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Preface

The “count data” field has further flourished since the previous edition of
this book was published in 2003. The development of new methods has not
slowed down by any means, and the application of existing ones in applied
work has expanded in many areas of social science research. This, in itself,
would be reason enough for updating the material in this book, to ensure that
it continues to provide a fair representation of the current state of research.

In addition, however, I have seized the opportunity to undertake some
major changes to the organization of the book itself. The core material on
cross-section models for count data is now presented in four chapters, rather
than in two as previously. The first of these four chapters introduces the
Poisson regression model, and its estimation by maximum likelihood or pseudo
maximum likelihood. The second focuses on unobserved heterogeneity, the
third on endogeneity and non-random sample selection.

The fourth chapter provides an extended and unified discussion of zeros
in count data models. This topic deserves, in my view, special emphasis, as it
relates to aspects of modeling and estimation that are specific to counts, as
opposed to general exponential regression models for non-negative dependent
variables. Count distributions put positive probability mass on single out-
comes, and thus offer a richer set of interesting inferences. “Marginal proba-
bility effects” for zeros – at the “extensive margin” – as well as for any positive
outcome – at the “intensive margin” – can be computed, in order to trace the
response of the entire count distribution to changes in an explanatory vari-
able. The fourth chapter addresses specific methods for flexible modeling and
estimation of such distribution responses, relative to the benchmark case of
the Poisson distribution.

The organizational changes are accompanied by extensive changes to the
presentation of the existing material. Many sections of the book have been
entirely re-written, or at least revised to correct for typos and inaccuracies
that had slipped through. Hopefully, these changes to presentation and orga-
nization have made the book more accessible, and thus more useful also as
a reference for graduate level courses on the subject. The list of newly in-
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cluded topics includes: Poisson polynomial and double Poisson distribution;
the significance of Poisson regression for estimating log-linear models with
continuous dependent variable; marginal effects at the extensive margin; addi-
tional semi-parametric methods for endogenous regressors; new developments
in discrete factor modeling, including a more detailed presentation of the EM
algorithm; and copula functions.

I acknowledge my gratitude to those who contributed in various ways, and
at various stages, to this book, including Tim Barmby, Kurt Brännäs, Sid-
dharta Chib, Malcolm Faddy, Bill Greene, Edward Greenberg, James Heck-
man, Robert Jung, Tom Kniesner, Gary King, Nikolai Kolev, Jochen Mayer,
Daniel Miles, Andreas Million, Hans van Ophem, Joao Santos Silva, Pravin
Trivedi, Frank Windmeijer and Klaus Zimmermann. Large parts of this fifth
edition were read by Stefan Boes, Adrian Bruhin and Kevin Staub, and their
insights and comments lead to substantial improvements. Part of the revision
was completed while I was on leave at the University of California at Los An-
geles and at the Center for Economic Studies at the University of Munich. I
am grateful for the hospitality experienced at both institutions. In particular,
I owe a great debt to doctoral students at UCLA and in Munich, whose feed-
back to a count data course I was teaching there led, I trust, to substantial
improvements in the presentation of the material.

Zürich, January 2008 Rainer Winkelmann
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1

Introduction

This book discusses specification and estimation of regression models for non-
negative integers, or counts, i.e., dependent variables that take the values y =
0, 1, 2, . . . without explicit upper limit. Regression analysis, narrowly defined,
attempts to explain variation in the conditional mean of y with the help of
variation in explanatory variables x. If the mean function is embedded in a
probability distribution, one obtains a full conditional probability model of y
given x.

Regression and conditional probability models are key tools for the applied
researcher who is interested in the relationship between y and x, regardless
of whether such relationships are approached from an exploratory or from
a confirmatory perspective. If the dependent variable is a count, the econo-
metric all-purpose regression tool, the linear regression model, has a number
of serious shortcomings. Hence, more suitable models are required, and the
Poisson regression model is the most important count data model.

1.1 Poisson Regression Model

The advantage of the Poisson regression model (PRM) is that it explicitly rec-
ognizes the non-negative integer character of the dependent variable. It has
two components, first a distributional assumption, and second a specification
of the mean parameter as a function of explanatory variables. The Poisson
distribution is a one parameter distribution. The parameter, λ, is equal to the
mean and the variance, and it must be positive. It is convenient to specify λ
as an exponential function of a linear index of the explanatory variables x in
order to account for observed heterogeneity: λ = exp(β1 + β2x2 + . . . + βkxk)
or, in vector notation, λ = exp(x′β). The exponential form ensures that λ
remains positive for all possible combinations of parameters and explanatory
variables. Moreover, the systematic effects interact in a multiplicative way,
and the coefficients βj have the interpretation of a partial elasticity of E(y|x)
with respect to (the level of) xj if the logarithm of xj is included among the
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regressors. The model can be generalized by including non-linear transforma-
tions of xj , for instance a higher order polynomial, among the regressors.

Assuming an independent sample of pairs of observations (yi, xi), the pa-
rameters of the model can be estimated by maximum likelihood. Although
the first-order conditions are non-linear and thus not solvable in closed form,
iterative algorithms can be used to find the maximum which is unique as the
log-likelihood function is globally concave. Under correct specification, the es-
timator has all the desirable properties of maximum likelihood estimators, in
particular asymptotic efficiency and normality.

The lack of a mean-independent determination of the variance for the
Poisson distribution contrast with the flexibility of the two-parameter normal
distribution where the variance of the distribution can be adjusted indepen-
dently of the mean. This feature of the PRM is likely too restrictive. However,
Poisson regression is robust: the estimator for β remains consistent even if the
variance does not equal the mean (and the true distribution therefore can-
not be Poisson) as long as the mean function λ is correctly specified. This
robustness mirrors the result for the linear model where OLS is unbiased
independently of the second-order moments of the error distribution.

However, it can be inappropriate in other respects. In fact, it is a common
finding in applied work using economic count data that certain assumptions
of the PRM are systematically rejected by the data. Much of this book is con-
cerned with a unified presentation of the whole variety of count data models
that have been developed to date in response to these restrictive features of
the PRM.

1.2 Examples

The count model of choice very much depends on the type of available data.
In particular, the following questions have to be answered at the outset:

• What is the nature of the count data? Are they univariate or multivariate,
are they grouped or censored, what is known about the stochastic process
underlying the generation of the data?

• What was the sampling method? Are the data representative of the pop-
ulation, or have they been sampled selectively?

A crude frequency tabulation of the dependent variable can be helpful
in selecting an initial model framework. Consider, for instance, the following
examples taken from the applied count data literature:

• Kennan (1985) gives the monthly number of contract strikes in U.S. man-
ufacturing. In his analysis, Kennan concentrates on the duration of strikes,
rather than on their number per se.

• McCullagh and Nelder (1989) look at the incidence of certain ship damages
caused by waves using the data provided by an insurance company. They
model the number of incidents regardless of the damage level.
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• Zimmermann and Schwalbach (1991) use a data set on the number of
patents (stock) of German companies registered at the German Patent
Office in 1982. They merge information from the annual reports of the
respective companies as well as industry variables.

• Davutyan (1989) studies how the number of failed banks per year in the
U.S. for 1947 - 1981 relates to explanatory variables such as a measure of
the absolute profitability of the economy, the relative profitability of the
banking sector, as well as aggregate borrowing from the Federal Reserve.

• Dionne, Gagné, Gagnon and Vanasse (1997) study the frequency of air-
line accidents (and incidents) by carrier in Canada on a quarterly basis
between 1974 and 1988. Their sample includes approximately 100 Cana-
dian carriers, resulting in around 4000 panel entries. The total number of
accidents during the period was 530.

• Winkelmann and Zimmermann (1994) model completed fertility measured
by the number of children. Using the German Socio-Economic Panel, they
select women aged between 40 and 65 who live in their first marriage. The
number of children varies from 0 to 10, the mean is 2.06, and the mode is
2.

Table 1.1. Count Data Frequency Distributions

Counts Strikes Ships Patents Banks Airplane Children

0 - 9 30 - 3498 61
1 12 5 6 - 411 167
2 14 2 7 2 51 297
3 11 1 2 7 3 117
4 9 2 0 4 2 52
5 14 1 3 4 - 14
6 9 2 1 4 - 12
7 4 2 2 1 - 2
8 7 0 0 3 - 1
9 10 0 1 5 - -
10 6 0 0 3 - 1
> 10 7 11 19 2 - -
> 100 - - 20 - - -

Observations 103 34 91 35 3965 724
Maximum 18 58 9805 17 4 10
Mean 5.5 10.2 304.6 6.3 0.013 2.1
Variance 13.4 236.5 1.6∗106 11.8 0.015 1.7

The respective empirical frequency distributions of the dependent count
variable are given in Tab. 1.1. The six frequency distributions are very indica-
tive of the type of data encountered in applied research. First, the realized
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range of observations varies from application to application. In two cases, no
zeros are observed, while in other cases, zero is the modal value. Some of the
empirical distributions are uni-modal, while others display multiple modes. In
most cases, the variance clearly exceeds the mean, while in one case (airlines)
it is roughly the same, and in one case (children), the mean is greater than the
variance. Second, the structure of the data differs. The three observed types
of data are a cross section of individuals, a panel, and a time series. Models
for all three types of data are covered in this book.

It should be noted that Tab. 1.1 shows marginal frequencies whereas the
focus of this book is on conditional models. Such models account for the influ-
ence of covariates in a regression framework. For instance, if the conditional
distribution of y given (a non-constant) x is Poisson, the marginal distribution
of y cannot be Poisson as well.

1.3 Organization of the Book

Chap. 2 presents probability models for count data. The basic distributions
are introduced. They are characterized both through the underlying stochas-
tic process, and through their relationships amongst each other. Most gen-
eralizations rely on the tools of mixing and compounding – these techniques
are described in some detail. A discussion of hyper-distributions reveals the
differences and commonalities between the models. This chapter also draws
extensive analogies between probabilistic models for duration data and prob-
abilistic models for count data.

Chap. 3 starts with a detailed exposition of the Poisson regression model,
including a comparison with the linear model. Two issues that are of particular
relevance for the practitioner are the correct interpretation of the regression
coefficients, including inference based on proper standard errors. The basic
estimation techniques are discussed, and the properties of the estimators are
derived, both under maximum likelihood and pseudo maximum likelihood
assumptions. The second part of the chapter is devoted to possible misspec-
ification of the Poisson regression model: its origins, consequences, and how
to detect misspecification through appropriate testing procedures.

The bulk of the literature has evolved around three broad types of prob-
lems, unobserved heterogeneity, endogeneity, and excess zeros, and these are
singled out for special consideration in Chapters 4 – 6, respectively. As far as
unobserved heterogeneity is concerned, this leads us from parametric general-
izations on one hand (negative binomial model, Poisson-log-normal model), to
semi-parametric extensions on the other (series expansions, finite mixtures).
Similarly, for endogeneity, instrumental variable estimation via GMM requires
minimal moment assumptions. Alternative models are build around a fully
specified joint normal distribution for latent errors, and thus, while more ef-
ficient if correct, vulnerable to distributional misspecification. Chapter 6 on
zeros in count data models presents mostly parametric generalizations, namely
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multi-index models, which lead to flexible estimators for marginal probability
effects in different parts of the outcome distribution. Quantile regression for
counts, a semi-parametric method, is discussed as well.

Chap. 7 is concerned with count data models for multivariate, panel and
time series data. This is an area of intensive current research effort, and many
of the referred papers are still at a working paper stage. However, a rich class
of models is beginning to emerge and the issues are well established: the need
for a flexible correlation structure in the multivariate context, and the lack of
strictly exogenous regressors in the case of panel data.

Chap. 8 provides an introduction to Bayesian posterior analysis of count
data. Again, many of the developments in this area are quite recent. They
partly mirror the general revival of applied Bayesian analysis that was trig-
gered by the combined effect of increasing computing power and the develop-
ment of powerful algorithms for Markov chain Monte Carlo simulation. The
potential of this approach is demonstrated, among other things, in an model
for highly dimensional panel count data models with correlated random ef-
fects.

The final Chap. 9 illustrates the practical use of count data models in a
number of applications. Apart from a literature review for applications such as
accidents, health economics, demography and marketing, the chapter contains
an extended study of the determinants of labor mobility using data from the
German Socio-Economic Panel.
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Probability Models for Count Data

2.1 Introduction

Since probability distributions for counts are not yet entirely standard in
the econometric literature, their properties are explored in some detail in
this chapter. Special attention is paid to flexible, or ‘generalized’, count data
distributions since they potentially serve as building blocks for improved count
data regression models.

Count data frequently arise as outcomes of an underlying count process in
continuous time. The classical example for a count process is the number of
incoming telephone calls at a switchboard during a fixed time interval. Let
the random variable N(t), t > 0, describe the number of occurrences during
the interval (0, t). Duration analysis studies the waiting times τi, i = 1, 2, . . .,
between the (i − 1)-th and the i-th event. Count data models, by contrast,
model N(T ) for a given T . By studying the relation between the underlying
count process, the most prominent being the Poisson process, and the resulting
probability models for event counts N , one can acquire a better understanding
of the conditions under which a given count distribution is appropriate. For
instance, the Poisson process, resulting in the Poisson distribution for the
number of counts during a fixed time interval, requires independence and
constant probabilities for the occurrence of successive events, an assumption
that appears to be quite restrictive in most applications to social sciences or
elsewhere. Further results are derived in this chapter.

2.2 Poisson Distribution

2.2.1 Definitions and Properties

Let X be a random variable with a discrete distribution that is defined over
IN∪{0} = {0, 1, 2, . . .}. X has a Poisson distribution with parameter λ, written
X ∼ Poisson(λ) if and only if the probability function is as follows:
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P (X = k) =
e−λλk

k!
, λ ∈ IR+ , k = 0, 1, 2, . . . (2.1)

The probability generating function of the Poisson distribution is given by

P(s) =
∞∑

k=0

skP (X = k) =
∞∑

k=0

sk e−λλk

k!

= e−λ
∞∑

k=0

(λs)k

k!
= e−λ+λs (2.2)

(See Appendix A for definition and properties of the probability generating
function). Conversely, the Poisson probability function is obtained as

P (X = k) = (k!)−1 dkP
dsk

∣∣∣∣∣
s=0

=
e−λλk

k!
(2.3)

The Poisson distribution has expected value

E(X) = P ′(1) = λ (2.4)

and variance

Var(X) = P ′′(1) + P ′(1) − [P ′(1)]2 = λ2 + λ − λ2

= λ (2.5)

Alternatively, the expected value can be derived directly using the probability
function:

E(X) =
∞∑

k=0

k
e−λλk

k!
=

∞∑
k=1

k
e−λλk

k!
= λ

∞∑
k=1

e−λλ(k−1)

(k − 1)!
= λ (2.6)

The equality of mean and variance is characteristic of the Poisson distribu-
tion. It plays a crucial role in the further discussion and will be referred to as
equidispersion. Departures from equidispersion can be either overdispersion
(variance is greater than the mean) or underdispersion (variance is smaller
than the mean). In contrast to other multi-parameter distributions, such as
the normal distribution, a violation of the variance assumption is sufficient
for a violation of the Poisson assumption.

Some Further Properties of the Poisson Distribution

1. The ratio of recursive probabilities can be written as:

pk

pk−1
=

λ

k
. (2.7)

Thus, probabilities are strictly decreasing for 0 < λ < 1 and the mode
is 0; for λ > 1, the probabilities are increasing for k ≤ int[λ] and then
decreasing. The distribution is uni-modal if λ is not an integer and the
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mode is given by int[λ]. If λ is an integer, the distribution is bi-modal
with modes at λ and λ − 1.

2. Taking the first derivative of the Poisson probability function with respect
to the parameter λ, we obtain

dpk

dλ
=

e−λ · (−1)λk

k!
+

e−λkλk−1

k!
= pk

(
k

λ
− 1

)
(2.8)

Therefore, the probabilities pk decrease with an increase in λ (i.e., with
an increase in the expected value) for k < λ. Thereafter, for k > λ, the
probabilities pk increase with an increase in λ.

3. Consider the dichotomous outcomes P (X = 0) and P (X > 0). The prob-
abilities are given by

p0 = e−λ

and

p+ = 1 − e−λ ,

respectively. These expressions coincide with the cumulative and com-
plementary cumulative density functions of the exponential distribution.
The intrinsic relation between the Poisson distribution and the exponen-
tial distribution is explored in section (2.2.6).

Sums of Poisson Random Variables

Assume that X ∼ Poisson(λ) and Y ∼ Poisson(µ), λ, µ ∈ IR+, and that X
and Y are independent. The random variable Z = X+Y is Poisson distributed
Po(λ + µ). This result follows directly from the definition of probability gen-
erating functions, whereby, under independence, E(sX+Y ) = E(sX)E(sY ).
Further,

P(Z) = E(sX+Y )
= e−(λ+µ)+(λ+µ)s (2.9)

which is exactly the probability generating function of a Poisson distributed
random variable with parameter (λ + µ). Hence, Z ∼ Poisson(λ + µ).

Alternatively, from first principles,

P (Z = k) =
k∑

i=0

P (X = k − i)P (Y = i)

=
k∑

i=0

e−λλk−i

(k − i)!
e−µµi

i!
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=
e−λ−µ

k!

k∑
i=0

k!
(k − i)!i!

λk−iµi

=
e−λ−µ(λ + µ)k

k!
(2.10)

where the last equality follows from the definition of binomial coefficients.

Linear Transformations

The Poisson distribution is not closed under linear transformations, since a
linear transformations on the sample space do not generate again a Poisson
distribution with a different value of the parameter λ.

Let Y = a + bX with X ∼ Poisson(λ) and a, b arbitrary constants. For Y
to be Poisson distributed, it must be true that E(Y ) = a+bλ = Var(Y ) = b2λ
for any λ > 0. But the equality holds if and only if a = 0 and b = 0 or b = 1.
Thus, Y does not have a Poisson distribution for arbitrary values of a and b.

Shifted Poisson Distribution

The distribution of Y = a+ bX for b = 1 is sometimes referred to as “shifted”
or “displaced” Poisson distribution with probability function

P (X = k) =
e−λλ(k−a)

(k − a)!
, k = a, a + 1, a + 2, . . . (2.11)

where a generally is taken to be an integer variable, although this is not
necessary. For a > 0, such a distribution is characterized by underdispersion
(see also Chap. 5.1.1).

It can be shown that within a large class of distributions, only the normal
distribution is preserved under both location and scale transformation (see
Hinkley and Reid, 1991).

2.2.2 Genesis of the Poisson Distribution

In most applications the Poisson distribution is used to model the number of
events that occur over a specific time period (such as the number of telephone
calls arriving at a switchboard operator during a given hour, the annual num-
ber of visits to a doctor, etc.). It is thus of interest to study how the Poisson
distribution is related to the intertemporal distribution of events. The next
section introduces the general concept needed for the analysis of this issue,
the stochastic process. The subsequent sections present a number of under-
lying stochastic models that each give rise to a Poisson distribution for the
number of events during the fixed time interval.

The first model is the Poisson process in continuous time. The second
model introduces the Poisson distribution as a limiting form of a discrete time
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stochastic process. Finally, the Poisson distribution arises from independently
and identically exponentially distributed interarrival times between events.
All three derivations require as their main assumption that events occur com-
pletely randomly over time. The underlying randomness is the hallmark of
the Poisson distribution.

2.2.3 Poisson Process

The Poisson process is a special case of a count process which, in turn, is a
special case of a stochastic process. Hence, some general definitions will be
introduced first, before the properties of the Poisson process are presented.

A stochastic process {X(t), t ∈ T} is a collection of random variables (on
some probability space) indexed by time.

X(t) is a random variable that marks the occurrence of an event at time
t. The underlying experiment itself remains unformalized and the definitions
and arguments are framed exclusively in terms of the X(t). If the index set T
is an interval on the real line, the stochastic process is said to be a continuous
time stochastic process. If the cardinal number of T is equal to the cardinal
number of IN , it is called a discrete time stochastic process.

A stochastic process {N(t), t ≥ 0} is said to be a count process if N(t)
represents the total number of events that have occurred before t.

The following properties hold:

1. N(t) ≥ 0
2. N(t) is integer valued
3. For s < t, N(s) ≤ N(t)
4. For s < t, N(t)−N(s) gives the number of events that occurred in
the interval (s, t)

A count process is called stationary if the distribution of the number of events
in any time interval depends only on the length of the interval:

(∀s > 0) N(t2 + s) − N(t1 + s) i.d.∼ N(t2) − N(t1)

A count process has independent increments if the numbers of events which
occur in disjoint time intervals are independent.

The Poisson process is a continuous time count process with stationary
and independent increments. In other words, it assumes that the occurrence
of a random event at a particular moment is independent of time and of
the number of events that have already taken place. Let N(t, t + ∆) be the
number of events that occurred between t and t + ∆, t > 0, ∆ > 0. The two
basic assumptions of the Poisson process can be formalized as follows:

a) The probability that an event will occur during the interval (t, t + ∆) is
stochastically independent of the number of events occurring before t.
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b) The probabilities of one and zero occurrences, respectively, during the
interval (t, t + ∆) are given by:

P{N(t, t + ∆) = 1} = λ∆ + o(∆) (2.12)

P{N(t, t + ∆) = 0} = 1 − λ∆ + o(∆) (2.13)

where o(∆) represents any function of ∆ which tends to 0 faster than ∆,
i.e., any function such that [o(∆)/∆] → 0 as ∆ → 0.

It follows that the probability of an occurrence is proportional to the length
of the interval and the proportionality factor is a constant independent of t.
Further,

P{N(t, t + ∆) > 1} = 1 − P{N(t, t + ∆) = 0}
−P{N(t, t + ∆) = 1}

= o(∆) . (2.14)

In a sufficiently short interval, the probability of two or more events occurring
approaches zero.

Assumptions a) and b) can be restated by saying that the increments of a
Poisson process are independent and stationary: N(t, t+∆) and N(s, s+∆) are
independent for disjoint intervals (t, t+∆) and (s, s+∆), and P{N(t, t+∆) =
k} is independent of t.

Let pk(t + ∆) = P{N(0, t + ∆) = k} denote the probability that k events
occurred before (t + ∆). The outcome {N(0, t + ∆) = k} can be obtained in
k + 1 mutually exclusive ways:

{N(0, t) = k} and {N(t, t + ∆) = 0} , or
{N(0, t) = k − 1} and {N(t, t + ∆) = 1} , or

...
{N(0, t) = 0} and {N(t, t + ∆) = k} .

By assumption of independence, the probability of each of the above outcomes
equals the product of the single probabilities of its two constituent parts. For
example,

P [{N(0, t) = k} and {N(t, t + ∆) = 0}] = pk(t)(1 − λ∆) (2.15)

Similarly,

P [{N(0, t) = k − 1} and {N(t, t + ∆) = 1}] = pk−1(t)λ∆ (2.16)

Furthermore, since the outcome “two or more events” has probability zero we
get that

P [{N(0, t) = k − j} and {N(t, t + ∆) = j}] = 0

for j ≥ 2. Finally, the two outcomes (2.15) and (2.16) are disjoint, and the
probability of their union is therefore given by the sum of their probabilities.
Putting everything together, we obtain:
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pk(t + ∆) = pk(t)(1 − λ∆) + pk−1(t)λ∆ + o(∆) (2.17)

i.e.
pk(t + ∆) − pk(t)

∆
= −λ(pk(t) − pk−1(t)) + o(∆) . (2.18)

Taking limits for ∆ → 0:

dpk(t)
dt

= −λ(pk(t) − pk−1(t)) (2.19)

and similarly that

dp0(t)
dt

= −λp0(t) (2.20)

The differential equation (2.20) can be solved using the initial condition
p0(0) = 1 to obtain

p0(t) = exp(−λt)

Setting k = 1 in (2.19) and multiplying through by exp(λt), we obtain

exp(λt)
dp1(t)

dt
+ λ exp(λt)p1(t) =

d

dt
[exp(λt)p1(t)] = λ

with solution

p1(t) = λt exp(−λt)

Repeated applications of the same procedure for k = 2, 3, . . . yields the Poisson
probability distribution. Alternatively, one can derive directly the probability
generating function of the Poisson distribution:

dP(s; t)
dt

=
d
∑∞

k=0 pk(t)sk

dt

=
∞∑

k=0

[−λpk(t) + λpk−1(t)]sk (2.21)

= −λ
∞∑

k=0

pk(t)sk + λs
∞∑

k=1

pk−1(t)sk−1 (2.22)

= (−λ + λs)P(s; t)

where it is understood that p−1 = 0. This first order differential equation has
solution

P(s; t) = exp[(−λ + λs)t] (2.23)

The length of the interval can be normalized to unity, which gives the proba-
bility generating function of the standard Poisson distribution.
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2.2.4 Generalizations of the Poisson Process

Non-stationarity

A first generalization is to replace the constant λ in (2.12) by a time-dependent
variable λ(t):

P{N(t, t + ∆) = 1} = λ(t)∆ + o(∆) . (2.24)

Define the integrated intensity Λ(t) =
∫ t

0
λ(s)ds. It can be shown that

P{N(t) = k} =
e−Λ(t)Λ(t)k

k!
. (2.25)

N(t) has a Poisson distribution function with mean Λ(t). Hence, this gener-
alization does not affect the form of the distribution.

Dependence

In order to explicitly introduce path dependence, it is helpful to rewrite the
basic equation defining the Poisson process (2.12) in terms of the conditional
probability

P{N(0, t + ∆) = k + 1|N(0, t) = k} = λ∆ + o(∆)

One generalization is to allow the rate λ to depend on the current number of
events, in which case we can write

P{N(0, t + ∆) = k + 1|N(0, t) = k} = λk∆ + o(∆)

A process of this kind is known in the literature on stochastic processes as a
pure birth process. The current intensity now depends on the history of the
process in a way that, in econometric terminology, is referred to as “occurrence
dependence”. In this case, N is not Poisson distributed.

There is a vast literature on birth processes. However, much of it is
barely integrated into the count data literature. An exception is Faddy
(1997), who uses properties of the pure birth process in order to develop
generalized count data distributions. This framework can also be used to
give a simple re-interpretation of over- and underdispersion. For instance,
if λ0 < λ1 < λ2 < . . . (“positive occurrence dependence”) the count N can
be shown to be overdispersed relative to the Poisson distribution. Similarly,
if λ0 > λ1 > λ2 > . . . (“negative occurrence dependence”) the count N is
underdispersed relative to the Poisson distribution. In order to derive para-
metric distributions based on birth processes, one needs to specify a functional
relationship between λk and k. For instance, it can be shown that a pure birth
process gives rise to a negative binomial distribution if this function is linear,
i.e., for λk = α + βk. These results and extensions are presented in greater
detail in Chap. 2.5.3.
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2.2.5 Poisson Distribution as a Binomial Limit

Consider an experiment all outcomes of which can be unambiguously classified
as either success (S) or failure (F). For example, in tossing a coin, we may
call head a success and tail a failure. Alternatively, drawing from an urn that
contains only red and blue balls, we may call red a success and blue a failure.
In general, the occurrence of an event is a success and the non-occurrence is
a failure. Let the probability of a success be denoted by p. Then 0 < p < 1
and the probability of a failure is given by q = 1 − p.

Now suppose that the experiment is repeated a certain number of times,
say n times. Since each experiment results in either an F or an S, repeating the
experiment produces a series of S’s and F’s. Thus, in three drawings from an
urn, the result red, blue, red, in that order, may be denoted by SFS. The order
may represent discrete time. Thus, the first experiment is made at time t = 1,
the second at time t = 2, and the third at time t = 3. Thereby, the sequence
of outcomes can be interpreted as a discrete time stochastic process. The urn
drawing sequence with replacement is the classical example of an independent
and stationary discrete time process: The outcomes of experiments at different
points in time are independent, and the probability p of a success is constant
over time and equal to the proportion of red balls in the urn. In this situation,
all permutations of the sequence have the same probability.

Define a variable X as the total number of successes obtained in n repe-
titions of the experiment. X is called a count variable and n constitutes an
upper bound for the number of counts. Under the assumptions of indepen-
dence and stationarity, X has a binomial distribution function with probability
generating function

P(s) = [q + ps]n (2.26)

The binomial distribution and its properties are discussed in Chap. 2.3.2 in
greater detail.

Up to this point, n was interpreted as the number of repetitions of a given
experiment. To explicitly introduce a time dimension, consider a fixed time
interval (0, T ) and divide it into n intervals of equal length. p is now the
probability of success within the interval. What happens if the number of
intervals increases beyond any bound while T is kept constant? A possible
assumption is that the probability of a success is proportional to the length
of the interval. The length of the interval is given by T/n, where T can be
normalized without loss of generality to 1. Denote the proportionality factor by
λ. Then pn = λ/n, i.e., pnn = λ, a given constant. Moreover, let qn = 1−λ/n.
Substituting these expressions for Pn and qn into (2.26) and taking limits, we
obtain

lim
n→∞P(s) = lim

n→∞

[
1 − λ

n
+

λ

n
s

]n

= lim
n→∞

[
1 +

λ(s − 1)
n

]n

(2.27)
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= eλ(s−1)

But (2.27) is precisely the probability generating function of the Poisson dis-
tribution. Dividing the fixed time period into increasingly shorter intervals,
the binomial distribution converges to the Poisson distribution. This result is
known in the literature as ‘Poisson’s theorem’ (See Feller, 1968, Johnson and
Kotz, 1969). The upper limit for the number of counts implicit in a binomial
distribution disappears, and the sample space for the event counts approaches
IN0. Also note that in the limit the variance and expectation of the binomial
(if they exist) are identical:

lim
n→∞Var(X) = lim

n→∞ [np(1 − p)]
= np

= E(X) (2.28)

As for the Poisson process, this discrete time stochastic process assumed in-
dependence and stationarity (i.e., “randomness”) of the successive Bernoulli
trials.

2.2.6 Exponential Interarrival Times

The durations separating the arrival dates of events are called waiting times
or interarrival times. Let τi be the waiting time between the (i − 1)-th and
the i-th event. It follows that the arrival date of the k-th event is given by
ϑk =

∑k
i=1 τi , k = 1, 2, . . . Let N(T ) represent the total number of events

that have occurred between 0 and T . Following the definitions of Chap. 2.2.3,
{N(T ), T > 0} is a count process, while for fixed T , N(T ) is a count variable.
The stochastic properties of the count process (and thus of the count) are
fully determined once the joint distribution function of the waiting times τi,
i ≥ 1, is known. In particular it holds that the probability that at most k − 1
events occurred before T equals the probability that the arrival time of the
k-th event is greater than T :

P (N(T ) < k) = P (ϑk > T ) (2.29)

Moreover

P (N(T ) = k) = P (N(T ) < k + 1) − P (N(T ) < k)
= P (ϑk+1 > T ) − P (ϑk > T ) (2.30)
= Fk(T ) − Fk+1(T )

where Fk is the cumulative density function of ϑk and it is understood that
F0(T ) = 1.

Equation (2.30) fully characterizes the relationship between event counts
and durations. In general, Fk(T ) is a complicated convolution of the underly-
ing densities of τi, which makes it analytically intractable. However, a great
simplification arises if τi are identically and independently distributed with
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a common distribution. The process is then in the form of a renewal process
(Cox, 1962), see also Chapter 2.7.2. In particular, assume that {τ1, τ2, . . .}
are independently and identically exponentially distributed variables, all with
density function

f(τ) = λe−λτ (2.31)

In order to establish the distribution function of N(T ) using (2.30) one first
needs to derive the cumulative density function of ϑk =

∑k
i=1 τi. Given the

assumption of independent waiting times, the distribution of this k-fold con-
volution can be derived using the calculus of Laplace transforms (See Feller,
1971). The Laplace transform L(s) = E(e−sX) is defined for non-negative
random variables. It shares many of the properties of the probability gen-
erating function defined for integer-valued random variables. In particular,
L(s) = P(e−s) and the Laplace transform of a sum of independent variables
equals the product of the Laplace transforms.

The Laplace transform of the exponential distribution is given by

Lτ (s) =
∫ ∞

0

e−sτdF (τ) = (1 + s/λ)−1 (2.32)

Under independence

Lϑ(s) = [Lτ (s)]k = (1 + s/λ)−k (2.33)

But (2.33) is the Laplace transform of the Erlang distribution with parameters
λ and k. The Erlang distribution is a special case of a gamma distribution,
with Laplace transform Lϑ(s) = (1+s/λ)−α that arises if α = k is an integer,
as it is in the present case. For integer k, the cumulative density Fk(T ) may
be written as (Abramowitz and Stegun, 1968, p. 262; Feller, 1971, p. 11):

Fk(T ) = 1 − e−λT

(
1 + λT +

(λT )2

2!
+ . . . +

(λT )k−1

(k − 1)!

)
(2.34)

Therefore,

P (N = k) = Fk(1) − Fk+1(1) =
e−λλk

k!
(2.35)

We conclude that the Poisson distribution arises if the interarrival times are
independently exponentially distributed; it requires both independence within
the spell (i.e., no duration dependence) and independence between spells (i.e.,
no occurrence dependence).

2.2.7 Non-Poissonness

Clearly, the Poisson distribution requires strong independence assumptions
with regard to the underlying stochastic process, and any violation of these
assumptions in general invalidates the Poisson distribution. It will be shown
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how occurrence dependence or duration dependence can be modeled, and how
both phenomena lead to count data distributions other than the Poisson.

Following Johnson and Kotz (1969, Chap. 9) and Heckman (1981), consider
again the urn model that was introduced in Chap. 2.2.5. The urn has a red
balls and b blue balls where a red ball stands for the occurrence of an event,
and a blue ball for non-occurrence. The probability of an event is therefore
given by the proportion a/(a + b) of red balls in the urn. The experiment is
repeated k consecutive times.

Different urn schemes for a given individual may be characterized by
whether or not the composition of the urn changes in consecutive trials. The
case of unchanged composition implies independent trials and this case has
been treated in Chap. 2.2.5. It leads to a binomial distribution for the number
of successes.

Now, assume instead that the composition of the urn is altered over con-
secutive trials. There exist three different possibilities. First, the composition
changes as the consequence of previous success. This situation is referred to
as “occurrence dependence”. Second, the composition changes as the con-
sequence of previous non-success. This situation is referred to as “duration
dependence”. Third, and finally, the composition may change for exogenous
reasons independently of the previous process. This situation is referred to as
“non-stationarity”.

The first two situations, where previous outcomes have an influence on the
current experiment, are also known as contagion in the statistics literature,
while the notion of state dependence is more common in the econometrics
literature (Heckman and Borjas, 1980, Heckman, 1981). Positive contagion
indicates that the occurrence of an event makes further occurrences more
likely. For negative contagion, the opposite holds. Both cases lead to a con-
tagious distribution for the number of counts, the Poisson distribution being
an example for a non-contagious distribution. Contagious distributions have
originally been developed for the theory of accident proneness (Bates and
Neyman, 1951).

Occurrence Dependence

Occurrence dependence can be formalized as follows (Johnson and Kotz, 1969,
p. 229): Initially, there are a red balls and b blue balls in the urn. One ball
is drawn at random. If it is a red ball representing a success, it is replaced
together with s red balls. If it is a blue ball, the proportion a/(a + b) is un-
changed, i.e., the blue ball is replaced. If this procedure is repeated n times
and X represents the total number of times a red ball is drawn, then X has
a Pòlya-Eggenberger distribution (Johnson and Kotz, 1969, p. 231). If the
number of red balls is increased after a success (s > 0), then an occurrence
increases the probability of further occurrences and the urn model reflects
positive contagion. Johnson and Kotz (1969, p. 231) show that the negative
binomial distribution is obtained as a limiting form. (The negative binomial
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distribution and its properties are discussed in Chap. 2.3.1). For s = 0, the
model reduces to the binomial model with independent trials. For s = −1,
the urn scheme corresponds to a drawing without replacement, leading to a
hypergeometric distribution. Thus, the hypergeometric distribution is a dis-
tribution for negative contagion.

Corresponding results can be obtained for stochastic processes in contin-
uous time (see also Chap. 2.2.4). For instance, assume that

P{N(0, t + ∆) = k + 1|N(0, t) = k} = λk∆ + o(∆)

This equation defines a pure birth process. If λk is an increasing function
of k, we have positive occurrence dependence. A constant function gives the
Poisson case without occurrence dependence. A decreasing function indicates
negative occurrence dependence. It can be shown that the negative binomial
model erises if λk increases linearly in k.

Duration Dependence

In the urn model for occurrence dependence, the composition of the urn was
left unchanged when a blue ball, i.e., a failure, occurred. If failures matter,
then the outcome of an experiment depends on the time (number of draws)
that has elapsed since the last success. This dependence generates “duration
dependence”. Again, duration dependence can be analyzed either in discrete
time as represented by the urn-model or in continuous time using the concept
of (continuous) waiting times. The continuous time approach was already
introduced in Chap. 2.2.6. Further details are provided in Chap. 2.7.

Non-Stationarity

Finally, the assumptions of the standard model may be violated because the
composition of the urn changes over consecutive trials due to exogenous effects
while being unaffected by previous trials. This is the case if the underlying
process is nonstationary. Non-stationarity does not necessarily invalidate the
Poisson distribution.

Heterogeneity

A genuine ambiguity of the relationship between the underlying stochastic
process and the count data distribution arises if the population is heteroge-
neous rather than homogeneous, as was assumed so far. With heterogeneity,
the probability of an occurrence becomes itself a random variable.

For instance, in reference to the urn model, individuals may possess dis-
tinct urns that differ in their composition of red and blue balls. Unobserved
heterogeneity can be modeled through a population distribution of urn compo-
sitions. For sampling with replacement (i.e., no dependence), the composition
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of individual urns is kept constant over time and the trials are thus indepen-
dent at the individual level. Although past events do not truly influence the
composition of individual urns, they provide some information on the propor-
tion of red and blue balls in an individual urn. By identifying individuals with
a high proportion of red balls, past occurrences do influence (increase) the
expected probability of further occurrences for that individual. The model is
said to display ‘spurious’ or ‘apparent’ contagion.

Again, it can be shown that under certain parametric assumptions on the
form of the (unobserved) heterogeneity, the negative binomial distribution
arises as the limiting distribution. Recall that the negative binomial distri-
bution may also arise as a limiting form of true positive contagion. This fact
illustrates one of the main dilemmas of count data modeling: The distribu-
tion of the (static) random variable for counts cannot identify the underlying
structural stochastic process if heterogeneity is present. This result is also ex-
pressed in an ‘impossibility theorem’ by Bates and Neyman (1951): In a cross
section on counts it is impossible to distinguish between true and spurious
contagion.

2.3 Further Distributions for Count Data

The main alternative to the Poisson distribution is the negative binomial dis-
tributions. Count data may be negative binomial distributed if they were
generated from a contagious process (occurrence dependence, duration depen-
dence) or if the rate, at which events occur, is heterogeneous. The binomial
distribution also represents counts, namely the number of successes in inde-
pendent Bernoulli trials with stationary probabilities, but it introduces an
upper bound given by the number of trials n. This upper bound distinguishes
it from the Poisson and negative binomial distributions. The continuous pa-
rameter binomial distribution is a modification of the binolial distribution with
continuous parameter n. Finally, the logarithmic distribution is discussed be-
cause of its role as a mixing distribution for the Poisson distribution. Good
further references for these distributions and their properties are Feller (1968)
and Johnson and Kotz (1969).

2.3.1 Negative Binomial Distribution

A random variable X has a negative binomial distribution with parameters
α ≥ 0 and θ ≥ 0, written X ∼ Negbin(α, θ), if the probability function is
given by

P (X = k) =
Γ (α + k)

Γ (α)Γ (k + 1)

(
1

1 + θ

)α (
θ

1 + θ

)k

k = 0, 1, 2, . . . (2.36)

Γ (·) denotes the gamma function such that Γ (s) =
∫∞
0

zs−1e−zdz for s > 0.
This two parameter distribution has probability generating function



2.3 Further Distributions for Count Data 21

P(s) = [1 + θ(1 − s)]−α (2.37)

The mean and variance are given by

E(X) = αθ (2.38)

and

Var(X) = αθ(1 + θ) = E(X)(1 + θ) (2.39)

Since θ ≥ 0, the variance of the negative binomial distribution generally ex-
ceeds its mean (“ overdispersion”). The overdispersion vanishes for θ → 0.

The negative binomial distribution comes in various parameterizations.
From an econometric point of view, the following considerations apply. In or-
der to be able to use the negative binomial distribution for regression analysis
the first step is to convert the model into a mean parameterization, say

λ = αθ (2.40)

where λ is the expected value. Inspection of (2.40) shows that there are two
simple ways of doing this.

1. α = λ/θ. In this case, the variance function takes the form

Var(X) = λ(1 + θ)

Hence, the variance is a linear function of the mean. This model is called
“Negbin I” (Cameron and Trivedi, 1986).

2. θ = λ/α. In this case, the variance function takes the form

Var(X) = λ + α−1λ2

A negative binomial distribution with quadratic variance function results.
This model is called “Negbin II”.

The probability functions associated with the two models are as follows:

Negbin I: P (X = k) =
Γ (λ/θ + k)

Γ (λ/θ)Γ (k + 1)

(
1

1 + θ

)λ/θ (
θ

1 + θ

)k

(2.41)

and

Negbin II: P (X = k) =
Γ (α + k)

Γ (α)Γ (k + 1)

(
α

α + λ

)α (
λ

α + λ

)k

(2.42)

Although these two types are the most widely used parameterizations in prac-
tice, others are possible. For instance, let

α = σ−2λ1−k and θ = σ2λk

As before, E(X) = λ. Substitution of α and θ into (2.39) gives
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Var(X) = λ(1 + σ2λk)

Thus, for k = 0 this parameterization reduces to the negative binomial dis-
tribution with linear variance function while for k = 1, a quadratic variance
function is obtained. Winkelmann and Zimmermann (1995) refer to this model
as “Negbink”.

Yet another parameterization is often found in the statistics literature
(see e.g. DeGroot, 1986), where in the general expression (2.36), 1/(1 + θ) is
replaced by p and θ/(1 + θ) is replaced by q. If α is an integer, say n, the
distribution is called Pascal distribution, and it has the interpretation of a
distribution of the number of failures that will occur before exactly n successes
have occurred in an infinite sequence of Bernoulli trials with probability of
success p. For n = 1, this distribution reduces to the geometric distribution.

P (X = k) = pqk , k = 0, 1, 2, . . . (2.43)

To summarize, the main advantage of the negative binomial distribution
over the Poisson distribution is that the additional parameter introduces sub-
stantial flexibility into the modeling of the variance function, and thus het-
eroskedasticity. In particular, it introduces overdispersion, a more general form
of heteroskedasticity than the mean-variance equality implied by the Poisson
distribution.

Computational Issues

The presence of the Gamma function in the negative binomial probability
function can cause numerical difficulties in computing the probabilities on a
computer. For instance, consider the Negbin I formulation where terms such
as Γ (λ/θ + k) need to be evaluated numerically. According to the GAUSS
reference manual (Aptech, 1994), the argument of the gamma function must
be less than 169 to prevent numerical overflow. The overflow problem can be
avoided when one uses the logarithm of the gamma function (as is usually
the case in econometrics applications) where an approximation based on Stir-
ling’s formula can be used. But even then, the accuracy of the approximation
decreases as the argument of the log-gamma function becomes large. Large
arguments arise whenever θ is small and the negative binomial distribution
approaches the Poisson distribution.

Fortunately, there is a relatively simple way to avoid this difficulty. In
particular, the Gamma function follows the recursive relation Γ (x) = (x −
1)Γ (x − 1). Thus

Γ (α + k)
Γ (α)

=
(α + k − 1)(α + k − 2) · · · (α + k − k)Γ (α)

Γ (α)

=
k∏

j=1

(α + j − 1) (2.44)



2.3 Further Distributions for Count Data 23

where it is understood that the product equals one for k = 0. By suitable
change of index, the product can alternatively be expressed as

Γ (α + k)
Γ (α)

=
k−1∏
j=0

(α + j)

or as

Γ (α + k)
Γ (α)

=
k∏

j=1

(α + k − j)

Finally, taking logarithms of (2.44) we obtain

lnΓ (α + k) − lnΓ (α) =
k∑

j=1

ln(α + j − 1) (2.45)

Relationship to Other Distributions

The negative binomial distribution nests the Poisson distribution. For X ∼
Negbin(α, θ), let θ → 0 and α → ∞ such that θα = λ, a constant. The negative
binomial distribution converges to the Poisson distribution with parameter λ.

For a proof, consider the probability generating function of the negative
binomial distribution, replace θ by λ/α, and take limits.

lim
α→∞
θα→λ

P(s) = lim
α→∞
θα→λ

[1 + θ(1 − s)]−α

= lim
α→∞

[
1 +

λ(1 − s)
α

]−α

= e−λ(1−s) (2.46)

But this is exactly the probability generating function of a Poisson distribution
with parameter λ.

An alternative, and somewhat more cumbersome, derivation of this result can
be based directly on the probability distribution function

lim
α→∞
θα→λ

P (X = k) = lim
α→∞
θα→λ

Γ (α + k)
Γ (α)k!

(
1

1 + θ

)α (
θ

1 + θ

)k

= lim
α→∞

Γ (α + k)
Γ (α)k!

(
α

α + λ

)α (
λ

α + λ

)k

= lim
α→∞

⎛⎝ k∏
j=1

α + j − 1
α + λ

⎞⎠(
α

α + λ

)α
λk

k!

= lim
α→∞

⎛⎝ k∏
j=1

1 + (j − 1)/α

1 + λ/α

⎞⎠(
1

1 + λ/α

)α
λk

k!
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= e−λ λk

k!
where use was made of the product expression for the ratio of gamma functions
and of the fact that (α + λ)−k =

∏k
j=1(α + λ)−1.

Further Characterization of the Negative Binomial Distribution

The negative binomial distribution arises in a number of ways. It was men-
tioned in Chap. 2.2.7 that it is the limiting distribution of a sequence of non-
independent Bernoulli trials. It also arises as a mixture distribution and as a
compound distribution. For mixing, assume that X ∼ Poisson(λ) and that λ
has a gamma distribution. The marginal distribution of X is then the negative
binomial distribution. For compounding, assume that a Poisson distribution
is compounded by a logarithmic distribution. The compound distribution is
then the negative binomial distribution. Derivations of these two results are
postponed until Chap. 2.5.1 and Chap. 2.5.2 where the general approaches of
mixing and compounding are presented.

Sums of Negative Binomial Random Variables

Assume that X and Y are independently negative binomial distributed with
X ∼ Negbin I (λ, θ) and Y ∼ Negbin I (µ, θ). It follows that the random
variable Z = X + Y is negative binomial distributed Negbin I (λ + µ, θ).
For a proof, recall that the generic probability generating function of the
negative binomial distribution is given by P(s) = [1 + θ(1− s)]−α. In Negbin
I parameterization, we obtain

P(s)(X) = [1 + θ(1 − s)]−λ/θ

and

P(s)(Y ) = [1 + θ(1 − s)]−µ/θ

Thus

P(s)(Z) = [1 + θ(1 − s)]−λ/θ[1 + θ(1 − s)]−µ/θ

= [1 + θ(1 − s)]−(λ+µ)/θ (2.47)

Thus, negative binomial distributions of the type specified above are closed
under convolution.

This result depends critically on two assumptions: First, the Negbin I spec-
ification with linear variance function has to be adopted. Second, X and Y
have to share a common variance parameter θ. In other words, the sum of two
arbitrarily specified negative binomial distributions is in general not negative
binomial distributed.
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2.3.2 Binomial Distribution

A random variable X has a binomial distribution with parameters n ∈ IN ,
and p ∈ (0, 1), written X ∼ B(n, p)), if

P (X = k) =
(

n

k

)
pk(1 − p)n−k k = 0, 1, . . . , n . (2.48)

The probability generating function is given by

P(s) =
n∑

k=0

sk

(
n

k

)
pkqn−k

=
n∑

k=0

(
n

k

)
(ps)kqn−k (2.49)

= (q + ps)n .

and mean and variance are

E(X) = np

and

Var(X) = np(1 − p),

respectively.
In estimation problems, the binomial parameter n is usually treated as

given. Sometimes, however, one might wish to estimate n as a function of
data as well. Under maximum likelihood, there are two possibilities. First,
one can respect the integer nature of the parameter and maximize by way of
a grid search. The resulting estimator won’t have the standard properties of a
maximum likelihood estimator. Alternatively, one can treat n as a continuous
parameter. In this case, derivatives can be taken. Since(

n

k

)
=

n!
k!(n − k)!

=
Γ (n + 1)

Γ (k + 1)Γ (n − k + 1)

where Γ (·) denotes the gamma-function and Γ (n + 1) = n! if n is an integer,
this involves computation of the digamma function. Alternatively, direct dif-
ferentiation can be based on an approximation of the factorial representation
using Stirling’s formula

k! ≈ (2π)1/2kk+1/2 exp(−k){1 + 1/12k}
In either case, a logical difficulty arises with respect to the possible sample
space of the underlying random variable X if n is a continuous non-negative
parameter. Consider the following formal definition.

A random variable X has a continuous parameter binomial distribution
with parameters α ∈ IR+, and p ∈ (0, 1), written X ∼ CPB(α, p), if the
nonnegative integer n in equation 2.48 is replaced by a continuous α ∈ IR+

where k = 0, 1, . . . , ñ and
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ñ =
{

int[α] + 1 if α non-integer
α if α integer

(this is the so-called ceiling function, see also Johnson and Kotz, 1969, p.41,
King, 1989b). When α is not an integer, the probabilities do not sum to one
and the following normalization is used:

p̃k =
pk∑ñ
i=0 pi

, k = 0, 1, . . . , ñ. (2.50)

where

pk =
Γ (α + 1)

Γ (k + 1)Γ (α − k + 1)
pk(1 − p)α−k

However, this formulation has the defect that the expected value is not equal
to αp, as the analogy to the binomial distribution would suggest. References
that have ignored this point or were at least unclear about it include Guldberg
(1931), Johnson and Kotz (1969), and King (1989b). For example, for 0 < α <
1, there are two possible values for k, 0 or 1, and, using the above definitions,

p0 =
αΓ (α)

Γ (1)Γ (α + 1)
p0(1 − p)α−0 = (1 − p)α

p1 =
αΓ (α)

Γ (2)Γ (α)
p1(1 − p)α−1 = αp(1 − p)α−1

Moreover, with p̃1 defined as in (2.50),

E(X) = p̃1 =
αp(1 − p)α−1

(1 − p)α + αp(1 − p)α−1

= αp

[
1

1 + (α − 1)p

]
> αp

The correct computation of the expected value of the continuous parameter
binomial distribution for arbitrary α needs to be based on the generic formula

E(X) =
ñ∑

k=1

kp̃k. (2.51)

Winkelmann, Signorino, and King (1995) show that the difference between αp
and the correct expected value (2.51) is not large, but it is not zero, and it
varies with the two parameters of the CPB. The lack of a simple expression
for the expected value somewhat limits the appeal of this distribution for
practical work.
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2.3.3 Logarithmic Distribution

The random variable X has a logarithmic distribution if (Johnson and Kotz,
1969, p. 166)

P (X = k) = αθk/k k = 1, 2, . . . , 0 < θ < 1 (2.52)

where α = −[log(1 − θ)]−1. The probability generating function is given by

P(s) =
∞∑

k=1

skα
θk

k

=
∞∑

k=1

α
(θs)k

k

= −α ln(1 − θs) (2.53)

where the last equality follows from a Taylor series expansion of ln(1 − x)
around 0:

ln(1 − x) = −
∞∑

k=1

xk

k
(2.54)

Alternatively, the probability generating function can be written using the
explicit expression of the normalizing constant α as

P(s) = [log(1 − θs)]/[log(1 − θ)] (2.55)

The mean and the variance are given by

E(X) = αθ(1 − θ)−1 (2.56)

and

Var(X) = αθ(1 − αθ)(1 − θ)−2 . (2.57)

The distribution displays overdispersion for 0 < α < 1 (i.e., θ > 1 − e−1)
and underdispersion for α > 1 (i.e., θ < 1 − e−1).

In contrast to the previous distributions, the sample space of the logarith-
mic distribution is given by the set of positive integers. And in fact, it can be
obtained as a limiting distribution of the truncated-at-zero negative binomial
distribution (Kocherlakota and Kocherlakota, 1992, p.191). The likely reason
for the logarithmic distribution being an ineffective competitor to the Poisson
or negative binomial distributions is to be seen in its complicated mean func-
tion which factually, though not formally, prohibits the use of the distribution
in a regression framework. For instance, Chatfield, Ehrenberg and Goodhardt
(1966) use the logarithmic distribution to model the numbers of items of a
product purchased by a buyer in a specified period of time, but they do not
include covariates, i.e., they specify no regression. However, the logarithmic
distribution plays a role as a compounding distribution (see Chap. 2.5.2).
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2.3.4 Summary

The main properties of the described distributions for counts are summarized
in Tab. 2.1.

Table 2.1. Distributions for Count Data

Distribution Range P(s) E(X) Var(X)

Poisson 0, 1, 2, . . . e−λ+λs λ λ
Binomial 0, 1, . . . , n (q + ps)n np np(1 − p)
Negative Binomial 0, 1, 2, . . . [1 + θ(1 − s)]−α αθ αθ(1 + θ)

Logarithmic 1, 2, . . . −α ln(1 − θs)
αθ

1 − θ

αθ(1 − αθ)

(1 − θ)2

It is worth emphasizing that the first three distributions display a similar
structure. In fact, they are related through various limiting forms that have
been discussed in this chapter. The common structure of the distributions can
be best captured by considering the following generic probability generating
function (Johnson and Kotz, 1969, p. 138):

P(s) = [(1 + ω) − ωs]−m (2.58)

From (2.58) it follows directly that

E(X) = mω

and

Var(X) = mω(1 + ω)

The probability generating functions in Tab. 2.1 can be obtained as follows.
For the negative binomial model, ω > 0 and m > 0; for the binomial,
−1 < ω < 0 and m < 0. The Poisson distribution is obtained as the lim-
iting intermediate case where ω → 0 and m → 0 such that ωm = λ.

Finally, the following figures compare the shape of the four probability
functions for specific parameter values. In all figures, the expected value is
set to 3.5 . Fig. 2.1 presents the Poisson distribution, the negative binomial
distribution with Var(X)/E(X) = 2, the binomial distribution with n = 10
and the logarithmic distribution (x ≥ 1). Fig. 2.2 shows the negative binomial
distribution for varying degrees of dispersion (Var(X)/E(X) = 1.5: solid; and
Var(X)/E(X) = 3: shaded).

The figures illustrate the different assumptions on the variance. Taking
the Poisson distribution as reference distribution, the binomial distribution is
more, and the negative binomial distribution is less concentrated around the
mean. The concentration of the negative binomial distribution decreases with
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Fig. 2.1. Count Data Distributions (E(X) = 3.5)
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Fig. 2.2. Negative Binomial Distributions with Varying Degrees of Dispersion
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increasing variance mean ratio. Another useful comparison is the probability
of zeros under the different models. While the probability of obtaining a zero
is 1.3 percent under the binomial model, it is 14.6 percent under the nega-
tive binomial model with maximal dispersion, the Poisson model providing
an intermediate case with 3 percent probability of obtaining a zero (The log-
arithmic distribution is defined only for positive integers). Finally, it is worth
noticing that all distributions are skewed to the left.

2.4 Modified Count Data Distributions

2.4.1 Truncation

If a count data distribution is observable not over the whole range of non-
negative integers but rather only for a subset it is said to be truncated. For
instance, if observations with zero outcomes are not observed, the distribution
is “truncated-at-zero”. In this case, “positive count data models” are required
(Gurmu, 1991).

Truncated count data can be modeled as a two-part process. The first part
consists of an untruncated latent distribution for X∗. The second part consists
of a binary indicator variable c. The observed distribution for X is truncated
if c = 0, and untruncated if c = 1. The generic model for truncation is then

X =
{

X∗

unobserved if
{

c = 1
c = 0 (2.59)

Further, assume that

c =
{

1 if X∗ ∈ A
0 if X∗ /∈ A

(2.60)

that is, c is uniquely determined through the latent count variable X∗. The
two most commonly encountered situations are:

1. A is the set of positive integers (“truncation at zero”).
2. A is the set {0, . . . , a} where a is some positive integer (“truncation from

above”).

For instance, assume that c is defined as in (2.60) and X∗ is Poisson distributed
with parameter λ. For A = {1, 2, . . .}

P (c = 1) = 1 − exp(−λ)

and for A = {0, 1, . . . , a}
P (c = 1) = F (a)

where F is the cumulative distribution function of X∗. In general,

P (X = k) =
P (X∗ = k|c = 1)

P (c = 1)
(2.61)
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For the truncated-at-zero Poisson model, we have

P (X = k|X > 0) =
exp(−λ)λk

k!(1 − exp(−λ))
, k = 1, 2, 3 . . . (2.62)

with mean

E(X|X > 0) =
λ

1 − exp(−λ)
(2.63)

and variance

Var(X|X > 0) = E(X|X > 0)
(

1 − λ

exp(λ) − 1

)
. (2.64)

Since λ (the mean of the untruncated distribution) is greater than zero, 0 <
exp(−λ) < 1 and the truncated mean is shifted to the right. Moreover, the
truncated-at-zero model displays underdispersion since 0 < 1−λ(exp(λ)−1) <
1.

2.4.2 Censoring and Grouping

A count data distribution is said to be censored if it is only partially ob-
servable: for a subset of outcomes the distribution is determined only up to
an interval of outcomes. The leading example here is right-censoring, where
all counts exceeding a certain threshold number k are reported in a category
“k or more”. For instance, such data are occasionally observed in household
survey data (See Merkle and Zimmermann, 1992).

Denote the interval of partial observability by A. Then

P (X = k) = pk for k ∈ IN \ A

P (X ∈ A) =
∑
k∈A

pk

Censoring can be seen as a special case of grouping. Assume that the set of
non-negative integers is partitioned into J mutually exclusive and exhaustive
subsets A1, . . . , AJ , and that each Aj , j = 1, . . . , J is the set of consecutive
integers {aj , aj + 1, . . . , aj + nj} such that aj+1 = aj + nj + 1 and a1 = 0.

Hence, the set Aj to which a count belongs is known, but not the count
itself. The resulting model is defined over the subsets with P (Aj) = P (X ∈
Aj), where

P (X ∈ Aj) =
∑

k∈Aj

P (X = k) (2.65)
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2.4.3 Altered Distributions

For discrete distributions, it is relatively straightforward to select one (or
more) specific outcome and increase (or decrease) the probability of that
outcome relative to the probability of the underlying model. The only two
restrictions are the fundamental requirements for probabilities, namely that
they are non-negative and sum up to one. Such a modeling strategy certainly
can improve the ability of the probability model to describe actual discrete
data. While this approach may appear ad-hoc at first glance, there are sit-
uations where adjustments to single probabilities can in fact be justified in
terms of underlying structural processes. This idea will be followed up in a
later chapter where regression models based on altered count data distribu-
tions are presented.

In practice, the most common alteration is to modify the probability of
a zero relative to the underlying distribution. The resulting distributions are
referred to as “zero-inflated” or “zero-deflated” count data distributions. For
instance, the zero-inflated Poisson distribution can be written as

P (X = 0) = ω + (1 − ω)e−λ

P (X = k) = (1 − ω)
e−λλk

k!
k = 1, 2, . . .

where 0 < ω < 1, or, more compactly, as

P (X = k) = δk=0ω + (1 − ω)
e−λλk

k!
k = 0, 1, 2, . . . (2.66)

where δ is a binary indicator taking the value 1 when k = 0 and zero otherwise.
“Zero-deflation” would be obtained for 0 > ω > −(1 − e−λ)−1.

Along the same lines one could adjust more than one probability. For
instance, consider a zero-and-two inflated model that has been used in a study
of completed fertility, i.e., the number of children born (Melkersson and Rooth,
2000): Now

P (X = 0) = ω0 + (1 − ω0 − ω2)e−λ

P (X = 2) = ω2 + (1 − ω0 − ω2)
e−λλ2

2!

P (X = k) = (1 − ω0 − ω2)
e−λλk

k!
k = 1, 3, 4, . . .

Obviously, the expected value and variance of such a distribution is quite
different from the expected value and variance of the Poisson distribution.
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2.5 Generalizations

Having to choose between one of the probability models introduced in the
previous chapters, the researcher might encounter two problems:

• None of the distributions accounts for the full amount of the observed
variation in the counts. In particular, the observed frequency distribution
might exhibit extraordinary values for some categories, and/or the second
moment assumption of the probability model might be too restrictive.

• Although one of the probability models does in fact correspond to the
true data generating process, the process is unknown. In other words, the
researcher has no a-priori information on the true model and he is left
with the problem of choosing a particular distribution.

Both issues have been recognized and addressed by the literature lead-
ing to the development of so-called ‘generalized’ or ‘modified’ probability
models. Two types of generalizations can be distinguished. The first type
concentrates on additional, possibly more flexible, probability models. Consul
(1989) lists generalizations based on the Poisson distribution. They include the
“Neyman-type distributions, the Poisson binomial, Poisson negative binomial,
Poisson geometric, Poisson Pascal, Poisson rectangular, Poisson log-normal,
quasi Poisson, inflated Poisson, mixed Poisson, generalized Poisson, and dou-
ble Poisson (...)” (Consul, 1989, p.3). Many of these models fall within the
class of compound or mixed Poisson distribution families, which are presented
in the next section. Alternatively, more general models have been derived from
an application of birth processes.

The second type of generalization addresses the issue of selecting a specific
model. Here, a hyper-model (or class of distribution families) encompasses sev-
eral sub-models of interest. Examples are the Katz class of distributions and
the class of linear exponential families which are introduced in Chap. 2.5.4
and Chap. 2.5.6, respectively. Both classes contain the most important distri-
butions for count data – the Poisson, binomial and negative binomial distri-
butions – in the form of either parametric (Katz) or functional restrictions
(linear exponential family).

The distinction between the two types of generalizations blurs sometimes,
when generalized distributions nest more than one interesting sub-model. In
these cases, they can be used either for the benefit of a more flexible model
per se, or they can serve to discriminate between more restrictive sub-models.

2.5.1 Mixture Distributions

Mixture distributions play an important role in the modeling of counts (but
their importance is by no means limited to count data). In general terms,
mixtures are defined in the following way: consider various proper distribution
functions F j representing different random variables Xj , j = 1, 2, . . ., and
constants aj with aj > 0 ∀j and

∑
j aj = 1. Then
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F =
∞∑

j=1

ajF
j (2.67)

is a proper distribution function and is called a mixture of the distributions
{F j}. The component distributions do not have to be defined over the same
sample space S. Let Sj denote the sample space of distribution j and let S
denote the sample space of the mixture distribution F . Then S=

⋃
jSj .

There are various ways by which the general concept of mixing can be given
more specific content. For instance, it can be used to give special weights to
specific discrete values. For this purpose, one might mix for instance a Poisson
distribution with a degenerate distribution putting unity probability mass
at one point. The resulting mixture is an “inflated parameter probability”
distribution.

Alternatively, F j might be any parametric distribution function depending
on a parameter θ. Moreover, assume that the parameter itself is a random
variable with probability function f(θ). Thus, if the support of θ is discrete,
we can write

F =
∑
θ∈Θ

f(θ)F (θ) (2.68)

whereas for continuous support, an integral replaces the summation

F =
∫

θ∈Θ

f(θ)F (θ)dθ (2.69)

Mixtures of this form are commonly expressed in terms of probability func-
tions (rather than distribution functions). In the case of continuous mixing
over a discrete probability function, we can write for instance

P (X = k) =
∫

θ∈Θ

P (X = k|θ)f(θ)dθ (2.70)

This last formulation makes it clear that mixing is really a randomization
of a distribution parameter. In this scenario, two distinct distributions for
X can be distinguished: the conditional distribution P (X = k|θ), and the
marginal distribution P (X = k). If the marginal distribution of θ is known,
then the marginal distribution of X is obtained by integrating the joint dis-
tribution of X and θ over θ. An example for such an operation based on a
Poisson distribution is given shortly. First, however, it is useful to study the
mean and variance of the marginal distribution of X under mixing. Results
can be established under very mild assumptions, whereas the derivation of
the full marginal distribution requires knowledge of f(θ), a much stronger
requirement.

Mean and Variance of Marginal Distribution

By the law of the iterated expectation
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E(X) = Eθ[E(X|θ)] (2.71)

and, using the variance decomposition theorem,

Var(X) = Eθ[Var(X|θ)] + Varθ[E(X|θ)] (2.72)

A number of results follow. First, if the conditional distribution of X|θ is
Poisson, then

Eθ[Var(X|θ)] = Eθ[E(X|θ)]
= E(X)

where the first equality uses the equi-dispersion property of the Poisson.
Therefore,

Var(X) = E(X) + Varθ[E(X|θ)] > E(X) ,

and mixing introduces overdispersion at the marginal level. An immediate
consequence of this result in the context of a multivariate random variable is
that it cannot be the case that both marginal and conditional distributions
are of the Poisson type.

If we specify the mean and variance of the distribution of θ as E(θ) = λ and
Var(θ) = σ2

θ , then an application of (2.71) and (2.72) yields that E(X) = λ
and Var(X) = λ + σ2

θλ2. As the reader may recall, these expressions are
equal to the mean and variance of the Negbin II model introduced in Chap.
2.3.1. This is not a coincidence, since the Negbin II model can be derived
from mixing a Poisson distribution with a gamma distribution. However, it
should be noted that the semi-parametric result derived from applying the
law of iterative expectations is more general as it does not depend on the full
density f(θ) but only on its first two moments.

Example for a Fully Parametric Mixture Model: Poisson-gamma

The leading example of a fully parametric mixture model for count data is
the Poisson-Gamma mixture. Assume that X ∼ Poisson(θ) where θ is gamma
distributed with density function

f(θ) =
βα

Γ (α)
θα−1e−θβ (2.73)

Mean and variance of the gamma distribution are given by E(θ) = α/β and
Var(θ) = α/β2, respectively. Under the re-parameterization β = α/λ, we ob-
tain the desired specification where E(θ) = λ and Var(θ) = α−1λ2. Moreover,
integration of P (X = k, θ) = P (X = k|θ)f(θ) over θ yields

P (X = k) =
∫ ∞

0

e−θθk

k!
(α/λ)α

Γ (α)
θα−1e−

θα
λ dθ

=
αα

λαk!Γ (α)

∫ ∞

0

e−θ(λ+α
λ )θk+α−1dθ
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=
ααΓ (k + α)
λαk!Γ (α)

(
λ

λ + α

)k+α

=
Γ (α + k)

Γ (α)Γ (k + 1)

(
α

λ + α

)α (
λ

λ + α

)k

(2.74)

Thus, we obtain a negative binomial model of the Negbin II-variety (see
equation (2.42)). In order to derive the Negbin I (or Negbink) model as a
Poisson-gamma mixture, the underlying gamma distribution would need to
be re-parameterized in a suitable manner.

This type of mixture distribution has an interesting econometric interpre-
tation as the random variation around λ can be thought of as representing
unobserved heterogeneity that is likely to arise in most practical situations.
For instance, we could have written θ = λu where λ is deterministic and u is a
multiplicative error term. This formulation is equivalent if u ∼ gamma (α, α)
and, therefore, E(u) = 1 and Var(u) = α−1.

Whether the gamma distribution is a good model for heterogeneity of
the Poisson parameter is a different question. Other mixing distributions are
presented later. The great advantage of the gamma distribution is that the
integral over the joint distribution can be solved analytically, leading to a
mixture distribution (i.e., the negative binomial distribution) in closed form.

2.5.2 Compound Distributions

Compound distributions are of the form

Z =
N∑

i=1

Xi (2.75)

where N and Xi, i = 1, . . . , N are independent random variables. Compound
distributions are sometimes also referred to as “stopped-sum distribution”
(Santos Silva and Windmeijer, 2001). We say that the distribution of N is
generalized by X.

The appeal of this framework is twofold. First, the derivation of the distri-
bution of Z is relatively simple as long as certain independence assumptions
are made. Second, and of equal importance, the structure of a compound dis-
tribution can be interpreted in terms of an underlying data generating process
that has many applications of interest.

Example 1 Let N be the number of families moving from one country or
region to another during a given time period, and let X be family size. Z
gives then the number of individuals moving.

Example 2 Let N be the number of total events and X be a binary variable
that takes the value “1” if the event is reported and “0” otherwise. Z gives
then the number of reported events. Similarly, N could be the number of
job offers and X a binary indicator that takes the value “1” if the offer is
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accepted and the value “0” otherwise. Z represents the number of accepted
offers (=job changes).

Example 3 Let N be the number of spells of illness and X be the number of
visits to a doctor in a given spell. Z gives then the total number of visits
to a doctor.

Example 4 Let X be a degenerate random variable such that P (X = 1) = 1.
Then Z = N .

The concept of compounding is not restricted to cases where N is a count
random variable although this is of main interest here. An interesting class
of models can be obtained if N is a binary random variable, i.e., Bernoulli
distributed, and X is a (truncated) count variable. In one case, without trun-
cation, such a compound distribution is formally equal to a zero-inflated count
data model (see Chap. 2.4.3); in the other case, if the generalizing distribution
is a truncated-at-zero count data model, we obtain a hurdle model (Santos
Silva and Windmeijer, 2001).

The main mathematical tool for studying the properties of compound dis-
tributions is again the probability generating function. The following theorem
by Feller (1968) gives the key result:

Let {Xk} be a sequence of mutually independent random variables with
common distribution P (Xk = i) = fi and probability generating function
P(X)(s) =

∑∞
i=0 fis

i. Consider the sum ZN = X1 + X2 + . . . + XN , where
the number of components N is a random variable independent of X with
P (N = n) = gn and P(N)(s) =

∑∞
n=0 gnsn. Then

P(ZN ) = P(N)[P(X)(s)] . (2.76)

For a proof, note that the distribution of ZN can be obtained by the rule for
conditional probabilities:

hj = P (ZN = j) =
∞∑

n=0

P [(X1 + . . . + Xn) = j]P (N = n) (2.77)

For given N , the rule for convolution applies:

E(sZn |N = n) = [E(sX)]n , (2.78)

and the probability generating function of ZN is equal to the marginal expec-
tation

P(ZN ) = E(sZN ) =
∞∑

n=0

gn[E(sX)]n = P(N)[P(X)(s)] (2.79)

which was to be shown. Of particular interest is the case where N has a
Poisson distribution function. ZN then has a compound Poisson distribution
with probability generating function

P(s) = e−λ+λP(X)(s) (2.80)

Different results follow:
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1. Let Xi be identically and independently Bernoulli distributed with B(1, p)
and let N have a Poisson distribution function with Po(λ). Then ZN

is Poisson distributed with parameter λp. This result follows, since the
probability generating function of the Bernoulli distribution has the form
P(s) = q + ps. The probability generating function of ZN is then given
by:

P(s) = e−λ+λ(q+ps)

= e−λp+λps
(2.81)

ZN is Poisson-distributed with expectation E(ZN ) = λp. The process of
generalizing a Poisson distribution by a Bernoulli distribution is also called
“binomial thinning”.

2. Let X have a logarithmic distribution with parameter θ and let N have
a Poisson distribution with parameter λ. Then ZN is negative binomial
distributed with parameters −λ/ log(1 − θ) and θ/(1 − θ). Following the
same line of reasoning as before, start with the probability generating
function of the logarithmic distribution, which is given by

P(s) = −α[log(1 − θs)] (2.82)

with α = −[log(1 − θ)]−1.
Thus, the probability generating function of ZN is obtained as

P(s) = exp[−λ − λα log(1 − θs)]
= exp(−λ)(1 − θs)−αλ

= [exp(1/α)]−αλ(1 − θs)−αλ

=
[
1 − θs

1 − θ

]−αλ

=
[
1 − θ

1 − θ
(1 − s)

]−αλ

This is the probability generating function of a negative binomial distri-
bution with parameters αλ = −λ/ log(1 − θ) and θ/(1 − θ) (see (2.37)).

