have
been found to receive considerably less informal assist-
ance and more professional care than those sharing a
household. Likewise, being married is significantly asso-
ciated with a lower probability of being in an institution
for the elderly. Married people are also more likely to
have children, another source of information care, and
this, in addition to the presence of a partner, may keep
elderly people out of residential or nursing homes.
A positive effect of the network size on the probability

of getting informal care would be expected, but is not
observed. The social network is defined in our study by
the children, family members, friends and neighbours
with whom the elderly individual has regular contacts. A
likely explanation is that most of the informal care is
given within the household, namely by the co-residents of
the elderly (for instance, the partner or resident siblings).
The effect of network size on informal care is likely to

already be taken into account with the variable ‘living
alone’.
Residence in urban areas does not significantly affect

the use of care services and, therefore, access to formal or
informal care does not seem to be related to the degree of
urbanization where elderly individuals live.
Significant effects are found for higher education levels

and incomes. Higher education levels seem to increase the
probability of getting formal care at home, at the expense
of informal care. This could be related to the relative price
of informal care, for two possible reasons. First, it is
conceivable that educated people are more likely to have
educated children, with a relatively high wage rate, and
that, therefore, the opportunity cost to provide informa-
tion care is higher for highly educated children. The sec-
ond reason is related — educated children are likely to
have less time available for caregiving, andmay not live in
proximity to their parents. In addition to issues related to
the relative price of informal care, another possible expla-
nation is that less educated elderly people may have less
access to information about their options for formal care,
and may not use the information they have as efficiently
as more educated people.
Higher incomes positively influence the probability of

getting formal care at home instead of in an institutional
setting. People with higher financial resources may be
willing to pay out-of-pocket for home help, supporting
equipment and house adaptations, in order to remain at
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home as long as possible.Housing adaptations are signifi-
cantly associated with a higher probability of getting
formal care at home. Having housing adaptations, in
combination with formal care, may help the elderly to
remain at home as long as possible.
Finally, it can be seen that individual financial contri-

butions have an additional effect on utilization of formal
care after controlling for income levels. The results are in
line with what one would expect a priori. Higher out-of-
pocket costs for domestic assistance increase the prob-
ability of being in an institution and affect negatively the
probability of getting home care. On the other hand,
individuals with higher institutional charges are more
likely to receive home care and less likely to live in an
institution. The two products appear to be substitutes. As
the individual charges are income-related, the relative
price of public long-term care compared with private help
is considerably higher for wealthier individuals. This is an
additional incentive for people with higher incomes to
purchase private help. For this, we may conclude that
utilization of formal care seems price-sensitive, even when
individual contributions are, as in the Netherlands, in-
come-related. Consequently, price policies may be effec-
tive in controlling care service utilization.
Recently, regulations concerning out-of-pocket costs

for formal care have been changed. We computed some
simulations related to changes in formal individual
charges. To compute these simulations, the contributions
for each type of formal care are successively decreased
and increased by 10%. The own-price elasticity of institu-
tional care equals 	2.15% for males and 	2.55% for
females, whereas the own-price elasticity of domestic for-
mal care equals 	0.08% for males and 	0.07% for
females. On the other hand, cross-price elasticities for
institutional care equal 2.55% for males and 1.33% for
men and women, respectively, while these are equal to
0.18% for men and 0.16% for women for formal care at
home. These numbers are based on calculations for an
individual of 85 years. It can be concluded that care use is
inelastic, and that the price elasticities for domestic for-
mal care are relatively small compared with the ones for
institutional care. Therefore, use of institutional care is
relatively more price-sensitive than utilization of formal
care at home.Moreover, it can be concluded that changes
in the prices of institutional care affect most the use of
formal care, both at home and in an institutional setting.

Attrition

The parameters affecting mortality between waves I and
II should be interpreted with caution, as the mortality
equation is a reduced form specification — and, hence,

little can be concluded from the sign of the coefficients of
the included variables.We find strong effects onmortality
for age, gender, and, to a lesser extent, income and educa-
tion level.

Covariance structure

With respect to the covariance structure, it is worth re-
calling that the covariance matrix �

�
of Model 4 (Equa-

tion 15.4) is given by the outer-product of the upper
triangular matrix L. �

�
is a 5 � 5 matrix, describing the

covariance structure between u
��

, �
�
, �

�
, �

��
and �

��
.

Matrix �
�
can easily be computed using �

�
� LL�, and

the t-values can be computed using the delta method.
Most of the covariances between u

��
and the individual

effects are statistically significant, implying that mortal-
ity, need for care and use of care are stochastically related
— and that, by consequence, the exclusion of deceased
respondents in panel data analyses of use of care will lead
to biased estimates. Consequently, attrition resulting
from mortality must be taken into account in the estima-
tion of models of use of long-term care services (see Table
15.2(b)).

PROBABILITIES OF USE OF LONG-TERM CARE
SERVICES

To make the results of the previous subsections more
insightful, one can calculate probabilities of getting care
per age/gender groups. These probabilities are computed
for all pure types, as well as for an individual with an
‘average’ health status (i.e. whose GoM in each health
dimension equal the same averages frequencies). The re-
sults of these calculations are reported in Table
15.3(a)—(c).
First of all, age is a very strong predictor of institu-

tionalization, as risks are multiplied by a factor of ap-
proximately 100 between the ages of 75 and 90. It can also
be seen that the risks of institutionalization are low com-
pared with those of getting formal care at home. Further,
men enter old people’s homes at lower ages than women.
the probability of being institutionalized is significantly
different from zero from the age of 75 for females and 70
formales. It is noteworthy that the risks of institutionaliz-
ation of a male and a 5-years older female are quite
similar for all health dimensions. Men face higher risks of
being institutionalized than women — especially at
younger ages. At age 75, the probability of men to be in an
old people’s home is at least five times higher than the one
for women. This factor decreases to 2.5 when individuals
are 90 years of age. A likely explanation for this finding is
that men, in the case of death of the spouse, are not longer
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Table 15.3

(a) Probabilities of institutional care (%)

Female Male

Average health Average health
I II III IV V status I II III IV V status

65 — — — — — — — — — — — —
70 — — — — — — 0.10 — — — 0.05 —
75 0.10 — 0.02 0.06 0.06 — 0.51 — 0.16 0.37 0.39 0.05
80 0.60 — 0.20 0.46 0.47 0.07 2.51 0.04 1.02 2.05 2.11 0.42
85 2.91 0.05 1.21 2.41 2.48 0.51 9.15 0.30 4.54 7.89 8.04 2.23
90 10.33 0.40 5.24 8.95 9.12 2.62 24.15 1.65 14.44 21.70 22.01 8.40

(b) Probabilities of informal care (%)

