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Preface

M odern portfolio theory, as pioneered in the 1950s by Harry Markowitz,
is well adopted by the financial community. In spite of the fundamental

shortcomings of mean-variance analysis, it remains a basic tool in the
industry.

Since the 1990s, significant progress has been made in developing the
concept of a risk measure from both a theoretical and a practical viewpoint.
This notion has evolved into a materially different form from the original
idea behind mean-variance analysis. As a consequence, the distinction
between risk and uncertainty, which translates into a distinction between a
risk measure and a dispersion measure, offers a new way of looking at the
problem of optimal portfolio selection.

As concepts develop, other tools become appropriate to exploring
evolved ideas than existing techniques. In applied finance, these tools are
being imported from mathematics. That said, we believe that probabil-
ity metrics, which is a field in probability theory, will turn out to be
well-positioned for the study and further development of the quantitative
aspects of risk and uncertainty. Going one step further, we make a parallel.
In the theory of probability metrics, there exists a concept known as an ideal
probability metric. This is a quantity best suited for the study of a given
approximation problem in probability or stochastic processes. We believe
that the ideas behind this concept can be borrowed and applied in the field
of asset management to construct an ideal risk measure that would be ideal
for a given optimal portfolio selection problem.

The development of probability metrics as a branch of probability
theory started in the 1950s, even though its basic ideas were used during the
first half of the 20th century. Its application to problems is connected with
this fundamental question: ‘‘Is the proposed stochastic model a satisfactory
approximation to the real model and, if so, within what limits?’’ In finance,
we assume a stochastic model for asset return distributions and, in order to
estimate portfolio risk, we sample from the fitted distribution. Then we use
the generated simulations to evaluate the portfolio positions and, finally, to
calculate portfolio risk. In this context, there are two issues arising on two
different levels. First, the assumed stochastic model should be close to the
empirical data. That is, we need a realistic model in the first place. Second,
the generated scenarios should be sufficiently many in order to represent a

xiii



xiv PREFACE

good approximation model to the assumed stochastic model. In this way,
we are sure that the computed portfolio risk numbers are close to what they
would be had the problem been analytically tractable.

This book provides a gentle introduction into the theory of probability
metrics and the problem of optimal portfolio selection, which is considered
in the general context of risk and reward measures. We illustrate in numerous
examples the basic concepts and where more technical knowledge is needed,
an appendix is provided.

The book is organized in the following way. Chapters 1 and 2 con-
tain introductory material from the fields of probability and optimization
theory. Chapter 1 is necessary for understanding the general ideas behind
probability metrics covered in Chapter 3 and ideal probability metrics in
particular described in Chapter 4. The material in Chapter 2 is used when
discussing optimal portfolio selection problems in Chapters 8, 9, and 10.
We demonstrate how probability metrics can be applied to certain areas in
finance in the following chapters:

■ Chapter 5—stochastic dominance orders.
■ Chapter 6—the construction of risk and dispersion measures.
■ Chapter 7—problems involving average value-at-risk and spectral risk

measures in particular.
■ Chapter 8—reward-risk analysis generalizing mean-variance analysis.
■ Chapter 9—the problem of benchmark tracking.
■ Chapter 10—the construction of performance measures.

Chapters 5, 6, and 7 are also a prerequisite for the material in the last
three chapters. Chapter 5 describes expected utility theory and stochastic
dominance orders. The focus in Chapter 6 is on general dispersion measures
and risk measures. Finally, in Chapter 7 we discuss the average value-at-risk
and spectral risk measures, which are two particular families of coherent
risk measures considered in Chapter 6.

The classical mean-variance analysis and the more general mean-risk
analysis are explored in Chapter 8. We consider the structure of the efficient
portfolios when average value-at-risk is selected as a risk measure. Chapter
9 is focused on the benchmark tracking problem. We generalize significantly
the problem applying the methods of probability metrics. In Chapter 10,
we discuss performance measures in the general framework of reward-risk
analysis. We consider classes of performance measures that lead to practical
optimal portfolio problems.

Svetlozar T. Rachev
Stoyan V. Stoyanov

Frank J. Fabozzi
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CHAPTER 1
Concepts of Probability

1.1 INTRODUCTION

Will Microsoft’s stock return over the next year exceed 10%? Will the
one-month London Interbank Offered Rate (LIBOR) three months from
now exceed 4%? Will Ford Motor Company default on its debt obligations
sometime over the next five years? Microsoft’s stock return over the next
year, one-month LIBOR three months from now, and the default of Ford
Motor Company on its debt obligations are each variables that exhibit
randomness. Hence these variables are referred to as random variables.1 In
this chapter, we see how probability distributions are used to describe the
potential outcomes of a random variable, the general properties of prob-
ability distributions, and the different types of probability distributions.2

Random variables can be classified as either discrete or continuous. We
begin with discrete probability distributions and then proceed to continuous
probability distributions.

1The precise mathematical definition is that a random variable is a measurable
function from a probability space into the set of real numbers. In this chapter, the
reader will repeatedly be confronted with imprecise definitions. The authors have
intentionally chosen this way for a better general understandability and for the sake
of an intuitive and illustrative description of the main concepts of probability theory.
In order to inform about every occurrence of looseness and lack of mathematical
rigor, we have furnished most imprecise definitions with a footnote giving a reference
to the exact definition.
2For more detailed and/or complementary information, the reader is referred
to the textbooks of Larsen and Marx (1986), Shiryaev (1996), and Billingsley
(1995).

1



2 ADVANCED STOCHASTIC MODELS

1.2 BASIC CONCEPTS

An outcome for a random variable is the mutually exclusive potential result
that can occur. The accepted notation for an outcome is the Greek letter ω.
A sample space is a set of all possible outcomes. The sample space is
denoted by �. The fact that a given outcome ωi belongs to the sample space
is expressed by ωi ∈ �. An event is a subset of the sample space and can be
represented as a collection of some of the outcomes.3 For example, consider
Microsoft’s stock return over the next year. The sample space contains
outcomes ranging from 100% (all the funds invested in Microsoft’s stock
will be lost) to an extremely high positive return. The sample space can
be partitioned into two subsets: outcomes where the return is less than or
equal to 10% and a subset where the return exceeds 10%. Consequently,
a return greater than 10% is an event since it is a subset of the sample
space. Similarly, a one-month LIBOR three months from now that exceeds
4% is an event. The collection of all events is usually denoted by A. In the
theory of probability, we consider the sample space � together with the set
of events A, usually written as (�, A), because the notion of probability is
associated with an event.4

1.3 DISCRETE PROBABILITY DISTRIBUTIONS

As the name indicates, a discrete random variable limits the outcomes where
the variable can only take on discrete values. For example, consider the
default of a corporation on its debt obligations over the next five years. This
random variable has only two possible outcomes: default or nondefault.
Hence, it is a discrete random variable. Consider an option contract where
for an upfront payment (i.e., the option price) of $50,000, the buyer of the
contract receives the payment given in Table 1.1 from the seller of the option
depending on the return on the S&P 500 index. In this case, the random
variable is a discrete random variable but on the limited number of outcomes.

