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1

Introduction

Bayesian statistics at its most basic level is an approach to statistical problems
that seeks to optimally combine information from two sources: the information
the researcher believes at the start of the research process and the information
contained in the data. Bayes’ theorem is essentially a rule for how to combine these
two sources of information into a single set of (updated) information concerning
the parameters or hypotheses of interest. There are a number of advantages to this
approach as opposed to the alternative, sampling theory, approach to statistics.

First, by formalizing the researcher’s advance beliefs, through a mathematical
construct called the prior distribution, underlying assumptions are exposed that
can often remain hidden in the sampling theory approach. Second, the use of loss
functions to estimate parameters and make optimal decisions concerning hypothe-
ses or settings for control variables allows the statistical process to be customized to
fit the particular application. Many other advantages will be discussed in Chapter 2.

The goal of this book is twofold. First, I hope to convince you of the usefulness
and inherent advantages of Bayesian statistics relative to the sampling theory, or
classical, approach. To do this, basic concepts of Bayesian statistics and decision
science will be presented with references given to more complete treatments on
these topics. Then, new numerical methods that have been developed in the last 30
years will be covered. These methods have greatly expanded the range of problems
to which Bayesian methods can be applied without having to make unrealistic
simplifying assumptions. After mastering these numerical methods, researchers
can tackle virtually any problem in the area of statistics or decision science within
the Bayesian paradigm.

The second goal of this book is to provide a roadmap of applied economic ques-
tions that can now be answered empirically with Bayesian methods, emphasizing
problems that are best solved with numerical Bayesian methods. Many researchers,
unable to keep abreast of all developments in numerical methods, may still think
that Bayesian statistics is confined to the arena of problems that can be attacked
analytically, forcing simplifications they hope to avoid in applied work. This book
hopes to demonstrate the breadth of economic topics that can now be investigated
by taking a Bayesian approach, thanks to the advances in numerical techniques. In
Chapters 4 through 10, a wide variety of empirical applications will be presented

1



2 1. Introduction

in considerable detail, describing how Bayesian methods have been used to study
these problems in the past and how they can be investigated in the future. These
chapters will try to provide a guide you can follow in your own research, show-
ing step by step how to apply numerical Bayesian methods to achieve empirical
solutions to important economic questions.

Third, because this book hopes to encourage more researchers to “convert” to the
Bayesian approach, an extensive bibliography, grouped by category, is included.
This list includes references to more complete treatments of the theoretical issues
involved as well as a multitude of published empirical studies proving that Bayesian
methodology can successfully solve real-world empirical problems in economics.
These studies should provide further guidance on the application of these tools to
the problems you seek to solve.

The level of knowledge assumed by this book is fairly minimal. Readers are as-
sumed to have an advanced-undergraduate-level grasp of statistics covering such
concepts as probability density functions, basic statistical distributions, the likeli-
hood function for a set of observations, hypothesis testing, the central limit theorem,
the expectations operator, and a basic familiarity with integral and differential
calculus. No prior knowledge or familiarity with Bayesian statistics or computer-
based random number generation and simulation techniques is assumed. However,
it is assumed that the reader is generally competent at using standard econometrics
computer software and can translate the steps laid out in the applications chap-
ters into commands for the econometrics package, statistics software program, or
programming language of their choice.

Proofs of the results and extensive mathematical details are not the strength
of this book. The references listed in the book contain many proofs and high-
level mathematical expositions on the theoretical points involved in these topics,
and readers will eventually need to read some of these other sources to gain a
complete, expert knowledge of these topics. This book aims to concentrate more
on the intuition and implementation of these techniques. It is a user’s guide to
Bayesian econometrics, not a treatise on the mathematical statistics of the topic.
Readers will hopefully finish the book with a greater appreciation for Bayesian
methodology, with a basic and intuitive understanding of the concepts involved,
and with the ability to apply the techniques described in this book to real-world
empirical problems.

Finally, let me thank many of the people who have helped me during the process
of becoming a Bayesian and in the writing of this book. The two people who first
introduced me to Bayesian statistics are Art Havenner and Arnold Zellner, and
they deserve much credit for helping start me on the road to understanding and
applying the techniques found in this book. John Geweke was also especially
helpful during the process, discussing technical issues with me and providing
insight. I have also benefited greatly from conversations about econometrics and
decision theory, both Bayesian and classical, with John Antle, Masanao Aoki,
David Bessler, Wade Brorsen, Oscar Burt, Jim Chalfant, David Dickey, Ken Foster,
Richard Green, Bill Griffiths, Dale Heien, Garth Holloway, Scott Irwin, George
Judge, Cathy Kling, Dave Kraybill, Bill Lastrapes, Sergio Lence, Jim LeSage,
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David Li, Rob McCulloch, Anya McGuirk, Chris McIntosh, Ron Mittelhammer,
John Monahan, Quirino Paris, Peter Phillips, Dale Poirier, Peter Rossi, P. A. V. B.
Swamy, Leigh Tesfatsion, Wally Thurman, George Tiao, Herman van Dijk, Mike
West, Charles Whiteman, Carl Zulauf, and many other colleagues, some of whom
surely belong in this list. None of these colleagues, of course, deserves any blame
for what actually appears in the book, although credit for the positive parts should
be shared. I owe thanks to Teresa Byrd for help with the figures, bibliography, and
so many tasks over the past eight years. Lastly, Martin Gilchrist of Springer-Verlag
was an encouraging, supportive editor who decided that I could write a book and
allowed me to do so, while Lesley Poliner ably supervised the production process
and turned a manuscript into a book.
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Theory and Basics



2

A Quick Course in Bayesian
Statistics and Decision Theory

This chapter is not meant to be a complete course in Bayesian statistics and decision
theory, but rather an introduction to these topics. For a fuller treatment of these
concepts, consult the references listed at the end of this chapter or under “Key
Theory Details” in the Bibliography. This chapter hopes to acquaint the reader
with the basic vocabulary and ideas that are central to the Bayesian methodology
and to teach the standard tools that are applied in most situations.

Bayesian statistics always uses all available information from two sources: the
researcher’s prior beliefs about the problem being studied and the data collected
for the current study. The researcher’s prior beliefs can be based on prior studies,
theories concerning the subject area, or nonformal observations, but generally
should not be based on the data set to be used in the current application.

Bayes’ Theorem

At the heart of the Bayesian paradigm lies Bayes’ theorem. Take common notation
from econometrics and denote data by (y, X), where y is a vector of random obser-
vations and X is a matrix of predetermined variables that are used to help explain
the variations within y. Further, let θ denote a vector of random parameters that
(along withX) control the probability density function of y. In the classical linear
regression framework, y is the dependent variable, X is the matrix of indepen-
dent variables or regressors, and θ would be a vector that includes the regression
coefficients and error variance. Bayes’ theorem is written as

p(θ |y, X) � p(θ)p(y|θ, X)
p(y)

∝ p(θ)p(y|θ, X) (2.1)

where p() represents a probability density function. The function p(θ) is the prior
distribution on the random parameters θ representing the researcher’s subjective
beliefs about these parameters before analyzing the data contained in (y, X);
p(y|θ, X) is the conditional density of y given a particular set of values for θ
and X, commonly referred to as the likelihood function of y, and p(y) is often
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    The information flow of Bayes' theorem

Figure 1.

referred to as the marginal likelihood of y (because the effect of the independent
variables and random parameters has been integrated out). The density p(θ |y, X)
is the posterior distribution of θ representing an updating of the researcher’s prior
beliefs to account for the new information contained in the data (y, X). At its
heart, Bayes’ theorem is simply a statistical rule based on the standard theory of
probability density functions that shows how to optimally combine information
from two sources (the prior and the data). In fact, not only does Bayes’ theorem
combine these two pieces of information optimally, but any other combination
would violate the logical (and mathematical) coherence of the rules concerning
the operation of probability distributions.

The first version of Bayes’ theorem can be written as an equality due to the
denominator of the unconditional density of y, which serves as the normalizing
constant to ensure that the resulting posterior conditional density of θ is a proper one
and integrates to 1 over the allowable range for the parameters. The second version,
holding only to within a constant of proportionality, is missing this normalization,
as is commonly seen in the literature. In fact, in empirical work, this second form
is the most common. Researchers compute this proportional posterior of θ initially
and the normalizing constant later if necessary (in many examples, ratios are taken
and the normalizing constant cancels out).

Figure 1 shows schematically how two parallel sources of information are
brought together through Bayes’ theorem to reach the posterior distribution of
the parameters θ . The data and the prior information are brought together through
Bayes’ theorem to produce the posterior distribution. The relative influence of the
two information sources will depend on their relative precision; that is, the smaller
the variance of the distribution, the larger its role in the formation of the posterior
distribution.
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Prior Distributions

The prior distribution describes the researcher’s beliefs about the parameters of
interest, represented earlier by θ , before gaining any information from the current
data set (y, X). Prior distributions are subjective in the sense that because they
represent the researcher’s beliefs, they cannot be incorrect in a strict sense, but
they should still meet basic tests of reasonableness. For example, they should not
be so concentrated as to disallow any contribution of information from the data set
nor should they be at odds with conventional wisdom without a strong basis for
inviting controversy (Box and Tiao, 1973).

Prior distributions are often classified according to some of the following con-
ventions. A prior distribution can be informative, conveying prior knowledge
concerning at least some elements of θ , or noninformative, conveying ignorance.
The most famous noninformative, or ignorance, prior is the Jeffreys’ prior, which is
taken to be proportional to the square root of the determinant of the information ma-
trix (i.e., the negative expected value of the second derivative of the log-likelihood
function with respect to the parameters θ). In the classical linear regression model
with normally distributed errors, where θ � (β ′, σ )′, the Jeffreys’ prior is given
byp(θ) ∝ 1/σ . In simple terms, Jeffreys suggested that if the researcher wishes to
express prior ignorance, a prior distribution proportional to a constant for param-
eters with infinite admissable range (i.e., a uniform distribution) should be used
and for parameters (such as the standard deviation) that have admissable range of
[0,∞) a uniform distribution prior on the natural log of the parameter should be
used (Zellner, 1971, p. 41–53). It is these rules that lead to the prior for the classical
regression model given earlier.

The concept of an informative prior can be made concrete using the construct of
a simple linear regression model where the dependent variables y are observations
on the quantity sold of a product, expressed in natural log format, and theXmatrix
includes only a constant and the natural log of the price of the product. Further,
assume that some miracle allows the error variance to be known. Then θ consists of
two regression parameters, denoted here by α and β, respectively, for the intercept
and slope coefficients. Due to the logarithmic form of the data, β is the price
elasticity of demand and many researchers will have reasonably well-formed prior
beliefs of its value, depending on the specific product being modeled. However,
less will be known about the intercept, so ignorance may be a reasonable prior
belief with respect to α. Thus, for many food products that generally have inelastic
demands, one might construct a prior distribution, p(α, β) ∝ N [(β + 0.5)/0.25]
whereN [ ] is a standard normal distribution. This prior would place almost all the
prior support (±2 standard deviations) in the inelastic range of (−1, 0), allowing
for some slight possibility of an alternative outcome, and centers the prior belief
around −0.5. If such a prior distribution is felt by a researcher to be too informative,
the variance can be increased; however, caution should be exercised to protect
against the prior distribution becoming so diffuse as to place considerable prior
support on values that are not truly credible a priori.
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Prior distributions can be proper or improper. A proper prior distribution is
one that integrates to 1 over the admissable range of θ . Distributions that are
informative are almost always proper subject to the proper scaling; for example, if
a truncated normal distribution is used for a prior distribution on a parameter that
has a limited range, the distribution must be scaled to account for the truncation and
renormalize the distribution to have total prior support equal to 1. Noninformative
priors are often improper. The uniform prior over infinite range is improper, as
it integrates to infinity, not unity. Improper priors cause problems in the arena of
hypothesis testing, where they can cause arbitrary scaling of posterior odds ratio
(discussed in depth soon) and make it impossible to assess the relative support for
competing models. For this reason, they should be avoided when possible (and
suitable). In most applications, a weakly informative prior can be constructed that
allows the likelihood function of the data to determine the posterior distribution
almost completely while still preventing the problem of arbitrary scaling in odds
ratios for hypothesis tests.

Prior distributions should be specific to the situation. In economics, we often
have prior information on the sign of parameters, on the relative or approximate
magnitude of parameters, and even on (sometimes complex) functions of param-
eters. For example, when estimating a demand curve in quantity-dependent form,
most researcher’s would feel they have good prior information that the parameter
associated with the good’s price should be negative. The prior distribution the re-
searcher constructs should, therefore, incorporate this information; failure to do so
would result in a prior distribution that does not fully incorporate all the informa-
tion actually in the researcher’s possession. This would be analogous to inefficient
estimation in the classical sampling theory context.

A conjugate prior is one that when combined with the likelihood function (and
its parametric form) leads to a posterior distribution that has a form that allows
analytical inspection (i.e., it has a recognizable form of a known distribution such
as the multivariate Student-t distribution). Before recent advances in the theory of
numerical methods for analyzing distributions and evaluating integrals, conjugate
priors were very important in Bayesian analysis. Researchers had to work hard to
conform their prior beliefs to fit within the constraint of the particular distributional
class that was conjugate for the assumed likelihood. Given the new advances in
numerical techniques for constructing posterior distributions (discussed in depth
in the next chapter), conjugate priors have become unnecessary, and researchers
are free to choose any prior that truly represents their prior beliefs. In fact, when
working with colleagues on Bayesian research I often try to get them to draw a
picture of what they think a reasonable prior distribution would look like. Then I
use my computer to draw pictures of various distributions (normal, t , beta, etc.),
changing the parameters that control the distribution’s shape until the colleagues
agree that it matches their beliefs. This gives us a mathematical representation of
our prior information and is fairly easy to accomplish if at least one collaborator
can picture (or look up pictures of ) a variety of statistical distributions.
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Estimation and Loss Functions

After specifying the prior distribution for the unknown random parameter vector θ ,
the researcher must specify the form of the likelihood function for the observations
y. Generally, the likelihood takes a specific parametric form (often assuming the
observations are normally distributed), but the form can be customized to the
particular features of the data (limited, qualitative, skewed, etc.) or it even can be
nonparametric. The minimum requirement is that the likelihood specified can be
evaluated for a given set of data (y, X) and parameter value θ .

Now that a prior distribution and likelihood function are in place, the posterior
distribution, p(θ |y, X), can be constructed, either analytically or numerically. A
variety of methods to numerically derive the posterior distribution will be discussed
in detail in the next chapter; for now, just assume that the posterior distribution is
available in at least empirical form (i.e., we can numerically compute any desired
probability statements about θ). For some applications, the desired result is the
complete posterior distribution or some probability statement concerning a subset
of parameters or function of parameters from θ . In these cases, a point estimate is
not required; however, researchers often want a point estimate of θ to present or
use for a subsequent purpose.

To derive Bayesian posterior point estimates of unknown random parameters, a
researcher must first specify the loss function. A loss function measures the loss
caused by an estimation error as a function of the parameter estimate and the
true (unknown) value. Thus, a Bayesian posterior point estimate for θ is found by
solving the optimization problem

choose θ̂ : min EL(θ̂, θ) �
∫
L(θ̂, θ)p(θ |y, X) dθ. (2.2)

The loss function L can take many forms and should be chosen carefully to match
the characteristics of the problem being studied. The loss function can be linear or
nonlinear in θ and θ̂ . Common choices of loss functions are:

a. L(θ̂, θ) � (θ̂ − θ)2 quadratic loss, (2.3)
b. L(θ̂, θ) � |θ̂ − θ | absolute loss, (2.4)
c. L(θ̂, θ) � 0 if θ̂ � θ

� c if θ̂ �� θ zero-one loss. (2.5)

Choosing a quadratic loss function results in the optimal Bayesian point estimate
being the mean of the posterior distribution. The absolute loss function produces
a point estimate that equals the median of the posterior distribution. The zero-one
loss function yields a point estimate equal to the mode of the posterior distribution.
If the posterior distribution is symmetrical, all three of these loss functions will
produce the same point estimate of θ . However, for many cases with interesting
prior distributions or nonsymmetrical distributions for the observations y, these
loss functions will yield different point estimates for θ . Choosing the posterior
mode (the most “likely” point in the posterior distribution) implies that even a tiny
estimation error is as bad as a huge one. Choosing the posterior median protects
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against outliers and skewed tails of the distribution and may produce a more robust
estimator than the posterior mean. The posterior mean is the only one of these three
estimators that uses all the information in the posterior distribution to derive the
point estimate.

Specialized loss functions should not be overlooked. For example, when choos-
ing a dimension for the model order of a state-space time series model, Dorfman
and Havenner (1992) used an asymmetric quadratic loss function for the model
order in the form

L(n, n̂) � c(n − n̂)2I (n − n̂) + (n − n̂)2[1 − I (n − n̂)], (2.6)

where I is an indicator function that equals 1 when the argument is positive and
0 when the argument is negative, and c is a scalar greater than 1. Thus, this loss
function penalizes estimation errors that result in the model order being too small
more severely than those that overparameterize the model. The motivation for
such a loss function is that overparameterization leads to some additional (finite
sample) samping error in estimation, but underparameterization leads to biased and
inconsistent coefficients. This is just one example of a specialized loss function;
many such functions that are well-suited to particular applications can, and should,
be constructed when warranted.

Hypothesis Testing

Bayesian hypothesis testing is conducted through the mechanism of the posterior
odds ratio, the ratio of the posterior probability of one hypothesis to the other. For
a simple hypothesis such as

H1 : θ ∈ �1 vs. H2 : θ ∈ �2, (2.7)

where the two sets�1 and�2 are mutually exclusive and exhaustive, the posterior
odds ratio is given by

K12 �
∫
�1

p(θ |y, X) dθ/
∫
�2

p(θ |y, X) dθ � p1/(1 − p1) (2.8)

where p1 is the posterior support for the first hypothesis. As can be seen from
equation (2.8), the posterior odds ratio compares the posterior support for one
hypothesis to the other. Posterior odds ratios can be constructed for hypotheses
that are not mutually exhaustive, in which case the second equality of equation
(2.8) obviously would not hold.

In applied research it is often common to also report the Bayes factor, which is
the ratio of likelihood support for the two hypotheses. In other words, the Bayes
factor is a posterior odds ratio computed with equal prior probabilities for the two
competing hypotheses. For the hypotheses described in equation (2.7), the Bayes
factor would be given by

B12 �
∫
�1

p(y|θ, X) dθ/
∫
�2

p(y|θ, X) dθ. (2.9)
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The benefit of reporting Bayes factors as part of the empirical results of a hypothesis
testing exercise is that the effect of the researcher’s prior distribution on the test
results can then be clearly discerned by comparison of the Bayes factor to the
posterior odds ratio. Note that for the posterior odds ratio in (2.8) and the Bayes
factor in (2.9) to be well-defined, the prior distributions over θ should be proper,
and for the definition of the Bayes factor the prior distributions over the two subsets
�1 and �2 should integrate to the same value (e.g., 1).

Conditional, Marginal, and Joint Distributions

This book will discuss probability distributions for vector-valued random variables
and will sometimes identify these distributions by one of the types in the section
heading. To review very quickly, a joint distribution, p(β, γ ), is for more than
one random variable and describes the probabilities of a particular combination
of values for the random variables occurring. A conditional distribution describes
the probabilities of various values for a (vector-valued) random variable occurring
conditional on a specific value of some other random variable whose value is being
held constant. Conditional distributions will be written as p(β|γ ). Finally, the
marginal distribution for a random variable is its probability distribution without
regard for the possible random values of other (potentially correlated) variables.
Marginal distributions will be written as p(β) and are mathematically related to
joint distributions by the formula p(β) � ∫

p(β, γ ) dγ , which shows that the
effect of values of the random variable γ have been integrated out to leave only the
probabilities of various values of β “averaged” across all possible values for γ .

Some Standard Distributions from Regression Models

Given the prevalence of linear regression models, it is probably worthwhile to
present some of the standard distributions that appear in Bayesian analysis of such
models under commonly used diffuse prior distributions. While I do not necessarily
recommend using such noninformative priors often, they serve as a benchmark
and allow for analytical inspection of the posterior distributons of the regression
parameters. Further, the distributions presented in this section are frequently useful
in the generation of random draws for some of the numerical integration techniques
described in the next chapter.

We begin with a standard linear regression model with all the classical as-
sumptions (full rank, nonstochastic regressor matrix, iid zero-meaned, normally
distributed error terms), using the notation

y � Xβ + ε, (2.10)

where y is an (n × 1) vector of observations on the dependent variable whose
variation the model seeks to explain,X is the regressor matrix, β is a (k× 1) vector
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or the regression parameters to be estimated, and ε is the conformable vector of
white noise error terms with variance σ 2. If we selected an improper uniform prior
for the regression parameters (which is also a Jeffreys’ prior) and the standard
Jeffreys’ prior on σ , the joint prior distribution on (β, σ ) can be written as

p(β, σ ) ∝ 1/σ. (2.11)

The likelihood function for the observations on the dependent variable given the
assumption of normality is

p(y|β, σ, X) � (2πσ 2)−n/2 exp[−0.5(y − Xβ)′(y − Xβ)/σ 2]. (2.12)

The joint posterior distribution can then be expressed as

p(β, σ |y, X) ∝ (2π)−n/2σ−(n+1) exp[−0.5(y − Xβ)′(y − Xβ)/σ 2], (2.13)

∝ (2π)−n/2σ−(n+1)

× exp[−0.5(n − k)s2/σ 2 + (β − β̂)′σ−2X′X(β − β̂)], (2.14)

where the expression in (2.14) breaks the quadratic terms apart and uses the least
squares estimators of β and σ 2, β̂ and s2. The marginal posterior distributions of
the parameters are

p(β|y, X) ∝ [(n − k)s2 + (β − β̂)′X′X(β − β̂)]−n/2, (2.15)

which is a multivariate Student-t distribution, and

p(σ |y, X) ∝ σ−(n−k+1) exp[−0.5(n − k)s2/σ 2], (2.16)

which is an inverted gamma distribution and implies that the marginal posterior
distribution of σ 2 is a scaled version of the χ2 distribution. When dealing with
generalized error distributions with a variance-covariance matrix denoted by 
,
the preceding distributions generalize in obvious ways and the marginal posterior
distribution of 
 is an inverted-Wishart distribution, which is a generalized form
of the inverse gamma. These distributions will serve as useful references for the
remainder of this book.

Comparison to the Sampling Theory Approach

It may be useful for readers who are not particularly familiar with the Bayesian ap-
proach to statistics to consider the following four comparisons between Bayesian
statistics and sampling theory statistics (the “classical” approach). These com-
parisons are meant to highlight the differences between the two approaches; they
focus mainly on distinctions between numerical Bayesian techniques and sampling
theory approaches such as maximum likelihood and least squares estimation.

1 Finite Sample Properties

All Bayesian results are exact in finite samples because the distributions are de-
rived conditional on the observed sample of data. Many sampling theory results
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depend on asymptotics and are only approximations for the observed sample of
data (often poor ones for small to medium samples). This distinction becomes par-
ticulary acute when the focus of attention falls on a nonlinear function of structural
parameters. In such cases it can be difficult to conduct exact statistical inference in
the sampling theoretic framework, and researchers are forced to rely on asymptotic
testing procedures, which may tend to overreject the null hypothesis. When tak-
ing a numerical Bayesian approach, nonlinear functions of structural parameters
pose no problems. Exact distributions of any function of random variables can
be constructed easily using the techniques described in the next chapter, allowing
inferences concerning any hypotheses of interest.