65 7.22 25.27 11.98 16.64 37.90 24.73 9.84 31.62 15.69 21.19 44.45 30.34
70 9.35 30.61 15.01 20.37 43.33 29.35 12.49 36.75 19.28 25.47 50.20 35.40
75 11.91 35.68 18.51 24.56 48.88 34.35 15.60 42.14 23.35 30.16 55.58 40.73
80 14.93 41.02 22.48 29.17 54.45 39.62 19.19 47.67 27.84 35.20 61.04 46.23
85 18.42 46.53 26.89 34.15 59.94 45.10 23.24 53.25 32.72 40.52 66.29 51.81
90 22.38 52.11 31.70 39.42 65.24 50.67 27.72 58.76 37.92 46.52 72.23 57.35

(c) Probabilities of formal care at home (%)

65 18.89 5.81 10.42 31.71 18.52 14.57 14.55 4.05 7.61 25.79 14.23 10.95
70 27.83 10.88 16.75 42.78 27.36 22.32 22.30 7.34 12.75 36.09 21.89 17.48
75 38.43 16.27 25.14 54.45 37.90 32.01 31.98 12.36 19.93 47.52 31.48 26.06
80 49.98 24.53 35.33 65.75 49.43 43.10 43.08 13.39 29.11 59.16 42.53 36.40
85 61.54 34.62 46.71 75.79 61.01 54.78 54.76 28.45 39.88 70.04 54.20 47.85
90 72.15 45.95 58.37 83.97 71.70 66.05 66.03 39.14 51.49 79.37 65.52 59.48

able to remain at home, mainly because of lack of house-
keeping capabilities. Results also show that the probabil-
ity of getting informal care is higher for males than for
females. Men receive relatively more informal care at
older ages than at younger ages. This finding may be
explained by the higher needs of men for housekeeping
assistance, possibly intensified by a generation effect —
namely that the eldest old may have less experience with
housekeeping tasks than the youngest elderly. Suffering
from health disorders related to pure type I — i.e. physical
disabilities, respiratory diseases, and cancer — most in-
crease the probability of being institutionalized. Surpris-
ingly, the probability of receiving informal care for pure
type I is very low compared with other health dimensions
— especially at younger ages. For a male with an average
health status, the probability of receiving informal care at
age 65 is three times higher than for a pure type I. This
factor decreases to 2 above the age of 80. These numbers
are even higher for females. On the other hand, pure type
I is very likely to receive both types of formal care com-
pared with other health dimensions. One may then con-
clude that the health disorders associated with pure type I
require professional assistance. A similar effect of pure

type V — i.e. cardiovascular diseases — on the probability
of getting informal care would be expected, but is not
observed. A likely explanation is that health disorders
associated with fifth health dimension are not responsible
for severe physical disabilities, and individuals with high
GoM in pure type V may be supported by informal
assistance only. However, a look at the probabilities for
formal care at home associated with this dimension
shows that pure types V also face very high risks of
getting formal care. Therefore, one may conclude that
individuals with high GoM in the fifth dimension need a
combination of informal and formal care to meet their
care requirements. It is noteworthy that pure type II is
very likely to receive informal care compared with other
health dimensions. As a matter of fact, he or she receives
relatively (very) little formal assistance. In consequence, it
may be concluded that informal care is generally suffi-
cient to support individuals with health disorders asso-
ciated with health dimension II. Finally, pure type IV is
found to demand on the average much formal and infor-
mal care.
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Table 15.4 Probabilities of non-use of care by the elderly with needs for care (%)

Male Female

Average health Average health
I II III IV V status I II III IV V status

65 33.59 17.68 11.83 36.42 32.99 18.91 39.39 22.00 13.08 37.33 35.83 21.75
70 29.82 17.89 12.70 30.40 29.88 19.42 35.00 22.89 13.36 30.23 31.54 21.76
75 24.66 16.99 12.96 22.96 24.71 18.69 28.96 22.47 12.81 21.94 25.17 20.28
80 18.97 15.07 12.32 15.56 18.51 16.58 22.21 20.59 11.36 14.15 17.98 17.30
85 13.29 12.35 10.72 9.13 12.13 13.25 15.41 17.13 9.11 7.83 11.14 13.15
90 8.39 9.27 8.36 4.59 6.86 9.34 9.54 12.78 6.56 3.68 5.90 8.74

PROBABILITIES OF NON-USE OF CARE BY THE
ELDERLY WITH NEEDS FOR CARE

One can also calculate the probabilities that individuals
with a need for care receive neither informal nor formal
services. There are several reasonswhy specific needsmay
not be met. First of all, elderly individuals may have a
need for long-term care services, but still decide not to
pursue or use care. This may be a result of perceived
supply restrictions, but these individuals may also simply
not know that they have access to care, or they may have
already been rejected in the past and think that they still
will not meet the eligibility threshold of the committee.
Alternatively, they may be satisfied to live with their
health problems without seeking care. Second, they may
have expressed their demand for care, but have not re-
ceived a positive recommendation from the state commit-
tees. Finally, individuals with a positive recommendation
may have been put on a waiting list because of supply
restrictions. For those individuals with a need for care,
Table 15.4 shows the probabilities of not receiving any
type of care at all — by health categories, age and gender.
First of all, it is worth recalling that about 20% of our

respondents aged 65—85 that have needs do not receive
any kinds of care services. In Table 15.4, about 22% of
individuals aged 65, with an average health status, do not
receive the care that they need. This percentage equals
13%at age 85. It can also be seen that, within each disease
type, the oldest disabled have a higher probability of
receiving some type of care than their younger counter-
parts. This could be partially a result of an age effect in the
recommendation process of the state committees and to
the actual selection process determined by the market. In
other words, both the committee and institutions are
predisposed to accepting the elder old — perhaps because
care of these individuals is likely to have a shorter dur-
ation than for younger individuals, and, therefore, less
impact both on costs and available capacity. Among the
categories, at younger ages, individuals with arthritis

(health dimension IV) are less likely to receive some type
of care, but this pattern is reversed at older ages, where
those with arthritis have more chance of obtaining care.
In addition, we find that pure types V — individuals who
suffer from cancer and/or respiratory diseases — are more
likely to not receive care than others. Also, women are, in
general, more likely to be denied care than are men, at all
ages.