3Precisely, only certain subsets of the sample space are called events. In the case
that the sample space is represented by a subinterval of the real numbers, the events
consist of the so-called ‘‘Borel sets.’’ For all practical applications, we can think of
Borel sets as containing all subsets of the sample space. In this case, the sample space
together with the set of events is denoted by (R, B). Shiryaev (1996) provides a
precise definition.
4Probability is viewed as a function endowed with certain properties, taking events
as an argument and providing their probabilities as a result. Thus, according to the
mathematical construction, probability is defined on the elements of the set A (called
sigma-field or sigma-algebra) taking values in the interval [0, 1], P : A → [0, 1].
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TABLE 1.1 Option Payments Depending on the Value of the S&P 500 Index.

If S&P 500 Return Is: Payment Received By Option Buyer:

Less than or equal to zero $0
Greater than zero but less than 5% $10,000
Greater than 5% but less than 10% $20,000
Greater than or equal to 10% $100,000

The probabilistic treatment of discrete random variables is compara-
tively easy: Once a probability is assigned to all different outcomes, the
probability of an arbitrary event can be calculated by simply adding the
single probabilities. Imagine that in the above example on the S&P 500
every different payment occurs with the same probability of 25%. Then
the probability of losing money by having invested $50,000 to purchase
the option is 75%, which is the sum of the probabilities of getting either
$0, $10,000, or $20,000 back. In the following sections we provide a
short introduction to the most important discrete probability distributions:
Bernoulli distribution, binomial distribution, and Poisson distribution. A
detailed description together with an introduction to several other discrete
probability distributions can be found, for example, in the textbook by
Johnson et al. (1993).

1.3.1 Bernoulli Distribution

We will start the exposition with the Bernoulli distribution. A random
variable X is Bernoulli-distributed with parameter p if it has only two
possible outcomes, usually encoded as 1 (which might represent success or
default) or 0 (which might represent failure or survival).

One classical example for a Bernoulli-distributed random variable occur-
ring in the field of finance is the default event of a company. We observe a
company C in a specified time interval I, January 1, 2007, until December 31,
2007. We define

X =
{

1 if C defaults in I
0 else.

The parameter p in this case would be the annualized probability of default
of company C.

1.3.2 Binomial Distribution

In practical applications, we usually do not consider a single company but a
whole basket, C1, . . . , Cn, of companies. Assuming that all these n companies
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have the same annualized probability of default p, this leads to a natural
generalization of the Bernoulli distribution called binomial distribution. A
binomial distributed random variable Y with parameters n and p is obtained
as the sum of n independent5 and identically Bernoulli-distributed random
variables X1, . . . , Xn. In our example, Y represents the total number of
defaults occurring in the year 2007 observed for companies C1, . . . , Cn.
Given the two parameters, the probability of observing k, 0 ≤ k ≤ n defaults
can be explicitly calculated as follows:

P(Y = k) =
(

n
k

)
pk(1 − p)n − k,

where
(

n
k

)
= n!

(n − k)!k!
.

Recall that the factorial of a positive integer n is denoted by n! and is equal
to n(n − 1)(n − 2) · . . . · 2 · 1.

Bernoulli distribution and binomial distribution are revisited in
Chapter 4 in connection with a fundamental result in the theory of proba-
bility called the Central Limit Theorem. Shiryaev (1996) provides a formal
discussion of this important result.

1.3.3 Poisson Distribution

The last discrete distribution that we consider is the Poisson distribution.
The Poisson distribution depends on only one parameter, λ, and can be
interpreted as an approximation to the binomial distribution when the
parameter p is a small number.6 A Poisson-distributed random variable is
usually used to describe the random number of events occurring over a
certain time interval. We used this previously in terms of the number of
defaults. One main difference compared to the binomial distribution is that
the number of events that might occur is unbounded, at least theoretically.
The parameter λ indicates the rate of occurrence of the random events, that
is, it tells us how many events occur on average per unit of time.

5A definition of what independence means is provided in Section 1.6.4. The reader
might think of independence as no interference between the random variables.
6The approximation of Poisson to the binomial distribution concerns the so-called
rare events. An event is called rare if the probability of its occurrence is close to zero.
The probability of a rare event occurring in a sequence of independent trials can be
approximately calculated with the formula of the Poisson distribution.
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The probability distribution of a Poisson-distributed random variable
N is described by the following equation:

P(N = k) = λk

k!
e−λ, k = 0, 1, 2, . . .

1.4 CONTINUOUS PROBABILITY DISTRIBUTIONS

If the random variable can take on any possible value within the range
of outcomes, then the probability distribution is said to be a continuous
random variable.7 When a random variable is either the price of or the return
on a financial asset or an interest rate, the random variable is assumed to
be continuous. This means that it is possible to obtain, for example, a price
of 95.43231 or 109.34872 and any value in between. In practice, we know
that financial assets are not quoted in such a way. Nevertheless, there is
no loss in describing the random variable as continuous and in many times
treating the return as a continuous random variable means substantial gain
in mathematical tractability and convenience. For a continuous random
variable, the calculation of probabilities is substantially different from the
discrete case. The reason is that if we want to derive the probability that
the realization of the random variable lays within some range (i.e., over
a subset or subinterval of the sample space), then we cannot proceed in a
similar way as in the discrete case: The number of values in an interval is so
large, that we cannot just add the probabilities of the single outcomes. The
new concept needed is explained in the next section.

1.4.1 Probability Distribution Function, Probability
Density Function, and Cumulative Distribution Function

A probability distribution function P assigns a probability P(A) for every
event A, that is, of realizing a value for the random value in any specified
subset A of the sample space. For example, a probability distribution
function can assign a probability of realizing a monthly return that is
negative or the probability of realizing a monthly return that is greater than
0.5% or the probability of realizing a monthly return that is between 0.4%
and 1.0%.

7Precisely, not every random variable taking its values in a subinterval of the real
numbers is continuous. The exact definition requires the existence of a density
function such as the one that we use later in this chapter to calculate probabilities.
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To compute the probability, a mathematical function is needed to
represent the probability distribution function. There are several possibilities
of representing a probability distribution by means of a mathematical
function. In the case of a continuous probability distribution, the most
popular way is to provide the so-called probability density function or
simply density function.

In general, we denote the density function for the random variable X
as f X(x). Note that the letter x is used for the function argument and the
index denotes that the density function corresponds to the random variable
X. The letter x is the convention adopted to denote a particular value for
the random variable. The density function of a probability distribution is
always nonnegative and as its name indicates: Large values for f X(x) of
the density function at some point x imply a relatively high probability of
realizing a value in the neighborhood of x, whereas f X(x) = 0 for all x in
some interval (a, b) implies that the probability for observing a realization
in (a, b) is zero.

Figure 1.1 aids in understanding a continuous probability distribution.
The shaded area is the probability of realizing a return less than b and
greater than a. As probabilities are represented by areas under the density
function, it follows that the probability for every single outcome of a
continuous random variable always equals zero. While the shaded area

0
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0.1

0.15

0.2

0.25

0.3

0.35

0.4

x

f X
(x

)

a b

FIGURE 1.1 The probability of the event that a given
random variable, X, is between two real numbers, a and
b, which is equal to the shaded area under the density
function, f X(x).
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in Figure 1.1 represents the probability associated with realizing a return
within the specified range, how does one compute the probability? This is
where the tools of calculus are applied. Calculus involves differentiation
and integration of a mathematical function. The latter tool is called integral
calculus and involves computing the area under a curve. Thus the probability
that a realization from a random variable is between two real numbers a
and b is calculated according to the formula,

P(a ≤ X ≤ b) =
∫ b

a
fX(x)dx.