Finally, we note that mixing and compounding are related concepts. For in-
stance, consider a mixture distribution of the form (2.67), where

1. F j are distribution functions of the j−fold convolutions of X, and
2. the a′

js are given by the probability function of N .

This is exactly the form of compounding described above. Alternatively, con-
sider a parametric mixture distribution (2.69). Let X be a random variable
with probability generating function [P(X)(s)]θ, where θ is a parameter. Sup-
pose θ itself is a random variable with generating function P(θ)(s). Then, the
probability generating function of the mixture distribution is given by:
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[P(X)(s)]θp(θ) = P(θ)[P(X)(s)] (2.83)

which is the generating function of a compound distribution.

2.5.3 Birth Process Generalizations

A pure birth process is defined by the transition probability (see Chap. 2.2.4)

P{N(0, t + ∆) = k + 1|N(0, t) = k} = λ∆ + o(∆)

The transition probabilities can be used to construct the marginal distribution
of the count data N(T ). This requires the solution of differential equations
of the sort encountered in the context of the Poisson process (Chap. 2.2.3),
which is always possible, if not analytically then numerically.

The main property of a pure birth process is that the probability of an
event depends on the number of events that have occurred up to that moment,
and not on when they occurred. The nature of the dependence can be kept
very general. In fact, it can be shown that for any count data distribution there
exists a sequence λ0, λ1, λ2, . . . such that the count distribution is generated
by the specified birth process (Faddy, 1997).

Thus, rather than specifying a parametric probability function directly,
one can instead model the function λk = f(k; θ) parametrically and derive the
corresponding probability function. A class of particular interest is generated
by the function (Faddy, 1997)

λk = a(b + k)c

where a, b > 0. This formulation nests the Poisson distribution (for c = 0)
and the negative binomial distribution (for c = 1), and it allows for general
types of overdispersion (for c > 0) and underdispersion (for c < 0) that are
not linked to any particular existing parametric distribution.

The use of this model in regression analysis requires an expression for the
mean. While the exact mean can in general not be computed analytically,
Faddy (1997) derives the following approximation

Ẽ(X) = b

{[
1 +

a(1 − c)
b1−c

] 1
1−c

− 1

}
(2.84)

The approximation is exact for c = 0 and for c → 1. In order to set the
(approximate) mean equal to a given value, say µ, one has to parametrize a
accordingly, i.e, solve (2.84) for a :

a =
(µ + b)1−c − b1−c

1 − c

This generalized count data distribution has two more parameters than the
Poisson distribution. As in the standard Poisson model, µ can be expressed
in terms of covariates, and the parameters of the model can be estimated by
maximum likelihood.
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2.5.4 Katz Family of Distributions

Distributions for non-negative integers can be uniquely represented by their
recursive probability ratios

P (X = k)
P (X = k − 1)

=
pk

pk−1
= f(k, θ) k = 1, 2, . . . (2.85)

where θ is a vector of parameters. (2.85) is a first order difference equation of
the form pk = f(k, θ)pk−1.

Different recursive probability systems have been developed. The Katz
family of distributions (Johnson and Kotz, 1969, p. 37) is the most prominent
among them. The family provides a particularly useful tool for econometric
modeling since it constitutes a generalization nesting several distributions
for non-negative integers, while maintaining a parsimonious parameterization
(two parameters). It is defined by the recursive probabilities

pk

pk−1
=

ω + γ(k − 1)
k

k = 1, 2, . . . (2.86)

Since the right-hand-side has to be positive for all possible values of k, the
following restrictions hold: a) ω > 0, and b) k ≤ ω/γ for γ < 0. The Poisson
distribution is obtained for γ = 0, the negative binomial distribution for
0 < γ < 1 and the binomial distribution for γ < 0 when −ω/γ is an integer.
Tab. 2.2 compares the parameterizations:

Table 2.2. Sub-Models of the Katz System

Poisson ω = λ , γ = 0

Negative Binomial ω = α
(

1

1 + θ

)
, γ =

1

1 + θ

Geometric ω = γ =
1

1 + θ

Binomial ω =
np

1 − p
, γ = − p

1 − p
, y ≤ n

The mean of the Katz family of distributions can be calculated as follows:
re-writing (2.86) as

kpk = [ω + γ(k − 1)]pk−1, k = 1, 2, . . .

and taking sums on both sides, one obtains (the derivation in Johnson and
Kotz 1969, p. 37, contains an error: The summation in their formula (32) is
with respect to j, not r):
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E(X) =
∞∑

k=1

kpk

= ω
∞∑

k=1

pk−1 + γ
∞∑

k=1

(k − 1)pk−1

= ω + γE(X)

and hence

E(X) = ω/(1 − γ) (2.87)

The second noncentral moment is

E(X2) =
∑∞

k=1[ω + ω(k − 1) + γ(k − 1)2 + γ(k − 1)]pk−1

= ω + γE(X2) + (ω + γ)E(X)

= ω(1 + ω)/(1 − γ)2
(2.88)

and the variance is given by

Var(X) = E(X2) − [E(X)]2

= ω/(1 − γ)2 (2.89)

The Katz system of distributions exhibits equidispersion for γ = 0, overdis-
persion for 0 < γ < 1 and underdispersion for γ < 0.

Alternative recursive probability systems have been formulated. For in-
stance, Yousry and Srivastava (1987) include a third parameter to obtain a
hyper-negative binomial distribution. It is based on the recursive structure

pk+1

pk
=

ω + γk

k + ψ
k = 0, 1, . . . (2.90)

For ψ = 1, the model corresponds to the Katz family. For γ = 0, the model
reduces to the hyper-Poisson distribution mentioned in Johnson and Kotz
(1969, p. 43).

Kulasekera and Tonkyn (1992) formulate a probability distribution for
strictly positive integers with

pk+1

pk
=
(

k + 1
k

)α

q k = 1, 2, . . . (2.91)

where q ∈ (0, 1) and α ∈ IR. It nests the shifted negative binomial, the
logarithmic and the discrete Pareto distribution.

2.5.5 Additive Log-Differenced Probability Models

Gourieroux and Monfort (1990) define the additive-log-differenced probability
class (A.L.D.P.) which applies to situations, where the function f determining
the ratio of recursive probabilities in (2.85) is separable:
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f(x, ψ) = g(x)h(ψ) (2.92)

It is a generalization since ψ can be estimated without specifying the functional
form of g(x).

The A.L.D.P. class of probability models includes all linear-exponential
family defined over the non-negative integers. These families have probability
functions of the form

f(x; ψ) = c(x, φ) exp{(xψ − b(ψ))/φ}
which implies that the ratio of recursive probabilities is given by

f(x; ψ)
f(x − 1; ψ)

= c(x, φ)/c(x − 1, φ) exp(ψ) = g(x, φ)h(ψ)

Example 1.
The Poisson distribution is a linear exponential family with c(x, φ) = 1/x!,
b(ψ) = exp(ψ), and ψ = log(λ), where λ is equal to the expected value (mean
parameterization). The ratio of recursive probabilities λ/x is separable into
two functions g(x) = 1/x and h(λ) = λ.

Example 2.
The geometric distribution is a linear exponential family with c(x, φ) = 1,
b(ψ) = − log(1 − exp(ψ)), and ψ = log(λ/(1 + λ)), again in mean parame-
terization with E(X) = λ. The ratio of recursive probabilities λ/(1 + λ) is
separable into two functions g(x) = 1 and h(λ) = λ/(1 + λ).

The A.L.D.P. defines a class of probability distributions whose recursive prob-
ability ratio is separable. It is convenient to specify this distribution class in
terms of log-ratios. From (2.85) and (2.92) it follows immediately that

log f(x) − log f(x − 1) = g̃(x) + h̃(ψ) (2.93)

where g̃ = log(g) and h̃ = log(h).

2.5.6 Linear Exponential Families

Finally, we present in this section some results on the general distribution
class of linear exponential families (LEF). The Poisson distribution is part of
the linear exponential families, as are, among others, the normal distribution
and the binomial distribution. The interest in this class of distributions, in the
context of count data modeling, is not related to any avenue for more general
distributions that it may suggested (which, in fact, it does not). Rather, the
importance of LEFs stems mainly from certain results on robust (or semi-
parametric) estimation that apply to such models. The density or probability
functions of LEF distributions are of the form (see, for instance, McCullagh
and Nelder (1989) and Gourieroux, Monfort and Trognon (1984a))
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f(x; ψ) = c(x, φ) exp{(xψ − b(ψ))/φ} . (2.94)

ψ is called the “natural” parameter and φ the “dispersion” parameter. The
functional form (2.94) shows why the name “linear exponential” is appropri-
ate: f is log-linear in its parameter ψ. As a consequence, the derivative of the
logarithmic density with respect to ψ has a very simple form

∂ ln f(x; ψ)
∂ψ

=
x − b′(ψ)

φ
(2.95)

This derivative plays an important role in estimation, as it is the “score” or
“gradient” of the log-likelihood function.

It is a well known result in statistics that the expected gradient is zero.
This result follows because differentiating the identity

∂

∂ψ

(∫
f(x; ψ)dx = 1

)
yields (under suitable regularity conditions that ensure that integration and
differentiation can be interchanged)∫

∂f(x; ψ)
∂ψ

dx =
∫

∂ ln f(x; ψ)
∂ψ

f(x; ψ) dx

= E
(

∂ ln f(x; ψ)
∂ψ

)
= 0 (2.96)

Applying this result to the right hand side expression of (2.95), we find that

E(X) = b′(ψ) (2.97)

The fact that the score of a linear exponential family is the difference between
the random variable and its mean constitutes the reason why consistency of
the maximum likelihood estimator requires only that the mean b′(ψ) of the
LEF is correctly specified (and that ψ is identified). Under independent sam-
pling, the empirical gradient converges in probability to its expected value
of zero. But this means that ψ̂ converges in probability to the value where
E(X) = b′(ψ). Note that this result is unaffected by the presence of a disper-
sion parameter φ. More details are given in the next chapter, when generalized
linear models and robust Poisson regression are introduced.

We conclude by deriving the variance of a LEF distribution. To do this,
one can use the results that the expected second derivative of a logarithmic
density function is equal to the variance of its first derivative. For a LEF
density,

E
(

∂2 ln f(x; ψ)
∂ψ2

)
=

−b′′(ψ)
φ

(2.98)

Further, the variance of the first derivative is given by
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Table 2.3. Linear Exponential Families

Distribution c(x, φ) b(ψ) ψ

Poisson 1/x! exp(ψ) log(λ)

Negative Binomiala
Γ (α + x)

Γ (α)Γ (x + 1)
−α log(1 − eψ) log

(
θ

1 + θ

)
Geometric (α = 1) 1 − log(1 − eψ) log

(
θ

1 + θ

)
Binomial (n given)

(
n

x

)
n log(1 + eψ) log

(
p

1 − p

)
Normal

exp(− x2

2φ2 )√
2πφ2

ψ2/2 ψ(σ = φ)

E(X) V (µ)

Poisson λ µ
Negative Binomiala αθ µ + α−1µ2

Geometric (α = 1) θ µ + µ2

Binomial (n given) np µ(1 − µ)
Normal ψ 1

a for given α

E
(

∂ ln f(x; ψ)
∂ψ

)2

= E
(

x − b′(ψ)
φ

)2

=
Var(X)

φ2
(2.99)

It follows that

Var(X) = φb′′(ψ) (2.100)

The variance of X is the product of two components. One, b′′(ψ), is called
the variance function. It can be written as a function of the mean E(X) = µ,
since from (2.97) it holds that ψ = (b′)−1(µ). The second componet is a
scaling parameter φ. For instance, the normal distribution assumes a scaling
parameter φ = σ2 and a constant variance function V (µ) = 1.

Tab. 2.3 gives the characteristics of some common univariate distributions
contained in the linear exponential families. Further members are the gamma
and the inverse Gaussian distributions.

2.5.7 Summary

This section has introduced different types of generalizations. These general-
izations had as a common point of departure the Poisson distribution with its
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restrictive assumptions and structure. More flexible probability models have
been developed along two different routes.

The first approach formulated compound and mixture distributions the
development of which often was motivated by a reconsideration of the data
generating process. For instance, a compound Poisson distribution can de-
scribe the number of migrants between two geographical areas if the number
of families moving is Poisson distributed and the number of persons in each
family follows a binomial distribution. A Poisson mixture distribution may be
appropriate if the Poisson parameter λ is measured with error.

The second approach directly formulated a more richly parameterized, and
therefore more general, distribution model. An example is the Katz system
of distributions. If the interest of the researcher rests less in the best possible
fit to observed data but rather in the robustness of parameter estimates,
distributions within the class of linear exponential families have desirable
robustness properties.

2.6 Distributions for Over- and Underdispersion

2.6.1 Generalized Event Count Model

The generalized event count model as presented in King (1989b) and extended
in Winkelmann and Zimmermann (1991) is essentially a re-parametrization of
the Katz family discussed in Chap. 2.5.4, in terms of a mean λ and a variance
function g(λ) that allows for a simple test for overdispersion or underdisper-
sion. Moreover, since the model is parameterized in terms of the mean, it can
be readily extended to a regression context, for instance by expressing λ as a
function of regressors.

Recall that the Katz family is defined by a recursive formula for the prob-
abilities f (y) (where the notation differs slightly from the previous chapter):

f(y + 1)
f(y)

=
θ + γy

1 + y
for y = 0, 1, 2, . . . and θ + γy ≥ 0 . (2.101)

Using recursive substitution, (2.101) can be rewritten as

f(y|θ, γ) = f(0)
yi∏

j=1

[
θ + γ(j − 1)

j

]
, yi = 1, 2, . . . (2.102)

where f(0) is determined by the fact that the probabilities have to sum to
one. Mean and variance are then given by

E(y) =
θ

(1 − γ)
, Var(y) =

θ

(1 − γ)2
(2.103)

It is easily seen that this family produces equidispersion for γ = 0, overdis-
persion for 0 < γ < 1, and underdispersion for γ < 0. The following parame-
terization has been suggested.
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γ =
(σ2 − 1)λk

(σ2 − 1)λk + 1
, θ =

λ

(σ2 − 1)λk + 1
(2.104)

With this parameterization,

E(y) = λ

and

Var(y) = λ + (σ2 − 1)λk+1

Special case of interest are σ2 = 1, the Poisson case. For σ2 < 1, we obtain
underdispersion, for σ2 > 1, overdispersion. The variance function can be
linear (k = 0), or quadratic (k = 1), restrictions that can be tested. The
complete probability function is given by:

fgeck(y|·) = f(0|λ, σ2, k)

×
{∏y

j=1

[
λ+(σ2−1)λk(j−1)

[(σ2−1)λk+1] j

]
for y = 1, 2, . . .

1 for y = 0
(2.105)

where

f(0|λ, σ2, k) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(1 + (σ2 − 1) λk)ν for σ2 ≥ 1
(1 + (σ2 − 1) λk)νD−1 for 0 < σ2 < 1 ,

λk ≤ 1/(1 − σ2)
and y ≤ int*(ν)

0 otherwise

ν = λ1−k/(1 − σ2) ,

D =
∑int*(ν)

m=0 fbn(m|λ, σ2, k) ,

and int*(y) =
{

int(y)+1 for int(y)<y
y for int(y)=y

The limit of f(0|λ, σ2, k) for σ2 → 1 is e−λ and the GECk converges to the
Poisson model.

2.6.2 Generalized Poisson Distribution

A detailed presentation of the generalized Poisson distribution can be found
in a monograph by Consul (1989). Further references are Consul and Famoye
(1992), Famoye (1993), and Wang and Famoye (1997). The latter references
explicitly introduce exogenous variables and thus a generalized Poisson re-
gression model. Santos Silva (1997b) extended the model to truncated data.



2.6 Distributions for Over- and Underdispersion 47

The generalized Poisson distribution allows for both over- and underdisper-
sion and nests the Poisson regression model as a special case. This is achieved
by introducing one additional parameter θ. The probability distribution func-
tion can be written as (Consul 1989, p. 4)

f(y) =

⎧⎨⎩
θ(θ + yγ)y−1e−θ−yγ

y!
, y = 0, 1, 2, . . .

0 for y > m , when γ < 0
(2.106)

where θ > 0, max[−1,−θ/m] < γ ≤ 1 and m(≥ 4) is the largest positive
integer for which θ + mγ > 0 when γ is negative.

The generalized Poisson distribution nests the Poisson distribution for
γ = 0. Mean and variance are given by E(y) = θ(1 − γ)−1 and Var(y) =
θ(1 − γ)−3, respectively. Thus, the generalized Poisson distribution displays
overdispersion for 0 < γ < 1, equidispersion for γ = 0 and underdispersion
for max[−1,−θ/m] < γ ≤ 0. Therefore, the parameter space is restricted in
case of underdispersion.

To obtain the model in mean parameterization, let

θ =
λ

1 + aλ

γ =
aλ

1 + aλ

Now, the probability function can be written as

f(y) =
(

λ

1 + aλ

)y (1 + ay)y−1

y!
exp

(
−λ(1 + ay)

1 + aλ

)
(2.107)

and the mean and variance of y are given by

E(y) = λ

Var(y) = λ(1 + aλ)2

When a = 0, (2.107) reduces to the standard Poisson distribution. a acts like
a dispersion parameter, with underdispersion for a < 0 and overdispersion for
a > 0.

2.6.3 Poisson Polynomial Distribution

Cameron and Johansson (1997) discuss a class of parametric models for count
data, using a squared polynomial expansion around a Poisson distribution,
based on work by Gallant and Nychka (1987). Guo and Trivedi (2002) derive
a corresponding polynomial expansion of the negative binomial distribution.
See also Romeu and Vera-Hernandez (2005).

If f(y; λ) is a Poisson or a negative binomial distribution, a new probability
distribution may be obtained by letting
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gp(y; λ, a) = f(y; λ)
[hp(y; a)]2

ηp(λ, a)
y = 0, 1, 2, . . . (2.108)

where

hp(y; a) =
p∑

k=0

akyk ,

p = 1, 2, . . . describes the order of the polynomial, ηp(λ, a) is a normalizing
constant that ensures that the density gp(y; λ, a) sums to one, and squaring the
polynomial ensures that the probabilities are non-negative. The parameters
of the extended model are then estimated by maximum likelihood.

Using this method, one can approximate the unknown true probability
function arbitrarily closely, by increasing the polynomial order. In fact, it can
be shown that the mean and other aspects of the unknown probability are
estimated consistently provided that the length of the series increases with
sample size. This holds regardless of the baseline distribution, which gives
the method a non-parametric flavor, although the interest usually centers on
estimation of parameters. Thus, although this method uses maximum likeli-
hood, consistent estimation does not require that the baseline distribution is
correctly specified.

Cameron and Johansson (1997) show that the normalizing constant is of
the general form

ηp(λ, a) =
p∑

k=0

p∑
l=0

akalmk+l

where mr = mr(λ) denotes the r-th non-central moment of the baseline den-
sity f(y; λ).

For example, a Poisson distribution expanded by a squared polynomial of
order one has probability function (the constant of the polynomial is normal-
ized to unity)

g1(y; λ, a1) =
e−λλy

y!
(1 + a1y)2

η1(λ, a1)
(2.109)

where

η1(λ, a1) = m0 + 2a1m1 + a2
1m2 = 1 + 2a1λ + a2

1(λ + λ2)

The distribution has therefore one additional parameter, a1, more than
the baseline Poisson probability function. This additional parameter helps re-
laxing the equidispersion property of the Poisson distribution, as g1(y; λ, a1)
can be overdispersed, equidispersed (for a1 = 0), or underdispersed. The im-
plied flexibility appears to be a useful feature, making the Poisson polynomial
model a potentially useful candidate distribution when one is not sure a-priori,
whether the population model is over- or underdispersed. It does not require
any restrictions on the parameter space, or an upper limit on the counts, as
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did for instance the generalized event count model and the generalized Poisson
distribution discussed earlier.

On the downside, while the model is well suited to fit a model to actual
data, it is less straightforward to extend it to a regression framework. The
reason is that the mean is a function of both λ and α, which prohibits a sim-
ple, intuitive interpretation of parameters as marginal mean effects. Testing
for over- or underdisperion is also complicated, as it cannot be pinned to a
simple point hypothesis on α1. Whether the distribution is overdispersed or
underdispersed depends on both α and λ. We also note a further slightly awk-
ward aspect of the model, which is that the set of possible outcomes is not
necessarily equal to the natural numbers plus zero: whenever y = −1/a1 that
particular y has probability zero. For all of these reasons, and possibly also
due to computational complexities associated with multiple local maxima of
the log likelihood function, this approach has not been used extensively in the
follow-up literature.

2.6.4 Double Poisson Distribution

The double Poisson distribution has been proposed by Efron (1986). The
distribution has two parameters, λ and θ, and its probability function is:

f(y, λ, θ) = K(λ, θ)
√

θ exp(−λθ) exp(−y)
yy

y!

(
eλ

y

)θy

(2.110)

where

K(λ, θ) ≈ 1 +
1 − θ

12λθ

(
1 +

1
λθ

)
and λ, θ > 0. For θ = 1, the double Poisson distribution collapses to the simple
Poisson distribution. The advantage of the double Poisson distribution is that
it introduces one additional parameter, θ and the variance and mean are no
longer necessarily equal. Efron (1986) shows that

E(y) ≈ λ

Var(y) ≈ λ/θ

Hence, the double Poisson distribution allows for overdispersion when θ < 1,
and for underdisersion when θ > 1. A disadvantage of this distribution is that
these results are not exact, as the normalizing constant is not available in
closed form. As a consequence, as for the Poisson polynomial distribution, the
first moment is not available in closed form as well.

2.6.5 Summary

Table 1.1 of the previous Chapter showed some empirical count data distribu-
tions. While most of them were overdispersed at the marginal level, there was
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one exception, the number of children, where underdispersion was observed.
In the absence of a-priori information whether a count is overdispersed or un-
derdispersed, it is clearly desirable to have access to a class of models that can
accommodate both over- and underdispersion at the same time, without im-
posing any a-priori restrictions. Such probability distributions were discussed
in this section.

It turned out that finding such a distribution with good statistical prop-
erties is not straightforward. Each of the distributions here had an aspect
that might be considered a down-side. For two distributions, the range of the
admissible observations depended on the parameter value. For two distribu-
tions, the exact means and variances were not available in closed forms. One
distribution for over- and underdispersion that avoids these difficulties, the
gamma-count distribution (Winkelmann, 1995), is discussed in Chap. 2.7.3.
Its derivation requires results from duration analysis and renewal processes,
which are presented next.

2.7 Duration Analysis and Count Data

When looking at a sequence of events, most econometricians are more familiar
with the concept of waiting times (or, in technical applications: failure times)
and duration models than with the concept of event counts. See Allison (1984)
for an excellent introduction to duration models. Lancaster (1990) provides
a more advanced treatment. The count and the duration view are just two
different representations of the same underlying stochastic process. Under-
standing the interlinkages between the two provides a deeper understanding
of the assumptions and specification issues involved in count data analysis.

The key insight is that the distributions of cumulative waiting times
uniquely determine the distribution of counts, and they are, in turn, uniquely
determined by the distribution of counts. This isomorphism can be exploited
to derive new count data distributions, as in Winkelmann (1995), Lee (1996),
and Bradlow et al. (2006), and to improve our understanding of the proper-
ties of count data models in general. In particular, a new interpretation can
be given to the presence of over- and underdispersion based on the duration
properties of the underlying process.

The fundamental relationship between counts and durations was intro-
duced in Chap. 2.2.6. It is repeated here for convenience. Let N(T ) denote
the total number of events that have occurred between 0 and T , and let ϑk

denote the arrival time of the k-th event. Then by definition

N(T ) < k if and only if ϑk > T (2.111)

and

P (N(T ) < k) = P (ϑk > T ) = 1 − Fk(T ) , (2.112)

where Fk(T ) is the cumulative density function of ϑk. Further,
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P (N(T ) = k) = P (N(T ) < k + 1) − P (N(T ) < k)
= P (ϑk+1 > T ) − P (ϑk > T )
= Fk(T ) − Fk+1(T ) (2.113)

where Fk(T ) is the cumulative distribution function of ϑk and it is understood
that F0(T ) = 1. Equation (2.113) provides the fundamental relation between
the distribution of waiting times and the distribution of counts. The proba-
bility distribution of N(T ) can be obtained explicitly for all k from knowing
the distribution of ϑk. Similarly, we can solve 2.113 for Fk(T ) to obtain

F1(T ) = 1 − P (N(T ) = 0)

F2(T ) = F1(T ) − P (N(T ) = 1) = 1 − P (N(T ) = 0) − P (N(T ) = 1)

and, in general

Fk(T ) = 1 −
k−1∑
j=0

P (N(T ) = j)

We can now study, for example, the arrival time distributions implied by the
Poisson assumption. Since

P (N(T ) = k) =
e−λT (λT )k

k!
where λ is the expected number of events per time unit, the arrival time of
the first event is then

F1(T ) = 1 − e−λT

Thus, ϑ1 has an exponential distribution with parameter λ and density func-
tion

f(ϑ1) = λe−λT

Similarly, the arrival time of the second event, again assuming that the counts
follow a Poisson distribution, is given by

F2(T ) = 1 − e−λT − λTe−λT

with density

f(ϑ2) = λe−λT − (λe−λT − λ2Te−λT ) = λ2Te−λT

This generalizes further, and we obtain

Fk(T ) = 1 −
k−1∑
j=0

e−λT (λT )j

j!

with first derivative

fk(T ) =
λkT k−1e−λT (λT )j

(k − 1)!
(2.114)
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This is the probability function of the Erlang distribution. To recapitulate,
we have the result that if N(T ) is Poisson distributed, then we know that
the distribution of the arrival time of the k-th event must be the Erlang
distribution.

To further study the stochastic implications of the Poisson assumption,
it is instructive to focus on the interarrival times τi, rather than the arrival
times themselves. Per definition, the interarrival time τi is the time elapsed
between the occurrence of the (i − 1)’ th and the i’ th event. Formally,

τk = ϑk − ϑk−1

and

ϑk =
k∑

i=1

τi (2.115)

Clearly, ϑ1 = τ1, and we thus know that if the counts are Poisson distributed,
τ1 must be exponential distributed. What we would like to know is what
kind of sequence of τi’s would lead to the Poisson distribution, and then of
course also, what kind of count distribution will arise for non-exponentially
distributed interarrival times. We start, in the next Chapter, with some defi-
nitions, characterizations and properties of distributions for interarrival times.
We then introduce, in Chapter 2.7.2, the concept of a renewal process. This
framework provides a tractable approach to link distributions for interarrival
times and counts under a variety of distributional assumptions, exponential
being one of them, albeit under the restrictive set-up of independent and
identical interarrival distributions.

2.7.1 Distributions for Interarrival Times

Interarrival times are non-negative continuous random variables, denoted as
τ . f(t) is the density function of the interarrival time, F (t) = P (τ < t) is
the distribution function, and F̄ (t) = 1 − F (t) is the survivor function. An
important entity for the analysis of durations, used to capture duration depen-
dence, is the hazard rate λ(t) which gives the instantaneous exit probability
conditional on survival. Formally,

λ(t) = lim
dt→0

P (t ≤ τ < t + dt|τ ≥ t)
dt

(2.116)

Using Bayes rule

P (t ≤ τ < t + dt|τ ≥ t) =
P (t ≤ τ < t + dt, τ ≥ t)

P (τ ≥ t)

=
P (t ≤ τ < t + dt)

P (τ ≥ t)

Expressing the probabilities through cumulative density functions, dividing
by dt and taking limits, we obtain
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λ(t) =
f(t)

1 − F (t)
= − d

dt
log F̄ (t) (2.117)

The hazard function captures the underlying time dependence of the process.
A decreasing hazard function implies that the spell is less likely to end the
longer it lasts. This situation is referred to as negative duration dependence.
An increasing hazard function implies that the spell is the more likely to end
the longer it lasts. This situation is referred to as positive duration depen-
dence. Clearly, positive duration dependence reduces the probability of long
spells, while negative duration dependence does the opposite. No duration de-
pendence corresponds to the case of a constant hazard. The hazard function
of an interarrival time distribution does not need to be monotonic although
many parametric distributions that are used in practice have a monotonic
hazard function.

In the case of a constant hazard λ(t) = λ, there is a unique underlying
distribution which can be obtained directly as the solution to the differential
equation

− d

dt
log F̄ (t) = λ (2.118)

Hence, F̄ (t) = Ae−λt, and, using the initial condition F̄ (0) = 1,

F̄ (t) = e−λt (2.119)

Thus, under the assumption of a constant hazard function we obtain that
F (t) = 1 − e−λt and f(t) = λe−λt. These are the distribution and the den-
sity functions of the exponential distribution, respectively. The hazard (which
equals the inverse of the expected value) is constant if and only if the distri-
bution of completed spells is exponential.

A constant hazard function is closely related to the concept of absence of
memory within the process: A process is called memoryless if the probability
that a spell exceeds s + t, conditional on having lasted for t, is independent
of t.

Formally, this can be written as

P{τ > s + t|τ > t} = P{τ > s} ∀ s, t ≥ 0 . (2.120)

In other words, the past length of a spell is without influence on its future
duration. Using Bayes’ rule, this condition can be rewritten as

P{τ > s + t, τ > t}
P{τ > t} = P{τ > s} (2.121)

or, since {τ > t} is contained in {τ > s + t},
P{τ > s + t} = P{τ > t}P{τ > s} . (2.122)

The survivor function of the exponential distribution is given by P{τ > t} =
e−λt. Since e−λ(t+s) = e−λte−λs, it follows that exponentially distributed
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waiting times is memoryless. If the spell lasted until time t, the distribution
of the remaining elapsed time until completion is identical to the original
lifetime distribution.

Clearly, the assumption of a constant hazard is too restrictive in most
applications. Distributions that allow for positive or negative duration de-
pendence are, among others, the gamma and the Weibull distributions. Both
distributions are characterized by a monotonic hazard function, either increas-
ing or decreasing, the slope of which depends on the value taken by a specific
parameter.

So far the discussion has focused on the distribution of interarrival times
τi. The distributions of the arrival times ϑk are obtained by convolution, as in
(2.115). For example, if τ1 and τ2 are independently exponential distributed
with same parameter λ, and if f2(T ) denotes the density function of the arrival
time of the second event, then we can write

f2(T ) =
∫ T

t=0

λe−λtλe−λ(T−tdt = λ2Te−λT

But this is exactly the density function of the Erlang distribution for k = 2,
and the argument indeed generalizes to k > 2, as shown in Chapter 2.2.6.
But as N(T ) is Poisson distributed if an only of ϑk is Erlang distributed,
we know that independent and identical exponentially distributed interarrival
times lead to a number of events that is Poisson distributed.

This is a special case of a renewal process, i.e., a stochastic process that
excludes inter-spell dependence and assumes i.i.d. interarrival times. Renewal
processes may, however, display duration dependence and in the following
section, results from renewal theory are used to provide interesting insights in
the relationship between duration dependence and the distribution of counts.

2.7.2 Renewal Processes

Useful references on renewal processes are Barlow and Proschan (1965), Cox
(1962), Feller (1971), and Lancaster (1990). Consider a stochastic process that
is defined by a sequence of spells τi, where the end of one spell immediately
leads to the start of a new spell. If {τ1, τ2, . . .} are independently and identi-
cally distributed variables, all with density function f(τ), the process is called
a renewal process. Let N(T ) denote the number of renewals in (0, T ), i.e.,
the number of events before T , a count variable. Its probability function in
terms of the cumulative densities of arrival times ϑk was given in (2.113). But
ϑk =

∑k
i=1 τi. Given the assumption of independent renewals, the distribu-

tion of this k-fold convolution can be derived using the calculus of Laplace
transforms. In general, the Laplace transform of ϑ, denoted as is k-th power
of the Laplace transform of τ :

Lϑk
(s) = [Lτ (s)]k (2.123)
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(See Feller, 1971). In some cases, we can start with a well-known parametric
distribution function for τ and obtain through convolution the Laplace trans-
form of another distribution that is again of recognizable form. An extreme
case would be a family of distributions that is “closed under convolution”,
i.e. for which distributions of sums belong to the same family of distributions
as the components. Example for such cases are the Normal distribution, the
Poisson distribution, the binomial distribution and the gamma distribution.
Of these, only the gamma distribution is a useful candidate as a model for τ , as
we require a distribution for a non-negative continuous variable representing
time.

In other cases, however, it will be very hard if not impossible to derive the
distribution of ϑk using (2.123). It turns out, however, that a useful limiting
result relating the hazard function of τi and the distribution of counts can be
obtained even without fully specifying the distribution of τ .

Denote the mean and the variance of the waiting time distribution by
E(τ) = µ and Var(τ) = σ2, and the coefficient of variation by v = σ/µ.
Assume that the (unknown) distribution of τ has a monotonic hazard function,
such that dλ(t)/dt is either positive, zero, or negative for all values of t. Thus,
we allow for the three cases of positive, negative, or no duration dependence.

Barlow and Proschan (1965, p. 33) have shown the type of duration de-
pendence puts bounds the coefficient of variation of the distribution of τ . In
particular,

dλ(t)
dt

<
=
>

⎫⎬⎭ >
0 =⇒ v =

<

⎫⎬⎭ 1

A second important result due to Cox (1962, p.40) is that if {τi} is a
sequence of independent, positive, identically distributed interarrival times
with mean µ and variance σ2, then N(t), the number of renewals (or counts)
is asymptotically normal distributed with mean t/µ and variance σ2t/µ3:

N(t)
asy∼ normal

(
t

µ
,
σ2t

µ3

)
(2.124)

as t → ∞.
As a consequence, we know that the ratio of variance to mean of the

limiting distribution is given by

Var(N(t))
E(N(t))

=
σ2t

µ3

µ

t
=

σ2

µ2
= v2 (2.125)

Thus, we can link the duration dependence of the underlying interarrival
time distributions to the dispersion of the counts, via the coefficient of vari-
ation of the distribution of τ . The variance mean ratio is greater (less) than
1 if and only if the coefficient of variation of the waiting times v = σ/µ is
greater (less) than 1. For positive duration dependence v < 1 and the count
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distribution is underdispersed. For negative duration dependence v > 1 and
the count distribution is overdispersed.

The exponential distribution has coefficient of variation v = 1, leading to
equidispersion. This result is exact, whereas (2.125) is only a limiting result.

2.7.3 Gamma Count Distribution

The renewal framework can also be used to derive an exact distribution for
event counts, based on gamma distributed renewals (Winkelmann, 1995). This
is possible since the gamma distribution is, as mentioned earlier, closed under
convolution. It is also interesting since the gamma distribution has a mono-
tonic hazard function that is either increasing, constant, or decreasing. Under
the gamma assumption, the density of τ is given by

f(τ ; α, β) =
βα

Γ (α)
τα−1e−βτ , α, β ∈ IR+ (2.126)

with Laplace transform

Lτ (s) = (1 + s/β)−α (2.127)

The waiting time has mean E(τ) = α/β and variance Var(τ) = α/β2. The
hazard function λ(τ) obeys the equation

1
λ(τ)

=
∫ ∞

0

e−βu
(
1 +

u

τ

)α−1

du (2.128)

The gamma distribution admits no closed form expression for the tail prob-
abilities and thus no simple formula for the hazard function. However, from
(2.128), it follows that λ(τ) is (monotonically) increasing for α > 1, decreasing
for α < 1, and constant (and equal to β) for α = 1.

Now, consider the distribution of ϑk, the arrival time of the k-th event.
Applying (2.123), we find that

Lϑk
(s) = (1 + s/β)−αk (2.129)

which is the Laplace transform of a gamma distribution with parameters β
and αk. We can thus directly write the density function of ϑk as

fk(ϑ; α, β) =
βkα

Γ (kα)
ϑkα−1e−βϑ (2.130)

To derive the new count data distribution, we have to evaluate the cumulative
distribution function

Fk(T ) =
∫ T

0

βkα

Γ (kα)
ϑkα−1e−βϑdϑ (2.131)

=
1

Γ (kα)

∫ βT

0

ukα−1e−udu
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Fig. 2.3. Hazard Rates for Gamma Distribution (β = 1)
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where the second equality uses the change of variable to u = αϑ. The right-
hand side is an incomplete gamma integral that will be denoted as G(αk, βT ).
For non-integer α, no closed-form expression is available for G(αk, βT ) (and
thus for P (N = k)). Numerical evaluations of the integral can be based on
asymptotic expansions (See Abramowitz and Stegun, 1964, and Bowman and
Shenton, 1988).

The number of event occurrences during the time interval (0, T ) has then
the two-parameter distribution function

P (N(T ) = k) = G(αk, βT ) − G(αk + α, βT ) k = 0, 1, 2, . . . (2.132)

where it is understood that F0(T ) = G(0, βT ) = 1.
For α = 1, f(τ) is the exponential density and (2.132) simplifies to the

Poisson distribution. For 0 < α < 1, the gamma count distribution is based on
interarrival times with negative duration dependence. For α > 1, the duration
dependence is positive. Fig. 2.4 and 2.5 compare the probability functions of
the gamma count distribution with a Poisson distribution of identical mean
(E(N) = 2) for two values of α. Depending on the value of α, the Gamma
count model is more concentrated (α = 1.5) or more dispersed (α = 0.5) than
the reference distribution.

The gamma count distribution is one of the few distributions that nests
the Poisson distribution through a parametric restriction and allows for both
over- and underdispersion. In contrast to the other two such distributions
discussed in this book, the generalized event count model and the generalized
Poisson distribution that have been covered earlier in Chapters 2.6.1 and
2.6.2, respectively, it has the additional advantage that it does not impose
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Fig. 2.4. Probability Functions for Gamma Count and Poisson Distributions; α =
0.5 (Overdispersion)
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Fig. 2.5. Probability Functions for Gamma Count and Poisson Distributions; α =
1.5 (Underdispersion)
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any restrictions on the range of the outcome variables. Both generalized event
count model and generalized Poisson distribution impose an upper limit for
the outcome variable in the case of underdispersion. Seen from the point of
view of a renewal process, there is no reason for such an asymmetry, and this
approach allows for a unified treatment of over- and underdispersion. Clearly,
this feature is also a potentially great advantage over the negative binomial
model, where only overdispersion is possible and the Poisson model lies at the
boundary of the parameter space.

There is a small catch, though, which is that the expected value is not
available in closed form. Rather, it must be computed as

E[N(T )] =
∞∑

k=1

kP (N(T ) = k) (2.133)

=
∞∑

k=1

k[G(αk, βT ) − G(αk + α, βT )]

=
∞∑

i=1

G(αk, βT )

We will discuss in a later Chapter, how this kind of model can be transformed
into a regression model. The variance is given by

Var[N(T )] =
∞∑

k=1

k2[G(αk, βT ) − G(αk + α, βT )] − E[N(T )]2 (2.134)

As previously indicated, the gamma count distribution function (2.132)
displays overdispersion for 0 < α < 1 and underdispersion for α > 1. Fig. 2.6
and Fig. 2.7 show the variance mean ratio for various values of α and β.

Recall from above that the underlying waiting times have a decreasing
(increasing) hazard for 0 < α < 1 (α > 1). Thus, as in the limiting case of
a renewal process considered above, negative duration dependence leads to
overdispersion, positive duration dependence to underdispersion. The inter-
mediate case of no duration dependence, i.e., exponentially distributed waiting
times, leads to the Poisson distribution with equal mean and variance.

2.7.4 Duration Mixture Models

The phenomena of a positive or negative relationship between duration and
hazard in the aggregate does not need to reflect ‘true’ duration dependence
but can also be due to a selection process: to take the example of negative
duration dependence, individuals with duration of spells above average might
have a (constant) hazard below average. Failure to account for this heterogene-
ity, for example by splitting up the population into sub-populations, results
in spurious negative duration dependence. The problem of identifying true
duration dependence was discussed in detail by Heckman and Singer (1984).
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Fig. 2.6. Variance to Mean Ratio for Gamma Count Distribution; 0 < α < 1
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It is closely related to the problem of distinguishing between occurrence de-
pendence and unobserved heterogeneity in count data.

If one suspects the presence of unobserved heterogeneity, one possible so-
lution is to assume that the heterogeneity follows a specific parametric distri-
bution. This was already discussed in Chap. 2.5.1 where it was shown that if
the Poisson parameter λ is a random variable with a gamma distribution, the
number of events occurring in a given interval has a negative binomial distri-
bution Negbin(α, θ). A corresponding result exists in the duration domain:

Assume that the Poisson parameter λ is a random variable with a gamma
distribution. Then the waiting time for the first occurrence has an exponential-
gamma mixture distribution and the hazard rate λ(t) = α/(β + t) is a de-
creasing function of time.

This result holds, since the probability function of the count is obtained
in the usual way via integration, where we keep explicitly track of varying
lengths of the time interval:

P (X = k; t) =
∫ ∞

0

(λt)ke−λt

k!
βα

Γ (α)
λα−1e−λβdλ
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Fig. 2.7. Variance to Mean Ratio for Gamma Count Distribution; α > 1
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But P (X = 0; t) is the probability that no event has occurred before t, i.e.,
the survivor function at t:

F̄ (t) =
(

β

β + t

)α

(2.135)

with density function

f(t) = − d

dt
F̄ (t) = αβα

(
1

β + t

)α+1

(2.136)

and hazard rate

λ(t) = − d

dt
log F̄ (t)

=
α

β + t

=
λ

1 + λ/αt
(2.137)
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where the last line follows from letting λ = α/β.

Thus, if α → ∞ and 1/β → 0 such that α/β = λ (i.e., the gamma mixture
distribution has a mean of λ and a variance approaching zero) the hazard
function collapses to the hazard function of the exponential distribution.

Incidentally, the density (2.136) can also be obtained directly by mixing
the exponential density of the arrival time of the first event with a gamma
distribution (see also Lancaster, 1990, Chap. 4):

f(t) =
∫ ∞

0

λe−λt βα

Γ (α)
λα−1e−λβdλ

=
βα

Γ (α)

∫ ∞

0

λαλe−λ(t+β)dλ

=
βα

Γ (α)
Γ (α + 1)

(t + β)α+1
(2.138)

With heterogeneity, the sample hazard is no longer constant but instead
decreasing with time. As indicated above, this model describes a situation
where each individual has a constant hazard that randomly varies between
individuals according to a gamma law. The gamma disturbance captures un-
observed heterogeneity. In terms of counts it leads to the negative binomial
distribution with overdispersion. In terms of waiting times it leads to a de-
creasing overall hazard since the mean hazard among survivors at t is a de-
creasing function of t. A selection effect is taking place: individuals with larger
hazard are likely to exit earlier, and the group of survivors is increasingly com-
posed of individuals with relatively small λ’s. The parameters α and β have
opposite effects. An increase in α increases the hazard proportionally for all
lengths of duration. The negative effect of β is reduced with increased dura-
tion.
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Poisson Regression

3.1 Specification

3.1.1 Introduction

The Poisson regression model is the benchmark model for count data in much
the same way as the normal linear model is the benchmark for real-valued con-
tinuous data. Early references in econometrics include Gilbert (1982), Haus-
man, Hall and Griliches (1984), and Cameron and Trivedi (1986). The Poisson
model is simple, and it is robust. If the only interest of the analysis lies in
estimating the parameters of a log-linear mean function, there is hardly any
reason (except for efficiency) to ever contemplate anything other than the
Poisson regression model. In fact, its applicability extends well beyond the
traditional domain of count data. The Poisson regression model can be used
for any constant elasticity mean function, whether the dependent variable is
a count or continuous, and there are good reasons why it should be preferred
over the more common log transformation of the dependent variable.

And yet, there are instances where the Poisson regression model is un-
suited. Essentially, the Poisson model is always overly restrictive when it
comes to estimating features of the population other than the mean, such
as the variance or the probability of single outcomes. The simplicity of the
Poisson regression model, an asset when modeling the mean, turns then into
a liability, and more elaborate models are needed.

3.1.2 Assumptions of the Poisson Regression Model

The basic Poisson regression model relates the probability function of a de-
pendent variable yi (also referred to as regressand, endogenous, or dependent
variable) to a vector of independent variables xi (also referred to as regressors,
exogenous, or independent variable). Let k be the number of regressors (in-
cluding, usually, a constant). xi is then a column vector of dimension (k× 1).
Finally, n is the number of observations in the sample.
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The standard univariate Poisson regression model makes the following
three assumptions:

Assumption 1.

f(y|λ) =
e−λλy

y!
y = 0, 1, 2, . . .

where f(y|λ) is the conditional probability function of y given λ, and it
must hold that λ > 0.

Assumption 2.

λ = exp(x′β)

where β is a (k × 1) vector of parameters, and x is a (k × 1) vector of
regressors, including a constant.

Assumption 3.

observation pairs (yi, xi), i = 1, . . . , n are independently distributed.

Discussion

Assumptions 1 and 2 can be combined to obtain the following conditional
probability function:

f(y|x) =
exp(− exp(x′β)) exp(yx′β)

y!
y = 0, 1, 2, . . . (3.1)

The Poisson distribution has only one parameter that simultaneously de-
termines conditional mean and variance. Therefore, the Poisson regression
model as defined by the assumptions above implies an exponential (or log-
linear) mean function,

E(y|x) = λ = exp(x′β) (3.2)

and an exponential conditional variance function

Var(y|x) = λ = exp(x′β) (3.3)

The fact that conditional mean and conditional variance are equal in the
Poisson regression model is a particular feature – equidispersion – that will
be subject to further discussion.

The probabilistic assumptions underlying the Poisson distribution have
been discussed in the previous chapter. In a nutshell, events are assumed to
occur truly randomly over time. In the context of the regression model, ex-
planatory variables influence the dependent variable (the number of event
counts in a time interval) through the intensity (or instantaneous occurrence
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rate) of the process. The heterogeneity of the latter is modeled as a deter-
ministic function of the explanatory variables. This implies that, unlike for
the normal linear regression model, the randomness of the Poisson model is
intrinsic and not due to an additive stochastic error representing additional
heterogeneity.

If the underlying stochastic process does not display the required random-
ness, or if there is not even a meaningful underlying stochastic process to
think of, the Poisson regression model may remain a valid approximation to
the true data generating process as well as a useful descriptive tool.

In conjunction with Assumptions 1 and 2, Assumption 3 allows for a
straightforward application of the method of maximum likelihood to estimate
the parameters of the model. Maximum likelihood estimation is discussed
below.

3.1.3 Ordinary Least Squares and Other Alternatives

The advantages and disadvantages of the Poisson regression model are best
contemplated by addressing the practitioner’s question “When and why
should the Poisson regression model be used?”. A natural first answer would
seem to be that the dependent variable should be a count. But this condition
is neither necessary nor sufficient.

It is not necessary, because the Poisson regression model has been shown
to be useful for non-count dependent variables as well. One example is the
exponential regression model with right censoring, which arises in continuous
time duration modeling, and which can be estimated by Poisson regression.
Another, more important example, is the estimation of any constant elasticity
model by Poisson regression. This application is discussed at greater length
in Chapter 3.3.5.

Obviously, the fact that the dependent variable is a count is not sufficient
either. Firstly, there are alternative count data models that take the nature of
the dependent variable into account and that may be superior to the Poisson
model. Often, such generalized models will allow for a richer set of inferences,
in particular with respect to the probability of single outcomes (such as “zero”)
and with it on the underlying structural data generating process. Possible
specifications of alternative count data models and the selection of the right
model are important topics covered in later chapters.

Secondly, it is not obvious, why one cannot ignore the special nature of
the dependent variable altogether and just apply standard regression models
such as the normal linear model

y = x′β + e e|x ∼ N(0, σ2) (3.4)

Several objections against such an approach can be brought forward. (3.4)
ignores the discrete nature of the dependent variable. Under the normal linear
model, the probability of any particular outcome is zero. Thus, no inferences
on single outcomes are possible.
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In addition, model (3.4) allows for negative outcomes whereas counts are
non-negative. And relatedly, the model violates Assumption 2 that the mean
function is log-linear. Thus, (3.4) will give an inconsistent estimator of β if the
true data generating process follows the Poisson regression model. Finally, it
ignores the heteroskedasticity inherent in count data (see equation (3.3)). The
only vindication of this approach arises if counts are very large. The Poisson
distribution, for example, can be approximated by a normal distribution, and
the approximation is usually deemed satisfactory for λ > 20.

Log-Linear Model

These concerns can in part be addressed by conventional methods. Start with
the mean function. We could specify

log y = x′β + u u ∼ N(0, σ2) (3.5)

where “log” denotes the natural logarithm. In this model,

y = exp(x′β + u) (3.6)

has a log-normal distribution with conditional expectation

E(y|x) = exp(x′β + 1/2σ2)

similar to the Poisson regression model (up to a scale factor exp(1/2σ2)), and
the values of y are restricted to the non-negative real line. As long as the
model has an overall constant, we can redefine β̃0 = β0 − 1/2σ2 and the two
models have essentially the same mean function.

The log-normal distribution implies a different variance function, though.
In particular, it holds that

Var(y|x) = φ[E(y|x)]2

where φ = eσ2 − 1. In general, estimated standard errors of the log-normal
and Poisson models won’t be comparable, and heteroskedasticity consistent
standard errors should be computed.

The two fundamental problems with the log-normal approach are that
“zero” counts are inadmissible, as the logarithm is defined only for positive
outcomes, and that a “re-transformation” problem arises: if the conditional
variance of y is not quadratic in the conditional expectation, the log-linear
model provides an inconsistent estimator of the semi-elasticities of interest
(see Chapter 3.3.5).

Ad-hoc solutions to the zero problem have been proposed, such as dropping
all zero outcomes, or adding a constant c, such as 0.1 and 0.5, to each count
(see King, 1988). In this case, the model is written as

log(y + c) = x′β + u

or, equivalently.
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log y = log(exp(x′β + u) − c)

which shows that log y is now non-linear in x. Estimation of such a model in
general will introduce bias, as illustrated in Fig. 3.1. In this figure, models
with and without adjustment (c = 0.5) are drawn for u = 0 in the log y/x
space (assuming that there is only one regressor and β0 = 0 and β1 = 1). As
is apparent from Fig. 3.1, the slope parameter of the adjusted models exceeds
the true slope of unity the more, the closer the value of x comes to its logical
lower bound log(c).

Fig. 3.1. Bias in the Log-Linear Model When a Constant is Added in Order to Deal
With Zero Counts
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King (1988) reports results from a Monte Carlo analysis where the ad-
justed log-linear model is applied to artificial data from a Poisson regression
model. He finds substantial bias for the parameter estimates when the log-
linear model is used instead of the Poisson regression model. The bias does
not disappear with increasing sample size. The log-linear model tends to over-
estimate the slope parameters when positive, and to underestimate the slope
parameters when negative, i.e., the parameters are biased away from zero. By
introducing bias and ignoring the discrete nature of the data, this model is
quite unsatisfactory and its use cannot be recommended. Similarly, of course,
dropping all zeros is not a good idea either, as it will lead to endogenous sample
selection problems similar to those known from the linear model (Heckman,
1979).

Non-Linear Least Squares

Part of the problem arises because we have considered a model with mul-
tiplicative error ε = exp(u) (See equation (3.6)). Consider the alternative
model

y = exp(x′β) + v v
i.i.d∼ N(0, σ2) (3.7)
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This model has the same mean function as the Poisson regression model. As
the logarithm of y needs not to be taken, the problem with zero counts dis-
appears. Indeed, from an estimation point of view, model (3.7), if estimated
by maximum likelihood (which is the same as non-linear least squares in this
case), gives a consistent estimator of β if the true world is Poisson (estimation
is discussed in greater detail later in the book). It is not efficient, as it ignores
the heteroskedasticity inherent in the Poisson regression model. However, the
model could be modified such that σ2 = exp(x′β), in which case iteratively
weighted non-linear least squares would give the same results as Poisson max-
imum likelihood. The main problem with this model is that, while offering no
advantage in terms of ease of estimation or interpretation of parameters, it
fails to take into account the non-negative and integer-valued nature of the
dependent variable. The model cannot be used to predict the probability of
single outcomes.

Ordered Probit and Logit

Two non-count data models that overcome these shortcomings are the ordered
logit and ordered probit models. Both are models for experiments in which
outcomes are measured on an ordinal scale. An example is a survey question
that solicits the agreement or disagreement with a certain proposition (such
as: X is a good teacher) using the responses strongly disagree / disagree /
neutral / agree / strongly agree. The five possible outcomes can be coded, for
instance, as 0,1,2,3, and 4, respectively, although the coding is arbitrary as
long as it preserves the ordering.

The models are based on an underlying latent model

y∗ = x′β + ε

with the observation mechanism
y = 0 if y∗ < α0

y = 1 if α0 ≤ y∗ < α1

y = 2 if α1 ≤ y∗ < α2

...

where αj are “threshold values”. Depending on the assumptions for ε, the
ordered probit (ε ∼ N(0, 1)) or ordered logit (ε ∼ standard logistic) arises.
Given α, β and x, the probability of each of the 5 possible outcomes is deter-
mined and α and β can be estimated by maximum likelihood. Clearly, ordinal
models can also be used for counts as long as the number of different counts
observed in the sample is not too large. The number of threshold parameters
that require estimation increases with the observed sample space by one-to-
one; for more details on ordered response models, see McKelvey and Zavoina
(1975), and Boes and Winkelmann (2006).

Ordered models in general provide a better fit to the data than pure count
data models. The threshold parameters give the flexibility to align predicted
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and actual frequencies. However, their use for modeling count data has a
number of serious deficiencies.

• They are theoretically implausible as a model for counts. They are not
based on the concept of an underlying count process.

• Counts are cardinal rather than ordinal. Hence, under the ordinal ap-
proach, the sequence “2, 5, 50” is assumed to carry the same information
as the sequence “0, 1, 2” which is not the case for count data. Ordinal
models disregard this information and cannot be efficient.

• One reason of having parametric models in the first place is the ability of
predicting the probability of arbitrary counts. While genuine count data
models can do that, ordered models can only predict outcomes that are
actually observed in the sample.

In addition, these models in general imply a mean function that is different
from the mean function of the standard count model. In the general case, the
mean function of ordered models (not the latent model) is highly complex.
Consider the simplest case of a binary 0/1 variable. For example, in the binary
logit model

P (y = 0) =
1

1 + exp(x′β)

and

E(y|x) =
exp(x′β)

1 + exp(x′β)

For the Poisson model, instead,

P (y = 0) = exp(− exp(x′β))

and

E(y|x) = exp(x′β)

The two are fundamentally different mean functions. Of course, this does not
imply that the Poisson model is necessarily the superior model, as its mean
function may be misspecified as well. However, it suggests that the use of
ordered models for count data, and the interpretation of the results, has to
proceed with necessary caution. In practice, applications of ordered models to
count data are uncommon.

To summarize, the Poisson regression model has many virtues when one
wishes to model a count dependent variable. The Poisson model accounts
for the discrete and non-negative nature of the data. It attributes positive
probability to the outcome “zero”. And it allows inferences to be drawn on the
probability of a particular outcome. The Poisson regression model naturally
accounts for the heteroskedastic and skewed distribution associated with a
non-negative random variable. The more the mean of the dependent variable
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approaches zero and thus the lower bound of its sample space, the smaller the
variance. Finally, the Poisson model has a simple structure and the parameters
of the model can be estimated with relative ease.

3.1.4 Interpretation of Parameters

The exponential form of the mean function implies that the necessary increase
in x′β = β1xi1 + β2xi2 + . . . + βkxik to obtain a one unit increase in E(y|x)
is smaller, the further one moves away from zero. To put it differently, the
level change in x′β required for a given percentage change in E(y|x) is kept
constant. As a consequence the partial derivative of E(y|x) with respect to
any element of x depends on the value of x′β:

∂E(y|x)
∂xj

= exp(x′β)βj = E(y|x)βj j = 1, . . . , k (3.8)

These marginal effects obviously differ between individuals. Sometimes, it
may be informative to calculate the marginal effects for a representative indi-
vidual, such as the sample average of the explanatory variables. Alternatively,
one can calculate the expected (or average) marginal effect

Ex

[
∂E(y|x)

∂xj

]
= βjE[exp(x′β)]

which can be estimated consistently by

Êx

[
∂ ̂E(y|x)

∂xj

]
=

1
n

n∑
i=1

exp(x′β̂)β̂j

It is more common, and simpler, though, to consider the relative change
in E(y|x) associated with a small change in xj since this is constant and equal
to βj :

∂E(y|x)/E(y|x)
∂xj

= βj (3.9)

If x is in logarithmic form, βj has the interpretation of an elasticity, giving
the percentage change in E(y|x) per percentage change in xj .

Sometimes, we are interested in assessing the effect of a (discrete) unit
change in xj on the expected value of y. That is, we want to compare the
expected value of y for xj and xj + 1, respectively. In this case, the cal-
culus method gives only an approximation of the relative change. Define
x̃ = (1, x2, . . . , xj + 1, . . . , xk)′. The exact relative change is then

E(y|x̃′β) − E(y|x′β)
E(y|x′β)

=
exp(x′β + βj) − exp(x′β)

exp(x′β)
= exp(βj) − 1
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The leading example is that of a dummy variable taking values 0 or 1. Hence,
the relative impact of a dummy variable on the expected count is exp(βj)−1.
A linear Taylor series approximation of exp(βj) − 1 around β0

j = 0 yields

exp(βj) − 1 ≈ [exp(β0
j ) − 1] + exp(β0

j )(βj − β0
j )
∣∣
β0

j
=0

= βj

Thus, βj is the first-order approximation to the relative impact of a dummy
variable for small βj , and the linear approximation is the better the smaller
βj .

These results are similar to those encountered in the standard log-linear
model. However, there is a conceptual difference that removes a certain ambi-
guity in the interpretation of the Poisson parameters, an ambiguity that was
first noted by Goldberger (1968) for the log-linear model (see also Winkel-
mann, 2001). There, E(log y|x) = x′β, from which it does not follow that
E(y|x) = exp(x′β). It is only under some additional assumptions that an ex-
pression such as exp(βj) − 1 correctly identifies the relative change in E(y|x)
due to a unit change in xj . The situation in the Poisson regression model is
much more straightforward. However, estimation is still an issue. As pointed
out by Goldberger (1968) for the log-linear model, estimating exp(βj) − 1 by
exp(bj)−1, where bj is the maximum likelihood estimator, though consistent,
introduces small sample bias. An improved estimator has been suggested by
Goldberger (1968) and Kennedy (1981).

Interactive Effects and Differences in Differences

Interactive terms are used to model complementarities between variables. For
instance, let

E(y|x1, x2) = exp(β0 + β1x1 + β2x2 + β3x1x2) (3.10)

In this model, x1x2 is an interactive term, and β3 measures its effect on the
linear predictor. For instance, for positive β3, the impact of a given increase
in x1 on E(y|x1, x2) is the larger, the greater is the value of x2, since

∂E(y|x1, x2)
∂x1

= E(y|x1, x2)(β1 + β3x2) (3.11)

In the logic of a multiplicative model, we can then define the absence of an
interactive effect by requiring that the relative change in E(y|x1, x2) associated
with a change in x1 does not depend on x2 (and vice versa). Dividing equation
(3.11) by E(y|x1, x2), and differentiating once more with respect to x2, we
obtain

∂

∂x2

(
∂E(y|x1, x2)/∂x1

E(y|x1, x2)

)
= β3 (3.12)
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If β3 = 0, there is no interaction effect, a proposition that can be easily tested.
Mullahy (1999) discusses difficulties that arise if interactive terms are defined
in terms of absolute (rather than relative) changes, since

∂2E(y|x1, x2)
∂x1∂x2

= E(y|x1, x2)

×[β3(1 + β1x1 + β2x2 + β3x1x2) + β1β2] (3.13)

Clearly, in this definition, β3 = 0 is neither necessary nor sufficient for the ab-
sence of an interaction. However, this linear approach is not a natural concept
to start with. In the preferred focus on proportional changes, the parameter
β3 has a straightforward interpretation as shown above.

Often x1 and x2 are dummy variables. A leading application arises in the
treatment effects literature, where x1 indicates treatment status (x1 = 1 for
treatment group and x1 = 0 for control group) and x2 the observation period
(x2 = 1 for post treatment period and x2 = 0 for pre-treatment period). In
such a model, the pre-post growth factor in the expected outcomes for the
treatment group is

E(y|x1 = 1, x2 = 1)
E(y|x1 = 1, x2 = 0)

= exp(β2 + β3)

For the control group, the pre-post growth factor in the expected outcomes
for the control group is accordingly

E(y|x1 = 0, x2 = 1)
E(y|x1 = 0, x2 = 0)

= exp(β2)

The identifying assumption for a causal inference is that in the absence of
the treatment, the relative change of the expected outcome for the treatment
group would have been identical to that actually observed for the control
group. The treatment effect TE is then the relative difference between the
actual post-treatment outcome of the treatment group, E(y|x1 = 1, x2 = 1)
and the counterfactual outcome (the pre-treatment outcome for the treatment
group times the growth factor of the control group)

E(y|x1 = 1, x2 = 0) × E(y|x1 = 0, x2 = 1)
E(y|x1 = 0, x2 = 0)

which is the same as the ratio of the growth factors of the treatment and
control groups minus one:

TE =

E(y|x1 = 1, x2 = 1)
E(y|x1 = 1, x2 = 0)
E(y|x1 = 0, x2 = 1)
E(y|x1 = 0, x2 = 0)

− 1 = exp(β3) − 1 (3.14)

Thus, the differences-in-differences estimator should be based, in this multi-
plicative case, on “ratios-in-ratios”. In this interpretation, β3 directly approx-
imates the causal treatment effect (for small β3).
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Marginal Probability Effects

So far, the discussion has focussed exclusively on marginal mean effects, i.e.,
the question how the mean, or conditional expectation function, varies as any
of the explanatory variables changes, ceteris paribus. This focus is natural.
It very closely resembles the approach commonly taken in linear regression
models for continuous data. However, the focus on conditional expectations is
arguably also overly restrictive, as it misses some of the richness inherent in
modeling discrete data, and count data in particular. The discreteness implies
that statements about single probabilities are meaningful. Such statements
may be of substantive interest.

The question then becomes: how does the distribution (or probability func-
tion) respond to a small ceteris paribus change in an explanatory variable. The
answer to this question is given by the “marginal probability effects”. In the
exponential Poisson regression model

df(y; λ)
dx

=
df(y; λ)

dλ

dλ

dx
= f(y; λ)(y − λ)β y = 0, 1, . . . (3.15)

where f(y; λ) is the Poisson probability function and λ = exp(x′β). We see
that the marginal probability effects are quite restrictive. This follows directly
from the simple structure of the Poisson model. Observe that

sgn(df(y; λ)/dxj) = −sgn(βj) iff y < λ

sgn(df(y; λ)/dxj) = sgn(βj) iff y > λ

Increasing the value of the dependent variable, y, over its support, starting
at zero, it must be the case that the marginal probability effects are either
initially positive, turning negative after a certain value of the dependent vari-
able; or they are initially negative, turning positive after a certain value. One
may refer to this result as a “single-crossing” property of the Poisson model.

Depending on the question one wants to address, models allowing for more
flexible marginal probability effects may be desirable. Such models will be dis-
cussed later on, one very prominent example being the class of hurdle models
(Chap. 6.3). Generally speaking, single-index models (such as the Poisson or
negative binomial regression models) will always be restrictive, as the pattern
of marginal probability effects is fully determined by the functional form of
the underlying probability function - it cannot be modeled flexibly based on
covariates and corresponding parameter values.

More flexible models have additional parameters through which the covari-
ates (or linear combinations, or “indices” thereof) can affect the probability
function. For example, if a model has two parameters, θ1 and θ2, we may let
θ1 = g1(x′β1) and θ2 = g2(x′β2). In such models, changes of an explanatory
variable may have different effects in different parts of the outcome distribu-
tion. Also, by implication, marginal mean effects are then no longer directly
linked to marginal effects for higher order moments. For example, the effect
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of a variable on the dispersion can be determined independently of its effects
on the mean.

3.1.5 Period at Risk

Count data measure the number of times a certain event occurs during a given
time interval. The length of this interval is sometimes called “risk-period”, or
“exposure”. In the standard Poisson model, it is assumed that the risk period
is the same for all observations. Under this assumption, it can be normalized
to unity without loss of generality, and exp(x′β) is the expected value of y
per time interval (such as year, month, or week).

However, in other cases, the risk-period varies across observations. For
instance, McCullagh and Nelder (1989) analyze the number of reported dam-
age incidents by ship type. Aggregate months of service vary from 45 months
for one ship type to 44,882 months for another. Clearly, one would expect
the number of incidents to increase with aggregate months of service. In a
similar vein, Diggle, Liang and Zeger (1994) use data from a randomized ex-
periment in order to compare the number of epileptic seizures during a 8-week
pre-treatment observation period with the number of epileptic seizures dur-
ing 2-week post-treatment observation period. Finally, Barmby, Nolan and
Winkelmann (2001) analyze the number of days absent from work for a sam-
ple of workers some of whom are contracted for 4 days of work per week while
others are contracted for 5 days of work per week.

Differences in exposure need not be limited to calendar time. For instance,
Rose (1990) analyses the determinants of air-traffic incidents. In her case, the
different size of operation between the various carriers is expressed by the
number of scheduled departures per year (in thousands). Bauer et al. (1998)
are interested in the number of workplace accidents, using firm level data for
Germany. Again, one would expect that the number of accidents increases
with the size of the risk-group, here the number of workers.

The benchmark case for dealing with exposure is to assume proportionality.
In the above examples, McCullagh and Nelder (1989) model the expected
number of ship damage incidents per aggregate month of operation, while
Rose (1990) models the expected number of air-traffic incidents per 1,000
departures. If we denote the individual level of exposure by t, we can write

E(y|x)
t

= exp(x′β) (3.16)

or, equivalently,

E(y|x) = t exp(x′β)
= exp(x′β + log t) (3.17)

Thus, under proportionality, a doubling in exposure time doubles the expected
count. In the second line of (3.17), log t is sometimes referred to as “logarithmic
offset”.
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Alternatively, one might want to give the proportionality assumption free
for test. A simple possibility is to include log t as a regressor without restricting
its coefficient to unity:

E(y|x, t) = exp(x′β + γ log t) (3.18)

The restriction H0 : γ = 1 can then be tested with standard methods. Al-
ternatively, one can reparameterize using θ = γ − 1. The mean function then
reads

E(y|x, t) = exp(x′β + θ log t + log t) (3.19)

Logarithmic time of exposure is included twice, both as offset and as regressor,
and the test for proportionality now simplifies to testing H0 : θ = 0.

Yet another variant of this test exists if time of exposure can take on only
two values, t1 and t2. This case is presented in Barmby, Nolan and Winkel-
mann (2001). Define a dummy variable D = 1 if t = t1 and D = 0 if t = t2.
Then, in the regression model

E(y|x, D) = exp(x′β + δD) (3.20)

the test for proportionality to exposure reduces to H0 : δ = log(t1/t2). To
establish the equivalence, note that

log t = log t2 + (log t1 − log t2)D

Thus, under strict proportionality,

E(y|x, D) = exp(log t2 + x′β + (log t1 − log t2)D) ,

i.e., δ = log t1−log t2 = log(t1/t2) (log t2 is absorbed into the overall constant).

Endogenous Exposure Time

An interesting alternative class of models arises if the time of exposure is
endogenous. A potential source of endogeneity could be that exposure time
depends on the occurrence or non- occurrence of events. One plausible scenario
is that of a “blockage”: there is no exposure, i.e., a zero risk of occurrence or
at least of measuring an occurrence, for some given time interval following
an occurrence. An example for such a situation occurs in the modeling of
fertility: after a birth, no further birth can occur for a period of about 11
months, adding the time of pregnancy and uterine involution.

Feller (1971, p. 372) discusses a blockage time model where events are gen-
erated by a Poisson process, and after each event occurrence, a fixed bloackage
time ξ sets in. Feller shows that 1) the number of recorded events is not Poisson
distributed; and 2) that the number of recorded events is underdispersed. Such
a model would be well suited to think about the pregnancy example above.
Indeed, it is typically found that fertility data are underdispersed (Winkel-
mann and Zimmermann, 1994, see also Chap. 9.5 and the empirical fertility
distribution in Tab. 1.1)
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Alternatively, we can model the blockage duration itself as a random vari-
able. An example from labor economics would be the number of unemploy-
ment episodes. A second unemployment episode requires termination of the
first one, and hence, the time of blockage can be thought of as random.

A manageable result can be obtained under the following assumptions: Let
the events arrive according to a Poisson process, and assume that the blockage
time is independently distributed with exponential density function. Since the
Poisson process is memoryless, the waiting time from the moment where block-
age ends until the next occurrence is also exponentially distributed. Therefore,
the distribution of the interarrival time between two events is a convolution of
two exponential distributions. If we assume, admittedly unrealistically, that
both distributions share a common parameter λ, the interarrival time has a
gamma distribution with parameter α = 2 (see Chap. 2.7.3). Moreover, the
distribution of the number of events is of Erlangian type, with

f(y) = e−λ

(
λ2y

(2y)!
+

λ2y+1

(2y + 1)!

)
y = 0, 1, . . . (3.21)

(See also 2.114). Fig. 3.2 plots the mean and variance of this distribution
for 0.1 < λ < 5. As for fixed blockage, this distribution is under-dispersed.
Clearly, it would be desirable in future work to lift the restriction that the
parameters of the two exponential distributions be the same.

Fig. 3.2. Mean and Variance of Exponential Blockage Model for 0.1 < λ < 5
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3.2 Maximum Likelihood Estimation

3.2.1 Introduction

This section is concerned with the problem of estimating β, the (k×1) vector
of regression coefficients in the Poisson regression model. Most of this chapter
deals with the maximum likelihood method as it is the most common method
to estimate count data models. The maximum likelihood principle states that
the parameter should be chosen as to maximize the probability that the spec-
ified model has generated the observed sample. Numerous good econometric
references to the general principles maximum likelihood estimation are avail-
able, including Amemiya (1985) and Cramer (1986).

