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Preface 

Many relationships in economics, and also in other fields, are both dynamic 
and nonlinear. A major advance in econometrics over the last fifteen years 
has been the development of a theory of estimation and inference for dy
namic nonlinear models. This advance was accompanied by improvements 
in computer technology that facilitate the practical implementation of such 
estimation methods. 

In two articles in Econometric Reviews, i.e., Pötscher and Prucha 
{1991a,b), we provided -an expository discussion of the basic structure of 
the asymptotic theory of M-estimators in dynamic nonlinear models and a 
review of the literature up to the beginning of this decade. Among others, 
the class of M-estimators contains least mean distance estimators (includ
ing maximum likelihood estimators) and generalized method of moment 
estimators. The present book expands and revises the discussion in those 
articles. It is geared towards the professional econometrician or statistician. 

Besides reviewing the literature we also presented in the above men
tioned articles a number of then new results. One example is a consis
tency result for the case where the identifiable uniqueness condition fails. 
Another of these contributions was the introduction of the concept of Lp
approximability of a stochastic process by some (mixing) basis process. This 
approximation concept encompasses the concept of stochastic stability and 
the concept of near epoch dependence. Both of the latter approximation 
concepts had been used in the literature on the estimation of dynamic non
linear econometric models, but the implications of the differences in these 
concepts were unclear at that time. Based on the encompassing approxi
mation concept it was then possible to gain a better understanding of the 
differences and common grounds between the two approximation concepts. 
The encompassing framework made it, furthermore, possible to derive new 
results for the consistency and asymptotic normality of M-estimators of 
dynamic nonlinear models. Other contributions in the two review papers 
included improved consistency results for heteroskedasticity and autocor
relation robust variance-covariance matrix estimators in case of near epoch 
dependent data. 

The theory presented in Pötscher and Prucha (1991a,b) andin the liter
ature reviewed therein maintains catalogues of assumptions that are kept 
at a quite general and abstract level. As a consequence those catalogues of 
assumptions cover a wide range of applications. However this also means 
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that for a specific estimation problern it is typically necessary to still ex
pend considerable effort to verify if those assumptions are satisfied for the 
problern at hand. One of the features of this book is that we apply the 
general theory to an important more specific estimation problem. In par
ticular, we analyze the full information maximum likelihood estimator of 
a dynamic nonlinear equation system. Apart from illustrating the applica
bility of the general theory, this analysis also provides new catalogues for 
the consistency and asymptotic normality of the nonlinear full information 
maximum likelihood estimator. We consider both the case of a correctly 
specified model and that of a misspecified model. An important question 
that seems natural when dealing with dynamic nonlinear systems is under 
which conditions the output process of such a system is Lp-approximable 
or near epoch dependent, given the input process has this property. In this 
book we provide several new results in this regard. Those results cover not 
only first order but also higher order dynamic systems. 

As usual we would like to express our thanks to all who have contributed 
to the preparation of this monograph over the years. In particular we would 
like to thank Donald W.K. Andrews, Herman Bierens, Michael Binder, 
Immanuel M. Bomze, A. Ronald Gallant, David Pollard, and Halbert White 
for their helpful comments. Special thanks are due to Manfred Deistier and 
Harry H. Kelejian for their ongoing support and gracious advice on this as 
well as other research projects. We would also like to express our gratitude 
to Christian Cenker for expert advice on TeX-issues and to Birgit Ewald for 
helping with the preparation of the TeX-version of the manuscript. Finally 
we thank Michael Kumhof for his help in proof-reading the manuscript, 
and the editors of Springer-Verlag for their support and patience. 

December 1996 

B. M. PÖTSCHER 

I. R. PRUCHA 
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1 

INTRODUCTION 

In the last twenty-five years consirlerable progress has been marle in the 
theory of inference in nonlinear econometric morlels. A review of the Iiter
ature up to the beginning of the 1980s is given in Eurguete, Gallant anrl 
Souza (1982) anrl Amemiya (1983). For an account of relaterl contributions 
in the statistics Iiterature see, e.g., Humak (1983). The theory reviewerl 
in these references assumes that the morlel is essentially static in nature 
anrl that the rlata generating process exhibits a certain rlegree of temporal 
homogeneity, e.g., some form of stationarity. Developments in recent years 
have focuserl on the extension of the theory to rlynamic morlels, anrl in par
ticular to situations where the rlata generating process can exhibit not only 
temporal rlepenrlence but also certain forms of temporal heterogeneity. As 
in the static case, this analysis also allows for morlel misspecification. 

First progress towarrls a general theory for rlynamic nonlinear economet
ric morlels was marle by Eierens (1981, 1982a, 1984). His theory allows for 
temporal rlepenrlence in the rlata generating process anrl takes the rlynamic 
structure of the morlel explicitly into account. Although Eierens rloes not 
take the rlata generating process to be stationary, his theory still assumes 
a certain rlegree of temporal homogeneity of the process. Eierens' analysis 
focuses mainly on least squares anrl robust estimation of a nonlinear regres
sion morlel. Hansen (1982) consirlers generalizerl methorl of moments esti
mators in the context of rlynamic morlels unrler the stronger homogeneity 
assumption that the rlata generating process is stationary. Many economic 
rlata exhibit, besirles temporal rlepenrlence, also temporal heterogeneity. 
Therefore the asymptotic properties of estimators unrler such conrlitions 
have been analyzerl by Domowitz anrl White (1982), White anrl Domowitz 
(1984), Eates anrl White (1985) anrl Domowitz (1985). Although the results 
of the latter papers can in principle be applierl to processes generaterl by 
certain rlynamic morlels, the results are not genuinely gearerl towarrls such 
morlels. In particular, in specifying the rlepenrlence properties of the rlata 
generating process, these papers rlo not explicitly take into account the 
rlynamic structure of the morlel, as will be rliscusserl in more rletail below. 
Furthermore, as pointerl out by Anrlrews (1987) anrl Pötscher anrl Prucha 
(1986a,b), some of the maintainerl assumptions in these papers arerather 
restrictive. Recent results by Woolrlrirlge (1986), Gallant (1987a, Ch.7) anrl 
Gallant anrl White (1988) extenrl the theory of inference in rlynamic non
linear morlels to rlata generating processes that can exhibit both temporal 

B. M. Pötscher et al., Dynamic Nonlinear Econometric Models
© Springer-Verlag Berlin Heidelberg 1997



2 1. INTRODUCTION 

dependence and heterogeneity. 
The estimators considered in the above cited literature are typically M

estimators, i.e., they are defined as the solution of a minimization (max
imization) problem. M-estimators include, e.g., the least squares estima
tor, maximum likelihood estimators and generalized method of moments 
estimators.1 A review of the above cited Iiterature shows that the proofs 
employed to demonstrate the consistency and the asymptotic normality of 
M-estimators have a quite similar structure. The basic methods used in 
these proofs have their origin in numerous contributions in the statistics 
literature. More specifically, these methods date back to articles by Doob 
(1934), Cramer (1946), Wald (1949), and LeCam (1953), who consider the 
maximum likelihood estimator in the case of independent and identically 
distributed (i.i.d.) data and to the analysis of the least squares estimator 
by Jennrich (1969) and Malinvaud (1970), cf. also Hannan (1971), Robin
son (1972), Wu (1981), and more recently Lai (1994). In his seminal article 
Huber (1967) analyzes the asymptotic properties of M-estimators in the 
case of i.i.d. data processes and allows for certain types of misspecification. 
Hoadley (1971) considers the asymptotic properties of the maximum likeli
hood estimator for independent and not necessarily identically distributed 
data processes. The statistics Iiterature on the asymptotic properties of 
M-estimators for dependent data processes includes papers by Billingsley 
(1961), Silvey (1961), Roussas (1965), Crowder (1976), and Klimko and 
Nelson (1978), to mention a few. For surveys of the Iiterature on maximum 
likelihood estimation and M-estimation see, e.g., Norden (1972, 1973) and 
Huber (1981). More recent contributions include Basawa and Koul (1988), 
Boente and Fraiman (1988), Dupacova and Wets (1988), Haberman (1989), 
Shapiro (1989), and Niemiro (1992). 

The consideration of properties of M-estimators under misspecification 
arises naturally in the discussion of the behavior of test statistics under 
the alternative hypothesis, see, e.g., Silvey (1959). An explicit treatment 
of maximum likelihood estimators under misspecification is given in Foutz 
and Srivastava (1977, 1979), and White (1982), of Bayesian estimators in 
Berk (1966, 1970), of M-estimators in Huber (1967), and of nonlinear least 
squares estimators in Bunke and Schmidt (1980); seealso White (1981), Hu
mak (1983), and Schmidt (1987). In the time series and systems engineering 
Iiterature this aspect has been analyzed under the heading of approximate 
systemsmodeHing by Caines (1976, 1978), Caines and Ljung (1976), Ljung 
(1976a,b, 1978), Ljung and Caines (1979), Kabaila and Goodwin (1980), 
and Ploberger (1982a,b) for prediction error estimators, and by Pötscher 
(1987, 1991) for maximum likelihood estimators. 

The econometrics Iiterature cited above builds to a considerable extent 

1The term M-estimator is used herein a more general meaning than, e.g., in 
the Iiterature on robust estimation. 
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an the early contributions in the statistics literature, but like the research 
in time series analysis focuses more specifically an aspects necessary for a 
theary of inference for dynamic nonlinear models, which allows for temporal 
heterogeneity of the data generating process and for misspecification. For 
related work in the time series Iiterature see, e.g., Priestley {1980, 1988), 
Tang {1983, 1990), Tjfl.lstheim {1986, 1990), Kumar {1988), and Guegan 
{1994).2 

Important ingredients in the typical proof of consistency and asymptotic 
normality of M-estimators are uniform laws of large numbers (ULLNs) and 
centrallimit thearems (CLTs). AB a consequence, recent progress in the 
theary of inference in dynamic nonlinear models builds an progress in the 
derivation of ULLNs and CLTs. ULLNs for data generating processes, that 
are stationary or asymptotically stationary, are available in, e.g., LeCam 
{1953), Ranga Raa {1962), Jennrich {1969), Malinvaud {1970), Gallant 
{1977), Bierens {1981, 1982a, 1984, 1987), Amemiya {1985) and Pötscher 
and Prucha {1986a). 3 Hoadley's {1971) ULLN and its versions in Domowitz 
and White {1982) and White and Domowitz {1984) apply to temporally d&
pendent and heterogeneaus data generating processes. However, as pointed 
out by Andrews {1987) and Pötscher and Prucha {1986a,b) the maintained 
assumptions of this ULLN are restrictive ( essentially requiring the ran
dom variables involved tobe bounded). Andrews {1987) and Pötscher and 
Prucha {1986b, 1989, 1994b) introduce ULLNs for temporally dependent 
and heterogeneaus processes under assumptions more appropriate for a th&
ory of asymptotic inference in nonlinear econometric models. Furthermore, 
these papers specify the dependence structure in generic form in the sense 
that they assume the existence of laws of large numbers (LLNs) for cer
tain "bracketing" functions of the data generating process, rather than to 
assume, e.g., a particular mixing property for the data generating process. 
AB a consequence, these ULLNs arerather versatile tools that can be ap
plied to processes with various dependence structures. Within the context 
of these ULLNs the dependence structure is relevant essentially only insofar 
as a LLN has to hold for the "bracketing'' functions. The demonstration 
that a ULLN holds for a process with a particular dependence structure 
is therefore reduced to the demonstration that a LLN holds. For further 
results seealso Andrews {1992), Newey {1991), and Pötscher and Prucha 
{1994a). 

Since LLNs and CLTs are available for, e.g., o-mixing and cf>-mixing pro
cesses it is tempting to simply postulate that the process of the endogenaus 

21n cantrast to the econometrics Iiterature on dynamic nonlinear models, this 
research concentrates more on the analysis of partiewar nonlinear models such 
as threshold models, bilinear models, etc. 

3 For independent random variables andin partiewar for i.i.d. random variables 
ULLNs have been established in the empirical process Iiterature under much 
weaker conditions, see, e.g., Gänssler (1983) and Pollard {1984, 1990). 
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and exogenous variables is a-mixing or 4>-mixing. This approach is used, 
e.g., in Domowitz and White (1982), White and Domowitz (1984), Bates 
and White (1985) and Domowitz (1985). However, as already alluded to 
above, in case the data are generated by a dynamic nonlinear model this 
assumption is not satisfactory. This is so, since then the endogenous vari
ables typically depend on the infinite history of the exogenous variables 
and the disturbances. Now, even if the exogenous variables and the dis
turbances are a-mixing or 1/>-mixing, the endogenaus variables need not 
inherit the same property, since a-mixing and lj>-mixing are not necessar
ily preserved by transformations which involve the infinite past, see, e.g., 
Ibragimov and Linnik (1971), Chernick (1981), Andrews (1984), Athreya 
and Pantula (1986a,b), and Doukhan (1994).4 Hence, an assumption that 
the process of endogenous and exogenous variables is a-mixing or <j>-mixing 
does not seem to be adequate for a general treatment of dynamic models. 
In fact, as discussed next, it is possible to build a theory of asymptotic 
inference without these mixing conditions. 

Intuitively one can expect LLNs and CLTs to hold for (functions of) the 
data generating process, provided both the dynamic system (generating 
the endogenous variables) and the process of exogenous variables and dis
turbances have a sufficiently "fading memory", even if the data generating 
process is not a-mixing or 4>-mixing. This suggests that consistency and 
asymptotic normality results can also be obtained in such a context. The 
contributions of Bierens (1981, 1982a, 1984), Wooldridge (1986), Gallant 
(1987a, Ch.7), and Gallant and White (1988) can be viewed as a demon
stration that this is indeed true under certain regularity conditions. 5 The 
basic approach taken in all these references is to show that LLNs and CLTs 
hold for (functions of) the data generating process by demonstrating that 
the (functions of the) data generating process can be approximated by pr<r 
cesses with a sufficiently fading memory. However, these references differ 
in the approximation concept employed: Bierens' approximation concept 
leads to the definition of processes that are "stochastically stable w.r.t. 
an a-mixing [4>-mixing] base"; using this approximation concept he proves 
LLNs and CLTs for such processes. Wooldridge (1986), Gallant (1987a, 
Ch.7) and Gallant and White (1988) employ the concept of "near epoch 
dependence w.r.t. an a-mixing [4>-mixing] base", and then make use of a 
result by McLeish (1975a) that processes with such a dependence structure 
fall into the dass of mixingales, for which LLNs and CLTs are available in 

4 Results that ensure that a-mixing or r/>-mixing is preserved by such trans
formations only seem to be available under conditions that are unnecessarily 
restrictive for a satisfactory general theory of inference in dynamic nonlinear 
models. 

5The contributions in this Iiterature regarding limit theorems build on earlier 
contributions in probability theory, cf., e.g., Billingsley (1968, Section 21). 
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McLeish (1974, 1975a,b, 1977).6 

Pötscher and Prucha (1991a,b) recently provided a survey and a criti
cal discussion of these developments towards an asymptotic theory for M
estimators in dynamic nonlinear models. The first of these papers, Pötscher 
and Prucha (1991a), also introduced an encompassing framework for the 
approaches taken by Bierens on the one hand and by Gallant, White and 
Wooldridge on the other hand. These approaches differ mainly in the em
ployed approximation concepts, i.e., stochastic stability versus near epoch 
dependence. The relationship between these approaches had not been ex
plored in the literature before and a clear understanding of their relative 
merits was lacking. Apart from providing an understanding of the differ
ences and common grounds between these rival approaches, the encompass
ing framework of Pötscher and Prucha (1991a,b) also resulted in LLNs and 
CLTs under simpler and weaker sets of assumptions than in, e.g., Gallant 
(1987a) and Gallant and White (1988). In turn this lead to catalogues of 
assumptions for consistency and asymptotic normality of M-estimators in 
dynamic nonlinear models that seem to be simpler than corresponding cat
alogues in, e.g., Gallant (1987a) and Gallant and White (1988). Pötscher 
and Prucha (1991b) also provided improved consistency results for het
eroskedasticity and autocorrelation robust variance covariance matrix es
timators in case of near epoch dependent data. These improvements over 
results available in the literature related to less restrictive assumptions on 
the feasible rate of increase of the truncation lag parameter. A further novel 
feature was that our results provided rates of convergence for the variance 
covariance matrix estimators, which are essential for the optimal selection 
of the truncation lag parameter. 

The present book is an expanded and revised version of Pötscher and 
Prucha (1991a,b). The theory presented in those papers and in the lit
erature reviewed therein is characterized by the fact that the maintained 
catalogues of assumptions are kept at a very general and abstract level 
in order to cover a wide range of applications. In this book we now also 
apply the general theory to an important concrete example. In particular, 
we illustrate the applicability of the general theory by deriving consistency 
and asymptotic normality results for the full information maximum like
lihood estimator of a dynamic nonlinear simultaneaus equation system. 
Apart form being illustrative, this analysis provides new catalogues of as
sumptions for consistency and asymptotic normality of the nonlinear full 
information maximum likelihood estimator. The contribution of the latter 
results over those available in the literature is that our results are based 
on a set of more specific low level assumptions on the model and the data 
generating process and not on a set of abstract high level assumptions. In 

6The concept (though not the name) of near epoch dependence already ap
pears in Billingsley {1968, Section 21); cf. also Blum and Rosenblatt {1957) and 
lbragimov (1962). 
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the course of obtaining these new results it was also necessary to obtain 
conditions under which the output process of a dynamic nonlinear system 
is ''weakly dependent" in the sense of being near epoch dependent, stochas
tically stable, or more generally satisfying the encompassing approximation 
concept of Pötscher and Prucha (1991a); see Theorems 6.10- 6.12 in Chap
ter 6. This then facilitates, by applying existing LLNs and CLTs for such 
"weakly dependent" processes, the derivation of LLNs and CLTs for (func
tions of) the output process of the dynamic system. 

In somewhat more detail, Theorem 6.10 generalizes results obtained in 
Eierens (1981, Ch. 5) to dynamic nonlinear systems, which are possibly 
only defined on a subset of Euclidean space rather than on the entire space 
- a situation which arises quite frequently in a nonlinear context. However, 
Theorem 6.10, as well as Theorem 6.11, are restricted to "contracting" sys
tems. In contrast, Theorem 6.12 is substantially moregeneralas it applies 
to "stable" systems and not only to "contracting" systems. This distinc
tion becomes especially important when dealing with multivariate andjor 
higher order systems. In fact, Theorem 6.10, as well as Theorem 6.11, are 
not directly applicable to higher order systems. Another aspect of The
orems 6.10 - 6.12 and the accompanying discussion is that they help in 
clarifying some misconceptions in the recent Iiterature pertaining to such 
results. 

The book is organized as follows: Chapter 2 sets the stage for an asymp
totic theory in nonlinear econometric models. Chapter 3 provides the basic 
modules for proving consistency of M-estimators. Chapter 4 is devoted to 
a discussion of possible extensions of the consistency results in Chapter 3. 
In Chapter 4 we also explore the limitations of the results of Chapter 3; in 
particular, we discuss the ramifications of misspecification for the assump
tion of identifiable uniqueness. A basic ingredient for consistency proofs are 
ULLNs for dependent and heterogeneaus processes. Recent developments 
in this area are the subject of Chapter 5. Chapter 6 is devoted to a general 
theory of approximation concepts for stochastic processes, which incorpo
rates the theory of stochastically stable processes as well as that of near 
epoch dependent processes. After a preliminary discussion in Section 6.1, 
these approximation concepts are introduced and basic properlies of these 
concepts are explored in Section 6.2. The usefulness of these approximation 
concepts is illustrated by LLNs given in Section 6.3. (CLTs are discussed 
later in Chapter 10.) The behavior of the approximation concepts under 
nonlinear transformations is studied in Section 6.4. In this section we also 
provide sufficient conditions for a dynamic system suchthat the output pro
cess, i.e., the process ofendogenaus variables, satisfies the above mentioned 
approximation concepts. These results are crucial for deriving limit theo
rems for (functions of) the output process of a dynamic system. (They also 
play a prominent role in Chapter 14.) Chapter 7 presents catalogues of as
sumptions ensuring consistency of the least mean distance as well as of the 
generalized method of moments estimators. Chapter 8 discusses the basic 
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structure of the asymptotic normality proof for M-estimators in nonlinear 
econometric models. Chapter 9 extends this discussion to nonstandard sit
uations where, e.g., the objective function is not smooth or the nuisance 
parameter is infinite dimensional. Central limit theorems for dependent 
random variables, which form an important ingredient in the asymptotic 
normality proof, are discussed in Chapter 10. Chapter 11 presents asymp
totic normality results for least mean distance and generalized method of 
moments estimators. A general discussion of heteroskedasticity and auto
correlation robust variance covariance matrix estimators is given in Chap
ter 12. The estimation of the variance covariance matrices for least mean 
distance and generalized method of moments estimators is treated in Chap
ter 13. Chapter 14 gives consistency and asymptotic normality results for 
the normal full information maximum likelihood estimator of a dynamic 
nonlinear simultaneaus equation system. Concluding remarks are given in 
Chapter 15. All proofs are relegated to appendices. 



2 

MODELS, DATA 
GENERATING PROCESSES, 
AND ESTIMATORS 

We start with a brief review of the basic structure of the dassical estimation 
problem, which can be described as follows: The researcher observes a set 
of data assumed to be generated by a stochastic process. The probability 
law of this process is determined by a model. This "true" model is assumed 
to belong to a dass of models where each model is indexed by a parameter. 
This parameter may either characterize the probability law of the stochastic 
process completely or only partially (e.g., it may only characterize the first 
and second moments). Apart from knowing that the true model belongs to 
the given model dass, the value of the true parameter is not known. The 
parameter may be an element of a finite or infinite dimensional space. The 
estimation problern is then to infer the value of the true parameter (or of 
certain components of interest) on the basis of the observed data. Specific 
estimators are often derived from general principles such as the maximum 
likelihood principle or the method of moments. Given a particular estimator 
it is then of interest to analyze its performance. 

A crucial assumption in the estimation problern described above is that 
the data have been generated by a member of the dass of models under 
consideration. Since reality is likely to be more complex than any model, 
this assumption may be violated, i.e., the dass of models under considera
tion may be misspecified. It is hence of interest to analyze the behavior of 
a given estimator also under the assumption of a data generating process 
that is not described by the given model dass. 

In the following we first formalize the above described general framework 
for M-estimators; for the sake of generality we allow for the presence of 
nuisance parameters. We then illustrate this framework in terms of the 
nonlinear least squares (NLS) estimator and the normal full information 
maximum likelihood (NFIML) estimator. Let (zt : t E N) be the data 
generating process defined on a probability space (0, 2l, P) with Zt taking 
its values in a non-empty measurable space (Z,3), and let (B,pB) and 
(T, PT) be non-empty metric spaces. Typically, but not necessarily, Zt will 
have the interpretation of representing the vector of current and lagged 
endogenous and exogenous variables, and may also contain instrumental 
variables. The space Z will frequently be a Euclidean space or a subset 

B. M. Pötscher et al., Dynamic Nonlinear Econometric Models
© Springer-Verlag Berlin Heidelberg 1997



10 2. MODELS, DATA GENERATING PROCESSES, AND ESTIMATORS 

thereof. B is the space of pararneters of interest and T will typically have 
the interpretation as the space of nuisance parameters. In serni-pararnetric 
or non-pararnetric applications B and T are typically not subsets of a 
Euclidean space. It is for this reason that we assume B and T only to 
be rnetric spaces rather than subsets of a Euclidean space. 

Let Qn ( Zl' ... ' Zn' T, ß) be a real valued function defined on zn X T X B 
(where n denotes the sarnple size). Assurne further that Qn(Zl, ... ,Zn, T, ß) 
is 2l-rneasurable for all (r, ß) E T x B.1 The M-estirnators ßn corresponding 
to the objective function Qn now satisfy for given estirnators fn: 

Qn(ZlJ ... ,Zn,fn,ßn) = inf Qn(Zl,···•Zn,fn,ß), (2.1) 
/3EB 

i.e., they rninirnize the objective function over B.2 Clearly, this setup also 
covers the case of rnisspecification. In the case of rnisspecification T and ß 
are parameters of the rnodel dass hypothesized by the researcher. 

The above framework covers typical M-estirnators for dynamic nonlinear 
equation systerns. We illustrate this in the following exarnples in terrns of 
the NLS estirnator, and in terrns of the NFIML and the nonlinear three 
stage least squares (N3SLS) estirnator for a dynarnic irnplicit nonline~ 
sirnultaneous equation systern. 

Example 1: Let 9t : R x X x A -+ R be Borel rneasurable functions, 
where X ~ RP"' and A ~ RP" are Borel sets. Assurne that the endogenous 
variables Yt are generated according to the following rnodel 

tEN, (2.2) 

where Yo denotes sorne starting value. Assurne further that the processes 
of the exogenous variables (xt) and the disturbances (Et) are defined on 
(0, 2(, P) and take their values in X and R, respectively; let ao E A denote 
the true vector of regression pararneters. The objective function of the NLS 
estirnator is then given by 

n 

Qn(Zl, ... , Zn, ß) = n-1 L qt(Zt, ß), (2.3) 
t=l 

with 

11n the following we will sometimes simply write Q.,.(r,ß) for 
Q.,.(z1, ... ,z.,.,r,ß) or Q.,.(zl, ... ,z.,.,r,ß) whenever the meaning of this 
expression is evident from the context. 

2Technically speaking, for consistency and asymptotic normality results /J.,. has 
to satisfy (2.1) only asymptotically; cf., for example, Lemma 3.1 and Footnote 2 
in Chapter 3. Fora further relaxation of (2.1) see Section 4.4. 
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where Zt = (yLy~_1 ,xD' and ß = a.3 o 

Example 2: Let ft : Y x Y x X x A --+ E be Borel measurable functions, 
where Y s;;; RPv, X s;;; RP"', A s;;; RPa, and E s;;; RP• are Borel sets ( and 
Py = Pe)· Let the process of the endogenaus variables (Yt) be generated 
according to the following model 

tEN. {2.4) 

The processes of the exogenaus variables ( Xt) and the distur bances ( Et) are 
defined on {0, 2l, P) and take their values in X and E, respectively; ao E A 
denotes the true vector of system parameters. We assume that the model 
has a well-defined reduced form, i.e., for each (y•, x, e, a) E Y x X x Ex A 
the equation !t(Y, y•, x, a) = e has a unique solution y = 9t(y•, x, e, a) 
where 9t is assumed to be measurable. Given an initial random variable Yo 
the process ofendogenaus variables (Yt) is then well-defined. We assume 
further that the vectors of disturbances Et are distributed i.i.d. normal with 
zero mean and variance covariance matrix ~0 and that the process (et) is 
independent (jointly) of the process (xt) and Yo· To define the NFIML 
estimator properly we assume further that ft is continuously differentiahte 
w.r.t. y, that 8ftf8y is nonsingular, and that Y is open in RPv.4 

The objective function of the NFIML estimator, i.e., the normal log
likelihood function conditional on the exogenaus variables and on Yo is 
now (up to an additive constant and multiplied by -1/n) given by 

with 

n 

Qn{Z1, · .. ,Zn, ß) = n-1 L qt(Zt, ß), 
t=1 

qt(Zt, ß) = -ln idet(8ftf8y)i + {1/2) lndet(~) + {1/2)/:~-1 ft, 

(2.5) 

where !t and 8ftf8y are evaluated at {zt,a), Zt = (y~,y~_1 ,xD', and ß 
is the vector composed of the elements of a and the diagonal and upper 
diagonal elements of ~- Note that in (2.5) no nuisance parameter appears. 

3 As a general convention, in this book elements of Euclidean space are viewed 
as column vectors. However, for convenience of notation and where no confusion 
is possible, we will sometimes not distinguish between (v,w) and (v',w')', where 
v and w are elements of Euclidean spaces, and where the prime denotes the 
transpose operation. 

4We adopt the following convention: Let cp be a s x 1 vector of real valued 
functions defined on (an open subset of) RP, let v = ( v1, ... , Vp )' E RP, then 
8cp I 8v = ( 8cp I 8v1, ... , 8cp I 8vp) is the s x p matrix of first order partial derivatives. 
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The objective function of the N3SLS estimator is given by 

Q.(z1 , ... ,z",t.,ß) ~ [n-1 t••(z,,ß)]' D(t.) [n-1 t•·(z,,ß)], 
(2o6) 

with 

ft(Yt, Yt-t, Xt, a) ® at, 

[f;n ® n-1 t ata~J- 1 
t=1 

where at is the instrument vector, En is the two stage least squares esti
mator for E, fn is the vector of diagonal and upper diagonal elements of 
[f, 10. -1 ~n I ]-1 ho h o d t o t ( I I I 1)1 
L.Jn \()Jn Lo-t=1 atat w 1c 1s assume o ex1s, Zt = Yt,Yt-1,xt,at , 

and ß = ao D 

As discussed above, the formal framework also allows for model misspec
ificationo For example, the NLS, NFIML and N3SLS estimators defined by, 
respectively, objective functions (203), (205) and (206) remain well-defined 
estimators (in the sense of remairring well-defined statistics) even if the ob
served data are not generated by, respectively, model (202) or (2.4); in this 
case the parameter ß appearing in the objective function may no Ionger 
characterize any aspect of the probability law of the data processo 

We note that the general framework not only applies to dynamic nonlin
ear models of the form (2o2) or (204) as considered in the above examples, 
but more generally also to models cantairring higher order lagso For ex
ample, the framework also covers dynamic implicit nonlinear simultaneaus 
equation systems of the form 

t ENo 

For lt = l and lt = l this includes the case of a fixed lag length and for 
lt = t + l and lt = t + l (l, l ~ 0) the case of an increasing lag length, cfo 
also Chapter 5o 

Estimators corresponding to objective functions of, respectively, the form 

n 

Qn(Z1, o o o ,zn,Tn,ß) = n-1 Lqt(Zt,fn,ß) 
t=1 

and 

Qn(Z1, o o o, Zn, Tn, ß) = '13n (n-1 t Qt(Zt, fn, ß), fn, ß) , 
t=1 

where '13n is some "distance" function, are usually referred to in the Iitera
ture as least mean distance estimators and generalized method of moments 
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estimators. For generalized method of moments estimators {)n will often 
be a quadratic form in the moment vector n-1 I::~=l qt(Zt,fn,ß). The NLS 
and NFIML estimators defined in the above examples are special cases of 
least mean distance estimators, whereas the N3SLS estimator is a special 
case of a generalized method of moments estimator. We also note that in 
general quasi maximum likelihood estimators can be viewed as least mean 
distance estimators; in this case Qt(Zt, ß) corresponds to the negative of the 
conditionallog-likelihood in period t. 



3 

BASIC STRUCTURE OF 
THE CLASSICAL 
CONSISTENCY PROOF 

In this chapter we describe the structure of the consistency proof for M
estimators in nonlinear econometric models as it has evolved from Jennrich 
(1969) and Malinvaud (1970). We shall refer to this proof as the classical 
consistency proof. The basic ideas dateback to Doob (1934), Wald (1949) 
and LeCam (1953). The consistency proofs in the articles on asymptotic 
inference in nonlinear econometric models listed in Chapter 1 all share this 
common structure. 

Let Qn ( z1 , ... , Zn, f n, ß) denote some criterion function as defined in 
Chapter 2 and let ßn be a corresponding M-estimator. The classical consis
tency proof deduces the limiting behavior of ßn from the limiting behavior 
of Qn. In many cases there exist nonstochastic real valued functions Qn 
defined on T X B such that the difference between Qn ( z1, ..• , Zn, f n, ß) 
and Q n ( 7' n, ß) converges to zero (in a sense specified later) as the sam
ple size tends to infinity; here 7' n is nonstochastic and typically a popu
lation analogue of fn. The limiting behavior of ßn can then be analyzed 
by relating it to the limiting behavior of the minimizers ßn of Qn('Fn,ß). 
In many cases Qn will be taken as EQn(ZJ, ... ,zn,'Fn,ß), or as limn--.oo 
EQn(Zl, ... 'Zn, r,ß) evaluated at 'Fn, or as limn-+oo EQn(Zl, ... 'Zn, Tn, ß), 
given the respective limits exist. Of course, in the last case the functions 
Qn are independent of n. 

In essence, the structure of the classical consistency proof has two ingre
dients. In the case of a correctly specified model with a compact parameter 
space and where Qn = Q is continuous (and no nuisance parameter is 
present) the two ingredients are convergence of Qn to Q uniformly over 
the parameter space and the existence of a unique minimizer of Q at the 
true parameter value. In more general cases essentially the same approach 
is employed subject to some modifications: As before, it is assumed that 
the difference between Qn and Qn converges to zero uniformly over the 
parameter space. However, the assumption that the true parameter value 
is a unique minimizer of Q (together with continuity and compactness) is 
replaced by an assumption that ensures that the minimizers of Qn are es
sentially unique, as well as that the functions Qn do not become too :flat 
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at the minimizers. More formally, it is typically assumed that a sequence 
of minimizers ßn of Qn has the following property (where the existence of 
the minimizers is implicitly assumed): 

Definition 3.1. 1 Fora given sequence of functions Ön: T X B-+ R and 
a given (nonstochastic) sequence Tn E T the sequence of minimizers ßn of 
Qn(Tn, ß) is called identifiably unique, if for every E > 0: 

liminf [ inf _ Qn(Tn,ß)- Qn(Tn,ßn)] > 0. (3.1} 
n->oo {ßEB:pn(ß,ßn)~e} 

The above definition was introduced in White {1980) and Domowitz and 
White (1982). For the important special case where Ön(Tn, .) does not 
depend on the sample size, i.e., Ön(Tn, ß) = R(ß), identifiable uniqueness 
of ßn =: ß implies that ß is the unique minimizer of R. If furthermore B is 
compact and R is continuous (or, more generally, is lower semi-continuous), 
then identifiable uniqueness of ß is equivalent to uniqueness of ß. However, 
if B is not compact then the existence of a unique minimizer ß of R does 
not necessarily imply that ß is identifiably unique, even if R is continuous. 
This is readily confirmed by considering the following example: R(ß) = 
ß2 /(1 + ß2 ) 2 with B = R and ß = 0. It is also easy to find examples 
where B is compact, R has a unique minimizer, but R is not lower semi
continuous, and where the unique minimizer is not identifiably unique. 
In general, identifiable uniqueness of some sequence of minimizers implies 
that the diameter of the set of minimizers of Qn(Tn, .) goes to zero as n 
tends to infinity, i.e., the difference between respective minimizers becomes 
negligible as the sample size increases. (Hence in this sense ßn is essentially 
unique.) Furthermore, if the sequence ßn is identifiably unique, then any 
other sequence of minimizers of Qn(Tn, .) is also identifiably unique. 

In the context of maximum likelihood estimation of a correctly speci
fied model, given stationarity, the identifiable uniqueness condition typ
ically boils down to the condition that the true parameter is identified. 
The adequacy of the assumption of identifiable uniqueness in the case of 
misspecification will be discussed later, see Chapter 4. 

The following lemma gives basic conditions for the convergence behavior 
of M-estimators in case where 

and 

10f course, this definitionalso includes the case where no nuisance parameter 
is present. Also, we adopt the convention that the infimum over the empty set is 
plus infinity. 
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Lemma 3.1. Let Rn: n X B--+ Rand Rn: B--+ R be two sequences of 
functions such that aoso [iopoj 

sup iRn(w,ß)- Rn(ß)i--+ 0 as n--+ OOo {3o2} 
B 

Let ßn be an identifiably unique sequence of minimizers of Rn(ß), then for 
any sequence ßn such that eventuall'/l 

Rn(w, ßn) = inf Rn(w, ß) 
B 

{3o3} 

• - 3 
holds, we have Pn(ßn,ßn)--+ 0 aoso [iopo] as n--+ OOo 

_ In general, the above lemma d_?es n~t imply that ßn convergesl exce12t if 
ßn convergeso However, in case ßn = ß the lemma implies that ßn--+ ß as 
n--+ ooo A situation where ßn = ß is (under certain regularity conditions) 
the case of maximum likelihood estimation of a correctly specified model 
where ß is the true parameter and Rn is the expected log-likelihoodo An
other situation where ßn = ß is the case where Rn = R is independent 
of no (In the context of Example 2 this is, eogo, the case for the expected 
log-likelihood even if the model is misspecified if ft = f and the data gen
erating process (y~, xD' is strictly stationaryo) Yet another situation where 
ßn = ß is the case of least squares estimation of a nonlinear regression 
model where the response function corresponding to the value ß of the re
gression parameter is the conditional mean of the dependent variable given 
the regressorso 

Lemma 3o1 implies that (apart from a verification of the identifiable 
uniqueness condition) the classical consistency proof reduces to the verifi
cation that the objective function Rn(w, ß) = Qn(z1, 0 0 0, Zn, fn,ß) satisfies 
the uniform convergence condition (302)0 In the case where no nuisance 
parameter is present and the objective function is of the form Rn(w, ß) = 

n-1 2::;=1 qt(Zt,ß) and Rn(ß) = n-1 2::;=1 Eqt(Zt,ß) the uniform conver
gence condition (3o2) boils down to a ULLN for qt(Zt,ß)o For the case 

2 This means that there is an Oo E 21, P(Oo) = 1, such that for any w E Oo 
there is an N(w) such that condition (303) holds for all n ~ N(w)o For the i.po 
version of the Iemma this could be relaxed to the requirement that (303) holds 
on sets On E 2( with P(On) --+ 1. Note that both formulations amount to a slight 
relaxation of condition (201)0 

3The abbreviations "aoso" and "i.po" stand for, respectively, "almost surely" 
and "in probability" with respect to the probability measure Po For the con
vergence in probability version of this Iemma it is implicitly assumed that the 
variables in any sequence, that is claimed to converge in probability, are measur
ableo This convention is adopted throughout the booko Sufficient conditions for 
ßn tobe measurable are discussed in Lemma 3.40 A simple sufficient condition for 
the measurability of suprema (or infima) like in (302) is that the functions over 
which the supremum (or infimum) is taken are continuous on B for all w E n 
and that B is separable, eogo, that B is compact and metrizableo 
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where a nuisance parameter is present, the estimator f n will typically sat
isfy PT ( f n, 'F n) -> 0 as n -> oo ( where 'F n is typically some population 
analogue of fn)· The following lemma reduces the verification of (3.2) to 
the verification of a similar condition that no Ionger involves the estimator 
fn (regardless whether or not Rn takes the form of an average). 

Lemma 3.2. Given sequences of functions Qn : zn X T X B ---+ R, 
On : T X B ---+ R, fn : n ---+ T and a nonstochastic sequence Tn E T, 
let Rn(w,ß) = Qn(z1, ... ,Zn,fn,ß) and Rn(ß) = On('Fn,ß). Let {On: 
n E N} be uniformly equicontinuous on T x B (which is satisfied, e.g., if 
{On : n E N} is equicontinuous on T x B and T and B are compact). 

(a) lf pr(fn, 'Fn) -> 0 a.s. (i.p.j as n-> oo and if a.s. [i.p.j 

sup IQn(Zt, ... ,Zn,T,ß)-On(T,ß)I---+O asn---+oo (3.4} 
TxB 

then a.s. [i.p.j 

sup IRn(w,ß)- Rn(ß)l -> 0 as n---+ oo. 
B 

(3.2} 

(b} The family {Rn : n E N} is uniformly equicontinuous on B.4 •5 

If B is compact and pr('Fn, 'F) -> 0 as n -> oo for some 'F E T, then the 
assumption of uniform equicontinuity of {On : n E N} in Lemma 3.2 can 
be weakened to equicontinuity. In case the objective function is of the form 
Rn(w, ß) = n-1 2::~=1 qt(Zt, fn, ß) and Rn(ß) = n-1 2::~= 1 Eqt(Zt, 'Fn, ß) the 
uniform convergence condition (3.4) boils down to a ULLN for the func
tions qt(Zt,T,ß). That is, Lemma 3.2 implies that in this case the uniform 

4 A family of functions {in: n E N} with fn: M1--+ M2 where (M1,p1) and 
(M2, P2) are metric spaces is called equicontinuous at x• E M1 if for any E > 0 
there exists a 8 = 8(x•, E) > 0 suchthat supn P2Un(x), fn(x•)) < e for all x E M1 
with p1(x, x•) < 8. The family is called equicontinuous on the subset M of M1 if 
it is equicontinuous at all x• E M. (This of course implies, but is in generalnot 
equivalent to equicontinuity of {in I M : n E N} on M, where fn I M denotes 
the restriction of f n to M. Both concepts coincide if M is an open subset of 
M1 and if, in particular, M = Mlo) Furthermore, the family is called uniformly 
equicontinuous on the subset M of M1 if it is equicontinuous on M and if 8(x•, e) 
for x• E M can be chosen independently of x•, i.e., 8 = 6(e). We note that in 
part of the mathematical Iiterature the term equicontinuity is used to describe 
what we defined as uniform equicontinuity. Of course, if M1 is a compact metric 
space then equicontinuity on M1 is equivalent to uniform equicontinuity on M1. 

5 Let (M1, p1) and (M2, P2) be two metric spaces. We endow the space M1 xM2 
with the metric p((x, y), (x•, y•)) = Pl (x, x•) + p2(y, y•), or if more convenient, 
with the metric p((x, y), (x•, y•)) = [pHx, x•) +p~(y, y•W/2. Since c1p ~ p ~ c2p 
for suitable 0 < c1 ~ c2 < oo the two metrics are of course metrically equivalent. 
In abuse of notation we write p = P1 + P2 and p = (p~ + p~?/2 . 
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convergence condition (3.2) for the objective function can again be verified 
from a ULLN. We note that equicontinuity of {Qn : n E N} is typically 
obtained as a byproduct of a ULLN, cf. Chapter 5. 

Lemma 3.2 is also useful in other contexts where Qn does not necessar
ily have the interpretation of an objective function defining an estimator: 
Consider the case where Rn(w) = Qn(zb ... , Zn, fn) and Rn = Qn('Fn) do 
not depend on ß. Then the lemma gives suffi.cient conditions under which 
Rn(w)- Rn--+ 0 a.s. {i.p.j as n--+ oo. Such situations, where we consider 
the convergence behavior of Qn(Zl, ... , Zn, fn), arise, e.g., in the consis
tency proof of variance covariance matrix estimators or in the analysis of 
one-step M-estimators. In these cases f n will typically be an estimator of 
non-nuisance and nuisance parameters. 

In the following lemma we give suffi.cient conditions for (3.4) given the 
objective function is of the form 

and 
Qn(r,ß) = tJn (Sn(r,ß),r,ß). 

Lemma 3.3. 6• 7 Let Sn : n X T X B --+ c, and Sn : T X B --+ c be 
sequences of functions where C is a subset of a Euclidean space, and let 
tJn : C X T X B --+ R. Let (I) { tJn : n E N} be uniformly equicontinuous 
on C X T X B, or let (II} { tJn : n E N} be equicontinuous on the subset 
KxTxB ofCxTxB, whereT, B, andK are compact, andSn(r,ß) E K 
for all (r,ß) E T x B and n E N. 

{a) lf a.s. {i.p.j 

sup IBn(w,r,ß)- Sn(r,ß)i --+ 0 as n--+ oo, {3.5} 
TxB 

then a.s. {i.p.j 

sup ltJn (Sn(w,r,ß),r,ß)- tJn (Sn(r,ß),r,ß)l--+ 0 as n--+ oo. {3.6} 
TxB 

{b) If {Sn : n E N} is equicontinuous [uniformly equicontinuous] on T x 
B, then {tJn(Sn(.), .) : n E N} is equicontinuous {uniformly equicontinuous] 
on T x B. 

6 Here andin the following Jxl denotes the Euclidean norm of a vector x. 
7We remind the reader that the notion of equicontinuity of a family of func

tions on a subset as used in Lemma 3.3 is stronger than the notion of equicontinu
ity of the family of the restrictions of these functions to that subset; cf. Footnote 
4. 
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Objective functions of the form considered in Lemma 3.3 arise in par
ticular in the case of generalized method of moments estimators. For these 
estimators we typically have 

n 

Sn(w,fn,ß) = n-1 Lqt(Zt,fn,ß) 
t=1 

and 
n 

Sn(fn,ß) = n-1 Z:Eqt(Zt,fn,ß), 
t=1 

where in the correctly specified case Sn is a vector of moments which equal 
zero at the true parameter value. {The functions {)n have the interpretation 
of measuring the distance of respective moments from zero.) In this case 
condition (3.5) again boils down to a ULLN for the functions qt(Zt, r, ß). 

In comparing conditions (I) and {II) we note that the latter seems to 
be more relevant in applications: In many cases {)n will not depend on n 
and will be continuous, hence the equicontinuity condition in (II) is then 
automatically satisfied. Furthermore, if {3.5) is inferred from a ULLN for 
the functions qt(Zt, r, ß), as described above, then typical catalogues of 
assumptions for such ULLNs assume compactness of T x B and a domi
nance condition, which implies that all functions Sn take their values in a 
common compact set. Consequently, the remaining conditions in (II) will 
be satisfied automatically in such circumstances. Similarly as in the case 
of Lemma 3.2, we note that Lemma 3.3 is also useful in other contexts 
where {)n(Sn, ., .) does not have the interpretation of an objective function 
defining an estimator. 

Lemmata 3.1, 3.2 and 3.3 collect basic tools for the consistency proof 
of M-estimators. These tools have been used extensively in the literature. 
Explicitly stated versions of these lemmata in the econometrics literature 
can be found, e.g., in Amemiya {1973, 1983), White {1980), Bierens (1981), 
Domowitz and White (1982), Bates {1984), Bates and White {1985), Gal
lant and White {1988), and Pakes and Pollard {1989). Proofs of Lemmata 
3.1 - 3.3 are given in Appendix A. Instead of proving Lemmata 3.2 and 
3.3 directly we deduce both lemmata from Lemma Al in Appendix A; this 
lemma may also be useful for generating alternative versions of Lemmata 
3.2 and 3.3. 

In Lemma 3.1 we have assumed that minimizers ßn of the objective 
function exist eventually. The following lemma gives sufficient conditions 
for the existence and measurability of minimizers. (Of course, the a.s. part 
of Lemma 3.1 holds even if the ßn arenot measurable.) With ~(M) we 
denote the Borela-fieldon a metrizable space M and with 3n the product 
a-field on zn. 

Lemma 3.4. Assurne B is compact. Let Qn(Zt. ... , Zn. r, .) be a continuous 
function on B for each (z1, ... ,Zn,r) E zn X T and let Qn(.,ß) be a3n® 
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~(T)-~(R)-measurable function on zn x T for each ß E B. Then there 
exists a 3n ® ~(T)-~(B)-measurable function ßn = ßn(zb ... , Zn, r) such 
that for all ( Zl' ... ' Zn' T) E zn X T 

holds. 

Of course, the lemma ensures also the 2l-~(B)-measurability of ßn = 
ßn(Zt, ... , Zn.fn) given fn is 2l-~(T)-measurable. For the case where Bis a 
compact subset of Euclidean space the above lemma is given in Sehrnetterer 
(1966, Ch. 5), Lemma 3.3, andin Jennrich (1969), Lemma 2.8 We note that 
measurable minimizers exist also in more general contexts than the one 
described in the above lemma; see, e.g., Pfanzagl (1969), Corollary 1.10, 
and Brown and Purves (1973). 

The above discussion documents the importance of ULLNs in the context 
of consistency proofs. A detailed study of ULLNs will be given in Chapter 5. 
In the next chapter we comment on possible extensions and limitations of 
the theory presented above. 

8 The proof in Jenmich (1969) seems tobe in error. 
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FURTHER COMMENTS ON 
CONSISTENCY PROOFS 

In this chapter we comment further on the classical consistency proof, dis
cuss possible extensions and point out limitations of the theory. 1 In the 
following let Rn(w,ß) = Qn(ZI.· .. ,zn,fn,ß) be some objective function, 
let ßn be a corresponding M-estimator satisfying (2.1), and let Rn(ß) = 
Qn(1'n,ß). 

4.1 Transforming the Objective Function 

Sometimes it is useful to replace Rn with a modified function R~ that 
defines the same estimator ßn, but is easier to handle in the consistency 
proof. Of course, standard practices like transforming Rn monotonously 
or concentrating the objective function w.r.t. certain parameters serve this 
purpose. In particular, to avoid unnecessary moment requirements, it is 
often useful to consider modifications of the objective functions of the form 

R~(w,ß) = Rn(w,ß)- Rn(w,ß,.) 

where ß,. E B is fixed; see, e.g., Huber (1967). We illustrate this within 
the context of least squares estimation of a nonlinear regression model. In 
particular, consider the following special case of the nonlinear regression 
model defined in Example 1 of Chapter 2 with ßo = ao and ß = a: 

Yt = g(xt,ßo) + ft, 
where (xt) and (et) are independent of each other, (x~, ft)' is strictly sta
tionary and ergodic, E(et) = 0 and 0 < E[g(xt,ßo)- g(xt,ß)]2 < oo for all 
ß-:/= ßo. Here the objective function of the least squares estimator is 

n 

Rn(w,ß) = n-1 L [Yt- g(xt,ß)]2 

t=1 
n n 

= n-1 :Ee~ + 2n-1 L ft [g(xt,ßo)- g(xt,ß)] 
t=1 t=1 

1For the sake of simplicity we discuss mainly a.s. results in this chapter. 
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n 
+ n-1 L [g(xt,ßo)- g(xt,ß)]2 . 

t=1 

The obvious choice for Rn(ß) is E[Rn(w, ß)], which would require the ad
ditional assumption of a finite second moment for Et. Suppose now that for 
the analysis (but, of course, not for the computation) of the least squares 
estimator we replace Rn ( w, ß) with 

R~(w,ß) = Rn(w,ß)- Rn(w,ßo) 
n 

2n-1 LEt [g(xt,ßo)- g(xt,ß)] 
t=1 

n 

+n-1 L[g(xt,ßo) -g(xt,ß)]2 • 

t=1 

Then the least squares estimator also minimizes this modified objective 
function, which does not involve powers of Et higher than the first. Thus by 
modifying the objective function it is possible to avoid the assumption of a 
finite second moment for Et in the analysis of the least squares estimator. 

4.2 Weakening the Uniform Convergence 
Assumption 

As is easily seen, a basic sufficient condition for PB(ßn,ßn) --+ 0 a.s. as 
n --+ oo is that for each e > 0 

liminf [ inf _ Rn(w,ß)- Rn(w,ßn)] > 0 a.s., (4.1) 
n-+oo {ßEB:pB(ß,ß,.);:::::€} 

i.e., outside the open balls of radius e centered at ßn the functions Rn are 
larger than at ßn, uniformly for large n, cf. Perlman (1972). The proof 
of Lemma 3.1 proceeds by deducing condition (4.1) from the identifiable 
uniqueness condition, i.e., from the condition that for each e > 0 

liminf [ inf _ Rn(ß)- Rn(ßn)] > 0, (4.2) 
n-+oo {ßEB:pB(ß,ß,.)2:€} 

and from the assumption that Rn(w, ß)- Rn(ß) converges uniformly to 
zero a.s.; in fact, under uniform convergence (4.1) and (4.2) are equivalent. 
The important distinguishing feature between (4.1) and (4.2) is that the 
latter is nonstochastic and hence is easier to handle. 

Inspection of the proof of Lemma 3.1 shows that the assumption of uni
form convergence is only suffi.cient but not necessary for deducing (4.1) 
from (4.2). In fact, instead of uniform convergence it is suffi.cient to assume 
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that 
limsup sup [Rn(ß)- Rn(w,ß)] :50 a.s., 

n-+oo B 
(4.3) 

and 
limsup [Rn(w,ßn)- Rn(ßn)] :50 a.s. (4.4) 

n-+oo 

Of course, (4.3) and (4.4) taken tagether are equivalent to: 

sup [Rn(ß)- Rn(w,ß)]-+ 0 a.s. as n-+ oo, (4.5) 
B 

and 
Rn(w,ßn)- Rn(ßn)-+ 0 a.s. as n-+ oo. (4.6) 

Condition ( 4.5) is a "one-sided" uniform convergence condition. Similarly 
as the uniform convergence condition (3.2) can typically be implied from 
ULLNs, as discussed in Chapter 3, the "one-sided" uniform convergence 
condition ( 4.5) can frequently be deduced from "one-sided" ULLNs. In the 
important special case where ßn = ß condition ( 4.6) reduces to pointwise 
convergence at ,8, and hence typically to a LLN. However, in the general 
case ßn could potentially be anywhere in the parameter space. Hence, given 
our ignorance about the position of ßn in the parameter space, to imply 
( 4.6) in the general case it seems that we have to assume 

sup [Rn(w,ß)- Rn(ß)] -+ 0 a.s. as n-+ oo, (4.7) 
B 

which tagether with (4.5) implies (4.6). However, the two "one-sided" uni
form convergence conditions (4.5) and (4.7) tagether are equivalent to uni
form convergence of Rn(w, ß)- Rn(ß) to zero. Hence a weakening of the 
uniform convergence condition (3.2) as suggested in (4.5) and (4.6) only 
seems practical in the important special case where ßn = ß. For further 
discussions see Pfanzagl (1969), Perlman (1972), Zaman (1985), Pollard 
(1991), and Liese and Vajda (1995). 

In cases where uniform convergence of Rn ( w, ß) - Rn (ß) fails, another 
strategy is based on the observation that 

liminf { inf _ [(Rn(w,ß)- Rn(w,ßn)) /bn(ß)]} > 0 a.s. 
n-+oo {ßEB:pB(ß,ßn)2:e} 

(4.8) 
implies (4.1), and hence PB(ßn,ßn)-+ 0 a.s. as n-+ oo, given the functions 
bn satisfy infn infB bn(ß) > 0. Let 

R~(w,ß) = [Rn(w,ß)- Rn(w,ßn)] /bn(ß) 

and 
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We may now attempt to verify, analogously as in the above discussion, ( 4.8) 
from an identifiable uniqueness condition applied to the rescaled functions 
.k~ (ß) and uniform ( or one-sided uniform) convergence of the rescaled func
tions R~ ( w, ß) - .k~ (ß). The idea is that it may be easier to obtain uniform 
convergence after rescaling. Passihle choices for the scaling functions are 

bn(ß) = jRn{ß)j 
or 

bn(ß) = 1 + jRn{ß)l; 
see Huber {1967), Perlman {1972), and Zaman {1991). Note that while 
ßn also minimizes .k~ (ß) it is typically not the case that ßn minimizes 
R~ (w, ß). This idea of rescaling the objective function has been used in the 
context of nonlinear regression models with nonstochastic regressors by Wu 
{1981) and Läuter {1987), seealso Zaman {1989). 

4.3 Uniform Convergence and Compactness 

In case the parameter space is not compact the assumption of uniform 
convergence in Lemma 3.1 (or even the assumption of one-sided uniform 
convergence) may be diffi.cult to meet. In this case a frequently used strat
egy is to demonstrate by ad hoc arguments that there exists a compact 
subset of the parameter space such that over the complement of the com
pact subset the objective function is eventually "large" .2 Typically this will 
be achieved by constructing the compact subset such that it contains the 
true parameter, or more generally the ßn 's, and such that uniformly over 
the complement of the compact subset eventually Rn(w, ß)-Rn(w, ßn) ex
ceeds some positive constant (possibly depending on w). AB a consequence 
we can then restriet the analysis to the compact subset, since eventually 
any minimizer of the objective function over the entire parameter space 
must fall into the compact subset. 

We illustrate this approach within the context of least squares estimation 
of a simple nonlinear regression model. Consider again the following special 
case of the nonlinear regression model defined in Example 1 of Chapter 2 
with ßo = ao and ß = a: 

Yt = g(xt,ßo) + ft, 
where (xt) and (et) are independent of each other, (x~, Et)' is strictly sta
tionary and ergodic, and where E(et) = 0 and a2 = E(e~) < oo.3 Further
more let the parameter space B be R, and let g(x, ß) be measurable in the 

2In principle the compact subset may depend on w. 
3 The assumption of a finite second moment of ft is made for simplicity only. 

It could be avoided along the lines of the discussion in Section 4.1. 
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first argument and continuously differentiable in the second argument. If 
we assume, e.g., that 

(4.9) 

we can construct a compact subset B* = [ßo - M, ßo + M] of the parameter 
space, such that the least squares estimator ßn falls eventually into B., as 
follows: 

The objective function of the least squares estimator is given by 

n 

Rn(w,ß) = n-1 L [Yt- g(xt,ß)] 2 . 

t=1 

We now have to find a constant M > 0 such that 

liminf [ inf [Rn(w,ß)- Rn(w,ßo)J] > 0 a.s. 
n-+oo lß-ßoi>M 

Let 
c(x) = inf[8g(x,ß)/8ß]2 

B 

and C = Ec(xt), then using the mean value theorem observe that 

liminf inf n-1 L [g(xt,ß)- g(xt,ßo)]2 { [ 
n ]1/2 

n-+oo lß-ßoi>M t=1 

[ 
n ]1/2} 

- 2 n-1 t;€~ 

{ [ 
n ]1/2 [ n ]1/2} 

> l~~~f M n-1 r;c(xt) -2 n-1 r;€~ 

MC112 - 20' > 0 a.s. 

if M > 20' fC112 , noting that C > 0 by assumption. Again using the mean 
value theorem and the Cauchy-Schwarz inequality we get forM > 20' / C112 : 

liminf { inf [Rn(w,ß)- Rn(w,ßo)l} 
n-+oo lß-ßoi>M 

> liminf { inf { [n-1 t [g(xt,ß)- g(xt,ßo)]2]112 
n-+oo lß-ßoi>M t=1 

4In the linear case this corresponds to the assumption E(xn > 0. 
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[ [ n-' t [g(x,, ß) - g(x,, ßo)J' r -+ _, t ,f']}} 
> MC112 (MC112 - 2a) > 0. 

Consistency of the least squares estimator ßn for ßo can now be inferred 
from Lemma 3.1 applied to the compact subset B. = [ßo - M, ßo + M]: 
First, observe that the identifiable uniqueness condition for the restricted 
problern becomes 

inf E [g(xt, ß)- g(xt, ßo)]2 > 0, 
·~lß-ßoi~M 

and is satisfied in view of (4.9) and the mean value theorem. Second, uni
form convergence over B* of Rn(w, ß) to Rn(ß) = E[Rn(w, ß)] follows from 
a standard ULLN for stationary and ergodie processes, if we assume addi
tionally the standard dominance condition 

For ULLNs for stationary and ergodie processes see, e.g., Ranga Rao (1962) 
and Pötscher and Prucha (1986a), Lemma A.2. 

As suggested by the above example, demonstrations that there exists 
a compact subset of the parameter space to which the analysis can be 
restricted will typically be problern dependent. In the case of maximum 
likelihood estimation with a parameter space that is a closed subset of 
Euclidean space conditions for the existence of such a compact subset typ
ically maintain that the densities decline to zero along any sequence of 
parameters whose norm tends to infinity; compare, e.g., Wald (1949), Hu
ber (1967), Perlman (1972). Of course, the assumption that the parameter 
space is a closed subset of Euclidean space is not satisfied in such basic 
cases as in the case of maximum likelihood estimation of the mean J-L and 
the positive definite variance covariance matrix :E of a normally distributed 
random vector. Still, a suitable compact subset of the form 

with c1 < oo, 0 < c2 < c3 < oo can be found upon utilizing the specific 
structure of the normal density (where Amin and Amax denote the smallest 
and largest eigenvalues); cf. also the discussion after Theorem 14.1. 

An alternative to the strategy of reducing the consistency problern to a 
compact subset of the parameter space is to extend the estimation prob
lern to a compactification of the parameter space; see for example Ba
hadur (1967), Huber (1967), Perlman (1972), Heijmans and Magnus (1986a, 
1987). Although compactifications are typically easy to construct, one then 
has to deduce, e.g., the identifiable uniqueness condition of the extended 
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problern from the original problem. Typically, this will require similar ar
guments as those necessary for demonstrating that the problern can be 
restricted to a compact subset of the parameter space. 

4.4 Approximate M-Estimators 

Inspection of the proof of Lemma 3.1 reveals that it also holds for approx
imate M-estimators. We say that ßn is an approximate M-estimator if the 
sequence ßn eventually satisfies 

(4.10) 

where 8n ~ 0 as n ~ oo is a given sequence of positive numbers, cf., 
e.g., Wald (1949). To ensure the existence of approximate M-estimators we 
assume here that eventually inf B Rn ( w, ß) > -oo. 5 

We note that not only Lemma 3.1, but also the discussions in Sections 
4.1 - 4.3, apply to approximate M-estimators. This is reassuring, since any 
numerically calculated M-estimator will be an approximate M-estimator 
rather than an M-estimator in the strict sense. The existence of measurable 
approximate M-estimators is guaranteed under general conditions, see, e.g., 
Brown and Purves (1973). 

4.5 Limitations: An Illustrative Example 

In this section we review exemplarily the basic structure of the consistency 
proof of maximum likelihood estimators in autoregressive moving average 
(ARMA) models. Although ARMA models are linear, the corresponding 
likelihood function is highly nonlinear. It turnsout that (unless the model 
dass is restricted in an unnatural way) the consistency proof is compli
cated. For instance, as will be explained in more detail below, the objective 
function Rn ( w, ß) does in general not converge uniformly ( or one-sided 
uniformly) to some limiting function R(ß), even after restricting the prob
lern to some compact space. The message from the example is that any 
catalogue of assumptions that allows the direct application of the dassical 
consistency proof will, while covering probably many models of interest, not 
be applicable to all situations of interest. Hence problern specific methods 
have to be employed in such cases. 

The consistency proof for ARMA models (without restricting the model 
dass in an unnatural way) is due to Hannan (1973) for the univariate case 
and Dunsmuir and Hannan (1976) for the multivariate case. Some lacunae 

5 This assumption could be avoided by a more general formulation of (4.10), 
see, e.g., Pfanzagl (1969) or Brown and Purves (1973). 
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in the latter paper are closed in Deistler, Dunsmuir and Hannan (1978) 
and Pötscher (1987). The latter paper also deals with the misspecified 
case and general parameter restrictions; for estimation of ARMA models 
under misspecification seealso Ploberger (1982b) and Pötscher (1991). For 
a general reference on the estimation of ARMA models see Hannan and 
Deistier (1988). 

Consider the univariate ARMA(1,1) model 

t E Z, (4.11) 

where L is the lag operator, a(z) = 1 + az, b(z) = 1 + bz, Iai < 1, lbl ~ 1, 
and where ft is white noise, i.e., E(Et) = 0, E(En = a 2 > 0 and Eftfr = 0 
fort =f. r. The unique weakly stationary solution of (4.11) is given by 

Yt = k(L)Et (4.12) 

where 
00 

k(z) = L kizi = a-1 (z)b(z) 
i=O 

is the transfer function. Observe that Yt depends on (a, b) only through 
k(z), that is (k, a 2 ) are the "intrinsic" parametersrather than (a, b, a 2). The 
following discussion focuses on the estimation of (k,a2 ). 6 The parameter 
space is then 

B = {ß = (k, a 2 ) : k(z) = (1 + az)-1 (1 + bz), Iai < 1, lbl ~ 1, 0 < a 2 < oo }. 

This space can be endowed with a suitable metric. Let ßo = (ko, a5) be 
the true parameter. As the objective function Rn(w, ß) defining the esti
mator for ßo we take the normal quasi log-likelihood function (multiplied 
by -1/n). A detailed study of the properties of the objective function Rn 
can be found in Deistier and Pötscher (1984). 

We note that B is not compact, which refl.ects the fact that Iai < 1 and 
0 < a 2 < oo. (In a multivariate version of (4.11) there is also another 
source for non-compactness, as the parameters in ( 4.11) can also become 
arbitrarily large.) To transfer the problern to a compact parameter space 
neither strategy suggested in Section 4.3 is readily and directly applicable. 
However, a combination of both strategies works: One can extend the ob

jective function Rn(w, ß) to a larger space B** ;:2 B in a suitable way, one 
can find a compact subset B* ~ B** of the !arger space and then show 
that minimizing Rn(w, ß) over B* leads to the sameanswer as minimizing 
Rn(w, ß) over B (for large n a.s.). 

6Given consistent estimators for (k, a 2 ) it is then possible to obtain consis
tent estimators for (a, b) given that the parameters (a, b) are identifiable in the 
parameter space under consideration. Of course, one could work directly with 
(a,b,a2 ), but this would not simplify, but rather complicate the analysis. 
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.Aß mentioned above, a major difliculty arises since even on the compact 
set B,. the objective function R",(w, ß) does not in general converge uni
formly (or one-sided uniformly) to its asymptotic counterpart R(ß).7 The 
non-uniformness arises for example near b = 1 and b = -1, that is for 
models with a root of the moving average part near the unit circle. The ap
proach taken in the literature cited above is to prove a more subtle version 
of {4.3) by modifying R",(w,ß) and R(ß) suchthat the modified functions 
converge uniformly over suitable subsets of the parameter space and then 
by letting the "degree of modification" decline to zero. 8 Consistency is then 
obtained by verifying {4.4). We note also that the verification of (4.4) is 
involved; for a detailed discussion see Pötscher (1987) and Dahlhaus and 
Pötscher (1989). 

4.6 Identifiable U niqueness 

As mentioned in Chapter 3, in case Rn = R is continuous (or lower semi
continuous) and the parameterspaceBis compact, the identifiable unique
ness condition is equivalent to the existence of a unique minimizer of R. 
As a consequence, the identifiable uniqueness condition can be checked 
conveniently by inspection of a single function. The following lemma gives 
conditions under which, also in the case where Rn depends on n, a simpli
fied version of the identifiable uniqueness condition can be found. 

Lemma 4.1. Given a sequence of functions Rn : B -+ R, let B be compact 
and {Rn : n E N} be equicontinuous on B. Furthermore let ßn be a sequence 
of minimizers of Rn with ßn -+ ß as n -+ oo. Then ßn is identifiably unique 
w.r.t. Rn iff 

liminf [Rn(ß)- Rn(ßn)] > 0 for all ß =/:- ß 
n-oo 

{ or equivalently iff lim inf n-oo [Rn (ß) - Rn (ß)] > 0 for all ß =/:- ß}. 

In the case of least mean distance or generalized method of moments esti
mation equicontinuity of {Rn : n E N} is typically obtained as a byproduct 
from a ULLN (via Lemmata 3.2 or 3.3). Of course, an important special 
case where ßn -+ ß is the case ßn = ß. 

As discussed in Chapter 3, identifiable uniqueness implies essential 
uniqueness of the minimizers ßn of Rn in the sense that the diameter of 
the set of minimizers of Rn goes to zero as n tends to infinity. In the cor
rectly specified case this assumption seems typically tobe reasonable as it 

7We note that in this example the function R takes its values in RU { +oo}. 
8 This modification of the objective function is highly problern specific and 

exploits heavily the structure of ARMA models. 
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frequently just boils down to identifiability of the true parameter. In the fol
lowing we discuss in more detail the adequacy of the identifiable uniqueness 
assumption under misspecification: For simplicity assume for the moment 
that Rn = R . Then identifiable uniqueness implies the existence of a unique 
minimizer of R, and hence - loosely speaking - the existence of a unique 
best approximate model. It seems that there is no genuine reason why, in 
general, this should necessarily be the case under misspecification. Indeed, 
within the context of ARMA models Kabaila (1983) has demonstrated the 
existence of multiple minimizers of R if ARMA models of too low an order 
are fitted to higher order ARMA processes. Example 3 in Pötscher (1991) 
provided even an instance where R is constant over the entire parameter 
space and hence is minimized at every parameter value. On the other hand 
Ploberger (1982a) showed that the best approximating ARMA model is 
unique provided the amount of misspecification (measured in terms of the 
spectral measure) is small. 

Freedman and Diaconis (1982) consider the "simple" problern of esti
mating a location parameter from an i.i.d. sample, say ZlJ ... , Zn· In their 
example the objective function is of the form 

n 

R,.(w, ß) = n-1 L p(zt - ß), 
t=l 

where p is a certain function that is symmetric about zero and where the 
Zt 's have a density that is symmetric about zero. They show that R(ß) = 
E[R,.(w,ß)] has two minima located symmetrically around zero and hence 
the identifiable uniqueness condition is violated (and the M-estimator is 
inconsistent for the true value zero).9 Donoho and Liu (1988) show that 
for certain minimum distance estimators the Freedman-Diaconis effect can 
occur even if the hypothesized and true densities are arbitrarily close. 

Given the above discussion it seems of interest to consider the properties 
of M-estimators without the assumption of identifiable uniqueness. In the 
context of misspecified ARMA models this question has been analyzed in 
Ploberger (1982b) for prediction error estimators, and in Pötscher (1987, 
1991) for maximum likelihood estimators. Within that context Rn= Rand 
ßn is the estimator for the transfer function and the innovation variance, 
cf. Beetion 4.5. They demonstrate that ßn still converges to the set of 
minimizers of R, where the ARMA systems corresponding to the minimizers 
have the interpretation of best approximators to the true ARMA process 

9We note that in this example the location model is correctly specified. The 
effect stems from the fact that the objective function differs from the true likeli
hood. Another interesting feature of this example is that although 8R(ß) / 8ß = 0 
at the true parameter value also the M-estimator of type II is inconsistent. How
ever a consistently started one-step M-estimator is consistent. For further dis
cussions of one-step M-estimators see, e.g., Bickel (1975), Pötscher and Prucha 
(1986a) and Prucha and Kelejian (1984). 
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within the given model dass. In the following we obtain a similar result 
within the present context that also covers the case where Rn may depend 
on n. We introduce the following regularity condition for level sets. 

Definition 4.1. For a given sequence of functions Rn : B ---+ R and a 
sequence Cn E R the Level sets Bn = {ß E B : Rn (ß) :::; Cn} are said to be 
regular if Bn =f. 0 for n E N and if for every E > 0 

lim inf [ inf _ Rn (ß) - sup Rn (ß)l > 0. 
n--+oo {ßEB:pB(ß,Bn)~c:} ßEBn 

(4.13) 

For example, if Rn _ R is lower semi-continuous and B is compact, 
then every sequence of level sets Bn with Cn = c 2:: minB R is regular. 
Definition 4.1 clearly generalizes the definition of identifiable uniqueness. 
The following lemma generalizes Lemma 3.1. 

Lemma 4.2. Let Rn : n X B ---+ R and Rn : B ---+ R be two sequences of 
junctions such that a.s. [i.p.j 

sup iRn(w,ß)- Rn(ß)i-+ 0 as n---+ oo. 
B 

(4.14) 

Let Cn = infB Rn(ß) > -oo and let the corresponding level sets Bn be 
regular. Then for any sequence ßn such that eventually10 

Rn(w,/Jn) < inf Rn(w,ß) + bn, - B (4.15) 

where 8n > 0 and 8n ---+ 0 as n ---+ oo, i.e., for any sequence of almost 
minimizers ßn, we have PB(ßn, Bn)---+ 0 a.s. [i.p.j as n---+ oo.U 

The above Iemma tells us that the distance between ( almost) minimizers 
of Rn(w, ß) and the set of minimizers of Rn(ß) becomes negligible. General
izations similar to the generalizations of Lemma 3.1 discussed in Section 4.2 
are also possible for the above Iemma. Furthermore, in cases where uniform 

1°For the i.p. version of the Iemma this could be relaxed to the requirement 
that (4.15) holds on sets On E 2( with P(On) --> 1. 

11The formulation of the Iemma is such that the existence of ßn is implicitly 
assumed. We note, however, that the existence of ßn satisfying (4.15) eventually 
follows in fact from the a.s. version of (4.14) and the assumption that C,.. = 
infB Rn(ß) > -oo, since they together imply that eventually infB Rn(w, ß) > 
-oo. Similarly, the existence of ßn satisfying (4.15) on sets On E 2( with P(On) --> 
1 - cf. also Footnote 10- follows in fact from the i.p. version of (4.14) and the 
assumption that Cn = infB Rn(ß) > -oo. 
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convergence over the entire parameter space B does not hold, strategies for 
reducing the parameter space as discussed in Section 4.3 may be combined 
with Lemma 4.2. 