CONCLUSION

This paper proposes a characterization of the determi-
nants of long-term care services utilization by the Dutch
elderly. Major findings of these analyses may be sum-
marized as follows. Emergence or aggravation of physical
disabilities affects negatively the probability of receiving
informal care. Individuals with higher GoM in pure types
IV and V do have greater needs for formal care, both at
home and in an institutional setting. Individuals with
higher GoM in pure type III are also observed to have an
increased probability of being institutionalized. Age is a
major predictor of utilization of care services, especially
of institutional care. After controlling for age differences,
women are found to have lower risks of being institu-
tionalized than men.Women are also less likely to receive
informal care, and more likely to receive formal care at
home. Significant effects are found for higher education
levels and incomes. Higher education levels seem to in-
crease the probability of getting formal care at the ex-
pense of informal care. Higher incomes positively influ-
ence the probability of getting formal care at home
instead of in an institutional setting. Individual contribu-
tions have an additional effect on utilization of formal
care after controlling for income levels. As a consequence,
utilization of formal care seems to be price-sensitive, even
when individual contributions are, as in the Netherlands,
income-related.
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NOTES

a. These individuals are given either a score 1 or 2, as it is not
known which degree of impairment they actually experience.
This is accounted for in the likelihood function of our model
(see section ‘Estimation procedure’).

b. The Social and Cultural Agency (in Dutch: Sociaal en Cul-
tureel Planbureau) kindly allowed us to use their operating
procedure to calculate monthly maximum individual pay-
ments associated with different kinds of long-term care servi-
ces [21].

c. This approach is only feasible in the context of a logit model.
d. An equivalent expression can be obtained by concentration of

the likelihood with respect to the individual parameters.
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HMO Selection and Medicare Costs:
Bayesian MCMC Estimation of a Robust
Panel Data Tobit Model with Survival

BARTON H. HAMILTON
Olin School of Business, Washington University in St. Louis, St. Louis,MO,USA

INTRODUCTION

Since the mid-1980s, an increasing proportion of the US
Medicare population has chosen to enrol in health main-
tenance organizations (HMOs), with the fraction reach-
ing 17% in 1997. HMOs have been promoted as a cost-
containment measure, since most HMOs receive a fixed
fee per patient (capitation). Capitation provides strong
financial incentives to avoid unnecessary health care ex-
penditures [1]. In addition, it is argued that HMO con-
tracts align the incentives of physicians, hospitals and
insurers, which should also help to restrain health care
costs relative to those incurred by individuals in tradi-
tional fee for service (FFS) arrangements.

Despite the rapid growth in managed care in public
health insurance programmes (Medicare and Medicaid)
in the US, debate still exists as to whether HMOs con-
strain costs. A literature review by Miller and Luft [2]
indicates that patients in HMOs generally had shorter
lengths of stay, used fewer procedures and tests, and
tended to receive less costly alternative interventions for
conditions such as heart disease when compared to those
in FFS. In a study of children covered by Medicaid,
Goldman et al. [3] found that HMOs reduced expendi-
tures relative to FFS. Finally, Baker [4] found that mar-
kets with higher HMO market share have lower expendi-
tures. It is often claimed that these HMO cost savings
simply reflect ‘cream-skimming’ on the part of HMOs, in
which relatively healthy patients are enrolled into the
managed care plan. For example, Morgan et al. [5] found
that in the year prior to enrolment, the rate of use of
inpatient services among future HMO members was only

66% of that for individuals remaining in FFS in southern
Florida. Strumwasser et al. [6] found that employees
switching to HMOs in a large firm tended to have lower
health service utilization rates prior to the change. In
addition, due to capitation, HMOs may have a strong
financial incentive to disenrol high cost members from the
plan [7].

This paper examines the role of selection in HMO
enrolment between 1984 and 1991 for a random sample of
3876 Medicare recipients in the US aged 54� in 1984
who were not initially HMO members. The panel nature
of the data helps to identify the selection effect, since
actual non-HMO health care expenditures are observed
both pre- and post-enrolment for individuals who enrol
in HMOs. Previous studies have generally relied on
cross-sectional comparisons of HMO and non-HMO en-
rolees, which forces the analyst to make strong modelling
assumptions with regard to what the health care expendi-
tures of HMO enrolees would have been had they not in
fact been in the HMO [3]. It is also difficult to assess
selection effects using market level data, since the expen-
ditures of individuals entering and leaving HMOs are not
observed. The panel data approach presented here is used
to quantify the selection effect by comparing the health
care expenditures of prospective HMO members with
other individuals in the sample prior to enrolment. The
paper also examines the expenditures of individuals after
they leave the HMO to determine whether high cost
patients are disenroled.

A second issue, which arises when examining older
(65�) individuals in a longitudinal setting, is that some
individuals die over the course of the panel. Unobserved
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(by the econometrician) characteristics affecting mortality
are likely to be correlated with those that influence expen-
diture, since it is often claimed that health care expendi-
tures are highest in the last year of life. Consequently,
Medicare expenditures and mortality must be modelled
jointly. In addition, the fact that many individuals have
zero health care costs in a given year must be incorpor-
ated into the empirical model. One method is to model
expenditures using a tobit framework, although other
approaches have been taken in the literature. Finally, the
longitudinal nature of the data allows the model to incor-
porate individual-specific differences in health care ex-
penditures and mortality.

While classical methods for the estimation of the mixed
tobit—probit model described above are available, such
simultaneous equation limited dependent variable panel
data problems are easily handled using Bayesian Markov
Chain Monte Carlo (MCMC) simulation methods. The
MCMC approach avoids high dimensional integration
required by classical maximum likelihood methods. The
Bayesian implementation of the model in this paper fol-
lows Chib’s [8] analysis of the tobit model, and Chib and
Greenberg’s [9] simulation of the multivariate probit
model. The model is also related to Cowles et al.’s [10]
tobit model with non-random attrition. Because a pre-
liminary examination of the data indicated the expendi-
ture distribution was fat-tailed, the model differs from
these previous approaches in that the disturbances are
assumed to follow a multivariate t distribution rather
than a normal one.

The results show that prior to enrolment, prospective
HMO members had lower probabilities of positive health
care expenditures. However, no evidence is found in this
data set that HMOs disenrol high cost patients. Conse-
quently, over the late 1980s and early 1990s, at least a
portion of the difference in costs between HMO and
non-HMO plans reflects cream-skimming effects rather
than real cost-containment.

DATA AND INITIAL EVIDENCE

This paper analyses data from the 1982 New Beneficiary
Survey (NBS), a random sample of newly eligible Social
Security recipients in the US conducted by the Social
Security Administration. These data were linked to ad-
ministrative data on yearly Medicare expenditures cover-
ing the period 1984—1991 for each NBS sample member.
These individuals tended to be between 65 and 70 years
old, with a few aged 71�. The data set contains detailed
information on demographics, health conditions, income,
and assets of the sample members in 1982—1983. Demo-
graphics include age, years of education, gender and race.

Information on the number and type of health conditions,
the number of days the individual had been ill in the
previous year, and whether the individual had ever had a
heart attack was also collected. Finally, asset information
includes the net wealth of the sample member’s household
and whether he or she owns their house.

The individual level survey data is merged with admin-
istrative data from the Social Security Administration’s
Master Beneficiary Record and the Health Care Financ-
ing Administration’s Medicare Automated Data Re-
trieval System of Medicare bills and enrolment. The ad-
ministrative data provides information on the sample
member’s total Medicare charged expenditures (in-
patient, outpatient, physician, home health, hospice and
skilled nursing charges) for each year between 1984 and
1991. To cross-validate this data, a comparison of the
number of hospital days with inpatient expenditures in-
dicated that the correlation between the two variables
was 0.883, suggesting the charge data accurately
measures resource utilization. Finally, note that although
Medicare may not recover all the charged expenditures,
expenditures provide the best available measure of re-
source utilization by the individual.