2 Ease of Computing Precision

In some econometric applications the random variable of key interest to the re-
searcher (or a policymaker who will be using the results as a decision aid) is
a nonlinear function of the structural parameters of the regression model. Ex-
amples of such cases are the welfare impacts of trade legislation, elasticities of
demand and supply, and impulse response functions. Using numerical Bayesian
techniques, measures of precision (such as standard errors) for such variables can
be computed in as straightforward a manner as for the structural parameters. No
additional steps are necessary, and all results are exact in finite samples. Sampling
theory approaches generally must rely on asymptotic expansions to approximate
precision measures such as the variance of nonlinear functions of the structural
parameters.

3 Optimality vs. Efficiency

Sampling theory approaches lead to efficient estimators (if the proper estimation
method is used) conditional on the model specification including any parametric as-
sumptions. A Bayesian approach leads to optimal estimators relative to a specified
loss function and any parametric assumptions; uncertainty regarding model spec-
ification, nuisance parameters, or even parametric assumptions can be integrated
out. Bayesian estimators are referred to as optimal rather than efficient because
the concept of efficiency does not translate well to the Bayesian paradigm. The
Bayesian estimators are optimal in the sense that they combine prior and sample
information according to an optimal rule (Bayes’ theorem), resulting in a posterior
distribution or posterior minimum expected loss estimator that has properly (and
optimally) accounted for all available information. This is clearly analogous to the
concept of statistical efficiency; however, it is not identical. Because the posterior
distribution depends on a prior, which can be different for each researcher, and
because point estimators are conditional on the particular loss function specified,
a unique minimum variance standard such as the Cramer-Rao lower bound does
not exist in an objective sense.
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This does not mean that Bayesian estimators are inefficient, only that the way
in which their performance is evaluated is slightly different from sampling theory
estimators. In fact, I would argue that the Bayesian optimality property is better
than the sampling theory’s efficiency in the world of applied econometrics because
the biggest assumption made is generally that of model specification. Efficiency
only holds conditional on model specification, and correctly specifying the model
is close to a zero probability event, so the appeal of statistically efficient estimators
in applied work is somewhat limited (it seems to me). I would rather know that for
the model and prior distribution postulated, right or wrong, the Bayesian estimator
(or posterior distribution) makes the best possible use of all information available.

4 Odds Ratios vs. p-Values

Bayesian and sampling theory approaches provide information regarding hypoth-
esis tests in two very different forms. Bayesian procedures produce posterior
probabilities supporting each entertained hypothesis (which can be more than two
at one time). These posterior probabilities directly present the relative strength of
belief in each hypothesis after proper consideration of prior and sample informa-
tion; that is, the probability that each theory is “true” or a better representation of
the underlying process than all other models placed under consideration. When
there are only two entertained hypotheses, these posterior probabilities are often
presented in the form of a posterior odds ratio (defined in equation 2.8). Again, the
posterior odds ratio is directly related to the relative support for each hypothesis,
with the value of unity marking the point where the available information fails to
distinguish between the two hypotheses. Values greater or less than 1 present the
strength of support in favor of one of the hypotheses with the relationship between
the posterior odds ratio and the support for the hypotheses being a monotonic
function.

Sampling theory hypothesis tests present evidence in the forms of test statis-
tics and p-values based on the assignment of a null hypothesis under which the
distribution of the test statistic can be derived. Conditional on the null hypothesis
being true, the p-value (associated with the test statistic) describes the probability
of observing the given sample of data. It is not a measure of the data’s support for
the null hypothesis relative to an alternative hypothesis, but simply a probabilistic
measure of the empirical discrepancy between certain observed data characteristics
and those expected under the null hypothesis.

A simple summary can be made of the two approaches to providing informa-
tion concerning hypotheses. Sampling theory results state: conditional on the null
hypothesis being true, here is the probability of seeing such an empirical dis-
crepancy in a random sample of data. Bayesian results state: conditional on the
prior and sample data information, here is the probability support for a particular
hypothesis relative to clearly specified alternative hypotheses. Thus, Bayesians
measure the data’s support for the hypothesis, while sampling theorists measure
the hypothesis’s support for the data.
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5 Hidden or Incomplete Assumptions

While the sampling theory approach does not create hidden assumptions, it also
does not force a researcher to be as forthcoming as the Bayesian approach does.
When performing Bayesian analysis, one must clearly state all prior information
(assumptions), clearly detail the model or models considered, make clear the loss
function used to derive any point estimates, and fully describe the likelihood func-
tion of the data. A good sampling theory application will also contain all these
items, but it is easier to become lazy in the sampling theory approach and ignore
paying careful attention to one or more of these details.

Decision Theory

Bayesian methods can also be used in the field of decision science. In this realm we
are not interested in trying to estimate some unknown random variable, but in trying
to choose the optimal value of some (deterministic) control variable such as the
level of capital investment, a quantity of consumption, or an allocation of resources.
If all parameters involved in the decision process are known and deterministic,
choosing the optimal level of control variables is a simple mathematical exercise.
However, in most cases involving economic decisions many of the parameters are
unknown random variables; this is where a Bayesian approach becomes useful.
By taking account of all available prior and data-based information to construct
posterior distributions for the parameters of the optimization problem, levels can
be found for the control variables that maximize or minimize the expected value of
the objective function (Berger, 1985). It is common in the Bayesian decision theory
literature to refer to minimizing the expected loss of a decision or to minimizing
the expected risk (Schervish, 1995); however, in the context of economics it is
more intuitive to think in the equivalent terms of maximizing the expected value of
the decision. The goal of a Bayesian decision theory exercise is to make a decision
that is robust with respect to unknown parameter values by selecting the level of
the control variables through a process that accounts for all possible (in terms of
posterior probability support) values of the random parameter values and weighs
these possible parameter values by the probability of their occurrence.

A simple example of a decision theory problem that is well-suited to a Bayesian
approach is the case of a firm choosing its productive capacity. Assume that the firm
produces a single output using two inputs: one raw material and a capital input that
tranforms the raw material into the finished product. The capital input (machinery)
lasts forever and can be bought or sold once a year for a constant price. Production
is deterministic and occurs daily; however, consumer demand is stochastic and the
demand curve is not known with certainty by the firm (although the firm does have
data on sales, prices, and other related variables). The choice of the level of capital
to own in a particular year is a perfect example of selecting a control variable’s
level in an environment where the resulting value of that decision is random (due to
the random variables present in consumer demand). Using a Bayesian approach to
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select the productive capacity allows the firm to fully incorporate the uncertainty
involved in the random parameters while maximizing the expected value of any
objective function that reflects the firm’s goals (profit, utility of profits, total sales,
etc.).

Let the objective function that the firm wishes to maximize be U(p, q, w, k)
where p is the price per unit of the finished product, q is the quantity sold, w
is the cost per unit of the raw material, and k is the level of productive capacity,
and let the consumer demand schedule facing the individual firm be represented
by the function q � D(p, z|θ) where z is a vector of nonprice variables that
influence the level of demand and θ is a vector of unknown parameters of this
function. Represent the posterior joint distribution of the random variables in the
demand function by p(θ |p, q, z, I ) where I denotes the firm’s prior information.
The firm’s decision problem can then be described as trying to choose the value
of k that maximizes∫

U(p, D(p, z|θ), w, k)p(θ |p, q, z, I )dθ. (2.17)

The integral in equation (2.17) can be evaluated either analytically or by one of the
numerical methods, such as Monte Carlo integration, discussed in depth in Chapter
3. The firm can simply scan over values of k to find the level that maximizes (2.17)
or differentiate with respect to k and proceed with the solution of the first-order
condition. The explicit incorporation of the posterior distribution of the random
variables (which includes prior information) makes this decision theory approach
Bayesian.

The classical approach to such a problem has been the “plug-in” method, where
the sampling theory estimates of any unknown random parameters are inserted
into the optimization problem as if they are the true values and then the problem
is solved. The certainty equivalence theorem demonstrates that if the distributions
of the random parameters are symmetric, any constraints (such as the demand
curve in the preceding example) are linear, and the objective function is linear-
quadratic, the plug-in approach yields the same optimal control as a methodology
that fully accounts for the stochastics involved. However, prior information or
particular distributional assumptions can yield asymmetric posterior distributions
for random variables, and in many instances the objective function best suited
to a problem is not quadratic (such as a negative exponential utility function for
profit). In such cases, taking a Bayesian approach to solving for the optimal control
will produce a different answer from the standard method. Bayesian methods to
solving such problems are ideal for cases where economic theory provides prior
information that shapes posterior distributions (such as demand curves slope down)
and for problems where risk is important and the correct objective function is not
quadratic, but skewed. All types of risk attitudes can be readily incorporated, and
uncertainty concerning underlying parameters is handled in a direct and simplistic
manner.

Another advantage of the Bayesian decision theory approach to such problems
is that when the optimal solution is found by scanning over a range of control
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settings, the associated expected values of the objective function can be used to
determine a range of near optimal settings of the control variable and to calculate
the expected loss attached with suboptimal settings of the control.

References

Berger, J. O. (1985) Statistical Decision Theory and Bayesian Analysis, New York:
Springer-Verlag.

Box, G. E. P., and G. C. Tiao (1973). Bayesian Inference in Statistical Inference.
Boston: Addison-Wesley. Now also New York: John Wiley & Sons (1992).

Dorfman J. H., and A. M. Havenner (1992). A Bayesian approach to state space
multivariate time series modeling. Journal of Econometrics 52, 315–346.

Schervish, M. J. (1995). Theory of Statistics. New York: Springer-Verlag.
Zellner, A. (1971). An Introduction to Bayesian Inference in Econometrics. New

York: John Wiley & Sons.



3

New Advances in Numerical
Bayesian Techniques

The numerical techniques discussed in this chapter are designed to free researchers
from dependence on analytical methods for the solution of problems concerning
probability distributions. Rather than having to use calculus to find the mean,
median, mode, or some specified percentile of a distribution, we can now use
computer-intensive methods based on (pseudo-)random number generation to em-
pirically investigate the properties of the distributions that arise within Bayesian
analyses of estimation and decision problems. Four basic methods for such numer-
ical analysis of probability distributions will be presented in this chapter: Monte
Carlo sampling, antithetic replication, importance sampling, and Gibbs sampling.

All of these methods operate on the same basic principle. Using a computer to
generate random numbers from a specified distribution, the value of the proba-
bility distribution function, along with some number of functions of the random
variables involved, is calculated. The value of the pdf and the other functions of
interest are saved after each evaluation, and the process repeats itself until a large
number of points in the sample space of the random variables have been visited.
At this point empirical distributions of the random variables and associated func-
tions have been constructed and permit simple inspection of various properties
of these empirical approximations to the true underlying analytical distributions.
A researcher can find the mean, median, mode, or a specific percentile (such as
the quartiles); compute variances; calculate the probability support for a specified
hypothesis; and so on. Anything that could be done analytically if the problems
were tractable to such an approach can be done numerically. In addition, while
using such a numerical approximation does lead to some level of approximation
error in the empirical results, the size of the approximation error is a function of
the number of points in the distribution that are evaluated and so is completely
within the researcher’s control. These concepts and methods will be made clearer
through the following discussion of the four specific numerical methods.

19
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Monte Carlo Sampling

The simplest form of numerical analysis is based on Monte Carlo sampling. The use
of these methods in economics can be traced to important works by Hammersley
and Handscomb (1964), Kloek and van Dijk (1978), and Geweke (1986, 1991).
Monte Carlo sampling relies on direct numerical evaluation of the integrals or
probability distributions of interest at a large number of points in the relevant
sampling space instead of analytical solution using mathematical equations. The
basic process has five steps. To help make the following description concrete,
assume that we are analyzing the posterior distribution p(θ |y, X) where θ is a k-
vector random variable, y is an n-vector of observations on the dependent variable,
and X is an (n × k) matrix of (exogenous) explanatory variables.

The Five Steps to Monte Carlo Sampling

1. Draw a random value for the parameter vector θ from the distributionp(θ |y, X).
Denote this computer-generated random draw by θ(i).

2. Compute the value of any functions g(θ(i)) that are of interest.
3. Save the values of the parameter vector θ(i) and other functions computed in a

matrix that is filled row by row with the values from step 2.
4. Repeat steps 1 to 3 many times, i � 1, 2, . . . , B, where B might be 5000 or

10,000.
5. Using the saved values for θ(i) and g(θ(i)), compute means, medians,

interquartile ranges, and so on, as desired.

Because all draws are made randomly from the correct posterior distribution of
θ , they can be treated as equally likely events. Thus, the posterior mean of θ is
numerically approximated as the simple arithmetic mean of the B draws compiled
in steps 1 to 4; posterior means of functions of the parameters g(θ) are calculated
in an identical manner using theirB saved values. The posterior median of either θ
or g(θ) is found by sorting theB saved values from small to large and selecting the
middle value as the estimate of the posterior median. If B is an even number, one
can use the simple average of the B/2 and (B + 1)/2 ordered values. Interquartile
ranges or other percentiles of the posterior distributions of either θ or g(θ) are
found in an analogous manner to the median. Denoting the numerical estimate
of the posterior mean of g(θ) using B Monte Carlo draws by ĝB(θ), Geweke
(1989) has shown that under fairly innocuous conditions ĝB(θ) converges almost
surely to E[g(θ)] as B tends to infinity. Thus, these numerical approximations
are consistent estimators of the corresponding analytical Bayesian estimators, and
numerical Bayesian estimators retain the same optimality property as all other
Bayesian estimators.

Measures of precision for these numerical estimates can be found in a straightfor-
ward manner using the sameB saved values for the parameters and their associated
functions. The estimated standard error of the numerical approximation in ĝB(θ)



Antithetic Replication 21

is given by (Geweke, 1989)

sna � 1√
(B)

√ ∑B
i�1

[
g(θ(i)) − ĝB(θ)

]2

B − 1
. (3.1)

Equation (3.1) makes clear that the size of the error due to numerical approximation
can be controlled by the choice of B, the number of random draws generated from
p(θ |y, X).

Monte Carlo sampling is the simplest of the four numerical techniques covered
in this book. All posterior estimators for the parameters and any functions of those
parameters can be evaluated by simple averages or by sorting the saved draws
that form the empirical distribution. The advantage of such an approach is that
to find the analytical posterior distribution of a complex function g(θ) can be
quite difficult, involving advanced calculus to perform the change in variables (the
sample space through which we are viewing the probability support for a random
variable). However, it is generally straightforward to evaluate any function g(θ)
given the condition that θ � θ(i). By drawing a sample on θ and using it to
construct the posterior distribution of g(θ), the mathematical difficulties involved
in the derivation of this distribution are avoided at the expense of the computer
time used to build the distribution empirically.

Antithetic Replication

A slight variation on Monte Carlo sampling that produces an increase in the ef-
ficiency of the numerical approximation is the method of antithetic replication.
Antithetic replication is not a method for the numerical evaluation of probability
distributions or their moments, per se, but is a method that can be added to a stan-
dard Monte Carlo sampling scheme. The introduction of antithetic replication adds
an additional step to the basic process outlined earlier designed to ensure that the
points visited throughout the posterior distribution are evenly distributed around
the mean of the distribution. After making a random draw from the posterior dis-
tribution, an antithetic replicate is created that is a mirror image of the latest draw,
projected through the mean. Making this concrete, the precise steps are listed next.

The Six Steps to Antithetic Replication

1. Draw a random value for the parameter vector θ from the distributionp(θ |y, X).
Denote this computer-generated random draw by θ(i).

2. Compute the value of any functions g(θ(i)) that are of interest.
3. Save the values of the parameter vector θ(i) and other functions computed in a

matrix that is filled row by row with the values from step 2.
4. Create an anthitetic replicate θ(−i) � E(θ) − [θ(i) − E(θ)] � 2E(θ) − θ(i),

where E(θ) is the mean of the posterior distribution p(θ |y, X), and follow
steps 2 and 3 with this draw, too.
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5. Repeat steps 1 to 4 many times, i � 1, 2, . . . , B, where B might be 500 or
1000; note that the total number of observations in the empirical distribution
will be 2B.

6. Using the saved values for θ(i) and g(θ(i)), compute means, medians,
interquartile ranges, and so on as desired.

Calculation of means, medians, percentiles, and measures of precision are exactly
as in the case of standard Monte Carlo integration. Almost sure convergence of the
numerical estimator to its analytical counterpart still holds. The benefit of antithetic
replication is that in many cases an equally precise numerical approximation can be
achieved on a much smaller number of observations in the empirical distribution.
Equation (3.1) showed that the variance of the numerical approximation error is
equal to (1/B)σ 2(g) where σ 2(g) is the variance of g(θ), assuming it exists from
the posterior distribution. If the sample size of the data used in a particular appli-
cation is of size T , using antithetic replication can shrink the size of the numerical
approximation by a factor of T (Geweke, 1988). That is, the variance of the nu-
merical approximation error under antithetic replication is equal to (1/BT )σ 2(g)

or (1/T )s2
na , where sna is as defined in equation (3.1).

This decrease in the variance of the numerical approximation (due to numerical
approximations that converge to the true value at a faster rate) can be quite an
advantage in computational efficiency if the sample size is moderately large. In
standard Monte Carlo sampling, B � 5000 and 10,000 are common choices to
ensure suitable numerical accuracy. However, if the data set has a sample size of
T � 100, between 500 and 1000 antithetic random draws (250 to 500 pairs) will
generally achieve the same degree of numerical accuracy. The precise increase in
numerical accuracy from antithetic replication depends on the amount of nonlin-
earity in the function g(θ), with the gains declining as the nonlinearity increases.
As an example of the potential gains in sampling efficiency, Geweke (1988) found
that with a sample size of T � 60 a three-step ahead predictive mean could be es-
timated with equal numerical accuracy using either 10,000 standard Monte Carlo
draws or 550 antithetic draws.

The only additional burden is that the mean of the posterior distribution must
be known (generally the mean of θ can be found easily; it is the properties of
some function g(θ) that forces the reliance on numerical rather than analytical
methods). If the mean of θ is not known, it can be estimated by a preliminary Monte
Carlo sampling routine that does not bother to calculate additional functions of
the parameters. This might make sense if the functions of θ to be evaluated are
complex and time-consuming and there is a large time-savings to be realized by
the reduction in the number of draws necessary when using antithetic replication.

Importance Sampling

The third numerical method to be covered is importance sampling. This is the most
useful method for analyzing common regression models with Gaussian likelihood
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functions but informative priors that are not conjugate; thus, the posterior distri-
bution is of a nonstandard form from which it is difficult or impossible to generate
random draws. Importance sampling allows the random draws of θ to be gener-
ated from a substitute density and the empirical distribution is then adjusted to
account for the differences between the substitute density and the actual posterior
distribution of θ . The steps to an importance sampling algorithm are as follows.

The Six Steps of Importance Sampling

1. Draw a random value for the parameter vector θ from a substitute density f (θ).
Denote this computer-generated random draw by θ(i).

2. Compute the values of f (θ(i)) and p(θ(i)|y, X).
3. Compute the value of any functions g(θ(i)) that are of interest.
4. Save the values of θ(i), the substitute density, the posterior distribution, and

other functions computed in a matrix that is filled row by row with the values
from steps 1 to 3.

5. Repeat steps 1 to 4 many times, i � 1, 2, . . . , B, where B might be 5000 or
10,000.

6. Using the saved values for θ(i) and g(θ(i)), compute means, medians, interquar-
tile ranges, and so on as desired, using the importance weights to correct for
the differences between the substitute and true posterior distribution of θ .

Generation of the random draws from a substitute density f (θ) results in an empir-
ical sample of observations on θ that are not all equally likely under p(θ(i)|y, X);
i.e., it is not a random sample from the posterior distribution. This means that
simple averages cannot be used to estimate the posterior mean of either θ or g(θ);
weighted averages must be used instead to correct for the nonrandom sample. The
correction is simple and uses the values of the two densities at each point in the
empirical distribution to form the weights. These weights, often called importance
weights, are given by the ratio p(θ(i)|y, X)/f (θ). To make this clear, the formula
for the posterior mean of a function g(θ) using importance sampling is

ĝISB (θ) �
∑B

i�1 g(θ
(i))p(θ(i)|y, X)/f (θ(i)∑B

i�1 p(θ
(i)|y, X)/f (θ(i) �

∑B
i�1 g(θ

(i))w(θ(i))∑B
i�1 w(θ

(i))
, (3.2)

where w(θ(i)) is the importance weight for the ith observation in the empirical
distribution and the superscripted IS denotes that this estimator is based on im-
portance sampling rather than on direct Monte Carlo sampling. Calculation of
percentiles of the posterior distribution of g(θ), such as the median and interquar-
tile range, can be done by sorting, from smallest to largest, the B observations on
g(θ) with their associated values of w(θ(i)). Then one simply adds the individual
values of w(θ(i)) until the sum reaches the desired percentile (e.g., 0.50 for the
median); the corresponding saved value of g(θ(i)) is the estimate of that percentile.
Just remember to normalize by the sum of the importance weightsw(θ(i)). Again,
the numerical approximation to g(θ) converges almost surely to the expected value
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of g(θ) asB tends to infinity given certain conditions on the choice of the substitute
density (Geweke, 1989).

The choice of the substitute density is important in terms of both accuracy of
the numerical approximation and computational efficiency (how many draws are
needed to achieve an estimate of the desired accuracy level). The more similar
the two densities are, the better the numerical approximation will be. The most
important point in the selection of a substitute density is to ensure that the tail
coverage of the substitute density is at least equal to, if not slightly greater than,
the tail coverage of the true posterior distribution. That is, the substitute density
should have somewhat fatter tails than the posterior density of θ . This leads to
oversampling in the tails of the posterior distribution, but these observations are
downweighted by the importance weight functionw(θ). If the tails are too thin, you
will get inadequate coverage in the tails, and upweighting of these observations
may not be enough to compensate for the failure to fully visit the entire range of
the sample space in the numerical sampling scheme (Gewke, 1989).

It is therefore common to use substitute densities with scaled-up variance-
covariance matrices to ensure proper coverage (Tanner, 1996, p. 57). For example,
consider a single equation regression model with n observations and k exogenous
variables, y � Xβ + ε, ε ∼ N(0, σ 2I ) and the prior distribution for θ � (β, σ 2)

is proportional to h(β)/σ . Thus, we have an informative prior on the regression
coefficients β and a standard diffuse prior on the scale parameter. The likelihood
function of the data is of a standard multivariate normal form and the posterior
distribution would also have a standard form (multivariate normal-inverse gamma
for θ � (β, σ 2)) if h(β)were a constant (Zellner, 1971, p. 67). However, in many
economic cases h(β) is far from being a constant across the sample space of β;
it may be truncated by economic theory, or it may simply be informative due to
knowledge gained from previous research. In many such cases, importance sam-
pling is a natural candidate to use in the examination of the posterior distribution
of β or g(β). The likelihood function of the data is often a natural choice for the
substitute density, assuming that the form of the prior distribution does not cause
the likelihood and the posterior to be radically different (in the region of the sample
space that receives prior support). Other common choices are the multivariate nor-
mal and Student-t distributions. Random draws on (β, σ ) can be generated easily,
then the prior distribution is evaluated, and the entire set of steps listed earlier is
followed to complete the analysis. With reference to the preceding remarks con-
cerning tail coverage, past research studies have often used a scaled value of the
maximum likelihood estimate of σ (or 
 for cases with non-iid errors) to ensure
adequate sampling in the tails of the posterior distribution. Tanner (1996, p. 57)
and the author have both had success with setting the variance-covariance matrix
to 1.5 times that of the maximum likelihood estimate when using a data-centered
normal distribution to generate the empirical sample of draws on β.