If Rn = R is lower semi-continuous and B is compact the regularity as
sumption on the level sets Bn and the assumption Cn > -oo in Lemma 4.2 
are always satisfied, cf. the discussion after Definition 4.1. Hence, in this 
important case, Lemma 4.2 provides a complete description of the conver
gence behavior of /3n without requiring any further assumptions beyond the 
uniform convergence condition (4.14). In the general case, where Rn may 
depend on n or where Rn = R is not lower semi-continuous or where B 
is not compact, Lemma 4.2 also covers many further situations where the 
identifiable uniqueness assumption is violated. We note, however, that in 
the general case the identifiable uniqueness assumption can also fail in ways 
not covered by Lemma 4.2. For example, consider a situation where each 
Rn, although having a unique minimizer ßn, becomes flatter and flatter at 
ßn as n increases. Then the regularity condition on the level sets Bn in 
Lemma 4.2 - which in this example is equivalent to the identifiable unique
ness condition due to the uniqueness of the minimizers- will typically be 
violated. In this and other situations where Lemma 4.2 fails to apply, not 
much can be said about the convergence behavior of ßn in general, as it 
will depend on the particularities of the estimation problern at hand. In the 
situation just discussed it may in some instances be possible to renormal
ize Rn and Rn suchthat Lemma 3.1 applies to the renormalized functions 
and to establish convergence of p B (/3n, ßn) to zero in this fashion. In other 

instances /3n will in factnot satisfy pn(/3n,ßn)---+ 0 a.s. or i.p. 
Sometimes in situations where the identifiable uniqueness condition fails 

but Lemma 4.2 applies, ensuring convergence of /3n to the set of minimizers 
of Rn, one is interested only in certain functions, (n say, of the parameter 
ß that are constant over the set of parameter values that minimize fln. 
Such functions are reminiscent of "estimable" functions of an unidentifi
able parameter in linear models and they can be estimated consistently 
(under regularity conditions) even if the identifiable uniqueness condition 
is violated. 

Corollary 4.3. Suppose the assumptions of Lemma 4.2 hold. Let (n : B ---+ 

Rk be a sequence of functions that is constant on Bn and that is uniformly 
equicontinuous on the subset U{ Bn : n E N} of B .12 Then (n(/3n)- (n ---+ 0 

12Recall that uniform equicontinuity on a subset is a stronger condition than 
uniform equicontinuity of the family of restrictions to the same subset. The uni
form equicontinuity property required in the corollary clearly follows if (n is 
equicontinuous on a compact set containing U{ Bn : n E N}. It trivially also 
follows from uniform equicontinuity of (n on B (which in case B is compact re
duces to equicontinuity on B). The (uniform) equicontinuity conditions simplify 
to corresponding (uniform) continuity conditions if (n does not depend on n. 
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a.s. [i.p.j as n---+ oo, where (n is the value of (n on Bn. 

A related result is given in Gallant (1987b). Of course, Corollary 4.3 also 
holds if the functions (n take their values in an arbitrary metric space. Fur
thermore, inspection of the proof of Corollary 4.3 shows that the essential 
ingredient is - apart from the properties of (n assumed in Corollary 4.3 
- the property Pn(ßn, Bn) ---+ 0 a.s. (i.p.j. Hence, a result like Corollary 
4.3 can be obtained for situations not covered by Lemma 4.2 as long as 
the sequence of estimators "converges" to a sequence of sets for which the 
functions (n satisfy properties analogous to the ones listed in Corollary 4.3. 

Corollary 4.3 shows how consistency of "estimable" functions can be de
duced from Pn(ßn, Bn)---+ 0. It is worth pointing out that even ifthis crucial 
condition cannot be established, it may still sometimes be possible to prove 
the consistency of "estimable" functions along the following lines: Suppose 
the entire estimation problern is reparameterized in terms of a new param
eter, say (),such that the "underidentification" disappears. (One may think 
of () as composed of suitable identifiable functions of the original parameter 
ß.) If it is then possible to establish consistency of estimators for () directly 
in the new parameterization without recourse to the ß-parameterization, 
consistency for functions of interest, which depend on ß only through () (in 
a continuous fashion), will then follow immediately. Of course, a number of 
technical complications may be encountered in actually implementing this 
approach in a particular case. 13 

13Essentially such an approach is used in establishing consistency for (nor
mal quasi) maximurn likelihood estimators of transfer functions of multivariate 
ARMA models. In this case the estimable functions in 8 are the transfer function 
coefficients. For references see Section 4.5. 



5 

UNIFORM LAWS OF LARGE 
NUMBERS 

As documented in Chapters 3 and 4 a basic ingredient for typical consis
tency proofs is that the difference between the objective function and its 
nonstochastic counterpart converges to zero uniformly over the parameter 
space ( or, if the approach in Section 4.3 is followed, at least over a suit
ably chosen subset). In many cases uniform convergence of the objective 
function will follow from a uniform law of large numbers (ULLN), either 
directly or via Lemmata 3.2 and 3.3. 

As mentioned in Chapter 1 there is a considerable body of Iiterature on 
ULLNs for stationary or asymptotically stationary processes. However, for 
a proper asymptotic theory for dynamic nonlinear models we need ULLNs 
that apply to temporally dependent and heterogeneous processes. Hoadley 
(1971) introduced a ULLN that allows for independent and not necessarily 
identically distributed data processes. This ULLN (or some version of it) 
has been used widely in the econometrics literature, see, e.g., White (1980), 
Domowitz and White (1982), Levine (1983), White and Domowitz (1984), 
Bates and White (1985) and Domowitz (1985). However, Andrews (1987) 
and Pötscher and Prucha (1986a,b) pointout that the assumptions main
tained by this ULLN, and hence the catalogues of assumptions in the papers 
utilizing this ULLN, are severe and preclude the analysis of many estima
tors and models of interest in econometrics, since the assumptions of this 
ULLN essentially require that the random variables involved are bounded. 
(We note, however, that since the proofs of the theorems regarding consis
tency in the above papers by Bates, Domowitz, Levine and White follow 
the structure of the classical consistency proof, Hoadley's ULLN could be 
readily replaced by some alternative ULLN. Of course, this would require 
corresponding modifications in the catalogues of assumptions maintained in 
these papers.) The above observation and the extension of the asymptotic 
theory to dynamic models and temporally dependent and heterogeneaus 
data generating processes necessitated the development of ULLNs that are 
applicable in such settings. Such ULLNs have been introduced by Andrews 
(1987) and Pötscher and Prucha (1986b, 1989, 1994b) and will be presented 
below.1 

1 For simplicity of presentation the results in this chapter are only presented 
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5.1 ULLNs for Dependent and 
Heterogeneaus Processes 

For the following discussion let (E>, p) be a non-empty metric space and let 
the measurable space (Z,3), in which the process (zt) takes its values, be 
a metrizable space with its corresponding Borel u-field. Furthermore, let 
Qt : Z x 8--+ R be 3-measurable for each (} E 8, t E N. ULLNs provide 
conditions under which sums of the form 

n 

n-1 L [qt(Zt, B)- Eqt(Zt, B)] 
t=1 

converge to zero uniformly over the parameter space e. In applying ULLNs 
within the context of Chapter 3 the space e will typically correspond to T x 
Bor B (or some subset thereof). We introduce the following assumptions. 

Assumption 5.1. E> is compact. 

Assumption A. Foreach (} E e there exists an"'> 0 suchthat p(B, ()•) ~ 
"' implies 

lqt(Zt, B•)- qt(Zt, B)l ~ bt(Zt)h [p(B, B•)], for all t E N, a.s., 

where bt : Z --+ [O,oo) and h : [O,oo) --+ [O,oo) aresuchthat bt(Zt) is 
21-measurable, 

n 

supn-1 'L:Ebt(zt) < oo, 
n t=1 

h(y) ! h(O) = 0 as y! 0, and .,.,, bt, h and the null set may depend on B. 

Assumption B. Qt(z, B) = '2:~=1 rkt(z)skt(z, B), where the rkt are 3 -
measurable real functions for all t E N and 1 ~ k ~ K, and the family 
{skt(z,B) : t E N} of real functions is equicontinuous on Z X 8 for all 
1 ~ k ~ K, i.e., for each (z•, ()•) E Z X 8 we have 

sup jskt(z, B) - Skt(z•, B•)j --+ 0 as (z, B) --+ (z•, B•). 
tEN 

Assumption C. (i} Let dt(z) = sup8ee jqt(z, B)j, then 
n 

supn-1 LE [dt(Zt)l+'Y] < oo 
n t=1 

for sequences of random variables. However, they can be readily extended to 
triangular arrays. 
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for some 'Y > 0, and 
(ii) supn n-1 2::;=1 E ht(Zt)l < oo for 1 ~ k ~ K. 

Assumption D. The sequence {H~: n E N} is tight on Z where H~ = 
n-1 2::;=1 Hf and Hf is the distribution of Zt. (That is, 

n 

lim supn-1 LP(zt f/:. Km)= 0 
m-+CXJ n t=l 

for some sequence of compact sets Km ~ Z.) 

Assumption 5.2. (Local Laws of Large Numbers) For 1J > 0 let 

q;(z,O;ry) = sup qt(z,o•) 
p(0,0•)<'1 

and 
qt*(z, 0; 'TJ) = inf qt(z, o·). 

p(0,0•)<'1 

For each 0 E e and 1J > 0 small enough (i. e., 0 < 1J ~ ry( 0)) the functions 
q;(z, 0; ry) and qt*(z, 0; ry) arereal valued and 3-measurable and the random 
variables q;(zt,O;ry) and qt*(zt,O;ry) satisfy a strong [weakj LLN for all 
'Tl > 0 small enough. 

In assuming the existence of a LLN for the "bracketing" functions 
q; (zt, 0; ry) and qt* (zt, 0; ry) in Assumption 5.2 it is implicitly maintained 
that their expectations exist and are finite. The 3-measurability and finite
ness of q; and qh maintained in Assumption 5.2 follows automatically 
under Assumptions B and 5.1, since the map 0 -> qt(z, 0) is continuous 
for every z E Z and since e is compact and metrizable. Similarly, under 
Assumptions B and 5.1 the 3-measurability and finiteness of dt(z) is auto
matically ensured. We note furthermore that Andrews (1987) and Pötscher 
and Prucha (1989) refer to local LLNs as pointwise LLNs. However, in this 
book the term pointwise LLNs is used to describe LLNs for qt(zt, 0). 

The following ULLNs follow from Andrews (1987) and Pötscher and 
Prucha (1989), respectively:2 

Theorem 5.1. lf Assumptions 5.1, 5.2 and A hold, then Eqt(Zt, 0) exists 
and is finite and 

(a) SUPoeeln-1 L:~=dqt(Zt, 0)- Eqt(Zt, 0)]1 -> 0 a.s. [i.p.j as n-> oo, 
(b) {n-1 l::~=l Eqt(zt,O): n E N} is equicontinuous on 6. 

2The above catalogue of assumptions can be weakened, see Andrews (1987) 
and Pötscher and Prucha (1986b, 1989, 1994b). 
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Theorem 5.2. 3 If Assumptions 5.1, 5.2 and B, C, D hold, then Eqt(Zt, B) 
exists and is finite and 

(a) supoEe ln-1 L:~=dqt(Zt, B) - Eqt(Zt, B)]l __. 0 a.s. (i.p. j as n __. oo, 
(b} {n-1 L~=1 Eqt(zt, B): n E N} is equicontinuous on e. 

An important feature of both of the above ULLNs expressed in Assump
tion 5.2 isthat they transform locallaws of large numbers into uniform laws 
of large numbers. It is for that reason that those ULLNs have been called 
generic. In a particular application the local laws of large numbers postu
lated in Assumption 5.2 will typically have to be deduced from more basic 
assumptions on the probability law of the process (zt)· For example, if the 
process (zt) is a-mixing or 1/>-mixing then the random variables q;(zt, B; ry) 
and qh ( Zt, B; TJ) have the same respective properties and hence correspond
ing LLNs that are readily available in the literature can be used to imply 
Assumption 5.2. However, as pointed out in Chapter 1, the assumption of 
an a-mixing or 1/>-mixing data generating process seems generallynot tobe 
adequate for a treatment of dynamic models. LLNs tailored to the needs 
of an asymptotic theory for such models have been discussed in McLeish 
(1975a), Eierens (1981, 1982a, 1984, 1987), Gallant (1987a, Ch.7), Andrews 
(1988), Gallant and White (1988), Hansen (1991), De Jong (1995a), and 
Davidson and De Jong (1995), and are the subject of Sections 6.3 and 6.5. 

Assumption A maintains that the functions qt(Zt, B) satisfy a generalized 
Lipschitz condition with respect to e and a moment condition on the gen
eralized Lipschitz bound. In practice this assumption will often be deduced 
from suitable differentiability conditions with respect to (} and dominance 
conditions on the first derivative. In contrast, Assumption B maintains for 
the functions qt(z, B) a continuity type condition jointly with respect to 
z and e. The assumption allows for discontinuities in z given those dis
continuities can be "separated" from the parameters 0.4 Of course, it also 
contains the case where { qt : t E N} is equicontinuous on z X e ( e.g.' if we 
put K = 1, Tkt = 1). We note that Assumptions A and B, and hence Theo
rems 5.1 and 5.2, complement each other. Practically speaking Assumption 
A imposes a stronger "smoothness" condition w.r.t. the parameters while 
Assumption B imposes a stronger "smoothness" condition w.r.t. the data. 
The first part of Assumption C is a standard dominance condition, the sec
ond part is, e.g., automatically satisfied if the rkt are indicator functions. 
Sufficient conditions for Assumption D will be given in Assumptions D1, 

3The joint equicontinuity condition maintained in Assumption B ( and some 
of the other assumptions) can be weakened if Eqt ( Zt, 0), Eq; ( Zt, 0; TJ) and 
Eqto(zt,OiTJ) do not depend on t, which is, for example, the case in a stationary 
or i.i.d. environment with qt = q. For results of this type see Jennrich (1969), 
Theorem 2, and Pötscher and Prucha (1986a), Lemma A.2. 

4 As a consequence, this assumption covers, e.g., the case of the log-likelihood 
function of a Tobit model where the Tkt represent indicator functions. 
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D2, D' and D1' below. For a further discussion of the assumptions see An
drews (1987) and Pötscher and Prucha (1989). Compare also the discussion 
in Section 6.6. 

Within the context of dynamic models we need to consider the applica
tion of ULLNs to functions of the form qt(Wt, ... , Wt-L,, B), where Wt takes 
its values in a Borel subset W of RPw. Typically (but not necessarily) Wt 
will be a vector composed of current endogenaus and exogenous variables. 
The case of a fixed lag length corresponds to lt = l; the case of an increasing 
lag length corresponds, e.g., to lt = t -l ( l ~ 0). The latter case arises, e.g., 
in the context of quasi maximum likelihood estimation of dynamic models 
where the disturbances follow a moving average process. Also models with 
an increasing lag length occur for example in the literature on dynamic fac
tor demand with an endogenaus capital depreciation rate; see, e.g., Epstein 
and Denny (1980) and Prucha and Nadiri (1988, 1996). 

To apply Theorems 5.1 and 5.2 to functions qt(Wt, ... , Wt-l,, B) we define 
in case of a fixed lag length Zt = ( w~, ... , w~-l )'. In case of an increasing 
lag length we define Zt = (w~, w~_ 1 , ... )' (if w_8 is not defined for some 
s ~ 0 we may, e.g., set it equal to an arbitrary element of W). In both 
cases we can then redefine qt(Wt, ... ,Wt-I,,B) as qt(Zt,B). In case of a 
fixed lag length the space z is generally a subset of rt=o w ~ R(1+1)Pw. 

The reason for allowing Z to be a subset, rather than the entire product 
space fJ!=o W, is that qt(., B) may not be defined on the entire product 
space but only on the subset Z (with the process (zt) also taking its values 
only in Z). Analogously, in case of an increasing lag length Z is generally 
a subset of n:o W ~ R 00 . 

Assumptions A, B and C are basically conditions on the functions qt, 
while Assumption D represents a condition on the distribution of the ran
dom variables Zt. If Zt = (w~, ... , w~_1 )' or Zt = (w~, w~_1 , ... )' it seems 
of interest to consider the meaning of this condition in terms of the orig
inally given random variables Wt, and to provide sufficient conditions for 
Assumption D in terms of the process (wt)· 

Assumption Dl. W is a Borel subset ofRPw and Z is a relatively closed 
subset in n:o W. Furthermore the family {fl';': = n-1 z:::;=1 Hf: n E N} 
is tight on W, where Hf is the distribution ofwt.5 

Assumption D2. W is a closed subset ofRPw and Z is a relatively closed 
subset in n:o W.6 Furthermore, for a monotone function s : [0, oo) ---+ 

[0, oo) with s(x) ---+ oo as x---+ oo we have supn n-1 I:~=1 Es(lwtl) < oo. 

5 Note that this assumption postulates tightness of the family {H;;' : n E N} 
on W, and not just tightness of this family viewed as distributions on the larger 
space RPw, cf. Billingsley (1968), Lemma 2 and Problem 8 in Section 6. 

6 0bserve that, since W is closed, Z is closed in R 00 • 
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In Lemmata Cl and C2 in Appendix C we show that either one of As
sumptions Dl and D2 is suffi.cient for Assumption D. Assumptions Dl and 
D2 are given for the case where Zt = (w~, w~_1 , ... )'. Of course, the case 
of a fixed lag length may be regarded as a special situation of the case of 
an increasing lag length. For simplicity of presentation we have given the 
above conditions for the general case only. H one wishes to consider the 
case of a fixed lag length separately, then the above conditions apply with 

rr:o W replaced by rr~=O W. 
It follows from Parthasarathy (1967, p.29) that a suffi.cient condition for 

the family {ft:; : n E N} in Assumption Dl to be tight on W is that 
fr:; converges weakly to some distribution, say f!w, as n -+ oo. A typical 
choice for the function s( x) in Assumption D2 is s( x) = xP, p > 0, or 
s(x) = ln(l +x). In both cases Assumption D2 reduces to a weak moment
type condition. Furthermore, the relative closedness assumption for Z is 
trivially satisfied if z = rr:o w or rr!=o w. 

Assumption D2 maintains that W and hence Z is closed. For more gen
eral formulations of this assumption see Pötscher and Prucha (1989), As
sumption 5A', and Pötscher and Prucha (1994b), Remark 5. 

The common feature of Assumptions D, Dl and D2 isthat they exclude 
situations where some mass of the average probability distribution fi~ of Zt 
escapes a sequence of compact sets in Z. This is achieved in Assumption Dl 
by requiring the analogous property for the average probability distribution 
fi;: ofwt andin Assumption D2 by requiring closedness of Z and by placing 
bounds on moments of certain functions of Wt· 

Returning to the general case where Zt is not necessarily of the form 
Zt = (w~, w~_1 , ... )' we note that Theorems 5.1 and 5.2 only ensure that 
n-1 2::~= 1 [qt(Zt, B) -Eqt(Zt, B)] converges to zero uniformly on 0. In certain 
cases a stronger result, namely that also n-1 2::~1 qt(Zt, B) converges to 
some finite limit uniformly on 0 is useful. Clearly, in order to obtain this 
stronger result we need some kind of asymptotic stationarity of the process 
and of the functions qt. 

Assumption D'. The process (zt) is asymptotically stationary in the 
sense that the probability measures fi~ converge weakly to some probability 
measure [Iz on Z. Purthermore, [Iz and each of the fi~ are tight on Z. 

We note that Assumption D' implies Assumption D, see Theorem 8 in 
Billingsley (1968, p.241). The second half of Assumption D' is automatically 
satisfied if Z is a Borel subset of Euclidean space, or more generally, a Borel 
subset of a complete and separable metrizable space, see Parthasarathy 
(1967, p.29). We can now obtain the following ULLN corresponding to 
Theorem 5.2. 

Theorem 5.3. Let {qt(z,B): t E N} be equicontinuous on Z x 0 and let 
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qt(Z, 0) converge pointwise to some junction q(z, 0) on Z X 8 as t -+ 00. 

Then under Assumptions 5.1, 5.2, C(i}, D' and given 

n 

supn-1 LE [d(zt)1+6] < oo 
n t=1 

for some 8 > 0, where d(z) = sup9E9 lq(z, 0)1, the conclusions of Theorem 
5.2 hold. Furthermore I q(z, O)dflz exists, is finite and continuous on e, 
and 

sup n-1 tqt(Zt,O)- Jq(z,O)dflz -+ 0 a.s. [i.p.j as n-+ oo. {5.1} 
9E9 t=1 

The above theorem is a generalization of Theorem 2 in Pötscher and 
Prucha (1989), which in turn generalizes results in Bierens (1981, 1982a, 
1984, 1987) and Pötscher and Prucha {1986a). If Zt = (w~, ... , w~_1 )' or 
Zt = (w~, w~_1 , ... )' it seems again of interest to give a sufficient condition 
for Assumption D' in terms of the process Wt. That the following assump
tion is sufficient for Assumption D' is established in Lemma C3 in Appendix 
c. 

Assumption Dl'. For all k ~ 0, II::·k converges weakly to some proba
bility measure fiw,k on rr:=O w' w a Borel subset of RPw' and z is rela
tively closed in rr:o w, where II::·k = n-1 L~=1 H;'·k and H;'·k denotes 
the distribution of (w~, ... , w~-k)'. 

Of course, in case of a fixed lag length it suffices to put k = l and to 
replace rr:o w with rr!=o w in the above assumption. 

5.2 Further Remarks on ULLNs 

(i) In light of our discussion in Section 4.2 it may be of interest to 
obtain uniform convergence results for c;;1 L~=1 (qt(Zt, 0)- Eqt(Zt, ll)] and 
"one-sided" versions of the above results. We note that the above results 
readily generalize to those situations, see Andrews {1987, 1992), Pötscher 
and Prucha (1989, 1994a,b) and Pollard (1991). 

(ii) The common structure of the proofs of Theorems 5.1 and 5.2 is to 
imply uniform convergence from the local LLNs by verifying the so-called 
"first moment continuity condition", i.e., 

n 

supn-1 LE sup lqt(Zt,ll)- qt(Zt,O.)I-+ 0 as 8-+ 0 (5.2) 
n t=1 p(9,9•)<6 
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for each e• E e, cf. Andrews (1987), and Pötscher and Prucha (1989, 
1994b). We note that uniform convergence can also be implied from point
wise LLNs (i.e., LLNs for qt(Zt,e)) by verifying the following stronger con
dition: 

n 

supn-1 2:Esup sup lqt(Zt,e)-qt(Zt,e•)I--+Oas8--+0. (5.3) 
n t=l 6°E9 p(6,6°)<6 

ULLNs which are closely related to Theorems 5.1 and 5.2 but are based 
on pointwise LLNs rather than on local LLNs have recently been derived 
by Newey (1991), Andrews (1992) and Pötscher and Prucha (1994a). All 
of these papers use stochastic equicontinuity concepts that are closely re
lated to (5.2) and (5.3). For an extensive discussion of various forms of 
stochastic equicontinuity concepts see Pötscher and Prucha (1994a).7 We 
note furthermore that the results given in Chapter 6 below not only pro
vide sufficient conditions for local LLNs but clearly also for pointwise LLNs. 
Therefore, the asymptotic theory for M-estimators developed in this book 
could as well have been based on ULLNs using pointwise LLNs rather than 
on ULLNs using local LLNs. 

(iii) ULLNs for totally bounded and not only for compact parameter 
spaces have been derived in Andrews (1992) and Pötscher and Prucha 
(1994a). However, as discussed in the latter reference, from a mathematical 
point of view uniform convergence results on a totally bounded parameter 
space are not really more general than those on a compact parameter space. 

7 The concept of stochastic equicontinuity in its various forms has been ex
tensively used in the literature on convergence of stochastic processes, see, e.g., 
Billingsley (1968), and Pollard (1984). 



6 

APPROXIMATION 
CONCEPTS AND LIMIT 
THEOREMS 

In this chapter we provide formalizations of the notion that a stochastic pro
cess has a "fading memory". Some of these formalizations employ concepts 
of approximation of one process by another process. The aim of these for
malizations is to define classes of processes that - while still satisfying limit 
theorems (LLNs and CLTs)- are broad and cover, in particular, processes 
that are generated from a dynamic system. 1 In Section 6.1 we start with a 
discussion of the limitations of the concept of a-mixing (4>-mixing], followed 
by the definition of Lp-approximability of a stochastic process in Section 
6.2. This approximation concept was introduced in Pötscher and Prucha 
(1991a). It encompasses the approximation concept of stochastic stability 
and near epoch dependence, and helps to clarify the relationship between 
these concepts. In Section 6.3 we then discuss LLNs for Lp-approximable 
and near epoch dependent processes. (The discussion of CLTs is deferred to 
Chapter 10.) Frequently we are interested in limit theorems for a function 
of an Lp-approximable (near epoch dependent] process. E.g., when proving 
consistency via the use of a ULLN, we need to establish local LLNs, i.e., 
LLNs for the "bracketing" functions q;(zt, B; ry) and qt.(Zt, B; ry). If the un
derlying process (zt) is Lp-approximable (near epoch dependent] this can 
be accomplished by making use of results that show under which circum
stances functions preserve the Lp-approximability (near epoch dependence] 
property. Preservation results of this type are the subject of Section 6.4. In 
considering dynamic systems it is important to know when the process gen
erated by the system will satisfy the Lp-approximability (near epoch depen
dence] property. Hence, in Section 6.4 we also provide suffi.cient conditions 
for dynamic systems under which the output process is Lp-approximable 
(near epoch dependent]. Since limit theorems for Lp-approximable (near 
epoch dependent] processes are available (cf. Section 6.3 and Chapter 10), 
such results arefundamental for the derivation of limit theorems for (func-

1 For simplicity of presentation the results in this chapter are only presented 
for sequences of random variables. However, they can be readily extended to 
triangular arrays. 
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tions of) processes that are generated by dynamic systems. Several of these 
results, and in particular those that cover higher order systems, are new 
and have not been available in the Iiterature previously. Finally, in Section 
6.5 we utilize the results developed in this chapter to give sets of sufficient 
conditions which ensure that Qt(Zt, fJ) satisfies a local LLN, i.e., we provide 
sufficient conditions for Assumption 5.2 in Chapter 5. 

6.1 Dynamic Models and Mixing Processes 

On an intuitive level it is obvious that, in order to establish limit theorems 
for a stochastic process, it is typically necessary that the process has a "fad
ing" memory. The notion of a fading memory has been formalized in various 
different ways in the statistics and probability theory literature. One im
portant formalization is the concept of a-mixing and cj>-mixing. In essence, 
a-mixing and cj>-mixing is a notion of "asymptotic independence". For back
ground information on a-mixing and cf>-mixing see the recent monograph 
by Doukhan (1994). 

Definition 6.1. 2 Let (et)tez be a stochastic process on (0, 21, P) that takes 
its values in some measurable space. Let 21~00 be the u-field generated by 
ei, ei-l, ... and let 21f be the u-field generated by ek, ek+l, .. . ; define 

a(j) = sup sup {IP(F n G)- P(F)P(G)I :FE 21~001 GE 21f-t.i}, 
kEZ 

4>(j) = sup sup {IP(GIF)- P(G)I :FE 21~001 GE 21f-t.j 1 P(F) > 0}. 
kEZ 

If a(j) [4>(j)J goes to zero as j approaches infinity1 we call the process (6) 
a-mixing [4>-mixingj. 

Clearly, the mixing coefficients a(j) and 4>(j) are measures of the mem
ory of the process. Every cf>-mixing process is a-mixing.3 Simple exam
ples of c/>-mixing and hence a-mixing processes are independent and m
dependent processes. Other examples of a-mixing processes are strictly 
invertible Gaussian ARMA processes.4 Under appropriate moment condi-

21n Order to apply this definition to processes (et)tEN we can put e, equal to 
some constant for s < 0. 

3 A reason for co-;;-sidering the subdass of cf>-mixing processes separately is 
that limit theorems under the assumption of a cf>-mixing process can sometimes be 
derived under weaker additional conditions than is possible under the assumption 
of an o:-mixing process; cf. Theorem 6.4 for example. 

4For conditions under which linear processes are o:-mixing (cf>-mixing] see, 
e.g., lbragimov and Linnik (1971), Chanda (1974), Gorodetskii (1977), Withers 
(1981a), Pham and Tran (1985), and Mokkadem (1986). 
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tions a-mixing and 4>-mixing processes satisfy LLNs and CLTs. 
A useful feature of a-mixing [4>-mixing] processes is that measurable 

functions of finitely many elements of the process are themselves a-mixing 
[4>-mixing]. For example, if we are interested in LLNs for the "bracketing" 
functions q;(zt, B; ry) and qt*(zt, B; ry) and if Zt is a-mixing [4>-mixing], then 
q;(zt, B; ry) and qh(zt, B; ry) arealso a-mixing [4>-mixing], and they will hence 
satisfy LLNs under appropriate dominance conditions. 

In many applications Zt will be composed of current endogenaus and 
exogenaus variables and finitely many lags thereof. Clearly, in this case Zt 

will be a-mixing [4>-mixing] if the process ofendogenaus and exogenaus 
variables hasthat property. Now, in static modelsthedependent variables 
will typically be a function of a finite number of exogenaus variables and 
disturbances. Consequently, if the process of exogenaus variables and dis
turbances is a-mixing [4>-mixing] then also the process of the endogenaus 
and exogenaus variables will have this property. Hence for static models the 
assumption that Zt is a-mixing [4>-mixing] seems tobe "problem adequate", 
as it can be reduced to mixing conditions on the exogenaus variables and 
the disturbances only. However, in dynamic models the endogenaus vari
ables will typically depend on the infinite history of the exogenaus variables 
and disturbances. Since a-mixing [4>-mixing] is not necessarily preserved 
under transformations which involve the infinite past, the endogenaus vari
ables need not be a-mixing [4>-mixing], even if the exogenaus variables and 
disturbances have that property.5 Consequently, within the context of dy
namic nonlinear models the assumption that the process ofendogenaus and 
exogenaus variables, and hence Zt, is a-mixing [4>-mixing] does not seem 
to be "problem adequate". We note further that even if the process of en
dogenous and exogenaus variables is a-mixing [4>-mixing], but Zt contains 
an increasing number of lagged values and hence effectively includes the 
entire past of the endogenaus and exogenaus variables, then Zt may not be 
a-mixing [4>-mixing]. 

The assumption that the data generating process is a-mixing [4>-mixing] 
has nevertheless been used widely in the econometrics literature, see, e.g., 
Domowitz and White (1982), White and Domowitz (1984), Bates and 
White (1985) and Domowitz (1985). The above discussion suggests that 
the assumption of an a-mixing [4>-mixing] data generating process, while 
not ruling out dynamic models, is not genuinely geared towards such mod
els, since for dynamic models results that ensure that the process of en
dogenous variables is in fact a-mixing [4>-mixing] seem only tobe available 
under conditions that are unnecessarily restrictive for an asymptotic the-

5It has been shown that even simple AR(1) processes with i.i.d. disturbances 
arenot necessarily a-mixing or <f>-mixing, see, e.g., Ibragimov and Linnik (1971), 
Chernick (1981), Andrews (1984), and Athreya and Pantula (1986a,b). Whether 
or not an AR(1) process with i.i.d. disturbances is a-mixing or <f>-mixing depends 
crucially on properties of the distribution of the disturbances. 
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ory for dynamic nonlinear models. 6 The above discussion suggests further 
that within the context of dynamic nonlinear models we will typically be 
confronted with processes ( Zt) ( or functions thereof) which effectively de
pend on the infinite past of some basis process, say (et). That is, we will 
be confronted with establishing limit theorems for functions of the form 
ht(et, et_1, ... ). The process (et) may correspond directly to the process of 
the exogenaus variables and disturbances, but may, e.g., also correspond 
to innovations that generate the exogenaus variables and disturbances. For 
the following discussion in this chapter it is irrelevant which particular 
interpretation is given to the basis process (et). In rational expectations 
models we may be confronted more generally with functions of the form 
ht( ... ,et+l.et,et_1 , ... ). The formal analysis in the subsequent sections 
will also cover this case. 

Intuitively speaking, we expect a LLN (and also a CLT) for functions 
ht(et, et-1. ... ) to hold, even if ht(et, et-1. ... ) is not a-mixing or <jl-mixing, 
as long as the process (et) is sufficiently "mixing" and the functions ht are 
such that they put "declining weights" on high lags of et, thus ensuring 
a "fading" memory of the process ht(et, et-1. ... ). The approach taken 
in Bierens (1981, 1982a, 1984, 1987), Wooldridge (1986), Gallant (1987a, 
Ch.7), Gallant and White (1988), and Pötscher and Prucha (1991a,b) t6-
wards the analysis of dynamic nonlinear models is similar in that they 
assume an a-mixing [<P-mixing] condition for the process (et) and in that 
they formalize the above notion of "declining weights" by approximating 
the functions ht (et, et-l, ... ) by functions that only depend on finitely 
many elements of ( et). The assumption that the basis process ( et) is a
mixing [c/J-mixing] seems not to be unreasonable, since et may effectively 
be interpreted as an innovation. 

On an intuitive level the approximation concepts used in the papers by 
Bierens on the one hand and in the work of Gallant, White and Wooldridge 
on the other hand seem closely related. However on a technical level the 
differences and similarities are less than obvious and had not been explored 
in the Iiterature prior to Pötscher and Prucha (1991a). In the following 
section we will discuss the differences and similarities in detail. 

6.2 Approximation Concepts 

In the following we first define formally the approximation concept men
tioned above. 

6 Cf. Footnote 5. For positive results see Mokkadem (1987), Doukhan (1994) 
and the references given in Footnote 4. These results typically make assumptions 
on the distribution of the disturbance process and/or a Markovian assumption. 
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Definition 6.2. Let (vt)teN and (et)tez be stochastic processes defined 
on (0, 21, P) that take their values in RP" and RPe, respectively. Then the 
process ( v t) is called 

(a) L 0 -approximable by the basis process (et) if there exist measumble 
functions hf:: R(2m+1)Pe --+ RPv suchthat for every 8 > 0 we have 

n 

limsupn-1 L P (lvt- h~(et+m 1 ••• , et-m)l > 8)--+ 0 as m--+ oo, 
n-+oo t=1 

(b} Lp-approximable, 0 < p < oo, by the basis process (et) if there exist 
measumble functions hf:: R(2m+1)Pe --+ RPv suchthat 

n 

limsupn-1 L llvt- h~(et+m• ... ,et-m)llp--+ 0 as m--+ oo.7 

n-+oo t=1 

For ease of notation we shall often write hf: for hf:(et+m• ... , et-m) 
and weshall refer to hf: as an Lp-approximator for Vt. Clearly, if Vt has 
second moments, then the conditional mean is the best approximator in the 
L2-norm. Hence, we can then choose hf: = E(vtlet+m• ... , et-m) without 
loss of generality in the definition of L2-approximability. Furthermore, as 
shown below, the conditional mean can be chosen without loss of generality 
as the approximator in the definition of Lp-approximability even for p # 2, 
given a suitable moment condition is satisfied. However, especially when 
considering nonlinear transformations of Vt, it turns out to be convenient 
to also allow for approximators other than the conditional mean. (Also it 
may sometimes be easier to find approximators that are different from the 
conditional mean by ad hoc arguments.) 

The approximation concept introduced in Definition 6.2 is in the spirit 
of similar concepts which have been used in the probability Iiterature for 
the derivation of limit theorems for dependent processes by, e.g., Blum 
and Rosenblatt (1957), Ibragimov (1962), Billingsley (1968) and McLeish 
(1975a,b). The concept of L0-approximability is (up to inessential details) 
identical to Bierens' (1981) concept of stochastic stability. Within the con
text of stationary processes the concept of L2-approximability was used 
by Billingsley (1968) and Bierens (1983); the latter author refers to this 
concept as "v-stability in L2". 

7For a random variable { taking its values in Euclidean space we define for 
0 < p < oo: 11{11" = [f 1{1" dP] 11P where 1·1 is the Euclidean norm. FUrthermore, 
11{11 00 denotes the essential supremum of 1e1. Of course, 11{11" is a norm only for 
p;::: 1. Wehavechosen the term "L0-approximable" for the property introduced in 
part ( a) of the definition, since the space of all P-equivalence classes of measurable 
real valued functions endowed with the topology of convergence in probability is 
sometimes denoted by Lo(n, 2l, P) and can be viewed as a "naturallimit" of the 
spaces L"(n, 2l, P) for p --+ 0. 
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Basedon McLeish {1975a,b) the following concept of near epoch depen
dence is used in Wooldridge {1986), Gallant {1987a, Cho7) and Gallant and 
White {1988)0 

Definition 6.3. Let (vt)tEN and (et)tez be stochastic processes defined 
on {f2, 2l, P) that take their values in RPv and RPe, respectivelyo Then the 
process (vt) is called near epoch dependent of size -q on the basis process 
{et), if the sequence 

11m = sup llvt - E(vtlet+m• o o o , et-m) 11 2 
t 

is of size -q, q > Oo8 •9 

As can be seen immediately from the above definitions, near epoch depen
dence implies L2-approximabilityo Near epoch dependence is more stringent 
than L2-approximability in two respects. First, for near epoch dependence 
the quantities llvt- E(vtlet+m•. o. ,et-m)ll2 themselves have to become 
small, while for L2-approximability this is only required from the Cesara
sums of these quantities. Second, and more importantly, in the definition 
ofnear epoch dependence the quantities llvt- E(vtlet+m 1 ••• ,et-m)ll2 are 
assumed to decline at a certain rate (uniformly in t). 

Andrews {1988) generalized the concept of near epoch dependence. He 
calls a process Lp-near epoch dependent, 1 :::; p :::; 2, if there exist sequences 
of constants {dt) and (11m) suchthat 

llvt- E(vtlet+m 1 • • ·, et-m)IIP :5 dtllm 

with 
n 

supn-1 Ldt < oo 
n t=l 

and 11m -+ 0 as m -+ oo. No rate of convergence is specified for the 
sequence (11m)· Clearly any Lp-near epoch dependent process is also Lp
approximable. 

The above discussion shows that the approximation concepts employed 
in the econometrics Iiterature on dynamic nonlinear models, i.e., stochas
tic stability, 11-stability in L2, near epoch dependence as well as Lp-near 

8We define, as is common in the econometrics literature, a sequence (vm) to 
be of size -q, q > 0, if 11m is O(m->.) for some A > qo The original definition 
given in McLeish (1975a) is actually slightly more general. 

90f course, we could have defined near epoch dependence of (vt) on (et) by the 
requirement that supt llvt- hf'(et+m, ... ,et-m)ll2 is of size -q, thus paralleling 
the definition of Lp-approximability. However, it seems that the definition as given 
here is more commonly used in the literature. In any case, if second moments of 
Vt exist, then both versions coincide in view of the minimum mean square error 
property of the conditional expectation. 
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epoch dependence, can all be viewed as special cases of the concept of 
Lp-approximabilityo It also turns out that Lp-approximability is all that is 
needed for a weak LLN, given mixing properties of the basis process, see 
Section 6o3o 

The following theorem shows that the concepts of Lp-approximability for 
different values of p are equivalent under a suitable moment conditiono 

Theorem 6.1. (a) Suppose (vt) is Lp•-approximable by (et) for some 0 ~ 
p• < oo, then (vt) is also Lp-approximable by (et) for any p with 0 ~ 
p ~ p• o {In fact, any Lp• -approximator hr' is also an Lp-approximator for 
0 ~ p ~ p•.) 

{b) Suppose (vt) is L0 -approximable by (et) and 

n 

supn-1 L llvtll!t-r < oo 
n t=1 

for some 0 < p• < oo and 'Y > 0, then the process (vt) is Lp-approximable 
by (et) for any p, 0 ~ p < p• o 

(c) Suppose the assumptions of {b} hold withp• > 1, then the conditional 
mean E(vtlet+m, o o o, et-m) is an Lp-approximator for any p, 0 ~ p < p• o 

Clearly, 

is a suflicient condition for the moment condition in parts (b) and ( c) of 
the above theorem; furthermore, 

n 

supn-12:Eivtlp• <oo 
n t=1 

is suflicient if p• > 1 (which follows from Lyapunov's inequality and by 
choosing 'Y > 0 suchthat 1 + 'Y < p•)o We note that 

n 

supn-1 LE lvtlp• < oo 
n t=1 

for p• > 1 is a typical moment condition in LLNs for non-identically dis
tributed processes, cfo Section 6030 

Theorem 601 helps to clarify the relationship between the above discussed 
approximation concepts used in the econometrics Iiterature on dynamic 
nonlinear modelso These approximation concepts measure the approxima
tion error in different Lp-norms or in terms of probabilitieso Part (a) of the 
theorem states the obvious fact that the stringency of the approximation 
concepts increases with po Part (b) of the theorem states the less obvious 
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fact that under a suitable moment condition the differences in the approx
imation concepts pertaining to the chosen distance measures 11-IIP vanish. 
As a consequence we see that, given 

n 

supn-1 2:.: llvtii~!I < oo 
n t=l 

for some E > 0 and 1 > 0, Bierens' concept of stochastic stability and the 
concept of near epoch dependence used by Gallant, McLeish, White and 
Wooldridge essentially differ only in that the latter concept prescribes a 
rate of decline for the approximation errors. 

Part ( c) of Theorem 6.1 tells us that for Lp-approximable processes, 
0 ::::; p < oo, the conditional mean is always an Lp-approximator provided 
the moment condition holds for a p• > 1 and p• > p. Of course, part 
(a) of Theorem 6.1 already implies that the conditional mean is an Lp
approximator for 0 ::::; p ::::; 2 given the process is L2-approximable. 

6.3 Laws of Large Nurobers for 
Lp-Approximable and Near Epoch 
Dependent Processes 

The following theorem describes a basic strategy for deriving LLNs for 
Lp-approximable processes. 

Theorem 6.2. Let (vt) be L1 -approximable by (et). 
(a) Suppose there exist L1-approximators (hfl) that satisfy a weak LLN 

for each m E N, then also (vt) satisfies a weak LLN. 10 
(b) Suppose that 

n 

supn-1 LE lvtll+€ < oo 
n t=l 

for some E > 0, then there exist L 1-approximators (hfl) which, for each 
m E N, are bounded in absolute value uniformly in t. 

Part ( a) of the above theorem shows that in order to prove a LLN for an 
L1-approximable process it suffices to prove a LLN for the approximators. 
LLNs for hfl = hfl(et+m, ... , et-m) are typically deduced from mixing 
conditions on the basis process (et) and moment conditions on hfl. By 
design hfl only depends on finitely many elements of (et)· Hence mixing 

10Recall that the assumption that a process, say, (et) satisfies a LLN implicitly 
maintains that E Iet I < oo. 
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conditions on (et) will typically carry over to the process (ht'); e.g., if (et) 
is a-mixing, then also (ht') is a-mixing. The moment condition 

n 

supn-1 LE lvtll+€ < oo 
n t=1 

for some E > 0 in part (b) of the above theorem is common in LLNs for non
identically distributed processes. Part (b) of the theorem tells us that under 
such a moment condition we can choose bounded approximators ht'. This 
is convenient since in proving a LLN for these ht' we do not have to worry 
ab out moment conditions for ht'. Of course, a general sufficient condition 
for (ht') to satisfy a weak LLN is that the variance covariance matrix of 
n-1 2:~=1 ht' goes to zero as n--+ oo. Given boundedness ofht' (uniformly 
in t) this is clearly implied by 

n-2 L cov(hf', h;') --+ 0 as n--+ oo, 
1~t<s~n 

which essentially means that the covariance function dies out. 11 

As a corollary to Theorem 6.2 we obtain, e.g., the following weak LLN in 
case the basis process is a-mixing. Since every cp...mixing process is a-mixing, 
the result automatically also applies to the case of cp...mixing basis processes. 
As suggested by the above discussion the proof proceeds by verifying that 

n-2 L cov(hf',h;')-+Oasn-+oo 
19<s~n 

from the mixing properties of ht' ( which are implied by the mixing prop
erties of the basis process). 

Theorem 6.3. Suppose supn n-1 2:~=1 E lvtll+€ < oo for some E > 0. Let 
(vt) be L0 -approximable by (et) and let (et) be a-mixing, then (vt) satisfies 
a weak LLN. 

The above LLN is slightly more general than a LLN introduced by An
drews (1988) for L1-near epoch dependent processes. The above LLN also 
generalizes a LLN by Bierens (1982a, 1984) in that here the process (vt) 
is not assumed to be asymptotically stationary. Analogously to Bierens 
(1982a, 1984) the a-mixing condition, i.e., a(j) --+ 0 as j --+ oo, can be 

11If one puts et = Vt in Theorem 6.2 then the approximators hr' in part (b) of 
the theorem become truncated versions of Vt. Hence Theorem 6.2 can be viewed 
as a generalization of standard proof techniques for weak LLNs in which one 
first truncates the random variables involved and then shows that the covariance 
function of the truncated random variables dies out. 
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slightly weakened. For reasons of simplicity we do not present this general
ization here. As a point of interest we note further that in light of the mo
ment condition in the above theorem the condition of Lo-approximability 
maintained in this theorem is in fact equivalent to L1-approximability and 
hence only seemingly weaker, cf. Theorem 6.1. Hence the above LLN as well 
as Bierens' LLNs for stochastically stable processes are effectively based on 
L1-approximability. 

Andrews (1988) uses a different approach based on Lp-mixingales to 
obtain his version of the above LLN. In fact, Andrews derives his version of 
the above LLN as a special case of a LLN for Lp-mixingales. In the following 
definition let (et)tEZ be a sequence of random variables on (0, 2l, P) taking 
their values in Euclidean space and let (2lt)tEz be a nondecreasing sequence 
of sub-a-fields of 2l. In the subsequent discussion the following definition 
will be applied to the centered process et = Vt - E(vt) (where we can put 
Vt equal to zero for t ::::;; 0); the sub-a-fields 2lt will typically be taken as 
the a-fields generated by {et,et-1, ... }. 

Definition 6.4. The sequence (et, 2lt) is an Lp-mixingale, 1 ::::;; p ::::;; 2, if 
there exist constants Ct ~ 0, t ~ 1, and t/Jm ~ 0, m ~ 0, suchthat tPm -t 0 
as m -t oo and for all t ~ 1 and m ~ 0 we have 

(6.1} 

and 
(6.2) 

L2-mixingales were introduced in McLeish (1975a) under the name of 
mixingales. The generalized notion of Lp-mixingales given in the above 
definitionwas introduced by Andrews (1988). Clearly every Lp-mixingale 
has zero mean. The constants Ct are typically measures of the magnitude of 
the random variables et, e.g., Ct = lletllp· For limit theorems boundedness 
conditions as, e.g., 

n 

supn-1 Let< oo 
n t=1 

(6.3) 

are typically assumed. In abuse of terminology we shall also call Vt an 
Lp-mixingale if et = Vt - E(vt) is an Lp-mixingale. 

Andrews' approach for proving his version of Theorem 6.3 parallels the 
approach in McLeish (1975a) for strong LLNs and can now be described 
as follows: He first derives a weak LLN for L1-mixingales. He then shows 
that any process (vt) that is L1-near epoch dependent on some a-mixing 
basis process and that satisfies 

supE lvtll+E < oo 
t 
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for some € > 0 is an L1-mixingale, with Ct = llvt- E(vt)ll 1 ::; 2llvtll 1 satis
fying (6.3), and hence the weak LLN for L1-mixingales applies. Inspection 
of Andrews' proof also shows that his approach can be generalized to pro
vide an alternative proof of Theorem 6.3 as it stands. The modifications in 
Andrews' proof involve that (i) L1-near epoch dependence is weakened to 
L1-approximability, (ii) the moment condition 

is weakened to 

supE lvtll+' < oo 
t 

n 

supn-1 LE lvtll+' < oo, 
n t=1 

and (iii) the L1-mixingale conditions (6.1) and (6.2) as well as the bound
edness condition (6.3) are weakened to the following conditions with p = 1: 

n 

limsupn-1 L IIE(~tl2lt-m)IIP----* 0 as m----* oo, 
n--+oo 

(6.4) 
t=1 

and 
n 

limsupn-1 L ll~t- E(~tl2lt+m)IIP----* 0 as m----* oo.12 (6.5) 
n--+oo t=1 

This minor modification of Andrews' approach as outlined above showsalso 
-apart from providing an alternative proof of Theorem 6.3 via mixingales
that the concept of a process which is Lp-approximable w.r.t. an a-mixing 
base fits nicely into the generalized framework of Lp-mixingales expressed 
in (6.4) and (6.5). The splitting of the bounds on the r.h.s. of (6.1) and 
(6.2) into Ct and 1/Jm seems unnecessary in order to derive weak LLNs. Of 
course, the proof of Theorem 6.3 given in Appendix D shows that the result 
can be obtained without resorting to the theory of mixingales. 

The consistency results in Gallant (1987a, Ch.7) and Gallant and White 
(1988) are based on the following strong LLN for processes that are near 
epoch dependent on an a-mixing or lj>-mixing basis process. This LLN is 
derived in Theorem 3.1 in McLeish (1975a). 

Theorem 6.4. Let (vt) be near epoch dependent of size -1/2 on (et) with 

00 

L llvt II~ /t2 < oo 
t=1 

12 Andrews (1988) proves his weak LLN for L 1-mixingales under conditions 
(6.1)-(6.3) and uniform integrability. Inspection of the proof shows that the weak 
LLN also holds under (6.4), (6.5) and uniform integrability, or under (6.4), (6.5) 

d -1 'l;""'n EI 11+< an supn n L...!t=1 Vt < oo. 
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for some r ~ 2. Suppose (et) is o:-mixing with mixing coefficients of size 
-r j ( r - 2) and r > 2 holds, or ifl-mixing with mixing coefficients of size 
-r/(2r- 2), then (vt) satisfies a strong LLN. 

Of course, a sufficient condition for 

00 

L llvtll~ /t2 < oo 
t=l 

lS 

In proving the above theorem McLeish first shows that any process ( v t) 
that is near epoch dependent on some o:-mixing or 4>-mixing basis process 
and that satisfies the above moment condition is an L2-mixingale with 
mixingale coefficients '1/Jm of size -1/2, if the approximation errors Vm are 
of size -1/2 and the o:-mixing or ifl-mixing coefficients are of the size as 
given in the theorem. Then he applies his strong LLN for L2-mixingales. 

In comparing Theorems 6.3 and 6.4 we note that the latter theorem 
gives a strong (as opposed to a weak) LLN at the expense of stronger 
assumptions: Theorem 6.4 requires rates of convergence for the mixing 
coefficients o:(j) and ifJ(j) as well as for the approximation error Vm, while 
such conditions arenot postulated in Theorem 6.3. Furthermore Theorem 
6.4 requires the existence of at least second moments of the process (vt) 
while Theorem 6.3 only requires the existence of a moment slightly higher 
than the first. For further LLNs for Lp-near epoch dependent processes and 
Lp-mixingales see Hansen (1991), De Jong (1995a), and Davidson and De 
Jong (1995). 

6.4 Preservation of Approximation Concepts 
under 'fransformation 

As already mentioned at the beginning of this chapter one is frequently 
confronted with the need to establish limit theorems for functions of an 
Lp-approximable or near epoch dependent process. For example, as dis
cussed in Chapters 3 and 5, in the course of proving consistency of an 
estimator we may want to establish a ULLN for functions qt(Zt, 0). Tothis 
end we need to establish LLNs for the "bracketing'' functions q;(zt, 0; TJ) 
and qt.(Zt, 0; TJ). In principle we could obtain these LLNs by simply assum
ing that q;(zt, 0; TJ) and qt.(zt, 0; TJ) satisfy the conditions placed on (vt) in 
Theorems 6.3 or 6.4. However, it seems of interest to explore more basic 
conditions under which this will be the case. Given (zt) is Lp-approximable 
by [near epoch dependent on] a mixing basis process, such more basic condi-
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tions then essentially amount to conditions under which Lp-approximability 
[near epoch dependence] is preserved under transformations. 

In the following we hence consider general conditions under which trans
formations of Lp-approximable [near epoch dependent] processes are Lp
approximable [near epoch dependent], see Theorems 6.5-6.7 and Corollary 
6.8.13 Combining these transformation results with Theorems 6.3 and 6.4 
will then give LLNs for functions of Lp-approximable [near epoch depen
dent] processes. Similarly, combining the transformation results with the 
results in Chapter 10 will provide CLTs for such processes. 

The transformation results just discussed start from the assumption that 
(zt) is Lp-approximable [near epoch dependent]. Typically (but not neces
sarily) Zt is composed of endogenaus and exogenaus variables. This now 
raises the question for which classes of dynamic systems (zt) will actually 
possess the Lp-approximability [near epoch dependence] property. Hence in 
this section we also give conditions for a dynamic system under which the 
process ofendogenaus variables, i.e., the output process, can be shown to 
be Lp-approximable by [near epoch dependent on] a mixing basis process 
if the process of exogenaus variables and disturbances, i.e., the input pro
cess, has the analogaus property, see Theorems 6.10- 6.12. Combining these 
theorems with Lemma 6.9 then gives conditions for the Lp-approximability 
[near epoch dependence] of (zt)· These results are important for developing 
an asymptotic theory for dynamic nonlinear models in that they enable us 
to apply the established machinery of limit theorems for Lp-approximable 
[near epoch dependent] processes to the output process of a dynamic non
linear model. 

Westart with the process (vt) defined on (0, 21, P) that takes its values 
in a Borel subset V of RP" .14 By allowing (vt) to possibly take its values 
in a proper subset of RP" we can cover situations where the transforming 
functions are defined only on that subset. We emphasize that in the follow
ing V should be viewed as a metric space in its own right with the induced 
Euclidean metric. We use the notation H~ = n-1 E:=1 Hf where Hf is 
the distribution of Vt on V. 

Assumption 6.1. The family of functions {9t : t E N}, where 9t : V -+ R, 
is equicontinuous on V. 

Theorem 6.5. Suppose (vt) is Lo-approximable by the basis process (et)· 

13The reason for working with Lp-approximable [near epoch dependent] pro
cesses rather than with Lp-mixingales is that the class of Lp-mixingales is not 
closed under many nonlinear transformations. 

14Since V is a Borel subset, Vt can equally weil be regarded as a measurable 
function taking its values in RP" and hence the theory in the preceding sections 
applies. 
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Suppose {H~ : n E N} is tight on V and that Assumption 6.1 holds. Then 
(gt(vt)) is Lo-approximable by (et)· IJ, additionally, 

n 

supn-1 L IIYt(Vt)ll!t-r < oo 
n t=1 

for some 0 < p• < oo and some 'Y > 0, then (gt(vt)) is Lp-approximable by 
( et) for 0 ~ p < p•. 

Of course, if V is a closed subset of RPv then the above tightness condi
tion is implied by, e.g., a mild moment condition like 

n 

supn-1 LEivte < oo 
n t=1 

for some 'Y > 0, cf. the related discussion in Chapter 5. We note further that 
the theorem holds if the tightness condition is dropped but equicontinuity is 
replaced by uniform equicontinuity in Assumption 6.1, cf. the remark after 
Lemma D4 in Appendix D. Furthermore, Theorem 6.5 can be generalized 
to discontinuous functions, provided the set of "discontinuity" points is 
small, see Lemma D4 for details. 

Theorem 6.5 and the subsequent preservation results given in Theorems 
6.6, 6.7 and Corollary 6.8 are formulated for real valued functions 9t· The 
more general case of functions taking values in Rk, k ~ 1, is immediately 
reduced to this case by applying the theorems to the components of the 
functions and by appealing to Lemma 6.9. 

The following Lipschitz-type assumption has been used by Gallant (1987a, 
Ch. 7) and Gallant and White (1988) in order to establish near epoch de
pendence of functions of near epoch dependent processes. Before giving the 
result on the transformation of near epoch dependent processes we first use 
this Lipschitz-type assumption for a further result on the transformation 
of Lp-approximable processes. 

Assumption 6.2. 15 The family of Borel measurable functions {gt : t E 
N}, where Yt : V --4 R, is such that 

for all ( v, v•) E V x V and Bt : V x V --4 [0, oo) is Borel measurable. 

150f course, without imposing further conditions on Bt, Assumption 6.2 does 
not restriet the dass of Borel measurable functions 9t· However, in the following 
additional conditions will be placed on Bt. 
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Theorem 6.6. (a) Suppose (vt) is Lo-approximable by the basis process 
(et). Suppose Assumption 6.2 holds with . 

n 

limsup limsupn-1 LE[Bt(Vt,h~YJ < oo 
m-oo n-eo t=l 

for some E > 0 and for some Lo-approximators h~ of (vt), where the 
approximators take their values in V. Then (gt(vt)) is Lo-approximable by 
(et)· 1/, additionally, 

n 

supn-1 L llgt(Vt)ll!t'"~ < oo 
n t=l 

for some 0 < p• < oo and some 'Y > 0, then (gt(vt)) is Lp-approximable by 
( et) for 0 ~ p < p•. 

{b} Suppose (vt) is Lp-approximable by the basis process (et) for some 
0 ~ p < oo. Suppose Assumption 6.2 holds with Bt(v,v•) equal to some 
constant c < oo for all (v, v•) E V x V and all t E N. Then (gt(vt)) u 
Lp-approximable by (et)· 

Of course, since every L8 -approximable process, 0 :5 s < oo, is Lo
approximable (and any L8 -approximator is an Lo-approximator) Theo
rems 6.5 and 6.6(a) also give conditions under which functions of L8 -

approximable processes are Lp-approximable, 0 :5 p < p•, by the same 
basis process. We note furthermore that the results in Theorems 6.5 and 
6.6 contain Theorems 5.1.4 and 5.1.5 in Bierens (1981) for differentiahte 
transformations that are independent of t as special cases. 

The following theorem provides a preservation result for near epoch de
pendence. Contrary to Lp-approximability, this concept involves a rate of 
decline for the approximation errors. In order to be able to infer a rate of 
decline for the approximation errors of gt ( v t) from the rate of decline of the 
approximation errors of Vt it seems necessary to place some Lipschitz..type 
condition, as, e.g., expressed in Assumption 6.2, (plus a moment condi
tion on the Lipschitz bound) on the transforming function gt. Continuity 
alone, as expressed in Assumption 6.1, is certainly not sufficient. Part (a) 
of the following result is given in Gallant (1987a, pp.498-499) for the case 
V= RP" only; cf. also Gallant and White (1988), Theorem 4.2. 

Theorem 6.7. Let h~ be some L 8 -approximators of (vt) based on (et) 
for some s ~ 1, where the approximators take their values in V and the 
sequence of approximation errors supt llvt- h~lls is of size -q for some 
q > 0. Suppose Assumption 6.2 holds and that E jgt(Vt)l2 < oo for all 
tEN. 
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( a) Assurne that 

sup sup IIBt(Vt, h~)lls/(s-l) < 00 
m t 

and 
supsup IIBt(Vt, h~) lvt- h~llls• < oo 
m t 

for sorne s• > 2, then (gt(vt)) is near epoch dependent of size -(q/2)(s•-
2)/(s• -1) on (et)· 

(b) Assurne that Bt ( v, v•) is equal to sorne constant c < oo for all 
(v, v•) E V x V and all t E N. Then supt IIYt(vt)- 9t(ht)lls is of size 
-q. 

The following corollary is given in Lemma 1 in Andrews (1991a).16 

Corollary 6.8. Suppose Assurnption 6.2 holds with Bt(v,v•) equal to 
sorne constant c < oo for all (v, v•) E V x V and all t E N, and that 
E 1Yt(vt)l2 < oo for all t E N. lf (vt) is near epoch dependent on (et) of 
size -q, then (gt(Vt)) is near epoch dependent on (et) of size -q. 

In part (a) of Theorem 6.7 there are trade-offs between moment require
ments (expressed by s•) and the loss in the speed- due to the transfor
mation- by which the approximation errors go to zero. Even if arbitrarily 
high moments are assumed (i.e., s• arbitrarily large), the guaranteed rate 
of decline of the approximation errors for (gt(vt)) is at mosthalf ofthat of 
the approximation errors for (vt)· 

Theorems 6.6(a) and 6.7 explicitly assume that there exist approximators 
that take their values only in V. We show in Lemma D3 in Appendix 
D that given there exist Lp-approximators that take their values in RP", 
there also exist Lp-approximators that take their values in V. Hence the 
assumption concerning the range ofthe approximators in Theorem 6.6(a) is 
not restrictive. In the remark following Lemma D3 in Appendix D we show 
furthermore that given there exist Lp-approximators that take their values 
in RP" with approximation errors supt llvt- htllp of size -q, then there 
exist also Lp-approximators that take their values in V with approximation 
errors of the same size. Hence the assumption concerning the range of 
the approximators in Theorem 6. 7 is also not restrictive. Of course, if the 

16The proof of Lemma 1 in Andrews (1991a) is incorrect unless the set V is 
additionally assumed to be convex, since Andrews implicitly uses the argument 
that the conditional expectation of a V -valued random variable again takes its 
values in V. This, however, is in general only the case if V is convex. The proof 
of the corollary given in the appendix covers general sets V and thus restores the 
first part of Andrews' lemma. 
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original approximators are the conditional means, as, e.g., in the definition 
of near epoch dependence, then the modified approximators will typically 
not be conditional means (unless V is convex). 

Comparing Theorem 6.5 on the one hand and Theorems 6.6(a) and 6.7(a) 
on the other hand it seems that the conditions involved in Theorem 6.5 are 
simpler to check than those ofTheorems 6.6(a) and 6.7(a) in that the condi
tions in the former theorem do not involve an approximator hf. Theorems 
6.6{b), 6.7{b) and Corollary 6.8 also provide relatively simple conditions 
under which Lp-approximability and near epoch dependence concepts are 
preserved under transformation, however, under the stronger assumption 
of uniformly bounded Lipschitz constants. Of course, combining Theorems 
6.5 - 6. 7 and Corollary 6.8 with Theorems 6.3 and 6.4, respectively, gives 
LLNs for functions 9t(vt) of Lp-approximable or near epoch dependent 
processes. This will be discussed in more detail in Section 6.5 below. 

In applications we may ask if, e.g., a stacked vector of current and lagged 
endogenaus and exogenaus variables is Lp-approximable [near epoch depen
dent] given the endogenaus and exogenaus variables are Lp-approximable 
[near epoch dependent]. In parts (a) and (a') of the following lemma it is 
shown that this is in fact the case. Parts {b) and {b') demoostrate that 
the components of Lp-approximable [near epoch dependent] processes are 
again Lp-approximable [near epoch dependent]. In parts (d) and {d') we 
consider situations where an Lp-approximable [near epoch dependent] pro
cess is sampled every k-th period. It is shown that the sampled process is 
Lp-approximable [near epoch dependent] with respect to an appropriately 
defined basis process. Parts ( c) and ( c') deal with the "inverse" situation 
where a process is built up from a set of Lp-approximable [near epoch da
pendent] processes. Again, it is shown that the new process is then also 
Lp-approximable [near epoch dependent]. 

Lemma 6.9. 17 (a) Let {et)teN and (7Jt)teN be Lp-approximable, for some 
0 '5:. p < oo, by (e~)tez and (ei)tez, respectively. Then 

is Lp-approximable by ((e~',ei')')tez, where eo, ... ,6-z and 7Jo, ... ,7J1-k 
are p-fold integrable random variables. 