3.2.2 Likelihood Function and Maximization

Given an independent sample of n pairs of observations (yi, xi), the joint prob-
ability distribution of the sample is the product of the individual conditional
probability distributions:

f(y1, . . . , yn|x1, . . . , xn; β) =
n∏

i=1

f(yi|xi; β) (3.22)

Understood as a function of the parameters, (3.22) is called likelihood function,
and we write

L = L(β; y1, . . . , yn, x1, . . . , xn) (3.23)

The maximum likelihood estimator is defined as

β̂ = argmax L(β; y1, . . . , yn, x1, . . . , xn)
β

As the logarithm is a monotonic transformation, maximization of the like-
lihood function is equivalent to maximization of the logarithmic, or log-
likelihood function � = log L. In general, this transformation simplifies matters
considerably, as it replaces products by sums. Moreover, it allows the use of
the central limit theorem when studying the properties of the maximum like-
lihood estimator. The log-likelihood function for the Poisson regression model
takes the form

�(β; Y,X) = log
n∏

i=1

f(yi|xi; β)

=
n∑

i=1

log f(yi|xi; β)

=
n∑

i=1

− exp(x′
iβ) + yix

′
iβ − log(yi!) (3.24)
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The maximizing value for β, denoted as β̂, is found by computing the first
derivatives of the log-likelihood function and setting them equal to zero. In
the Poisson regression model, there are k such derivatives, with respect to β1,
β2 and so forth. The (column) vector that collects these k first derivatives is
alternatively denoted as gradient vector, or as score vector. The latter term is
used in the following. We write

sn(β; y, x) =
∂�(β; y, x)

∂β
=

n∑
i=1

[yi − exp(x′
iβ)]xi

We use the subscript “n” as a reminder that the score depends on the sample
size. The maximum likelihood estimator β̂ is the value of β that solves the
first order conditions for a maximum

sn(β̂; y, x) = 0 (3.25)

Note that as long as xi includes a constant, the first order conditions imply
that

∑n
i=1 ûi = 0, where ûi is an implicit residual defined as

ûi = yi − Ê(yi|xi) = yi − exp(x′
iβ̂)

For non-constant regressors, (3.25) can be interpreted as a set of orthogonality
conditions:

n∑
i=1

ûixj = 0, j = 2, . . . , k

Equation (3.25) gives the necessary conditions for a maximum. If, in addition,
the matrix of second derivatives, the Hessian matrix, is negative definite for all
values of β, the solution to (3.25) is called the maximum likelihood estimator.
The Hessian matrix of the Poisson log-likelihood function is given by

Hn(β; y, x) =
∂2�(β; y, x)

∂β∂β′

= −
n∑

i=1

exp(x′
iβ)xix

′
i (3.26)

Hn is negative definite, the log-likelihood function of the Poisson regression
model is globally concave, and the set of parameters solving the first-order
conditions are the unique maximum likelihood estimators.

3.2.3 Newton-Raphson Algorithm

Since (3.25) is non-linear in β, the system of k equations has to be solved
using an iterative algorithm. A common choice that works well for concave
objective functions is the Newton-Raphson method. It can be motivated as
follows. Given any initial parameter estimate, say β̂0, we can obtain a second-
order approximation of �(β) around β̂0:



3.2 Maximum Likelihood Estimation 79

�∗(β) = �(β̂0) + sn(β̂0)′(β − β̂0) +
1
2
(β − β̂0)′Hn(β̂0)(β − β̂0) ≈ �(β)

Now, we can maximize �∗(β) (rather than �(β)) with respect to β, yielding a
new parameter value which we call β̂1. The first order condition of this simpler
problem is

sn(β̂0) + Hn(β̂0)(β̂1 − β̂0) = 0

or

β̂1 = β̂0 − [Hn(β̂0)]−1sn(β̂0)

Thus, for arbitrary starting value β̂0, the Newton-Raphson updating rule is
given by

β̂t+1 = β̂t − [Hn(β̂t)]−1sn(β̂t) t = 0, 1, . . . (3.27)

where s(·) denotes the score and H(·) the Hessian of the Poisson log-likelihood
function. If we evaluate the right hand side at the maximum likelihood esti-
mator, we observe that s(β̂t) = 0 and therefore β̂t+1 = β̂t.

The iterative procedure ends when a predefined convergence criterion is
satisfied. Possible criteria include the change in the value of the estimate
β̂t+1 − β̂t, the change in the log-likelihood �(β̂t+1)− �(β̂t), or the value of the
score at the estimate s(β̂t). Convergence occurs when any of these values, or
a combination of them, are close to zero (say, smaller than 10−5 in absolute
value).

Numerical Derivatives

The algorithm presented in (3.27) could be based on analytical first and sec-
ond derivatives of the log-likelihood function. A common alternative is the use
of numerical derivatives. Numerical derivatives are the preferred option when-
ever analytical derivatives are difficult to establish. But even in cases such as
the Poisson regression model, where the derivation of score and Hessian is
relatively simple, numerical derivatives may lower the risk of programming
errors. A downside is that numerical derivatives are considerably more time
consuming. However, progress in computing speed has reduced the impor-
tance of this limitation, unless data sets and the number of parameters are
very large (for instance, calculation time for a numerical Hessian is a quadratic
function of the size of the matrix).

The standard formulas for numerical derivatives are [f(bi +hi)− f(bi)]/hi

if forward calculation is chosen, or [f(bi + hi/2)− f(bi − hi/2)]/hi if centered
calculation is used. Methods differ in the way they determine hi. For instance,
StataCorp. (1997) uses an algorithm where hi is selected such that ε1(|f(bi)|+
ε1) ≤ |f(bi + h) − f(bi)| ≤ ε2(|f(bi)| + ε2) for ε1 < ε2.
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3.2.4 Properties of the Maximum Likelihood Estimator

The maximum likelihood estimator β̂ = argmax L(β) is in general a non-
linear function of the dependent variable. Therefore, analytical results on the
small sample properties of the sampling distribution of β̂ are unavailable.
Provided a number of regularity conditions are satisfied, it can be shown that
the maximum likelihood estimator is:

• asymptotically unbiased
• asymptotically normal
• asymptotically efficient

These three observations are summarized in the following convergence re-
sult (see Cramer, 1986, Amemiya, 1985):

√
n(β̂ML − β0)

d→ N
(
0, I(β0)−1

)
(3.28)

where d→ stands for “converges in distribution”, and where the Fisher infor-
mation matrix I(β0) equals minus the expected value of the Hessian matrix
of an observation evaluated at the true parameter vector β0:

I(β0) = −E
[
∂2�(β; yi, xi)

∂β∂β′

]
β0

(3.29)

The maximum likelihood estimator is asymptotically unbiased (and, because
of mean squared error convergence, consistent) since the distribution it con-
verges to is centered at the true parameter value β0. It is asymptotically
efficient, since its variance is equal to the inverse of the Fisher information,
the Cramér-Rao lower bound for any unbiased estimator.

While these asymptotic properties in a strict sense only hold in the limit of
infinite sample size, in practice they are often assumed to be approximately
valid, especially when the sample size is not that small. The approximate
distribution of β̂ is then given by

β̂ML
app∼ N(β0, [nI(β0)]−1) (3.30)

This result requires, in general, that the model is correctly specified. Let the
true (conditional) density be denoted as f0(yi|xi). There must exist a β0 such
that

n∏
i=1

f(yi|xi; β0) =
n∏

i=1

f0(yi|xi) (3.31)

Properties of maximum likelihood estimation in misspecified models are dis-
cussed in the next section. Apart from correct specification, some further
regularity conditions are required, essentially in order to ensure that the op-
erations of differentiation and taking expectations can be interchanged. The
first and second derivatives of the log-likelihood function must be defined, and
the Fisher information matrix must be non-zero (see, for instance, Cramer,
1986, for further details).
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Sketch of a Proof

The main steps of a proof are as follows. As starting point, consider a first-
order Taylor series approximation of sn(β̂) around the true parameter vector
β0:

sn(β̂n) ≈ sn(β0) + Hn(β0)(β̂n − β0)

Since sn(β̂n) is zero by definition of a maximum likelihood estimator, we have

β̂n − β0 ≈ −Hn(β0)−1sn(β0)

or

√
n(β̂n − β0) ≈

(
− 1

n
Hn(β0)

)−1 1√
n

sn(β0)

Now on one hand,

− 1
n

Hn(β0) = − 1
n

n∑
i=1

Hi(β0)

converges almost surely to its first moment by the law of large numbers:

lim
n→∞− 1

n

n∑
i=1

Hi(β0) = −E(H(β0)) = I(β0)

On the other hand

1√
n

sn(β0) =
1√
n

n∑
i=1

[
∂ log f(yi|xi; β)

∂β

]
β0

=
1√
n

n∑
i=1

si(β0)

converges in distribution to a Normal distribution

N(0, I(β0))

by the Central Limit Theorem. The variance of the limit distribution follows
from the information matrix equality,

Var(s(β0)) = −E(H(β0) = I(β0)

Premultiplying by I(β0)−1, we obtain

√
n(β̂n − β0) ≈

(
− 1

n
Hn(β0)

)−1 1√
n

sn(β0)
d→ N(0, I(β0)−1)

which was to be shown (see 3.28).



82 3 Poisson Regression

3.2.5 Estimation of the Variance Matrix

For the purpose of inference, we will need to compute Var(β̂) = [nI(β0)]−1,
where I(β0) depends on the unknown β0. While Var(β̂) is thus unknown in
principle, we can base inference on an estimated variance matrix. There are a
number of consistent, and thus asymptotically equivalent, estimators. All of
them rely on replacing the unknown β0 by the consistent maximum likelihood
estimator estimator β̂.

The expected Hessian matrix can be computed in principle, which would
lead to the first possible variance estimator

V̂ar(β̂)1 = −[EHn(β̂)]−1

It is almost always the case, however, that the Hessian matrix is a highly
nonlinear function of x and y, making it practically impossible to take expec-
tations in all but the most trivial cases (the constant only model below is one
such example). Similarily, straight calculation of the variance of the score is
likely to fail.

More importantly, in conditional probability models, we do not even spec-
ify the marginal distribution of x, so that the unconditional expectation can-
not be taken. In practice, therefore, we need to estimate the information ma-
trix by using sample means rather than expectations, which is straigtforward
to do. With ̂I(β0) = −n−1Hn(β̂), we obtain

V̂ar(β̂)2 = −[Hn(β̂)]−1

Based on the sample variance of the score (the summed outer product of the
score), and thus exploiting the information matrix equality, we obtain

V̂ar(β̂)3 =

[
n∑

i=1

si(β̂)si(β̂)′
]−1

Example: Constant-Only Poisson Model

If the only regressor is a constant, we find that

sn =
n∑

i=1

−1 +
yi

λ

Hn =
n∑

i=1

− yi

λ2

From the first order condition the ML estimator is given by λ̂ = ȳ. In this
case, the ML estimator coincides with least squares and method of moments
estimators. The approximate distribution of the ML estimator in the constant-
only Poisson model is
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λ̂ML
app∼ N

(
β0, V̂ar(λ̂ML)

)
(3.32)

where V̂ar(β̂ML) = [n ̂I(β0)]−1 can computed by either of the three methods.

Expected Hessian.

V̂ar1(λ̂) =
[
−nE

[ yi

λ2

]
λ̂

]−1

=
λ̂

n

Actual Hessian.

V̂ar2(λ̂) = −
[

n∑
i=1

− yi

λ2

]−1

λ̂

=
[∑n

i=1 yi

λ2

]−1

λ̂

=
λ̂

n

Outer Product of Score.

V̂ar3(λ̂) =

[
n∑

i=1

(yi

λ
− 1

)2
]−1

λ̂

=

[
n∑

i=1

(yi − λ)2

λ2

]−1

λ̂

=
λ̂2

nV̂ar(y)

Thus, the first two methods yield exactly the same variance estimators.
The estimator based on the third method is different. However, it is asymp-
totically equivalent as long the model is correctly specified, since Var(y) = λ
in this case. In general, these results are not surprising, since we know that
for i.i.d. sampling from any distribution ȳ

app∼ N(E(y), Var(y)/n).
For the constant-only model, it is also simple to compute the exact variance

of the score (rather than its estimate, as in the outer product of the score
formula), using again the fact that it is the case under the Poisson assumption
that Var(yi) = E(yi) = λ, and therefore

V̂ar4(λ̂) =

[
Var

n∑
i=1

(yi

λ
− 1

)]−1

=
[
nVar(yi)

λ2

]−1

λ̂

=
λ̂

n

a manifestation of the information matrix equality.
As we will see in the next Chapter 3.3 on pseudo-maximum likelihood, a

violation of the information matrix equality is a key feature of misspecified
maximum likelihood estimators, and in this case, none of the four covariance
matrix estimators discussed here is valid.

3.2.6 Approximate Distribution of the Poisson Regression
Coefficients

Returning to the case of a correctly specified Poisson model, the above results
easily extend to the regression case with explanatory variables. As before

β̂
app∼ N

(
β0, [nI(β0)]−1

)
(3.33)

but in this case

I(β0) = −E(H(β0)) = E [exp(x′β0)xx′]
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Iterating expectations, we can write

E [exp(x′β0)xx′] = ExEy|x [exp(x′β0)xx′] = Ex [exp(x′β0)xx′]

since the Hessian does not depend on y. A natural estimator for the Fisher
information is therefore

̂I(β0) =
1
n

n∑
i=1

exp(x′
iβ̂)xix

′
i

where the unknown true parameter β0 has been replaced by the consistent
estimator β̂, leading to the variance estimator

V̂ar1(β̂) =

[
n∑

i=1

exp(x′
iβ̂)xix

′
i

]−1

(3.34)

Similarly, one could estimate the variance of β̂ by summing over the outer
product of the score

V̂ar2(β̂) =

[
n∑

i=1

(yi − exp(x′
iβ̂))2xix

′
i

]−1

(3.35)

In finite samples, V̂ar1 and V̂ar2 generally differ. Asymptotically, the two are
the same provided the model is correctly specified because then Var(yi|xi) =
E(yi − exp(x′

iβ0)|x)2 and E(yi|xi) = exp(x′
iβ0) are the same.

3.2.7 Bias Reduction Techniques

“The few finite sample corrections that have been proposed remain
extensively ignored by empiricists (...)” (Maasoumi, 1992, p. 2)

While the above statement by Maasoumi (1992) may be still valid, this
should not prevent us from at least pointing to the problem and discussing
some of the solution concepts that have been proposed in the literature. The
problem is that the maximum likelihood technique, while providing a con-
sistent estimator of the model parameters (if based on a correctly specified
model), does not provide an unbiased estimator. For large n the probability
of the estimates being ‘close’ to the true value gets larger and larger, but in
small samples, there can be a bias of arbitrary magnitude. . In general, small
sample bias arises because the score function s(β) is (in most cases) non-linear
in β.

This section is concerned with one part of that bias, the so-called first order
bias that is at most of order O(n−1), i.e. n×bias is bounded in probability for
n → ∞. We discuss methods that remove such bias. To understand the line
of the argument, recall some basic theoretical properties of the score vector:
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1. The score s(β) is a random variable, since it depends on y. It was shown
before that

E(s(β))|β=β0 = 0

where β0 is the true parameter.

2. In an identified model, the log likelihood function is concave at the true
parameter value, i.e., ∂s(β)/∂β′ is negative definite. Let sj(β) denote
the j-th element of the score vector. Then it must be the case that
∂sj(β)/∂βj < 0.

3. The score function can be linear (∂2sj(β)/(∂βk)2 = 0 for all j, k), convex
(∂2sj(β)/(∂βk)2 > 0 for some j, k), or concave (∂2sj(β)/(∂βk)2 < 0 for
some j, k).

If s(β) is non-linear in β then, for finite n,

• E(β̂) ≥ β0 if s(β) is convex, and
• E(β̂) ≤ β0 if s(β) is concave ,

where β̂ denotes the value that solves the equation s(β) = 0, i.e., β̂ is the
maximum likelihood estimator, and where equality only holds in the limit, as
the sample size approaches infinity.

As an illustration for these small sample biases, consider the following
example, a Poisson model with single parameter λ = exp(β). The goal is to
estimate β. For a sample of n independent observations, the score function is
given by

s(β) = −n exp(β) +
n∑

i=1

yi (3.36)

Moreover, the score function is concave, since The expected score at β = β0

is zero, as it should, since

E[s(β0)] = −n exp(β0) + E

[
n∑

i=1

yi

]
= −n exp(β0) + n exp(β0) = 0

∂2s(β)/(∂β)2 = −n exp(β) < 0. Solving (3.36) for β, we obtain the maximum
likelihood estimator

β̂ = log ȳ

where ȳ is the sample mean of the data. From Jensen’s inequality, we know
that

E[β̂] = E[log ȳ] ≤ log E[ȳ] = β0

which was to be shown. In finite samples, the maximum likelihood estimator
for β0 in this model is downward biased. The bias disappears asymptotically
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– the maximum likelihood estimator is consistent – because it depends on a
positive variance of ȳ, which goes to zero at rate 1/n. Note that the small
sample properties depend on the parameterization. By parameterizing the
mean directly as λ = β, a linear score function is obtained, and the estimator
is unbiased.

Unfortunately, such a re-parametrization is only possible in the simple
Poisson model without regressors. The score of the Poisson regression model
with regressors is in general inherently non-linear

s(β) =
n∑

i=1

(yi − exp(x′
iβ))xi

and the Poisson maximum likelihood estimator is therefore biased in finite
samples. Whether the score function is convex or concave depends on the
values of x. This section discusses a method that removes the first order bias
b(β) from the Poisson estimates. The first order bias may implicitly be defined
as

E(β̂ − β) = b(β) + O(n−2)

where O(n−2) denotes terms that are at most of order in probability n−2, i.e.
converge to zero at rate nδ where δ > −2. The first order bias b(β) has to
be calculated depending on the model under investigation. Assume that this
has been done. Then, there are two approaches for removing the first order
bias from the maximum likelihood estimator. First, β̂ may be calculated as
usual, and the bias is subtracted after estimation (see, for instance, McCullagh
and Nelder, 1989, Chap. 15.2). Alternatively, the bias may be removed by
artificially introducing a bias in the score equation (Firth, 1992). Consider
the following modified score equation:

s∗(β) = s(β) − I(β)b(β) (3.37)

where I is the Fisher information. Taking roots of s∗(β), instead of s(β), yields
an estimator β∗. In general, unless b(β) = 0, this estimator is not equal to the
maximum likelihood estimator β̂. First note that from (3.37)

s∗(β̂) = −I(β̂)b(β̂) (3.38)

Expanding s∗ around β̂ and evaluating at β = β∗ yields:

s∗(β∗) ≈ s∗(β̂) + H∗(β̂)(β∗ − β̂)

But the left hand side is zero by definition. Further, H∗(β) = −I(β)+O(n−1).
Finally, using (3.38)

−I(β̂)b(β̂) − I(β̂)(β∗ − β̂) ≈ 0

or
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β∗ ≈ β̂ − b(β̂)

Thus, introducing a weighted first order bias term in the score function gives
bias corrected roots, i.e., bias corrected estimates.

Firth (1992) shows that, for the log-linear Poisson model, the bias-
corrected score can be written as

s∗(β; y, x) =
n∑

i=1

(yi + hi/2 − exp(x′
iβ))x′

i (3.39)

where hi is the i-th diagonal element of the matrix H = WX(X ′WX)−1X ′,
W is an (n × n) matrix having the individual variances on its main diagonal
and zeros elsewhere, and X is the (n × k) matrix of regressors.

The following Monte Carlo experiments illustrate the existence, and the
consequences of the removal of the first order bias. Four different sample sizes
were considered (n = 10, 20, 50, and 100). For each sample size, 1000 vectors
of y were drawn from a Poisson distribution with fixed mean-vector λ. λ was
constructed as λi = −1+xi, where xi are independent drawings from a normal
distribution with mean 0 and variance 4. The true slope coefficient, on which
the discussion will focus, is thus β0 = 1. For each of the 4 × 1000 datasets,
a Poisson regression with and without bias correction was performed. Some
characteristics of the empirical distributions of β̂ and β∗ are given in Tab. 3.1
Except for n=100, the mean of β∗ is closer to the true value than the mean
of the MLE β̂. Always, the maximal deviations from the true value in both
directions are smaller for β∗. The bias corrected estimator has also a smaller
standard error. Thus, the Monte Carlo evidence suggests that using the bias
reduction provides some gain in bias reduction as well as in precision, in
particular when the sample size is moderate. The dependence of the effect of
the correction on sample size does not come as a surprise, since we know that
the Poisson maximum likelihood estimator is consistent in this set-up.

3.3 Pseudo-Maximum Likelihood

White (1982) considers a situation where the model is not correctly specified:
There exists no β such that

n∑
i=1

log[f(yi|xi, β)] =
n∑

i=1

log[f0(yi|xi)] (3.40)

where f is the specified conditional density and f0(y|x) is the true conditional
density. Obtaining parameter estimates by maximizing a misspecified log-
likelihood

�(β; y, x) =
n∑

i=1

log[f(yi|xi, β)]
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Table 3.1. Bias Reduced Poisson Estimates

ML-Poisson Bias Reduced

Estimates β̂ Estimates β∗

n=10 Mean 1.0290 1.0029
Standard Error 0.2333 0.2222
Minimum 0.4027 0.3815
Maximum 2.4715 2.1479

n=20 Mean 1.0357 1.0062
Standard Error 0.1712 0.1578
Minimum 0.6158 0.6069
Maximum 1.7512 1.6238

n=50 Mean 1.0022 0.9996
Standard Error 0.0601 0.0598
Minimum 0.8366 0.8349
Maximum 1.2251 1.2212

n=100 Mean 0.9984 0.9960
Standard Error 0.0487 0.0483
Minimum 0.8062 0.8050
Maximum 1.1515 1.1475

is a method that is conventionally referred to as quasi maximum likelihood
estimation (QML).

The consequences of misspecification can be best stated considering the
asymptotic distribution of a quasi maximum likelihood estimator (QMLE).
Under the assumption of independent sampling, the QMLE has in fact a well
defined limiting distribution given by (See White, 1982)

√
n(β̃ − β∗) d→ N(0, I−1J I−1) (3.41)

The quasi maximum likelihood estimator β̃ is a consistent estimator for a
pseudo-true value β∗, where β∗ minimizes the Kullback-distance between the
specified model and the true model:

K{f0(y|x), f(y|x; β)} = E0

[
log

f0(y|x)
f(y|x; β)

]
(3.42)

The asymptotic covariance is given by I−1J I−1, where I is minus the expected
Hessian of an observation, as before,

I = −E(H(β0))

and J is the variance of the score,
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J = Var(s(β0))

If the model is correctly specified, β∗ = β0 and I = J . Thus, the limiting
distribution of the QML collapses to the limiting distribution of the maximum
likelihood estimator with covariance matrix I−1 = J−1.

Under misspecification, little can be said about the relationship between
the QMLE β̃ and the maximum likelihood estimator β̂. The two main cri-
teria for ‘good’ estimators are consistency and efficiency. The QMLE is in
general inconsistent (for β0) and inefficient. However, Gourieroux, Monfort
and Trognon (1984a) give a condition under which β̃

p→ β0. It refers to the
special case, where the mean is correctly specified, i.e., there exists a β = β0

such that

µ(β0, x) = µ0(x),

it holds that β is first order identifiable, i.e., µ(x, β) = µ(x, β0) ∀x implies
that β = β0, and the quasi-likelihood function f is a member of the linear
exponential family. Gourieroux, Monfort and Trognon (1984a) refer to this
situation as pseudo maximum likelihood estimation (PMLE). They show that
a quasi maximum likelihood estimator is consistent for β0 if and only if the
distribution family of the estimated model is a linear exponential family (and
thus QML=PML).

3.3.1 Linear Exponential Families

Linear exponential families can be written in the form

f(y, m) = exp{A(m) + B(y) + C(m)y}
where m is the mean of the distribution. For example, the Poisson distribution
is a linear exponential family with A(m) = −m, B(y) = − log y!, and C(m) =
log(m). Similarly, the normal distribution is a linear exponential family, since
we can write

exp

{
−1

2

(
y − m

σ

)2
}

= exp
{
−1

2
y2

σ2
+

y m

σ
− m2

σ2

}
Linear exponential families have the property that

∂A(m)
∂m

+
∂C(m)

∂m
m = 0 (3.43)

which implies that

m = −∂A(m)/∂m

∂C(m)/∂m
(3.44)

This property follows from differentiation of the identity (in the case of a
discrete random variable, we would need to replace the integral by an appro-
priately defined sum)
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f(y, m)dy = 1

with respect to m, yielding

d

dm

∫
f(y, m)dy = 0

We can change the order of differentiation and integration and therefore re-
write the left side of the equation as∫

d log f(y, m)
dm

f(y, m)dy =
∫ (

∂A(m)
∂m

+
∂C(m)

∂m
y

)
f(y,m)dy

= E
(

∂A(m)
∂m

+
∂C(m)

∂m
y

)
=

∂A(m)
∂m

+
∂C(m)

∂m
m

which establishes property (3.43).
Now, the log likelihood of an observation from a linear exponential family

is

log f(y,m) = A(m) + B(y) + C(m)y

with score function
∂ log f(y, m)

∂m
=

∂A(m)
∂m

+
∂C(m)

∂m
y

which we can rewrite as
∂C(m)

∂m

(
∂A(m)/∂m

∂C(m)/∂m
+ y

)
=

∂C(m)
∂m

(y − m)

where we have used relationship (3.44). Thus, the standard result that the
expected score is equal to zero is, for linear exponential families, equivalent to
saying that E(y) = m. Since, when estimating m using maximum likelihood,
the actual score converges against the expected score, the MLE is consistent
provided the mean is correctly specified. Correct specification becomes an
issue as soon as m is parameterized in terms of regressors, for instance when
m(x) = exp(x′β).

3.3.2 Biased Poisson Maximum Likelihood Inference

Since the Poisson distribution is a linear exponential family, we can conclude
that the maximum likelihood estimator β̂ is consistent as long as the condi-
tional expectation is correctly specified, regardless of whether or not the true
data generating process is really a Poisson distribution. If it is not – if there
are departures from the Poisson specification in higher order moments – the
estimator is the Pseudo Maximum Likelihood estimator.
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The leading cause of departure from the Poisson assumption is overdisper-
sion, a conditional variance that exceeds the conditional mean. If such overdis-
persion is present then, according to the Gourieroux, Monfort and Trognon
(1984a) result, one can continue using the Poisson model, but one should base
inference on the asymptotic PML variance matrix

n−1I−1JI−1

= n−1E [exp(x′β0)xx′]−1 E
[
(y − exp(x′β0))2xx′]E [exp(x′β0)xx′]−1

rather than the asymptotic ML variance matrix

n−1I−1 = n−1E [exp(x′β0)xx′]−1

In other words, using the Poisson regression model for a non-Poisson popula-
tion estimates the right parameter values, on average (consistency) but gets
the inference wrong. Conventional Wald tests do not have the right size.

Interestingly, the direction of the bias can be established in some cases, as
there is a direct connection between the departure from equidispersion, i.e.,
overdispersion or underdispersion, and the direction of bias when erroneously
using the Poisson ML variance matrix. In order to compute the direction of
the bias, we need to establish the matrix difference

I−1 − I−1JI−1 = I−1(I − J)I−1

But I − J is readily obtained as

I − J = E [exp(x′β0)xx′] − E
[
(y − exp(x′β0))2xx′]

= Ex[E(y|x)xx′] − Ex[Var(y|x)xx′] = Ex[(E(y|x) − Var(y|x))xx′]

This means that if E(y|x) < Var(y|x) (overdispersion), the difference is nega-
tive, in a matrix sense, and we know therefore, that the ML variance matrix is
smaller than the PML variance matrix, which, in this case, is the correct one.
In other words, ignoring overdispersion and applying the standard variance
estimator under the maximum likelihood assumption leads to an underesti-
mation of the true standard errors. Spurious inference may result, as t-values
will tend to be inflated. The opposite situation arises with underdispersion, a
conditional variance smaller than the conditional mean. In this case, the ML
variance matrix overestimates the true variance matrix, and t-values will tend
to be too small.

3.3.3 Robust Poisson Regression

Of course, the problem can be easily avoided by applying PML standard errors
that will lead to asymptotically valid inference. The merits of this “method”,
using the Poisson regression model together with the sandwich variance esti-
mator are clear. As long as we are confident about the validity of our mean
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function, we can remain largely agnostic with respect to higher order mo-
ments, apply Poisson regression, and obtain consistent parameter estimates
as well as valid inference, at least for large enough samples.

In this section, the implications of the PML result are explored in the
context of the Poisson regression model. PML estimation exploits the fact
that, as the Poisson distribution is a linear exponential family, departure from
the standard variance function does not affect consistency of the parameter
estimates as long as the mean is correctly specified. The only effect of a mis-
specified variance function is then that the estimated variance matrix under
the maximum likelihood assumption is “wrong” and has to be adjusted.

The approximate distribution of the Poisson PMLE in large but finite
sample is

β̂
app∼ N

(
β0, V̂ar(β̂)

)
(3.45)

where

V̂ar(β̂) =

[
n∑

i=1

xix
′
i exp(x′

iβ̂)

]−1 n∑
i=1

xix
′
iV̂ar(yi|xi)

[
n∑

i=1

xix
′
i exp(x′

iβ)

]−1

and the population expressions E(yi|xi) and Var(yi|xi) have been replaced
by their sample equivalents. As indicated above, pseudo-maximum likelihood
estimation, or robust Poisson regression leads to consistent estimation of both
parameters as well as standard errors.

The gist of this approach is very much like the use of Huber-White stan-
dard errors in the linear model. Here as there, the problem of heteroskedas-
ticity, a violation of one of the standard assumptions of the linear model, calls
for either one of two responses. We can either rely on consistent estimation of
the regression coefficients and try to adjust the covariance matrix in order to
obtain valid inference. This is the robust regression approach discussed here.
Or we can attempt to model the heteroskedasticity directly in an attempt to
use all information in the data efficiently, and thus obtain a more efficient
estimator. In the linear model, this leads to the method of Generalized Least
Squares. In both cases, there is a price to pay for attempting efficient estima-
tion, namely the potential loss of consistency. Herein lies the general appeal
of robust estimation strategies.

An implementation issue unanswered so far is the question how to estimate
V̂ar(yi|xi; β̂) in (3.45). The most obvious approach, corresponding to the outer
product of the score formula, would use

V̂ar(yi|xi; β̂) = (yi − exp(x′
iβ̂))2

This is a direct application of the White (1982) result, see also Breslow (1990).
There have been some alternative proposals in the literature that put more

structure on the variance function. For example, if we are willing to assume
that the conditional variance is a linear function of the conditional mean, such
that (McCullagh and Nelder, 1989)
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V̂ar(yi|xi; β̂) = σ̂2 exp(x′
iβ̂) ,

the estimated variance matrix of β̂ thus simplifies to

V̂ar(β̂) = σ̂2

[
n∑

i=1

xix
′
iλ̂i

]−1

where σ̂2 can be estimated using the moment estimator:

σ̂2 =
1

n − k

n∑
i=1

(yi − λ̂i)2

λ̂i

If, on the other hand, one believes in a quadratic variance function (Gourier-
oux, Monfort and Trognon, 1984b)

V̂ar(yi|xi; β̂) = λ̂i + σ̂2λ̂2
i

an estimate for σ2 can be obtained by the auxiliary regression (See also
Cameron and Trivedi, 1990):

(yi − λ̂i)2 − λ̂i = σ2λ̂2
i + vi

This regression yields a strongly consistent estimator for σ2.

A cautionary remark applies to the third assumption of a quadratic vari-
ance function. While for the first two assumptions, PML estimation based
on the Poisson distribution uses the available information efficiently, this is
not the case for the third. Gourieroux, Monfort and Trognon (1984b) show
that incorporating this information on the variance into the estimation pro-
vides a gain in efficiency, and they call this procedure quasi-generalized pseudo
maximum likelihood estimation (QGPML). In the special case, where the true
density is itself a member of a linear exponential family (which is fully char-
acterized by its first two moments), QGPML estimation is asymptotically
equivalent to ML estimation and hence fully efficient.

Monte Carlo Study

Given the three different estimators for a robust variance covariance matrix of
β̂, a Monte Carlo study might give some indication on whether they provide a
substantial gain as compared to the use of the conventional Poisson-variance
matrix. We also study, whether the three estimators lead to substantially
different results and whether the validity of inference is robust with respect to
the choice of a particular assumption. The latter finding would increase the
overall confidence in Robust Poisson regression since otherwise one would need
to rely, for example, on pre-tests to justify the particular variance assumption.

There have been a number of previous Monte Carlo studies to evaluate
the finite sample properties of the Poisson regression model with adjusted
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covariance matrix estimator. Examples are Winkelmann and Zimmermann
(1992a), Brännäs (1992a) and Bourlange and Doz (1988). The earlier results
are extended by including an investigation of the performance of the variance
estimator appropriate under the assumption of a quadratic variance function.

The design of the study is as follows: Firstly, random samples of count
data with different degrees of overdispersion are drawn. Then, PMLE’s are
obtained based on the Poisson regression model. This procedure is repeated
1000 times. The sampling distribution of the PMLE over the 1000 replications
can be investigated.

Simulating random counts with equidispersion proceeded as follows: A
linear predictor is modeled as

η = −1 + x

where x is a (n × 1) vector of standard uniform random numbers. Thus,
the true parameter vector is β0 =(-1,1)’. The predictor is kept fixed over
replications as we are interested in the conditional distribution of yi given λi,
where λi = exp(ηi) and i = 1, . . . , n. Pseudo-random Poisson numbers are
obtained with an algorithm described in Knuth (1969).

To obtain random counts with overdispersion, a stochastic expected value
is introduced: λ̃i = exp(ηi + εi) = λiui. εi are independent random normal
numbers with constant variance σ2

ε and mean µε = −0.5 σ2
ε . Thus ui = exp(εi)

has mean E(u) = 1 and variance σ2
u = exp(σ2

ε)−1. The conditional variance of
the Poisson-log-normal model is given by Var(yi|xi) = λi + σ2

uλ2
i . The degree

of overdispersion depends on σ2
ε which is chosen in a way as to yield the values

0.2, 1.0 and 5.0 for σ2
u. In this way, the experiments cover a range from modest

to substantial overdispersion.
In order to study the impact of increasing sample size on the quality of

the approximation for three degrees of overdispersion, the experiments were
conducted for samples of size 100 and 1000, respectively. The results are given
in Tab. 3.2 and Tab. 3.3. For both sample sizes the mean and standard errors
of the slope coefficient β̂1 are given. Furthermore, the empirical size for a
two-sided asymptotic t-test under two alternative nominal significance levels
are reported. The t-values were calculated in four different ways, following
the different possible assumptions discussed above: V̂arpsn is based on the
assumption of a correctly specified model. V̂arWhite allows for all kinds of
misspecification, while V̂arlvf and V̂arqvf are based on specific violations of
the variance assumption. In the former case, the variance is a linear function
of the expected value, while in the latter case, it is assumed to be a quadratic
function (this, incidentally, is the ‘true’ model).

In interpreting the results, the focus is on consistency and valid inference.
For n = 100, the deviation of the mean of the estimated coefficient β̂1 from
its true value 1.0 is only in the second decimal place. For n = 1000, the
deviation reduces to the third decimal place. For both sample sizes, this holds
independently of the magnitude of overdispersion. The sample standard error
increases with increasing overdispersion, and decreases strongly with sample
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size. These results confirm that the Poisson model yields consistent parameter
estimates also in the presence of overdispersion.

A very different conclusion has to be drawn from the estimated standard
errors. The empirical size of the test can be compared to its nominal size,
i.e., the significance level of the test. If the empirical size exceeds the nominal
size by an amount that is beyond the sampling variation expected from 1000
replications, it indicates an underestimation of the standard errors. And in
fact, the test based on the Poisson variance estimator systematically overstates
the nominal size. Not surprisingly, the underestimation of the true standard
errors is the more severe, the larger the overdispersion. In the case of slight
overdispersion, the asymptotic t-test for the smaller sample leads to type-I
errors that are around 25% higher than the significance levels α = 0.05, 0.10.
For σ2

u = 1 and n = 100, the effective type-I error is already two times higher
than the significance level α = 0.05. For σ2

u = 5, the underestimation of the
standard errors further increases. As expected, the bias does not improve with
increased sample size.

Given the poor performance of the Poisson standard errors, the three al-
ternative ways to calculate robust standard errors offer a clear improvement.
For the larger sample, the nominal size of the test is closely realized even
in the case of extreme overdispersion. The observed Poisson type-I error of
40.8% is reduced to 12.5% (V̂arWhite), 10.9% (V̂arlvf ), and 11.4% (V̂arqvf ),
respectively. Also in the small sample the performance of the three robust test
procedures is much better than the one based on Poisson standard errors for
σ2

u = 1 and σ2
u = 5 and is comparable to the performance of the test based on

Poisson standard errors for σ2
u = 0.2.

These experiments demonstrate how misleading the use of Poisson stan-
dard errors can be in the presence of overdispersion, and how well the robust
standard errors perform already in a medium sized sample. Not surprisingly,
they also indicate a slight superiority of the t-test based on the assumption of
a quadratic variance function (which is the correct one) which realizes closest
the nominal size of the test in most, though not in all, of the experiments.

3.3.4 Non-Parametric Variance Estimation

Delgado and Kniesner (1997) propose an estimation method for a Poisson
model with variance of unknown form that relies on generalized least squares
using non-parametric estimation of the conditional variance. In particular,
assume that yi is distributed with mean E(yi|xi) = exp(x′

iβ) and conditional
variance

σ2
i = Var(yi|xi) (3.46)

of unspecified functional form. The conditional variances can be estimated
non-parametrically as
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Table 3.2. Simulation Study for Poisson-PMLE: n=100

σ2
u = 0.2 σ2

u = 1 σ2
u = 5

Mean β̂1 1.0282 0.9900 1.0351

Std. Deviation β̂1 0.4997 0.5606 0.9045

V̂arpsn V̂arWhite V̂arlvf V̂arqvf

σ2
u = 0.2

t-test (α = 0.10) 0.135 0.118 0.110 0.108
t-test (α = 0.05) 0.058 0.066 0.049 0.056
σ2

u = 1
t-test (α = 0.10) 0.184 0.103 0.085 0.126
t-test (α = 0.05) 0.105 0.055 0.044 0.064
σ2

u = 5
t-test (α = 0.10) 0.342 0.150 0.125 0.121
t-test (α = 0.05) 0.272 0.087 0.069 0.064

Table 3.3. Simulation Study for Poisson-PMLE: n=1000

σ2
u = 0.2 σ2

u = 1 σ2
u = 5

Mean β̂1 0.9947 0.9953 0.9975

Std. Deviation β̂1 0.1507 0.1754 0.2927

V̂arpsn V̂arWhite V̂arlvf V̂arqvf

σ2
u = 0.2

t-test (α = 0.10) 0.116 0.095 0.087 0.101
t-test (α = 0.05) 0.057 0.043 0.045 0.048
σ2

u = 1
t-test (α = 0.10) 0.171 0.087 0.085 0.102
t-test (α = 0.05) 0.103 0.045 0.039 0.048
σ2

u = 5
t-test (α = 0.10) 0.408 0.125 0.109 0.114
t-test (α = 0.05) 0.323 0.065 0.055 0.058

σ̂2
i =

k∑
j=1

(yj − exp(x′
j β̃))2wij (3.47)

where β̃ is a root-n consistent estimator (for instance the Poisson PMLE), and
wij are non-parametric k nearest neighbors probabilistic weights (see Delgado
and Kniesner, 1997, for further details).

The semiparametric weighted least squares estimator β0 is then obtained
as a solution to
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n∑
i=1

(yi − exp(x′
iβ)) exp(x′

iβ)xi

σ̂2
i

= 0 (3.48)

Delgado and Kniesner (1997) show that this estimator reaches the semipara-
metric efficiency bound, and state conditions for asymptotic normality. The
model is applied to the number of work absence days in a sample of Lon-
don Bus conductors and drivers during the early eighties. Robustness checks
show that parameter estimates are sensitive to the choice of regressors but
insensitive to the adopted econometric technique, including how the variance
function is specified.

3.3.5 Poisson Regression and Log-Linear Models

Poisson pseudo maximum likelihood estimates the parameters of a correctly
specified log-linear mean function consistently, even if higher order moment
restrictions of the Poisson model do not hold. Most importantly, no assump-
tions on the variance function are required. Therefore, any process with mean
function

E(y|x) = exp(x′β) (3.49)

can be estimated consistently using the Poisson regression model. In particu-
lar, y does not need to be an integer, but it can be a non-negative continuous
variable as well, and there may be great advantages of actually using the
Poisson model in such instances, as pointed out by Santos Silva and Tenreyro
(2006).

Traditionally, the recommendation has been to estimate multiplicative
models with non-negative continuous dependent variables after taking log-
arithms. For example, if we write the regression model with multiplicative
error as

y = exp(x′β)η (3.50)

then

log y = x′β + log η (3.51)

A typical example is the Mincerian log-linear wage equation. There are two
problems with this approach. First, it requires the dependent variable to be
strictly positive. This may not be a problem, if the linearization is applied to
wages of workers. In other applications, such as Cobb-Douglas type gravity
models in trade, however, zero trade volumes between two countries are not
unusual. While this problem is obvious, and can be dealt with in an ad-hoc
manner, for example by adding a small constant, a second problem is more
hidden but at least equally pernicious.

The mean function (3.49) implies that E(η|x) = 1 in (3.50). But in the
linearized version, E(log η|x) is constant only if η is statistically independent
of the regressors. If the variance (or higher order moments) of η depends on
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x, the expected value of log η will also depend on the regressors. In this case,
the linearized version (3.51) suffers from endogeneity, and estimation by OLS
will provide inconsistent estimates of the semi-elasticities in (3.50).

To repeat the point, a necessary condition for OLS of the linearized model
to be consistent is that η, and therefore log η, is homoskedastic. A neces-
sary and sufficient condition for consistency is that η, and therefore log η, is
statistically independent of x. Under independence, it follows that

Var(y|x) = [exp(x′β)]2Var(η|x) ∝ [E(y|x)]2

which may or may not be true. While the variance of a non-negative variable
must go to zero as the mean passes to zero, there is no a-priori or theoretical
reason to assume that Var(y|x) should be proportional to [E(y|x)]2.

In summary, it appears undesirable to use an estimator for the semi-
elasticities β in (3.50) that so critically depends on the homoscedasticity as-
sumption and is - unlike standard OLS estimation of the linear model - not
robust to misspecification of the variance function. Santos Silva and Tenreyro
(2006) therefore strongly recommend to estimate the multiplicative model
directly.

There are a number of ways to proceed. Non-linear least squares is one,
Poisson and gamma pseudo maximum likelihood estimator are two others.
While all three estimators are consistent, they differ in how they weight the
residuals. The Poisson estimator gives equal weight to all observations, while
the non-linear least squares estimator gives more weight to observations with
larger mean, which also tend to be observations with larger variance. As a
consequence, the small sample behavior of these estimators differ. Santos Silva
and Tenreyro (2006) show in a Monte Carlo simulation study that the Poisson
PMLE seems to have the best properties overall. They conclude that “the
Poisson PML estimator has the essential characteristics needed to make it the
new workhorse for the estimation of constant-elasticity models.” (p. 649).

3.3.6 Generalized Method of Moments

Our discussion in the preceeding sections has already shifted away from a fully
parametric likelihood-based approach to an alternative one that is commonly
referred to as semi-parametric, as parameters of interest are identified, and
estimated, from a few moment conditions, without specifying the full data
generating process. While pseudo maximum likelihood formally still involves
the maximization of a likelihood function, the essence of it lies in the first
order condition. The first order condition can be interpreted as a moment
condition related to the correctly specified mean function E(y|x), and thus
the orthogonality of the implied residuals y − E(y|x) and the regressors x.

It is not surprising then that alternative estimation methods can be, and
have been, used in lieu of pseudo maximum likelihood. Non-linear least squares
was mentioned earlier on, but the more general, encompassing estimation
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framework for such semi-parametric models is the generalized method of mo-
ments (GMM). This method, the origins of which can be found in Hansen
(1982), has become increasingly popular in count data modeling as well. While
it sometimes offers only a re-interpretation of existing methods – in fact, the
Poisson PML estimator is identical to the GMM estimator under some cir-
cumstances, see below – its genuine appeal comes from its potential to deal
with non-standard sampling conditions, such as those related to endogeneity
(Windmeijer and Santos Silva, 1997) or dynamic panel data modeling (Mon-
talvo, 1997), that is, in the area of panel data models with weakly exogenous
regressors (Chap. 7.2.5). Moreover, GMM provides a natural framework in
which to conduct specification tests by way of testing for overidentifying re-
strictions (See, for instance, Santos Silva and Windmeijer, 1999).

Let θ be a (p×1) vector of parameters that is to be estimated, and assume
that there are l moment restrictions

E[mi(yi, xi; θ)] = 0 (3.52)

A well-known example for a set of moment restrictions is the instrumental
variable estimator for the linear regression model, where it is postulated that
E(ziui) = 0, where ui = yi−x′

iβ and zi is a vector of instruments. The dimen-
sion of zi may exceed that of the number of parameters (over-identification),
or it may be just equal to the number of parameters, in which case the model
is just identified.

The GMM estimator θ̂ minimizes the quadratic form

m(y, x; θ)′Anm(y, x; θ) (3.53)

where

m(y, x; θ) =
n∑

i=1

mi(yi, xi; θ) (3.54)

In the panel case, the simple sum over i in (3.54) has to be replaced by a
double sum over both i and t. m is an (l × 1) vector of empirical moment
restrictions and An is an (l × l) positive definite symmetric weighting ma-
trix such that limn→∞ An = A. For l = p, the model is just identified and
the empirical moment conditions can be solved directly so that the objective
function at θ̂ will have a value of zero. However, the real advantage of GMM
arises in situations of overidentification where l > p, i.e., the number of mo-
ment conditions exceeds the number of parameters. In this case, the various
moment conditions will usually be conflicting and the minimization of (3.53),
for a particular choice of weighting matrix An to be discussed below, combines
the information provided by the different moment conditions in an optimal
way.

In order to differentiate the objective function with respect to θ, note that

∂m′Anm

∂θ
= 2

[
∂m′

∂θ

]
Anm
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Thus, the p first order conditions of the GMM estimator can be written as

D′Anm = 0 (3.55)

where

D =
n∑

i=1

∂mi(yi, xi; θ)
∂θ′

is a (l × p) matrix. Numerical methods are usually required in order to solve
the first-order conditions. If there is a unique vector θ satisfying

E[mi(yi, xi; θ)] = 0

the model is identified, and θ̂ is the GMM estimator of θ.
Under mild regularity conditions, θ̂ is consistent and normally distributed

with asymptotic covariance matrix (see, for instance, Davidson and McKin-
non, 1993, Chap. 17)

Cov(θ̂) = (D′AD)−1D′AWAD(D′AD)−1

where W is the covariance matrix of the specified moment restrictions

W = E[m(yi, xi; θ)m(yi, xi; θ)′]

If A = W−1 the estimator is asymptotically efficient in the class of the given
moment restrictions, and the asymptotic covariance matrix simplifies to

Cov(θ̂) = (D′W−1D)−1

W in general depends on θ. In order to obtain a consistent estimator for
Ŵ , one can for instance obtain a consistent estimate θ̂ using any positive
definite weighting matrix such as the identity matrix. When observations are
independent over i the covariance matrix Ŵ can be calculated as

Ŵ =
1
n

n∑
i=1

mi(θ̂)mi(θ̂)′

In a next step, the objective function m′Ŵ−1m is minimized in order to
obtain θ̂. The covariance matrix can be consistently estimated by Ĉov(θ̂) =
D′Ŵ−1D. Rather than doing just two steps, the process can be iterated to
convergence (which can make a big difference in finite samples).

It was mentioned before that one of the advantages of GMM is that it offers
a simple specification test for the validity of the overidentifying restrictions.
If the model that led to the moment equations is incorrect, at least some of
the sample moment conditions will by systematically violated. This provides
the basis for a test. The statistic is simply the minimum of the criterion
function evaluated at θ = θ̂ and divided by the sample size n (division by n
is not required if m is defined as the sample mean of the empirical moment
conditions rather than the sample sum as in (3.54)). Hansen (1982) showed
that under the null hypothesis H0 : E[mi(yi, xi; θ)] = 0, this test statistic has
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a chi-squared distribution with degrees of freedom equal to l − p. This test is
clearly non-directional as a rejection of the null hypothesis could be due to
any of the moment conditions, ranging from failure of higher order moment
conditions (if employed) to misspecified mean functions.

Application to the Poisson Model

Consider the key assumption of the Poisson regression model, λ = exp(x′β).
Thus E(y|x) = exp(x′β) and

y = exp(x′β) + u

where E(u|x) = E(y − exp(x′β)|x) = 0. Mean independence implies zero
correlation, so that we obtain the orthogonality condition

E[(y − exp(x′β))x] = 0 (3.56)

If x is of dimension k × 1, (3.56) gives us k moment conditions, and these are
sufficient to just identify the k regression parameters of the model, provided
the regressors satisfy the usual full-rank condition. Mean independence is
actually a much stronger assumption, as it implies that u is uncorrelated with
any function of the covariates, for example squares x2

k or interactions xlxk.
The GMM estimator based on (3.56) yields the objective function(

n∑
i=1

(yi − exp(x′
iβ))x′

i

)
A

(
n∑

i=1

(yi − exp(x′
iβ))xi

)
(3.57)

where A is a weight matrix. As the minimum of (3.57) in this just identified
model is obtained for

n∑
i=1

(yi − exp(x′
iβ))xi = 0

the GMM estimator is identical to the Poisson maximum likelihood estimator,
independently of the weighting matrix. With optimal weighting matrix equal
to the inverse of the expectation of the outer product of the moment condition
(the expected outer product of the score in the Poisson ML interpretation)

A = W−1 =

(
n∑

i=1

Var(yi|xi)xix
′
i

)−1

and

D =
n∑

i=1

∂(yi − exp(x′
iβ))xi

∂β′ = −
n∑

i=1

exp(x′
iβ)xix

′
i

(D is the Hessian in the Poisson ML interpretation) the covariance matrix of
the GMM estimator is
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Cov(β̂GMM ) =

⎡⎣ n∑
i=1

exp(x′
iβ)xix

′
i

(
n∑

i=1

Var(yi|xi)xix
′
i

)−1 n∑
i=1

exp(x′
iβ)xix

′
i

⎤⎦−1

The variance of the GMM estimator is thus identical to the variance of the
Poisson pseudo likelihood estimator, the usual sandwich formula. If the vari-
ance is equal to the mean, the variances of both are equal to the variance of
the Poisson maximum likelihood estimator.

3.4 Sources of Misspecification

In Chap. 3.1.2 the specification of the Poisson regression model was introduced
in three steps: the distributional assumption, the regression (mean function),
and the assumption of independent sampling. A misspecification is a violation
of any of the three assumptions. They can be dealt with in this order, although
specific types of misspecification may affect not only one assumption, but two
or three at a time.

The close relation between regression, variance function, and distribution
is a particular feature of the Poisson regression model. Under the Poisson as-
sumption, the equality of conditional mean and variance implies the loss of
one degree of freedom as compared to, for instance, the normal linear model.
Thus, a violation of the variance function always implies a violation of the
distributional assumption. The violation that has obtained most attention is
overdispersion, a situation where the variance exceeds the mean, conditional
on covariates (see, among others, Cameron and Trivedi, 1990, Dean and Law-
less, 1989, and Ganio and Shafer, 1992).

3.4.1 Mean Function

Recall that the mean function of the Poisson regression is specified as

E(y|x) = λ = exp(x′β) (3.58)

where x is a vector of individual covariates. The main benefits of such an
exponential mean function are threefold: it

• automatically respects the (non-negative) range of the dependent variable,
• provides an easy interpretation of coefficients in terms of semi-elasticities,
• leads to computationally simple expressions for the log-likelihood and its

derivatives.

Nevertheless, there is clearly no law of nature telling us that the mean function
must be log-linear, and potential sources of misspecification are manifold:

• The mean function is non-linear in β.
• Explanatory variables enter the mean function via some transformation

f(x), rather than linearly.
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• The link function is misspecified. For instance, the true mean function may
be linear rather than log-linear.

In practice, there can be little hope that the mean function is correctly
specified in all its aspects, except the most trivial cases, for instance when the
only regressor is a binary indicator variable. One approach to deal with this
situation is to view the mean function (3.58) as a log-linear approximation
to the true underlying mean function. Another approach is to explore more
general functional forms.

An example along those lines, discussed by Wooldridge (1992) and Kenkel
and Terza (2001), uses the inverse Box-Cox transformation. It introduces one
additional parameter ω ∈ IR, such that

E(y|x) = [1 + ω(x′β)]1/ω

This specification nests the linear model (ω = 1) and the exponential model
(ω = 0).

Another way to generalize the functional form of the mean function is
including higher order polynomials of all the regressors. Such a polynomial
model can also be used for testing the functional form. However, with many
regressors, a better approach is to include powers of the linear predictor,
(x′β̂)2, and (x′β̂)3, say, in an auxiliary Poisson regression in analogy to the
Reset test (Sapra, 2005).

Finally, methods for estimating generalized additive Poisson models are
discussed in Hastie and Tibshirani (1986). Generalized additive models are
very flexible, and can provide an excellent fit in the presence of nonlinear
relationships. On the downside, there is a danger of “over-fitting” the data,
i.e., obtaining results that likely cannot be replicated in alternative samples.
In addition, such models lack the straightforward interpretation of a general-
ized linear model, and the results are therefore harder to understand and to
communicate to others.

3.4.2 Unobserved Heterogeneity

Unobserved heterogeneity is an issue in count data modeling because the
standard Poisson regression model makes no allowance for it. The rate, at
which events occur,

λ = exp(x′β) ,

is a deterministic function of the regressors. The dependent variable is ran-
dom, conditional on λ because x′β determines only the rate at which events
occur, but not the event counts themselves, which are subject to the intrinsic
randomness of the Poisson process. If there are other variables that affect the
rate at which events occur but are unobserved by the econometrician, and
thus unaccounted for in the specification of the rate, we face a problem of
unobserved heterogeneity.
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Since we assume that observed regressors enter multiplicatively, it appears
reasonable to make the same assumption for unobservables, and let

λ̃ = exp(x′β + v),

We might as well write

λ̃ = exp(x′β)u

where u = exp(v), our canonical form from now on. Together with the Poisson
assumption, we obtain the modified conditional distribution model

f(y|x, u) =
e−λu(λu)y

y!

which depends now on u in addition to x. Note that we could have formulated
instead an additive model λ̃ = exp(x′β) + ε. But the additive approach is
awkward to work with for at least two reasons. First, it treats observed and
unobserved regressors asymmetrically, and there is no a-priori reason, why
this should be so. Second, it imposes the restriction ε > − exp(x′β) which is
inconvenient as well.

If u is independently distributed of x, with mean 1 (or any other constant
– this restriction leads to no loss of generality as long as x includes a con-
stant term) and variance σ2

u, then we can obtain the mean and variance of y
unconditional on u as

E(y|x) = EuE(y|x, u) = λ

and, an application of the variance decomposition theorem,

Var(y|x) = EuVar(y|x, u) + VaruE(y|x, u) = λ + σ2λ2

Thus, Var(y|x) > E(y|x), and we obtain the result that unobserved hetero-
geneity implies overdispersion.

By definition, u and thus λ̃ are unobserved. Assume, however, that we at
least know the distribution of u, i.e., its density function g(u). As λ̃ must be
non-negative to qualify as a mean parameter of a count data distribution, we
require that the support of g(u) be the positive real numbers. By applying the
basic change of variable technique where λ̃ = r(u) = λu and u = f(λ̃) = λ̃/λ,
we obtain that

h(λ̃) = g[f(λ̃)]

∣∣∣∣∣df(λ̃)
dλ̃

∣∣∣∣∣
= g(λ̃/λ)/λ

It is an arbitrary choice whether unobserved heterogeneity is introduced di-
rectly via λ̃ or indirectly via u. The latter option is slightly more common. If
the marginal distribution g(u) is given, we can express the joint density of y
and u as

f(y, u) = f(y|u)g(u) (3.59)



3.4 Sources of Misspecification 105

Finally, the marginal distribution for y is obtained by integrating the joint
distribution f(y, u) over u:

f(y) =
∫ ∞

0

f(y, u) du =
∫ ∞

0

f(y, λ̃) dλ̃ (3.60)

For instance, if f(y|u) is of the Poisson form, we get that

f(y) =
λy

y!

∫
e−λuuyg(u) du (3.61)

Parametric models for unobserved heterogeneity specify the density function
g(u) is specified up to some unknown parameter(s). The leading examples are
discussed in Chapter 4.

Spell-Specific Heterogeneity

Gourieroux and Visser (1997) have introduced the concept of spell-specific het-
erogeneity, modeling the counts as outcome of an underlying sequence of ex-
ponentially distributed spells (waiting times until the next occurrence). They
use the fact that the probability that at most k−1 events occurred in a given
interval (0, T ) equals the probability that the arrival time of the k-th event,
given by the sum of the k waiting times τk between consecutive events, exceeds
T . Moreover, assume that the waiting times τk k = 1, 2, . . . follow independent
exponential distribution functions with parameters

λ̃ = λ̃(x, u, ηk) (3.62)

In addition to the two individual specific factors, the observed (x) and the
unobserved (u), an additional spell-specific (unobserved) heterogeneity fac-
tor ηk is introduced. Gourieroux and Visser (1997) show that the underlying
count data distribution, derived from a convolution operation and a local
approximation of the characteristic function, can display both under- and
overdispersion.

3.4.3 Measurement Error

Let y|x be Poisson distributed with mean exp(x′β). One possible way of intro-
ducing measurement error in explanatory variables is to assume that rather
than observing x, we observe

z = x + ε

where ε are assumed to be independent of x with mean 0 and covariance ma-
trix Ω. Guo and Li (2001, 2002) study the consequences of such a set-up, and
possible remedies. First, they note that measurement error leads to overdisper-
sion for the observed model f(y|z), much as unobserved heterogeneity does.
We can write
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f(y|z) =
∫

f(y|x)g(x|z)dx

Unless g(x|z) = 0 almost everywhere (or E(y|z) = 1), it can be shown that

E(y|z) < Var(y|z)

even though E(y|x) = Var(y|x). Clearly, thus, the Poisson model is inap-
propriate. However, in contrast to standard unobserved heterogeneity, the
problem goes beyond considerations of efficiency and consistent estimation
of the covariance matrix for valid inference. Rather, the Poisson estimator
β̂ is inconsistent in general. To see the thrust of the argument, re-write the
log-likelihood function of the falsely assumed Poisson model f(y|z)

n∑
i=1

[− exp(z′iβ) + yiz
′
iβ − log(yi!)]

using zi = xi + εi, as
n∑

i=1

[− exp(x′
iβ) + yix

′
iβ − log(yi!)]

+
n∑

i=1

[− exp(x′
iβ)[exp(εiβ) − 1] + yiεiβ]

Consistent parameter estimation could be based on the first (unobserved)
term of the log-likelihood function. Since the likelihood function of the Poisson
model with measurement error adds a second term, its maximization in general
will not yield a consistent estimator. Note that the second term converges to

nEx[− exp(x′β)](Eε[exp(εβ)] − 1) = nEz[− exp(z′β)] + nEx[exp(x′β)]

This suggests that to obtain a consistent estimator, one can possibly maximize

1
n

n∑
i=1

[− exp(z′iβ) + yiz
′
iβ − log(yi!)] − 1

n

n∑
i=1

[− exp(z′iβ)] − Ex[exp(x′β)]

=
1
n

n∑
i=1

[yiz
′
iβ − log(yi!)] − Ex[exp(x′β)]

given that Ex[exp(x′β)] is known or can be estimated first. Guo and Li (2002)
refer to the estimator that maximizes this modified log-likelihood function by
solving

1
n

n∑
i=1

yizi − Ex[x exp(x′β)] ≡ 0

as corrected score estimator. The crucial question is now how to obtain
Ex[exp(x′β)]. For example, when ε is multivariate normal with mean 0 and
covariance Ω, then
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Ex[exp(x′β)] = Ez

[
exp

(
z′β − β′Ωβ

2

)]
which can be consistently estimated by

1/n

n∑
i=1

exp
(

z′iβ − β′Ωβ

2

)
,

so that the corrected log likelihood function can be written as
n∑

i=1

[
yiz

′
iβ − log(yi!) − exp

(
z′iβ − β′Ωβ

2

)]
(3.63)

See Guo and Li (2002) and Nakamura (1990) for further details on this ap-
proach. Guo and Li (2001) study measurement error in the negative binomial
model. In contrast to the classical measurement error model, the direction of
the bias is not necessarily one of attenuation. The methods can be extended to
deal with proxy variables rather then measurement error. Finally, Cameron
and Trivedi (1998) discuss the case of multiplicative measurement error in
explanatory variables.

3.4.4 Dependent Process

The Poisson distribution is appropriate if events occur completely randomly
over time. The Poisson model is misspecified if the process that generates
events is not “memoryless”, that is, when the probability of an occurrence
between t and t+h depends on the past process. Few attempts have been made
in the literature to directly model the dependence structure. One such model
is a “contagious” process that leads to the negative binomial distribution.
Another is the Winkelmann (1995) model for duration dependence in count
processes. Starting point is the observation that the Poisson distribution is
characterized by independently exponentially distributed interarrival times of
events. The key feature of the exponential distribution is its constant hazard
function, i.e., lack of memory. Winkelmann (1995) shows how a count data
distribution can be derived based on a more general distribution of interarrival
times, the gamma distribution. In particular, the gamma distribution allows
for both negative duration dependence, leading to overdispersion, and positive
duration dependence, leading to underdispersion.

3.4.5 Selectivity

While there is a vast literature on sample selection in the linear model, the
analysis of count data models with selectivity is less well developed. Sample
selection occurs if the data are generated such that the researcher does not
observe the underlying count variable y∗ but rather a “selected” count y.
The types of selection considered include truncation and censoring, but also



108 3 Poisson Regression

underreporting (see Chap. 3.4.7). If sample selection is ignored the estimator
of the regression parameters is generally inconsistent.

Two patterns of selectivity can be distinguished. Firstly, observations can
be censored or truncated depending on the outcome of y∗. For instance, many
survey questionnaires are “top-coded”, introducing a category of the type “x
or more” events. In this case, the data are censored from above. Secondly,
observations can be censored or truncated depending on the outcome of an-
other variable c that may or may not be independent of y∗. The literature
refers to this case as “incidental” truncation or censoring (Greene, 2000). We
denote this situation as “endogenous” selectivity. An example is the study of
credit card defaults. Incidental truncation occurs since some individuals have
no access to credit cards. Some information on the joint distribution of y∗ and
c is required in this situation. Such models are discussed, among others, in
Terza (1998), and Winkelmann (1998).

3.4.6 Simultaneity and Endogeneity

The basic Poisson regression model was introduced as a single equation regres-
sion model for cross section data. In a next step, unobserved heterogeneity was
allowed for. In contrast to the linear model where unobserved heterogeneity is
automatically taken into account, we showed that the Poisson model was inap-
propriate in this situation and had to be generalized. The generalization was
based on the key assumption that unobserved heterogeneity and regressors x
were statistically independent.

This assumption is likely to be violated in many applications, in partic-
ular, when regressors are simultaneously determined and hence endogenous.
The prime example for endogenous regressors is an endogenous treatment
effect, where individuals self-select into treatment, and those who take the
treatment are systematically different from the control group. If this selec-
tion is correlated with the outcome, either directly or through unobservables,
the assumption of statistical independence between regressors and the error
term will break down and standard estimation methods like maximum like-
lihood will not generally be consistent. The generic solution to this problem
is a nonlinear instrumental variable approach as outlined in Mullahy (1997a)
and in Windmeijer and Santos Silva (1997). Alternatively, one may attempt
to directly model the endogenous regressor and employ two-stage estimation
techniques. This is described in Terza (1998).

A problem of a different sort is the modeling of multivariate counts. For
instance, Chap. 7.1.1 introduces a bivariate Poisson model. While this model
does not give rise to a simultaneous system (since none of the dependent
variables appears as a regressor), it constitutes what has come to be known in
the literature on linear models as the seemingly unrelated regression model.
In particular, the bivariate Poisson model allows for a non-trivial correlation
structure between the two or more endogenous count variables. If correlation
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is present, joint estimation will lead to a more efficient estimator than separate
estimation.

3.4.7 Underreporting

Although the issue of underreporting can be interpreted in terms of selectivity,
it leads to models of a different type. Count data are underreported if only
a fraction of the total events is reported. If y∗ denotes the total number of
events, and y the number of reported events, then clearly y ≤ y∗. In a different
interpretation, y∗ denotes the number of potential events and y the number of
actual events. For instance, in labor economics, y∗ could be the number of job
offers during a given period of time, in which case y as the number of accepted
offers and y∗ − y is the number of rejected offers. Both interpretations have
the same formal structure. In particular,

y =
y∗∑

j=1

Bj (3.64)

where Bi is an indicator variable taking the value 1 if an event is reported (or
a job is accepted) and zero otherwise. In statistical terms, the distribution of y
is referred to as a convolution (or stopped-sum distribution; see Chap. 2.5.2).
The distribution of y depends on the joint distribution for y∗ and the Bj ’s.
In general, closed form results are only available under strong independence
assumptions.

Three generic types of underreporting have been discussed in the literature,
each giving rise to a different count data model:

1. Random underreporting. Here, the Bj ’s are independently and identically
Bernoulli distributed with parameter p (Winkelmann, 1996).

2. Logistic underreporting. The probability of reporting P (Bj = 1) is
a logistic function of covariates (Winkelmann and Zimmermann, 1993,
Mukhopadhyay and Trivedi, 1995).

3. Count amount model. Events are associated with a nonnegative size vari-
able (for instance a purchase amount), and recorded only if this variable
exceeds a specific minimum threshold (Van Praag and Vermeulen, 1993).

3.4.8 Excess Zeros

The idea of adjusting the probability of zero outcomes for count distributions
goes at least back to Johnson and Kotz (1969). See also Mullahy (1986). An
early application in a regression framework is Lambert (1992). She introduces
a zero-inflated Poisson model where with probability ω the only possible ob-
servation is 0, and with probability 1 − ω a Poisson(λ) random variable is
observed. Both ω and λ may depend on covariates. The overall probability of
a zero outcome is then
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f(0) = ω + (1 − ω)e−λ (3.65)
= e−λ + ω(1 − e−λ)

This probability is strictly greater than the Poisson probability of 0 as long as
ω > 0. Excess zeros, like unobserved heterogeneity and dependence, lead to
overdispersion. Hence, excess zeros provide yet another explanation for this
frequently observed phenomenon. Moreover, the model has an interesting in-
terpretation. Lambert (1992) studies the number of defects in manufacturing.
Here, the count generating process is decomposed into a “perfect state” where
defects are extremely rare and an “imperfect state” where defects are possible
but not inevitable.

An economic interpretation is given in Crépon and Duguet (1997b) in a
study of R&D productivity. Assume that the count variable is the number of
patent applications lodged by a firm during a given period of time. Here, firms
face the strategic choice whether or not to apply for patents in general. Only
when this choice is made in the affirmative is it that the number of actual
discoveries becomes relevant. Again, no applications may result for firms that
decided to patent but had no discoveries during a particular period.

3.4.9 Variance Function

It was noted before that a variance violation implies a distributional violation.
The opposite does not follow, since the distributional violation might originate
in higher order moments. Here, the possibility of such higher order violations
is left unexplored and the focus is on the variance function. A rationale for
this approach is that most properties of the model and of the estimator are
established through asymptotic results which require assumptions on the first
two moments only.

The variance function of the benchmark Poisson model is Var(y|x) =
E(y|x) = exp(x′β). Count data of this sort are said to be equi-dispersed.
The two alternatives are overdispersion or underdispersion. In the former sit-
uation, the conditional variance exceeds the conditional mean; in the latter,
the conditional mean exceeds the conditional variance. The following causes
for non-Poissoness of the variance function can be distinguished:

• Unobserved individual heterogeneity causes overdispersion. This case has
been discussed in Chap. 3.4.2.

• Spell specific heterogeneity as defined by Gourieroux and Visser (1997)
may result in either over- or underdispersion.

• True positive contagion causes overdispersion; true negative contagion
causes underdispersion.

• Non-stationarity has an ambiguous effect. If non-stationarity can be mod-
eled as a convolution of independent Poisson distributions, the convolution
is again Poisson distributed.
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Over- and underdispersion exist if the function mapping the conditional
mean into the conditional variance is not the identity function. In general, this
may be an arbitrary function, possibly involving further individual attributes
z:

Var(y|x, z) = f [E(y|x), z] (3.66)

or, assuming that the mean function is correctly specified

Var(y|x, z) = f [exp(x′β), z] (3.67)

The quadratic variance function

Var(y|x) = exp(x′β) + σ2[exp(x′β)]2 σ2 ∈ IR+ (3.68)

has received most attention in the literature. It arises naturally if the model
has unobserved heterogeneity with constant variance.

Generalizations have proceeded in two directions. First, the range of σ2

may include negative values, allowing for underdispersion (King, 1989b). Some
constraints on the parameter space are required since the left side, a variance,
has to be kept positive. Second, σ2 may be parameterized in terms of ex-
planatory variables. These variables usually coincide with those appearing in
the mean function, although this is not a formal requirement. In count data
models where mean and variance are intrinsically linked it would be difficult,
however, to justify that some variables z affect the variance but not the mean.
Thus, one common parameterization is

σ̃2(x) = σ2 exp(x′γ) (3.69)

The potential problem with this approach is that the model tends to be over-
parameterized. Winkelmann and Zimmermann (1991a) avoid this problem by
imposing proportionality: γ = (k − 1)β, where (k − 1) is a proportionality
factor. Then

σ̃2(x) = σ2 exp[(k − 1)x′β]
= σ2[exp(x′β)]k−1 (3.70)

Therefore,

Var(y|x) = E(y|x) + σ2[E(y|x)]k+1 σ2 ∈ IR+, k ∈ IR . (3.71)

σ2 is the dispersion-parameter and k the non-linearity parameter. Compared
to the Poisson variance assumption, this specification has two additional pa-
rameters. It allows for linear, convex as well as concave relationships between
the variance and the mean. For k = 0 and positive σ2, this is the variance
function of the Negbin I model. For k = 1 and positive σ2, this is the variance
function of the Negbin II model. Fig. 3.3 shows some possible shapes of the
variance function.
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Fig. 3.3. Variance-Mean Relationships for Different k’s and σ2’s
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3.5 Testing for Misspecification

Since many of the misspecifications listed in the previous section lead to a
violation of the assumption of equal conditional variance and mean, the vari-
ance function provides a natural starting point for misspecification tests. Fre-
quently one has a specific alternative in mind that allows for a more general
variance function and, at the same time, nests the Poisson variance function
through a parametric restriction. In this situation, the three classical tests,
the likelihood ratio, the Wald, and the Lagrange multiplier test can be used.

A related class of ‘misspecification’ tests addresses the inclusion of irrele-
vant variables in the mean function. The difference is that these restrictions
are tested within a given parametric distribution family that is specified up
to a parameter vector β which may contain zeros. As a consequence, these
tests can rely on standard maximum likelihood technology and do not need a
special treatment.

Tests that discriminate between non-nested models have a shorter history
in econometrics. And yet, non-nested models frequently arise in applied work
with count data. Examples include the hurdle Poisson and the zero-inflated
Poisson models, or Poisson models with linear and log-linear mean functions.
A simple asymptotic test for non-nested models has been introduced by Vuong
(1989). See also Santos Silva (2001). A simulation based approach offers an
alternative to discriminate between non-nested models. Finally, the Hausman
(1978) test can be applied in some specific situations.

3.5.1 Classical Specification Tests

Testing a Poisson model against a more general parametric model is straight-
forward if the former is contained in the latter through a parametric restric-
tion. The two models are said to be “nested”. Examples for restrictions are:
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1. Poisson versus negative binomial: H0 : σ2
u = 0.

2. Linear restrictions on regression coefficients: H0 : Rβ = q.
3. Non-linear restrictions on regression coefficients: H0 : R(β) = q.

Assume that estimation is by the method of maximum likelihood. Tests for
the validity of H0 can be based on any one of the three following principles:

1. Likelihood-ratio test
2. Wald test
3. Lagrange multiplier test

These are asymptotic tests. Their small sample properties (size and power)
are generally unknown. Asymptotically, all three tests are equivalent. The tests
are directional, implying that if the null hypothesis is rejected, there is a well
defined alternative.