The numerical approximation error can be estimated in a manner similar to that
used with Monte Carlo sampling. Denoting the importance sampling estimate of
the posterior mean of g(θ) by ĝISB (θ), the estimated standard error of the numerical
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approximation in ĝISB (θ) is (Geweke, 1989):

sna �
√∑B

i�1

{
w(θ(i))

[
g(θ(i)) − ĝISB (θ)

]}2

∑B
i�1 w(θ

(i))
(3.3)

Equation (3.3) makes clear that the size of the error due to numerical approximation
will be inflated as the values ofw(θ(i))vary from unity (because quadratic functions
are convex). Thus, choosing a substitute density that is a good approximation of
the actual posterior distribution p(θ |y, X) will produce a better estimate of the
posterior means, medians, and so on of both θ and its functions.

It is worth noting that unlike with standard Monte Carlo sampling, using a
large number of draws to numerically evaluate the posterior distribution does not
guarantee a small numerical approximation error. The formula in equation (3.3)
for sna is not a function of B in any direct sense, let alone a decreasing function of
B. If all the values of w(θ(i)) equal 1, the expression in equation (3.3) converges
to that in equation (3.1) as B goes to infinity (the only reason they are not identical
for finite B is the presence of (B − 1) instead of B in the denominator of equation
(3.1). Intuition therefore suggests that if the w(θ) function remains close to 1 for
most draws, the numerical accuracy will increase with the number of draws B,
but researchers should be cautioned that to get such benefits from large samples
of observations on the posterior distribution they must use a substitute density that
provides good coverage relative to the true posterior distribution.

Finally, antithetic replication can be used in conjunction with importance sam-
pling, too. Simply combine the steps for importance sampling with those outlined
for antithetic replication. This will tend to increase the numerical efficiency for a
given number of observations on the posterior distribution for any symmetrical or
near-symmetrical posterior distribution (it does not matter whether the substitute
density is symmetrical). An important step in any importance sampling with any
antithetic replication algorithm is to make sure that the value of p(θ(−i)|y, X) is
calculated for the antithetic replicate. By definition, f (θ) is symmetric or we would
not be using antithetic replication, so f (θ(i)) � f (θ(−i)); however, p(θ |y, X) is
likely to be asymmetric (remember that we are resorting to importance sampling
due to some type of complexity in p(θ |y, X)) and thus the probabilities of these
paired parameter vectors will generally be different.

Gibbs Sampling

A somewhat different approach to the numerical methods presented so far for
generating random draws from a probability distribution is developed by a class
of methods referred to as Markov chain Monte Carlo algorithms. The inclusion
of the words Markov chain indicates that instead of generating a large sample
of independent draws from the posterior distribution (Monte Carlo sampling) or
substitute density (importance sampling), each draw is related to (conditioned
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on) the previous one. At first glance, it may seem that generating a sequence
of correlated draws will lead to difficulties in accurately assessing expectations of
parameters or functions of the parameters; however, it can be shown that when done
properly the chain of correlated draws can, in fact, be used to consistently estimate
any desired expected value (or other estimators such as distribution percentiles).
The most commonly used Markov chain Monte Carlo algorithm is the Gibbs
sampler.

Gibbs sampling was first proposed by Geman and Geman (1984). The basic idea
behind Gibbs sampling is to generate draws from a multivariate joint probability
distribution by sequential sampling from a series of conditional probability distri-
butions on lower-dimensional subsets of the random variables. In cases where it
is difficult or impossible to generate random draws from the joint posterior dis-
tribution p(θ |y, X), Gibbs sampling takes advantage of the fact that it is often
possible to generate draws from a set of conditional probability distributions on
these lower-dimensional subsets of random variables, due to simplifications that
occur in the forms of the distributions. Consider a posterior distribution p(θ |y, X)
where θ can be partitioned into three lower-dimensional parameter vectors, θi ,
i � 1, 2, 3. Using the partitioned θ parameter vector as an example, such a Gibbs
sampling algorithm would consist of the following steps.

The Five Steps to Gibbs Sampling

1. Begin with some initial values (guesses) for the parameter vectors θ1, θ2, θ3;
denote these initial values by θ(0)i , i � 1, 2, 3.

2. Generate random draws in sequence from the conditional posterior distribu-
tions:

θ
(j+1)
1 ∼ p(θ1|y, X, θ(j)2 , θ

(j)

3 )

θ
(j+1)
2 ∼ p(θ2|y, X, θ(j+1)

1 , θ
(j)

3 )

θ
(j+1)
3 ∼ p(θ3|y, X, θ(j+1)

1 , θ
(j+1)
2 )

3. Repeat step 2 many times, conditioning at each iteration on the most recently
generated parameter vectors for the other partitions. Discard the first J triplets
of (θ(j)1 , θ

(j)

2 , θ
(j)

3 ) to avoid dependence on the initial values. Then save the next
B triplets.

4. Check the chain for convergence to ensure it is safe to stop generating empirical
observations on θ (details given later).

5. Using the saved values for θ(j), compute means, medians, and interquartile
ranges of θ or any desired functionsg(θ). The saved values for each full iteration
on step 2 can be treated as independent, identically distributed random draws
from the full joint posterior distribution of θ for the purposes of computed
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posterior means; that is, you can use the same simple arithmetic formulas as
for standard Monte Carlo sampling without any sort of correction as is needed
with importance sampling.

One simple, effective method for checking convergence of the Gibbs sampler
is based on the ratio of two estimated densities (Tanner, 1996, p. 157). Let
q(θ

(j)

1 , θ
(j)

2 , θ
(j)

3 |y) be a function that is proportional to the current approxi-
mation to the conditional joint posterior density, p(θ(j)1 , θ

(j)

2 , θ
(j)

3 |y) evaluated
using the ith Gibbs draw; that is, the normalizing constant is not necessary. Let
f (θ

(j)

1 , θ
(j)

2 , θ
(j)

3 ) be the current approximation to the unconditional joint poste-
rior density, p(θ(j)1 , θ

(j)

2 , θ
(j)

3 ) � p(θ
(j)

1 , θ
(j)

2 , θ
(j)

3 |y, X)/p(y). Then denote the
Gibbs stopping functionm(j) � q(θ

(j)

1 , θ
(j)

2 , θ
(j)

3 |y)/f (θ(j)1 , θ
(j)

2 , θ
(j)

3 )When the
Gibbs sampler converges, the function m(j) will converge toward a degenerate
distribution with value equal to the q() function’s missing normalizing constant.
Thus, the stopping function can be evaluated after each completion of a full itera-
tion (or after every k iterations) and checked for convergence. While the number of
iterations to achieve satisfactory convergence with a Gibbs sampler is much more
variable and harder to predict than with Monte Carlo sampling, it is reasonable
with modern computer speeds to plan on discarding the first 500 or 1000 iterations
and then to evaluate the posterior based on the next 2000 to 5000 iterations of
the Gibbs sampler. Good references that discuss the theory or methods of testing
convergence of the draws to the underlying joint distribution include Chan (1993),
Chib (1995), Geyer (1992), Schervish and Carlin (1992) and Tierney (1994).

Gibbs sampling can also be very useful for applications of data augmentation.
Data augmentation is used when latent variables are treated as random parame-
ters and observations for them, generated from their probability distributions, are
treated as data to be used in the empirical investigation. Applications using di-
chotomous dependent variable models, state space, or common factor models, and
models containing certain expectational variables are naturals for this treatment.
The latent variables often have a conditional distribution that is straightforward to
draw from given values for the random parameters of the model. Thus, given a suit-
able partitioning of the parameter vector into subsets with conditional distributions
that are of standard forms, the latent variables can be treated as a further partition
of the whole set of random variables whose full joint probability distribution we
wish to investigate. In this way, the Gibbs sampler can generate the marginal pos-
terior distribution of the latent variables along with the posterior distribution of the
random parameters. Inferences can then be made with regard to any of the random
variables without having to encounter any of the difficulties that may arise from
the treatment of latent variables as some sort of special class.

Dorfman (1996) and McCulloch and Rossi (1994) are econometric application
papers that make concrete the application of the Gibbs sampler to the problem of
estimating the parameters of a multinomial probit model (with its inherent latent
variables) and examining the posterior distributions of functions of the model
parameters (such as the marginal probabilities of a particular choice).
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Part II

Applications in Econometrics



4

Imposing Economic Theory

In many applications, economic theory provides information that restricts the sam-
ple space that should receive prior support. While the prior distributions implied
by economic theory are not always informative within a specific range (subspace),
they tend to have truncations that are caused by information contained in the
economic theories that are the basis of much of our applied work. The simplest
example is economists’ general belief that demand curves slope down (at a lower
price, the quantity sold should be larger). If this is taken to be a certain feature of
economic behavior, then the prior distribution on the parameter vector of a demand
regression model should be restricted to support only the region of the parameter
space that is consistent with such behavior.

At times, economic theory provides more complex prior information, such as
adding up constraints, convexity conditions, or concavity conditions to be met,
which are still best represented by truncations on the space receiving support from
the prior distribution. In other applications, applied economic knowledge may
provide even more information with regard to the unknown random parameters
and more informative priors can be used. An example would be a regression model
of demand for a commodity, where the commodity is well-established to have an
inelastic demand. Economic theory suggests that the price elasticity of demand
should be negative, and in this instance we also have knowledge suggesting that
values between 0 and −1 are more likely than those with greater absolute values.
Estimation of models in situations such as the ones mentioned earlier are well-
suited to the application of Bayesian analysis because the prior information can be
optimally combined with the information contained in the data to yield a posterior
distribution that is consistent with emprirical observations and existing economic
theory. Further, it is straightforward to compute the observed support for any
restrictions from economic theory that are imposed in the form of prior information,
thus providing a check on both the state of economic theory and the agreement
between the researcher’s prior distribution and the current data set.

This chapter will present a variety of applications in which a Bayesian approach
allows easy and productive incorporation of prior information derived from eco-
nomic theory into econometric estimation of an economic model. The applications
will range from extremely simple to fairly complex. Some applications will be de-
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scribed in full detail to demonstrate precisely how a researcher would use such an
approach, while others will be mentioned simply as candidates for this method of
analysis.

Restricted Parameter Spaces

The simplest type of prior information to incorporate via the prior distribution is a
restriction on the parameter space due to a theory that places inequality constraints
on the value of a parameter or function of parameters. This type of prior information
implies that one should start with some type of standard prior distribution and then
multiply that by an indicator (0/1) function that limits positive prior support to
the region that satisfies the inequality restriction. This use of Bayesian analysis
in applied econometrics is well-demonstrated by Chalfant (1993), Chalfant, Gray,
and White (1991), Geweke (1986), and Hayes, Wahl, and Williams (1990).

To begin, consider a single equation demand model of the form

q � β1 + pβ2 + mβ3 + rβ4 + ε � Xβ + ε, (4.1)

where q is a (T × 1) vector of the quantity sold in each of T time periods of
some good; p, m, and r are conformable vectors of the corresponding values for
price of the good, disposable income of the product’s consumers, and the price of
a substitute good; and ε is a vector of stochastic error (discrepancy) terms. The
four-element β vector after the second equality sign contains the four individual
random parameters, andX is the matrix of four regressors (including the intercept).
Economic theory suggests that the signs of the four elements in the β vector should
be (+,−,+,+) where the fourth sign is predicated on the definition of the last
regressor as the price of a substitute good (not a complement), and the sign of the
intercept could depend on the values of the nonprice variables but will be assumed
positive here.

Imagine that the elasticity of this product either is not well known in advance
or is hard to pin down due to variation in price and quantity (because this is not
a constant-elasticity model). In fact, a very weakly informative, but proper prior
is desired that incorporates the sign restrictions derived from economic theory.
Because little is known about the parameter values, it seems reasonable to as-
sume that the prior distributions of the individual βi are independent; that is, the
marginal prior distribution of each is equal to its conditional prior. This is often a
good assumption in applied econometrics. If data is scaled so that all four of the
parameters are likely to be of a small order of magnitude (0–10), a suitable prior
might be

p(β, σ ) ∝ �(β1/10)�(β2/10)�(β3/10)�(β4/10)D(β1, β2, β3, β4)/σ, (4.2)

where σ is the standard deviation of the error term, �() is the probability density
of the standard normal distribution, andD(β1, β2, β3, β4) is an indicator function
that equals 1 only when all four parameters satisfy the given sign restrictions and
equals 0 otherwise. Scaling the regression parameters within the prior distribution
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implies that the standard deviation of our prior with respect to each of these four
parameters is 10. Thus, the prior variances of the βi are quite large in conformance
with our expressed ideal of being only weakly informative. Figure 2 shows for a
single βi parameter what this prior distribution looks like for priors with standard
deviations of 1, 5, 10, and 100. Finally, note that the prior on σ takes the standard
Jeffreys form for a parameter ranging from 0 to infinity (i.e., it is uninformative
with respect to the natural log of σ ).

Having fully specified the prior on θ � (β, σ ), the next step is to specify the
likelihood function for the data. If we assume that the error terms are i.i.d. normally
distributed, the likelihood takes the standard form of

p(y|θ, X) � (2πσ 2)−T/2 exp[−0.5(y − Xβ)′(y − Xβ)/σ 2]. (4.3)

Multiplying the likelihood function by the prior distribution on θ yields a
distribution that is proportional to the posterior distribution of θ :

p(θ |y, X) ∝ (σ 2)−(T+1)/2�(β1/10)�(β2/10)�(β3/10)�(β4/10)D(β)

× exp[−0.5(y − Xβ)′(y − Xβ)/σ 2]. (4.4)

Due to the indicator functionD(β) and the presence of the normal densities in the
individual βi , this posterior distribution cannot be easily dealt with in an analytical
framework, nor will Monte Carlo sampling be a useful approach. However, as long
as the prior distribution for β is kept fairly diffuse, the posterior distribution is not
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very different from the likelihood function (or a close relative) and importance
sampling can be used.

If the posterior distribution of σ 2 is not of particular interest, one might use a
multivariate Student-t distribution centered at the mode of the likelihood function
(the maximum likelihood estimator of β) as the substitute density; this would be
the marginal posterior distribution of β if we had a constant (diffuse) prior on β.
If you wish to use the likelihood multiplied by the prior distribution for σ 2 as the
substitute density (i.e., the posterior except for the prior on β), a two-step process
is used. First, generate a draw of σ 2 from an inverted χ2 distribution (scaled by
(n − k)s2) and then conditional on that draw, generate a value for β from the
multivariate normal distribution centered at the MLE again (Geweke, 1988). In
the following description, I will assume that the first method is used, generating
random draws for β only as that is generally the center of attention in applied work
and the example is simpler (which is advantageous for the first one). Choosing this
approach, the application would proceed through the following steps.

Application of Importance Sampling to a Truncated Prior
Distribution

1. Specify the prior distribution for β and σ . The prior for this example is assumed
to be as shown in equation (4.2). Ignore the normalizing constant, as that will
be accounted for in the formula for computing the posterior means.

2. Use the data set to estimate β and σ by maximum likelihood, and use these
estimates, βML and σML, to specify the substitute density. Let the substitute
density be a multivariate Student-t distribution with four (or another small
number of) degrees of freedom, mean βML, and variance-covariance matrix
equal to [T/(T − k)]σML(X′X)−1.

3. For i � 1, 2, . . . , 10,000:
a. Draw a random value for β(i) from the substitute density of step 2.
b. Compute and save f (β(i)), p(β(i)|y, X, σML), and all functions g(β(i)) of

interest.
4. Compute posterior means and medians for β(i) and g(β(i)) using the formula in

equation (3.2) for the means. Medians and other percentiles will be discussed
more later.

5. Compute the numerical precision of the estimates using the formula for the
standard error of the numerical approximation error shown in equation (3.3).
This should be presented with the results almost like the common t-values
against a zero null to demonstrate the precision of the numerical methods used.

6. Test the hypothesis implied by the restriction on the parameter space derived
from economic theory.

To carry out the last step, you need to compute the value of the prior distribution
at each point with and without the trucation based on the indicator functionD(β).
Denote the prior on β without the indicator function by p̃(β); p(β) � p̃(β) D(β).
The marginal posterior distribution under this nonrestricted prior would be denoted



34 4. Imposing Economic Theory

by p̃(β|y, X). Then the posterior support for the hypothesis embedded inD(β) is
given by

p(H1) �

10,000∑
i�1

p(β(i)|y, X)
f (β(i))

10,000∑
i�1

p̃(β(i)|y, X)
f (β(i))

(4.5)

Equation (4.5) calculates the posterior probability of the restrictions being true
conditional on the unrestricted prior specification by counting the number of ran-
dom draws that satisfy the restrictions. Because importance sampling is used, a
simple percentage of draws that satisfy the restrictions cannot be used, so each
draw is weighted by the importance weights in a manner exactly like that used in
computing the posterior means. The hypothesis can be maintained or rejected on
the basis of the value ofp(H1) compared to the posterior support for the alternative
hypothesis, which here will equal 1 − p(H1). Since a high expected loss might
reasonably be attached to rejecting a well-respected economic theory, one might
choose to maintain such a hypothesis unless its posterior support fell well below
0.50, perhaps as low as 0.20.

Note that when working with a truncated prior such as the one postulated here,
some of the random draws will be associated with zero values for the posterior
distribution p(β(i)|y, X). This does not cause any changes in the formulas as they
are applied. For example, the posterior mean of the price parameter, β2, is given
by

β̄2 �

10,000∑
i�1

β
(i)
2 p(β

(i)|y, X)
f (β(i))

10,000∑
i�1

p(β(i)|y, X)
f (β(i))

(4.6)

This formula will automatically place zero weights on all draws that were not
supported by the prior distribution because p(β(i)|y, X) will equal 0 for those
draws. Posterior means of other functions of the β parameters can be found by
similar calculations as long as the value of the function for each of the draws
is saved (or calculated from saved parameters as equation (4.6) is applied). For
this example, you could calculate the posterior mean of the income elasticity of
demand for a particular time period after computing the posterior mean of β3.

To find the posterior median for a parameter (the optimal point estimate under
absolute loss), you must extract two columns from your matrix of saved values from
the importance sampling: one column containing the 10,000 parameter values (or
function thereof) and the second column containing the importance weights,w(i) �
p(β(i)|y, X)/f (β(i)). Then sort these two columns, making sure that the rows stay
together, from small to large values for the parameter (function). Next, create a
third column equal to the running sum of the column of importance weights; note
that many software languages will do this with a preprogrammed command. The
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values in the column of running sums for the importance weights are the numerical
approximations of the percentiles of the distribution of the random variable on
which the sort was performed. The median is the parameter value found in the
row where the running sum first exceeds 50% (or the last row where it does not).
Quartiles and highest posterior density regions can also be found by selecting the
proper rows of this matrix of sorted empirical draws. To find the median for a
second parameter, you must start from the beginning by extracting a new matrix of
that parameter’s B randomly generated values and associated importance weights
and re-sorting; that is, the sort must be done for each random variable of interest
and the importance weights must be handled carefully to ensure that they stay
linked with their associated random draws.

To caclulate the numerical approximation errors of the posterior estimates, use
equation (3.3), denoting a posterior mean by placing a bar above the random
variable’s symbol. To compute the numerical approximation error for the posterior
mean of the price elasticity for the kth period in the data sample, the formula would
be

sna �

√√√√10,000∑
i�1

[
w(i)

(
β
(i)
2 pk

qk
− β̄2pk

qk

)]2

10,000∑
i�1

w(i)

(4.7)

This provides a measure of the precision of the importance sampling algorithm. If
the value of sna is suitably small, perhaps 1% of the posterior mean of the elasticity,
you can conclude that the numerical integration was successful and that you had
enough random draws and a good substitute density.

A final step worth performing in all Bayesian analyses is sensitivity analysis on
the prior distribution. In the example just discussed, I might recalculate all esti-
mators under priors with no truncation due to economic theory and with standard
deviations in the normal densities of 5, 20, and 100. These results would be cal-
culated using the same set of 10,000 random draws from the importance sampling
algorithm. In fact, these other priors can be placed in the computer program at
the start so that the implied different posterior density values for each draw are
calculated and saved with those of the base prior. Note that the importance weights
will be different under the different priors, so a new set of importance weights must
be generated for each prior. These other prior distributions are not different possi-
bilities that the researcher considers as alternative candidates; a single person can
only have one prior distribution over a particular parameter space. Rather, they al-
low readers of your research to envision how the results might change under their
priors and to satisfy themselves that your results are not completely dependent
on the prior you selected. Performing a good sensitivity analysis on your prior
distribution convinces readers that your empirical results are robust.

An example of what such sensitivity analysis might look like is shown in Figure
3. With a marginal likelihood for β3 centered at 2 with a standard deviation of 1
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(meaning that a maximum likelihood estimation would yield a t-statistic of 2.0
for the standard zero null hypothesis on β3), the marginal posterior distribution
of β3 under four different priors with standard deviations of 5, 10, 20, and 100
are drawn in Figure 3. Note that while the posterior mode (and mean and median)
does change, the effect of the prior variance is clearly slight, and these results can
be declared robust with respect to that aspect of the prior distribution.

A Profit Function Application

Another natural application of numerical Bayesian methods presents itself in the
estimation of systems of equations that arise in the context of profit and cost
function estimation. When estimating a profit or cost function, applied econome-
tricians often estimate the profit or cost function along with a system of input
demand and/or output supply equations. Economic theory enters through two
routes, cross-equation equality restrictions that effectively reduced the number
of random parameters and inequality restrictions on functions of the parameters
that reflect economic theory. A common application in the applied literature has
been estimation of the translog profit function in conjunction with the netput share
equations (either output supply or input demand), and many researchers have im-
posed convexity on this system following the theory and conditions first stated by
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Lau (1976, 1978). Just a few of the applications can be found in Ball (1988), Lopez
(1984), and Shumway (1983).

Denoting variable inputs and outputs by yj and their prices by pj , j � 1, J ;
fixed inputs by xk , k � 1, K , profit by π ; and leaving out the time index that is
often included in these models to simplify the presentation here, the translog profit
function with fixed inputs can be written as

ln(πt ) �α0 +
J∑
j�1

αj ln(pj t) +
K∑
k�1

βk ln(xkt ) + 1

2

J∑
j�1

J∑
s�1

γjs ln(pjt ) ln(pst )

+ 1

2

J∑
j�1

K∑
k�1

θjk ln(pjt ) ln(xkt ) + 1

2

K∑
s�1

K∑
k�1

δsk ln(xst ) ln(xkt ) + vt ,

(4.8)

where the subscript t denotes the time period of each observation, t � 1,T and vt is
a stochastic error term due to the approximation of the true underlying technology.
The corresponding netput demand/supply equations (with a similar additive error
et added to each one) take the form

Sjt � αj +
J∑
s�1

θsj ln(pst ) +
K∑
k�1

δjk ln(xkt ) + ejt , (4.9)

where Sjt is the gross revenue or cost share of the j th netput, ptyt/πt . Economic
theory suggests that profit functions should be homogeneous of degree 1 which
leads to restrictions on the sums of many of the parameters; the symmetry require-
ment for the matrix of second derivatives provides a set of equality restrictions for
more parameters. Incorporating these two pieces of information from economic
theory allows the econometrician to drop the J th netput share equation from the
set of equations to be estimated and then to recover all of its parameters from
those that are estimated directly. It also reduces the number of random variables to
a more manageable number. These restrictions do not affect a Bayesian analysis
differently in any way from the sampling theory approach (or the mathematical
programming approach, also used on these problems). However, the convexity
condition on the profit function is relevant information concerning the random
parameters that should be included in the prior distribution constructed for them.