(a') Let {et)teN and (7JtheN be quadratically integrable processes that are 
near epoch dependent of size -q, q > 0, on (e~)tez and (ei)tez, respec
tively. Then 

17The various stochastic processes in this lemma are assumed tobe defined on 
a common probability space and to take their values in Euclidean spaces. 
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is near epoch dependent of size -q on ((ef',ei')')tEZ, where ~o, ... ,6-z 
and ry0, ... , 1Jl-k are quadratically integrable random variables, and 

and 

fort= 1, and 

and _." ( 11 ' 0 O)' et = et ' ' ... ' 

for t =J. 1. If additionally also 

~~~j - E ( ~j I e;+m• ... , e;_m) 11 2 , 1 -l :=; j :=; 0, 

and 
II7Jj- E (1Jj I eJ+m• ... , eJ-m) 11 2 , 1- k :=; j :=; 0, 

are of size -q, then 

is near epoch dependent of size -q on ((e;', ei')')tEZ· 
(b) Let ((~L ryf)')tEN be Lp-approximable, for some 0 ::; p < oo, by 

(et)tEZ, then (~thEN and (7Jt)tEN are each Lp-approximable by (et)tEZ· 
(b') Let ((~Lryf)')tEN be near epoch dependent of size -q, q > 0, on 

(et)tEZ, then (~t)tEN and (7Jt)tEN are each near epoch dependent of size -q 
on (et)tEZ· 

(c) Let (~DtEN, i = 0, ... , k - 1, be Lp-approximable, for some 0 ::; 
p < oo, by (ef)tEZ• where the ~; have the same dimension. 18 Consider the 
process ( 1Jt )tEN defined by 

7J(r-l)k+i+l = ~~' T E N, and i = 0, ... , k- 1. 

Then (1Jt)tEN is Lp-approximable by (ei)tEZ, where 

r E Z, and i = 0, ... , k - 1. 

(c') Let (~DtEN, i = 0, ... , k- 1, be quadratically integrable processes 
that are near epoch dependent of size -q, q > 0, on (ef)tEZ• where the ~; 
have the same dimension. Consider the process (7Jt)tEN defined by 

1J(r-1)k+i+1 = ~~' r E N, and i = 0, ... , k - 1. 

18The assumption that the processes (~Ü are Lp-approximable by a "com
mon" basis process ( ef}, rather than by "individual" basis processes ( el), can 
be marle without loss of generality, since in the latter case we can always take 
e~ = (e~', ... , e~- 1 ')' as the "common" basis process. 
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Then (1Jt)tEN is near epoch dependent of size -q on (ei)tEZ, where 

T E Z, and i = 0, ... , k - 1. 

(d) Let (~t)tEN be Lp-approximable, for some 0 ~ p < oo, by (ef)tEZ· 
Consider the processes (1J:)tEN defined by 

1]; = ~(t-l)k+i+l, t E N, and i = 0, ... , k -1, 

where k ~ 1. Then, for every i = 0, ... , k- 1, the process (1J1)tEN is Lp
approximable by ( ei)tEZ where 

(d') Let (~t)tEN be a quadratically integrable process that is near epoch 
dependent of size -q, q > 0, on (ef)tEZ· Consider the processes (7J;)tEN 
defined by 

t E N, and i = 0, ... , k- 1, 

where k ~ 1. Then, for every i = 0, ... , k- 1, the process (7JDtEN is near 
epoch dependent of size -q on ( ei)tEZ where 

The next three theorems give sets of conditions under which the output 
process of a dynamic system is Lp-approximable [near epoch dependent], 
given the input process has the corresponding property. We note that in 
Theorems 6.10- 6.12 below Vt should typically be interpreted as the vector 
of endogenous variables, while Wt should be given the interpretation of 
the vector of exogenous variables and disturbances. A key condition in 
Theorem 6.10 is that the functions 9t are contraction mappings (for fixed 
input values). An important generalization of this theorem, that relaxes 
this condition, will be given in Theorem 6.12 below. 

Theorem 6.10. Let (vt)tEN and (wt)tEZ be stochastic processes taking 
their values in Borel subsets V and W of RPv and RPw, respectively, and 
let 9t : V x W ---+ V be functions for t E N. Suppose that ( v t) is generated 
according to the dynamic system 

where v 0 is some initial random variable taking its values in V. Assurne 
thatfor all (v,v•) E V x V,(w,w•) E W x W, andt E N 

!9t(v, w)- 9t(v•,w•)! ~ dv !v- v•! + dw Iw- w•! 
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holds where the global Lipschitz constants satisfy 0 :::; dv < 1 and 0 :::; dw < 
00. 

(a) lf llwtl!r < oo for t E N and Jlvollr < oo for some r 2:: 1, then 
llvtllr < oo fort E N. lf additionally 

and 

sup llwtllr < oo 
t;:;::1 

sup l9t(ii, w)l < oo 
t;:;::1 

holds for some elements v E V, üi E W, then also 

(b) If 

sup llvtllr < oo. 
t;:;::1 

sup llwtllr < oo 
t;:;::1 

and llvollr < oo for some r 2:: 1, and if (wt)tEN is Lr-approximable by 
some process (et)tEZ, then (vt) is Lr-approximable by (et)· 

(c) If 
sup llwtll2 < oo 
t;:;::1 

and llvoll 2 < oo, and if (wt)tEN is near epoch dependent of size -q on 
some process (et)tEZ, then (vt) is near epoch dependent of size -q on 
(et), where et = (e~, 0)' fort =/= 1 and e1 = (ei, v~)'. If additionally also 
llvo- E(volem, ... , e-m)lb is of size -q, then (vt) is near epoch dependent 
of size -q on (et)· 19 

A slightly more general version of this theorem is given as Lemma D5 in 
Appendix D. Note that by choosing et = Wt the above theorem provides 
as a special case conditions for the Lr-approximability and near epoch 
dependence of (vt) w.r.t. the input process (wt)· In this case the proof 
actually shows that the approximation errors 

n 

limsupn-1 L llvt- h~llr 
n-+oo t=1 

and 

190f course, in case v 0 is nonstochastic, near epoch dependence on (et) 
coincides with near epoch dependence on (et), and the condition that 
llvo - E(vo I ern, ... , e-m) 11 2 is of size -q is automatically satisfied. 



6.4. Preservation of Approximation Concepts under Transformation 65 

underlying the result in part (b) and the first result in part (c), respectively, 
decay at an exponential rate as m --+ oo. The choice et = Wt in applying 
the above theorem is particularly useful when Wt is a-mixing or lj>-mixing. 

The above theorem requires that the dynamic system is contracting in 
the sense that for every w the functions v --+ 9t ( v, w) have Lipschitz bounds, 
which are strictly less than 1 (uniformly in t). Frequently the contraction 
condition on gt, i.e., dv < 1, and the condition dw < oo will be established 
by showing that 

sup{lstacf;,1 [i~: (vi,wi)] I: vi E V, wiE W, i = 1, ... ,pv, t E N} < 1 

and 

1~: I~ d < oo, 

for some constant d, where the stac-operator creates a matrix consisting of 
the rows shown as the arguments of the operator20 , and where i; denotes the 
i-th column of the Pv X Pv identity matrix. The above sufficient conditions 
are derived by applying the mean value theorem to 9t· Since the mean 
value theorem has to be applied to each component of 9t separately, this 
results in different sets of mean values at which the derivatives of each 
component of 9t are evaluated. It is for this reason that we have to allow 
for a different argument list for each of the rows of the matrix generated 
by the stac-operator. In case of a univariate model, i.e., Pv = 1, the above 
conditions simplify to l8gtf8vl ~ const < 1, and l8gtf8wl ~ d < oo. 

Certain dynamic systems that do not satisfy the contraction condition of 
Theorem 6.10 may nevertheless be brought under the scope of this theorem 
by the following transformation device: Suppose we can find a family of 
transformations St : V --+ V, t 2:: 0, with V a Borel subset of RPv, St and 
8t" 1 Borel measurable, suchthat the transformed system 

tE N, 

satisfies the conditions of Theorem 6.10. Here Vt = StVt and ?Jt(v, w) = 
Bt (gt ( St=_\ V' w)) for all (V' w) E V X w 0 If the transformations s; 1 are 
well-behaved suchthat they satisfy (component-wise) the assumptions of 
Theorem 6.5 or 6.6 [Corollary 6.8], then we obtain the Lp-approximability 
[near epoch dependence] of (vt) from the Lp-approximability [near epoch 
dependence] of (vt), which itself follows as a consequence of Theorem 6.10 

20That is, let a;. denote the i-th row of a m x n matrix A, then stac;';,1 ai. = A. 
Unless stated otherwise we also adopt the convention that lAI denotes the smallest 
matrixnormthat is compatible with the Euclidean vector norm, i.e., lAI is the 
square root of the largest eigenvalue of A' A. 
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applied to the transformed system. A similar remark also applies to The
orems 6.11 and 6.12 given below. A particular instance where this trans
formation device can be applied successfully is the following: Suppose the 
original system satisfies the assumptions of Theorem 6.10 if the Euclidean 
norm lvl = (v'v) 112 is replaced by another norm (v' Av)112 , where Ais some 
symmetric and positive definite matrix. Now choose St = S as a linear 
transformation on RPv satisfying S' S = A. Then the transformed system 
satisfies all the assumptions of Theorem 6.10 (w.r.t. the Euclidean norm), 
and clearly also s-1 satisfies (component-wise) the assumptions of Theo
rems 6.5, 6.6 and Corollary 6.8. Hence, in this instance the transformation 
device readily delivers the Lp-approximability [near epoch dependence] of 
(vt). 

Theorem 6.10 generalizes the discussion in Bierens (1981), Section 5.1.3, 
for univariate dynamic systems of the form Vt = <f>(vt_1) + Wt. Gal
lant (1987a, pp.502-503) considers a univariate system of the form Vt = 
4>(vt-1!Xt) + Et with vo = 0. Given l84>f8vl ::::; d1 < 1, and l84>f8xl ::::; 
d2 < oo, and the appropriate moment conditions, we readily obtain Lp
approximability of Vt by [near epoch dependence of Vt on] Wt = (x~, ~:t)' 
from Theorem 6.10. That is, the variables Vt can be approximated by ran
dom variables hf which only depend on Xt+m, Et+m, ... , Xt-m, Et-m. Gal
lant claims near epoch dependence of Vt on (x~, Et)' to hold only under 
the assumption l84>f8vl ::::; d1 < 1. However, his proof, which uses ar
guments similar to those in Bierens and in the proof of Theorem 6.10, 
only shows that the variables Vt can be approximated by random vari
ables which depend not only on Xt+m, Et+m, ... , Xt-m, Et-m, but also on 
Xt-m-l,Xt-m-2, ... Furthermore, for Vt generated more generally by Vt = 
<f>(vt-l!Xt,Et), Gallant (1987a, pp.481-482) also claims near epoch depen
dence ofvt on Wt = (x~, Et)' to holdunder the assumptions l84>f8vl ::::; d1 < 
1 and 184>/8~:1 ::::; d2 < oo. Again his proof only shows that the variables 
Vt can be approximated by random variables which depend not only on 
Xt+m' ft+m' ... 'Xt-m' Et-m' but also on Xt-m-1' Xt-m-2' ... We note that 
in order to deduce the desired conclusion from Theorem 6.10 one would 
have to add the condition l84>f8xl ::::; d3 < oo.21 Therefore both claims in 
Gallant (1987a) remain unproven in general. However, we will show below 
that the claims are correct for the case of convex V; see the discussion after 
Theorem 6.11. 

Kuan and White (1994), Proposition 4.4, present a result that is similar 
to the last claim of part (c) of Theorem 6.10 above.22 However, the proof 

21Gallant and White (1988, pp.29-31) discuss the same model and establish 
the near epoch dependence of Vt on Wt = (x~, Et)' assuming l84>/8vl ::::; d1 < 1, 
and (a variant of) I84>/8EI ::::; d2 < oo and l84>/8xl ::::; d3 < oo. 

22Compared with Theorem 6.10(c), Kuan and White assume only the existence 
of second moments of Wt and not their boundedness in t, but assume vo tobe a 
bounded random variable. Furthermore they also make the stronger assumption 
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of their result is not completely correct, unless the sets V and W are, e.g., 
additionally assumed to be convex. Kuan and White's argument involves 
the evaluation of the function g, which is defined on V x W, at conditional 
expectations of Vt and Wt. However, those conditional expectations need 
not take their values in V and W, unless these sets are convex. In contrast, 
the method of proof employed in establishing Theorem 6.10 only requires 
V and W to be Bore! sets. 

Inspection of the proof of Theorem 6.10 reveals that the Lipschitz con
dition maintained by that theorem is also needed in this form even in the 
special case where et is chosentobe equal to Wt. While the proof of Propo
sition 4.4 in Kuan and White (1994) only works for convex sets, analyzing 
the method of proof shows that it has the advantage that in the special 
case where et = Wt and where V is convex the functions 9t have to pos
sess the Lipschitz property only w.r.t. the first argument. This leads to the 
following theorem, which is closely related to Theorem 6.10. 

Theorem 6.11. Let (vt)tEN and (wt)tEZ be stochastic processes taking 
their values in Borel subsets V and W of RPv and RPw, respectively, and 
let 9t : V X W --+ V be Borel measurable functions fort E N. Assurne 
that V is convex. Suppose that (vt) is generated according to the dynamic 
system 

Vt = 9t(Vt-1, Wt), t E N, 

where vo is some initial random variable taking its values in V. Assurne 
thatfor all (v,v•) E V x V, w E W, andt E N 

l9t(v, w)- 9t(v•, w)l ::::; dv lv- v•l 
holds where the global Lipschitz constant satisfies 0 ::::; dv < 1. lf 

sup llvt 11 2 < oo, 
t~O 

then (vt) is near epoch dependent of size -q on (wt) for any q > 0 (and 
hence (vt) is also L2-approximable by (wt)). 

Applying the mean value theorem we obtain the following sufficient con
dition for the contraction condition on 9t in Theorem 6.11: 

sup{lstacf~1 [i~~ (vi,w)] I: vi E V, w E W, i = 1, ... ,pv, t E N} < 1, 

that the function g does not depend on t, that g is bounded, and that V is 
compact. (The assumed boundedness of vo is already implied by the implicit 
assumption that v 0 has to take its values in the compact set V.) The Lipschitz 
conditions in their paper are formulated differently, but clearly are equivalent to 
the Lipschitz condition in Theorem 6.10. 
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where ii denotes the i-th column of the Pv x Pv identity matrix; cf. the 
discussion after Theorem 6.10. In the case of a univariate model, i.e., Pv = 1, 
this condition simplifies to l8gt/8vl :::; const < 1. Theorem 6.11 thus shows 
that in case the set V is convex, Gallant's claims discussed above actually 
turn out to be correct; in fact they are correct under the single condition 
l8if>f8vl :::; d1 < 1 (provided one can establish the moment condition in 
Theorem 6.11). 

Since dynamic systems of higher order can always be reformulated as 
dynamic systems of order one, it seems suggestive that Theorems 6.10 and 
6.11 also cover dynamic systems of higher order. Unfortunately, this is not 
the case even for linear systems, as the following simple example shows. 
For purposes of illustration consider the following autoregressive model of 
order two 

Yt = ayt-1 + bYt-2 + Et. 

Rewriting the system in stacked notation as a system of order one, i.e., in 
companion form, leads to 

Vt = AVt-1 + Wt 

where 

Vt= [ 
Yt 

Yt-1 
] , Wt = [ ~ ] , A = [ ~ ~ ] . 

Now choose, e.g., v = (1, 0)', v• = (0, 0)', and w = w•. In order for the 
contraction condition, i.e., dv < 1, in Theorems 6.10 and 6.11 tobe satisfied 
we would need to have 

IAv - Av•l :::; dv lv - v•l < lv - v•l . 

However, lv- v•l = 1(1, 0)'1 = 1 is neverlarger than IAv- Av•l = l(a, 1)'1 = 
(1 + a2 ) 112 regardless of the values of the parameters a and b. That is, the 
contraction condition dv < 1 is always violated for the stacked system of 
order one (even if the autoregressive model of order two is stable). Stated 
differently, the contraction condition dv < 1 amounts to 

lAI = (..\max(A' A)) 112 :::; dv < 1, 

which can never be satisfied because 

IAI 2 = sup{v'A'Av:lvl=1} 

~ (1, O)A' A(1, O)' = (1 + a2). 

It is easy to see that the above discussion extends to nonlinear systems.23 

That is, the contraction condition dv < 1 of Theorems 6.10 and 6.11 can 

23Consider the nonlinear system Yt = c/>t(Yt-1, ... , Yt-p, Xt) where Xt denotes 
here (observed as well as unobserved) inputs. After reformulating the system in 
the usual way as a first order system, Vt = Ut(Vt-1, Wt), choose v = (1,0, ... ,0)', 
v• = (0, ... ,0)', and w = w•, and observe that lv-v•l = 1(1,0, ... ,0)'1 = 1 
while lut(v, w)- Ut(v•, w•)l = l('y, 1, 0, ... , 0)1 = (·l + 1)112 for some 'Y· 
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never be satisfied for the companion form of a higher order dynamic system, 
regardless of whether the system is linear or nonlinear. 

It should be noted that also for multivariate systems of order one, which 
do not result from a reduction of a higher order system, the contraction 
condition dv < 1 will frequently be violated even if the system is "stable". 
For example, for triangular linear systems the usual stability condition only 
puts restrictions on the diagonal elements of the system matrix, while the 
contraction condition also restricts the off-diagonal elements. 

Given the above observations about the restrictive nature of the contrac
tion condition maintained by Theorems 6.10 and 6.11, it seems imperative 
for the development of a general asymptotic estimation theory for dynamic 
systems to establish analogous results that cover "stable" dynamic sys
tems including higher order dynamic systems. Such a result is given below 
in Theorem 6.12. To motivate the conditions of this theorem consider, e.g., 
the linear system 

Vt = g(vt-1, Wt) = Gvt-1 + Wt. 

Assurne that the system is stable, i.e., all characteristic roots of G are less 
than one in absolute value. The contraction condition dv < 1 would require 
\GI :::; dv < 1 to hold, which is a much stronger condition than stability, as 
was pointed out above. Now consider the model iterated k times 

Vt+k-1 = g(k)(Vt-1, Wt, · · ·, Wt+k-1) 

k-1 

Gk + '""'ck-1-i Vt-1 .L...t Wt+i· 
i=O 

Since G was assumed to be stable it follows that Gk converges to zero as 
k -t oo, and hence for k sufficiently large I Gk I :::; dv < 1. That is, the con
traction condition holds for the system iterated k times, i.e., for g(k). The 
idea behind the proof of Theorem 6.12 is now to apply, in a first step, The
orem 6.10 to the subprocesses of (vt), which are generated by the iterated 
system when initialized by vi, i = 0, ... , k -1, respectively, thus establish
ing Lr-approximability [near epoch dependence] of the subprocesses. The 
idea is further to show, in the second step of the proof, that one can recover 
Lr-approximability [near epoch dependence] of (vt) from the corresponding 
property of the subprocesses. Theorem 6.12 shows that this idea works in
deed even for "stable" dynamic nonlinear systems, where "stability" means 
that after a sufficiently large number of iterations an iterate of the system 
is contracting. 24 ( Of course, in light of the above discussion, this notion 
of "stability" is satisfied by any linear system that is stable in the usual 
sense.) 

24We note that Theorem 6.12 can be slightly generalized by using Lemma D5 
instead of Theorem 6.10 in the proof. 
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We emphasize again that Theorem 6.12- in cantrast to Theorems 6.10 
and 6.11- covers "stable" and not only contracting systems. In particular, 
Theorem 6.12 also applies to dynamic nonlinear systems of higher order. 
As discussed above, the contraction condition in Theorems 6.10 and 6.11 
can never be satisfied for the companion form of a higher order system. 25 

However, this is not so for the stability condition used by Theorem 6.12. 
A "stable" higher order system will typically give rise to an equivalent 
reduced system of order one, where- after a sufficiently large number of 
iterations - an iterate of the companion form is contracting. (Recall that 
a stable linear system of arbitrary order leads to a stable companion form, 
and hence to a system of order one, an iterate of which is contracting.) 

Theorem 6.12. Let (vt)tEN and (wt)tez be stochastic processes taking 
their values in Borel subsets V and W of RP" and RPw, respectively, and 
let 9t : V x W -+ V be functions for t E N. Suppose that ( v t) is generated 
according to the dynamic system 

Vt = 9t(Vt-l, Wt), t E N, 

where v 0 is some initial random variable taking its values in V. For t E N 
and k E N define the functions g~k+l), representing the iterations of the 
dynamic system, by the following recursions: 

g~k+l)(v,wb ... ,wk+l) = 9t+k (g~k)(v,w1, ... ,wk),wk+l), 

where gp> = 9t. Assurne that there exists a k* ~ 1 such that for all ( v, v•) E 

V x V, (w1, ... ,wk•,wi, ... ,w:.) E IJ~!~ W, and t E N 

lg}k")(v,wb ... ,Wk•)- g}k*)(v•,wi, ... ,w:.)l (6.6} 

~ d" lv- v•l + dw I w1- wi I 
Wk• ~w:. 

25 A possible alternative route to circumvent the problem that companion forms 
of higher order dynamic systems never satisfy the contraction condition in The
orems 6.10 and 6.11 could be based on the transformation device discussed after 
Theorem 6.10. This would require that we find transformations St suchthat the 
transformed companion form satisfies Theorem 6.10 or 6.11 and suchthat s;-1 

preserves Lp-approximability [near epoch dependence]. For a stable linear sys
tem this is always possible by choosing S as a linear transformation such that 
ISGS-1 1 is less than one- cf., e.g., Lemma 5.6.10 in Horn and Johnson (1985) 
and note that this Iemma also holds with the norm III . lll1 replaced by the spec
tral norm I . I used here. However, it is less than clear for which classes of dynamic 
nonlinear systems such transformations can be constructed and how this could 
be done in a systematic way. 
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holds where the global Lipschitz constants satisfy 0 ~ dv < 1 and 0 ~ dw < 
00. 

(a) lf llwtllr < oo fort E N and llvillr < oo, i = 0, ... , k* -1, for some 
r;::: 1, then llvtllr < oo fort E N. If additionally 

sup llwt I Ir < oo 
t~l 

and 
I (k*)(- - - )I sup Yt v,w1, . .. ,Wk• < oo 

t~l 

holds for some elements ii E V, ( w1 , ... , Wk•) E I1~~ 1 W, then also 

(b) lf 

sup llvt I Ir < oo. 
t~l 

sup llwtllr < oo 
t~l 

and llvi I Ir < oo, i = 0, ... , k* - 1, for some r ;::: 1, and if (wt)tEN is 
Lr-approximable by some process (et)tEZ, then (vt) is Lr-approximable by 
(et). 

(c) If 
sup llwt 11 2 < oo 
t~l 

and llvi 11 2 < oo, i = 0, ... , k* - 1, and if (wt)tEN is near epoch depen
dent of size -q on some process (et)tEZ, then (vt) is near epoch depen
dent of size -q on (et), where et = (e~,O, ... ,O)' fort =f. 1 and e1 = 
(e~, v~, ... , v~·-d· IJ additionally also 

llvi- E (vilei+m, ... , ei-m)ll 2 , i = 0, ... , k*- 1, 

are of size -q, then (vt) is near epoch dependent of size -q on (et).26 

Theorem 6.12 maintains the conditions llvillr < oo for i = 0, ... , k*- 1. 
This condition can be simplified - as is easily seen - to the single condi
tion llvollr < oo, provided the system maps Yt are Lipschitz functions, cf. 
Remark (iii) after Lemma D5 in Appendix D. 

The above theorem requires that the dynamic system is stable in the 
sense that for some k* the functions v -4 g~k*) (v, w1, ... , Wk•) satisfy con
dition (6.6) with dv < 1 and dw < oo. Applying the mean value theorem it 

26We note again that in case vo, ... , Yk*-1 are nonstochastic, near epoch de
pendence on (et) coincides with near epoch dependence on (et), and the condition 
that the approximation errors llvi- E(vilei+m, ... ,ei-m)ll2 are ofsize -q is au
tomatically satisfied. 
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is readily seen that a suffi.cient condition for this to hold is that 

Pv •I f}gt i i i . {I [ {k*) ll sup staci=t 1i a:;;-- ( v , w 1 , •.. , wk.) . 

viEV,w}EW, j=1, ... ,k*, i=1, ... ,pv,tEN}<1 

and 

sup 0~~~ ( v, Wt, .. . , Wk•) : {I {k*) 

vEV, Wj EW,j=1, ... ,k*,tEN} <oo, l=1, ... ,k*, 

where ii denotes the i-th column of the Pv X Pv identity matrix; cf. the 
discussion after Theorem 6.10. 

The functions g;k*) are defined recursively in terms of gt+k*-t, ... ,gt. 

Utilizing this definition we can also give the following suffi.cient conditions 
for the above two conditions: 

t Py •I rr f}gt+k*-l ( {k*-l)( i i i ) i ) . {I [ k* ll sup s aci=t li l=t 8v gt v ,wl, ... ,wk*-l ,wk*-!+1 . 

viEV, w;EW, j=1, ... ,k*, i=1, ... ,pv, tEN}<1 

with g~0)(v) = v and 

l8gt/ 8vl ::; c1 < oo, 

Theorems 6.10 - 6.12 are important ingredients for the development of 
laws of large numbers and central limit theorems for (functions of) pro
cesses generated by dynamic systems, in that they can be readily com
bined with existing laws of large numbers and central limit theorems for 
Lr-approximable and near epoch dependent processes. For example, com
bining Theorem 6.12 with Theorems 6.3, 6.4, or 10.2 immediately gives laws 
of large numbers or centrallimit theorems for such processes. We shall also 
make use of this fact in Chapter 14, where we consider the estimation of 
dynamic nonlinear models by quasi maximum likelihood methods. 

6.5 Illustrations of Local Laws of Large 
Numbers 

In this section we illustrate how the results obtained in the previous section 
can be utilized to establish suffi.cient conditions that ensure that qt ( Zt, 0) 
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satisfies a local LLN, i.e., conditions that imply LLNs for the "bracketing" 
functions q;(zt,0;11) and qh(zt,0;11). Clearly, a first set of sufficient con
ditions could be obtained from Theorems 6.3 and 6.4 if we simply put Vt 

equal to q; ( Zt, 0; 11) and qh ( Zt, 0; 11) in these theorems. This would amount 
to postulating the Lp-approximability or near epoch dependence condi
tions maintained in those theorems directly for q;(zt, 0; 11) and qt.(Zt, 0; 11). 
It seems of interest to be able to avoid such a "black box" assumption 
and to have available more basic sets of sufficient conditions for local LLNs 
that place the Lp-approximability or near epoch dependence assumptions 
directly on the data generating process (zt) itself.27 We first consider the 
practically most important case where Zt is a vector of finite dimension. 
More specifically we assume that Z is a Borel subset of RPs and the asso
ciated 0'-field 3 is then the induced Borel 0'-field. Also recall from Chapter 
5 that (8, p) is a metric space, that qt(., 0) is 3-measurable for each 0 E 8 
and t E N, and that dt(z) = sup9Ee lqt(z, 0)!. The following three theo
rems give sets of more basic conditions ensuring that qt(Zt, 0) satisfies a 
local LLN.28 The first theorem is based on an equicontinuity assumption 
for qt and follows as a corollary to Theorems 6.3 and 6.5. 

Theorem 6.13. Let e be compact and Z be a Borel subset ofRPs. Suppose 
(zt) is Lo-approximable by an a-mixing basis process and 

n 

supn-1 LE [dt(Zt)l+-r] < oo 
n t=l 

for some 'Y > 0. lf {H:, : n E N} is tight on Z and if the family {qt(z, 0) : 
t E N} is equicontinuous on z X e, then for any 0 E e and any 11 > 0 
the functions q;(z, 0; 11) and qh(z, 0; 11) arereal valued and Borel measumble 
and q;(zt, 0; 11) and qt.(Zt, 0; 11) satisfy a weak LLN, i.e., the "in probability" 
version of Assumption 5.2 is satisfied. 

The two subsequent theorems are based on a Lipschitz-type condition 
for qt. The next theorem follows as a corollary to Theorems 6.3 and 6.6. 

27In case Zt consists ofendogenaus and exogenous variables, where the endoge
naus variables are generated from a dynamic system, the Lp-approximability of 
(zt) by [near epoch dependence of (zt) on] a mixing process can then be im
plied from the analogous properties of the processes of exogenous variables and 
disturbances, e.g., via Theorem 6.12. 

28If Zt = (w~, ... , w~_1 )' and if (wt) is Lp-approximable then in view of Lemma 
6.9 also (zt) has the same property. Hence, iffor example Wt represents the vector 
of exogenous and endogenaus variables, the approximability conditions in the 
subsequent Theorems 6.13 and 6.14 are effectively put on the endogenaus and 
exogenous process. Also the tightness of {H~ : n E N} follows from tightness of 
{H;:' : n E N} (if Z is relatively closed in IJ~=O W), cf. Lemma Cl in Appendix 
c. 
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Theorem 6.14. 29 LetZ be a Borel subset of RP• and let q;(z, B; ry) and 
qh(z, B; ry) be real valued and Borel measuroble for any B E e and 'Tl > 0 
small enough. Suppose (zt) is L0 -approximable by an a.-mixing basis process 
(et) and 

n 

supn-1 l:E [dt(Zt)l+'Y] < oo 
n t=1 

for some r > 0, where dt(Zt) is 21-measuroble. Suppose there exist Borel 
measuroble functions Bt : Z x Z--+ [0, oo) such that for all z, z• E Z and 
BE 0 

lqt(z, B)- qt(z•, B)l ~ Bt(z, z•) lz- z•1. 
Suppose further that 

n 

limsup limsupn-1 l:E [Bt(Zt,h~)'] < oo 
m~oo n-+oo t=l 

for some E > 0 and some L0 -approximators h7' of (zt) based on ( et), where 
the approximators take their values in Z, then q;(zt,B;ry) and qh(zt,B;ry) 
satisfy a weak LLN, and hence the "in probability" version of Assumption 
5. 2 is satisfied. 

By applying McLeish's strong LLN, given above as Theorem 6.4, Gallant 
(1987a, Ch. 7) and Gallant and White (1988) give strong local LLNs under 
the high level assumption that q;(zt, B; ry) and qh(zt, B; ry) are near epoch 
dependent. They also present in Gallant (1987a, pp.498-499) andin Gallant 
and White (1988), Theorem 4.2, results on the transformation of near epoch 
dependent processes, which allow the derivation of more basic conditions 
for strong local LLNs. As discussed, Gallant's and White's transformation 
results assume that the transformations are defined on entire Euclidean 
spaces. The following theorem now provides basic conditions for strong 
local LLNs for transformations that arenot necessarily defined on the entire 
Euclidean space. It is obtained as a corollary to Theorems 6.4 and 6.7(a). 

Theorem 6.15. Let Z be a Borel subset of RP·, let q;(z, B; ry) and 
qt.(z, B; ry) be real valued and Borel measuroble for any B E e and 'TJ > 0 
small enough, and assume that 

00 

:2:: lldt(zt)ll; /t2 < oo 
t=1 

29If e is compact the 2!-measurability of dt(zt) follows automatically from the 
measurability assumptions on the "bracketing" functions q; and Qto, since then 
dt (zt) can be expressed as the maximum of the absolute values of a finite number 
of "bracketing" functions. The same remark also applies to Theorem 6.15. 
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for some r ~ 2, where dt(zt) is 21-measurable. Suppose there exist Borel 
measurable functions Bt : Z x Z -+ [0, oo) such that for all z, z• E Z and 
BE e 

Jqt(z, 0)- qt(z•, O)J ~ Bt(z, z•) Jz- z•J. 

For some s ~ 1 let hf be an L 8 -approximator of (zt) based on (et), where 
the approximators take their values in Z and the sequence of approximation 
errors supt llzt- hflls is of size -q for some q > 1. Suppose further that 

sup sup JIBt(Zt, hr)lis/(s-1) < oo 
m t 

and 
sup sup IIBt(zt, ~m) izt- hrlll(2q-1)/(q-1) < oo. 

m t 

lf the basis process ( et) is a.-mixing with mixing coefficients of size -r j ( r-
2) and r > 2, or r/J-mixing with mixing coefficients of size -r/(2r-2), then 
q;(zt, 0; 17) and qt.(zt, 0; 17) satisfy a strong LLN, and hence the "almost 
sure" version of Assumption 5.2 is satisfied. 

In the above discussion of suffi.cient conditions for locallaws of large num
bers we have assumed that Zt isafinite vector. In case of, e.g., a model with 
moving average disturbances, Zt may be of the form Zt = (w~, w~_1 , ... )'. 
Hence in the following we will outline how the above results can be gen
eralized to the case where Z is a Borel subset of R 00 • Of course, in order 
to obtain generalizations of Theorems 6.13- 6.15 one only has to general
ize the results on Lp-approximability [near epoch dependence] of functions 
of Lp-approximable [near epoch dependent] processes given in Theorems 
6.5 - 6.7 and Corollary 6.8 . .Aß a first step one has to generalize the con
cept of Lp-approximability [near epoch dependence] for processes that take 
their values in R 00 • In defining the approximation error we have to re
place the Euclidean metric by some appropriate metric. For definiteness 
we choose the metric tobe d(x,y) = E:1 Jxi -Yil /[2i(1 + Jxi -yiJ)], 
x = (x1,x2, ... ) E R 00 , y = (y1,Y2 1 ••• ) E R 00 • Then Theorem 6.5 carries 
over if qt is equicontinuous w.r.t. d(., .) as the metric on Z. Similarly The
orems 6.6 and 6.7 can be generalized if the Lipschitz-type condition holds 
w.r.t. d(., .) as the metric on Z; concerning such a result for near epoch 
dependence under a Lipschitz-type condition see Theorem 4.2 in Gallant 
and White (1988). Intuitively speaking, for q;(zt, 0; 17) and qt.(Zt, 0; 17) with 
Zt = (w~, w~_1 , ... )'tobe Lp-approximable [near epoch dependent] and to 
satisfy a LLN ifwt is Lp-approximable [near epoch depE;Jndent] it seems nec
essary that the dependence of the functions qt on arguments corresponding 
to high lags is weak. This is formally expressed in terms of equicontinuity 
or Lipschitz-type assumptions for qt w.r.t. the metric d(., .), which itself 
puts declining weights on coordinates corresponding to high lags. 
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6.6 Comparison of ULLNs for 
Lp-Approximable and Near Epoch 
Dependent Processes 

As discussed in Chapter 5, the ULLNs by Andrews (1987) and Pötscher and 
Prucha (1989)- given in that chapter as Theorems 5.1 and 5.2- maintain 
different smoothness conditions for the functions qt(z, 0). Those smooth
ness conditions- corresponding to Theorems 5.1 and 5.2- are expressed by 
Assumptions A and B. Assumption A maintains that the functions Qt sat
isfy a Lipschitz-type condition with respect to 0. No smoothness condition 
is imposed with respect to the data. Assumption B maintains a continuity 
type condition jointly with respect to z and 0 for the functions Qt· Both 
ULLNs maintain that the functions qt(Zt, 0) satisfy local LLNs. In Section 
6.5 of this chapter we have developed basic sufficient conditions for such 
local LLNs to hold within the context of Lp-approximable and near epoch 
dependent processes. Those sufficient conditions also put smoothness con
ditions on the functions Qt· It seems of interest to discuss the total resulting 
smoothness conditions when combining the ULLNs in Chapter 5 with the 
local LLNs in Section 6.5. 

For ease of discussion we explicitly restate the smoothness condition 
maintained by, respectively, Theorem 6.13 and by Theorems 6.14 and 6.15. 

Assumption E. The family {qt: t E N} is equicontinuous on Z x 8. 

Assumption F. There exist Bore[ measuroble functions Bt : Z x Z -4 

[0, oo) such that for all z, z• E Z and 0 E 8 

lqt(z, 0)- qt(z•, 0)1 ::=; Bt(z, z•) lz- z•1. 

{The class of Borel measuroble functions Bt is then restricted in Theorems 
6.14 and 6.15 by dominance conditions. Those dominance conditions also 
involve approximators ht'.) 

Assumptions B and E fit together well. More specifically Assumption 
E is a special case of Assumption B with K = 1 and Tkt = 1. Hence no 
additional smoothness condition is needed for the ULLN given in Theorem 
5.2 (apart from the restriction that K = 1 and rkt = 1) if the local LLN 
for qt(Zt, 0) is implied by Theorem 6.13. In comparing Assumption A with 
Assumptions E and F we see that both Assumptions E and F postulate an 
additional smoothness condition for the functions qt(z, 0), since Assump
tion A imposes no smoothness condition w.r.t. z. If for the ULLN given 
as Theorem 5.1 the local LLN for qt(Zt, 0) is implied via Theorem 6.14 or 
6.15, then Qt has to satisfy a Lipschitz-type condition in both arguments 
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(plus dominance conditions). As a practical matter we may often attempt 
to verify those Lipschitz-type conditions from a differentiability assump
tion (plus dominance conditions for the first order derivatives). Against 
this background Theorem 5.2 tagether with Theorem 6.13, which both re
quire essentially only that qt(z, B) is equicontinuous, seems more readily 
applicable (also since the assumptions do not involve approximators hf'). 

We note further that Theorem 5.2 tagether with Theorem 6.13 extend 
the approach taken by Eierens (1981, 1982a, 1984): Eierens assumed that 
qt = q does not depend on t and that q is continuous. This assumption is 
weakened here to equicontinuity of qt. Eierens assumed furthermore that 
(zt) is asymptotically stationary, which essentially rules out heterogeneity. 
This assumption is weakened to tightness which, as discussed, can typically 
be implied by a weak moment condition. (Of course, by assuming qt = q 
and (zt) to be asymptotically stationary, Eierens is able to showalso that 
n-1 E~=l Eqt(zt, B) converges to a finite limit; cf. also Theorem 5.3.) 

The equicontinuity assumption can be weakened further via Lemma D4 
in Appendix D. This lemma generalizes Theorem 6.5 by allowing, to some 
extent, for non-equicontinuity of the transforming functions (and in par
ticular for some forms of discontinuity). Furthermore, as pointed out by 
Newey (1987), equicontinuity may often be obtained through a suitable 
redefinition of the data. 



7 

CONSISTENCY: 
CATALOGUES OF 
ASSUMPTIONS 

In the previous chapters we have discussed the basic structure of the das
sical consistency proof for M-estimators and have established basic mod
ules that can be employed for consistency proofs in dynamic nonlinear 
models. Various catalogues of assumptions that imply the consistency of 
M-estimators in dynamic nonlinear models can be obtained by combining 
respective modules. In the following weillustrate this by specifying two al
ternative catalogues of assumptions for the consistency of a general dass of 
M-estimators, which indudes least mean distance and generalized method 
of moments estimators. Fora further illustrative application of the respec
tive modules see Chapter 14, which contains a derivation of the asymptotic 
properties of the (quasi) NFIML estimator of a dynamic implicit nonlinear 
simultaneaus equation system. 

We continue to maintain the general setup of the estimation problern 
introduced in Chapter 2 and consider M-estimators ßn corresponding to 
objective functions of the form: 

Rn(w, ß) = Qn(Z1, ... , Zn, fn, ß) = {}n (n-1 t qt(Zt, fn, ß), fn, ß) (7.1) 
t=l 

where qt : z X T X B - RPq' {}n : RPq X T X B - R, and fn : n - T is an 
estimator for the nuisance parameter. The dass of M-estimators defined by 
(7.1) is fairly generaland indudes generalized method of moments estima
tors as well as least mean distance estimators; the latter correspond to the 
case where Pq = 1 and {}n(c, r, ß) = c. For some sequence Tn E T (typically 
a population analogue of fn) let ßn denote a sequence of minimizers of 

Rn(ß) = Qn(Tn,ß) = {}n (n-1 tEqt(Zt,Tn,ß),Tn,ß), (7.2) 
t=l 

where the existence of the minimizers is implicitly assumed. The existence 
of the expectation on the r.h.s. of (7.2) will follow from Assumption 7.1(c) 
below. 

We now introduce two sets of assumptions for the consistency of ßn. The 
first set is based on an equicontinuity assumption on the functions qt and 
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the second set is based on Lipschitz-type assumptions for those functions. 
Assumptions common to both sets are collected in Assumption 7.1. Those 
specific to the two sets are given in Assumption 7.2 and 7.3, respectively. 
In the following qti denotes the i-th component of qt. 

Assumption 7.1. (a) Z is a Borel subset of RP· (where the associated 
u-field 3 is the induced Borel u-field} and T and B are compact metric 
spaces. 

(b) {19n : n E N} is equicontinuous on RPq X T x B. (In case 19n = 19 
this clearly reduces to continuity of 19 on RPq x T x B.) 

(c) Let 

then 

for some 'Y > 0. 

dt(z) = ID:ax sup lqti(z, r, ß)l, 
1~t~pq TxB 

n 

supn-1 LE [dt(zt)l+"Y] < oo 
n t=1 

{d) (zt) is Lo-approximable by some a:-mixing basis process, say, (et)· 
(e} PT(fn,'tn)- 0 i.p. as n- 00. 

Assumption 7.2. {qt: t E N} is equicontinuous on Z x T x B. (In case 
qt = q this clearly reduces to continuity of q on Z x T x B.) Furthermore 
{n-1 2:~=1 Hf: n E N} is tight on Z (which is, e.g., the case if 

n 

supn-1 LE lztl-y• < oo 
n t=1 

for some 'Y• > 0 and if Z is closed in RP· ). 

Assumption 7.3. (a) Foreach (r,ß) E T x B the functions qt(., r, ß) are 
3-measurable, and for each ( r, ß) E T x B there exists an 'TJ > 0 such that 
p((r, ß), (r•, ß•)) ~ 'TJ implies1 

lqt(Zt, r•, ß•)- qt(Zt, r, ß)l ~ bt(Zt)h [p ((r, ß), (r•, ß•))], 

for all t E N, a.s., where bt: Z- [O,oo) and h: [O,oo)- [O,oo) aresuch 
that bt(Zt) is 21.-measurable, 

n 

supn-1 LEbt(Zt) < oo, 
n t=1 

1The metric p denotes here, e.g., PT+ PBi cf. Footnote 5 in Chapter 3. 
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h(y) l h(O) = 0 as y l 0, and Tf, bt, h and the null set may depend on 
(r,ß). 

(b) There exist Borel measurable functions Bt : Z x Z --+ [0, oo) such that 
for all z,z• E Z and (r,ß) E T x B 

with 
n 

limsup limsupn-1 LE [Bt(Zt,hr)~] < oo 
m-+oo n-+oo t=1 

for some E > 0 and some L0 -approximators hr of (zt), where the approxi
mators take their values in Z. 

{c) The functions q;i(z, T, ß; Tf) and qu*(z, T, ß; Tf), i = 1, ... ,pq, arefinite 
and Borel measurable for any ( T, ß) E T x B and Tf > 0 small enough. 

{d} The functions 

sup ln-1 tqt(Zt,T,ß)- n-1 tEqt(Zt,T,ß)l 
TxB t=1 t=1 

and 

are 21-measurable. 

We now introduce the following result concerning the consistency of ßn. 

Theorem 7.1. 2 Suppose Assumptions 7.1 and either 7.2 or 7.3 hold. Then 
I 

sup iRn(w,ß)- Rn(ß)i--+ 0 i.p. as n--+ oo 
B 

(7.3) 

and {Rn : n E N} is equicontinuous on B. Purthermore, let ßn be an iden
tifiably unique sequence of minimizers of Rn (ß) and let ßn be any sequence 
of estimators such that eventuall'lf 

Rn(w, /3n) = inf Rn(w, ß) 
B 

(7.4} 

2The measurability of sup8 IRn(w, ß) - Rn(ß) I, which is implicitly assumed 
in (7.3) - cf. Footnote 3 in Chapter 3- is automatically guaranteed under As
sumptions 7.1 and 7.2. 

3 This could be relaxed to the requirement that (7.4) holds on sets On E !2l 
with P(On) --+ 1. 
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holds. Then ßn is consistent for ßn, i.e., PB(ßn, ßn) --+ 0 i.p. as n --+ oo. 

The above theorem follows from Lemma 3.1, where Assumptions 7.1 and 
either 7.2 or 7.3 are used to ensure that Rn(w,ß)- Rn(ß) converges to 
zero uniformly over the parameter space B via Lemmata 3.2 - 3.3 and, 
respectively, Theorems 5.2, 6.13 and Theorems 5.1, 6.14.4 The theorem 
also covers the case where no nuisance parameter r is present. 5 

As discussed in Section 4.6, the assumption that an identifiably unique se
quence of minimizers exists is restrictive under misspecification. The above 
theorem can be readily generalized along the lines that ßn converges to the 
sets of minimizers of Rn (ß) by using Lemma 4.2 in place of Lemma 3.1. Of 
course, Theorem 7.1 also holds for approximate M-estimators, cf. Sections 
4.4 and 4.6. 

In applications the equicontinuity condition in Assumption 7.2 will be 
easier to verify than the Lipschitz-type conditions in Assumption 7.3, in 
particular also since the latter involve approximators hf; cf. Section 6.6 
for a related discussion. The equicontinuity condition in Assumption 7.2 
matches with that maintained in the ULLN by Pötscher and Prucha (1989) 
and in Theorem 6.13. The Lipschitz-type conditions in Assumption 7.3 
match with those in the ULLN by Andrews (1987) andin Theorem 6.14. 

Strong consistency results analogous to the weak consistency result given 
in Theorem 7.1 can be obtained if instead of Theorems 6.13 or 6.14 we use 
Theorem 6.15 to imply local LLNs. As can be seen from an inspection of 
Theorem 6.15 the resulting catalogues of assumptions arerather complex. 
The approach taken in Gallant (1987a, Ch.7) and Gallant and White (1988) 
leads to one of these catalogues. 

4In the case of generalized method of moments estimators qt is vector valued 
and hence the ULLNs are applied to each component. 

5 This case can be incorporated into the framework of the theorem by formally 
viewing the objective function as a function on Tx B, where T can be chosen as an 
arbitrary compact subset of some Euclidean space, and by setting fn = Tn = r0 , 

where ro is an arbitrary element ofT. 



8 

BASIC STRUCTURE OF 
THE ASYMPTOTIC 
NORMALITY PROOF 

In this chapter we describe the basic structure underlying the derivation 
of the asymptotic distribution of M-estimators in nonlinear econometric 
models. As remarked in Chapter 1, the basic methods used in this derivation 
date back to Doob (1934), Cramer (1946), LeCam (1953), Huber (1967) 
and Jennrich (1969), to mention a few; foramoreextensive bibliography 
see Norden (1972, 1973) and the references in Chapter 1. The asymptotic 
normality proofs in the artides on nonlinear econometric models listed in 
Chapter 1 all share this common structure. The basic idea is to express the 
estimator as a linear function of the score vector by means of a Taylor series 
expansion and then to derive the asymptotic distribution of the estimator 
from the asymptotic distribution of the score vector. 

We maintain the basic setup as described in Chapter 2. Let Qn : zn X 

T x B -----+ R denote some objective function and let (zt) be a stochastic 
process taking its values in Z. Let ßn and fn be estimators with the typical 
interpretation of estimators of the parameters of interest and of nuisance 
parameters, respectively. In the following ßn need not necessarily be a mini
mizer of Qn, but only an approximate solution of a set of corresponding first 
order conditions. As discussed in Chapters 2 and 7 the objective function 
will often take the form 

with 
n 

Sn(w,T,ß) = n-1 Lqt(Zt,T,ß) 
t=l 

where qt : Z X T x B -----+ RPq and {)n : RPq x T x B -----+ R. The dass of 
least mean distance estimators corresponds to pq = 1 and {) n ( c, T, ß) = c. 
The dass of generalized method of moments estimators corresponds to 
the case where Sn derrotes a vector of sample moments and {)n represents 
some "distance" function like a quadratic form (in the vector of sample 
moments). 

The subsequent assumption describes the basic setup employed in deriv
ing the asymptotic distribution of ßn. We have formulated this assumption 
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in a rather general fashion such that it is also applicable in certain non
ergodie situations, since the added generality does not significantly increase 
the complexity of the derivation of the asymptotic distribution result. The 
leading and classical case is the situation where the normalizing sequences 
Mn and Nn behave like n 112I. 

Assumption 8.1. 1 (a) The parameter spaces T and B are measurable 
subsets of Euclidean space RP... and RPß, respectively. 

{b) Qn(ZI.···•zn,T,ß) is ~-measurable for all (r,ß) E T x B and 
Qn(Zl, ... , Zn,.,.) is a.s. twice continuously partially differentiable at every 
point ( T, ß) in the interior of T x B ( where the exceptional null set does 
not depend on (r,ß)). 

( c) The estimators ( f n, ßn) take their values in T X B. There exists a 
{non-random) sequence ('Fn,ßn) E T x B, which is eventually uniformly in 
the interior2 ofT X B, such that ßn- ßn = op(l), fn - Tn = op(l) and 
Mn(fn- 'Fn) = Op(l) for a sequence of {possibly random) square matrices 
Mn, which are non-singular with probability tending to one. 

( d) The sequence ßn satisfies 

+' A A nNn 'V ß'Qn(Zl, ... , Zn, Tn, ßn) = Op(l) 

for a sequence of (possibly random) square matrices Nn, which are non
singular with probability tending to one. {I.e., ßn satisfies the normalized 
first order conditions up to an error of magnitude op(l).f 

(e) For all sequences of random vectors (fn, ßn) with Tn -Tn = op(l) and 
ßn- ßn = op(l) we have 

nN;t''V ßßQn(ZI, ... 'Zn, fn, ßn)N;t - Cn = Op(l) 

1We note that because of Assumption 8.1(c) there exists a sequence of sets 
On E 2( with P(On) = 1 suchthat (fn,.ßn) and (fn,ßn) belong to the interior 
ofT X B for w E On. Therefore the derivatives of Qn evaluated at (fn,.ßn) and 
( f n, ßn) considered below are well-defined at least for w E On. As usual, in the 
sequel we will often use the notation en = Op(an) or en = Op(an) even if the 
variables en are only well defined on sets On E 2( with P(On)-+ 1 as n-+ oo. 

21.e., there exists an E > 0 suchthat the Euclidean distance from ('Fn,ßn) to 
the complement ofT X B relative to p.,. + Pß-dimensional Euclidean space exceeds 
E for all large n. 

3Let f be a 8 x 1 vector of real valued functions defined on an open subset 
of RP X Rr, let X= (xl, ... ,xp)1 E RP and y = (yl, ... ,yr)' E Rr. Then 
"1/.,f = (8! j8x1, ... ,8! /8xp) is the 8 x p matrix of firstorderpartial derivatives 
w.r.t. x and "1/.,,f = ("1/.,f)'. If 8 = 1, then "1!.,1Ji = "'!y("'l.,,f) denotes the p x r 
matrix of second orderpartial derivatives. More generally, if 8 ~ 1, then "1/.,yf = 
"'!y ( vec('\/ .,, !) ) denotes the p8 x r matrix of second order partial derivatives. "'I"'"' f 
and "'lyyf are defined analo~ously. Furthermore, for a matrix A we denote the 
Moore-Penrose inverse by A . The inverse of a matrix A is denoted as usual by 
A-1. 



8. STRUCTURE OF THE ASYMPTOTIC NORMALITY PROOF 85 

for a sequence of (possibly random} matrices Cn, which are non-singular 
with probability tending to one and satisfy ICnl = Op(1) and ICtl = Op(1).4 

{!) For all sequences (fn,ßn) as in (e) we have 

nN;i'VßrQn(Zt, ... ,Zn,Tn,ßn)M;t = Op(1). 

(g) There exists a sequence of (possibly random} matrices Dn with IDnl = 
Op(1), such that 

+t - --nNn \1 ß'Qn(Zt, ···,Zn, Tn, ßn) = Dn(n + Op(1) 

where (n and ( are random vectors satisfying (n __!!._. (. (Here __!!._. denotes 
convergence in distribution.) 

As remarked above, in the classical case the normalizing sequences will be 
of the form Mn = n 112 I and Nn = n 112 I, Cn and Dn will be non-random, 
and (will be normally distributed. In non-ergodie situations, however, we 
may need to consider norming sequences other than n 112 I and limiting 
distributions other than the normal distribution, e.g., variance mixtures of 
normals. Furthermore, random matrix norming may sometimes be neces
sary in such situations. For recent contributions to the theory of non-ergodie 
models see, e.g., Basawa and Scott {1983), Park and Phillips (1988, 1989), 
Phillips {1989) and Wooldridge {1986). 

Clearly, if ßn is an interior minimizer of Qn (z1, ... , Zn, f n, ß), or more 
generally, if ßn is a solution of the first order conditions, then Assumption 
8.1(d) is trivially satisfied (for any choice of Nn)· As discussed in Chapter 
3, if ßn is a minimizer of Qn(zl. ... , Zn, fn, ß) then ßn will frequently be a 
minimizer of a non-random analogue Qn of Qn. Furthermore, Assumption 
8.1 also covers the case where no nuisance parameter is present.5 We return 
to a more detailed discussion of Assumption 8.1 after Corollary 8.2 below. 

In the next lemma we give the asymptotic distribution of approximate 
solutions ßn of the first order conditions \1 ß'Qn = 0. As discussed in more 
detail below, the lemma can be readily reformulated for approximate solu
tions of estimating equations, say Fn = 0, which need not represent a set 
of first order conditions. We notefurther that for non-random Cn, Mn and 
Nn Assumption 8.1 implies Ct = C;;l, M;i = M;;1 and N;i = N;;1 for 
large n; in this case we shall therefore always write C;;1 , M;;1 and N;;1 

ignoring finitely many n. 

4Cf. Footnote 20 in Chapter 6 concerning the definition of the norm of a 
matrix. 

5To incorporate this case into the framework of Assumption 8.1 we may for
mally view the objective function as a function on T x B, where T can be chosen 
as an arbitrary subset of some Euclidean space with int(T) :/= 0, and by setting 
fn = Tn = ro, where To is an arbitrary element of int(T). 
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Lemma 8.1. Given Assumption 8.1 holds, then 

A - + 
Nn(ßn- ßn) = cn Dn(n + Op(l) 

where (n __E__. (. lf furthermore C;t Dn---+ A i.p., A non-mndom, then 

A - D 
Nn(ßn- ßn)----+ A(. 

More genemlly, for any sequence of {possibly mndom) matrices Gn with 
IGnl = Op(l) we have 

where (n ..E..... (. lf furthermore GnC;t Dn---+ A• i.p., A• non-mndom, then 

The lemma provides a basic representation of the normalized parameter 

estimator (up to an error ofmagnitude op(l)) as a linear function of a ran

dom vector that converges in distribution. The lemma shows furthermore 

that linear transformations of the normalized parameter vector have an 

analogaus representation where the approximation error remains of mag

nitude op(l) as long as the transformation matrices Gn are bounded in 

probability. 
Lemma 8.1 establishes a distributional convergence result for Nn(ßn -ßn) 

in case C;t Dn converges to a limit, say A. In such a case the lemma implies 

that the cumulative distribution function of Nn(ßn- ßn) converges to the 

cumulative distribution function of A( (in continuity points of the latter dis

tribution function). This justifies the use of the latter distribution function 

as an approximation to the former one. If, e.g., ( is normally distributed 

we obtain a normal approximation for the distribution of Nn(ßn - ßn)· 
In the general case, where C;t Dn does not converge, it is less obvious in 

which sense the distributions of Nn(ßn- ßn) and of C;t Dn( are "close" to 

each other. In the practically most important case where Cn and Dn can 

be chosentobe non-random the following is a consequence of Skorohod's 

Representation Theorem (Billingsley (1979, p.337)): There exist random 
- - - D 

variables (n and ( defined on some probability space suchthat (n = (n, 

( g (, where g denotes equality in distribution, and (n ---+ ( a.s. Because 

of boundedness of C;;1 Dn we then have 

C;;1Dn(n 

c-1 v ;: 
n n':. 

D 

D 

-1 - -1 -
Cn Dn(n = Cn Dn( + o(l), 

C;;1 Dn(, 
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and 
A - -1 Nn(ßn- ßn) = cn Dn(n + Op(1). 

The above three equations describe in a somewhat obscure way the "close
ness" between the distribution of Nn(/:Jn- ßn) and of C;;1 Dn(· In Lemma 
F2 and Corollaries F3 and F4 in Appendix F we discuss in detail under 
which circumstances the difference between the cumulative distribution 
functions of Nn(/:Jn - ßn) and of C;;1 Dn( converges to zero. In the most 
important special case where ( is distributed N(O, E), with E positive def
inite, it follows- under Assumption 8.1 - from Corollary F4(b) that the 
difference between the cumulative distribution function of Nn(/:Jn- ßn) and 
that of a N(O, C;;1 DnED~C;;11 ) distribution converges pointwise to zero 
if Cn, Dn are non-random and the smallest eigenvalues of C;;1 DnD~C;;1' 
are bounded away from zero, thus justifying the use of the latter distri
bution as an approximation to the former one. (Of course, the discussion 
in this paragraph also applies to the distributional relationship between 
GnNn(/:Jn - ßn) and GnC;;1 Dn(, if additionally the matrices Gn are non
random and bounded.) 

Both in the above lemma as well as in the above discussion the distribu
tions approximating the distributions of Nn(/:Jn- ßn) (or GnNn(/:Jn- ßn)) 
will in general depend on the sample size n. It is clearly of interest to 
isolate circumstances under which the approximating distributions can be 
chosen to be independent of n. Of course, the simple but important case 
where the matrices C;t Dn (or GnC;i Dn) converge in probability to a non
random matrix is such an instance and has already been isolated in the 
lemma. The following corollary covers further important cases. Part (a) 
and part (b) of the corollary will be useful in the context of least mean 
distance and generalized method of moments estimators, respectively. 

Corollary 8.2. 6 Let Assumption 8.1 hold. 
( a) Let the matrices Dn be square and non-singular with probability tend

ing to one and let ID;tl = Op(I), then 

+ A - D Dn CnNn(ßn- ßn) = (n + Op(1) ----+ (. 

(a') More generally, let the matrices Dn have full column rank with prob
ability tending to one and let I(D~Dn)+j = Op(1), then 

I+' A -_ D (DnDn) DnCnNn(ßn- ßn)- (n + Op{l)----+ (. 

{b) Let the matrices Cn and Dn be non-random, let Dn have full row
rank {except possibly for finitely many n} and let I(DnD~)- 1 1 = 0(1). lf( 

6 Let A be a symmetrie nonnegative definite matrix, then A112 denotes the 
unique symmetrie and nonnegative definite square root of A. H A is furthermore 
nonsingular, then A-112 denotes (A-1 ) 112 . 
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is distributedas N(O, E), E non-singular, then 

(b'} More generally, let the matrices Cn and Dn be non-random, let 
rank(Dn) = d be constant (except possibly for finitely many n}, and let 
I(DnD~)+I = 0(1). lf ( is distributedas N(O, E), E non-singular, then 

U~[(C;1DnED~C;11)+] 112Nn(ßn- ßn) __!!_. N(O,diag(Jd,O)), 

where Un is an orthogonal matrix of eigenvectors oJC;;1DnED~C;11 whose 
first d columns correspond to the non-zero eigenvalues. 

The corollary implies, e.g., the following if ( is distributed N(O, E): Under 
the assumptions of part (a), (a'), (b) and (b'), respectively, 

and 
(ßn- ßn)' N~(C;;-1 DnED~C;;-11 )+ Nn(ßn- ßn) 

are approximately chi-square distributed with numbers of degrees of free
dom equal to rank(E), rank(E), Pß and d. This observation is of interest 
for the construction of test statistics like the Wald test statistic. 

Typically, Cn plays the role of an asymptotic version of the Hessian ma
trix of the criterion function, and DnD~ can be -loosely speaking - thought 
of as the variance covariance matrix of the score vector (if the variance co
variance matrix of ( is the identity matrix). Of course, in the absence of 
normalizing assumptions the matrices Dn are not uniquely determined. For 
example, if Dn converges to D, say, then Dn can be absorbed into (n.7 

We next discuss Assumption 8.1 in more detail. Clearly, in case ßn = ß 
and fn = f the condition that (fn,ßn) lies uniformly in the interior ofTxB 
postulated in Assumption 8.1(c) reduces to the condition that (r,ß) lies 
in the interior of T x B. Furthermore, in that case we can (possibly after 
redefining (fn, ßn) on n-nn with P(fln)--+ 1) reduce the parameter spaces 
T and B to suitably small Euclidean balls centered at fand ß, respectively, 
and perform the analysis on the Cartesian product of these two balls. An 
analogaus reduction of the original parameter spaces to Euclidean balls 

7 Alternatively, if Dn is square and nonsingular with probability tending to 
one and if ID;!"I = Op(l) then we could absorb Dn into On and N., by replacing 
the matrices On, Dn, Mn, and Nn in Assumption 8.1 by D;!"OnD;!"', I, Mn, and 
D~N.,, respectively. 
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contained in the original parameter spaces can be made if, e.g., 1'n and 
ßn happen to remain uniformly in the interior of the Cartesian product of 
two Euclidean balls. Therefore, in many cases, it is possible to reduce the 
asymptotic normality proof to the case of a compact parameter space, which 
contains ( 7' n, ßn) uniformly in its interior, even if the original parameter 
space is not compact. This reduction to a compact parameter space is 
particularly helpful in establishing the convergence of the Hessian blocks 
as expressed in Assumption 8.1(e),(f), and is discussed in more detail below. 

lnspection ofthe proof ofLemma 8.1 shows that Nn(/:Jn -ßn) is asymptot
ically equivalent to a linear function of the score V' ß'Qn(Zl, ... , Zn, 1'n, ßn) 
and of fn- 1'n. cf. equation (F.2') in Appendix F. Therefore, the asymp
totic distribution of ßn would depend in general on that of the score 
vector as well as on that of fn. Assumption 8.1(f), in conjunction with 
Mn(fn- 'fn) = Op(1), eliminates this dependence on the asymptotic dis
tribution of fn, i.e., it ensures that T can be interpreted as a nuisance 
parameter.8 

The convergence in distribution of (n postulated in Assumption 8.1(g) 
will usually be deduced from a CLT and (will then be normally distributed. 
In case of least mean distance estimators we will usually be able to establish 
a CLT for the normalized score vector itself and Dn will be a square matrix 
with ID;1 1 = 0(1), i.e., 

will hold. For generalized method of moments estimators it is necessary 
to linearize the normalized score vector in terms of the vector of sample 
moments prior to the application of a CLT. This will then lead to the 
representation 

where Dn is now no Ionger a square matrix, unless the dimension of ß 
equals the nurober of sample moments used in defining the estimator. 

Lemma 8.1 can also be applied to derive the asymptotic distribution 
of estimators /:Jn as long as they correspond to solutions of a system of 
equations 

or more generally satisfy 

nN;!"'Fn(Zl,• .. ,zn,fn,/:Jn) = Op(1), 

8Inspection of the proof of Lemma 8.1 shows that the assumption Mn{fn-
7'n) = Op{l) and Assumption 8.1(f) can be replaced by the higher level condition 
nN:/;'V ßTQn(Zl, ... , Zn, Tn, ßn){fn- Tn) = Op{l). 
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where Fn need not represent a set of first order conditions. Inspection of 
the proof shows that the lemma can be cast in terms of Fn by replacing 
V ß'Qn, V 1313Qn and V /3-rQn with Fn, V 13Fn and V -rFn, respectively, and 
by maintaining partial continuous differentiability of Fn instead of twice 
partial continuous differentiability of Qn in Assumption 8.1(b). 

The matrix V f3f3Qn, and hence N:!;'V f3f3QnN:!;, is symmetric. Conse
quently, if Assumption 8.1(e) is satisfied for a sequence Cn, then it is also 
satisfied for a suitable sequence of symmetric matrices, e.g., for ( Cn + 
C~)/2.9 Therefore Cn could have been restricted tobe symmetric in Lemma 
8.1.10 However, the matrix V ßFn will not necessarily be symmetric. Hence 
by allowing Cn tobe nonsymmetric, Lemma 8.1 can be readily applied to 
estimators ßn satisfying 

as discussed above. 
The convergence conditions for the Hessian matrix in Assumptions 8.1(e), 

(f) will frequently be derived via uniform convergence. The following dis
cussion of sufficient conditions focuses on the classical case where Mn = 
n 112 I, Nn = n 112 I, and Cn and Dn are non-random. In view of Lemma 3.2 
the following Assumption 8.2 is then clearly sufficient for the convergence 
conditions on the Hessian matrix formulated in Assumptions 8.1 ( e) and 
(f). That is, Assumption 8.2 implies that for all sequences (fn,ßn) with 
(fn, ßn)- ('Fn, ßn) = Dp(l) we have 

and 
V {3-rQn(Zt,. · ·, Zn,Tn, ßn) = Op(l). 

Here Cn = Ctn('Fn,ßn) where Ctn(., .) is as in Assumption 8.2. 

Assumption 8.2. 11 (a) There exist subsets T' and B' of the interior 

9 Since 'V ßßQn is syrnmetric clearly nNt''V ßßQnNt -C~ = op(l) by Assump
tion 8.1(e), and hence (Cn + C~)/2- Cn = op(l). It now follows immediately 
from Lemma Fl that Assumption 8.l(e) also holds with (Cn + C~)/2 replacing 
Cn. 

10If one imposes symmetry of Cn in Assumption 8.1(e), then it can be shown 
that Lemma 8.1 can be obtained even without the assumption of norm bound
edness of Cn in Assumption 8.1(e). To obtain Corollary 8.2(a) and (a') one then 
has to replace the norm boundedness assumption on D;t and (D~Dn)+ by the 
norm boundedness of D;tCn and (D~Dn)+ D~Cn, respectively. For Corollary 
8.2(b),(b'), however, norm boundedness of Cn is needed nevertheless. 

11We note that the convergence conditions on the Hessian blocks in Assump
tion 8.1(e),(f) are equivalent to the condition that the Hessian blocks converge 
uniformly over any shrinking sequence of neighbor hoods of ( 'i' n, ßn). Hence the 
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ofT and B, respectively, suchthat (rn,ßn) is eventually uniformly in the 
interior ofT' x B'.12 

{b) There exists a sequence of non-random Pß x Pß matrices G1n ( r, ß) 
defined on T' x B' such that 

and {Gin: n E N} is uniformly equicontinuous on T' x B'. 
(c) There exists a sequence of non-random Pß x Pr matrices C2n(r,ß) 

defined on T' X B' such that 

G2n('Fn,ßn) = o(l), and {C2n : n E N} is uniformly equicontinuous on 
T'xB'. 

Clearly, given Assumption 8.1(c), Assumption 8.2(a) is trivially satisfied 
for T' = int(T) and B' = int(B). However, the verification of Assump
tions 8.2(b),(c) will typically be easier if we find subsets T' and B' that 
are compact. Under Assumption 8.1(c) this is of course always possible 
in case r n ---+ r and ßn ---+ ß by choosing T' and B' as sufficiently small 
closed Euclidean balls centered at r and ß, respectively. Clearly, the pro
vision of uniform equicontinuity in Assumption 8.2(b),(c) can be replaced 
by equicontinuity, if T' x B' is compact. 

As discussed in detail in Chapter 11, in case of least mean distance 
estimators or generalized method of moments estimators we can frequently 
imply Assumption 8.2 from ULLNs. Recall that for least mean distance 
estimators the objective function Qn is of the form 

n 

Qn(ZI, ... , Zn, r, ß) = n-1 L qt(Zt, r, ß). 
t=l 

The uniform convergence conditions in Assumption 8.2 can then be implied 
from ULLNs for the elements of \1 ßßQn and \1 ßrQn if we put Gln(r, ß) = 
E\1 ßßQn and G2n(r, ß) = E\1 ßrQn for (r, ß) E T' X B'. Equicontinuity of 
Gln(r,ß) and C2n(r,ß) is typically obtained as a by-product ofULLNs, cf. 

uniform convergence condition on T' x B' maintained in Assumption 8.2 could 
be further weakened. Cf., e.g., Heijmans and Magnus (1986b), Weiss (1971, 1973) 
and Wooldridge (1986), Section 3.4. 

12I.e., there exists an e > 0 such that the Euclidean distance from ( 'f n, ßn) 
to the complement of T' x B' relative to PT + Pß-dimensional Euclidean space 
exceeds e for alllarge n. Furthermore observe that {fn,ßn) falls into T' X B' on 
Sets nn with P(r2n) -+ 1, given {fn, ßn)- ('fn, ßn) = Op(1) and Assumption 8.2(a) 
holds. 
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Chapters 3 and 5. Of course, if T' x B' is compact, equicontinuity already 
implies uniform equicontinuity. 

For generalized method of moments estimators the objective function is 
of the form 

Qn (zl, ... , Zn, T, ß) = '19n(Sn(w, T, ß), T, ß), 

where 
n 

Sn(w,r,ß) = n-1 Lqt(Zt,T,ß) 
t=l 

has the interpretation of a vector of moments. As will be discussed in more 
detail in Chapter 11, under the assumptions of that chapter it is easily 
checked that the matrices of second order derivatives 'V ßßQn and 'V ß-rQn 
are, respectively, of the form 

and 
G2n(Sn, 'V ßSn, 'V .,.Sn, 'V ß-rSn, T, ß), 

where G1n and G2n are appropriate functions defined on E1 x T' X B' and 
E2 x T' x B', and where E1 and E2 are Euclidean spaces of appropriate 
dimensions, cf. equation (11.2) in Chapter 11.13 If (i) G1n and G2n are 
uniformly equicontinuous on E 1 x T' x B' and E2 x T' x B', respectively, 
and (ii) the elements of Sn, 'V ßSn, 'V .,.Sn, 'V ß-rSn, and 'V ßßSn satisfy ULLNs 
on T' x B', then it follows from Lemma 3.3 that the convergence conditions 
in Assumption 8.2 are satisfied if we define 

Cln(T, ß) = Gln(ESn, E'V ßSn, E'V ßßSn, T, ß), 

C2n(r, ß) = G2n(ESn, E'V ßSn, E'V .,.Sn, E'V ß-rSn, r, ß) 

for (T,ß) E T' X B' and if C2n satisfies C2n(fn,ßn) = op(l). Furthermore, 
the (uniform) equicontinuity of C1n and C2n on T' x B' required in As
sumption 8.2 can then also be deduced from the corresponding property 
of the restrictions of ESn, E'V ßSn, E'V .,.Sn, E'V ß-rSn, and E'V ßßSn to 
T' x B' in view of Lemma 3.3(b). Frequently, ULLNs employ dominance 
conditions which then entail that ESn, E'V ßSn, E'V .,.Sn, E'V ß-rSn, and 
E'V ßßSn are bounded on T' x B' uniformly in n, and hence lie in com
pact subsets K 1 , ... , K 5 of respective Euclidean spaces. This observation 
allows for an important simplification: Given T' x B' is also compact, in
spection of Lemma 3.3 shows that it then suffices in (i) that G1n and 

13The functions G1n and G2n could in fact be defined on E1 xint(T X B) and 
E2 xint(T x B), respectively, cf. Chapter 11. However, for the following discussion 
we view G1n and G2n as functions defined only on E1 x T' X B' and E2 X T' X B', 
respectively. 
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G2n are only equicontinuous on the subsets K1 x K2 x Ks x T' x B' and 
K1 x K2 x K3 x K4 x T' x B' of E1 x T' x B' and E2 x T' x B', respectively. 
Furthermore, in this situation equicontinuity of G1n and G2n on these re
spective subsets is easily seen to be satisfied, if iJ n ( c, T, ß) is twice contin
uously partially differentiable on an open set containing K 1 X T' X B', if 
the derivatives 'V ciJn(c, T, ß), 'V cciJn(c, T, ß), 'V ßciJn(c, T, ß), 'V rciJn(c, T, ß), 
'V ßriJn(c, T, ß), and 'V ßßiJn(c, T, ß) are equicontinuous on the subset K1 X 

T' x B' of RPq x T' x B', and if thesederivatives are bounded on K1 x T' x B' 
uniformly in n. Of course, if additionally iJn = iJ, then these equicontinuity 
conditions reduce to continuity conditions and the uniform boundedness 
condition is automatically satisfied since K1 x T' x B' is compact. 



9 

ASYMPTOTIC NORMALITY 
UNDER NONSTANDARD 
CONDITIONS 

The standard approach for deriving the asymptotic distribution of M
estimators outlined in the previous chapter relies on the assumption that 
the objective function Qn is twice continuously differentiable w.r.t. both the 
parameter of interest ß and the nuisance parameter T. (Or, if the estimator 
ßn is derived as an approximate solution of a set of estimating equations 
Fn = 0, it is maintained that Fn is continuously differentiable.) In a num
ber of applications this smoothness assumption is too stringent. E.g., if the 
objective function corresponds to the least absolute deviation estimator or 
Huber's M-estimator this assumption is violated. Also in a semiparamet
ric context, where T represents an infinite dimensional nuisance parameter 
that varies in a metric space T which is not a subset of Euclidean space, 
the notion of differentiability w.r.t. T may not be available, although Qn 
may be smooth as a function of ß for every given value of T. Such situations 
can often be handled by a refinement of the argument underlying Lemma 
8.1. The basic idea is again to show that the (normalized) estimator ßn 
is asymptotically equivalent to a linear transformation of the score vector 
evaluated at the true parameter, and then to invoke a CLT for the score 
vector. Of course, in the absence of the smoothness assumptions of Chap
ter 8, establishing such a linear transformation is now more delicate (and, 
if Qn is not differentiable at all, special care has to be given to defining 
the notion of a score vector properly). The linearization is frequently at
tempted by showing that the objective function can- in a certain sense
be replaced by its asymptotic Counterpart Ön and by exploiting the usu
ally greater degree of smoothness of the latter function in the linearization 
argument. The fact that Ön is frequently a smooth function, even when 
Qn is not, originates from the fact that Ön is frequently equal to EQn or 
limn-+oo EQn and taking expectations is a smoothing operation. This ap
proachwas pioneered by Daniels (1961) and Huber (1967). Fora modern 
exposition see Pollard (1985). The following discussion will be informal. 

To fix ideas we follow Huber (1967) and assume that no nuisance param
eter is present and that the estimator ßn satisfies 

A -1/2 Vß'Qn(w,ßn)=op(n ). 

B. M. Pötscher et al., Dynamic Nonlinear Econometric Models
© Springer-Verlag Berlin Heidelberg 1997
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In particular, we a.ssume here that the objective function Qn is differen