Likelihood Ratio Test

Let �̂r denote the value of the log-likelihood function evaluated at the re-
stricted maximum likelihood estimates (for instance, the Poisson model), and
�̂u the value of the log-likelihood function evaluated at the unrestricted max-
imum likelihood estimates (for instance, the negative binomial model), and
let k denote the number of restrictions (k=1 in a test of the Poisson model
against the negative binomial model). Then, under H0 (if the restriction is
correct):

LR = −2(�̂r − �̂u) ∼ χ2
(k) (3.72)

where χ2
(k) is a chi-squared distribution with k degrees of freedom. The test is

based on the difference of two log-likelihood values, or, equivalently, the log of
a likelihood-ratio, hence its name. If the restriction is lifted, the value of the
log-likelihood function (evaluated at the maximum likelihood estimates) must
increase. If the increase is “large”, where large is defined as any test statistic
that exceeds the critical value χ2

α,k, the null hypothesis is rejected.
This test is sometimes criticized because it requires separate estimation of

two models, the restricted model and the unrestricted model. However, given
modern computing power, this criticism has lost some of its original weight.

One problem with the likelihood ratio test of the Poisson against the neg-
ative binomial model is that under the null hypothesis the true parameter is
on the boundary of the parameter space. If a parameter, such as a variance, is
bounded from below at H0, the estimate must be greater than or equal to H0

and vice versa. The asymptotic normality of the MLE can no longer hold un-
der H0. Chernoff (1954) and Lawless (1987b) address this problem. Chernoff
(1954) shows that under H0, the likelihood ratio statistic has a distribution
with probability mass of 0.5 at 0 and a 0.5χ2

(1) distribution for positive val-
ues. This adjustment is not required when testing restrictions on regression
coefficients.
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Wald Test

Point of departure for the Wald test is the asymptotic distribution of the
maximum likelihood estimator in the unrestricted model. In contrast to the
likelihood-ratio test, estimation of a single model is sufficient:

θ̂
app∼ N(θ0, V̂ar(θ̂))

where θ̂ consists of the estimated regression coefficients plus any additional
parameters, such as σ̂2

u. For any linear combination of the parameter vector
Rθ̂ − q it follows that

Rθ̂ − q
app∼ N(Rθ0 − q, RV̂ar(θ̂)R′)

Under H0 : Rθ0 − q = 0 and therefore

W = (Rθ̂ − q)′[RV̂ar(θ̂)R′]−1(Rθ̂ − q) (3.73)

has a chi-squared distribution with degrees of freedom equal to the number of
restrictions if the null hypothesis is correct. If the number of restrictions is one,
the statistic simplifies to the squared “t”-statistic. Dividing W in (3.73) by the
degrees of freedom produces an “F”-statistic. The quotation marks indicate
that, under maximum likelihood estimation, asymptotic results apply, whereas
the t-distribution and the F -distribution are finite sample distributions.

To give an example, assume that estimation of a negative binomial model
produces an estimate σ̂2 with estimated asymptotic variance V̂ar(σ̂2). The
Poisson model requires σ2 = 0. Hence, the Wald test of H0 : Poisson(λ)
against H1: negative binomial with mean λ and variance λ+σ2λ2 is based on

the “t”-statistic (σ̂2 −0)/
√

V̂ar(σ̂2). Again, the parameter is at the boundary
of the parameter space, and hence inference should use a one-sided alternative,
based on half a standard normal distribution N(0, 1).

Finally, if the restriction is of a non-linear nature, we can substitute

Var[R(θ̂) − q] =

[
∂R(θ̂)

∂θ̂′

]
V̂ar(θ̂)

[
∂R(θ̂)

∂θ̂

]
for the variance (an application of the “delta” rule), and R(θ̂) − q for Rθ̂ − q
in equation (3.73). Under H0, the resulting statistic is again approximately
chi-squared distributed with k degrees of freedom.

Lagrange Multiplier Test

Instead of computing both models und performing a likelihood ratio test,
or computing the alternative model only and performing a Wald test, the
Lagrange multiplier (LM) test avoids the computation of the alternative model
altogether. This test is also known as “score” test. In this context, the score
vector is the vector of first derivatives (or score) of the log-likelihood function
with respect to the parameters.
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Let log Lu be the log-likelihood function of the unrestricted model. Then
θ̂u solves the first-order conditions

∂ log Lu

∂θ

∣∣∣∣
θu

=
∂�u

∂θ

∣∣∣∣
θu

= 0 (3.74)

Alternatively, we could evaluate the score vector of the unrestricted model at
the maximum likelihood estimator θ̂r obtained under the restricted model:

∂�u

∂θ

∣∣∣∣
θr

�= 0 (3.75)

Unless the restriction is true, this expression differs from zero. Hence, the re-
striction is rejected if the score (3.75) is “far” from zero. If the null hypothesis
is true (i.e., θ̂r = θ0), it was shown in Chap. 3.2 that the score vector has
an asymptotic normal distribution with mean zero and variance covariance
matrix equal to the Fisher information matrix. Hence, a test can be based on
the quadratic form

LM =
(

∂�u

∂θ

)′

θ̂r

[I(θ̂r)]−1

(
∂�u

∂θ

)
θ̂r

(3.76)

which has a chi-squared distributed with degrees of freedom equal to the
number of restrictions under the null hypothesis. (The variance of the score
can be estimated along the common three ways, see Chap. 3.2; See Greene
(2000) for an explanation why this test statistic is related to a Lagrange
multiplier.).

As an example, one could use the score/LM test for testing a linear restric-
tion on the regression coefficient. Let β̂r be the maximum likelihood estimator
obtained from estimating the Poisson regression with restriction imposed. Let
Λ̂r = exp(Xβ̂r) be the (n × 1) vector of predicted conditional means in the
restricted model. The score/LM statistic is given by

LM = (Y − Λ̂r)′X(X ′diagΛ̂rX)−1X ′(Y − Λ̂r) (3.77)

Under the null hypothesis, this statistic is chi-squared distributed with r de-
grees of freedom.

Usually, however, score/LM tests are used in a different context: rather
than testing restrictions on regression coefficients, score/LM procedures have
been developed to test certain aspects of the stochastic specification.

A leading example is Lee (1986) who derives a Lagrange multiplier for the
Poisson regression model against the more general Katz models. The Katz
family contains the negative binomial model as a special case, and we shall
illustrate the derivation of the LM statistic for the Poisson against the Negbin
II model. Recall that the probability distribution function is given by

f(y) =
Γ (α + y)

Γ (α)Γ (y + 1)

(
α

α + λ

)α (
λ

α + λ

)y
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The relevant restriction is H0 : α−1 = 0. The derivatives of the log density
with respect to α and λ are given in Chap. 4.3. Unfortunately, brute force
evaluation of ∂�/∂α|α−1=0 does not work in this case, and a more elaborate
derivation is needed (See also Cameron and Trivedi, 1998, Chap. 5).

Using the product representation of the gamma ratio, the probability dis-
tribution function for a single observation can be written as

f(y) =
y∏

j=1

j + α − 1
j(1 + α/λ)

(1 + λ/α)−α

= f(0)
y∏

l=1

α + (y − l)
(1 + α/λ)(y − l + 1)

= f(0)
y∏

l=1

λ + aλ(y − l)
(1 + aλ)(y − l + 1)

where f(0) = (1 + λ/α)−α, l = y − j + 1 and a = α−1. The derivative of the
log-density with respect to a is given by

∂�

∂a
=

{
y∑

l=1

λ(y − l)
λ + aλ(y − l)

− λ

1 + aλ

}
+

∂ log f(0)
∂a

(3.78)

Under H0 : a = 0,

∂�

∂a

∣∣∣∣
a=0

=

{
y∑

l=1

(y − l) − λ

}
+

∂ log f(0)
∂a

∣∣∣∣
a=0

=
y∑

j=1

(j − l) − λy +
∂ log f(0)

∂a

∣∣∣∣
a=0

The sum is simply y(y − 1)/2. Since for any proper distribution the expected
score is zero, we have that E(∂ log f(y)/∂a) = E(∂h(y)/∂a+ ∂ log f(0)/∂a) =
0, and thus E(∂ log f(0)/∂a) = ∂ log f(0)/∂a = −E(h(y)). Putting things
together,

∂�

∂a

∣∣∣∣
a=0

= y(y − 1)/2 − λy − E[y(y − 1)/2 − λy]

= y(y − 1)/2 − λy − (λ2/2 − λ2)

=
1
2
[(y − λ)2 − y]

For a random sample of size n, and with λ̂ = exp(x′β̂) where β̂ is the estimated
vector of regression coefficients under the null hypothesis (i.e., the Poisson
maximum likelihood estimator), the sample score can be written as

∂�n

∂a

∣∣∣∣
a=0

=
1
2

n∑
i=1

(yi − λ̂)2 − yi (3.79)



3.5 Testing for Misspecification 117

In addition, a consistent estimator for the variance can be obtained using the
information matrix equality as

1
n

E
(

∂�n

∂a

)2

β̂,a=0

=
n∑

i=1

1

2λ̂2
i

and the square root of the scalar test statistic is given by

LM =

[
n∑

i=1

1

2λ̂2
i

]−1/2
1
2

n∑
i=1

(yi − λ̂i)2 − yi (3.80)

Under H0 the score has an asymptotic standard normal distribution (since it is
the square root of a chi-squared distribution with one degree of freedom) and a
test for overdispersion is a one sided test with critical value zα. Since the same
statistic is obtained for the more general Katz family, it can also be used to
test for underdispersion. Rejection of equidispersion against underdispersion
requires a test statistic smaller than −zα.

Score tests have been developed in the literature on count data models
for all sorts of null and alternative hypotheses. For instance, Gurmu (1991)
derives a score test for overdispersion in the positive Poisson regression mod-
els, Gurmu and Trivedi (1992) consider overdispersion in truncated Poisson
regression models, while van den Broek (1995) develops a score test for extra
zeros in the Poisson model. As in Chap. 2.4.3 the zero altered Poisson model
can be written as

P (yi = 0) = ω + (1 − ω)e−λi

P (yi = k) = (1 − ω)
e−λiλk

i

k!
k = 1, 2, . . .

This model collapses to the standard Poisson model for ω = 0. Let λ̂i =
exp(x′

iβ̂) where β̂ are the usual Poisson estimates. van den Broek shows that
under H0 : ω = 0,

LM =

(∑n
i=1(1I(yi = 0) − e−λ̂i)/e−λ̂i

)2

(∑n
i=1(1 − e−λ̂i)/e−λ̂i

)
− nȳ

(3.81)

where 1I is the usual indicator function, has a chi-squared distribution with 1
degree of freedom.

Information Matrix Test

The information matrix test (White, 1982) is based on the sample analogue
of the identity

E
(

∂�

∂θ

∂�

∂θ′

)
= −E

(
∂2�

∂θ∂θ′

)
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which can be rewritten as

E
(

∂�

∂θ

∂�

∂θ′
+

∂2�

∂θ∂θ′

)
= 0

In the context of count data models with unobserved heterogeneity, it has
been noted by Lee (1986) that a result originally due to Chesher (1984) on
the potential equality between information matrix tests and score/Lagrange
multiplier tests applies to the Poisson regression model as well. From Chap.
3.2, the sample analogues for the Hessian and the variance of the outer prod-
uct of the score vector of the Poisson regression model are given by the
two expressions

∑n
i=1 λ̂ixix

′
i and

∑n
i=1(yi − λ̂i)2xix

′
i, respectively. The dif-

ference between the two matrices depends on elements (yi − λ̂i)2 − λ̂i. In
particular, the sample matrix difference is, up to a factor of 1/2, equal to
the sample score evaluated at the restricted value (3.79) if the information
test precedure is applied to the intercept parameter β0. This follows, since∑n

i=1(yi − λ̂i)2 − λ̂i =
∑n

i=1(yi − λ̂i)2 − yi. Hence the interpretation of the
information matrix test as a test for neglected heterogeneity (See also Moffatt,
1997a).

3.5.2 Regression Based Tests

In the same way as a residual analysis in the linear model with normally dis-
tributed errors can reveal heteroskedasticity, the Poisson residuals may indi-
cate a violation of equidispersion. The analysis may proceed either graphically,
or through auxiliary regressions. Define Ê(yi) = λ̂i and V̂ar(yi) = (yi− λ̂i)2 =
û2

i . Plotting Ê(yi) against V̂ar(yi) should produce points scattered around the
45o line. Alternatively the regression (See Cameron and Trivedi 1986, 1990)

V̂ar(yi) = θÊ(yi) + νi (3.82)

should yield an estimate θ̂ close to 1. The regression

V̂ar(yi)
Ê(yi)

= θ1 + θ2Ê(yi) + νi (3.83)

should yield an θ̂1 close to 1 and a θ̂2 close to 0.

3.5.3 Goodness-of-Fit Tests

In contrast to continuous modeling, discrete data allow to calculate probabil-
ities of single outcomes after the model has been estimated. In the domain
of binary variables, this fact has been recognized for a long time, and a com-
parison between actual and predicted outcomes is usually contained in the
available statistical software. Prediction tables have been criticized for be-
ing uninformative, since the fitted model can be outperformed by a naive
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model predicting all outcomes to be equal to the most frequent outcome in
the sample (See, for instance, Veall and Zimmermann, 1992). For count data
models, however, the situation is more favorable, although most of the ap-
plied literature has ignored the possibility of using the predictions to evaluate
the goodness-of-fit. Notable exceptions are Gilbert (1982) and Dionne and
Vanasse (1992). See also Alvarez and Delgado (2002).

Gilbert (1982) considers the Poisson model and measures the goodness-of-
fit by the proportion of correct in-sample predictions. He suggests to predict
the count for individual i (with given attributes xi) either by its modal value,
or the integer nearest to its expected value. This procedure thus basically rests
on the goodness-of-fit of the mean function.

A related procedure is based on the Pearson statistic

P =
n∑

i=1

(yi − λ̂i)2

λ̂i

(3.84)

If the Poisson model is correctly specified, E[(yi − λi)2/λi] = 1, and thus
E[
∑n

i=1(yi − λi)2/λi] = n. In practice, P is compared to (n − k) in order to
adjust for lost degrees of freedom due to estimation of λi. P �= n−k indicates
a misspecification of the conditional mean or the distributional assumption.

An alternative goodness-of-fit statistic is the deviance

D =
n∑

i=1

{
yi log

(
yi

λ̂i

)
− (yi − λ̂i)

}
(3.85)

(see McCullagh and Nelder, 1989). For the exponential Poisson model with
intercept included, the sum over the second term on the right is zero, so that
we can write

D =
n∑

i=1

yi log
(

yi

λ̂i

)
(where yi log yi = 0 for yi = 0). The deviance measures the difference be-
tween the maximum log-likelihood achievable and the log-likelihood achieved
by the model under scrutiny. The deviance has an approximate chi-squared
distribution with n − k degrees of freedom.

Cameron and Windmeijer (1996) discuss the use of pseudo R-squared mea-
sures for determining goodness-of-fit within classes of count data regression
models. They list desirable properties of pseudo R-squared measures:

1. 0 ≤ R2 ≤ 1.
2. R2 does not decrease as regressors are added.
3. R2 based on residual sum of squares coincides with R2 based on explained

sum of squares.
4. There is a correspondence between R2 and a significance test on all slope

parameters or on incremental slope parameters.
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The preferred measure identified by Cameron and Windmeijer is one based
on deviance residuals. For the Poisson regression model, it is given by

R2 =
∑n

i=1 yi log(λ̂i/ȳ)∑n
i=1 yi log(yi/ȳ)

(3.86)

Cameron and Windmeijer derive similar pseudo R-squared measures for the
negative binomial regression model.

A final descriptive goodness-of-fit measure is used by Dionne and Vanasse
(1992). They suggest to sum the individual predicted probabilities over all
possible outcomes 0, 1, . . ., where for practical calculations some cutoff value
has to be chosen (for instance, the maximum count observed in the sample,
m = maxi(yi)). The summed probabilities for a specific outcome j

p̂j =
1
n

n∑
i=1

e−λ̂i λ̂j
i

j!
j = 0, 1, . . . , m

can then be compared to the relative frequencies in the sample p̄j . Discrepan-
cies indicate a poor performance of the model. A comparison of two models
can be based on the proximity between average predicted probabilities and
relative frequencies in the sample. Andrews (1988) shows how these fitted
distributions can be subject to a formal chi-squared test.

3.5.4 Tests for Non-Nested Models

Standard statistical theory provides a wide range of tools for the testing of
hypotheses which come in the form of parametric restrictions. A restriction
transforms a general model G into a restricted model F . We say that F is
nested in G. The restricted model can never be “better” than the general
model, measured in terms of likelihood or coefficient of determination. Ex-
amples for two nested count data models are the Poisson and the negative
binomial model, or the Poisson and the Poisson-log-normal model.

In count data modeling, one is often confronted with two models that
are not nested in the above sense (for a general discussion of tests for non-
nested models, see Pesaran, 1974). Two cases can be distinguished. In the first
case, two models are partially nested or overlapping (Vuong, 1989). In this
case neither of the two can be derived from the other through a parametric
restriction on either model, and at the same time the models are identical for
some joint restrictions.

This case is indeed very common for count data. For example, any two
generalizations of the Poisson regression model (i.e., models that can be trans-
formed to a Poisson model through a suitable parametric restriction) are pair-
wise overlapping. Since each of them can by definition be restricted to a Pois-
son model, they are equivalent if this restriction is imposed. Examples are the
negative binomial model, the Poisson-log-normal model and the generalized
Poisson distribution model. Similarly, hurdle Poisson and negative binomial
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models overlap with zero inflated Poisson and negative binomial models. The
equivalence of hurdle and zero inflated models in the case where there are con-
stants only (i.e., all slope coefficients are restricted to zero) has been noted
already by Mullahy (1986). A final example for two overlapping models is the
Poisson model with log-linear mean function exp(x′

iβ) and the Poisson model
with linear mean function x′

iγ. Again, the two models are clearly distinct in
the presence of genuine regressors. Yet, when slopes are zero and the constants
obey the restriction exp(β0) = γ0, the two models are the same.

Second, two models can be strictly non-nested. In this case, no set of re-
strictions is available that would render the two specifications formally equiv-
alent. It is relatively hard to find an example for two strictly non-nested count
data models. The only established example is the zero-inflated Poisson model
with logit (or probit) parameterization of the probability of an excess zero,
and the standard Poisson model. Here, the problem arises that the specific
parameterization precludes that the extra probability takes the value 0 for
any finite value of the model parameters. Hence, the two models cannot be
equivalent.

There are two different ways of looking at models that are non-nested
(strictly or overlapping). One is hypothesis testing and one is model selection.
A hypothesis test addresses the issue whether the true conditional density
f0(y|x) belongs to F or to G. By its very nature, it introduces an asymmetry
between the null hypothesis and the alternative. To treat the models symmet-
rically, both models are considered consecutively under the null hypothesis.
Combining the two tests, four outcomes are possible:

1. H0 = F is accepted and H0 = G is rejected.
2. H0 = F is rejected and H0 = G is accepted.
3. H0 = F is rejected and H0 = G is rejected.
4. H0 = F is accepted and H0 = G is accepted.

In situations (1) and (2), a coherent decision can be made. (1) leads to a
decision in favor of F and (2) to a decision in favor of G. For (3) and (4), the
results are conflicting. In (3) both models are rejected and in (4) the evidence
cannot discriminate between the two models. For this reason an alternative
approach, the model selection approach, considers situations where a decision
in favor of one model has to be made. Also, model selection criteria are more
suitable in situations where more than two models are considered. There, the
hypothesis testing framework provides little guidance how to proceed.

The focus of this section, however, will be on hypothesis testing for two
non-nested models. The existing results can be roughly divided into three
approaches. The first generalizes the classical asymptotic tests, the second
uses Monte Carlo simulations, and the third approach specifies and estimates
a hyper-model.
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Vuong Test

The extension of the likelihood ratio tests to situations of non nested mod-
els uses results on pseudo-true values minimizing the Kullback distance to
the true conditional law to establish the asymptotic distribution of the test
statistic. The corresponding results for the Wald and the Lagrange multiplier
tests can be found in Gourieroux and Monfort (1989, Chap. 12). The likeli-
hood ratio approach originates in Cox (1961) and has been extended by Vuong
(1989). It is based on the observed difference

dobs = �f (α̂) − �g(β̂) (3.87)

between the log-likelihood under model F and G evaluated at the maximum,
respectively. Note that in contrast to nested models, this difference can be
either negative or positive. The distribution of dobs under any of the two
models is, however, unknown. Cox (1961) derived a modified test statistic for
a test of H0 = Fα against H1 = Gβ :

Tf = {�f (α̂) − �g(β̂)} − Eα̂[�f (α̂) − �g(β̂)] (3.88)

where Eα̂[·] is the expectation with respect to Fα̂. Due to the difficulty in
calculating this expectation, the use of the Cox test is unrealistic in many
practical situations.

Vuong (1989) has developed a considerably simpler test. His test statistic
for non-nested models is

LRNN =
1√
n

(�f (α̂) − �g(β̂))/ω (3.89)

where

ω2 =
1
n

n∑
i=1

(�f (yi|xi, α̂) − �g(yi|xi, β̂))2

−
(

1
n

n∑
i=1

�f (yi|xi, α̂) − �g(yi|xi, β̂)

)2

This test statistic is thus very simple to compute. All one needs to do is to
divide the average difference of the log-likelihood functions (or the difference
of the average), evaluated at the respective maximum likelihood estimates,
by the estimated standard error of the average difference, which is just the
standard deviation of the individual differences in log-likelihood divided by
the square root of n.

None of the two models needs to be true. The test is aimed at selecting the
model that is closest to the true conditional distribution. The null hypothesis
is that the two models are equivalent:

H0 : E0[�f (α̂) − �g(β̂)] = 0
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Under the null hypothesis, the LRNN statistic converges in distribution to a
standard normal distribution. To implement the test, let c denote the critical
value for some significance level. If the statistic exceeds c, one rejects the null
hypothesis (of equivalence) in favor of model f being better than model g. If
the statistic is smaller than −c, one rejects the null hypothesis (of equivalence)
in favor of model g being better than model f . Finally, if |LRNN| < c the
null hypothesis is not rejected and one cannot discriminate between the two
models given the data. In this case, both models are rejected. The possibility
of rejecting both models is a conceptual weakness of this test, in which neither
of the two models is true under H0.

If the two models are overlapping – the standard situation in count data
applications – the above test needs to be slightly modified. In particular,
rather than applying it directly, a pre-test is required. In this pre-test, one
needs to establish that the two models are not equivalent. In practice it is
sufficient to separately perform t- or F -tests to see whether the parameter
vectors violate the overlapping constraint, and the overlapping constraint can
thus be rejected (see Vuong, 1989, particularly footnote 6).

For example, when testing the negative binomial model against the Poisson-
log-normal model, this would amount to testing whether the two dispersion
parameters are individually significantly greater than zero. When testing the
hurdle Poisson model against the zero inflated Poisson model, it is sufficient
that the slope vectors in both models are significantly different from zero,
so that one rejects the null hypothesis of two constant index functions, the
requirement for the overlap (Mullahy, 1986).

It should be noted that, in practice, many researchers ignore this issue,
assuming right away that the overlapping models are not equivalent, and
conducting the (nonnested) likelihood ratio test directly without pretesting.

Simulation-Based Tests

A second approach for testing non-nested hypotheses is simulation-based. This
test has been put forward by Williams (1970). Essentially, a large number of
data sets is generated under each of the two models. The models are re-
estimated and a likelihood ratio is calculated. Denote by df (dg) the distribu-
tion of the (log of the) likelihood ratio under F (G). Comparing the observed
likelihood ratio with df (dg) then provides evidence in favor of Fα or in favor
of Gβ . The following four steps can be distinguished:

• Obtain estimates α̂ and β̂ and calculate the observed log-likelihood differ-
ence dobs

• Simulate R sets of endogenous variables yr under Fα with α = α̂ and
identical x. Then re-estimate each conditional model with yr i = 1, . . . R
and x to obtain α̂fr and β̂fr and calculate dfr = �f (α̂fr) − �g(β̂fr).

• Simulate R sets of endogenous variables yr under Gβ with β = β̂ and
identical x. Then re-estimate each conditional model with yr i = 1, . . . R
and x to obtain α̂gr and β̂gr and calculate dgr = �f (α̂gr) − �g(β̂gr).
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• Compare the value dobs with the empirical distribution of dfr and of dgr

to provide evidence whether the observed log-likelihood difference is more
compatible with model F or with model G.

As a result, none of the simulations may generate values close to the ob-
served ones, the simulations may support a particular model, or they may not
be able to discriminate between the two models.

The question arises, how the yr can be simulated. Williams (1970) pro-
posed parametric simulation. In case of the Poisson models with different mean
functions, call them λf and λg, this amounts to repeated draws from Poisson
distributions with means fixed at λ̄f = λf (α̂) λ̄g = λg(β̂), respectively. Alter-
natively, Hinde (1992) suggests a non-parametric bootstrap simulation, i.e.,
re-sampling from the observed residuals.

Artificial Nesting

A third method for testing non-nested models is the construction of a hyper-
model (See for instance Gourieroux and Monfort, 1989, Chap. 12). In gen-
eral, hyper-models contain an additional parameter, and a test between two
models comes down to a test of a restriction on the hyper-parameter. One
important example in the count data literature, the Negbink model, is pre-
sented in Chap. 4.3. It can be used to discriminate between the two common
specifications of the negative binomial model, Negbin I and Negbin II. The
general remarks about the coherence of the test for non-nested hypotheses
apply here as well: The test may produce a conclusive result, or the evidence
may be inconclusive, either rejecting both or none of the models.

Hausman Test

In certain situations, two non-nested models can be tested by way of a Haus-
man test (Hausman, 1978). The underlying test idea is quite general and not
restricted to maximum likelihood estimation, nor to count data models. As-
sume that under the null hypothesis, model 1 gives an estimator that is both
consistent and efficient. The alternative model 2 gives an estimator that is
consistent but inefficient. Further, assume that under the alternative, model
1 is inconsistent but model 2 remains consistent. The Hausman test is based
on the distance

HT = (θ̂1 − θ̂2)′[Var(θ̂1 − θ̂2)]−1(θ̂1 − θ̂2) (3.90)

Under H0, both estimators are consistent. Hence, θ̂1 and θ̂2 should be similar.
Under the alternative, θ̂1 is inconsistent. Thus, “large” values of θ̂1 − θ̂2 lead
to a rejection of H0. The computation of the test statistic requires estimation
of Var(θ̂1 − θ̂2). Since θ̂1 and θ̂2 use the same data they could be correlated
which would cause considerable difficulties.
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However, recall that model 1 is by assumption efficient under the null
hypothesis. It can be shown (Hausman, 1978) that the asymptotic covariance
of an efficient estimator with its difference from an inefficient estimator must
be zero:

Cov(θ̂1, θ̂1 − θ̂2) = Var(θ̂1) − Cov(θ̂1, θ̂2) = 0

and hence Cov(θ̂1, θ̂2) = Var(θ̂1). Thus, under H0,

Var(θ̂1 − θ̂2) = Var(θ̂1) − 2Cov(θ̂1, θ̂2) + Var(θ̂2)

= Var(θ̂2) − Var(θ̂1) (3.91)

The resulting test statistic has an asymptotic chi-squared distribution with q
degrees of freedom, where q is the dimension of θ̂1.

In count data modeling, an application of this test occurs with panel data,
where the random effects Poisson model is tested against the fixed effects
Poisson model. Implicitly, one tests the assumption that the individual specific
unobserved error component is uncorrelated with the regressors. A related
application arises in tests for endogeneity of regressors.

3.6 Outlook

This chapter discussed various sources of, and tests for, misspecification. The
next chapters introduce alternative count data models that overcome the re-
strictiveness of the Poisson specification. While this chapter has explored a
substantial number of potential deficiencies, a useful classification of the re-
ceived literature can be based on a tripart classification:

• Unobserved heterogeneity (Chapter 4)
• Selectivity and Endogeneity (Chapter 5)
• Extra Zeros (Chapter 6)

The problem of unobserved heterogeneity occupies a somewhat special
place, as it is the only problem among the three that does not necessarily
require methods beyond the standard Poisson model. The pseudo likelihood
method was discussed before. Thus, the issue in Chapter 4 is rather one of
efficient estimation, making most of the information available in the data.
Such efficiency gains can be obtained by modeling the unobserved hetero-
geneity, either by making parametric assumption on its distribution, or alter-
natively by considering less restrictive semi-parametric assumptions, or even
non-parametric estimation of the unknown distribution.

Unobserved heterogeneity can give rise to endogeneity, if the unobservables
are not independent of the regressors of interest. This is discussed in Chapter
5, together with a number of models for non-random sampling designs.

The general thrust of the arguments in Chapters 4 and 5 are very much
reminiscent of standard methods known for the linear model. For example,
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unobserved heterogeneity, and the resulting problem of overdispersion, gives
raise to a trade-off between efficiency and robustness that is essentially iden-
tical to the trade-off caused by heteroskedasticity in the linear model, when
contemplating the modeling option of generalized least squares versus ordinary
least squares with White-Huber standard errors. The methods for selectivity
and endogeneity are also largely borrowed from the literature on linear models
and adjusted to the exponential regression model.

In contrast to that, the chapter on extra zeros has no direct equivalence
in the linear model literature. It is different because it takes the nature of
the dependent variable seriously – positive probability mass at discrete out-
comes – and studies various flexible probability models, and conditions under
which these models allow for meaningful inferences on distributional shifts,
i.e., marginal probability effects.

Whenever possible and appropriate, models are represented not as simple
“data fitting tools”, but rather as manifestations of an underlying structural
data generating process (such as a stochastic count process), which in turn
means that the parameters offer interpretations of these underlying param-
eters. Finally, it should be noted that these three chapters maintain the as-
sumption of cross-section data – models for correlated count data are discussed
later on in Chapter 7.
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Unobserved Heterogeneity

4.1 Introduction

4.1.1 Conditional Mean Function

This chapter discusses mixture models for unobserved heterogeneity. The
problem of unobserved heterogeneity arises if the explanatory variables do
not account for the full amount of individual heterogeneity in the conditional
mean of the dependent variable. Assume that the true model is

E(y|x, z) = exp(x′β + w′γ)

However, w is unobserved by the econometrician. Thus, we have instead

E(y|x, v) = exp(x′β + v) (4.1)

where v = w′γ represents unobserved heterogeneity. An alternative, equivalent
representation of the model uses u = exp(v), so that

E(y|x, u) = exp(x′β)u

Can there be any hope that the Poisson maximum likelihood estimator based
on the mean function λ = exp(x′β) maintains some or all of its usual desirable
properties?

It is useful to recall the results for omitted variables in the linear regression
model. There, bias arises whenever x and w are correlated. However, with-
out correlation, omitted variables do not cause a problem. In fact, omitted
variables are, apart from measurement error in y, a standard argument for
introducing a stochastic relation with additive error term to begin with.

This basic line of reasoning carries over to the problem of omitted variables
in the Poisson regression. The main difference is that, because of the non-
linearity of the mean function, zero correlation is not sufficient and we have
to make the stronger assumption of mean independence. In particular, we will
assume that

E[exp(v)|x] = E[exp(v)] (4.2)
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is a constant and not a function of x. Note that it is neither sufficient nor
necessary to assume that E(v|x) = E(v). For instance, if E(v|x) = E(v) and
the variance of v is a function of x, it follows that E[exp(v)|x] is a function of
x due to the exponential transformation. We could assume full independence
between x and v, but that assumption is unnecessarily strong. What we need
is exactly (4.2). In the following, it will prove useful to keep track of the
constant term in the linear predictor x′β. Let the constant be α so that we
can write the base model with unobserved heterogeneity as

E(y|x, v) = exp(α + x′β + v) (4.3)

which yields, using (4.2), the mean function conditional on x, but uncondi-
tional on v,

E(y|x) = exp(α + x′β)E[exp(v)|x] = exp(α̃ + x′β) (4.4)

where α̃ = α + log E[exp(v)]. Of course, if we assume that E[exp(v)] = 1,
a common normalization, then α = α̃. In this case, we see that unobserved
heterogeneity does not change the conditional expectation function at all.

4.1.2 Partial Effects with Unobserved Heterogeneity

What are the partial effects of interest in a model with unobserved hetero-
geneity? From (4.3), we can define

∂E(y|x, v)
∂xj

= exp(α + x′β + v)βj (4.5)

This is the ceteris paribus effect of x on the expected y, keeping constant the
heterogeneity term v. Unlike in the linear model with additive effects, the
multiplicative model implies that partial effects are a function of the unob-
served heterogeneity. One approach would be to evaluate these partial effects
at a representative value, say v = 0 (although this value may be representative
only for a small fraction of the population as, for continuous v, P (v = 0) = 0).
Thus

∂E(y|x, v = 0)
∂xj

= exp(α + x′β)βj

The problem with this approach is, however, that the partial effect is not
identified. Recall from (4.4) that the constant of the mean function with un-
observed heterogeneity is α̃, not α as required. Unless one makes the arbitrary
identifying assumption that E(u) = 1, i.e. α = α̃, the conditional partial ef-
fects are undetermined.

There are two ways out of this conundrum. The first one, advocated by
Wooldridge (2002), is to focus on average partial effects. Taking expectations
of (4.5) with respect to v, we obtain

Ev

(
∂E(y|x, v)

∂xj

)
= exp(α + x′β)E(exp(v))βj = exp(α̃ + x′β)βj
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which is identified from the mean function E(y|x). Taking expectations works
well because of the multiplicative separability of the unobserved heterogeneity
component.

The second approach, and possibly the more natural one, given the mul-
tiplicative model, is to focus on relative partial effects instead. Clearly,

∂E(y|x, v)/E(y|x, v)
∂xj

= βj

and βj measures the proportional effect of xj both the conditional expectation
E(y|x, v) and the unconditional expectation E(y|x).

4.1.3 Unobserved Heterogeneity in the Poisson Model

Let y|x, u have a Poisson distribution with conditional mean and variance

E(y|x, u) = Var(y|x, u) = exp(x′β)u,

where u is distributed mean-independently of x with E(u|x) normalized to 1.
Also assume that the variance of u, σ2

u, is a constant not depending on x.
This assumption is not really important. It only serves to obtain benchmark
results that are easily modified for the case where σ2

u is a function of x.
The distribution of y, marginalized with respect to u but conditional on x

has then expectation

E(y|x) = exp(x′β)E(u|x) = exp(x′β)

and variance

Var(y|x) = Eu[Var(y|x, u)] + Varu[E(y|x, u)] = exp(x′β) + σ2
u[exp(x′β)]2

an application of the variance decomposition theorem, where we use that
E(y|x, u) = Var(y|x, u) and E(u) = 1. Therefore, Var(y|x) > E(y|x) , i.e.,
unobserved heterogeneity of this form causes overdispersion of the conditional
model for y|x relative to the Poisson model. This is an important result.

Thus, if one estimates a Poisson model in the presence of unobserved het-
erogeneity of the type discussed here, the model is misspecified. Importantly,
however, the mean function is correctly specified, which means that one can
apply the results for Pseudo-Maximum Likelihood estimation from Chapter
3.3 and obtain consistent parameter estimates and valid inference based on
the Poisson model. This a result of great practical relevance. It suggests that
Poisson regression, using robust standard errors, is entirely appropriate de-
spite of unobserved heterogeneity. As unobserved heterogeneity can almost
never be ruled out – testing almost always rejects the null hypothesis of no
overdispersion – this is a very useful feature of the Poisson model.
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4.1.4 Parametric and Semi-Parametric Models

Of course, one might instead be interested in efficient estimation in a model
with unobserved heterogeneity. In this case, we require the marginal distri-
bution f(y|x) which is obtained by taking the expectation of the conditional
distribution f(y|x, u) (which is in our case a Poisson distribution) with respect
to u:

f(y|x) =
∫ ∞

0

f(y|x, u)g(u|x) du (4.6)

For instance, if f(y|x, u) is of the Poisson form, we obtain

f(y|x) =
λy

y!

∫
e−λuuyg(u|x) du (4.7)

This approach requires additional assumptions, as we need to specify g(u|x),
the distribution of the unobserved heterogeneity. Going with the assumption
of independence, we have that g(u|x) = g(u). Moreover, we know that u has
to be non-negative, a restriction that should be reflected in the selection of
g(u). Candidate distributions for u in the literature are the gamma, the log-
normal, and the inverse Gaussian distributions. The resulting fully parametric
mixture models are discussed in greater detail in Chapter 4.

The gain of introducing a parametric assumption can be an increase in
efficiency. The downside is a potential loss of consistency if the specific para-
metric assumption is wrong. More robust methods are obtained by semipara-
metric methods that approximate the distribution of u, either using Laguerre
polynomials and moment generating functions (Gurmu, Rilstone, and Stern,
1998), or discrete factor approximations (Brännäs and Rosenqvist, 1994). In
either case, some efficiency is lost but substantial robustness may be gained
from weaker assumptions. Both approaches are discussed later on.

A third, from an estimation standpoint entirely different, situation is en-
countered if repeated measurements are available for the same individual, that
is, if panel data are available. Methods to control for unobserved heterogeneity
in panel count data models are presented in Chap. 7.2.

4.2 Parametric Mixture Models

Different Poisson mixture models can be distinguished depending on the spe-
cific assumptions made on the distribution of u. Johnson and Kotz (1969,
Chap. 8) discuss a variety of mixing distributions. Another general reference
is Karlis and Xekalaki (2005). The choice is determined by the requirement
that u be non-negative, and applications in regression analysis so far have con-
centrated on three distributions: the gamma distribution, the inverse Gaussian
distribution, and the log-normal distribution.
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4.2.1 Gamma Mixture

The earliest mention of the Poisson-gamma mixture appears to be by Green-
wood and Yule (1920). A random variable u is gamma distributed Γ (α, β) if
the density takes the form

g(u; α, β) =
βα

Γ (α)
uα−1e−βu (4.8)

Mean and variance are E(u) = α/β and Var(u) = α/β2, respectively. Let
α = β, a restriction that reduces the number of free parameters from two to
one. Then E(u) = 1 and Var(u) = α−1. Recall that λ̃ = λu. Applying the
change of variable technique, λ̃ has a gamma distribution

h(λ̃; λ, α) =
αα

Γ (α)

(
λ̃

λ

)α−1

e−
λ̃α
λ

1
λ

=
(α/λ)α

Γ (α)
λ̃α−1e−λ̃ α

λ (4.9)

with mean λ and variance α−1λ2. The gamma distribution is a scale family,
i.e., it is closed under scale transformations.

As demonstrated in Chap. 2.5.1, integration (3.60) of a Poisson-gamma
mixture leads to the negative binomial distribution for y:

f(y|α, λ) =
Γ (α + y)

Γ (α)Γ (y + 1)

(
α

λ + α

)α (
λ

λ + α

)y

(4.10)

with

E(y|α, λ) = λ

and

Var(y|α, λ) = λ + α−1λ2 .

The regression model is completed by setting λi = exp(x′
iβ). An alternative

common specification uses α = σ−2λi, resulting in a negative binomial model
with linear variance function. Because of its importance and widespread use
in applied work, this model and its various parameterizations are discussed in
greater detail below.

4.2.2 Inverse Gaussian Mixture

The Poisson-inverse Gaussian mixture model was discussed, among others, by
Dean, Lawless, and Willmot (1989). Early applications tended to focus on the
univariate case. A regression parameterization that is directly comparable to
the negative binomial regression model was used by Guo and Trivedi (2002)
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who included this model in a comparative performance study in an applica-
tion to patent data. As before, the marginal probabilities are obtained after
integration

f(y) =
∫ ∞

0

f(y|λ̃)g(λ̃) dλ̃ (4.11)

Let λ̃ be inverse Gaussian distributed with density

g(λ̃) =
√

α

2πλ̃3
exp

(
−α(λ̃ − λ)2

2λ̃λ2

)
(4.12)

where α > 0, λ̃ > 0 and λ > 0. The inverse Gaussian distribution has mean
λ and variance λ3/α. If we parameterize λi = exp(x′

iβ), the conditional mean
and conditional variance of the Poisson-inverse Gaussian distribution are

E(yi|xi) = exp(x′
iβ)

and

E(yi|xi) = E(yi|xi) + α−1[E(yi|xi)]3

(see Guo and Trivedi, 2002).
Though the integration (4.11) does not yield a closed form for this choice

of g, the probability generating function can be calculated using the methods
introduced in Appendix A. Dean, Lawless, and Willmot (1989) note that the
probabilities of the mixture distribution can be calculated recursively using a
second order difference equation. They also derive analytical first and second
derivatives of the count data log-likelihood.

4.2.3 Log-Normal Mixture

In the log-normal mixture, we assume that

λ = exp(x′β + v)

where v has a normal distribution with mean −σ2/2 and variance σ2. The
normal distribution appears to be an immensely sensible choice, because if
there are many independent unobserved factors, then the sum of them may
converge to a normal distribution by virtue of a central limit theorem.

If v is normal distributed as above, then u = exp(v) is log-normal dis-
tributed with mean equal to one and variance equal to Var(ui) = eσ2 −1. The
probability function of the Poisson-log-normal model can be written as

f(y|x, v) =
exp(− exp(x′β + v)) exp(x′β + v)y

y!

where v ∼ N(0, σ2), i.e.,

f(v) =
1√
2πσ

e−
1
2 ( v

σ )2
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Therefore, the observed data distribution function is obtained after integration
as

f(y|x) =
∫ ∞

−∞

exp(− exp(x′β + v)) exp(x′β + v)y

y!
1√
2πσ

e−
1
2 ( v

σ )2

dv (4.13)

No closed form solution of this integral is available for the Poisson-log-
normal model. Hinde (1982) shows how maximum likelihood estimates can
be obtained using a combination of numerical integration, the EM algorithm
and iteratively reweighed least squares. With modern computing power, di-
rect computation by Gauss-Hermite quadrature is quite straightforward, and
maximum likelihood estimation in most situations is as fast as estimation of
the negative binomial model. Details of the Gauss-Hermite procedure for this
model are provided in Appendix B.

Relative to the Poisson model, the three models presented here share the com-
mon feature that they introduce one additional parameter each, essentially a
variance parameter. This parameter can be specified such as to preserve iden-
tical mean and variances for the distribution of u, and thus, for the mixture
models for y. The three models have the same variance function as long as
eσ2 − 1 = α−1, or, equivalently, σ2

u = log(1 + α) − log(α), where α−1 is
the variance of the multiplicative heterogeneity factor in the inverse Gaus-
sian and gamma mixture models. The models are thus distinguished by their
higher moments. Fig. 4.1 gives three density functions with E(u) = 1 and
Var(u) = 0.5. We see that the density functions of the log-normal and inverse
Gaussian models are virtually identical, whereas the density function of the
Gamma distribution differs.

Fig. 4.1. Probability Density Functions of Gamma, Inverse Gaussian, and Log-
Normal Distributions
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One of the practical advantages of the Poisson-log-normal model is that it
is readily extended to the multivariate case (Aitchison and Ho, 1989; Chib and
Winkelmann, 2001). Moreover, it has a natural interpretation. Assume that,
as in the linear model, the error v = log u captures the effect of several additive
omitted variables. As mentioned before, if there are many omitted factors, and
if these factors are independent, then central limit theorems can be invoked
in order to establish normality of v. This model is not only appealing from
a theoretical perspective; results in the application section of this book show
that it fits the data often much better than the negative binomial model. These
results suggest that the previous neglect of the Poisson-log-normal model in
the literature should be reconsidered in future applied work.

4.3 Negative Binomial Models

The negative binomial distribution is the most commonly used alternative to
the Poisson model when it is doubtful whether the strict requirements of inde-
pendence of the underlying process, and inclusion of all relevant regressors, are
satisfied. In particular, the negative binomial (Negbin) model is appropriate
when the conditional distribution of y|λ̃ is Poisson distributed and λ̃ is inde-
pendently gamma distributed. Thus, the Negbin model has the interpretation
of a Poisson mixture model that accounts in a specific way for the randomness
of the Poisson parameter λ̃. Alternatively, the Negbin model arises when the
underlying count process is not independent, and when the dependence can be
described through a specific type of true contagion (See Chap. 2.2.5). Further
references on the Negbin model include Cameron and Trivedi (1986), Lawless
(1987b) and Hausman, Hall and Griliches (1984).

The probability function of the negative binomial model has been given
in (4.10). To make the step to the Negbin regression model, the parameters
α and λ are specified in terms of exogenous variables.

The Negbin II model is obtained for α = σ−2 and λ = exp(x′β). In this
case, the conditional expectation function is

E(y|x) = exp(x′β) (4.14)

while the conditional variance function is given by

Var(y|x) = exp(x′β) + σ2[exp(x′β)]2 (4.15)

The conditional variance is always greater than the conditional mean: the
negative binomial model is a model for overdispersion. The Negbin I model
is obtained by letting α vary across individuals such that α = σ−2 exp(x′β)
and λ = exp(x′β). This parameterization produces a variance that is a linear
function of the mean:

Var(y|x) = (1 + σ2) exp(x′β) (4.16)

Another way of characterizing the difference between the Negbin I and
Negbin II models is in terms of a dispersion function φ, such that Var(y|x) =
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φE(y|x). For the Negbin I model, φ = (1 + σ2), a constant function, whereas
for the Negbin II model, φ = 1 + σ2 exp(x′β).

4.3.1 Negbin II Model

The (conditional) probability function of the Negbin II model can be written
as

f(y|·) =
Γ (σ−2 + y)

Γ (σ−2)Γ (y + 1)

(
σ−2

exp(x′β) + σ−2

)σ−2 (
exp(x′β)

exp(x′β) + σ−2

)y

For σ2 → 0, this model converges to the Poisson regression model (See Chap.
2.3.1). Since σ2 ≥ 0 the Poisson model is obtained at the boundary of the
parameter space. This has to be kept in mind when evaluating the model: a
modified likelihood ratio test has to be used to test H0 : f is Poisson against
H1 : f is negative binomial. The problem of testing for restrictions at the
boundary of the parameter space was discussed in Chap. 3.5.1.

Assuming an independent sample, the log-likelihood function of the Negbin
II model is given by

�(β, σ2) =
n∑

i=1

⎡⎣⎛⎝ yi∑
j=1

log(σ−2 + j − 1)

⎞⎠− log yi!

−(yi + σ−2) log(1 + σ2 exp(x′
iβ)) + yi log σ2 + yix

′
iβ
]

(4.17)

where the ratio of gamma functions in the first line was simplified with the
help of equation (2.45). The Negbin II maximum likelihood estimators β̂ and
σ̂2 are obtained as solutions to the first-order conditions

n∑
i=1

yi − exp(x′
iβ)

1 + σ2 exp(x′
iβ)

xi = 0 (4.18)

and
n∑

i=1

⎡⎣ 1
σ4

⎛⎝log(1 + σ2 exp(x′
iβ)) −

yi∑
j=1

1
σ−2 + j − 1

⎞⎠
− (yi + σ−2) exp(x′

iβ)
1 + σ−2 exp(x′

iβ)
+

yi

σ2

]
= 0 (4.19)

Moreover, it can be shown (See Lawless, 1987b) that the information matrix
is block-diagonal. Therefore, σ̂2 and β̂ are asymptotically independent. The
variance of β̂ is given by

Var(β̂) =

(
n∑

i=1

exp(x′
iβ)

1 + σ2 exp(x′
iβ)

xix
′
i

)−1

(4.20)
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4.3.2 Negbin I Model

The Negbin I model has log-likelihood function

�(β, σ2) =
n∑

i=1

⎡⎣⎛⎝ yi∑
j=1

log(σ−2 exp(x′
iβ) + j − 1)

⎞⎠− log yi!

−(yi + σ−2 exp(x′
iβ)) log(1 + σ2) + yi log σ2

]
(4.21)

with first-order conditions for β̂:

n∑
i=1

⎡⎣⎛⎝ yi∑
j=1

σ−2 exp(x′
iβ)

σ−2 exp(x′
iβ) + j − 1

⎞⎠xi + σ−2 exp(x′
iβ)xi

⎤⎦ = 0 (4.22)

In contrast to the Negbin II model, the first-order conditions of the Negin I
model are not of the form

∑
(yi −µi)f(µi) = 0. The Negbin I model does not

fall within the class of linear exponential families, and the robustness results
derived in Chap. 3.3 therefore do not apply in this case. In fact, the Negbin
II model is the only model in that family. Relatedly, it is also the only Negbin
model with block-diagonal information matrix.

4.3.3 Negbink Model

Despite these advantages of the Negbin II model, one might nevertheless wish
to embark on a search for alternative estimators that are asymptotically effi-
cient if correctly specified. One such model is the generalized negative binomial
model of Winkelmann and Zimmermann (1991, 1995). A similar model has
been employed independently by Ruser (1991). This model was re-discovered
by Saha and Dong (1997) who apparently were unaware of the previous lit-
erature. Let α = σ−2λ1−k and λ = exp(x′β). k is a continuous non-linearity
parameter. Compared to the Poisson model, two additional parameters have
to be estimated and this model has been called Negbink.

The Negbink can be interpreted as a hyper-model for the non-nested Neg-
bin I and Negbin II models. In particular, the Negbink nests the Negbin II
and Negbin I through the parametric restrictions k = 1 and k = 0, respec-
tively. Thus, a test between the two non-nested sub-models can proceed as
described in Chap. 3.5.4. (See Ozuna and Gomez (1995) for a number of other
approaches for testing between the Negbin I and Negbin II models.)

One possible representation of the probability function of the Negbink

model makes use of the following notation. First,(
α

λ + α

)α

= (α−1λ + 1)−α

= (σ2λk + 1)−λ1−k/σ2

Moreover,
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λ

λ + α

)y

= (1 + αλ−1)−y

=
y∏

i=1

1
1 + σ−2λ−k

Finally, using the recursive property of the gamma function,

Γ (α + y)
Γ (α)Γ (y)

=
y∏

j=1

σ−2λ1−k + j − 1
j

Putting everything together, the probability function of the Negbink can be
expressed as

f(y|λ, σ2, k) = C ×
{∏y

j=1
σ−2λ1−k+j−1
(1+σ−2λ−k)j

for y = 1, 2, . . .

1 for y = 0
(4.23)

with

C = (σ2λk + 1)−λ1−k/σ2

λ = exp(x′β) , σ2 ≥ 0.

Given an independent sample of observations, the log-likelihood of the sample
is the sum of the logarithm of the probabilities f(y).

4.3.4 NegbinX Model

Yet another parameterization of the negative binomial distribution is proposed
by Santos Silva and Windmeijer (2001). Remember from Chap. 2.5.2 that the
negative binomial model can be represented as a stopped sum (or compound)
distribution, where

Y = R1 + R2 + . . . + RS =
S∑

i=j

Rj

where S = 0, 1, 2, . . . is Poisson distributed, and the components Rj = 1, 2, . . .
are identically and independently logarithmic distributed. The logarithmic
distribution has a single parameter θ with 0 < θ < 1. So it is natural to allow
for covariates by letting

θ =
exp(x′γ)

1 + exp(x′γ)

Accordingly,

θ

1 − θ
= exp(x′γ)

From the properties of the logarithmic distribution, it follows that the ex-
pected number of counts in each component is
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E(Rj) =
exp(x′γ)

log[1 + exp(x′γ)]

If one lets for the Poisson part in addition

λ = E(S) = exp(x′β)

as usual, then it follows that Y is negative binomial distributed with param-
eters α = exp(x′β)/ log[1 + exp(x′γ)] and λ = exp(x′β). Substituting these
expressions into the negative binomial probability function (2.36), and after
some further simplifications, one obtains the NegbinX probability function

f(y|x) =
Γ
(
y + exp(x′β)

log[1+exp(x′γ)]

)
exp(− exp(x′β))

Γ (y + 1)Γ
(

exp(x′β)
log[1+exp(x′γ)]

)
(1 + exp(−x′γ))y

(4.24)

with

E(y|x) =
exp(x′β + x′γ)

log[1 + exp(x′γ)]
.

Of course, one can modify the model further by including different sets of
regressors z and x in the different parts of the model. Usually, there will be
little a-priori reason to justify such a selection, however, and the model will
include two coefficients for each available covariate. The interesting aspect
of the model is the interpretation of the underlying data generating process.
The overall effect of a regressor on the total number of counts is the sum of
two separate effects. First, a variable may affect the number of components
S. Second, a variable may affect the number of counts in each component Rj .
This separation may have analogies in real life processes. Santos Silva and
Windmeier motivate their model by the demand for doctor visits. Here, the
total number of visits may depend on the total number of sickness spells over
a period plus the number of visits within each spell.

Estimation

A remarkable result, due to Holgate and restated in Guo and Trivedi (2002) is
that all continuous mixtures based on the Poisson distibution – this includes
all three models discussed here, Negbin, Poisson inverse gamma and Poisson
log-normal – have unimodal likelihood functions. Hence, applications of stan-
dard Newton-Raphson or BFGS algorithms will find the global maximum of
the log-likelihood function.

4.4 Semiparametric Mixture Models

4.4.1 Series Expansions

Gurmu, Rilstone, and Stern (1998) develop a semiparametric estimation ap-
proach for overdispersed count regression models based on series expansions
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for the unknown density of the unobserved heterogeneity component. They
notice that while conventional approaches to unobserved heterogeneity impose
ad-hoc restrictions on the functional form of the mixing distribution whose vi-
olation causes the estimator to be inconsistent, quasi-likelihood methods do
not use information on higher order moments and hence are inefficient. Fur-
thermore, quasi likelihood methods are in general not applicable if the count
data are censored or truncated.

To illustrate the idea behind the semiparametric estimator for the Poisson
mixture model, rewrite the marginal probability function (4.7) as

f(y) =
λy

y!
Eu

(
e−λuuy

)
(4.25)

where Eu denotes the expectation with respect to the mixing distribution g(u)
which is left unspecified. Recall the definition of a moment generating function

M(s) =
∫

esxf(x)dx

Taking y-th order derivatives with respect to s, we get

M (y)(s) =
∫

esxxyf(x)dx

= E(esxxy)

For s = −λ and x = u, this is precisely the expectation on the right side of
(4.25) so that we can write the Poisson-mixture probability function as

f(y|x) =
λy

y!
· M (y)

u (−λ) (4.26)

where M
(y)
u is the y-th order derivative of the moment generating function of

u. The log-likelihood for a sample of n independent observations is

� =
n∑

i=1

[
yi log λi − log yi! + log M (y)

u (−λi)
]

(4.27)

Gurmu, Rilstone and Stern (1998) approximate g(u) by Laguerre polynomials,
derive the corresponding moment generating function, and use this function
to estimate β together with additional parameters of the approximation by
maximum likelihood, hence effectively avoiding the a-priori specification of
a density function for the unobserved heterogeneity component. They show
that the resulting estimator is consistent.

4.4.2 Finite Mixture Models

An alternative semiparametric approach to modeling unobserved heterogene-
ity has been popularized in econometrics by Heckman and Singer (1984).
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Earlier references in the statistical literature include Simar (1976) and Laird
(1978). The semiparametric maximum likelihood estimator is based on a fi-
nite mixture specification in which the underlying distribution of v (that is,
of the intercept in the Poisson regression model) is approximated by a finite
number of support points. This is a straightforward application of the mixture
concept introduced in Chap. 2.5.1. The first application to the Poisson regres-
sion model with unobserved heterogeneity is due to Brännäs and Rosenqvist
(1994).

In this approach, unobserved heterogneity is modeled as a discrete distri-
bution with K classes and mass points v ∈ {v1, . . . , vK}. If πk denotes the
probability P (v = vk), the marginal probability function for individual i is

f(yi|xi) =
K∑

k=1

πkfik

where fik = f(yi|xi, β, vk) is the response distribution in the k-th component
of the finite mixture, in this case a Poisson distribution with parameter

λik = exp(x′
iβ + vk)

where xi does not include a constant term. For a given K, semi-parametric
log likelihood function can be expressed as

log L(β, v, π) =
n∑

i=1

log

{
K∑

k=1

πkfik

}
(4.28)

Relative to the standard Poisson model, there are 2(K − 1) additional
unknown parameters. The number of classes, K, is unknown as well. Usually,
the semi-parametric maximum likelihood estimation proceeds in two stages:
first, K is treated as fixed, and (4.28) is maximized with respect to β, v, and
π. Second, K is picked using formal model selection techniques.

EM algorithm

Direct maximization of (4.28) with respect to the full parameter vector is in
general difficult, if not impossible. Instead, the EM algorithm has become the
method of choice. Aitkin (1999) shows that

∂ log L(θ)
∂θ

=
n∑

i=1

K∑
k=1

wik
∂ log fik

∂θ
(4.29)

where θ = (β, v1, . . . , vK) and

wik =
πkfik∑K

k=1 πkfik

(4.30)

represents the posterior probability that the i-th unit comes from the k-th
component of the mixture. Solving these equations for a given set of weights,
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and updating the weights from the current parameter estimates is an EM
algorithm. For an alternative derivation, one can to think of this problem as
a missing data problem. If true group membership was observed, we could
write the complete data log-likelihood as

log L(θ) =
n∑

i=1

K∑
k=1

zik[log(πk) + log fik] (4.31)

where zik is a multinomial indicator variable of group membership. The E-
step of the EM algorithm constructs the log-likelihood of observed data by
taking expectations of the complete data log-likelihoods over the unobservable
component indicators zik, conditional on yi and xi, and given parameter values
for β and v in iteration round (r). But the conditional expectation of zik,
evaluated at parameter values at step (r), β̂(r) and v̂(r), is just the weight
w

(r)
ik defined in (4.30). The estimated parameters in step (r) are then the

solution of the following M-step equations:

∂ log L(θ)
∂πk

=
n∑

i=1

{
w

(r)
ik

πk
− w

(r)
iK

πK

}
= 0, k = 1, . . . , K − 1 (4.32)

from where we find that the unconditional probability weights are simply the
averages of the posterior probabilities from the previous step,

π̂
(r+1)
k =

n∑
i=1

w
(r)
ik

n
,

and

∂ log L(θ)
∂θ

=
n∑

i=1

K∑
k=1

w
(r)
ik

∂ log fik

∂θ
= 0 (4.33)

Since analytical solutions of (4.33) are unavailable for the Poisson regres-
sion model with unobserved heterogeneity, one can use a standard Newton-
Raphson algorithm to obtain estimates. The E- and M-steps are alternated
repeatedly, until the increase in log-likelihood from step (r) to step (r + 1) is
arbitrarily small.

It is often remarked that the EM algorithm is sensitive to the starting val-
ues, as it may converge to local maxima. Presumably, this is less of a concern in
the context of a Poisson regression model with unobserved heterogeneity, since
the Poisson estimates are consistent and should provide reasonable starting
values. Once the algorithm has converged for K components, new estimates
are obtained for K + 1 components. After that, a formal comparison of the
K-class model and K+1-class model can be based on penalized likelihood cri-
teria, such as AIC or BIC. Asymptotic standard errors can be obtained from
the Hessian matrix of the log-likelihood function, evaluated at the parameter
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estimates, by computing the square root of the diagonal elements of minus
the inverted Hessian, as usual.

Mroz (1999) and Alfo and Trovato (2004) extend the discrete factor approach
to multivariate data. In a related development, it is shown by Wedel et al.
(1993) that this semiparametric estimator is readily extended to the case
where heterogeneity not only affects the intercept but the regression coeffi-
cients as well (See also Wang et al., 1996). The model then takes the form

f(y|x) =
K∑

k=1

πk
exp(− exp(x′βk)) exp(yx′βk)

y!
(4.34)

where the intercept is part of x, with likelihood function given by

L(β, π) =
n∏

i=1

f(yi; βj) =
n∏

i=1

K∑
k=1

πk
exp(− exp(x′

iβk)) exp(yix
′
iβk)

yi!
(4.35)

As Wedel et al. point out this model has an interesting interpretation
in terms of sample segmentation. In particular, the estimated proportions
π̂1, . . . , π̂K give the fraction of the sample that is of type 1, type 2 . . . type
K, respectively. The posterior probability is, as before,

wik =
πf(yi|xi; βk)∑K

k=1 πkf(yi|xi; β̂k)
(4.36)

Heterogeneity, rather than being a nuisance factor that leads to overdis-
persion and complicates statistical inference, provides useful information on
features of the population. In particular, a change in xi may have a large ef-
fect in one group but no, or even a negative effect in another group. Wedel at
al. (1993) discuss an application in marketing research where the dependent
variable is the number of customer purchases of books offered through direct
mail. A study of market segmentation shows that different groups of indi-
viduals react differently to various marketing techniques (such as mail offers,
mail promotions, or sweepstakes). Moreover, the posterior probabilities can be
used to determine the segment each customer falls in with highest probability.
This ability of attributing individuals to market segments can thus provide
valuable information for targeted marketing.

More recently, this finite mixture model has been extended in two direc-
tions. First, van Duijn and Böckenholt (1995) and Deb and Trivedi (1997)
consider a finite mixture negative binomial model. Second, Wang, Cockburn,
and Puterman (1998) parameterize the mixture probabilities as a function of
further explanatory variables.
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Sample Selection and Endogeneity

5.1 Censoring and Truncation

Unobserved heterogeneity can be interpreted as limited observability of inde-
pendent variables. This section deals with limits in observability of the depen-
dent variable which may stem from selective sampling or selective recording.
The most common forms of sample selection arise from censoring and trun-
cation. In the former case, the count dependent variable is observed only over
a limited range, whereas in the latter case, certain observations are omitted
entirely from the sample.

A common way to present such models is to distinguish between a latent
count y∗, an observed count y, and a selection variable c. The binary variable
c may indicate censoring, truncation, or non-reporting. We adopt the conven-
tion that truncation, censoring, or non-reporting occurs if c = 0. Models of
“exogenous” censoring or truncation are based on the following mechanism:

c =
{

1 if y∗ ∈ A
0 if y∗ /∈ A

(5.1)

that is, c is uniquely determined through the count dependent variable y∗.
The two most commonly encountered situations are:

1. A is the set of positive integers (truncation/censoring at zero).
2. A is the set {0, . . . , a} where a is some positive integer (right trunca-

tion/censoring).

A common example of censored observations is given in Terza (1985). Here,
the dependent variable is obtained from a survey question “How many times
have you been to shopping area Q in the past thirty days?,” with responses
“zero”, “one”, “two”, or “three or more”. An example for truncated count
data is the number of unemployment spells in the population of unemployed
workers.
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5.1.1 Truncated Count Data Models

The most common form of truncation is (left) truncation at zero. Truncated
Poisson and negative binomial models have been discussed, among others,
by Creel and Loomis (1990) and Grogger and Carson (1991). Gurmu (1991)
refers to the truncated at zero Poisson model as “positive Poisson regression”.

In the Poisson case, the observed data distribution is given by

f(y|x, y > 0) =
f(y, y > 0|x)
f(y > 0|x)

=
exp(−λ)λy

y!(1 − exp(−λ))
y = 1, 2, . . .

where, as before, λ = exp(x′β). The truncated negative binomial model is
obtained in a similar way. Mean and variance of the truncated-at-zero Poisson
model are given by

Etz(y|λ, y > 0) =
λ

1 − exp(−λ)
(5.2)

and

Vartz(y|λ, y > 0) = E(y|λ, y > 0)
(

1 − λ

exp(λ) − 1

)
. (5.3)

Since λ (the mean of the untruncated distribution) is greater than zero, 0 <
exp(−λ) < 1 and the truncated mean is shifted to the right. Moreover, the
truncated-at-zero model displays underdispersion since 0 < 1 − λ/(exp(λ) −
1) < 1.

Grogger and Carson (1991) apply the truncated model to the number
of recreational fishing trips taken by a sample of Alaskan fishermen. Gurmu
(1991) applies it to the Kennan (1995) data set on contract strikes. An im-
portant application of truncated-at-zero count data models is the use as a
building block for hurdle models (see Chapter 6.3).

5.1.2 Endogenous Sampling

The sampling paradigm underlying truncated count data models is essentially
one of random sampling: a draw is taken from the population. If that draw
falls within the truncation area, the observation is dropped. Otherwise, it is
kept. The probabilities of non-truncated outcomes are scaled upwards propor-
tionally, relative to the population probabilities.

This approach may be inappropriate if the inclusion in the sample is con-
ditioned on at least one occurrence. A typical example is a survey of shopping
mall visitors, asking them for the number of shopping trips taken. Clearly, in
such a case, the minimum response must be a count of one if the time frame
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of the response includes the present time, and zeros are therefore unobserved.
However, as first pointed out by Shaw (1988), such responses do not have the
probability function of the truncated-at-zero count data model. The reason
is that the inclusion in the sample is endogenous in the sense that more fre-
quent users have a higher probability of being included in the sample than
less frequent users. As a consequence, large counts are overrepresented in the
sample relative to the population), and the distribution of positive counts in
the sample is not proportional to the distribution of positive counts in the
population. But the truncated models precisely requires such proportionality.
Ignoring endogenous sampling leads to biased inference for the parameters
of the population distribution, although truncated-at-zero models have been
sometimes used for such samples (Grogger and Carson, 1991).

Shaw (1988) derives the likelihood function for an endogenous, or “on-site”
sampling scheme. An alternative derivation is given by Santos Silva (1997a)
who, in turn, applies results from Manski and Lerman (1977). To provide the
intuition why high counts are overrepresented in an on-site sample, consider
two individuals, the first with a count of one and the second with a count
of two. The sample is taken “on-site” at a random point during the time
interval. But then, an individual with a count of two is twice as likely to be
included in the sample as an individual with a count of one. If P (y = 1) and
P (y = 2) are the probabilities of outcomes one and two in the population,
respectively, then the probabilities of outcomes one and two in the sample are
given by 1 × P (y = 1) and 2 × P (y = 2), respectively. This reasoning can be
generalized and, with appropriate normalization, we obtain

f∗(y|x) =
f(y|x)y∑∞

k=1 f(k|x)k
=

f(y|x)y
E(y|x)

(5.4)

where f∗(y|x) is the probability function of the sample. From here, it is clear
that zeros are not observed and that individuals for which y > E(y|x) are
overrepresented in the sample.

If the expressions for the Poisson probability function are substituted into
(5.4) we obtain the on-site sample probability function

fos(y|λ) =
exp(−λ)λy−1

(y − 1)!
, y = 1, 2, 3 . . . (5.5)

Interestingly, this is exactly the probability function of a shifted or displaced
Poisson distribution that is obtained by shifting the sample space by one
count (Johnson and Kotz, 1969). The on-site sample Poisson distribution is
also sometimes referred to as size-biased Poisson, or as Poisson distribtion
with endogenous stratification.

Expected value and variance are given by

Eos(y|λ) =
∞∑

k=0

(k + 1)
exp(−λ)λk

k!
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= λ + 1 (5.6)

and

Varos(y|λ) =
∞∑

k=0

(k + 1)2
exp(−λ)λk

k!
− (λ + 1)2

= λ , (5.7)

respectively. For λ close to zero, underdispersion is substantial but it vanishes
asymptotically for λ → ∞. Santos Silva (1997a) discusses estimation of the
on-site sample Poisson model with unobserved heterogeneity. See also Santos
Silva (2003) and the discussion in Chap. 6.3.5.

Englin and Shonkwiler (1995) derive the on-site sample probability func-
tion when the population has a negative binomial distribution. It is given
by

fos,nb(y|λ, α) =
yΓ (y + α)

Γ (y + 1)Γ (α)
α−yλy−1[1 + λ/α]−(y+α) (5.8)

with E(y|x) = λ + 1 + α−1λ and Var(y|x) = λ(1 + α−1 + α−1λ + α−2λ). For
α → ∞, these moments converge to those of the on-site Poisson model, as
they should.

Other endogenous sampling models can be thought of. For instance, it is
not necessarily the case that zeros are ruled out in such models. One example
would be the case where inclusion in the sample depends on a “on-site” visit,
but the question of interest refers to the number of visits in the preceding
(rather than the current) month. Again, frequent users are over-represented
in the data, but the required adjustment is different from (5.4).

5.1.3 Censored Count Data Models

Censored count data models have been studied by Terza (1985) and Brännäs
(1992b), among others. Unlike for continuous data Tobit models, the type of
censoring that is typically encountered in count data models is right-censoring.
It arises in survey questionnaires where the highest category is “x or more”
counts. The standard definition of a censored count data model is then based
on the observation mechanism

c =
{

1 for y∗ ∈ A = {0, . . . , a}
0 for y∗ ∈ A = {a + 1, a + 2, . . .} (5.9)

Thus, P (c = 1) = F (a) where F =
∑a

j=0 f(j), and P (c = 0) = 1−F (a). The
probability function of observed counts y for individual i is equal to

g(yi|xi, ci) = f(yi)ci [1 − F (a)]1−ci (5.10)

and the log-likelihood function for a random sample of size n has now two
components
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�(β) =
n∑

i=1

ci log f(yi) + (1 − ci) log(1 − F (a)) (5.11)

The first term on the right gives the likelihood contribution of the non-
censored observations, while the second term on the right gives the contri-
bution of the censored observations. Terza (1985) provides details on imple-
menting a Newton-Raphson algorithm for the maximum likelihood estimator
β̂.

Another type of censoring has been considered in Caudill and Mixon
(1995). They are concerned with estimating the determinants of completed
fertility using survey data of women, some of whom are still in their child-
bearing years, defined to be the age of forty or less. Let y∗ denote completed
fertility, measured by the (final) number of children in the family, and y de-
note current fertility. Then y∗ = y if age ≥ 40 and y∗ ≥ y if age < 40. Define
a variable

c =
{

1 if age ≥ 40
0 if age < 40 (5.12)

The log-likelihood function can then be written as

�(β) =
n∑

i=1

ci log f(yi) + (1 − ci) log(1 − F (yi − 1)) (5.13)

In contrast to the standard censoring model (5.11), the censoring threshold
varies now from observation to observation. An interesting modification of
this idea was recently introduced by McIntosh (1999). Rather than assuming
that childbearing years end for each person at the age of 40, McIntosh derived
the censoring status from an additional survey question on the desirability of
further children (independently of age). In this case, the selection variable in
(5.12) simply needs to be re-defined such that c = 1 if no further children are
desired, and c = 0 else.

5.1.4 Grouped Poisson Regression Model

Closely related to censoring is the concept of grouping. The grouped Poisson
regression model was discussed by Moffatt (1995) who showed that the result-
ing log-likelihood function is globally concave and the maximum likelihood
estimator β̂ thus unique (See also Moffatt, 1997b, and Moffatt and Peters,
2000). In particular, consider a mutually exclusive and exhaustive partition
of IN0 into J subsets A1, . . . , AJ . Also, assume that the subsets are ordered,
such that each set consists of an uninterrupted sequence of natural numbers,
and one plus the largest number in set Aj is equal to the smallest number in
set Aj+1. Clearly,

pij(xi) = P (yi ∈ Aj |xi) =
∑

k∈Aj

f(k|xi) (5.14)
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where f(k) is the Poisson probability function. The log-likelihood function for
a sample of independent observations can be written as

�(β) =
n∑

i=1

J∑
j=1

dij log pij(xi) (5.15)

where the variable dij indicates membership of individual i in group j. Maxi-
mization of the log-likelihood function can make use of the Newton-Raphson
algorithm in the usual way.

5.2 Incidental Censoring and Truncation

So far, models in this chapter were based on a single population model. This
underlying model at the same time described the population distribution as
well as the censoring or truncation process. Separate determinants of outcome
and observation mechanism were excluded, as were separate parameters for
the two aspects of the model. The literature offers a number of suggestions
for richer, and potentially more interesting models. Essentially, these general-
izations allow for separate, although not necessarily unrelated, processes for
the count outcome equation and for the selection mechanism.

5.2.1 Outcome and Selection Model

The canonical model for incidental censoring and truncation assumes that the
population model of interest is a count data model with conditional expecta-
tion function

E(y|x, v) = exp(x′β + v) (5.16)

where v represents unobserved heterogeneity as before. It would be hard to
build a model of incidental censoring without introducing unobserved hetero-
geneity.