For complicated models such as the one postulated in this application, it is
unlikely that the researcher will have prior information concerning the values of
the random parameters; thus, a very diffuse informative prior centered at a zero-
vector is often appropriate. (In the next chapter, the formation of informative priors
on functions of the structural parameters about which we may be better informed
will be discussed). As in the preceding example, economic theory suggests that we
modify this prior by an indicator function that restricts prior support to the region
where the profit function is convex. The matrix of second derivatives of profit with
respect to the netput prices follows the pattern:

∂2πt/∂pit ∂pjt � (π/pitpjt )[γij + SitSjt ], i �� j, and (4.10)

∂2πt/∂p
2
it � (π/p2

it )[γij + Sit (Sit − 1)], i � j. (4.11)
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To satisfy the standard, static economic theory of profit maximization, this matrix
of second derivatives should be positive semidefinite at all observations in the
data set, t � 1, T . The simplest way to check this condition is by examining the
eigenvalues of the matrix; if they are all non-negative, the condition is satisfied.
Denoting the eigenvalues of the profit function’s Hessian by λj , j � 1, J , a prior
for the random parameters of the profit function system of equations in (4.8) and
(4.9) can be written as

p(η, 
) ∝ p(α, β, γ, θ, δ, 
) � |
|−(J+1)/2

[
q∏
i�1

N(ηi, 1000)

]
D(λmin),

(4.12)
where η is a (q × 1) vector holding all the independent random parameters (those
not identically determined from symmetry or homogeneity relationships to other
parameters) from equations (4.8) and (4.9), 
 is the (J × J ) variance-covariance
matrix for the error terms from the profit function and the (J − 1) netput share
equations that are included in the estimation (remembering that one is dropped),
andD(λmin) is an indicator function equal to 1 when the minimum eigenvalue for
all T observations is non-negative and equal to 0 otherwise. In (4.12), the standard
Jeffreys prior has been included for the variance-covariance matrix 
.

The general steps to performing a Bayesian analysis of this problem using impor-
tance sampling follow the pattern from the preceding demand equation example.
However, for this application, imagine that the error variance parameters are of in-
terest and the researcher does not wish to integrate the variance-covariance matrix
out. If the errors are assumed multivariate normal, the joint posterior distribution
for (η, 
) will take the form

p(η, 
) ∝ |
|−(T+J+1)/2N(η, 1000Iq) D(λmin)

× exp

[
− 1

2

T∑
t�1

(zt − Xtηt )
′
−1(zt − Xtηt )

]
, (4.13)

where zt is a vector of πt and the Sj , η is a vector of all the free model parameters
to be estimated, and Xt is the conformable matrix so that zt , η, and Xt translate
the equations in (4.8) and (4.9) into matrix form.

The presence of a very weakly informative truncated prior for the η parameters
causes this posterior distribution to be nonstandard and difficult to generate direct
Monte Carlo draws from. To generate samples from a substitute density, choose the
posterior distribution divided by the prior on η, as this has the standard form of a
multivariate normal-inverted Wishart joint distribution. Geweke (1988) presented
the steps to draw random variables from such a distribution in a two-stage process.
First, generate a random draw on
 from its marginal density (an inverted Wishart).
Then generate a draw on η from a multivariate normal distribution conditioned on
the just-generated random value of 
. Treat these draws as one observation in the
posterior sample space of the parameters, (η(i), 
(i)), repeat this process for some
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large number of times B, and follow the other steps in an importance sampling
algorithm, as laid out in the preceeding demand equation application.

The steps to generate the draws for 
(i) following Geweke (1988) are listed
here:

1. Calculate the sum-of-squared errors matrix S from the errors of the J estimated
equations.

2. Compute the lower triangular Cholesky decomposition of S−1, L such that
LL′ � S−1.

3. Build the random (J × J ) lower triangular matrix U(i) where the off-diagonal
elements are standard normal random variables, N(0, 1), and the ith diagonal
element is a random variable distributed χ2(T − k − i + 1) where k is the
number of regressors per equation. For an unbalanced model such as this one
(with different numbers of regressors in each equation), use the average number
of regressors. Random variables can be generated from the χ2(p) distribution
by generating p independentN(0, 1) random variables, squaring each one, and
then summing them.

4. Compute R(i) � (LU(i))−1 and then 
(i) � R(i)′R(i).

To then generate random draws for η(i) conditional on 
(i), follow these steps:

1. Construct the variance-covariance matrix of the η vector as a function of

(i), denote this matrix by V (i). Compute its lower triangular Cholesky
decomposition C(i), V (i) � C(i)C(i)′.

2. Draw a (q × 1) vector of N(0, 1) random variables, h(i).
3. η(i) � h + C(i)h(i), where h is the (q × 1) vector of the mode of the marginal

likelihood function for η from which you are drawing (the maximum likelihood
estimates).

In the construction of the importance weights, the posterior distribution must be
evaluated for each of the B draws. To do this, the researcher will need to build
the Hessian of the profit function for that ith draw and for all T observations
in the data set and then perform T checks of the convexity condition in order
to determine the value of the indicator function D() in the prior distribution. If
the value of the prior separate from this indicator function is computed for each
draw, the posterior support for convexity in this data set can be calculated using
formula (4.5). Posterior means, medians, and interquartile ranges can be computed
as described earlier for the parameters in both η and 
. Such posterior values can
also be computed for functions of the parameters that may be of interest, such as
elasticities. The hypotheses of homogeneity and symmetry cannot be tested easily
in this framework because they were imposed through the dropping of one netput
equation and the recovery of those missing parameters.

One of the advantages to imposing curvature conditions through the Bayesian
approach of restricting the prior support for the parameters is that the posterior
estimates of the parameters will not lie on the cusp between satisfying and violating
the restrictions from economic theory. When inequality restrictions are imposed
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in a maximum likelihood framework, if the mode of the likelihood function lies
outside the admissable region, the maximum likelihood estimates will generally
be at a point where the restrictions are satisfied with equality (that is binding).
Taking a Bayesian approach, the posterior mean and median estimators will lie
within the region of positive prior support, not on the boundary of the region. This
seems more pleasing from a theoretical point of view.

Other potential applications for imposing sign or curvature conditions that de-
rive from economic theory include estimation of single-equation supply or demand
models, utility functions, risk-aversion coefficients, cost functions, demand sys-
tems (a common application in the agricultural economics literature), and certain
trade models where the Marshall-Lerner condition provides a sign restriction on
the sum of specific elasticities. I am certain that readers can lengthen this list
considerably.
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5

Studying Parameters of Interest

This chapter focuses on inference for functions of the structural parameters. Defin-
ing the structural parameters as those that are directly observable in the regression
model as specified, the aim of this chapter is to present methods for specifying
prior distributions and subsequently deriving posterior distributions for functions
of the structural parameters that may be of more interest to the researcher or de-
cision makers. Examples of nonstructural random variables that economists are
interested in include elasticities, welfare measures, impulse response functions,
the length of the business cycle, and returns to scale.

An Application to Estimating Welfare Measures

Applied studies of international trade issues, publicly funded projects, and gov-
ernment policy changes often rely on estimates of producer and consumer surplus
to determine the economic benefits and costs of the issue being researched. These
studies typically have several equations (usually supply and demand) that are
treated as simultaneous with a set of endogenous variables that are jointly deter-
mined (often prices and quantities). Estimates of the structural equation parameters
are then used to calculate welfare measures such as producer and consumer surplus.
Even though some researchers go through the effort of computing standard errors
for the welfare measures (using a bootstrap approach or the delta method), the
welfare measures are usually very nonlinear functions of the structural parameters
so that the distribution of the welfare measures is likely to be asymmetric. Further,
the welfare measures may well be correlated. In such cases, constructing the full
posterior distribution of the welfare measures and, perhaps, their difference or ratio
can be a great advantage. This is straightforward using a Bayesian approach.

Kloek and van Dijk (1978) first advanced the notion that numerical Bayesian
methods were well-suited to attacking economic policy questions within a simulta-
neous equations framework, proposing importance sampling as a computationally
efficient method for estimating the posterior moments of parameters of interest.
They also specifically demonstrate the ability to use prior information on non-
structural parameters. In their application to a three-equation system, they derive
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posterior moments for the structural parameters, reduced form parameters, and a
long-run multiplier. This is very similar to the following application, which cal-
culates posterior distributions of welfare measures; researchers interested in this
type of application are strongly encouraged to read Kloek and van Dijk’s classic
paper. Other useful references for Bayesian estimation of systems of simultaneous
equations include Drèze and Richard (1983), Richard (1973), Zellner (1971, ch. 9;
1978), Zellner and Park (1979), and Zellner, Bauwens, and van Dijk (1988).

For a linear simultaneous equations model that generally follows the presenta-
tion of Kloek and van Dijk (1978), Bayesian analysis of nonlinear functions of
the structural parameters can proceed as follows. Begin with the model in matrix
notation

Y� + XB � U (5.1)

where Y is an (n×m)matrix of observations on the endogenous variables,X is an
(n×k)matrix of exogenous variables,U being an (n×m)matrix of error terms, and
� and B are conformable matrices of parameters to be estimated. Given standard
model identification assumptions and time-independent multivariate normality of
the error terms, the likelihood function for this model is

p(Y |Z, �, B, 
) ∝ |
|−n/2‖�‖n
× exp(−0.5tr{[�′Ŝ� + (B − B̂)′X′X(B − B̂)]
−1}) (5.2)

where
 is the covariance matrix of the error terms, Ŝ is the sum-of-squared errors
matrix from the reduced form equation Y � Z� + V , and B̂ � −��.

To construct a prior distribution for the parameters (�, B, 
), divide them into
three subsets: the covariance matrix
, which will almost always be modeled with a
standard Jeffreys priorp(
) ∝ |
|−(m+1)/2; some subset ζ of the matrices� andB
that are not random parameters due to (identification-related) restrictions, generally
equal to either 0 or 1, these are not really parameters and will be treated as constants
to condition upon in deriving the distributions of the other parameters; and, finally,
the remaining parameters of � and B, denoted by the vector θ , about which we
possess (at least weakly) informative prior information. Write this informative
prior as p(θ), so that the full prior distribution for the parameters (�, B, 
) is

p(�, B, 
) � p(θ, ζ, 
) ∝ p(θ)|
|−(m+1)/2. (5.3)

The easiest way to analyze the posterior distribution of θ or some function g(θ)
is to work with the marginal posterior distribution of θ . If we integrate out 

and condition on the known parameters ζ (related to identification), the marginal
posterior distribution of θ is

p(θ |Y, X, ζ ) ∝ p(θ)||�||n|�′Ŝ� + (B − B̂)′X′X(B − B̂)|−n/2. (5.4)

To analyze this distribution numerically, or to build a numerical approximation to
the marginal posterior distribution of some g(θ), use importance sampling. The
marginal posterior distribution in equation (5.4) is related to a multivariate Student-
t distribution, with the first two terms causing the discrepancy. Thus, a multivariate
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Student-t distribution with a small degree-of-freedom parameter centered at stan-
dard 3SLS estimates of � and B is a good candidate for the substitute density.
Random draws on � and B can be generated from the substitute density, welfare
measures and the value of the marginal posterior can be computed for each draw,
saved, and posterior means, medians, and interquartile ranges can be computed
as outlined in previous examples. This allows for Bayesian analysis of interesting
policy questions within a simultaneous equations framework even when one has
prior information on some parameters or functions of parameters.

An Application to Elasticities

In some models, elasticities are nonlinear functions of the structural parameters.
In such cases, not only are these nonstructural parameters important as policy-
relevant variables but they are also a parameter space in which economists are more
likely to have informative prior information. When using numerical methods, it is
possible to use a prior distribution that is specified in terms of a different parameter
space from the the likelihood function. The likelihood function is almost always
measured with respect to the structural parameters, but sometimes the researcher
has prior information that is more easily expressed in terms of a function of the
structural parameters. Elasticities are a good example of such a situation.

Take the translog profit function of Chapter 4 as the application again here, but
with a different prior distribution. The own-price elasticities of the input demand
and output supply (netput) equations take the form

ξii(t) � (π/pitSit )[γii + Sit (Sit − 1)] (5.5)

and the cross-price elasticities have the formula

ξij (t) � (π/pitSit )[γij + SitSjt ]. (5.6)

If the observed values of the profit shares and profit are used in equations (5.5) and
(5.6), then the elasticities are simply linear functions of the random parameters
γij and their distributions can be easily computed from the distribution of the γij .
However, it is common practice to use estimated (i.e., fitted) share and profit values
in the elasticity formulas. This turns the elasticities into highly nonlinear functions
of the model’s structural parameters and results in a distribution for the elasticities
that more accurately reflects the true uncertainty about these parameters. The
Bayesian approach, with reliance on numerical methods, allows for the posterior
distributions of the elasticities to be derived without any great difficulty. In fact, it is
easy to specify the prior distribution for the parameters in terms of the elasticities
ξ instead of the structural parameters (α, β, γ, θ, δ). Because all the structural
parameters appear in the model’s predicted values of the profit function and most
appear in some of the share equations, a prior over the elasticities ξ implies a
prior distribution over the structural parameters (although the mapping may be
quite complex and may not be unique). This should not cause a problem with
the calculation of posterior distributions as long as the researcher ensures (or
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checks, ex post) that the prior distributions are well-behaved (proper, with at least
two moments) for the parameters whose posterior distributions they build and the
Jacobian for the change of variables is included in the formulas for computation
of posterior means, medians, and so on. In the nomenclature of this paragraph,
the Jacobian is simply the determinant of the matrix of partial derivatives of the
elasticities ξ with respect to the structural parameters (α, β, γ, θ, δ).

Economists generally have little intuition of the magnitude, or even sign, of
many of the structural parameters in a translog profit function; however, we often
have well-formed opinions about supply and demand elasticities, both own- and
cross-price. We expect the magnitudes to be rather small; for own-price elasticities
we expect a particular sign, and at times we even have prior beliefs about whether
the elasticity is greater or less than 1 in absolute value (elastic or inelastic). A
simple prior on the vector of elasticities ξ would be the product of independent
univariate normal distributions centered at either 1 or−1 depending on the expected
sign of each elasticity with variances equal to 5 or 10. This provides a good bit
of prior support for elasticity values away from unitary elasticities and does not
impose with certainty any sign restrictions. A rather diffuse prior such as this is a
good, cautious one for a situation in which the prior distribution on the structural
parameters is not directly observable.

Examining the posterior distributions for the elasticities would proceed by
importance sampling with the following steps:

1. Specify the prior distribution for the elasticities (in place of one on the structural
parameters), along with the standard Jeffreys prior on the covariance matrix of
the error terms.

2. Generate draws on 
 and the structural parameters from a substitute density
using the steps outlined in Chapter 4’s discussion of the translog profit function
(Geweke, 1988a).

3. Compute the values of the substitute density, the elasticities ξ , the prior distribu-
tion, the Jacobian, the likelihood function (from the form contained in equation
(4.13)), and any other functions of interest for each draw, i � 1, B. B is the
number of draws and should be at least 10,000 and hopefully 20,000 for an
application like this, which studies highly nonlinear functions of the structural
parameters using importance sampling and a prior on nonstructural parameters.

4. Using the appropriate formulas for importance sampling applications, compute
posterior means, medians, and other percentiles desired for the elasticities and
other functions. The standard formulas presented previously are modified by
the addition of the Jacobian, which multiplies the prior on the elasticities ev-
erywhere the prior appears in a formula. Make sure to check the numerical
approximation errors for the elasticities.

5. As an additional check on the procedure’s success, build the empirical prior
distributions of some or all of the structural parameters. If the drawn values
of the structural parameters are saved, the prior distribution’s value for each
draw can be substituted in place of the posterior distribution in the standard
importance sampling formula for computing means, medians, and percentiles
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of a distribution. In this manner, you can recover a “picture” of the implied
prior distributions of the structural parameters. This provides a check that these
implied prior distributions are well-behaved and that the posterior distributions
will exist and have sufficient moments for empirical investigation.

It is also possible to analyze elasticities under prior distributions that truncate prior
support to a parameter space that imposes signs for the elasticities suggested by
economic theory. Refer to the techniques discussed in Chapter 4 for methods of
working with this class of prior distributions.

An Application to Dynamic Properties

Other opportunities to apply Bayesian methods to the study of nonstructural pa-
rameters abound in applied economics. Geweke (1988b) investigated the length of
the business cycle in OECD countries. He used a Bayesian approach to derive pos-
terior estimates of the cycle length implied by the coefficients of an autoregressive
model of GNP or GDP for each country. While Geweke did not use an informa-
tive prior, he could have, and this sort of application is a natural for numerical
Bayesian techniques. As the final example of this chapter, the steps to analyzing
the cycle length of a time series variable with an informative prior are laid out.
This is a slight modification of Geweke (1998b) that incorporates an informative
prior distribution on the nonstructural parameters of interest.

Begin with a univariate autoregressive model for some economic time series
variable yt ,

yt � µ + ρ1yt−1 + ρ2yt−2 + ρ3yt−3 + εt , (5.7)

where εt is an iid normally distributed innovation (error) term and µ and the ρi are
unknown parameters. We are not directly interested in the structural parameters,
but in the cycle length of this autoregressive process (and on the probability that a
cycle is indeed part of the series’ dynamic behavior). The length of cycle implied
by the ρi parameters (µ is not involved) is given by

ω � 2π/tan−1[Im(λc)/Re(λc)], (5.8)

where λc is one eigenvalue from a complex conjugate pair of the three eigenvalues
from the matrix

A �

 ρ1 1 0
ρ2 0 1
ρ3 0 0


 . (5.9)

To analyze the posterior distribution of the cycle lengthω, again rely on importance
sampling to allow for an informative prior onω. Assume the standard Jeffreys prior
for the variance of εt , σ 2, and an uninformative prior for the location parameter µ.
Because the eigenvalues are functions of all three ρi parameters, we can express
the prior distribution in terms of (µ, σ, ω). If the data is quarterly U.S. real GNP,
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one might choose a prior such as

p(µ, σ, ω) ∝ N [(ω − 20)/6]/σ, (5.10)

where N [] represents the standard normal distribution. This places the mode of
the prior distribution for cycle length at five years while providing support for a
reasonable range of cycle lengths, it only places a very negligible portion of the
prior support on the nonsensical nonpositive region of the parameter space for ω.
To create a square Jacobian, create a vector of three variables, ζ � (λ1, λ

2
1, ω)

where λ1 is the third eigenvalue (the one that is not part of the complex conjugate
pair). Then, the Jacobian is J � |∂ζ/∂ρ| where ρ is the vector of the three ρi .
In this application, numerical evaluation of the nine derivatives involved in the
Jacobian is the best way to compute its value.

The likelihood function for this model is

p(y|µ, σ 2, ρ, y0, y−1, y−2) ∝ σ−T

× exp[−0.5(yt − µ − ρ1yt−1 − ρ2yt−2 − ρ3yt−3)
2/σ 2)], (5.11)

where the likelihood function is conditioned on some initial conditions for the
time series variable and T is the size of the sample (net of these initial condi-
tions). With this prior and likelihood function, the marginal posterior distribution
of (T − 4)s2/σ 2 is χ2(T −4), the conditional posterior distribution ofµ is normal
and the conditional distribution of the ρs is a product of two normal distributions
(the prior and the kernel of the likelihood function). So taking an importance
sampling approach, we can follow Geweke’s approach to generate draws from a
substitute density.

1. First draw a value of 1/σ 2(i) by generating a random draw from the χ2(T − 4)
distribution and scaling it by s2; then invert the value to produce a random draw
forσ 2(i). Then drawµ and theρs from the multivariate normal distribution of the
maximum likelihood estimates except for replacing the maximum likelihood
estimate of σ 2 with σ 2(i).

2. Compute ω(i) � g[A(ρ(i))] using equations (5.8) and (5.9). If there are no
complex eigenvalues, set the value of ω(i) � 0.

3. Compute the value of the prior distribution for ω(i), N [(ω(i) − 20)/6]. For
this substitute density, the prior on the cycle length is the importance weight.
Compute the Jacobian, J (i), by evaluating the partial derivatives of the three
variables in ζ with respect to ρ at the drawn value of ρ(i).

4. Using the simplified importance weight for this application, the numerical
approximation to the posterior mean of the cycle length is computed as

ω(i) �
∑B

i�1 ω
(i)N [(ω(i) − 20)/6] J (i)∑B

i�1 N [(ω(i) − 20)/6] J (i)
(5.12)

5. Posterior medians, percentiles of the posterior distribution of ω, and the stan-
dard deviation of the numerical approximation error can also be estimated by
the formulas for importance sampling algorithms with the importance weights
specified earlier.
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Table 1. Posterior Estimates of the Length of the Business Cycle

Mean Median

18.53 18.87
(0.08) (16.75, 21.14)

(14.25, 23.80)

The results are based on 10,000 draws. The number in parenthesis under
the posterior mean is the standard deviation of the numerical approxima-
tion error. Those under the posterior median are the interquartile range
and the limits of a 90% highest posterior density region.

6. By recomputing the posterior estimates under several alternative priors with
different prior means and variances, the sensitivity of the results to the prior
distribution can be established.

7. By constructing the ratio of the sum, the importance weights for all draws with
nonzero cycle lengths to the sum of the importance weights for all B draws,
you produce the posterior probability for the existence of a business cycle.

A table of the empirical results from this application might look something like
Table 1. Table 2 shows how one might display the results of sensitivity analysis
on the prior distribution.
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Table 2. Effect of the Prior Distribution on the Posterior Mean of ω
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6

Unit Root and Cointegration Tests

This chapter can almost be treated as a special subcase of last chapter’s topic, the
study of nonstructural parameters. The econometrics of unit root and cointegra-
tion models, or more generally, the study of the (non)stationarity of time series
data, both univariate and multivariate, is at its simplest level a question about the
value of a single scalar parameter. For a univariate time series whose stationarity
is at issue, the question revolves around the value of the dominant root of the
dynamic process: is it less than, equal to, or greater than 1? These equate to the
cases of stationarity (order of integration 0), a unit root (integrated order 1), and
an explosive nonstationary root (also integrated order 1). In multivariate studies,
most questions about the dynamic properties of a set of series can be reduced to
inferences regarding a parameter such as the value of the dominant root of a linear
combination of the series (a cointegration test) or the difference in the number of
roots of magnitude 1 or greater between the multivariate process and its associated
set of separated univariate processes (another way to view a cointegration test). In
this chapter, I shall briefly review some of the basics of unit root and cointegration
testing and present some applications to conducting inference on the corresponding
parameters using Bayesian methodologies.

The Basics of Unit Root Tests

A univariate time series is said to have a unit root when one of the roots of the
determinental polynomial of the series has magnitude equal to 1 (lies on the unit
circle). For a stationary series, all roots should lie outside the unit circle (implying
parameters with magnitudes less than 1); explosive roots lie inside the unit circle.
A stationary series has a defined expected value, or mean, and is mean-reverting,
implying that it tends to return to its central value. Nonstationary series (those
with unit or explosive roots) do not have an unconditional expected value, only
conditional expected values for a specific time period, conditioned on some initial
condition. The statistical distributions of many sampling theory estimators are
dependent on the stationarity properties of the time series being modeled, so the
testing of series for unit (and explosive) roots has become important over the last
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15 years as the distributional theory of stationary and nonstationary time series
has become better understood and more fully developed.