The mathematical function that provides the cumulative probability of
a probability distribution, that is, the function that assigns to every real
value x the probability of getting an outcome less than or equal to x, is called
the cumulative distribution function or cumulative probability function or
simply distribution function and is denoted mathematically by FX(x). A
cumulative distribution function is always nonnegative, nondecreasing, and
as it represents probabilities it takes only values between zero and one.8 An
example of a distribution function is given in Figure 1.2.

0

1

x

F
X

(x
)

a b

FX(a)

FX(b)

FIGURE 1.2 The probability of the event that a
given random variable X is between two real
numbers a and b is equal to the difference
FX(b) − FX(a).

8Negative values would imply negative probabilities. If F decreased, that is, for some
x < y we have FX(x) > FX(y), it would create a contradiction because the probability
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The mathematical connection between a probability density function
f , a probability distribution P, and a cumulative distribution function F of
some random variable X is given by the following formula:

P(X ≤ t) = FX(t) =
∫ t

−∞
fX(x)dx.

Conversely, the density equals the first derivative of the distribution
function,

fX(x) = dFX(x)
dx

.

The cumulative distribution function is another way to uniquely char-
acterize an arbitrary probability distribution on the set of real numbers. In
terms of the distribution function, the probability that the random variable
is between two real numbers a and b is given by

P(a < X ≤ b) = FX(b) − FX(a).

Not all distribution functions are continuous and differentiable, such
as the example plotted in Figure 1.2. Sometimes, a distribution function
may have a jump for some value of the argument, or it can be composed
of only jumps and flat sections. Such are the distribution functions of a
discrete random variable for example. Figure 1.3 illustrates a more general
case in which FX(x) is differentiable except for the point x = a where there
is a jump. It is often said that the distribution function has a point mass at
x = a because the value a happens with nonzero probability in contrast to
the other outcomes, x �= a. In fact, the probability that a occurs is equal to
the size of the jump of the distribution function. We consider distribution
functions with jumps in Chapter 7 in the discussion about the calculation
of the average value-at-risk risk measure.

1.4.2 The Normal Distribution

The class of normal distributions, or Gaussian distributions, is certainly one
of the most important probability distributions in statistics and due to some
of its appealing properties also the class which is used in most applications
in finance. Here we introduce some of its basic properties.

The random variable X is said to be normally distributed with param-
eters µ and σ , abbreviated by X ∈ N(µ, σ 2), if the density of the random

of getting a value less than or equal to x must be smaller or equal to the probability
of getting a value less than or equal to y.
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0
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F
X

(x
)

Jump size

a

FIGURE 1.3 A distribution function FX(x) with a jump
at x = a.

variable is given by the formula,

fX(x) = 1√
2πσ 2

e− (x − µ)2

2σ2 , x ∈ R.

The parameter µ is called a location parameter because the middle
of the distribution equals µ and σ is called a shape parameter or a scale
parameter. If µ = 0 and σ = 1, then X is said to have a standard normal
distribution.

An important property of the normal distribution is the location-scale
invariance of the normal distribution. What does this mean? Imagine you
have random variable X, which is normally distributed with the parameters
µ and σ . Now we consider the random variable Y, which is obtained as Y =
aX + b. In general, the distribution of Y might substantially differ from the
distribution of X but in the case where X is normally distributed, the random
variable Y is again normally distributed with parameters and µ̃ = aµ + b
and σ̃ = aσ . Thus we do not leave the class of normal distributions if we
multiply the random variable by a factor or shift the random variable.
This fact can be used if we change the scale where a random variable
is measured: Imagine that X measures the temperature at the top of the
Empire State Building on January 1, 2008, at 6 a.m. in degrees Celsius.
Then Y = 9

5 X + 32 will give the temperature in degrees Fahrenheit, and if
X is normally distributed, then Y will be too.
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Another interesting and important property of normal distributions
is their summation stability. If you take the sum of several independent9

random variables that are all normally distributed with location parameters
µi and scale parameters σ i, then the sum again will be normally distributed.
The two parameters of the resulting distribution are obtained as

µ = µ1 + µ2 + · · · + µn

σ =
√

σ 2
1 + σ 2

2 + · · · + σ 2
n .

The last important property that is often misinterpreted to justify
the nearly exclusive use of normal distributions in financial modeling is
the fact that the normal distribution possesses a domain of attraction. A
mathematical result called the central limit theorem states that under certain
technical conditions the distribution of a large sum of random variables
behaves necessarily like a normal distribution. In the eyes of many, the
normal distribution is the unique class of probability distributions having
this property. This is wrong and actually it is the class of stable distributions
(containing the normal distributions) that is unique in the sense that a large
sum of random variables can only converge to a stable distribution. We
discuss the stable distribution in Chapter 4.

1.4.3 Exponential Distribution

The exponential distribution is popular, for example, in queuing theory
when we want to model the time we have to wait until a certain event takes
place. Examples include the time until the next client enters the store, the
time until a certain company defaults or the time until some machine has a
defect.

As it is used to model waiting times, the exponential distribution
is concentrated on the positive real numbers and the density function f
and the cumulative distribution function F of an exponentially distributed
random variable τ possess the following form:

fτ (x) = 1
β

e− x
β , x > 0

and

Fτ (x) = 1 − e− x
β , x > 0.

9A definition of what independent means is provided in section 1.6.4. The reader
might think of independence as nointerference between the random variables.
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In credit risk modeling, the parameter λ = 1/β has a natural inter-
pretation as hazard rate or default intensity. Let τ denote an exponential
distributed random variable, for example, the random time (counted in days
and started on January 1, 2008) we have to wait until Ford Motor Company
defaults. Now, consider the following expression:

λ(�t) = P(τ ∈ (t, t + �t]|τ > t)
�t

= P(τ ∈ (t, t + �t])
�tP(τ > t)

.

where �t denotes a small period of time.
What is the interpretation of this expression? λ(�t) represents a ratio

of a probability and the quantity �t. The probability in the numerator
represents the probability that default occurs in the time interval (t, t + �t]
conditional upon the fact that Ford Motor Company survives until time t.
The notion of conditional probability is explained in section 1.6.1.

Now the ratio of this probability and the length of the considered time
interval can be denoted as a default rate or default intensity. In applications
different from credit risk we also use the expressions hazard or failure rate.

Now, letting �t tend to zero we finally obtain after some calculus
the desired relation λ = 1/β. What we can see is that in the case of an
exponentially distributed time of default, we are faced with a constant rate
of default that is independent of the current point in time t.

Another interesting fact linked to the exponential distribution is the fol-
lowing connection with the Poisson distribution described earlier. Consider
a sequence of independent and identical exponentially distributed random
variables τ 1, τ 2, . . . We can think of τ 1, for example, as the time we have
to wait until a firm in a high-yield bond portfolio defaults. τ 2 will then
represent the time between the first and the second default and so on. These
waiting times are sometimes called interarrival times. Now, let Nt denote
the number of defaults which have occurred until time t ≥ 0. One important
probabilistic result states that the random variable Nt is Poisson distributed
with parameter λ = t/β.

1.4.4 Student’s t -distribution

Student’s t-distributions are used in finance as probabilistic models of assets
returns. The density function of the t-distribution is given by the following
equation:

fX(x) = 1√
πn

	((n + 1)/2)
	(n/2)

(
1 + x2

n

)− n + 1
2

, x ∈ R,
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where n is an integer valued parameter called degree of freedom. For
large values of n, the t-distribution doesn’t significantly differ from a
standard normal distribution. Usually, for values n > 30, the t-distribution
is considered as equal to the standard normal distribution.