The selection equation is typically a binary response model with linear
latent index function

c∗ = z′γ + ε (5.17)

that generates a binary indicator variable c such that

c =
{

1 if c∗ ≥ 0
0 if c∗ < 0 (5.18)

Together, the two models for y and c can be combined as building blocks
for models of incidental censoring or incidental truncation. In the former case,
we observe a censored outcome (such as zero), rather than the original y,
whenever c = 1. In the latter case, y is not observed at all whenever c = 1.
This is the classical sample selection model, here for counts rather than for
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a continuous dependent variable in a linear regression model, as in Heckman
(1979). The conditional expectation in the selected sample is then

E(y|x, c = 1) = Ev|x,c=1[exp(x′β + v)] = exp(x′β)E[exp(v)|x, c = 1]

which is not equal to exp(x′β) in general even though E[exp(v)|x] = 1. As
a consequence, estimating a count data model in the selected sample leads
to biased estimates of the population parameters. There is one important
exception when the CEF in the selected sample is equal to the population
CEF, namely when v and c are independent, which is the same as saying that
v and ε are independent. Thus, special models for incidental censoring and
truncation are only required to the extent that v and ε are correlated. There
are typically many good reasons for suspecting such a correlation, depend-
ing on the particular application. Generally speaking, correlation must arise
whenever there are common unobserved factors that affect both outcome and
selection equation.

5.2.2 Models of Non-Random Selection

This brings us to a crucial question, namely how the joint distribution of, and
thus any correlation between, v and ε should be modeled. The leading as-
sumption in the literature is that v and ε have a bivariate normal distribution
(see Terza, 1998, Winkelmann, 1998, Deb and Trivedi, 2006, and the related
literature for linear models). In this approach, dependence is described by a
single parameter, ρ, which can vary between -1 and +1, with the value of zero
corresponding to independence. Maximum likelihood estimation of such mod-
els is relatively straightforward, although it requires the numerical evaluation
of a one-dimensional integral. Note that the bivariate normal assumption im-
plies that the marginal distribution of the count dependent variable under
independence is of a Poisson-log-normal form, an assumption that is quite
appealing, as it appears dominate the more conventional negative binomial
model in many empirical applications (see the remarks in the previous chap-
ter).

On the downside, the bivariate normal model imposes restrictions that
may or may not hold in a particular application. While it can therefore serve
as a natural starting point for modeling incidental truncation and censoring,
it is natural that alternative estimation methods have been pursued in the
literature.

One such alternative, proposed by Weiss (1999) and building on Lee (1983),
is a transformation approach. For example, assume that exp(v) has a gamma
distribution so that the marginal distribution of y|x is negative binomial.
Consider the transformation

h(v) = Φ−1[G(exp(v))]

where Φ is the cumulative density function of the standard normal distribution
and G is the cumulative density function of the gamma distribution. As a
result, h(v) has a standard normal distribution. Moreover, Weiss (1999) lets
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ε = ρh(v) + η

where η is independently normally distributed with mean zero and variance
σ2

η. Thus, h(v) and ε are bivariate normal, although v is not.
This approach is a special case of the more general copula approach for

non-normal data (Van Ophem, 2000, and Zimmer and Trivedi, 2006). Copula
based models can in general be estimated without resorting to numerical in-
tegration or simulation. A drawback is that copulas place restrictions on the
pattern of allowable correlations.

It is also possible to specify the error structure using discrete distribu-
tions as described by Mroz (1999). Because such models are finite mixture
models, they are semiparametric and the discrete distributions can, in prin-
ciple, approximate any continuous distributions. However, Deb and Trivedi
(2006) report serious implementation issues and convergence problems, esti-
mates from alternative runs that gave effects of different signs, significance
and magnitude, indicating multiple maxima. Thus, while theoretically ap-
pealing, this approach may be less so from a practical perspective. Finally,
semi-parametric count selection models based on series expansions are dis-
cussed in Romeu and Vera-Hernandez (2005) whereas Lee (2004) considers
certain non-parametric approaches.

5.2.3 Bivariate Normal Error Distribution

In the canonical selection model, v and ε are bivariate normally distributed
with mean vector zero and covariance matrix

Σ =
[

σ2
v σρ
σρ 1

]
(5.19)

where ρ is the coefficient of correlation between v and ε, and σ2
v is the variance

of v. The variance of ε is normalized to one, since it is not identified in the
probit selection equation.

The following derivations make use of results for conditional distributions
involving two jointly normally distributed random variables (here: ε and v). In
particular, we are interested in the following three conditional distributions,
as well as their first moments

a) f(ε|v)
b) f(v|ε > −z′γ) = f(v|c = 1)
b) f(exp(v)|ε > −z′γ) = f(exp(v)|c = 1)

A general result related to a) is that if x1 and x2 are bivariate normal with
means µ1 and µ2, variances σ2

1 and σ2
2 , and correlation ρ, then

x2|x1 ∼ N

[
µ2 + ρσ2

(
x1 − µ1

σ1

)
, σ2

2(1 − ρ2)
]

(5.20)
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Thus, under the assumptions on the mean and variances of ε and v, it follows
that

ε|v ∼ N
[
ρv/σv, 1 − ρ2

]
(5.21)

Similarly,

v|ε ∼ N
[
ρσε, σ2

v(1 − ρ2)
]

(5.22)

Moreover, the required distribution for b) can be written in general terms as

f(v|ε > −z′γ) =
∫ ∞

−z′γ

φ2(v, ε)
1 − Φ(−z′γ)

dε

where φ2 is the bivariate standard normal density function, and Φ is the
cumulative density function of the univariate standard normal distribution.
No closed form solution is available. To derive the conditional expectation of
the incidentally censored error v, note first that in the univariate normal case

E(ε|ε > −z′γ) =
φ(−z′γ)

1 − Φ(−z′γ)

(see Maddala, 1983). Moreover, from (5.20), E(v|ε) = ρσε. Thus,

E(v|ε > −z′γ) = ρσE(ε|ε > −z′γ)

= ρσ
φ(−z′γ)

1 − Φ(−z′γ)
(5.23)

= ρσ
φ(z′γ)
Φ(z′γ)

Similarly

E(v|ε < −z′γ) = −ρσ
φ(z′γ)

1 − Φ(z′γ)
(5.24)

The derivation of the last quantity of interest,

E[exp(v)|ε > −z′γ] ,

is somewhat more complex. We know in general that if v|ε is normally dis-
tributed (see equation(5.22)), then exp(v)|ε must have a log-normal distribu-
tion. Therefore, an expression such as E[exp(v)|ε > −z′γ] is the mean of a
log-normal distribution with incidental censoring.

In a first step, it is relatively straightforward to derive E(exp(v)|ε). We
know that v|ε has a normal distribution with mean E(v|ε) = ρσvε and vari-
ance Var(v|ε) = σ2

v(1 − ρ2). The moment generating function of a normally
distributed random variable x is :

Mx(t) = E(exp(tx)) = exp
(

µt +
σ2

vt2

2

)
(5.25)

Therefore
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E(exp(v)|ε) = Mv|ε(1) = exp
(

ρσvε +
σ2

v(1 − ρ2)
2

)
(5.26)

We ultimately are interested in E(exp(v)|ε > −z′γ) which is equal to

E(exp(v)|ε > −z′γ) =
∫ ∞

−z′γ
E(exp(v)|ε)f(ε|ε > −z′γ)dε (5.27)

= exp
(

σ2
v(1 − ρ2)

2

)
×

∫∞
−z′γ exp

(
ρσvε − 1

2ε2
)
dε√

2πΦ(z′γ)

The numerator of the second term on the right can be rewritten as∫ ∞

−z′γ
exp

(
−1

2
(ε − ρσv)2 +

1
2
ρ2σ2

v

)
dε = exp

(
1
2
ρ2σ2

v

)√
2πΦ(z′γ + ρσv)

and therefore (see also Terza, 1998, and Johnson, Kotz and Balakrishnan,
1994)

E(exp(v)|ε > −z′γ) = exp(σ2
v/2)

Φ(z′γ + ρσv)
Φ(z′γ)

(5.28)

This conditional expectation simplifies to the expectation of a log-normal
distribution for ρ = 0, as it should.

The Poisson-bivariate-normal set-up allows for incidental selection in the sense
that unobserved factors affecting c also affect y∗. Ignoring this correlation will
lead to a misspecified model with the possibility of inconsistent parameter es-
timates. The effects of selectivity in count data models are similar to those
found for continuous data (See e.g. Heckman, 1979), and the corresponding
models will be presented in the next sections. Existing models for inciden-
tal truncation and censoring are presented there. Other models with similar
structure (endogenous switching and endogenous reporting) follow in a later
part of this chapter.

5.2.4 Outcome Distribution

Before proceeding, it is instructive to consider the implications of alternative
distributional choices for y in this class of models. It has been emphasized
earlier that models can be specified with either Poisson or negative binomial
distribution. By contrast, the negative binomial distribution is no longer suit-
able in the context of endogenous selectivity. The resulting model suffers from
overparameterization. To illustrate this point, consider the Negbin II model
with E(y|x, u) = λu, where λ = exp(x′β), u = exp(v) and E(u|x) = 1. Con-
ditional on u, this model has the standard variance function of the Negbin II
model:

Var(y|x, u) = λu + α(λu)2

where α is the dispersion parameter. Marginalizing with respect to u yields
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E(y|x) = Eu[E(y|u)] = λ (5.29)

and

Var(y|x) = Eu[Var(y|x, u)] + Varu[E(y|x, u)]
= λ + λ2(σ2

u + ασ2
u + α) (5.30)

= λ + cλ2

Let σ2
u = (c−α)/(1+α) and it is clear that α and σ2

u are not identified in the
variance function. Identification therefore depends on higher order moments.
This is unsatisfactory and may lead to numerical instability in practice.

5.2.5 Incidental Censoring

A model for incidental censoring was introduced by Crépon and Duguet
(1997b). In this model, which is formally equivalent to the class of zero-inflated
count data models to be discussed in Chap. 6.4,

y =
{

0 if c = 1
y∗ if c = 0 (5.31)

and c = 1 for ε > −z′γ. Recall from Chap. 5.2.3 that the conditional dis-
tribution of ε given v is a normal distribution with mean ρv/σ and variance
1− ρ2. As a consequence, we can express the probability of censoring (c = 1)
conditional on the error in the outcome equation as

P (c = 1|v) = P (ε > −z′γ|v)

= 1 − Φ

(
−z′γ − ρv/σ√

1 − ρ2

)

= Φ

(
z′γ + ρv/σ√

1 − ρ2

)
(5.32)

≡ Φ∗(v)

where Φ is the cumulative density function of the standard normal distribu-
tion. Furthermore, for y∗|v ∼Poisson with λ̃ = exp(x′β + v), the probability
function of y, conditional on v, is given by

f(y|v, x, z) = Φ∗(v)d + [1 − Φ∗(v)]
exp(−λ̃)λ̃y

y!
(5.33)

where d = 1−min{y, 1}. This probability function depends on the unobserved
v, and the observed data distribution (not conditioned on v) can be obtained
after integrating the joint distribution of y and v over v:

f(y|x, z) =
∫ ∞

−∞
f(y|v, x, z)f(v)dv (5.34)
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=
∫ ∞

−∞

{
Φ∗(v)d + [1 − Φ∗(v)]

exp(−λ̃)λ̃y

y!

}
f(v)dv

where f(v) is the density function of the marginal distribution of v, in this
case a normal distribution with mean 0 and variance σ2. While marginaliz-
ing with respect to v does not lead to a closed form solution, Crépon and
Duguet suggest a feasible simulation method due to Gourieroux and Monfort
(1993). Alternatively, Gauss-Hermite quadrature can be used for an approxi-
mate evaluation of the integral (See Appendix B). Crépon and Duguet apply
their model to a study of R&D productivity, where y∗ gives the number of
discoveries, y the number of patents applied for, and c = 1 if the firm decided
to apply for patents in general.

5.2.6 Incidental Truncation

A model for endogenous truncation based on the bivariate normal distribution
has been studied, among others, by Greene (1998) and Winkelmann (1998).
This model is the count data version of the classical sample selection model
(Heckman, 1979). It can be written as

y =
{

y∗ if c = 1
unobserved if c = 0 (5.35)

where c and y∗ are determined as above, i.e., y∗ ∼ Poisson(λ̃) with λ̃ =
exp(x′β)u, c = 1 for ε > −z′γ, and ε and log(u) are bivariate normal dis-
tributed with correlation ρ.

What are the consequences of endogenous selectivity when this process is
ignored and a standard count data model is estimated on the selected subsam-
ple of data? In general, there will be a bias both in the estimated constant and
in the estimated slope parameters. Under some specific (and highly unrealis-
tic) assumptions, the bias may be limited to the constant. To understand why
such sample selection can not be simply ignored, recall a critical identifying
assumption in the standard model for unobserved heterogeneity, namely that
u, and therefore v = log(u), is independently distributed of x. This assumption
is likely to be violated in the sample selection model.

In fact, the nature of the inconsistency can be pinned down more precisely
by considering a result from Chap. 5.2.3 on the expected value of an inciden-
tally truncated log-normal variable. We can write for the sample of observed
counts

E(y|x, c = 1) = Eu|c=1E(y|x, u, c = 1)
= exp(x′β)E(u|x, c = 1) (5.36)

where u = exp(v) as before. Using (5.28), we obtain

E(u|x, c = 1) = exp(σ2
v/2)

Φ(z′γ + ρσv)
Φ(z′γ)

(5.37)
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and therefore

E(y|c = 1) = exp(x′β + σ2
v/2)

Φ(z′γ + ρσv)
Φ(z′γ)

= exp(x′β∗)Q(θ, γ, z) (5.38)

where β∗ is the same as β except that the intercept is shifted by σ2
v/2, and

θ = ρσv. We see that Q(θ, γ, z) = 1 if ρ = 0, so there is no problem in
this case. If ρ �= 0, E(y|c = 1, x) �= exp(x′β∗). In particular, unless x and z
are fully independent (which, at a minimum, rules out any overlap between
the two sets of explanatory variables), the conditional expectation function
in the selected sample is not proportional to exp(x′β), which means that the
maximum likelihood estimator in the selected model is inconsistent.

Estimation

There are in principle two methods to obtain consistent parameter estimates
in this framework. The first exploits the full parametric structure of the model
and estimates all model parameters jointly by full information maximum like-
lihood. Estimation is then based on the probability function, for individual
i,

f(yi, ci = 1) =
∫ ∞

−∞
f(yi, ci = 1|vi)f(vi)dvi

=
∫ ∞

−∞
f(yi|vi)Φ∗(vi)f(vi)dvi (5.39)

where we applied the same factorization as before, i.e., f(yi|vi) is a Pois-
son distribution, Φ∗ is defined as in (5.32), and Gauss-Hermite quadrature is
required.

Second, one can forego efficiency and base estimation on the first-order mo-
ment only. The conditional expectation of the observed sub-sample was given
in (5.38). This model can be estimated directly by non-linear least squares.

Alternatively, a first order Taylor-series expansion of log Q(θ) around θ = 0
yields (Greene, 1998)

log Q ≈ ρσ
φ(z′γ)
Φ(z′γ)

= ρσm (5.40)

Thus, two-step estimation of a Poisson model with endogenous truncation can
be justifiably based on a conditional expectation function

λ∗ = exp(x′β + τm̂) (5.41)

which can be estimated by a two-step procedure: a probit regression provides
a consistent estimator γ̂. The predicted selectivity term m̂ = φ(z′γ̂)/Φ(z′γ̂) is
then used as a regressor in a second step Poisson regression. The asymptotic
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covariance matrix for β̂ and τ̂ must be adjusted for the fact that the estimated
inverse Mills ratio is a generated regressor (Murphy and Topel, 1985). Without
correction, the estimated standard errors provide lower bounds for the true
standard errors.

This approach was used by Freund, Kniesner and LoSasso (1999) in a
study of health care utilization where the goal was to correct for potentially
endogenous sample attrition. Greene (1998) had to correct for selective credit
card approval in a study of the individual determinants of credit card default.

If ρ �= 0, it is difficult to assess how reasonable the approximation is, and
bias may be substantial. By contrast, this approximation can be very useful
to obtain a simple test for exogeneity. Under the null hypothesis H0 : ρ = 0,
maximum likelihood estimation including the generated inverse Mills ratio
is consistent and the distribution of the Wald test statistic is well-defined.
For a test, it is much easier to estimate a first-stage probit and a second
stage Poisson quasi-likelihood model than it is to implement a full information
maximum likelihood estimation based on (5.39).

5.3 Endogeneity in Count Data Models

5.3.1 Introduction and Examples

Endogeneity describes a situation where inference on the structural relation-
ship between two or more variables can not be based simply on a conditional
model (conditional distribution function or conditional expectation function).
Endogeneity is the absence of exogeneity. We will discuss two formal defini-
tions of exogeneity below, one based on parameter ancillarity, and one based
on a ceteris-paribus interpretation of the log-linear regression model embed-
ded in (most) count data models. In most cases, the two approaches amount to
the same thing, and as for the linear model, endogeneity essentially arises due
to dependence between explanatory variables and the stochastic error term.
Dependence may arise due to omitted variables that are correlated with the
included ones, or, more generally, due to a simultaneous determination of the
explanatory variables through a related model.

An important example where the issue of endogeneity is a major worry is
related to the effect of a (binary) treatment on a count outcome variable. In
experimental sciences, individuals are randomly assigned to treatment group
and control group, and differences in outcomes will thus be a good estimator
of the treatment effect. An example is the effect of a drug on the number of
epileptic seizures (Diggle, Liang and Zeger, 1995).

In observational data, treatment is not assigned randomly. In many in-
stances, individuals self-select into treatment, i.e., treatment becomes a mat-
ter of choice. For example, the number of doctor consultations may depend
on the health insurance status (the “treatment” variable in this case). But
insurance coverage is a choice variable that can depend, among other things,
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on health status and the expected number of doctor visits itself. A moral haz-
ard argument would suggest that health insurance might have a direct effect
on the demand for health services. However, the adverse selection argument
suggests that any observed correlation does not need to measure moral hazard
per se. It could be the case that individuals with a latent high demand for
health services are the ones who purchase more insurance. This is an instance
of endogeneity due to an omitted variable, the “true health status”. Even
with very good data on health status (rarely available in practice) there can
always be some residual uncertainty that would then cause a violation of the
exogeneity assumption.

A similar problem is encountered if one wants to measure the effect of
regular exercise on a person’s health. Plausibly, healthier people are more
likely to exercise regularly, which in turn may contribute to their good health.
Disentangling these effects is a challenging task. Note that in both examples,
the potentially endogenous x variable could be measured on a number of
different scales:

• binary (health insurance yes/no; sport yes/no)
• ordinal (Plan A, B, and C ordered by level of generosity; sport never, at

least once per month, at least once per week...).
• multinomial (private insurance, public insurance, no insurance; aerobic,

anaerobic exercise).
• quantitative (out of pocket expense in percent of all expenses; minutes and

intensity of exercise).

Endogeneity may also arise outside of the usual treatment effect frame-
work. For instance, Mullahy (1997a) has studied how past cigarette consump-
tion affects present cigarette consumption in order to assess the empirical ev-
idence for addiction. Clearly, estimating addiction effects from observational
data is a tall order, as unobserved smoking preferences will affect both past
and present consumption. Nevertheless, methods are available to identify ad-
diction effects in this set-up, as well as the treatment affects in the above
examples. Those methods are the subject of this chapter.

5.3.2 Parameter Ancillarity

The first formal definition of exogeneity rests on parameter ancillarity. We
are interested in the relationship between y1 and y2, where y1 is a count
and y2 may or may not be a count. Since, as argued, count data should be
modeled by way of conditional probability functions, a natural point to start
the discussion of endogeneity is the joint distribution of y1 and y2, conditional
on x:

f(y1, y2|x) = f(y1, y2|x, θ1, θ2) (5.42)

where θ1 and θ2 are structural parameters. Once the full joint model is known
and specified, it is always possible to use the maximum likelihood approach
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to estimate all parameters of interest by full information maximum likeli-
hood. However, it may sometimes be both impractical, and also unnecessary,
to specify the full model. Suppose we want to estimate θ1 only. Any joint
distribution can be factored into a conditional and a marginal distribution.
According the Engle, Hendry and Richard (1983), y2 is called exogenous if we
can base inference for θ1 on the conditional model f(y1|y2, x) alone, i.e., write

f(y1, y2|x; θ1, θ2) = f(y1|y2, x; θ1)f(y2|x; θ2) (5.43)

where θ2 is an ancillary parameter. In this case, there is no loss of information
when inference on θ1 is based on the conditional model.

Example

Consider a simple bivariate linear model with feedback:

y1 = αy2 + u1

y2 = βy1 + u2

If uj are independently normal distributed with mean zero and variance σ2
j ,

it follows that

f(y1, y2; α, β, σ2
1 , σ2

2) = f(y1|y2; α, σ2
1)f(y2; α, β, σ2

1 , σ2
2)

where the marginal distribution of y2 (the “reduced form”) is a normal distri-
bution with mean zero and variance (β2σ2

1 + σ2
2)/(1 − βα)2. The parameters

of the conditional model, α and σ2
1 , appear in the marginal distribution of y2.

Therefore, based on the Engle, Hendry and Richard (1983) definition, y2 is
not exogenous, and therefore endogenous.

The example allowed for a simple verification of the exogeneity condition,
because the normal distribution has simple (normal) expressions for all three
– joint, conditional, and marginal – distributions. Count data distributions do
not have this property. In general, marginals and conditionals do not belong
to the same family of distributions. To give an example, if y1|y2 is Poisson
distributed, then the marginal distribution of y1 cannot be a Poisson distri-
bution. From the variance decomposition theorem, it always is the case that

Var(y1) = Var[E(y1|y2)] + E[Var(y1|y2)]

But if the conditional distribution is Poisson, we know that Var(y1|y2) =
E(y1|y2), and therefore E[Var(y1|y2)] = E(y1), which shows that Var(y1) >
E(y1). Thus, there must be overdispersion at the marginal model, and hence
f(y1) cannot be Poisson distributed.
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5.3.3 Endogeneity and Mean Function

An alternative definition of exogeneity is not based on the full joint distribu-
tion of variables but rather centers on conditional expectations. The standard
approach for endogeneity starts from a model with multiplicative unobserved
heterogeneity, as in (4.1), whereby

E(y|x, u) = exp(x′β + log(u)) = exp(x′β)u

Endogeneity arises whenever E(u|x) is a function of x, rather then a constant
(for convenience of notation normalized to 1), which implies that

E(y|x) �= exp(x′β)

As a consequence, standard count data models, such as Poisson or negative
binomial regression, do not identify β, the parameter of interest. This is the
essential idea of endogeneity in count data models. Exogeneity, on the other
hand, means that

E(y|x) = exp(x′β) (5.44)

or, equivalently,

E(u|x) = E(y exp(−x′β)|x) = 1 (5.45)

Regressors are exogenous if the multiplicative stochastic error u is (mean)
independent of x. The regressors are endogenous if E(u|x) �= 1.

Other, related formulations of the problem are possible. For example, we
can always re-write

E(y|x, u) = exp(x′β)u
= exp(x′β) + exp(x′β)(u − 1)

For η = exp(x′β)(u − 1) we obtain an additive model such that

E(y|x, η) = exp(x′β) + η (5.46)

Under exogeneity, the multiplicative and the additive formulations are equiv-
alent, since

E(η|x) = exp(x′β)(E(u|x) − 1)

and E(η|x) = 0 if and only if E(u|x) = 1. The multiplicative interpretation
is usually preferred, as it treats observed and unobserved heterogeneity sym-
metrically.

For yet another formulation, one could have started from a general additive
model for y:

y = exp(x′β) + ν (5.47)

It follows that

E(y|x) = exp(x′β) + E(ν|x)
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which is the same as the expectation of (5.46) over η, with ν taking the role
of η. However, (5.47) is an awkward expression to work with if y is a count
variable, where we better think in terms of a probability model. For example,
the decomposition (5.47) tells us that if ν is kept constant, it is the case that

∂y/y

∂x
= β

But y takes on only integer values, so it is hard to interpret the above relative
partial effect. The analogy to the linear model apparently stops here, and we
will concentrate on conditional expectations for most of the remainder of this
chapter.

In summary, we can state three equivalent definitions of exogeneity,
E(y|x) = exp(x′β), E(η|x) = 0, or E(u|x) = 1. Any of these is a key condi-
tion for consistency of the Poisson maximum likelihood or pseudo maximum
likelihood estimator. A violation leads to an inconsistent Poisson PML, and
alternative methods are required.

Possible Remedies

The remedies depend on the particular model structure. However, they can all
be subsumed in one of five broad empirical strategies that we briefly outline
first. More details are provided in the following sections.

The first approach is to ignore the count structure of the data and to
approximate the conditional expectation function by a linear regression. This
approach is advocated as an alternative to parametric limited dependent vari-
able models by Angrist (2001). A similar argument can be made for count
data. Once one settles for the linear model, the well-established tools for deal-
ing with endogeneity in linear models can be applied. The downside is that
the set of possible inferences is rather limited. No statements of the outcome
distribution, or the data generating process, can be made. This method may
work satisfactorily if all counts are large. Otherwise, the approximation error
may be large.

A second approach uses a non-linear instrumental variable technique. This
approach can be based either on the multiplicative or the additive model.
Mullahy (1997a) recommends to use the moment condition

E(u|z) = 1 , i.e., E
(

y

exp(x′β)
− 1

∣∣∣∣ z) = 0 (5.48)

where z are the instruments. Order conditions apply. Windmeijer and Santos
Silva (1997) point out that instruments valid for a multiplicative error u are
not necessarily vaild for an additive error η.

An alternative instrumentation can be implemented by estimation in
stages. The assumptions are stronger than those required for IV estimation.
In particular, assume that a single endogenous regressor has a reduced form
equation
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x = z′γ + ε (5.49)

and that the instruments z are fully independent of ε and u. Then it is possible
to estimate the effect of x on y in a standard count data regression, where x is
replaced by x̂ = z′γ̂ and γ̂ is obtained from a first-stage estimation of model
(5.49).

A fourth approach to deal with endogenous regressors is available if re-
peated measurements on the dependent and independent variables, say over
time, are available and if endogeneity is caused by time invariant correlated
unobserved heterogeneity. In this case, one can estimate the model parameters
consistently by fixed effects panel data methods. Such methods are discussed
in Chapter 7.

Finally, one can make parametric assumptions and specify the full joint
distribution of y and x. For example, if x is binary, this approach leads to a
Roy (1951) type switching regression model for count data.

5.3.4 A Two-Equation Framework

In Chap. 5.3.2, we considered endogeneity in a system of two linear equations
with normally distributed errors. The properties of such a system are well
understood (for instance identification through exclusion restrictions) and it
appears worthwhile to study the extent to which the analogy of the linear
model carries over to count data models. Such an analysis has been undertaken
by Windmeijer and Santos Silva (1997) who consider the following system of
equations:

y1 = exp(αy2 + x′β) + ν (5.50)

y2 = δy1 + z′γ + ε (5.51)

where y1 is a count dependent variable and y2 is a second variable with un-
specified scale.

As innocuous as the exponential function in the first equation may look,
its consequences are far-reaching, as there are no well-defined reduced form
equations. We can substitute and re-write, for instance, the first equation as

y1 = exp[α(δy1 + z′γ + ε) + x′β] + ν

but we cannot solve for y1 in general. The same holds for the second equation.
Without the ability of converting one of the equations into a reduced form (or
marginal) model, the system of two conditional models cannot be re-written
as a joint distribution model, and identification of the structural parameters
is infeasible.

A more optimistic conclusion is obtained once we introduce one additional
restriction, either α = 0 or δ = 0. The system is then recursive, and reduced
forms are well defined. For instance (the more interesting case), with δ = 0,
we obtain
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y1 = exp[α(z′γ + ε) + x′β] + ν

= exp[αz′γ + x′β] exp(αε) + ν (5.52)

which identifies the parameters of interest in principle (except for the constant
of the model - but this is not needed to estimate proportional effects), as long
as ν and ε are independent of x and z, regardless of whether ν and ε are
correlated or not.

Binary Endogenous Variable

A separate issue arises if y2 is a binary variable. In this case, the second
equation (5.51) of the two equation system has the interpretation of a latent
model and the observed binary variable is determined by the threshold process

y2 = 1I(δy1 + z′γ + ε > 0) (5.53)

where 1I is the usual indicator function. In this case, logical consistency requires
that for the unconditional probabilities, P (y2 = 1) + P (y2 = 0) = 1 which
can be shown to imply that the system must be recursive. For example, for
x = z = 0, y2 determined as in (5.53) and y1 = exp(αy2) + ν, we obtain

P (y2 = 1) = P (δ(exp(α × 1) + ν) + ε > 0)

P (y2 = 0) = P (δ(exp(α × 0) + ν) + ε ≤ 0)

and thus

1 − F (δ(− exp(α)) + F (−δ) = 1

where F is the cumulative density function of δν + ε. Thus, it must be the
case that either δ = 0 or α = 0 (or both). From a count data perspective,
excluding the count from the binary equation is the more interesting model,
yielding a count model with binary endogenous variable.

5.3.5 Instrumental Variable Estimation

A count data model with endogenous regressors can be estimated using in-
strumental variables, provided, of course, that instruments are available. Due
to the exponential conditional expectation function, closed form solutions are
unavailable, and one needs to apply non-linear instrumental variables tech-
niques. A general exposition of the method is provided by Mullahy (1997a),
who approached the issue in the context of the Poisson regression model.
Windmeijer and Santos Silva (1997) discuss GMM estimation of such models.
Further applications to count data modeling with endogeneity using instru-
ments and GMM estimation include Vera-Hernandez (1999) and Schellhorn
(2001).

Since the starting point is the exponential conditional expectation function
rather than the full distribution, the method immediately generalizes to any
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exponential regression model. By the same token, this also means that the
technique does not generalize to arbitrary alternative count data models, such
as hurdle or zero-inflated models where the conditional expectation function
is more complex.

IV Estimation With Multiplicative Errors

We consider the model

E(y|x, u) = exp(α + xβ)u (5.54)

where E(u|x) is a function of x. We explicitly keep track of the constant
for reasons that will become apparent shortly. Also, we use, for simplicity, a
single endogenous regressor x. With endogeneity, E(y|x) is not proportional
to exp(α + x′β), and the Poisson PML for β is inconsistent.

Assume that an instrument z is available such that E(u|z) = δ where δ is
some constant. Then

E[y exp(−α − xβ)|z] = δ

or, equivalently,

E[y exp(−α̃ − xβ) − 1|z] = 0 (5.55)

where α̃ = α + log δ. The moment restrictions depend on α̃ and on β. δ is
of course unknown, so that we cannot recover the original intercept unless
we simply assume that δ = 1. (5.55) implies any number of unconditional
moment conditions

E[(y exp(−α̃ − xβ) − 1)g(z)] = 0

for arbitrary functions g(z).
Such derived moment conditions can be used to estimate β consistently

(Mullahy, 1997a). In particular, for g(z) = z, and provided that a sufficient
number of instruments is available, estimation can be based on the empirical
covariance between u − 1 and z, i.e.,

n∑
i=1

(yi exp(−α̃ − xiβ) − 1)zi = 0 (5.56)

If more instruments than endogenous variables are present, GMM estima-
tion is asymptotically efficient, and tests for over-identification can be imple-
mented. (See, for instance, Davidson and MacKinnon, 1993, Windmeijer and
Santos Silva, 1997).
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IV Estimation With Additive Errors

Let

E(y|x, η) = exp(α + xβ) + η

x is endogenous if E(η|x) is a function of x. Thus

E[(y − exp(α + xβ)|x] �= 0

and Poisson regression is inconsistent. However, suppose that instruments z
are available such that E(η|z) = 0. Because of the additive separability, the
normalization of the conditional expectation to zero is inconsequential. We
obtain

E[y − exp(α + xβ)|z] = 0 (5.57)

from where we can derive any number of moment restrictions. In particular,
it implies zero correlation between η and z. Grogger (1990b) discusses this
approach with special reference to count data modeling. He points out that a
comparison of the non-linear instrumental variable estimator with the Poisson
maximum likelihood estimator provides a simple test for exogeneity of the
regressors.

As shown by Windmeijer and Santos Silva (1997), the same instrument
cannot, in general, be valid in the multiplicative and additive case alike. Recall
that

E(y|x, u) = exp(α + xβ)u
= exp(α + xβ) + exp(α + xβ)(u − 1)

Assume that E(u|z) = 1 (or some arbitraty constant) so that z is a valid
instrument in the multiplicative model. Then E[y − exp(α + xβ)|z] �= 0, in
general, since E(exp(α+xβ)(u−1)|z) = E(exp(α+xβ)u|z)−E(exp(α+xβ)|z).
But the first term does not simplify in general due to the correlation between
z and x.

There are exceptions. Windmeijer (2008) shows that if endogeneity is due
to classical measurement error in an explanatory variable, then both additive
and multiplicative moment conditions are valid. This is also the case if x has
a linear first stage,

x = z′γ + ε

where z is independent of ε and u. With

E(y|x, u) = δ exp(α + xβ) + exp(α + xβ)(u − δ)

we obtain

E[y − δ exp(α + xβ)|z] = exp(α + β(z′γ))[E(exp(βε)u − δE(exp(βε)]

which is zero for δ = E(exp(βε)u)/E(exp(βε)). We obtain a valid linear IV
estimator based on the moment condition

E[y − exp(α̃ + xβ)|z] = 0

where α̃ = log E(exp(βε)u − log E(exp(βε).
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5.3.6 Estimation in Stages

To understand, when and why two-step estimation, or estimation in stages,
may work in count data models, we start from the conditional expectation
function with multiplicative error. For simplicity, we consider again a model
with a single endogenous regressor

E(y|x, u) = exp(α + xβ)u

Assume that x has a first stage equation

x = z′γ + ε (5.58)

where the instruments z are fully independent of ε and u. This assumption is
obviously stronger than mean independence, or mere lack of correlation. This
assumption rules out, for instance, that x is a binary endogenous regressor
(see below) or a non-negative regressor.

Endogeneity arises because Cov(u, ε) �= 0. Under this set of assumptions,

E(y|z) = E[exp(α + xβ)u|z]
= E[exp(α + β(z′γ + ε))u|z]
= exp(α + βz′γ)E[exp(βε)u|z]

It follows from independence that E(exp(βε)u|z) is a constant not depending
on z and therefore

E(y|z) = exp(α̃ + βz′γ) (5.59)

where α̃ = α + log E(exp(βε)u). α̃ and β can be estimated consistently based
on the moment condition

E(y − exp(α̃ + βz′γ̂)|z) = 0 (5.60)

where the unknown γ has been replaced by a consistent first stage estimator.
Thus, in practice, one can perform a Poisson estimation, regressing y on x̂ =
z′γ̂ where γ̂ is obtained from a first-stage estimation. Estimation in stages
does not identify the true constant of the model, α. As a consequence, it does
not identify any quantity of interest that requires knowledge of this constant.
One example for such a non-identified quantity is the partial mean effect for
a given u. However, all relative mean effects are identified, as is the slope
parameter β.

This approach requires an exclusion restriction (z may not have a direct
effect on y). Also, note that in this non-linear set-up, two-stage estimation and
non-linear instrumental variables estimation do not amount to the same thing.
The standard errors of the second stage estimates ˆ̃α and β̂ need to be adjusted
to account for the sampling variation introduced from the estimation of γ,
which can be done using standard formulas for two-step estimation (Murphy
and Topel, 1985). Alternatively, one can bootstrap the standard errors.

Wooldridge (2002) discusses a slightly different form of estimation in stages
for count data models with endogenous regressors. Point of departure is a



166 5 Sample Selection and Endogeneity

conditional mean function with multiplicative unobserved heterogeneity as
before,

E(y|x, v) = exp(α + βx + v)

where v = log u and

x = z′γ + ε

as before. In addition, assume that

v = ρε + ξ (5.61)

where ξ is independent of ε. Note that the linear conditional expectation
assumption is made for v, not for u. This formulation corresponds to the
notion that endogeneity derives from omitted variables, which means that v
and x should be treated symmetrically. It follows then that

E(y|x, ε) = exp(α̃ + βx + ρε)

where α̃ = α + log E[exp(ξ)]. While ε is not observed it can be estimated as
residual from a first stage regression of x on z. Estimates for the parameters
of the exponential regression, ˆ̃α, β̂, and ρ̂ can then be obtained from a Poisson
quasi likelihood regression. The Wooldridge approach requires one additional
assumption, (5.61). In return, it is possible to estimate a model for E(y|x, ε),
rather than E(y|z), which has the advantage that ρ is estimated explicitly,
and the hypothesis of endogeneity can be directly tested.

Note that both approaches require linearity and independence assump-
tions. This is an important difference to the linear case. Here, the lin-
ear reduced form model for the right hand side endogenous variable actu-
ally amounts to an additional assumption that is required (Mullahy, 1997a,
Wooldridge, 1997b). The second stage Poisson estimators using first stage
fitted values is inconsistent unless the model for the first stage conditional
expectation function is correct (and ε is fully independent of z). On the other
hand, conventional two-stage least squares estimators using a linear second
stage model are consistent whether or not the first stage conditional expecta-
tion function is linear. In fact, two-stage least squares is equivalent to instru-
mental variable estimation then.

Thus, there is some pay-off to actually avoiding the exponential mean
function. If one is willing to specify the Poisson regression model with linear
mean function, two-stage estimation is consistent under considerably weaker
assumptions on the reduced form equation (See, for instance, Mullahy and
Portney, 1990, and also Sander, 1992). Angrist (2001) uses a related argu-
ment in the context of a linear outcome equation combined with a binary
endogenous regressor to argue for using a linear probability model at the first
stage.
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Binary Endogenous Regressor

Estimation in stages does not work always, and in particular not, when x
is a binary endogenous variable. Two-stage estimation of a count model with
endogenous binary variable has also been referred to as “forbidden regression”
(Wooldridge, 2002). The reason for its failure to deliver a consistent estimator
is that for a binary endogenous variable d, there does not exist a reduced form
representation with fully independent error. In a binary model, the error term
is heteroskedastic by construction, and thus not independent of z. But this is
a key requirement for the whole approach. For example, if we replace a single
binary endogenous regressor by its predicted probability, we can obtain an
expression such as

E(y|z) = exp(β0 + β1F (z′γ))E[exp(β1w)|z] (5.62)

where w = d − F (z′γ). Now, E[exp(β1w)|z] is a function of z. The rea-
son is that the higher order moments of w depend on z. For example,
E(w2|z) = F (z′γ)[1 − F (z′γ)]. But E(exp(β1w)), because of the convexity
of the exponential transformation, is an increasing function of the variance,
and therefore depends on both parameters and regressors in this case.

5.4 Switching Regression

So far, we have considered non-linear instrumental variable estimation and es-
timation in stages. A further estimation method for models with endogenous
regressors becomes available if one is willing to specify the full joint distri-
bution of y1 and y2. This goes back to the initial endogeneity definition by
Engle, Hendry and Richard (1983) (see Chap. 5.3.2 ) where it was pointed out
that structural parameters can always be estimated from a fully specified joint
model. We will discuss such full information maximum likelihood estimation
based on a parametric bivariate model within the context of the switching
regression model, or its close cousin – a count data model with endogenous
binary regressor – mainly, because this has been the main application in the
literature (Terza, 1998)

The switching regression model can be summarized by the following three
equations:

y0 = exp(x′β0 + v0) + u0

y1 = exp(x′β1 + v1) + u1

d = 1I(z′γ + ε > 0)

and the observation rule that y1 is observed when d = 1 and y0 is observed
when d = 0. Endogeneity enters the model via the unobserved heterogeneity
terms v0 and v1, respectively. Specifically, assume that v0 and ε are correlated,
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as are v1 and ε. On the other hand, the additional equation errors u0 and u1

are independent of v0, v1, ε and x. If we restrict u0 = u1, v0 = v1, and β0 = β1

except for the constant, we obtain the model with endogenous binary regressor

y = exp(x′β + αd + v) + u (5.63)

where d is determined as before.

5.4.1 Full Information Maximum Likelihood Estimation

We focus here on the full information maximum likelihood approach for the
model with binary endogenous variable (Terza, 1998). The approach for the
full switching regression model would be very similar, as it would for a model
with any arbitrarily scaled endogenous regressor. Note that the Terza model is
also closely related to other non-linear models with binary endogenous regres-
sors, such as the bivariate probit model as described, for instance, by Evans
and Schwab (1995).

To obtain the full joint parametric model, we assume that f(y|x, d, v) in
(5.63) is a standard count data model (for example a Poisson distribution).
Moreover, v and ε are independent of x and z, but correlated with each other.
This correlation is the source of endogeneity in this type of model. The typical
interpretation is the existence of unobserved explanatory variables, that affect
both the rate at which events occur and the probability of being observed in
the state d = 1.

The full information maximum likelihood approach requires a parametric
assumption on the joint distribution of v and ε. The observed data identify
f(y, d|x, z). We can write

f(y, d|x, z) = f(y|d, x, z)f(d|x, z)

=
∫ ∞

−∞
f(y|d, x, z, v)f(d|x, z, v)g(v)dv

The term under the integral is a product of two conditional and one marginal
distribution. The first conditional distribution is fully specified, for instance
a Poisson model. The second conditional distribution is a binary model for d
that is now conditional on v, thus determined by the conditional distribution
of ε|v. The model is fully specified once we know f(ε|v) and g(v) (and thus
the joint distribution of the two error terms).

The common assumption is, of course, that v and ε have a bivariate normal
distribution with mean zero, variance σ2 and 1, respectively, and correlation
parameter ρ. This case is relatively easy to handle, and it captures the depen-
dence between the two equations in a single parameter, ρ that varies between
-1 and +1.

Under these assumptions,

f(d|z, v) = P (d = 1|z, v)d[1 − P (d = 1|z, v)]1−d

where
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P (d = 1|z, v) = P (ε > −z′γ|v)
= Φ∗(v, z) (5.64)

where

Φ∗(v, z) = Φ

(
z′γ + ρv/σ√

1 − ρ2

)
and Φ denotes the cumulative density function of the standard normal dis-
tribution (see 5.32). Finally, g(v) is a normal distribution with mean 0 and
variance σ2.

Collecting all terms, the full joint probability function of the count data
model with endogenous binary regressor can be written as

f(y, d|x, z) =
∫ ∞

−∞
f(y|d, x, v)Φ∗(v, z)d[1 − Φ∗(v, z)]1−dg(v)dv (5.65)

While the integral has no closed-form solution, numerical approximation using
quadrature or other simulation methods provides no major difficulties. The
parameters can be estimated by maximizing the log-likelihood function of the
sample

�(β, γ, σ2, ρ) =
n∑

i=1

log f(yi, di|xi, zi; β, γ, σ2, ρ)

with respect to β, γ, σ2 and ρ. This estimator has all the useful properties of
maximum likelihood estimators provided the model is correctly specified.

A Bayesian analysis of this model is provided by Kozumi (2002). Deb
and Trivedi (2006) extend the model to allow for an endogenous multinomial
variable, while keeping a normality assumption (among random errors in a
mixed multinomial logit model and the unobserved heterogeneity in the count
process).

What are the consequences of ignoring endogeneity of d? From (5.63), we
can deduce that

E(y|x, d = 1)
E(y|x, d = 0)

=
EvE(y|x, v, d = 1)
EvE(y|x, v, d = 0)

=
exp(x′β + α)E(exp(v)|d = 1)

exp(x′β)E(exp(v)|d = 0)

In order to evaluate the expectations, we need to make reference to the afore-
mentioned results on truncation in the log-normal distribution (see equation
(5.28)). In particular,

E(exp(v)|d = 1) = exp(σ2/2)
Φ(z′γ + ρσ)

Φ(z′γ)

and

E(exp(v)|d = 0) = exp(σ2/2)
Φ(−z′γ − ρσ)

Φ(−z′γ)
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Therefore, under the assumptions of this model
E(y|x, d = 1)
E(y|x, d = 0)

= exp(α)
Φ(z′γ + ρσ)

Φ(z′γ)
Φ(−z′γ)

Φ(−z′γ − ρσ)
(5.66)

If ρ > 0, it is easily verified that the factor following exp(α) is always greater
than 1. In other words, the overall relative difference between the two expected
counts exceeds then exp(α)− 1, the causal difference that would be observed
for two randomly selected, otherwise identical individuals, for one of whom
d = 1 and for the other d = 0. Ignoring the endogeneity of d therefore leads
to an upward bias in the estimated effect for ρ > 0. For ρ < 0, there is a
downward bias.

5.4.2 Moment-Based Estimation

Terza (1998) also discusses estimation of the model under weaker assumptions.

• f(y|d, v) is not specified (for instance no assumption of a Poisson or neg-
ative binomial distribution). Only the conditional expectation function is
specified:

E(y|d, v) = exp(x′β + αd + v)

• ε and v are bivariate normal distributed as before.

We know that in this case

E(y|x, z, d = 1) = exp(x′β + α + σ2/2)
Φ(z′γ + ρσ)

Φ(z′γ)
and

E(y|x, z, d = 0) = exp(x′β + σ2/2)
Φ(−z′γ − ρσ)

Φ(−z′γ)
Terza (1998) suggests a two stage estimation method similar to that proposed
by Heckman (1979) for the linear model.

a) Estimate a probit model and obtain consistent estimates γ̂ for γ.
a) Estimate a regression model with multiplicative correction factor (5.28) by

non-linear least squares. NLS is required, since the conditional expectation
is non-linear in ρ, σ, and β.

It is unlikely that this estimation method will supersede the relatively straight-
forward full information maximum likelihood estimation in practice. The gain
of a certain robustness, because one does not need to make a distributional
assumption for the conditional distribution of the count, is at the same time
a loss, since this is not a generic count data model any longer, where infer-
ences on probabilities of single outcomes are possible. Moreover, the Poisson
distribution has substantial robustness properties, so that one should feel in
practice quite comfortable with this assumption, whereas the choice of the
bivariate mixing distribution is potentially less innocuous. But it is exactly
the bivariate normal assumption that Terza’s moment estimator relies heavily
on as well.
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5.4.3 Non-Normality

Clearly, one might be concerned with the heavy reliance of this approach
on particular distributional form assumptions. While the normal distribution
certainly has a few arguments speaking in its favor, alternative approaches
have been pursued in the literature, if only in order to provide tools for as-
sessing the robustness of the results with respect to these assumptions. The
issues here are essentially the same as those discussed in connection with sam-
ple selection models in Chap. 5.2.2. In fact, the formal structure of sample
selection models, switching regression models, and models with endogenous
binary regressor is very similar. In a sample selection model, the outcome is
only observed in one state, whereas in a switching regression model, there is
an outcome in each state, but the counterfactual outcome (for example y1 if
d = 0) is unobserved as well.

Summarizing the discussion of Chap. 5.2.2, previous proposals to distribu-
tions other than the multivariate normal have been based on copula functions
(Ophem, 2000; see also Chap. 7.1.7), discrete factor approximation (Mroz,
1999), and using series expansions to obtain flexible form models for the con-
ditional probability function of the counts, thereby implicitly acconting for
the non-standard conditional expectation functions resulting from endogene-
ity (Romeu and Hernandez, 2005).

5.5 Mixed Discrete-Continuous Models

Models with bivariate normal unobserved heterogeneity structure can be easily
extended to deal with a continuous endogenous variable. In this case, the joint
density function can be written as

f(y1, y2) =
∫

f(y1|y2, v)f(y2|v)g(v)dε

If f(y1|y2, v) is a count data distribution function, y2 has reduced form

y2 = z′γ + ε

and v and ε are bivariate normal, the conditional distribution of y2|v is a
normal distribution with mean z′γ + ρσε/σvv and variance σ2

ε − ρ2/σ2
v . Thus,

it is relatively simple to establish the likelihood function. Of course, this ap-
proach is plausible only if y2 is a continuous variable that can be (at least
approximately) normal distributed.

A related class of models arises if two dependent variables, one of them
possibly a count, are only connected through correlated errors. Thus, in the
two equation framework of Chap. 5.3.4, both α and δ are zero, but the errors
v and ε are correlated. Accounting for such correlation is then not an issue of
endogeneity and consistent estimation but rather one of efficient estimation.
In the traditional linear model terminology, one would refer to this set-up as
one of seemingly unrelated regressions.
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An example in the literature is Prieger (2002) who considers two outcome
variables, the number of innovations in the telecommunication markets (a dis-
crete variable modeled by a count data model) and the time until adoption in
the market, or regulatory delay (a continuous variable modeled by a duration
model, here a Weibull distribution). In such an application, the correlation ρ
may have a substantive interpretation, providing evidence on possible conges-
tion effects, as an increased number of innovations may for instance increase
the regulatory delay due to congestion. Other interesting uses of such a model
are conceivable, such as the joint modeling of the individual number of unem-
ployment spells and their durations.



6

Zeros in Count Data Models

6.1 Introduction

There are two main reasons why zeros are of particular interest in count data
models. First, empirically, their fraction is often too high to be compatible with
a standard underlying count data model (we also speak of excess zeros then).
Second, theoretically, zeros often reflect corner solution outcomes in economic
choice models. In such cases, the process generating zeros might depend on
other driving forces than the process for strictly positive outcomes, making
it informative and relevant to distinguish between elasticities at the intensive
and extensive margins. This issue is reminiscent of the debate in the limited
dependent variable literature on the appropriateness of the Tobit model as
opposed to so-called two-part models (Cragg, 1971, Duan et al., 1993).

The following examples illustrate the sense in which zeros are potentially
different.

• Consider the study of individual fertility, measured as the number of births
by a woman. The outcome “no births” can be due either to infertility or
to choice.

• In the study of recreational demand, the number of trips to a ski field
during the last quarter can be zero either because a person is not a skier,
or because a skier did not go skiing during the last quarter. In this example,
we are confronted with the situation that the time frame (a quarter) may
be too short to observe low frequency events, despite the fact that latent
demand is not zero.

• In modeling the number of job changes using worker survey data, some
zeros will arise simply due to underreporting. Thus, in count data, zeros
naturally result from measurement error in the dependent variable.

• In modeling health care utilization, it has been hypothesized that zero
visits to a doctor reflect the state of health, whereas the positive number
of visits is partially supply (i.e., physician) induced.
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6.2 Zeros in the Poisson Model

The presence of zeros, even a very high fraction of zeros, is a well-defined
outcome under the Poisson distribution and thus does not per-se rule out
that model, or any other of the standard count data models discussed so far.
For the Poisson distribution

fpsn(0) = e−λ (6.1)

(which is equal to the survivor probability of an exponentially distributed
waiting time at T = 1). Thus, for the Poisson distribution, the probability of a
zero and the overall mean are in a one-to-one inverse proportional relationship.
To give an example of the magnitudes involved, a zero probability f(0) = 0.5
implies λ = − log(0.5) = 0.69, whereas it follows from f(0) = 0.25 that
λ = 1.38. A large fraction of zeros, and therefore a small mean, is thus fully
compatible with the standard Poisson model. The primary consequence is
that the data are relatively uninformative for estimating parameters, as the
standard errors are a decreasing function of the sample mean. In the Poisson
regression model, we have

V̂ar(β̂) =

[
n∑

i=1

exp(x′
iβ̂)xix

′
i

]−1

(see equation (3.34)) which becomes larger as exp(x′
iβ̂) becomes smaller.

6.2.1 Excess Zeros and Overdispersion

In many cases, a large proportion of zeros will not only affect the precision
of inference, but rather speak directly against the Poisson regression model.
This is always the case when there are “too many” zeros (f(0) > e−λ) or, less
common in practice, “too few” zeros (f(0) < e−λ). It turns out that excess
zeros can be accommodated by the negative binomial model or, in fact, by
any Poisson mixture model, as the following results show. We start with the
negative binomial model in Negbin II specification. In this case

fnb(0) =
(

α

λ + α

)α

=
1(

1 + λ
α

)α (6.2)

We see that limα→∞ fnb(0) = fpsn(0) as required. For finite α, it holds that(
1 +

λ

α

)α

< eλ

and therefore fnb(0) > fpsn(0). This relationship is also seen in Fig. 6.1.
Thus, a comparison between the Poisson distribution and the negative

binomial distribution suggests a link between, unobserved heterogeneity,
overdispersion and excess zeros. This result generalizes in a number of ways.
First, unobserved heterogeneity must not necessarily be of the gamma type, as
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Fig. 6.1. Probability of a Zero as a Function of α, for λ = 1, in Poisson (Solid Line)
and Negative Binomial Distribution (Dashed Line)
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is the case when generalizing the Poisson distribution to the negative binomial
distribution. It is easy to see that any multiplicative unobserved heterogene-
ity in the Poisson model will generate excess zeros. If y is Poisson distributed
with parameter λv, and v has density function g(v), with E(v) = 1, then

f(0|λ) =
∫ −∞

0

e−λvg(v)dv = Ev

(
e−λv

)
Since the exponential function is a convex function we have, by Jensen’s in-
equality, that

Ev

(
e−λv

) ≥ e−λE(v) = e−λ

where equality holds only when σ2
v = 0.

Second, one can consider distributions other than the Poisson and ask
whether unobserved heterogeneity leads to excess zeros there as well. At least
for any exponential family distribution, this is the case indeed, as the Two-
Crossings Theorem due to Shaked (1980) establishes.

6.2.2 Two-Crossings Theorem

Suppose a base probability model f(y|x, v) for y discrete or continuous is from
the exponential family, and let E(v) = 1 and Var(v) = σ2

v > 0. Then the mixed
distribution f(y|x) = Ev[f(y|x, v)] has heavier tails than the base distribution
in the sense that the sign pattern of f(y|x) − f(y|x, v = 1) is {+,−, +} as y
increases on its support.
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The two-crossings theorem formalizes the intuition that mixing spreads out
a distribution away from its center and towards its tails. While parametric
models with overdispersion therefore offer one approach to account for extra
zeros (relative to the Poisson benchmark), this may not always be the best
one to follow. The main limitation remains, namely that zeros are generated
from the same underlying process as positives. The rest of the chapter mostly
deals with so-called multi-index models, where the zero-generating process is
not subject to such a constraint.

6.2.3 Effects at the Extensive Margin

Count data models lend themselves naturally to address the question how a
regressor induced change in λ affects the probability of a zero. In the Poisson
model

df(0|λ)
dλ

= −e−λ

whereas in the negative binomial model

∂f(0|λ, α)
∂λ

= −
(

α

λ + α

)α+1

Thus, the effect at the extensive margin is negative in either case. To obtain
the effects of a change in a regressor, for λ = exp(x′β), the above expressions
have to be multiplied by

∂λ

∂xj
= λβj

An increase in xj reduces the probability of a zero outcome if βj > 0, and
increases it otherwise. Note that in the case of the Poisson model with unob-
served heterogeneity, mixing does not have an unambiguous effect on the size
of the marginal effect. We can write

df(0|λ)
dλ

=
∫ ∞

0

df(0|λ, v)
dλ

g(v)dv =
∫ ∞

0

−v exp(−λv)g(v)dv

which is the first derivative of the Laplace transform of v, evaluated at s = λ.
While this expression must be negative, it is unclear whether it is greater or
less than − exp(−λ) for arbitrary g(v).

The important thing to note is another one, though. The marginal effects
for the zero outcome are a function of λ, the mean of the count distribution.
So upward shifts in the mean must reduce the probability of a zero, in the
Poisson case following an exponential decay pattern. This is very restrictive.
Even if the sign may be less disputed, the true magnitude could differ from
the one imposed by functional form.

Consider, as an example, health care utilization, measured in terms of
number of doctor visits. The factors that explain whether a doctor is con-
tacted a first time may differ from the factors that determine the number
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of visits (re-appointments, referrals) following a first visit. Similarly, for the
fertility example mentioned earlier, the factors behind infertility are presum-
ably different than those determining choice. And even if the factors were the
same, we may want to consider models, in which the quantitative response at
the intensive and extensive margins can be estimated freely, i.e., determined
from the data, rather than being a-priori determined by functional form.

6.2.4 Multi-Index Models

In order to obtain such additional flexibility, we essentially have to move
beyond the class of single-index models and consider more general multi-index
models instead. In the remainder of this chapter, three classes of multi-index
models are distinguished and discussed in some detail. These are

• Hurdle Models
• Zero Inflated Models
• Compound Poisson Models

All three classes of models address, in their specific ways, the possibility
that the distributional response to a variation in an exogenous variable may
be different in different parts of the outcome distribution, and in particular
at the extensive (the zeros) and intensive (the positives) margins, relative to
what a standard count data model, such as the Poisson or the negative bino-
mial model, would imply. At the end of this chapter, we add a discussion of a
fourth such generalization, namely quantile regression for counts. The quan-
tile approach is similar to the three probability based ones, listed above, as
it also has a multi-index structure and therefore allows for different response
elasticities in different parts of the outcome distribution. At the same time, it
is fundamentally different, since it focuses on quantiles rather than on proba-
bilities. The two views are complementary. While quantiles and probabilities
are not in a one-to-one relation, both approaches should lead to qualitatively
similar results. For example, from the quantile perspective, one could define
the extensive margin in terms of a low quantile, such as the first decile, rather
than in terms of the zero outcome, as it would be appropriate in a probability
model.

6.2.5 A General Decomposition Result

The probability models discussed in this chapter all have conditional mean
functions that depart from the simple log-linear mean of the standard Poisson
regression model. Thus, parameters cannot be interpreted directly as propor-
tional mean effects. The overall mean is usually not the main object of interest
in this class of models. Rather, any mean effect can be decomposed into an
effects at the intensive margin, and an effect at the extensive margin, i.e. for
P (y = 0|x) and for E(y|y > 0, x), respectively. Winkelmann (2004b) reports
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results of such a decomposition in the context of an evaluation of a health
care reform in Germany, and its effect on the individual number of visits to
a physician. In that study, it was hypoythesized that the reform might have
had a disproportionately large effect at the left end of the outcome distribu-
tion, and for zero visits in particular. Tests based on multi-index models did
confirm such an asymmetric response.

Formally, we can always write

E(y|x) = P (y > 0|x)E(y|y > 0, x)

where P (y > 0|x) = 1 − P (y = 0|x). Therefore

∂E(y|x)
∂x

=
∂P (y > 0, x)

∂x
E(y|y > 0, x) +

∂E(y|y > 0, x)
∂x

P (y > 0|x)

or
∂E(y|x)/E(y|x)

∂x
=

∂P (y > 0, x)/P (y > 0, x)
∂x

+
∂E(y|y > 0, x)/E(y|y > 0, x)

∂x

As stated, such a decomposition is possible for any count data model. In
standard models, however, it remains purely tautological. Both effects ∂P (y >
0|x)/∂x and ∂E(y|y > 0, x)/∂x are functions of the same single index and the
same parameter β.

The multi-index models discussed in this chapter severe this strict link,
since P (y > 0|x) and E(y|y > 0, x) are in general functions of different pa-
rameters. Marginal effects in these models are different in different parts of the
outcome distribution, relative to a standard single index count data model. For
example, in a multi index model, a given change in a regressor x can decrease
the probability of a zero, but leave the conditional expectation E(y|y > 0, x)
unchanged. The standard Poisson model would rule out such a possibility
a-priori, based on functional form assumptions.

6.3 Hurdle Count Data Models

Hurdle count data models were first discussed by Mullahy (1986) (see also
Creel and Loomis, 1990). Hurdle models allow for a systematic difference in
the statistical process governing individuals (observations) below the hurdle
and individuals above the hurdle. In particular, a hurdle model combines a
dichotomous model for the binary outcome of the count being below or above
the hurdle (the selection variable), with a truncated model for outcomes above
the hurdle. For this reason, hurdle models sometimes are also referred to as
two-part models.

The most widely used hurdle count data model sets the hurdle at zero.
Only this model is discussed in this chapter. From a statistical point of view,
the hurdle at zero formulation can account for excess zeros, as defined in
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Chapter 6.2.1. From an economic point of view, an intuitive appeal arises
from its interpretation as a two-part decision process, a plausible feature of
individual behavior in many situations.

The hurdle model is flexible and allows for both under- and overdispersion
in a way to be discussed below. Applications include Pohlmeier and Ulrich
(1995), Arulampalam and Booth (1997), and Booth, Arulampalam and Elias
(1997) who estimate hurdle negative binomial models for the determinants of
visits to a physician and the incidence of training, respectively. Gurmu and
Trivedi (1996) apply a hurdle model to the annual number of recreational
boating trips by a family. Wilson (1992) proposed a hurdle Poisson model
with endogenously determined position of the hurdle.

For a general formulation, assume that g1(0) is the probability of a zero
outcome, and that g2(k), k = 1, 2, . . . is a probability function for positive
integers. The probability function of the hurdle-at-zero model is then given
by:

f(y = 0) = g1(0)
f(y = k) = (1 − g1(0))g2(k) k = 1, 2, . . .

Mullahy (1986) advocates an approach where both parts of the hurdle model
are based on probability functions for nonnegative integers, call them f1 and
f2, respectively. In terms of the general model above, let g1(0) = f1(0) and
g2(k) = f2(k)/(1 − f2(0)). In the case of g2, a normalization is required since
f2 has support over the nonnegative integers whereas the support of g2 must
be over the positive integers. Formally, this corresponds to truncation of f2.
However, there is no truncation of the population here. All that is needed is
a distribution with positive support, and the second part of a hurdle model
can use a displaced distribution, or any distribution with positive support as
well.

Under the Mullahy (1986) assumptions, the probability distribution of the
hurdle-at-zero model is given by

f(y = 0) = f1(0)

f(y = k) =
1 − f1(0)
1 − f2(0)

f2(k) (6.3)

= Θf2(k) , k = 1, 2, . . .

where f2 is referred to as parent-process. The numerator of Θ gives the prob-
ability of crossing the hurdle and the denominator is a normalization that
accounts for the (purely technical) truncation of f2. It follows that the hurdle
model collapses to the parent model if f1 = f2 or, equivalently, Θ = 1. The
expected value of the hurdle model is given by

Eh(y) = Θ
∞∑

k=1

kf2(k) = ΘE2(y)
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It differs from the expected value of the parent model by a factor Θ. If the
probability of crossing the hurdle is greater than the sum of the probabilities
of positive outcomes in the parent model, Θ exceeds 1, thus increasing the
expected value of the hurdle model relatively to the expected value of the
parent model. Alternatively, if the probability of not crossing the hurdle is
greater than the probability of a zero in the parent model – the usual case
in an application with excess zeros – Θ is less than 1, thus decreasing the
expected value of the hurdle model relatively to the expected value of the
parent model. This model thus provides a new interpretation of excess zeros
as being a feature of the mean function rather than a feature of the variance
function. The mean function of the hurdle model introduces additional non-
linearities relative to the standard model in order to account for the corner
solution outcome, much as in other corner solution models, such as for instance
the Tobit model.

In addition, the hurdle model leads to a modified variance to mean ratio.
The variance is

Varh(y) =
∞∑

k=1

k2f2(k)Θ −
[
Θ

∞∑
k=1

kf2(k)

]2

and the variance-mean ratio can be written as

Varh(y)
Eh(y)

=
∑∞

k=1 k2f2(k) − Θ[
∑∞

k=1 kf2(k)]2∑∞
k=1 kf2(k)

(6.4)

For Θ = 1, (6.4) reduces to the variance-mean ratio of the parent model. If f2

is a Poisson distribution function, this is equidispersion with Var(y)/E(y) = 1.
For f2 Poisson and Θ �= 1, (6.3) defines a hurdle Poisson model. 0 < Θ < 1
yields overdispersion, 1 < Θ < c underdispersion. Mullahy (1986) sets c = ∞,
but this does not hold in general since there is an upper limit to keep the
variance positive. E.g., for the Poisson case

∞∑
k=1

k2f2(k) = λ2(λ2 + 1)

where λ2 is the expected value of the (untruncated) parent distribution. Hence

Varh(y) = Θλ2(λ2 + 1) − Θ2λ2
2

with roots

Θ1 = 0 , Θ2 =
λ2 + 1

λ2

Thus, for the hurdle Poisson model underdispersion is obtained for 1 < Θ <
(λ2 + 1)/λ2. For λ2 → ∞, underdispersion becomes impossible. This reflects
the fact that underdispersion occurs if zeros are less frequent than the parent
distribution would predict. The higher the expected value of the Poisson dis-
tribution, the lower the predicted probability of zero outcome and the lower
the scope for underdispersion.
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Double Hurdle Model

Hurdle models can be generalized to include more than a single hurdle. For
example, let f1, f2, and f3 be arbitrary probability distribution functions for
non-negative integers. A double-hurdle model, or a model with two hurdles,
in this example a first one at zero and a second one at one, has probability
function

f(0) = f1(0)

f(1) =
1 − f1(0)
1 − f2(0)

f2(1)

f(k) =
[
1 − f1(0) − 1 − f1(0)

1 − f2(0)
f2(1)

]
f3(k)

1 − f3(0) − f3(1)
, k = 2, 3, . . .

This is a straightforward generalization of (6.3). No applications of such a
model are known so far.

Likelihood Function

The generic likelihood function for the hurdle-at-zero model with independent
sampling is given by

L =
n∏

i=1

f1(0; θ1)di [1 − f1(0; θ1)]1−di [f2(yi; θ2)/(1 − f2(0; θ2))]1−di (6.5)

or, in logarithmic form,

� =
n∑

i=1

di log f1(0; θ1) + (1 − di) log[1 − f1(0; θ1)]

+ (1 − di) log[f2(yi; θ2)/(1 − f2(0; θ2))]

where di = 1 − min{yi, 1}. The first two terms on the right-hand side refer
to the likelihood of the hurdle step, while the third term is the likelihood
for positive counts. The log-likelihood of this parameterization is therefore
separable, and maximization can be simplified by first maximizing a binary
model log-likelihood using all observations, and then separately maximizing
the log-likelihood for a truncated variable using the subset of observations for
which the counts are positive.

6.3.1 Hurdle Poisson Model

Clearly, the hurdle model can be specified in a variety of ways by choosing
different probability distributions f1 and f2 and specific parameterizations,
like for instance Poisson, geometric, or negative binomial. Mullahy (1986)
proposes the use of two Poisson distributions with λ1 = exp(x′β1) and λ2 =
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exp(x′β2). This approach is convenient since the standard Poisson model can
be tested via the parametric restriction H0 : β1 = β2 using Wald or likelihood
ratio test statistics.

The hurdle Poisson model has conditional expectation

E(y|x) =
(1 − e−λ1)
(1 − e−λ2)

λ2 (6.6)

and variance function

Var(y|x) = E(y|x) +
1 − Θ

Θ
[E(y|x)]2 (6.7)

where Θ = (1 − e−λ1)/(1 − e−λ2). It closely resembles the variance function
(3.71) of the negative binomial model for k = 1, with the difference that the
coefficient σ2 = (1 − Θ)/Θ now varies between individuals. The likelihood
function of the hurdle Poisson model is given by

L(β1, β2) =
n∏

i=1

exp(− exp(x′
iβ1))di [1 − exp(− exp(x′

iβ1))]1−di

×
[
exp(− exp(x′

iβ2)) exp(yx′
iβ2))

yi![1 − exp(− exp(x′
iβ2))]

]1−di

where di = 1 − min{yi, 1}.

6.3.2 Marginal Effects

Consider the marginal mean effect first. The conditional expectation function
of the hurdle model was given in (6.6). Taking first derivatives, we obtain

∂E(y|x)
∂x

=
λ1e

−λ1

1 − e−λ2
λ2β1 − 1 − e−λ1

(1 − e−λ2)2
λ2

2e
−λ2β2 +

1 − e−λ1

1 − e−λ2
λ2β2 (6.8)

This partial effect is thus considerably more general (and complicated) than
the partial effects of the single-index Poisson model, unless β1 = β2, in which
case they simplify to the standard Poisson effects, ∂E(y|x)/∂x = λβ.

Similarly, we can compute the marginal probability effects for the hurdle
Poisson model, at the extensive and at the intensive margins. We obtain

∂f(0; x)
∂x

= −λ1e
−λ1β1

∂f(k; x)
∂x

= f(k; x)
[

λ1e
−λ1

1 − e−λ1
β1 − λ2e

−λ2

1 − e−λ2
β2 + (k − λ2)β2

]
(6.9)

where k = 1, 2, . . . and f(k; x) is the probability function of the hurdle model.
The single crossing restriction of the Poisson model does not apply here. It is
softened by the introduction of a second parameter vector. In fact, it is clear
from (6.9) that the marginal probability effects of the hurdle Poisson model
can switch signs twice. So it is still not perfectly flexible, although more so
than the simple Poisson model.
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6.3.3 Hurdle Negative Binomial Model

By far the most popular hurdle model in practice is the hurdle-at-zero negative
binomial model (Pohlmeier and Ulrich, 1995). In this case, f1 ∼ NB(β1, α1)
and f2 ∼ NB(β2, α2). Estimation of the model can be based on the general
likelihood factorization described above. This specification can give rise to an
identification problem, as noted by Pohlmeier and Ulrich (1995).

Consider estimation of the hurdle part of the model, i.e., the parameters
β1 and α1. This estimation is based on the dichotomous model f1(0; β1, α1)
versus 1 − f1(0; β1, α1). From (4.10), we see that for the generic negative
binomial model

P (y = 0) =
(

α1

α1 + λ

)α1

The Negbin II model is obtained directly by letting λ = exp(x′β1). For the
Negbin I model,

P (y = 0) =
(

1
1 + α1

)λ/α1

In the Negbin I model, we can thus write

log P (y = 0) =
λ

α1
log(1 + α1)

= exp(x′β1 + log θ)

where θ = log(1 + α1)/α1 = f(α1). Hence, α1 is not identified, as long as the
regression part of the model contains a constant. In the Negbin II model, by
contrast, two overdispersion parameters can be estimated, since

log P (y = 0) = −α1 log(1 + α−1
1 exp(x′β1))

which ensures identification of σ2
1 = 1/α1 based on functional form. In prac-

tice, however, this may be asking too much from the data, identification may
be weak, and convergence problems can arise. This leaves open a number of
possible remedies, if one wants to stay with the negative binomial model for
the positive part. One could impose the restriction σ2

1 = 0 (the Poisson case),
or better perhaps, let σ2

1 = σ2
2 . Alternatively, one may want to contemplate

non-nested hurdle models, a class of models we consider in the following sec-
tion.

6.3.4 Non-nested Hurdle Models

All models considered so far did nest a standard count data model, typically
through a restriction of the sort θ1 = θ2. This was achieved since the hurdle
process f1 and the process for the positives, f2, were based on the same
distribution. If one sees the hurdle step as an altogether different process,
one can as well use standard models for binary dependent variables at this
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stage, such as the probit or the logit model. Such models were estimated
by Grootendorst (1995). Gurmu (1998) discusses a model in which the hurdle
step is parameterized by a generalized (asymmetric) logit model. Winkelmann
(2004b) combines a probit hurdle model with a truncated-at-zero Poisson-
log-normal model. The probability function of this probit-Poisson-log-normal
model can be written as

P (y = 0) = Φ(x′γ) (6.10)

P (y = k) = [1 − Φ(x′γ)]

×
∫ ∞

−∞

exp(− exp(x′β + ε)) exp(x′β + ε)y

[1 − exp(− exp(x′β + ε))]y!
1√
2πσ

e−
1
2 ( ε

σ )2

dε (6.11)

for k = 1, 2, . . ., where Φ denotes the cumulative distribution function of the
standard normal distribution. Note that the mixing in the second part of
the distribution is done over the truncated Poisson model. As will be shown
in the next chapter, this order is preferable over the alternative, to do the
mixing first, and then form a truncated version of the resulting Poisson-log-
normal model. Also, it is possible to generalize the model further by allowing
correlation between the hurdle step and the process for the positives. A probit-
Poisson-log-normal model with correlated hurdle is presented in Chap. 6.3.7.