tiable but not necessarily twice continuously differentiable. This covers, 
e.g., Huber's M-estimator. (The argument given below can be adapted to 
cover estimators derived from non-differentiable objective functions, see, 
e.g., Pollard (1985).) We also a.ssume for simplicity that V ß'Qn(w, ß) con
verges in probability to 

>..(ß) = lim EV ß'Qn(w, ß) n-+oo 

and that ßn -+ ß in probability where >..(ß) = 0. Although V ß'Qn is not 
a.ssumed to be continuously differentiable, the function >.. will frequently be 
continuously differentiable, due to the smoothing effect of taking expecta
tions. Clearly 

If we can establish that 

we get 
(9.3) 

Recall that >.. is a.ssumed to be continuously differentiahte and that >..(ß) = 
0. From (9.3) we now get via a Taylor expansion of >.. that a.symptotically 
n 112(ßn- ß) is a linear function of the score vector, i.e., 

Asymptotic normality of n 112 (ßn -ß) now follows upon establishing a.symp
totic normality of n112V ß'Qn(w, ß) via a CLT. 

Of course, the verification of (9.2) is non-trivialand represents a crucial 
step in this approach. Huber (1967) provides conditions under which (9.2) 
holds in the i.i.d. context. Clearly, (9.2) also holds if the random functions 
n 112 [V ß'Qn(w, ß)- >..(ß)] are stocha.stically equicontinuous at ß, i.e., iffor 
each~:>O 

limsupP( sup ln112 [Vß'Qn(w,ß)->..(ß)] 
n-+oo PB(ß,ß)<6 

- n112 [V ß'Qn(w, ß) - >..(ß)] I > f) 
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goes to zero as 6 -t 0. 1 Of course, this raises the question how to verify the 
stochastic equicontinuity property. In the context of independent observa
tions the theory of empirical processes provides a number of techniques for 
verifying stochastic equicontinuity and we may draw on these results, see, 
e.g., Pollard (1984, 1985). For dependent observations some sets of suffi
cient conditions can be found in Andrews (1989b, 1991a, 1993), Andrews 
and Pollard (1989, 1994), Arcones and Yu (1994), Doukhan, Massart and 
Rio (1995), and Hansen (1996). 

Next consider the case where Qn depends on a possibly infinite dimen
sional nuisance parameter r and is not differentiahte w.r.t. this parameter. 
Assurne for simplicity that tn = t. If Qn is twice continuously differentiahte 
w.r.t. ß for each value of r and if ßn satisfies 

1/2 • • Op(1) = n V ß'Qn(w, Tn, ßn), 

then using a Taylor expansion w.r.t. ß only we arrive at 

1/2 • - • - i 1/2 • -Op(1) = n V ß'Qn(w, Tn, ßn) +V ßßQn(w, Tn, {ßn} )n (ßn- ßn), (9.5) 

where V ßßQn(w, fn, {,8~}) denotes the matrix whose j-th row is the j-th 
row of V ßßQn evaluated at (w, fn, ,8~) and where ß~ are mean values. The 
second term on the r.h.s. of (9.5) can be handled exactly as in the proof 
of Lemma 8.1. However, the first term can now no langer easily be shown 
to be asymptotically normal by appealing directly to a CLT, since it still 
contains the estimator f n for the nuisance parameter r. If we can show that 

1/2 • - 1/2 - -n Vß'Qn(w,rn,ßn)- n Vß'Qn(w,r,ßn) = Op(1) (9.6) 

holds, then (9.5) becomes 

op(l) = n 112V ß'Qn(w, 'F, ßn) +V ßßQn(w, fn, {~} )n112 (ßn- ßn) (9.7) 

and we can then proceed as in the proof of Lemma 8.1 and appeal to a 
CLT to establish the asymptotic normality of the score vector evaluated at 
( 'f, ßn), which then implies the asymptotic normality of ßn. Of course, veri
fying (9.6) is not trivial. Again, if fn -'f -t 0 i.p. (9.6) is implied if, e.g., the 
random functions n 112V ß'Qn(w, r, ßn) are stochastically equicontinuous at 
t, i.e., if for each f > 0 

limsupP ( sup jn112Vß'Qn(w,r,ßn) -n112Vß'Qn(w,t,ßn)j > e) 
n--+oo PT(T,if)<6 

goes to zero as 6 -t 0. 

1The stochastic equicontinuity condition basically controls the modulus of con
tinuity of the random function under consideration and is essentially a tightness 
condition for the sequence of random functions. 
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In the case of generalized method of moments estimators the objective 
function is a nonlinear function of a vector of sample moments. In this 
case it proves useful - rather than to attempt to directly verify that the 
normalized score vector is stochastically equicontinuous - to first linearize 
the score vector with respect to the vector of sample moments. Under 
certain assumptions it then suffices to establish stochastic equicontinuity 
of the vector of sample moments. This is essentially the approach taken by 
Andrews (1989a). 



10 

CENTRAL LIMIT 
THEOREMS 

A key ingredient for the asymptotic normality proof, as outlined in Chapter 
8, is that the normalized score vector can be expressed as a linear function of 
random variables (n which converge in distribution, cf. Assumption 8.1(g). 
In this chapter we present centrallimit theorems (CLTs) which can be used 
to imply this distributional convergence of (n in the important case where 
(n can be expressed as a normalized sum of random variables. We give two 
alternative CLTs. 

The first CLT presented applies to random variables that form a mar
tingale difference sequence. This CLT is particularly relevant for the case 
of a correctly specified maximum likelihood problem. More specifically, if 
the objective function is the correctly specified log-likelihood function cor
responding to the process Zt, then the score vector ( at the true parameter) 
can be written as the sum of respective scores per observation conditional 
on past information, which form a martingale difference sequence under 
weak regularity conditions. A further instance, in which the score vector is 
composed of martingale differences, is the case where a dynamic nonlinear 
regression model is estimated by the least squares method and the model 
is correctly specified in the sense that the response function at the true 
parameter represents the mean of the endogenaus variable conditional on 
current explanatory variables and on all lagged endogenaus and explana
tory variables. However, if the model is correctly specified only in the sense 
that the response function at the true parameter value represents the mean 
of the endogenaus variable conditional on partial information (e.g., condi
tional on current and lagged explanatory variables only) then the least 
squares score vector will in general not be composed of martingale differ
ences, since the disturbances in the true model may then be autocorrelated. 
Note that in both cases the regression model is correctly specified in the 
sense that the model correctly describes the response function. 1 

1 Hence, if a model is correctly specified in the sense that the model captures 
the probability structure of the data generating process, but the objective func
tion is not the true likelihood function, then the random variables of which the 
score vector is composed may or may not possess the martingale difference prop
erty. (We also note that it is not impossible - although unlikely - for the random 
variables of which the score vector is composed to have the martingale difference 

B. M. Pötscher et al., Dynamic Nonlinear Econometric Models
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In the general case, including the case of misspecified models, the random 
variables of which the score vector is composed do not necessarily have 
the structure of a martingale difference sequence. Nevertheless CLTs can 
be established if these random variables exhibit a suitable form of "weak 
dependence" over time. The second CLT given will apply to such situations. 

10.1 A Central Limit Theorem for 
Martingale Differences 

In this section we introduce a CLT for martingale differences that are Lo
approximable by an o:-mixing basis process. This theorem is based on a 
martingale difference CLT by McLeish (1974); cf. Theorem 3.2 in Hall and 
Heyde (1980). lt generalizes the CLT for stochastically stable martingale 
differences given in Bierens (1981, 1984) in that it relaxes an asymptotic 
stationarity assumption made in these papers. Bierens' CLT was based on 
Brown's (1971) martingale difference CLT. 

As in Chapter 6, (vt)teN and (et)tez denote stochastic processes defined 
on (0, 2l, P) that take their values in RP" and RP•, respectively. Further
more, let 

Clearly, if (vt)teN is a martingale difference sequence then 

n 

Vn = LEVtV~. 
t=1 

Theorem 10.1. Let (vt) be a martingale difference sequence (w.r.t. some 
filtration (~t)) and let (vt) be Lo-approximable by (et) where (et) is o:
mixing. Assurne that 

n 

supn-1 I::E!vtl2+6 < oo 
n t=1 

for some 8 > 0 holds. 
{a} /fliminfn-+oo Amin(n-1Vn) > 0, then 

n 
-1/2 ~ D ( ) vn LJ Vt ---t N 0,1. 

t=1 

property in certain misspecified cases.) 
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n 

n-112 L Vt ~ N(O, V*). 
t=1 

(V* may be singular. In this case N(O, V*) denotes the degenerate normal 
distribution with zero mean and variance covariance matrix V*.) 

Part (b) of the theorem is essentially a multivariate version of Bierens' 
(1981, 1984) CLT. Part (a) generalizes this CLT in that it does not require 
convergence of the (normalized) variance covariance matrices and thus also 
applies to processes which do not satisfy this kind of asymptotic stationarity 
condition. Clearly, if n-1 Vn does not converge, we can not expect to obtain 
a CLT by using n-112 as normalizing constants. Part (a) shows that the 
matrix Vn- 112 represents the proper normalization.2 

In proving the above CLT we verify, in particular, that the "norming 
condition" of Theorem 3.2 in Hall and Heyde (1980) holds. This condition 
essentially boils down to a LLN for VtV~. Given the maintained assumptions 
of the above CLT, this LLN is derived from the LLN for Lo-approximable 
processes presented in Theorem 6.3. 

10.2 A Central Limit Theorem for Functions 
of Mixing Processes 

As remarked above, the assumption that the random variables of which 
the score vector is composed form a martingale difference will typically 
be satisfied only in certain correctly specified cases. To derive asymptotic 
normality results for the general case, including the misspecified case, we 
need a CLT that does not rely on the martingale assumption. Also, as 
discussed in more detail in Chapter 11 below, the random variables of 
which the score vector is composed will under misspecification typically 
depend on n, i.e., form a doubly indexed array. Before giving the CLT we 
hence have to extend the definition of near epoch dependence to doubly 
indexed arrays. 3 

Definition 10.1. Let (vt,n : t E N, n E N) and (et)tEz be stochastic 
processes that take their values in RPv and RP·, respectively. Then the 
process (vt,n) is called near epoch dependent of size -q on the basis process 

2We note that vn- 1 and Vn- 112 may not be well-defined for finitely many n. 
3 We note that the CLT for martingale difference sequences presented in The

orem 10.1 can also be formulated for doubly indexed arrays. 
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( et) if the sequence 

Vm = sup sup llvt,n - E(vt,n I et+m, ·. · , et-m) 11 2 
n t 

is of size -q, q > 0. 

The following CLT is applicable to processes which are near epoch de
pendent on an a:-mixing or 4>-mixing basis process. We define similarly as 
before 

Theorem 10.2. Let (vt,n) be near epoch dependent of size -1 on (et) 
where (et) is a-mixing with mixing coefficient of size -2r/(r- 2) or rjl
mixing with mixing coefficients of size -r / ( r - 1), for some r > 2. Assurne 
that Evt,n = 0 and supn suptE lvt,nlr < 00. 

(a) I/liminfn-+oo Amin(n-1Vn) > 0, then 

n 

vn-112 L Vt,n __!!__. N(O, I). 
t=1 

n 

n-1/ 2 LVt,n __!!__. N(O, V*). 
t=1 

(V* may be singular. In this case N(O, V*) denotes the degenernte normal 
distribution with zero mean and variance covariance matrix V*.) 

Theorem 10.2(a) is a multivariate version of Corollary 4.4 in Wooldridge 
{1986), seealso Theorem 5.3 in Gallant and White (1988). A more restric
tive version of this theorem is also given in Theorem 2 in Gallant (1987a, 
p.519). The proof of Corollary 4.4 in Wooldridge (1986) is similar in spirit 
to the proof of a CLT for dependent processes in Withers (1981b, 1983). 
For related results see De Jong (1995b). 

McLeish (1975b, 1977) presents functional CLTs for L2-mixingales. Un
der the assumptions of Theorem 10.2 the process (vt,n) can be shown tobe 
an L2-mixingale, see McLeish (1975a), Theorem 3.1, and Gallant and White 
(1988), Lemma 3.14. Hence McLeish's functional CLTs for L2-mixingales 
contain functional CLTs (and hence CLTs) for near epoch dependent pro
cesses. However, in order to obtain functional CLTs, McLeish (1975b, 1977) 
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maintains somewhat stronger asymptotic stationarity assumptions than 
maintained in Theorem 10.2(a), cf. also Wooldridge and White (1988).4 

We note that Theorem 10.2(a) does not require convergence of the vari
ance covariance matrices n-1 Vn and thus (in this sense) Theorems 10.1(a) 
and 10.2(a) allow for the same degree of heterogeneity. In both Theorem 
10.1(a) and 10.2(a) the degree of heterogeneity is limited by two factors: 
(i) The assumption that the smallest eigenvalues of n-1 Vn are bounded 
away from zero and (ii) the respective boundedness assumptions on mo
ments of order higher than two, which imply that the largest eigenvalues 
of n-1Vn are bounded from above.5 Hence, although Theorems 10.1(a) 
and 10.2(a) do not require convergence of the variance covariance matrices 
n-1 Vn, both theorems maintain implicitly that c 1J ~ n-1 Vn ~ c2I, with 
c1, c2 positive and finite.6 (Of course, under Theorems 10.1(b) and 10.2(b) 
we only have n-1Vn::::; c2I.) 

As the LLN for near epoch dependent processes given in Theorem 6.4, 
also Theorem 10.2 shows trade-offs between the moment condition on the 
process (vt,n) and the size of the mixing coefficients. As compared tothat 
LLN also the size of the approximation error in the definition of near epoch 
dependence has to be smaller for the CLT to hold. 

Clearly, in situations where the stochastic process under consideration 
can be established to be a martingale difference sequence, Theorem 10.1 
is preferable to Theorem 10.2 in that the former theorem requires only 
L0-approximability, no rate of decline for the mixing coefficients, and a 
somewhat less stringent moment condition. 

4 Further recent contributions to functional CLTs for dependent processes in
clude Pellgrad (1981), Herrndorf (1983, 1984), and Doukhan, Massart and Rio 
(1994); see also Eberlein and Taqqu (1986). 

5More specifically, under the assumptions of Theorem 10.1 the boundedness 
of n-1Vn follows from Lyapunov's inequality since Vn = :Et'= 1 EVtV~. Under the 
assumptions of Theorem 10.2 (vt,n : t E N) is a mixingale of size -1 with coeffi.
cients Ctn = max{llvt,nllr, 1} for each n E N; cf. McLeish (1975a), Theorem 3.1, 
and Gallant and White (1988), Lemma 3.14. Since Ctn is bounded the bounded
ness of n-1Vn follows from McLeish's (1975a) inequality; cf. also Theorem 3.11 
in Gallant and White (1988). 

6 The inequality eil ~ n-1Vn with c1 > 0 may only hold for all but finitely 
many n E N. 
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ASYMPTOTIC 
NORMALITY: CATALOGUES 
OF ASSUMPTIONS 

Based on the diseussion in Chapters 8 and 10 it is now possible to pro
vide various sets of sufficient eonditions for the asymptotie normality of 
M-estimators in dynamie nonlinear models. In Beetions 11.1 and 11.2 we 
establish the asymptotie normality of least mean distanee estimators and 
of generalized method of moments estimators under exemplary eatalogues 
of assumptions. In Beetion 11.3 we relate these results to those available in 
the eeonometries Iiterature and provide further remarks. 

The approaeh taken in the following is to establish asymptotie normality 
via Lemma 8.1 and Corollary 8.2 by verifying the eonditions maintained 
by the lemma and eorollary from lower level eonditions. In both Beetions 
11.1 and 11.2 we present a eatalogue of assumptions for the ease where a 
martingale strueture (for the random variables of which the seore veetor is 
eomposed) is available as well as a eatalogue of assumptions for the general 
ease, induding the misspeeified ease. The reason for providing a separate 
eatalogue of assumptions for the ease where a martingale strueture is avail
able is that we ean obtain asymptotic normality under weaker assumptions 
by exploiting this martingale strueture. 

AB diseussed in Chapter 8 we eonsider M-estimators ßn eorresponding 
to an objeetive function of the form 

(11.1) 

with 
n 

Sn(w,T,ß) = n-1 Lqt(Zt,T,ß) 
t=l 

where qt : Z x T x B --t RPq and {)n : RPq x T X B --t R. AB diseussed, 
the dass of least mean distanee estimators eorresponds to Pq = 1 and 
{) n ( c, T, ß) = c. The dass of generalized method of moments estimators 
eorresponds to the ease where Sn denotes a veetor of sample moments 
and {)n represents a "distanee" funetion. The following assumptions will 
be used both for least mean distanee and generalized method of moments 
estimators. 
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Assumption 11.1. {a) The parameter spaces T and B are measurable 
subsets of Euclidean space RP..- and RPß, respectively. 

(b) Foreach (r,ß) E T x B the functions Qt(.,r,ß) are 3-measurable. 
Foreach z E Z the functions Qt(z, ., .) are twice continuously partially dif
ferentiable at every point ( r, ß) in the interior ofT x B. 

( c) The estimators ( f n, ßn) take their values in T X B and ßn satisfies 
the first order conditions up to an error of order less than n-112 , i.e., 

{d) The sequence of estimators (fn, ßn) satisfies ßn -ßn = op(l) and Tn
'Fn = Op(n- 112 ) for some {non-random} sequence ('Fn,ßn)· The sequence 
('Fn, ßn) lies uniformly in the interior of a compact set T' x B', which itself 
is contained in the interior ofT x B. 2 

(e) The setZ is a Borel subset ofRP· (with 3 the induced Borel a-field). 
The process (zt) is L0 -approximable by some a-mixing basis process, say, 
(et)· 

(!) The sequence {n- 1 2::~=1 H[ : n E N} is tight on Z, where H[ de
notes the distribution of Zt. 

We remark, similarly as in Chapter 8, that the parameterspacesTand B 
in the above assumption need not represent the original parameter spaces 
of the estimation problern under consideration, but can be appropriately 
chosen reductions of the original spaces. E.g., if Tn ='Fand ßn = ß then T 
and B can be chosen as neighborhoods of 'F and ß, respectively. We note 
further that the results in this chapter clearly also apply to estimation 
problems that do not contain a nuisance parameter, cf. the corresponding 
discussion in Chapter 8. In the following we shall write for ease of nota
tion S..n, V ßS..n, V -rS..n, V ß-rS..n, V ßßS..n, respectively, for Sn, V ßSn, V -rSn, 
Vß-rSn, VßßSn evaluated at (w,'Fn,ßn)· 

1Note that in view of part (d) of the assumption the derivatives 
\lß'Qn(zl,···,zn,fn,ßn) are well defined with probability tending to one, cf. 
also Footnote 1 in Chapter 8. 

2 Clearly, if we can establish that the sequence (fn, ßn) is contained in a com
pact set, which is a subset of the interior ofT x B, then we can always find a 
compact set T' x B', which is also a subset of the interior of T x B, such that 
now ( f n, ßn) lies uniformly in the interior of T' X B'. The latter property of 
T' X B' will turn out tobe convenient in what follows and therefore part (d) of 
the assumption is formulated w.l.o.g. in this seemingly more restrictive form. 
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11.1 Asymptotic Normality of Least Mean 
Distance Estimators 

For least mean distance estimators Assumptions 8.1(a)-(d) with Mn = 
n 112J and Nn = n 112J are clearly implied by Assumptions 11.1(a)-(d), 
since in this case 

n 

Qn(zl! ... 1 Zn 1 r,ß) = Sn(w,r,ß) = n-1 Lqt(Zt,r,ß). 
t=l 

Assumption 11.1 and the following assumption allow us to establish uniform 
convergence of the Hessian blocks, which is essential for the verification of 
Assumption 8.1(e),(f); cf. the discussion after Assumption 8.2. 

Assumption 11.2. The family {ft : t E N} is equicontinuous on Z x 
T' x B' and 

for some 'Y > 0, where ft denotes the restriction to Z x T' x B' of any of 
the components of '\1 ß-rqt or '\1 ßßqt. (Here T' x B' is the compact subset 
employed in Assumption 11.1(d).j3 

Define on T' X B' the matrices Cln(r,ß) and C2n(r,ß) by 

and 
C2n(r,ß) = E'\lß.,.Sn(w,r,ß). 

The following lemma then gives uniform convergence of the Hessian blocks. 

Lemma 11.1. Let Assumptions 11.1 and 11.2 hold, then 

sup IV ßßQn- C1nl ---+ 0 
T'xB' 

and 

in probability as n ---+ oo. Furthermore, { C1n : n E N} and { C2n : n E N} 
are equicontinuous on T' x B'. 

3 Clearly these equicontinuity conditions are satisfied if V /3Tqt and V 1313qt are 
equicontinuous on Zxint{T x B). 
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To imply the remaining conditions of Assumption 8.1(e)-(g) as well as 
those of Corollary 8.2(a) we maintain furthermore Assumption 11.3 and 
either Assumption 11.4 or Assumption 11.5 below. 

Assumption 11.3. {a) E\1 ßS..n = 0, 
{b} E\1 ßrS..n = 0, 
(c} liminfn-+ooAmin(E\lßßS..n) > 0, and 
{d} liminfn-+oo Amin(nE(\1 ß'S..n \1 ßS..n)) > 0. 

Note that the expectations in Assumption 11.3 exist given Assumptions 
11.2 and 11.4 or 11.5 hold. 

Assumption 11.4. Let 'Fn = f, ßn = ß and let \1 Mt(zt, f, ß) be a mar
tingale difference sequence (with respect to some filtration (Jt)) satisfying 

n 

supn-1 LE l\1 Mt(Zt, f,ß)l 2+ö < oo 
n t=1 

for some 8 > 0. Furthermore, let {\!Mt(z,'F,ß): t E N} be equicontinuous 
on Z. 

Assumption 11.5. Let \1 Mt(Zt, 'Fn, ßn) be near epoch dependent of size 
-1 on the basis process (et), which is assumed to be a-mixing with mixing 
coefficients of size -2rf(r- 2) or cp-mixing with mixing coefficients of size 
-r/(r -1), for some r > 2. Furthermore, let 

supsupE 1\lßqt(Zt,'Fn,ßnW < oo. 
n t 

Sufficient conditions for Assumption 11.5 will be discussed in Section 
11.3. We now have the following asymptotic normality result for the least 
mean distance estimator. 

Theorem 11.2. (a) Let Assumptions 11.1, 11.2, 11.3, and either 11.4 or 
11. 5 hold. Then 

with 
D (n ______. N(O, I), 

and 
1/2 -1 A - D n Dn Cn(ßn- ßn) ______. N(O, I), 
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where Cn and Dn are given by 

and 

Furthermore we have 

ICnl = 0(1), IC;;:- 1 1 = 0(1), IDnl = 0(1) and ID;;:-1 1 = 0(1), 

and hence ßn is n 112 -consistent for ßn· 
{b} Let Assumptions 11.1, 11.2, 11.3{a)-{c), and either 11.4 or 11.5 hold. 

Assurne further that nE('\1 ß' S..n 'V' ßS..n) ---+ A {where A is not necessarily 
positive definite). Then 

1/2 ~ - -1 n (ßn- ßn) = Cn (n + Op(1) 

with 
D 

(n ---4 N(O, A), 

and 
1/2 ~ - D n Cn(ßn - ßn) ---4 N(O, A), 

where Cn is as in part (a). Furthermore we have 

ICnl = 0(1), IC;;:- 1 1 = 0(1), 

and hence ßn is n 112 -consistent for ßn· 

The difference between parts (a) and (b) of Theorem 11.2 is that in 
part (b) the assumption that the smallest eigenvalue of nE('\1 ß'S..n 'V' ßS..n) 
is bounded away from zero is exchanged for the assumption that the ma
trix nE('\1 ß' S..n 'V' ßS..n) converges. Additional variants of the distributional 
convergence results in the above theorem are collected in Theorem Hl in 
Appendix H. 

The condition E'\1 ßs._n = 0 in Assumption 11.3 will generally be satisfied 
automatically under the regularity conditions used to establish consistency 
of ßn. For example, if ßn is a minimizer of 

Qn(ZI, ... , Zn, Tn, ß) = Sn(w, fn, ß), 

then - under the regularity conditions set forth in Chapters 3 and 7 - ßn 
will be consistent for the minimizers ßn of 

Qn(Tn, ß) = EQn(ZI, ... , Zn, Tn, ß) = ESn(w, Tn, ß). 

Hence 'V' ßES..n = E'\1 ßS..n = 0, as ßn is an interior point (assuming that 
interchanging the order of integration and differentiation is permitted). 
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Clearly also under Assumption 11.4 the condition EV ß§.n = 0 in As
sumption 11.3 is automatically satisfied. The condition EV ß-r§.n = 0 in 
Assumption 11.3 ensures- as discussed in Chapter 8- that the parameter 
T is a nuisance parameter, i.e., that the distribution of fn does not affect 
the distribution of n 112(ßn- ßn) asymptotically. 

The assumption that T is a nuisance parameter may not be an innocuous 
assumption in the presence of misspecification ( either of the model or of 
the objective function). E.g., in the case of robust estimation of location 
based on a symmetric loss function the scale parameter is generally not a 
nuisance parameter, if the true distribution is asymmetric. 

Assumption 11.4 (together with Assumption 11.1(e),(f)) or Assumption 
11.5, respectively, provide the essential ingredients for the asymptotic nor
mality of the score vector V ß§.n. Assumption 11.4 postulates a martin
gale structure for the score vector. As discussed, this assumption seems 
appropriate if, e.g., Qn is the correctly specified log-likelihood function, 
or the nonlinear least squares objective function based on a model which 
accurately captures the behavior of the conditional expectation of the de
pendent variables given all predetermined variables. Within this context 
the assumption Tn = 7, ßn = ß seems reasonable, as Tn, ßn will usually 
coincide with the true parameter values in a correctly specified case. AS
sumption 11.5 allows for misspecified situations as well as for correctly 
specified models with an autocorrelated score vector, as it does not require 
a martingale structure for V ß§.n. Under misspecification there is in general 
also no reason why 7 n and ßn would not depend on n, except in a stationary 
environment. 

11.2 Asymptotic Normality of Generalized 
Method of Moments Estimators 

For generalized method of moments estimators the objective function is of 
the form (11.1) where iJn measures the "distance" of the vector of sample 
moments from zero. The leading case is where iJn(c, r,ß) = c' Pn(T, ß)c is a 
quadratic form. The properties of {)n expressed in Assumption 11.6(a),(b) 
below are designed to cover the leading case, but allow also for more general 
specifications of {)n· The condition on the derivative w.r.t. ß of {)n in As
sumption 11.6 (b) is clear ly satisfied in the leading case or if {) n does not de
pend on ß, as is frequently the case. The assumption that V ciJn (0, T, ß) = 0 
is a natural one if we think of {)n ( c, T, ß) as measuring the distance of c from 
zero. Clearly this assumption is satisfied in the leading case. Assumption 
11.1(a)-(d) and Assumption 11.6(a) clearly imply Assumption 8.1(a)-(d) 
with Mn= n 112 I and Nn = n112 I. Assumption 11.6(a),(c) in conjunction 
with Assumption 11.1 allow us to establish uniform convergence of the Hes
sian blocks, which is essential for the verification of Assumption 8.1(e),(f); 
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cf. the discussion after Assumption 8.2. 

Assumption 11.6. (a) The functions iJn are twice continuously par
tially differentiahte on RPq x int(T x B). The derivatives V c{}n ( c, T, ß), 
VcciJn(c,T,ß), Vßc{}n(c,T,ß), Vc.,.iJn(c,T,ß), Vß.,.iJn(c,T,ß) as well as 
V ßßiJn(c, T, ß) are equicontinuous on RPq x int(T x B), and are bounded 
uniformly in n on every compact subset ofRPq x int(T x B). 

{b) VciJn(O,T,ß) = 0 and VßiJn(O,T,ß) = 0 for all (T,ß) E T' X B'. 
(c) The family Ut : t E N} is equicontinuous on Z x T' x B' and 

supn-1 tE [ sup l!t(zt,T,ß)ll+'Y] < oo 
n t=l T'xB' 

for some 'Y > 0, where ft denotes the restriction to Z x T' x B' of any of 
the components of qt, V ßqt, V .,.qt, V ß-rqt, or V ßßqt. (Here T' x B' is the 
compact subset employed in Assumption 11.1{d).f 

As remarked in Chapter 8 the blocks V ßßQn and V ß-rQn of the Hessian 
matrix are of the form 

and 
G2n(Sn. vßsn. v.,.sn. Vß.,.Sn,T,ß). 

respectively, where G1n and G2n are each defined on the Cartesian product 
of a Euclidean space (of appropriate dimension) with int(T x B). More 
specifically, 

Gln(Sn, VßSn, VßßSn,T,ß) 

= (V c{}n ®I) V ßßSn +V ß'Sn V cc{}n V ßSn 

+ V ß' Sn V cß{}n +V ßc{}n V ßSn +V ßß{}n, 

G2n(Sn, VßSn, V.,.Sn, Vß.,.Sn,T,ß) 

= (V c{}n ®I) V ß-rSn +V ß'Sn V cc{}n V -rSn 

+V ß'Sn V c-r{}n +V ßc{}n V -rSn +V ß-r{}n> 

where the derivatives of iJn are evaluated at (Sn, T, ß). 
Define on T' X B' the matrices Cln(T,ß) and C2n(T,ß) by 

Cln(T,ß) = Gln(ESn,EVßSn,EVßßSn,T,ß) 

(11.2a) 

(11.2b) 

4 Clearly these equicontinuity conditions are satisfied if qt, V ßqt, V .,.qt, V ß-rqt, 
and V ßßqt are equicontinuous on Zxint(T x B). 
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and 
C2n(r,ß) = G2n(ESn,EVßSn,EV,.Sn,EVß,.Sn,r,ß). 

The following lemma then gives the uniform convergence of the Hessian 
blocks. 

Lemma 11.3. Let Assumptions 11.1 and 11.6 hold. Then 
(a) supT'xB' IBn -ESnl, supT'xB'IVßSn -EVßSnl, SUPT'xB' IV,.Sn

EV,.Snl, supT'xB'IVß,.Sn- EVß,.Snl and supT'xB'IVßßSn- EVßßSnl 
converge to zero in probability as n-+ oo. Furthermore, the restrictions of 
{ESn: n E N}, {EVßSn: n E N}, {EV,.Sn: n E N}, {EVß,.Sn: n E N} 
and { EV ßßSn : n E N} to T' x B' are equicontinuous on T' x B'. 

{b) supT'xB' IV ßßQn- C1nl -+ 0 and supT'xB' IV ß-rQn- C2nl -+ 0 in 
probability as n-+ oo. Furthermore, {C1n: n E N} and {C2n: n E N} are 
equicontinuous on T' x B'. 

For generalized method of moments estimators the score vector is not in 
the form of a Cesaro sum. Hence, to be able to apply a CLT, this vector 
must first be linearized. The following lemma accomplishes this task. As 
discussed in Chapter 7, we have Qn(T, ß) = '19n(ESn(w, T, ß), r, ß). Note 
that ESn(w,r,ß) is finite for (r,ß) E T' x B' in view of Assumption 11.6. 

Lemma 11.4. Let Assumptions 11.1 and 11.6 hold and assume that §_n
E§.n = Op(n-112 ). Then 

n 1/ 2 [VßQn(Zl. ... ,Zn,fn,ßn)- VßQn(fn,ßn)] 
- - - 1/2 - Vc'19n(E§.n>Tn,ßn)n (Vß§.n- EVßS..n) 

+ n 112(§.n- E§_n)' [V cc'19n(E§.n, fn, ßn)EV ß§_n 

+ Vcß'19n(E§.n,fn,ßn)] +op(l). 

To imply the remaining conditions of Assumption 8.1(e)-(g) as well as 
those of Corollary 8.2(b) for the generalized method of moments estimator 
we maintain furthermore Assumption 11.7 and either Assumption 11.8 or 
Assumption 11.9 below. 

Assumption 11.7. (a) ES..n = 0, 
{b) EV,.§_n = 0, 
{c} liminfn-+ooAmin(Vcc'l?n{O,fn,ßn)) > 0, 
{d} liminfn-+oo Amin{EV ß'S..nEV ßS..n) > 0, 
{e} liminfn-+oo Amin(nES..nS..~) > 0. 
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Note that the expectations in Assumption 11.7 exist given Assumptions 
11.6 and 11.8 or 11.9 hold. 

Assumption 11.8. LetT n = f, ßn = ß and let qt ( Zt, f, ß) be a martingale 
difference sequence (with respect to some filtmtion (~t)) satisfying 

n 

supn-1 LE lqt(Zt,f,ß)l 2+6 < oo 
n t=l 

for some {j > 0. 

Assumption 11.9. Let qt(Zt,fn,ßn) be near epoch dependent of size -1 
on the basis process (et), which is assumed to be a-mixing with mixing 
coefficients of size -2rf(r- 2) or r/J-mixing with mixing coefficients of size 
-r / ( r - 1), for some r > 2. Jilurthermore, let 

sup supE lqt(Zt, Tn, ßn) r < oo. 
n t 

Sufficient conditions for Assumption 11.9 will be discussed in Section 
11.3. We now have the following asymptotic normality result for the gen
eralized method of moments estimator. 

Theorem 11.5. (a) Let Assumptions 11.1, 11.6, 11. 7, and either 11.8 or 
11.9 hold. Then 

with 
D 

(n- N(O,I), 

and 
(C;1 DnD~C:;; 11 )- 112n112 (ßn- ßn) ~ N(O, I), 

where Cn and Dn are given by 

and 
Dn = E"Vß'S..n [Vcc'l?n(O,fn,ßn)] (nES..n$_~) 112 • 

Furthermore we have 

and hence ßn is n 112 -consistent for ßn· 
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(b} Let Assumptions 11.1, 11.6, 11. 7(a)-(d}, and either 11.8 or 11.9 hold. 
Assurne further that 

nE S..nS..~ --+ A 

(where A is not necessarily positive definite). Then 

1/2 A - - -1 n (ßn- ßn) - cn Dn(n + Op(1) 

and 

with 
D 

(n ----t N(O, A), 

where Cn is as in part (a) and 

Furthermore we have 

and hence ßn is n 112 -consistent for ßn· 

The difference between parts (a) and (b) of Theorem 11.5 isthat in part 

(b) the assumption that the smallest eigenvalue of nES..nS..~ is bounded 

away from zero is exchanged for the assumption that nES..nS..~ converges to 

some matrix. Additional variants of the distributional convergence results 

in the above theorem are collected in Theorem H2 in Appendix H. 

Theorem 11.5 shows that the asymptotic distribution of ßn depends on 

{)n only through \7 cc{)n(O, Tn, ßn)· Hence, from the point of view of asymp

totic efficiency, there is no loss in considering only generalized method of 

moments estimators based on a quadratic "distance" function c' Pnc with 

Pn = 'Vcc{)n(O,fn,ßn)· This was pointed out by Newey (1988) in a special 

case. Furthermore, if also dim(Sn) = dim(ß) holds, then C;;1 Dn reduces in 

parts (a) and (b) ofTheorem 11.5 to, respectively, (E\7 ßS..n)- 1 (nES..nS..~) 1 12 

and (E\7 ßS..n)- 1 , and hence the asymptotic distributional result for ßn does 

not depend on the particular form of {)n at all. The intuitive explanation 

for this simplification is that in case dim(Sn) = dim(ß) we will typically 

be able to set the sample moments simultaneously to zero and hence the 

choice of the "distance" function {)n will have no effect. 

The conditions in Assumption 11.7(a),(b) that ES..n = 0 and E\7 rS..n = 0 

are crucial for two reasons. 5 First, if they are violated T will generally not be 

a nuisance parameter ( even in the simple case 1Jn( c, T, ß) = c' Pc where Pis 

5 Clearly under Assumption 11.8 the condition E§_n = 0 in Assumption 11.7(a) 
is automatically satisfied. 
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a matrix that does not depend on ( r, ß), but where, of course, Sn depends 
on (r,ß)). This follows as then C2n('Fn,ßn) is in generalnot o{1). Hence, if 
the parameter T is present and overidentifying moment restrictions are used 
in an estimation problem, i.e., if dim{Sn) > dim{ß), then misspecification is 
generally a serious problern for generalized method of moments estimators 
as in this case we typically cannot expect ES..n = 0. Consequently, the 
asymptotic distributional results of Theorem 11.5 will not hold and, in 
particular, the asymptotic distribution of ßn will then in general depend 
on the distribution of fn. 

Second, assume for the discussion in this paragraph that the parameter r 
is not present or, more generally, that we can establish C2n ( 7 n, ßn) = o{1) -
i.e., that T is a nuisance parameter- from some source other than ES..n = 0 
and E\1-rS..n = 0. Then the assumption ES..n = 0 is still crucial in order 
to obtain the results given in Theorem 11.5. This is so since ES..n = 0 
is also used in the proof to show that the normalized score vector can 
be expressed asymptotically as a linear function of S..n, to which a CLT 
is then applied. If ES..n =I 0 then Theorem 11.5 is, of course, no Ionger 
valid, but we can still obtain an alternative asymptotic normality result 
for ßn· In the following we outline assumptions under which a derivation 
of such an alternative result is possible . .Aß is evident from Lemma 11.4, 
given Assumptions 11.1 and 11.6, we can again represent the normalized 
score vector n 112'V ßQn(Zt. ... , Zn, Tn, ßn) up to an error ofmagnitude op(1) 
as a linear function of ('V ßS..n - E\1 ßS..n) and (S..n - ES..n)· Asymptotic 
normality of the normalized score then follows if the vector made up from 
the components of ('V ßS..n - E\1 ßS..n) and (S..n - ES..n) satisfies a CLT, 
and if n 112'V ßQn('Fn, ßn) = o(1).6 The latter condition holds automatically 
given ßn minimizes Qn('Fn,ß), which will typically be the case. The CLT 
can again be deduced from lower level conditions, e.g., via Theorem 10.2. 
Under conditions, similar in spirit to Assumption 11.7(c)-(e), the relevant 
matrices Cn and Dn will satisfy the remaining requirements of .Aßsumption 
8.1 and we obtain a result similar to Theorem 11.5. However, it is important 
to note that the formulas for Cn and Dn are now different from those 
given in Theorem 11.5. For an alternative catalogue of assumptions for the 
misspecified case ( and where the parameter r is not present) see Gallant 
and White (1988, Ch.4) . 

.Aß discussed above, if misspecification is present in the context of gen
eralized method of moments estimation (with overidentifying moment re
strictions), then T will typically not be a nuisance parameter. Therefore, 
if misspecification is suspected, it may be prudent to attempt to somehow 
treat T together with ß as parameters of interest, i.e., to try to "eliminate 
the nuisance parameters by converting them into parameters of interest". 
Weshall discuss such a strategy next. If T is not a nuisance parameter, in-

6We note that Assumption 11.6(b) is not needed in this context. 
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formation about the asymptotic distribution of ßn can typically be obtained 
only if we are able to get a handle on the joint asymptotic distribution of 
the normalized score vector n 112 'V ßQn and of n112(fn- 'Tn), cf. Chapter 8. 
One approach to achieve this is to (i) augment the first order conditions 
'V ßQn = 0 by the equations that define the estimator for r, (ii) define 
ßn and fn as the solution of the augmented system of equations, and (iii) 
derive the joint asymptotic distribution of ßn and fn from the augmented 
system of equations defining ßn and fn. 

We now return with our discussion to the case where ES.n = 0. Recall 
that for the asymptotic normality result given in Theorem 11.5 we have 
maintained n112-consistency of fn· We note that in the important special 
case, where the "distance" function rJn - but not the vector of sample mo
ments Sn - depends on T, this assumption can be dropped, as was pointed 
out by Newey (1988). The proof proceeds by first linearizing the normal
ized score vector evaluated at ( f n, ßn) with respect to ßn, which yields an 
equation of the form (9.5). Aß discussed in Chapter 9 this leaves one with 
the task of establishing asymptotic normality of the normalized score vec
tor evaluated at fn and ßn. Further linearization of this score vector with 
respect to the vector of sample moments makes it possible to express it in 
the form of a matrix, which depends on f n, times the normalized vector 
of sample moments n 112S..n· Note that S.n does not depend on fn. This 
makes it possible to establish asymptotic normality of ßn from a CLT for 
S..n without the assumption of n 112-consistency of fn, since the asymptotic 
behavior of the matrix premultiplying n 112S..n can now be deduced from 
uniform convergence results and consistency of fn alone.7 

11.3 Further Discussion and Comparison of 
Assumptions 

(i) In the following we provide a sufficient condition for Assumptions 
11.5 or 11.9 with ft ='V Mt or ft = qt, respectively, in terms of near epoch 
dependence of the underlying data process ( Zt). 

Assumption 11.10. (a) Assurne that Z = RPz and that for some s• > 2 
the process (zt) is near epoch dependent of size -2(s• - 1)/(s•- 2) on the 
basis process (et), which is assumed tobe a-mixing with mixing coefficients 
of size -2r/(r- 2) or <P-mixing with mixing coefficients of size -r/(r -1), 
for some r > 2. 

7Since wehavenot made use of differentiability of the objective function w.r.t. 
Tin the above argument, this assumption can be dropped. In fact, T could here 
be an infinite dimensional parameter. 
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{b) lft(z, Tn, ßn)- ft(z•, Tn, ßn)l ~ Btn(z, z•)lz-z•l for all (z, z•), where 
Btn : Z x Z -t [0, oo) is Borel measurable and satisfies 

supsupsup IIBtn(Zt,h~)ll 2 < oo 
t n m 

and 
supsupsup IIBtn(Zt, htm) lzt- h~llls• < oo 

t n m 

with hi = E(ztlet+m 1 ••• , et-m)· 
(c) supnsuptEift(Zt,Tn,ßnW < oo. 

Given Assumption 11.1, Assumption 11.10 implies Assumptions 11.5 and 
11.9, respectively. This follows from an extension of Theorem 6.7(a) in 
Chapter 6 to arrays or from Theorem 4.2 in Gallant and White (1988). In 
the moregenerat case of a Borel setZ~ RP• Assumption 11.10 has tobe 
modified in that hi has tobe chosen to fall into Z. This is always possible 
if ( Zt) is near epoch dependent as shown in Lemma D3 in Appendix D 
and the remark following that lemma. However, this may complicate the 
analysis. 

(ii) Bierens (1981, 1984) established asymptotic normality for the non
linear least squares estimator and for robust M-estimators in a dynamic 
nonlinear regression model under the assumption that the data generating 
process is stochastically stable w.r.t. an i.i.d. or ,P..mixing basis process. (As 
discussed in Chapter 6 stochastic stability is up to inessential details the 
same as Lo-approximability.) In both papers Bierens maintains an asymp
totic stationarity condition.8 His results are furthermore based on the as

sumption that the error process forms a martingale difference sequence. 
Theorem 11.2 under Assumptions 11.1 - 11.4 hence extends Bierens' re
sults by covering a wider dass of objective functions and by allowing for 
more heterogeneity in the data processes, in that Bierens' asymptotic sta
tionarity condition is avoided. The asymptotic normality results in Gallant 
(1987a, Ch.7) and Gallant and White (1988, Ch.5) cover both least mean 
distance and generalized method of moments estimators and also avoid 
Bierens' asymptotic stationarity condition. Gallant and White {1988) do 
not consider nuisance parameters in their analysis. Gallant's (1987a) and 
Gallant and White's (1988) asymptotic normality results differ from The
orems 11.2 and 11.5 in that their entire theory is built on the concept of 
near epoch dependence. They also do not isolate results for cases where 
a martingale structure is available. Furthermore, in their basic catalogues 
of assumptions Gallant (1987a) and Gallant and White (1988) directly as
sume near epoch dependence of all functions of the data generating process 

8 For the case of strictly stationary processes asymptotic normality of gener
alized method of moments estimators has been established in Hansen (1982); cf. 
also Newey (1985a). 
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that are required to satisfy a LLN or CLT in the proof of their asymp
totic normality result; no explicit catalogue of assumptions for asymptotic 
normality is given which is directly based on near epoch dependence of 
the underlying data generating process. Of course, Proposition 1 in Gal
lant (1987a, Ch.7), Theorem 4.2 in Gallant and White (1988), or Theorem 
6.7(a) in Chapter 6 could be used to provide such sufficient conditions. 
This would then result in a catalogue of assumptions which would be on 
a comparable level with the assumptions in Sections 11.1, 11.2 and in re
mark (i) above. However, the resulting catalogue of assumptions would 
be rather complex, since the approximators htm then appear explicitly in 
these assumptions, cf., e.g., Theorem 6.15 and the discussion in Chapter 
7. Hence, an advantage of the approach in Sections 11.1 and 11.2 seems 
to be that it Ieads to a more manageable catalogue of sufficient conditions 
for asymptotic normality. This becomes especially transparent for the case 
where a martingale difference structure is available, since then the cata
logue of assumptions only uses the weaker concept of Lo-approximability 
of (zt) rather than near epoch dependence of (zt)i cf. Assumptions 11.1 
- 11.4 and Assumptions 11.1, 11.6 - 11.7 for least mean distance estima
tors and generalized method of moments estimators, respectively. Thus, in 
the case where a martingale difference structure is available, assumptioris 
concerning the size of the approximation error appearing in the definition 
of near epoch dependence can be avoided altogether. Furthermore, in can
trast to Gallant (1987a) and Gallant and White (1988), the approach in 
Sections 11.1 and 11.2 requires near epoch dependence assumptions only on 
'V Mt(Zt, fn, ßn) for least mean distance estimators or on qt(Zt, fn, ßn) for 
generalized method of moments estimators in the case when no martingale 
difference structure is available. 

(iii) The asymptotic normality results for least mean distance and gener
alized method of moments estimators in Gallant (1987a, Ch.7) and Gallant 
and White (1988, Ch.5) differ from Theorem 11.2 and 11.5 also in that 
Andrews' (1987) ULLN, i.e., Theorem 5.1 in Chapter 5, is used to estab
lish uniform convergence of the Hessian blocks. In the preceding Sections 
11.1 and 11.2 this uniform convergence of the Hessian blockswas estab
lished using Pötscher and Prucha's (1989) ULLN given in Theorem 5.2 
in Chapter 5 (where the local LLNs are implied via Theorem 6.13 from 
the assumption that (zt) is Lo-approximable). Clearly, we could have also 
used Andrews' (1987) ULLN, i.e., Theorem 5.1, in place of Theorem 5.2 
to derive this uniform convergence. Basically we would then have to trade 
the equicontinuity assumption on ft w.r.t. (z, r, ß) in Assumptions 11.2 and 
11.6 for a Lipschitz-type assumption on ft w.r.t. ( T, ß). Such Lipschitz-type 
conditions will frequently be implied from bounds on the derivative. Since 
ft involves already second order derivatives of qt, we would then typically 
have to assume the existence ofthird orderderivatives of qt w.r.t. (r,ß) as 
compared to only second order derivatives needed by the approach based on 
the ULLN given in Theorem 5.2. Although Andrews' ULLN in its generic 
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form, i.e., Theorem 5.1, does not impose any "smoothness" conditions on 
ft w.r.t. z, a smoothness condition w.r.t. z is- as discussed in Section 6.6-
typically needed to imply the existence of local LLNs ( assumed by that the
orem) from Lo-approximability or near epoch dependence of (zt)· Hence, 
comparing the total smoothness conditions needed to establish asymptotic 
normality of M-estimators for dynamic nonlinear econometric models, it 
does not seem that using Theorem 5.1 in place of Theorem 5.2 would give 
a better catalogue of assumptions. 

(iv) In case of generalized method of moments estimation based on a 
quadratic "distance" function asymptotic normality results can be obtained 
without requiring qt to be twice but only once continuously differentiable. 
This was pointed out by Andrews (1991c) and is possible, since in case of 
a quadratic "distance" function the score vector takes the form 

\1 ß'Qn(fn, ßn) = \1 ß'Sn(w, fn,/Jn)Pn(fn,/Jn)Sn(w, fn,/Jn)· 

Instead of expanding the score vector araund ( f n, ßn) one only expands 
Sn(w, fn, ßn)· This again leads to a representation of n 112 (/3n - ßn) as a 
linear function of n 112S.n = n 112Sn(w,fn,ßn)· A CLT for S.n then delivers 
asymptotic normality of ßn.9 

(v) Any estimator solving the first order conditions corresponding to 
the objective function of a least mean distance estimator could be artifi
cially recast as a generalized method of moments estimator by converting 
the problern of solving \1 ßQn = 0 into the problern of minimizing, e.g., 
\1 ßQn \1 ß'Qn. This approach allows us in principle to subsume least mean 
distance estimators within the dass of quadratic generalized method of 
moments estimators, cf. Andrews (1989a,c). Proceeding as in remark (iv) 
above, one would then obtain results comparable to those, e.g., in Theorem 
11.2. We could also attempt to subsume least mean distance estimators as 
special cases of the larger dass of generalized method of moments estima
tors with "distance" functions that are not necessarily quadratic. We could 
then attempt to apply one of the asymptotic normality results for this 
larger dass of estimators as, e.g., Theorem 11.5. However, a disadvantage 
of this approach is that then higher differentiability conditions have to be 
assumed as compared to the case where the estimator is treated directly 
as a least mean distance estimator as is, e.g., the case in Theorem 11.2 (or 
as a quadratic generalized method of moments estimator as is discussed in 
remark (iv) above). It seems that to derive asymptotic normality results for 
least mean distance estimators under minimal conditions we need to treat 
them separately from the general dass of generalized method of moments 
estimators with "distance" functions that are not necessarily quadratic. 

(vi) One of the assumptions for asymptotic normality of ßn maintained 

9 The discussion in this remark assumes that T is a nuisance parameter and 
that E§... = 0. 
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here and in the Iiterature on dynamic nonlinear econometric models, cf. 
Gallant (1987a) and Gallant and White (1988), namely that there exist 
non-random sequences Tn and ßn suchthat fn- Tn--+ 0 and ßn- ßn--+ 0 
holds, is restrictive in misspecified situations. To appreciate the implica
tions of this assumption consider, for simplicity only, the case of a least 
mean distance estimator in a stationary context with no nuisance parame
ter present: ßn = ß will then typically be a minimizer of Q(ß) = Qn(ß) = 
EQn(zl, ... , Zn, ß) and will not depend on n. Convergence of ßn to ß can 
usually only be expected if ß is identifiably unique, which implies in par
ticular that ß is the unique minimizer of Q. However, this uniqueness is, as 
discussed in Section 4.6, not natural under misspecification. Now, ifunique
ness fails to hold, then ßn will typically "converge" to the set of "pseudo 
true" values which minimize Q rather than to a single point; cf. Section 
4.6. Asymptotic normality of ßn will then typically fail. In fact, in such 
a case the distribution of ßn itself (without renormalization by n 112 ) may 
have a non-degenerate limiting distribution. The form of this limiting dis
tribution will, however, depend heavily on the geometric structure of the 
set of "pseudo true" values. 10 The problern is to some extent similar to the 
problern of finding the limiting distribution of estimators of non-identified 
parameters in a well-specified context, see, e.g., Phillips {1989). 

10This set could be finite or infinite. See Pötscher (1991), Example 3, for a 
situation where this set is infinite. 
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HETEROSKEDASTICITY 
AND AUTOCORRELATION 
ROBUST ESTIMATION OF 
VARIANCE COVARIANCE 
MATRICES 

12.1 An Outline of the Variance Covariance 
Matrix Estimation Problem 

Inspection of the asymptotic normality results for least mean distance and 
generalized method of moments estimators given in, e.g., Theorems 11.2(a) 
and 11.5{a) shows that in both cases a matrix of the form C;;1 DnD~ C;; 11 

acts as an asymptotic variance covariance matrix of n112 (/!Jn - ßn), where 
Cn and Dn are given in those theorems. For purposes of inference we need 
estimators of Cn and Dn. Inspection of the matrices Cn reveals that these 
matrices are essentially composed of terms of the form n-1 E~=1 Ewt,n 1 

where Wt,n = Wt{fn, ßn) equals 'V ßMt(Zt, fn, ßn) in the case of least mean 
distance estimators or equals 'V ßqt(Zt, fn, ßn) in the case of generalized 
method of moments estimators. The matrices Dn - apart from containing 
similar terms - also contain an expression of the form 

where Vt,n = Vt(fn,ßn) equals 'Vß'qt(Zt,fn,ßn) in the case of least mean 
distance estimators or equals qt(Zt 1 fn, ßn) in the case of generalized method 
of moments estimators. The expressions of the form n-1 E~=1 Ewt,n will 
typically be estimated by n-1 E~=1 Wt,n where Wt,n = Wt(fn,/!Jn)· Consis
tency of such estimators can be derived from ULLNs and from consistency 
of (fn,/!Jn) in a rather Straightforward manner via Lemma 3.2.1 The esti-

1We note that for most ofthe terms ofthe form n-1:Ef=1Wt,n the relevant uni
form convergence results used to establish their convergence are typically already 
established in the course of the asymptotic normality proof, cf., e.g., Lemmata 
11.1 and 11.3. 

B. M. Pötscher et al., Dynamic Nonlinear Econometric Models
© Springer-Verlag Berlin Heidelberg 1997
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rnation of 

reduces to a sirnilar problern in the irnportant special case where (vt,n) is 

a rnartingale difference array ( or, rnore generally is uncorrelated and has 

rnean zero), since then the expression for Wn reduces to n-1 2:::~= 1 Evt,n v~,n· 

As discussed above (vt,n) will have a rnartingale difference structure in 

certain correctly specified cases. In the general case, however, (vt,n) will 

typically be autocorrelated (with autocorrelation of unknown form) and 

hence the estimation of Wn is rnore involved. 

Observe that Wn can be written equivalently as 

n n-1 n-j 

Wn = n-1 L:Evt,nV~,n + L:n-1 L [Evt,nV~+j,n +Evt+j,nV~,n]. 
t=1 j=1 t=1 

(12.1) 

To highlight the cornplications arising in the estimation of Wn in case (vt,n) 

is autocorrelated assurne for the mornent that (vt,n) = (vt) is a zero mean 

stationary process (with absolutely surnmable covariance function). Then 

the estimand 

converges to 
00 

Evtv~ + L [Evtv~+j + Evt+jvn , 
j=1 

which equals 27l' tirnes the value of the spectral density of (vt) at frequency 

zero. Thus estimation of this expression essentially involves the estimation 

of an infinite number of covariances of the process (vt). For the case where 

(vt) is stationary and observable this problern of estimating the spectral 

density (at frequency zero) has been studied extensively in the time series 

literature, cf., e.g., Anderson (1971, Ch.9), Priestley (1981, Ch.6,7). The 

"naive" estirnator 

n n-1 n-j 

n-1 L VtV~ + L(n- j)-1 L [vtV~+j + Vt+jv~] 
t=1 j=1 t=1 

where each EvtV~+j is estimated unbiasedly by (n- j)-1 2:::~::/ VtV~+j is 

well-known tobe inconsistent. (For sirnplicity assume for the moment that 

Vt,n = Vt is observable; in general, as shown below, replacing Vt,n with the 

observable Vt,n will not affect the consistency result under mild regularity 

conditions.) Intuitively speaking, the reason for the inconsistency is that 

the estimator is a sum of n terms, each with a variance roughly of the order 
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O((n- j)-1 ). The variance of the estimator is now roughly n times as large, 
i.e., of the order 0(1). (Of course, we have here ignored the correlation 
between the individual terms contributing to the sum.) It should also be 
noted that the estimators (n- j)-1 'L~;;;f VtV~+J have a large variance for 
j close to n. 

One of the standard approaches ta.ken in the time series Iiterature to 
obtain consistent estimators is to reduce the variance of the estimator by 
excluding some of the sample moments (n- j)-1 'L~;;;f VtV~+J from the 
formula for the "naive" estimator (or more generally by "down-weighing" 
those sample moments). It seems natural to exclude or down-weigh the sam
ple moments corresponding to lags j close to n. This is achieved by intro
ducing weights into the formula for the "naive" estimator. Down-weighing 
of the sample covariances has the effect of reducing the variance of the 
estimator at the expense of introducing a bias. The search for consistent 
estimators hence amounts to finding weighting schemes such that asymp
totically both the variance and the bias vanish. We note that the alternative 
"naive" estimator 

n n-1 n-j 

n-1 L VtV~ + L n-1 L (vt~+j + Vt+jvn ' 
t=1 j=1 t=1 

which equals 271' times the periodogram (calculated from v1, ... , vn) evalu
ated at frequency zero, is still inconsistent, although some moderate down
weighing ofthe sample moments (n-j)-1 'L~;;;f VtV~+J ta.kes place already. 

Motivated by the above discussion, and in keeping with a long tradition 
in spectral density estimation, we consider estimators for \l1 n of the form 

(12.2) 

where Vt,n = Vt(fn, ßn) and the weights w(j, n) are real numbers.2 Suffi
cient conditions for consistency of this dass of estimators will be discussed 
in the next section. 

The above discussion suggests furthermore that it would be of interest to 
consider alternative approaches for the estimation of 'lln based on alterna
tive techniques used in the time series literature for the estimation of a spec-

2In (12.2) we have chosen to normalize the sample moments by n rather than 
by n- j as is usual in the literature. By redefining the weights as w(j, n)(n- j)Jn 
we could have equivalently expressed q,n in terms of sample moments normalized 
by n-j. 
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tral density (at frequency zero).3 For example, an alternative approach is 
autoregressive spectral density estimation, see, e.g., Parzen (1983), Priest
ley (1981, Ch.7,8). In this approach the spectral density ofthe time series is 
estimated by the spectral density calculated from an autoregressive model 
fitted to this series. For the resulting estimator to be consistent the order of 
the fitted autoregressive model must be allowed to increase with the sample 
size ( at an appropriate rate). For asymptotic properties of this estimator in 
the context of stationary processes see Berk (1974), Hannan and Kavalieris 
{1986) and Hannan and Deistier (1988, Ch.7), cf. also Parzen {1983). It 
hence is of interest to systematically explore the merits of such an estima
tion procedure within the present context where stationarity of (vt,n) is 
not maintained. See Den Haan and Levin (1996) for a recent contribution. 

The above outlined difficulties in the estimation of Wn due to the fact 
that essentially an infinite number of "parameters" has tobe estimated do 
not arise if Evt,nV~+j,n = 0 for j > m and all n and if m is known (e.g., if 
(vt,n) has zero mean and is m-dependent with m known); cf., e.g., Hansen 
{1982) and Hansen and Singleton {1982). In this case Wn is given by 

n m n-j 

n-1 l:Evt,nV~,n + I:n-1 2: [Evt,nV~+j,n +Evt+j,nV~,n] 
t=l j=l t=l 

which can typically be estimated consistently by 

More generally, if a parametric model for the autocorrelation structure 
of (vt,n) is known to the researcher, this model can be used to obtain a 
parametric estimator for Wn, which will typically be superior to ~n· This 
situation occurs, for example, in the case of ordinary least squares estima
tion of a regression model with disturbances that follow an autoregressive 
process of order m. 

12.2 Sufficient Conditions for Consistency 

In the following we present results concerning the consistency of the esti
mators ~n· We first give a lemma that is of a generic nature and provides 
basic conditions for consistency of ~ n for a wide variety of dependence 

3 Note that r n(i) with r n(i) = n-1 :E~,:'f Evt,n v~+;,n for 0 ::; j ::; n - 1, 
r n(i) = 0 for j 2::: n, and r n( -j) = r n(i)'' has formally all the properties of 
a covariance function. Hence, for fixed sample size n, the problern of estimating 
Wn is in fact formally identical to the estimation of a spectral density c/>n(w) = 
(27r}- 1 :E~-oorn(s)exp(-iws) at frequency zero from estimators for rn(j). 
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structures of the underlying stochastic process. We then give more spe
cific results under the assumption of near epoch dependence. Those results 
summarize and extend consistency results given in Newey and West (1987), 
Gallant (1987a) and Gallant and White (1988). A further feature is that 
we also provide rates of convergence for Wn- Wn. Closely related results 
arealso given in Andrews (1991b). We note that all these results on consis
tency of q,n are intimately related to consistency results for spectral density 
estimators in the time series literature. 

We need the following assumption, which postulates smoothness condi
tions for Vt(r,ß) and n 112-consistency of (fn,ßn).4 This assumption also 
covers the case where no nuisance parameter r is present, cf. the similar 
discussion in Chapters 8 and 11. 

Assumption 12.1. Let T and B be measurable subsets of Euclidean space 
RP.,. andRPß, respectively, and letvt(r,ß) be random vectors taking their 
values in RP" for each (r,ß) E T x B and t E N. Assurne that Vt(., .) is 
a.s. continuously partially differentiable at every point (r, ß) in the interior 
ofT x B (and where the exceptional null set does not depend on (r,ß)). 
Let ( fn, ßn) be a sequence of estimators that take their values in T X B and 
satisfy 

where ("Fn,ßn) E T x B is a (non-random) sequence which is eventually 
uniformly in the interiorl> ofT' x B', which itself is contained in the interior 
ofT x B. 

Note that only weights w(j, n) with 0 S j S n- 1 enter the formula 
for q,n· Hence, without lass of generality, we can always assume that there 
exists an index in with 0 <inS n suchthat w(j,n) = 0 for all j 2:: in; for 
definiteness, we will always take in to be the smallest such index. 6 

As discussed in more detail below, the rate at which the truncation lag 
in approaches infinity as compared to n will be crucial for the consistency 

4This assumption ( together with a boundedness condition on the second 
moments and a condition on the weighting scheme) is used to show that 
the estimator it,. differs from the corresponding expression where Vt,n is re
placed with Vt,n only by a term which is op(1). More generally, to establish 
that replacing Vt,n with Vt,n has no effect asymptotically, it suffi.ces to estab
lish consistency of ( f n, ßn) and a uniform stochastic equicontinuity property of 
w(O, n)[n-1Ef=1 Vtv~] + Ej,;{w(j, n)[n-1 E:,;/(vtV~+j +vt+jvDJ as a function of 
(r, ß), cf., e.g., Andrews (1992) and Pötscher and Prucha (1994a). 

5I.e., there exists an E > 0 suchthat the Euclidean distance from (7',., ß,.) to 
the complement of T' x B' relative to the p.,. + P.a-dimensional Euclidean space 
exceeds f for alllarge n. Note also that here T' X B' need not be compact. 

6We have l,. > 0, since we exclude the degenerate case w(j, n) = 0 for all j. 
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of q,n· Recall that Vt,n = Yt(fn,ßn) and Vt,n = Yt(fn,ßn)· We define 

for j 2:: 1, 

ry(O,n) ln-1 tEvt,nV~,nl, 
t=1 

ry(j, n) = ln-1 E [Evt,n v~+j,n + Evt+j,n v~,n] I 
t=l 

for j 2:: 1. The terms a(j, n) can be interpreted as a measure of the distance 
between the empirical and theoretical second moments of the process ( v t,n). 
Furthermore define 

D.t = sup{!vt(r,ß)l, IVßvt(r,ß)l, IVrvt(r,ß)l: (r,ß) E T' X B'}, 

where T' and B' are the subsets given in Assumption 12.1. 

Lemma 12.1. Let Assumption 12.1 hold. Assurne that llvt,nll 2 < oo for 
all t E N and n E N, and that 

n 

n-1 L D.~ = Op(l). 
t=1 

(a) Then q,n- Wn = Op('yn) where !n = ma.x{t1n, /2n, /3n} with 

and 

n-1 

/In= n-112 L jw(j, n)l, 
j=O 

n-1 

/2n = L jw(j, n)l a(j, n) 
j=O 

n-1 

/3n = L jw(j, n)- ljry(j, n). 
j=O 
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Hence, if "Yin, "Y2n, and "Y3n converge to zero as n ~ oo, we have ~n-Wn ~ 
0 i.p. as n ~ oo. 

(b} If the weights are bounded (i.e., supn supj lw(j, n)l < oo) then 

"Yln = O(ln/n112). 

Hence limn--.00 "Yln = 0 if ln = o(n112). 
(c) If the weights are bounded then 

(
ln-1 ) 

"Y2n = 0 L a(j,n) . 
J=O 

Hence limn-.oo "Y2n = 0 if L:~:,~ 1 a(j, n) = o(1). 
(d} If the weights are bounded, limn-.oo w(j, n) = 1 for all j 2:: 0, and if 

then 

00 

I::supry(j,n) < oo 
j=O n~l 

lim "Y3n = 0. 
n-+oo 

(e) If lw(j, n)- 11 ~ OjKn for 0 ~ j < n and if 

then 

00 

L8jsupry(j,n) < oo 
j=O n~l 

"Y3n = O(Kn)· 
Hence limn--.00 "Y3n = 0 if Kn = o(1). 

Part (a) of Lemma 12.1 gives a bound "Yn for the order of magnitude 
of ~n - Wn. Parts (b), (c) and (d) (or (e)) provide a range for the rate 
of increase of the truncation lag ln that ensures consistency of ~ n. More 
specifically, parts (b) and ( c) imply an upper bound on the rate of ln. Part 
(d) as well as part (e) (with K-n = o(1)) imply a lower bound, namely that 
ln ~ oo as n ~ oo. (This follows from limn-.oo w(j, n) = 1 for all j 2:: 0.) 

The proof of Lemma 12.1 is based on the inequality 

(12.3) 

where the pseudo-estimator 
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is obtained from ~n by replacing Vt,n with the unobserved Vt,n· The first 
term on the right hand side of (12.3) captures the effect that ('fn, ßn) has 
tobe estimated by (fn,ßn), and is shown tobe Op('Y1n)· Part (b) of the 
lemma shows that this term is O(in/n112 ) under the mild condition that 
the weights are bounded. The second term represents the deviation of ~ n 

from its mean. This term is shown tobe Op('Y2n) by bounding its variance. 
lntuitively it is clear that for the variance to tend to zero we want in to be 
small relative to n, in order to keep the number of sample covariances in 
the formula for ~ n small relative to n. This is confirmed by an inspection o~ 
the bound 'Y2n: The terms a(j, n) appearing in the formula for 'Y2n measure 
the quality of the estimators n-1 L.~;:f Vt,n v~+j,n of the theoretical second 

moments n-1 L.~;:f Evt,n v~+j,n at lag j. The faster a(j, n) tends to zero for 
each j (i.e., the better the second moments can be estimated) the faster in 
may grow (i.e., the more lags can be included into ~n) while still retaining 
the convergence of -y2n to zero. Hence, convergence of the second term on 
the right hand side of (12.3) to zero typically implies an upper bound on 
the rate at which in can increase to infinity. The third term on the right 
hand side of (12.3) finally is a bias term and its order of magnitude is 
bounded by 'Y3n· The terms 1J(j, n) reflect the size of the theoretical second 
moments. They are required to decline as j --+ oo via the condition 

00 

L:sup1J(j,n) < oo. 
j=O n;:::-:1 

This condition will typically only be satisfied for processes that are es
sentially centered at zero and is then a condition on the memory of the 
process. The larger the terms 1J(j, n), the larger will typically be the bias 
IE~n- Wnl due to the down-weighing (and exclusion for j 2:: in) of sec
ond moments. In general, for the bias to vanish asymptotically the weights 
w(j, n) will have to converge to unity and, in particular, in will have to go 
to infinity. Clearly, the slower the decline of 1J(j, n) as j --+ oo, the faster 
in will have to go to infinity in order to retain the property that the bias 
converges to zero. Hence, in general, convergence of the third term on the 
right hand side of (12.3) to zero implies a lower bound on the rate of in. 
Summarizing, we note that in order to obtain consistency we have to bal
ance the variance and the bias of the estimator, and this entails upper and 
lower bounds on the rate of increase of in.7 

The weights w(j, n) are often obtained from a kernel W: R--+ [-1, 1] via 
w(j,n) = W(j/i~), with W(O) = 1, W(x) = W(-x) for all x, W(x) = 0 
for lxl > 1 and bandwidth parameter i~, 0 < i~ < n. The boundedness 
assumption on w(j, n) is then automatically satisfied. Typically the ker
nels W are also at least piecewise continuous. Commonly used kernels like 

7The proof in fact shows that in case Vt,n = Vt,n the convergence of ~n- Wn 

to zero in Lemma 12.1(a) holds in the L:~-sense and not only in probability. 
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the rectangular, the Bartlett, the Parzen, and the Blackman-Tukey kernel 
satisfy all these conditions, cf. Brockwell and Davis (1991, Ch.10), Priest
ley (1981, Ch.6). These kernels are in factpositive on (-1,1) and hence 
ln = [l~J + 1 or ln = [l~], where [l~] denotes the largest integer not greater 
than l~.8 For any kernel W we have ln:::; [l~] + 1. If also W(x) =/= 0 holds 
in a neighborhood of zero we have furthermore 0 < conshl~ :::; ln and 
hence any rate of convergence expressed in terms of ln can be expressed 
equivalently in terms of l~. 

Given the weights w(j, n) are obtained from a kernel W, it is possible to 
determine the rate Kn and the constants 8; in Lemma 12.1(e) as follows: 
Suppose W(x) is p times continuously differentiahte in a neighborhood of 
zero with i-th derivatives W(i) satisfying W(i) (0) = 0 for i < p. From a 
Taylor expansion we obtain 

for alllxl < e for some e > 0 small enough, observing that 1(1 :::; lxl and that 
W(P) is continuous and hence bounded on a sufficiently small neighborhood 
of zero. Since W(x) is bounded and lxiP ;?: eP > 0 for lxl ;?: Ewe obtain 

IW(x) - W(O)I :::; const * lxiP 

even for alllxl :::; 1, possibly afterchanging the constant on the right hand 
side. Consequently 

lw(j,n) -11 = IW(j/l~)- W(O)I:::; const * (jjl~)P 

for 0 :::; j < n. Hence we can choose Kn = (l~)-P and 8; = conshjP. More 
generally, we arrive at the same result if W(x) is only assumed to satisfy 

lim IW(x)- 11 / lxiP < oo 
:t:-+0 

where p > 0 (and where p need not be an integer).9 Clearly, the larger the 
value of p for which this condition is satisfied, the flatter and smoother the 
kernel will be at zero. For a given sequence of l~ ---+ oo, the bound 'Y3n for 
the bias term will converge to zero the faster, the larger the value of p can 
be chosen subject to the restriction 

00 

LjPsup7J(j,n) < oo. 
i=O n~1 

8 The tuning constant of the Blackman-Thkey kerne! is assumed (as usual) to 
be in the interval [0, 0.25]. 

9 Note that for such a kerne! W(x) =/:. 0 in a neighborhood of zero. Hence ln 
and t;. are, as discussed above, of the same order of magnitude. 
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That is, the rate 'Y3n guaranteed by Lemma 12.1 for the bias term is limited 
by two facts: On the one hand by the smoothness and flatness degree of 
W, and on the other hand by the rate of decline of the covariance function 
as expressed in the decline of supn>1 1'/(i, n). I.e., if W satisfies the above 
condition for P1 and supn~ 1 1'J(j, n) satisfies 

00 

I:>P~ sup1'J(j,n) < oo, 
j=O n~1 

then the "best" feasible choice is Kn = (l~)-P with p = min(p1, p2 ). In the 
context of mean zero stationary processes supn> 1 1'J(j, n) equals the absolute 
value of the covariance function. The "summability" condition 

00 

LjPsup.,.,(j,n) < oo 
j=O n~1 

on the covariance function can also be expressed, as can be shown, as a 
smoothness condition on the associated spectral density function. Hence 
the size of the bias of q, n is determined by two factors, the smoothness of 
the spectral density and the smoothness and flatness of the kernel. We note 
that the above discussion of the bias term is based on well-known results in 
Parzen (1957) for the bias of spectral density estimators, see also Anderson 
(1971, Ch.9). 

The following result is obtained as a corollary to Lemma 12.1 applied to 
near epoch dependent processes. The corollary does not maintain that the 
weights are generated from a kernel. 

Corollary 12.2. Let Assurnption 12.1 hold. Assurne that 

supsup llv~,n Vt,nllr < oo 
n t 

for sorne r > 2 and that 

n 

n-1 LED.~ = 0(1). 
t=1 

Let (vt,n) be a zero rnean process which is near epoch dependent of size 
-2(r- 1)/(r- 2) on a basis process, which is o:-rnixing with rnixing coeffi
cients of size -r/(r-2) or<f>-rnixing with rnixing coefficients of size -r/(r-
1). Assurne that the weights w(j, n) are bounded, and limn--+oo w(j, n) = 1 
for each j;::: 0 {which implies ln ~ ooJ. Then 

'Y1n = O(ln/n112 ), 

'Y2n = O(i'Jj2 /n112 ) 
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and 
'Y3n = o{1). 