1.4.5 Extreme Value Distribution

The extreme value distribution, sometimes also denoted as Gumbel-type
extreme value distribution, occurs as the limit distribution of the (appropri-
ately standardized) largest observation in a sample of increasing size. This
fact explains its popularity in operational risk applications where we are
concerned about a large or the largest possible loss. Its density function f and
distribution function F, respectively, is given by the following equations:

fX(x) = 1
b

e− x − a
b −e

− x − a
b , x ∈ R

and
FX(x) = e−e

− x − a
b , x ∈ R,

where a denotes a real location parameter and b > 0 a positive real shape
parameter. The class of extreme value distributions forms a location-scale
family.

1.4.6 Generalized Extreme Value Distribution

Besides the previously mentioned (Gumbel type) extreme value distribution,
there are two other types of distributions that can occur as the limiting
distribution of appropriately standardized sample maxima. One class is
denoted as the Weibull-type extreme value distribution and has a similar
representation as the Weibull distribution. The third type is also referred to
as the Fréchet-type extreme value distribution. All three can be represented
as a three parameter distribution family referred to as a generalized extreme
value distribution with the following cumulative distribution function:

FX(x) = e−(1 + ξ
x − µ

σ )−1/ξ

, 1 + ξ
x − µ

σ
> 0,

where ξ and µ are real and σ is a positive real parameter. If ξ tends to
zero, we obtain the extreme value distribution discussed above. For positive
values of ξ , the distribution is Frechet-type and, for negative values of ξ ,
Weibull-type extreme value distribution.10

10An excellent reference for this and the following section is Embrechts et al. (1997).
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1.5 STATISTICAL MOMENTS AND QUANTILES

In describing a probability distribution function, it is common to summarize
it by using various measures. The five most commonly used measures are:

■ Location
■ Dispersion
■ Asymmetry
■ Concentration in tails
■ Quantiles

In this section we describe these measures and the more general notion of
statistical moments. We also explain how statistical moments are estimated
from real data.

1.5.1 Location

The first way to describe a probability distribution function is by some
measure of central value or location. The various measures that can be used
are the mean or average value, the median, or the mode. The relationship
among these three measures of location depends on the skewness of a prob-
ability distribution function that we will describe later. The most commonly
used measure of location is the mean and is denoted by µ or EX or E(X).

1.5.2 Dispersion

Another measure that can help us to describe a probability distribution
function is the dispersion or how spread out the values of the random
variable can realize. Various measures of dispersion are the range, variance,
and mean absolute deviation. The most commonly used measure is the
variance. It measures the dispersion of the values that the random variable
can realize relative to the mean. It is the average of the squared deviations
from the mean. The variance is in squared units. Taking the square root of
the variance one obtains the standard deviation. In contrast to the variance,
the mean absolute deviation takes the average of the absolute deviations
from the mean. In practice, the variance is used and is denoted by σ 2 and the
standard deviation σ . General types of dispersion measures are discussed in
Chapter 6.

1.5.3 Asymmetry

A probability distribution may be symmetric or asymmetric around its
mean. A popular measure for the asymmetry of a distribution is called its
skewness. A negative skewness measure indicates that the distribution is
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Positive skewness
Negative skewness

FIGURE 1.4 The density graphs of a positively
and a negatively skewed distribution.

skewed to the left; that is, compared to the right tail, the left tail is elongated
(see Figure 1.4). A positive skewness measure indicates that the distribution
is skewed to the right; that is, compared to the left tail, the right tail is
elongated (see Figure 1.4).

1.5.4 Concentration in Tails

Additional information about a probability distribution function is provided
by measuring the concentration (mass) of potential outcomes in its tails.
The tails of a probability distribution function contain the extreme values.
In financial applications, it is these tails that provide information about the
potential for a financial fiasco or financial ruin. The fatness of the tails of the
distribution is related to the peakedness of the distribution around its mean
or center. The joint measure of peakedness and tail fatness is called kurtosis.

1.5.5 Statistical Moments

In the parlance of the statistician, the four measures described above are
called statistical moments or simply moments. The mean is the first moment
and is also referred to as the expected value. The variance is the second
central moment, skewness is a rescaled third central moment, and kurtosis
is a rescaled fourth central moment. The general mathematical formula for
the calculation of the four parameters is shown in Table 1.2.

The definition of skewness and kurtosis is not as unified as for the
mean and the variance. The skewness measure reported in Table 1.2 is the
so-called Fisher’s skewness. Another possible way to define the measure is
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TABLE 1.2 General Formula for Parameters.

Parameter Discrete Distribution Continuous Distribution

Mean EX =
∑

i

xiP(X = xi) EX =
∫ ∞

−∞
xfX(x)dx

Variance σ 2 = E(X − EX)2 σ 2 = E(X − EX)2

Skewness ζ = E(X − EX)3

(σ 2)3/2 ζ = E(X − EX)3

(σ 2)3/2

Kurtosis κ = E(X − EX)4

(σ 2)4 κ = E(X − EX)4

(σ 2)4

the Pearson’s skewness, which equals the square of the Fisher’s skewness.
The same holds true for the kurtosis, where we have reported the Pearson’s
kurtosis. Fishers’ kurtosis (sometimes denoted as excess kurtosis) can be
obtained by subtracting three from Pearson’s kurtosis.

Generally, the moment of order n of a random variable is denoted by
µn defined as

µn = EXn,

where n = 1, 2, . . . For a discrete probability distribution, the moment of
order k is calculated according to the formula

µn =
∑

i

xn
i P(X = xi),

and in the case of a continuous probability distribution, the formula is

µn =
∫ ∞

−∞
xnfX(x)dx.

The centered moment of order n is denoted by mn and is defined as

mn = E(X − EX)n,

where n = 1, 2, . . . . For a discrete probability distribution, the centered
moment of order n is calculated according to the formula

mn =
∑

i

(xi − EX)nP(X = xi),



16 ADVANCED STOCHASTIC MODELS

and in the case of a continuous probability distribution, the formula is

mn =
∫ ∞

−∞
(x − EX)nfX(x)dx.

1.5.6 Quantiles

Not only are the statistical moments described in the previous section used
to summarize a probability distribution, but also a concept called α-quantile.
The α-quantile gives us information where the first α% of the distribution
are located. Given an arbitrary observation of the considered probability
distribution, this observation will be smaller than the α-quantile qα in α%
of the cases and larger in (100 − α)% of the cases.11

Some quantiles have special names. The 25%-, 50%- and 75%-quantile
are referred to as the first quartile, second quartile, and third quartile,
respectively. The 1%-, 2%-, . . . , 98%-, 99%-quantiles are called percentiles.
As we will see in Chapters 6, the α-quantile is closely related with the
value-at-risk measure (VaRα(X)) commonly used in risk management.

1.5.7 Sample Moments

The previous sections have introduced the four statistical moments mean,
variance, skewness, and kurtosis. Given a probability density function f or a
probability distribution P we are able to calculate these statistical moments
according to the formulae given in Table 1.2. In practical applications
however, we are faced with the situation that we observe realizations of a
probability distribution (e.g., the daily return of the S&P 500 index over the
last two years), but we don’t know the distribution which generates these
returns. Consequently, we are not able to apply our knowledge about the
calculation of statistical moments. But, having the observations r1, . . . , rk,
we can try to estimate the true moments out of the sample. The estimates are
sometimes called sample moments to stress the fact that they are obtained
out of a sample of observations.