The standard sampling theory test for a unit root is the Dickey-Fuller test,
which tests the null hypothesis of a unit root versus the alternative hypothesis
of a stationary root using a model of the form

�yt � µ + δt +
p∑
s�1

�yt−s + (ρ − 1)yt−1 + εt , (6.1)

where yt is a univariate time series whose stationarity is in doubt,� is the difference
operator, �yt � yt − yt−1, t denotes time periods, µ and δ are parameters that
allow for trend and drift, ρ is the root whose value is at issue, and εt is a white
noise iid error term. A researcher using a model such as that in (6.1) might perform
an augmented Dickey-Fuller (ADF) test where the null hypothesis is ρ � 1, the
alternative hypothesis is ρ < 1, and the word augmented refers to the inclusion
of additional lags of the time series variable y to allow for more general and
complex dynamic properties than a simple random walk. The test is performed
by constructing the standard t-value for such a test, but using critical values from
special Dickey-Fuller test tables that account for the nonstandard distribution on the
test statistic under the null hypothesis of a unit root (Dickey and Fuller, 1979). Other
tests have been developed that allow for heteroscedasticity (Phillips and Perron,
1988), unknown lag length (Dickey and Pantula, 1987), other parameterizations
of the trend and drift terms that are more stable under both null and alternative
hypotheses (Schmidt and Phillips, 1992), and other variations on the basic Dickey-
Fuller approach.

A big problem with this approach is that the null hypothesis is that of a unit
root and the sampling theory approach forces the alternative hypothesis to meet a
large burden in order to force a rejection of the null hypothesis. The two competing
hypotheses are not treated equally and the posterior probability (likelihood value)
of the null is not even considered in the testing procedure. This leads to very
low power for such tests, the inability to reject the null hypothesis of unit roots
when no unit root exists (DeJong et al., 1992). A Bayesian test for stationarity vs.
nonstationarity focuses directly on the relative posterior probabilities (the posterior
odds ratio) of the two hypotheses.

To facilitate this focus on the posterior distribution of the dominant root (the
one suspected of being nonstationary), it is useful to use the relation referred to in
Chapter 5 during the discussion of Geweke’s study of the length of the business
cycle (Geweke, 1988b). Start with a univariate autoregressive model for some time
series variable yt ,

yt � µ + ρ1yt−1 + ρ2yt−2 + ρ3yt−3 + εt , (6.2)

where εt is an iid normally distributed innovation (error) term and µ and the ρi are
unknown parameters. The dynamic properties of this model can be investigated
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easily by direct examination of the matrix

A �

 ρ1 1 0
ρ2 0 1
ρ3 0 0


 . (6.3)

The largest eigenvalue of the matrix A in equation (6.3) is the dominant root for
the model in equation (6.2) and the root we suspect of nonstationarity. Thus, it
is the maximum eigenvalue of A around which we should build a Bayesian unit
root test. (Note that working with a more general AMRA(p, q) model would not
complicate the investigation at all except for adding to the dimension of the numer-
ical integration involved; the form of the A matrix is unaffected by the presence
of moving average terms). Further, in keeping with the example set in the last
chapter, I recommend that the prior distribution for the model in equation (6.2)
be expressed in terms of the eigenvalues of A (along with a prior on the variance
of the error terms). One should be very cautious in so doing, as a recent contro-
versy has erupted over the fact that a flat, seemingly diffuse prior in the parameter
space of A’s eigenvalues does not imply a flat prior on the structural parameters
of equation (6.2), the ρi , and vice versa (cf. Phillips, 1991, with extensive discus-
sions). Remember to include the Jacobian in any computations where the draws
are generated for the ρs and the prior is specificied in terms of the eigenvalues
of A.

This linkage is a mathematical fact due to the functional relationship between
theρis and the eigenvalues ofA, but it should not be treated as a hindrance. I believe
this fact makes even more clear the advantage of specifying the prior distribution
in terms of the eigenvalues about which we tend to be reasonably well-informed
relative to the structural parameters ρi . Phillips (1991) showed that a flat (Jeffreys)
prior on the ρi implied an improper prior on the dominant root that is increasing at
an increasing rate. He also derived the Jeffreys prior on the dominant root and found
this to have an exponential shape that is also sharply increasing in the range of
parameter values of most interest (those close to unity). Neither prior seems well-
suited to the task of performing unit root tests without a prior that will be offensive
to interested readers of the empirical results. Thus, I suggest that researchers stick
to proper, informative priors for their Bayesian unit root tests. This should not be
too controversial, because if there was not a fair amount of agreement that the
dominant root was somewhere in the statistical neighborhood of unity we would
not be thinking of performing a test to check for stationarity.

In previous work on this topic, I have used a beta prior on the eigenvalues of the
A matrix due to the convenient properties of the beta distribution and the ease of
working analytically with the prior at the beginning of the research process when
the prior is specified (Dorfman, 1993). The advantages of the beta distribution are
its natural unit range from 0 to 1 (which can be easily shifted or scaled to move
or expand the range of values with positive prior support), its flexibility from
diffuse to highly informative, and its reliance on only two parameters (α, β). A
beta distribution, Beta(α, β), has mean α/(α+β) and mode (α− 1)/(α+β − 2).
The Beta(1, 1) is a uniform distribution with range [0, 1]; as the two parameters
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increase, the density’s shape becomes more peaked (informative) and can approach
the shape of the normal and Student-t distributions. For α > β, the distribution is
skewed to the right; for α < β, the distribution is skewed to the left. In the first
application here, a multivariate beta prior on the roots of an AR(3) model will be
presented and used to conduct unit root tests.

Once a prior on the roots (and variance of the error terms), the Jacobian for the
change of variables, and the likelihood function have been specified, the researcher
is ready to conduct a test for the stationarity of a time series. A Bayesian test for
stationarity versus nonstationarity of a time series can be conducted as a posterior
odds ratio test. For concreteness, assume the AR(3) model of equation (6.2), denote
the three eigenvalues of theAmatrix defined by (6.3) using the symbols λi , i � 1,
2, 3. Finally, represent the magnitudes of these three eigenvalues by �i , i � 1, 2,
3, with the �i ordered largest to smallest. The odds ratio of interest will be

K12 �

∫ 1−ε

0
p(�1|y) d�1

∫ �max

1
p(�1|y) d�1

(6.4)

where p(�1|y) is the marginal posterior distribution of the dominant root, ε is an
arbitrarily small positive number, and�max is the largest value of�1 that receives
positive prior support. This marginal posterior distribution of the dominant root is
given by

p(�1|y) �
∫∫∫

p(�1, �2, �3, σ ) p(y|�1, �2, �3, σ ) d�2 d�3 dσ (6.5)

where the joint posterior is shown as the product of the prior distribution and the
likelihood function and the effects of the other three parameters are integrated out.
If the posterior odds ratio in equation (6.4) is greater than 1, the posterior distribu-
tion favors stationarity; if the ratio is less than 1, the posterior distribution favors
nonstationarity (a unit or slightly explosive root). The exact value of the posterior
odds ratio necessary to support or reject one of the two hypotheses concerning
the dynamic properties of this time series is selected by the researcher through
the specification of their loss function over these decisions. Whether to deviate
from a balanced loss function that makes decisions based on a dividing line of unit
posterior odds, and in which direction, depends on the existing theories covering
the application at hand. When theory strongly suggests that a series should be
nonstationary, one might continue to support that proposition until the posterior
odds ratio exceeded 2 or 3 (representing posterior support of stationarity of 0.67
or 0.75, respectively).

Note that the posterior odds ratio test is done for stationarity versus nonstation-
arity, with the nonstationary region covering the parameter space from an exact
unit root to a slightly explosive root. The size of the region entertained for the
nonstationary hypothesis is up to the researcher. Including roots that are at least a
little above unity in a hypothesis of nonstationarity offers advantages over simply
testing stationarity relative to an exact unit root as certain technical problems occur



An Application to Efficient Market Tests 53

when using a posterior odds ratio test for a point hypothesis against a competing
diffuse hypothesis. In particular, if a point hypothesis of a unit root is specified,
the prior distribution must be adjusted so that the point hypothesis does not re-
ceive zero prior support (because a single point in a continuous parameter space
has probability 0). Thus, I recommend that whenever possible Bayesian tests be
conducted as stationarity versus nonstationarity with each hypothesis encompass-
ing a well-defined parameter space that contains more than a single point in the
range of the dominant root. If a researcher wants to test an exact unit root versus
the stationary alternative, one must work with the marginal posterior of the unit
root parameter so that an integration step is still necessary to remove the effect of
conditioning on any extraneous parameters. For a great discussion of the theory
involved in unit root testing see Schotman and van Dijk (1991b), which is part of
the Journal of Applied Econometrics special issue on unit root tests highlighted by
Peter Phillips’ (1991) paper on Bayesian unit root tests with its emphasis on prior
distributions.

An Application to Efficient Market Tests

Many studies have been done, mainly using sampling theory approaches, to in-
vestigate various asset price time series for unit roots. Under a rather simplistic
view of such asset markets, if the price series has a unit root, then the asset mar-
ket is deemed efficient because the future path of the series cannot be accurately
forecasted. While a set of simplifying assumptions is necessary to reduce a test
of efficient markets to a test for a unit root (or stationarity versus nonstationar-
ity), such applications are performed and provide an empirical base of published
studies on performing unit root tests. Using some results from a published study
on futures contract price data for concreteness, one such application is presented
here.

Dorfman (1993) examined hourly corn and soybean futures prices from 1990 in
subsets of 300 observations; here we will focus on his results from the corn data.
The test for nonstationarity has four steps: specification of the two hypotheses,
specification of the prior, specification of the likelihood, and computation of the
posterior odds ratio. The two competing hypotheses were specified asH1: station-
arity (�1 < 1.00) and H2: nonstationarity (1.0 ≤ �1 ≤ 1.03). Thus, a slightly
explosive dominant root is allowed for (although in retrospect the upper limit is
probably too high for data with such a high frequency of observation). This explo-
sive region of the posterior distribution can also be thought of as posterior support
for a unit root that is slightly shifted due to sampling error. The model chosen to
approximate the data-generating process for both hypotheses was an AR(3) with
two additional exogenous variables: an intercept and a linear time trend.

In many economic applications, the researcher has a well-informed prior on
�1, with most prior support concentrated in an area “near” unity, but much less
information about the magnitude of the smaller roots. It may also be useful to
allow the dominant root to take slightly explosive values (greater than 1), although
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not much greater than 1 as models that are rapidly explosive become obviously
nonstationary by ordinary observation and do not necessitate an econometrician
to determine their time series properties. A multivariate beta prior for the roots
that meet these conditions can easily be constructed as a product of univariate
beta distributions (a simple version of the multivariate beta). For the application
in Dorfman (1993), prior distributions for the two smaller roots were specified
as Beta(1.1,1.1) distributions that look like flat, rounded hills. The prior on the
dominant root was specified as a Beta(30,2) for the mean-shifted variable (�1 −
0.03), giving positive prior support over the range �1 ∈ [0.03, 1.03]. This prior
distribution is sharply skewed to the right, has a prior mean of 0.9675, and a prior
mode of 0.9667. A standard Jeffreys prior is taken for the variance, allowing for
easy analytical derivation of the marginal posterior distribution of the roots. For
examining the sensitivity of the empirical results to the prior specification, all odds
ratios were also computed under a flat prior on the three dominant roots.

In Dorfman (1993), the tests were performed under two different likelihood
function specifications to examine the impact of the likelihood function on the
results of the test. First, a nonparametric density was chosen, using a Gaussian
kernel function that can be written for a single observation’s error term as

p(et ) � c

T h

T∑
i�1

exp

[
−(et − ei)

2

2h2

]
(6.6)

where T is the number of observations (300), c � (2π)−
1
2 , and h �

1.66444σT −1/5 is the bandwidth. The alternative likelihood function specifica-
tion was Gaussian, assuming that the errors of the AR(3) model are iid normal
random variables with zero mean. Thus, four sets of posterior odds ratios were com-
puted, pairing each of the two likelihoods with each of the two prior specifications
(nonparametric and Gaussian likelihoods, beta and flat priors).

The posterior odds ratios were computed using importance sampling on the
marginal posterior distribution of the roots. Draws on the three autoregressive
parameters are made from a trivariate normal distribution centered at the least
squares estimates and with metric equal to the least squares covariance matrix
scaled by 1.5. For each draw, the three roots can be found by solving for the
eigenvalues of the A matrix displayed in equation (6.3). With the value of �(i),
the Jacobian, each of the prior distributions, and the likelihood functions can be
evaluated easily and the posterior support for each of the two hypotheses can be
computed using the formula for importance sampling. If an indicator function
D(�(i)) is defined that equals 1 when the dominant root satisfies H1 and equals 0
when the dominant root satisfies H2, the posterior probability in support of H1 is
given by

p(H1|y) �

B∑
i�1

D(�(i))p(�(i))J (i)p(y|�(i))/g(y|�(i))
B∑
i�1

p(�(i))J (i)p(y|�(i))/g(y|�(i))
(6.7)
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Table 3. Posterior Odds Ratio in Favor of Stationarity for 1990 Corn
Futures Prices

Sample Kgb Kgf Knb Knf

1 23.36 31.65 15.80 16.56
2 20.12 29.59 34.97 48.78
3 0.7352 0.6682 0.7265 0.6823
4 17.51 24.88 6.297 6.752

The subscripts denote the likelihood and prior specifications: g for Gaussian,
n for nonparametric, b for the beta prior, and f for a flat prior. The results are
based on the analysis performed in Dorfman (1993); see the full paper for more
details. All posterior probabilities are based on 5000 draws using importance
sampling.

where�(i) represents the vector of three roots from the ith draw,B is the number of
Monte Carlo draws (5000 in Dorfman, 1993), p(y|�(i)) is the likelihood function
of the data (either nonparametric or Gaussian), and g(y|�(i)) is the substitute
density. The posterior support forH2 can be found by substituting [1 −D(�(i)] in
place of J (�(i)) in equation (6.7), or by simply taking 1 − p(H1|y). The posterior
odds ratio is then computed as K12 � p(H1|y)/p(H2|y).

The empirical results from Dorfman (1993) are presented as Table 3. They show
that for three of the four subperiods, the corn futures market does not appear to be
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efficient if that is defined as a nonstationary price time series. The posterior odds
ratios strongly favor the price series being stationary for all subperiods except the
third. Under the nonparametric likelihood specification, the fourth period results
are the closest of the other odds ratios to favoring nonstationarity (and the market
efficiency that goes with it). These odds ratios imply that the posterior probability
of nonstationarity is only 0.12; one would need a loss function strongly penalizing
incorrect rejection of efficiency to maintain support for H2 in the face of these
results. To make the evidence clear, graphs of the prior and posterior distributions
help. Figure 4 shows the beta prior distribution on the roots. Figure 5 displays the
four marginal posterior distributions of the dominant root (under different priors
and likelihood specifications) for the third sample, the one that favors nonstation-
arity according to the posterior odds ratio. Figure 6 shows the same four marginal
posterior distributions for the fourth sample, one that has posterior odds ratios
strongly favoring stationarity. I believe that looking at these graphs allows the
viewer to quickly decide (without computing odds ratios) that the third sample
appears to be nonstationary, while the fourth sample appears to be stationary.

Other Applications of Unit Root Tests

The literature on Bayesian unit root tests started with Sims (1988), who developed
a very simple test for a random walk versus a stationary AR(1) alternative using a
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flat prior on the autoregressive parameter in a space from (ρmin, 1) and a discrete
mass prior placed on the random walk value of ρ � 1. The Bayesian approach to
unit root tests was then widely popularized in macroeconometrics by DeJong and
Whiteman (1991), who applied slightly more sophisticated priors and investigated
the properties of the famous Nelson-Plosser macroeconomic time series. A fabu-
lous collection of articles on Bayesian unit root testing is the special edition of the
Journal of Applied Econometrics on this topic, which is highlighted by the lead
paper by Phillips (1991) and followed by extensive comments, discussion, and his
rejoinder. Anyone considering applying Bayesian methodology to tests of time se-
ries properties should read this entire volume. Other good applications of Bayesian
unit root tests can be found in Koop (1992) and Schotman and van Dijk (1991a).

These papers present a wide variety of prior distributions that can be applied
to possibly nonstationary time series models and provide lots of discussion on the
pros and cons of different families of prior distributions. They also present both
analytical and numerical approaches to computing the posterior distributions and
test statistics. However, virtually all these papers rely on a posterior odds ratio test
to decide the question of interest. In this sense, the application presented earlier is
very representative of the body of literature on this topic.

It is also possible to conduct a posterior odds ratio test for stochastic versus
deterministic trends; that is, for the hypothesis of a nonstationary root versus the
hypothesis of a stationary root plus a trend (i.e., trend stationarity). Such a test was
performed by DeJong and Whiteman (1991) using the posterior odds ratio and
defining the region for a nonstationary root to be the interval [0.975, 1.05]. While
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0.975 is a smaller minimum value for the dominant root than was included earlier
in the hypothesis of a nonstationary root, DeJong and Whiteman were working
with the Nelson-Plosser macroeconomic data set of annual observations. With that
observation frequency, they point out that a root of 0.975 implies shocks have a
half-life of 27 years, which they deem pretty close to permanent. Such tests of
trend stationarity versus difference stationarity can be accomplished by simple
modifications of the procedure outlined earlier for a standard test of a stationary
versus nonstationary dominant root.

Bayesian Approaches to Cointegration Tests

Cointegration tests have been conducted in a Bayesian framework by Koop (1991),
DeJong (1992), and Dorfman (1995). Their approaches were quite different. Koop
(1991) specifies a particular structural model that fits his application to a bivari-
ate time series of stock prices and dividends and constructs a Bayesian test of
cointegration based on the parameter restrictions that are implied by the the-
ory of cointegration. This approach is very elegant and should work well for
bivariate models when the suspected cointegration relationship is due to a spe-
cific economic theory that can be translated into exact parameter restrictions. In
such situations, posterior odds ratio tests can be constructed for the restricted
parameter space (cointegration) versus the unrestricted parameter space (no coin-
tegration). In fact, Koop includes three hypotheses in his empirical application:
stock prices and dividends follow random walks with drift and are cointegrated,
stock prices and dividends follow random walks with drift but are not cointegrated,
and stock prices and dividends do not follow random walks with drift nor are they
cointegrated.

Dorfman (1995) takes a much more general approach, which is better suited to
higher-dimensional time series and cases where the parameter values of the hypoth-
esized cointegrating vector are not known or implied by a well-formed economic
theory. His method allows for a broader definition of cointegration and focuses the
odds ratio test on the posterior support for various numbers of nonstationary roots
in the multivariate time series being modeled and the underlying set of univariate
time series created by separating the series being studied. In fact, Dorfman places
a prior distribution over the number of nonstationary roots in a series (univariate or
multivariate), rather than directly on the structural parameters of the VAR models
he uses. Dorfman (1995) also allows for uncertainty concerning the lag length
of the VAR model. The method is very heavily reliant on numerical methods,
specifically importance sampling. The approach results in a numerical derivation
of the full posterior distribution of the number of nonstationary roots for the se-
ries, which then allows calculation of the posterior probability of cointegration
(and even of specific orders of cointegration). Between these two approaches, a
Bayesian can investigate such hypotheses as market integration, purchasing power
parity, efficient markets in a multiasset framework, along with many others.
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DeJong (1992) takes a path somewhere in the middle of these two approaches
and investigates the importance of allowing for trend-stationarity as an alternative
hypothesis when testing for cointegration. He examines some previously used data
sets and finds that placing any prior support on trend-stationarity severely decreases
posterior support for cointegration.

Some Applications to the Extended Nelson-Plosser Data

To demonstrate the application of Bayesian numerical methods to cointegration
testing, three simple examples were performed using the Dorfman (1995) approach
to Bayesian cointegration testing. The data used are all from the extended Nelson-
Plosser data set of annual observations that began in years from 1860 to 1909,
depending on the series, and end in 1988. The three groups of series chosen for
this chapter are: money and real GNP; employment, industrial production, and
real wages; and the CPI and GNP deflator. The steps to the three cointegration
tests and their results will be presented in sequence. It is worth noting that each
test was conducted in less than 15 minutes from specification of the priors to final
computation of the posterior odds ratio.

Money and Real GNP

To begin, consider the bivariate series of money and real GNP, both in logs. The
data are annual from 1909 to 1988, so there are 80 observations. These series might
be cointegrated if the money supply is growing in a constant relationship to the
rate of real GNP growth (or vice versa), akin to what Milton Friedman suggested
the Federal Reserve Bank should do. However, there is no strong macroeconomic
theory or evidence to suggest that such a rule does hold; cointegration between
these series is plausible, but not certain.

To test for cointegration, the distribution of the number of nonstationary roots
in each individual series and in the bivariate model must be constructed. Model
specification uncertainty was allowed within the class of AR(p) and VAR(p)
models: models with between 1 and 5 lags were allowed. The prior on the lag
lengths places discrete mass of 0.1, 0.2, 0.35, 0.25, 0.1 on the five lag lengths
in ascending order. The prior on the number of nonstationary roots was specified
as a truncated Poisson distribution with scale parameter equal to 1.25 for the
bivariate model and 0.90 for the univariate series. Such a prior places discrete
prior weights of 0.305, 0.381, and 0.238 on 0, 1, and 2 nonstationary roots in a
bivariate model and weights of 0.464, 0.418, and 0.103 for 0, 1, and 2 nonstationary
roots in a univariate model. An inverted Wishart prior is placed on the time series
model’s error covariance matrix. Finally, these priors were restricted so that positive
support was only given to models with structural model parameters less than 2 in
absolute values. This makes the priors proper and avoids the risk of arbitrary scaling
constants biasing the posterior odds ratio.
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The likelihood function was specified by assuming that the errors of the AR
and VAR models are normally distributed. Importance sampling with antithetic
replication is used to numerically approximate the distribution of the number of
nonstationary roots, with the substitute density being the product of the inverted
Wishart prior on the error covariance matrix and the likelihood function. Draws are
made conditional on each of the five lag lengths (500 antithetic pairs for each spec-
ification) and then the lag length uncertainty is integrated out (by averaging across)
to arrive at the marginal posterior distribution of the number of nonstationary roots.
The three marginal posterior distributions for the number of nonstationary roots
(in the bivariate series and in each of the univariate series) are then used to com-
pute the posterior probability of cointegration, which is simply the probability that
the bivariate series has fewer nonstationary roots than the two univariate models
together. This posterior probability in favor of cointegration can then be used to
compute the posterior odds ratio in favor of cointegration relative to the hypothesis
of no cointegration. Thus, the final posterior odds ratio for this example is based
on 15,000 draws (3 × 5 × 1000). Further details of the procedure can be found
in Dorfman (1995). The results of the cointegration test are not very informative
between the two competing hypotheses, with posterior support split fairly evenly
between cointegration and no cointegration. This is not too surprising as a story
could be told using economic theory to support either view. Other useful results
can be gleaned from the empirical exercise, however. The marginal posterior dis-
tribution of the lag length for the real GNP series finds the most support for 4
lags, with the posterior mass support at each lag length being 0.033, 0.102, 0.295,
0.344, and 0.226, respectively. Many economists model real GNP as an AR(3) to
allow for a trend and a cycle, but this example finds substantial evidence of longer
lag lengths being necessary to properly model real GNP.