The administrative data also lists the number of
months of Medicare Part A and Part B coverage in each
year, and whether the individual was enrolled in a HMO
in each year. Medicare Part A covers inpatient hospital
care, and some home health and nursing home services,
while Part B covers outpatient, physician and hospice
services. While Part B requires a small co-payment, vir-
tually all sample members receive this coverage. Finally,
the administrative data indicates the month and year of
death, if mortality occurred between 1984 and 1991. The
sample used here is limited to individuals who were not
enrolled in a HMO in 1984, since pre-HMO enrolment
health care expenditures are required to assess the selec-
tion effect. All expenditures are deflated to 1984 dollars
using the Medical Care component for Urban Con-
sumers in the Consumer Price Index.

Unfortunately, the health care expenditures of HMO
members during their enrolment period is only sporadi-
cally reported. Consequently, the question of whether
HMO expenditures are lower than non-HMO expendi-
tures cannot be addressed directly. However, expendi-
tures pre- and post-enrolment are reported accurately, as
is mortality during the HMO enrolment (and non-enrol-
ment) period.

After merging the survey and administrative databases,
approximately 7% of the sample members had at least 1
year in which they reported zero months of Medicare
Part A (and Part B) coverage. In many cases, these pa-
tients also reported positive Medicare expenditures for
inpatient care, outpatient services, etc., in the same year,

218 ECONOMETRIC ANALYSIS OF HEALTH DATA



Table 16.1 Summary measures of Medicare expenditures and mortality

Panel A: All individual-year observations

HMO
��
� 0 HMO

��
� 1 HMO

��
� 0, HMO

����
� 1,

HMO
����

� 1 HMO
��
� 0

Variable (1) (2) (3) (4)

Average monthly expenditures (in year t) 206.1 (971.7) — 100.2 (519.2) 304.9 (964.3)
Fraction of expenditures �0 0.73 — 0.65 0.74
Fraction died in year t 0.029 0.018 — 0.05
n 26 368 1710 274 120

Panel B: 1984 data

Enrols in HMO in future year Never in HMO in panel
(1) (2)

Average monthly expenditures (in 1984) 97.3 (504.5) 168.9 (822.6)
Fraction of expenditures �0 0.60 0.62
n 266 3610

SD in parentheses.

since Part A participation and Medicare expenditures are
recovered from different administrative data files. Unfor-
tunately, it was impossible to obtain HMO enrolment
information for these individuals because Part A partici-
pation was not reported, so they were deleted from the
sample. Little difference was found in the Medicare ex-
penditures of the deleted group compared to those obser-
vations included in the sample, so their exclusion is un-
likely to affect the results. After excluding the
observations with missing Part A coverage information,
the sample consists of 3876 individuals and 28 078 indi-
vidual-year observations.

INITIAL EVIDENCE OF THE HMO SELECTION
EFFECT

In order to investigate the magnitudes of pre- and post-
enrolment selection effects, average monthly Medicare
expenditures and mortality probabilities in each year
from 1984 to 1991 are first examined. Let HMO

��
equal 1

if individual i is enrolled in a HMO in year t, and 0
otherwise. Column (1) in Panel A of Table 16.1 shows that
the average Medicare expenditures of non-HMO mem-
bers is approximately $206 per month, with almost three-
quarters of the individuals experiencing positive expendi-
ture. While expenditure data is not reliably reported for
HMO members, comparison of columns (1) and (2) shows
that HMO enrolees are less likely to die in the current
year, indicating that they are in better health. Column (3)
of Panel A also provides evidence of non-random selec-
tion into HMOs. In the year prior to HMO enrolment,

the average expenditures of prospective HMO members
was $100, about half of that shown in column (1). How-
ever, the probability of some positive expenditure was
only slightly lower. Finally, in the year following disenrol-
ment, the expenditure of former HMO members is higher
than that of individuals not enrolled in the HMO. How-
ever, this might be somewhat misleading, since disenrol-
ment occurs later in the panel when costs are likely to be
higher due to advanced age and poorer health.

To provide additional information on the potential
selection effect, Panel B of Table 16.1 summarizes the
1984 expenditures of individuals subsequently enrolling
in HMOs versus those who do not. Recall that in the
sample, no one is a member of a HMO in 1984. The first
row of Panel B shows that in 1984 the average expendi-
tures of individuals who subsequently enrol in a HMO is
substantially less than the expenditures of individuals
who do not, while the bottom row shows that the prob-
ability of positive expenditure is roughly the same. Conse-
quently, it can be concluded from Table 16.1 that HMOs
appear to be selecting low expenditure individuals for
enrolment.

To examine whether the HMO selection effects shown
in Panel B of Table 16.1 are reflected in the observed
characteristics of sample members, Table 16.2 breaks
down the demographic, health status and asset data as of
the 1983—1984 baseline by prospective HMO status. En-
tries in Table 16.2 indicate little difference across prospec-
tive HMO status for the demographic and asset variables.
However, it does appear to be the case that HMOs enrol
individuals who are in better health, as indicated by the
lower number of health problems, fewer days ill in 1983,
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Table 16.2 Summary statistics, measured at baseline in
1983—1984

Enrols in HMO Never in HMO
in future year in Panel

Variable (1) (2)

Age 67.9 (2.2)* 68.2 (2.5)
Education (years) 11.3 (3.1) 11.2 (3.3)
Male 0.49 0.48
White 0.89 0.88
� Health problems 1.71 (1.48)** 1.96 (1.68)
Days ill in past 5.60 6.56

year (22.18) (27.09)
Heart problem 0.35 0.38
Previous myocardial 0.08*** 0.11

infarction
Net worth/1000 100.4 (325.7) 99.6 (217.4)
Own home 9.76 0.78
n 266 3610

SD in parentheses.
*Difference between columns statistically significant at the 0.05 level.
**Difference between columns statistically significant at the 0.01 level.
***Difference between columns statistically significant at the 0.10 level.

and lower incidences of heart conditions and previous
myocardial infarctions (heart attacks) as of 1984. These
differences may account for some of the variation across
HMO status observed in Table 16.1, and are controlled
for in the model below.

A TOBIT MODEL OF MEDICARE EXPENDITURES
WITH SURVIVAL

This section describes the econometric framework for
jointly modelling individual health care expenditures and
mortality. Joint estimation of these outcomes is import-
ant in this case since unobservables, such as health status,
which increase mortality in any time period are also likely
to increase Medicare expenditures. Consequently, attri-
tion from the sample (through death) is likely to be corre-
lated with expenditure [11]. The model is similar to
Cowles et al.’s [10] framework for analysing compliance
in the Lung Health Study in that it exploits the panel
nature of the data by incorporating individual-specific,
time-invariant random effects to account for correlations
over time in an individual’s expenditures and mortality
probabilities.

To begin, let y
���

denote average monthly total Medi-
care health care expenditure for individual i, i� 1, . . ., n in
year t, t� 1, . . ., T

�
. For all individuals, time period t� 1

refers to 1984. The notation T
�
refers to the fact that some

individuals die between 1984 and 1991. For those who
survive over the course of the sample period, T

�
� 8. Note

that y
��

is censored at zero for individuals with no health
care expenditures in year t. The dichotomous variable y

���
indicates whether individual i died in year t.