While these hurdle models do not nest the Poisson or negative binomial
model, they are also not strictly non-nested with the Poisson or negative bi-
nomial model, or among each other. In the terminology of Vuong (1989) these
models are overlapping. The reason is that for certain parameter restrictions
on both models, the two become equivalent. Take as an example the compari-
son between the logit-Poisson hurdle model and the simple Poisson model. In
the logit-Poisson hurdle model

f1(0; z, γ) =
exp(z′γ)

1 + exp(z′γ)

whereas in the simple Poisson model

f2(0; x, β) = exp(− exp(x′β))

Now, assume that all slope parameters are set to zero and only non-zero
intercepts, γ0 and β0 say, are left. The two probabilities, and with them the
full distributions, are the same as long as as

β0 = − exp(γ0) − log(1 − exp(− exp(γ0)))

By the same technique, one can establish that the probit-Poisson-log-normal
model and the Poisson model are overlapping, as are for instance the probit-
Poisson-log-normal model and the standard negative binomial model.

In these cases, to discriminate between the two models following the meth-
ods proposed by Vuong (1989), one needs to follow the procedure for over-
lapping models. In general, this requires a pre-test before the usual statistic
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is computed. However, in practice it is sufficient to establish that the condi-
tion for overlap, i.e., the restriction that all slope coefficients are zero, can be
rejected in each model (see Vuong 1989, footnote 6).

6.3.5 Unobserved Heterogeneity in Hurdle Models

The standard approach to unobserved heterogeneity in hurdle models has
introduced heterogeneity at the level of the parent distribution. Integration
takes then place prior to the conversion into a hurdle model, the latter being
based on modified densities f̃1 and f̃2 where

f̃1 =
∫

f1(y|u)g1(u)du

and

f̃2 =
∫

f2(y|u)g2(u)du

The hurdle negative binomial model is an example for this approach. In this
case, f1 and f2 are Poisson probability functions, and g1 and g2 are gamma
density functions.

The truncated probability function for the positives can then be written
as

P (y|y > 0) =
f̃2(y)

1 − f̃2(0)
=

∫
f2(y|u)g2(u)du

1 − ∫
f2(0|u)g2(u)du

(6.12)

As pointed out by Santos Silva (2003), there is an alternative way of thinking
of this problem, namely to define a distribution over the positive integers
first (any truncated distribution will fulfill this requirement), and then do the
mixing in a second step, over the positive part of the distribution only. In this
case,

P (y|y > 0) =
∫

f2(y|u)
1 − f2(0|u)

g̃2(u)du (6.13)

Clearly, these are not the same models, depending on how g2(u) and g̃2(u)
are defined. In the regression context, where we consider conditional models,
we typically assume independence between unobserved heterogeneity and the
explanatory variables x. If we assume, for example, that g2(u|x) is a gamma
density independent of x then (6.12) is a truncated at zero negative binomial
distribution. If, however, f2 is the Poisson distribution and g̃2(u|x) is a gamma
density independent of x, the resulting probability function (6.13) is not that
of a truncated negative binomial distribution. The question then becomes
which of the two assumptions, and thus the two models, is more meaning-
ful. Santos Silva (2003) argues that the population of interest is the actual
population. In the case of the positive part of the hurdle models, this would
favor an approach where the assumption is made that the unobservables in
the (truncated) population of interest are independent of the x’s, i.e., model
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(6.13). In this way, one avoids the awkward step of needing to compute the
integral

∫
f2(0|u)g2(u)du although the zeros are generated by an altogether

different process.
While hurdle models based on the negative binomial distribution assume

that the unobservables are independent of the covariates in an hypothetical
population, the probit-Poisson-log-normal model discussed above rather as-
sumes that unobservables are independent of the covariates in the observed
population. From this point of view, this makes it a more meaningful hurdle
model.

6.3.6 Finite Mixture Versus Hurdle Models

A problem in health economics – how to model the demand for physician
services – has prompted a controversy, whether finite mixture models or hur-
dle models are more appropriate for such data. The initial advocates of the
hurdle model in this context, Pohlmeier und Ulrich (1995), maintained that
the hurdle model may describe well the agency problem in the demand for
doctor consultations, where the initial contact decision is made by the indi-
vidual whereas further referrals are influenced by the physician’s objectives.
Arguably, then, two different parameterizations may be needed to capture this
two-part decision process.

Proponents of finite mixture models take a less strict view. According to
this view, every individual is a potential user but the population is composed
of different types, or classes, of users. If there are two types, for instance, one
could label them ‘light users’ and ‘heavy users’. The econometrician does not
observe which class an individual belongs to. Finite mixture models there-
fore are also called “latent class” models. The sample is a mixture of the
two groups, and estimation of the group specific parameters and the group
proportions is possible.

In a number of applications, both types of models have been estimated in
order to determine which of the two better fits the data. For that purpose,
one usually compares the hurdle negbin model

f(y) = fNB(0; θ1)d

(
1 − fNB(0; θ1)
1 − fNB(0; θ2)

fNB(y; θ2)
)1−d

where d = 1−min(y, 1) as before, with a two component latent class negative
binomial model

f(y) = αfNB(y; θ1) + (1 − α)fNB(y; θ2)

The evidence is mixed. Using various model selection criteria (accounting for
the fact that the second model has one additional parameter) Deb and Trivedi
(2002) find that the finite mixture model is superior, although Winkelmann
(2004b) shows that this is only the case for the Negbin hurdle models and not
necessarily for the hurdle models as a class. Jimenéz-Martin, Labeaga and
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Martinez-Granado (2002) report instances, where the hurdle model is better.
See also Doorslaer, Koolman and Jones (2002). Bago d’Uva (2006) performs
the obvious next step, by combining the two competing models and estimat-
ing a finite mixture negative binomial hurdle model, or “finite mixture of
hurdle model”, using panel data. Such a model is not very parsimonious, and
identification problems loom large. Still, Bago d’Uva (2006) reports sensible
estimates showing that, in this particular application to health care utiliza-
tion, both the finite mixture part (here two classes) and the hurdle part offer
statistically significant improvements over the more restrictive counterparts.

6.3.7 Correlated Hurdle Models

In the spirit of Chap. 5.2, it is straightforward to develop a generalized hurdle
count data model where the hurdle process and the process for the positives
are correlated. Such correlation may originate, for example, from common but
unobserved variables. Such a model was proposed by Winkelmann (2004b).

In that paper, a probit model for the hurdle is combined with a truncated
Poisson-log-normal model for the positives. Accordingly, it can be referred to
as the probit-Poisson-log-normal model. Let z be a latent indicator variable
such that

z = x′γ + ε

and

y = 0 iff z ≥ 0

Moreover, for the positive part of the distribution

y|y > 0 ∼ truncated Poisson(λ)

where

λ = exp(x′β + v)

The model is completed by the assumption that ε and v are bivariate normal
distributed with mean 0 and covariance matrix

Σ =
[

1 ρσ
ρσ σ2

]
To derive the log-likelihood function, note first that

ε|v ∼ N(ρv/σ, 1 − ρ2)

and

P (y = 0|v) = P (ε ≥ −x′γ|v)

= Φ

(
x′γ + ρv/σ√

1 − ρ2

)
= Φ∗(v)
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Thus one obtains, with d = 1 − min(y, 1),

f(y|v) = Φ∗(v)d ×
[
(1 − Φ∗(v))

exp(−λ(v))(λ(v))y

[1 − exp(−λ(v))]y!

]1−d

(6.14)

and

f(y) =
∫ ∞

−∞
f(y|v)

1√
2πσ

e−
1
2 ( v

σ )2

dv (6.15)

The parameters β, γ and ρ can be estimated by maximum likelihood, using
Gauss-Hermite integration to evaluate the likelihood function.

6.4 Zero-Inflated Count Data Models

6.4.1 Introduction

Zero-inflated Poisson or negative binomial models (ZIP, ZINB), like their
hurdle-at-zero counterparts, address the problem that the data display a
higher fraction of zeros, or non-occurrences, than is likely to be compati-
ble with any fitted standard count regression model. The zero inflated model
combines a binary variable c with a standard count variable y∗ (with support
over the nonnegative integers) such that the observed count y is given by

y =
{

0 if c = 1
y∗ if c = 0 (6.16)

If the probability that c = 1 is denoted by ω, the probability function of y
can be written compactly as

f(y) = ωd + (1 − ω)g(y) , y = 0, 1, 2, . . . (6.17)

where d = 1−min{y, 1} and g(y) is a regular count data probability function
such as the Poisson or the negative binomial probability function.

The difference between the zero-inflated model and the hurdle model is
that in the latter, there is a single type of zeros whereas in the former one
obtains two types of zeros: zero outcomes can either arise from regime 1 (c = 1)
or from regime 2 (c = 0 and y∗ = 0).

Which one of the two models – the zero-inflated model or the hurdle model
– is more appropriate can be decided on statistical grounds, using methods
developed for testing non-nested hypotheses, in particular the Vuong test.
Such a test must account for the fact that the two models are overlapping
(see Chap. 3.5.4), since the two models are equivalent if the slope coefficients
are zero (Mullahy, 1986). The Poisson model is nested in the ZIP model for
ω = 0. Note, however, that the two models become non-nested if one adopts
the specification ω = exp(θ) (or similar reparameterizations, where ω �= 0 for
all finite parameter values).
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Alternatively, the choice between hurdle and zero-inflated models can be
made on substantive grounds as well. The question is then whether the char-
acteristic assumption of zero-inflation models, namely two types of zero, is
materially appealing or not. In the study of fertility, for example, we obtain
a distinction between zero children due to infertility, in contrast to zero chil-
dren due to choice. In this case, zero-inflation captures the difference between
nature and choice. Another example is the study by Gameren and Woittiez
(2002) where the count is the monthly number of subsidized home care days
per month. Zeros can arise because a person is either not eligible, or does not
know about the program, or alternatively, because an elderly person has sim-
ply no need. These are two competing explanations that can at least implicitly
be distinguished by applying this type of model.

In the analysis of the determinants of R&D productivity, where output is
frequently measured in terms of patent applications, zeros can arise in two
different ways as well. First, there are firms that have decided not ever to
apply for a patent, regardless of whether an invention was made. Secondly,
there are firms that register patents in practice, but not necessarily in a given
period if no invention was made. Lambert (1992) has referred to the first type
of zeros as being strategic, whereas the second type is incidental.

Zero inflated models have become quite popular in the recent applied count
data literature, and they appear to be more frequently used than hurdle mod-
els. Economic applications of zero-inflated models are often based on the zero-
inflated negative binomial model. Examples include Grootendorst (1995) on
prescription drug utilization, List (2002) on the number of job interviews se-
cured by a job seeker, and Tomlin (2000) on the empirical connection between
exchange rates and the number of foreign direct investment activities. Beck-
mann (2002) uses the zero-inflated negative binomial model for modeling the
number of apprentices trained by a firm, and Kahn (2005) applies it to the
number of deaths from natural disasters.

6.4.2 Zero-Inflated Poisson Model

Mullahy (1986) discusses the zero-inflated Poisson model with constant ω.
Lambert (1992) extends it by specifying a logit model for ω in order to capture
the influence of covariates on the probability of extra zeros:

ω =
exp(z′γ)

1 + exp(z′γ)
(6.18)

The zero-inflated Poisson model has mean function

E(y|x, z) = (1 − ω) exp(x′β) =
exp(x′β)

1 + exp(z′γ)
(6.19)

Hence, the Poisson pseudo maximum likelihood estimator ceases to be con-
sistent if the zero inflated model is the true data generating process, unless x
and z are independent. In this case, only the constant is affected, and we can
write



190 6 Zeros in Count Data Models

E(y|x) = exp(β̃0 + x′β)

where β̃0 = β0 + log E[1/(1 + exp(z′γ)]. In general, though, x and z are not
independent, and it is important to account for this type of departure from
the Poisson model.
The log-likelihood function of the zero-inflated Poisson model is

�(γ, β) =
∑
yi=0

log(exp(z′iγ) + exp(− exp(x′
iβ))

+
∑
yi>0

yix
′
iβ − exp(x′

iβ) − log(y!) −
n∑

i=1

log(1 + exp(z′iγ)) (6.20)

In contrast to the hurdle Poisson model presented in Chapter 6.3, the log-
likelihood function cannot be separated in two functions of β and γ, respec-
tively. Although this makes estimation somewhat more complex, analytical
expressions for the first and second derivatives of the log-likelihood function
can be easily derived, and estimation therefore is not difficult after all. Often,
exclusion restrictions are used in empirical work, such that neither x nor z
are proper subsets of each other.

A number of variants of the zero-inflated Poisson model have been dis-
cussed in the literature:

• In zero-altered models (see also Chapt 2.4.3), ω is not restricted to be
positive. The requirement f(0) > 0 implies that ω > −g(0)/(1 − g(0)).
For 0 > ω > −g(0)/(1 − g(0)), we obtain a model with zero-deflation.
Of course, ω does not represent a probability in this case, which means
that we loose the selection interpretation (6.16), and we cannot employ
the logit specification (6.18) either.

• One can inflate (or alter) the probabilities for other outcomes as well. As
an example, Melkersson and Roth (2000) have considered a zero-and-two
inflated count data model in an analysis of the demand for children among
Swedish couples. They wanted to test whether the outcome “two” occurs
more often than predicted under a standard count data model, indicating
the presence of a norm for an “ideal” family size.

• A model with correlated unobserved heterogeneity in both index functions
has been considered by Crépon and Duguet (1997b). In their case, the
process for the extra zeros is a probit model, and the count process is a
Poisson-log-normal model. Further details can be found in Chap. 5.2.5.

Alternative Estimation

Santos Silva and Covas (2000) have pointed out that the conditional distribu-
tion f(y|y > 0) does not depend on ω:

f(y|y > 0) =
(1 − ω)g(y)

1 − [ω + (1 − ω)g(0)]
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=
g(y)

1 − g(0)
y = 1, 2, . . . (6.21)

Hence, one can use positive observations only and estimate the parameters of
g using a truncated-at-zero count data model without the need to specify ω.
In fact, this is the same estimator as the second part of the hurdle model. The
advantage is that such an estimator is robust with respect to a misspecification
of ω, and is can serve as a basis for specification tests.

6.4.3 Zero-Inflated Negative Binomial Model

The extension from a zero-inflated Poisson (ZIP) to a zero inflated negative
binomial model (ZINB) is straightforward. For example, with a Negbin II
specification for the count data part, and a logit specification for the extra-
zeros, the log-likelihood function is given by

�(γ, β, α) =
∑
yi=0

log(exp(z′iγ) + α(log α − log(exp(x′
iβ) + α))

+
∑
yi>0

log(Γ (α + yi)/Γ (α) + α log(α − log(exp(x′
iβ))

+yi(x′
iβ − log(exp(x′

iβ) + α)) −
n∑

i=1

log(1 + exp(z′iγ))

The ZINB model nests the ZIP model, which means that the Poisson
restriction can be tested using a simple likelihood-ratio or Wald test.

6.4.4 Marginal Effets

As always in such multi-index models there are several marginal effects of
interest. One is the overall marginal mean effect, ∂E(y|x)/∂xj . This effect can
be decomposed into the effect at the extensive margin, ∂P (y > 0|x)/∂xj , and
the effect at the intensive margin, ∂E(y|y > 0x)/∂xj . Recall that, for the zero
inflated Poisson model, we have

E(y|x, z) = (1 − ω) exp(x′β)

and

P (y = 0|x, z) = ω + (1 − ω) exp(− exp(x′β))

where ω is modeled as a logistic function of z, i.e.,

ω =
exp(z′γ)

1 + exp(z′γ)

Moreover, from (6.21),
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E(y|y > 0, x) =
exp(x′β)

1 − exp(− exp(x′β))

We see that E(y|x) and P (y = 0|x) are both functions of x and z. As a
consequence, marginal effects depend on whether or not z and x overlap.
We consider in the following marginal effects with respect to a variable that
appears in both parts of the model, such that xj = zk for some j, k. With this
assumption

∂E(y|x, z)
∂xj

= − ∂ω

∂xj
exp(x′β) + (1 − ω)

∂ exp(x′β)
∂xj

= −exp(z′γ) exp(x′β)
(1 + exp(z′γ))2

γk +
exp(x′β)

1 + exp(z′γ)
βj

This marginal effect is not necessarily positive. For example, if γk > 0 and
βj > 0, there are two effects working in opposite direction: an increase in xj

increases the probability of an extra zero; at the same time the mean of the
base model is increased as well. The overall effect is then ambiguous. In this
case, a necessary and sufficient condition for a positive marginal mean effect
is that

βj

γk
>

exp(z′γ)
1 + exp(z′γ)

= ω

As usual, one needs to evaluate these marginal mean effects at some appro-
priate value of the explanatory variables. Alternatively, one may compute
marginal effects at the extensive and intensive margins, as outlined in 6.2.5.

As to the effects at the extensive margin, we obtain

∂P (y = 0|x)
∂xj

=
exp(z′γ)

(1 + exp(z′γ))2
(1 − exp(− exp(x′β))γk

− exp(x′β)
1 + exp(z′γ)

(1 − exp(− exp(x′β))βj

Again, these effects can be either positive or negative, depending on the rel-
ative magnitudes of γk and βj . Finally, using (6.21),

∂E(y|y > 0, x)
∂xj

=
(

exp(x′β)
1 − exp(− exp(x′β))

− exp(x′β)2 exp(− exp(x′β))
(1 − exp(− exp(x′β)))2

)
βj

The term in parentheses is positive, since it can be re-written as the ratio of
1 − P (y = 0|x) − P (y = 1|x) and 1 − P (y = 0|x). As a consequence, the sign
of the marginal effect at the intensive margin is equal to that of βj .

6.5 Compound Count Data Models

The concept of compounding, and its application to count data distributions,
has been introduced in Chap. 2.5.2. To repeat the essential idea, a count
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variable Z has a compound count data distribution if it can be written as a
random sum

Z =
N∑

i=1

Xi

where N is the number of summands, Xi, i = 1, . . . , N are identically and
independently distributed discrete random variables, and either N , or Xi, or
both, have support over the non-negative integers. Compound distributions
are sometimes also referred to as “stopped-sum distribution”.

The appeal of this framework is that it provides a very general approach
for building multi-index models since covariates can be introduced separately
in the two parts of the model, the “N”-part and the “X”-part. In fact, both
zero-inflated and hurdle count data models are compound models (where N
is a binary 0/1 variable). By making different assumptions for N and X,
alternative models can be obtained. We present here two such generalized
models, the multi-episode model and the Poisson model with underreporting.

6.5.1 Multi-Episode Models

A multi-episode model is discussed by Santos Silva and Windmeijer (2001).
They motivate their approach in an application to the demand for health ser-
vices, as measured by the number of doctor visits during a given period of
time. They relate the underlying demand process to illness episodes that each
generate a certain number of visits to the general practitioner or to specialists
(“referrals”). The total number of visits Z is then equal to the sum of visits
in each episode Xi over the N illness spells. They assume that N has a Pois-
son distribution, whereas X has a logarithmic distribution. The logarithmic
distribution has support 1, 2, . . ., which makes sense, since an illness episode
includes by definition at least one visit. Conveniently, this particular com-
pound distribution is of a negative binomial form (see Chap. 2.5.2). Further
details of their model are omitted here, as they are discussed together with
the other negative binomial models in Chap. 4.3.4 rather than here.

6.5.2 Underreporting

Consider the following data generating process: Events occur randomly over
time according to a Poisson process. In contrast to the standard Poisson
model, however, only a subset of events is reported. The number of reported
events is smaller than the total number of events. “Reporting” can be un-
derstood in a very broad sense. The basic distinction is whether events are
“successful”, or “unsuccessful”. Observed counts give the number of successful
events.

This model is applicable in many situations: In labor economics it can
describe the frequency of job changes in a given period (Winkelmann and
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Zimmermann, 1993c, Winkelmann, 1996b). This frequency will depend on
both the frequency at which outside job offers are received, and the probability
that outside offers are accepted. In industrial organization, the model can be
used for the number of firms entering an industry in a given period (Berglund
and Brännäs, 1995). Here, the base entity is the number of potential entrants
who decide whether or not to enter. Finally, in modeling accident proneness
one might distinguish between the total number of accidents (in a region, for
instance) and the number of accidents involving fatalities.

Poisson-Logistic Regression

In the simplest case, the outcome of interest is Poisson distributed, and the
reporting process is stationary and independent of the Poisson variable. The
distinction between reported (or “successful”) and unreported (or “unsuccess-
ful) events is assumed to follow an independent binomial distribution. The
model is then in the form of a compound Poisson distribution, and the total
number of successful events is again Poisson distributed with a modified mean
function. (The strong independence assumption is relaxed in Chap. 6.5.4)

Formally, let the total number of events y∗ in a given period of time be
Poisson distributed with

f(y∗) = exp(−λ)λy∗
/y∗! (6.22)

where

λ = exp(z′γ) (6.23)

and z is a vector of individual covariates. Also assume, following Winkelmann
and Zimmermann (1993c), that the binomial model is of the logistic form

P (Event is successful) = Λ(x′β) (6.24)

where x are individual covariates and Λ is the logistic cumulative

Λ(x′β) =
exp(x′β)

1 + exp(x′β)
(6.25)

The set of explanatory variables z and x can be overlapping, but they may
not be identical. Thus, some exclusion restrictions are required. It will be
assumed that consecutive decisions determining the success or non-success of
an event are independent and identical. The number of successful events y
is then given by the sum of i.i.d. distributed Bernoulli variables, where the
number of summands is itself a random variable:

y = B1 + . . . + By∗ (6.26)

where B ∼ Bn(1, Λ(x′β)) and y∗ ∼ Poisson(exp(z′γ)). Under independence,
the number of successful events yi has a Poisson distribution with parameter
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λS = exp(z′γ)Λ(x′β) (6.27)

where z is a (k1 × 1) vector and x is a (k2 × 1) vector (see Chap. 2.5.2 and
Feller, 1969). Estimation of the parameters β and γ by maximum likelihood
is straightforward. The log-likelihood function has the form

�(β, γ) =
n∑

i=1

−exp(x′
iβ + z′iγ)

1 + exp(x′
iβ)

+ yi log
[
exp(x′

iβ + z′iγ)
1 + exp(x′

iβ)

]
− log yi! (6.28)

Collecting the coefficients β and γ in a parameter vector θ, the score vector
can be written as

∂�(θ; y, z, x)
∂θ

=
n∑

i=1

(
yi − λS

i

λS
i

)
∂λS

i

∂θ
(6.29)

or

∂�(θ; y, z, x)
∂θ

=
n∑

i=1

(yi − λS
i )

[
z′i

x′
i(1 − Λ(x′

iβ))

]
(6.30)

If z contains an intercept, (6.30) states that the sum of the residuals ui =
yi − λS

i is equal to zero. The Hessian matrix has the form

∂2�(θ; y, z, x)
∂θ∂θ′

=
n∑

i=1

−λS
i ×

⎡⎢⎣ ziz
′
i zix

′
i(1 − Λ(x′

iβ))

· xix
′
i

[
(1 − Λ(x′

iβ))2 +
(y − λS

i )
λS

i

Λ(x′
iβ)(1 − Λ(x′

iβ))
]⎤⎥⎦ (6.31)

Hence, the information matrix of the sample is given by

In(θ) =
n∑

i=1

λS
i

[
ziz

′
i zix

′
i(1 − Λ(x′

iβ))

xiz
′
i(1 − Λ(x′

iβ)) xix
′
i(1 − Λ(x′

iβ))2

]
(6.32)

Identification of the parameters requires that In(θ) is nonsingular for ar-
bitrary values in the parameter space. For instance, the information matrix is
singular for x = z at β = 0 (which implies that 1 − Λ(x′

iβ)|β=0 = 0.5.
It can be shown more generally that identifiability requires that neither x

nor z does belong to the column space of the other. Under the assumptions
of the model, the maximum likelihood estimator θ̂ is consistent for θ and√

n(θ̂ − θ) → N(0, I(θ)−1), where I(θ)−1 is the inverse of the information
matrix of an observation.
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6.5.3 Count Amount Model

In the Poisson-logistic model, the probability of reporting an event is mod-
eled as a function of individual specific (but event-unspecific) covariates. In
a related model, the probability of recording an event depends on the (par-
tially observed) “magnitude” of the event. The structure of this model is best
illustrated with an application to consumer purchase behavior for which it
was originally developed by van Praag and Vermeulen (1993). In this appli-
cation, purchases are reported, together with their money value, as long as
they exceed a minimum threshold value a. Let y∗ denote the total number
of purchases over a given period of time, and let y denote the number of
recorded purchase occurrences. Denote the purchase amount by c∗. A pur-
chase is recorded whenever c∗ > a. The probability for this event is given
by P (c∗ > a) = 1 − F (a), where F is the cumulative density function of c∗.
In this set-up, observed purchase values c have a truncated density function
f(c)/(1 − F (a)).

The model is completed by imposing some distributional assumptions.
First, c∗ is assumed to be normally distributed, conditional on individual
specific covariates: c∗ = zγ + ε where ε has a normal distribution N(0, σ2).
Second, y∗ is assumed to be Poisson (or negative binomial) distributed with
parameter λ = exp(x′β).

Since both the number of events and the money values are observed, van
Praag and Vermeulen estimate the parameter vector θ = [β, γ] from the joint
likelihood function of c = (c1, . . . , cy) and y which is given by

g(y, c) =
y∏

i=1

f(c; γ)
1 − F (a)

(6.33)

×
∞∑

y∗=y

f(y∗; β)
y∗!

y!(y∗ − y)!
(1 − F (a))y(F (a))y∗−y

=
y∏

i=1

f(c; γ)
∞∑

y∗=y

f(y∗; β)
y∗!

y!(y∗ − y)!
(F (a))y∗−y

where f(y∗; β) is a Poisson or negative binomial probability function and
f(c; γ) is the normal density. The term under the summation sign is a Poisson-
Binomial mixture. To understand the meaning of this expression, note that
the event “y purchases are recorded” can arise in a multitude of ways:

1. there were y∗ = y purchases, all with amounts greater than a and therefore
all recorded.

2. there were y∗ = y + 1 purchases, of which y with amounts greater than a
and one with amount less than a (and therefore unrecorded).

3. there were y∗ = y + 2 purchases, of which y with amounts greater than
a and two with amount less than a (and therefore unrecorded), and so
forth.
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The probability for each event in the above list is a joint probability f(y∗, y)
which can be written as a product of marginal and conditional distribution:

f(y∗, y) = f(y∗)f(y|y∗) (6.34)

The first probability function on the right side is a Poisson (or negative bi-
nomial) distribution. Under the assumption that purchase amounts at sub-
sequent purchase occasions are independent, the second (conditional) proba-
bility function is a binomial distribution with parameter p = 1 − F (a), i.e.
the probability of success, here recording an event, is equal to the probability
that the purchase amount exceeds the threshold of a. Without the indepen-
dence assumption, it would not be possible to obtain such simple probability
expressions.

As van Praag and Vermeulen (1993) point out this model has a wide
range of potential applications. Examples include the modeling of the number
of insurance claims where the insurance includes a deductible amount, the
modeling of crime statistics, where official authorities do not file formal reports
for minor crimes, or the number of unemployment spells, where only spells
exceeding a certain minimum duration are observed.

6.5.4 Endogenous Underreporting

A count data model with endogenous reporting was considered in Winkel-
mann (1997, 1998). The model is closely related to the models on incidental
censoring and truncation of Chap. 5.2. A restriction of the standard model
is the assumption of independence between the count process and the binary
reporting outcome. Consider, for instance, the study by Winkelmann and Zim-
mermann (1993c), where the model is applied to data on labor mobility. y∗

gives then the (unobserved) number of job offers, λ = exp(x′β) the offer arrival
rate, p the acceptance probability and y the (observed) number of accepted
offers. The explicit assumption is that

a) the offer arrival rate is a deterministic function of observed covariates, and
b) the offer arrival rate is independent of the acceptance probability.

Yet, it is unreasonable to assume that all relevant variables are observed in
practice and that arrival rates and acceptance decisions are independent. For
instance, economic models of efficient job search predict that the reservation
wage depends on the offer arrival rate and hence a correlation between the
two should exist (See Mortensen, 1986). Therefore, a more general model
that allows for endogenous underreporting is desirable. Such a model is now
introduced.

Let y∗|v have a count data distribution with mean

E(y∗|x, v) = exp(x′β + v) (6.35)

As before, an event j is reported and cj = 1 if the net utility from doing so is
positive, i.e.
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c∗j = c∗ = z′γ + ε > 0 (6.36)

where, by assumption, the net utility does not depend on the specific event.
Furthermore, assume that v and ε are jointly normal distributed with corre-
lation ρ. Note, that this model is based on a probit-type specification whereas
the standard underreporting model was based on the logit model. This change
is dictated by convenience as the probit model leads to a straightforward ex-
tension for the correlated case.

The number of reported counts is given by

y =
y∗∑

j=1

c (6.37)

To derive the probability function of y, consider first the case where v is given.
As before

P (c = 1|v) = Φ∗(v, z) (6.38)

where Φ∗(v, z) is defined as in (5.32). Moreover, conditional on v, x and z, c
and y∗ are independent. Assume that y∗|v is Poisson distributed. It follows
directly from results in Chap. 6.5.2 that the conditional distribution of the
reported number of events, y, is also a Poisson distribution with mean

λ̃ = exp(x′β + v) × Φ∗(v) (6.39)

while y|x, z has distribution

g(y|x, z) =
∫ ∞

−∞

exp(−λ̃(v))λ̃(v)y

y!
fv(v)dv (6.40)

or, in explicit notation

g(y|x, z; β, γ, ρ, σ) = (6.41)∫ ∞

−∞
exp

[
− exp(x′β + v)Φ

(
z′γ + ρv/σ√

1 − ρ2

)]

×
[
exp(x′β + v)Φ

(
z′γ + ρv/σ√

1 − ρ2

)]y

× 1
y!σ

φ(v/σ)dv

The parameters of the model, β, γ, ρ, and σ can be estimated by maximum
likelihood. The resulting log-likelihood function involves simple integrals that
can be evaluated by Gauss-Hermite quadrature. Details are given in Appendix
B.

The model is quite general and encompasses a variety of interesting special
cases that can be tested using parametric restrictions. For ρ = 0 the selection
and count equations are independent. For ρ = 0 and σ = 0, the model re-
duces to a version of the Poisson-logistic regression model in Winkelmann and
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Zimmermann (1993c) where the logit type expression for the reporting prob-
ability is replaced by a probit type expression. Positive values for σ indicate
unobserved heterogeneity in the count regression. In particular, the implicit
variance function for y∗ is

Var(y∗|x) = λ + αλ2 (6.42)

where α = exp(2σ2
u) − exp(σ2

u).

6.6 Quantile Regression for Count Data

Quantile regression has been in use in the context of linear regression models
for a long time (see Koenker and Hallok, 2001, for a general introduction to
the topic). Regression based on least absolute deviations, or median regres-
sion, offers an alternative to least squares. One of the advantages of quantile
regression is that is robust to outliers. More importantly, though, quantile
regressions can be performed for arbitrary quantiles of a distribution. Seen in
this way, quantile regression becomes a tool for modeling the effect of regres-
sors on the full distribution of the outcome variable, rather than modeling
their effect on the first noncentral moment of the distribution only.

Quantile regression is not the only possibility to model the whole dis-
tribution. In fact, it has been pointed out before that all count data models
proper are probability models and allow inferences to be drawn on all possible
aspects of the outcome distribution, including the computation of marginal
probability effects. Also, if the underlying model is specified with sufficient
flexibility (for instance using hurdle type models) such inferences are not tau-
tological but informed by data. Probability based models and quantile based
models are two sides of the same coin: probability models are based on the
representation of a random variable through its probability function, whereas
quantile models are based on the representation of a random variable through
its distribution function.

The main drawback of the latter is then of a more technical nature, namely
the fact that the distibution function of a discrete random variable is not
continuous. See Fig. 6.2 for a stylised distribution function with its typical
jumps. However, this difficulty can be overcome, as shown by Machado and
Santos Silva (2005). Let y be a count random variable. The α-quantile of y is
defined by

Qy(α) = min(η|P (y ≤ η) ≥ α)

where 0 ≤ α < 1. The object of interest is the conditional quantile Qy(α|x).
Since Qy(α|x) has the same support as y, it is discrete and cannot be a
continuous function of x (such as exp(x′β)). Therefore, Machado and Santos
Silva suggest to introduce “jittering”: consider a new variable z, obtained by
adding a uniform random variable to the count variable

z = y + u where u ∼ uniform [0, 1)
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Fig. 6.2. Count Data Distribution Function Without Uniform Distribution Added
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where y and u are independent. Hence, z has density function

f(z) =

⎧⎨⎩p0 for 0 ≤ z < 1
p1 for 1 ≤ z < 2
and so forth

(using notation P (Y = k) = pk). Moreover, the distribution function of z can
be written as

F (z) =

⎧⎨⎩p0z for 0 ≤ z < 1
p0 + p1(z − 1) for 1 ≤ z < 2
and so forth

The distribution function of z is also shown in Fig. 6.3. We see that the
quantiles of z are continuous. For example,

zα =
α

p0
for α < p0

zα = 1 +
α − p0

p1
for p0 ≤ α < p0 + p1

Having established the relationship between the probability function of y
and the quantiles of z, we can now turn to the estimation of the quantiles. The
probabilities being unknown, the conditional z-quantiles are estimated directly
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Fig. 6.3. Count Data Distribution Function With Uniform Distribution Added
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by adopting a regression framework. Machado and Santos Silva (2005) specify
the quantiles Qz(α|x) as

Qz(α|x) = α + exp(x′γ(α)), α ∈ (0, 1) (6.43)

The reason for adding α on the right side of (6.43) is that the z-quantiles
are bounded from below at α. The minimum is reached in the degenerate
case where p0 = 1. The dependent variable z (and with it the z-quantiles
since quantiles are invariant under transformation, i.e., Qg(z) = g(Qz)) can
be transformed such that the transformed quantile function is linear in x and
γ. Observe that

QT (z;α)(α|x) = x′γ(α)

where

T (z; α) =
{

log(z − α) for z > α
log(ξ) for z ≤ α

(6.44)

and 0 < ξ < α.
The model suggest the following empirical implementation. First, one adds

uniformly distributed pseudo random numbers to the observed counts. Second,
one transforms the resulting data according to (6.44). Third and finally, the
parameter estimates are obtained as solution to

min
n∑

i=1

ρα(T (zi; α) − x′
iγ)
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where ρα(ν) = ν × (α − I(ν < 0)). For example, if α = 0.5, the rho function
returns simply the absolute value 0.5|T (zi; α) − x′

iγ|.
Machado and Santos Silva (2005) prove consistency and asymptotic nor-

mality of this estimator. Although the quantile function is not differentiable
everywhere (the distribution function has corners), these points do not affect
the derivation as long as there is at least one continuous regressor, because in
this case these corner points have measure zero.

The final question is how the parameters should be interpreted. In this
approach, one estimates Qz(α|x). The object of interest is Qy(α|x), though.
There is a correspondence between the two quantile functions, since Qy(α|x) =
int∗[QZ(α|x)], where int∗(a) is the ceiling function which returns the smallest
integer greater than, or equal, to a. Hence, for example, testing the null hy-
pothesis that a variable has no effect on QY (α|x) is equivalent to testing that
a variable has no effect on QZ(α|x). Recent applications of this method are
Winkelmann (2006) to the number of physician visits, and Miranda (2008) to
the number of children.
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Correlated Count Data

7.1 Multivariate Count Data

Multivariate count data are likely to have a non-trivial correlation struc-
ture. For instance, omitted variables may simultaneously affect more than
one count. The modeling of the correlation structure is important for the ef-
ficiency of the estimator and the computation of correct standard errors, i.e.,
valid inference. Beyond that, the nature of the stochastic interaction between
several counts may be of independent and intrinsic interest.

Following the usual notation for multivariate data let yij , i = 1, . . . , n,
j = 1, . . . , J denote the count for individual i and outcome j. Let yi =
(yi1 · · · yiJ)′ denote the vector of counts for individual i over the different
outcomes. Interest is in a class of models where observations are uncorrelated
across individuals but correlated over outcomes:

Cov(yij , ykl)
{

= 0 for i �= k
�= 0 for i = k, j �= l

In matrix notation, correlated outcomes mean that Var(yi) is not a diagonal
matrix. Five models for correlated counts are discussed in this chapter

• Multivariate Poisson Model
• Multivariate Negative Binomial Model
• Multivariate Poisson-Gamma Mixture Model
• Multivariate Poisson-Log-Normal Model
• Latent Poisson-Normal Model

The first three models have in common that they are based on a so-called
one-factor structure: correlation is generated through an individual specific
random factor ui that does not vary over outcomes. A direct implication of
this relatively simplistic assumption is that the covariance structure of these
models is restricted to non-negative correlations. A more flexible covariance
structure is provided by the multivariate Poisson-log-normal and the latent
Poisson-normal models, two examples of multi-factor models. The chapter
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closes with a discussion of copulas, a general method for constructing multi-
variate distributions for given marginals, although applications of such meth-
ods for count data modeling have just started.

The class of models pursued in this chapter encompasses a variety of in-
teresting sub-cases and is more general than might appear at first. The initial
interpretation is in terms of genuine multivariate outcomes. One example oc-
curs when studying the provision of health services where a researcher might
be interested in a joint analysis of the number of individual visits to a doctor
and to a non-doctor health specialist (Gurmu and Elder, 1998). A further
example is in the study of labor mobility, where one may be interested in
the joint determination of voluntary and involuntary job changes (Jung and
Winkelmann, 1993).

An alternative interpretation is in terms of seemingly unrelated regression
(SURE). In this case, one considers a single outcome variable, for example the
annual number of airtraffic incidents by major air carrier over a 30 year period
as in Rose (1990). In a sense, these are also panel data, see below. However,
they differ from usual panel data in at least two respects. First, in typical
SURE applications, the time dimension is large relatively to the cross-section
dimension. As a consequence, it becomes possible to estimate unit-specific
constants and slope parameters for each cross-sectional unit. Second, because
the number of cross sectional units is small and these units may interact
(such as firms operating in the same market, or countries) and the random
sampling assumption may be invalid. To be specific, under the assumption
of the SURE model, observations are assumed to be (contemporaneously)
correlated across observations (and hence not an independent random sample)
but uncorrelated over time, given the unit-specific fixed effects. In order to
make the SURE notation conform to the multivariate approach, let i denote
time and j denote the cross-sectional observations. In this way, Cov(yij , ykl)
is a contemporaneous covariance for i = k, j �= l.

A third area of application is to panel data. As mentioned before, both
panel and SURE-type data have an individual and a time dimension. How-
ever, for panel data proper, the individual dimension is typically large relative
to the time dimension. Often, such datasets includes measurements for thou-
sands of individuals over a few years. Moreover, contemporaneous correlation
is precluded by the assumption of random sampling, a reasonable assumption
in such context. In this case, the interest is rather in the correlation of observa-
tions for a given individual over time. Such correlation may arise, for instance,
from individual specific random coefficients. To adjust the multivariate set-up
to the panel case i denotes the individual and j the period. Models for panel
data are discussed in greater detail in Chap. 7.2.

A further difference between the panel view and the other two interpreta-
tion is that for multivariate and SURE data, one is interested in the correla-
tion structure mainly in order to improve efficiency. For panel data, however,
omitted variable bias, and hence the question whether the individual specific
effects should be treated as fixed or random, is a major issue. Because T is
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small relative to n, estimating n separate constants is not a trivial issue. It
reduces the degrees of freedom considerably. Typical multivariate and SURE
data do not have this problem, and in these case, we can always let

E(yij |xij) = exp(x′
ijβj)

Random coefficients models, though feasible (see Chib, Greenberg and Winkel-
mann, 1998, and Chap. 8.4) have been rarely used in practice so far. In order
to keep notation simple, the following exposition does abstract from hetero-
geneity in slope parameters, be it observed or unobserved.

The classification of data into multivariate, SURE, or panel may be use-
ful. It should not hide the fact, however, that the labels sometimes will be
ambiguous. Also, hybrid cases clearly can exists, such as multivariate panel
data, as discussed in Million (1998) and in Riphahn, Wambach and Million
(2003).

7.1.1 Multivariate Poisson Distribution

In this chapter, the multivariate Poisson (MVP) distribution is derived and
characterized. Its appeal stems both from its relative simple structure and its
derivation based on a common additive error. The three main features of the
multivariate Poisson distribution are

1. Two MVP distributed random variables are independent if and only if
they are uncorrelated.

2. The marginal distributions of the MVP distribution are univariate Pois-
son.

3. The conditional distributions of the bivariate Poisson distribution are
sums of an independent Poisson and binomial distribution. The condi-
tional expectation functions are linear.

Kocherlakota and Kocherlakota (1992) provide a comprehensive discussion
of the MVP distribution. They also point out that the adopted formulation
is just one possible extension of the Poisson distribution to the multivariate
setting (See Lakshminarayana, Pandit and Rao, 1999, for a recent example
for a bivariate Poisson distribution based on a polynomial factor). So far, the
MVP distribution seems to be the only one that has been put to practical use
in econometrics, and we thus restrict the attention to this particular model.

The derivation, sometimes referred to as “trivariate reduction method”, is
based on a convolution structure: Let the random variables zij , j = 1, . . . , J
and ui have independent Poisson distributions with zij ∼ Poisson(λij), and
ui ∼ Poisson(γ) where λij = exp(x′

ijβ). New random variables yij can be
constructed as

yij = zij + ui (7.1)
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Using the convolution property of independent Poisson variables, yij ∼
Poisson(λij + γ), j = 1, . . . , J , that is, the bivariate Poisson distribution is
characterized by Poisson marginals.

Furthermore,

Cov(yij , ykl) =

⎧⎨⎩ 0 for i �= k
λij + γ for i = k, j = l
γ for i = k, j �= l

The last equality follows since for j �= l

Cov(zij + ui, zil + ui) = Var(ui)
= γ

Normalization by the standard deviations of the two random variables yields
the correlation form

Corr(yij , ykl) =
γ√

(λij + γ)(λkl + γ)
(7.2)

It can be shown that the correlation coefficient cannot exceed the square root
of the ratio of the smaller to the larger of the means of the two marginal
distributions. The covariance matrix of yi can be written in more compact
form. Let Λi = diag(λij) and 1 a (J × 1) vector of ones. The covariance
matrix of yi = (yi1 · · · yiJ)′ is then given by

Var(yi) = Λi + γ11′

Since γ ≥ 0 the model allows only non-negative correlations. This property
of the MVP, as deplorable as it might look at first glance, is in fact a direct
result of its simple one-factor structure. The same result would be obtained
if zij and ui were independently normally distributed with variances σ2

z and
σ2

u, respectively, from where Cov(yij , ykl) = σ2
u ≥ 0. But such random effects

models are widely used in econometrics, in particular for panel data. Thus, the
MVP model should (at least) be useful in related situations involving panel
count data.

The joint probability function of the MVP distribution for individual i is
given by

f(yi1, ..., yiJ) = exp [−(λi1 + . . . + λiJ + γ)]

×
si∑

ui=0

γui

ui!
λyi1−ui

i1

(yi1 − ui)!
· · · λyiJ−ui

iJ

(yiJ − ui)!
(7.3)

with si = min(yi1, ..., yiJ). The intuition behind this joint probability function
is as follows. First, ui cannot exceed any of the yij ’s because each count
is the sum of ui and a non-negative count zij . Hence, its upper bound is
si. Secondly, the joint probability of observing (yi1, ..., yiJ) is the sum over
the joint probabilities f(ui, yi1 − ui, ..., yiJ − ui) where ui = 0, . . . , si. From
independence, it follows that the joint probability can be factored such that
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f(ui, yi1 − ui, ..., yiJ − ui) = f(ui)f(yi1 − ui) · · · f(yiJ − ui)

In order to derive the conditional distributions of the MVP, consider for sim-
plicity the bivariate case:

f(yi1|yi2) =
f(yi1, yi2)

f(yi2)

=
exp(−λi1 − λi2 − γ)

∑si

ui=0
γui

ui!

λ
yi1−ui
i1

(yi1−ui)!

λ
yi2−ui
i2

(yi2−ui)!

exp(−λi2 − γ)(λi2 + γ)yi2/yi2!

=
si∑

ui=0

{
yi2!

ui!(yi2 − ui)!

(
γ

λi2 + γ

)ui
(

λi2

λi2 + γ

)yi2−ui

× exp(−λi1)
λyi1−ui

i1

(yi1 − ui)!

}
(7.4)

This is the distribution of the sum of two independent variables (Recall the
generic formula for a convolution: f(z) =

∑z
i=0 fx(z − i)fy(i)). Here, yi1 is

Poisson distributed with parameter λi1, and ui|yi2 is binomial distributed
with n = yi2 and p = γ/(λi2 + γ). It follows that

E(yi1|yi2) = E(yi1) + E(ui|yi2)

= λi1 +
γ

λi2 + γ
yi2

Thus, the bivariate Poisson distribution defines a linear regression between
yi1 and yi2 (and conversely). This property could be used in order to test
for correlated counts using OLS. If λij , j = 1, 2 was specified as a non-linear
function of additional parameters (such as λij = exp(x′

ijβ)) the conditional
expectation function would need to be estimated by non-linear least squares.

Interestingly, a slight modification of the conditional expectation function
leads to a model that allows for both positive and negative correlations be-
tween yi1 and yi2 (and is thus unrelated to the BVP). Berkhout and Plug
(2004) study the situation where yi1 is Poisson distributed and yi2|yi1 is also
Poisson distributed with mean

E(yi2|yi1) = λi2 exp(αyi1)
= exp(x′

i2β2 + αyi1)

Thus, the conditioning variable enters multiplicatively rather than additively.
They show that the sign of the correlation between yi1 and yi2 corresponds
to the sign of α.

Probability Generating Function of the MVP

Joint distributions for non-negative integer random variables can be modeled
using joint probability generating functions (See Appendix A). This method
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provides an alternative characterization of the multivariate Poisson distribu-
tion. For notational convenience the exposition is limited to the bivariate case.
The bivariate probability generating function of two random variable X and
Y is defined as P(s1, s2) = E(sX

1 sY
2 ). Thus, in the bivariate Poisson model,

the probability generating function for the joint distribution of (yi1, yi2) is
given by:

P(s1, s2) = E(syi1
1 syi2

2 )
= E(szi1+ui

1 szi2+ui
2 )

= E((s1s2)uiszi1
1 szi2

2 ) (7.5)
(∗)
= E((s1s2)ui)E(szi1

1 )E(szi2
2 )

= exp(−γ + s1s2γ) exp(−λi1 + λi1s1) exp(−λi2 + λi2s2)
= exp(−λi1 − λi2 − γ + λi1s1 + λi2s2 + γs1s2)

where (∗) follows from the independence assumption.
The probability function can be derived from (7.5) using the relationship

f(yi1, yi2) = (yi1!yi2!)−1 ∂yi1+yi2P
(∂s1)yi1(∂s2)yi2

∣∣∣∣
s1=s2=0

One can verify that this representation leads to the probability function (7.3).
The marginal distributions are defined as (see Appendix A):

P(yi1)(s1) = P(s1, 1)
= exp[−λi1 − γ + (λi1 + γ)s1]

P(yi2)(s2) = P(1, s2)
= exp[−λi2 − γ + (λi2 + γ)s2]

The covariance of yi1 and yi2 can be calculated as

Cov(yi1, yi2) = E(yi1yi2) − E(yi1)E(yi2)
= γ

since

E(yi1yi2) =
∞∑

yi1=0

∞∑
yi2=0

yi1yi2f(yi1, yi2)

=
[
∂2P(s1, s2)

∂s1∂s2

]
s1=s2=1

= γ + (λi1 + γ)(λi2 + γ)

For γ = 0, the probability generating function can be factored:

P(s1, s2) = P(s1, 1)P(1, s2)

and, therefore, yi1 and yi2 are independent (See Appendix A). Like for the
bivariate normal distribution, independence and no correlation are equivalent
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notions. There are, however, two important differences: Whereas for the bi-
variate normal distribution both marginal and conditional distributions are
again normal, here this holds only for the marginal distributions. Moreover,
sums of Poisson random variables are again Poisson distributed if and only if
they are independent: the probability generating function of the sum yi1 +yi2

is obtained by setting s1 = s2 = s:

P(s) = exp[(λi1 + λi2)(s − 1) + γ(s2 − 1)]

For γ = 0, i.e. if the two Poisson variables are independent, this is the proba-
bility generating function of a Poisson distribution.

Bivariate Poisson Process

Yet another characterization of the bivariate Poisson distribution is based
on the bivariate Poisson process: Let y1(t, t + ∆), y2(t, t + ∆) be the number
of events of two different types that occured between t and t + ∆, t, ∆ ∈
IR+. Assume that the probabilities of events y1 or y2 occuring in the interval
(t, t + ∆) are independent of the previous process, and that

(i) The probability of one occurence of type 1 and no occurence of type 2 in
the interval (t, t + ∆) is given by:

P (y1 = 1, y2 = 0) = λ1∆ + ◦(∆)

(ii) The probability of one occurence of type 2 and no occurence of type 1 in
the interval (t, t + ∆) is given by:

P (y1 = 0, y2 = 1) = λ2∆ + ◦(∆)

(iii) The probability of one occurence of type 1 and one occurence of type 2
in the interval (t, t + ∆) is given by:

P (y1 = 1, y2 = 1) = γ∆ + ◦(∆)

(iv) The probability of no event occuring is given by:

P (y1 = 0, y2 = 0) = 1 − λ1∆ − λ2∆ − γ∆ + ◦(∆)

It can then be shown that the resulting probability generating function must
be of the form

P(t, s1, s2) = exp[(−λ1 − λ2 − γ + λ1s1 + λ2s2 + γs1s2)t] . (7.6)

Setting t = 1, the probability generating function for the bivariate Poisson dis-
tribution derived in (7.5) is obtained. This derivation of the bivariate Poisson
distribution was proposed as early as 1926 by McKendrick (See the historical
remarks in Kocherlakota and Kocherlakota, 1992). It can be given a spatial
interpretation of moving along a Cartesian grid, where one-step movements
along the y1−axis and y2−axis occur with probabilities λ1 and λ2, respec-
tively, while a movement in both directions has probability γ.
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Seemingly Unrelated Poisson Regression

The MVP probability model (7.3) together with parameterization

λij = exp(x′
ijβj) − γ

is often refered to as seemingly unrelated Poisson regression. The model was
introduced by King (1989a) who suggested estimation by maximum likelihood.
Jung and Winkelmann (1993) give the first and second derivatives of the log-
likelihood function.

Applications in econometrics include Jung and Winkelmann (1993) who
study the joint determination of the number of voluntary and involuntary job
changes over a ten-year period, and Ozuna and Gomez (1994) who study the
number of trips to two recreational sites. Applications so far have been limited
to the bivariate case, although this is definitely not a binding constraint.

Also, despite the labelling, all previous applications have dealt with data
that are multivariate in nature rather than seemingly unrelated proper in the
sense of Zellner (1962). This orientation has re-inforced the criticism of the
MVP model as being potentially inappropriate, since it imposes non-negative
correlation. This a-priori restriction is more of an drawback for multivariate
data then it would be for SURE or panel data. In response, attention has
shifted to multivariate mixing models such as the Poisson-log-normal model
discussed below (Chib and Winkelmann, 2001, Gurmu and Elder, 1998).

Another criticism has been based on the restrictive variance assumption
of the MVP model: the conditional expectation and conditional variance are
assumed to be equal. One response has been to ignore the issue of over- or un-
derdispersion in estimation but allow for valid inference by computing robust
standard errors (Jung and Winkelmann, 1993). Alternatively, Winkelmann
(2000a) derives a multivariate negative binomial model along the lines of the
MVP model. This model allows for overdispersion. It is presented in the next
chapter.

A final point of contention, raised by Gurmu and Elder (1998) is whether
it is meaningful to assume that zij ∼ Poisson(exp(x′

ijβj)− γ). This specifica-
tion does not guarantee that the parameter of the zij-distribution is positive,
causing both conceptual and potentially numerical problems. In an alternative
parameterization, zij ∼ Poisson(exp(x′

ijβj)), resulting in a marginal distribu-
tion of yij ∼ Poisson(exp(x′

ijβj)+γ) . Although the two models differ not only
in their constant but also in the underlying assumption for the scedastic (vari-
ance) function, the interpretation of the regression parameters is the same in
both parameterizations, as in either case ∂E(yij |xij)/∂xij = exp(x′

ijβj)βj .

7.1.2 Multivariate Negative Binomial Model

A multivariate negative binomial (MVNB) model can be derived in close anal-
ogy to the MVP. Following Winkelmann (2000a), begin with a convolution
structure and let
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yij = zij + ui

where zij and ui have independent negative binomial distributions. In order
to establish the distribution of the sum of two independent negative bino-
mial distributions, recall the probability generating function of the negative
binomial distribution from Chap. 2.3.1:

P(s) = [1 + θ(1 − s)]−α

In this specification, E(y) = αθ and Var(y) = E(y)(1 + θ). Thus, the sum of
two independent negative binomial distributions is again negative binomial
only if the two distributions share the common parameter θ. (This property
of the negative binomial distribution was also exploited by Hausman, Hall
and Griliches (1984, Appendix A), albeit in a different context). Consider a
parameterization where

zij ∼ Negbin(θ = σ, α = λij/σ) (7.7)
ui ∼ Negbin(θ = σ, α = γ/σ) (7.8)

It follows that zij has mean λij = exp(x′
ijβj) and variance λij(1+σ), whereas

ui has mean γ and variance γ(1 + σ). Thus, zij and ui each are Negbin I
distributed.

Applying the basic convolution rules to independent random variables, the
distribution of yij = zij + ui can be established as

Py(s) = Pz(s)Pu(s)

= [1 + σ(1 − s)]−λij/σ[1 + σ(1 − s)]−γ/σ (7.9)
= [1 + σ(1 − s)]−(λij+γ)/σ

But (7.9) is the probability generating function of a Negbin I distribution with
expectation E(yij) = λij + γ and variance Var(yij) = (λij + γ)(1 + σ). It is
easy to verify that among the class of negative binomial distributions, only the
Negbin I distribution is closed under convolution. The Negbin II distribution,
in particular, is not.

Due to the common factor ui, this model induces correlation between
observations for the same individual but different outcomes: For i = k and
j �= l

Cov(yij , ykl) = Var(ui)
= γ(1 + σ)

Following the notation that was introduced for the MVP model, the covariance
matrix of the MVNB model can be written in compact form as

Var(yi) = [Λi + γ11′](1 + σ)

Note that this covariance matrix differs from the covariance matrix of the
MVP model only by a factor of (1 + σ). Thus, the MVNB model allows for
overdispersion relative to the MVP model as long as σ > 0. The restriction
implied by the MVP model (σ = 0) can be subject to test.
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The joint probability function of the MVNB model for cluster i is obtained
along the lines of (7.3):

f(yi1, . . . , yiJ) =
si∑

k=0

fNB(k)
J∏

j=1

fNB(yij − k) (7.10)

where si = min(yi1, . . . , yiJ) and fNB is the Negbin I probability function. For
instance, for zij = yij − k

fNB(zij) =
Γ (λij/σ + zij)

Γ (λij/σ)Γ (zij + 1)

(
1

1 + σ

)λij/σ (
σ

1 + σ

)zij

(7.11)

The parameters of the model can be estimated by maximizing the correspond-
ing log-likelihood function.

7.1.3 Multivariate Poisson-Gamma Mixture Model

An alternative approach to induce correlation amongst the counts has been
pursued by Hausman, Hall and Griliches (1984) (see also Dey and Chung,
1992). In their model, correlation is generated by an individual specific multi-
plicative error term. The error term represents individual specific unobserved
heterogeneity. The mixture multivariate density of yi = (yi1 · · · yiJ)′ is ob-
tained after integration

f(yi|xi) =
∫ ⎡⎣ J∏

j=1

exp(−λijui)(λijui)yij

Γ (yij + 1)

⎤⎦ g(ui)dui (7.12)

If ui is gamma distributed with E(ui) = 1 and Var(ui) = α−1 it can be
shown that the joint distribution function of yi is of a negative binomial form
with distribution function.

f(yi|xi) =

⎛⎝ J∏
j=1

(λij)yij

Γ (yij + 1)

⎞⎠ αα

Γ (α)

∫
e−ui(λi.+α)uyi.+α−1dui

=

⎛⎝ J∏
j=1

(λij)yij

Γ (yij + 1)

⎞⎠ Γ (yi. + α)
Γ (α)

αα(λi. + α)−(yi.+α) (7.13)

where yi. =
∑J

j=1 yij and λi. =
∑J

j=1 λij . Note that this model is very closely
related to the univariate Poisson-gamma mixture leading to the univariate
negative binomial distribution. The only difference is that mixing is over a
common variable ui rather than over independent gamma variable uij . The
similarity is also seen in the marginals of the multivariate Poisson-gamma
model that are univariate negative binomial with E(yij) = λij and Var(yij) =
λij + γλ2

ij where γ = α−1 (i.e., of the Negbin II variety).
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The covariance between outcomes for a given individual can be derived as
follows:

Cov(yij , yil) = EuCov(yij , yil|ui) + Covu[E(yij |ui), E(yil|ui)|ui]
= 0 + Covu(λijui, λilui)
= γλijλil, j �= l

In compact form, the covariance matrix for individual i is given by

Var(yi) = Λi + Λiγ11′Λi

where Λi = diag(λij) as before.
Hence, the multivariate Poisson-gamma model allows for overdispersion,

and within-individual correlation. As for the MVP and MVNB models, the
covariances are non-negative. In contrast to the two previous models, the mul-
tivariate Poisson-gamma model does not have an “equi-covariance” property.
Rather, within individual covariances are an increasing function of the product
of the expected values λij and λil. This could be a useful feature for modeling
non-negative random variables. In particular, it eliminates the strict upper
bound to the correlation that was observed for the MVP distribution.

A potential disadvantage of this model is that the covariances are not
determined independently of the dispersion. Hence, a finding of a significant
γ can be as much an indicator of overdispersion in the data as it might be
an indicator of correlation (or both). In the MVNB model, by contrast, these
two features of the data can be identified, and thus estimated, separately. We
also note that all multivariate models discussed so far require covariances to
be non-negative. Depending on the application, this can be an undesirable
feature, and a more general model is discussed in the next chapter.

Finally, note that for J = 2 the multivariate Poisson-gamma mixture
model of Hausman, Hall and Griliches (1984) is identical to the bivariate
negative binomial model attributed to Marshall and Olkin (1990) (See also
Munkin and Trivedi, 1999). Its joint probability distribution function is given
by

f(y1, y2|x1, x2) =
Γ (y1 + y2 + α)

y1!y2!Γ (α)

(
λ1

λ1 + λ2 + 1

)y1
(

λ2

λ1 + λ2 + 1

)y2

×
(

1
λ1 + λ2 + 1

)α

which is easily seen to be a special case of (7.13).

7.1.4 Multivariate Poisson-Log-Normal Model

Assume that conditionally on a (J × 1) vector of individual and outcome
specific random effects εi = (εi1 · · · εiJ)′ the distribution of yi is independent
Poisson
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f(yi|εi) =
J∏

j=1

fp(yij |λij exp(εij)) (7.14)

where fp is the Poisson distribution function. Since εi is unobserved, the
model is not complete. In analogy to the univariate Poisson-log-normal model,
Aitchison and Ho (1989) suggested a multivariate extention where εi is J-
variate normal distributed

f(εi|Ω) = φJ(−0.5diagΩ, Ω) (7.15)

and Ω is the covariance matrix. Aside from the random effects, the model is
thus characterized by the parameters ψ = (λ, Ω). The importance of the non-
zero mean specification depending on the diagonal elements of Ω is explained
below. Aitchison and Ho (1989), as well as Good and Pirog-Good (1989)
who considered a bivariate Poisson-log-normal distribution, restricted their
attention to the case without regressors but the model can be readily extended
to the case with regressors by letting λij = exp(x′

ijβ).
To understand this specificationn note that the conditional mean and vari-

ance of the outcomes are given by

E(yij |εij) = Var(yij |εij) = λij exp(εij) .

This allows one to derive the expectation and variance of the marginal joint
distribution of yi without integration. A simple reparameterization facilitates
the analysis. Let uij = exp(εij) and ui = (ui1 · · ·uiJ)′. The assumption on εi

implies that ui ∼ MVLNJ(1, Σ), a multivariate log-normal distribution with
mean vector 1 and covariance matrix Σ where σij = exp(ωij) − 1 and thus
Σ = exp(Ω) − 11′. Hence,

yij |λij , uij ∼ Poisson(λijuij)

and the model is in the form of a Poisson-log-normal distribution.
To derive the marginal moments, let λi = (λi1 · · ·λiJ)′ and Λi = diag(λi).

Then by the law of the iterative expectations one obtains

E(yi|λi, Ω) = λi (7.16)

and

Var(yi|Λi, Ω) = Λi + Λi[exp(Ω) − 11′]Λi (7.17)

Hence, the covariances between the counts are represented by the terms

Cov(yij , ykl) = λij(exp(ωjl) − 1)λkl, j �= l, i = k

which can be positive or negative depending on the sign of ωjl, the (j, l)
element of Ω. The correlation structure of the counts is thus unrestricted.
Moreover, the model allows for overdispersion as long as ωii > 0. Note, how-
ever, that the marginal distribution of the counts yi cannot be obtained by
direct computation, requiring as it does the evaluation of a J -variate integral
of the Poisson distribution with respect to the distribution of εi
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f(yi|λi, Ω) =
∫ J∏

j=1

fp(yij |λij , εij)φ(εi| − 0.5diagΩ, Ω)dεi (7.18)

where f as above is the Poisson probability function conditioned on (λij , εij)
and φ is the J-variate normal distribution. This J-dimensional integral cannot
be solved in closed form for arbitrary Ω. For J = 2, Munkin and Trivedi
(1999) discuss estimation by simulated maximum likelihood. However, this is
strictly speaking not necessary as one could obtain a one-dimensional integral
through a factorization of φ into a conditional and a marginal distribution
and then apply Gauss-Hermite quadrature. A simulation method based on
Markov chain Monte Carlo that works well for high-dimensional problems, is
presented in Chap. 7.1.4.

If Ω is a diagonal matrix, the J-variate integral reduces to the product of
J single integrals

f(yi|λi, Ω) =
J∏

j=1

∫
fp(yij |λij , εij)φ(εij | − 0.5ωjj , ωjj)dεij (7.19)

a product of J independent univariate Poisson-log normal densities. See Chap.
4.2.3 for a discussion of the univariate Poisson-log-normal model. For Ω = 0
the joint probability simplifies to a product of J independent Poisson densities.

Discussion

There are several ways to generalize the multivariate Poisson log-normal
model. The considerations are similar to those for selectivity models. First,
the marginal distribution of εij may be known but not normal. In this case,
one can apply results in Lee (1983) and Weiss (1999) to generate a multivari-
ate distribution in which the random variables are allowed to correlate (see
also Chap. 5.2.2). If F (εij) is the cumulative marginal distribution function
of εij , then the transformed random variable

vij = Φ−1(F (εij)),

where Φ−1 is the inverse cumulative density function of the standard normal
distribution, is standard normal distributed. To introduce correlation, assume
that the joint distribution f(vi) = φJ(0, D) is multivariate normal with co-
variance matrix D. Clearly, εi is multivariate normal only if F is the normal
distribution. In particular, D is usually not the covariance matrix of εi. As
such, the interpretation of the covariance structure is somewhat difficult. How-
ever, this set-up has generated a multivariate distribution for εi with known
marginal cumulative distribution functions equal to F (·) and unrestricted co-
variance structure. No application of this method to multivariate count data
is known at this stage.

An alternative possibility is to relax the strong distributional assumptions.
A method based on squared polynomial series expansions for the unknown
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density of the correlated errors is suggested in Gurmu and Elder (1998). The
method was originally developed by Gurmu, Rilstone and Stern (1998) for the
univariate case. Gurmu and Elder extend the method to the bivariate case.
There is some doubt whether this method could be succesfully applied to high
dimensional multivariate data.

A final alternative is to abandon distributional assumption altogether
and specify first and second order moments of the joint distribution of
ui = exp(εi), and thus yi, only. This is discussed in Chap. 7.1.6.

7.1.5 Latent Poisson-Normal Model

A latent Poisson-normal model for bivariate correlated counts is presented in
van Ophem (1999). In this model, count data are interpreted as realizations of
an underlying (latent) normally distributed variable. One problem is that the
support of count data distributions is unbounded. To make it a well defined
problem, assume that y = 0, 1, . . . , K, where K is an upper bound. This
restriction does not matter for estimation, however, as actual data are always
finite (van Ophem, 1999).

Consider the following mapping from a standard normal variable u1 to the
count variable y1:

y1 = k iff ηk−1 < u1 < ηk k = 0, 1, . . . , K

where η−1 = −∞ and ηK = ∞. Thus

P (y1 = k) = Φ(ηk) − Φ(ηk−1)

and

P (y1 ≤ k) = Φ(ηk)

or, conversely,

ηk = Φ−1[P (y1 ≤ k)]

This relationship defines ηk uniquely for any marginal distribution P (y1 =
k). So far, the model has only been re-parameterized without changing its
substance. However, now assume that for a second count variable y2, a similar
procedure gives

µm = Φ−1[P (y2 ≤ m)]

If u1 and u2 are bivariate normal with correlation ρ, then we can write the
joint cumulative probability function as

P (y1 ≤ k, y2 ≤ m)
∫ ηk

−∞

∫ µm

−∞
φ(u1, y2; ρ)du2du1

where φ is the bivariate normal density with means 0, variances 1 and corre-
lation ρ. Moreover, the likelihood contribution can be calculated as



7.1 Multivariate Count Data 217

P (y1 = k, y2 = m) = P (y1 ≤ k, y2 ≤ m) − P (y1 ≤ k − 1, y2 ≤ m)
−P (y1 ≤ k, y2 ≤ m − 1)
+P (y1 ≤ k − 1, y2 ≤ m − 1) (7.20)

To summarize, this model has well-specified marginal distributions, in this
case Poisson, and a correlation structure that allows both for positive and
negative correlations. The correlation results from a latent bivariate normal
distribution with correlation ρ. If the only goal of the analysis is to allow
for negative correlations it is not clear whether this model offers an advan-
tage over the relatively simpler Poisson-log-normal model. The Poisson-log-
normal model has no Poisson marginal distributions, though. Hence the latent
Poisson-normal model has an advantage if one strongly believes in Poisson
marginals. In practice, however, these restrictive marginals are likely to speak
against rather than for this model.

A serious limitation of the latent Poisson-normal model is its focus on
the bivariate case. Extentions to higher dimensional multivariate data appear
impractical. A major advantage of the model is its versatility: the approach
can easily be adopted to any bivariate discrete random variable.

7.1.6 Moment-Based Methods

A parametric model with correlated errors was introduced in Chap. 7.1.4,
where it was assumed that

yij |λij , uij ∼ Poisson(λijuij)

and

ui =

⎛⎜⎝ ui1

...
uiJ

⎞⎟⎠ ∼ MVLN(1, Σ)

where MVLN denotes the multivariate normal distribution with expected
value 1 and covariance matrix Σ. This model is appropriate for panel data,
where Σ could reflect either serial or contemporaneous correlations, as well as
for genuine multivariate data. Maximum likelihood estimation of this model
in general requires simulation methods.

Alternatively, Gourieroux, Monfort and Trognon (1984b) discuss semipara-
metric estimation of this model. Their approach differs slightly from the one
employed here, as it is based on a bivariate Poisson distribution with com-
mon additive factor (i.e., in their model there are two sources of intra-cluster
correlation, one being the common additive factor and the other being mix-
ing over correlated errors). However, this is an inconsequential complication
that can be dropped for ease of exposition. For the same reason, we follow
Gourieroux, Monfort and Trognon (1984b) and focus on the bivariate case.
Hence, the model can be written as
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yi1|ui1

yi2|ui2

)
∼ independently Poisson

(
exp(x′

i1β1)ui1

exp(x′
i2β2)ui2

)
with

E(ui1) = E(ui2) = 1

and

Var
(

ui1

ui2

)
= Σ

Hence, only the first two moments of the mixing distribution are specified.
Let λi1 = exp(x′

i1β1) and λi2 = exp(x′
i2β2). The correlated random effects

introduce within cluster correlation among yi = (yi1, yi2)′ as

Var
(

yi1

yi2

)
=
(

λi1 0
0 λi2

)
+
(

λi1 0
0 λi2

)
Σ

(
λi1 0
0 λi2

)
(7.21)

is not a diagonal matrix. Gourieroux, Monfort and Trognon (1984b) suggest
estimating β1 and β2 by non-linear least squares minimizing

n∑
i=1

[
(yi1 − exp(x′

i1β1))2 + (yi2 − exp(x′
i2β2))2

]
The estimators β̂1 and β̂2 can be used to define the residuals

ŵi1 = yi1 − exp(x′
i1β̂1)

ŵi2 = yi2 − exp(x′
i2β̂2)

Moreover, consistent estimators of σ11, σ12 and σ22, the elements of Σ, are
obtained by applying ordinary least squares to

ŵ2
i1 − exp(x′

i1β̂1) = σ11 exp(2x′
i1β̂1) + disturbance

ŵ2
i2 − exp(x′

i2β̂2) = σ22 exp(2x′
i2β̂2) + disturbance

ŵi1ŵi2 = σ12 exp(x′
i1β̂1) exp(x′

i2β̂2) + disturbance

Having obtained an estimator Σ̂, Gourieroux, Monfort and Trognon (1984b)
recommend the use of quasi-generalized pseudo maximum likelihood (QGPML)
in order to reach the lower bound of the asymptotic covariance matrix of
pseudo maximum likelihood estimators. QGPML solves the weighted non-
linear least squares problem

min
n∑

i=1

(yi1 − λi1, yi2 − λi2)
[
V̂ar

(
yi1

yi2

)]−1 (
yi1 − λi1

yi2 − λi2

)
where

V̂ar
(

yi1

yi2

)
is obtained from (7.21) using σ̂, β̂1 and β̂2.
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7.1.7 Copula Functions

In statistics, a copula is a multivariate joint distribution function defined on
the n-dimensional unit cube [0, 1] such that every marginal distribution is
uniform on the interval [0, 1]. For example, the Gaussian copula, for n = 2, is

P (U ≤ u, V ≤ v) = C(u, v) = Φ2(Φ−1(u), Φ−1(v); ρ)

Two other examples are Clayton’s copula

C(u, v) = (u−θ + v−θ − 1)−1/θ

and the Frank copula

C(u, v) = −θ−1 log
{

1 +
(e−θu − 1)(e−θu − 1)

(e−θ − 1)

}
The marginal distributions implied by bivariate copulas are

F (u) = P (U ≤ u, V ≤ 1) = C(u, 1)

and

F (v) = P (U ≤ 1, V ≤ v) = C(1, v)

respectively. It is easy to verify that all three copulas have the key property
that their marginal distributions are uniform, as C(u, 1) = u and C(1, v) = v.

The significance of copulas lies in the fact that by way of transformation,
any joint distribution function can be expressed as a copula applied to the
marginal distributions. This result is due to Sklar. Sklar’s theorem states
that given a joint distribution function F (y1, . . . , yk), and respective marginal
distribution functions, there exists a copula C such that the copula binds the
margins to give the joint distribution.