Hence, ~n - Wn -+ 0 i.p. as n -+ oo if the weighting scheme satisfies 
additionally ln = o(n113 ). 

The corollary thus gives n 113 as an upper "bound" on the range of orders 
ofmagnitude for ln that ensure consistency of~n· We seefrom the corollary 
that the bound 'Yln for the order of magnitude of l~n- ~nl is always of a 
smaller order than 'Y2n, the bound for the "variance" term. Hence the upper 
"bound" on the range of orders of magnitude for ln that ensure consistency 
of ~n according to Corollary 12.2 is only determined by 'Y2n· To obtain 
'Y3n = o{1) the condition limn-+oo w(j, n) = 1 for each j ~ 0 is needed. 
This implies ln -+ oo as n -+ oo, which provides the lower "bound" for the 
rate of increase of ln. The rate O(e-:P jn112 ) for -y2n is obtained under near 
epoch dependence by establishing that a(j, n)2 ~ consh(j+1)/n. Of course, 
improvement of this bound would lead to an improvement in the rate for 
-y2n. For example, for the dass of linear processes with absolutely summable 
coefficients and based on an i.i.d. noise sequence with finite fourth moments 
it is known that a(j, n)2 ~ constjn, cf. Anderson (1971), Corollary 8.3.1; 
using this bound in Lemma 12.1 leads to a rate -y2n = O(lnfn112 ), and 
hence to the weaker condition fn = o(n112 ) for consistency. (Note, however, 
that in this example the rate can be improved even further by a refinement 
of the technique of proof as discussed at the end of this section.) 

The corollary only shows the bound for the bias term 'Y3n tobe o(1), but 
does not give information on the rate of convergence of this term, and hence 
of ~n- Wn, to zero. Such a rate is established in the following corollary 
under additional assumptions on the weights and under stricter memory 
conditions on the process (vt,n). Let W(p) for p > 0 denote the dass of 
kernels W : R -+ [-1, 1] satisfying W(O) = 1, W(x) = W( -x) for all x, 
W(x) = 0 for lxl > 1, and 

lim IW(x)- 11/ lxiP < oo. 
X-+0 

Recall that, as discussed above, for this dass of kernels ln and e~ are of the 
same order of magnitude and hence the rates appearing in the following 
corollary could be formulated equivalently in terms of fn. 

Corollary 12.3. Let Assumption 12.1 hold. Assurne that 

supsup llv~,n Vt,nllr < oo 
n t 

for some r > 2 and that 
n 

n-1 LE~~ = 0(1). 
t=l 
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Let (vt,n) be a zero mean process which is near epoch dependent of size 
min{ -2(r - 1)/(r - 2), -(p + 1)} on a basis process, which is a-mixing 
with mixing coefficients of size -(p + 1)r /(r- 2) or </J-mixing with mixing 
coefficients of size -(p+1)r /(r-1), and let w(j, n) = W(j jl~) with W(.) E 
W(p) and p > 0. Then 

and 

'Y1n = O(l~jn112), 

'Y2n = 0 ((l~)3/2jn1/2) 

Hence, if l~ --+ oo and l~ = o(n113) then q,n- Wn --+ 0 i.p. as n --+ oo; in 
fact 

where 
'Yn = max ( (l~)312 fn112, (l~)-P) . 

Furthermore, the optimal rote for 'Yn is n-PI(2P+3>, which is achieved for 
l~ ,.,., n1/(2p+3). 

The rate of the bound 'Yn for the order of magnitude of q,n - Wn is 
solely determined by 'Y2n, which eontrols the varianee of ~ n, and by 'Y3n, 
whieh eontrols the bias of ~n, sinee 'Y2n dominates 'Y1n· The optimal rate 
for 'Yn is henee obtained by equating the orders of magnitude of 'Y2n and 
13n. Clearly, in cases where the size requirements in the above eorollary 
are satisfied with a value p2 in place of p, and where the kernel W belongs 
to W(p1), the eorollary is applieable with p = min(p1,P2)· Similarly as 
in the diseussion preeeding Corollary 12.2 we note that p1 measures the 
smoothness and flatness of the kernel W at x = 0, whereas P2 (together 
with r) determines the rate of decline of the eovarianee funetion (whieh 
ean be expressed in terms of smoothness of the speetral density in the 
stationary ease). Corollary 12.3 henee shows that p = min(p1, P2) tagether 
with l~ determines the rate of eonvergenee of 'Yn· 

The Bartlett, the Parzen, and the Blackman-Tukey kernel belang to 
W(p) for all p > 0 less than or equal to 1, 2, and 2, respeetively, see An
derson {1971, p.527). Henee the optimal rate for 'Yn that is achievable with 
the Bartlett, the Parzen, and the Blackman-Tukey kernels is n-115 ,n-217, 
and n-217 , respectively, given the memory eonditions in Corollary 12.3 are 
satisfied for p equal to 1, 2, and 2, respeetively. The reetangular kernel be
longs to W(p) for all 0 < p < oo. The optimal rate for 'Yn that is achievable 
with the reetangular kernel is therefore only determined by the memory 
eonditions on the proeess Vt,ni for example, it is arbitrarily close to n-1/ 2 

for proeesses which satisfy the memory eonditions in Corollary 12.3 for 
arbitrarily large p. 
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Corollary 12.2 and 12.3 extend results in Newey and West (1987), Gal
lant (1987a) and Gallant and White (1988). The result in Newey and West 
(1987) is for a-mixing and 1>-mixing processes only, whereas Gallant (1987a) 
and Gallant and White (1988) give results for near epoch dependent pro
cesses. Allthese results give ln = o(n114 ) as a condition for consistency.10 

Corollary 12.2 improves these results by showing that ln = o(n113 ) suffices 
for consistency in the context of near epoch dependent processes, while 
maintaining the same size requirements for the approximation errors Vm as 
in Gallant (1987a) and Gallant and White (1988). 11 Furthermore, the size 
requirements on the a-mixing coefficients are weaker than those in Newey 
and West (1987), Gallant (1987a) and Gallant and White (1988). In cen
trast to these references and to Corollary 12.2, Corollary 12.3 also provides 
a (bound for the) rate of convergence for ~n-

Corollary 12.2 and 12.3 are in the spirit of consistency results for spectral 
density estimators. 12 From the time series literature, e.g., Parzen (1957) 
and Anderson (1971, Ch.9), it is known that for kernels Was in Corollary 
12.3 and for a stationary time series (vt,n) = (vt) where Vt is observable, 
the term ~~n- E~nl is even O(i~/n), and hence i~ = o(n) and i~ ---+ oo 
are sufficient for the consistency of ~n- (Given Vt is observable, ~n is ob
servable and /ln = 0.) As a consequence the optimal rate for /n is then 
improved. These results are derived by establishing a tighter bound for the 
order of magnitude of l~n- E~nl than /2n in terms of the fourth order 
cumulants of the process and a mixing condition formulated in terms of 
those cumulants. 13 (For comparison, recall from the discussion after Corol
lary 12.2 that, in case of linear processes with absolutely summable coef
ficients and based on an i.i.d. noise sequence with finite fourth moments, 
Lemma 12.1 implies 12n = O(lnfn112 ) = O(i~fn1 12 ).) Andrews (1991b) 
uses Parzen's results to derive analogous ones for the case where Vt is not 
observable but has to be estimated by Vt,n, by showing that the bound 
/In = O(i~fn1 12 ) can be improved to abound which is O(i~jn). He then 
extends those results to certain heteroskedastic processes that satisfy a 

10White (1984) and White and Domowitz (1984) give consistency results for 
a-mixing and ljr-mixing processes with ln = o(n113 ). However, Newey and West 
(1987) pointout that their proofs are incorrect; cf. also Gallant and White (1988, 
pp.99). 

11 Quah (1990) also gives consistency results with ln = o(n113 ) but only for a
mixing processes and (a variant of) t/J-mixing processes. He furthermore suggests 
that his results could also be used to show that the results in Gallant and White 
(1988) for near epoch dependent processes remain intact with ln = o(n113 ) rather 
than with ln = o(n114 ). However, such a demonstration based on his results seems 
to be less than obvious. 

12See, e.g., Priestley (1981, Ch.6) and the references cited therein. 
13This improvement ofthe bound for lq,n_Eq,nl is not limited to the stationary 

case. In the generic setting of Lemma 12.1 this would, however, lead to rather 
involved conditions. 
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similar mixing condition formulated in terms of fourth order cumulants. 
Related results are also given in Keener, Kmenta and Weber (1991) and 
Hansen (1992). 

12.3 Further Remarks 

(i) Without further conditions on the weights w(j, n) the estimators 
q,n are not necessarily nonnegative definite. For example, weights gener
ated from the reetangular kerne! with ln < n may give estimates that are 
not nonnegative definite. To obtain a condition that ensures nonnegative 
definiteness of q,n first note that q,n can be written as 

where 
n-1 

Wn(w) = (211')-1 L w(lil ,n)exp(-iwj) 
j=-n+1 

is the Fourier-transform of the weights, and where 

In(w) = n-1 [t Vt,n exp( -iwt)] [t Vt,n exp( -iwt)] * 
t=1 t=1 

is the periodogram of Vt,n· Since by definition In(w) is always nonnegative 
definite, it follows that 4tn is nonnegative definite if the Fourier-transfarm 
of the weights Wn(w) is nonnegative for all w E [-11',11').14 This condition 
is equivalent to the existence of constants c(j, n) suchthat 

n-1 

w(j, n) = L c(k, n)c(k- j, n).1s 
k=j 

This fact is well-known in the time series literature. The latter condition is 
also given in Newey and West (1987) and Gallant and White (1988). 

(ii) We have excluded kernels W which have unbounded support from 
our analysis for simplicity of presentation. In particular, the sufficient con
ditions in Lemma 12.l(b)-(e) are primarily designed to cover weights gen
erated from kernels with bounded support. We note that commonly used 

14E.g., the weights generated from the Bartlett kemel or the Parzen kemel 
satisfy this condition. 

15Since Wn(w) is even, nonnegative and a trigonometric polynomial it can 
formally be viewed as the spectral density of a moving average process. It hence 
has a representation of the form Wn(w) = I L:;,:-; c(j, n) exp( -iwj)l2 from which 
the representation of the w(j, n) in terms of the c(j, n) follows. 
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kernels like the reetangular, the Bartlett, the Parzen, and the Blackman
Thkey kernel all have bounded support. A similar analysis for kernels with 
unbounded support is possible starting directly from Lemma 12.1(a). For 
a discussion which allows for kernels with unbounded support see, e.g., 
Priestley (1981, Ch.6) and Andrews (1991b). 

(iii) The question which kernel Wand bandwidth parameter f~ to choose 
has been discussed extensively in the time series literature, see, e.g., Priest
ley (1981, Ch.7). For stationary processes it is not only possible to bound 
the mean-square error of the estimator, but also to find an asymptotic 
expansion for the mean-square error. The leading term in this expansion 
depends on the kernel W and on the bandwidth parameter f~. One can 
then attempt to minimize the leading term for the mean-square error with 
respect to W and f~. It has been shown that the Bartlett-Priestley ( or 
quadratic) kernel is optimal in this sense (in the dass of kernels having 
a nonnegative Fourier transform), see Priestley (1981, Ch.7) and the ref
erences therein. The expression for the corresponding optimal sequence of 
bandwidth parameters f~ depends on characteristics of the underlying data 
generating process. A feasible implementation of the optimal bandwidth pa
rameter sequence f~ requires estimation of these unknown characteristics. 
In the context of variance covariance matrix estimation such procedures 
are discussed in Andrews (1991b) and Newey and West (1994). It seems 
that the choice of the kernel is not overly important for the mean-square 
error of the estimator, the choice of the bandwidth sequence being the more 
crucial factor, cf. Priestley (1981, p.449). 

( iv) For stationary ( mean zero) processes the size of the bias of ~ n ( and of 
~ n) depends on the smoothness of the spectral density of the data generat
ing process, as was discussed above. Translated to a finite samples situation 
this indicates that it is easier to estimate a "flat" spectral density than a 
"wildly fluctuating" one. On this basis Press and Thkey (1956) suggested 
to "prewhiten" the data process. More specifically, they suggested to first 
subject the data to a linear transformation which makes the series look 
more like an uncorrelated series and to estimate the spectral density of the 
transformed data. Dividing this estimate by the square of the absolute value 
of the spectral characteristic of the linear transformation (i.e., by reversing 
the linear transformation in the frequency domain) then yields an estimate 
of the spectral density of the original data. Of course, the above procedure 
requires sufficient knowledge about the shape of the spectral density func
tion to be able to come up with the appropriate transformation. If a priori 
knowledge is not available this transformation has to be estimated from the 
data. One way to obtain such a linear transformation is to fit an autoregres
sive model to the data. The residuals from this model then represent the 
transformed data. Such a procedure is, e.g., discussed in Priestley (1981, 
p.603). Andrews and Monahan (1992) also consider estimators for Wn of 
this type. For a proposal using autoregressive moving average models at the 
prewhitening stage see Lee and Phillips (1994). For a further discussion of 
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practical issues pertaining to the estimation of spectral density functions 
{and hence of q,n) see Priestley {1981, Ch.7). 

(v) Corollary 12.2 and 12.3 assume Evt,n = 0.16 Under misspecifica
tion this assumption may often be violated. In the context of Theorems 
11.2 and 11.5 the weaker condition L.:~=l Evt,n = 0 is maintainedP Given 
this condition, q, n will ( under weak additional assumptions) asymptotically 
overestimate W n as it - loosely speaking - estimates W n plus a squared bias 
term. lf ~ n is then used to construct confidence regions, the confidence re
gions will be conservative. For related discussions regarding the estimation 
of variance covariance matrices under misspecification see Gallant {1987a, 
Ch.7) and Gallant and White (1988, Ch.6). 

(vi) For Monte Carlo simulations that compare the small sample prop
erties of alternative estimators of Wn see Andrews (1991b), Andrews and 
Monahan (1992), and Newey and West (1994); cf. also Keener, Kmenta 
and Weber (1991). 

16Lemma 12.1 does not explicitly require Evt,n = 0. However the summabil
ity conditions in parts (d) and (e) will typically only be satisfied if the process 
essentially has zero mean. 

17 As discussed in detail in Chapter 11, this weaker assumption will typically 
hold in case of least mean distance estimators even under misspecifi.cation. For 
generalized method of moments estimators, however, even this weaker assumption 
will typically be violated under misspecifi.cation. 
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CONSISTENT VARIANCE 
COVARIANCE MATRIX 
ESTIMATION: 
CATALOGUES OF 
ASSUMPTIONS 

In this chapter we provide consistency results for the estimation of the 
variance covariance matrices of least mean distance and generalized method 
of moments estimators as given in parts (a) of Theorems 11.2 and 11.5. 
Consistency results for the estimation of the variance covariance matrices 
as given in parts (b) of those theorems can be obtained analogously. 

13.1 Estimation of the Variance Covariance 
Matrix of Least Mean Distance 
Estimators 

The asymptotic variance covariance matrix of the least mean distance es
timator in Theorem 11.2(a) is of the form C;;1 DnD~C;;11 where 

and 
DnD~ = nE('\l ß'S.n "V ßS.n)· 

Consistent estimation of the asymptotic variance covariance matrix hence 
can be reduced to consistent estimation of Cn and DnD~. In this section 
let Vt(r,ß) = "Vß'qt(Zt,r,ß) and hence Vt,n = '\lß'qt(Zt.fn,ßn)· Consider 
the following estimators: 

n 

Cn n-1 L "V ßMt(Zt.fn, ßn), 
t=l 

B. M. Pötscher et al., Dynamic Nonlinear Econometric Models
© Springer-Verlag Berlin Heidelberg 1997
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~n w(O,n) [n-1 tvt,nV~,nl 
t=1 

+ ~w(j,n) [n-1 ~ [v,,.v;H• +V,+;,.v; .• J] 

= w(O,n) [n-1 tvß'qt(Zt,fn,ßn)Vßqt(Zt,fn,ßn)] 

n-1 [ n-j 
+ [; w(j, n) n-1 ~ [V ß'qt(Zt, fn, ßn)V ßqt+j (zt+j ,fn, ßn) 

+ Vß'qt+j(Zt+j,Tn,ßn)VMt(Zt,fn,ßn)]]' 

where ~n is of the form given in (12.2). The estimator <f,n is appropriate 
in the case where Vt,n = V ß'qt(Zt, 'Fn, ßn) has mean zero and is uncorre
lated (e.g., a martingale difference), whereas ~n has to be used if Vt,n is 
autocorrelated. The subsequent assumptions strengthen Assumptions 11.2, 
11.3 and 11.5. 

Assumption 11.2*. The family {ft : t E N} is equicontinuous on Z x 
T' x B' and 

for some 1 > 0, where ft denotes the restriction to Z x T' x B' of any of the 
components of V ßrqt, V ßßqt, or V ß'qt V ßqt. (Here T' X B' is the compact 
subset employed in Assumption 11.1 ( d}.) 

Assumption 11.3*. (a) EVMt(zt,'Fn,ßn) = 0, 
(b} EV ßrß.n = 0, 
(c} liminfn---+ooAmin(EVßßß.n) > 0, and 
(d} liminfn---+oo Amin(nE(V ß'S.n V ßß.n)) > 0. 

Assumption 11.5*. Let V Mt(Zt, 'Fn, ßn) be near epoch dependent of size 
-2(r - 1)/(r - 2) on the basis process (et), which is assumed to be o:
mixing with mixing coefficients of size -2r /(r- 2) or qy-mixing with mixing 
coefficients of size -r/(r -1), for some r > 2. Furthermore, let 
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We also will make use of the following assumption. 

Assumption 13.1. Let 

and 

{Here T' X B' is the compact subset employed in Assumption 11.1{d}.} 

We can now give the following consistency results for the estimators of the 
variance covariance matrices of least mean distance estimators. 1 

Theorem 13.1. (a) Let Assumptions 11.1, 11.2*, 11.3, and 11.4 hold, 
then 

C~ -Li. c~ -1l c-1n D' c-11 o · n ~n n - n n n n -t ~.p. as n -t 00. 

{b} Let Assumptions 11.1, 11.2, 11.3*, 11.5*, and 13.1 hold. Assurne 
furthermore that the weights w(j, n) are bounded, limn--+oo w(j, n) = 1 for 
all j 2:: 0, and that fn = o(n113), then 

The assumptions in part (a) of Theorem 13.1, i.e., for the estimation of 
the variance covariance matrix if Vt,n = V ß'qt(Zt, Tn, ßn) = V ß'qt(Zt, f, ß) 
is a martingale difference, are only slightly stronger than the assumptions 
for the corresponding asymptotic normality result in Theorem 11.2(a). The 
only additional requirement is that also the elements of V ß'qt V ßqt satisfy 

1 The assumptions maintained by part ( a) of Theorem 13.1 are clearly stronger 
than what would be needed for establishing C;1~nC;11 - C,:;- 1 DnD~C,:;- 11 -t 0 
i.p., since this result could essentially be derived from uniform convergence re
sults, consistency of the estimators (fn,ßn), and uncorrelatedness of Vt(fn,ßn) 
alone, as discussed in Section 12.1. The assumptions of the theorem are, how
ever, suchthat the asymptotic normality result of Theorem 11.2(a) applies, thus 
ensuring that C,:;- 1 DnD~C,:;- 1 ' actually is the asymptotic variance covariance ma
trix of ßn. We note furthermore that Theorem 13.1 also covers the case where no 
nuisance parameter T is present, cf. the similar discussion in Chapters 8 and 11. 
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the conditions of Assumption 11.2. Of course, in cases where Cn = DnD~ 
we only need to estimate either Cn or DnD~. Such a case arises, e.g., in the 
context of maximum likelihood estimation of a correctly specified model. 
If 6:;;1 is then used as an estimator for the variance covariance matrix, 
consistency follows already as a by-product of the asymptotic normality 
result in Theorem 11.2(a) and hence no further additional conditions are 
necessary. 2 

For part {b) of Theorem 13.1, i.e., for the case where the scores Vt n = 
\1 ß' qt { Zt ,'F n, ßn) may be autocorrelated, we have to strengthen the ~ear 
epoch dependence condition and the moment conditions (Assumptions 11.5* 
and 13.1) as compared with the corresponding asymptotic normality re
sult in Theorem 11.2{a). Furthermore, and more importantly, we have to 
strengthen the condition 

n 

E\lßS..n = n-1 2:,EVMt(zt,'Fn,ßn) = 0 
t=1 

for all n, maintained in Assumption 11.3(a), to the condition that 

for all t, maintained in Assumption 11.3*{a). Recall from the discussion 
after Theorem 11.2 that the condition E\1 ßS..n = 0 is usually automat
ically satisfied as a consequence of the definition of ßn as a minimizer 
of ESn(w, 'Fn, ß) (which in turn is usually a consequence of the definition 
of ßn)· Assumption 11.3*(a) is in general stronger. However, Assumption 
11.3*(a) coincides with Assumption 11.3{a) if {'Fn, ßn) = {7', ß) for all n, 
which is, e.g., usually the case if ( 7', ß) represents the "true" parameter in 
a correctly specified model. Assumption 11.3*(a) also reduces to Assump
tion 11.3(a) if E\1 ßqt(Zt, 'Fn, ßn) does not depend on t. 

2This, of course, does not imply that 6;;1 is always the preferred estimator. 
Calzolari and Panattoni (1988) and Prucha (1984) report on Monte Carlo simula
tions that analyze the small sample properties of alternative variance covariance 
estimators in the context of maximum likelihood estimation of a simultaneous 
equation model with independent errors. They find that the variance covariance 
matrix estimates may differ considerably in small samples depending on which 
form of the variance covariance matrix estimator is employed. 
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13.2 Estimation of the Variance Covariance 
Matrix of Generalized Method of 
Moments Estimators 

The asymptotic variance covariance matrix of the generalized method of 
moments estimator in Theorem 11.5(a) is ofthe form C;;1 DnD~C;;11 where 

Cn = EVß'S..n [Vcc'!9n(O,fn,ßn)] EVßS..n 

and 

Consistent estimation of the asymptotic variance covariance matrix hence 
can be reduced to consistent estimation of Cn and DnD~. In this section let 
Vt(T, ß) = qt(Zt, T, ß) and hence Vt,n = qt(Zt, fn, /Jn)· Consider the following 
estimators: 

where 
n 

V ß'Sn = n-1 LV ß'qt(Zt, Tn, /Jn), 
t=1 

V ccJn V cc'!9n(O, Tn, /Jn), 

and 
n n 

<~>n n-1 L Vt,n v~,n = n-1 L qt(Zt, fn, /Jn)qt(Zt,fn, /Jn)', 
t=1 t=1 

Wn w(O,n) [n-1 tvt,nY~,nl 
t=1 

+ ~w(j,n) [n-' ~ (v,,.v;H• +V,+;,.v; .• ]] 

w(O, n) [ n-1 t qt(Zt, fn, /Jn)qt(Zt, Tn, /Jn)'] 

n-1 [ n-j 
+ [;w(j,n) n-1 8 [qt(Zt,fn,/Jn)qt+j(Zt+j,fn,/Jn)' 

+ qt+j(Zt+j,Tn,/Jn)qt(Zt,fn,/Jn)1]], 

where Wn is of the form given in (12.2). The estimator <I>n is appropriate 
for estimating nES..nS..~ in the case where Vt,n = qt(Zt, Tn, ßn) has mean 
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zero and is uncorrelated (e.g., a martingale difference), whereas ~n has to 
be used if Vt,n is autocorrelated. The subsequent assumptions strengthen 
Assumptions 11.6, 11.7 and 11.9. 

Assumption 11.6". (a) Assumption 11.6{a) holds. 
{b} Assumption 11.6{b) holds. 
(c) The family {ft: t E N} is equicontinuous on Z x T' x B' and 

for some 'Y > 0, where ft denotes the restriction to Z x T' x B' of any of 
the components of qt, \1 Mt, \1 Tqt, \1 ßTqt, \1 ßMt, or qtq;. {Here T' x B' is 
the compact subset employed in Assumption 11.1{d}.} 

Assumption 11.7". (a) Eqt(Zt,fn,ßn) = 0, 
{b} E\lTS..n = 0, 
{c} lim inf n-+ooAmin(\1 cc'!?n(O, Tn, ßn)) > 0, 
{d} liminf n-+ooAmin(E\1 ß'S..nE\1 ßS..n) > 0, 
{e} liminf n-+ooAmin(nES..nS..~) > 0. 

Assumption 11.9". Let qt(Zt,fn,ßn) be near epoch dependent of size 
-2(r - 1)l(r- 2) on the basis process (et), which is assumed to be a
mixing with mixing coefficients of size - 2r I ( r- 2) or c/>-mixing with mixing 
coefficients of size -r I ( r - 1), for some r > 2. Furthermore, let 

I - 12r supsupE qt(Zt,fn,ßn) < oo. 
n t 

We will also make use of the following assumption. 

Assumption 13.2. Let 

and 
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{Here T' x B' is the compact subset employed in Assumption 11.1{d).) 

We can now give the following consistency results for the estimators 
of the variance covariance matrices of generalized method of moments 
estimators.3 

Theorem 13.2. (a) Let Assumptions 11.1, 11.6*, 11. 7, and 11.8 hold, 
then 

as n- oo. 
{b) Let Assumptions 11.1, 11.6, 11. 7*, 11.9*, and 13.2 hold. Assurne 

furthermore that the weights w(j, n) are bounded, limn--+oo w(j, n) = 1 for 
all j;:::: 0, and that Rn= o(n113 ), then 

C;;1 V ß'Sn VccJn ~n VccJn V ßSnC;; 11 - C;;1 DnD~C;;11 - 0 i.p. 

as n- oo. 

The assumptions in part (a) of Theorem 13.2, i.e., for the estimation 
of the variance covariance matrix if Vt,n = qt(Zt, fn, ßn) = qt(Zt, f, ß) is a 
martingale difference, are only slightly stronger than the assumptions for 
the corresponding asymptotic normality result in Theorem 11.5(a). The 
only additional requirement is that also the elements of qtq~ satisfy the 
conditions of Assumption 11.6(c). For part (b) of Theorem 13.2, i.e., for 
the case where Vt,n = qt(zt, fn, ßn) may be autocorrelated, we have to 
strengthen the near epoch dependence condition and the moment condi
tions (Assumptions 11.9* and 13.2) as compared with the corresponding 
asymptotic normality result in Theorem 11.5(a). Furthermore we have to 
strengthen the condition 

n 

ES.n = n-l LEqt(Zt,fn,ßn) = 0 
t=l 

for all n, maintained in Assumption 11.7(a), to the condition that 

Eqt(Zt, fn, ßn) = 0 

for all t, maintained in Assumption 11.7*(a). Recall from the discussion 
after Theorem 11.5 that the condition ES.n = 0 is typically only satis
fied for correctly specified models. Assumption 11. 7* ( a) will coincide with 
Assumption 11.7(a) if (fn, ßn) = (f, {3), which is, e.g., usually the case un
der correct specification. Assumption 11.7*(a) also reduces to Assumption 
11. 7(a) if Eqt(Zt, fn, ßn) does not depend on t. 

3 An analogaus remark as in Footnote 1 also applies here. 
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QUASI MAXIMUM 
LIKELIHOOD ESTIMATION 
OF DYNAMIC NONLINEAR 
SIMULTANEOUS SYSTEMS 

In this chapter we derive consistency and asymptotic normality results for 
the quasi normal full information maximum likelihood (quasi-NFIML) es
timator of the parameters of a dynamic implicit nonlinear simultaneaus 
equation system. The qualifier "quasi" is used to indicate that the objec
tive function employed to define the estimator may differ from the actual 
likelihood of the data. There are two major purposes for this chapter. One 
purpose is to further illustrate how the tools reviewed and developed in the 
previous chapters can be applied to this more concrete problem. The second 
purpose is to introduce new results concerning the asymptotic properties 
of the quasi-NFIML estimator of a dynamic implicit nonlinear simultane
aus equation system. These results complement and extend those given in 
Amemiya (1977, 1982) and Gallant and Holly (1980) for the NFIML esti
mator of static systems. Apart from permitting the system to be dynamic 
we also allow for temporal heterogeneity of the data generating process. 

We note that while the discussion in this chapter illustrates the usefulness 
of the tools reviewed and developed in this book, it also shows that applying 
the basic theorems regarding consistency and asymptotic normality of M
estimators given in the previous chapters to a concrete problern can still 
require considerable effort. 

We consider in the following the estimation of the parameters of the 
following dynamic implicit nonlinear simultaneaus equation system: 

ft(Yt, ... , Yt-l, Xt, a:) = ft, t E N, (14.1) 
where the processes of the endogenaus variables Yt, exogenaus variables 
Xt, and disturbances ft take their values in, respectively, RPv, RPz, and 
RPe with py = Pe· 1 The parameter vector a: is an element of a Borel set 
A ~ RPa and ft : Zx A---+ RPe is Borel measurable where Z = R(!+l)Pv+Pz. 

1 In referring to the variables Xt as exogenaus we only want to indicate that 
in the context of system (14.1) those variables are viewed as input variables. No 
further assumptions about the stochastic nature of Xt should be associated with 

B. M. Pötscher et al., Dynamic Nonlinear Econometric Models
© Springer-Verlag Berlin Heidelberg 1997
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Furthermore, ft has a nonsingular matrix of partial derivatives 'V y ft on 
Z x A. We now define, as usual, the objective function of the quasi-NFIML 
estimator as (cf. Example 2 in Chapter 2): 

n 

Rn(w,ß) = Qn{ZI. ... ,Zn,ß) = n-1 Lqt(Zt,ß), {14.2) 
t=l 

with 

where ft and 'Vyft are evaluated at (zt,o:) with Zt = (y~, ... ,y~_1 ,xD'· 
The parameter space for E is a subset of the set of all symmetric positive 
definite Pe x Pe matrices. lt is convenient to describe the matrix E in terms 
of a, the vector of its diagonal and upper diagonal elements. {In order to 
denote the dependence of E on a weshall also write sometimes E(a).) The 
resulting parameter space for a is denoted by S ~ RP•(p.+l)/2 • The vector 
ß is then composed of the elements of o: and a. The parameter space B, 
on which qt(z, .) is defined, is taken as A x S. 

We note that the setup and assumptions postulated so far in this chapt~r 
will be assumed to hold throughout the entire chapter and the correspond
ing appendix. 

In the following we first introduce a general consistency result for the 
quasi-NFIML estimator allowing for misspecification. The sources for mis
specification in the sense that {14.2) is only a quasi log-likelihood and 
not the true (conditional) log-likelihood can be manifold. For example, one 
source might be that the system {14.1) is misspecified. Another source may 
be that, while {14.1) is correctly specified, the actual disturbance distribu
tion is not normal. Yet another source might be that {14.2) only represents 
a partial and not the true ( conditional) log-likelihood, as will be discussed 
in more detaillater. 

Second, we will then consider in more detail the special case where the 
system of simultaneaus equations {14.1) is correctly specified. Forthis case 
we will derive consistency and asymptotic normality results for the quasi
NFIML estimator, as well as results concerning the consistent estimation of 
the asymptotic variance covariance matrix of the quasi-NFIML estimator. 
As a byproduct we also introduce results concerning the Lp-approximability 
of the data generating process. 

this terminology. 
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14.1 A General Consistency Result for 
Quasi-NFIML Estimators 

In this section we utilize Theorem 7.1 to introduce a consistency result for 
the quasi-NFIML estimator of a dynamic implicit nonlinear simultaneaus 
equation system. For that result we shall not make the assumption that Zt 
follows (14.1), i.e., weshall allow for the system (14.1) tobe misspecified.2 

Consider the following assumptions: 

Assumption 14.1. (a) The parameter space A ~ RPa is compact. 
(b) The parameter space S ~ RPe(Pe+1)/2 is compact. 3 

(c) For some "'( > 0 

supn-1 t E [sup lft(Zt, a)l 2+27 ] < oo, 
n t=1 A 

s~pn- 1 tE [s~pllnldet(V'vft(zt,a))lll+l'] < oo. 

(d) For some "'( > 0 

n 

supn-1 LEIYtl7 < oo. 
n t=1 

(e) For some "'( > 0 

n 

supn-1 LE lxtl7 < oo. 
n t=1 

(!) {ft : t E N} and {In ldet(V' y/t)l : t E N} are equicontinuous on 
ZxA. 

(g) supt lft(z, a)l < oo for all (z, a) E Z x A. 

Assumption 14.2. The process (y~, xD' is L 0 -approximable by some a
mixing basis process (et)tEZ· 

The following theorem now follows from Theorem 7.1. To prove the the
orem we verify that Assumptions 14.1 and 14.2 imply Assumptions 7.1 and 
7.2, cf. Appendix K. 

2 As a consequence, for that result it is not necessary to assume that a well
defined reduced form exists. 

3Since I:(er) is positive definite for any er E S, compactness of S is equivalent 
to S being a closed subset of a set of the form {er E RPe(Pe+l)/2 : c1 $ Amin (I:( er)), 
Amax(I:(er)) $ c2} with 0 <Cl $ C2 < 00. 
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Theorem 14.1. 4 Let 
n 

Rn(w,ß) = n-1 Lqt(Zt,ß) 
t=1 

be the objective function of the quasi-NFIML estimator defined in (14.2} 
and 

n 

Rn(ß) = n-1 LEqt(Zt,ß). 
t=1 

Suppose Assumptions 14.1 and 14.2 hold, then 

sup iRn(w,ß)- Rn(ß)i- 0 i.p. as n- oo, 
B 

and {Rn : n E N} is equicontinuous on B. Furthermore, let ßn be an iden
tifiably unique sequence of minimizers of Rn(ß) and let ßn be any sequence 
of quasi-NFIML estimators, i.e., 

Rn(w, ßn) = inf Rn(w, ß) 
B 

(14.3} 

5 A -

holds for all w E 0 and n E N. Then ßn is consistent for ßn, i.e., 
lßn- ßnl - 0 i.p. as n- oo. 

We note again that the above theorem does not assume that Yt is ac
tually generated by (14.1). Thus the notion of a true parameter vector is 
vacuous in this context. Therefore, even if the minimizers ßn in Theorem 
14.1 are independent of n, i.e., ßn = ß, the parameter vector ß may have 
no interpretation other than that of a minimizer of Rn(ß). We notefurther 
that even in the case where Yt is generated by (14.1) (with, say, i.i.d. dis
turbances), ßn need not coincide with the true parameter vector ßo. Hence 
Theorem 14.1 does not imply that ßn converges to the true parameter vec
tor ß0 . That is, as already discussed in Amemiya (1977) and Phillips (1982) 
for the special case of a static nonlinear simultaneaus equation model, in 
general the quasi-NFIML estimator does not converge to ßo even if (14.1) 
holds, unless certain further conditions are satisfied; cf. the discussion in 
the following section. 

Theorem 14.1 also holds for approximate M-estimators, cf. Section 4.4. 
Furthermore, 'the assumption that B is equal to A x S can be relaxed. 
Clearly, the theoremalso holds if Bis only a compact subset of A x S, and 
thus a corresponding version of the theorem also covers the case of cross 
restrictions between o: and (j. 

4We note that here and in the following theorems the existence of Rn is ensured 
by the maintained assumptions. 

5The existence of measurable ßn satisfying (14.3) is ensured by Lemma 3.4. 
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In the following discussion we show how in the context of Theorem 14.1 
the compactness assumption for S can be removed. Loosely speaking, the 
basic strategy is to demonstrate that the functions Rn and Rn become large 
outside some compact subset of the parameter space, and then to apply 
Theorem 14.1 to the estimation problern restricted to the compact subset; 
cf. also Section 4.3. This strategy is formally implemented in Lemma K1 
in Appendix K. For the ensuing discussion, which is based on this lemma, 
we assume that Assumptions 14.1{a),{c)-(g) and 14.2 are in force, and that 
S now corresponds to the set of all symmetric positive definite Pe x Pe 
matrices. 6 We also maintain additionally that 

Since, in cantrast to Theorem 14.1, the parameter space B = A x S is 
now no Ionger compact, the existence of a minimizer ßn of Rn (ß) follows 
no langer trivially from the continuity of Rn. The existence of such min
imizers can, however, be proven, as is demonstrated in Lemma K1{b) in 
Appendix K. As in Theorem 14.1 we assume that those minimizers are 
identifiably unique. Similarly, the existence of minimizers of Rn(w, ß) is 
now no Ionger ensured. We hence define the quasi-NFIML estimator ßn 
to be the minimizer of Rn(w, ß), if a minimizer exists, and assign to it 
some fixed (arbitrary) element of B otherwise.7 Lemma K1 now shows 
that there exists a compact subset, say S*, of S and a sequence of sets 
On E 21 with P(On) -+ 1 as n -+ oo such that {i) ßn belongs to the com
pact subset B* = A X s* of B = A X s, {ii) Rn(w, ß) attains its minimum 
on B = A x S whenever w E On, and all the minimizers of Rn(w,ß) over 
B = A X s belong to B* = A X s* whenever w E On. Thus, while for 
reasons of mathematical definiteness it was necessary to define ßn(w) also 
for w E 0 for which a minimizer of Rn(w, ß) does not exist, the lemma 
shows that ßn(w) is in fact a minimizer of Rn(w,ß) over B = A X S, except 
on a sequence of w-sets whose probability tends to zero. lt also shows that 
the ßn(w)'s take their values in the compact set B* = A X s*, except on a 
sequence of w-sets whose probability tends to zero. Theorem 14.1 applied to 
the restricted compact parameter space B* = A X s* shows the consistency 
of the restricted quasi-NFIML estimators, i.e., of minimizers of Rn(w, ß) 
over B* = A X 8*.8 Since ßn differs from such a restricted quasi-NFIML 
estimator only on w-sets whose probability tends to zero, this also implies 

6 The following discussion also holds if S corresponds to a relatively closed 
subset of the set of all symmetric positive definite Pe x Pe matrices. 

7The existence of a measurable ßn satisfying the above definition can be de
duced from Corollary 1 in Brown and Purves {1973). 

8 Note that the assumption of identifiable uniqueness of ßn w.r.t. B clearly 
implies identifiable uniqueness of ßn w.r.t. the restricted parameter space B •. 
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the consistency of ßn for ßn. 

14.2 Asymptotic Results for the 
Quasi-NFIML Estimator in Case of a 
Correctly Specified System 

In the previous section we allowed for misspecification of the system (14.1). 
In this section we will discuss in more detail the case where y t is actually 
generated by (14.1).9 

14.2.1 Suffi.cient Conditions for Lp-Approximability of 
the Data Generating Process 

Theorem 14.1 postulates in Assumption 14.2 a form of weak dependence 
of the data generating process. In particular, this assumption maintains 
that the process (y~, x~)' is Lo-approximable by an a-mixing basis process. 
This assumption may be considered a high-level condition. Given that in 
Theorem 14.1 the process Yt is not assumed to be generated by (14.1), 
thus allowing for misspecification, it seemed necessary to impose the weak 
dependence assumption directly on (y~,xD', as we then typically have no 
further information on the mechanism that generates the data. However, 
if (14.1) is correctly specified in thesensethat Yt is actually generated by 
this system, then sufficient conditions for Assumption 14.2 can be given 
in terms of the input processes Xt and ft. More specifically, consider the 
following assumptions. 

Assumption 14.3. For each (y~ 1 , ... , y~1 , x', e'}' E R 1P"+P.,+Pc, each 
a E A, and each t ~ 1, the equation 

ft(Y, Y-1> ... , Y-1, x, a) = e 

has a unique solution, say 

Y = 9t(Y-1, ... , Y-1, x, e, a). 

Furthermore the function 9t : R 1P"+Pz+P. x A -+ RP" is Borel measurable. 

The above assumption implies that the system (14.1) has a well-defined 
reduced form. (Recall that, although not expressed in the notation, we have 
assumed that Py = Pe.) 

90f course, the statement that Yt is generated by (14.1) is vacuous unless 
some further restrictions (e.g., independence or weak dependence conditions) are 
placed on the disturbance process. 



14.2. Quasi-NFIML Estimator for a Correctly Specified System 151 

Assumption 14.4. The process of the endogenaus variables Yt is gen
erated by {14.1} for some a = ao E A, starting from the initial random 
variables Yo, ... ,Yl-!· 

Under Assumptions 14.3 and 14.4 the process ofthe endogenaus variables 
can be described in terms of the reduced form by 

t EN. 

For the purpose of obtaining sufficient conditions for Assumption 14.2 it 
proves useful to rewrite the dynamic system given by the reduced form 
equivalently as the following dynamic system of order one: 

Vt =<Pt (vt-1, wt), tEN, 

with Vt = (y~, ... ,y~_ 1+ 1 )', Wt = (x~,€~)', and where the functions <Pt 
RIPv+Px+Pe ~ R 1Pv are defined as 

<Pt(v,w) = 

9t(Y-b · .. , Y-1, x, e, ao) 
Y-1 

Y-1+1 

t EN, 

with v = (y~ 1 , ... ,y'_1)' E R 1Pv and w = (x',e')' E RPx+Pe. Note that <Pt 
depends also on a 0 , although we do not express this in the notation. Addi
tionally, we define for t E N and k E N the functions <j;~k+l), representing 
iterations of the dynamic system, in terms of the following recursions: 

for all v E R 1Pv and WiE RPx+P., i = 1, ... , k+1, and where <PP)= <Pt· Now 
consider the following assumptions. For an interpretation of and motiva
tion for the conditions maintained in these assumptions see the discussion 
surrounding Theorem 6.12 in Chapter 6. 

Assumption 14.5. The reduced form satisfies the following Lipschitz con
ditions with V = R 1P11 and W = RPx+Pe: 

( a) There exist constants c1 and c2 with 0 :::; c1 < oo and 0 :::; c2 < oo 
suchthat for all (v, v•) E V x V, (w, w•) E W x W, and t E N 

l9t(v, w, ao)- 9t(v•, w•, ao)l :::; c1 lv- v•l + c2lw- w•l, 

i. e., 9t (., . , ao) is globally Lipschitz. 
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(b) There exists an integer k* ::::: 1 and constants d1 and d2 with 0 ~ 

d1 < 1 and 0 ~ d2 < oo such that 

lct>~k') ( v, wl' ... 'Wk•) - 4>~k') ( v•' wr' ... 'w,:.) I 

< d1lv-v•l+d2 I w1- wr 

Wk• ~ Wk• 

Assumption 14.6. ( a) IIY -i 11 1 < oo for i = 0, ... , l - 1. 

(b) SUPt>l llxtlll < 00. 

(c) supt;lll~:tlll < oo. 

We now have the following result concerning the L 0-approximability of 

the process (y~,xD' based on Theorem 6.12. 

Lemma 14.2. Suppose (x~, ~:D' is L1-approximable by some basis process 

(et). 10 Then under Assumptions 14.3 - 14.6 the process (y~,xD' is L 1 -

approximable, and hence Lo-approximable, with respect to the basis process 

(et)· Furthermore, 11Ytll 1 < oo fort::::: 1. 

Assumptions 14.3- 14.6 thus provide sufficient conditions for Assumption 

14.2 if the basis process et is a-mixing. Of course, if (x~, E~)' is a-mixing, 

then (x~, E~)' itself (with, say, (x~, ~:D' = 0 for t < 1) can be taken as the 

basis process ( et). 
The proof of Lemma 14.2 is based on Theorem 6.12. The Lipschitz con

dition in Assumption 14.5(a) together with Assumption 14.6(a) is used 

to establish that llvillr < oo, i = 0, ... , k* - 1, an assumption main

tained by Theorem 6.12. Assumption 14.5(b) is essentially a stability con

dition for the system; cf. the discussion after Theorem 6.12. Given the 

function Yt(Y-1, ... , Y-z, x, e, ao) is continuously partially differentiable in 

(Y-1>· .. ,y_1,x,e), Assumption 14.5(b) is satisfied ifthe following holds: 

Py •I ßfj>t i i i , 
{ [ 

(k') l 
sup staci=l 1i a:;;- ( v , w1, ... , wk.) . 

vi E V, w} E W, j = 1, ... , k*, i = 1, ... ,py, t E N} < 1 

10Recall from Theorem 6.1(b) that L0-approximability of (x~, E~ )' implies L1-

approximability given supn n-1 ~:=l E l(x~, eD'I"' < oo for some 'Y > 1 holds. 
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and 

{l ar~P"> I SUp a~l (v, Wt, ... , Wk•) : 

V E V, Wj E w, j = 1, ... , k*' t E N} < oo, l=1, ... ,k*, 

where the stac-operator creates a matrix consisting of the rows shown as 
the arguments of the operator, and where ii denotes the i-th column of 
the Py x Py identity matrix. The above sufficient conditions are derived by 
applying the mean value theorem to 1/>~k"). The reason that we have to allow 
for a different argument list for each of the rows of the matrix generated 
by the stac-operator is again the fact that the mean value theorem has to 
be applied to each element of 1/>~k") separately; cf. also the discussion after 
Theorems 6.10 and 6.12. 

The functions 1/>~k") are defined recursively in terms of tf>t+k•-1. ... , tf>t· 
Utilizing this definition we can also give the following sufficient conditions 
for the above two conditions: 

PIJ •I rr 84>t+k• -I (,/.,(k" -I) ( i i i ) i ) . {I [ k" ll SUp staci=l li 1=1 8v '1-'t V 'Wt' ... , Wk•-1 'Wk"-1+1 • 

viEV, w;EW, j=1, ... ,k*, i=1, ... ,py, tEN}<1 

with 4>~0) ( v) = v and 

sup {I :t ( v, w) I : v E V, w E W, t E N} < oo, 

sup{l~:(v,w)l :vEV, wEW, tEN} < oo. 

The latter two conditions are, of course, equivalent to 

sup{l~(v,w,ao)l :vEV, wEW, tEN} < oo, 

sup{~~~(v,w,ao)l :vEV, wEW, tEN} < oo. 

We note that the last two conditions also imply Assumption 14.5(a), i.e., 
the global Lipschitz property of Yt(., ., ao). 

Theorem 14.1 also maintains in Assumption 14.1(d) a moment condition 
on the process (Yt)· The following result states that under Assumptions 14.3 
- 14.6 this moment condition is already implied by the other assumptions 
maintained by Theorem 14.1. 
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Lemma 14.3. Given Assumptions 14.1(g) and 14.3- 14.6 hold, Assump
tion 14.1(d} is satisfied. (In fact, supt~ 1 IIYtll 1 < oo holds.) 

We note that in the important special case where ft does not depend on 
t Assumption 14.1(g) is trivially satisfied. 

14.2.2 Consistency 

We now revisit the consistency of the quasi-NFIML estimator in the case 
where Yt is generated by (14.1), i.e., in the case where the system is correctly 
specified as expressed by Assumptions 14.3 and 14.4. 

One consequence of the correct specification of the system is, as was 
just discussed in the preceding subsection, that we can provide sufficient 
conditions for the high-level condition of weak dependence formulated as 
Assumption 14.2. Another important consequence of the correct specifica
tion of the system is that in this case we have available the notion of a true 
parameter vector ß0 , which then raises the important question whether or 
not ßn is consistent for ßo. Of course, if we simply postulate that ßo -
taking the role of ßn in Theorem 14.1 - is the (identifiably unique) min
imizer of Rn, we obtain consistency of /3n for ßo from Theorem 14.1 in a 
trivial way. We will formulate such a result as the first of the subsequent 
theorems. In the second of the two subsequent theorems the property that 
ßo minimizes Rn will be established from sufficient conditions. 

Given ßn = ßo, we can simplify the identifiable uniqueness condition via 
Lemma 4.1, since now ßn does not depend on n. We emphasize, however, 
that for nonlinear systems of the form (14.1) the assumption of Rn being 
minimized at ßo is not innocuous, even if the system (14.1) is correctly 
specified, since this assumption will not hold in general without further 
restrictions on the class of admissible distributions of the disturbances; cf. 
the discussion in Amemiya (1977) and Phillips (1982). 

In the following theorems we also replace Assumptions 14.1(d) and 14.2 
with sufficient conditions by employing Lemmata 14.2 and 14.3. To this 
effect we introduce the following assumptions.U 

Assumption 14.6*. (a) IIY-ill 1 < oo for i = 0, ... , l-1. 
(b) supt~ 1 llxtll 1 +6 < oo for some 8 > 0. 
(c) supt~l 11Etll 1+6 < oo for some 8 > 0. 

11 Assumption 14.6* strengthens some of the moment conditions in Assump
tion 14.6 slightly and is introduced mainly for convenience. We note that The
orem 14.4 also holds with Assumption 14.6* replaced by Assumption 14.6, 
if Lo-approximability of (x~, E:~)' in Assumption 14.7 is strengthened to Ll
approximability. 
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Assumption 14. 7. The process (x~, E~)' is Lo-approximable by some a
mixing basis process (et)tEZ· 

Theorem 14.4. Let 
n 

Rn(w, ß) = n-1 2:::: Qt(Zt, ß) 
t=1 

be the objective function of the quasi-NFIML estimator defined in {14.2} 
and 

n 

Rn(ß) = n-1 I:Eqt(Zt,ß). 
t=1 

Suppose Assumptions 14.1 (a)-(c), (f },(g), 14.3- 14.5, 14.6*, and 14.7 hold. 
Then we have 

sup IRn(w,ß)- Rn(ß)l-t 0 i.p. as n -t oo, 
B 

and {Rn : n E N} is equicontinuous on B. 
Purthermore, let ßn be any sequence of quasi-NFIML estimators, i.e., 

Rn(w, /3n) = inf Rn(w, ß) 
B 

holds for all w E 0 and n E N. Then: 
( a) If Rn is minimized at ßo for every n E N and if 

liminf [Rn(ß)- Rn(ßo)] > 0 for all ß =I ßo, 
n-+oo 

then ßn is consistent for ßo, i.e., lßn- ßol-t 0 i.p. as n -t oo. 
(b} lf R (ß) = limn-+oo Rn (ß) exists for all ß E B and if ßo is the unique 

minimizer of R, then ßn is consistent for ßo, i.e., lßn - ßol -t 0 i.p. as 
n -t oo. 

Returning to the discussion before Theorem 14.4 we now consider the 
following assumption on the distribution of the disturbances. As shown 
below, this assumption ensures, in particular, that ßo minimizes Rn. 

Assumption 14.8. (a) The disturbances Et are N(O, E(ao)) with <To ES. 
(b) Et is independent of {Et-1, ... ,E1,Xt, ... ,xt.Yo, ... ,y1-l} for each 

t ~ 1. 
( c) The J acobian '\1 y ft (., ao) is continuous on Z for every t ~ 1. 

Assumption 14.8(a),(b) implies that the disturbances Et are in fact i.i.d. 
Assumption 14.8(a),(b) is, for example, certainly satisfied if we assume 
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that the disturbance process (Et) is i.i.d. N(O, :E(O"o)) and that this process 
is independent (jointly) of the process of exogenaus variables (xt) and the 
initial random variables Yo, ... , y 1_ 1• Of course, Assumption 14.8(a),(b) 
is more general. For example, Assumption 14.8(b) is satisfied if (xt) IS 
generated by a system of the form 

and if Et is independent of 

{ Et-1, ···,EI, Ut, · · ·, UJ, Yo, · · ·, YI-max(k,l), XQ, · · ·, XI-m}· 

Given Assumptions 14.3 and 14.4 hold, Assumption 14.8(b) is equivalent 
to the assumption that Et is independent of 

foreacht 2: 1. Assumption 14.8(c) is a technical assumption used to ensure 
that we can obtain the conditional density of Yt given 

from the ( conditional) density of Et via the transformation technique; cf. 
Theorem 17.2 in Billingsley (1979). 

Lemma 14.5. Suppose Assumptions 14.3, 14.4 and 14.8 hold. 
(a) Then the conditional density of Yt given Yt-1 = Yt-I, ... ,YI-1 

YI-I,Xt = Xt, ... ,x1 =XI is also the conditional density ofyt given Yt-1 = 
Yt-I, ... ,Yt-l = Yt-t,Xt = Xt and equals 

1r{ (Yt I Yt-I, ... , YI-!, Xt ... , x1; ßo) = 1r{ (Yt I Yt-I, ... , Yt-1, Xti ßo) 

(27r)-Pe/2 ldet(V' y/t)l [det (:E(O"o) )]-112 exp (-J:L:(O"o)- 1 /t/2) 

where ft and V' y ft are evaluated at ( Zt, ao), where Zt = (YL ... , Y~-l, xD' 
and ßo = (a~,O"~)'. (Consequently, 

qt(zt, .) =-In [1ri (Yt I Yt-I, ... , Yt-1, xt; .)] - (pe/2) ln(21r).} 

{b) Furthermore, 

E [qt(Zt, ß)- Qt(Zt, ßo) I Yt-1 = Yt-b ... , Yt-! = Yt-z.Xt = Xt], 

which equals 

E [qt(Zt, ß)-qt(zt, ßo) I Yt-I = Yt-b ... , Y1-1 = YI-1, Xt = Xt, ... , x1 = x1], 

is minimized over B = A x S at ß = ßo = (a~, O"Ö)' for every t 2: 1. lf 
E lqt(Zt, ßo)l < oo, then Eqt(zt, ß) is minimized at ß = ßo. lf E lqt(zt, ßo)l < 
oo for all t 2: 1, then Rn (ß) is minimized at ß = ßo for all n 2: 1. 
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The conditional expectations in the above lemma are defined as, respec
tively, 

and 

J [qt(zt, ß) - qt(zt, ßo)]7ri{Yt I Yt-1, ... , Y1-t. Xt, ... , x1; ßo)dYt· 

The integrals are well-defined, possibly assuming the value +oo, since 
they both represent the Kullback-Leibler divergence between the densi
ties 1ri{yt I Yt-1, ... , Yt-1, Xti ß) and 1ri{yt I Yt-t. ... , Yt-1, Xti ßo). Further, 
given E lqt(zt.ßo)l < oo the expectation Eqt(Zt,ß) is well-defined for all 
ß E B, possibly assuming the value +oo. (In fact, in the above lemma 
the condition E lqt(Zt, ßo)l < oo could be replaced by the weaker condition 
Eqt"(zt,ßo) < oo, where qt" denotes the negative part of qt-) A similar 
remark applies to Rn(ß). 

Part (b) of the above lemma establishes that ßo minimizes R"., which is 
a key condition for consistency of ßn for ß0 , and which had been postulated 
as an assumption in Theorem 14.4 above. Part (a) of the lemma permits, 
under Assumptions 14.3, 14.4 and 14.8, the interpretation of the objective 
function (14.1) defining ßn as a partiallog-likelihood in the sense of Cox 
(1975), but not necessarily as the true log-likelihood of the data ( conditional 
on x1 , ... , Xn and Yo, ... ,Y1-I)· To see this observe that the likelihood, say, 
1rY,X of (y~, ... ,y~_1 ,x~, ... ,x~)' conditional on the initial values Yo = 
Yo, ... ,Y1-I = Y1-l can be factored as follows: 12 

11"Y,X (Yn, ... , Yt. Xn,. · ·, X1 I Yo, · · ·, Y1-1i ß) 
n 

= IT 1r;'Y (xt, Yt I Yt-t. · · ·, Y1-z. Xt-1, · · ·, x1; ß) 
t=1 

= [f.r 1rf (xt I Yt-1,··· ,Y1-1,Xt-1•···•x1;ß)l 
t=1 

[f.r 71"r (Yt 1 Yt-1, ... , Yl-1, Xt, ... , X1j ß)] , 
t=1 

where 1rf'Y,7rf and 1ri denote the conditional densities of (~,y~)', Xt, 

and y t, respectively. The second term on the right hand side of the last 
equality represents- in the terminology of Cox (1975) - the partiallikeli
hood function. By Lemma 14.5 we now see that the negative logarithm of 

12For this discussion of the relationship between partial and conditional like
lihood only we assume that a joint density of (y~, ... ,y~_11 x~, ... ,xD' exists
an assumption that is not maintained otherwise. 
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the partiallikelihood function (normalized by the sample size and up to an 
irrelevant additive constant) equals our objective function (14.1) defining 
ßn· We note that in general the partiallikelihood does not coincide with 
the likelihood conditional on Xt, ... , Xn ( and the initial values) since the 
first term on the right side of the above equation is in general not equal to 
the marginal density ofx1, ... ,xn (conditional on the initial values). Since 
in general the firsttermwill also depend on the parameter vector ß, this 
implies that in general maximizing the partiallikelihood 

n rr 'Irr (Yt I Yt-1, ... 'Yl-1, Xt, ... 'Xtj ß) 
t=l 

is not equivalent to maximizing the true likelihood 

7rY,X (Yn, ... , Yt, Xn, • · ·, Xt I Yo, · · · 'Yt-li ß) · 

For further discussions see Wong (1986) and Slud (1992). It seems that 
this distinction between partial and true likelihood function has not always 
been observed in the econometrics literature. Of course, e.g., in the special 
case where { €1, ... , €n} is independent (jointly) of {x1, ... , Xn} and the 
initial values, the partial likelihood function and the likelihood function 
conditional on X1, ... ,xn (and on the initial values) coincide, and then this 
distinction vanishes. 

Combining Theorem 14.4 with Lemma 14.5 yields the following con
sistency result. We emphasize that, in cantrast to Theorem 14.4, in the 
following theorem the key condition that ßo minimizes Rn over B is not 
simply postulated, but rather is a consequence of the assumptions. 

Theorem 14.6. 13 Let 
n 

R.,.(w, ß) = n-1 I: qt(Zt, ß) 
t=1 

be the objective function of the quasi-NFIML estimator defined in {14.2} 
and 

n 

Rn(ß) = n-1 L:Eqt(Zt,ß). 
t=1 

13It seems that within the context of a correctly specified system with i.i.d. 
normally distributed disturbances the estimator ßn would typically be called 
the NFIML estimator in the econometrics literature. The preceding discussion 
implies, however, that under the assumptions of the theorem the estimator ßn 
can not necessarily be interpreted as the NFIML estimator, but only as the 
partial-NFIML estimator. To avoid introducing new terminology, we have chosen 
to continue using the term quasi-NFIML estimator for ßn also in this situation. 
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Suppose Assumptions 11,.1{a)-(c)1(/)1(g)1 11,.3- 11,.51 11,.6*{a)1{b}1 11,.71 
and 11,.8 hold. Then we have · 

sup iRn(w,ß)- Rn(ß)l--. 0 i.p. as n--. oo, 
B 

{Rn : n E N} is equicontinuous on B 1 and ßo minimizes Rn over B for 
every n E N. 

Let ßn be any sequence of quasi-NFIML estimators1 i.e., 

Rn(w,ßn) = inf Rn(w,ß) 
B 

holds for all w E !l and n E N. Then: 
{a) lf 

liminf [Rn(ß)- Rn(ßo)] > 0 for all ß # ßo, n-+oo 

then ßn is consistent for ßo1 i.e. 1 lßn- ßol --. 0 i.p. as n--. oo. 
(b} lf R(ß) = limn-+oo Rn (ß) exists for all ß E B and if R has a unique 

minimizer in B 1 then this unique minimizer of R is ßo and ßn is consistent 
for ßo1 i.e., lßn- ßol ___. 0 i.p. as n ___. oo. 

If ßo is identified in the parameter space B, in the sense that ßo # ß im
plies Rn(w,ßo) # Rn(w,ß) with positive probability, then ßo is the unique 
minimizer of f4n (ß) over B for all m ~ n, see Lemma K2 in Appendix K. 
As discussed in Chapter 3, identifiability of ßo in this sense is, in general, 
not suflicient to imply the stronger identifiable uniqueness condition 

liminf [Rn(ß)- Rn(ßo)] > 0 for all ß # ßo. n-+oo 

However, if Rn = R does not depend on n, then (within the context of 
Theorem 14.6) this condition reduces to the requirement that ßo is the 
unique minimizer of R, and then identifiability of ßo (in the above sense) 
becomes equivalent to identifiable uniqueness of ßo. 

14.2.3 Asymptotic Normality and Variance 
Covariance Matrix Estimation 

In this subsection we provide results concerning the asymptotic distribution 
of the quasi-NFIML estimator in the case where the system is correctly 
specified as expressed by Assumptions 14.3 and 14.4. We also discuss how 
the asymptotic variance covariance matrix of the quasi-NFIML estimator 
can be estimated consistently. These results rely on Theorems 11.2 and 
13.1. We introduce the following assumptions.14 

14 As is evident from the discussion in Chapter 8, given consistency it would 
actually suffice to postulate the subsequent conditions for asymptotic normality 
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Assumption 14.9. The true parameter vector ßo = (a~, ab)' is contained 
in the interior ol B = A x S. 

Assumption 14.10. {a) For every z E Z and t ~ 1 the functions ft(z, .) 
and Vylt(z, .) are twice continuously partially differentiable in a on int(A). 

(b) The lamilies 

{V alt : t E N}, {V aalt : t E N}, {V aa (ln idet(Vylt)l] : t E N} 

are equicontinuous on Z x int(A). 
(c) {Va(lnldet(Vylt(z,ao))l]: t E N} is equicontinuous on Z. 
(d) SUPt>l IV aft(z, a)l < oo, SUPt>1 IV aaft(z, a)l < oo lor each (z, a) E 

Z x int(A). -

The first of the above assumptions is, of course, a standard assumption 
for establishing asymptotic normality. This assumption can also accommo
date situations where the parameters in the system of equations are pos
tulated to satisfy equality restrictions by defining a as the vector of free 
parameters, possibly after a reparameterization.15 The second assumption 
maintains smoothness conditions guaranteeing differentiability of the ob
jective function w.r.t. the parameters. The equicontinuity conditions also 
postulated in this assumption (together with similar equicontinuity con
ditions in Assumption 14.1) are used to establish, among other things, 
ULLNs for the Hessian of the objective function. The boundedness con
ditions in the second assumption above are automatically satisfied if the 
system functions lt do not depend on t. 

We next compute the score and the Hessian of the objective function. It 
is readily seen that the components corresponding to period t of the score 
and the Hessian of the objective function are given by:16 

(14.4a) 

to hold only in a neighborhood around the true parameter vector. However, since 
the true parameter vector is unknown, these conditions would then have to be as
sumed to hold for all possible values of the true parameter vector anyway. For this 
reason, we have chosen to employ immediately a slightly stronger "global" form 
of the assumptions. Of course, a "local" version of the results can immediately be 
recovered upon redefining the parameter space as an appropriate neighborhood 
of the true parameter vector. 

15Clearly, asymptotic normality results analogaus to the ones given below can 
also be obtained for situations where the equality restrictions on ß also involve 
the variance covariance matrix parameters u. This is not pursued in the following 
in order to avoid increasing the complexity of the notation. 

16For conventions regarding Vp, Vß'• Vpp, etc., see Footnote 3 in Chapter 8. 
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and 

where 

V' a'qt(Z, ß) 
V' u'qt(z, ß) 

V' aaqt(z, ß) 

V' auqt ( Z, ß) 

\1 uuqt(Z, ß) 

(14.4b) 

-V' a' [ln Jdet (V' y/t(z, a))J] +(V' a' ft(z, a)p~~- 1 ft(z, a), 
(1/2)V'u'vec(~- 1 ) [-vec(~) +vec(ft(z,a)J;(z,a))], 
-Y'aa [lnJdet(V'y/t(z,a))J] 
+ (V' a' ft(z, a)) ~- 1 (V' aft(z, a)) (14.4c) 
+ [ (!; (z, a)~-1 ) 0 !Pa] V' aaft(z, a), 

(V' uaqt(z, ß) )' = (!; (z, a) 0 V' a' ft(z, a)) V' u vec (~- 1 ) , 

= (1/2)V' u'vec (~- 1 ) (~ 0 ~)V' uvec (~- 1 ) 

+ (1/2) { [vec Ut(z, a)J;(z, a))- vec(~)]' 0 JPe(Pe+1)/2} 

V' uuvec (~- 1 ) . 

To establish the ULLNs for the Hessian matrix mentioned above, we also 
malm use of moment conditions on the components making up the Hessian 
matrix. These moment conditions, together with moment conditions on the 
components of the score vector, are collected in the next assumption. The 
moment conditions for the score in parts (b) and ( d) of this assumption are 
needed for the centrallimit theorem for the score vector. Of course, under 
the assumption that Et is distributed N(O, ~(a0 )) part (d) follows already 
from part (a). The condition in part (c) assists in verifying the martingale 
difference property of the score vector. 

Assumption 14.11. (a) For some 1 > 0 

supn-1 t E [ sup IV' a!t(Zt, a)J 2+2'"Yl < oo, 
n t=1 aEint(A) 

supn-1 tE [ sup 1/t(Zt,a)Jl+'"Y IV'aa!t(Zt,a)Jl+'"Yl < oo, 
n t=1 <>Eint(A) 

supn-1 tE [ sup JV'aa [lnJdet(V'y/t(Zt,a))J]Jl+'"Yl < oo. 
n t=1 aEint(A) 

(b) For some D > 0 
n 

supn-1 LE JV' a [ln Jdet (V' y/t(Zt, ao))J]J 2+6 < oo. 
n t=1 

(c) For every t ~ 1 

E [ sup JV'a [lnJdet(V'y/t(Zt,a))J]Jl < oo. 
aEint(A) 
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(d) For some 8 > 0 

n 

supn-1 LE [IV'aft(Zt,Oo)l2+<5 !Etl2+<5] < oo, 
n t=1 

n 

supn-1 LE 1Etl4+26 < oo. 
n t=1 

We introduce the following additional assumptions. 

Assumption 14.12. (a) 

l~~~f Amin [n-1 t E'V ßMt(Zt, ßo)] > 0. 
t=l 

(b) 

Assumption 14.13. For every t;::: 1 

E [ sup IV'ßexp(-qt(Zt,ß))l/exp(-qt(Zt,ßo))l < oo, 
ßEint(B) 

E [ sup IV' ßß exp ( -qt(Zt, ß))l / exp ( -qt(Zt, ßo))l < oo. 
ßEint(B) 

The nonsingularity type condition for the Hessian matrix postulated 
in Assumption 14.12(a) above is an instance of a condition typically main
tained in the context of M-estimation. It delivers the "necessary" curvature 
of the objective function, suchthat the deviation of the estimator from the 
true parameter vector can be expressed asympotically as a linear func
tion of the score vector. 17 Assumption 14.12(b) seems tobe necessary for 

17Gallant and Holly (1980) do not maintain a condition like Assumption 14.12, 
but rather argue on p.716 in the proof of their Lemma 1 that this condition is 
implied by the assumption that the true parameter value is a unique minimizer 
of the limiting objective function. However, this argument is not correct since 
positive definiteness of the matrix of second order derivatives is a suflicient, but 
not a necessary condition for a critical point to be a (local) minimizer. 
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establishing a centrallimit theorem for the score vector in the general non
stationary case, cf. the discussion following Theorem 11.2. Under additional 
assumptions including normality and the regularity conditions formulated 
in Assumption 14.13, however, we will have 

E'\1 ßMt(Zt, ßo) = E ('\1 ß'qt(Zt, ßo)'\1 Mt(Zt, ßo)) 

and then Assumption 14.12(b) will reduce to Assumption 14.12(a). A suf
ficient condition for Assumption 14.12(a) that can be interpreted more 
readily will be given in Lemma 14.10 below. 

The asymptotic variance covariance matrix of the quasi-NFIML estima
tor will turn outtobe composed of the matrices Cn and n;, where 

n 

Cn n-1 LE'\lßMt(Zt,ßo), 
t=1 

v. ~ [n-' tE<Vß'q,(z,,ßo)Vpq,(z,,ßonr'' 

We introduce the following estimators for Cn and n;: 

n 

~n = n-1 L '\1 ß'qt(Zt, ßn)'\1 ßqt(Zt, ßn)· 
t=1 

To establish consistency of ~n for D~ we will need ULLNs to hold for the 
functions making up Dn· The following additional assumption is needed for 
this purpose only. 

Assumption 14.14. (a) The family {'\la[lnldet('\lyft)l] : t E N} is 
equicontinuous on Z x int(A). 

(b} supt>1 l'\la[lnldet('\lyft(z,a))IJI < oo for each (z,a) E Z x int(A). 
(c) For some 'Y > 0 

supn-1 tE [ sup lft(zt, a)I4+4'"Yl < oo, 
n t=1 <>Eint(A) 

supn-1 tE [ sup IV" [lnldet('\lyft(Zt,a))IJI2+2'"Yl < oo, 
n t=1 <>Eint(A) 

supn-1 tE [ sup lft(Zt,a)I2+2'"Y l'\loft(zt,a)I2+2'"Yl < oo. 
n t=1 <>Eint(A) 
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We now give three theorems concerning the asymptotic normality of the 
quasi-NFIML estimatoro In the first of the subsequent theorems we pos
tulate that ßo is the (identifiably unique) minimizer of Rn and that the 
sequence V Mt(Zt, ßo) forms a martingale difference sequenceo In the sec
ond and third of the subsequent theorems those properties are established 
from sufficient conditionso In the latter theorem we also imply Assumption 
14012(b) from Assumption 14o12(a) by utilizing Assumption 140130 

Theorem 14.7. Let 

n 

Rn(w,ß) = n-1 Lqt(Zt,ß) 
t=l 

be the objective function of the quasi-NFIML estimator defined in {1402} 
and 

n 

Rn(ß) = n-1 LEqt(zt,ß)o 
t=l 

Suppose Assumptions 14o1{a)-(c),{f),(g), 1403- 1405, 1406*, 1407, 1409, 
14010, 14o11{a),{b},{d}, 14012 hold, suppose Rn is minimized atßo for eve:,.Y 
nEN, 

liminf [Rn(ß)- Rn(ßo)] > 0 for all ß #- ßo, 
n-+oo 

and suppose 
E[V Mt(Zt, ßo) I ~t-1] = 0 aoso fort~ 1, 

where ~t-l is the u-field generated by {Yt-1> 0 o 0, Yl-1> Xt, o o o o, xl}o Let ßn 
be any sequence of quasi-NFIML estimators, i.e., 

Rn(w, ßn) = inf Rn(w, ß) 
B 

holds for allwEn and n E N. 
(a) Then 

where 
n 

Cn = n-1 LE"'VßMt(Zt,ßo) 
t=l 

and 

v. ~ [n-' t,E<v•·•·<···ßo>v .. ,(.,,ßon]''' 
Furthermore, we have ICnl = 0(1), IC;11 = 0(1), IDnl = 0(1) and 
ID;11 = 0(1), and hence ßn is n 112 -consistent for ßo· 
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(b) If in addition Assumption 14.14 holds, then 

C• -l.i. c· -1 c-1n2 c-1 0 . 1s n '*'n n - n n n ~ t.p. as n ~ 00. 

If DnD~ converges to some matrix, say, A, the asymptotic normality 
result in part (a) can be cast into the form n 112Cn(/3n- ßo) ~ N(O,A). 
Under convergence of DnD~, this result can in fact be obtained without 
making use of Assumption 14.12(b), cf. Theorem 11.2(b). A similar remark 
applies to the next theorem. 

In Theorem 14.7 we have assumed both that Rn is minimized at ßo 
and that \JMt(Zt,ßo) is a martingale difference sequence. In the special 
case of a static model with nonstochastic exogenaus variables and where 
the disturbances Et are independently distributed, the martingale difference 
property follows automatically from the assumption that ßo minimizes Rn 
(provided E\1 Mt(Zt, ß) = \1 ßEqt(Zt, ß) holds, which is guaranteed, e.g., 
under Assumptions 14.1(c), 14.11(a),(c)). 

We return again to the case of a general dynamic model. In cantrast 
to Theorem 14.7, the following theorem maintains Assumption 14.8 which 
postulates, in particular, normality of the disturbances. The following the
orem does not postulate the martingale difference property of \1 ßqt ( Zt, ßo) 
and the property that Rn is minimized at ßo as assumptions. Rather, the 
proof shows that these two properties can now be established with the help 
of Assumption 14.8. 

Theorem 14.8. Let 
n 

Rn(w,ß) = n-1 Lqt(Zt,ß) 
t=1 

be the objective function of the quasi-NFIML estimator defined in (14.2} 
and 

n 

t=1 

Suppose Assumptions 14.1(a)-(c),(f),(g), 14.3- 14.5, 14.6*(a),(b}, 14.7-
14.10, 14.11(a}-(c), 14.12 hold, and suppose that 

liminf [Rn(ß)- Rn(ßo)] > 0 for all ß =1- ßo. 
n--+oo 

Let ßn be any sequence of quasi-NFIML estimators, i.e., 

Rn(w, /3n) = inf Rn(w, ß) 
B 

18We note that Assumption 14.14 overrides in part some of the other assump
tions maintained in the theorem. For simplicity of presentation we have not fur
ther condensed the list of maintained assumptions. 
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holds for allwEn and n E N. 
(a) Then 

where 
n 

Cn = n-1 LEV ßßqt(Zt,ßo) 
t=1 

and 

[ 
n ]1~ 

Dn = n-1 8E(Vß'qt(Zt,ßo)Vßqt(Zt,ßo)) 

Furthermore, we have ICnl = 0(1), jC;1 j = 0(1), IDnl = 0(1) and 
jD;1 j = 0(1), and hence ßn is n112 -consistent for ßo. 

(b) If in addition Assumption 14.14 holds, then 

C~-1:r.. c~-1 c-1n2c-1 o . 
n """n n - n n n -+ '·P· as n-+ 00. 

The following theorem differs from Theorem 14.8 in that it additionally 
maintains Assumption 14.13. Consequently, as remarked above, 

Hence Assumption 14.12(a) coincides with Assumption 14.12(b), which can 
therefore be dropped from the list of assumptions. 

Theorem 14.9. Let 
n 

Rn(w,ß) = n-1 Lqt(Zt,ß) 
t=1 

be the objective function of the quasi-NFIML estimator defined in {14.2) 
and 

n 

Rn(ß) = n-1 LEqt(Zt,ß). 
t=1 

Suppose Assumptions 14.1{a)-(c),(!),(g), 14.3- 14.5, 14.6* (a),(b), 14.7-
14.10, 14.11{a)-(c), 14.12{a), 14.13 hold, and suppose that 

liminf [Rn(ß)- Rn(ßo)] > 0 for all ß -1 ßo. 
n-oo 

Let ßn be any sequence of quasi-NFIML estimators, i.e., 

R.,.(w, ßn) = inf Rn(w, ß) 
B 
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holds for all w E S1 and n E N. 
(a) Then 

where 
n 

Cn = n-1 LE'V'ßMt(Zt,ßo). 
t=1 

F'urthermore, we have ICnl = 0(1), IC;;-1 1 = 0(1), and hence ßn is n 112 -

consistent for ßo. F'urthermore, 

E'\1 ßMt(Zt, ßo) = E ('\1 ß'qt(Zt, ßo)'\1 ßqt(Zt, ßo)) 

for every t ;?: 1 holds and hence Cn = DnD~ = D~, where Dn is as in 
Theorem 14.8. 

(b) 6;1 - C;;-1 - 0 i.p. as n- 00. 

(c) If in addition Assumption 14.14 holds, then also ~;;: 1 - C;;-1 - 0 i.p. 
A -1 A A -1 -1 o 

and Cn <PnCn - Cn - 0 ~.p. as n - oo. 

Under the assumptions of Theorems 14.7 and 14.8 the asymptotic vari
ance covariance matrix of ßn is given by C; 1 D~ C; 1 . Within the context 
of Theorem 14.9 this expression simplifies to C;;-1 , observing that in this 
case Cn = D~. Parts (b) and (c) of this theorem provide three alterna
tive consistent estimators for the asymptotic variance covariance matrix. 
(Note that for consistency of 6;1 the additional Assumption 14.14 is not 
needed.19) 

The asymptotic normality results given above maintain in Assumption 
14.12(a) that the Hessian matrix of the negative log-likelihood function is 
"uniformly" positive definite. Since the Hessian matrix of the log-likelihood 
function is a complicated expression involving the system function ft as well 
as various of its derivatives w.r.t. a and y, this assumption is not easy to 
interpret in terms of the underlying system. In the following lemma we will 
provide a suffi.cient condition that only involves the first order derivative of 
ft w.r.t. a and that has a natural interpretation as a "persistent excitation" 
condition. This generalizes an analogaus sufficient condition in Amemiya 
(1977), who considered a special case of our model corresponding to a static 
system without cross-equation parameter restrictions and with nonstochas
tic and - loosely speaking - asymptotically stationary regressors. For the 
following lemma we need an additional assumption. 

Assumption 14.15. (a) For every (y~ 1 , ... ,y~ 1 ,x')' E R 1P11+p., andt;?: 1 
the functions ft(y, Y-t. ... , Y-1• x, a) are twice continuously partially differ
entiable w.r.t. y and a on RP11 x int(A). 

19Compare Footnote 2 in Chapter 13 concerning references that provide insight 
into the relative merits of these alternative variance covariance matrix estimators. 
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(b) For all k = 1, ... ,Pa and t?:. 1 

E {I'Vy(8j8ak)!t(zt,ao) ['Vy/t(zt,ao)r111+6} < oo 

for some 8 > 0, where ak denotes the k-th component of a. 

Lemma 14.10. 20 Suppose the assumptions for part (a) of Theorem 14.9 
hold, except for Assumption 14.12{a). Suppose further that Assumption 
14.15 holds. Then the following ''persistent excitation" condition 