As in any limited dependent variable problem, it is
useful to write the model in terms of the latent dependent
variables. Let y*

���
denote the latent Medicare expendi-

tures of individual i in year t, and specify the expenditure
equation as

y*
���

��
�
H

���
� x

��
�
�
� b

��
� �

���
, (16.1a)

where H
���

is a vector of HMO enrolment indicators,
described in greater detail below, �

�
is the corresponding

coefficient vector describing the impact of HMO enrol-
ment status on expenditures, and x

��
is a vector of demo-

graphic, health status and asset variables thought to af-
fect expenditures, with associated coefficient vectors �

�
.

b
��

is a individual-specific random intercept, which allows
yearly Medicare expenditures to be correlated over time.
Finally, �

���
is period-specific error term. Latent Medicare

expenditures map into observed expenditures according
to:

y
���

��
y*
���

if y*
���

� 0

0 if y*
���

� 0
.

Equation 16.1a thus specifies a panel data tobit model
with a random intercept.

Mortality is modelled using a probit framework. Let
y*
���

be the latent propensity of individual i to die in year t.
The mortality equation may then be written as:

y*
���

��
�
H

���
� x

��
�
�
� b

��
� �

���
. (16.1b)

As above, H
���

is a vector of HMO enrolment indicators,
and �

�
is the corresponding coefficient vector describing

the impact of HMO enrolment on mortality. The vector
x
��

consists of demographic, health status, and asset vari-
ables with associated coefficient vector �

�
. b

��
is an indi-

vidual-specific random intercept and �
���

is a period-spe-
cific error term. In the usual probit fashion, individuals
are observed to die if the latent propensity is positive:

y
���

� I[y*
���

� 0],

where I[.]� 1 if the expression in square brackets holds,
and 0 otherwise. Equation 16.1b thus specifies a random
intercept panel data probit model.

Since unobserved characteristics that affect Medicare
expenditure may be correlated with those influencing
mortality, the period-specific random error terms from
Equations 16.1a and b are assumed to be jointly normally
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distributed with mean zero and variance

Var�
�
���

�
���
�� ���

�
��

�
��

�
��

1 � . (16.2)

Finally, to complete the model, distributional assump-
tions must be made for the individual-specific random
intercepts. The random effects in Equations 16.1a and b
are assumed to be jointly normally distributed, so that

�
b
��
b
��
��N(0,D), where D��

d
��

d
��

d
��

d
��
� . (16.3)

This specification allows further correlation between ex-
penditures and mortality.

The parameters of the model to be estimated are �
( � [�

�
�
�
�
�
�
�
]), � and D. The general form of the ob-

served data likelihood is given by

L(�, �,D; y
�
, y

�
,x,H)

� �
�������������

Pr(y*
���

� 0, y*
���

� 0)

� �
�������������

Pr(y*
���

� 0, y*
���

� 0)

� �
��������������

Pr(y*
���

� y
���

, y*
���

� 0)

� �
�������������

Pr(y*
���

� y
���

, y*
���

� 0). (16.4)

The first term on the right-hand side of this equation is
the probability that individual i has zero Medicare expen-
ditures in year t, and does not die that year; the second
term is the probability that the individual has zero expen-
ditures but dies in period t; the third term indicates that i
has positive expenditures of y

���
and does not die; while

the fourth term is the probability that the individual has
expenditures of y

���
but dies in year t. Note that there is no

simple classical estimation solution to this problem.
Maximum likelihood estimation would require not only
evaluation of the bivariate probabilities in the four terms
of Equation 16.4, but also integration over the random
individual-specific intercepts b

��
and b

��
.

Preliminary examination of the data suggested that the
distribution of average monthly Medicare expenditures
was heavy-tailed. Consequently, robust alternatives to
the joint normality assumption on the period-specific
error terms in Equations 16.1a and b and (1b) are con-
sidered. A simple alternative is to allow �

���
and �

���
to

follow a multivariate t distribution with � df. Lower

values of � allow for heavier-tailed distributions of the
type observed in the Medicare expenditure data. In the
application below, �� 5 to allow for very heavy tails.

A minor complication in the construction of the model
arises from the fact that health care expenditures y

���
are

not observed during periods in which individual i is enrol-
led in a HMO, although mortality y

���
is. As a result, only

the non-HMO observations are used to estimate the par-
ameters of the expenditure equation. However, because
death is observed for individuals enrolled in HMOs, all
observations are used to estimate the mortality equation.

ESTIMATING THE IMPACT OF HMOS ON
MEDICARE EXPENDITURES AND MORTALITY

To assess the selection effects associated with HMO en-
rolment and disenrolment, this paper follows a strategy
similar to that of Heckman and Hotz [12] in their analy-
sis of selection and cream-skimming effects in manpower
training programmes. In particular, letH

���
consist of two

variables: (1) PREHMO
��

which equals 1 if i enrols in a
HMO in a subsequent period t*� t; and (2)
POSTHMO

��
� 1 if i had been enrolled in a HMO in a

previous period t**� t, but is not currently enrolled.
Consider the interpretation of PREHMO

��
. Because fu-

ture HMO enrolment status cannot directly impact cur-
rent health care expenditures, the coefficient on PRE-
HMO

��
only reflects selection effects. For example, a

negative coefficient on PREHMO
��

implies that HMOs
enrol healthier patients, since prior to enrolment future
enrolees had lower health care expenditures than other
individuals. Similarly, if HMOs disenrol sicker, more
costly patients, then one would expect a positive coeffi-
cient on POSTHMO

��
in the expenditure regression, since

disenrolees would likely have greater expenditures than
individuals never in a HMO.

For the mortality equation,H
���

includes indicators for
HMO status, HMO

��
, and disenrolment, POSTHMO

��
.

Note that PREHMO
��

is not included since it only equals
1 if the individual survives to enrol in a HMO. If HMOs
cream-skim healthier individuals, then HMO members
should have lower mortality probabilities, implying a
negative coefficient on HMO

��
in the mortality equation.

Of course, if HMOs provide lower quality care, perhaps
by restricting access to health care resources, then HMO
members might have a higher probability of death. Final-
ly, if HMOs have an incentive to disenrol sicker, more
costly patients, then a positive coefficient on
POSTHMO

��
in the mortality equation might be ex-

pected, since these individuals may be more likely to die.
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INTERPRETING THE CROSS-EQUATION
CORRELATIONS

The model described in Equations 16.1—16.4 provides two
useful insights into the relationship between health care
expenditures and mortality. First, note that individuals
with positive values of b

��
will tend to have higher prob-

abilities of mortality at each period in the sample, which
may be interpreted as being in poorer health throughout
the panel. Positive values of d

��
then indicate that these

individuals also tend to have higher ‘permanent’ health
care expenditures over the 1984—1991 period, i.e. a posi-
tive value of b

��
. Second, if individuals substantially in-

crease their use of health care resources in the last year of
life, then the covariance �

��
should be positive.