For the bivariate case, Sklar’s theorem can be stated as follows. For any
bivariate distribution function F (y1, y2), let F1(y1) = F (y1,∞) and F2(y2) =
F (∞, y2) be the univariate marginal probability distribution functions. Then
there exists a copula C such that

F (y1, y2) = C(F1(y1), F2(y2))

Moreover, if the marginal distributions are continuous, the copula function C
is unique. We see, that the copula is now expressed as a function of distribu-
tion functions (cdf’s). But a standard result in statistics states that cdf’s are
uniform distributed over the interval [0, 1]. Since the marginal distributions
of a copula are uniform distributed, it follows that the marginal distribution
of y1 = F−1

1 (u) and y2 = F−1
2 (v) are F1 and F2, as stated.

The practical significance of copula functions in empirical modeling stems
from the fact that they can be used to build new multivariate models for
given univariate marginal component cdf’s. If the bivariate cdf F (y1, y2) is
unknown, but the univariate marginal cdf’s are of known form, then one
can choose a copula function and thereby generate a representation of the
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unknown joint distribution function. The key is that this copula function
introduces dependence, captured by additional parameter(s), between the two
random variables (unless the independence copula C(u, v) = uv is chosen).
The degree and type of dependence depends on the choice of copula. There is
a large literature on this topic (Trivedi and Zimmer, 2007).

It is known that the copula representation is not unique in the case of
discrete random variables. Zimmer and Trivedi (2006) express the view that
this non-uniqueness is not a problem in practice for using copulas in count
data modeling. Otherwise, one might also follow Denuit and Lambert (2005)
and transform count data into continuous responses by adding a realization
from a standard uniform u[0, 1] distribution to each count y, and apply then
continuous data copula methods for estimation and inference.

Without “continued” count data, the joint probability function for two
count data with marginal distributions F1(y1), F2(y2) and copula function C
is given by

P (y1, y2) = C(F1(y1), F2(y2); θ) − C(F1(y1 − 1), F2(y2); θ)
− C(F1(y1), F2(y2 − 1); θ) + C(F1(y1 − 1), F2(y2 − 1); θ)

The marginal distributions can be made functions of regressors X. For exam-
ple, if we consider the case of two Poisson marginals,

Fj(yj) =
yj∑

k=0

e−λj λk
j

k!

where

λj = exp(x′βj).

Such a model, combined with a Gaussian copula, is discussed by van Ophem
(1999). Van Ophem (2000) uses the Gaussian copula to generate a count data
model with endogenous binary regressor. Zimmer and Trivedi (2006) model
simultaneity between insurance choice and two measures (counts) of health
care utilization using the trivariate Frank copula.

7.2 Panel Data Models

Panel data provide repeated measurements (over time) on dependent and
independent variables for a sample of individuals or households or firms. Ex-
amples are pre- and post treatment studies in a controlled experiment, such
as the number of epileptic seizures before and after treatment (Diggle, Liang,
and Zeger, 1995). In social sciences, panel count data, such as the number of
days absent from work in a given year, for a number of years, are observed
in repeated linked household surveys, for example the U.S. Panel Study of
Income Dynamics or the German Socio Economic Panel. So far, the leading
application of panel count data models in the econometrics literature is to
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firm level data on patent numbers (Hausman, Hall and Griliches, 1984). Re-
cent contributions include Cincera (1997), Crépon and Duguet (1997a, 1997b),
Blundell, Griffith and van Reenen (1995, 1999), and Montalvo (1997). Other
examples include the number of doctor visits (Geil et al., 1997, Winkelmann,
2004a) and the number of workdays lost in a panel of U.S. manufacturing
establishments (Ruser, 1991).

Methods for panel count data differ from standard count data models in
at least one of three ways. First, they address the non-standard form of the
covariance matrix of the observations that arises since the assumption of inde-
pendent observations is most likely invalid. Second, and relatedly, they provide
a richer framework for addressing the issue of unobserved heterogeneity than
do univariate count data (see Chap. 4). In particular, dependence between
the unobserved heterogeneity and the regressors is no longer excluded. Third,
models for panel count data allow the introduction of dynamic elements, such
as a lagged dependent variable, into the regression part of the model.

Panel methods typically also differ from genuine multivariate count data
models. First, panel data models are usually somewhat more restrictive in
their covariance structure, as they frequently assume that dependence is gen-
erated by unobserved heterogeneity that is specific to the individual but con-
stant over time. Secondly, panel data models explicitly consider the possibility
that the unobserved individual heterogeneity factor is correlated with one or
more explanatory variables. In this situation, conditional models are required.

To illustrate the type of modeling issues encountered for panel data, con-
sider the determinants of patent numbers. It is likely that differences in tech-
nological opportunities or operating skills may affect the observed number
of patents. And yet, these firm specific factors are typically not captured by
explanatory variables. If firm specific unobservables are correlated over time,
a plausible assumption to start with, they will cause a positive correlation
among the repeated observations of a single firm. One special, and most com-
monly assumed, case is that of a time-invariant firm effect. This can be seen
as a limiting case of correlated effects, where the correlation is perfect. In
addition, such a firm effect may be correlated with explanatory variables. By
construction, this must be so in a dynamic context, where a lagged dependent
variable is included among the regressors. But correlation, i.e. endogeneity,
can arise in other situations as well.

There are three basic approaches for dealing with individual specific effects
in panel count data:

1. Robust methods and pseudo maximum likelihood
2. Parametric random effects models
3. Fixed effects models

As in the linear model, the first two methods work whenever the individ-
ual effects are independent of the regressors (the assumption of absence of
correlation is in general not sufficient in the context of non-linear count data
models). The issue is then one of correct inference versus efficient estimation.
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An example for an inefficient but robust method is the Poisson pseudo
likelihood estimator (see Chap. 3.3.3) which retains consistency despite a non-
standard covariance structure implied by the individual error, as long as the
conditional expectation is correctly specified. An example for an efficient ran-
dom effects model for count data is the panel negative binomial model to be
introduced later in this chapter. It is very similar to the standard negative
binomial model, i.e., it arises from a Poisson distribution with gamma hetero-
geneity. The difference is that the mixing over the gamma distribution is now
not done observation wise, but rather jointly for the block of all observations
for one individual over all time periods, as discussed in Chapter 7.1.3.

Both methods fail if the unobserved individual specific effect is correlated
with explanatory variables. To see why this is so, consider the following con-
ditional expectation function

E(yit|xit, αi) = exp(x′
itβ)αi (7.22)

where i = 1, . . . , N indexes the individual (or household, or firm), t = 1, . . . , T
indexes time, and αi is a time invariant individual specific error term. The
conditional expectation E(yit|xit) is therefore given by

E(yit|xit) = exp(x′
itβ)E(αi|xit)

where E(αi|xit) �= constant if x is endogenous. In this case, pooled Poisson
or random effects estimation is inappropriate, and we should rather use a
model that conditions on αi and estimates (7.22) directly. If we embed the
conditional expectation function (7.22) in a Poisson probability model, we
obtain the fixed effects Poisson model.

7.2.1 Fixed Effects Poisson Model

Let λit = exp(x′
itβ). Then the Poisson model with multiplicative individual

specific fixed effect has conditional probability function

f(yit|xit, αi) =
exp(−αiλit)(αiλit)yit

yit!
(7.23)

The fixed effects model treats the αi’s as parameters that need to be
estimated jointly with β. The advantages of the fixed effects model are twofold:

1. the population distribution of αi does not need to be specified. This avoids
inconsistency of a misspecied random effects model;

2. the individual specific error term αi may be correlated with the explana-
tory variables xit.

In order to estimate a fixed effects Poisson model one could simply include
n individual specific dummy variables, that is, one intercept for each individ-
ual. This may be hard or impossible when N is large and T is small as is the
case in many applications: (N +k) parameters need to be estimated. For large
N this is likely to exceed software restrictions. However, an inspection of the
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log-likelihood function reveals that this problem does not arise in the fixed
effects Poisson model as analytical expressions for αi can be derived and used
to concentrate the likelihood as a function of β (see Cameron and Trivedi,
1998, and Blundell, Griffith, and Windmeijer, 2002).

We start with the assumption that the regressors xit are strictly exogenous,
such that the T observations for one individual are independent conditional
on αi, and we can write

f(yi1, . . . , yiT |xi1, . . . , xiT , αi) = f(yi1|xi1, αi) · · · f(yiT |xiT , αi)

If we define vectors yi = (yi1, . . . , yiT )′ and xi = (xi1, . . . , xiT )′, we obtain,
using (7.23)

f(yi|αi, xi) =
T∏

t=1

exp(−αiλit)(αiλit)yit/yit!

= exp

(
−αi

T∑
t=1

λit

)
T∏

t=1

αyit

i

T∏
t=1

λyit

it /

T∏
t=1

yit! (7.24)

The log-likelihood contribution of individual i is therefore

�i(αi, β) = −αi

T∑
t=1

λit + lnαi

T∑
t=1

yit +
T∑

t=1

yit lnλit −
T∑

t=1

ln yit! (7.25)

with first derivative

∂�i(αi, β)
∂αi

= −
T∑

t=1

λit + α−1
i

T∑
t=1

yit

Therefore, the maximum likelihood estimator for αi is

α̂i =
∑T

t=1 yit∑T
t=1 λit

=
ȳi

λ̄i
(7.26)

This solution makes intuitive sense. Whereas in the linear model with additive
fixed effect, the fixed effects are estimated by the difference of ȳi and ¯̂yi, in
the exponential model with multiplicative fixed effect, they are estimated by
the corresponding ratio.

We can now substitute this expression back into (7.25) in order to ob-
tain the concentrated log-likelihood function (i.e. the likelihood function that
depends no longer on αi). Taking into account all N observations, this is

�c(β) =
N∑

i=1

{
−

T∑
t=1

yit +

(
ln

∑T
t=1 yit∑T
t=1 λit

)
T∑

t=1

yit +
T∑

t=1

yit lnλit −
T∑

t=1

ln yit!

}

= constant +
N∑

i=1

{
T∑

t=1

yit lnλit −
T∑

t=1

yit ln
T∑

t=1

λit

}
(7.27)

where the constant collects all terms that do not depend on β. We can now
take derivatives with respect to β.
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∂�c(β)
∂β

=
N∑

i=1

{
T∑

t=1

yitxit −
∑T

t=1 yit∑T
t=1 λit

T∑
t=1

λitxit

}

=
N∑

i=1

T∑
t=1

xit

(
yit −

∑T
t=1 yit∑T
t=1 λit

λit

)
such that the first-order condition for β can thus be written independently of
αi as

N∑
i=1

T∑
t=1

(
yit − ȳi

λ̄i
λit

)
xit ≡ 0 (7.28)

The maximum likelihood estimator for β is the value β̂ that solves (7.28). This
result has a number of noteworthy properties. First, there is no “incidental
parameter problem” in the Poisson model with multiplicative fixed effects.
In other words, the parameters of the conditional expectation function, β,
can be estimated consistently for fixed T , as long as N → ∞. This aspect
distinguishes the fixed effects Poisson model from the fixed effects logit model,
say, where such a problem arises.

Second, if we compare the first-order condition of the fixed effects Poisson
model to the first order condition to the pooled Poisson maximum likelihood
estimator,

N∑
i=1

T∑
t=1

(yit − λit) xit ≡ 0

we see that both of them establish a zero-correlation condition between resid-
uals and the regressors. However, the fixed effects Poisson model uses scaled
residuals whereas the pooled estimator uses unscaled residuals yit − λit.

Third, we find that consistent estimation of β does not require that the
dependent variable is truly Poisson distributed. Rather, a simple moment
condition, namely that

E(yit|xi1, . . . , xiT , αi) = αiλit

is sufficient for consistent estimation of β. As in the simple cross-section model,
therefore, the Poisson model has a pseudo-likelihood interpretation. This ap-
proach is discussed further in Chapter 7.2.2. Before that, it will be shown that
an identical first-order condition is obtained from a conditional likelihood ap-
proach.

Conditional Maximum Likelihood

Hausman, Hall and Griliches (1984) suggested to estimate the fixed effects
Poisson model by conditioning the likelihood contribution of individual i on
the individual specific sum

∑T
t=1 yit. Since observations are independently
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Poisson distributed conditional on αi, the distribution of this sum is Poisson
distributed as well

T∑
t=1

yit ∼ Poisson

(
αi

T∑
t=1

λit

)
Next, consider the joint density for the i-th individual. We can write

f(yi1, . . . , yiT ) = f

(
yi1, . . . , yiT ,

T∑
t=1

yit

)
since the sum of counts for individual i over time is fully determined by its
components and thus adds no new information. Thus, for the conditional
distribution

f

(
yi1, . . . , yiT

∣∣∣∣∣
T∑

t=1

yit

)
=

f(yi1, . . . , yiT ,
∑T

t=1 yit)

f(
∑T

t=1 yit)
(7.29)

=
e−

∑
t

λit
∏

t λyit

it∏
t yit!

/
e−

∑
t

λit(
∑

t λit)
∑

t
yit

(
∑

t yit)!

Terms involving αi have canceled out. The resulting probability expression
turns out to be of a multinomial form, with conditional probabilities propor-
tional to

f

(
yi1, . . . , yiT

∣∣∣∣∣∑
t

yit

)
∝

T∏
t=1

(
λit∑T

t=1 λit

)yit

Upon taking logarithms, we find that the log likelihood function of this model
is exactly the same as the concentrated log likelihood (7.27). Thus, first-order
conditions and the maximum likelihood estimator are identical as well. There
is no difference between the two approaches.

7.2.2 Moment-based Estimation of the Fixed Effects Model

In the previous Chapter, the full conditional distribution of f(yit|xit, αi) was
specified, in this case the Poisson distribution. However, this assumption was
unnecessarily strong, as β can be estimated based on a simple moment re-
striction as well, namely

E(yit|xi1, . . . , xiT , αi) = αiλit (7.30)

This condition, defining strict exogeneity of x, implies that

E(yit|xi1, . . . , xiT ) = λitE(αi|xi1, . . . , xiT )

and

E(ȳi|xi1, . . . , xiT ) = λ̄iE(αi|xi1, . . . , xiT )

Therefore,
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E
(

yit − ȳi

λ̄i
λit

∣∣∣∣xi1, . . . , xiT

)
= λitE(αi|xi1, . . . , xiT ) − λitE(αi|xi1, . . . , xiT ) = 0

which in turn implies that

E
{(

yit − ȳi

λ̄i
λit

)
xit

}
= 0 (7.31)

The moment estimator for β that solves (7.28), the orthogonality condition
for the mean scaled residuals, is therefore consistent. Blundell, Griffith and
Windmeijer (2002) call this model a “within groups mean scaling model”. In
this situation, moment estimator, Poisson maximum likelihood estimator and
Poisson conditional likelihood estimator are all the same.

Note that it is not enough to assume E(yit|xit, αi) = αiλit, because this
does not imply E(ȳi|xit, αi) = αiλ̄i, since

E(ȳi|xit, αi) = T−1
T∑

s=1

E(yis|xit, αi)

involves T − 1 terms with s �= t that are not specified unless strict exogeneity
is assumed. Also, it is true that the strict exogeneity condition 7.30 implies
T − 1 additional moment restrictions, in addition to (7.31), such as

E
{(

yit − ȳi

λ̄i
λit

)
xis

}
= 0 s �= t

If these conditions were actually used, one would leave the Poisson PML
framework and could proceed by GMM estimation of this overidentified model.
However, such an approach appears to have not been implemented so far in
the literature.

Within the pseudo likelihood framework, the estimated standard errors
need to be adjusted accordingly in order to obtain valid inference. The covari-
ance matrix can be estimated consistently using

VarPML(β̂) = Ĵ−1ÎĴ−1

where

Ĵ =
n∑

i=1

(
T∑

t=1

xitx
′
it

ȳi

λ̄i
λit − 1

T

T∑
t=1

T∑
s=1

xitx
′
is

ȳi

λ̄i
λitλis

)
and

Î =
n∑

i=1

T∑
t=1

T∑
s=1

xitx
′
is

(
yit − ȳi

λ̄i
λit

)(
yis − ȳi

λ̄i
λis

)′

(See Cameron and Trivedi, 1998).
Overall, this robustness property is a very useful aspect of the Poisson

fixed effects model. Thus one does not need to worry about overdispersion, or
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other expressions of “non-Poissoness”. This is even more of an advantage here,
in the panel case, relative to the cross-section case, as extensions of the fixed
effects approach to other parametric models, such as the negative binomial,
while in some special case technically feasible, suffer nevertheless from some
serious limitations, as we will see in the next Chapter.

It should also be pointed out that none of the results of this Chapter carry
over to generalizations of the Poisson model that lead to modified conditional
expectation functions, such as truncated Poisson models, hurdle or with-zero
models, and the like. The development of panel data models and fixed effects
estimators for such generalized models is still an open task.

7.2.3 Fixed Effects Negative Binomial Model

In the presence of overdispersion, a potentially more efficient estimator can
be based on the fully parametric fixed effects negative binomial model that
was introduced by Hausman, Hall and Griliches (1984). They discuss estima-
tion of the model by conditional maximum likelihood. As for the fixed effects
Poisson model, the conditioning is on the individual specific sums

∑T
t=1 yit. In

order to derive a closed form expression for the joint conditional probability
distribution for individual i, it is necessary that the probability distribution
of

∑T
t=1 yit can be expressed in closed form. As shown in Chap. 7.1.2, a sum

of independent negative binomial random variables is again negative binomial
distributed if and only if the component distributions are of Negbin I type
with probability generating function

P(s) = [1 + θ(1 − s)]−δ

and common parameter θ. Constrained by this requirement, Hausman, Hall
and Griliches (1984) suggest the parameterization δ = λit and θ = θi, an indi-
vidual specific fixed effect. In this parameterization, the probability function
for observation yit is given by

f(yit) =
Γ (λit + yit)

Γ (λit)Γ (yit + 1)

(
1

1 + θi

)λit
(

θi

1 + θi

)λit

(7.32)

To fully appreciate the role of the individual specific effect θi in this model,
note that

E(yit|θi) = λitθi

and

Var(yit|θi) = λit(θi + θ2
i ) = E(yit|θi)(1 + θi)

Thus, this Negbin I-type model introduces a time invariant variance-to-mean
ratio. With θi = exp(αi), we could as well write

E(yit|αi) = exp(αi + x′
itβ)

and
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Var(yit|αi) = exp(αi + x′
itβ)(1 + exp(αi))

Hence, the α′
is are not just differential intercepts in the mean function – they

also appear also as a separate shifter in the variance function. From this,
it follows that the α′

is play a different role than xit, and it becomes logically
impossible to interpret these terms as a representation of omitted explanatory
variables. This aspect limits the usefulness of the model for use in genuine
panel count data applications.

In order to preserve the standard structure of a fixed effects panel data
model, one might be tempted to let instead δ = exp(αi+x′

itβ). Unfortunately,
this parameterization is unsuitable for computational reasons as αi fails then
to drop out of the conditional likelihood function. But this contravenes the
purpose of the whole exercise.

Putting aside these caveats regarding the interpretation of the model for a
moment, we will now show that the θ′is indeed disappear from the individual
specific likelihood contribution. First, for a given individual i, the yit are
independent over time, such that

f

(
T∑

t=1

yit

)
=

Γ (
∑

t λit +
∑

t yit)
Γ (

∑
t λit)Γ (

∑
t yit + 1)

(
1

1 + θi

)∑
t

λit
(

θi

1 + θi

)∑
t

yit

while

f(yi1, . . . , yiT ) =
T∏

t=1

Γ (λit + yit)
Γ (λit)Γ (yit + 1)

(
1

1 + θi

)λit
(

θi

1 + θi

)yit

Therefore,

f

(
yi1, . . . , yiT

∣∣∣∣∣
T∑

t=1

yit

)
=

Γ (
∑

t λit)Γ (
∑

t yit + 1)
Γ (

∑
t λit +

∑
t yit)

×
T∏

t=1

Γ (λit + yit)
Γ (λit)Γ (yit + 1)

(7.33)

All terms involving θi have cancelled out of the conditional model, and the
remaining parameters can be easily estimated. This model is available in the
current releases of econometric software packages such as Stata (StataCorp.,
1999) and Limdep (Greene, 1995).

7.2.4 Random Effects Count Data Models

Random effects model should be used if the assunmption of independence
between the individual specific effects and the regressors appears tenable. In
this case, a random effect model will tend to be more efficient. Relative to
the fixed effects model, it has N additional degrees of freedom. Moreover,
random effects model have the advantage that time invariant regressors can
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be included. The independence assumptions can be tested using Hausman’s
(1978) method (see also (3.90).

Hausman, Hall and Griliches (1984) discuss the Poisson model with gamma
distributed individual specific effect ui = exp(εi). The derivation of this model
is very similar to that of the univariate negative binomial model in Chap. 4.3.
The difference is that unobserved heterogeneity is now individual specific, that
is, modeled as ui rather than uit. As shown in Chap. 7.1.3,if ui is independently
gamma distributed with parameters (γ, γ) (i.e., with mean 1 and variance 1/γ)
the joint marginal distribution of yi = (yi1, . . . , yiT )′ is of negative binomial
form with

f(yi) =
Γ (

∑
t yit + γ)
Γ (γ)

(
γ

γ +
∑

t λit

)γ 1

(γ +
∑

t λit)
∑

t
yit

T∏
t=1

(
λyit

it

yit!

)
In addition, Hausman, Hall and Griliches (1984) have introduced a random
effects negative binomial model. As for the fixed effects negative binomial
model, the starting point is a Negbin I model as in (7.32). Now, assume
that 1/(1 + θi) is distributed as beta(a, b). With this assumption, θi can be
integrated out and, after some algebra, the resulting joint probability function
for individual i can be written as

f(yi) =
Γ (a + b)Γ (a +

∑
t λit))Γ (b +

∑
t yit)

Γ (a)Γ (b)Γ (a + b +
∑

t λit) +
∑

t yit)
(7.34)

×
∏

t

Γ (λit + yit)
Γ (λit)yit!

Moment-Based Methods

Brännäs and Johansson (1996) consider moment based estimation of a panel
data model with both serially and contemporaneously correlated errors. Let

E(yit|λit, uit) = Var(yit|λit, uit) = λituit

Denote by Σii the variance matrix of ui = (ui1 · · ·uiT )′ where i indexes in-
dividuals and t indexes time. Hence, Σii contains the within-individual serial
correlations. Some restrictions, such as covariance stationarity of a AR(1) pro-
cess, can be imposed. Similarly, Σij is the covariance matrix between ui and
uj , i �= j. The diagonal elements of Σij are contemporaneous correlations.
Thus, the classical SURE model is obtained if both Σii and Σij are diagonal
matrices. For Σij = 0, this model is a multivariate extension of Zeger’s (1988)
time-series model (see Chap. 7.3).

Under the assumptions of the general model,

Var(yi) = Λi + ΛiΣiiΛi

where Λi = diag(λit) as before. However, in addition,

Cov(yi, yj) = ΛiΣijΛj i �= j

Brännäs and Johansson (1996) estimate the parameters of the model by GMM.
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7.2.5 Dynamic Panel Count Data Models

There has been substantial recent interest in methods for panel count data
with correlated individual specific effects and weakly exogenous regressors.
The literature includes Montalvo (1997), Crépon and Duguet (1997a), Blun-
dell, Griffith and van Reenen (1995) and Blundell, Griffith and Windmeijer
(2002). With correlated individual specific effects, estimation requires the use
of fixed effects. It was shown in Chap. 7.2.1 that the fixed effects Poisson
estimator solving the first-order conditions

N∑
i=1

T∑
t=1

xit

(
yit − λit

λ̄i
ȳi

)
= 0 (7.35)

is consistent if all regressors are strictly exogenous. This excludes the presence
of predetermined regressors, or weakly exogenous regressors, such as lagged
dependent variables. Consider xit = yi,t−1. The conditional expectation

E(yit|xi1, . . . , xiT , αi) = E(yit|yi0, . . . , yi,T−1, αi)

becomes ill defined for t < T . For example, E(yit|yit) = yit, and this approach
makes little sense. Instead, we need to consider a useful exogeneity definition
for predetermined regressors, such as

E(yit|xi1, . . . , xit, αi) = αiλit

The “problem” with this definition is that under weak exogeneity, the moment
condition

E
{(

yit − ȳi

λ̄i
λit

)
xit

}
= 0

no longer holds, and the Poisson fixed effects estimator based on (7.35) is
therefore not a consistent estimator. The reason is the same as the one men-
tioned in Chapter 7.2.2 regarding the insufficiency of the assumption that
E(yit|xit) = αiλit: weak exogeneity is not sufficient to determine

E(ȳi|xi1, . . . , xit, αi)

Thus, alternative methods are required. The problem is to find a transforma-
tion that eliminates the multiplicative fixed effect and at the same time gen-
erates useable moment conditions. Following Chamberlain (1992), Blundell,
Griffith and van Reenen (1995) and Montalvo (1997), consider the alternative
of scaling residuals by future observations, or leads. Define

vit = yit − yi,t+1

λi,t+1
λit (7.36)

Here, we consider scaling by the first lead observation, although scaling by
any yis and λis, s > t would be possible as well (see Montalvo, 1997, for a
more general formulation). Under the weak exogeneity assumption, we have

E(yit − αiλit|xi1, . . . , xit, αi) = 0
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Similarly,

E(yi,t+1 − αiλi,t+1|xi1, . . . , xit, αi)

= Exi,t+1 [E(yi,t+1 − αiλi,t+1|xi1, . . . , xit, xi,t+1, αi)

= Exi,t+1 [0] = 0

It follows that

E
(

yit − yi,t+1

λi,t+1
λit

∣∣∣∣xi1, . . . , xit

)

= λitE(αi|xi1, . . . , xit) − λi,t+1E(αi|xi1, . . . , xit)
λi,t+1

λit = 0

Thus, an estimator mimicking the moments conditions under strict exogeneity
would solve

N∑
i=1

T∑
t=1

xit

(
yit − yi,t+1

λi,t+1
λit

)
= 0 (7.37)

Alternatively, all prior values xi,t−s, s ≥ 1 can be used as instruments as well.
This leads then to a GMM estimator as in Montalvo (1997): Define vi to be
the vector

vi =

⎡⎢⎢⎣
yi1 − yi2 exp[(xi1 − xi2)′β]
yi2 − yi3 exp[(xi2 − xi3)′β]

yiT−1 − yiT exp[(xiT−1 − xiT )′β]

⎤⎥⎥⎦
and a matrix of instruments Zi as

Zi =

⎡⎢⎢⎢⎣
zi1 0 · · · 0
0 zi2 · · · 0
...

...
. . . 0

0 0 0 ziT−1

⎤⎥⎥⎥⎦
where zit = (1, xi1, . . . , xit). Contrary to the case in which the variables are
strictly exogenous, in this case there is no common set of instruments. Instead,
the set increases with the number of periods. The GMM estimator of β is
obtained by minimizing[

n∑
i=1

v′iZi

]
Ŵ−1

n

[
n∑

i=1

Z ′
ivi

]
where the weight matrix is given by

Ŵn =
1
n

n∑
i=1

Z ′
iv̂iv̂

′
iZi
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Alternatively, Wooldridge (1997a) proposes to eliminate the fixed effects using
the transformation

u†
it =

yit

λit
− yit+1

λit+1
(7.38)

which equals vit divided by λit. Windmeijer (2000) shows that this transfor-
mation is applicable for endogenous as well as weakly exogenous regressors.
He also suggests that the failure of the Wooldridge transformation for non-
negative regressors (in which case the associated β would go to infinity) can
be overcome by transforming the x’s first around their grand mean.

An alternative approach to deal with weakly endogenous regressors in
panel count data is pursued by Blundell, Griffith and Windmeijer (2002) who
use pre-sample information to form instruments for GMM estimation based
on the mean-scaling model.

7.3 Time-Series Count Data Models

Pure time series count data can be seen as a special case of panel count data
where n = 1 and T is large. Examples from the previous count data literature
include the number of strikes per month (Buck, 1984), the number of bank
failures per year (Davutyan, 1989) and the founding rate of national labor
unions (Barron, 1992). In practice, the absence of a cross-sectional dimension
makes a substantial difference, and developments of specialist time series mod-
els have been pursued independently of, and in most cases preceeding, those
of panel models. The main concern of this literature has been a parsimonious
and yet flexible correlation structure.

Dependence across time periods can be modeled in one of two ways. The
first way is the introduction of an explicit lag structure in the endogenous
count variable. This approach is also referred to as an “observation-driven”
model (Firth 1991). The alternative is a “parameter-driven” model where
time-series characteristics are introduced by correlated unobserved hetero-
geneity, following Zeger (1988), who augments the Poisson model by a mul-
tiplicative error term that follows an autoregressive process. This approach
introduces both overdispersion and autocorrelation into yt. Zeger proposes
estimation of the model parameters by quasi-likelihood in the tradition of
generalized linear models.

The observation driven approach is pursued by Al-Osh and Alzaid (1987,
1988) who define a fully parametric framework for modelling integer valued
process with serial correlation. Al-Osh and Alzaid (1987) considers the case of
integer valued autoregression, whereas Al-Osh and Alzaid (1988) deals with
integer valued moving averages. In either case is the transition model charac-
terized through a stopped-sum distribution (i.e., “binomial mixing” or “bino-
mial thinning”). A synthesis of the two approaches that combines the INAR(1)
structure with additional dependence from correlated errors is proposed by
Brännäs and Hellström (2002).
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An extensive survey of these methods, including an analysis of the per-
formance of the estimators in simulation studies, is provided by Jung (1999).
Ronning and Jung (1992), Brännäs (1994), and Böckenholt (1999) give appli-
cations of integer valued modeling in econometrics. See also Jung and Liesen-
feld (2001).

Time Series with Correlated Multiplicative Errors

A time series model with correlated multiplicative error was proposed by Zeger
(1988). This model can be seen as a special case of the multivariate Poisson
model with correlated errors that was discussed in Chap. 7.1.4 and in Chap.
7.1.6. Recall that in the multivariate Poisson-log-normal model

E(yit|uit) = λituit

and

Var(yit|uit) = λituit

where

ui = (ui1 · · ·uiT )′ ∼ MVLN(1, Σ)

For a time series, n = 1. Without further assumptions, the parameters of this
model cannot be identified from a pure time-series. For instance, Σ, a symmet-
ric (T × T ) matrix, has T (T + 1)/2 different elements. While an unrestricted
covariance matrix can be estimated with multivariate data, restrictions are
needed for time series data. For instance, Zeger (1988) considers a covariance
stationary process where Cov(ut, ut+τ ) = σu(τ). Under this assumption,

Σ =

⎛⎜⎜⎜⎝
σ2 σ(1) . . . σ(t − 1)

σ(1) σ2 . . . σ(t − 2)
...

...
. . .

...
σ(t − 1) σ(t − 2) . . . σ2

⎞⎟⎟⎟⎠ (7.39)

Zeger (1988) adopts a quasi-, rather than maximum, likelihood framework.
Thus, the assumption of log-normality is dropped, and only the first two mo-
ments of the distribution of yit are taken into consideration. Zeger’s approach
is based on the score function

D′V −1(y − λ) = 0 (7.40)

where D = dλ/dβ is of dimension (T × k), y and λ are of dimension (T × 1),
and

V = Var(y) = Λ + ΛΣΛ

where Λ = diag(λt). For independent observations, V is a diagonal matrix
with diagonal element λt and the score equations reduce to the sum of the in-
dividual scores. In a time series context, however, Σ has non-zero off-diagonal
elements as specified above.
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The estimator that solves (7.40) has the well defined asymptotic distribu-
tion of a quasi-likelihood estimator under arbitrary forms of the covariance
matrix (See, for instance McCullagh and Nelder, 1989, Chap. 9, Zeger, 1988).
In practice, V is unknown and thus requires estimation. Zeger (1988) suggests
the moment estimators

σ̂2 =
∑T

t=1 ỹ2
t − λ̂t∑T

t=1 ỹ2
t

and

σ̂(τ) =
∑T

t=τ+1 ỹtỹt−τ

σ̂2
∑T

t=τ+1 λ̂tλ̂t−τ

where ỹt = yt − λ̂t. An iterative process can be used for estimation.
Alternatively, one may want to approximate the general covariance matrix

Σ, and thus V , by a more parsimonious parameterization that follows for
instance from a stationary autoregressive process. In this way, one can also
avoid the repeated computation of the inverse of V , a matrix of dimension
(T × T ). First, note that V can be rewritten as

V = (Λ + σ2Λ2)1/2R(Λ + σ2Λ2)1/2

= D1/2RD1/2

where R is the autocorrelation matrix of u and D = Λ + σ2Λ2. Take, for
instance, the case where ut is assumed to follow a first-order autoregression
(This case is also discussed in Wun, 1991). Then,

R−1 =
1

1 − ρ

⎛⎜⎜⎜⎜⎜⎝
1 −ρ 0 . . . 0
−ρ 1 + ρ2 −ρ . . . 0
0 −ρ 1 + ρ2 −ρ . . . 0
...

...
...

. . .
...

0 0 . . . −ρ 1

⎞⎟⎟⎟⎟⎟⎠
(or, alternatively, R−1 = L′L where L is the matrix that applies the autore-
gressive filter, i.e., Ly = yt + αyt−1, t > 1). Thus, the inverse of V can be
computed as

V −1 = D−1/2R−1D−1/2

which is a considerable simplification.
Brännäs and Johansson (1994) consider estimation of the model by pseudo

maximum likelihood. As long as the mean function is correctly specified, the
Poisson model remains consistent but the asymptotic covariance matrix of the
estimator needs to be adjusted.
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Integer Valued Autoregression

Another model for time series count data is the integer valued autoregressive
model (INAR), due to Al-Osh and Alzaid (1987) and McKenzie (1988) (see
also Ronning and Jung, 1992). A random variable y follows a first order INAR
process with Poisson marginals (written y ∼INAR(1)) if

yt
d= α ◦ yt−1 + εt (7.41)

where

yt−1 ∼ Poisson(λ)

εt ∼ Poisson((1 − α)λ)

εt, yt−1 independent

α ◦ yt−1 =
∑yt−1

i=1 di

α ∈ [0, 1]

and

{di} i.i.d. with P (di = 1) = 1 − P (di = 0) = α .

The symbol “ d=” stands for “is equally distributed as”. Equation (7.41) defines
a somewhat unusual relationship as yt is a random variable even as α, yt−1,
and εt are known. In the remainder of this part, equality signs will have the
same interpretation, although the explicit notation using “d” is dropped for
simplicity.

In (7.41), α ◦ yt−1 is a mixture of a binomial distribution and a Poisson
distribution. For independent di and yt−1, the mixture operation ′◦′ is called
binomial thinning (McKenzie, 1988). It replaces the scalar multiplication in
the continuous AR(1) model. α ◦ yt−1 denotes the number of elements out of
t − 1 that survive to period t. The probability of survival is given by α. By
the rules for convolutions (See Appendix A) α ◦ yt−1 ∼ Poisson(αλ).

This model has the following interpretation: the innovation process {εt}
gives the number of new elements entering the process. The total number
of elements in t is the sum of surviving and newly entering elements with
marginal distribution yt ∼ Poisson(λ). ( The INAR(1) process has the follow-
ing properties:

i) 0 ◦ y = 0, 1 ◦ y = y
ii) E(α ◦ y) = αE(y)
iii) α ◦ · · · ◦ α︸ ︷︷ ︸

k-times

◦y = αk ◦ y

From (7.41) and ii), it follows that

E(yt|yt−1) = αyt−1 + (1 − α)λ . (7.42)
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Like for the first order autoregressive process with normally distributed in-
novations, the conditional expectation of yt is linear in yt−1. However, the
regression is not linear in the parameters. Also, there is an additional source
of randomness: given εt and yt−1, yt is still a (displaced binomial distributed)
random variable.

Using iii) and recursive substitution, (7.41) can be rewritten as:

yt = α ◦ yt−1 + εt

= α ◦ (α ◦ yt−2 + εt−1) + εt

= α ◦ (α ◦ (α ◦ yt−3 + εt−2) + εt−1) + εt

...

i.e.,

yt = ατ ◦ yt−τ +
τ−1∑
j=0

αj ◦ εt−j . (7.43)

The marginal distribution of the INAR(1) process is then given by

yt =
∞∑

j=0

αj ◦ εt−j . (7.44)

The effect of {εt} on yt is reduced exponentially with increasing lag length.
(7.43) implies for the auto-covariance structure:

γ(τ) = Cov(yt−τ , yt)

= Cov (yt−τ , ατ ◦ yt−τ ) + Cov

⎛⎝yt−k,
τ−1∑
j=0

αj ◦ εt−j

⎞⎠
(ii)
= ατVar(yt−τ ) +

τ−1∑
j=0

αjCov(yt−τ , εt−j)

= ατγ(0)

The auto-correlations ρ(τ) = γ(τ)/γ(0) are, in contrast to those of the Gaus-
sian process, restricted to the positive interval (0,1). The INAR(1)-Poisson
process is stationary for α ∈ (0, 1). For y0 ∼ Poisson(λ) it holds ∀t that

E(yt) = λ

Cov(yt, yt−τ ) = ατλ , τ = 0, 1, . . .

In particular, for τ = 0, the typical Poisson property of equidispersion follows.
Estimation can proceed by maximum likelihood. The INAR(1) model has
Markovian property
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f(yt|yt−1, yt−2, . . .) = f(yt|yt−1)

and thus the joint distribution of the sample can be factored as

f(yt, yt−1, yt−2, . . .) = f(yt|yt−1)f(yt−1|yt−2) . . . f(y0)

The conditional distribution of yt given yt−1 is a binomial-Poisson mixture,
the probabilities of which are given by

f(yt|yt−1) = exp[−(1 − α)λ](1 − α)yt−1+ytλyt

×
min(yt,yt−1)∑

k=0

αkyt−1!
(1 − α)2kλkk!(yt − k)!(yt−1 − k)!

Denoting the factor in the second line by Bt, the joint distribution of the
process can be written as

f(y0, y1, . . . , yT ) =
((1 − α)λ)y0+y1B1

exp((2 − α)λ)

T∏
t=2

yt−1!(1 − α)yt−1+ytλytBt

exp((1 − α)λ)
(7.45)

The parameters α, λ, and y0 can be estimated by maximizing the correspond-
ing likelihood. The starting value problem, which is the more severe the shorter
the time series, is discussed in detail in Ronning and Jung (1992). Brännäs
(1995a) shows, how the INAR(1) model can be extended in order to include
explanatory variables.

Example

Kennan (1985) analyses the frequency of, and duration between, contract
strikes in the United Kingdom. The observations are from January 1968 to
December 1976. The empirical mean of the series is 5.5, the empirical variance
13.4. The empirical overdispersion indicates that an INAR(1) process with
Poisson marginals cannot be appropriate since this would require equidisper-
sion. The actual time series is plotted in Fig. 7.1.

To illustrate the method, Fig. 7.2 displays a simulated INAR(1) process
for α = 0.5. The starting value corresponds to the observed value y0 = 5 and
the expected value of the marginal distribution is equal to the empirical mean.
The simulation of the Poisson and binomial variables used algorithms from
Kennedy and Gentle (1980). The mean and variance of the simulated time
series are 5.6 and 4.9, respectively. The series thus corresponds much closer to
the postulated equality of mean and variance. Also, it is clearly a stationary
process with mean reversion.

INAR(1) Process With Unobserved Heterogeneity

The model (7.41) can be extended to allow for negative binomial marginals,
and thus unoabserved heterogeneity and overdispersion McKenzie, 1986).
Consider again the basic relationship
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Fig. 7.1. Kennan’s Strike Data
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Fig. 7.2. Simulated INAR(1) Time Series for α = 0.5
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yt = α ◦ yt−1 + εt

Assume that yt−1 has a negative binomial distribution with generic param-
eterization Negbin(δ, θ) (i.e., this is not a mean parameterization; rather,
E(yt−1) = δθ). In analogy to the Poisson case, one would be interested in
a thinning operation ◦ that preserves the negative binomial distribution for
zt−1 = α ◦ yt−1. In the Poisson case we assumed that conditional on yt−1 and
α, zt−1 ∼ binomial(yt−1, α). McKenzie (1986) suggests that randomizing α
through an indendent beta-distribution Be(γ, δ − γ) has a similar effect. In
particular, zt−1|yt−1, γ, δ has a beta-binomial distribution and beta-binomial
thinning results. It can be shown that the unconditional distribution of zt−1

is negative binomial Negbin(γ, θ). If, moreover, εt ∼ Negbin(δ − γ, θ), an in-
dependent distribution, then it follows that the marginal distribution of yt is
Negbin(δ, θ).

Böckenholt (1999) discusses estimation of an INAR(1) process where un-
observed heterogeneity is represented by a finite mixture, and where, condi-
tional on the latent class, the process has all the standard properties of (7.41),
including the Poisson marginals.



8

Bayesian Analysis of Count Data

The existing econometrics literature on count data models has largely ignored
the Bayesian paradigm of inference. Likewise, in Zellner’s (1971) influential
book on Bayesian inference in econometrics, the Poisson regression model
is not mentioned. The probable reasons for this neglect are computational
complexities that in the past made the Bayesian analysis of count data mod-
els appear unattractive. However, increased computer power now allows for
fast evaluation of posterior distributions by simulation methods. The basic
approaches to Bayesian inference by simulation are discussed in this chapter.

In Bayesian econometrics the interest centers around the posterior distri-
bution π(θ|y) which is a product of the likelihood function f(y|θ)/f(y) and a
prior distribution g(θ)

π(θ|y) =
f(y|θ)g(θ)

f(y)
(8.1)

where

f(y) =
∫

Θ

f(y|θ)g(θ)dθ (8.2)

does not depend on θ and is a normalizing constant of integration, also called
marginal likelihood. This constant is often difficult to evaluate, and so is, as
a consequence, the posterior distribution. The standard approach is to omit
the normalizing constant and write

π(θ|y) ∝ f(y|θ)g(θ) (8.3)

If the right hand side is the kernel of a known distribution, the normalizing
constant can be infered from there. Alternatively, recent simulation based
methods do not require an evaluation of the normalizing constant at all and
thus are much more versatile.

In contrast to classical inference, Bayesian methods condition on the data
and model the parameter as a random variable. While much of the debate on
the relative merits of the Bayesian over the frequentist approaches has been
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cast in philosophical terms, some of the recent literature has shifted the focus
of the debate towards practical aspects: using recent simulation methods, the
Bayesian approach can provide relatively simple solutions in models where
frequentists methods fail, or at best, are difficult to implement. More on this
below.

8.1 Bayesian Analysis of the Poisson Model

A standard result of a closed form posterior distribution exists for the Pois-
son model without covariates. Suppose {yi}, i = 1, . . . , n is a random sample
from a Poisson distribution with mean λ, and that the prior distribution of
λ is a gamma distribution with parameters α ≥ 0 and β ≥ 0. The gamma
distribution is the conjugate prior for the Poisson parameter, and

g(λ|y) ∝
(

n∏
i=1

e−λλyi

)
αβ

Γ (α)
λα−1e−λβ

∝ e−λ(β−n)λα+nȳ−1 (8.4)

Hence, the posterior distribution of λ is a gamma distribution with parameters
α̃ = α + nȳ and β̃ = (β + n). Recall that the mean of the prior gamma
distribution is given by E0(λ) = α/β. Therefore, the posterior mean α̃/β̃ can
be written as

Eπ(λ|y, α, β) =
α + nȳ

β + n

=
β

β + n
E0(λ) +

n

β + n
ȳ

The Poisson-gamma model is an example for a common result in Bayesian
statistic, namely that the posterior mean is a weighted average of prior mean
and sample mean. The weight given to the sample mean is an increasing
function of the number of observations.

No conjugate prior exists for the (k × 1) parameter vector β in the Poisson
regression model where the likelihood is proportional to

L(β|y, x) ∝
n∏

i=1

exp[− exp(x′
iβ)] [exp(x′

iβ)]yi (8.5)

Even with a noninformative prior, this expression is not the kernel of any
known parametric distribution for β. There are two solutions. One is the use
of approximation methods as, for instance, in Albert and Pepple (1989). The
other is the evaluation of the exact posterior distribution using simulation
methods. Consider approximation first. Let β̂ be the mode of the posterior
density, i.e., the maximum likelihood estimator. If the logarithm of this density
is expanded in a second-order Taylor’s series expansion around β̂, we obtain
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lnπ(β, y, x) ≈ lnL(β̂) − 1
2
(β − β̂)′H(β − β̂) (8.6)

where H is minus the expected Hessian matrix evaluated at β̂. Thus, the pos-
terior of β is approximately multivariate normal with mean β̂ and covariance
matrix H−1.

Next, assume a normal prior for β

g(β) = φ(β|β0, B
−1
0 ) (8.7)

where β0 denotes the prior mean, and B−1
0 the prior precision matrix, the

inverse of the covariance matrix. That is,

g(β) ∝ exp[−1/2(β − β0)′B−1
0 (β − β0)]

In order to impose a reasonably vague prior, it is common to let β0 = 0 and
B−1

0 = 10−2Ik, where Ik is the k-dimensional identity matrix. The posterior
density π(β|y) is then proportional to

n∏
i=1

exp[− exp(x′
iβ)] [exp(x′

iβ)]yi exp[−1/2(β − β0)′B−1
0 (β − β0)] (8.8)

and not in standard form.
Again, an approximation method could be used. Instead, in order to ob-

tain exact results, we now consider simulation of the posterior density by the
Metropolis-Hastings (MH) algorithm (See Chib and Greenberg, 1995). This
is a special case of Markov chain Monte Carlo simulation. For a given target
density f(ψ), the MH algorithm is defined by

(1) a proposal density q(ψ†|ψ) that is used to supply a proposal value ψ†

given the current value ψ, and
(2) a probability of move that is defined as

α(ψ, ψ†) = min
{

f(ψ†)q(ψ|ψ†)
f(ψ)q(ψ†|ψ)

, 1
}

. (8.9)

Hence, if f(ψ†)q(ψ|ψ†) > f(ψ)q(ψ†|ψ) the chain moves to ψ†. Otherwise, it
moves with probability 0 < α(ψ, ψ†) < 1. If rejected, the next sampled value
is taken to be ψ.

For the MH algorithm to work efficiently, the choice of proposal density q
is critical. Following Chib, Greenberg, and Winkelmann (1998), the proposal
distribution for the Poisson regression model can be based on the mode β̂ and
curvature Vβ = [−Hβ ]−1 of lnπ(β|y) where these quantities are found using
a few Newton-Raphson steps with gradient vector

gβ = B−1
0 (β − β0) +

n∑
i=1

[yi − exp(x′
iβ)]xi

and Hessian matrix



244 8 Bayesian Analysis of Count Data

Hβ = −B−1
0 −

n∑
i=1

exp(x′
iβ)xix

′
i

The proposal can be obtained by reflecting the current value around the modal
value β̂ and then adding a Gaussian increment with variance τVβ (τ is a scalar
that is adjusted in trial runs in order to obtain acceptance rates between 40
and 60 percent). The resulting proposal density is

q(β, β†|y) = φ(β†|β̂ − (β − β̂), τVβ)

To draw from the proposal density, we simply compute

β† = β̂ − (β − β̂) + τchol(Vβ)′rndn(k, 1)

where P = chol(Vβ) gives the Cholesky (upper-triangular) decomposition of
Vβ such that Vβ = P ′P , and rndn(k, 1) is a (k× 1) vector of standard normal
pseudo-random numbers.

Finally, the probability of move is given in terms of the ratio of density
ordinates

α(β, β†|y) = min
{

π(β†|y)
π(β|y)

, 1
}

, (8.10)

since the proposal density is symmetric in (β, β†) and hence cancels. In prac-
tice, the algorithms goes through a large number of iterations: 2,000 or 10,000
are some common values. In addition, it is recommended to preceed the proper
sampling from the posterior by a burn-in phase of a given number of itera-
tions (500, say), in order to reduce the influence of arbitrary starting values
and let the algorithm move to its main area of support. Finally, the posterior
sample can be analysed in order to report any distributional characteristics
of choice, such as (posterior) mean, standard deviation, median, percentiles,
or credibility intervals.

Discussion

The example of posterior simulation in the Poisson regression model illus-
trates well the potential of the method. Part of the simplicity arises since
an evaluation of the normalizing constant is not required. This method has
some direct additional benefits. For instance, inequality constraints on pa-
rameters can be imposed without problem: if sampled values fall within the
inadmissable area, they are simply dropped. Likewise, it is also very simple
to simulate the posterior distribution of a (possibly complicated) function
of the parameters. In contrast to maximum likelihood, where the invariance
property applies to the modal estimates, but standard errors need to be de-
rived using asymptotic properties and the delta rule, the simulation approach
immediately provides the full posterior distribution of the function, includ-
ing correct standard errors, percentiles, etc. The approach is easily extended
to other prior distributions. Finally, modified Poisson distributions (such as
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truncated, censored) can be introduced by simply adjusting the likelihood
function in (8.8).

8.2 A Poisson Model with Underreporting

In the Poisson regression model, the basic simulation tool was the Metropolis-
Hastings step to draw from the posterior distribution of β. The power and
versatility of Markov chain Monte Carlo can be substantially increased by
combining MH-simulation with Gibbs sampling and data augmentation. For
more detailed references on Markov chain Monte Carlo, see Chib and Green-
berg (1996) and Gamerman (1997).

The following application to a Poisson model with underreporting illus-
trates these possibilites. Count data models with underreporting have been
discussed in Chap. 6.5.2. The presentation here follows Winkelmann (1996b)
who re-analysed the model in a Bayesian framework.

Let y∗
i denote the total number of events during a fixed time period T for

individual i, and assume that the likelihood function f(y∗
i |β) is of standard

Poisson form, i.e.,

f(y∗
i |β) =

exp(− exp(x′
iβ)) exp(x′

iβ)y∗
i

y∗
i !

If y∗
i was observed, the algorithm of the previous section could be used to

obtain the posterior distribution of β.
With underreporting, y∗

i is unobsered. We observe the number of reported
events yi which, conditional on y∗

i , is binomial distributed

f(yi|y∗
i , pi) =

y∗
i !

(y∗
i − yi)!yi!

pyi

i (1 − pi)y∗
i −yi (8.11)

where pi gives the individual probability of reporting an event. The structure
of the model becomes more apparent once we write down the joint posterior
distribution of β, p and y∗, where y∗ has been included among the parameters,
a case of data augmentation:

π(y∗, p, β|y, x) ∝ f(y|y∗, p, β)f(y∗|β)g(β)g(p) (8.12)

The following prior distributions g can be used:

g(β) ∼ φ(β0, B
−1
0 ) . (8.13)

and

g(p) ∼ U(0, 1) (8.14)

where U(0, 1) is the standard uniform distribution. The resulting joint poste-
rior distribution of y∗

i , pi, and β is then proportional to
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π(y∗, p, β|y, x) ∝
n∏

i=1

exp {y∗
i x′

iβ − exp(x′
iβ)} pyi

i (1 − pi)y∗
i −yi

(y∗
i − yi)!yi!

× exp(−1/2(β − β0)′B0(β − β0)) (8.15)

While it is intractable to derive analytically the marginal posterior distribu-
tions for the parameters of interest from (8.15), the MCMC approach allows
to simulate the joint posterior density. One could contemplate a direct “brute-
force” simulation of (8.15) using the MH method described in the previous
section. However, it will be problematic to obtain a suitable proposal density
and the approach is likely to be costly and inefficient.

A superior algorithm is to sample the joint posterior by successively sam-
pling through its full conditional distributions. This is also frequently refereed
to as Gibbs sampling. The gains from Gibbs sampling are most evident when
some of the full conditional distributions can be simulated from standard dis-
tributions, as is the case in this example. The three required full conditional
distributions in this case are

[y∗|p, β, y, x], [p|y∗, β, y, x], [β|y∗, p, y, x]

Inspection of the joint posterior (8.15) reveals that the full conditional poste-
rior of y∗ is given by

π(y∗|β, p, y, x) ∝
n∏

i=1

[exp(x′
iβ)(1 − pi)]y

∗
i

(y∗
i − yi)!

This is the kernel of a Poisson distribution shifted by yi, with parameter
λ∗

i = exp(x′
iβ)(1− pi). Pseudo random numbers from this distribution can be

readily generated using the Knuth (1969) algorithm.
The full conditional distribution of p is of beta form, while the full condi-

tional distribution of β (that depends on y∗ only) is the same as the posterior
distribution of the Poisson regression model and can thus be simulated using
the MH algorithm discussed in the previous section. This last step exactly re-
flects the effect of data augmentation: data augmentation replaces unobserved
values by simulated values and thus restores the model in standard form.

The sampling process is initiated with values in the support of the poste-
rior density. The algorithm runs in cycles through the three full conditional
densities, where the conditioning values for the parameters are updated as
soon as a more recent value becomes available. As for the MH algorithm, the
simulated values after an initial burn-in phase are retained as a sample from
the target joint posterior distribution. It also should be noted that the MH-
step required in the simulation of β involves only one draw in each cycle of
the Gibbs sampler.
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8.3 Estimation of the Multivariate Poisson-Log-Normal
Model by MCMC

Recall the multivariate Poisson-log-normal model presented in Chap. 7.1.4.
Conditionally on a (J × 1) vector of individual and outcome specific random
effects εi = (εi1 · · · εiJ)′ the distribution of yi is independent Poisson

f(yi|εi) =
J∏

j=1

fp(yij |λij exp(εij)) (8.16)

Moreover

f(εi|Ω) = φJ(−0.5diagΩ, Ω) (8.17)

where φJ is the J-variate normal density with covariance matrix Ω. The
details of this model structure were discussed before. For the purposes of the
present chapter, the important aspect is that the likelihood function requires
the evaluation of a J-variate integral of the Poisson distribution with respect
to the distribution of εi

f(yi|λi, Ω) =
∫ J∏

j=1

fp(yij |λij , εij)φ(εi| − 0.5diagΩ, Ω)dεi

and hence estimation by maximum likelihood may not be possible for large
J . Chib and Winkelmann (2001) show how the joint posterior distribution of
ψ = (β,Ω) can be obtained using MCMC for arbitrary J (An application of
the Gibbs sampler to a univariate Poisson-log-normal model, i.e., for J = 1,
is provided by Plassmann and Tideman, 2001). Suppose that the parameters
(β,Ω) independently follow the prior distributions

β ∼ N(β0, B
−1
0 ), Ω−1 ∼ Wish(ν0, R0),

where (β0, B0, v0, R0) are known hyperparameters and Wish(·, ·) is the Wishart
distribution with ν0 degrees of freedom and scale matrix R0.

Using data augmentation for the random effects ε, the parameters can
be blocked as ε, β, and Ω after which the joint posterior is simulated by
recursively sampling the full conditional distributions

[ε|y, β, Ω]; [β|y, ε]; [Ω−1|ε] , (8.18)

using the most recent values of the conditioning variables at each step.
In order to sample ε from the target density

π(ε|y, β, Ω) =
n∏

i=1

π(εi|yi, β, Ω)

consider the i-th target density

π(εi|yi, β, Ω ) = ciφ(εi|Ω)
J∏

j=1

exp(−λ̃ij)λ̃
yij

ij (8.19)



248 8 Bayesian Analysis of Count Data

where λ̃ij = exp(x′
ijβj + εij). Draws from this conditional density can

be obtained using the MH-algorithm. The proposal density is taken to
be multivariate-t with parameters that are tailored to those of the target
π(εi|yi, β, Ω ). Let ε̂i = arg max lnπ(εi|yi, β, Ω) and Vεi = (−Hεi)

−1 be the
inverse of the Hessian of lnπ(εi|yi, β, Ω) at the mode ε̂i. Then, the proposal
density is given by q(εi|yi, β, D) = fT (εi|ε̂i, Vεi

, ν), a multivariate-t density
with ν degrees of freedom (where ν is a tuning parameter).

The sampling of β, conditional on ε, follows the standard Poisson proce-
dure discussed in Chap. 8.1. Finally, Ω−1 is sampled by MH from a target
density proportional to

π = fW (Ω−1|v0, R
−1
0 )

n∏
i=1

φ(εi| − 0.5diagΩ, Ω) (8.20)

where fW denotes again the Wishart density. See Chib and Winkelmann
(2001) for further details and applications.

8.4 Estimation of a Random Coefficients Model by
MCMC

With panel data, parameter heterogeneity becomes a possible issue. While
most of the literature has dealt with intercept heterogeneity, this is not an
intrinsic constraint. In fact, among linear model, the class of random coefficient
models explicitly introduce heterogeneity for all regression coefficients of the
model, including the slopes (see, e.g., Greene, 1993). Unfortunately, few of the
known results for the linear model carry over to non-linear models such as the
Poisson model. In fact, such a class of count data models may be intractable
using maximum likelihood based methods. However, Chib, Greenberg, and
Winkelmann (1998) show how a random coefficients model can be analysed
in a Bayesian framework using MCMC. As in the previous chapter, data
augmentation and Gibbs sampling are the key elements of the algorithm.

The main elements of the model are as follows: The distribution of yi =
(yi1 · · · yiT )′ conditional on (bi, β) is assumed to be independent Poisson

f(yi|β, bi) =
T∏

t=1

exp(−λ̃it) λ̃yit

it

yit!
.

where

λ̃it = exp(x′
itβ + w′

itbi)

β are fixed coefficients and bi are random coefficients. It should be stressed
that w is not a subset of x. In a pure random coefficients model, all explanatory
variables are part of w and x does not appear in the conditional mean function.

The random coefficients have a multivariate normal distribution
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bi ∼ Nq(η, Ω)

The (unknown) vector η represents the corresponding fixed effects. The joint
density of y = (y1, ..., yn) conditional on β, η and Ω (but unconditional on bi)
is given by

f(y|β, η, Ω) =
n∏

i=1

f(yi|β, η, Ω) (8.21)

=
n∏

i=1

∫ T∏
t=1

f(yit|β, bi) φ(bi|η, Ω) d bi

If one were to proceed with maximum likelihood estimation (8.21) could be
maximized with respect to β, η and D as long as there are few random coef-
ficients and hence a low-dimensional integral structure.

Here, the interest is in the joint posterior. It is given by

f(β, η, b, Ω|y) ∝ f(y|β, b)f(β)f(b|η, Ω)f(η)f(Ω)

with priors

β ∼ Nk(β0, B
−1
0 ) , η ∼ Nk(η0, M

−1
0 ) , Ω−1 ∼ Wish(v0, R0) ,

where Wish is the Wishart distribution. The joint posterior can then be rewrit-
ten as (up to a proportionality constant)

φ(β|β0, B
−1
0 )φ(η|η0, M

−1
0 ) fW (Ω−1|v0, R0)

n∏
i=1

f(yi|β, bi) φ(bi|η, Ω)

To simulate the posterior distribution by Markov Chain Monte Carlo, the
following simple conditional structure is used.

• [β|y, b,Ω] is proportional to [β] × [y|β, b] because the conditional density
of the observable data is independent of Ω. Its density is proportional to

exp
(
−1

2
(β − β0)′B0(β − β0)

) n∏
i=1

T∏
t=1

exp(−λ̃it)λ̃
yit

it

• The conditional distribution [η|y, β, b, Ω] is proportional to [η] × [b|η, Ω],
independent of y and β, and is given by

Nq(η̂, M−1
1 )

where η̂ = M−1
1 (M0η0 +

∑n
i=1 Ω−1bi) and M1 = (M0 + nΩ−1).

• The conditional distribution [b|y, β, Ω] factors into a product of condition-
ally independent distributions

[b|y, β, η, Ω] =
n∏

i=1

[bi|yi, β, η, Ω]

where [bi|yi, β, η, Ω] is proportional to [bi|η, Ω] [yi|β, bi] with density given
by
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exp
(
−1

2
(bi − η)′Ω−1(bi − η)

) T∏
t=1

exp(−λ̃it)λ̃
yit

it

• The conditional distribution [Ω−1|y, β, η, b] is proportional to [Ω−1] [b|η, Ω]
wich can be shown to be of Wishart form

Wish

⎛⎝n + v0,

[
R−1

0 +
n∑

i=1

(bi − η)(bi − η)′
]−1

⎞⎠
Except for the conditional distributions of η and Ω−1 these are unknown

distribution families that are simulated using the Metropolis-Hastings algo-
rithm. Successively sampling the distributions

[β|y, η, b, Ω] → [η|y, β, b, Ω] → [b|y, β, Ω] → [Ω−1|y, β, b]

generates then a Markov Chain sample that converges to the target density.
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Applications

9.1 Accidents

The study of accident rates is one of the earliest applications of count data
analysis: Bortkiewicz (1898) established that the annual number of deaths
from mule kicks in the Prussian army during the period 1875-1894 could be
well described by a Poisson distribution with mean of 0.7 corps per year.
Although later studies have shifted their interest to different causes of death,
the same principles apply. Accidents, by their very definition, come possibly
closest to the notion of randomness required for processes such as the Poisson
process.

For instance, Evans and Graham (1990) investigate the effect of child re-
straint use legislation on child mortality in car accidents, using state level data.
The risk set is defined as total vehicle miles traveled (per year and state, in
thousands). Michener and Tighe (1992) in a similar analysis investigate the
effects of speed limits, minimum drinking age, and mandatory seatbelt laws
on the number of fatal accidents. They estimate a number of models, where
they control (as offset) either for vehicle miles traveled, for the number of reg-
istered drivers or for the number of registered vehicles as indicators of the size
of the risk set. More recently, Hahn and Prieger (2006) and Prieger and Hahn
(2007) estimate the effect of cell phone use while driving on the number of car
accidents per quarter, using a survey of individual-level data on cell phone us-
age and driving patterns. Rose (1990) analyzes the determinants of air-traffic
incidents per number of scheduled departures per year (in thousands), and
Kahn (2005) studies the number of deaths from natural disaster.

As discussed in Chap. 3.1.5 these scale variables can be either included
in the regression as logarithmic offset with unit coefficient (as in Rose, 1990)
or the coefficient can be given free for estimation (as in Evans and Graham,
1990, and Michener and Tighe, 1992). In the former case, the interpretation
of the regression function exp(x′

iβ) is in terms of an accident rate.
The focus of the above studies, and numerous others of similar kind, is

on evaluating public policy: how successful was past (traffic) safety legislation
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in reducing the number of accidents. Frequently, such studies use aggregate
data. Another type of analysis has pursued the insurance aspect of accidents.
For instance, based on individual level data, it would be interesting to es-
timate the actuarial risk associated with insuring a certain individual with
given characteristics and record. Although the data are different, the em-
ployed methods are essentially the same. For instance, Dionne and Vanasse
(1992) use driving records and Negbin II regressions in order to predict indi-
vidual claim frequencies, taking into account individuals characteristics and
driving histories. Dionne et al. (1994, 1995) extend this analysis by controlling
for various aspects of the driver’s medical condition.

Applications of count data models to accident numbers are by no means
limited to those involving transport. Feinstein (1989) uses pseudo-maximum
likelihood Poisson regressions in order to model the number of “incidents” at
U.S. nuclear power plants. Bauer et al. (1998) are interested in the determi-
nants of the number of workplace accidents using firm level data for Germany.
Ruser (1991, 1993) studies the number of workdays lost due to occupational
injury.

9.2 Crime

Grogger (1990a) analyzes the short-term deterring effect of capital punish-
ment. To be specific, he investigates whether the daily number of homicides
in California in the early 1960s were lower on days that followed an execution
(or on days leading up to one, as they were usually reported in the newspa-
pers with a lead), than on other days. Using Poisson and negative binomial
regression models, the null-hypothesis of no effect cannot be rejected.

Kelly (2000) analyzes the effects of inequality on the number of property
and violent crimes. Data are at the U.S. county level for the year 1990. The
employed technique is Poisson quasi-likelihood estimation. Kelly finds that for
violent crime, there is a large impact of inequality even after controlling for
the effects of poverty, race and family composition. There is a negative effect
of policy activity on crime that persists once the possible endogeneity of police
activity is accounted for in an instrumental variable GMM procedure.

Finally, Plassmann and Tideman (2001) estimate generalized Poisson mod-
els to examine the dynamic effects of right to carry laws on reported homicides,
rapes, and robberies, again using data for the U.S. with variation over time
and across U.S. states. They conclude that such laws appear to have statisti-
cally significant deterrent effects on the numbers of reported murders, rapes,
and robberies.

9.3 Trip Frequency

A natural application of count data modeling arises when one is interested
in finding out what determines the number of trips taken by a person (or
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household) over a specific period of time. Such data occur, for example, in
empirical studies in the fields of environmental economics and regional eco-
nomics. In the former, trip frequency can be used to estimate the value that
a recreational site, such as a hiking trail, a swimming beach, or a river for
fishing provides to its users. Such an estimate can enter into a cost-benefit
analysis when elimination of such a recreational site is considered. In regional
economics, and urban planning in particular, one is interested in the num-
ber of trips to a particular shopping site, and how this number is affected by
the distance, the characteristics of the shopping site, and the location and
attributes of alternative sites in the region.

The demand for recreational trips was analyzed, among others, by Creel
and Loomis (1990), Ozuna and Gomez (1994, 1995), Shonkwiler and Shaw
(1996), Gurmu and Trivedi (1996), Haab and McConnell (1996), and Hell-
ström (2002, Chap. 4). The prevailing approach is the so-called “travel cost
method”. The goal of these models is to estimate a conventional downward
sloping demand function. The ‘quantity demanded’ is the number of trips
taken to a site during a given period of time, and the ‘price’ is the travel
cost of reaching the site. Price variation derives from the fact that individuals
live at different distances from the site. Those living nearby have lower cost
and would be expected to undertake more trips. Formally, let yi, the num-
ber of trips to a single site by individual (or household) i, have a count data
distribution with

E(yi) = exp(β1tci + β2di)

where tci are the cost per trip and di are various socio-economic character-
istics, including income. The parameters β1 and β2 can be estimated in the
usual way, once the model has been specified and a random sample of poten-
tial users has been surveyed. If the sample is taken at the site, corresponding
adjustments have to be made to account for the endogenous sampling (see
Chap. 5.1.2).

Presumably, β1 is negative. The consumer surplus for individual i can then
be calculated as the integral under the demand function from tci to tc∗i , where
tc∗i is the cost that would choke of demand, i.e., reduce the demand to (ap-
proximately) zero. In the log-linear form used here, where demand approaches
zero only in the limit, we have

csi =
∫ ∞

tci

exp(β1tci + β2di)d tci

=
1
β1

exp(β1tci + β2di)
∣∣∣∣∞
tci

= −E(yi)
β1

This would be the access value for individual i that would be lost if the site
was closed. Aggregation over all affected individuals would give the overall
consumer surplus lost that should be counted among the cost of a site-closure.
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Extensions of this model recognize that the “use value” of one site may
be affected by the availability and location of other similar sites, and their
respective attributes. This is addressed in so-called multiple site models. Also,
one has to recognize that the value of a site may not be limited to its use-
value. Even non-users might attach a values to the availability of a site, and
different methods are required to determine the “non-use value”.

The second area where trip frequencies have been subject to count data
modeling in the past is for the number of trips to a number of alternative
retail locations (Flowerdew and Aitkin, 1982, Okoruwa, Terza, and Nourse,
1988, Barmby and Doornik, 1989). Again, distance from the site is an im-
portant explanatory variable. In addition, the effect of the size of the retail
location (or shopping mall) is of interest, following the notion of a gravity
model that the attractive force of a location is directly proportional to its size
and inversely proportional to the distance or travel time to that location. Esti-
mation of such a model using Poisson or negative binomial regression models
is straightforward. In these models, one can also control for further socio-
economic individual specific variables that may affect shopping behavior. A
further application of such gravity models using count data is the modeling
of spatial flows (for instance of people) as in Smith (1987).

9.4 Health Economics

Count data models have a wide applicability in health economics and, more
generally, in health sciences. A number of separate application areas can be
distinguished.

Firstly, count data models are used to model the frequency or intensity of
a health problem. For instance, using individual level patient records from a
controlled experiment, Diggle, Liang and Zeger (1995) and Chib, Greenberg
and Winkelmann (1998) estimate the effect of a drug treatment on the number
of epileptic seizures over a given period. Mullahy and Portney (1990) use
survey data from the 1979 National Health Interview Survey to estimate the
effect of smoking on the number of days of respiratory illness during a two-
week recall period. Jorgensen et al. (1999) study the number of emergency
room visits for respiratory diseases, again using count data regression models.
Böhning et al. (1999) provide an epidemiological application to the number
of teeth affected by caries.

A second, related area of research concerns the occurrence and incidence
of patterns of behavior that are perceived or known to be potentially harmful
and “unhealthy”. One such issue, related to public health, is the freqency
of sexual intercourse of teenagers (for instance, Moffatt and Peters, 2000).
Other examples are the determinants of cigarette or alcohol consumption (for
instance, Yen, 1999, and Kenkel and Terza, 2001).

A third area of application comprises the utilization of health services.
Often, household survey data provide information on variables such as the
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number of doctor consultations over the previous three or twelve months. Such
data are relatively inexpensive to obtain and, although lacking information on
the cost of the service or the associated diagnosis, they constitute a good first
indicator of health care utilization. In fact, it has been argued that the number
of doctor consultations can be used as a proxy for health status per se (Møller
Danø, 1998). Early papers include Cameron et al. (1988) and Pohlmeier and
Ulrich (1995). This type of analysis has seen a veritable explosion of activity
in recent years. See, for example, Vera-Hernandez (1999), Schellhorn (2001),
Jimenéz-Martin, Labeaga and Martinez-Granado (2002), Doorslaer, Koolman
and Jones (2004), and Winkelmann (2004a,b, 2006).

The number of doctor consultations is not the only indicator of this sort.
Depending on data availability, a distinction can be made between visits to a
general practitioner, to a specialist, to a dentist (Melkersson and Olsson, 1999,
or to a non-doctor health professional (Gurmu and Elder, 1998). Alternatively,
other aspects of health utilization can been studied, such as the number of
hospital outpatient department visits (Freund et al., 1996), the number of
emergency room visits (Freund et al., 1996), the number of hospital inpatient
days (Freund et al., 1996, Geil et al., 1997), or the amount of home care
received by the elderly (Gameren and Woittiez, 2002).

In related types of research using count data methods, Grootendorst (1995)
studies the usage of prescription drugs and Jensen, 1987, studies the discov-
ery of new drugs. Finally, one can count among the health related studies
those that address worker absenteeism due to illness, or worker absenteeism
in general (Vistnes, 1997, Winkelmann, 1999, Barmby, Nolan and Winkel-
mann, 1999).

Studies of health outcomes often attempt to estimate the effect of a treat-
ment, controling for the general effects of socio-economic characteristics (e.g.,
age, sex, ethnicity, labor force status). The paper by Melkersson and Olsson
(1999) is an example of a treatment study as it estimates the effect of preven-
tive dental care during childhood and adolescence on dental health (measured
by the number of visits to a dentist) as an adult. Møller Danø (1999) estimates
the effects of unemployment on health, contributing to the wider literature on
the “social cost of unemployment”.

Studies of health utilization frequently draw their motivation from mi-
croeconomic theory and the analysis of demand and supply in the market for
health. Three leading areas of interest are the sign and size of the income
effect, the role of health insurance (as health insurance implicitly determines
the relative price of health services and thereby the substitution effect), and
the effect of supply (physician density) on demand, if any. Examples in this
literature include Grootendorst (1995), Gerdtham (1997), and Winkelmann
(2004a,b). Grootendorst finds, using Canadian data, that the removal of co-
payments for prescription medicines increased the utilization of prescription
drugs. Winkelmann (2004a,b) reports that a 1997 German health care reform
that increased the co-payments by up to 200 percent, reduced the demand for
doctor visits by around 10 percent.
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Geil et al. (1997) establish that private insurance has no effect on the
number of admissions to a hospital in Germany, while Cameron et al. (1988)
find for Australia that the usage of health services increased with coverage
of the insurance policies. Freund et al. (1996) use differences-in-differences
to estimate the impact of Medicaid changes where fee-for-service coverage is
replaced by managed care. They report significant reductions in the hospital
outpatient usage under managed care. Finally, Pohlmeier and Ulrich (1995)
find some evidence for supplier-induced demand: a higher density of physicians
leads to increased usage, as measured by the number of doctor consultations.