Finally, the marginal posterior distributions of the number of nonstationary roots
is derived as an intermediary result. These results show that the posterior distri-
butions are considerably left-shifted (toward fewer nonstationary roots) relative to
the prior distributions, with essentially no posterior support for any of the models
being integrated of order 2 (two nonstationary roots). In fact, the posterior evi-
dence is very evenly divided over whether the real GNP series even has a single
nonstationary root, with the posterior odds ratio being only barely greater than 1.
This finding is relatively consistent with those of Phillips (1991) and DeJong and
Whiteman (1991). Table 4 presents a summary of the results of this test, along with
the two other cointegration tests; Table 5 shows the marginal posterior distribution
of the number of nonstationary roots in the bivariate and two univariate models
from this example.

The trivariate example of employment, industrial production, and real wages was
chosen with the prior belief that these three series are unlikely to be cointegrated.
A theory could be constructed that real wages should only increase in relation
to productivity gains which would be increases in industrial production above
increases in employment. However, many other variables, which are excluded
from this model, would have to be held constant, and some simplifying assumptions
about production and quality would have to be made. The prior distributions are
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Table 4. Cointegration Test Results for Nelson-Plosser Data

M-GNP E-IP-RW CPI-GNPd

Prior probability of cointegration 0.4728 0.4675 0.4728
Posterior probability of cointegration 0.4441 0.3180 0.8366
Posterior odds ratio 0.7990 0.4662 5.1210
Posterior odds ratio under equal prior odds 0.8909 0.5311 5.7104

Total draws used in numerical approximation 15,000 20,000 15,000
Draws receiving zero prior support 539 967 559

the same as for the money-GNP example. The posterior results show much less
support for cointegration for these series, as expected, and are shown in Table 4.

The third example, with the CPI and the GNP deflator, was chosen to prove that
the testing procedure is sound. Clearly, these two price indices, which measure
such similar baskets of goods, would be expected to be cointegrated. The prior
distribution was again the same as for the money-GNP example; 15,000 total draws
are used to derive the posterior distribution. As anticipated, these empirical results
strongly support cointegration between these two series. The posterior probability
of cointegration is 0.8366, making the posterior odds ratio in favor of cointegration
equal to 5.121. Thus, the applications with the Nelson-Plosser data have shown
that the Bayesian cointegration test used here can produce a split verdict or strong
posterior evidence either in favor of or against the hypothesis of cointegration.

Table 5. Distribution of the Number of Nonstationary
Roots, Money–Real GNP Example

Number of roots M-GNP M GNP

0 0.310 0.421 0.498
(0.291) (0.426) (0.426)

1 0.684 0.579 0.502
(0.364) (0.384) (0.384)

2 0.005 0.000 0.000
(0.228) (0.151) (0.151)

3 0.001 0.000 0.000
(0.084) (0.035) (0.035)

The top number of each pair is the posterior probability, the
number underneath (in parentheses) is the prior probability
for that number of nonstationary roots.
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The most important point of these applications is that having worked out the
underlying theory and placed the focus on the number of nonstationary roots,
such a Bayesian cointegration test can be performed easily in 10 to 15 minutes,
including computing time (about 2 minutes on a 120 MHz Pentium computer).
One only needs to specify a few simple prior distributions and to have a computer
program that can perform importance sampling with antithetic replication. As one’s
numerical Bayesian infrastructure of computer code gets built up, the cost of any
single Bayesian application quickly decreases to be equivalent to that of sampling
theory applications, but the payoff from the Bayesian application is greater due to
the richer empirical results that are generated along with simple test statistics such
as posterior odds ratios.
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7

Model Specification Uncertainty

For researchers concerned about model specification uncertainty and the potential
of biased coefficient estimates due to either a misspecified model or pretesting
of the model specification, a clear solution exists by taking a Bayesian approach
to model specification. It is possible in a Bayesian framework to treat the model
specification as another unknown parameter to be handled in the same manner
as regression coefficients or variance parameters. Model specification parameters
will be either integer-valued (such as lag length) or 0/1 variables (whether or not
to include a variable). This makes the prior distributions over these parameters
discrete mass functions with the prior support distributed across the set of possible
model specifications considered. Often the prior distribution over model specifi-
cation is independent of the prior over the regression parameters (coefficients and
variance terms) and can be specified separately, with the two prior distributions
multiplied together to form the joint prior distribution.

Allowing multiple-model specifications to receive prior support provides two
benefits to the researcher. First, one can derive the posterior support for each of
the models in the specified set, thereby gaining insight into the model specifica-
tion(s) that is (are) most consistent with both the researcher’s prior beliefs and the
information in the data. Second, one can use the variety of models specified to add
robustness to the empirical results. Constructing marginal posterior distributions
for parameters (or functions of parameters) by integrating out the model specifica-
tion uncertainty results in parameter estimates that are highly robust to the effects of
any potential model (mis)specification bias. Given the continual presence of model
specification uncertainty in economics (what variables to include, what functional
form to choose conditional on the variables included), the ability to produce robust
parameter estimates is one of the biggest advantages gained from taking a Bayesian
approach. Three specific types of model specification uncertainty will be discussed
in detail in this chapter: lag length choice in time series analysis, functional form
specification for structural models, and the combination of results from different
model specifications when possessing only partial information about the individual
models.

64
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Allowing Lag Length to Be Uncertain

In time series analysis there are virtually no applications in which the appropriate
lag length (the number of lagged values of the dependent variables to include
on the right-hand side) is known with certainty. Often the range of lag lengths
considered is, in fact, quite large, sometimes spanning 12 or 18 different values.
Sampling theory statistics has developed estimators for all common time series
models that are efficient conditional on the lag lengths (or lengths for ARMA,
ARCH, or GARCH models); however, the theory for estimating the lag length is
not as well developed. A variety of tests have been proposed for the selection of
time series model specification, including the final prediction error (FPE), Akaike
information criterion (AIC) and its variations, and the Schwarz criterion (SC),
which has a Bayesian derivation.

Rather than attempt to select a single lag length or model specification for a time
series model, one can take an approach in which the model specification is treated
as a set of parameters. These parameters will be few in number (usually 1 to 3
parameters) and almost always integer-valued. This makes it possible to specify a
discrete prior over the set of model specification parameters considered and makes
the computation of marginal posterior distributions easier.

Take as an example a univariate ARMA model for a variable yt that has a
zero-mean (for convenience),

yt �
p∑
i�1

ρiyt−i + εt +
q∑
j�1

θj εt−j (7.1)

where the εt are zero-meaned iid error terms. The two model specification param-
eters are (p, q), the lag lengths of the autoregressive and moving average terms,
respectively. Both p and q are restricted to be non-negative and integer-valued.

Assuming little prior knowledge of the autoregressive and moving average pa-
rameter values, a prior distribution for these parameters could be specified as (1)
the product of truncated uniform priors with range (−c, c) on each ρi and θj where
c is on the order of 1, 1.5, or 2; (2) a product of independent normal distributions
on each ρi and θj with mean 0 and variance of 1 (or some similar number); or
(3) a prior distribution over the roots implied by the ρis as discussed in Chapter 6
and some separate prior distribution over the θj s because they do not influence the
long-run dynamics and to specify a prior on only the roots would imply a flat and
improper prior over the θj s. The remaining task is to specify a prior distribution
for the model specification parameters.

Because the model specification parameters are integer-valued and restricted to
be non-negative, a discrete prior is needed. The first step is to choose the maximum
values of p and q that will receive prior support; without such truncation, it will
be impossible to compute the posterior distribution of the parameters because an
infinite number of models would have to be sampled from in constructing the
posterior. This choice is the researcher’s, but guidance can be provided based
on the observation frequency of the data. Assuming that we are dealing with an



66 7. Model Specification Uncertainty

economic time series, possible maximum values for the autoregressive lag length
are 5 or 7 for annual data, 9 for quarterly data, 18 or 24 for monthly data, 13 or 26
for weekly data, 6 or 11 for daily (five per week) data, and the equivalent of either
one or two days plus one for hourly data. Moving average maximum lag lengths
can be chosen to match the limit on the autoregressive terms or may be shorter in
cases where the maximum autoregressive lag length is particularly long. Note that
pure autoregressive or moving average models are simply ARMA models with
one of the maximum lag lengths given prior support being equal to zero.

The next step in specifying a prior distribution for the model specification param-
eters is to assign a prior support mass to each of the possible model specifications
included by the researcher’s choice of maximum lag lengths. I have used triangu-
lar distributions in past applications, placing the prior mode on the central value
of the lag lengths receiving support with linearly declining prior weights on each
lag length to both sides of the central one. Another prior distribution that I have
found appropriate for lag length parameters is a Poisson distribution that has been
truncated and renormalized.

Having fully specified prior distributions for the lag length parameters and the
structural parameters of the time series model, one can now derive the posterior
distribution of any parameters of interest as soon as the likelihood function is
specified. Assuming that the researcher is relying on some type of random sampling
method for building a numerical approximation to the posterior distribution of some
parameter or function of interest, denoted by η, the standard methods presented
earlier need only be modified slightly to account for the lag length uncertainty.

To integrate out the lag length parameter and derive the marginal posterior distri-
bution of η, one constructs a posterior distribution for η conditional on each of the
values of the lag length parameter(s) that received positive prior support. For each
of these saved draws, save the importance weight if using importance sampling
and the likelihood function value if using Monte Carlo sampling, Gibbs sampling,
or another algorithm that provides draws from the conditional posterior. Assign
a new weight for each draw equal to the prior support for that lag length (model
specification) multiplied by either the likelihood function value or the importance
weight, depending on the sampling method. Combine the draws from the entire set
of conditional posteriors, using a weighted average formula equivalent to impor-
tance sampling applications with the weights just described that account for the
prior support given to the different lag lengths. Remember that any nonconstant
prior distributions on other parameters must also be accounted for in the formula.
This approach results in the marginal posterior distribution of η and can be used
to compute the marginal posterior mean, median, or any percentiles of interest.

To construct the marginal posterior distribution of the lag lengths, one of two
approaches is used depending on whether Monte Carlo or importance sampling is
being used to generate random draws. With random draws from the joint poste-
rior distribution of all the other parameters conditional on a particular lag length
(generated by either Monte Carlo or Gibbs sampling), save the likelihood function
value associated with each draw. If the prior weights assigned to each lag length
are denoted by ωj , j � 1, pmax, where pmax is the maximum lag length given
positive prior support, and the likelihood function value is denoted by p(y|γ, p)
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where γ represents a vector of all other parameters (the ρi, θi , and σ 2 parameters
from (7.1)) and p is the lag length parameter (possibly vector-valued), then the
marginal posterior probability of a particular lag length is given by

p(p � j |y) �
ωj

B∑
i�1

p(y|γ (i)j , p � j)2

pmax∑
j�1

ωj

B∑
i�1

p(y|γ (i)j , p � j)2

(7.2)

where the subscript j on the parameter vector γ makes clear that the size of
the parameter vector is conditional on the lag length and the B draws made for
each model specification are independent of the draws made for the other model
specifications. These marginal posterior probabilities constitute the discrete points
of the full marginal posterior distribution of the lag length parameter. The marginal
posterior mean of the lag length parameter can then be computed as

E(p|y) �
pmax∑
j�1

jp(p � j |y). (7.3)

If the researcher wants to choose a single lag length specification, the posterior
mean is optimal under quadratic loss. Alternatively, nonquadratic loss functions
can be used, making the optimal posterior point estimator something other than the
posterior mean. For example, Dorfman and Havenner (1992) use a loss function
on lag length of the form

L(p̂, p) � (p̂ − p)2D(p̂ − p) + c(p̂ − p)2[1 − D(p̂ − p)] (7.4)

where D() is an indicator function whose value equals 1 when the argument is
positive and 0 otherwise and c is a scalar greater than 1. This loss function is an
asymmetric quadratic with greater loss for models specified to have lag lengths
smaller than the true value. The rationale for such a loss function is that overspecifi-
cation leads to some sampling error but in large samples causes few problems, while
underspecifying the model leads to biased posterior results for other parameters
that cannot be overcome by large samples.

In cases where importance sampling is used to generate the random draws, the
formula for marginal posterior probabilities of the lag lengths in equation (7.2)
must be slightly modified to accommodate the importance weights. If the prior
distribution on the model parameters γ conditional on the lag length p � j

is denoted by p(γj ), the conditional likelihood function is still represented by
p(y|γj , p � j), and the substitute density used to generate draws for lag length
p � j is denoted by f (γj , j), the modified equation for deriving a marginal
posterior probability of lag length j is

p(p � j |y) �
ωj

B∑
i�1

p(γ
(i)
j )p(y|γ (i)j , p � j)2/f (γ

(i)
j , j)

pmax∑
j�1

ωj

B∑
i�1

p(γ
(i)
j )p(y|γ (i)j , p � j)2/f (γ

(i)
j , j)

(7.5)
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Given these marginal posterior probabilities, marginal posterior means, median,
percentiles, or optimal posterior point estimates can be computed or selected, as in
the case of Monte Carlo sampling outlined previously. Dorfman (1995) integrates
out lag length uncertainty in VAR and AR models to derive marginal posterior
distributions of the number of nonstationary roots in exchange rate series that are
then used to calculate the posterior probability of cointegration among sets of
exchange rates.

Allowing Right-Hand-Side Variable Choice to Be
Uncertain

The application of Bayesian methodology to the area of model specification un-
certainty in structural econometric models is best exemplified by Poirier (1991).
In this paper, Poirier analyzed a variety of macroeconomic questions by enter-
taining 147 different structural models created by imposing differing theory-based
restrictions on various model parameters. Examples include money neutrality and
sticky prices. Poirier placed discrete prior mass support on each of these 147 mod-
els, continuous prior distributions on the model parameters, and then used Monte
Carlo sampling to derive the posterior support for various hypotheses after inte-
grating out the model specification (macroeconomic theory) uncertainty. Given
the confusion in macroeconomics over which theories are most appropriate, this
is a particularly good application for allowing for a wide variety of possible model
specifications.

From a technical standpoint, the treatment of a group of models with different
sets of exogenous variables (due to theory restrictions or otherwise) or models with
different restrictions on certain parameters is no different from the methodologies
presented earlier for treating lag length as uncertain. The only real difference is that
often there is no obvious coherent ordering to the set of models given prior support,
thus making it somewhat more difficult to assign prior weights to the models.
Posterior distributions for parameters, structural or not, and posterior probabilities
for each model can be derived exactly as in the preceding lag length example.

Poirier (1991) tried to answer questions about which macroeconomic model
structures are best supported by the posterior predictive densities of output and
money using a data set that includes 47 countries. By considering seven dynamic
specifications for money (unit root, linear trend, etc.), seven dynamic specifications
for output, and three specifications concerning the neutrality of money in the output
equation, Poirier created a set of 147 models that receive positive prior support
distributed in equal measure across the set. Two different prior distributions were
constructed for the model parameters, providing some sensitivity analysis in this
dimension. Using 100 antithetic replications in a Monte Carlo sampling algorithm
for each specification, Poirier computed the posterior support for each of the 147
model specifications for all 47 countries. Thus, although he found that 100 draws
was enough to achieve numerical convergence for each model, Poirier’s application
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still includes a total of 690,900 draws; this makes clear the huge advantages that
can be gained from antithetic replication. Without it, the computational burden of
such a study might have been insurmountable.

Poirier (1991) found that the posterior results differed little across the two prior
distributions. Calculation of marginal posterior probabilities for the seven money
equation specifications found one posterior probability of 0.907 for one speci-
fication in Ecuador and many other cases of specifications receiving more than
50 percent posterior support. The results on output dynamics are similar, varying
fairly widely by country but often strongly identifying a particular specification
as preferred a posteriori. The marginal posterior probabilities of the three money
neutrality specifications also found each specification strongly favored for at least
one county (for example, U.S. output is not neutral with respect to money shocks
while Korea clearly is); in general, money neutrality receives the most posterior
support across the 47 countries. Finally, the a posteriori most likely model re-
ceived an average of 0.176 support across the 47 countries, equivalent to 1/6 of the
total probability, which is impressive given that each model starts with only 1/147
prior support. The maximum posterior support given to a single model is 0.669,
a clear indication that such investigations can produce useful insights into proper
econometric model specification and that the prior distributions used by Poirier
allowed the data to tell their story.

Another example of treating model specification uncertainty in a Bayesian
framework can be found in LeSage (1993), where measures of spatial heterogene-
ity in regional tobacco production are estimated after integrating out uncertainty
over the presence of structural shifts in intercepts and/or slopes and the possibility
of outliers. To further increase robustness, results were presented for models with
two sets of explanatory variables. Posterior odds ratio tests showed that spatial
linkages received support in several states, but in Tennessee there was absolutely
no posterior support for such linkages to parameters from other states.

The one caution to applying Bayesian techniques to the area of model spec-
ification uncertainty regards the choice of the dependent variables. Because all
the posterior inferences rely on optimal combinations of prior information and
information from the data that is measured (or viewed) through a likelihood func-
tion, the likelihood function’s scale must be constant across all the models that
are combined when deriving marginal posterior distributions (e.g., ones with the
model specification uncertainty integrated out). If two models were given prior
support, one with GNP as the dependent variable and the second with ln(GNP),
the likelihood functions will be in two different metrics. Combining the two con-
ditional posterior distributions for some parameter η from these two models as
outlined earlier would result in incorrect posterior inference on η. This is because
the different scales of the two likelihood functions would most likely lead to one
model’s posterior distribution dominating the other’s simply because the magni-
tude of one model’s likelihood is likely to be (arbitrarily) greater than the other’s.
Thus, it is best to ensure that the dependent variable specification is held constant
across all models considered, even if that means that the right-hand side of some
econometric models becomes nonlinear.
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Model Specification Uncertainty with Partial Information

In the preceding examples, model specification uncertainty was integrated out by
constructing a posterior distribution for some parameter of interest η that is a
weighted average of a set of posterior distributions for η that were conditional
on each model specification receiving positive prior support. Such an approach
has only become manageable for ηs that are not simple structural parameters
with the advent of numerical integration methods. The numerical approach to
this problem, essentially due to Poirier (1991), can only be used to its fullest
when the full conditional posterior distributions of η can be generated, meaning
that full information consisting of both prior distributions and likelihood function
specification must be possessed for each model specification. In some applications,
a researcher might have a set of estimators for η generated from different models
but no further information.

The most common example of this sort of partial information occurs in the realm
of forecasting. A researcher may have a collection of forecasts from a variety of
sources but no additional information about the distribution of each individual
forecast (in fact, there is often no precise information on the forecasting methods
that were used). In such situations, the techniques used by Poirier (1991) are
not directly applicable. Instead, a discrete marginal posterior distribution must be
constructed based on posterior weights of each source’s estimator that are derived
from researcher-chosen prior weights that are updated by a performance measure
(likelihood function) that is suitable to the particular application.

Imagine a situation in which one wants to predict a time series variable yt one
step ahead. Four forecasts are available to the researcher, denoted by fit , i � 1, 2,
3, 4, and the researcher can acquire a past series of forecasts from all four of the
sources along with the associated actual values of yt . Assume that the researcher
has no prior information on the performance of the four forecasts; thus, it would
be natural to choose equal prior weights on the four forecasts. Denote these prior
weights byωi � 0.25, i � 1, 2, 3, 4. Next, the performance measure or likelihood
function that will be used to map from prior weights to posterior weights must be
specified. For this demonstration, let the performance measure be a standard joint
normal distribution for the past forecast errors eit � yt − fit ,

p(ei) � (2πs2
i )

−n/2 exp

(
− 1

2

n∑
j�1

e2
it

s2
i

)
(7.6)

where s2
i is the sample variance of the forecast errors and n is the number of past

observations on each forecast source. Given the performance measure/likelihood
function, the researcher can construct posterior weights for each forecast source.
These posterior weights can be denoted by �i , and they are solved for by the
formula

�i � ωip(ei)
/ 4∑

i�1

ωip(ei). (7.7)
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These posterior weights can then be used to compute a Bayesian composite forecast
that combines the four individual forecasts using a weighted average with the
posterior weights. For each new time period, the �i can be updated as a new
observation becomes available for plugging into equations (7.6) and (7.7). Such
posterior-weighted composite forecasts are used in Dorfman and Havenner (1992).

The posterior weights can also be used in combination with a loss function to
choose a single forecast source as the best forecast for a particular time period,
although it is unclear why a Bayesian would want to select a single forecast. If the
sample of estimators being combined in such a partial information framework is
large enough, one can also compute the posterior median of the estimators using the
posterior weights. Such medians are computed for dynamic multipliers in Dorfman
and Lastrapes (1996).

More applications of model specification uncertainty can be found in the chap-
ter on forecasting, as this has been a common arena for Bayesian researchers to
integrate across multiple possible models in hopes of achieving better forecasting
efficiency. As a final note on this topic, the reader is encouraged to read Poirier’s
(1988) article on econometric model building. If this chapter has not convinced
you of the benefits of a Bayesian approach to the model specification uncertainty
that is inherent in econometrics, Poirier’s elegant discourse on the topic, without
dwelling on any of the technical details involved, will convince even the skeptic
that all good econometricians should be Bayesian ones.
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8

Forecasting

Bayesian approaches offer numerous advantages in the area of forecasting. As
mentioned in Chapter 7, forecasts can be made more robust by using a Bayesian
approach to form a composite forecast from a set of different forecasting models,
thus integrating out model specification uncertainty. Bayesian methodology, with
its emphasis on the predictive density of future values (the marginal posterior
distribution of yt+1 at time t) is extremely well-suited to turning point forecasting
as the probabilities of the series moving up or down are easy to calculate. The
Bayesian approach is also easily adaptable to multiple-step-ahead forecasting as the
uncertainty about intervening periods’ values can be accounted for by integrating
them out. Basic methodologies applicable to forecasting economic time series will
be presented in this chapter along with discussion of a number of good Bayesian
forecasting applications.

Basic Forecasting Methods

The basic Bayesian approach to forecasting an economic time series is focused on
the derivation of the predictive density. That is, when forecasting yt+1 at time t ,
the predictive density is the marginal posterior distribution of yt+1 conditional on
all observable variables that are used to help forecast yt+1. While the distribution
is conditional on observable data, it is marginal with respect to any unknown
parameters. A point forecast can then be made by specifying a loss function for
forecasting errors and choosing the point forecast that minimizes the expected loss
where the expectation is taken with respect to the predictive density.

For concreteness, take an AR(3) model, a commonly used forecasting model
(cf. Zellner and Hong, 1989), and assume that the economic time series variable
in question is trend-stationary:

yt � µ + δt + ρ1yt−1 + ρ2yt−2 + ρ3yt−3 + et . (8.1)

The error term et is assumed to be white noise with variance σ 2. Define θ �
(µ, δ, ρ1, ρ2, ρ3, σ

2) and Yt as all observations on yt from time period t backward

72
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to the start of the data set. The predictive density for a one-step-ahead forecast is

p(yt+1|yt , yt−1, yt−2) �
∫
p(yt+1|θ, Yt )p(θ |Yt )dθ, (8.2)

where p(θ |Yt ) is the posterior distribution of the unobservable model parameters.
Denote a forecast of yt+1 by ft+1, and specify a loss function for forecast errors
L(yt+1, ft+1). The optimal Bayesian posterior point forecast relative to that loss
function is then given by

ft+1 � argmin
∫
L(yt+1, ft+1)p(yt+1|yt , yt−1, yt−2)dyt+1. (8.3)

That is, the point estimate is chosen to minimize the expected loss of any forecast
error. Specification of the loss function is up to the researcher, but a variety of loss
functions have been used in the literature. A standard quadratic loss function of
the form (yt+1 − ft+1)

2 will yield a forecast equal to the mean of the predictive
density; an absolute loss function of the form |yt+1 − ft+1| yields a point forecast
equal to the median of the predictive density.