~~~~f Amin [n-1 tE {E [\7 0 ,'/t(Zt, ao)l~t-1] E [\7 aft(Zt, ao)l~t-1]}] > 0, 

{14.5} 
where ~t-1 is the a-field generated by {Yt-1, ... ,Y1-1, Xt, ... , xl}, implies 
that Assumption 14.12{a}, i.e., 

~~~~f Amin [n-1 tE'Vßßqt(Zt,ßo)] > 0, 

holds.21 

Clearly, if 
n 

Fn = n-1 LE{E[\70 1 /t(zt,ao) I ~t-l]E['Vaft(Zt,ao) I ~t-1]} 
t=1 

converges to some limiting matrix, then the "persistent excitation" con

dition (14.5) reduces to the condition of nonsingularity of the limiting 
matrix. To relate the "persistent excitation" condition (14.5) to Condi
tion 6 in Amemiya (1977) assume for the moment that this convergence 

indeed takes place and that we consider the case of a static system with

out cross-equation parameter restrictions and with nonstochastic exoge
naus variables. Let a be partitioned as a = ( a(l)', ... , a<Py)')', where a(i) 
derrotes the subset of parameters actually appearing in the i-th equation. 

The absence of cross-equation parameter restrictions then implies that 
n 

Fn n-1 L diagi (E\7 0 (idti(Zt, ao))' diagi (E\7 0 <;lfti(Zt, ao)) 
t=1 

diagi (n-1 t E\7 0 (iJ fti(Zt, ao)' E\7 0 (iJ !ti(zt, ao)) , 
t=1 

20We note that Assumption 14.15 overrides in part some of the other assump
tions maintained in Theorem 14.9 and in the lemma. Again, for simplicity of 
presentation we have not further condensed the list of maintained assumptions. 

21Since under the maintained assumptions Cn = D~ it follows that also As
sumption 14.12(b) holds. 
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where the operator diagi creates a block diagonal matrix with p11 diagonal 
blocks. Condition 6 in Amemiya (1977) is now readily seen to correspond to 
the assumption that limn-+oo Fn is nonsingular. If, for example, the model 
is further specialized to a linear seemingly unrelated regression model, i.e., 

!ti(zt, o:o) = Yti- x~i) o:(i) 

where Yti denotes the i-th endogenaus variable in period t and x~i) denotes 
the row vector of (nonstochastic) exogenaus variables in the i-th equation 
in period t, then this condition reduces to nonsingularity of 

n 
l . -1 I: (i)' (i) 1mn xtxt 

n-+oo 
t=1 

for i = 1, ... ,p11 • 

For further interpretation of Lemma 14.10 we note that clearly the fol
lowing condition is equivalent to condition (14.5): 

liminf Amin(Wn) > 0, 
n-+oo 

{14.6) 

where 

n 

Wn = n-1 L E { E [V' a' ft(Zt, o:o)l~t-1] E(uo)-1 E [V' a!t(Zt, o:o)l~t-11}. 
t=1 

From Theorem 11.5 we now see that under suitable regularity conditions 
Wn is the inverse of the asymptotic variance covariance matrix ofthebest 
N3SLS estimator, where the instruments are taken tobe the elements of 
E[Y' a!t(Zt, o:o) I ~t-1]; cf. also Amemiya {1977). The proof ofLemma 14.10, 
and the proof of the analogaus result in Amemiya (1977), can now be mo
tivated by the heuristic reasoning that the asymptotic variance covariance 
matrix 0;;1 of ßn should not belarger than the asymptotic variance co
variance matrix w;;1 of the best N3SLS estimator, or equivalently that 
On ~ W n should hold. If this can be established, then clearly condition 
(14.5), which implies that the smallest eigenvalues of Wn are bounded away 
from zero, will also imply the same for the smallest eigenvalues of On. Hence 
the idea of the proof of Lemma 14.10 is to compare On with Wn and to 
establish that indeed On ~ Wn holds.22 

22 As a byproduct, this discussion also shows that Lemma 14.10 establishes, 
under any set of regularity assumptions which imply the assumptions of the 
Iemma as weil as those of Theorem 11.5 (applied tothebest N3SLS estimator), 
that the best N3SLS estimator can at most be asymptotically as efficient as ßn. 
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CONCLUDING REMARKS 

This book provides an asymptotic theory for M-estimators in the con
text of dynamic nonlinear models. To accommodate processes generated 
by dynamic nonlinear models the theory has to allow for temporal depen
dence and (possibly also) for temporal heterogeneity in the data generating 
process. This is achieved by employing weak dependence concepts like Lp
approximability or near epoch dependence, which are flexible enough to 
cover processes generated by dynamic nonlinear models, yet are strong 
enough to permit the derivation of laws of large numbers and centrallimit 
theorems for such processes. 

Apart from providing consistency and asymptotic normality results for 
M-estimators in general, and for generalized method of moments and least 
mean distance estimators (including maximum likelihood estimators) in 
particular, the book provides a detailed discussion of the strategies used in 
consistency and asymptotic normality proofs, as well as of the statistical 
and probabilistic tools employed in this context. 

The results in Chapter 3, together with the generic uniform laws of large 
numbers in Chapter 5 and the local laws of large numbers in Chapter 6, 
provide a set of basic modules which can be used to prove consistency of 
M-estimators in dynamic nonlinear models, as well as in other frameworks. 
Extensions of the results in Chapter 3 are discussed in Chapter 4. One of 
those extensions is a "generalized" consistency result for the case where 
the identifiable uniqueness condition fails. 

Chapter 6 develops, based on the concept of Lp-approximability, an en
compassing framework for the concepts of stochastic stability and near 
epoch dependence, which have been used in the literature on dynamic 
nonlinear models. Theorems 6.5 - 6. 7 and Corollary 6.8 provide sets of 
conditions under which transformations of Lp-approximable or near epoch 
dependent processes have the corresponding property. Those results are 
important in various contexts, e.g., they can be used to derive locallaws of 
large numbers based on the laws of large numbers given in Theorems 6.3 
and 6.4. Of course, an important question that arises naturally in estab
lishing asymptotic results for dynamic nonlinear models is: Under which 
conditions is the output process of such a model Lp-approximable or near 
epoch dependent, given the input process has the corresponding property? 
Theorems 6.10 - 6.12 provide sets of sufficient conditions. The last one of 
those theorems covers not only first order, but also higher order dynamic 

B. M. Pötscher et al., Dynamic Nonlinear Econometric Models
© Springer-Verlag Berlin Heidelberg 1997
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models. 
Exemplary catalogues of assumptions, which ensure consistency of least 

mean distance estimators and generalized method of moments estimators, 
are given in Chapter 7. 

Chapter 8, together with the centrallimit theorems in Chapter 10 for Lp
approximable or near epoch dependent processes, provides basic modules 
for proving asymptotic normality of M-estimators for dynamic nonlinear 
systems. These results are used in Chapter 11 to provide exemplary cat
alogues of assumptions which ensure asymptotic normality of least mean 
distance estimators and generalized method of moments estimators. 

Chapter 12 discusses consistency results for heteroskedasticity and auto
correlation robust variance covariance matrix estimators in case the data 
generating process is only assumed to be near epoch dependent on some 
mixing basis process. These results also provide rates of convergence of the 
variance covariance matrix estimators, which are essential for the optimal 
selection of the truncation lag parameter. 

Theorems regarding the consistent estimation of the asymptotic vari
ance covariance matrix of generalized method of moments and least mean 
distance estimators are given in Chapter 13. 

In Chapter 14 the general asymptotic theory developed so far is applied 
to an important concrete example. In particular, this chapter provides con
sistency and asymptotic normality results for the (quasi) normal full infor
mation maximum likelihood estimator of a dynamic nonlinear simultaneaus 
equation system. The results cover both the case of a correctly specified 
and a misspecified system. In case of a correctly specified system, the "weak 
dependence" property (Lp-approximability) of the process ofendogenaus 
variables is derived from "weak dependence" properties of the exogenous 
variables and disturbances based on Theorem 6.12, rather than being sim
ply postulated as an assumption. 

Although consistency and asymptotic normality results lay the founda
tion for inference in dynamic nonlinear models, this book has not covered a 
number of other important aspects of asymptotic inference in such models. 
In the following we discuss some of these aspects and point to the relevant 
literature. 

(i) The results presented in this book focus primarily on parametric mod
els. For example, the asymptotic normality results are based on the assump
tion that the parameter spaces are subsets of Euclidean spaces. The basic 
consistency results, however, do not explicitly rule out semiparametric or 
nonparametric situations, since for those results the parameter spaces are 
only assumed to be abstract metric spaces. We note, however, that the var
ious compactness assumptions may be restrictive in an infinite dimensional 
setting. For surveys of semiparametric methods in econometrics see, e.g., 
Robinson (1988) and Powell (1994). 

(ii) A further issue not considered in this book is the construction of 
test statistics. Standard tests of parametric hypotheses, like score tests, 
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Wald tests or likelihood ratio type tests can, of course, be built in a quite 
Straightforward manner on the basis of the asymptotic normality results 
presented in the book. For an array of such results within the context 
of dynamic nonlinear models see Gallant (1987a, Ch.7) and Gallant and 
White (1988, Ch.7). Model specification tests for nonlinear models can be 
found in, e.g., Bierens (1982b, 1984, 1990), Newey (1985a,b), Ruud (1984), 
Tauchen (1985), White (1987), and Wooldridge (1990, 1991), cf. also the 
books by Bierens (1994) and White (1994). 

(iii) The book does not discuss one-step M-estimators. As is well-known, 
one-step M-estimators initialized by a n 112-consistent estimator of the pa
rameter vector are frequently asymptotically normal, even if the corre
sponding M-estimators are not, and are asymptotically equivalent to the 
corresponding M-estimators, when those estimators are asymptotically nor
mal. See, e.g., LeCam (1960) and Bickel (1975). For analogaus results in the 
context of nonlinear and simultaneaus equation models see, e.g., Pötscher 
and Prucha (1986a) and Prucha and Kelejian (1984). Clearly many of the 
techniques for establishing consistency and asymptotic normality of M
estimators discussed in this book are also applicable for establishing the 
corresponding properties of one-step M-estimators. 

(iv) The book also does not address questions of efficiency. Certainly, 
effi.ciency questions play a central role in statistics and econometrics and 
have a long history in that literature; see, e.g., Beran (1996), Ghosh (1985), 
and Wong (1992) for recent reviews and a discussion of the history of 
the efficiency concept. Recent articles in the econometrics Iiterature that 
treat questions of efficiency in a context more or less closely related to 
the context of the present book are Bates and White (1988), Chamberlain 
(1987), Hausen (1982, 1985, 1988), Hausen, Heaton and Ogaki (1988), and 
Hausen and Singleton (1991). For surveys see Newey (1990) and Newey and 
McFadden (1994). See also the recent review article by Jeganathan (1995). 

A number of recent books may also be of interest for additional reading. 
Apart from Gallant (1987a) and Gallant and White (1988), Bierens (1994) 
and White (1994) arefurther econometrics texts that deal with asymptotic 
inference in nonlinear models; cf. also the survey article by Wooldridge 
(1994). The time series analysis perspective on inference in dynamic non
linear models is well-represented in books by Tong (1990) and Guegan 
(1994). 



Appendix A 

PROOFS FOR CHAPTER 3 

Lemma Al. Let (<P, a) be a metric space and let A be a nonempty set. For 
sequences of functions gn : <P -7 R, !in : <P -? R, 'Pn : A -7 <P, 'Pn : A -? <P 
consider the following conditions: 

{1} supAEA a(cpn(>.), 'Pn(>.))-? 0 as n -7 oo. 

{2} {i} {!in : n E N} is uniformly equicontinuous on <P; 

{ii} sup<pE<I> lgn('P)- 9n('P)I -7 0 as n -7 oo. 

{2'} {i) There exists a compact set <P* <;;; <P such that {!in : n E N} is 
equicontinuous on the subset <P* of <P, and 'Pn(>.) E <P* for all 
>. E A and n E N; 

{ii} there exists an open set <P** with <P* <;;; <P** <;;; <P such that 

sup lgn(cp)- !in('P)I -7 0 as n -7 oo. 
<pE<I> •• 

(a) Then under Assumptions {1} and {2}, or {1} and {2'}, 

sup lgn (cpn(>.))- !in ('Pn(>.))l-7 0 as n -7 oo. (A.1} 
AEA 

(b) lf A is endowed with a metric K, then under Assumptions (2}(i) or 
(2'}(i} the family {9n('Pn) : n E N} is equicontinuous [uniformly equicon
tinuousj on A if the family { 'Pn : n E N} is equicontinuous [uniformly 
equicontinuousj on A. 

Proof. We first prove (A.1) under Assumptions (1) and (2). Note that 
(2)(i) implies that for any E > 0 there exists a 6 > 0 suchthat 

sup l!ik(cp)- !ik(cp•)l < E/2 
k 

whenever a(cp, cp•) < 6. Assumptions (1) and (2)(ii) imply that there exists 
an N such that 

sup a (cpn(>.), 'Pn(>.)) < 0 
AEA 

and 
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for all n ~ N. Hence for n ~ N we have 

sup l9n (cpn(-X)).,... Ün (c,ön(-X))I 
~EA 

~ sup l9n (cpn(-X))- Ün (cpn(-X))I + sup lün (cpn(-X))- Ün (c,On(-X))I 
~EA ~EA 

< E/2 + sup sup lük(cpn(-X))- Ük(C,Ön(-X))I < €. 
~EA k 

Next we prove (A.1) under Assumptions (1) and (2'). Note that (2')(i) 
implies that for any € > 0 and every cp• E <P* there exists a 8(E,cp•) > 0 
suchthat 

sup lük(cp) - Ük(cp•)l < E/2 
k 

for all cp E <P with u(cp,cp•) < 8(E,cp•). Cover <P* by all open balls with 
centers at cp• E <P* and radii 8(€, cp•)/2. Since <P* is compact there exist 
finitely many cpi, ... , cp~ (which may depend on €) such that the corre
sponding balls cover <P*. Let <P* be the union of these balls intersected 
with <P**' Then <P* is open and <P* ~ <P* ~ <P**' Let 

8o = 8o(E) = ~in 8(€, cpi) > 0. 
l~t~m 

lt follows from Assumption (1) that there exists an integer N (depending 
on € through <P* and 8o) such that for all n ~ N and all ,\ E A we have 
u(cpn(-X),c,ön(-X)) < 8o/2 and cpn(-X) E <P* ~ <P**. The latter result follows 
from Lemma A2 below. As a consequence, for any n ~ N and ,\ E A there 
exists an index i (1 ~ i ~ m where i may depend on n and -\)such that 

(#) 

and hence also 

u(c,ön(-X),cpi) ~ u(c,ön(-X),cpn(-X)) +u(cpn(-X),cpi) (##) 
< 8o/2 + 8( E, cpi) /2 ~ 8( E, cpi). 

Consequently, for all n ~ N and ,\ E A: 

l9n (cpn(-X))- Ün (c,ön(-\))1 

< l9n (cpn(A))- Ün (cpn(-\))1 + lün (cpn(-\))- Ün (c,On(-\))1 

~ sup l9n(cp)- Ün(cp)l + sup lük (cpn(-X))- Ük(cpi)l 
<pE<I>.. k 

+ sup lük(cpi)- Ük (c,ön(-X))I 
k 

< sup l9n(cp)- Ün(cp)l + €, 
rpE<I> •• 

where the last inequality follows from the construction of 8(€, cpi) and from 
(#) and (##). Because of (2')(ii) it follows that 

sup lgn(cpn (-\)) - Ün (c,ön(-X))I ~ 2€ 
~EA 
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for n sufficiently large. 
Next we prove part (b) of the lemma under Assumption (2)(i). Since 

{!ln : n E N} is uniformly equicontinuous on <I> it follows that for every 
€ > 0 there exists a 8 = 8(€) > 0 suchthat 

sup l!ln(cp)- !ln(cp•)i < € 
n 

whenever a(cp, cp•) < 8. Given {c,ön : n E N} is equicontinuous it follows 
that for this 8 > 0 and any >..• E A there exists an 11 = ry(8(E), >..•) > 0 such 
that 

supa (c,ön(>..), C,Ön(>...)) < 8 
n 

whenever ~~:(>.., >..•) < ry. Consequently, for every € > 0 and >..• E A we have 
for this 11 = ry(8(E), >..•) that 

sup l!ln (c,On(>..))- !ln(C,Ön (>..•))! :::; € 
n 

whenever ~~:(>.., >..•) < ry, i.e., {!ln(c,On) : n E N} is equicontinuous. The re
sult for the case where equicontinuity is replaced by uniform equicontinuity 
follows by analogous argumentation. The proof of part (b) of the lemma un
der Assumption (2')(i) is completely analogous to that under Assumption 
(2)(i) observing that the family of restrictions of !ln to <P* is equicontinuous 
on <P* and hence uniformly equicontinuous on <P* (since <P* is compact), 
and observing that C,Ön(A) ~ <1>*. • 

Lemma A2. Let (<P,a) be a metric space and let <1>* and <1>* be, re
spectively, a compact and an open subset of <P with <1>* ~ <I>*. Let A be a 
nonempty set. Consider sequences of functions Cf?n : A ----t <P and C,Ön : A ----t 

<1>*. lf 
supa(cpn(>.),c,ön(>.)) ----t 0 as n ----t oo, 
>.EA 

then there exists an N suchthat Cf?n(>.) E <P* for all n ~ N and all >.. E A. 

Proof. If <P* = <P the lemma is trivial. If <P* =f. <1>, observe that 1 = 

inf{a(cp, cp•) : cp E <1>*, cp• E <P- <P*} > 0; see Dieudonne (1960), Section 
3.17. By assumption there exists an N = N(r) suchthat 

sup a (cpn(>..), C,Ön(>..)) <I 
>-EA 

for all n ~ N. Since c,On(>..) E <P* it follows that Cf?n(>..) E <P* for all >.. E A 
and n ~ N. • 

Proof of Lemma 3.1. Let 0 0 ~ n be a set of probability one on which 
(3.2) holds and (3.3) is satisfied for large n. Fix w E Oo. We first show that 
for every € > 0 
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liminf [ il!_f Rn(w, ß)- Rn(w, ßn)] > 0 (A.2) 
n-+oo PB (ß,ßn)?:.o 

holds. This follows since the l.h.s. of (A.2) is greater than or equal to 

liminf il!_f [Rn(w,ß)- Rn(ß)] 
n-+oo Pn(ß,ßn)?:.o 

+ lim inf il!_f [Rn (ß) - Rn (ßn)) 
n-+oo Pn(ß,ßn)?:.o 

+ liminf [Rn(ßn)- Rn(w,ßn)] 
n-+oo 

> liminf inJ [Rn(ß)- Rn(ßn)] 
n-+oo Pn(ß,ßn)?:.o 

- 2limsup sup iRn(ß)- Rn(w,ß)i 
n-+oo B 

> 0, 

making use of (3.1) and (3.2). Now (A.2) implies that there exists a 8 = 
8(E,w) > 0 suchthat 

inJ Rn(w,ß)- Rn(w,ßn);::: 8 
Pn(ß,ßn)?:.o 

for n sufficiently large. Since Rn(w, ßn) - Rn(w, ßn) ~ 0 for n sufficiently 

large in view of (3.3), it follows that PB(ßn, ßn) < E for large n. The con
vergence in probability version of the lemma follows from a standard sub

sequence argument. • 

Proof of Lemma 3.2. To prove the a.s. version of part (a) let n0 ~ n 
be a set of probability one on which pr(fn,fn) -+ 0 as n -+ oo and on 

which (3.4) holds. Fix w E n0 • We now make use of Lemma Al and de

fine <I> = T x B with metric IJ = Pr+ PB, A = B with metric K = PB, 
gn(.) = Qn(zl(w), ... ,zn(w), ., .), !Jn = Qn, ct'n(>.) = (fn(w),ß), <Pn(>.) = 
(fn,ß), with >. = ß E A. Then pr(fn(w),'Fn) -+ 0 as n-+ oo translates 
into condition (1) of Lemma Al, the condition that {Qn : n E N} is uni

formly equicontinuous on T x B in the lemma translates into condition 

(2)(i) of Lemma Al, and condition (3.4) of the lemma translates into con

dition (2)(ii) of Lemma Al. The almost sure convergence version of part 

(a) of the lemma now follows directly from Lemma Al(a). The convergence 

in probability version can then be obtained from a standard subsequence 

argument. Part (b) of the lemma follows immediately from Lemma Al (b) 

in view of the fact that { <Pn : n E N} is trivially uniformly equicontinuous 

onA. • 

Proof of Lemma 3.3. To prove the a.s. version of part (a) let n0 ~ n 
be a set of probability one on which (3.5) holds. Fix w E n0 . We again 
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malm use of Lemma Al and define <P = C x T X B with metric a = 
1-1 +PT+ PB, A = T X B with metric K = PT+ PB, gn = gn = iJn, 
<f?n(.A) = (Sn(w,r,ß),r,ß), <Pn(.A) = (Sn(r,ß),r,ß) with .A = (r,ß) E A. 
Condition {1) of Lemma Al follows from (3.5). Conditions (I) and (II) 
of the lemma imply, respectively, conditions {2){i) and {2')(i) of Lemma 
Al with <P. = K X T x B, and conditions {2)(ii) and {2'){ii) are trivially 
satisfied with <P** = C x T x B. The almost sure convergence version 
of part (a) of the lemma now follows directly from Lemma Al{a). The 
convergence in probability version can then be obtained from a standard 
subsequence argument. Part (b) of the lemma follows from Lemma Al{b) 
since { <Pn : n E N} is clearly equicontinuous [uniformly equicontinuous] an 
A if {Sn : n E N} has the respective property. • 

Lemma A3. Let (S, 6) be a measurable space, let e be a compact metriz
able space and let u : s Xe --+ R be a function that is 6-!B(R)-measurable 
in its first argument for each B E 0 and that is continuous on 0 in its 
second argument for each s E S. Then there exists an 6-!13(8)-measurable 
function 0 : s --+ e such that 

for each s E S holds. 

u(s, O(s)) = inf u(s, B) 
IIE9 

Proof. The proof is an adaptation of the proof of Lemma 3.3 in Sehrnetterer 
{1966, Ch.5) to the case of a general compact and metrizable space e. We 
start with two preparatory remarks. First, there exists a countable dense 
subset 0o of e. By continuity of u(s, .) we have 

inf u(s, B) = inf u(s, B) 
IIE9 IIE9o 

and hence infoEe u(s, B) is an 6-mea.surable real valued function. Conse
quently, subtracting infoEe u(s, B) from u(s, B) allows us to assume w.l.o.g. 
that 

inf u(s, B) = 0 
IIE9 

for all s E S. Second, in view of Urysohn's metrization theorem (see, e.g., 
Willard (1970)), we may assume w.l.o.g. that e is a compact subset of the 
product of countably many copies of the realline. The elements B E e then 
have a representation of the form B = { B1, B2, B3, ... ) with Bi E R, and we 
may introduce the lexicographic order an e, i.e., B < B* iff B =f B* and 
Oi < Bi holds for the smallest index i with Bi =f Bi. 

Foreachs E S let M(s) denote the set {B E e : u(s, B) = 0}, i.e., the 
set of minimizers of u(s, .). Since e is compact and u(s, .) is continuous the 
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set M(s) is nonempty and compact. We now show that M(s) contains a 
largest element B(s) w.r.t. the lexicographic order. For i ~ 1 define 

with Mo(s) = M(s). Clearly, Mi is nonempty, compact and satisfies Mi ~ 
Mi-l for i ~ 1. Consequently, the intersection of all sets Mi must con
tain at least one element, B(s) say. By construction B(s) E M(s) and any 
() E M(s), (} ::j:. B(s) satisfies (} < B(s). (It follows that B(s) is in fact the 
only element in the intersection of all the sets Mi-) Next we show that 
B(s) is 6-!B(_S)-measurable. It suffices to establish 6-measurability of each 
component Oi(s). To this end let o: denote an arbitrary real nurober and 
consider the set { s : Ö1 ( s) ~ o:} which can also be expressed as 

U {s:u(s,O)=O} 
oea,o1~a 

in view of the definition of B(s). Making use of compactness of e and of 
continuity of u(s, .), this latter set can now be rewritten as 

n u {s: u(s,O) < 1/n} 
nEN 9E9,9l>a-1/n 

as is easily seen. In turn this set can also be written as 

n u {s: u(s,B) < 1/n} 

where the countable set So was defined earlier in the proof. This estab
lishes 6-measurability of B1 (s), since countable unionsfintersections of 6-
measurable sets are 6-measurable. Next consider Ö2(s). The set { s : B2 (s) ~ 
o:} can be expressed as 

U {s: u(s,B) = 0, 01 = B1(s)} 
9E9,92~a 

which can also be written as 

U {s: u(s,O) = 0, Ö1(s):::; B1} 
oea,o2~a 

in view of the definition of B(s). Now, similarly as before, the latter set can 
be written as 

n u {s: u(s, 0) < 1/n, B1(s) < B1 + 1/n} 



APPENDIX A. PROOFS FOR CHAPTER 3 181 

which equals 

n u {s: u(s,O) < 1/n, Öt(s) < Ot + 1/n}. 

This proves 6-measurability of Ö2(s), observing again that countable unions 
/intersections of 6-measurable sets are 6-measurable. Repeating this type 
of argument one establishes 6-measurability of Öi ( s) for every i ~ 1. • 

Proof of Lemma 3.4. Lemma 3.4 follows immediately from Lemma A3 . 

• 
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PROOFS FOR CHAPTER 4 

Proof of Lemma 4.1. Define 

f(ß) = liminf [Rn(ß)- Rn(ßn)], 
n-ooo 

then 0 :::; f(ß) :::; oo. We first show that f is continuous: By assumption 
{Rn : n E N} is equicontinuous on B. Hence for every ß• E Band every "'> 0 there exists a 8 > 0 suchthat PB(ß,ß•) < 8 implies 

sup jRn(ß)- Rn(~)j < "'· 
n 

Consequently, 
Rn(ß)-"' <Rn(~) < Rn(ß) +"' 

for all n ~ 1 and all ß E B with PB(ß, ß•) < 8 and hence 

f(ß) -"' :::; f(ß•) :::; f(ß) +"' 
for all ß E B with PB(ß,ß•) < 8, thus establishing continuity of f. For 
the proof of the "only if" part of the lemmafix ß• E B, ß• =f:. ß. Then 
choose € = PB(ß•, ß)/2. For n ~ N(E) we then have PB(ßn, ß) < € and 
PB(ß•, ßn) > €. Consequently 

f(ß•) ~ liminf [ inf _ Rn(ß)- Rn(ßn)] > 0. 
n->oo {ßEB:pB(ß,ßn)?.e} 

To prove the "if" part of the lemma fix € > 0. Then for all n ~ No we have 

{ß E B: PB(ß,ß) < E/2} ~ {ß E B: PB(ß,ßn) < E} 
since ßn-+ ß as n-+ oo. Define 

c = inf _ f(ß), 
{ßEB:pB(ß,ß)?_e/2} 

then c > 0 because of compactness of B and continuity of f. (If {ß E B: 
PB(ß,ß) ~ E/2} = 0 then c = oo.) Choose a constant c• with 0 < c• < c. 
Now since 

liminf [ inf _ Rn(ß)- Rn(ßn)] 
n->oo {ßEB:pB(ß,ß,.)?.e} 

~ liminf [ inf _ Rn(ß)- Rn(ßn)] 
n->oo {ßEB:pB(ß,ß)?.e/2} 
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it suffi.ces to show that 

for n large enough. Suppose this is not the case. Then there exists a sub
sequence (ni) and ßn, E B with PB(ßn.,ß) ~ e/2 suchthat 

Since B is compact we may assume that ßn, converges to ß*, say, and then 
clearly PB(ß*, ß) ~ e/2 holds. From equicontinuity we obtain that 

hence 

Consequently, 

which is a contradiction. The statement in parenthesis is now obvious in 
view of equicontinuity and ßn --+ ß as n --+ oo. • 

Proof of Lemma 4.2. Let S10 s;;; n be a set of probability one on which 
(4.14) holds and (4.15) is satisfied for large n. Fix w E S10 • We first show 
that for every e > 0 

liminf [ inf _ Rn(w,ß)- sup Rn(w,ß)l > 0 (B.1) 
n-+oo {ßEB:pB(ß,B,.)2::tö} ßEB,. 

holds. (Note that the expression in brackets on the l.h.s. of (B.l) is well
defined even if {ß E B : PB(ß, Bn) ~ e} = 0, since supßeB,. Rn(w, ß) < oo 
for large n in view of (4.14) and since Rn(ß) ~ Cn < oo for ß E Bn.) The 
inequality (B.l) follows since the l.h.s. of (B.l) is equal to 

liminf { inf _ [Rn(w,ß)- Rn(ß) + Rn(ß)] 
n-+oo {ßEB:pB(ß,B,.)2::€} 

+ inf [-Rn(w,ß) + Rn(ß)- Rn(ß)]} 
ßEB,. 

~ liminf { inf _ [Rn(w,ß)- Rn(ß)] 
n-+oo {ßEB:pB(ß,B,.)2::E} 

+ inf _ Rn(ß) 
{ßEB:pB(ß,B,.)2::tö} 
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+ inf [Rn(ß)- R..(w,ß)] - sup Rn(ß)} 
ßEB". ßEB". 

;:::: liminf [ inf _ Rn(ß)- sup Rn(ß)l 
n-+oo {ßEB:pB(ß,B".);;::e} ßEB". 

- 2 limsup sup jRn(ß)- R..(w,ß)j 
n-+oo ßEB 

> 0 

making use of (4.13) and (4.14). Now (B.1) implies that there exists a 
6 = 6(e,w) > 0 suchthat 

inf _ R..(w, ß)- sup R..(w, ß) ;?: 6 > 0 
{ßEB:pB(ß,B,.);;::e} ßEB". 

for n sufficiently large. Since 

R..(w,ßn)- sup R..(w,ß) ~ 8n 
ßeiJ". 

eventually in view of (4.15) and 8n ..--. 0 as n ..--. oo it follows that 

PB(ßn, Bn) < f 

for n sufficiently large. The convergence in probability version of the lemma 
follows from a standard subsequence argument. • 

Proof of Corollary 4.3. We prove the a.s. part first. From Lemma 4.2 
we have PB(ßn, Bn) ..--. 0 a.s. Hence there exists an ßn = ßn(w) E Bn 
with PB(ßn,ßn) ..--. 0 a.s. {Note that it is immaterial here whether ßn is 
measurable or not.) Now uniform equicontinuity of (n on U{ Bn : n E N} 
implies 

The i.p. part follows now from the a.s. result by a standard subsequence 
argument. • 
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Lemma Cl. Let (wt)tez be a stochastic process on (n, 2l, P) with values 
in the Borel set W ~ RPw. Let Hf' be the distribution of Wt and assume 
that 

{ H;: = n-1 tHt': n E N} 
t=1 

is tight on W. Let Zt = ( w~, w~_1 , ... )' and assume that it takes its val
ues in Z, a relatively closed subset of TI:o W. Furthermore let Hf be the 
distribution of Zt. Then 

is tight on Z. 

Proof. Choose a sequence ai > 0 with L:~o jaj = 1 and put Ej,m = 
(2m)-1ai for all m E N. Since W is a Borel subset of RPw it follows from 
Theorem 3.2 in Parthasarathy (1967, p.29) that each Hf' is tight on W. 
Hence 

Hj = (H:f + H~1 + ... + H~U-1>) fj 
is tight on W for each jE N. Furthermore, since {H~ : n E N} is tight on 
W, there exist compact sets Kj,m ~ W suchthat 

H;: (W - K3,m) < Ej,m 

for all n E N and 
Hj(W- Kj,m) < €j,m· 

Now define 

Km = (fi Kj,m) n z, 
)=0 

which is compact since Z is closed in TI:o W. Then for each n E N: 

n n 

H~ (Z- Km)= n-1 "L,Ht (Z- Km)= n-1 "L,P(zt ~Km) 
t=1 t=1 
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~ n-' trp (Q(wH ~ K;,m)) <; n-' trt,P(w<-; ~ K;,m) 

= n-1 f: [ L P (wt-j rf. Kj,m) + L P (wt-j rf. Kj,m)l 
j=O j<t~n 19~min(j,n) 

<; t, [n-• t,P(w, ~ K;,m) +n-' t.P(wH ~ Kj,m)] 
00 

= L [II~ (W- Kj,m) + (j/n)Hj (W- Kj,m)] 
j=O 
00 

::=; L[Ej,m + (j/n)e;,m] ::=; 1/m. 
j=O 

Hence supn H~(Z- Km)--+ 0 as m--+ oo. • 
Lemma C2. Sufficient conditions for {II:: n E N} in Lemma Cl tobe 
tight on W are that W is closed and 

n 

supn-1 LE [s (Jwtl)] < oo, 
n t=1 

where s [0, =) -+ [0, =) is a monotone function with s(x) --+ oo as 
X--+ 00. 

Proof. For the compact sets Km = {w E W : JwJ ::::; m} we have using 
Markov's inequality 

n 

supfi~(W- Km) 
n 

= supn-1 LP(wt rf. Km) 
n t=1 

n 

= supn-1 LP(Jwtl > m) 
n t=1 

n 

= supn-1 LP(s(Jwti) 2:: s(m)) 
n t=1 

n 

::::; supn-1 LE [s (Jwti)] /s(m) 
n t=1 

whenever m is large enough such that s( m) is positive. The result now 
follows for m --+ oo. • 
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Lemma C3. Let (wt)tez be a stochastic process on (0, 21, P) with values 
in the Borel set W s;;; RPw. Let H:''k be the distribution of (w~, ... , w~-k)' 
and assume that 

n 

fr;:·k = n-1 'LH:'·k 
t=1 

converges weakly to some probability measure fiw,k on n:=O W for each 
k ;=:: 0. Let Zt = (w~, w~_1 , ... )' and assume that it takes its values in 
Z, a relatively closed subset of IJ:o W. Furthermore, let Hf denote the 
distribution of Zt, then 

n 

[I~ =n-1 'LHt 
t=1 

converges weakly to some probability measure [Iz on Z. Furthermore, [Iz 
and each fi~ are tight on Z. 

Proof. The assumptions imply that the finite dimensional marginal distri
butions fi;:•k of fi; converge weakly to fiw,k on n:=O W for each k ;::: 0. 
Clearly this implies that fi~ (viewed as a probability measure on TI:o W) 
converges weakly to some probability measure [Iz on TI:o W. 1 Since 

fi~(Z) = 1 

and Z is closed it follows from Theorem 2.1 in Billingsley (1968, p.11,12) 
that 

[Iz(Z) = 1. 

Hence Lemma 3 in Billingsley (1968, p.39) implies that fi~ converges 
weakly to [Iz on Z. Since Z is clearly a Borel subset of R 00 individual 
tightness of H'" and of each H~ follows from Theorem 3.2 in Parthasarathy 
(1967, p.29). • 

Proof of Theorem 5.3. Note that the assumptions of Theorem 5.2 are 
satisfied with K = 1 and rkt = 1, since Assumption D' implies Assumption 
D. Hence the conclusions of Theorem 5.2 hold. lt follows furthermore from 
Lemma 31 in Royden (1968, p.178) that q(z, 0) is continuous on z X e. 
Theorems 43.7 and 43.14 in Willard (1970) imply further that qt(z, 0) con
verges to q(z, 0) uniformly on compact SUbsets of Z X 9. As a oonsequence 
of Assumption D' there exists for every e > 0 a compact set K* s;;; Z such 
that 

supfi~(Z- K*) < e. 
n 

1This can be proved completely analogously to the case of W = R, cf. Billings
ley (1968, pp.19,30,38). 
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Then 

limsup sup ln-1 t [Eqt(Zt, 0)- Eq(zt, 0)]1 = 0, 
n-+oo e t=1 

( C.l) 

since the l.h.s. is less than or equal to 

n 

limsupn-1 L sup lqt(z,O)- q(z,O)I 
n-+oo t=1 K. xe 

n 

+ limsup supn-1 LE [iqt(Zt, 0)- q(zt, O)llz-K. (zt)] 
n-+oo e t=1 

n 

< limsupn-1 LE [dt(zt)lz-K.(zt)] 
n-+oo t=1 

n 

+ lim sup n-1 L E [d(zt)lz-K. (zt)] 
n-+oo t=1 

< const * ( e"Y/(1+"Y) + i/(1+6)) 

and e was arbitrary. The first inequality holds since even 

lim sup lqt(z, 0)- q(z, 0)1 = 0. 
t-+oo K. xe 

The last inequality holds since by applying Hölder's inequality twice arid 
by Assumption C(i) we have 

n 

n-1 L E [dt(Zt)lz-K. (zt)] 
t=1 

$ { n-1 t;;s (d,(.,)1+>]} 1/(1+7) { n-1 i;.Ht(Z- K.)} o/(l+o) 

:::; const * e"Y/(l+"Y) 

for all n, and since analogously the second term is less than or equal to 
conshe6/(1+6). Next we show that 

lim sup n-1 tEq(zt,O)-Jq(z,O)dH11 =0. (C.2) 
n-+oo e t=1 

Since fi~ converges weakly to [Iz, since d(z) is clearly continuous (as q(z, 0) 
is so and e is compact) and 

n 

supn-1 LE [d(zt)1+6] < oo 
n t=1 
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for some 6 > 0, it follows analogously as in Theorem 5.4 of Billingsley 
(1968) that J d(z)dJiz and hence J q(z, O)dJiz exist and are finite. Since 
the family {q(z, 0) : 0 E 8} is clearly equicontinuous on Z, since q(z, 0) is 
continuous on z X e and e is compact, the assumptions of Theorem 9.2 in 
Parthasarathy (1967, p.204) are satisfied and hence (C.2) holds. Continuity 
of n-1 L~=l Eq(zt, 0) on e follows, e.g., from (C.1) and Theorem 5.2(b), 
and continuity of J q(z, O)dJiz follows then from (C.2). The convergence 
result (5.1) follows from (C.1), (C.2) and Theorem 5.2. • 
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Proof of Theorem 6.1. (a) Since the case p• = 0 is trivial assume p• > 0. 
If 0 < p < p• then the claim follows immediately from Lyapunov's inequal
ity. If p = 0 then using Markov's inequality and Lyapunov's inequality we 
have for r = min{1,p•}: 

n 

limsupn-1 LP(Ivt- hr'l > 8) 
n--+oo t=1 

n 

< limsupn-1 L llvt- hr'll; /8r 
n--+oo t=1 

~ 8-r [limsupn-1 t llvt- hr'llr] r 
n--+oo t=1 

~ 8-r [limsupn-1 t llvt- hr'llp•] r = 0. 
n--+oo t=1 

Note that this proof also demonstrates that the Lp•-approximator ~m is 
also an Lp-approximator for 0 ~ p ~ p•. 

(b) Since the case p = 0 is trivial assume 0 < p < p•. Let hr' be some 
L0-approximator, then there exists a sequence 8m > 0, 8m-+ 0 as m-+ oo, 
suchthat 

n 

limsupn-1 LP(Ivt- hr'l > 8m)-+ 0 as m-+ oo 
n--+oo t=1 

(since the process (vt) is Lo-approximable). Let r, 8, r•, 8• be defined as 
follows: r = p• jp and 1/r + 1/8 = 1, which implies 1 < 8 < oo since 
1 < r < oo; now choose r• suchthat 1 < r• < 1 + "Y (where 'Y > 0 is given 
in the theorem) and furthermore small enough such that 8p ~ 8• where 
1jr• + 1/ 8• = 1. Fix an arbitrary v. E RP". Then choose a sequence Mm 
of real numbers with Mm 2: lv.l, Mm-+ oo as m-+ oo satisfying 

n 

M::_ limsupn-1 LP(Ivt- hr'l > 8m)-+ 0 as m-+ oo, (D.1) 
n--+oo t=1 
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which is clearly possible. For notational convenience put 

[ 
n ]1/{l+'Y) 

K = s~pn-1 ~ llvtll!~.., 

Next define the measurable function hfl: R(2m+l)p. -+ RP" tobe equal to 

hfl if lhfl{.)l ~ Mm and tobe equal to v. if lhfl(.)l > Mm· Then define 

hfl = hfl(et+ml ... 1 et-m) 

and observe that 
liirl ~Mm. 

We now show that hfl is an Lp-approximator for (vt)· Since 

with 

llvt- h.riiP ~ 31/P(A~,m + A~,m + A~,m) 

Ai,m II (vt - hfl)l{lvt-hr"l>6m} llp 1 

A~,m = ll(vt- ~m)l{lvt-hr"l~6m,lhr"I>Mm}llp 1 

Atm = ll(vt- ~m)l{lvt-hr"l~6m,lhr"I~Mm}llp 1 

it suffices to show that 
n 

limsupn-1 LA~,m-+ 0 as m-+ oo (i=1 1213). (D.2) 
n-+oo t=1 

By applying Hölder1s inequality first with (r1 s )1 then with (r• 1 s•) 1 using 

Lyapunov1s inequality and observing that r• < 1 + 'Y and p• = pr we get 

n 

limsupn-1 LAi.m 
n-+oo t=1 
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Since 

llvt- i.·mllpl+·..., [ II 11 1+...,] ~"'t ~ 2(l+"Y)/P.+"Y llvtll!t..., + h~ p• 

~ 2(l+"Y)/p•+..., [llvtll!t..., + M~t...,] 

and since s• / (ps) ~ 1 we get 

n 

limsupn-1 :L:Atm 
n-+oo t=1 

n 1/s• 

~ 21/P.+"Y/(l+"Y) (K + Mm) [u~_!,!!Pn-1 t;P(Ivt- h~l > 6m)] 

Now (D.2) with i = 1 follows from K < oo and (D.1). 
Analogously to the above argument and then using Markov's inequality 

with a = min{1,p•} we get 

n 

limsupn-1 LA~,m 
n-+oo t=1 

n 

= limsupn-1 L ll(vt- v.)I{Ivt-hf'l9m,lhf'I>Mm}IIP 
n-+oo t=1 

~ 21/P.+"Y/(l+"Y) (K + lv.l) 
n 1/s• 

[lim sup n-1 L P (lvt - h~l ~ 6m, lh~l > Mm)] 
n-+oo t=1 

n 1~• 

~ 21/P.+"Y/(l+"Y) (K + !v.l) [li~_s,!!pn- 1 t;P(Ivtl ~ Mm- 6m)] 

1/s• 

~ 21/p•+...,/(l+"Y) (K + jv.l) [limsupn-1 tE lvtl 01 /(Mm- 6m)01] 

n-+oo t=1 

Now (D.2) with i = 2 follows from Mm -+ oo as m -+ oo if we can show 
that 

n 

limsupn-1 LE lvtl 01 < oo. 
n-+oo t=1 

But by applying Lyapunov's inequality twice and observing that a = 
min{1,p•} ~ 1 + 'Y we have 

n 

limsupn-1 LE lvtl 01 ~ K 01 < oo. 
n-+oo t=1 
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Condition {D.2) with i = 3 follows since A~,m :::; 6m keeping in mind the 
definition of hf'. 

(c) For any M > 0 define 9M(x) = 1 if lxl :::; M and 9M(x) = M + 1-lxl 
for M < lxl < M + 1, and 9M(x) = 0 for lxl ~ M + 1. We now show that 

Vt,M = 9M (lvtl) Vt 

is Lo-approximable with approximators 

h~M = 9M {lh~l) h~ 
' 

{which of course is a measurable function of et+m, ... , et-m)· Since 9M(Ivl)v 
is uniformly continuous on RPv there exists for every 6 > 0 an 11 > 0 such 
that 

19M (lvl) v- 9M (lv•l) v•l < 6 

whenever lv- v•l :::; 11· Consequently, 

P (ivt,M- hrMI > 6) 

:::; P(lvt-h~l >TJ)+P(Ivt-~1 :::;TJ,I vt,M-hrM1 > 6) 
= P(lvt-h~I>TJ) 

for all t and m. Hence the Lo-approximability of Vt,M follows from the Lo
approximability of Vt. Since lvt,MI :::; M + 1 it follows from part {b) of the 
theorem that Vt,M is Lp-approximable for any 0 :::; p < oo. In particular 
for p = 2 it follows that the conditional mean E(vt,M I et+m, ... , et-m) is 
an L2-approximator for Vt,M· Define 

Ut,M = Vt- Vt,M, 

then clearly 
lut,MI :::; lvtll{lv•I2::M}· 

We now show that E(vt I et+m, ... , et-m) is an Lp-approximator for Vt 
where 0 < p < p•. Since 

llvt- E{vt I et+m, · · ·, et-m)llp :::; 21/p (Bl,m,M + B~,m,M) 

with 

and 
B~m,M = llut,M - E(ut,M I et+m, ... , et-m)llp 

it suffices to show that 

n 

limsup limsup limsupn-1 L:B;,m,M = 0, {i = 1,2). (D.3) 
M -><X> m-+oo n-+oo t=1 
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Note that for any random variable ' with 1,1 :::; c we have II,IIP :::; 11,112 if 
p:::; 2 and II,IIP :::; c(P-2)/P 11,11~/P if p > 2. Since 

lvt,M- E(vt,M I et+m• ... ,et-m)l:::; 2(M + 1) 

it follows for p :::; 2 that 

n 

1. -1 '""'B1 1m sup n L...J t,m,M 
n-+oo t=1 

n 

and for p > 2 that 

n 

limsupn-1l:Bl,m,M :::; [2M +2]1- 2/P 
n-+oo t=1 

[ 
n ]2/p 

limsupn-1 2:: llvt,M- E(vt,M I et+m• ... ,et-m)ll2 
n-+oo t=1 

using Lyapunov's inequality and observing that 2/p < 1. For i = 1 condi
tion (D.3) now follows since Vt,M was shown tobe L2-approximable for any 
M. Next choose q:::: max{1,p} suchthat q < p• and p• jq:::; 1 +')', which is 
clearly possible. Then using Lyapunov's inequality, the triangle inequality 
and the conditional Jensen inequality we get 

Consequently 

B2 t,m,M < 2llut,MIIq:::; 2lllvtll{lv·I~M}IIq 

< 2lllvtll+(p•-q)/q M(q-p•)jqllq. 

n 

l . -1 '""'B2 1msupn L...J t,m,M 
n-+oo t=1 

n 

< 2M(q-p•)/q limsupn-1 2:: llvtll~:/q 
n-+oo t=1 

[ 
n l p• /[q(l+-r)] 

< 2M(q-p•)/q li~.....S!pn- 1 t;llvtll~~-r 

by Lyapunov's inequality observing that p• / q :::; 1 + 'Y· Condition (D.3) for 
i = 2 now follows since K < oo and observing that q- p• < 0. That the 
conditional mean is also an L0-approximator follows now from part (a) of 
the theorem. • 
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Lemma Dl. Let (vt)teN and (vf')teN for all m E N be stochastic pro
cesses on (0, 21, P) taking their values in RPv, with E lvtl < oo, E lvf'l < 
oo. Suppose that for every 8 > 0 

limsup P ( n-1 t(vt- vr) > 8) ---+ 0 as m---+ oo, (D.4) 
n-+oo t=1 

and 

limsup ln-1 tE (vt- vr)l---+ 0 as m---+ oo, (D.5) 
n-+oo t=1 

then given {vf') satisfies a weak LLN for each m E N also (vt) satisfies a 
weak LLN. 

Proof. Firstnote that for a sequence of random variables (~n) we have for 
any 8 > 0: 

limsupP{I~nl > 8) < lim P (supl~nl > 8) 
n-+oo k-+oo n~k 

~ lim P (sup l~n I ?. 8) 
k-+oo n~k 

~ P (nm sup l~n I ?. 8) , 
n-+oo 

where the last inequality holds since the w-sets on which supn>k l~n I '?. 8 
decrease monotonically to the w-set where lim supn-+oo l~n I '?. 8 8s k ---+ oo. 
Then clearly 

limsupP (ln-1 t (vt- Evt)l > 8) 
n-+oo t=1 

< li~_sc!!pP (ln-1 t(vt -vr)l > 8/3) 
+ limsupP ( n-1 tE (vt- vr) > 8/3) 

n-+oo t=1 

+ limsupP ( n-1 t {vr- Evr) > 8/3) 
n-+oo t=1 

~ li~_sc!!P P ( n-1 t (vt- vr) > 8/3) 
+ P (n~_s~ n-1 tE (vt- vr) '?. 8/3) 
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because the process (vi) satisfies a LLN. The first term on the r.h.s. of 
the last of the above inequalities goes to zero as m---+ oo because of (D.4) 
and the second term actually becomes zero because of (D.5). • 

Lemma D2. Let the process (vt)teN be Lo-approximable by (et)tEZ· Sup-
pose 

n 

supn-1 L Hvtll!t"Y < oo 
n t=1 

for some 0 < p• < oo and 'Y > 0. Then for each p, 0 ~ p < p•, there exist 
Lp-approximators hi that are bounded in absolute value uniformly in t, for 
each m E N {that is, for some constants Mm wehavesupt Jhil ~ Mm < 
oo). 

Proof. A specific construction of such Lp-approximators, 0 < p < p•, was 
given in the proof of part (b) of Theorem 6.1. For p = 0 the lemma follows 
then from part (a) of Theorem 6.1. • 

Remark. As a point of interest we note that if the moment condition in the 
above lemma is weakened to tightness of {H~ = n-1 I:~=1 H~: n E N} on 
RP" where H~ is the distribution of Vt, then still the existence of uniformly 
bounded Lo-approxima.tors can be established. 

Proof of Theorem 6.2. To prove part (a) it suffices to show that con
ditions (D.4) and (D.5) of Lemma D1 with vt' = ~m are satisfied. (D.4) 
follows from L1-approximability via Markov's inequality. (D.5) is obviously 
implied by L1-approximability. Also note that E lhil < oo follows since 
(hi) satisfies a LLN. Furthermore, since (vt) is L1-approximable with L1-
approximator hi, it follows that E Jvtl < oo. Part (b) follows from Lemma 
D2 (with p• = 1 + 'Y = 1 + e and p = 1) since L1-approximability implies 
Lo-approximability. • 

Proof of Theorem 6.3. Because of Theorem 6.1 and the maintained 
moment condition (vt) is L1-approximable. Because of part (b) of Theo
rem 6.2 there exist L1-approximators hi = hi(et+m• ... , et-m) which are 
bounded in absolute value by, say, Mm uniformly in t, for each m E N. 
Because of part (a) of Theorem 6.2 it suffices to show that the processes 
(hi) satisfy a weak LLN for each m E N. Since (et) is a-mixing it follows 
that (hi) is a-mixing, observing that hi(.) is measurable. Let ~7 denote 
the i-th component of ~m and let (for fixed i and m) a; with a; ---+ 0 as 
j---+ oo be the corresponding a-mixing coefficients. Then 
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n 

= n-2 Lvar(hm+2n-2 L cov(h~,h;:) 
t=l 19<s:Sn 

::::; 4M!n-1 + 8 ( 2112 + 1) M!n-2 L a!~~ 
1:St<s:Sn 

since a; - 0 as j - oo; hence (hm satisfies a weak LLN. The first 
inequality in the above chain uses the inequality 

lcov (h~, h;i)l ::::; 4 ( 21/ 2 + 1) M!a!~~; 

cf. for example McLeish (1975a), Lemma 2.1. • 
Lemma D3. Let (vt) be a process defined on (0, 21, P) that takes its values 
in a Borel subset V of RP". Suppose (vt) is Lp-approximable by (et) for 
some 0 ::::; p < oo, then there exists a sequence of Lp-approximators that 
take their values in V. 

Proof. Since V, as a subset of RP", is separable, there exists a count
able dense subset of V, say {vi : i E N}. By assumption there exist Lp
approximators hr = hr(et+m, ... , et-m) where hr(x) with x E R(2m+l)p. 
takes its values in RP" and is Borel measurable. Choose some sequence 
Om > 0, Om - 0 as m - oo. Define hfl'(x) = hfl'(x) for all x such that 
hfl'(x) E V; for any x such that hfl'(x) ~ V define hfl'(x) = vi where i is 
the first index satisfying 

Clearly iir takes its values in V and is Borel measurable. If hr(x) ~ V, 
then 

liir(x)- hr(x)l = lvi- hr(x)l 

< i~f lv;- hr(x)l + 6m 
3 

= inf lv- hr(x)l + Om, 
vEV 

sinc~ {vi :._i E N} is dense. If hfl'(x) E V, then liifl(x)- hfl'(x)i = 0. Now 
let hr = hr(et+m• ... ,et-m), then it follows that 
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From this the result follows if we observe that 

for 0 < p < oo and 

form large enough (since 8m < 8/2 eventually). • 
Remark. Inspection of the proof of Lemma D3 shows further that if there 
exist Lp-approximators hf' (p > 0) such that supt llvt- hf'llv is of size 
-q, then there exist Lp-approximators hf' that take their values in V such 
that supt llvt- hf'llv is also of size -q. This follows since the size of 8m 
can be chosen arbitrarily. 

In the following lemma let 9t : V -t R and let G denote the set of all 
points v E V at which {9t : t E N} is not equicontinuous. Observe that 
G = 0 is equivalent to the condition that Assumption 6.1 holds. 

Lemma D4. Let (vt) be a process defined on (n, 21, P) that takes its 
values in a Borel subset V of RPu. Suppose (vt) is Lo-approximable by 
( et). Suppose further that 

( a) { H~ : n E N} is tight on V and there exists a sequence of open sets 
Gk with G <; Gk <;V and 

or 
(b) Assumption 6. 2 holds and 

n 

limsuplimsupn-1 LE[Bt(vt,hf')'] < oo 
m->ex> n-+oo t=1 

for some f > 0 and for some Lo-approximators hf' of (vt) based on (et), 
where the approximators take their values in V. 

Then (gt(vt)) is Lo-approximable by (et)· 

Proof. (a) Fix 8 > 0 and choose 0 < 7J < min{l, 8/3}. Because {H~ : n E 

N} is tight on V there exists a compact set K1 <;V suchthat 

n 

supn-1 LP(vt fJ. K1) < ry/2. 
n t=1 
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Furthermore, there exists a k0 E N such that 

n 

limsupn- 1 '2: P (vt E Gko) < ry/2. 
n--+oo t=1 

Put K = K1- Gko which is nonempty since 

implies 
n 

limsupn-1 l:P(vt tJ. K) ::=; 7]. 
n--+oo t=1 

Clearly K is also compact. We next show that we can find a "'( > 0 such 
that 

whenever v E K, v• E V and lv- v•i ::=; 'Y· Since KnG = 0 by construction 
it follows that for each v E K there exists a 'Y( v) > 0 such that for v• E V 
and iv - v•i ::=; 'Y( v) we have 

Now cover K by all balls 

B (v,"'((v)/2) = {v• E V: lv- v•l ::=; 'Y(v)/2} 

with v E K. Since the interiors of these balls (relative to V) cover K and 
since K is compact we can find finitely many elements v1 , ... , v1 of K such 
that 

l 

K 5; U B (vi,"'((vi)/2). 
i=l 

Now define 'Y = min{'Y(v1), ... ,"'f(v1)}j2. Let v E K and v• E V with 
lv - v•i ::=; "'(, then there exists an index i 0 such that I v - vio I ::=; 'Y( vio) /2 
and hence I v• - vio I ::=; 'Y + 'Y( vio) /2 ::=; 'Y( vio). Hence by definition of 'Y( vio) 
we have 

and 
sup l9t(v•)- 9t(Vi0 )1 < ry/2, 

t 

which by the triangle inequality establishes the above claim. 
Now let hf' be L0-approximators which w.l.o.g. can be assumed to take 

their values in V because of Lemma D3. Decompose 11 into three disjoint 



sets: 

Then 

A:m 
' 

A~m 
' 

A~,m 
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= 
= 
= 

{lvt- hrl > -y} n {vt E K}, 

{lvt- hrl :5 -y} n {vt E K}, 

{vt ~ K}. 

P (lut(Vt) - ut(hr)l > 6) 
3 

< LP (lut(vt)- ut(hr)ltA! .... > 6/3) 
i=1 

:5 P(lvt- hrl > -y) + P(0) +P(vt ~ K). 

Consequently 

n 

limsupn-1 LP(Igt(vt)- Ut(hr)l > 6) 
n-+oo t=1 

n 

< lim sup n-1 L P (lvt - html > -y) + '11· 
n-+oo t=1 

The result follows since (vt) is Lo-approximable and 71 can be chosen arbi
trarily small. 

(b) Fix 6 > 0 and M > 0. Then 

P (iut(vt)- ut(hr)l > 6) 
< P (Bt(Vt, hr) lvt- hrl > 6, Bt(Vt, hr) > M) 

+ P(Bt(Vt,hr) lvt- h~l > ö,Bt(Vt,h~) :5 M) 
:5 E [Bt(vt, hr)E] /ME+ P (lvt- html > 6/M) 

using Markov's inequality. Now 

n 

limsup limsupn-1 L P (lut(vt)- Ut(hr)l > 6) 
m-+oo n-+oo t=1 

n 

:5 limsup limsupn-1 LE [Bt(Vt,hr)E] /ME 
m-+oo n-+oo t=1 

since the process (vt) is Lo-approximable. The result follows since M can 
be made arbitrarily large. • 

Remark. lnspection of the proof of Lemma D4 reveals that the lemma 
holds if the tightness condition is dropperl in (a) and the equicontinuity of 
{gt : t E N} on V- G is strengtherred to uniform equicontinuity on V- G. 
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We note that in this case Gisopen and hence we may put Gk = G. {Recall 
the differences in the definitions of uniform equicontinuity an a subset and 
uniform equicontinuity of the restrictions to the subset.) 

Proof of Theorem 6.5. The Lo-approximability of (gt(vt)) follows di
rectly from Lemma D4. The Lp-approximability then follows from part (b) 
of Theorem 6.1. • 

Proof of Theorem 6.6. We first prove part (a) of the theorem. The 
Lo-approximability of (gt(vt)) follows directly from Lemma D4. The Lp
approximability then follows from part {b) of Theorem 6.1. Ta prove part 
{b) of the theorem observe that the Lp-approximators htm can w.l.o.g. 
be assumed to take their values in V in view of Lemma D3. The Lp
approximability of (gt{Vt)) then follows immediately since IYt(Vt) - Yt(hr)l 
$ clvt -hrl. • 

Proof of Theorem 6. 7. The proof of part ( a) of the theorem is identical 
tothat of Theorem 4.2 in Gallant and White (1988): Although the latter 
theorem only covers the case V = RP", its proof carries over to the case of 
general V under the additional assumption that the approximators hr take 
their values in V, as is maintained here. Part (b) of the theorem follows 
immediately since IYt(vt)- Yt(hr)l $ c lvt - hrl. • 

Proof of Corollary 6.8. In view of the remark after Lemma D3 the 
near epoch dependence assumption implies the existence of approximators 
hr that take their values in V and satisfy that supt llvt- htmll2 is of size 
-q. Using the minimum mean square error property of the conditional 
expectation we obtain 

sup IIYt{Vt)- E (gt(Vt) I et+m, · · ·, et-m)ll2 
t 

< sup IIYt(vt)- 9t{h;')ll2 
t 

< csup llvt- h;'ll2 , 
t 

from which the result follows immediately. • 
Proof of Lemma 6.9. The proofs of parts (a), (b) and (b') are obvious. 
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To prove part (a') observe that formEN and t E N 

< 
l 

~t-l 
'T/t 

'T/t-k 

L ll~t-j 
j=O 

k 

+ L II'T/t-j - E ( 'T/t-j I e~+ml e~+ml ... 'eLm, ei-m) II j=O 2 

l 

L ll~t-j - E ( ~t-j I ef+m' ... 'eLm) II j=O 2 

k 

+ L IITJt-j- E (TJt-j I e~+ml ... 'e~-m) 112 j=O 
l 

< L ll~t-j - E ( ~t-j I eLj+(m-j)' ... 'eLj-(m-j)) II j=O 2 

k 

+ L II'T/t-j - E ( 'T/t-j I ei-j+(m-j)' .. . 'ei-j-(m-j)) II ' j=O 2 

2 

where the last inequalities hold since we condition on a smaller set of ran
dom variables. (If the list of conditioning variables is empty, i.e., if the 
index of the first conditioning variable is less than the index of the last 
conditioning variable in the list, which can only happen if m < max{k, l}, 
the conditional expectation should be interpreted as the unconditional ex
pectation.) Clearly, 

ll~t-j- E ( ~t-j I eLj+(m-j)' ... 'eLj-(m-j)) 112 ~ v!,._j 

and 

II'T/t-j - E ( 'T/t-j I ei-j+(m-j)' . .. 'ei-j-(m-j)) 112 ~ v~-j 
for t - j > 0, where vfn and v;J.. are the approximation errors for ~t and 
'T/t, respectively, in the definition of near epoch dependence on the basis 
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processes (e;) and (ej), respectively. If t- j:::; 0 and m > 2max{k, l} 

ll~t-j - E ( ~t-j I eLi+(m-j)' ... 'eLj-(m-j)) 112 = 0 

and 

117Jt-j - E ( 1Jt-j I ej_i+(m-j)' ... 'ei-j-(m-j)) 112 = 0, 

and hence these expressions are also bounded from above by v;,_i and 
v!-i, respectively. This leads to 

I k 

v < "" ve + "" v'~ m,t - ~ m-j ~ m-j 
j=O j=O 

form > 2 max{ k, l} and all t E N. Observing that v~ and v:J" are of size -q 
this completes the proof of the first claim in (a'). The second claim follows 
analogously with e; and ei replaced by ef and ei' respectively, observing 
that for t - j :::; 0 

~~~t-j E (~t-j I eLH(m-j)'" · ,eLj-(m-j)) 11 2 

and 

117Jt-j - E ( 1Jt-j I ej_i+(m-j)' ... 'ej_j-(m-j)) 112 

are then of size -q. 
To prove part ( c) let h7''i ( e~+m, ... , eLm) be Lp-approximators for ( ~t}, 

m E N. We now specify Lp-approximators h~·'l for (7J8 ). Representing s ~ 1 
as s = (T- l)k + i + 1 with 0:::; i:::; k- 1 define 

hkm,T) 
(r-l)k+i+l 

hkm,T] ( '7 '7 ) (r-l)k+i+l e(r-l)k+i+Hkm'' '' 'e(r-l)k+i+l-km 

hm,i ( e e ) 
T er+m>''' > eT-m ' 

Observe that this is well-defined since by definition of ( e1) the argument list 
(e(r-l)k+i+Hkm' ... , e(r-l)k+i+l-km) is obtained by listing the elements 

of (e~+m• ... , eLm) repeatedly. For arbitrary integers r ENdefine 

h(~:._l)k+i+l h(~:._l)k+i+l ( e(r-l)k+i+Hr' · · · 'e(r-l)k+i+l-r) 

= hk[r/k],T] ( '1 '1 ) 
(r-l)k+i+l e(r-l)k+i+Hk[r/k]''' '' e(r-l)k+i+l-k[r/k] ' 

where [x] derrotes the largest integer not exceeding x. Clearly, 

I hr,T) I-lei h[r/k],il 1/(r-l)k+i+l - (r-l)k+i+l - <"r- T • 



APPENDIX D. PROOFS FOR CHAPTER 6 207 

Hence for p > 0 

n 

s=1 
([n/k]+1)k 

< n-1 L II7Js- h~·'lllp 
s=1 

k-1 [n/k]+1 

:L n-1 :L lle~- hf/k].ill 
i=O r=1 p 

k-1 [n/k]+1 
< 2 :L ([n/k] + 1)-1 :L l!e~- hf/kJ,ill , 

~0 ~1 p 

and for p = 0 

n 

n-1 L P (I1Js- h:·'ll > 6) 
s=1 
([n/k]+1)k 

< n-1 L P (I1Js - h~·'ll > 6) 
s=1 

k-1 [n/k]+1 
:Ln-1 L P(je~-hf/kJ,ij>ö) 
i=O r=1 

k-1 ~/~+1 

< 2 :L ([n/kJ + 1)-1 :L P (je~- hfi•J,il > ö). 
i=O r=1 

The result now follows, since (~D, i = 0, ... , k- 1, is Lp-approximable by 
assumption. 

To prove part (c') we proceed as in the proof of part (c) except that we 
choose 

hm,i ( e e ) _ E (ci 1 e e ) t et+m• ... , et-m - ':.t et+m• ... 'et-m . 