The idea is simple. The empirical analogue for the mean of a random
variable is the average of the observations:

EX ≈ 1
k

k∑
i = 1

ri.

11Formally, the α-quantile for a continuous probability distribution P with strictly
increasing cumulative distribution function F is obtained as qα = F−1(α).
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TABLE 1.3 Calculation of Sample Moments.

Moment Sample Moment

Mean r = 1
k

k∑
i = 1

ri

Variance s2 = 1
k

k∑
i = 1

(ri − r)2

Skewness ζ̂ =
1
k

∑k
i = 1(ri − r)3

(s2)3/2

Kurtosis κ̂ =
1
k

∑k
i = 1(ri − r)4

(s2)2

For large k, it is reasonable to expect that the average of the obser-
vations will not be far from the mean of the probability distribution.
Now, we observe that all theoretical formulae for the calculation of
the four statistical moments are expressed as means of something. This
insight leads to the expression for the sample moments, summarized in
Table 1.3.12

This simple and intuitive idea is based on a fundamental result in
the theory of probability known as the law of large numbers. This result,
together with the central limit theorem, forms the basics of the theory of
statistics.

1.6 JOINT PROBABILITY DISTRIBUTIONS

In the previous sections, we explained the properties of a probability
distribution of a single random variable; that is, the properties of a univariate
distribution. An understanding of univariate distributions allows us to
analyze the time series characteristics of individual assets. In this section,
we move from the probability distribution of a single random variable

12A hat on a parameter (e.g., κ̂) symbolizes the fact that the true parameter (in this
case the kurtosis κ) is estimated.
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(univariate distribution) to that of multiple random variables (multivariate
distribution). Understanding multivariate distributions is important because
financial theories such as portfolio selection theory and asset-pricing theory
involve distributional properties of sets of investment opportunities (i.e.,
multiple random variables). For example, the theory of efficient portfolios
covered in Chapter 8 assumes that returns of alternative investments have a
joint multivariate distribution.

1.6.1 Conditional Probability

A useful concept in understanding the relationship between multiple random
variables is that of conditional probability. Consider the returns on the
stocks of two companies in one and the same industry. The future return
X on the stocks of company 1 is not unrelated to the future return
Y on the stocks of company 2 because the future development of the
two companies is driven to some extent by common factors since they
are in one and the same industry. It is a reasonable question to ask,
what is the probability that the future return X is smaller than a given
percentage, e.g. X ≤ −2%, on condition that Y realizes a huge loss,
e.g. Y ≤ −10%? Essentially, the conditional probability is calculating the
probability of an event provided that another event happens. If we denote
the first event by A and the second event by B, then the conditional
probability of A provided that B happens, denoted by P(A|B), is given by
the formula,

P(A|B) = P(A ∩ B)
P(B)

,

which is also known as the Bayes formula. According to the formula,
we divide the probability that both events A and B occur simultaneously,
denoted by A ∩ B, by the probability of the event B. In the two-stock
example, the formula is applied in the following way,

P(X ≤ −2%|Y ≤ −10%) = P(X ≤ −2%, Y ≤ −10%)
P(Y ≤ −10%)

. (1.1)

Thus, in order to compute the conditional probability, we have to be
able to calculate the quantity

P(X ≤ −2%, Y ≤ −10%),

which represents the joint probability of the two events.
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1.6.2 Definition of Joint Probability Distributions

A portfolio or a trading position consists of a collection of financial assets.
Thus, portfolio managers and traders are interested in the return on a
portfolio or a trading position. Consequently, in real-world applications,
the interest is in the joint probability distribution or joint distribution of
more than one random variable. For example, suppose that a portfolio
consists of a position in two assets, asset 1 and asset 2. Then there will be a
probability distribution for (1) asset 1, (2) asset 2, and (3) asset 1 and asset
2. The first two distributions are referred to as the marginal probability
distributions or marginal distributions. The distribution for asset 1 and asset
2 is called the joint probability distribution.

Like in the univariate case, there is a mathematical connection between
the probability distribution P, the cumulative distribution function F, and the
density function f of a multivariate random variable (also called a random
vector) X = (X1, . . . , Xn). The formula looks similar to the equation we
presented in the previous chapter showing the mathematical connection
between a probability density function, a probability distribution, and a
cumulative distribution function of some random variable X:

P(X1 ≤ t1, . . . , Xn ≤ tn) = FX(t1, . . . , tn)

=
∫ t1

−∞
. . .

∫ tn

−∞
fX(x1, . . . , xn)dx1 . . . dxn.

The formula can be interpreted as follows. The joint probability that the
first random variable realizes a value less than or equal to t1 and the second
less than or equal to t2 and so on is given by the cumulative distribution
function F. The value can be obtained by calculating the volume under the
density function f . Because there are n random variables, we have now
n arguments for both functions: the density function and the cumulative
distribution function.

It is also possible to express the density function in terms of the distri-
bution function by computing sequentially the first-order partial derivatives
of the distribution function with respect to all variables,

fX(x1, . . . , xn) = ∂nFX(x1, . . . , xn)
∂x1 . . . ∂xn

. (1.2)

1.6.3 Marginal Distributions

Beside this joint distribution, we can consider the above mentioned marginal
distributions, that is, the distribution of one single random variable Xi. The
marginal density f i of Xi is obtained by integrating the joint density over all
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variables which are not taken into consideration:

fXi (x) =
∫ ∞

−∞
. . .

∫ ∞

−∞
fX(x1, . . . , xi − 1, x, xi + 1, . . . , xn)dx1 . . . dxi − 1dxi + 1 . . . dxn

1.6.4 Dependence of Random Variables

Typically, when considering multivariate distributions, we are faced with
inference between the distributions; that is, large values of one random
variable imply large values of another random variable or small values of a
third random variable. If we are considering, for example, X1, the height of
a randomly chosen U.S. citizen, and X2, the weight of this citizen, then large
values of X1 tend to result in large values of X2. This property is denoted
as the dependence of random variables and a powerful concept to measure
dependence will be introduced in a later section on copulas.

The inverse case of no dependence is denoted as stochastic independence.
More precisely, two random variables are independently distributed if
and only if their joint distribution given in terms of the joint cumulative
distribution function F or the joint density function f equals the product of
their marginal distributions:

FX(x1, . . . , xn) = FX1 (x1) . . . FXn (xn)
and

fX(x1, . . . , xn) = fX1 (x1) . . . fXn (xn).

In the special case of n = 2, we can say that two random variables are
said to be independently distributed, if knowing the value of one random
variable does not provide any information about the other random variable.
For instance, if we assume in the example developed in section 1.6.1 that the
two events X ≤ −2% and Y ≤ −10% are independent, then the conditional
probability in equation (1.1) equals

P(X ≤ −2%|Y ≤ −10%) = P(X ≤ −2%)P(Y ≤ −10%)
P(Y ≤ −10%)

= P(X ≤ −2%).

Indeed, under the assumption of independence, the event Y ≤ −10% has
no influence on the probability of the other event.

1.6.5 Covariance and Correlation

There are two strongly related measures among many that are commonly
used to measure how two random variables tend to move together, the
covariance and the correlation. Letting:
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σ X denote the standard deviation of X.

σ Y denote the standard deviation of Y.

σ XY denote the covariance between X and Y.

ρXY denote the correlation between X and Y.

The relationship between the correlation, which is also denoted by ρXY

= corr(X, Y), and covariance is as follows:

ρXY = σXY

σXσY
.