More complex loss functions can be constructed to produce different optimal
point forecasts. Zellner and Hong (1989) used a two-term quadratic loss function
to produce shrinkage forecasts of international growth rates; that is, point forecasts
that are pushed toward the mean forecast for the entire group of countries whose
growth rates are being predicted. Defining yit as the ith country’s growth rate at
time t , their loss function can be expressed in the notation used here as

L(yit+1, fit+1) � (yit+1 − fit+1)
2 + c

(
1

n

n∑
i�1

yit+1 − fit+1

)2

, (8.4)

where n is the number of countries included in the forecasting exercise. Such a loss
function penalizes errors in forecasting the growth rate of a particular economy and
predictions of any country vastly differing in performance from the others being
studied. If one believes the countries’ economies to be linked (through international
trade), such shrinkage toward a group mean protects the forecaster from making
forecast errors due to the performance of a single country’s forecasting model.
The amount of shrinkage (or pooling) is controlled by the loss function parameter
c, which is selected by the researcher; the larger c, the more tightly bunched the
forecasts will become.

In some situations, such as forecasting changes in asset values, an asymmetric
loss function is advantageous. Generally, professional forecasters prefer to overpre-
dict downward movement in asset prices and underpredict price increases because
over many years they have found that investors prefer to sell an asset too soon
rather than too late. Thus, if yt is a time series on the price of an asset (stock, bond,
etc.), a Bayesian stockbroker might use a loss function such as

L(yt+1, ft+1) � D(yt+1, ft+1)(yt+1−ft+1)
2+c[1−D(yt+1, ft+1)](yt+1−ft+1)

2

(8.5)
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where D(yt+1, ft+1) is an indicator function that equals 1 when ft+1 < yt+1 and
0 when ft+1 ≥ yt+1, and c is a positive scalar greater than 1. As c becomes larger,
the penalty for overstating the potential gains from an investment is increased and
the minimum expected loss forecast will decrease.

With many time series models, such as the AR(3) model with trend displayed in
equation (8.1), if a Jeffreys prior is taken for θ(p(θ) ∝ 1/σ), the predictive density
of yt+1 takes the form of a Student-t distribution and the mean of the predictive
density is easy to calculate. For more complex loss functions, more complex prior
distributions, or more complex forecasting models (particularly models that are
nonlinear in the parameters), computation of either the predictive density or the
minimum expected loss point forecast can be difficult to do analytically. In such
instances, the numerical methods that are the focus of this book are well-suited
to performing the necessary calculations. Computing the mean (or median) of a
predictive density is a straightforward application of Monte Carlo sampling if it
can be drawn from directly or of importance sampling otherwise.

The procedure for developing fully Bayesian multiple-step-ahead forecasts was
first presented in a numerical context by Thompson and Miller (1986). Thompson
and Miller laid out an early numerical approach to approximating the predictive
densities of multiple-step-ahead forecasts for univariate time series models that
integrated out parameter uncertainty and the uncertainty associated with the inter-
vening unobservable time series values between the current period and the future
time period for which the time series was being forecast. This paper and Mon-
ahan’s (1983) application to numerical integration in ARMA models were early
demonstrations of the benefits that were to be derived from advances in numerical
integration.

Finding the minimum expected loss forecast for more complex loss functions
generally requires a slightly more complicated approach, with a grid search loop
added to the sampling algorithm. When the minimum expected loss forecast is not
equal to the mean or median of the predictive density, the point forecast that mini-
mizes the expected loss function is found in two steps. First, generate a set of draws
from the predictive density using an appropriate sampling method, probably either
importance or Monte Carlo sampling. Next, search over a range of possible values
for ft+1, calculating the expected loss associated with each value considered using
the set of draws that were generated from the predictive density to numerically
approximate the analytical formula shown in the right-hand side of equation (8.3).
Save the expected loss for each candidate forecast value and continue, using the
same set of draws to evaluate each candidate forecast. When an expected loss value
has been computed and saved for each candidate forecast, choose the forecast with
minimum expected loss as the optimal Bayesian point forecast.

An easy way to choose candidate values is to use the minimum and maximum
values in the set of draws from the predictive density as the extremes of the values
considered. Then divide this range into 100 or 1000 candidate forecasts, compute
the expected loss of each candidate forecast, and then find the minimum expected
loss forecast from within this set of candidates. If this division does not provide
enough numerical accuracy for the point forecast, repeat the search procedure on
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a second, finer mesh centered around the first grid search’s estimated minimum
expected loss forecast with a much smaller range and smaller increments between
candidate forecasts.

A Turning Point Forecasting Application

Zellner and a number of co-authors have written a series of papers on turning
point forecasting with a simple, straightforward approach that is easy to implement
(Zellner and Hong, 1988; Zellner, Hong, and Gulati, 1990; Zellner, Hong, and Min,
1991). Using an autoregressive model as in equation (8.1) but with the addition
of leading indicator variables to improve prediction, they have demonstrated the
ability of Bayesian forecasting methods to predict turning points in international
economic growth rates with admirable accuracy. The models, termed AR(3)LI
models for the leading indicators that are included (all lagged to ensure that they
are observable at the time the forecast needs to be made), can be written as

yt � µ + ρ1yt−1 + ρ2yt−2 + ρ3yt−3 + xt−1β + et � zt−1θ + et . (8.6)

In equation (8.6), the row vector xt−1 contains the relevant lagged leading indicator
variables (generally, measures of growth in the money supply, average returns in
the country’s stock market, and median world stock returns).

If a very diffuse normal-inverse gamma prior is placed on the structural coef-
ficients θ � (µ, ρ1, ρ2, ρ3, β) and on the error’s standard deviation, σ , such as
p(θ |σ) ∼ N(0, σ 2I5 × 106) and p(σ) ∼ IG(v), then the predictive density
of the one-step ahead forecast ft+1 will be a mean-shifted univariate Student-t
distribution so that the quantity

(ft+1 − ztθ)/stat ∼ t (v + t) (8.7)

where θ̂ is the current OLS (ML) estimate of the regression model parameters, st
is the current OLS estimate of σ , at � 1 + zt (Z

′
tZt )

−1z′t , and Zt is the current
matrix of regressors over the entire sample period up to time t . That is, the quantity
on the left-hand side of equation (8.7) is distributed as a Student-t random variable
with (v + t) degrees of freedom.

The posterior probability of movement down or up can then be calculated as
either the integral of the predictive density from negative infinity to yt or from yt to
positive infinity, respectively. Given the variables in equation (8.7), either integral
can be found by using a standard t-table or software command for calculating tails
of the Student-t distribution.

Forecasts of the direction of movement in the time series yt are then made
from these posterior probabilities through the application of a loss function for
the forecast errors. Because there are only four possible events in the forecasting
sample space, the expected losses of the two possible forecasts are easy to com-
pute. Assume that correct forecasts of movement either up or down have no loss,
while incorrect forecasts of movement up cause loss 1 and incorrect forecasts of
movement down cause loss c (a positive scalar that can be less than, equal to,
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or greater than 1). Then denoting the posterior probabilities of movement up and
down computed using the distribution of equation (8.7) by Pu and Pd � 1 − Pu,
the expected losses from forecasting movement up or down are given by

EL(predict up) � Pd � 1 − Pu (8.8)

EL(predict down) � cPu. (8.9)

Minimization of expected loss implies that a forecast of movement up should be
made whenever Pu > 1/(1 + c). The references given at the beginning of this
section contain numerous applications of this general method to economic growth
rates from 18 OECD countries.

Composite Forecasting

As mentioned in Chapter 7, model specification uncertainty has a natural connec-
tion with the area of forecasting. In many applications, researchers are interested
in forming a composite forecast using a set of forecasts derived from competing
forecasting models. Bayesian methods for forming such composite forecasts are
straightforward and easy to implement. Two such methods will be detailed here:
first, a standard approach when full information is possessed about all forecasting
models considered, and, second, a partial information approach due to LeSage
and Magura (1992) that is appropriate when a researcher only has the forecasts
from the different models, not full information on the models used to generate
the forecasts. A good discussion of Bayesian methods for combining forecasting
models can be found in Min and Zellner (1993).

A Full Information Approach

For simplicity, assume we have three competing forecasting models, each worthy
of receiving positive prior support for the validity of its forecasts. Denote the
models used to generate the forecasts by

yt � xitβit + eit , i � 1, 2, 3. (8.10)

In each model, denote the matrices of all observations up to date t by Yt and Xit ,
and the current one-step-ahead forecast by fit . If forecasting begins with time
period s > cols(xit ), i � 1, 2, 3, the most basic way to form a composite forecast
is with the posterior odds of each model.

Assign each model a positive prior weight ωi such that the three prior weights
sum to 1. The posterior odds of each model for time period s are then given
by the normalized products of the prior weights and the likelihood function of
each model, p(Ys |Xit , bit , sit ) where bit and sit are the current estimates of βit
and the standard deviation of the error term estimated with the prior distribution,
likelihood function, and loss function associated with forecasting model i. Note
that the likelihood function is based on the current estimate of the model parameters
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and evaluated over all observable data, so that period s + 1’s likelihood function
value will not be equal to period s’s multiplied by the probability density of the
additional observation on ys+1. Defining the posterior odds of each model at time
s by �i , the posterior odds can be written mathematically as

�is � ωipi(Yt |Xit , bit , sit )
3∑
i�1

ωipi(Yt |Xit , bit , sit )
. (8.11)

If the forecasts from each of the three models are denoted by fis , then the posterior
odds composite forecast is simply a weighted average of the three component
forecasts using the posterior odds as the weights,

fs �
3∑
i�1

�isfis . (8.12)

LeSage and Magura’s Partial Information Approach

LeSage and Magura (1992) present a Bayesian approach to combining forecasts
when the only information possessed by the researcher is the forecasts generated
by the individual forecasting models. The researcher does not need to know the
models used to produce the forecasts or even the variables used in the models.
The method relies on a set of recursive formulas to update posterior distributions
for the parameters of a set of dynamic linear models (West and Harrison, 1989)
that are used to model the composite weights. This procedure can be done at a
simplified level, or the full LeSage and Magura (1992) approach can be used.

In the simplified form, the dynamic linear model approach to composite fore-
casting begins by representing the composite forecast ft as a linear combination
of an intercept and the (m − 1) component model forecasts zit . The dynamic
linear model (a type of time-varying parameter state-space model) relating the
component forecasts to the composite can be expressed in two equations as

ft � ztβt + vt (8.13)

βt � βt−1 + wt (8.14)

where zt is a (1 × m)-row vector containing an intercept and the component
forecasts zit , the βt are time-varying composite weights to be estimated, and vt
and wt are white noise error terms.

Estimation of this model begins with priors on β0 and the variances of the two
error terms. To allow analytical results to be derived, the natural conjugate priors
are

β0 ∼ N(µ0, C0), � ∼ G(n0/2, d0/2), (8.15)

where G() represents a gamma distribution, � � 1/E(v2
t ), and the prior on

Wt � E(wtw
′
t ) is covered by the specification ofC0. The current period estimates
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are then updated from those of the previous period by the recursion formulas:

st−1 � dt−1/nt−1 (8.16)

Rt � Ct−1 + Wt (8.17)

qt � ztRtz
′
t + st−1 (8.18)

nt � nt−1 + 1 (8.19)

dt � dt−1 + (ft − ztµt−1)
2st−1/qt (8.20)

at � (ztRt )
′/qt (8.21)

µt � µt−1 + at (ft − ztµt−1) (8.22)

Ct � Rt(st/qt ) (8.23)

So when a forecast is made, the distribution of the composite weights βt is βt ∼
N(µt−1, Rt ) and the posterior mean forecast of ft (the optimal point forecast under
quadratic loss) is ztµt−1. After observing the forecast error (ft − ztµt−1), the new
posterior distribution of βt is βt ∼ N(µt , Rt ). This update comes too late to use
in real-time forecasting of the time series ft . The reason that µt−1 can be used
as the prior mean of βt is the particular form of the state-transition equation for
changes in the composite weights that was assumed in equation (8.14), namely, a
random walk. If the state transition equation (8.14) is generalized to allow for a
more flexible evolution of the composite weights, there would be a corresponding
adjustment in the distribution of βt when the forecast must be made; see West and
Harrison (1989) or Pole, West, and Harrison (1994) for details.

Such a dynamic linear model can be used to form composite forecasts as out-
lined earlier, with the composite weights βt evolving through time as the posterior
distribution for the weights gets updated after each observed forecast error. The
procedure will automatically increase the weights on component models that are
more accurate and shrink their variance components in Rt , making those weights
become more stable.

More complex dynamic linear models than the one presented here can be esti-
mated, even with analytical distributional updates as outlined earlier. The reader
is encouraged to find further details in West and Harrison (1989) and Pole, West,
and Harrison (1994). The second reference even comes with a computer disk con-
taining software to implement dynamic linear models of many different varieties,
from simple to complex. LeSage and Magura (1992) use a dynamic linear model
virtually identical to the one presented earlier as well as four more complex models
with parameter shifts at certain breakpoints in the time series. They then use this
set of five models to incorporate model specification uncertainty into their com-
posite formation process. At each point in time, they derive probabilities of the
last period being best represented by one of the five models and the next period’s
probability of belonging to each of the five model types, thus resulting in a total of
25 possible posterior distributions based on the combination of potential updates.
LeSage and Magura found that this multiprocess mixture model works well in
forming composite U.S. GNP forecasts from four leading economic forecasting
firms. However, their approach is quite complex, and a researcher would need a
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strong belief in the necessity of such a flexible structure to justify the additional
technological investment above a single standard dynamic linear model.

Composite Qualitative Forecasting

Li and Dorfman (1995, 1996) have proposed a method for forming composite fore-
casts from a set of individual qualitative forecasts when the person forming the
composite has very little information in addition to the set of component forecasts.
Their approach is designed specifically for qualitative forecasts and generates com-
posite weights that attempt to measure the relative probability of each component
forecast’s being correct in the current forecast period. Assume that the researcher
has a set of dichotomous (0/1) forecast variables, such as forecasts of movement
up or down in an asset price. Denote these forecasts by zit , i � 1, . . . , m.

To implement the Li-Dorfman composite method, the researcher first specifies
a set of observable exogenous variables that relate to the accuracy of the compo-
nent forecasts; denote these variables by xt . Li and Dorfman (1995, 1996) chose
variables related to the current market conditions in the area of economic activity
associated with the variable being forecast. For example, if the zs are forecasts of
upward or downward movement in the GNP of a country, the variables included in
the xt vector might be lagged GNP growth rate, periods since the last downturn in
economic activity, lagged stock market returns (following the research of Zellner
and his co-authors), lagged money growth rate, and so on. All variables in xt must
be carefully chosen to ensure that they are observable when the composite forecast
is formed.

Using a set of past data on each of the individual forecast models (whose exact
form can remain unknown) and the actual occurrences of the dichotomous vari-
able being forecast, a logit model is estimated for each individual forecast model
measuring the ability of each component model to accurately forecast the event at
issue. The estimation of these logit models can be Bayesian in approach (see Li
and Dorfman, (1995, 1996) and Pratt, Raiffa, and Schlaifer (1965) for details of
methods that provide Bayesian motivation for estimators that match the familiar
maximum likelihood estimators; see Zellner and Rossi (1984) for approaches to
estimating logit models under informative priors), but it does not need to be. Then,
using the most current observable values for the xt variables, the probability of
each model’s current period forecast being correct is predicted using the estimated
logit models,

Pit � probability(model i’s forecast for period t is correct)

� exp(xtbit )/[1 + exp(xtbit )], (8.24)

where bit is the current estimated logit model parameters from model is logit
model.

These Pit are then normalized so that they sum to 1 over the m individual
models; the set of normalized probabilities, pit , are the composite weights in the
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Li-Dorfman method. A composite forecast is then generated according to the rule

zt �



1 if
m∑
i�1
pit zit > 1/(1 + c)

0 otherwise
(8.25)

where c is the loss from incorrectly predicting the outcome represented by 0 relative
to the loss from incorrectly predicting the outcome represented by 1. Li and Dorf-
man re-estimated the logit models after each period’s results became observable
and then generated new composite weights for the next period’s forecasts. They
found that the composite weights generated by this method are highly flexible, al-
lowing individual models to be weighted heavily or virtually ignored from period
to period. Successful empirical results in applications to employment data and in-
ternational economic growth rates indicate that this method of forming composite
qualitative forecasts has good potential.
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9

More Realistic Models Through
Numerical Methods

This chapter will provide a brief list of some of the econometric models that are now
open to Bayesian estimation and hypothesis testing, that before the recent advances
in numerical integration would have been impossible to analyze in a Bayesian
framework. The common thread for most of these models is the presence of error
terms with distributions that are more complicated to work with analytically than
normal iid random variables. Few details of the actual applications are given here,
as such models tend to be highly specific to the particular settings and data to
which they are applied. Instead, the reader is directed to a published application
for the full theory and methods involved. However, this chapter will hopefully
serve as both a guidepost to good Bayesian applications with nonstandard models
and an advertisement that such complex models are now available for Bayesian
inspection.

Frontier Models

Production and cost frontier models have become more common over the last ten
years because econometric and mathematical programming methods for analyzing
such models have been developed. Such models are applied frequently in studies of
technical and allocative efficiency. A common formulation of a production frontier
might consist of a regression model such as

ln(qit ) � β0 + β1ln(kit ) + β2ln(hit ) + β3ln(sit ) + eit + vi (9.1)

where q is quantity produced, k is capital, h is hours of labor, s represents other
inputs, the subscripts i and t represent firms and time periods, respectively, e
is a standard zero-meaned white noise error, and vi is a firm-specific unobserv-
able component representing technical inefficiency (Aigner, Lovell, and Schmidt,
1977). Because thevi are constrained by definition to be negative, some non-normal
distribution must be assumed for the vi ; common choices have been truncated and
half-normal distributions. Gibbs sampling would be a natural method for analyzing
the joint posterior distribution of the βs and the parameters controlling the distri-
butions of the es and vs. Such an approach would also provide an easy method
to calculate the entire posterior distribution of the technical efficiency measures,
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rather than producing only the point estimates that have been commonplace in the
efficiency literature. Bayesian applications of stochastic frontier models can be
found in van den Broeck, Koop, Osiewalski, and Steel (1994) and Koop, Osiewal-
ski, and Steel (1997). The latter paper discusses models suitable for estimation by
Monte Carlo sampling and models that are best estimated using Gibbs sampling.
Full details are provided concerning priors, likelihood, and the implementation of
the Gibbs sampling algorithm.

ARCH Models

Financial asset price series have often been found to be poorly represented by
ARMA time series models with normally distributed innovations. Instead, much
research has shown that the tails of the distributions of price changes are fatter
than characterized by normality and that the variance of the innovations may well
change over time (cf. Boothe and Glassman, 1987). A variety of models have
been proposed to deal with these empirical facts, with one of the more popular
recent models being the ARCH or autoregressive with conditional heteroscedas-
ticity model that allows the variance of the innovations (error terms) to follow an
autoregressive process (Engle, 1982; Engle and Bollerslev, 1986). Such models
are complicated to estimate by sampling theory methods because the time-varying
error variances are unobservable and the parameters estimated for the variance’s
autoregressive process must satisfy certain inequality restrictions that are implied
by variances always being positive. Geweke (1989) developed an application to
daily stock price data that shows how to estimate an ARCH model in a Bayesian
framework. He began with the Jeffreys prior for this model, including the inequal-
ity restrictions on the positive prior support for the parameter space, specified the
likelihood function, and then derived the posterior distribution of all the parameters
using importance sampling. Geweke also detailed the derivation of the predictive
density of multiple-step-ahead forecasts from the ARCH model. Geweke’s appli-
cation even included posterior odds ratio tests for model specification uncertainty
over both nested and non-nested specifications.

Qualitative Choice Models

The most common qualitative choice models are the probit and logit models that
are applied in situations with dichotomous dependent variables. The best source
for describing the Bayesian estimation of basic qualitative choice models is Zellner
and Rossi (1984). Zellner and Rossi laid out analytical approximations to the pos-
terior distributions of the parameters of both logit and probit models, under diffuse
and informative priors. They also present numerical approaches to deriving the ex-
act posterior distributions using importance sampling and show through a Monte
Carlo exercise the benefits of numerically approximating the exact distributions
of interest.
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For situations with multiple choice possibilities, McCulloch and Rossi (1994)
present a Gibbs sampling approach to numerically approximate the posterior distri-
bution of the parameters of a multinomial probit (MNP) model. The MNP model
is extremely difficult to estimate by maximum likelihood techniques for choice
sets of more than three or four choices due to the multidimensional integrals that
must be performed in the evaluation of the likelihood function. A few researchers
have used approximations such as the method of simulated moments in an attempt
to circumvent these difficulties (McFadden, 1989). The Gibbs sampling approach
of McCulloch and Rossi (1994) is easier to implement than any of the feasible
sampling theory approaches and provides full posterior distributions of the param-
eters, not just point estimates. Dorfman (1996) applied the McCulloch and Rossi
(1994) Gibbs sampling approach to the MNP model to data on technology adop-
tion; this paper includes the formulas for calculating the posterior distributions of
the marginal probabilities, the impact on choice probabilities of marginal changes
in the explanatory variables.

Koop and Poirier (1994) present an application using a rank-ordered multinomial
logit model to study voter preferences. They derived results for several priors,
including conjugate priors, and they provide a specification test.

Models with Non-normal Error Distributions

Like the frontier models discussed at the start of this chapter, some econometric
applications are not well-suited to the assumption of normally distributed errors,
even with corrections such as ARCH effects. Finance data is well-documented
to fail tests for normally distributed errors, and many other applications maintain
normality without testing for it. There are many probability distributions with more
flexibility than the normal distribution that might be better suited to a particular
application. With numerical integration, it is often no harder to generate draws
from a non-normal distribution, so that making more realistic assumptions about
the error distribution may not complicate the analysis.

The main reason for maintaining the assumption of normality in econometrics
is hypothesis testing, because least squares estimation does not rely on any distri-
butional assumption; normality is needed to perform the t-tests, F -tests, and χ2

tests with which we are so familiar. In numerical Bayesian applications, hypothesis
testing can be performed as easily on posterior distributions of any form because
one is working with an empirical approximation of the posterior distribution and
no analytical calculations are necessary. One is only limited by the ability either to
generate draws from the posterior distribution or to evaluate the posterior distribu-
tion at a point drawn from a suitable substitute density (in the case of importance
sampling). Given a good reference on generating random numbers from different
probability distributions, these limits still allow for broad latitude in selecting ap-
propriate error distributions. One such reference is Kennedy and Gentle (1984);
the reader can choose a personal favorite from several other available works on
the topic of statistical computing.
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It is worth separate mention that considerable work has been devoted to gener-
ating priors and methodologies to allow the Bayesian investigation of models with
elliptical errors and with Student-t errors, both classes more flexible than those
with normal errors, but still allowing some analytical results. For two examples,
see Geweke (1993) and Koop and Steel (1994).
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Decision Theory Applications

The Bayesian approach to decision theory allows a researcher to find the optimal
setting for a set of control variables with respect to the posterior distribution of any
unknown random parameters and a specified objective function. In estimation ap-
plications, the Bayesian approach was contrasted to the sampling theory statistics,
but in the area of decision theory, the Bayesian approach contrasts with the “plug-
in” approach. In the plug-in approach to decision problems, the researcher takes
estimates of unknown parameters as if they were certain and ignores the effect that
parameter uncertainty may have on choosing the optimal set of control variables.
The certainty equivalence principle states that such ignorance of parameter uncer-
tainty will lead to the same solution as a Bayesian approach that fully accounts for
the parameter uncertainty if and only if the posterior distribution of the parameters
is normal and the objective function is linear-quadratic in the unknown parame-
ters. In all other cases, the two approaches will provide different answers for the
optimal control variable settings. The Bayesian decision theory approach is also
often referred to as decision making under estimation risk to stress the difference
between the plug-in approach of assuming that parameters are estimated perfectly
and the Bayesian approach, which incorporates the uncertainty created by working
with parameter estimates into the solution for an optimal decision.