Count data based empirical research in the health area typically encounters
the full array of methodological problems discussed in this book. Most research
is based on single outcome measures but sometimes several outcomes are
modelled jointly. For instance, Riphahn, Wambach and Million (2003) use the
multivariate Poisson-log-normal model to jointly estimate the determinants
of the number of visits to a doctor and the number of visits to a hospital.
Their model allows in addition for individual specific random effects, as their
application is based on panel data. See also Gurmu and Elder (1998).

Of course, as in other applications, overdispersion is common in health
data. In many cases, the excess of zeros is so great that it cannot be accom-
modated by the negative binomial distribution or similar single-index models.
As a consequence, two-part models, and hurdle models in particular, have be-
come the method of choice in empirical applications (Pohlmeier and Ulrich,
1995). One interesting aspect of those models is that they sometimes may be
given a structural interpretation. For instance, as far as the number of doctor
visits during a given period of time is concerned, the hurdle part can explain
the decision to contact a general practitioner (GP), i.e., the onset of a sick-
ness spell. Once a GP has been contacted, further referrals follow a different
process that is to a considerable degree determined by the decisions of the GP
rather than the individual. Recently, Santos Silva and Windmeijer (1999) have
pointed out that hurdle models are unnecessarily restrictive as they allow at
most one sickness spell during the given period of time. Instead, one can use
the more general framework of compound count data distributions to jointly
model the number of sickness spells and the number of referrals per spell.

In an application of zero inflated models, Gameren and Woittiez (2002)
estimate the determinants of the demand for home care by the elderly. The
dependent variable is the number of shifts of home care received per week. The
zero inflated model has an interesting interpretation in this context, because
in the case considered by the authors, the Netherlands in 1996, demand was
rationed as was evidenced by substantial waiting lists. Hence, there are two
types of non-users, those without demand and those with demand but rationed
by waiting lists. The model in principle allows to disentangle these two effects.

Another problem in empirical health economics is the potential endogene-
ity of explanatory variables. This problem has moved to the forefront of recent
research. Solutions have been proposed among others by Freund et al. (1996),
Mullahy and Portney (1990), and Windmeijer and Santos Silva (1997) with
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particular applications in health economics in mind. With endogeneity, incon-
sistency will arise and the desired interpretation of the estimates as a causal
relation becomes inadmissible. An example for the problem of endogeneity is
given by the effect of insurance coverage. If individuals can choose their cov-
erage then economic theory predicts a process of “adverse selection”. With
imperfect and asymmetric information individuals whose high health risk is
known to themselves but not to others, including the insurer, will choose the
high coverage insurance policy. A related problem is that of “moral hazard”:
high coverage may lead to negligent behavior and reduced preventive care on
the part of the individual.

In either case, the observed insurance effect will not necessarily measure
the causal behavioral response of insurance on health utilization. In order to
address this problem, instrumental variable and switching regression estima-
tors have been proposed. Freund et al. (1996) use state variation in changes
to Medicaid laws as an instrument. Schellhorn (2002), using data for Switzer-
land, estimates the effect of choosing a higher deductible on the number of
doctor visits. Clearly, those with low expected use will benefit from selecting
a high deductible. The results indicate that the effect of choosing a higher
deductible is overestimated when this self selection is not controlled for. De-
pending on the method, all of the observed difference in utilization can be
explained by self-selection.

9.5 Demography

The main application of count data models in demography is the analysis of
individual fertility, as measured by the number of children ever born or the
number of children living in a household. Examples for recent applications are
Nguyen-Dinh (1997) and Al-Qudsi (1998a, 1998b). The Journal of Population
Economics devoted a symposium to fertility studies using count data models
(Winkelmann and Zimmermann, 2000).

Modeling fertility produces a number of interesting methodological issues.
These include, in no particular order, the frequent presence of underdisper-
sion (Winkelmann and Zimmermann, 1994, Winkelmann, 1995), the influence
of infertility and social norms (as opposed to individual choice based on eco-
nomic factors), and the question of how to account for the fact that women
may not have yet completed their childbearing age (Caudill and Mixon, 1995,
McIntosh, 1999).

A number of approaches have been taken in order to deal with incomplete
fertility. The most radical one is to consider older women only, for instance
those aged 45 or older, in order to bypass the problem. Examples are Winkel-
mann (1995) and Mayer and Riphahn (2000). This “method” has a couple of
drawbacks, however. First, the omission of data on the current child-bearing
generation generates a substantial lag in the collection of evidence on fertil-
ity patterns. This becomes more of a problem if fertility behavior is rapidly
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changing over cohorts. Second, the method cannot be used if the number
of children is based on household composition data (such as in Famoye and
Wang, 1997, and Kalwij, 2000), as children typically leave the household once
they reach adulthood.

Instead, one can include a variable such as age, or age-at-marriage, or
the number of fertile years, as logarithmic offset in the regression (see Chap.
3.1.5). Alternatively, one can consider models where the number of children
observed for women with incomplete fertility is interpreted as a lower bound of
completed fertility. A corresponding censored probability model is relatively
simple to establish. Such models due to Caudill and Mixon (1995) and McIn-
tosh (1999) were discussed in Chap. 5.1.1. The two contributions differ in
the way “completion status” is determined. In Caudill and Mixon it is based
on age whereas in McIntosh it is based on an additional survey question on
desired fertility.

When modeling the determinants of fertility there are strong reasons to
believe that the standard assumption of a homogeneous exponential mean
function is violated. These include the possibility of infertility (i.e., the out-
come of zero children that results from processes other than choice), and the
potential influence of social norms. For instance, in many societies, to have
an only child is considered to be socially undesirable whereas to have two
children is considered desirable. That “zeros” are different can also be seen
in aggregate data. For instance, Santos Silva and Covas (2000) point out that
in developed countries the average number of children per couple has fallen
while the percentage of childless couples has remained relatively stable.

The offshoot of these considerations is that the homogeneity assumption
underlying the exponential mean function of the count data model may be
wrong in which case the standard Poisson-based estimator is inconsistent.
Thus, the literature has considered alternative data generating processes. Two
recent contributions to this area of research include Santos Silva and Covas
(2000) and Melkersson and Roth (2000). Both papers model completed fer-
tility ((de-facto) married women aged 40 or older in Portugal and (de-facto)
married women aged 45 or older in Sweden, respectively). The two papers
make, however, different assumptions on the processes that give extra weight
to the outcomes zero, one or two.

Santos Silva and Covas combine a hurdle-at-zero model with inflation (or
deflation) at one for the positive count data part.

f(yi|xi) =

⎧⎨⎩ g1(0|xi) for yi = 0
(1 − g1(0|xi))(ω + (1 − ω)g2(1|xi)) for yi = 1
(1 − g1(0|xi))(1 − ω)g2(yi|xi) for yi = 2, 3, 4, . . .

Specifically, they assume that g1(y|β1) is a generalized Poisson distribution
(see Chap. 2.6.2), g2(y|β2) is a truncated-at-zero generalized Poisson distri-
bution, and

ω =
(θ − 1)g2(y|β2)

1 − (1 − θ)g2(y|β2)
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In this way, the generalized Poisson distribution without hurdle and in-
/deflation is obtained for β1 = β2 and θ = 1.

Melkersson and Roth (2000) devise a model that inflates both the “zero”
and the “two” outcomes. The zero-and-two inflated model has the following
probability distribution function

f(yi|xi) =

⎧⎨⎩ω0 + (1 − ω0 − ω2)g(0|xi) for yi = 0
ω2 + (1 − ω0 − ω2)g(2|xi) for yi = 2
(1 − ω0 − ω2)g(yi|xi) for yi = 1, 3, 4, . . .

where g(yi|xi) is a proper count data distribution. In principle, the ω’s can be
negative, representing a shortfall of zero’s or two’s relative to the base model,
as long as some inequality restrictions are observed (e.g., ω0 > g(0|xi)(ω2 −
1)/(1 − g(0|xi))). Of course, if the ω’s are modeled as a logit-function of
covariates as in Melkersson and Roth (2000), then zero- or two-deflation is
precluded.

The findings of Melkersson and Roth and Santos Silva and Covas cast
doubt on the assumption of a homogeneous count process in these situations,
and suggest a re-interpretation of the phenomenon of underdispersion that is
so characteristic of completed fertility data. Here, underdispersion stems from
differences between the various components of the model, rather than from a
mere departure from the Poisson variance function. Hence, the earlier prac-
tice of modeling fertility using count data models with generalized variance
function (for instance, Winkelmann and Zimmermann, 1994, and Wang and
Famoye, 1997) might be misguided, as a violation of the mean function leads
to inconsistent parameter estimates.

A research area of substantive interest is the dynamic interaction between
child-bearing and employment status over the life-cycle. While count data
are certainly less than ideal to address such simultaneity, the contribution
by Kalwij (2000) offers substantial progress in that direction. He makes the
identifying assumption that a woman’s employment status remains unchanged
after birth of the first child. This assumption is supported by some simple
descriptive evidence for Dutch women.

Under this assumption, the simultaneous choice of having at least one child
and employment can be modeled using cross-section data only in a bivariate
probit or multinomial logit framework, whereas the number of children for
those who have at least one child is modeled conditional on employment. An
important finding, using data from a Dutch household survey, is that the
effects of educational attainment on the observed fertility pattern runs via
the effects of educational attainment on female employment status, which in
turn significantly affects the fertility behavior of households. The direct effect
of educational attainment on the presence and number of children is found to
be relatively small.

Mayer and Riphahn (2000) and Atella and Rosati (2000) use standard
count data models to address novel questions related to the determinants of
fertility. Meyer and Riphahn analyze the fertility adjustment of Guestworkers
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in Germany. In particular, they are interested in the effect of the variable
“fertile years in Germany”, which is, by assumption, the number of years
between the age of 15 and the age of 40 that an immigrant woman has spent in
Germany. Using individual level data on completed fertility from the German
Socio-Economic Panel, the evidence favors an “assimilation” hypothesis (a
gradual decline to the lower fertility levels of German-born women) over a
“disruption” hypothesis (an initial drop in fertility below native levels with
subsequent catch-up). It is interesting to note that contrary to the well known
identification problem that arises in the study of earnings assimilation, fertility
assimilation as defined by the authors in fact does allow to disentangle cohort
and assimilation effects even from pure cross-section data. This is so because
a given arrival cohort can differ at any point in calendar time in the number
of fertile years spent in Germany (by virtue of differences in age at arrival in
Germany).

Finally, Atella and Rosati (2000) build a model of fertility decisions in the
context of a developing country where children are a means of intergenera-
tional asset transfer. In such a model fertility does not only depend on the
expected survival rate of children but also on the uncertainty associated with
this survival rate. The empirical analysis using data from India shows that
increased uncertainty leads to lower fertility levels.

9.6 Marketing and Management

Count data regressions become increasingly common in marketing and man-
agement as well. A prime example is the analysis of consumer behavior in
studies that attempt to explain and predict purchase frequencies or amounts
(for instance, Wedel et al. 1993, Robin, 1993, Ramaswamy, Anderson and De-
Sarbo, 1994, Brockett, Golden and Panjer, 1996). A related problem is that
of modeling consumer brand choice (for instance, Gupta, 1988, Dillon and
Gupta, 1996). In such models, the number of purchases of a certain brand is
modeled conditional on the total number of purchases of a given item (over a
year, say). The resulting model, similar to the conditional likelihood approach
of the fixed effects Poisson model, is of a multinomial logit form.

Shonkwiler and Harris (1996) estimate a trivariate Poisson-gamma mixture
model for the 1988 number of retail stores in three different sectors (Building
materials and garden supply; Clothing; and Furniture) in each of 242 rural
U.S. communities having populations between 100 and 5,000. The explanatory
variables are the population size, the square root of the population size, per-
capita income and the population density.

Finally, there are a number of applications related to the financial sector.
Davutyan (1989) performs a time series analysis of the number of failed banks
per year in the U.S. for 1947 - 1981, relating the bankruptcy risk to factors
such as a measure of the absolute profitability of the economy, the relative
profitability of the banking sector, as well as aggregate borrowing from the
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Federal Reserve. Greene (1998) estimates a count data model using individual
level data on the number of major derogatory reports in a sample of credits
card holders. And Jaggia and Thosar (1993) study the determinants of the
number of bids received by 126 U.S. firms that were targets of tender offers
during the period 1978-1985 and whose management resisted takeover.

9.7 Labor Mobility

Labor mobility is a pervasive feature of market economies. Individuals typ-
ically hold several jobs during their working career. Topel and Ward (1992)
report an average of 9 job changes during lifetime for male workers in the
U.S. Own calculation for the German labor market, based on the German
Socio–Economic Panel, indicate a distinctly lower average mobility of 3 male
lifetime job changes. The sources of international differences in labor mobility
are a research topic of substantial interest. A related question is why labor
mobility differs so much between individuals within a country. And what can
these differences tell us about the operation of the labor markets?

Explaining the variation in individual labor mobility has been a topic of
interest in applied labor economics for more than 40 years. Early studies are
Long and Bowyer (1953) and Silcock (1954). Recent studies include Börsch-
Supan (1990), Topel and Ward (1992), Jung and Winkelmann (1993), and
Winkelmann and Zimmermann (1993a, 1993b, 1994, 1998). The existing lit-
erature reports the following stable empirical findings.

1. Individual variation in mobility, as measured for instance by the variance
of the number of job changes during a given period, is great. Hall (1982,
p. 716) paraphrases this observation for the U.S.: “Though the U.S. labor
market is justly notorious for high turnover (...) it also provides stable,
near-lifetime employment to an important fraction of the labor force.”

2. Most of the job changes occur at early stages of the career. In the US, an
average of two out of three lifetime job changes occur during the first ten
years after entering the job market (Topel and Ward, 1992). In Germany,
about one out of two job changes falls within the first ten career years
(own calculations using the German Socio-Economic Panel).

3. Labor mobility reduces with increasing tenure. Or, using Silcock’s (1954,
p. 430) words, “the amount of wastage decreases as the lenght of service
increases”.

Employment can be characterized in many ways: by occupation, employer,
location, and position on the job ladder, to name but a few. Mobility in a broad
sense is a change in any of these categories. Some types of mobility affect
several categories at a time. For instance, a change of employer may require
both a move to another city or region, and a change in occupation. On the
other hand, geographic dislocation and moves on the job ladder may occur
within a single firm. Regional mobility is studied in Börsch-Supan (1990).
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Lazear (1990) addresses the issue of intra-firm job mobility. Here, as in Topel
and Ward (1991) and Jung and Winkelmann (1993), labor mobility is defined
as a change of employer. This event is referred to as a “job change”.

9.7.1 Economics Models of Labor Mobility

Most analyzes of the determinants of individual labor mobility are in one way
or another based on the human capital theory (See Becker, 1962, and Mincer
1962). The human capital theory states that workers invest in productivity
enhancing skills as long as the cost is less then the present value of the expected
future benefits. The return to human capital depends on the wage which, in
competitive labor markets, equals marginal productivity (for a given type of
human capital).

The human capital approach has been mainly used to model the dynam-
ics of individual earnings over the life cycle. In particular, the theory implies
a wage growth over the life cycle since initial earnings disadvantages during
the time of human capital investments (which optimizing behavior places at
early stages of the life cycle) are joined by higher wages during later peri-
ods. Further, if individuals are observed in a cross section, observed earnings
differentials can be explained by variations in the stock of human capital, as
measured by variations in the years of schooling, labor market experience, and
tenure.

For the analysis of labor mobility, it is important to distinguish between
two types of human capital. The first is general human capital, which is ac-
quired through the education system. The second is firm specific human capi-
tal. It is acquired with current tenure and, as opposed to general human cap-
ital, it may not be transferable across employers. Thus, firm specific human
capital creates a wedge between actual wages and potential outside wages.
An increase in the wedge through larger firm specific investments reduces
mobility.

The implications of human capital for labor mobility have been further ex-
plored by Jovanovic (1979a, 1979b) and Mincer and Jovanovic (1981). These
authors emphasize the importance of imperfect information and heterogeneity.
In particular, it is assumed that each worker has a nondegenerate productiv-
ity distribution across different firms or jobs. Human capital effects enter the
model by determining the location (and possibly dispersion) of this distribu-
tion, and its shift over time. Further, the models are based on the following
decision rule: a job change occurs if the expected present value of an alterna-
tive job is higher than the expected present value of the incumbent job (or if
the difference exceeds transaction costs in case they exist).

A job change requires new information that changes the expectations of
either the incumbent job or the outside offers. Two model types have been de-
veloped. In the first version, job changes occur as a result of new information
about the current match (Jovanovic, 1979a). In this view, jobs are consid-
ered to be experience goods. The value of the match is unknown a priori but
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reveals itself by experiencing the match. Thus, the experience provides new
information which is for instance processed using a Bayesian updating rule. A
job separation occurs if, compared to the initial evaluation, the present match
is revealed to have a lower expected present value.

In the second type of models, job changes occur as a result of new in-
formation about the outside offers (Jovanovic, 1979b). In this view, jobs are
considered to be inspection goods, i.e., the value of a match is known prior to
the match. Here, job changes occur as new information about better paying
outside jobs arises. The arrival rate of new information increases with the
search effort which in turn increases search costs. Thus, an optimal search
strategy can be established.

These models predict the following effects of standard human capital vari-
ables like education and labor market experience on labor mobility. The effect
of education, as measured by the years of schooling, is ambiguous. First, as
far as education creates general human capital, it should increase both in-
side and outside opportunities, i.e. (potential) wages, proportionally und thus
leave mobility unaffected. Second, better general education creates skills that
allow for a faster accumulation of firm specific human capital. Thus, for given
tenure, individuals with higher education have a lower mobility. Third, in mar-
kets with imperfect information, better educated individuals should be better
able to collect and process information. They tend to have a higher search
efficiency and therefore lower transaction costs and higher mobility.

The models unambiguously predict an inverse relation between tenure and
mobility. The negative correlation arises due to a wedge created by the ac-
cumulation of firm specific human capital over time or, if jobs are seen as
experience goods, due to the operation of a sorting process.

Separating tenure and experience effects may be impossible. As Mincer
and Jovanovic (1981) point out, a distinction has to be made between true
experience effects and indirect effects via job tenure. Let the propensity to
change job m be a function of both tenure ten and experience ex. Then

dm

dex
=

∂m

∂ten
· dten

dex
+

∂m

∂ex
. (9.1)

Only ∂m/∂ex is a genuine experience effect. It is complemented by an indi-
rect tenure effect since tenure grows with experience. Clearly, 0 < dten/dex <
1, and mobility declines with experience also if there is no true experience ef-
fect but only a tenure effect, unless one controls for tenure. With count data
this is generally not possible as job tenure (at the time of the job change)
is not observed. Hence, the two effects are not separately identified. The re-
duced form effect of labor market experience picks up the combined effects of
experience and tenure.

9.7.2 Previous Literature

Börsch-Supan (1990) studies the influence of education on labor and regional
mobility using data from the PSID. Observations on 736 male individuals
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are available for the period 1962-1982. Estimating Poisson regression models,
Börsch-Supan finds that an increase in education reduces labor mobility, while
it increases regional mobility. The reduction in labor mobility with increas-
ing education is of considerable magnitude: The lowest education level has a
predicted number of job changes that is about 50 percent higher than the pre-
dicted number of job changes for the highest education level. The conditional
effect (i.e. after controlling for other characteristics in a multiple regression
and evaluating the remaining variables at their sample means) is greater than
the marginal effect obtained in a cross tabulation. Further, Börsch-Supan finds
that experience has a negative effect on both types of mobility. As mentioned
earlier, this finding might reflect tenure effects that cannot be controled for.

Merkle and Zimmermann (1992) use a German sample of labor force par-
ticipants drawn from the unemployment register in 1977. The 1610 selected
individuals answered questions on the number of employers and the previ-
ous number of unemployment spells during a five year period preceding the
interview. The data are censored from above at five. Using Poisson and neg-
ative binomial regression models for censored data, Merkle and Zimmermann
(1992) find that both the number of job changes and the number of unem-
ployment spells increase with the education level, whereas these variables are
affected in a concave way by previous labor market experience. Thus, their
evidence is in conflict with the findings of Börsch-Supan. This apparent con-
tradiction can be resolved when considering the differences in the sampling
schemes. Sampling from the stock of unemployed as opposed to sampling from
the labor force already tends to select less skilled individuals with a higher
propensity to unstable labor relations. Within this group, better educated
people might have higher re-employment chances, reducing their overall time
spent in unemployment and increasing their turnover.

A further study of interest is Ebmer (1990) who looks at the determinants
of offer arrival frequencies. The process of job mobility may be decomposed
into two steps. In a first step, offers are made to the individual at a certain
rate. In a second step, the individual decides whether or not to accept the
offer. Usually, data on offer arrivals are not available. In Germany and Aus-
tria, however, job offers both for unemployed and employed individuals are
mainly administered through a public placement service. Ebmer (1990) uses
data on offers provided by the Austrian placement service, and, using Poisson
and Negbin models, finds that the offer arrival rate falls with elapsed unem-
ployment duration, which he interprets as discriminating behavior of labor
exchange officials. Furthermore, his dataset allows to test for the assumption
of Poisson arrival rates. This assumption is common in the search literature.
The hypothesis is rejected although one cannot exclude that rejection is due
to unobserved heterogeneity.
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9.7.3 Data and Descriptive Statistics

The following sections illustrate the use of count data models for studying
labor mobility in an empirical application using data from the German Socio-
Economic Panel (GSOEP). Wagner, Burkhauser and Behringer (1993) pro-
vide a short introduction to the data set. The annual panel was first collected
in 1984. The basic sampling units are households. The sample included 5921
households in 1984. Within each household, every person aged 16 or older
is interviewed, resulting in 12,245 person records for 1984. The selection of
households is stratified by nationality: One subsample consists of a random
sample of the population living in Germany which is not of Turkish, Yu-
goslave, Greek, Italian or Spanish nationality. The proportion of non-Germans
in this subsample of 9076 individuals is 1.5%. The second subsample of size
3169 includes 33% Turks, 18% Yugoslaves, 15% Greeks, 20% Italians and
13% Spaniards (Deutsches Institut für Wirtschaftsforschung 1990). All in all,
the GSOEP oversamples the foreign population whose overall proportion was
7.5% in 1984 (Statistisches Bundesamt 1985).

The dependent variable is the number of employers and the number of
unemployment spells during the ten year period 1974-84. This information
is collected retrospectively in the first wave of the panel. In order to ensure
that the analysis is based on persons with a reasonably strong labor force
attachment, the sample is restricted to persons in employment in 1984 whose
work career started before 1974. Women are excluded in order to minimize
complications due to non-participation spells. Non-participation is known to
be empirically relevant for women, and yet unobservable in the type of data
studied here. Finally, self-employed persons and civil servants are excluded.
The resulting sample has 1962 observations.

Using the information on the number of employers and the number of
unemployment spells, two measures of labor mobility can be derived. First,
assume that

i) people do not return to the same job (or employer) after a spell of unem-
ployment, and

ii) individuals have been employed at the beginning of the period.

Then the number of employers minus the number of unemployment spells
minus 1 measures the number of direct job-to-job transitions (without an in-
tervening unemployment spell). Under the same assumptions, the number of
indirect job changes (job-to-unemployment-to-new job transition) is simply
equal to the total number of unemployment spells. A cross tabulation of di-
rect job changes and unemployment spells is given in Table 9.1

There is a slight positive correlation between the two types of mobility
(ρ = 0.06). For instance, the proportion of individuals having experienced
at least one direct job change is greater for the group of individuals that
did experience one unemployment spell than for the group that did experi-
ence no unemployment. The same holds true for unemployment spells vs.
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Table 9.1. Frequency of Direct Changes and Unemployment

D i r e c t J o b C h a n g e s

0 1 2 3 4 5 6 7 8 9 10 12 Total

U 0 1102 301 105 25 20 5 1 2 1 2 1564
n 1 146 79 21 10 1 3 2 1 1 264
e 2 34 16 6 6 2 2 1 1 1 69
m 3 20 4 1 2 27
p 4 7 2 2 11
l 5 6 2 8
o 6 2 1 3
y 7 2 2
m 8 3 3
e 9 3 3
n 10 7 7
t 15 1 1

Total 1333 404 133 43 25 10 4 4 1 2 2 1 1962

direct job changes. For both direct job changes and unemployment
spells the mode is at zero. The means are 0.54 and 0.37, respectively (See
Table 9.2). The variance–mean relation is 2.16 for direct job changes and
3.32 for unemployment spells, indicating a tendency for overdispersion at
the marginal level. This appears to provide a first check of the (non-)validity
of the Poisson regression model, since conditional overdispersion violates the
Poisson assumption. However, overdispersion at the marginal level is (theo-
retically) compatible with mean-variance equality conditional on covariates.

Sec. 9.7.1 defined the primary empirical question: What can individual
characteristics tell us about individual propensities towards mobility, mea-
sured by the frequency of future direct job changes and unemployment
spells ? The theoretical arguments developed in Chap. 9.7.1 suggested the
main variables of interest: Education as measured by the years of school-
ing and previous professional experience. Further variables which have been
used in the literature to control for individual heterogeneity in wages and
mobility are occupational status, nationality, family status and union mem-
bership. The corresponding dummy variables are (Yes=1; Sample means in
parentheses) Qualified White Collar (0.137), Ordinary White Collar
(0.059), Qualified Blue Collar (0.501), Ordinary Blue Collar (0.304),
German (0.668), Single (0.077), and Union (0.429). Exact definitions and
measurement issues are given in the notes to Table 9.2.

Table 9.2 displays the ‘gross’ effect of these variables on the two types of
labor mobility. The mean values in the 1st and 3rd column give the average
number of direct job changes (unemployment spells) during the ten year
period 1974–84 for the various classifications.

The most visible effect is certainly the strong reduction of mobility with
increased labor market experience. Individuals at the beginning of their
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career (less than 5 years of experience) have on average 3 times more direct
job changes, and almost 2 times more unemployment spells over the next
ten years, than individuals with more than 25 years of professional experience.
Furthermore, the amount by which the mobility is reduced decreases with
experience, i.e., there exists a convex pattern between experience and mobility.

Table 9.2. Mobility Rates by Exogenous Variables

Direct Changes1 Unemployment2

Mean Std.Dev. Mean Std.Dev. Obs.3

by Occupational Status4

Qualified White Collar 0.498 1.032 0.212 0.638 269
Ordinary White Collar 0.566 0.999 0.257 0.777 113
Qualified Blue Collar 0.540 1.120 0.431 1.285 983
Ordinary Blue Collar 0.553 1.069 0.377 1.036 597

by Nationality5

German 0.466 0.974 0.367 1.194 1311
Foreign 0.688 1.270 0.390 0.928 651

by Family Status6

Single 0.651 1.246 0.697 1.671 152
Married 0.530 1.071 0.348 1.049 1810

by Union Status7

Union 0.440 0.964 0.273 0.898 841
Nounion 0.615 1.163 0.450 1.243 1121

by Professional Experience8

-5 Years 0.954 1.478 0.578 1.361 372
6-15 Years 0.543 0.988 0.384 1.059 672
16-25 Years 0.407 0.965 0.259 0.935 659
26+ Years 0.274 0.735 0.338 1.195 259

by Educational Attainment9

-10 Years 0.585 1.132 0.405 0.997 511
11-12 Years 0.514 1.027 0.447 1.351 876
13-18 Years 0.567 1.304 0.247 0.799 478
19+ Years 0.402 0.640 0.187 0.507 97

Total 0.539 1.080 0.372 1.112 1962

Source: German Socio-economic Panel, own calculations.
Notes:

1. Direct Changes give the number of direct job changes an individual has ex-
perienced during the period 1974-1984. A direct job change is defined by the
number of employers minus the number of unemployment spells minus one. The
information is obtained through a retrospective question.

2. Unemployment gives the number of unemployment spells an individual has
experienced during the period 1974-1984. As Direct Changes, the information is
obtained through a retrospective question.
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3. Number of observations in the sample. The total sample size is 1962. The se-
lection was conditional on being male, being part of the labor force during the
period 1974-1984, and on being neither self-employed nor civil servant.

4. Occupational Status is measured upon entry into the labor market, i.e., it is
the status in the first job.

5. The distribution of the Nationality reflects that the German Socio-economic
Panel is a stratified panel: Foreigners are oversampled as compared to their
share of the labor force in Germany. However, the sampling is exogenous and
not choice based.

6. An individual is classified as Single if he is and always was a single, i.e. widowers
and divorced are classified as married.

7. Union membership in 1985. Included are members of unions and comparable
professional organizations.

8. Professional experience uses information on the year of entrance into the labor
market, subtracting the latter from 1974, the start of the ten year period.

9. To obtain a continuous measure of the Educational Attainment the years of
schooling are calculated using information on the various degrees obtained by
an individual, and attributing to every degree a “typical” time it requires. For
instance, a university degree takes on average 18 years of schooling. The years
of schooling measure also includes the time spent in professional education, as
long as it is a part of special training programs (“Lehre”).

The effect of education on mobility is less uniform. Comparing individuals
with less than 10 years of schooling and individuals with 13 to 18 years of
schooling, there is almost no change in the average number of direct job
changes. The number of unemployment spells, by contrast, is reduced by
40% for the more educated individuals.

Germans, union members, married individuals and qualified white collar
workers have on average less direct job changes than foreigners, non-union
members, singles and ordinary white collar or blue collar workers, respectively.
The number of unemployment spells is higher for blue collar workers, sin-
gles, and non-union members than for white collar workers, married individ-
uals, and union members, respectively. Nationality seems to have no effect on
the frequency of unemployment.

Although the descriptive statistics provide some valuable information on
the interaction between the variables, an interpretation in the light of the
aforementioned theories is problematic. While the theoretical models estab-
lish specific effects, or effects that hold ceteris paribus, the descriptive statistics
display the gross effects which mix specific contributions and contributions due
to correlations with other explanatory variables. Thus, a multiple count data
regression analysis is required in order to estimate the specific effect of a unit
change in one explanatory variable on the expected number of job changes,
holding everything else constant. Moreover, it allows to predict the mobility
behavior for any given individual. Most importantly, though, it provides infor-
mation on the underlying data generating process, i.e. the stochastic process
governing mobility.
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9.7.4 Regression Results

This chapter reports the results of various estimated models for the labor
mobility data. For simplicity, we restrict our attention here to one of the
two mobility measures, the number of direct job changes, from now on or
simplicity referred to as the number of job changes. The models differ in the
assumption on the underlying probability processes. To ensure comparability,
the set of explanatory variables is kept identical in all cases. The explanatory
variables include education, experience, squared experience, union,
single, German, qualified white collar, ordinary white collar, and
qualified blue collar worker.

The following models were estimated with number of job changes as
dependent variable:

• Poisson
• Poisson-log-normal
• Negbin I, Negbin II and Geckk

• robust Poisson
• Poisson-logistic
• hurdle Poisson
• probit-Poisson-log-normal
• finite mixture Poisson and finite mixture Negbin
• zero-inflated Poisson and zero-inflated Negbin

The full set of estimation results for the various models are listed in Tables
D.1 – D.7 in Appendix D.

Poisson Results

The Poisson model is specified with a log-linear conditional expectation func-
tion. This means that the coefficients can be interpreted as semi-elasticities.
Take the point estimate of -0.138, pertaining to the education effect, for illus-
trative purposes. Since the education variable is scaled (division by 10), we
find that the estimated effect of 10 additional years of schooling is a reduction
of the number of job changes by approximately 13.8 percent. The exact effect
would be [exp(−0.138)−1]×100 = −12.9, a 12.9 percent reduction. Similarly,
based on the point estimate, each single additional year of education would
reduce the number of job changes by 1.4 percent.

Sometimes, it is meaningful to compute absolute rather than relative
marginal effects. This is in particular the case if one wants to compare marginal
effects across models, where some of the models (such as the hurdle Poisson
model or the zero-inflated Poisson model) may not have a log-linear condi-
tional expectation function. We know from Chap. 3.1.4 that

d E(yi|xi)
d xij

= exp(x′
iβ)βj
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Thus, the marginal effect depends on the point in the covariate space where
it is to be computed. It is common to take the sample mean, i.e., replace xi

by x̄. We find for example that the marginal effect of education at the mean
of the regressors is -0.067.

Of course, the point estimate of -0.138 and its associated relative or abso-
lute marginal effects are subject to sampling variability. Indeed, one finds that
education has no significant effect on direct job changes, since the t-ratio
for the null hypothesis of no effect is about one, based on the Poisson stan-
dard errors estimated from inverting the Hessin matrix of the log-likelihood
function (the computation of the standard error of the semi-elasticity and the
marginal effect would need to be based on the delta rule).

Substantively, the result of ‘no-effect’ is compatible with the human capital
view that education increases general human capital which in turn promotes
outside and inside job opportunities alike. In other words, the level of educa-
tion does not affect the probability of finding (being offered) a new job that
is preferable to the current one. The finding is in contrast to Börsch-Supan
(1990), who reports a negative and significant effect of the level of education
on labor mobility. One possible explanation for the discrepancy is that he
includes all job changes, also those with intervening spell of unemployment,
whereas the results here are for the number of direct job-to-job transitions
only.

The convex experience-mobility profile implied by the point estimates of
the second order-experience polynomial is very plausible. It conforms to the
stylized fact that job changes are much more likely to occur early in ones ca-
reer. One year after entering the workforce, the expected job change rate has
decreased 7.5 percent relative to the initial rate. The predicted job change rate
further decreases with each additional year of experience, but at a decreasing
rate. After 32 years of experience, the effect of experience on mobility reaches
zero. If, instead of computing relative or percentage effects, one was interested
in absolute changes, one would need to compute the marginal experience ef-
fect as follows: Let ex denote the variable ‘experience’, and exsq denote the
variable ‘experience squared’. Then

∂E(yi|xi)
∂exi

= exp(x′
iβ)[βex + 2βexsqexi] (9.2)

This partial derivative depends on xi. Evaluating (9.2) at the sample means,
the marginal effect is given by -0.022. For an average individual, an additional
year of experience decreases the expected number of job changes by 0.022.

Union membership reduces the expected number of job changes by 29 per-
cent or, evaluating the effect as above, by 0.131 job changes during the ten
year period, relative to non-unionized workers. This specific effect is smaller
than the gross effect of 0.175 displayed in Table 9.2, reflecting the interac-
tions between the variables. Finally, German nationality reduces the expected
number of direct job changes, while the remaining variables have no significant
effect on mobility.
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While the previous remarks referred to the results of the Poisson regression,
the findings display a remarkable robustness accross the various specifications.
Table 9.3 compares the results for ten of the estimated models. The signs and
the significance levels of the coefficients are mostly identical.

Table 9.3. Direct Job Changes: Comparison of Results

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Education o o o o – – o – – o o o
Experience – – – – – – – – – – – – – – o – – – –
Experience2 ++ ++ ++ ++ + ++ o o o o
Union – – – – – – – – – – – – – – – o
Single o o o o o o o o o
German – – – – – – – – – – – – – – – – –
Qual. Wh.C. o o o o o o o o o
Ord. Wh.C. o o o o o o o o o
Qual. Bl.C. + o o o o o o o +

Notes:

Dependent Variable: Direct Job Changes.
++ Positive sign and significant at the 5%-level.

+ Positive sign and significant at the 10%-level.
– – Negative sign and significant at the 10%-level.

– Negative sign and significant at the 5%-level.
o Insignificant.

(1) Poisson Regression.
(2) Robust Poisson Regression.
(3) Generalized Event Count Model (GECk)
(4) Hurdle Poisson (0/1).
(5) Hurdle Poisson (1+).
(6) Poisson lognormal.
(7) Poisson-Logistic Regression: Job Offers (Overlapping).
(8) Poisson-Logistic Regression: Acceptance.
(9) Two-components Poisson (Group 1)

(10) Two-components Poisson (Group 2)

What conclusions should we draw from this evidence ? One might be
tempted to argue that given the uniformity of the results and the differ-
ent complexities of the models, the recommendation would be to choose the
simplest model, in this case the standard Poisson regression. This approach
would even find theoretical support by the consistency property of the Poisson
regression as a PMLE. Therefore, the similarity of the findings in this appli-
cation does not come too much as a surprise. However, this is only a part of
the story. It neglects two important purposes of the econometric analysis: The
use of the model for prediction and as a tool for learning about the underlying
data generating process. We therefore proceed by investigating three further
issues.
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First, we assess which of the models has the best fit, a purely statistical ex-
ercise. Second, we investigate one possible reason for the superior performance
of some models, applying the concept of marginal probability effects to show
that a certain minimum flexibility in the distributional assumption is needed
in order to account for the effect of the explanatory variables on the outcome
distribution. And third, we return to a main theme of this book, namely that
generalized models can be informative on interesting aspects of an underlying
count mechanism, and that therefore structural inferences can be made. We
will see to what extent this actually applies in the present context.

9.7.5 Model Performance

The Poisson regression model assumes that events (here: job changes) occur
randomly over time, with a constant process intensity that is a determinis-
tic function of individual covariates. The Poisson-log-normal, Negbin I, Neg-
bin II and GECk models allow for unobserved heterogeneity. The remaining
models relax the single-index structures in favor of a dual-index, or two-part
structure. There are several ways of doing this. The hurdle models state that
the intensity of the process switches conditional on the first occurrence. The
Poisson-logistic model assumes a two-step process: In a first step, offers reach
the individual according to a Poisson process. In a second step, the individual
decides whether or not to accept the offer. The two-component models as-
sume that the population consists of two latent groups, each one with its own
regression function. The zero-inflated models use a logistic model to augment
the probability of a zero relative to the base count data model.

The above models were estimated using an identical set of regressors and
the following table lists the log likelihood, evaluated at the maximum likeli-
hood parameter estimates.

Table 9.4. Number of Job Changes: Log Likelihood and SIC

� K1 SIC2

Poisson -2044.47 10 4164.76
Poisson-log-normal -1866.80 11 3817.00
Negbin I -1873.28 11 3829.96
Negbin II -1878.63 11 3840.66
GECk -1873.17 12 3837.32
Poisson-logistic (overlapping)3 -2039.35 13 4177.26
Poisson-logistic (non-overlapping)3 -2043.88 10 4163.58
Hurdle Poisson -1928.00 20 4007.63
Probit Poisson-log-normal3 -1856.70 22 3880.20
two-components Poisson -1868.16 21 3895.54
two-components Negbin II -1856.05 23 3886.48
zero-inflated Poisson3 -1926.28 20 4004.19
zero-inflated Negbin II3 -1866.73 21 3892.68
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Notes:

1 K denotes the number of parameters in the model.
2 Schwarz information criterion: SIC = −2� + K ln N
3 These models do not nest the Poisson model.

The log likelihood values can be used to formally test models against each
other insofar as they are nested. For example, the Poisson model is nested in
all unobserved heterogeneity-type models, as well as in the hurdle and the two-
components Poisson models. From Tab. 9.4, the Poisson model is rejected by
the various tests against any of the more general alternatives. This is clearly
due to overdispersion. For instance, the GECk estimates a ˆsigma

2
of 0.892

with a standard error of 0.170. In the absence of over- or underdispersion,
σ2 = 0, but σ2 is significantly greater than zero at any conventional signif-
icance level. The estimated k is not different from 0 either. However, it is
significantly smaller than 1, providing evidence for the presence of a linear
variance function as opposed to a quadratic one. Interestingly, the Poisson-
lognormal model has a higher log-likelihood than either Negbin I or GECk.
This suggests that the mixing distribution used to model unobserved hetero-
geneity is better described through a log-normal distribution than through a
gamma distribution. Note, however, that the improved fit comes at the ex-
pense of increased computational complexity, since the integration requires
numerical quadrature.

There are other nested model pairs in Tab. 9.4. For example, using like-
lihood ratio tests, the two-components Poisson model is rejected against the
two-components Negbin II model (test statistic 24.22, p-value = 0.000); the
non-overlapping Poisson-logistic model is rejected against the overlapping
Poisson-logistic model (test statistic 9.06, p-value = 0.0285); and the zero-
inflated Poisson model is rejected against the zero-inflated Negbin II model
(test statistic 119.1, p-value = 0.000).

In other cases, Vuong’s test for non-nested hypothesis can be used. For
example, the Negbin I model and the Negbin II model are not nested. Since
they both nest the standard Poisson model, they are overlapping rather than
strictly non-nested, following the terminology of Vuong. Hence, a pre-test is
required in order to establish that the two models are not equivalent. In this
case, it is sufficient to show that the respective dispersion parameters are
significantly different from zero. From Tab. D.2, we see that this is the case
indeed. The null-hypothesis H0 : σ2 = 0 can be rejected in each model, using
the asymptotic z test for instance. Next, the Vuong statistic proper can be
computed. The formula was given in (3.89). The test statistic in this case is
0.999. It has a standard normal distribution, with the critical values being the
usual α/2 and 1−α/2 quantiles. Hence, there is no evidence that the Negbin
I model is significantly better than the Negbin II model. Note that this result
differs from the conclusion based on the hyper model (GECk), where the
Negbin II restriction could be rejected but the Negbin I restriction could not.
The Vuong test has low power in finite samples. We also find that a test of
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the Poisson-log-normal model against the Negbin I model is inconclusive. In
this case, the Vuong test statistic is 1.255.

Finally, we can compare the models in Tab. 9.4 based on model selection
criteria. The models have a different number of parameters, varying between a
minimum of 10 and a maximum of 23. Using the Schwarz information criterion
as a penalty function, it turns out the Poisson-log-normal model is the best
model. The double index models lead to a large increase in the log-likelihood
but this increase is more than offset by the larger number of additional param-
eters that needs to be estimated. In this application, it seems most important
to use a model that allows for unobserved heterogeneity and overdispersion.
Further generalizations are not dictated by the data. Nevertheless, as we will
see next, these generalizations do offer some interesting insights into distribu-
tional effects of covariates and the underlying data generating process.

9.7.6 Marginal Probability Effects

It was mentioned earlier that ten additional years of education are predicted
to reduce the number of job changes by 0.067, based on the Poisson estimates
(Tab. D.1) and the sample means of the explanatory variables. Fig. 9.1 shows
how this mean effect arises. Ten additional years of education increase the
probability of no job change by about 4 percentage points. The probability of
one job change is reduced by 2 percentage points. The probability that a per-
son reports two, three, four and so forth job changes is reduced at diminishing
rates.

Fig. 9.1. Poisson Model: Marginal Probability Effect of a Unit Increase in Education
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The Poisson marginal probability effects are very restrictive. For example,
the sign of the effect can only change once from positive to negative, or vice
versa. In order to see what would happen in a more flexible model, consider
the hurdle Poisson model instead. The formula for computing the marginal
mean effects in this double index model was given in (6.8). The formula for
computing the marginal probability effects was given in (6.9). First, Fig. 9.2
shows the predicted probabilities of the Poisson and the hurdle Poisson model.
As to be expected, the main difference is a larger probability of a zero in the
hurdle model, corresponding to the phenomenon of unobserved heterogene-
ity/overdispersion/excess zeros in the data.

Fig. 9.2. Predicted Poisson and Hurdle Poisson Probabilities
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But what can we say about the marginal effects? Consider the education
effect as an example. Using (6.8), the estimated coefficients from Tab D.5, and
evaluating the covariates at their sample means we obtain an effect of -0.071.
This estimated mean effect is quite close to the effect in the Poisson model,
-0.067. However, the same overall effect has very different distributional im-
plications, as illustrated in Fig. 9.3. Based on the hurdle model, ten additional
years of education reduce the probability of no job change by about 3 per-
centage points whereas the Poisson model predicts an increase. Similarly, in
the hurdle Poisson model, we find that more education increases the probabil-
ity of one job change, whereas the simple Poisson model predicts a decrease.
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Using the hurdle model, we come thus to conclusions with regard to marginal
probability effects that are diametrically opposite to those obtaines from the
Poisson model. This is an illustration of the idea that an explanatory variable
may have different marginal probability effects in different parts of the dis-
tribution (relative to a single index base model). If one ascribes substantive
interest to these single outcomes, employing a sufficiently flexible model (that
does not have the single crossing property) becomes imperative.

Fig. 9.3. Marginal Probability Effect of Education: Poisson and Hurdle Poisson
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The hurdle model is only one among several possible generalizations. In
the class of double index models, zero-inflated and two-components models
would have similar advantages. From the perspective of allowing for maximal
flexibility in the conditional probability distributions, there is no good reason
to stop with double index models. The most general conceivable model would
be a regression model based on a multinomial distribution. In this case, each
outcome probability is parameterized as a separate function of the explanatory
variables, subject to an adding-up constraint. For example, in the multinomial
logit model,

pi1 =
1

1 +
∑J

k=2 exp(x′
iβk)

pij =
exp(x′

iβj)

1 +
∑J

k=2 exp(x′
iβk)

j = 2, . . . , J
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where j = 1, 2, . . . , J are the J distinct counts observed in the sample. We
immediately see two limitations of this model. First, it will only work if J is
relatively moderate, since otherwise parameters will proliferate unduly. This
problem could be mitigated in an ad-hoc way by grouping outcomes into
classes. Second, the model does not allow the prediction of probabilities (or
marginal probability effects) for outcomes that are not observed in the data.
Relatedly, the model stands in no correspondance to an underlying count
process. In short the multinomial logit model is not a count data model proper.
Putting these reservations aside for a moment, one can use the model as a
descriptive tool, obtaining the following result for the job change example.

Fig. 9.4. Marginal Probability Effect of Education: Hurdle Poisson and Multinomial
Logit
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Fig. 9.4 compares the marginal probability effects of education in the hur-
dle model and in the multinomial logit model, everything as before evaluated
at the sample means of the explanatory variables. Surprisingly, the discrep-
ancy between the two response functions are minor. One can conclude that in
this example, the double index hurdle model offers sufficient flexibility to cap-
ture how education changes the outcome distribution. More general models
are not necessary.

An alternative way of capturing “non-standard” responses of whole distri-
butions to changes in an explanatory variable is through quantile regression
(Chap. 6.6). Consider the relative mean effect of education, a 13.8 percent
decrease in the average number of joh changes per 10 additional years of ed-
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ucation. If this effect was spread evenly over the distribution, and since the
distribution is non-negative, one would expect to find a negative effect of ad-
ditional education at all quantiles. Tab. D.8 shows the regression results for
the 50-percent, the 75-percent and the 90-percent quantiles. We see that the
effect of education is not so uniform. Quite to the contrary, the 50-percent
quantile and the 75-percent quantile are positive functions of education. This
is also seen from Fig. 9.5.

Fig. 9.5. 50/75/90 Percent Quantiles by Years of Education

8 10 12 14 16 18 20
0

0.5

1.0

1.5

2.0

2.5

3.0

Years of Education

90th Percentile
75th Percentile
50th Percentile

This finding is indeed compatible with the hurdle and multinomial results
above. More educated people are on average less mobile but they also have a
larger probability of having changed job once, relative to less educated people.

9.7.7 Structural Inferences

Any empirical analysis can have one of two goals. A first goal is to describe the
data as well as possible, estimate the effect of explanatory variables on certain
key features, such as conditional mean or probability function, and to predict
outcomes. A second goal is to learn something about the data generating
process. This second, ‘structural’, approach requires stronger assumptions.
Given the validity of these assumptions, one can then draw stronger inferences.
In the following, we will discuss the idea behind such structural models in the
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context of the analysis of labor mobility, using three examples: Poisson-logistic
regression, zero-inflated Poisson models, and two-components Poisson models.

Poisson-Logistic Regression

As mentioned earlier, this model combines a latent process for counting event
occurrences with an observation mechanism. A combination of the two then
leads to the observed counts. In the context of labor mobility, one can re-
interpret this set-up as one, where the latent model describes job offers, the
reporting mechanism reflects whether a job offer is accepted or not, and the
reported counts are equal to the number of accepted offers, i.e., the number of
job changes, in a given period of time. Based on Tab. D.4, one may calculate
the expected number of job offers for the sample. This number has to be
greater than the number of accepted offers. For the overlapping specification,
the predicted number of offers is 0.84 as opposed to 0.54 predicted job changes.
Thus, a typical individual accepts roughly two out of three job offers.

Zero-Inflated Poisson Regression

A frequent substantive interpretation of the zero-inflated Poisson model is one
where ‘strategic’ zeros are combined with ‘incidental’ ones. In the context of
job search, one could think of this distinction as follows. Some individuals do
not look for outside jobs at all, maybe because they are civil servants, or for
some other reason. As a consequence, they are unlikely to get any outside
offers. These are ‘strategic’ non-changers, because they have decided to keep
their current job. In contrast, other individuals may be ‘in the market’. These
persons look for outside jobs. Some of them do not find an alternative job in
a given period. These are then ‘incidental’ non-changers.

Within the structure of the zero inflated Poisson model (see Tab. D.7) one
can compute the relative frequencies of the two types of workers. The model
predicts model predicts 68.4 percent zeros, which is close to the 67.9 per-
cent observed in the sample (this and the following predictions are computed
first for each individual, given their covariates. Then, arithmetic means are
calculated). The predicted proportion of strategic zeros is 50.9 percent. The
probability of an incidental zero can be computed as (1−0.509)×0.356 = 17.5
percent. Hence, 74 percent of all zeros are strategic and 26 percent are inci-
dental.

Two-Components Poisson Regression

The two-components Poisson model allows inferences to be drawn with re-
spect to two subpopulations. From the results in Tab. D.6, we know that an
estimated 93 percent of the population belong to Group 1, whereas 7 percent
of the population belong to Group 2. One can compute the mean job change
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rate for the two groups, based on sample means of the explanatory variables.
Group 1 has a mean of 0.31 changes, whereas Group 2 has a mean of 2.8
changes. Thus, most individuals belong to the low-mobility group. One can
furthermore study, how the response to explanatory variable differs between
the two groups. Take the effect of education as an example. In the low mobility
group ten additional years of education increase the number of job changes
by a predicted 7.8 percent. In the high mobility group ten additional years
of education reduce the number of job changes by a predicted 36.8 percent.
These differential effects are compatible with the results in the previous chap-
ter, for example based on quantile regression, where a large negative effect of
education was found at the 90th percentile, and a small positive effect was
found at the median.
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Probability Generating Functions

This appendix is based on Feller (1968, Chap. XI and Chap. XII). Let X be a
random variable taking values j ∈ IN0 with P (X = j) = pj . Upper case letters
X, Y , and Z denote a random variable, while lower case letters j and k denote
a realization. pj∈IN0 is called the probability function, while Fi∈IN0 = P (X ≤ i)
is called the distribution function.

Definition 1. .
Let X be a random variable defined over the non-negative integers. The prob-
ability generating function (PGF) is given by the polynomial

P(X)(s) = p0 + p1s + p2s
2 + . . . =

∞∑
j=0

pjs
j = E(sX) (A.1)

The function P(s) is defined by the p′js and, in turn, defines the p′js since a
polynomial expansion is unique.

Example: Let X have a binomial distribution function with parameters n
and p, pj = 0 for j > n (writing X ∼ B(n, p)). The probability generating
function is given by

P(s) =
n∑

j=0

(
n

j

)
(ps)jqn−j = (q + ps)n (A.2)

If it is not clear out of the context which random variable is meant, we write
P(X) where X is the random variable. An important property of a PGF is
that it converges for |s| ≤ 1 since P(1) =

∑∞
j=0 pj = 1. The PGF can be used

to directly derive the probability function of the random variable, as well as
its moments. Single probabilities can be calculated as

P (X = j) = pj = (j!)−1 djP
dsj

∣∣∣∣∣
s=0

(A.3)
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Example: A binomial distributed random variable has PGF P(s) = (q+ps)n.
Thus,

P (X = 0) = P(0) = qn

P (X = 1) = P ′(0) = nqn−1p1

P (X = 2) = (2!)−1P ′′(0) = (2!)−1n(n − 1)qn−2p2

...
...

The expectation E(X) satisfies the relation

E(X) =
∞∑

j=0

jpj = P ′(1) (A.4)

Example: A binomial distributed random variable has mean

P ′(1) = np(q + p)n−1

= np

Calculating first

E[X(X − 1)] =
∞∑

j=1

j(j − 1)pj = P ′′(1) (A.5)

the variance is obtained as

Var(X) = E[X(X − 1)] + E(X) − [E(X)]2

= P ′′(1) + P ′(1) − [P ′(1)]2 (A.6)

Example: A binomial distributed random variable has variance

Var(X) = n(n − 1)p2 + np − (np)2

= np(1 − p)

Proposition 1. Let X be a random variable defined over the non-negative
integers with probability distribution P (X = j) = pj , j = 0, 1, . . .. Let XT

be a positive random variable with truncated-at-zero probability distribution
P (XT = j) = pj/(1− p0) , j = 1, 2, . . .. The probability generating function of
the truncated-at-zero distribution of XT is given by

PT (s) =
P(s) − P(0)

1 − P(0)
(A.7)
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Proof: (A.7) follows directly from the definition of the probability generating
function:

PT (s) = E(sXT ) =
∞∑

j=1

pj

1 − p0
sj

where p0 = P(0).

There exists a close relationship between the probability generating function
and the moment generating function M(t):

M(t) = E(etX) = P(et) (A.8)

While the moment generating function is a concept that can be used for
any distribution with existing moments, the probability generating function
is defined for non-negative integers. Since s = et = 1 if and only if t = 0, we
obtain E(X) = P ′(1) = M′(0).

In the same way as in (A.1) one can define a bivariate probability generating
function.

Definition 2. .
Let X, Y be a pair of integer-valued random variables with joint distribution
P (X = j, Y = k) = pjk , j, k ∈ IN0. The bivariate probability generating
function is given by:

P(s1, s2) =
∞∑

j=0

∞∑
k=0

pjksj
1s

k
2 = E(sX

1 sY
2 ) (A.9)

Proposition 2. The probability generating functions of the marginal distri-
butions P (X = j) and P (Y = k) are P(s, 1) = E(sX) and P(1, s) = E(sY ),
respectively.

Proposition 3. The probability generating function of X + Y is given by
P(s, s) = E(sX+Y ).

Proposition 4. The variables X and Y are independent if and only if P(s1, s2) =
P(s1, 1)P(1, s2) for all s1, s2.

Probability generating functions can be used to establish the distribution
of a sum of independent variables. This is also called a convolution. Using
Proposition 3 and Proposition 4, the probability generating function of
Z = X + Y is given by:

P(Z)(s) = E(sZ) = E(sX+Y ) = E(sXsY )
(�)
= E(sX)E(sY ) (A.10)
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where (�) follows from the independence assumption.

Example: Let X have a binomial distribution function with B(1, p). Consider
the convolution Z = X + . . . + X︸ ︷︷ ︸

n−times

. Then:

P(Z)(s) = (q + ps)n (A.11)

Z has a binomial distribution function B(n, p). Conversely, the binomial dis-
tribution is obtained by a convolution of identically and independently dis-
tributed Bernoulli variables.
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Gauss-Hermite Quadrature

This appendix describes the basic steps required for a numerical evaluation of
the likelihood function of count data models with unobserved heterogeneity
of the log-normal type. The method is illustrated for the Poisson-log-normal
model, although a similar algorithm can be used to estimate the models with
endogenous selectivity presented in Chap. 5.2. Butler and Moffitt (1982) dis-
cuss Gauss-Hermite quadrature in the context of a panel probit models. Mil-
lion (1998) points out that the Poisson-log-normal integral can be approxi-
mated using Gauss-Laguerre and Gauss-Legendre polynomials as well, and he
evaluates the relative performance of the three methods. Crouch and Spiegel-
man (1990) discuss numerical integration in the related logistic-normal model.

Starting point for Gauss-Hermite quadrature is the integral∫ ∞

−∞
f(y|x, β, ε)g(ε|σ2)dε (B.1)

that cannot be solved by analytical methods. However, assume that by ap-
propriate change of variable, B.1 can be brought into the form∫ ∞

−∞
h(ν; y, x, β, σ2) exp(−ν2)dν (B.2)

In this case, Gauss-Hermite quadrature can be applied to numerically eval-
uate the integral (B.1), and thus the marginal likelihood L(y|x). Once the
evaluation has been done, the logarithm lnL(y|x) can be passed on to a max-
imizer that uses numerical derivatives in order to find the maximum likelihood
estimators β̂ and σ̂2.

The Poisson-log-normal model has the following components (see also
Chap. 4.2):

f(y|ε) =
exp(− exp(x′β + ε)) exp(x′β + ε)y

y!

where ε ∼ N(0, σ2), i.e.,
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f(ε) =
1√
2πσ

e−
1
2 ( ε

σ )2

Change of variable from ε to ν where

ν =
ε√
2σ

has inverse ε = ν
√

2σ and Jacobian df(ν)/dν =
√

2σ. Therefore

g(ν) =
1√
π

e−ν2

and

f(y|ν)g(ν) =
exp(− exp(x′β + ν

√
2σ)) exp(x′β + ν

√
2σ)y

√
πy!

e−ν2

Let

hi(ν) =
exp(− exp(x′

iβ + ν
√

2σ)) exp(x′
iβ + ν

√
2σ)yi

√
πyi!

where the subscript i reminds us that this function depends on observations yi

and xi. Then the Gauss-Hermite approximation to the integral B.1 is obtained
as

Lgh
i =

∫ ∞

−∞
hi(ν) exp(−ν2)dν

≈
n∑

j=1

wjhi(νj)

where wj are weights and νj are the evaluation points. The likelihood function
for n independent observations is given by

Lgh =
n∏

i=1

n∑
j=1

wjhi(νj)

Weight factors and abscissas for 20-point quadrature are given in Tab. B.1
(Source: Abramowitz and Stegun, 1964, p. 924).
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Table B.1. Abcissas and Weight Factors for 20-point Gauss-Hermite Integration

ui wi

-5.3874809 2.2939000e-13
-4.6036824 4.3993400e-10
-3.9447640 1.0860000e-07
-3.3478546 7.8025500e-06
-2.7888061 0.00022833863
-2.2549740 0.0033243773
-1.7385377 0.024810521
-1.2340762 0.10901721

-0.73747373 0.28667551
-0.24534071 0.46224367
0.24534071 0.46224367
0.73747373 0.28667551
1.2340762 0.10901721
1.7385377 0.024810521
2.2549740 0.0033243773
2.7888061 0.00022833863
3.3478546 7.8025500e-06
3.9447640 1.0860000e-07
4.6036824 4.3993400e-10
5.3874809 2.2939000e-13

Source: Abramowitz and Stegun, 1964, p. 924
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Software

Most statistical and econometric software distributions contain built-in pro-
cedures for standard count data models, such as the Poisson and the negative
binomial regression models. Development in the software sector is fast, and
specific recommendations risk to become outdated very quickly. Nevertheless,
there are a few general points that should be of help to anyone interested in
working with count data and estimating the models presented in this book.

Within the econometrics research community, Gauss traditionally has
been the major development tool. Gauss is mostly a programming environ-
ment, but specialised procedures are available both as part of the general dis-
tribution, and through web sites and mailing lists. For example, the “count”
module allows the estimation of seemingly unrelated regression models, of
various types of negative binomial models as well as hurdle Poisson models.
Yet, the development of this module has stalled for some time, and the latest
models are not available.

Two alternative programs with a much more ambitious offering in this area
are Stata and Limdep. This appendix is not intended as a comprehensive
review of available software for count data, and there may be other software
with similar or even broader scope. Yet, the possibilities that these two pack-
ages offers should be closely scrutinized by anyone seriously interested in count
data applications who wants to apply up-to-date methods without doing the
programming for herself. In fact, most of the models discussed in this book
are easily estimated with Stata or Limdep, providing little support for those
who resort to the most basic models in want of available software for the more
appropriate ones.

The following short summary refers to Stata release 7.0. This release
includes built-in procedures, apart from the standard Poisson and Negbin
models (in its various parameterizations, as Negbin I, Negbin II or with more
flexible variance function), for zero-inflated Poisson and zero-inflated negative
binomial models, and for fixed and random effects panel count data models.
Random effects models include the negative binomial panel model (with fixed
or random effects) but also the panel Poisson-log-normal model. This proce-
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dure can also be used in cross sections to estimate the standard Poisson-log-
normal model that frequently has a better fit than the Negbin model. Hurdle
Poisson or negative binomial models are not included in the standard distri-
bution. However, they can be estimated using routines on truncated-at-zero
models authored by Joseph Hilbe and described in the Stata Technical Bul-
letin Nr. 47. Most procedures include options for the computations of robust
standard errors (to perform pseudo maximum likelihood estimation) as well
as account for clustered sampling.

The latest version of Limdep is release 8.0. Apart from the standard count
data models, its capabilities include the estimation of sample selection mod-
els by maximum likelihood, parametric models for underreporting where the
observed counts represent only the reported fraction of the total events which
have occurred, and maximum likelihood estimation of various types of hurdle
models and zero-inflated models. Limdep and Stata are both quite versatile
in the area of count data modelling.
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Tables

Table D.1. Number of Job Changes: Poisson and Poisson-Log-Normal

Poisson Poisson-log-normal Mean

Constant 0.501** 0.072 1
(0.158) (0.227)

Education∗10−1 -0.138 -0.120 1.216
(0.137) (0.187)

Experience∗10−1 -0.770** -0.846** 1.460
(0.111) (0.155)

Experience2 ∗ 10−2 0.119** 0.127* 2.943
(0.037) (0.050)

Union -0.292** -0.324** 0.429
(0.065) (0.088)

Single -0.050 -0.093 0.077
(0.108) (0.153)

German -0.368** -0.390** 0.668
(0.076) (0.104)

Qualified White Collar 0.067 -0.002 0.137
(0.131) (0.179)

Ordinary White Collar 0.185 0.190 0.058
(0.147) (0.207)

Qualified Blue Collar 0.147 0.112 0.501
(0.082) (0.114)

σ2 1.048**
(0.048)

Log likelihood -2044.47 -1866.80
Log likelihood (β1, . . . , β9 = 0) -2155.40 -1934.53
Number of Observations 1962

Source: German Socio-Economic Panel, Wave A/1984; own calculations.

Note: Asymptotic standard errors in parentheses.
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Table D.2. Number of Job Changes: Negative Binomial Models

Negbin I Negbin II GECk

Constant 0.341 0.616** 0.380
(0.191) (0.224) (0.212)

Education∗10−1 0.008 -0.179 -0.011
(0.162) (0.187) (0.180)

Experience∗10−1 -0.762** -0.786** -0.775**
(0.139) (0.152) (0.144)

Experience2 ∗ 10−2 0.113* 0.118* 0.115*
(0.046) (0.048) (0.047)

Union -0.274** -0.308** -0.283**
(0.080) (0.087) (0.084)

Single -0.114 -0.054 -0.108
(0.139) (0.152) (0.141)

German -0.316** -0.404** -0.331**
(0.097) (0.102) (0.103)

Qualified White Collar -0.022 0.043 -0.013
(0.163) (0.174) (0.173)

Ordinary White Collar 0.213 0.188 0.214
(0.176) (0.201) (0.181)

Qualified Blue Collar 0.086 0.132 0.094
(0.103) (0.111) (0.107)

σ2 0.823** 1.378** 0.892**
(0.088) (0.137) (0.080)

k 0.139
(0.281)

Log likelihood -1873.28 -1878.63 -1873.17
Number of Observations 1962

Source: German Socio-Economic Panel, Wave A/1984; own calculations.

Notes: Asymptotic standard errors in parentheses. For σ2 > 0 and k = 0, the GECk

model coincides with the Negbin I model. For σ2 > 0 and k = 1, the GECk model

coincides with the Negbin II model.
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Table D.3. Number of Job Changes: Robust Poisson Regression

Robust t-Values
Coefficient tPoisson tWHITE tLVF tQVF

Constant 0.501 3.167 2.617 2.229 2.304
Education∗10−1 -0.138 -1.006 -0.823 -0.707 -0.749
Experience∗10−1 -0.770 -6.929 -4.830 -4.877 -5.055
Experience2 ∗ 10−2 0.119 3.269 2.385 2.301 2.486
Union -0.292 -4.499 -3.115 -3.167 -3.385
Single -0.050 -0.460 -0.309 -0.323 -0.326
German -0.368 -4.843 -2.892 -3.409 -3.503
Qualified White Collar 0.067 0.514 0.343 0.361 0.384
Ordinary White Collar 0.185 1.255 0.964 0.883 0.917
Qualified Blue Collar 0.147 1.794 1.261 1.263 1.308

Log likelihood -2044.47
Number of Observations 1962

Notes:

Three alternative methods to calculate robust standard errors (and thus robust
t-values) were given in Chap. 3.3.3. tLV F and tQV F are based on the assumption
of a quadratic and linear variance function, respectively, while the White method
makes no explicit assumption.
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Table D.4. Number of Job Changes: Poisson-Logistic Regression

a) Overlapping b) Non Overlapping
Variable Offers Acceptance Offers Acceptance

Constant 0.812 1.151
( 3.746) ( 9.740)

Education∗10−1 -0.322 3.732 -0.260
-2.073) ( 1.582) (-1.633)

Experience∗10−1 -0.668 -6.044 -1.068
(-4.804) (-1.221) (-7.678)

Experience2 ∗ 10−2 0.071 3.321 0.175
( 1.382) ( 1.132) ( 3.920)

Union -0.291 -0.290
(-4.477) (-4.470)

Single 0.379 -0.068
( 0.153) (-0.460)

German -0.397 -0.355
(-5.112) (-4.708)

Qualified White Collar 0.069 0.088
( 0.452) ( 0.684)

Ordinary White Collar 0.178 0.195
( 1.125) ( 1.328)

Qualified Blue Collar 0.132 0.156
( 1.389) ( 1.919)

Log likelihood -2039.35 -2043.88
Observations 1962

Notes:

Asymptotic t-values in parentheses.
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Table D.5. Number of Job Changes: Hurdle Count Data Models

Hurdle Poisson Probit-Poisson-log-normal

Variable 1+/0 1+ 1+/0 1+

Constant -0.069 1.163 0.269 0.799
(0.202) (0.245) (0.157) (0.666)

Education∗10−1 0.133 -0.600** 0.094 -0.764**
(0.170) (0.218) (0.128) (0.324)

Experience∗10−1 -0.758** -0.403** -0.629** -0.544
(0.148) (0.156) (0.111) (0.405)

Experience2 ∗ 10−2 0.107** 0.085 0.098** 0.103
(0.048) (0.050) (0.034) (0.088)

Union -0.268** -0.167* -0.205** -0.230
(0.084) (0.097) (0.061) (0.189)

Single -0.194 0.192 -0.149 0.195
(0.149) (0.147) (0.114) (0.249)

German -0.330** -0.206** -0.254** -0.223
(0.101) (0.108) (0.076) (0.208)

Qualified White Collar -0.071 0.271 -0.076 0.283
(0.170) (0.196) (0.125) (0.285)

Ordinary White Collar 0.239 -0.039 0.200 -0.057
(0.185) (0.236) (0.143) (0.336)

Qualified Blue Collar 0.069 0.184 0.042 0.167
(0.109) (0.117) (0.081) (0.172)

σ2 0.932**
(0.156)

ρ 0.212
(0.893)

Log-likelihood -1928.00 -1856.70
Observations 1962

Notes:

Asymptotic standard errors in parentheses.
Hurdle negbin results are nor displayed because of convergence problems.
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Table D.6. Number of Job Changes: Finite Mixture Models

2-components Poisson 2-components Negbin II

Variable group 1 group 2 group 1 group 2

Constant -0.000 2.229** 1.047* 0.154
(0.226) (0.433) (0.630) (0.458)

Education∗10−1 0.078 -0.368 -0.648 0.243
(0.184) (0.374) (0.425) (0.307)

Experience∗10−1 -0.857** -0.541** -0.371 -1.140**
(0.172) (0.231) (0.346) (0.296)

Experience2 ∗ 10−2 0.104* 0.081 0.050 0.138
(0.060) (0.074) (0.099) (0.105)

Union -0.309** -0.207 -0.259 -0.328**
(0.095) (0.141) (0.181) (0.152)

Single -0.156 0.057 0.200 -0.274
(0.158) (0.229) (0.325) (0.267)

German -0.351** -0.478** -0.609** -0.101
(0.114) (0.158) (0.236) (0.229)

Qualified White Collar -0.037 0.168 0.320 -0.263
(0.192) (0.288) (0.386) (0.327)

Ordinary White Collar 0.253 0.103 -1.037 0.609*
(0.202) (0.358) (0.945) (0.353)

Qualified Blue Collar 0.082 0.317* 0.393 -0.130
(0.124) (0.173) (0.263) (0.224)

σ2 2.096** 0.146
(0.949) (0.281)

π1 0.930** 0.395**
(0.013) (0.158)

Log-likelihood -1868.16 -1856.05
Observations 1962

Notes:

Asymptotic standard errors in parentheses.
Hurdle Negbin I results are nor displayed because of convergence problems.
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Table D.7. Number of Job Changes: Zero Inflated Count Data Models

zero-inflated Poisson zero-inflated Negbin II

Variable logit Poisson logit Negbin II

Constant 1.132 -0.303 0.483* -7.390**
(0.245) (0.529) (0.255) (2.777)

Education∗10−1 -0.583** 1.016** -0.262 -0.746
(0.203) (0.455) (0.216) (1.152)

Experience∗10−1 -0.373** 1.035** -0.613** 4.535**
(0.153) (0.312) (0.192) (1.715)

Experience2 ∗ 10−2 0.072 -0.157 0.129** -.759**
(0.049) (0.091) (0.062) (0.346)

Union -0.158 0.293 -0.253** 0.351
(0.097) (0.179) (0.102) (0.465)

Single 0.151 0.461 0.066 1.368
(0.154) (0.297) (0.169) (0.962)

German -0.173 0.435** -0.236** 1.306
(0.106) (0.211) (0.118) (0.788)

Qualified White Collar 0.272 0.519 0.178 1.228
(0.189) (0.354) (0.206) (0.843)

Ordinary White Collar -0.123 -0.870 0.025 11.967
(0.243) (0.711) (0.203) (349.869)

Qualified Blue Collar 0.166 0.094 0.151 0.193
(0.115) (0.219) (0.129) (0.614)

σ2 1.103
(0.146)

Log-likelihood -1926.28 -1866.73
Observations 1962

Notes:

Asymptotic standard errors in parentheses.
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Table D.8. Number of Job Changes: Quantile Regressions

Qz(0.5, x) Qz(0.75, x) Qz(0.9, x)

Constant -0.181 1.138 1.768
(0.468) (0.475) (0.272)

Education∗10−1 0.319 0.026 -0.343
(0.373) (0.343) (0.207)

Experience∗10−1 -1.346 -1.413 -0.721
(0.249) (0.258) (0.196)

Experience2 ∗ 10−2 0.288 0.220 0.066
(0.069) (0.083) (0.054)

Union -0.388 -0.395 -0.336
(0.193) (0.187) (0.117)

Single -0.469 -0.191 -0.128
(0.324) (0.248) (0.220)

German -0.479 -0.522 -0.209
(0.246) (0.213) (0.162)

Qualified White Collar -0.144 -0.063 -0.020
(0.304) (0.302) (0.237)

Ordinary White Collar 0.240 0.312 -0.061
(0.319) (0.340) (0.188)

Qualified Blue Collar -0.142 -0.078 -0.082
(0.212) (0.179) (0.137)

Observations 1962

Notes:

Bootstrap standard errors in parentheses (50 replications).
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