BAYESIAN MCMC SAMPLING FOR THE MODEL

The Bayesian MCMC implementation of the model de-
scribed in the ‘A Tobit Model of Medicare Expenditures
with Survival’ section closely follows Chib’s [8] simula-
tion of the tobit model and Chib and Greenberg’s [9]
analysis of the multivariate probit model. Much of the
sampling algorithm is straightforward and will only be
sketched here. Further information on the construction of
MCMC samplers may be found in these papers, and in
Carlin and Louis [13].

PRIOR SPECIFICATION

The first step in a Bayesian model is the formation of
prior distributions for the parameters of the model, �, �,
and D. Following standard practice, the prior on � is
assumed to be multivariate Gaussian withN(�

�
,B

�
). The

free elements of the variance—covariance matrix, ��

(�
��

, �
��

), are assumed to follow a truncated normal
prior distribution, �� TN(s

�
,S

�
). Truncation is required

to assure that � is positive definite. Finally, the inverse of
the random effect variance—covariance matrix, D��, is
assumed to follow a Wishart distribution with par-
ameters r

�
and R

�
. For the estimates reported below, the

parameters of these distributions are assigned subjective-
ly to yield diffuse priors, although alternative priors gen-
erated from a training sample yielded similar results.

POSTERIOR SIMULATION ALGORITHM

The posterior density of the parameters, conditional
upon the data, is

�(�,�, D �y,x) ��(�,�,D) f (y ��, �,D, x), (16.5)

where the first term on the right-hand side of the equation
is the prior density, and the second term is the data
likelihood. The goal of the analysis is to learn about the
joint posterior distribution of the parameters. For
example, one may wish to know the mean value of the
distribution of � and whether it is centred on zero. Al-
though the left-hand side of Equation 16.5 is typically
difficult to recover analytically, the posterior distribution
of the parameters may be recovered by taking a large
number of draws from it using Monte Carlo simulation
methods. In addition, efficiency in the simulation process
is often gained by drawing the current values of the
parameters conditional upon their values from the previ-
ous iteration. After a ‘burn-in’ period of m iterations, this
Markov chain should converge to a stationary distribu-
tion independent of the initial values of the parameters
used in the simulation.

In Gibbs sampling, further simplifications can be
gained by sequentially drawing values for subsets of the
parameters (conditional upon the other parameters),
rather than all the parameters at once, if the joint pos-
terior distribution �(�, �,D � y,x) is very complex. To il-
lustrate how this is carried out, consider the (k� 1) iter-
ation of the sampler. The sampler proceeds by drawing a
value �	���
 conditional upon the most recent values of
the other parameters, �	�
 and D	�
, from the full condi-
tional distribution �(� � �	�
,D	�
, y,x). This draw is then
followed by drawing �	���
 conditional upon �	���
 and
D 	 � 


from �(� ��	���
,D	�
, y, x), and then by drawing D	���


conditional upon �	���
 and �	���
 from
�(D ��	���
, �	���
, y,x). These full conditional distribu-
tions take convenient functional forms such as the condi-
tional normal distribution. This process is repeated a
large number of times. At the end of the sampling process,
analysis consists of examination of the n simulated values
of (�, �,D) obtained from the MCMC sampler, after ex-
cluding the first m values (the ‘burn-in’ phase).

A particular advantage of the Bayesian approach in
limited dependent variable problems is that rather than
maximizing the observed data likelihood, the MCMC
sampler simplifies the problem by taking advantage of
‘data augmentation’ [14]. Evaluation of the data likeli-
hood in Equation 16.4 is quite complicated, requiring
high order numerical integration. However, if the under-
lying latent variables y*

���
and y*

���
were actually observed

in the data, then Equations 16.1a and b would constitute
a two equation Seemingly Unrelated Regression (SUR)
model [15], which is easily estimated. The MCMC ap-
proach augments the parameter vector (�, �,D) with the
unobserved latent variables y*

���
and y*

���
, which will be

generated using Equations 16.1a and b.
Note that y*

���
is only observed if expenditures are posi-
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Figure 16.1. Autocorrelation functions for MCMC output of
selected parameters

tive. Consequently, in this case data augmentation only
requires the construction of y*

���
for observations where

observed expenditures are zero (implying that y*
���

� 0).
These values are generated using Equation 16.1a by
drawing �

���
from a multivariate t distribution with mean

zero and variance � under the constraint that the result-
ing y*

���
must be less than or equal to zero. In the case of

mortality, only the sign of y*
���

is known, so values are
generated using Equation 16.1b by drawing �

���
from the

multivariate t distribution with mean zero and variance �
under the constraint that the resulting y*

���
must be posi-

tive (negative) if y
���

� 1 ( � 0). Then, conditional upon
y*
���

and y*
���

, the remaining parameters (�, �,D) can be
simulated using the SUR model in Equations 16.1a and b,
although further data augmentation is used to simulateD.
Chib and Hamilton [16] provide a full discussion of this
data augmentation step. Complete details of the simula-
tion algorithm may be found in the Appendix.

POSTERIOR ANALYSIS

The model is fit to the Medicare data using 2500 MCMC
iterations (due to the large sample size) with an initial
burn-in of 500 iterations using default priors. The model
was also estimated using priors constructed from a train-
ing sample of 373 observations not used in the analysis,
and the results were virtually identical. To give an indica-
tion of the performance of the sampler, Figure 16.1 plots
the autocorrelation functions for the 2500 simulated
values of selected parameters, including the coefficients
on PREHMO

��
(�

��
) and POSTHMO

��
(�

��
) in the ex-

penditure equation, from the MCMC output for the
analysis sample. If the sampler is performing well, any
serial correlation in the simulated values of the par-

ameters should die out quickly. The plots show that the
autocorrelations decline rapidly, indicating that the sam-
pler is mixing well.

Because expenditures are so strongly skewed, models
using both the level of expenditure (divided by 100 for
scaling reasons) and a transformation of expenditure/100
as dependent variables in Equation 16.1a were estimated.
While the natural logarithm is a commonly used trans-
formation for right-skewed dependent variables, it cannot
be used here because of the presence of individuals with
zero expenditure. As an alternative, the transformation
used in this paper takes the cube root of expenditures/
100. The cube root transformation is often used in statis-
tics when the dependent variable is right-skewed and
takes on non-negative values including zero. In addition
to the multivariate tmodels with �� 5 df reported in the
paper, I also attempted to estimate the model assuming
normally distributed disturbances. However, it was im-
possible to fit the normal model when using the level of
expenditure as the dependent variable because of the
large number of outlying observations, which caused the
estimates of � to continually bump up against the posi-
tive definiteness constraint. Consequently, distributions
allowing for heavier tails are required for this data.