Here the covariance, also denoted by σ XY = cov(X, Y), is defined as

σXY = E(X − EX)(Y − EY)

= E(XY) − EXEY.

It can be shown that the correlation can only have values from −1 to
+1. When the correlation is zero, the two random variables are said to be
uncorrelated.

If we add two random variables, X + Y, the expected value (first
central moment) is simply the sum of the expected value of the two random
variables. That is,

E(X + Y) = EX + EY.

The variance of the sum of two random variables, denoted by σ 2
X + Y, is

σ 2
X + Y = σ 2

X + σ 2
Y + 2σXY .

Here the last term accounts for the fact that there might be a dependence
between X and Y measured through the covariance. In Chapter 8, we
consider the variance of the portfolio return of n assets which is expressed
by means of the variances of the assets’ returns and the covariances between
them.

1.6.6 Multivariate Normal Distribution

In finance, it is common to assume that the random variables are normally
distributed. The joint distribution is then referred to as a multivariate normal
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distribution.13 We provide an explicit representation of the density function
of a general multivariate normal distribution.

Consider first n independent standard normal random variables X1, . . . ,
Xn. Their common density function can be written as the product of their
individual density functions and so we obtain the following expression as
the density function of the random vector X = X1, . . . , Xn:

fX(x1, . . . , xn) = 1

(
√

2π)n
e− x′x

2 ,

where the vector notation x′x denotes the sum of the components of the
vector x raised to the second power, x′x = ∑n

i = 1 x2
i .

Now consider n vectors with n real components arranged in a matrix
A. In this case, it is often said that the matrix A has a n × n dimension. The
random variable

Y = AX + µ, (1.3)

in which AX denotes the n × n matrix A multiplied by the random vector
X and µ is a vector of n constants, has a general multivariate normal
distribution. The density function of Y can now be expressed as14

fY(y1, . . . , yn) = 1
(π |�|)n/2

e− (y − µ)′�−1(y − µ)
2 ,

where |�| denotes the determinant of the matrix � and �−1 denotes the
inverse of �. The matrix � can be calculated from the matrix A, � = AA′.
The elements of � = {σij}n

i, j = 1 are the covariances between the components
of the vector Y,

σij = cov(Yi, Yj).

Figure 1.5 contains a plot of the probability density function of a
two-dimensional normal distribution with a covariance matrix,

� =
(

1 0.8
0.8 1

)

13The joint distribution of a random vector X = (X1, . . . , Xn) is called a multivariate
normal distribution if any linear combination a1X1 + · · · + anXn of its components
is normally distributed. It is not sufficient that only the marginals are normally
distributed.
14In order for the density function to exist, the joint distribution of Y must be
nondegenerate (i.e., the matrix � must be positive definite).
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FIGURE 1.5 The probability density function of a
two-dimensional normal distribution.

and mean µ = (0, 0). The matrix A from the representation given in
formula (1.3) equals

A =
(

1 0
0.8 0.6

)
.

The correlation between the two components of the random vector Y
is equal to 0.8, corr(Y1, Y2) = 0.8 because in this example the variances of
the two components are equal to 1. This is a strong positive correlation,
which means that the realizations of the random vector Y clusters along
the diagonal splitting the first and the third quadrant. This is illustrated in
Figure 1.6, which shows the contour lines of the two-dimensional density
function plotted in Figure 1.5. The contour lines are ellipses centered at
the mean µ = (0, 0) of the random vector Y with their major axes lying
along the diagonal of the first quadrant. The contour lines indicate that
realizations of the random vector Y roughly take the form of an elongated
ellipse as the ones shown in Figure 1.6, which means that large values of Y1

will correspond to large values of Y2 in a given pair of observations.

1.6.7 Elliptical Distributions

A generalization of the multivariate normal distribution is given by the
class of elliptical distributions.15 We discuss this class because elliptical
distributions offer desirable properties in the context of portfolio selection

15This section provides only a brief review of elliptical distributions. Bradley and
Taqqu (2003) provide a more complete introduction to elliptical distributions and
their implications for portfolio selection.
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FIGURE 1.6 The level lines of the two-dimensional probability
density function plotted in Figure 1.5.

theory. It turns out that in fact it is the class of elliptical distributions where
the correlation is the right dependence measure, and that for distributions
which do not belong to this family, alternative concepts must be sought.

Simply speaking, an n-dimensional random vector X with density
function f is spherically distributed if all the level curves,16 that is, the set of
all points where the density function f admits a certain value c, possesses the
form of a sphere. In the special case when n = 2, the density function can be
plotted and the level curves look like circles. Analogously, a n-dimensional
random vector X with density function f is elliptically distributed if the
form of all level curves equals the one of an ellipse.

One can think of elliptical distributions as a special class of symmetric
distributions which possess a number of desirable properties. Examples
of elliptically distributed random variables include all multivariate normal
distributions, multivariate t-distributions, logistic distributions, Lapace dis-
tributions, and a part of the multivariate stable distributions.17 Elliptical

16The reader interested in outdoor activities such as hiking or climbing as well as
geographically interested people might know the concept of level curves from their
hiking maps, where the mountains are visualized by there iso-level lines.
17For a thorough introduction into the class of ellipitcal distribution, see Fang et al.
(1994).
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distributions with existing density function can be described by a triple
(µ, �, g),18 where µ and � play similar roles as the mean vector and the
variance-covariance matrix in the multivariate normal setting. The function
g is the so-called density generator. All three together define the density
function of the distribution as:

fX(x) = c√|�|g((x − µ)′�−1(x − µ))

where c is a normalizing constant. The reader may compare the similarity
between this expression and the density function of a multivariate normal
distribution.

1.6.8 Copula Functions

Correlation is a widespread concept in modern finance and risk management
and stands for a measure of dependence between random variables. How-
ever, this term is often incorrectly used to mean any notion of dependence.
Actually, correlation is one particular measure of dependence among many.
In the world of multivariate normal distribution and more generally in the
world of spherical and elliptical distributions, it is the accepted measure.

A major drawback of correlation is that it is not invariant under
nonlinear strictly increasing transformations. In general,

corr(T(X), T(Y)) �= corr(X, Y),

where T(x) is such transformation. One example which explains this tech-
nical requirement is the following: Assume that X and Y represent the
continuous return (log-return) of two assets over the period [0, t], where
t denotes some point of time in the future. If you know the correlation
of these two random variables, this does not imply that you know the
dependence structure between the asset prices itself because the asset prices
(P and Q for asset X and Y, respectively) are obtained by Pt = P0 exp(X)
and Qt = Q0 exp(Y), where P0 and Q0 denote the corresponding asset prices
at time 0. The asset prices are strictly increasing functions of the return
but the correlation structure is not maintained by this transformation. This
observation implies that the return could be uncorrelated whereas the prices
are strongly correlated and vice versa.

18A triple or a 3-tuple is simply the notation used by mathematicians for a group of
three elements.
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A more prevalent approach that overcomes this disadvantage is to
model dependency using copulas. As noted by Patton (2004, p. 3), ‘‘The
word copula comes from Latin for a ‘link’ or ‘bond,’ and was coined by
Sklar (1959), who first proved the theorem that a collection of marginal
distributions can be ‘coupled’ together via a copula to form a multivariate
distribution.’’ The idea is as follows. The description of the joint distribution
of a random vector is divided into two parts:

1. The specification of the marginal distributions.
2. the specification of the dependence structure by means of a special

function, called copula.