It follows using the same notation as in the proof of part ( c) from the 
minimum mean square error property of the conditional expectation that 

117J(r-1)k+i+1 - E ( 1J(r-1)k+i+1 I e(r-l)k+i+Hr' ... 'e(r-l)k+i+l-r) 112 

< 117J(r-1)k+i+1 - h{~~l)k+i+111 2 
~~~~ - hf/k].ill2 

= ~~~~- E (~~I e~+[r/k]' · · · 'e~-[r/k]) 11 2 · 
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Therefore, 

< 

< 

< 

sup ll11s - E ( 1/s I e~+r• · · · , e~-r) 11 2 
s;?:1 

o<lflf-1 supll1/(1'-1)k+i+1 
-- 1';?:1 

- E ( 17(T-1)k+i+1 I e(1'-1)k+i+l+r' · · · 'e(T-1)k+i+1-r) 11 2 

o~lflf-1 ~~; ~~~~- E ( ~~ I e;+[r/k]' · · · 'e;_[r/k]) 11 2 

max vi 
O~iSk-1 [r/k]' 

Here v:r, denotes the approximation error in the definition of near epoch 
dependence of ~I· This completes the proof of part (c') since the r.h.s. in 
the above inequality is of size -q. 

To prove part {d) let hr' = hr'{ef+m• ... , eLm) denote Lp-approximators 

for {~t), m E N. We now specify approximators h~'i(ei+m• ... ,ei-m) for 
(ry;) as 

h~,i = h~,i (ei+m• ... ,ei-m) 

ht~1)k+i+1 ( e1t-1)k+i+l+km' · · · 'e1t-1)k+i+1-km) · 

Observe that this is well-defined, since by definition of ei the argument list 
on the r.h.s. is a subset of the argument list on the l.h.s. Consequently, 

H- h~·il = l~(t-l)k+i+l- ht~1)k+i+11, 
and hence for p > 0 

and for p = 0 

n 

n-1 L ~~~(t-l)k+i+l - h(t~l)k+i+lll 
t=l p 

kn 

< k(kn)-1 L JJ~t- h;mJJP' 
t=l 

n-1 tp (H -h~·il > o) 
t=l 

n 

= n-1 L:P (l~(t-l)k+i+1- htt~1)k+i+11 > o) 
t=l 

kn 

< k(kn)-1 Lp (l~t- h;ml > 8). 
t=1 
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The result now follows, since (et) is Lp-approximable by assumption. 
To prove part (d') we proceed as in the proof of part (d) except that we 

choose 
h"'(' ( ef+m, · · · , eLm) = E ( et I ef+m, · · · , eLm) · 

It follows from the minimum mean square error property of the conditional 
expectation - using the same notation as in the proof of part (d) and 
observing that h;"'i is clearly quadratically integrable- that 

1111:- E (17; I ei+m• · · · • ei-m) ll2 
~ IH- h;"·ill2 

= lle{t-l)k+i+l 

- E ( e(t-l)k+i+l I ezt-l)k+i+l+km' ... 'ezt-l)k+i+l-km) 112· 

Consequently, 

sup 1111;- E (17; I ei+m• · · · 'ei-m) ll2 
t~l 

< suplle{t-l)k+i+l 
t~l 

- E ( e{t-l)k+i+l I ezt-l)k+i+l+km' · · · • ezt-l)k+i+l-km) 11 2 

< ~~~lies- E (es I e;+km• · · ·, e;_km) 11 2 • 

This completes the proof since the r.h.s. is of size -q by assumption. • 

Lemma D5. Let (vt)tEN and (wthEz be stochastic processes taking their 
values in Borel subsets V and W of RP" and RPw, respectively, and let 
Yt : V X W ---+ V be functions fort E N. Suppose that (vt) is generated 
according to the dynamic system 

Vt = Yt(Yt-1, Wt), t E N, 

where vo is some initial random variable taking its values in V. Assurne 
that for all (v, v•) E V x V, (w,w•) E W x W, and t E N 

IYt(v, w)- Yt(v•, w•)l ~ dv lv- v•l + dw,t Iw- w•l 

holds where the global Lipschitz constants satisfy 0 ~ dv < 1 and 0 ~ dw,t < 
00. 

(a) lf there exists an element w E W such that lldw,t lwt- wl llr < oo 
fort E N and llvollr < oo for some r;:::: 1, then llvtllr < oo fort E N. lf 
additionally 

sup lldw,t lwt - wl llr < 00 
t~l 
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and 
sup IYt(v, w)l < oo 
t~l 

holds for some element v E V, then also 

sup llvtllr < oo. 
t~l 

{b) If there exists an element üi E W such that 

sup lldw,t lwt - wlllr < 00 
t~l 

and llvollr < oo for some r ~ 1, then (vt) is Lr-approximable by (wt)· lf 
furthermore (wt)teN is also Lr-approximable by some process (et)tez and 
if dw,t $ dw < oo for all t E N, then (vt) is Lr-approximable by (et)· 

( c) lf there exists an element üi E W such that 

sup lldw,t lwt - wlll 2 < oo 
t~l 

and llvolb < oo, then (vt) is near epoch dependent of size -q on (wt) for 
any q > 0, where Wt = (wL 0)' fort-::/: 1 and w1 = (wJ., v~)'. lf furthermore 
(wt)teN is also near epoch dependent of size -q on some process (et)tez 
and if dw,t $ dw < oo for all t E N, then (vt) is near epoch dependent 
of size -q on (et), where Eit = (e~,O)' fort-::/: 1 and e1 = (eJ.,v~)'. If 
additionally also llvo- E(vo I em, ... , e_m)ll2 is of size -q, then (vt) is 
near epoch dependent of size -q on (et)· 

Remarks. (i) Note that Wt takes its values in RPw+Pv, but not necessarily 
in W x V, since 0 need not be an element of V. If a basis process Wt that 
takes its values in W x V is desired, one can replace 0 by any arbitrary 
fixed element of W in the definition of Wt fort-::/: 1. 

(ii) Inspection of the proof shows that with appropriate modifications 
analogaus results in (c) also hold if an Lr-norm, r ~ 1, is used instead of 
the L2-norm. 

(iii) lnspection of the proof shows that the first claim in part (a) holds 
even if the functions 9t are only assumed tobe Lipschitz, i.e., 

holds with 0 $ dv,t < oo and 0 $ dw,t < 00. 

Proof. Let ilo be an arbitrary element in V and define Vt = 9t(Vt_1 ,w) for 
t E N where üi is as in the assumptions. We first prove part (a). Then we 
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have fort E N 

lvt- Vtl = l9t(Vt-b Wt)- 9t(Vt-b w)l 

Hence 

< dv lvt-1 - Vt-11 + dw,t lwt - wl 
dv l9t-1 (vt-2, Wt-1) - 9t-1 (Vt-2, w)l + dw,t lwt- wl 

< d~ lvt-2- Vt-21 + dvdw,t-1 lwt-1 - wl + dw,t lwt- wl 
t-1 

< :::; d~ lvo - vol + z= d~dw,t-i lwt-i - wl. 
i=O 

t-1 

llvt- Vtllr:::; d~ llvollr + ~ lvol + L~ lldw,t-i lwt-i- wlllr < 00 

i=O 

for t E N by the assumptions. Since lvtl is finite, it follows that llvt llr is 
finite for t E N. This proves the first claim of part (a). Now suppose that 
the additional assumptions for the second claim of part (a) hold. It then 
follows from the above inequality that 

sup llvt- Vtllr :::; llvollr + lvol + sup lldw,t lwt- wlllr (1- dv)-1 < oo 
t~1 t~1 

observing that dv < 1. Now upon choosing v0 = v for the moment we also 
have fort E N 

where 

lvt- vol < lgt(iit-1, w)- 9t(vo, w)l + lgt(vo, w)- vol 
< dv lvt-1 - vol + M, 

M = (lvol + sup l9t(iio, w)l) < oo. 
t~1 

Induction shows that 

Hence, supt~ 1 lvtl < oo holds, and therefore 

sup llvtllr :::; sup llvt- Vtllr + sup lvtl < oo. 
t~1 t~1 t~1 

This proves the second claim of part ( a). 
We next prove the first claim of part (b). Consider for every t ~ 1 and 

m ~ 0 the recursions 
~J·m = gj(~J~, Wj) 

for max(1, t- m) :::; j :::; t initialized by ~~:C( 1 ,t-m)-l = Vmax(l,t-m)-1· 

Define approximators hr' for t ~ 1 and m ~ 0 by setting hr' = ~i·m. As is 
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easily seen, ht' = hf'(wt+m• ... , Wt-m), that is ~m can be expressed as a 

measurable function of Wt+m• ... , Wt-m· In case t ~ m + 1 we then have 

lvt- ht'l = lvt- e:·ml = IYt(Vt-1, Wt)- Yt({!:..~. Wt)l 

< du lvt-1- {i~l + dw,t lwt- Wtl 

= du lvt-1- e:~ 1 

~ ~ lvt-2- e!~l ~ ... ~ ~ lvo- iiol. 

Next consider the case where t > m + 1: 

lvt- ht'l = lvt- e:·ml = IYt(Vt-1, Wt)- Yt({i:..~. Wt)l 

< du lvt-1 - e:~ I ~ ... ~ tf,;"+1 lvt-m-1 - Vt-m-11 

< ~+1 1Yt-m-1(Vt-m-2, Wt-m-1)- 9t-m-1(iit-m-2, w)l 

< ~+1 {du lvt-m-2- Vt-m-21 + dw,t-m-11Wt-m-1- wl} 

< tf,;"+1 {du l9t-m-2(Vt-m-3 1 Wt-m-2)- 9t-m-2(iit-m-3, w)l 

+ dw,t-m-1 lwt-m-1 - wl} 

~ tf,;"+1 { d~ lvt-m-3 - Vt-m-31 + dudw,t-m-21Wt-m-2 - wl 

+ dw,t-m-11Wt-m-1- wl} 
t-m-1 

< ... ~ ~ lvo- vol + tf,;"+1 I: ~-1 dw,t-m-• lwt-m-•- wl. 
i=1 

Hence, for all t ~ 1, m ~ 0 we have that 

t-m-1 

lvt- ht'l ~ ~ lvo- vol + ~+1 I: ~-1dw,t-m-• lwt-m-i- wl 
i=1 

with the convention that a sum is zero if the range of summation is empty. 

This immediately implies 

llvt - ht'llr ~ ~ llvo- iiollr 
t-m-1 

+ ~+1 I: ~-1 lldw,t-m-• lwt-m-• - wlllr 
i=1 

where C is a constant such that 

and llvollr ~ C holds. Consequently, 

n 

0 ~ limsup limsupn-1 L llvt- ht'llr 
m--+oo n--+oo t=1 
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::5 limsup limsup [n-1du(l- du)-1(C + jv0 1) + c~+1 (1- du)-1] 
m-+oo n-+oo 

= 0, 

which proves the first claim in part (b) of the theorem. 
We next prove the first claim of part ( c). To this end define ht" as in the 

proof of the first claim of part (b) except that the recursions 

tt,m (tt,m ) 
.. j =gj .. j-1•Wj 

for max (1, t- m) ::5 j ::5 t are initialized by ~~,m = vo for t ::5 m + 1 and 
by ~::.":n_ 1 = Vt-m-1 fort > m + 1. In other words, we set ht" = Vt for 
t ::5 m + 1 and define htm as above fort> m + 1. Since Vt is a measurable 
function of Wt, ... , w1 and vo, clearly ht" is fort ::5 m + 1 a measurable 
function of Wt+m• ... , Wt-m· For t > m + 1 we can clearly also view hr as 
a measurable function of Wt+m• ... , Wt-m· Given this definition of htm we 
then have lvt- ht"l = 0 fort ::5 m + 1 and 

t-m-1 

lvt- ht"l ::5 d~ lvo- vol + ~+1 I: cr.,-1dw,t-m-i lwt-m-i- wl 
i=1 

for t > m + 1 as before. Hence for all t ~ 1 we obtain 

t-m-1 

::5 ~+1 (D + lvol) + ~+1 L cr.,- 1 lldw,t-m-i lwt-m-i- wlll2 
i=1 

where D is a constant such that 

and llvoll2 ::5 D holds. Therefore 

0 ::5 sup llvt- ~112 ::5 ~+1 
t~1 

for some constant c and hence supt>1 llvt- ht"ll2 is of size -q for any q > 0. 
The first claim in part ( c) now follows since 

in view of the minimum mean square error property of the conditional 
expectation. (Note that the second moment of Vt exists according to part 
(a).) 
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We next prove the second claim in part (b). Let wf, for t ;?: 1 and m ;?: 0, 

denote an Lr-approximator for Wt, i.e., wf is a measurable function of 

(et+m• ... , et-m) and satisfies 

n 

limsup limsupn-1 L llwt- w~llr = 0. 
m-+oo n-+oo t=1 

Because of Lemma D3 we can assume w.l.o.g. that wf takes its values in 

W. (For notational convenience we also set wf = Wt if t ~ 0.) For every 

t 2:: 1 and m 2:: 0 consider recursions similar to the ones above but given 

nowby 
ct,m (Ct,m m) 
<"j = 9i <"j-1• Wj 

for max(1, t-m) ~ j ~ t and initialized by e~:c(l,t-m)-1 = Vmax(1,t-m)-1· 

Define approximators h~ for Vt for t 2:: 1 and k 2:: 0 by setting ~ = 

e:·k/2 if k is even and h~ = h~-1 if k is odd. Aß is easily seen, h~ = 

h~(et+k• ... , et-k), that is h~ can be expressed as a measurable function 

of et+k• ... , et-k· Now assume first that k is even and let m = k/2. In case 

t ~ m + 1 we then have similarly as before 

lvt - h~ I = lvt - e:·m I = lgt(Yt-1' Wt) - 9t(e!:..~' w~) I 
< d" lvt-1- e!:..~l + dw,t lwt- w~l 

= d" l9t-1(vt-2, Wt-1)- 9t-1(e!:..~, w~1)l + dw,t lwt- w~l 

< d~ lvt-2 - e:~ I + d"dw,t-1 lwt-1 - w~11 + dw,t lwt - w~ I 
t-1 

5 5 d~ lvo- vol + Lcfvdw,t-i lwt-i- w~il· 
i=O 

Next consider the case where t > m + 1: 

lvt- h~~ = lvt- e:•ml = lgt(Yt-1, Wt)- 9t(e:~, w~)~ 

< d" lvt-1- e::..~l + dw,t lwt- w~l 

< d~ lvt-2- e!:..~l + d"dw,t-1 lwt-1 - w~d + dw,t lwt- w~l 
m 

< ~ Ld~dw,t-i lwt-i- W~il + ~+1 1Vt-m-1- Vt-m-11 
i=O 

m 

5 L d~dw,t-i lwt-i - w~i I 
i=O 

+ d:;'+1 l9t-m-1 (vt-m-2, Wt-m-1) - 9t-m-1 (vt-m-2• üi)l 
m 

< L cfvdw,t-i lwt-i - w~i I 
i=O 

+ d:;'+l {d" lvt-m-2- Vt-m-21 + dw,t-m-11Wt-m-1- üil} 
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m 

< L ~dw,t-i lwt-i - w~i I 
i=O 
+ cr,;"+1{ dv lgt-m-2(Vt-m-3, Wt-m-2)- gt-m-2Uit-m-3, w)l 
+ dw,t-m-1 lwt-m-1 - wl} 

m 

< L d~dw,t-i lwt-i - W~i I 
i=O 
+ cf,;"+1 { d; lvt-m-3 - 'iit-m-31 + dvdw,t-m-21Wt-m-2 - wl 
+ dw,t-m-1lwt-m-1- wl} 

m 

< :::; L d~dw,t-i lwt-i- w~i I + d~ lvo- vol 
i=O 
t-m-1 

+ d~+1 :L d~- 1 dw,t-m-i lwt-m-i- wl. 
i=1 

Hence for all t ~ 1 we get in view of the notational convention adopted for 
wf' if t :::; 0 and using the additional assumption dw,t :::; dw 

llvt- h~llr 
m 

i=O 
t-m-1 

+ d~+1 :L ~- 1 lldw,t-m-i lwt-m-i - wlllr 
i=1 

m 

i=O 
where C was defined above. If k is odd we arrive at the same inequality 
with m = (k- 1)/2. Consequently, 

n 

0 < limsup limsupn-1 L llvt- h~llr 
k-+oo n-+oo t=1 

< limsup limsup [n-1dv(1- dv)-1(C + lvoi) 
m~oo n--+oo 

+ dw ~ d~n- 1 t llwt-i- w~i llr + ccf,;"+1 (1- dv)-1] 

< 
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:5 limsup limsup [dw(l- d")-1n-1 t llwt- wrllr 
m-+oo n-+oo t=1 

+ c~+1 (1- d")-1] = o, 

using the assumed Lr-approximability of (wt) by (et)· This proves the 

second claim in part (b). 
Consider the second claim in part (c) next. Observe that because of the 

remark following Lemma D3 the approximators E(wt I et+m, ... , et-m) ap

pearing in the near epoch dependence assumption for (wt) can be replaced 

by approximators wr that take their values in w and have approximation 

errors SUPt llwt- wrll2 which are of the Same size as 

sup llwt- E(wt I et+m, .. ·, et-m)ll2 . 
t 

We now define the approximators hf for Vt similarly as in the proof of the 

second claim of part (b ), except that now the recursions 

t~,m = g·(t~,m w"!') 
... 3 3 ... 3-1' 3 

for max (1, t- m) :5 j :5 t are initialized by e~,m = Vo fort :5 m + 1 and by 

e::..mm-1 = 'ih-m-1 fort> m + 1. Aß is easily seen, hf is then a measurable 

function of Elt+k, ... , Elt-k· Now assume first that k is even and let m = k/2. 

In case t :5 m + 1 we then have similarly as before 

t-1 

lvt- hfl < d! lvo- vol + L~dw,t-i lwt-i- w~il 
i=O 

t-1 
= L d~dw,t-i lwt-i - w~i I· 

i=O 

In case t > m + 1 we have exactly as before: 

m 

lvt- h~l < L~dw,t-i lwt-i- w~il + d! lvo- iiol 
i=O 

t-m-1 
+ ~+1 2: ~-1dw,t-m-i lwt-m-i - wl. 

i=1 

Hence for all t ~ 1 we get in view of the notational convention adopted for 

wr if t :5 0 and using the additional assumption dw,t :5 dw 

m 

llvt- h~ll2 :5 ~+1 11vo- iioll2 + dw L ~ llwt-i- w~ill2 
i=O 
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t-m-1 
+ ~+1 I: cr"-1 lldw,t-m-i lwt-m-i - wlll2 

i=1 

where D was defined above. If k is odd we arrive at the same inequality 
with m = (k -1)/2. Therefore clearly supt~ 1 llvt- h~ll 2 is of size -q. The 
second claim in part ( c) now follows since 

in view of the minimum mean square error property of the conditional 
expectation. (Note that the second moment of Vt exists according to part 
(a).) 

To prove the third claim in part ( c) let v(i' for m 2: 0 denote an ap
proximator to Vo that is a measurable function of em, ... , e_m, takes its 
values in V and whose approximation error llvo - v(i' lb is of the same size 
as llvo- E(vo I em, ... , e_m)ll 2. Such an approximator exists in view of 
the remark following Lemma D3. Define now h~ as above but where now 
the recursions 

ct,m (t:t,m m) 
'>j = 9j '>j-1• wj 

for max (1, t - m) ::; j ::; t are initialized by ~~,m = v;;'-1 for t ::; m + 1 
and by ~i~m- 1 = tit-m-1 if t > m + 1, where again m = k/2 and where 
v;;'-1 is defined to be v0 if m = 0. As is easily seen, this makes ~ a 
measurable function of et+k, ... , et-k· Given this definition of h~ we then 
have by analogaus arguments as before that for k even and t ::; m + 1 

t-1 

lvt - h~ I < d~ lvo - v;;'-11 + L d~dw,t-i lwt-i - w~i I 
i=O 
t-1 

< dv lvo - v;;'-11 + L d~dw,t-i lwt-i - w~i I , 

i=O 

whereas for t > m + 1 

m 

lvt - h~ I ::; L d!,dw,t-i lwt-i - w~i I + d~ lvo - 'üo I 
i=O 

t-m-1 
+ ~+1 L d~- 1dw,t-m-i lwt-m-i- üil. 

i=1 

Hence using the convention w~ = Wt for t ::; 0 we obtain for all t 2: 1 
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m 

+ dw L d!, llwt-i - W~; 11 2 
i=O 

t-m-1 
+ ~+1 L.: cr"-1 lldw,t-m-i lwt-m-i - wlll2 

i=1 
< d" llvo- v~-1 11 2 + ~+1 (D + liiol) 

+ dw(1- d")-1 sup llwt- wf'll2 + n~+1 (1- d")-1. 
t~1 

For k odd we obtain the same upper bound where now m = (k- 1)/2. 
Therefore clearly supt~ 1 llvt- hfll 2 is of size -q. The third claim in part 
( c) now follows since 

0 ~ llvt- E(vt I et+k, · · ·, et-k)ll2 ~ llvt- l!fll 2 

in view of the minimum mean square error property of the conditional 
expectation. (Note that the second moment of Vt exists according to part 
(~.) . 
Proof of Theorem 6.10. Follows as a special case of Lemma D5. • 

Proof of Theorem 6.11. First observe that fort~ 1 and any a-field ~ 
we have IIYt(E(vt-1 I~), Wt)ll 2 < oo, since 

IYt(E(vt-1 I~), Wt)l < IYt(E(vt-1 I~), Wt)- 9t(Vt-t. Wt)l 
+ IYt(Vt-1, Wt)l 

~ d"IE(vt-1 I~)- Vt-11 + lvtl 

< d" IE(vt-1 I ~)I+ d" lvt-11 + lvtl 

and since llvtll2 < oo fort~ 0 is assumed. Note that E(vt-1 I~) belongs 
to V since V is assumed to be convex. Now for m ~ 2 we obtain 

11m = 

< 

= 

< 

= 

< 

sup llvt- E(vt I Wt+m, ... , Wt-m)lb 
t~1 

sup llvt- E(vt I Wt-2+m, ·. ·, Wt-m)ll2 
t~1 

sup llvt - E (gt(Vt-1, Wt) I Wt-2+m• · · ·, Wt-m) ll2 
t;:::1 

sup llvt- 9t (E(vt-1 I Wt-2+m• · · ·, Wt-m), Wt)ll2 
t~1 

sup IIYt(Vt-1, Wt)- 9t (E(Vt-1 I Wt-2+m, ... , Wt-m), Wt)ll 2 
t~1 

d" sup llvt-1 - E(vt-1 I Wt-2+m• ... , Wt-m)ll 2 = dvllm-1· 
t~1 

Observing that 11m~ 2supt>o llvtll 2 < oo form~ 1 it follows immediately 
that 11m decays exponentiali)r, which completes the proof. • 
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Proof of Theorem 6.12. Define for i = 0, ... , k* - 1 the processes 
(v~)TEN by 

TEN, 

where the iterations are initialized with vb = vi, and where 

and 

Note that every Vt, t 2:: 0, can be expressedas v(T-l)k"+i+k" with T 2:: 0, 
0 :::; i :::; k* -1, and that v('T-l)k"+i+k• = v~ holds. I.e., we can represent the 
elements of the process (vt) in terms of the elements of the processes (v~), 
i = 0, ... , k* - 1. To prove the theorem we now verify that the dynamic 
systems 

satisfy the assumptions of Theorem 6.10 for every i = 0, ... , k* -1. Clearly, 
the functions cp~, T E N, satisfy the Lipschitz condition for the system 
functions postulated in Theorem 6.10 for every i = 0, ... , k* -1 in view of 
(6.6). Observe further that llwtllr < oo for every t E N implies jju~llr < oo 
for every TE N and every i = 0, ... , k*- 1, and that 

implies 

sup llwtllr < oo 
t?:l 

sup !Iu~ II < oo. 
T?:l r 

To prove part (a) note that by definition llvbllr = llvillr and that llvillr < 
oo for i = 0, ... , k* -1 by assumption. It now follows from Theorem 6.10(a) 
that jjv~ !Ir < oo for all T E N and all i = 0, ... , k* - 1. Consequently, 

llvtllr < oo for all t E N. The boundedness assumption on g~k") in part (a) 
is equivalent to 

sup lc/J~(v, ü) I < oo 
'T?:l 

for all i = 0, ... , k* -1, where ü = ( w~, .. . , w~. )'. Hence, under this bound
edness condition it follows further from Theorem 6.10(a) that 
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for all i = 0, ... , k* - 1. This in turn implies 

sup llvtllr < oo 
t~l 

observing that llvillr < oo for i = 0, ... , k* -1 by assumption. 
We next prove part (b). lt follows immediately from Lemma 6.9(a) that 

the process ( w~, ... , w~+k• )' is Lr-approximable by ( et+k•), ~d hence 
by (et)· Lemma 6.9{d) implies further that the processes (uD are Lr
approximable by ( et) with 

+ I I ( )
I 

et = e(t-t)k•+t, · · · , e(t-t)k•+k• · 

Theorem 6.10{b) now shows that the processes (vn, i = 0, ... , k*- 1, are 
Lr-approximable by (et). Applying Lemma 6.9(c) we see that the process 
(vt)t~k· is Lr-approximable by (ei+), where 

e++ - e+ (T-l)k*+i+l - T 

for r E Z and i = 0, ... , k*- 1. Observing that the random variables ap
pearing in the argument list { ei/m, ... , ei_+m) of an Lr-approximator w.r.t. 
the basis process (ei+) also appear in the list (et+m+k•, ... , et-m-k• ), 
this approximator can also be viewed as an Lr-approximator w.r.t. the ba
sis process (et)· lt follows that (vt)t~k· is Lr-a.pproximable by (et). Since 
llvtllr < oo fort= 1, ... , k* -1 in light of part {a) of the theorem, clearly 
also (vt)teN is Lr-approximable by (et)· 

To prove part (c) we apply Lemma 6.9(a') to the process (wt+k• ). Ob
serving that llwi- E(wi I ei+m• ... , ei-m)ll2, for i = 1, ... , k*, is clearly 
of size -q it follows from that lemma that the process (w~, ... , w~+k• )' is 
near epoch dependent of size -q on (et+k• ), and hence on (et)· Lemma 
6.9{d') implies further that the processes (u!) are near epoch dependent of 
size -q on (ei) with 

+ I I ( )
I 

et = e(t-t)k•+t' · · · 'e(t-t)k*+k• · 

Recall that 
llv~ll2 = llvill2 < oo 

for i = 0, ... , k* - 1. Theorem 6.10{c) now shows that the processes (vn, 
i = 0, ... , k* - 1, are near epoch dependent of size -q on (ei'), where 
eii = (ei 1,0)' ift # 1 and eti = (et 1, v~1)'. Hence, in light ofthe minimum 
mean square error property of the conditional expectation, the processes 
(vn are then also near epoch dependent of size -q on the common basis 
process ( et) l where 

-+ ( +I o 0) 1 et=et,, ... , 
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ift::;-fland 

-+ ( +I 01 k*-11) 1 +1 1 I I el = et ,vo , ... ,vo = (et ,vo, ... ,vk•-t). 

Observing that llvtll2 < oo in view of the already established part (a) of 
the theorem, applying Lemma 6.9(c') shows that the process (vt)t~k· is 
near epoch dependent of size -q on (ei+), where 

-++ -+ 
e(T-l)k*+i+l = eT 

for r E Z and i = 0, ... , k* - 1. Consider the approximation error 

Observing that the random variables appearing in the list of conditioning 
. bl (-++ -++ ) al . h l" t (- - ) var1a es et+m, ... , et-m so appear m t e lS et+m+k• , ... , et-m-k• , 

it follows again from the minimum mean square error property of the con
ditional expectation that (vt)t>k• is near epoch dependent of size -q on 
(et)· Certainly, -

for m ~ k* in view of the definition of ät. Hence also ( v t heN is near 
epoch dependent of size -q on ( ät). This proves the first claim in part ( c). 
The second claim follows analogously observing that in this case Theorem 
6.10(c) implies that the processes (vÜ, i = 0, ... , k* - 1, are near epoch 
dependent of size -q on (ei). • 

Lemma D6. Let X be a metrizable space and let 8 be a compact metrizable 
space. Let Ut: t E N} with !t: X Xe~ R be equicontinuous on X Xe. 
Define 

J/'(x) = sup ft(x, 0) 
IIEA 

where 0 =FA~ e. Then Ut: t E N} is equicontinuous on X. 

Proof. Since f(' = ftÄ , where Ä is the closure of A, we can assume w.l.o.g. 
that Ais compact. Suppose that {!(': t E N} is not equicontinuous on X, 
i.e., there exists an e > 0 and a sequence Xn ~ xo suchthat 

Since A is compact, ftA(x) is finite and hence we have 

€ < sup lff'(xn)- J('(xo)l ~ sup sup lft(Xn, 0)- ft(xo, O)j. 
t IIEA t 
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Hence there exist On E A suchthat t: <supt ift(Xn, On)- ft(Xo, On) I. Since 
A is compact there exists a convergent subsequence On; -+ Oo as j -+ oo 
with Oo E A. Consequently, 

0 < t: < s~p l!t(Xn;, On;) - ft(Xo, Oo) I + s~p l!t(xo, Oo) - ft(Xo, On;) I· 

Since the r.h.s. goes to zero by equicontinuity this yields a contradiction . 

• 
Lemma D7. Let (X, d) be a metric space and let e be some set. Let 
Ut : t E N} with !t : X X e -+ R be a family such that for each 0 E e we 
have 

ift(x, 0) - !t(x•, 0)1 :5 Bt(x, x•)d(x, x•) 

for x, x• E X and Bt : X x X -+ [0, oo). Let A ~ e be nonempty. Suppose 

Jf(x) = sup ft(x, 0) 
6EA 

is real valued, then 

Proof. The result follows immediately observing that 

• 
Proof of Theorem 6.13. That q;(z, 0; TJ) and qt,.(z, 0; TJ) arereal valued 
and Borel measurable for any 0 E 9 and any 'fJ > 0 follows immediately 
from compactness of e and continuity of qt(z, 0). It follows further from 
Lemma D6 that { q; (., 0; 'fJ) : t E N} is equicontinuous on Z. Theorem 6.5 
then implies that (q;(zt, 0; TJ)) is Lo-approximable by (et)· The weak LLN 
for q;(zt,O;TJ) then follows from Theorem 6.3 since the moment condition 
in Theorem 6.3 clearly follows from the moment condition on dt(Zt) main
tained in the present theorem. The proof of the weak LLN for qtoo(Zt, 0; TJ) 
is completely analogous. • 

Proof of Theorem 6.14. Since q;(z, 0; TJ) and qt,.(z, 0; TJ) arereal valued 
(and Borel measurable) for any 0 E 9 and 'fJ > 0 small enough, it follows 
from the assumptions and Lemma D7 that { q; (., 0; 'fJ) : t E N} satisfies 
Assumption 6.2 with V= Z. Theorem 6.6(a) then implies that (q;(zt, 0; TJ)) 
is Lo-approximable by (et)· The weak LLN for q;(zt, O;TJ) then follows from 
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Theorem 6.3 since the moment condition in Theorem 6.3 clearly follows 
from the moment condition on dt(Zt) maintained in the present theorem. 
The proof of the weak LLN for Qt.(Zt, B; "1) is completely analogous. • 

Proof of Theorem 6.15. The theorem follows from Theorems 6.4 and 
6.7(a) by similar arguments as in the proof of Theorem 6.14. • 
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Proof of Theorem 7 .1. First note that Rn is well-defined in view of 
Assumption 7.1(c). We next verify that the assumptions of Theorems 5.1 
and 5.2 are satisfied for qti(z, r, ß) and (zt) under Assumptions 7.1, 7.3 
and 7.1, 7.2, respectively. All assumptions are, apart from the local LLNs, 
immediately seen to hold. The local LLNs for qti follow from Theorems 6.14 
and 6.13, respectively. In applying Theorem 6.14 to qti under Assumptions 
7.1, 7.3 it is necessary to verify the 21-measurability of 

Given the compactness of T x B the measurability follows from Assump
tion 7.3(c), cf. Footnote 29 in Chapter 6. In applying Theorem 6.13 under 
Assumptions 7.1, 7.2 the measurability of dti(Zt) is automatically guar
anteed in view of continuity of qti and compactness ofT x B. (Note fur
thermore that the 21-measurability of dt(Zt) implicit in Assumption 7.1(c) 
is now seen to automatically hold under both sets of assumptions, since 
dt(Zt) = max1s;is;p9 dti(Zt).) Applying Theorems 5.1 and 5.2 we obtain 

sup ln-1 tqt(Zt,r,ß)- n-1 tEqt(Zt,r,ß)l--t 0 i.p. as n __.. oo 
TxB t=1 t=l 

and that 

{ n-1 t;;Eqt(Zt,r,ß): n E N} 
is equicontinuous. The measurability of the above supremum follows from 
Assumption 7.3(d) and Assumptions 7.1(a), 7.2, respectively. 

Assumption 7.1(c) clearly implies for some constant c ER that 

n 

n-1 LEqt(Zt,r,ß) ~ c 
t=1 

for all (r, ß) E T x Bandall n E N; hence there is a compact set K ~ RPq 

suchthat 
n 

n-1 LEqt(Zt,r,ß) E K 
t=1 



226 APPENDIX E. PROOFS FOR CHAPTER 7 

for all (r,ß) E T x Bandall n E N. Lemma 3.3 then implies that 

sup {}n (n-1 tqt(Zt,r,ß),r,ß) - {}n (n-1 tEqt(Zt,r,ß),r,ß) -+ 0 
TxB t=1 t=1 

in probability as n -+ oo. The measurability of the above supremum fol
lows from Assumption 7.3(d) and Assumptions 7.1(a),(b), 7.2, respectively. 
Lemma 3.3 also implies that 

is equicontinuous, and hence is also uniformly equicontinuous since T x 
B is compact. Therefore Lemma 3.2 implies the validity of (7.3) and the 
(uniform) equicontinuity of {Rn : n E N} on B. The consistency result 
now follows from Lemma 3.1. • 
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Lemma F1. 1 Let An,Bn be real or complex square random matrices. Let 
Bn be non-singular eventually [with probability tending to 1 ], let 

An - Bn __. 0 a.s. {i.p.j as n --. oo, 

and let the sequences Bn as well as B"t be bounded normwise a.s. [i.p.j. 
Then the sequences An and A;t are bounded normwise a.s. [i.p.j, An is 
non-singular eventually [with probability tending to 1} and 

A;i- B;i--. 0 a.s. [i.p.j as n--. oo. 

Proof. Ta prove the almost sure part of the lemma it suffices to consider 
non-random matrices. Without lass of generality we may then also assume 
that the matrices Bn are non-singular. For any complex matrix the absolute 
value of any of its characteristic roots is bounded by the norm of the matrix, 
see, e.g., MacDuffee (1956, p.28). Hence norm boundedness of B;;1 implies 
that the (possibly complex) characteristic roots of B;;1 are bounded in 
absolute value uniformly in n. Consequently, the characteristic roots of 
Bn are bounded away from zero in absolute value. By the same token 
the characteristic roots of Bn are bounded in absolute value uniformly in 
n. Consequently, c1 < idet(Bn)i < C!2 for all n for some finite positive 
constants c1, c:z. Since boundedness of An follows immediately from An -
Bn --. 0 and the assumptions, we see that also the characteristic roots of An 
are bounded in absolute value uniformly in n. Since An- Bn --. 0 and since 
B;;1 is bounded it follows that B;;1 An --.I, and hence det(An)/ det(Bn) --. 
1. Hence ci < ldet(An)l < c2 for positive finite constants ci, c2 and for large 
n. This shows that eventually A;t = A;;1 holds. Since the absolutely largest 
characteristic root of An is bounded as shown above, it follows further that 
the characteristic roots of An are bounded away from zero in absolute value 
for large n. Since Anis bounded so is adj(An)· Hence idet(An)i > ci implies 
that A;t is bounded as A;t = A;;1 =adj(An)/ det(An) for large n. Finally 
for large n we have A;t- B;;1 = A;;1 - B;;1 = A;;1(Bn- An)B;;1 --. 0 by 

1The norm of a complex matrix Ais defined as the square root of the largest 
eigenvalue of A • A, where A • is the conjugate transpose of A. 
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assumption and since A;;-1 and B;;-1 are bounded. Theinprobability part 
of the lemma can be proved along analogaus lines. • 

Proof of Lemma 8.1.2 Assumption 8.1(c) implies the existence of a se
quence nn E 2l with P(nn) ---+ 1 as n ---+ 00 such that Oll respective 
events nn the line segments between ( f n ' ßn) and ( f n' ßn) lie in the in
terior of T X B. We also may assume that the sets nn are disjoint from 
the exceptional null set in Assumption 8.1(b). For ease of notation set 
Q~(w,r,ß) = nN;t'Qn(Z1, ... ,Zn,T,ß). Then for wEnn we have by the 
mean value theorem applied to '\1 ß'Q~ 

'\1 ß'Q~(w, Tn, ßn) 

+'\! ßßQ~(w, {f~}, {,6~})(/Jn- ßn) 

+ '\lßTQ~(w,{f~},{,ß~})(fn -fn)· 

(F.1) 

Here '\1 ßßQ~(w, {f~}, {,ß~}) denotes the matrix whose j-th row is the j-th 
row of '\lßßQ~ evaluated at (w,f~,ß~), where (f~,,B~) is the mean value 
arising from the application of the mean value theorem to the j-th com
ponent of '\1 ß'Q~(w,fn, /Jn)· (Lemma 3 in Jennrich (1969) implies that the 
mean values actually can be chosen to be measurable.) It now follows from 
Assumption 8.1(d) that 

'\1 ß'Q~(w, Tn, ßn) 

+ '\lßßQ~(w, {f~}, {,6~})(/Jn- ßn) 

+ '\1 ßTQ~ (w, { f~}, {,ß~} )( Tn - 'Fn)· 

(F.2) 

Since Mn and Nn are non-singular with probability tending to one we have 
that 

and 

2The proof given here differs slightly from the proof given in Pötscher 
and Prucha (1991b), which is not entirely correct. The problern in the lat
ter proof is subtle and pertains to the step where we need to establish that 
nN:t''\1 ßßQnN:t- Cn and nN:t''\1 ß-rQnM:t converge to zero. Since the matrices 
of second order derivatives are evaluated row-wise at different mean values, the re
quired convergence does not follow directly from Assumptions 8.1(e),(f). Rather, 
as demonstrated below, a more subtle argumentation is needed. (The reason for 
this is that the rows of the corresponding matrices of second order derivatives 
appearing in these assumptions are evaluated at one and the same value.) How
ever, as is easily seen, the proof given in Pötscher and Prucha (1991b) is correct 
in case Nn and Mn are scalar multiples of the identity matrix. 
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are zero on a sequence of w-sets of probability tending to one. Hence 

Op(l) = V'ß'Q~(w,fn,ßn) (F.2') 

+ V'ßßQ~(w, {f~}, {,ß~})Nri Nn(ßn- ßn) 

+ V'ß-rQ~(w,{f~},{ß~})MriMn(fn -fn)· 

Assumption 8.1(f) implies that 

V'ß-rQ~(w,f~,ß~)Mri = nNri'V'ß-rQn(w,f~,ß~)Mri = op(l) 

for j = 1, ... ,Pß· Since the j-th row of V' ß-rQ~(w, {f~}, {.ß~} )Mri coincides 
with the j-th row of V' ß-rQ~(w, f~, ß~)Mri it follows that 

V' ß-rQ~(w, {f~}, {.ß~} )Mri = op(l). 

Combining this with (F.2') and using Assumption 8.1(c) we arrive at 

AnNn(ßn- ßn) = -V'ß'Q~(w,fn,ßn) + Op(l), (F.3) 

where An = V' ßßQ~(w, {f~}, {ß~})Nf. Multiplying (F.3) by the Moore
Penrose inverse of An and rearranging terms we get 

Nn(ßn- ßn) = [I- A~An] Nn(ßn- ßn) (F.4) 

- A~V'ß'Q~(w,fn,ßn) + A~op(l). 

Assumption 8.1(e) implies that 

V' ßßQ~(w,f~,ß~)Nri- Cn = nNri'V'ßßQn(w,f~,ß~)Nri- Cn = Op(l) 

for every j = l, ... ,pß. Since the j-th row of V'ßßQ~(w,{f!},{ß~})Nri 
coincides with the j-th row of V' ßßQ~(w, f~, iP,.)N;t it follows that 

Since the matrices Cn are non-singular with probability tending to one, this 
together with Lemma Fl implies that the first term on the r.h.s. of (F.4) is 
zero on a sequence of w-sets of probability tending to one, and furthermore 
that IA~I = Op(l) and hence that the last term on the r.h.s. of (F.4) is 
op(l). This gives 

+ +t - --AnnNn V'ß'Qn(W,Tn,ßn) + Op(l) (F.5) 

c: Dn(n + Op(l) 

where V' ß'Qn(w, fn, ßn) is shorthand for V' ß'Qn(zb ... , Zn, fn, ßn)· The last 
equality in (F.5) follows from Assumption 8.1(g), and since IA;tl = Op(l) 
and A;t -C;t = op(l) by Lemma FlandAn -Cn = op(l). Observe also that 
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IDnl = Op(l) and l(nl = Op(l) hold. The remaining parts of the lemma 
are obvious. • 

Lemma F2. Let ('IJn) and ({n) be sequences of random vectors in RP with 
'l]n = {n + op(l), and let H~ and H~ denote the distributions of 'l]n and 
~n, respectively. Assurne that the sequence (H~ : n E N) is tight. Let 1t be 
the set of all accumulation points of this sequence in the topology of weak 
convergence. Thenfor every Borel subset C ofRP with H(ßC) = 0 for all 
HE 1t we have 

H~(C)- H~(C)- 0 as n- oo. 

{Here ßC denotes the boundary of C.) 

Proof. Let C be as in the lemma. Assurne H~ ( C) - H~ ( C) does not con
verge to zero. Then there exists an e > 0 and a subsequence (ni) such 
that 

IH~,(C)- H~.(C)i > f 
for all i. Because of tightness and Prokhorov's theorem there is a subs~ 
quence (ni;) of (ni) with 

Since 'l]n,. and {n,. differ only by a term that is op{l) we also get 
3 3 

H~,.~H. 
3 

Since H(ßC) = 0 by assumption we obtain 

Ht_(C) -H(C) 
3 

and 
H~,. (C)- H(C), 

3 

which contradicts 
IH~.(C)- H~.(C)i > f 

for all i. • 
· Remark. (a) lt is readily seen that under the assumptions of the above 
lemmaalso the sequence (H~ : n E N) is tight and that this sequence also 
has 1l as the set of its accumulation points. 

(b) If x E RP is a point of continuity of every cumulative distribution 
function F corresponding to a HE 1t, then F:f(x) -F~(x)- 0 as n- oo, 
where F:f and F~ denote the cumulative distribution functions of 'IJn and 
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~n, respectively. This follows from Lemma F2 by choosing C = ( -oo, x] 
and observing that x is a continuity point of F if and only if H(8C) = 0. 

Corollary F3. Let (11n) and ((n) be sequences of random vectors in RP 
and Rq, respectively, and let (An) be a sequence of bounded {non-random) 
p x q matrices. Suppose 

and 
D 

(n-(· 

Let ~n = An(n and 1/Jn = An(. 
(a) Then (H~ : n E N) is tight, and hence the conclusions of Lemma 

F2 hold. Furthermore, the set 1l consists of all distributions of random 
variables of the form A(, where A is an accumulation point of the sequence 
(An)· 

(b) If H1: denotes the distribution of 1/Jn, then ( H1: : n E N) is tight and 
its set of accumulation points coincides with 1l. Furthermore, 

H~(C)- H~(C)---+ 0 as n---+ oo 

for every Borel set C of RP which satisfies H(8C) = 0 for every HE 1l. 

Proof. Tightness of the sequence H~ follows from boundedness of (An) 
and (n ~ (. Part (a) then follows immediately from Lemma F2. The 
first two claims in part (b) are readily verified. To prove the last claim in 
part(b) it suffi.ces to show that H~ ( C) - H1: ( C) ---+ 0. This follows from 
a subsequence argument similar to the one in the proof of Lemma F2, 
observing that along subsequences (ni) for which An, converges to A, say, 
both ~n, and 1/Jn, converge to A( in distribution. • 

Corollary F4. Suppose the assumptions of Corollary F9 hold. Let F:l,, 
F~, and F:f be the cumulative distributionfunctions ofryn, ~n = An(n, and 
1/Jn =An(. 

( a) Assurne that A( has a continuous distribution for any accumulation 
point A of the sequence (An)· Then 

F:f(x)- F!(x)---+ 0 and F:f(x)- F:f'(x)---+ 0 as n---+ oo 

for every x E RP. 
(b) Assurne that ( is distributed N (p., 'E), with 'E positive definite and 

that lim infn-+oo Amin (AnA~) > 0 holds. Then 

F:f(x)- F!(x)---+ 0 and F:f(x)- F:f'(x)---+ 0 as n---+ oo 
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for every x E RP. Oj course, F:f is here the cumulative distribution function 
of a normal distribution with mean AnfL and variance covariance matrix 
AnEA~. 

Proof. Part (a) is a consequence of Corollary F3 and Remark (b) after 
Lemma F2. Part (b) follows from part (a) since the condition on the small
est eigenvalues of AnA~ ensures that any accumulation point A has full row 
rank. Hence the distribution of A( is a nondegenerate normal distribution 
on RP and hence is continuous. • 

Proof of Corollary 8.2. To prove part (a') of the corollary observe that 

(D~Dn)+ D~CnNn(ßn- ßn) = (D~Dn)+ D~Cnc: Dn(n + op(1), 

since ICnl = Op(1), IDnl = Op(1) by Assumptions 8.1(e),(g), and since 

has been assumed in part (a') of the corollary. The result then follows 
observing that 

[(D~Dn)+ D~CnC;t Dn- I] (n = 0 

on a sequence of w-sets of probability tending to one. Part (a) follows as a 
special case. To prove part (b') observe from Lemma 8.1 that 

with 
[ ] 

1/2 
G = U' (c-1 D ED' c-11 )+ n n n n nn ' 

since Gn is bounded. The boundedness of Gn is seen as follows: Since 
IUnl = 1, Amin(E) > 0, 

C- 1 D ED' c-11 > >. · (E)C-1 D D' c-11 
n n n n - m1n n n n n ' 

and since C;1 DnED~C;11 and C;1 DnD~C;11 have the samerank d it suf
fices to show that the d non-zero eigenvalues of C;1 DnD~C;11 are bounded 
away from zero. The non-zero eigenvalues of C;1 DnD~C;11 coincide with 
the non-zero eigenvalues of D~C;11C;1 Dn. Since clearly 

since Amax(CnC~) = Amax(C~Cn) and since the latter is bounded by As
sumption 8.1(e), it suffices to show that the d non-zero eigenvalues of 
D~Dn, or equivalently of DnD~, are bounded away from zero. However, this 



APPENDIX F. PROOFS FOR CHAPTER 8 233 

is implied by the assumption that I(DnD~)+I = 0(1). Given the bounded
ness of Gn has been established, it now suffices to show that 

Since GnC;; 1 Dn(n and GnC;; 1 Dn(n have the same distribution and since 

-1 - -1 -GnCn Dn(n = GnCn Dn( + o(1) a.s., 

where (n and ( are as in the discussion following Lemma 8.1, it suffices 
to show that GnC;; 1Dn( is distributedas N(O,diag(Jd,O)). Since ( and ( 
have the same distribution it follows that GnC;; 1 Dn( is distributed N(O, <I>) 
with <I> = GnC;;1 Dn'E(GnC;;1 Dn)'. Substituting the expression for Gn 
into <I>, using the fact that Un diagonalizes C;;1 Dn'ED~C;; 11 by definition, 
and observing that rank(Dn) = d, it is readily seen that <I> = diag(Jd, 0). 
Part (b) follows as a special case of part (b') after premultiplication of 

1 -GnC;; Dn( by Un. • 
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Proof of Theorem 10.1. (a) We apply the Cramer-Wold device. Let c 
be a p1J x 1 vector with c' c = 1. Define 

X 'v.:-1/2 nt = C n Vt. 

Then Xnt is a square-integrable martingale difference array w.r.t. the fil
tration (~nt) where ~nt = ~t· We verify the conditions (3.18) - (3.21) of 
Theorem 3.2 in Hall and Heyde {1980). Clearly condition {3.21) is satisfied. 
{Actually, within the context of Theorem 10.1 this condition is not required 
to hold, cf. Hall and Heyde {1980, p.59).) In light of the discussion in Hall 
and Heyde {1980, p.53), condition (3.18) is equivalent to the condition that 

n 

L x~tl {IXntl > e) --+ 0 i.p. as n --+ 00 

t=1 
for every e > 0. We verify the latter condition by showing that even 

n 

ELX~tl {IXntl > e)--+ 0 as n--+ oo. 
t=1 

This is the case since 
n 

ELX~tl(IXntl > e) 
t=1 

n 

= E L IXntl2+61 (IXntl > €) / 1Xntl6 
t=1 

~ ne-6 ( n-1 t E IXntl2+6) 

( 
n 2+6) 

= ne-6 n-1 8E lc'vn-1/2vtl 

,; nc' lv.;-'/'1'+' ( n-1 t,E lv<l'+') 

n-612e-6 (.Xmin{n-1Vn))_1_612 (n-1 tE lvtl2+6) 
t=1 

= o{1) 
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by the assumptions of the theorem and since 

I vn-1/21 = (>-min wnn -1/2 

holds. We next verify condition (3.19). Since 

n 

n-1 LE lvtl2+<5 < oo 
t=1 

holds (vt) is tight and hence v:vi is Lo-approximable by (et) in view of 
Theorem 6.5 applied to the functions g( v) = vivj, where v: and vi denote 
the i-th component of the vectors Vt and v. Consequently 

n 

n-1 L(VtV~ - Evtv~) ---+ 0 
t=1 

in probability as n ---+ oo by Theorem 6.3 applied to v;v1. Observing that 

ln1/2vn-1/21 = (>.min(n-1Vn)) -1/2 

is bounded (for large n), it follows that 

t x~t- 1 = nc'vn-112 (n-1 t(VtV~- EVtV~)) vn-112 c---+ 0 
t=1 t=1 

in probability as n---+ oo. Finally condition (3.20) follows since 

E ( max X~t) :::; E ~ X~t = c' c = 1. 
1<t<n ~ -- t=1 

(b) Again using the Cramer-Wold device consider Ut = c'vt, c'c = 1. Let 

Then n-1Un ---+ U* = c'V*c. Consider first the case where U* > 0. Then 
(ut) satisfies, as is easily seen, all assumptions of part (a) of the theorem. 
Hence 

n 

u;; 112 2: ut ~ N(o, 1). 
t=1 

Since n- 1 12U~/2 ---+ (U*) 112 we obtain 

n 

n-112 L Ut ~ N(O, U*). 
t=1 
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Next consider the case U* = 0. But then 

Since L2-convergence implies convergence in distribution we have also in 
this case 

n 

n-112 L Ut ~ N(O, U*) 
t=l 

with U* = 0, where N(O, 0) denotes the degenerate normal distribution 
concentrated at zero. • 

Proof of Theorem 10.2. (a) Follows from Corollary 4.4 in Wooldridge 
(1986) or Theorem 5.3 in Gallant and White (1988) and the Cramer-Wold 
device. (b) Is proved analogously as part (b) of Theorem 10.1. • 
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Proof of Lemma 11.1. Let ft be as in Assumption 11.2. To prove the 
lemma we verify the assumptions of Theorem 5.2 for ft. Assumption 5.1 is 
satisfied since T' x B' is compact by Assumption 11.1(d). Assumptions B 
and C for Ut : t E N} are implied by Assumption 11.2. Assumption D fol
lows from Assumption 11.1(f). Assumption 5.2 now follows from Theorem 
6.13 in light of Assumption 11.1(e). Theorem 5.2(b) implies, in particu
lar, continuity of Eft(Zt, T, ß). This, together with continuity of ft and the 
compactness of T' x B', implies measurability of the suprema in Lemma 
11.1. Theorem 5.2(a) then completes the proof. • 

Proof of Theorem 11.2. We first prove part (a) of the theorem. To 
prove the result we verify Assumption 8.1 maintained by Lemma 8.1 and 
Corollary 8.2. Assumptions 8.1(a)-(d) follow immediately from Assump
tions 11.1(a)-(d) upon setting Mn= n 112J and Nn = n 112J. From Lemma 
11.1 we have that 

and 

sup IV ßßQn- Ctnl --+ 0 i.p. as n--+ oo 
T'xB' 

sup JV ßrQn- C2nJ --+ 0 i.p. as n--+ oo 
T'xB' 

and that C1n and C2n are equicontinuous on T' x B'. For any sequence 
(in, ßn) as in Assumption 8.1(e) we can in light of Assumption 11.1(d) 
assume w.l.o.g. that (fn,ßn) E T' x B' possibly after redefi.ning (fn,ßn) on 
w-sets, where the probability of those sets tends to zero as n--+ oo. Since 

(fn,ßn)- (fn,ßn)--+ 0 i.p. as n--+ oo, 

it follows then from Lemma 3.2 that 

V ßßQn(Zt' ... 'Zn,Tn, ßn) - Ctn(fn, ßn) --+ 0 i.p. as n--+ 00 

and 

V ßrQn(Zt, ... 'Zn, Tn, ßn)- C2n(fn, ßn)--+ 0 i.p. as n--+ 00. 

Clearly, Ctn(fn,ßn) = Cn, and C2n(fn,ßn) = 0 by Assumption 11.3(b). 
This implies Assumptions 8.1(e),(f), observing furthermore that JCnl = 
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0(1) by the dominance condition in Assumption 11.2 and that IC;il = 
IC;1 1 = 0(1) by Assumption 11.3(c). lt remains that we verify Assumption 
8.1(g) under either Assumption 11.4 or 11.5. Putting 

Vn = n2 E [\7 ß'§_n \7 ß§_nJ 

observe that 
liminf Amin (n- 1Vn) > 0 
n-+oo 

by Assumption 11.3(d). Now let Assumption 11.4 hold and put Vt = 
\7 ß'qt(Zt, f', /3). Then applying Theorem 6.5 to \7 ß'qt(z, f', /3) and (zt) and 
making use of Assumptions 11.1(e),(f) and Assumption 11.4, it follows 
that (vt) is Lo-approximable by (et)· From Assumption 11.4 and Theorem 
10.1(a) it follows that 

-n112 D;;1\7 ß'§_n ...!!.... N(O, I). 

The boundedness of n-1 Vn follows from the discussion after Theorem 10.2. 
Next suppose Assumption 11.5 holds and put 

Vt,n = \7 ß'qt(Zt, Tn, ßn)- E\7 ß'qt(Zt, Tn, ßn)• 

Then the same conclusion now follows from Theorem 10.2(a) observing 
that 

and that E\7 ß§_n = 0 for all n. The boundedness of n-1 Vn follows again 
from the discussion after Theorem 10.2. Since Dn is the square root of 
n-1Vn. the boundedness of Dn now follows (under both sets of assump
tions) from the boundedness of n - 1 Vn. This establishes Assumption 8.1 (g) 
with 

(n = -n1/ 2 D;;1\7 ß'§_n. 

Furthermore, Dn is nonsingular for large n and ID;il = ID;1 1 = 0(1) by 
Assumption 11.3(d). Part (a) of the theorem now follows from Lemma 8.1 
and Corollary 8.2(a). 

We next prove part (b) of the theorem. The proof is identical to that of 
part (a) up to the point of verification of Assumption 8.1(g) under either 
Assumption 11.4 or 11.5. Putting 

Vn = n 2 E (\7 ß' B..n \7 ß§_nJ 

observe that n-1 Vn --+ A by assumption. Now let Assumption 11.4 hold 
and put Vt = Vß'qt(Zt,f',/3). Then exactly as in the proof of part (a) it 
follows that (vt) is Lo-approximable by (et)· From Assumption 11.4 and 
Theorem 10.1(b) it follows that 

-n1/2yrß,§_n...!!.... N(O,A). 
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Next suppose Assumption 11.5 holds and put 

Vt,n = '\7 ß'qt(Zt, Tn, ßn) - E'\7 ß'qt(Zt, Tn, ßn)· 

Then the same conclusion now follows from Theorem 10.2(b) observing 
that 

E [ (tvt,n) (tv~,n)] = Vn = n 2E[Vß'Sn VßSnJ 

and that E'\7 ßSn = 0 for all n. This establishes Assumption 8.1(g) with 

(n = -n112V ß'Sn 

and Dn = I. Part (b) of the theorem now follows from Lemma 8.1 and the 
fact that ICnl = 0(1). • 

Theorem Hl. Suppose the assumptions of Theorem 11.2{b) hold and let 
r denote the rank of A. 

{i) Let U1 be an orthogonal matrix of eigenvectors of A, where the first 
r columns correspond to the nonzero eigenvalues. Then 

where 
~ U [ Ir 0 ] U' 
.::.1 = 1 0 0 I· 

{ii) Suppose Cn --+ C and U2 is an orthogonal matrix of eigenvectors of 
c-t AC-11 , where the first r columns correspond to the nonzero eigenvalues. 
Then 

n 112 (/Jn - ßn) ~ N(O, c-t AC-11), 

1/2 ' - D Cn (ßn - ßn) ~ N(O, A), 

(A +) 112Cn112(/Jn- ßn) ~ N(O, 2t), 

and 

where 
~ TT [ Ir 0 ] U' .::,2 = V2 0 0 2• 

(Of course, if A is nonsingular then 2 1 and 22 reduce to the identity ma
trix.) 

Proof. By Theorem 11.2(b) we have 

1/2 ' - D Cnn (ßn- ßn) ~ N(O,A). (H.l) 
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Part (i) now follows from (A +)112 A(A +)112 = 3 1 which is a well-known 
property of the Moore-Penrose inverse. The first two distributional con
vergence results in part (ii) follow immediately from (H.1) and Cn - C, 
observing that C is nonsingular as a consequence of IC;1 1 = 0(1). The 
last two distributional convergence results follow analogously to part (i) 
observing that 

and 

• 
Proof ofLemma 11.3. Let ft be as in Assumption 11.6(c). Part (a) ofthe 
lemma follows analogously as Lemma 11.1. To prove part (b) of the lemma 
observe that because of Assumption 11.6(c) there exist compact subsets 
Ki of respective Euclidean spaces such that ESn E K1, EV ßSn E K2, 
EV.,.Sn E K3, EVß.,.Sn E K4 and EVßßSn E Ks for all (r,ß) E T' x B' 
and all n. Assumption 11.6(a) implies clearly that the restrictions of G1n 

and G2n to the Cartesian product of the appropriate Euclidean space with 
T' x B' are equicontinuous on the subset K x T' x B' for any compact 
subset K of the appropriate Euclidean space. Putting K = K1 x K2 x Ks 
for G1n and K = K1 X K2 X K3 X K4 for G2n, part (b) follows from part (a) 
and Lemma 3.3. The measurability of the suprema in part (b) follows from 
the continuity of the functions involved and from compactness ofT' x B'. • 

Proof of Lemma 11.4. From a Taylor series expansion of 

araund ES..n we obtain 

VßQn(Z1, .. ·, Zn,Tn,ßn)- VßQn(Tn,ßn) 
Vc{)n(ES..n,fn,ßn)(VßS..n- EVßS..n) 
+ (S..n- ES..n)' [V cc{)n( {e~}, Tn, ßn)V ßS..n +V cß{)n( {X~}, Tn, ßn)] 

observing that EV ßS..n = V ßES..n in light of the dominance condition 
in Assumption 11.6(c). Here the matrix Vcc{)n({e~},fn,ßn) denotes the 
matrix whose j-th column coincides with the j-th column of the matrix 
Vcc{)n(e~,fn,ßn), where the e~ denote mean values. The matrix 
Vcß{)n({x~},fn,ßn) is defined analogously. (The mean values can be cho
sen measurably by Lemma 3 in Jennrich (1969).) Since S..n - ES..n - 0 
i.p. by Lemma 11.3 we have e~ - ES..n - 0 and X~ - ES..n - 0 i.p. Since 
V cc{)n and V cß{)n restricted to Ki X T' X B' are equicontinuous for any 
compact set Ki it follows from Lemma 3.2(b) that Vcc{)n(.,fn,ßn) and 



APPENDIX H. PROOFS FOR CHAPTER 11 243 

'\1 cß'!9n(., fn, ßn) restricted to Ki are equicontinuous. Upon choosing Ki 
suchthat int(Ki) 2 K1 where K1 is the compact set defined in the proof 
of Lemma 11.3, it follows that 

'\lcc'!9n({~~},fn,ßn) = "Vcc'!9n(ES..n,fn,ßn) +op(1) 

and 
'\1 cß'!9n( {X~}, fn, ßn) = "V cß'!9n(ES..n, Tn, ßn) + Op(l). 

By Lemma 11.3 we further have '\1 ßS..n = E'\1 ßS..n + op(1). Since E'\1 ßS..n is 
bounded by Assumption 11.6(c) and since '\lcc'!9n(ES..n,fn,ßn) is bounded 
by Assumption 11.6(a) and the fact that ES..n E K 1 we have 

'\1 cc{)n (~n, Tn, ßn)'\1 ßS..n + \1 cß'!9n(Xn, Tn, ßn) 
'\1 cc'!9n(ES..n, Tn, ßn)E'\1 ßS..n + '\1 cß'!9n(ES..n, Tn, ßn) + Op(1). 

The lemma now follows since S..n- ES..n = Ov(n-112). • 
Proof of Theorem 11.5. We first prove part (a) of the theorem. To 
prove the result we verify Assumption 8.1 maintained by Lemma 8.1 and 
Corollary 8.2. Assumptions 8.1(a)-(d) follow immediately from Assump
tions 11.1(a)-(d) and Assumption 11.6(a) upon setting Mn = n112 I and 
Nn = n 112 I. From Lemma 11.3 we have that 

and 

sup l'\1 ßßQn- C1nl ~ 0 i.p. as n ~ oo 
T'xB' 

sup l'\1 ßrQn - C2nl ~ 0 i.p. as n ~ oo 
T'xB' 

and that C1n and C2n are equicontinuous on T' x B'. For any sequence 
(fn,ßn) as in Assumption 8.1(e) we can in light of Assumption 11.1(d) 
assume w.l.o.g. that (fn,ßn) E T' x B' possibly after redefining (fn,/3n) on 
w-sets the probability of which tends to zero as n ~ oo. Since 

(fn,/3n)- (fn,ßn) ~ 0 i.p. as n ~ oo, 

it follows then from Lemma 3.2 that 

and 

where 
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and 
C2n(Tn, ßn) = G2n(O, E'\1 ßS..n, 0, E'\1 ß-rS..n, Tn, ßn) 

in view of Assumptions 11.7(a),(b). Observe that Assumption 11.6(b) im
plies also 

'\1 cß19n(O, T, ß) = 0 

(and hence '\lßc19n(O,r,ß) = 0), 

and 
'\1 ßß19n(0, T, ß) = 0 

for (r, ß) E int(T' x B'). Consequently, 

Ctn(Tn,ßn) = E'\Jß,s_n ['\lcc19n(0,1'n,ßn)] E'\lßS..n = Cn 

and 
C2n(Tn, ßn) = 0. 

Because of Assumptions 11.6(a),(c) and since ('Fn,ßn) E T' X B' we have 

'\lcc19n(O, Tn, ßn) = 0(1), 

E'\1 ß'S..n = 0(1) 

and hence ICnl = 0(1). Furthermore IC;il = IC;1 1 = 0(1) because of 
Assumptions 11.7(c),(d). This verifies Assumptions 8.1(e),(f). It remains 
to verify Assumption 8.1(g) under either Assumption 11.8 or 11.9. Because 
of Assumptions 11.6 and 11.7(a) we have 

'\lßQn(Tn,ßn) = '\lc19n(0,1'n,/3n)E'\lßS..n + '\lß19n(0,1'n,ßn) = 0. 

Herewe have made use ofthe fact that '\1 ßESn exists and satisfies '\1 ßESn = 
E'\1 ßSn on int(T' X B') as a consequence of Assumption 11.6(c). It now 
follows from Lemma 11.4 that 

observing that ES..n = 0, 

and 
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The condition that S.n = Op(n-112) maintained in Lemma 11.4 follows from 
the CLT and from the boundedness of n-1 Vn established below. Putting 
Vn = n2 E[S.nS.~] observe that 

liminf Amin(n-1Vn) > 0 
n-+oo 

by Assumption 11.7(e). Given Assumption 11.8 holds, put Vt = Qt(Zt, 1', /3). 
Then applying Theorem 6.5 to qt(z,r,/3) and (zt) and making use of AB
sumptions 11.1(e),(f) and Assumption 11.6(c), it follows that (vt) is Lo
approximable by (et)· From Assumption 11.8 and Theorem 10.1(a) it fol
lows that 

-vn-1/2(n§_n)...!:..... ( 

where ( is distributedas N(O,I). The boundedness of n-1Vn follows from 
the discussion after Theorem 10.2. Next put 

Vt,n = Qt(Zt 1 Tn 1 ßn)- Eqt(Zt 1 Tn 1 ßn)• 

Then the same conclusion is true under Assumption 11.9 in view of Theo
rem 10.2(a) observing that 

and that ES.n = 0 for all n. The boundedness of n-1 Vn follows again from 
the discussion after Theorem 10.2. Defining (n = -Vn-1/2(n§_n) and given 

Dn = E'\lß'§_n ['\lcc'l?n(0,1'n 1 ßn)] (nE§_n§_~) 112 , 

Assumption 8.1(g) follows from (H.2) provided we can establish bounded
ness of Dn. As discussed above '\1 cc'l?n(O, Tn, ßn) = 0(1) and E'\1 ß'S.n = 
0 ( 1). Since ( nE S.nS.~) 112 is the square root of n - 1 Vn, its boundedness fol
lows from the boundedness of n-1Vn. Hence !Dnl = 0(1). By Assumption 
11.7(d) the matrix E'\lß'S.n and hence Dn has full row-rank for !argen in 
light of Assumptions 11.7(c),(e). Furthermore, the sequence I(DnD~)-1 1 is 
bounded since clearly 

Amin(DnD~) 

~ Amin(nE§_n§_~)>.!in ('\! cc'l?n(O, Tn, ßn)) Amin(E'\1 ß'§..nE'\1 ß§_n) 

is bounded away from zero by Assumptions 11.7(c)-(e). Part (a) of the 
theorem now follows from Lemma 8.1 and Corollary 8.2(b). 

We next prove part (b) of the theorem. The proof is identical to that 
of part (a) up to the point of verification of Assumption 8.1(g) under ei
ther Assumption 11.8 or 11.9. Note that equation (H.2) again follows from 
Lemma 11.4. The condition that S.n = Op(n-112) maintained in Lemma 
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11.4 follows from the CLT established below. Putting Vn = n2 E[S.nS.~] ob
serve that n-1Vn---+ A by assumption. Given Assumption 11.8 holds, put 
Vt = qt(Zt, f, ß). Then exactly as in the proof of part (a) it follows that (vt) 
is Lo-approximable by (et)· From Assumption 11.8 and Theorem 10.1(b) 
it follows that 

-n112s_n ~ N(O,A). 

Next put 
Vt,n = qt(Zt, Tn, ßn) - Eqt(Zt, Tn, ßn)· 

Then the same conclusion is true under Assumption 11.9 in view of Theo
rem 10.2(b) observing that 

and that ES.n = 0 for all n. Defining (n = -n112Q_n and given 

Dn = E'Vß'Q.n ['Vcc'!?n(O,fn,ßn)], 

Assumption 8.1(g) follows from (H.2) provided we can establish bounded
ness of Dn. As discussed above 'V cc'!?n(O, fn, ßn) = 0(1), E'V ß'S.n = 0(1), 
and hence IDnl = 0(1). By Assumption 11.7(d) the matrix E'V ß'S.n and 
hence Dn has full row-rank for large n in light of Assumption 11.7(c). 
Furthermore, the sequence J(DnD~)-1 J is bounded since clearly 

is bounded away from zero by Assumptions 11.7(c),(d). Part (b) of the 
theorem now follows from Lemma 8.1. • 

Theorem H2. Suppose the assumptions of Theorem 11.5{b} hold. 
{i) If A is nonsingular then 

{ii} Suppose Dn is a square matrix and U1 is an orthogonal matrix of 
eigenvectors of A, where the first r columns correspond to the r nonzero 
eigenvalues of A. Then 

where 
~ U [Ir 0 ] U' .::.1 = 1 0 0 1' 
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(iii) Suppose Dn -t D and U2 is an orthogonal matrix of eigenvectors of 
DAD', where the first r columns correspond to the r nonzero eigenvalues 
of DAD'. Then 

1/2 ~ - D 1 Cnn (ßn- ßn) ---+ N(O, DAD ), 

and hence 

where 
~ U [ Ir 0 ] U.' .::::.2 = 2 0 0 2" 

(iv) Suppose Cn -t C, Dn -t D and U3 is an orthogonal matrix of 
eigenvectors of c-1 DAD'C-11 , where the first r columns correspond to the 
r nonzero eigenvalues of c-1 D AD' c-v. Then 

and 

where 

n 112 (/Jn- ßn) ~ N(O, c-1 DAD'C-1'), 

Cn112 (/Jn - ßn) ~ N(O, DAD'), 

((DAD')+) 112 Cn112(/Jn- ßn) ~ N(O,S2), 

~ U [ Ir 0 ] U.' .::::.3 = 3 0 0 3• 

(Of course, if A is nonsingular, then 31 reduces to the identity matrix, 
and if DAD' is nonsingular, then 22 and 3 3 reduce to the identity matrix. 
Observe also that D has full row-rank since I(DnD~)- 1 1 = 0(1) holds. Also 
rank(C-1 DAD'C-11 ) = rank(DAD') holds.) 

Proof. By Theorem 11.5(b) we have 

1/2 ~ - -1 n (ßn - ßn) = Cn Dn(n + op(1) 

with (n ~ N(O, A). Part (i) now follows from Corollary 8.2(b) observing 
that Dn has full row-rank and that I (DnD~)-1 1 = 0(1), as was established 
in the proof of Theorem 11.5(b). Under the assumptions of part (ii) Dn is 
a square matrix and hence 

-1 1/2 ~ - D Dn Cnn (ßn - ßn) ---+ N(O, A), 

since ID;:;- 1 1 = 0(1) as a consequence of I (DnD~)-1 1 = 0(1). The result 
in part (ii) now follows using standard properties of the Moore-Penrose 
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inverse, analogously as in the proof of Theorem Hl. By Theorem 11.5(b) 
we have that 

1/2 A -Cnn (ßn- ßn) = Dn(n + Op(l) 

with (n ~ N(O, A). Parts (iii) and (iv) are now proved by analogous 
argumentation as in the proof of Theorem Hl. • 

Remark. We note that in case A is singular and Dn is not a square matrix 
one can give examples where ((C;;1 DnAD~C;;1')+) 112n112(ßn- ßn) does 
not converge in distribution. Hence in this case no analogue to part (i) of 
Theorem H2 exists. 
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The following lemma follows immediately from Lemma 2.1 in McLeish 
(1975a) and Hölder's inequality observing that 

lcov(X, Y)l = IE {Y [E(X I ~)- E(X)]}I, 

cf. also Hall and Heyde (1980), Appendix 111. 

Lemma 11. Let X be a ~-measurable and let Y be a ~-measurable random 
variable such thatfor 1 ~ p ~ s ~ oo andp-1+q-1 = 1 we have IIXIIs < oo, 
IIYIIq < oo. Then 

where 

and 

lcov(X, Y)l < 2(21/p + 1)ä(~, ~) 1/p-1/s IIXIIs IIYIIq, 

lcov(X, Y)l ~ 2(/J(~, ~) 1- 1/s IIXIIs IIYIIq, 

ä(~, ~) = sup {IP(F n G)- P(F)P(G)I: FE~. GE~} 

(/J(~, ~) = sup {IP(GIF)- P(G)I: FE~. GE~. P(F) > 0}. 

Lemma 12. Let (wt,n : t E N, n E N) be a real valued process with 
approximation errors 

Vm(w) = supsup llwt,n- E(wt,nlet+m• ... , et-m)ll2 
n t 

with respect to the basis process (et)tEZ· Let a(k) and cfJ(k) denote the a
mixing and c/J-mixing coefficients of ( et) and let 

Cw = supsup llwt,nllr < oo 
n t 

for some r ~ 2, then for all t E N, n E N, m ~ 0, T ~ 0: 

lcov(wt,n, Wt+T,n)l ~ 4cw [vm(w) + 2ew(21- 1/r + 1)a(r- 2m)1- 21r], 

lcov(wt,n, Wt+T,n)l < 4cw [vm(w) + 2cw4J(r- 2m)1- 1/r] . 
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Proof. First consider the case where Ewt,n = 0. Let 

then 

icov(wt,n, Wt+r,n)l 

< IE [(wt,n- h~n)wt+r,n) I+ IE [h~n(Wt+r,n- h~r,n)) I 