Table 16.3 reports the posterior means and SDs of the
2500 values for each of the parameters in the model. The
left two columns present the results using the cube root of
expenditures in Equation 16.1a, while the right two col-
umns report the results when the level of expenditure is
used as the dependent variable. Note that the coefficient
estimates in the expenditure regressions refer to changes
in latent expenditures, which incorporates both the effect
on the probability of positive expenditure, and the change
in expenditures conditional on positive expenditure.

The estimates are generally similar when using the level
of expenditure or its cube root transformation. For the
expenditure equations in the first and third columns, the
negative coefficient estimates on PREHMO in the second
row indicate that prior to enrolment, prospective HMO
members had lower health care expenditures. This finding
is stronger using expenditure levels, perhaps reflecting the
presence of influential outliers. This provides evidence of
cream-skimming on the HMOs part, and the result is
similar to Morgan et al.’s [5] finding that future HMO
members were less likely to have used inpatient services in
the year prior to enrolment compared to those remaining
in FFS.

Table 16.3 also shows that individuals disenroled from
HMOs had lower health care expenditures, as indicated
by the negative mean value of the coefficient on
POSTHMO. This surprising result is at odds with some
of the previous literature [5,7], which finds that disen-
rolees have higher expenditures. Some of the difference
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Table 16.3 Posterior estimates for training and analysis samples

Cube root transformation Levels

Variables Expenditure/100 Mortality Expenditure/100 Mortality

HMO — �0.643 (0.240) — �0.228 (0.224)
PREHMO �0.149 (0.098) — �0.311 (0.126) —
POSTHMO �0.258 (0.102) 0.035 (0.287) �0.401 (0.158) 0.064 (0.532)
Age 0.032 (0.010) 0.111 (0.015) 0.058 (0.013) 0.121 (0.024)
Education 0.021 (0.011) �0.029 (0.015) 0.030 (0.011) �0.047 (0.016)
Male �0.037 (0.061) 1.022 (0.143) �0.026 (0.063) 1.205 (0.091)
White 0.107 (0.078) 0.071 (0.184) 0.288 (0.116) �0.077 (0.146)
� Health conditions 0.094 (0.019) 0.099 (0.029) 0.160 (0.025) 0.029 (0.036)
Days ill 0.001 (0.001) 0.007 (0.002) 0.002 (0.001) 0.008 (0.002)
Heart condition �0.006 (0.066) 0.133 (0.092) 0.153 (0.084) 0.207 (0.084)
Previous myocardial infarction �0.011 (0.099) 0.561 (0.149) 0.052 (0.122) 0.796 (0.150)
Net income/100 0.000 (0.001) �0.001 (0.0002) 0.000 (0.001) �0.001 (0.0002)
Owns home �0.070 (0.098) �0.372 (0.143) �0.098 (0.089) �0.386 (0.160)
Time 0.026 (0.012) 0.134 (0.058) 0.041 (0.021) 0.250 (0.086)
Time� 0.021 (0.009) �0.046 (0.068) 0.043 (0.023) �0.258 (0.098)
Constant �2.424 (0.686) �12.589 (1.079) �5.008 (0.887) �13.717 (1.719)
�
��

0.289 (0.003) 2.260 (0.037)
�
��

0.276 (0.006) 0.237 (0.024)
d
��

0.747 (0.028) 1.839 (0.061)
d
��

0.227 (0.033) 0.076 (0.053)
d
��

3.214 (0.100) 3.304 (0.108)
n 28 078 28 078

Dependent variables are average monthly expenditure/100 or its cube root, and mortality.
Table presents posterior means with SD in parentheses.

may be due to the fact that previous studies have focussed
on expenditures within 3—12 months after disenrolment,
whereas the findings from this paper examine expendi-
tures from disenrolment until the end of 1991. To investi-
gate this possibility, the model was re-estimated after
changing POSTHMO to be equal to one only for the first
year after discharge, and zero thereafter. The estimate for
this specification of POSTHMO in the (cube root) expen-
diture equation was 0.026, with a SD of 0.075, indicating
that the result in the literature reflects short-term effects.

Turning to the mortality estimates in the second and
fourth columns, HMO members have a lower probability
of mortality. Thus, the evidence does not indicate that
HMOs increase the mortality risks of their members,
perhaps through restricted access to health care re-
sources, as some have argued. Moreover, former HMO
members do not have substantially higher mortality
probabilities.

The remainder of the coefficients behave as expected.
Individuals with more health problems have higher
health expenditures, while the presence of a heart condi-
tion or a previous myocardial infarction (heart attack)
increases the probability of mortality over the panel. Of
notable interest are the estimates for �

��
and d

��
. The

positive estimate for �
��

indicates that period-specific

shocks, which increase mortality probabilities, are also
associated with higher levels of expenditure. Thus, Medi-
care costs are higher in the last year of life. The positive
estimate of d

��
indicates that individuals who were more

likely to die earlier in the panel also tended to have higher
expenditures in each year.

A TWO-PART MODEL OF EXPENDITURE

To further investigate the relationship between HMO
selection and Medicare expenditures, a two-part model of
health care expenditures was estimated specifying separ-
ate equations for the probability of positive expenditure
by individual i in year t, and the (cube root of) total
expenditure of the individual in the given year if it was
positive. Let y

����
be a 0—1 indicator of positive health

care expenditure for individual i in year t, and let y*
����

denote its associated latent variable. Let y
����

be the level
of expenditure if expenditure is positive (i.e. when
y
����

� 1), and y*
����

be the associated latent variable.
Equation 16.1a now becomes

y*
����

��
��
H

���
� x

��
�
��

� b
���

� �
����

, (16.1a.1)

and
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y*
����

��
��
H

���
�x

��
�
��

� b
���

� �
����

. (16.1a.2)

The error terms and random intercepts follow multivari-
ate t and normal distributions, respectively, with mean
zero and variances

Var�
�
��

�
��

�
�
�� � ��

1 �
��

�
��

�
��

�
��

�
��

�
��

�
��

1 �,

Var�
b
��
b
��
b
�
��D��

d
��

d
��

d
��

d
��

d
��

d
��

d
��

d
��

d
��
� .

Equations 16.1a.1, 16.1a.2 and 16.1b now form the
model to be estimated. This model differs from many
two-part models discussed in the literature by allowing
for non-zero correlation between unobservables affecting
the probability of positive expenditure and those in-
fluencing the level of expenditure if it is positive (i.e. �

��
is

not restricted to equal 0).
Simulation of the two-part model is similar to that for

the two equation model presented above. Table 16.4
shows that the differences between prospective HMO
enrolees and those who do not enrol in a HMO reflects
differences in the probability of positive expenditure,
rather than differences in expenditure itself. HMOs thus
appear to select individuals who are substantially less
likely to have a history of high utilization. Similarly,
disenrolees have a much lower probability of positive
expenditure, but no difference in expenditure if it is posi-
tive. With regard to the remaining independent variables,
in most cases the sign of the coefficient estimates are the
same across the probability and level of expenditure
equations. The notable exception to this pattern occurs in
the case of gender, where males have a lower probability
of positive expenditure than do females. However, condi-
tional upon utilization, males have significantly higher
expenditures.