The basic Bayesian approach to a decision theory problem is simple and straight-
forward. One chooses the values of the control variables that minimize the expected
loss of that decision, where the expectation is taken with respect to the posterior
distribution of the unknown parameters (Berger, 1985). Recalling the discussion in
Chapter 2, if the unknown parameters involved in the decision are θ with posterior
distribution p(θ |y, x), the objective function to be minimized (or maximized) is
F(y, x|θ), y is a vector of random variables with density p(y|x, θ), and x is the
vector of control variables, the Bayesian decision problem can be written as

choose x � argmin
∫∫

F(y, x|θ)p(y|x, θ)p(θ |y, x) dy dθ. (10.1)

In equation (10.1), the expected loss of choosing a particular (vector) value of the
control variable x is evaluated by integrating out uncertainty concerning the un-
known parameters θ and any residual uncertainty about the endogenous variables y.
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If the value of y is deterministic given x and θ ,p(y|x, θ)will be degenerate and will
not affect the calculation of expected loss. The optimal choice of x is then found
as the value that minimizes the expected loss (argmin is mathematical shorthand
for the value of the argument of minimizing the specified function or functional).

While the preceding discussion above talked about minimizing the expected loss
associated with a decision, the common economic criterion of maximizing profit
can easily be fit into this paradigm. Define the loss function to beF(q|θ) � πmax −
π(q|θ), where q is the quantity produced of a good, θ are the unknown parameters,
and π(q|θ) is the profit earned from producing and selling quantity q conditional
on the parameters θ . The value of πmax will be unknown, but because it is a
constant, we can define a new (computable) loss function, F ∗(q|θ) � −π(q|θ),
which will be minimized by the same value of q as the original loss function
F(q|θ). Minimizing the negative of profit is equivalent to maximizing profit, so
using F ∗(q|θ) as a loss function whose expected value is to be minimized will
result in a decision that maximizes the expected profit from the decision.

An Application to Land Allocation

Lence and Hayes (1995) performed a very good application of Bayesian decision
theory to the problem of land allocation. Imagine a farmer who has available a
fixed amount of land that can be planted in any combination of up to four different
crops. Assume that the farmer’s objective is to choose the acreage allocation that
maximizes the expected utility of profit from the crops grown. Lence and Hayes
(1995) chose a negative exponential utility function with Arrow-Pratt absolute risk
aversion coefficient of φ. For the presentation here, the vector of decision (control)
variables is denoted by acreage allocations to the four (arbitrarily ordered) crops,
d � (d1, d2, d3, d4), where d4 � L− d1 − d2 − d3 as long as all four crops have
sufficiently profitable expected returns to ensure full allocation of the acreage.
The per-acre profit of each crop is an unknown random parameter when planting
decisions are made; group the four random profit variables into a conformable
vector π . The loss function for the minimization problem can therefore be written

F(d|π) � exp(−φπd), (10.2)

where there is no negative in front of the exponential function because we are
minimizing instead of maximizing. Using two published sets of profits and their
variances, Lence and Hayes imagined that the farmer takes a Jeffreys prior for the
profits and variance-covariance matrix, resulting in the derivation of a marginal
posterior distribution for the per-acre profits in the form of a multivariate Student-t
distribution that we can represent here as p(π |x) � MVT (µ, 
, k) where µ is
the mean per-acre profits observed by the farmer in the data used to derive the
posterior,
 is the scaling matrix (posterior variance), k is the degrees of freedom,
and x is the observed data on profits.

To numerically approximate the optimal acreage allocation, Monte Carlo sam-
pling can be used because draws can be drawn easily from the posterior distribution
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(a multivariate Student-t form). First, one draws a set of B simulated profits for
each of the four crops from the posterior distribution (Lence and Hayes used 25,000
draws). With the draws in hand, the expected loss of a particular acreage allocation
can be calculated, beginning with plugging the allocation into the loss function in
conjunction with each of the random parameter draws to get a single value from
the posterior distribution of the loss function,

F(dj |π(i)) � exp(−φπ(i) dj ). (10.3)

In equation (10.2), the subscript j indexes possible acreage allocation choices
while the superscripted (i)s denote the draws from the posterior distribution of
the random parameters. The expected loss of a given acreage allocation is then
calculated by a simple arithmetic average of the B individual loss function values
described by equation (10.3):

E[F(dj )] �
B∑
i�1

exp(−φπ(i) dj ). (10.4)

To find the optimal acreage allocation, one needs to scan the set of potential acreage
allocations dj and choose the one that minimizes the expected loss. The scan over
potential allocations can be done in several ways. A gradient-based descent method
can be used to actively search for the optimal allocation or a passive grid search
method can be used.

Two types of ordered grid searches can be performed. The first is designed to find
the optimal acreage allocation in one scan. Assume that the total acreage L can be
divided up in units no smaller than one acre (in many real-world applications, the
units would be much larger than this). That limit controls the minimum increment
of the grid search. With four possible crops, the grid search would consist of a three-
level nested loop because the fourth allocation is determined by the first three. The
outer loop is the allocation to the first crop, the second loop controls the allocation
to the second crop, the third loop will control the third crop. Let the second loop
begin at d2 � L − d1 and let the third loop begin at d3 � L − d1 − d2. Begin
with a 100 percent allocation to the first crop and calculate the expected loss. The
process would produce trial allocations that followed a pattern such as (L, 0, 0, 0),
(L−1, 1, 0, 0), (L−1, 0, 1, 0), (L−1, 0, 0, 1), (L−2, 2, 0, 0), (L−2, 1, 1, 0),
(L − 2, 1, 0, 1), (L − 2, 0, 2, 0), (L − 2, 0, 1, 1), (L − 2, 0, 0, 2), and so on.
Thus, the process reduces the allocations sequentially through the nested loops
by one-acre increments, adding that acre to the next crop in the ordering and re-
evaluating the expected loss function at each trial allocation. Save the minimum
expected loss found and the allocation associated with it; a simple if statement at
the end of each loss function evaluation can be used to determine whether the new
candidate allocation is an improvement on the current trial optimal solution. Note
that even for a very small farm of 100 acres, such a grid search would consist of
slightly more than one million trial allocations, each requiring the computation
of B evaluations of the loss functions (B � 25, 000 for Lence and Hayes). This
would probably take three weeks on a reasonably fast (120MHz) PC according to
a few trial programs used for rough approximation.
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An alternative grid search routine would use a larger increment (or mesh) and
then use a finer mesh in the area determined to be the neighborhood of the optimal
allocation. For example, with 100 acres to allocate, one might start with increments
of 10 acres. This would reduce the number of trial allocations to 113 � 1331. A
search of that size can be completed in approximately one hour. Then another search
can be performed on the space of ±5 acres on either side of the best allocation from
the first grid search. This second search, even though the mesh is back down to one-
acre increments has the same number of trial allocations, 1331, and can, therefore,
be completed in an additional hour. Such an approach can be generalized to include
as many repetitions with successively smaller grid increments as necessary to find
an optimal solution with the desired level of numerical accuracy. This method will
be preferred for applications with decision variables of large enough dimension
(often 4 or greater) as to make a single grid search as described first too time-
consuming.

The third possible approach is an active search algorithm that begins with an
arbitrary trial allocation (decision) and then moves in successive steps toward
new allocations that improve (decrease) the value of the expected loss (objec-
tive) function. This is completely analogous to iterative search algorithms used
to solve nonlinear optimization problems (Gill, Murray, and Wright, 1985). The
general approach is to begin with some initial trial decision, say an allocation
of (L/4, L/4, L/4, L/4), and then perturb it to see which reallocation most im-
proves the decision. Thus, one would first evaluate the expected loss of the initial
allocation. Then one could evaluate four potential new allocations of the form
(L/4 + 3, L/4 − 1, L/4 − 1, L/4 − 1) where each of the four crops is sequen-
tially increased in acreage as the other three are minimally decreased. These four
expected loss values would be examined and the one with the minimum expected
loss would be chosen as the new trial allocation. Such a procedure would be re-
peated until such time as the optimal allocation is approached. Once close to the
estimated optimal allocation, one might shift to a slightly more sophisticated ap-
proach in which 12 new allocations are considered, consisting of all combinations
that add one acre to crop i and subtract one acre from crop j . Choosing the mini-
mum expected loss decision from among these 12, with the caveat that it must have
lower expected loss than the current trial allocation, one then proceeds cautiously
toward the final, optimal allocation. When none of the 12 new allocations has
lower expected loss than the current trial allocation, you have found the optimal
acreage allocation given the numerical precision of your Monte Carlo sampling
approximation and the search increments specified by your algorithm (here set at
one acre).

Note that even an active search of 100 steps should be accomplished in an amount
of time equivalent to the second type of grid search with changing mesh sizes. In
fact, the active search method will generally be quicker in terms of computer time;
however, it will take more time to write the computer program than for a grid search.
Thus, one may choose the grid search except in cases where the dimension of the
decision vector is very high, the search area is very wide, or when evaluation of the
expected loss function is slow. In applications where finding the optimal decision
may be difficult or extremely time-consuming, the researcher may want to do a
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small-scale time test of a few iterations of each method and/or evaluation of the
expected loss function and then compute expected computing time for each of the
three methods. In any iterative numerical algorithms on a computer it is always
wise to time a small-scale example first and extrapolate the time to complete the
task (even before performing a Monte Carlo sampling exercise, I always time 10
or 100 draws). This will help you decide the size of the empirical sample you can
afford to draw (with the accompanying numerical precision) and ensure that you
have the time resources to complete the project. Nothing is worse than killing a
job that you are sure must be stuck in an infinite loop only to discover that it was
working fine and almost done; you just misjudged how long the program would
take to complete.

Lence and Hayes (1995) found the optimal Bayesian acreage allocations for
two different crop allocation applications and compared the answers to those from
three other methods: the plug-in approach which fails the certainty equivalence
test because the loss function is not linear-quadratic; an unbiased, non-Bayesian
analytical estimate of the optimal decision under estimation risk due to Chalfant,
Collender, and Subramanian (1990); and an approximate Bayesian decision vec-
tor due to Brown (1979) that is exact for posterior distributions that follow the
multivariate normal distribution and loss functions that are negative exponential.
All three of these decision vectors can be solved for analytically. Lence and Hayes
(1995) found that none of the three alternative methods produces good answers
for either of two applications performed, even when the loss function is negative
exponential and the posterior distribution is in the form of a multivariate Student-
t distribution. This seems to be strong evidence that the full Bayesian decision
theory approach is worthwhile and should be performed more often in empirical
applications.

If one suspects that the optimal allocation of activities (crops) can include some
percentage of doing nothing (land laying fallow, a factory operating below ca-
pacity), one can easily include such an activity in the decision vector. Create an
additional activity (crop) that has a “random” profit with a degenerate posterior
distribution that has mean profit zero and a zero variance (and covariance with
any alternative activities). This generalization of the problem solved by Lence and
Hayes (1995) is straightforward and worth considering in any situation with prob-
abilities of negative profits from some activities and a risk-averse (convex) loss
function.

Other Possible Decision Theory Applications

Almost any economic decision problem relies on a set of parameter values that
are unknown in empirical applications. All such problems are candidates for the
Bayesian approach. However, to get the most benefit out of accounting for the
estimation risk incurred by working with estimated parameters, one should be
careful that the decision problem is such that estimation risk is important.

First, the expected loss function must be nonquadratic or the posterior distribu-
tion of the parameters must be significantly skewed. In most cases, that occurs in
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economic problems through the introduction of risk aversion. If the decision maker
is risk-neutral, many reasonable objective functions will be linear-quadratic in the
decision variables and the unknown parameters, resulting in the certainty equiv-
alence principle holding and the Bayesian approach yielding the same answer as
the plug-in approach of using the posterior mean estimates of the parameters as
if they were deterministic. Second, the estimation risk must be economically sig-
nificant. If the posterior distribution is highly concentrated around the mean, so
that the ratio of posterior mean to posterior standard deviation is large (in absolute
value), the proper treatment of estimation risk may not change the decision by an
economically significant amount. For example, if the ratio of the absolute value
of the posterior mean to posterior standard deviation is near or above 10 for all
unknown parameters in a problem, taking the Bayesian decision theory approach
will generally have virtually no effect on the estimated optimal decision.

Having satisfied yourself that the problem at hand is worth tackling through
the Bayesian decision theory approach, a huge set of problems can be tackled
through the general method outlined earlier for the case of acreage allocation.
Some particularly well-suited situations that come to mind are listed soon. All that
is needed to solve such problems are the insertion of a suitable loss function in
place of the one used earlier (which is, in fact, often suitable) and the substitution
of the correct posterior distribution of the unknown parameters. In many applica-
tions where informative priors may be appropriate, the posterior distribution will
not have the Student-t form, even after marginalizing the variance components;
therefore, many applications will have to rely on importance sampling instead of
Monte Carlo sampling. One simply evaluates the expected loss function using the
formula for importance sample (i.e., weighted average) instead of the simple av-
erage used with Monte Carlo sampling and proceeds identically to the preceding
outline otherwise.

One potential type of application is determining the optimal storage quantity
for a commodity that is either produced infrequently (many agricultural products)
or with great temporal variation (again, mostly agricultural examples). Here, un-
known parameters can be found in the supply and demand curves that control the
decision and in the new supply to be forthcoming in future periods. This last pa-
rameter often has a sizeable estimation risk, which one would not want to ignore.
Risk-averse marketing agents who hold the supplies comprise the only assumption
left to make this problem fit the Bayesian decision theory paradigm.

Hedging decisions are another natural application of these techniques. Such an
application was performed by Lence and Hayes (1994). A farmer or consumer
of a commodity that has an associated actively traded future contract can dimin-
ish the profit risk (on either the revenue or cost side, respectively) inherent in
their businesses by hedging in the futures markets. Here the unknown parameters
are associated with demand parameters, production quantity (yield risk), and the
difference between spot and futures prices (basis risk).

Life insurance underwriting would provide an interesting application. The un-
derwriting company is trying to construct a portfolio of insurance (who it accepts
or rejects) that will make it a profit in the long-run but must rely on extrapolations
of life expectancies from tables based on previously observed data (because those
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buying the insurance come from a population whose true life expectancy cannot
possibly be known at the time of purchase). If a suitable nonquadratic loss func-
tion could be constructed, this problem would be very revealing when compared
to actuarial insurance rates and the underwriters observed behavior.

Many investment problems are well-suited to this sort of analysis, as long as
the firm being studied can be postulated to have a nonquadratic objective func-
tion (be risk-averse or risk-taking). Unknown parameters can relate to the final
product’s demand, the production of the product, and the potential entry of new
competitors. Given the difficulty in the investment literature of estimating dynamic
models with adjustment costs with much empirical precision, the size of the esti-
mation risk present makes the application of the Bayesian decision theory approach
worthwhile.

Optimal Decisions for Dynamic Problems

Finally, in the area of resource economics, the optimal regulation of fisheries seems
tailor-made for this approach, but a slight adaptation must be made to the solution
technique. The loss function is definitely nonquadratic as the objective is generally
to maximize the present value of the flow of profits from the fishery with some
adjustment to ensure that the species is not fished to extinction (even if that strategy
has a higher discounted profit flow). Estimation risk certainly exists because the
fish population itself is an unknown random variable and the population growth
process must also be estimated and entered into the decision problem as a set of
constraints.

This problem falls into the realm of stochastic optimal control but can be attacked
by the Bayesian decision science approach for discrete time problems that can be
solved analytically conditional on the parameters (this is a fairly large class of
problems that extends well beyond the standard linear-quadratic control problem).
When such problems are solved by the classical calculus of variations approach
(or Bellman’s dynamic programming approach), the parameters are all taken as
deterministic and a solution is found for the time path of the decision variables
(often just a single decision variable). One cannot find the Bayesian solution by
generating a large number of draws from the posterior distribution of the unknown
parameters, solving for the optimal decision path through time conditional on each
draw, and then taking an average of the decision paths. That is not the minimum
expected loss decision path.

Instead, one must evaluate a set of candidate decision paths at each of the
generated values from the parameters’ posterior distribution, find the expected loss
for each of the candidate decision paths, and choose the minimum expected loss
decision path. Thus, instead of having to perform sequential analytical solutions
conditional on some large number of possible parameter values (which would have
made the problem impractable), one must simply find the expression for the value
of the loss function (objective function) given a particular decision path. In general,
such an expression can be found for most dynamic optimization problems with a
form that is analytical and can be placed into a computer program.
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Treating this expression as the loss function F() described in the acreage allo-
cation example, the only detail left is whether to grid search over decision paths
or to perform an active search. In many cases, even though the problem must be
converted to discrete time periods, the number of periods and number of possible
decision variable values at each point in time will be such that a grid search will be
infeasible. For a 20-period problem, even two possible decisions at each point in
time would lead to a problem that might take more than a week to run on a pretty
fast computer. Because most interesting dynamic problems must be run for at least
10 or 20 periods, an active search algorithm appears to be the best approach. Be-
cause many of the decision variables considered in such problems are not linked
by adding up constraints as the acreage allocations were, some modification of the
search approach is in order.

A simple approach would be to first solve the problem by a standard method
using the posterior means of the unknown parameters as if they were deterministic.
Use this decision path as an initial candidate optimal path. Assume the decision
path consists of values for m control variables. Then evaluate the expected loss
for this initial path along with m perturbed paths, each consisting of the initial
candidate path with a single decision variable perturbed upward by a predetermined
increment. These increments will be important as they must be small enough not
to jump over optimal solutions but not so small as to cause huge numbers of steps
to be necessary to reach the final optimum. Find the perturbation that causes the
largest change in expected loss. If the change lowers the expected loss, increase
the value of that decision variable by the increment and repeat the process; if the
change increases expected loss, decrease the value of the decision variable by the
increment and repeat the process. At all steps, check to make sure that the new
candidate decision path has a lower expected loss than the previous one. If not,
discard that candidate, and then use smaller increments, perturb a different decision
variable, or check to see whether the optimal decision path has been reached. Gill,
Murray, and Wright (1985) can be consulted for good suggestions on both search
algorithms and determining when the optimal decision has been found.

When the search is completed, you have an optimal decision path that accounts
for the parameter uncertainty. No derivatives need be taken within the computer
program (some may have to be taken by the researcher to derive either the loss
function or the initial candidate decision path). Further, even for fairly complex
loss functions, on the order of 20 decision variables, and a search algorithm that
takes several thousand steps before finding the minimum expected loss decision,
such a program should be capable of completion on an average PC overnight (i.e.,
in less than 15 hours). Thus, the problem is not overly time-consuming in terms
of computing.

The payoff to such an approach to dynamic optimization problems could be quite
large. First, policy makers could evaluate the benefits to conducting research that
shrinks the parameter uncertainty in their decision problems. Without taking the
Bayesian approach, parameter uncertainty is ignored and the benefits of improv-
ing our knowledge of the underlying parameters cannot be calculated. Second, one
can calculate important policy-relevant figures such as the probability of extinc-
tion under the optimal decision path and other alternative paths proposed by policy
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makers or other agents involved in the industry (fishermen, environmental groups,
etc.). Finally, one could place a term in the loss function to severely penalize any
decision path that had a probability of extinction that exceeded a preselected limit.
If the penalty is made large enough, no path that exceeds the limit for extinction
probability will be selected, effectively imposing a chance constraint on the deci-
sion problem. Such chance constraints have many applications in other types of
dynamic and static optimization problems and are much easier to implement in
the Bayesian decision theory approach than under classical solution techniques.
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Index

Absolute loss function, 10, 34, 73
Allocative efficiency, measuring, 82
Antithetic replication, 21, 25, 60, 62
ARCH models, 65, 83
ARMA models, 65
Bayes factor, 11
Bayes’ theorem, 6
Beta prior distributions, 51, 54
Business cycle length, estimating, 45
Certainty equivalence theorem, 88
Chance constraints, 96
Cointegration tests, 49, 58, 59
Composite forecasts, 72, 76–80
Conditional posterior distribution, 12, 26,

46, 66, 69
Conjugate prior distributions, 9, 77, 84
Convergence (of Markov chain), 26
Convexity conditions, imposing, 37
Data augmentation, 27
Decision theory, 16, 88–97
Demand models, 31
Dickey-Fuller test, 50
Economic theory, imposing, 30
Elasticities, estimating, 43
Estimation risk, 88, 92, 94
Expected loss, 16, 74, 88, 92, 95
Expected risk, 16
Forecasting, 70, 72–81

composite, 72, 76, 78, 79

multiple step ahead, 74
point, 73
qualitative, 79
turning points, 75

Frontier models, 82
Gibbs sampling, 25–27, 66, 82, 84
Grid searches, 90
Hedging models, 93
Hypothesis tests, 9, 11, 15, 34, 52, 84
Importance weights, 23, 46
Importance sampling, 22–25, 33, 39, 42,

59, 66, 67, 83
Jeffreys’ prior, 8, 51, 89
Lag length for time series models, 65–68
Land allocation, optimal, 89–92
Likelihood function, 6, 54, 59, 69
Loss function, 10, 73, 95
Marginal posterior distribution, 12, 52, 60,

66
Marginal likelihood function, 7
Markov chain Monte Carlo, 25
Marshall-Lerner condition, 40
Model specification uncertainty, 64–71, 76
Monte Carlo sampling, 19–21, 66
Multinomial probit model, 27, 84
Multinomial logit model, 84
Nelson-Plosser data, 59
Nonstationarity, tests for, 52–58
Normal distribution, 12, 24, 54

109
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Numerical approximation, 20
Numerical approximation error, 20, 24, 35
Odds ratio, 52, 55
Optimal decisions, 88

for dynamic problems, 94–96
Point estimators, 10
Posterior odds, 54, 77
Posterior odds ratio, 11, 52, 55, 60
Posterior distribution, 7, 20, 52
Posterior mean, 10, 20, 34, 46, 67
Posterior median, 10, 20, 23, 35, 46, 73
Posterior mode, 10
Posterior weights, 70–71
Predictive posterior distribution, 72
Prior distribution, 6, 8–9

conjugate, 9, 77, 84
for discrete parameters, 59, 65–66, 68
improper, 9
informative, 8, 44, 45, 51
Jeffreys’ 8, 45, 51, 89
noninformative, 8, 45
proper, 9, 44
sensitivity analysis of, 35, 47, 69

truncated, 24, 59, 66
Prior information, 7, 9, 15, 17, 30, 37, 41,

69
Profit function, estimating, 36
Quadratic loss function, 10
Qualitative choice models, estimating, 83
Restricted parameter spaces

estimation of, 31–36
hypothesis testing, 34

Simultaneous equation models, 41–43
Specialized loss functions, 11, 67, 73
Stationarity, tests for, 52–58
Student-t distribution, 9, 13, 24, 33, 43, 74,

75, 85, 93
Substitute densities, 22
Technical efficiency, measuring, 82
Time series models, 11, 45, 49, 53, 56, 65,

70, 72, 74, 83
Truncated Poisson prior distributions, 59,

66
Unit root tests, 49–58
Welfare measures, estimating, 41–43
Zero-one loss function, 10
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