+ IE[h~nh~r,nJI 
< vm(w) l!wt+r,nll 2 + Vm(w) llh~nll 2 + IE[hrnh~r,nll 

using the triangle and Cauchy-Schwarz inequality. By Jensen's and Lya

punov's inequality we have 

Hence 
!cov(Wt,n, Wt+r,n)l ~ 2cwvm(w) + IE [h~nh~r,n) I· 

For i ~ j let 21{ be the a-field generated by ei, ... ,ej. Since h~n is 21:_+.:

measurable, hftr,n is 214-r-m-measurable and Ehf.'n = 0, it follows from 

Lemma I1 upon choosing X = hftr,n• Y = hf.'n and q = s = r that 

observing that ä(Qt:_+,;:t, Qt~r-m) ~ a(T- 2m), cf. Definition 6.1, and since 

llhf.'nllr ~ Cw by Jensen's inequality. The general case with Ewt,n possibly 

nonzero follows if we apply (I.l) to the centered process Wt,n - Ewt,n, 
observing that Cw has then tobe replaced by 2ew since 

The inequality with 4>-mixing coefficients is proved analogously. • 

Lemma 13. Let (vt,n : t E N, n E N) be a real valued process with 

approximation errors vm(v) with respect to the basis process (et)tEZ· Let 

c = supsup llv~ nll < oo 
n t ' r 

for some r ~ 2. Define 
cU)- V V '>t,n - t,n t+j,n 

for j ~ 0 and let vm(~U)) denote the corresponding approximation errors 

w.r.t. (et)· Then 
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for all m, and furthermore 

Vm(~(j)) :::; A [vm-j(v)](r-2)/(2r-2) 

form ::::: j with A = (c<3r-2)1225r-4) 1f(2r-2). The same resuZt holds if we 
define 

Proof. That vm(~(j)) :::; 2c for all m follows easily from the Minkowski, 
Cauchy-Schwarz and Jensen inequalities. For r = 2 the second bound now 
holds trivially, hence assume r > 2. Let m = k + j with k ::::: 0, then 

Vk+j(~(j)) 

sup sup l!vt,n Vt+j,n- E(vt,n Vt+j,nlet+m• · · ·, et-m)ll2 n t 

< supsup llvt,nVt+j,n- h~,nh~+j,nll 2 n t 

where hLn = E(vt,nlet+i• ... , et-i)· The latter inequality follows since 
h~,nh~+j,n is clearly measurable with respect to the a-field generated by 
et+m, ... , et-m and hence does not give a better L2-approximation to 
Vt,n Vt+j,n than the conditional mean. Consequently 

Observe that for any pair of random variables X and Y and s• > 2, s ::::: 1 
the inequality 

( ( • ) (. 2) ")1/(2•"-2) 
IIXYII2 :::; 2 IIYII: - 2 IIXII.i(::-1) IIXYII:. (I.2) 

holds given the norms on the r.h.s. are finite. (This inequality is implicit 
in the proof of Theorem 4.1 in Gallant and White (1988).) Observe further 
that 

and 

l!vt+j,n ll2 :::; c112, 

llh~,nll2:::; llvt,nll2:::; C112, 

ll(vt,n- h~,n)Vt+j,nllr < l!vt,nVt+j,nllr + llh~,n Vt+j,nllr 

< llvt,nl12r llvt+j,nl12r + llh~,nl12r llvt+j,n112r 
< 2c 
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using Hölder's and Jensen's inequalities. Similarly we obtain 

jjh~,n(vt+j,n- h~+j,n)llr ~ 2c. 

lt then follows from inequality (1.2) upon choosing s• = r, s = 2 that 

vm(e(jl) ~ A [vk(v)](r-2)/(2r-2) 

where A is given in the lemma. This establishes the result for e~32 = 

Vt,n Vt+j,n· The result for the centered process follows immediately ~ince 
Vt,n Vt+j,n and the centered process Vt,n Vt+j,n- Evt,n Vt+j,n have the same 

approximation errors. • 

Lemma 14. Let (vt,n : t E N,n E N) be a real valued process that 
is near epoch dependent on the basis process (et)tez with approximation 
errors vm(v) of size -2(r- 1)/(r- 2), and (et) is a.-mixing with mixing 
coefficients of size -rj(r- 2) or r/J-mixing with mixing coefficients of size 
-rj(r -1), for some r > 2. Let 

Define 
c(i) - v v · Ev v · <"t,n - t,n t+3,n - t,n t+3,n 

for j:?: 0. Then for 0 ~ j ~ n we have 

Eln-1 I:e!;212 ~C(j+1)/n, 
t=1 

where C < oo is a constant that does not depend on j or n (but only on c, 

r, vm(v) and a.(k) or rjJ(k)). 

Proof. Clearly 

n-j 2 n-j-1 n-j-r 

E n-1 "'""c(j) < 2n-2 "'"" "'"" E [c(j)c(j) J 
L...., <"t,n - L...., L...., <"t,n'>t+r,n 
t=l r=O t=l 

for each j :?: 0. Observing that 

s~p s~p lle!~2IL ~ 2c, 

we obtain from Lemma 12 applied to the process (e!~2) that 

n-j 2 

E n-1 "'""c(i) 
L....,<"t,n 
t=1 
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n-j-1 

~ 16cn-2 L (n- j- r) [vm(T)(eU>) 
T=O 

+ 4c(21- 1/r + 1)a(r- 2m(r))1- 21r] 
n-j-1 

< 16c(n- j)n-2 L Vm(T)(eU>) 

n-j-1 

+ 64c2 (21- 1/r + 1)(n- j)n-2 L a(r- 2m(r)) 1- 21r 

for any sequence m( T) ~ 0. Choosing in particular m( T) as the integer part 
of r /4 it follows further from Lemma 13 that 

Eln-1 ~e1;212 
t=1 

< 16c( n - j)n -2 { ~ 2c + '~ A [um( •)-; ( v)] ( •-2)/(2•-2) } 

00 

+ 64c2 (21- 1/r + 1)(n- j)n-2 La (r- 2m(r))1- 2/r 

00 

~ 128c2(j + 1)/n + 64cAn-1 L [vm(v)J(r-2)/(2r-2) 

m=O 
00 

+ 128c2 (21- 1/r + 1)n-1 :2: a(k)1- 21r 
k=O 

< C(j + 1)/n 
where the constant C does not depend on j or n. Note that the infinite 
sums are finite by the size assumptions on vk(v) and a(k). The proof for 
the case where (et) is t,b-mixing is analogous. • 

Proof of Lemma 12.1.1 Clearly, 

~~n- Wnl ~ ~~n- ~n~ + ~~n- E~nl + IE~n- Wnl· 

Part (a) of the lemma now follows if we can show that 

~~n- ~n~ = Op('Y1n), 

1 Because of Assumption 12.1 the space int(T x B) is separable and Vt(r,ß) 
is continuous a.s. on int(T X B). Consequently, Vt(fn,ßn) and ßt coincide with 
measurable functions on a set of probability one. Hence the various boundedness 
in probability statements involving q,n and ßt are well-defined. 
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and 
~~n- E~nl = Op('"Y2n), 

JE~n- Wnl = Op('"Y3n)· 

Let ei, Bn,i and Ön,i denote the i-th component of (r, ß), (fn, /Jn) and (fn, ßn), 
respectively, and let p =Pr+ Pß. Analogously to the proof of Lemma 8.1 we 
can find sets On E 21 with P(On) ~ 1 as n ~ oo suchthat for all w E On 
we have by the mean value theorem 

~~n- ~n~ 

lw(O, n)n-1 t t [V' O; Vt,n V~,n + Vt,n V' O; v~,n] !9= 8 (Bn,i- Ön,i) 

n-1 [ n-j p 

+ j;w(j,n) n-1 8~ [Y'o;Vt,nV~+i.n +vt,nY'o;v~+i.n 

+ Vt+j,n V' O; v~,n +V' O; Vt+j,n v~,n] !9= 8 (Bn,i- Ön,i) ll 
where the mean values 0 may be different in different entries. Note that 
each of the products involving a derivative w.r.t. ei is bounded normwise 
by p~ll~ and p~lltllt+i> respectively. (The factor p~ arises because of the 
possibility that each entry is evaluated at a different mean value.) Hence 

~~n- ~n~ 

< { 2lw(O, n)l n-1 t ll~ 
+ 4 ~ iw(j,n)i n-1 ~lltllt+i }p~ t jon,i- Ön,ij 

< ~p1i'IO• - ii. I { 2lw(O, n)l +4 ~ lw(j, n) I} n - 1 t, Ll1 

$ 4~p1i2n1i'IO•- ii.l n-1 ~t>1 { n-1/ 2 ~ lw(j, n)l} 

Op(1)'Y1n· 

Next consider 

n n-1 n-j 

= w(O, n)n-1 L ~}~2 + L w(j, n)n-1 L [~}~2 + ~}~2'] 
t=1 j=1 t=1 
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where we use the abbreviation ~1;2 = Vt,nV~+j,n -Evt,nV~+j,n· By Cheby
chev's and the triangle inequality it follows for M > 0 that 

p (l~n- E~nl > 'Y2nM) ~ (lll~n- E~nlll2 /('Y2nM)) 2 

< (~ lw(j, n)la(j, n)/("!2nM)) 
2 ~ 1/M' 

given 'Y2n > 0. (The case 'Y2n = 0 is trivial since lll~n- E~nlll2 ~ 'Y2n·) 
Since M is arbitrary, it follows that llj!n- Elj!nl = Op('Y2n)· Finally 

n-1 

IElj!n- Wnl ~ L lw(j, n)- 11 rJ(j, n) = 'Y3n· (1.3) 
j=O 

This proves part (a) of the lemma. Parts (b) and (c) of the lemma are 
obvious. Since 

00 

'Y3n ~ L lw(j, n)- 11 rJ(j, n), 
j=O 

part ( d) follows from the dominated convergence theorem ( applied to count
ing measure). Part (e) follows easily from (1.3). • 

Proof of Corollary 12.2. Clearly the general assumptions of Lemma 
12.1 hold. We proceed by calculating under near epoch dependence upper 
bounds for 'Yln, 'Y2n and 'Y3n· The rate for 'Yln was already established in 
Lemma 12.1. Now let ~~;2 = Vt,nV~+j,n- Evt,nV~+j,n> then 

and 

a(j, n)2 ~ E ln-1 ~ [<~~ + €~~'] r 
for j ~ 1. Observe that for any symmetric Pv x Pv matrix D = (dik) we 
have that 

i,k 

i,k 

~ 4-1(pv + 2) L ie~kDeikl 
i,k 
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where eik = ei + ek and ei denotes the i-th element of the standard basis 
in RP". Hence the term a(j, n)2 for j;?: 0 is bounded by 

Applying Lemma 14 to the process e~k Vt,n for each (i, k) and observing that 
vm(e~kv) :5 2vm(v) we obtain a(j,n)2 :5 C(j + 1)/n where the constant 
C < oo does not depend on j and n. Hence 

n-1 
1'2n :5 c1/2n-1/2 L: lw(j, n)l (j + 1)1/2 

j=O 
ln-1 

< const * n-112 L (j + 1)112 :5 const * (f.~/n) 112 . 
j=O 

Next recall that 

n n 

ry(O,n) = n-1 LEVt,nV~,n :5 n-1 L [Evt,n~,n +Evt,nV~,n] 
t=1 t=l 

and 

ry(j,n) = ln-1 I: [Evt,nV~+j,n +Evt+j,nV~,n)l 
t=1 

for j;?: 1. Using a similar reasoning as before and observing that Evt,n = 0 
we obtain for j ;?: 0 that 

ry(j, n) 

:5 4-1(pv + 2) ~ e~k (n-1 I: [Evt,nV~+j,n + Evt+j,nV~,n]) eik 
•,k t=1 

n-j 
= 2-1(pv +2) L n-1 I:cov(e~kVt,n,e~kvt+;,n) 

i,k t=l 

Applying Lemma 12 to the process e~k Vt,n for each (i, k) and observing that 
vm(e~k v) :5 2vm(v) yields for n;?: j: 

n-j 

ry(j,n) :5 2- 1 (pv+2)Ln-1 l:[4d{vm(e~kv) 
i,k t=l 
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+ 2d(21- 1/r + l)o(j- 2m)1- 2/r}) 

::; 2-1(pv + 2)p~n- 1 (n- j) [4d{ 2vm(v) 

+ 2d(21- 1/r + l)o(j- 2m)1- 2/r}) 

d = sup sup lle~k Vt,nllr ::; 2 sup sup llv~,n Vt,n 11~12 < oo. 
n t n t 

Choosing in particular m equal to [j I 4], the integer part of j I 4, yields 

sup 1J(j, n) ::; C (v[i/4j(v) + a(j- 2[j 14])1- 2/r) , 
n~1 

where C is a finite constant not depending on j. Since 
CXl 

I:sup7J(j,n) 
i=O n~1 

CXl 

< CL (v[i/41 (v) + a(j- 2[j 14])1- 2/r) 
i=O 

CXl 

< 4C L (vj(v) + o(j)1- 2/r) < oo 
i=O 

by the size requirements on vi(v) and o(j), it follows from Lemma 12.1(d) 
that /3n ---+ 0. Clearly, /1n and /2n converge to zero if ln = o(n113), which 
completes the proof for the case where (et) is o-mixing. The proof for the 
case where (et) is qrmixing is analogous. • 

Proof of Corollary 12.3. Clearly all conditions on the process (vt,n) 
maintained in Corollary 12.2 as well as Assumption 12.1 are satisfied. The 
weights are clearly bounded. Hence the rates for /1n and /2n obtained 
in Corollary 12.2 apply, since the derivation of these rates did not make 
use of the condition limn-.= w(j, n) = 1. Since c1l~ ::; ln ::; c2l~ for 
some positive finite constants (as discussed earlier) it follows that /1n = 
O(l~ln1 12 ) and 12n = O((l~) 3121n1 12 ). The rate for 13n follows from 
Lemma 12.1(e) and the discussion preceding Corollary 12.2 ifwe can estab
lish that L:,';0 jP supn~ 1 1](j, n) < oo. Exactly as in the proof of Corollary 
12.2 we get 

CXl CXl 

LjPsupry(j,n) < CLjP (v[i;41 (v) + a(j- 2[jl4])1- 2/r) 
j=O n~1 i=O 

CXl 

< 4P+1ci:(j+1)P (vi(v)+o(j)1- 21r). 
j=O 

Now, this sum is finite in view of the stronger size requirements maintained 
in the corollary. The consistency of ~ n and the rate for 'Yn follow now im
mediately observing that /1n is dominated by r 2n. The rate e~ "'n11(2P+3) 
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implying the optimal rate for 'Yn is obviously obtained by equating the 
orders of magnitude of 'Y2n and 'Y3n· The proof for the case where (et) is 
cf>-mixing is analogous. • 
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Proof of Theorem 13.1. Similarly as in the proof of Theorem 11.2 we 
may assume w.l.o.g. that {fn,/Jn) E T' X B'. The proofthat 

Cn - On -+ 0 i.p. as n -+ oo 

follows from the proof of Theorem 11.2 (with {fn,/Jn) replacing {fn,ßn)) 
under both sets of assumptions of the theorem. We next prove that 

A I • 
<Pn - DnDn -+ 0 1.p. as n -+ oo 

under the assumptions of part (a) of the theorem. Let ft(z,r,ß) denote 
the restriction to Z x T' x B' of any of the components of the matrix 
V ß'qt(z, r, ß)V ßqt(z, r, ß). We show that 

sup ln-1 t[ft(zt,r,ß)- Eft(zt,r,ß)]l-+ 0 i.p. as n-+ oo 
T'xB' t=1 

and that n - 1 E~=1 E ft ( Zt, r, ß) is equicontinuous on T' x B' by verifying 
the assumptions of Theorem 5.2. Assumption 5.1 is satisfied since T' x 
B' is compact by Assumption 11.1(d). Assumptions B and C in Chapter 
5 for Ut : t E N} are implied by Assumption 11.2*. Assumption D in 
Chapter 5 follows from Assumption 11.1{f). Assumption 5.2 now follows 
from Theorem 6.13 in light of Assumption 11.1{e). Thus all assumptions of 
Theorem 5.2 are satisfied. Consequently it follows from Lemma 3.2 that 

n 

n-1 L [!t(zt,fn,/Jn)- Eft(Zt,fn,ßn)]-+ 0 i.p. as n-+ oo, 
t=1 

and hence ~n- DnD~ -+ 0 i.p. as n-+ oo, observing that 

n 

DnD~ = n-1 L E[V ß'qt(Zt, Tn, ßn)'V ßqt(Zt, Tn, ßn)] 
t=1 

in view of Assumption 11.4. Part (a) of the theorem now follows using 
Lemma F1 and observing that IOn I = 0{1), IC;1 1 = 0{1) and IDnl = 0{1) 
by Theorem 11.2(a). We next prove that 
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under the assumptions of part (b) of the theorem by verifying the assump
tions of Corollary 12.2 with 

Assumption 12.1 follows from Assumption 11.1 observing that ßn- ßn = 
Op(n-112 ) holds by Theorem 11.2(a). The condition 

supsup llv~,n Vt,nllr < oo 
n t 

in Corollary 12.2 follows from Assumption 11.5*. The condition 

n 

n-1 LE.ß~ = 0(1) 
t=1 

follows from Assumption 13.1. The remaining conditions on the process 
(vt,n) are satisfied in light of Assumptions 11.3*(a) and 11.5*. The assump
tions on the weights in Corollary 12.2 are identical to those maintained in 
the theorem. Corollary 12.2 now yields 

Part (b) ofthe theorem now follows using Lemma F1 observing that ICnl = 
0(1), jC;1 1 = 0(1) and IDnl = 0(1) by Theorem 11.2(a). • 

Proof of Theorem 13.2. Similarly as in the proof of Theorem 11.5 we 
may assume w.l.o.g. that (fn,ßn) E T' x B'. We now show that 

Cn - Cn - 0 i.p. as n - 00 

under both sets of assumptions of the theorem. It follows from Lemma 11.3 
that 

sup IV' ßSn - EV' ßSnl - 0 i.p. as n - oo, 
T'xB' 

and that the restrictions of { E'V ßSn : n E N} to T' x B' are equicontinuous 
on T' X B'. The family of restrictions of V' cc'l?n(O, T, ß) to T' X B' is clearly 
equicontinuous in view of Assumption 11.6(a). lt follows from Lemma 3.2 
that 

and 
V' ccDn- V' cc'l?n(O, Tn, ßn) - 0 i.p. as n- 00. 

Furthermore, since IEY' ß~nl = 0(1) and j'V cc'l?n(O, Tn, ßn)l = 0(1) by 
Assumptions 11.1 and 11.6, it follows that Cn - Cn - 0 i.p. as n - oo. 
We next prove that 
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under the assumptions ofpart (a) of the theorem. Let ft(z, r,ß) denote the 
restriction to Z x T 1 x B 1 of any of the components of qt(z, T, ß)qt(z, T, ß)'. 
We show that 

sup ln-1 t [!t(Zt 1 T,ß)- Eft(Zt 1 T,ß)]l--+ 0 i.p. as n--+ oo 
T'xB' t=1 

and that n-1 E~=1 Eft(zt, r,ß) is equicontinuous on T 1 x B 1 by verifying 
the assumptions of Theorem 5.2. Assumption 5.1 is satisfied since T 1 x 
B 1 is compact by Assumption 11.1{d). Assumptions B and C in Chapter 
5 for Ut : t E N} are implied by Assumption 11.6*. Assumption D in 
Chapter 5 follows from Assumption 11.1(f). Assumption 5.2 now follows 
from Theorem 6.13 in light of Assumption 11.1{e). Thus all assumptions of 
Theorem 5.2 are satisfied. Consequently it follows from Lemma 3.2 that 

n 

n-1 L [!t(Zt,fn,ßn)- Eft(Zt 1 Tn,ßn)]--+ 0 i.p. as n--+ 00 1 

t=1 

and hence 
~ I • 
lPn - nES.nS.n --+ 0 1.p. as n --+ oo, 

since 
n 

nES.nS.~ = n-1 LEqt(Zt,Tn,ßn)qt(Zt,Tn,ßn)1 

t=1 

in view of Assumption 11.8. Note also that 

in view of the moment condition in Assumption 11.6*. Hence 

and clearly IDnD~I = 0{1). Part (a) now follows using Lemma F1, ob
serving that ICnl = 0{1) and !C;;-1 1 = 0{1) by Theorem 11.5{a). We next 
prove that 

~ I • 
Wn- nES.nS.n--+ 0 l.p. as n--+ oo 

under the assumptions of part (b) of the theorem by verifying the assump
tions of Corollary 12.2 with 

Assumption 12.1 follows from Assumption 11.1 observing that ßn- ßn = 
Op(n-112 ) holds by Theorem 11.5{a). The condition 

supsup llv~,n Vt,nllr < 00 
n t 
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in Corollary 12.2 follows from Assumption 11.9*. The condition 

n 

n-1 LE.ß~ = 0{1) 
t=l 

follows from Assumption 13.2. The remaining conditions on the process 
(vt,n) are satisfied in light of Assumptions 11.7*{a) and 11.9*. The assump
tions on the weights in Corollary 12.2 are identical to those maintained in 
the theorem. Corollary 12.2 now yields 

A I • 
Wn- nE§_n§_n ---+ 0 t.p. as n---+ oo. 

The boundedness of nE§_n§_~ is established in the proof of Theorem 11.5{ a). 
Part (b) of the theorem now follows analogously as part ( a). • 
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Proof of Theorem 14.1. To prove the theorem we verify Assumptions 
7.1 and 7.2 ofTheorem 7.1 withpq = 1 and '19n(c,T,ß) = c.1 Assumptions 
7.1(a),(b),(e) are trivially satisfied. Tightness of {H~ : n E N} follows 
from Assumption 14.1(d),(e), cf. Lemmata Cl and C2. Assumption 7.1(d) 
follows from Assumption 14.2 and Lemma 6.9. Furthermore, we have 

and 

sup IJtE-1 !tl1+..,. ~ a1 sup l!tl2+2..,. 
AxS A 

sup ilndet(E)I ~ a2 
s 

for some real constants a1 and a2 in view of Assumption 14.1(b). Hence 

dt(zt)l+'Y ~ 3'"~' [s~p iln idet(8ftf8y)iil+..,. 

+ (a2/2)1+'Y + (at/2)1+'"1' s~p lftl2+2..,.] . 

Consequently, also Assumption 7.l(c) is satisfied in view of Assumption 
14.1(c). Finally, equicontinuity of qt follows from Assumption 14.1(f) if we 
can show that 1: E-1 ft is equicontinuous on Z x A x S. This follows since in 
view of Assumptions 14.l(f),(g) Ut: t E N} is equicontinuous at any point 
(zo, ao) and supt ift(z, a)i is bounded in a suitable small neighborhood of 
(zo,ao), and since E-1(u) is continuous. • 

Lemma Kl. Let the Assumptions 14.1{a),{c)-(g) and 14.2 hold. Jilurther
more assume that S corresponds to the set of all symmetric and positive 
definite Pe x Pe matrices and that 

a1 = i~fi~f Amin (n-1 tEJd:) 
t=l 

1Within the context of Theorem 14.1 no nuisance parameter r is present. 
To incorporate this case into the framework of Theorem 7.1, we may view the 
objective function formally as a function on T x B, where T can be chosen as an 
arbitrary compact subset of some Euclidean space. We then also set fn = Tn = ro, 
an arbitrary element ofT. 
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is positive. 
(a) Then 

a2 = i~fi~f (-n-1 tEln ldet('Vy/t)l) 
t=l 

is well-defined and finite. Furthermore, 

supsup JRr,(a,u)J < oo 
n A 

for all O" E S. 
(b) For every 8 ER we can find constants 0 < c1 :::; c2 < oo, depending 

only on 8, a1, and a2, suchthat the level sets { (a, u) E AxS: Rr,(a, u) < 8} 
are contained in the compact set 

A X {u ES: c1:::; Amin(E(u)),Amax(E(u)):::; c2} 

for all n E N. 
(c) For every 8 ER we can find constants 0 < ci :::; c2 < oo, depending 

only on 8, a1, and a2, and a sequence f2n E 21 with P(f2n) -t 1 as n -t oo 

suchthat the level sets {(a,u) E A x S: Rn(w,a,u) < 8} are contained in 
the compact set 

A X {u ES: ci:::; Amin(E(u)), Amax(E(u)):::; c2} 

for all w E f2n and all n E N. 
( d} There exists a 8* E R such that for 8 ;:::: 8* the level sets { ( a, O") E 

A x S: Rr,(a, u) < 8} and {(a, u) E A x S: Rn(w, a, u) < 8} are nonempty 
for w E f2~ and all n E N, where 0~ E 21 satisfies P(O~) -t 1 as n -t oo. 

Proof. We first prove part (a). The finiteness of a2 follows immediately 
from Assumption 14.1(c). Since 

n 

sup JRr,(a, u) J :::; n-1 2:: E sup lln ldet('V y/t)ll + 1(1/2) lndet(E(u))l 
A t=l A 

n 

+ (2Amin (E(u)))-1 n-1 2:: E sup !Ut, 
t=l A 

the second claim in part (a) follows from Assumption 14.1(c). 
We next prove part (b). First note that a1 is also finite because of As

sumption 14.1(c). Clearly, 

Rn(a, u) ;:::: a2 + (pe/2) ln (Amin (E(u))) + (ai/2) (Amin (E(u)))-1 , 

where we have used the fact that for symmetric positive definite matrices 
C and D the inequality tr(CD) ;:::: Amin(C)Amax(D) holds. The function 

'1/J(x) = a2 + (pe/2) lnx + (ai/2)x-1 
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satisfies limx--+0 1/J(x) = oo and limx-+oo 1/J(x) = oo, since a1 > 0. Further
more, 1/J(x) has its unique minimizer at x = a1 fpe, is strictly decreasing for 
0 < x < adpe, and is strictly increasing for adPe < x < oo. Consider first 
the case where 6 > inf{'I/J(x) : x > 0}. Clearly, 1/J(x) = 6 has exactly two 
solutions in the set (0, oo). Define c1 as the smaller of the two solutions. lt 
then follows that the set 

{u ES: Rn(a,u) < 6 for some a E A} 

is a subset of 
{u ES: c1 ~Amin (:E(u))} 

and c1 depends only on 6, a1o and a2. Next observe that 

Rn(a, u) ~ a2 + (1/2) [ln (Amax (:E(u))) + (Pe- 1) ln (Amin (:E(u)))]. 

Utilizing what we have just shown, it follows further that for allu E S with 
Rn(a, u) < 6 for some a E A we have 

Rn(a, u) ~ a2 + {1/2) [ln (Amax (:E(u))) +{Fe- 1) ln (Amin (:E(u)))] 

~ a2 + {1/2) [ln (Amax (:E(u))) + {pe- 1) ln(cl)]. 

Hence, for allsuch lT we have Amax(:E(u)) ~ c2 where 

c2 = c!(p.-l) exp {2{6- a2)), 

which is finite and positive, and thus 

{u ES: Rn(a,u) < 6 for some a E A} 
~ { lT ES: Cl ~Amin {:E{u)), Amax {:E{u)) ~ C2} · 

This completes the proof for the case 6 > inf{'I/J{x) : x > 0}. For 6 ~ 
inf{'I/J(x): x > 0} theresultholds also, becausethesets {u ES: Rn(a,u) < 
6 for some a E A} are monotonically increasing with 6. 

We next prove part ( c). We first note that 

•~p~n-1 ~lnldet(V,t.)l-n-1 ~Elnldet(V,t.)ll 
and 

n n 

sup n-1 ').:Jd: -n-1 'LEid: 
A t=l t=l 

converge to zero in probability. This follows from Theorem 5.2 (utilizing 
Theorem 6.13 for the verification of the local LLNs postulated in Assump
tion 5.2). Observe that 
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is, in view of Assumption 14.1(c), contained in a compact set, say K, of 
symmetric nonnegative definite Pe x Pe matrices. Applying Lemma 3.3 with 
C equal to the set of all symmetric nonnegative definite Pe x Pe matrices 
and with 'l?n(.) = Amin(.), which clearly is continuous, it follows further 
that 

sup Amin (n-1 tftt:) -Amin (n-1 tEJtf:) 
A t=1 t=1 

converges to zero in probability. Choose E = at/2 and let On be the set of 
all w E 0 such that 

n n 

sup n-1 2)n ldet(Vy/t)l- n-1 I: Ein ldet(V'y/t)l < E 

A ~1 ~1 

and 

sup I Amin (n-1 f:Jtt:)- Amin (n-1 tEftf:) < E. 
A t=1 t=1 

Then P(On) -+ 1 holds, because of the uniform convergence results just es
tablished. (In view of the continuity of the various expressions the suprema 
are measurable and thus On E 2L) Hence for w E On, all n E N and for all 
a E A, u E S we have 

n 

Rn(w,a,u) 2': -n-1 2:Elnldet(Vy!t)l-e+(pe/2)ln(Amin(E(u))) 

and 

t=1 

+ (1/2) (Amin (n- 1 tEJtf:) -E) (Amin(E(u)))-1 
> (a2- at/2) + (Pe/2) ln (Amin (E(u))) 

+ (at/4) (Amin (E(u)))-1 

n 

Rn(w,a,u) > -n-12:Elnldet(V'y/t)l-e 
t=1 

+ (1/2) [ln (Amax (E(u))) + (pe- 1) ln (Amin (E(u)))] 

2': (a2- at/2) + (1/2) [In (Amax (E(u))) 

+ (Pe- 1) ln (Amin (E(u)))]. 

Exactly the same argument as in the proof of part (b) completes the proof 
of(c). 

Finally we prove part (d). Choose some u* ES and some e• > 0. Define 
0~ as the set of all w E 0 such that 

sup IRn (w,a,u*)- Rn (a,u*)l < e•. 
A 
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Then n~ E 21 and satisfies P(O~) -t 1 as n -t oo since 

sup IRn (w,a,a*)- R,., (a,a*)l 
A 

converges to zero in probability. This uniform convergence follows similarly 
as the uniform convergence results established in the proof of part (c). 
Setting 

8* = supsup IR..(a,a*)l + e• 
n A 

and observing that 8* < oo in view of Assumption 14.1(c) completes the 
proof. • 

Proof of Lemma 14.2. To prove the result we make use of part (b) of 
Theorem 6.12. As in the discussion before the lemma let 

Vt = ( I I )I 
Yt, · · ·, Yt-!+1 ' 

( I 1)1 Wt = Xt,f.t 

fort 2:: 1 and set Wt = 0 fort:::; 0. Clearly, given Assumption 14.5(b), the 

functions <P~k) satisfy the Lipschitz-type conditions on the iterated trans
formation functions in Theorem 6.12. As a consequence of Assumptions 
14.5(a) and 14.6 we have first for i = 1: 

IIYill1 < IIYi- gi (0,. · ·, 0, ao)ll 1 + lgi (0, ... , 0, ao)l 

< cdiiYi-1ll1 + .. · + IIYi-zll1) 

+ c2 (llxill 1 + lleill 1) + lgi(O, ... , 0, ao)l < oo. 

Applying the above inequality successively for i = 2, 3, ... , we see that 
IIYill 1 < oo for i = 1, ... , k* - 1 and in fact for all i 2:: 1. Hence the 
assumption in Theorem 6.12 that llvi 11 1 < oo for i = 0, ... , k* -1 is satisfied. 
Assumption 14.6 implies further that 

sup IJwtll 1 < oo. 
(2:1 

Since Wt = (x~, e~) 1 is L1-approximable by (et) by assumption, it then 
follows from part (b) of Theorem 6.12 that also Vt = (y~, ... ,y~-!+1)' is 
L1-approximable by (et)· By Lemma 6.9 it follows further that (y~,xD1 is 
L1-approximable and hence, in light of Theorem 6.1, also Lo-approximable 
by (et)· • 

Proof of Lemma 14.3. To prove the result we make use of part (a) of 

Theorem 6.12. Clearly, given Assumption 14.5(b), the functions <Pt> sat
isfy the Lipschitz-type conditions on the iterated transformation functions 
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in Theorem 6.12. Let V = R 1Py and W = RPx+P•. We next verify the 
assumption in Theorem 6.12(a) that 

l ,~..(k.) c- - - )I SUp 'Pt V, W1, ... , Wk• < 00 
t2:1 

for some elements v = (y~ 1, ... , y~1 )' E V and Wi E W. To this end choose 
v = (y', ... ,y')' E V and wi = w = (x',e')' E W where y E RPy, x E RP"' 
and e E RP• are arbitrary elements. Define 

- ,~..w> c- - -) at -'Pt v, w, ... , w 

and 
bt = ft (y, y, ... , y, x, ao). 

Observe that then 
Y = 9t (Y, ... ,y,x,bt,ao) 

and -- c-' -')' - ,~..(k.) c- - - ) V- Y , ... , Y -'Pt V, Wt,1, · · ·, Wt,k• 

with 'Üit,i+1 = (x', b~+i)', i = 0, ... , k*-1, holds. By Assumption 14.1(g) the 
sequence bt is bounded in absolute value. It now follows from Assumption 
14.5(b) that 

!at - v! lc/J~k·) (v, w, ... , w) - c/J~k·) (v, üit,1, ... , üit,k•) I 

< d2 . < const < oo, I e- bt 

e- bt~k·-1 
which verifies that 

I 1 - l,~..(k")(- - -)1 sup at - sup 'Pt v, w, ... , w < oo. 
t2:1 t2:1 

Let Yt and Wt be defined as in the proof of Lemma 14.2. As demonstrated 
in the proof of Lemma 14.2 we have l!vill 1 < oo for i = 0, ... , k* - 1. 
Furthermore, observe that 

sup l!wtl! 1 < oo 
t2:1 

by Assumption 14.6. It now follows from part (a) of Theorem 6.12 that 

sup l!vtl! 1 =supE !vt! < oo. 
t2:1 t2:1 
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Since 
n 

supn-1 LE IYtl:::; supE IYtl:::; supE lvtl, 
n~1 t=1 t~1 t~1 

Assumption 14.1(d) is seen to hold with "( = 1. • 
Proof of Theorem 14.4. Given Assumptions 14.6* and 14.7 it follows 
from Theorem 6.1 that (x~, €~)' is L1-approximable by the o:-mixing ba
sis process (et). Given Assumptions 14.3- 14.5, 14.6* it now follows from 
Lemma 14.2 that (y~, x~)' is Lo-approximable by the o:-mixing basis pro
cess (et). Thus Assumption 14.2 holds. Assumption 14.1(e) follows from 
Assumption 14.6*(b). Assumption 14.1(d) follows from Lemma 14.3. Thus 
also all of Assumption 14.1 holds. Consequently, the uniform convergence 
result and equicontinuity of {Rn : n E N} follows from Theorem 14.1. Fur
thermore, under the assumptions of part (a) of the theorem, identifiable 
uniqueness of ßn = ßo follows from Lemma 4.1. The claim in part (a) now 
follows from Theorem 14.1. To prove the claim in part (b) observe that in 
view of Ascoli-Arzela's theorem the convergence of Rn to R is uniform over 
B and R is continuous, since {Rn : n E N} is equicontinuous. Hence Rn 
converges uniformly over B to R in probability. Clearly, ßo is an identifi
ably unique minimizer of R, since B is compact and since R is continuous. 
Result (b) then follows from Lemma 3.1 ( applied to Rn and R, and not to 
Rn and Rn). • 

Proof of Lemma 14.5. The density of Et is given by 

p(e, cro) = (2n)-P"/2 [det (:E(cro))r112 exp ( -e'E(cro)-1e/2). 

Since Et is independent of {Yt-b···,Y1-I,Xt,···,xd it follows that the 
conditional distribution of 

Yt = 9t(Yt-b ... , Yt-1, Xt, Et, o:o) 

given Yt-1 Yt-1,···,Y1-I = Y1-1,Xt = Xt, ... ,x1 = x1 is identical 
with the distribution of 9t (Yt-1, ... , Yt-1, Xt, Et, o:o), cf. Theorem 5.3.22 in 
Gänssler and Stute (1977). Applying the transformation technique to 
gt (Yt-1 , ... , Yt-1, Xt, Et, o:o) it follows that the density of y t conditional on 
Yt-1 = Yt-1, ... ,Y1-I = Y1-I,Xt = Xt, ... ,x1 = x1 is given by 

n[ (Yt I Yt-1, ... , Y1-l, Xt, ... , x1;ßo) 

= (2n)-Pe/2 ldet(V' yft)l [det (E(cro))]-112 exp (-J;E(cro)-1 /t/2) 

where ft = !t (Yt, ... , Yt-1, Xt, o:o). An analogous argument shows that the 
conditional density 7r r (Yt I Yt-1' ... ' Yt-1' Xt; ßo) is given by the same for
mula. We next prove that ßo minimizes the conditional expectation in part 
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(b) of the lemma. To show this observe that 

E [qt (zt, ß) - qt (zt, ßo) I Yt-1 = Yt-1, ... , Yt-! = Yt-h Xt = xt] 

= j [qt (zt, ß)- qt (zt, ßo)J7rr (Yt I Yt-1, ... , Yt-t. xt; ßo) dyt 

is equal to the Kullback-Leibler divergence between 

7r[{Yt I Yt-1. ... , Yt-l. Xti ß) 

and 
1rr (Yt 1 Yt-1, ... , Yt-l, xt; ßo). 

The result then follows from a well-known property of the Kullback-Leibler 
divergence, see Wald (1949). The remaining claims are then simple conse
quences of this fact. • 

Proof of Theorem 14.6. Because of Assumption 14.8 clearly Assumption 
14.6*(c) holds. Hence the uniform convergence result and equicontinuity of 
{Rn : n E N} follows from Theorem 14.4. Lemma 14.5 shows furthermore 
that ßo minimizes Rn since E I qt ( Zt, ß) I < oo holds und er the assurnptio11-s 
of the theorem. Consequently claim (a) follows from the corresponding 
claim in Theorem 14.4. As in the proof of Theorem 14.4 it follows that 
under (b) Rn converges uniformly to R, and hence ßo also minimizes R. 
Therefore, also claim (b) follows from the corresponding claim in Theorem 
14.4. • 

Lemma K2. Suppose Assumptions 14.3, 14.4, and 14.8 hold, and suppose 
E lqt(Zt, ßo)l < oo for all t 2: 1. 

( a) The parameter ßo is identified in B at sample size n, in the sense 
that ßo f. ß implies Rn(w, ßo) f. Rn(w, ß) with positive probability, if and 
only if ßo is the unique minimizer of Rn (ß) over B. 

(b) The parameter ßo is identified in B at sample size n if and only if 
ßo is identified in B at sample size m for all m 2: n. 

Proof of Lemma K2. From Lemma 14.5 we know that ßo minimizes Rn 
for all n 2: 1 and Eqt(Zt, .) for every t 2: 1. 

We first prove the sufficiency part of (a). Assurne that there exists ß1 f. 
ßo that is also a minimizer of Rn. Observe that Eqt(Zt, ßo) ~ Eqt(Zt, ßl) 
and that Rn(ßo) = Rn(ß1)· Consequently, ß1 also minimizes Eqt(Zt, .) for 
every 1 ~ t ~ n, and hence Eqt(Zt, ßo) = Eqt(Zt, ß1) for every 1 ~ t ~ n. 
This implies 

0 = Eqt(zt,ßd- Eqt(Zt,ßo) 

j {j [ln1rr (Yt I Yt-1.· .. ,Yt-t,xt;ßo) 
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- ln 11{ (Yt I Yt-1, ... , Yt-1, Xti ßt)] 

1l'r (Yt 1 Yt-t. ... , Yt-1, xt; ßo) dyt }dHt, 

where Ht represents the joint distribution function of Yt-1, ... ,Yt-I,Xt· 
The inner integral is the Kullback-Leibler divergence between the respec
tive conditional densities and is therefore nonnegative. Consequently, the 
Kullback-Leibler divergence is zero Ht-a.s. This implies that the densities 

11'[ (Yt I Yt-t. ... , Yt-z. Xti ßo) 

and 
1l'r (Yt 1 Yt-1, ...• Yt-1. Xti ßt) 

coincide for all values (Y~-l, ... , Y~-l, xD' E R 1Pv+P .. , except possibly for 
those in a set Nt with Ht(Nt) = 0, and for all values of Yt E RPv, ex
cept possibly for those in a set N2(Yt-l, ... , Yt-1, Xt), which has Lebesque 
measure zero and hence has measure zero also under the conditional density 

1l'i{yt I Yt-1,· · · ,Yt-I,Xtißo). 

This implies further that the functions 

1l'r (Yt 1 Yt-t. ... , Yt-1, xt; ßo) 

and 
1l'r (Yt 1 Yt-1, ... • Yt-I,Xtißt) 

coincide, except possibly on a set which has measure zero under the dis
tribution of Zt. 2 Since both functions are strictly positive we may take 
logarithms to arrive at qt(zt, ßo) = qt(Zt, ß1 ) a.s. This contradicts the main
tained identifiability assumption on ß0 . The necessity part of (a) is trivial. 

Given part (a) has already been established, we next prove the sufficiency 
part of {b) by showing that ßo is the unique minimizer of Rm(ß) for any 
m;::: n. Consider ßt =/:- ßo. In light of part (a) clearly 

n n 

l:Eqt(zt,ßo) = nRn(ßo) < nRn(ßt) = l:Eqt(Zt,ßt)· 
t=l t=l 

2Since both functions are clearly measurable, the set on which they differ, 
say Na, is measurable. Clearly, Na ~ (RPv X N1) U (U{N2(Yt-1, ... , Yt-1, Xt) X 

{(y~-1• ... , Y~-1! x~)'} : (Y~-l! ... , Y~-1! x~)' E R 1Pv+Pz -NI}). Observe that RPv X 
N1 has measure zero under the distribution induced by Zt, since Ht(Nl) = 0. For 
given (Y~-l, ... , Y~-l, :z:D' in the complement of N1, the sections of the second set 
in the above union have measure zero under 7r r (Yt I Yt-1' ... ' Yt-1' Xt j ßo). Hence 
the second set has measure zero under the distribution induced by Zt in view of 
Fubini's theorem for regular conditional distributions. 
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Since Eqt(Zt, ßo) :::; Eqt(Zt, ßt) for all t ~ 1, 88 noted above, it follows that 

m 

mRm(ßo) = nRn(ßo) + L Eqt(Zt,ßo) 
t=n+l 

m 

t=n+l 

which establishes the sufficiency part. The necessity part of (b) is trivial. • 

Proof of Theorem 14.7. We first note that all assumptions of part (a) 
of Theorem 14.4 are satisfied and hence ßn is consistent for ßo. We now 
prove part (a) of the theorem by verifying the 88sumptions of Theorem 
11.2(a).3 Assumption ll.l(a) is satisfied because of Assumption 14.1(a),(b). 
The 3-me88urability of qt(., ß) follows from the stronger assumption of 
equicontinuity expressed in Assumption 14.1(f). Twice continuous partial 
differentiability of qt(z, .) is a consequence of Assumption 14.10(a) and 
the 88sumed nonsingularity of V' y ft ( z, a.). Hence, Assumption 11.1 (b) is 
satisfied. Since ßn is consistent for ßo, and ßo is assumed to belong to 
the interior of B in Assumption 14.9, also ßn belongs to the interior for 
w E On with P(On) - 1 88 n - oo. Since ßn minimizes Rn, ßn satisfies 
the first order conditions and hence Assumption ll.l(c) holds. Because of 
consistency of ßn and because of Assumption 14.9 clearly also Assumption 
ll.l(d) holds upon choosing B' 88 a compact neighborhood of ßo with 
B' s; int(B) (and T' as a compact neighborhood of ro with T' s; int(T), cf. 
Footnote 3). Given Assumptions 14.3- 14.5, 14.6" and 14.7, it follows from 
Theorem 6.1 that (x~, €~)' is L1-approximable by the a.-mixing basis process 
(et), and from Lemma 14.2 that (y~,xD' is Lo-approximable by the a.
mixing b88is process (et)· Consequently, (zt) is Lo-approximable by the a.
mixing b88is process (et) in view of Lemma 6.9. Hence Assumption ll.l(e) 
is satisfied. Assumptions 14.1(g), 14.3 - 14.6" together with Lemma 14.3 
imply Assumptions 14.1(d),(e), which in turn implies Assumption ll.l(f), 
cf. Lemmata Cl and C2. 

We next verify Assumption 11.2. First observe that E(u) is clearly (equi-) 
continuous and bounded on the compact set S, and hence on int(S). Since 
the smallest eigenvalue of E(u) is bounded away from zero 88 CT varies in 
S, cf. Footnote 3 in Chapter 14, it follows that det(E(u)) is bounded away 

3For the present problern no nuisance parameter T is present. To incorporate 
this case into the framework of Theorem 11.2(a) we may view the objective 
function formally as a function on T x B, where T can be chosen as an arbitrary 
subset of some Euclidean space with int(T) =f: 0. We then also set fn = 7'n = r0 , 

an arbitrary element of int(T). 
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from zero. Since the elements of :E-1, V".vec(:E-1), and V".".vec(:E-1) are 
sums of products of the elements of :E divided by (a power of) det(:E), also 
:E-1, V".vec(:E-1), and V".".vec(:E-1) are bounded continuous functions on 
S and hence on int(S). Let co, c1. c2, and c3, respectively, denote bounds 
for I:E(o-) I, I:E-1 (lT) I, IV ".vec(:E-1) I and IV".". vec(:E-1) I on S ( and hence 
on int(S)). Equicontinuity of the components of V ca:.qt(z, ß), V ".0 qt(z, ß), 
V auqt(z, ß), V ".".qt(z, ß), and thus of V ßMt(z, ß), on Zxint(B) now follows 
-in light of (14.4)- from Assumptions 14.1(f),(g), 14.10(b),(d), observing 
that sums of equicontinuous functions are equicontinuous and that prod
ucts of equicontinuous functions are also equicontinuous, if the factors are 
bounded in t at each point (and hence in a suitably small neighborhood 
around each point). Next consider the following obvious inequalities: 

IV Mqt(Z, ß)l < IV aa [ln ldet (Vyft(z, a))IJI + I:E-1IIV aft(z, a)l2 

+I (f;(z, a):E-1) ®!Pa IIV aaft(z, a)l 

< IVaa [lnldet(Vyft(z,a))IJI + I:E-1IIVaft(z,a)l2 

+ I:E-1IIft(z, a)IIV aaft(z, a)l 

< IV aa [ln ldet (Vyft(z, a))IJI + c1 IV a!t(z, a)l2 

+ c1 lft(z, a)IIV aaft(Z, a)l, 

IV uaqt(z, ß)l = IV Mqt(Z, ß)l 

< lft(z, a)IIV aft(z, a)IIV ".vec (:E-1)1 
< c2lft(z, a)IIV a!t(z, a)l, 

IV uuqt(z,ß)l < (1/2) IV ".vec (:E-1) I2 1:EI2 

+ (1/2)p!/2 [I :EI+ lft(z, a)l 2] IV ".".vec (:E-1) I 

< (1/2)c~~ + (1/2)p!12c3 [eo + l!t(z, a)l2] . 

In deriving the above inequalities we have used that lA ®BI ~ IAIIBI. 
(This follows since Amax(A' A ® B' B) ~ Amax(A' A)Amax(B' B) holds.) Fur
thermore we have used that lvec(A)I ~ (rank(A' A))li2 IAI. Observing that 

i=l i=l 

holds for 1 :2: 0 we obtain 

supn-1 tE [ sup IV aaqt(Zt,ß)ll+"Yl 
n t=l int(B) 

(K.1a) 
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$ 3"'~{supn- 1 tE [ sup IY'aa [lnldet(Y'11 /t(Zt,a))IJIH"Yl 
n t=1 int(A) 

+ c~+"Y supn-1 tE [ sup IY'aft(zt,a)I2+2"Yl 
n t=1 int(A) 

+ c~+..., supn-1 tE [ sup lft(Zt,a)ll+"Y IY'aa!t(Zt,a)ll+"Yl }• 
n t=1 int(A) 

supn-1 tE [ sup IV' uaqt(Zt,ß)ll+"Yl (K.1b) 
n t=1 int(B) 

$ ~+..., supn-1 tE [ sup lft(Zt, a)ll+"Y IV' a!t(Zt, a)ll+"Yl , 
n t=1 int(A) 

supn-1 t E [ sup IV' uuqt(z,, ß)IH...,l (K.1c) 
n t=1 int(B) 

$ (1/2) { ( ~~ + P!/2C3Co) l+"Y 

+ p~l+"Y)/2 c;+..., supn-1 tE [ sup lft(zt, a)l2+2...,] }· 
n t=1 int(A) 

Observe further that by the Cauchy-Schwarz inequality the r.h.s. of 
(K.1b) can be bounded from above by 

~+...,{supn-1 tE [ sup lft(z,,a)I2+2"Yl 
n t=1 int(A) 

n [ ]}1/2 supn-1 'L:E sup IY'a!t(Zt,a)j2+2"Y . 
n t=1 int(A) 

Since we clearly can always find a 'Y > 0 such that Assumptions 14.1(c) 
and 14.ll(a) hold simultaneously, Assumption 11.2 is seen to hold in light 
of these assumptions (and since the derivative w.r.t. T is identically zero as 
qt does not depend on T). 

Assumption 11.3(a) follows from the assumed martingale difference prop
erty of Y'Mt(Zt,ßo), Assumption 11.3(b) holds trivially since qt does not 
depend on r, Assumption 11.3(c) coincides with Assumption 14.12(a). As-
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sumption 11.3(d) follows from Assumption 14.12(b) observing that 
n 

n-1 LE [V' ß'qt(Zt, ßo)V' Mt(Zt,ßo)] 
t=l 

in light of the maintained martingale difference property of V' ßqt(Zt, ßo), 
provided the second moments exist, which will be demonstrated below. 
(This equality also shows that the formula for Dn given in the theorem 
coincides with the formula for Dn as given in Theorem 11.2.) 

The martingale difference property postulated in Assumption 11.4 is, as 
already noted, one of the maintained assumptions of the theorem. From 
(14.4c) we obtain 

IV' aqt(z, ß)l (K.2a) 
< IV' a [ln ldet (V' y/t(z, a))IJI +IV' a!t(z, a)IIE-1 ilft(z, a)l 
< IV' a [ln ldet (V' y/t(z, a))IJI + c1 IV' aft(z, a)llft(z, a)l 

IV' uqt(Z, ß)l (K.2b) 

< (1/2)p!/2 IV'uvec(E- 1)1 [lEI + lft(z,a)l2] 

< (1/2)p!12c2 [eo+l!t(z,a)l2], 

and hence 
n 

supn-1 2:EIV'aqt(zt,ßo)l2+6 (K.3a) 
n t=1 

< 21+6 {s~pn-1 tEIV'a [lnldet(V'y/t(Zt,ao))l]l2+0 

+ c~+O s~pn-1 t E [IV' aft(zt, ao)l2+0 1Etl2+0]}, 

n 

supn-1 2:EIV'uqt(Zt,ßo)l2+0 (K.3b) 
n t=1 

2+6 { n } < (1/2)(P!12c2) c~+D+s~pn-1 t;EIEtl4+26 . 

Since clearly 

IV'ßqt(Zt,ßo)l2+0 ~ 21+6 [IY'aqt(Zt,ßo)l2+0 + IY'uqt(Zt,ßo)l2+0] 
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holds, the moment condition in Assumption 11.4 follows from Assump
tions 14.11(b),(d). Furthermore, from (14.4c) and Assumptions 14.l(f),(g), 
14.10(b ),( c),( d) it follows that V ßqt(., ßo) is equicontinuous on Z again ob
serving that sums of equicontinuous functions are equicontinuous and that 
products of equicontinuous functions are also equicontinuous, if the factors 
are bounded in t. Thus Assumption 11.4 is satisfied. Part (a) ofthe theorem 
now follows from Theorem 11.2(a). 

We prove part (b) of the theorem by verifying the assumptions of The
orem 13.1(a). To verify the assumptions of Theorem 13.1(a), it only re
mains tobe shown that also Assumption 11.2* holds, since we have already 
shown above that Assumptions 11.1 - 11.4 hold. The conditions concern
ing V ßrqt = 0 and V ßMt postulated in Assumption 11.2* are identical to 
those in Assumption 11.2. Hence only the verification of the conditions in 
Assumption 11.2* for V ß'qt V ßqt remains. Analogously to the verification 
of Assumption 11.2 it is seen that - in light of (14.4) - the components 
of V a'qt(z, ß)V aqt(z, ß), V u'qt(z, ß)V aqt(z, ß), V u'qt(Z, ß)V uqt(z, ß), and 
thus of V ß'qt(z, ß)V Mt(z, ß), are equicontinuous on Zxint(B) because of 
Assumptions 14.1(f),(g), 14.10(b),(d), 14.14(a),(b). 

Next observe that in light of (K.2) we have 

supn-1 tE [ sup IVaqt(Zt,ß)I2+2"Yl 
n t=1 int(B) 

~ 21+2"Y {sup n-1 t E [ sup IV a [ln ldet (V 11 /t(Zt, a))IJI2+2"Yl 
n t=1 int(A) 

+ c~+2"Y supn-1 tE [ sup IVaft(Zt,a)I2+2"Y lft(Zt,a)I2+2"Yl}, 
n t=1 int(A) 

and 

supn-1 tE [ sup IV uqt(Zt,ß)I2+2"Yl 
n t=1 int(B) 

~ (1/2)p!+-y~+2"Y{c~+2"Y +supn-1 tE [.sup l!t(Zt,a)I4+4"Yl }· 
n t=1 mt(A) 

Since 

IV ß'qt(Zt, ß)V Mt(Zt, ß)ll+"Y 

< 1Vßqt(Zt,ß)I2+2"Y 

< 21+2-y [IV aqt(Zt, ß)I2+2"Y +IV uqt(Zt, ß)I2+2"Y] 

the moment condition in Assumption 11.2* concerning the components of 
V ß'qt V ßqt now follows from Assumption 14.14(c). This completes the proof 
of part (b) of the theorem. • 
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Proof of Theorem 14.8. We prove the theorem by reducing it to Theorem 
14.7. From (K.2), Assumptions 14.1(c), 14.11(a),(c) and an application of 
the Cauchy-Schwarz inequality it follows that 

E[ sup IV ßqt(Zt, ß)l] < oo 
int(B) 

for all t 2::: 1. Similarly, Assumptions 14.1(b),(c) imply 

E[suplqt(Zt,ß)l] < oo 
B 

for all t ;::: 1. Consequently, 

J sup IV Mt (yt, Yt-1, ... , Yt-l, Xt, ß)l1ri (Yt I Yt-1, ... , Yt-1, Xt; ßo) dyt 
int(B) 

= E [ sup IVMt(Zt,ß)ll Yt-1 = Yt-1, .. · ,Yt-l = Yt-I,Xt = Xtl < oo 
int(B) 

and 

= E [s~plqt(Zt,ß)ll Yt-1 = Yt-1•· ·· ,Yt-1 = Yt-!,Xt = Xt] < 00 

for all t 2::: 1 and all values (y:_1, ... , y:_1, xD' E R 1Pu+P.,, except possibly 
for values in a set N with Ht(N) = 0, where Ht is the distribution of 
(yf_1, ... , yf_p xf)'. Hence, on the complement of N, we have for ß Eint(B) 

E [V Mt(Zt, ß) I Yt-1 = Yt-1' ... 'Yt-l = Yt-1, Xt = Xt] 

= j v ßqt (Yt, Yt-r. ... , Yt-z, Xt, ß) 1ri (Yt 1 Yt-r. ... , Yt-1, xt; ßo) dyt 

v ß J qt (Yt, Yt-1, ... , Yt-z, xt, ß) 1ri (Yt 1 Yt-1, ... , Yt-1, xt; ßo) dyt 

= V ßE [qt(Zt, ß) I Yt-1 = Yt-b . .. ,Yt-l = Yt-1' Xt = Xt]· 

It follows furthermore from Lemma 14.5 that ßo minimizes 

whenever (yf_1, ... , Y~-ll xD' tf- N, since then 

E [qt(Zt, ßo) I Yt-1 = Yt-1, ... , Yt-1 = Yt-t. Xt = Xt] < oo 
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holds. Since ßo is an interior point of B in light of Assumption 14.9, it 
follows that the derivative of the conditional expectation is zero at ß = ßo 
and hence 

E[Vßqt(Zt,ßo) I Yt-1 = Yt-1! ... ,Yt-1 = Yt-I,Xt = Xt] = 0 

on the complement of N. Since 

n{ (Yt I Yt-1, · .. ,Yt-!,Xtißo) = 1r[ (Yt I Yt-1, ... ,Yl-I,Xt, ... ,xl;ßo) 

it follows further that, on the complement of N, 

E [VßQt(Zt,ßo) I Yt-1 = Yt-1, ... ,Yl-1 = Yl-!,Xt = Xt, ... ,x1 = x1] 

= E [V ßQt(Zt,ßo) I Yt-1 = Yt-1, ... , Yt-1 = Yt-I,Xt = Xt] = 0. 

Consequently, E[V ßQt(Zt, ßo) I ~t-1] = 0 a.s., which establishes the martin
gale difference property of V ßQt { Zt, ßo). Given the integrability of 
supB lqt(zt, ß)l established at the beginning of the proof, Lemma 14.5 also 
implies that ßo minimizes Rn(ß). 

We next verify that Assumption 14.11(d) is satisfied. The second part 
of this assumption holds trivially in light of the normality of Et postulated 
in Assumption 14.8. Let 'Y > 0 besuchthat Assumption 14.11(a) holds. 
Choose 6 > 0 and r > 1 suchthat (2 + 6)r :52+ 2"(, which is clearly pos
sible. Then, using Hölder's inequality with r-1 + s-1 = 1 and Lyapunov's 
inequality we have 

< 

In view of Assumption 14.11(a) and since the disturbances Et are assumed 
tobe i.i.d. normal the r.h.s. of the last inequality is finite. This shows that 
also the first part of Assumption 14.11(d) holds and thus completes the 
proof of the theorem. • 

Proof of Theorem 14.9. We first show that the equality 

EV ßßQt(Zt, ßo) = E [V ß'Qt(Zt, ßo)V ßQt(Zt, ßo)] 

holds, which implies in turnthat Cn = D~. Observe that 

Qt(Zt, ß) = -ln [1r[ (Yt I Yt-1, ... , Yt-1, Xti ß)] - (pe/2) ln{27r) 
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where Zt = (YL ... , Y~-l, xD', and hence 

vßMt(Zt,ßo) = (1ri)- 2 vß'1rrvß1rr- (7ri)- 1vßß1rr 

v ß'qt(zt, ßo)'V' Mt(zt, ßo) - (1rn-1 v ßß1rr, 

where the terms are evaluated at ß = ßo. As was verified in the proof 
of Theorem 14.7, both E'V'ßßqt(Zt,ßo) and E'\lß'qt(Zt,ßo)'V'Mt(Zt,ßo) ex
ist and are finite. 4 Clearly then also the expected value of the expression 
(1r[)- 1'\lßß1r[ evaluated atZt exists and is finite. Hence it remains tobe 
shown that this expected value is zero. For this it clearly suffices to show 
that the integral of (7rn-lvßß1rr w.r.t. 7r[(Yt I Yt-1,···,Yt-!,Xt;ßo) is 
zero for all values of (Y~- 1 , ... , Y~-1> x~)' outside a set N with Ht(N) = 0, 
where Ht is the distribution of (y~_ 1 , ... ,y~_ 1 ,xD'. This integral clearly 
reduces to 

Since J 1rr (Yt 1 Yt-1.· ..• Yt-!,Xt;ß)dyt = 1 

for all ß, we obtain the desired result if the operations of differentiation 
and integration can be interchanged. This interchange is permitted if 

and 

J sup I 'V' ßß1rr (Yt I Yt-1' ... 'Yt-1, Xt; ß)i dyt < 00 
int(B) 

hold. But these latter two conditions hold for all (Y~-l, ... , Y~-1> x~)' outside 
a set N with Ht(N) = 0 in view of Assumption 14.13. To see this note that 
integrating the l.h.s. in the last two inequalities w.r.t. Ht gives precisely the 
l.h.s. of the expressions in Assumption 14.13. As a consequence, Assumption 
14.12{b) now follows automatically from Assumption 14.12{a). The proof 
of part (a) of the theorem and the proof of 6;1~n6;1 - C;1 ---+ 0 i.p. as 
n---+ oo, claimed in part (c) of the theorem, is now completed by appealing 
to Theorem 14.8. Now recall that the proof of 6;1~nC;1 -C;1 ---+ 0 i.p. in 
Theorem 14.8 was based on the verification of the assumptions of Theorem 
13.1{a) (via a verification of the assumptions of Theorem 14.7). Inspection 
of the proof of Theorem 13.1{a) shows that also Cn - Cn ---+ 0 i.p. and 

A 2 A A 

cl>n - Dn = cl>n - Cn ---+ 0 i.p. as n ---+ oo. The proof for Cn- Cn ---+ 0 i.p. 
in Theorem 13.1{a) only requires Assumption 11.2, but not the stronger 

4We note that this step in the proof of Theorem 14.7 did not utilize Assump
tion 14.12. 
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Assumption 11.2*. Therefore the result Cn- Cn --+ 0 i. p. holds also without 
Assumption 14.14, whereas Assumption 11.2* and hence Assumption 14.14 
is required for ~n -Cn --+ 0 i.p. Since ICnl and IC;1 1 are bounded, as shown 
in part (a) of the theorem, 6;1 - C;1 --+ 0 i.p. and ~;; 1 - C;1 --+ 0 i.p. as 
n --+ oo follow now from Lemma Fl. • 

Lemma K3. Let Mn be a sequence of real symmetric nonnegative definite 
m X m matrices of the form 

where r n is of the dimension m. X m. and Sn is of the dimension ( m -
m.) X (m- m.). Suppose ILlnl = 0(1), ISnl = 0(1), and suppose 

liminf Amin(Sn) > 0 n-oo 

and 

then 
liminf Amin(Mn) > 0. n-oo 

Proof. Clearly, Sn is positive definite for all n exceeding some no. In the 
following we only consider n > n 0 • Now observe that M,. can be written as 

M = P' [ rn- LlnS;; 1 Ll~ 
n n 0 ~] Pn (K.4) 

with 

Pn = [ o;:-1f2 ß' 
0 ] . -::1/2 

~n n ~n 

Since Mn is nonnegative definite and since Pn is nonsingular, it follows 
that r n- LlnS;;1 ß~ is nonnegative definite. The smallest eigenvalue of the 
second matrix on the r.h.s. of (K.4) is clearly given by min{1, Amin(r n

LlnS;; 1 ..!l~ )}. Consequently 

Amin (Mn) ~ min { 1, Amin (r n - LlnS;; 1 Ll~)} Amin (P~Pn). 

Hence to complete the proof all that remains to be shown is that 

A* = liminf Amin (P~P,.) > 0. n-oo 

By assumption ILlnl = 0(1), ISnl = 0(1). Furthermore, 

IS;;1 1 = (Amin(Sn))-1 = 0(1), 
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since the smallest eigenvalue of 2n is assumed to be bounded away from 
zero. Hence 

and similarly 

js~1/21 = 0{1). 

Consequently also IPnl = 0{1). Now let An denote Amin(P~Pn), and let Vn 
be a corresponding eigenvector of length one, i.e., v~vn = 1. Clearly there 
exists a subsequence ni of the natural numbers such that An, converges to 
A*. Furthermore, since Vn and Pn are bounded, there exists a subsequence 
ni(i) of ni such that Vn•u> converges to some element v. with v~ v. = 1 and 
Pn,c;> converges to some matrix P •. Note that P. is necessarily of the form 

Since P.22 is the limit of :=:;~~> and since the smallest eigenvalues of 2n are 
bounded away from zero it follows that P.22, and hence P., are nonsingular. 
Consequently, P~P. is positive definite. Taking limits in the relation 

we obtain 

Since v. =/= 0 and P~P. is positive definite, we have established that A* is 
positive. • 

Proof of Lemma 14.10. In the following let :Eo = :E(o-0 ). AB was shown 
in the proof of Theorem 14.9 we have 

n 

Cn = n-1 LE"Vf3{3qt(Zt,ßo) 
t=1 

n 

= n-1 L E [V ß'qt(Zt, ßo)'\1 Mt(zt, ßo)] = D~. 
t=1 

We emphasize that the above relationships have been established in the 
proof of Theorem 14.9 without the use of AP.sumption 14.12{a). We now 
partition Cn as 

{K.5a) 
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with 
n 

r n n-1 L E ['V a'qt(Zt, ßo)'V aqt(Zt, ßo)]' (K.5b) 
t=1 

n 

An = n-1 L E ['V a'qt(Zt, ßo)'V uqt(Zt, ßo)] (K.5c) 
t=1 

n 

= n-1 LE'Vauqt(Zt,ßo) 
t=1 

n 

n-1 L E ['V u'qt(Zt, ßo)'V uqt(Zt, ßo)] (K.5d) 
t=1 

n 

n-1 L E'\7 uuqt(Zt, ßo) 
t=1 

(1/2)'\7 u'vec (E01) (Eo ® Eo)'V uvec (E01) , 

where the last equality above follows from the expression for 'V uuqt given 

in (14.4c). Clearly l3nl = 0(1), since 3n does not depend on n. Further

more, I An I = 0(1) in view of the expression for 'V auqt given in (14.4c), the 
Cauchy-Schwarz inequality, and Assumptions 14.8(a) and 14.11(a). Addi
tionally, observe that 

'V uvec (E01) = - (E01 ® E01) 'V uvec (Eo), 

and hence has full column rank since clearly 'V 17vec(E0) has full column 
rank. Consequently, 3n is nonsingular and, since it does not depend on n, 
its smallest eigenvalue is bounded away from zero. In view of Lemma K3 

it follows that 
liminf Amin(Cn) > 0, 
n-+oo 

if we can establish 

(K.6) 

Thus, what remains to be shown in order to complete the proof is the 

validity of (K.6). 
Observe that 

r A ~-1AI 
n - L.l.n .::.n L.l.n 

n 

n-1 L E{ ['V a'qt(Zt, ßo)- An3;;-1 'V u'qt(Zt, ßo)] 
t=1 

['V a'qt(Zt, ßo)- An3;;- 1'V u'qt(Zt, ßo)J'} 

in view of (K.5). Now consider the following nonnegative definite matrix 

n 

nn = n-1 l:E{ ['V a'qt(Zt,ßo)- An3;;- 1'V q 1 qt(Zt,ßo) 
t=1 
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- E (V' a' ft(Zt, ao) I Jt-1) Eö1Et] [V' a'qt(Zt,ßo) 

- ~n3;:;- 1 V'u'qt(Zt,ßo)- E(V'a'ft(Zt,ao) I Jt-1)Eö1Et]'} 

where 

n 

An = n-1 l:E{ [V' a'qt(zt.ßo)- ~n2;:;- 1 V' u'qt(Zt,ßo)] 
t=1 

[E (V' a' ft(Zt, ao) I Jt-d E01Et]'}, 

n 

Wn = n-1 L E{[E (V' a' ft(Zt, ao) I Jt-1) E01Et] 
t=1 

[E (V' a' ft(Zt, ao) I Jt-d Eö1Et]'}. 

Note that the second moments of E(V' a' ft(Zt, ao) I Jt-1)E01Et exist in 
light of Assumptions 14.8(a) and 14.11(a). Hence An and Wn are well de
fined. Since E(EtE~ I Jt-1) = E(EtE~) = Eo in view of Assumption 14.8, it 
follows from the law of iterated expectations that 

n 

Wn = n-1 2::: E { E (V' a' ft(zt, ao) I Jt-1) Eö1 E (V' aft(Zt, ao) I Jt-1)} · 
t=1 

Observe that under the assumed persistent excitation condition (14.5) the 
smallest eigenvalue of Wn is bounded away from zero, since Amin(E01) > 0. 
To complete the proof it therefore suffices to show that An = Wn, since 
then r n - ~n3~ 1 ~~ =On+ 'l!n ;::: 'l!n will satisfy condition (K.6). 

We now demonstrate that in fact An = Wn. Using the expression for 
V' u'qt given in (14.4c), observe that 

n 
n-1 LE{V'u'qt(Zt,ßo) [E(V'a'ft(zt,ao) I Jt-1)Eö1Et]'} 

t=1 
n 

= (1/2)V'u'vec(E01)n-12:E{[-vec(Eo)+ vec(Et€~)) 
t=1 

E~E0 1 E (V' a!t(Zt, ao) I Jt-d} 

= -(1/2)\7 u'vec (E01) 
n 

n-1 l:::{vec(Eo)E [E~E0 1E(V'aft(Zt,ao) I Jt-1)] 
t=1 

- E [vec (Et€~) E~E0 1 E (V' aft(zt, ao) I Jt-d]} 
0. 
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The last equality follows since both E[E{V' a' /t(Zt, ao) I ~t-1)E01 et] = 0 

and E(etiftjftk I ~t-1) = E(etiftjftk) = 0 in view of Assumption 14.8. 
Hence An reduces to 

n 

An = n-1 L E [V' a'qt(Zt, ßo)e~E01 E (V' aft(zt, ao) I ~t-1)] (K.7) 
t=1 

n 

= n-1 L E{ [E (V' a'qt(Zt, ßo)e~Ei) 1 I ~t-1)] 
t=1 

[E (V' aft(zt, ao) I ~t-1)1}. 
Using the expression for V' a'qt given in {14.4c) we obtain 

E (V' a'qt(Zt, ßo)e~Ei) 1 I ~t-1) {K.8) 

= -E {V' a' [ln ldet (V' 11 /t(Zt, ao))IJ e~E0 1 I ~t-1} 
+ E {V' a' ft{Zt, ao)Ei) 1 ete~Ei) 1 I ~t-1}. 

We now show that the second term on the r.h.s. of {K.8) can be expressed 

as 

E {V' a' !t(Zt, ao)E01ete~E01 I ~t-1} {K.9) 

= E {V' a' [ln ldet (V' 11 /t(Zt, ao))l] e~E01 I ~t-1} 
+ E (V' a' ft(Zt, ao) I ~t-1) E01. 

Clearly, 
Pe 

V' a' ft(Zt, ao)E01 ete~E01 = LV' a' ftj(Zt, ao)~'ftf~E01 {K.lO) 
j=l 
Pc 

= LV' a' /tj{Zt, ao)e~E01 {~'et) 
j=l 

where /tj{Zt,ao) denotes the j-th element of ft(zt,ao). Here andin the 
following aj., a·j, and aij stand, respectively, for the j-th row, j-th column 

and {i,j)-th element of the inverse, A-1, of a matrix A. The {k,m)-th 

element of V' a' ftj(Zt, ao)e~E01 is then given by ftjk(zt, ao)e~ui{" where 

!tjk(Zt, ao) = (8f8ak)!tj(Zt, ao). 

Expressing Yt in terms of the reduced form we obtain 

ftjk(Zt, ao)e~uom 

= !tjk (gt(Yt-1• ... , Yt-z.Xt, ft, ao), Yt-1. ... ,Yt-z, Xt, ao) e~u0m. 

Now define for arbitrary (y~1 , ... , y~1 , x')' E R 1P·+P .. the functions hj,km(e) 

as 
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In light of Assumption 14.8(c) the reduced form gt(Y-b ... , Y-1, x, e, ao) is 
continuously partially differentiable w.r.t. e, since it is the inverse function 
of ft(y, Y-b ... , Y-1> x, ao) (viewed as a function of y) with nonsingular 
derivative 'V' 11 ft, where the nonsingularity of 'V' 11 ft has been assumed at the 
beginning of Chapter 14. Consequently, also 

'Y'egt(Y-b· .. ,y_z,x,e,ao) 

= ['V' y/t (gt(Y-1, · · ·, Y-1, x, e, ao), Y-1, ... , Y-z, x, ao)]-1 . 

Using Assumption 14.15(a) we obtain for the derivative of hj,km 

'Y'ehj,km(e) 

= ['V' 11 /tjk (gt(Y-1, · · ·, Y-z, x, e, ao), Y-1. ... , Y-1, x, ao)] 
['V' egt(Y-1, . .. , Y-l, x, e, ao)] ( e' u0m) 

+ ftik (gt(Y-b · · ·, Y-z, x, e, ao), Y-1.. · ·, Y-z, x, ao) uo· 
['V' 11 /tjk (gt(Y-1, .. ·, Y-1> x, e, ao), Y-b ... , Y-z, x, ao)] 

(K.ll) 

['V' y/t (gt(Y-1. · · · , Y-h x, e, ao), Y-1. . .. , Y-z, x, ao)]-1 ( e' u0m) 

+ ftjk (gt(Y-1, ... , Y-z, x, e, ao), Y-1. ... , Y-z, x, ao) u0·. 
We now verify that the conditions in the Lemma of Amemiya (1982) hold 
for hj,km· Clearly, 'Y'ehj,km(e) is a continuous function of ein view of As
sumption 14.15(a) and the assumed nonsingularity of 'V' 11 ft(., a 0 ). This ver
ifies condition (A) in Amemiya's Lemma. In view of Assumption 14.8 the 
vector of disturbances Et is independent of (y~_ 1 , ... , Y~-l> x~)'. Hence As
sumption 14.15(b) and Theorem 5.3.22 of Gänssler and Stute (1977) imply 
that 

for Ht-almost all (y~ 1, ... , y~1 , x')'. Here Ht denotes the distribution of 
(y~_ 1 , ... , Y~-l, xD'· In view of Hölder's inequality and observing that Et is 
normally distributed, and hence has moments of all orders, we thus obtain 

E{ I ['V' 11 /tjk (gt(Y-1, ... , Y-1, x, Et, ao), Y-1, ... , Y-z, x, ao)] (K.12) 

['V' 11 ft (gt(Y-1, ... , Y-z, x, Et, ao), Y-1. ... , Y-z. x, ao)r1 (E~u0m)j} < oo. 

Assumption 14.11(a) implies that 

E lftjk (gt(Y-1, ... , Y-z, x, Et, ao), Y-1. ... , Y-z, x, ao) uo·J < oo (K.13) 

for Ht-almost all (y~ 1 , • .• , y~1 , x')'. Thus (K.12) and (K.13) imply that 

E I'Y'ehj,km(Et)l < 00 
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for Ht-almost all (y~ 1 , •.• ,y~ 1 ,x')', and hence condition (B) in Amemiya's 
Lemma is satisfied. Analogaus reasoning, using Assumption 14.11, the nor
mality of f.t and Hölder's inequality, shows that 

E lhj,km(t:.t)f.tl < 00 

for Ht-almost all (y~ 1, ... , y~1 , x')'. Hence also condition ( C) in Amemiya's 
Lemma is satisfied. 

Applying now Amemiya's Lemma to the functions hj,km and using (K.lO) 
shows that for Ht-almost all (y~ 1 , ... , y~1 , x')' the (k, m)-th element of 

E {V' a' ft(Zt, o:o)Eü 1 ftf.~Eü 1 I (Yt-1. ... 'Yt-1, xt) = (Y-1, ... 'Y-1, x)} 

is given by 
Pe 

L E {(8j8ej) hj,km(t:.t)} 
j=1 

where ( a I aej )hj,km is the j-th element of V' ehj,km· Using the second equal
ity in (K.ll) we therefore obtain for the (k, m)-th element of 

E {V' a' ft(Zt, o:o)Eo 1 ftf.~Eü 1 I ~t-1} 

the expression 
Pe 

L E {V' y!tjk(Zt, o:o) [V' yft(Zt, o:o)].j f.~aom + ftjk(Zt, o:o)a;J'j I ~t-1} · 
j=1 

(K.14) 
The chain rule now shows that the k-th element of 

equals 
Pe 

LV' y!tik(Zt, o:o) [V' yft(Zt, o:o)]·i, 
j=1 

where wehavealso made use of the fact that we may interchange the order 
of differentiation w.r.t. o: and y in view of Assumption 14.15(a). From this 
and (K.14) we obtain 

E {V' a' ft(Zt' o:o)Eo 1ft€~Eo 1 I ~t-1} 
= E{Y'a' [lnldet(V'yft(Zt,o:o))l]t:.~E0 1 I ~t-1} 

Pe 

+ L E {V' a' ftj(Zt, o:o)a~· I ~t-1} 
j=1 

= E {V' a' [ln ldet (V' yft(Zt, o:o))IJ f.~Eü 1 I ~t-1} 
+ E {V' a' ft(Zt, o:o)Eü1 I ~t-t} 

which shows that (K.9) holds indeed. From (K.7), (K.S) and (K.9) we then 
see immediately that An= Wn, which completes the proof. • 
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