The positive estimates of �
��

and �
��

indicate that
both the probability and level of expenditure increase in
periods when mortality is more likely. The estimate of �

��
implies a correlation coefficient of approximately 0.95, so
that unobservables affecting the probability and amount
of expenditure are highly correlated. Finally, as in Table
16.3, the covariance matrix of the random effects indicates
a positive correlation between unobserved ‘permanent’
individual-specific factors affecting mortality and expen-
ditures. The cross-equation correlations thus reflect both
the period-specific relationships between unobservables
and permanent effects.

CONCLUSIONS

This paper develops a Bayesian panel data tobit model of
Medicare expenditures for recent US retirees, which is
implemented using MCMC simulation methods. The re-
sults indicate the importance of accounting for survival
over the panel, since unobservables which lead to higher
mortality probabilities are positively correlated with
those implying higher health care expenditure. The model
is also novel in that a multivariate t-link is used in place of
normality to allow for the heavy-tailed distributions often
found in health care expenditure data. The findings indi-
cate cream-skimming on the part of HMOs, since pa-
tients with a lower probability of positive expenditure
tend to enrol in HMOs. Surprisingly, it does not appear
that HMOs disenrol sicker, higher cost patients, and
mortality rates are not higher among HMO members.

The findings of this study suggest that Medicare may
have difficulty in achieving cost savings through the use
of HMOs, given current reimbursement methodologies.
Morgan et al. [5] note that the capitated rate paid to
Medicare HMOs is 95% of the average cost of FFS care.
If HMOs have lower expenditures due in part to selec-
tion, then this methodology rewards HMOs for cream-
skimming rather than cost reduction, as is desired by
Medicare. Clearly, further research is important for
understanding the impact of managed care on Medicare.
Because of data limitations, the sample only covers the
1984—1991 period, while substantial increases in the
HMO enrolment occurred in the early 1990s. It would be
useful to know whether the selection of low expenditure
patients into HMOs continued during this expansionary
period. More importantly, the data is limited in that
expenditures are not reliably reported during the period
of HMO enrolment. As a result, HMO and non-HMO
costs cannot be directly compared. The availability of
data on health care expenditures during HMO enrolment
would certainly be of great value in assessing whether
HMOs constrain costs, net of selection effects. With the
appropriate data, the statistical framework developed in
this paper could easily be adapted to address these issues.

ACKNOWLEDGEMENTS

I would like to thank Sid Chib, Vivian Ho, Dana Gold-
man, Rab Manning, two referees and participants at the
Seventh European Workshop on Econometrics and
Health Economics in Helsinki for many helpful com-
ments, and Terry Lum for bringing the data set to my
attention.

225HMO SELECTION AND MEDICARE COSTS



Table 16.4 Posterior estimates for two-part model of expenditure

Pr(expenditure� 0) Cube root of expenditure/100 Mortality

HMO — — �0.530 (0.147)
PREHMO �0.345 (0.091) 0.033 (0.046) —
POSTHMO �0.522 (0.129) 0.002 (0.067) 0.116 (0.265)
Age 0.061 (0.012) 0.037 (0.004) 0.105 (0.017)
Education 0.054 (0.010) 0.010 (0.007) �0.032 (0.016)
Male �0.178 (0.056) 0.129 (0.052) 0.994 (0.078)
White 0.390 (0.073) 0.019 (0.036) �0.146 (0.120)
� Health conditions 0.183 (0.022) 0.061 (0.009) 0.080 (0.042)
Days ill 0.001 (0.001) 0.002 (0.0005) 0.006 (0.001)
Heart condition 0.312 (0.057) 0.037 (0.047) 0.088 (0.093)
Previous myocardial infarction �0.008 (0.089) 0.018 (0.043) 0.504 (0.117)
Net income/1000 0.0004 (0.0001) �0.0001 (0.00005) �0.0004 (0.0004)
Owns home 0.008 (0.060) �0.152 (0.034) �0.434 (0.098)
Time 0.035 (0.020) 0.003 (0.007) 0.095 (0.045)
Time� 0.148 (0.023) 0.013 (0.008) �0.069 (0.060)
Constant �4.905 (0.821) �2.252 (0.301) �11.440 (1.136)
�
��

0.418 (0.009)
�
��

0.448 (0.013)
�
��

0.190 (0.003)
�
��

0.204 (0.008)
d
��

1.908 (0.058)
d
��

0.335 (0.020)
d
��

0.069 (0.044)
d
��

0.413 (0.012)
d
��

0.149 (0.022)
d
��

2.182 (0.069)

Dependent variables are indicator of positive expenditure, cube root of expenditure/100�expenditure� 0, mortality.
Table presents posterior means with SDs in parentheses. Estimates based on sample of 28 078 observations.

APPENDIX: DETAILS OF THE MCMC
SIMULATION ALGORITHM

This simulation algorithm is very similar to that in Chib
and Hamilton [16]. The main complication in the samp-
ling of the model is that restrictions must be imposed
on �, namely that the Var(�

���
) � 1. Consequently, the

Metropolis—Hastings algorithm must be used to sample
�. In addition, to allow the errors to follow a multivariate
t distribution, suppose that the error terms in Equations
16.1a and 16.1b are now specified as

�
�
���

�
���
��N��

0

0� , ���
��

�� ,

where the independently distributed random variable �
��

follows a gamma (�/2, �/2) distribution. In this case, it can
be shown that the error terms follow a multivariate t
distribution with � df [14].

Let y*
��

denote (y*
���

, y*
���

. The (k� 1) iteration of the
simulation algorithm involves the following steps:

1. Sample �y*
��
�	���
 from �y*

��
� � �y

��
, y

��
�, �b

�
�	�
, �	�
, �	�
,

��
��
�	�
 (data augmentation).

2. Sample �	���
 from � � �y*
��
�	���
, �b

�
�	�
, �	�
, ��

��
�	�


using the Metropolis—Hastings algorithm.
3. Sample �	���
 from � � �y*

��
�	���
, �b

�
�	�
, �	���
, ���

�
�	�
.

4. Sample ��
��
�	���
 from ��

��
� � �y*

��
�	���
, �b

�
�	�
, �	���
.

5. Sample �b
�
�	���
 from �b

�
� � �y*

��
�	���
, D	�
, �	���
,

�	���
, ��
��
�	���
 (data augmentation).

6. Sample D	���
 from D � �b
�
�	���
.

7. Repeat steps (1)—(6) using the most recent values of the
conditioning variables.

The algorithm indicates that once data augmentation
for the dependent variable is performed in Step (1), the
remainder of the simulation steps condition on the latent
dependent variable y*

��
. Note that in Step (1), y*

���
is drawn

from a normal distribution truncated to the interval
(�inf, 0) if y

��
� 0 (recall that y

��
� y*

��
if y

��
� 0). Similar-

ly, y*
��

is drawn from a normal distribution truncated to
the interval (��, 0) if y

��
� 0, and from the interval

(0, �) if y
��

� 1 [17].
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