The use of copulas19 offers the following advantages:

■ The nature of dependency that can be modeled is more general. In
comparison, only linear dependence can be explained by the correlation.

■ Dependence of extreme events might be modeled.
■ Copulas are indifferent to continuously increasing transformations (not

only linear as it is true for correlations).

From a mathematical viewpoint, a copula function C is nothing more
than a probability distribution function on the n-dimensional hypercube
In = [0, 1] × [0, 1] × . . . × [0, 1]:

C : In → [0, 1]

(u1, . . . , un) → C(u1, . . . , un).

It has been shown20 that any multivariate probability distribution
function FY of some random vector Y = (Y1, . . . , Yn) can be represented
with the help of a copula function C in the following form:

FY(y1, . . . , yn) = P(Y1 ≤ y1, . . . , Yn ≤ yn) = C(P(Y1 ≤ y1), . . . , P(Yn ≤ yn))

= C(FY1 (y1), . . . , FYn (yn)),

where FYi (yi), i = 1, . . . , n denote the marginal distribution functions of the
random variables Yi, i = 1, . . . , n.

19Mikosch (2006), Embrechts and Puccetti (2006), and Rüschendorf (2004) provide
examples and further references for the application of copulas in risk management.
20The importance of copulas in the modeling of the distribution of multivariate
random variables is provided by Sklar’s theorem. The derivation was provided in
Sklar (1959).
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The copula function makes the bridge between the univariate dis-
tribution of the individual random variables and their joint probability
distribution. This justifies the fact that the copula function creates uniquely
the dependence, whereas the probability distribution of the involved random
variables is provided by their marginal distribution. By fixing the marginal
distributions and varying the copula function, we obtain all possible joint
distributions with the given marginals. The links between marginal distri-
butions and joint distributions are useful in understanding the notion of a
minimal probability metric discussed in Chapter 3.

In the remaining part of this section, we consider several examples
that illustrate further the concept behind the copula function. We noted
that the copula is just a probability distribution function and, therefore,
it can be characterized by means of a cumulative distribution function or
a probability density function. Given a copula function C, the density is
computed according to equation (1.2),21

c(u1, . . . , un) = ∂nC(u1, . . . , un)
∂u1 . . . ∂un

.

In this way, using the relationship between the copula and the distribution
function, the density of the copula can be expressed by means of the
density of the random variable. This is done by applying the chain rule of
differentiation,

c(FY1 (y1), . . . , FYn (yn)) = fY(y1, . . . , yn)
fY1 (y1) . . . fYn (yn)

. (1.4)

In this formula, the numerator contains the density of the random variable
Y and on the denominator we find the density of the Y but under the
assumption that components of Y are independent random variables. Note
that the left hand-side corresponds to the copula density but transformed
to the sample space by means of the marginal distribution functions FYi (yi),
i = 1, 2, . . . , n. The copula density of a two-dimensional normal distribution
with covariance matrix,

� =
(

1 0.8
0.8 1

)

and mean µ = (0, 0), is plotted in Figure 1.7. The contour lines of the copula
density transformed in the sample space through the marginal distribution

21The density of a copula function may not exist since not all distribution functions
possess densities. In this discussion, we consider only the copulas with a density.
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FIGURE 1.7 The copula density of a two-dimensional
normal distribution.

functions are given in Figure 1.8. Plots of the probability density function
and the contour lines of the probability density function are given in Figures
1.5 and 1.6.

Equation (1.4) reveals that, if the random variable Y has independent
components, then the density of the corresponding copula, denoted by c0,
is a constant in the unit hypercube,

c0(u1, . . . , un) = 1

and the copula C0 has the following simple form,

C0(u1, . . . , un) = u1 . . . un.

This copula characterizes stochastic independence.
Now let us consider a density c of some copula C. The formula in

equation (1.4) is a ratio of two positive quantities because the density
function can only take nonnegative values. For each value of the vector of
arguments y = (y1, . . . , yn), equation (1.4) provides information about the
degree of dependence between the events that simultaneously Yi is in a small
neighborhood of yi for i = 1, 2, . . . , n. That is, the copula density provides
information about the local structure of the dependence. With respect to the
copula density c0 characterizing the notion of independence, the arbitrary
copula density function can be either above 1, or below 1. How is this fact
related to the degree of dependence of the corresponding n events? Suppose
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that for some vector y, the right hand-side of equation (1.4) is close to zero.
This means that the numerator is much smaller than the denominator,

fY(y1, . . . , yn) < fY1 (y1) . . . fYn (yn).

As a consequence, the joint probability of the events that Yi is in a
small neighborhood of yi for i = 1, 2, . . . , n is much smaller than what it
would if the corresponding events were independent. Therefore, this case
corresponds to these events being almost disjoint; that is, with a very small
probability of occurring simultaneously.

Suppose that the converse holds, the numerator in equation (1.4) is
much larger than the denominator and, as a result, the copula density is
larger than 1. In this case,

fY(y1, . . . , yn) > fY1 (y1) . . . fYn (yn),

which means that the joint probability of the events that Yi is in a small
neighborhood of yi for i = 1, 2, . . . , n is larger than what it would if the
corresponding events were independent. Therefore, copula density values
larger than 1 mean that the corresponding events are more likely to happen
simultaneously.

This analysis indicates that the copula density function provides infor-
mation about the local dependence structure of a multidimensional random
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variable Y relative to the case of stochastic independence. Figure 1.8 provides
an illustration is the two-dimensional case. It shows the contour lines of
the surface calculated according to equation (1.4) for the two-dimensional
normal distribution considered in section 1.6.6. All points that have an
elevation above 1 have a local dependence implying that the events Y1 ∈
(y1, y1 + ε) and Y2 ∈ (y2, y2 + ε) for a small ε > 0 are likely to occur
jointly. This means that in a large sample of observations, we observe the
two events happening together more often than implied by the independence
assumption. In contrast, all points with an elevation below 1 have a local
dependence implying that the events Y1 ∈ (y1, y1 + ε) and Y2 ∈ (y2, y2 +
ε) for a small ε > 0 are likely to occur disjointly. This means that in a
large sample of observations we will observe the two events happening less
frequently than implied by the independence assumption.

1.7 PROBABILISTIC INEQUALITIES

Some of the topics discussed in the book concern a setting in which we
are not aware of the particular distribution of a random variable or the
particular joint probability distribution of a pair of random variables. In
such cases, the analysis may require us to resort to general arguments
based on certain general inequalities from the theory of probability. In this
section, we give an account of such inequalities and provide illustration
where possible.

1.7.1 Chebyshev’s Inequality

Chebyshev’s inequality provides a way to estimate the approximate proba-
bility of deviation of a random variable from its mean. Its most simple form
concerns positive random variables.

Suppose that X is a positive random variable, X > 0. The following
inequality is known as Chebyshev’s inequality,

P(X ≥ ε) ≤ EX
ε

, (1.5)

where ε > 0. In this form, equation (1.5) can be used to estimate the
probability of observing a large observation by means of the mathematical
expectation and the level ε. Chebyshev’s inequality is rough as demonstrated
geometrically in the following way. The mathematical expectation of a
positive continuous random variable admits the representation,

EX =
∫ ∞

0
P(X ≥ x)dx,
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which means that it equals the area closed between the distribution function
and the upper limit of the distribution function. This area is illustrated in
Figure 1.9 as the shaded area above the distribution function. On the other
hand, the quantity εP(X ≥ ε) = ε(1 − FX(x)) is equal to the area of the
rectangle in the upper-left corner of Figure 1.9. In effect, the inequality

εP(X ≥ ε) ≤ EX

admits the following geometric interpretation—the area of the rectangle is
smaller than the shaded area in Figure 1.9.

For an arbitrary random variable, Chebychev’s inequality takes the
form

P(|X − EX| ≥ εσX) ≤ 1
ε2

,

where σ X is the standard deviation of X and ε > 0. We use Chebyshev’s
inequality in Chapter 6 in the discussion of dispersion measures.

1.7.2 Fréchet-Hoeffding Inequality

Consider an n-dimensional random vector Y with a distribution function
FY(y1, . . . , yn). Denote by

W(y1, . . . , yn) = max(FY1 (y1) + · · · + FYn (yn) + 1 − n, 0)
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and by
M(y1, . . . , yn) = min(FY1 (y1), . . . , FYn (yn)),

in which FYi (yi) stands for the distribution function of the i-th marginal. The
following inequality is known as Fréchet-Hoeffding inequality,

W(y1, . . . , yn) ≤ FY(y1, . . . , yn) ≤ M(y1, . . . , yn). (1.6)

The quantities W(y1, . . . , yn) and M(y1, . . . , yn) are also called the
Fréchet lower bound and the Fréchet upper bound. We apply Fréchet-
Hoeffding inequality in the two-dimensional case in Chapter 3 when dis-
cussing minimal probability metrics.

Since copulas are essentially probability distributions defined on the
unit hypercube, Fréchet-Hoeffding inequality holds for them as well. In this
case, it has a simpler form because the marginal distributions are uniform.
The lower and the upper Fréchet bounds equal

W(u1, . . . , un) = max(u1 + · · · + un + 1 − n, 0)
and

M(u1, . . . , un) = min(u1, . . . , un)

respectively. Fréchet-Hoeffding inequality is given by

W(u1, . . . , un) ≤ C(u1, . . . , un) ≤ M(u1, . . . , un).

In the two-dimensional case, the inequality reduces to

max(u1 + u2 − 1, 0) ≤ C(u1, u2) ≤ min(u1, u2).

In the two-dimensional case only, the lower Fréchet bound, sometimes
referred to as the minimal copula, represents perfect negative dependence
between the two random variables. In a similar way, the upper Fréchet
bound, sometimes referred to as the maximal copula, represents perfect
positive dependence between the two random variables.

1.8 SUMMARY

We considered a number of concepts from probability theory that will be
used in later chapters in this book. We discussed the notions of a random
variable and a random vector. We considered one-dimensional and multidi-
mensional probability density and distributions functions, which completely
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characterize a given random variable or random vector. We discussed sta-
tistical moments and quantiles, which represent certain characteristics of
a random variable, and the sample moments which provide a way of
estimating the corresponding characteristics from historical data. In the
multidimensional case, we considered the notion of dependence between the
components of a random vector. We discussed the covariance matrix versus
the more general concept of a copula function. Finally, we described two
probabilistic inequalities, Chebychev’s inequality and Fréchet-Hoeffding
inequality.
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CHAPTER 2
Optimization

2.1 INTRODUCTION

The mathematical theory of optimization has a natural application in the
field of finance. From a general perspective, the behavior of economic agents
in the face of uncertainty involves balancing expected risks and expected
rewards. For example, the portfolio choice problem, which we consider in
Chapter 8, concerns the optimal trade-off between risk and reward. We
say that a portfolio is optimal in the sense that it is the best portfolio
among many alternative ones. The criterion that measures the ‘‘quality’’
of a portfolio relative to the others is known as the objective function in
optimization theory. The set of portfolios among which we are choosing
is called the set of feasible solutions or the set of feasible points. For
additional examples on the application of optimization theory to portfolio
management, the reader is referred to Fabuzzi et al. (2007).

In optimization theory, we distinguish between two types of opti-
mization problems depending on whether the set of feasible solutions is
constrained or unconstrained. If the optimization problem is a constrained
one, then the set of feasible solutions is defined by means of certain linear
and/or nonlinear equalities and inequalities. These functions are often said
to be forming the constraint set.

Furthermore, we also distinguish between types of optimization prob-
lems depending on the assumed properties of the objective function and the
functions in the constraint set, such as linear problems, quadratic problems,
and convex problems. The solution methods vary with respect to the par-
ticular optimization problem type as there are efficient algorithms prepared
for particular problem types.

In this chapter, we describe the basic types of optimization problems
and remark on the methods for their solution. For more detailed and/or

35
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complementary information, the reader is referred to the books of Boyd and
Vandenberghe (2004) and Ruszczyński (2006).

2.2 UNCONSTRAINED OPTIMIZATION

When there are no constraints imposed on the set of feasible solutions, we
have an unconstrained optimization problem. Thus, the goal is to maximize
or to minimize the objective function with respect to the function arguments
without any limits on their values. We consider directly the n-dimensional
case; that is, the domain of the objective function f is the n-dimensional
space and the function values are real numbers, f : R

n → R. Maximization
is denoted by

max f (x1, . . . , xn)

and minimization by

min f (x1, . . . , xn).

A more compact form is commonly used, for example

min
x ∈ Rn

f (x) (2.1)

denotes that we are searching for the minimal value of the function f (x) by
varying x in the entire n-dimensional space R

n. A solution to equation (2.1)
is a value of x = x0 for which the minimum of f is attained,

f0 = f (x0) = min
x ∈ Rn

f (x).

Thus, the vector x0 is such that the function takes a larger value than f 0

for any other vector x,
f (x0) ≤ f (x), x ∈ R

n. (2.2)

Note that there may be more than one vector x0 satisfying the inequality
in equation (2.2) and, therefore, the argument for which f 0 is achieved may
not be unique. If (2.2) holds, then the function is said to attain its global
minimum at x0. If the inequality in (2.2) holds for x belonging only to
a small neighborhood of x0 and not to the entire space R

n, then the
objective function is said to have a local minimum at x0. This is usually
denoted by

f (x0) ≤ f (x)
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FIGURE 2.1 The relationship between
minimization and maximization for a
one-dimensional function.

for all x such that ||x − x0||2 < ε where ||x − x0||2 stands for the Euclidean
distance between the vectors x and x0,

‖x − x0‖2 =
√√√√ n∑

i = 1

(xi − x0
i )2,

and ε is some positive number. A local minimum may not be global as
there may be vectors outside the small neighborhood of x0 for which the
objective function attains a smaller value than f (x0). Figure 2.2 shows the
graph of a function with two local maxima, one of which is the global
maximum.

There is a connection between minimization and maximization. Maxi-
mizing the objective function is the same as minimizing the negative of the
objective function and then changing the sign of the minimal value,

max
x ∈ Rn

f (x) = − min
x ∈ Rn

[−f (x)].

This relationship is illustrated in Figure 2.1. As a consequence, problems for
maximization can be stated in terms of function minimization and vice versa.

2.2.1 Minima and Maxima of a Differentiable Function

If the second derivatives of the objective function exist, then its local maxima
and minima, often called generically local extrema, can be characterized.
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Denote by ∇f (x) the vector of the first partial derivatives of the objective
function evaluated at x,

∇f (x) =
(

∂f (x)
∂x1

, . . . ,
∂f (x)
∂xn

)
.

This vector is called the function gradient. At each point x of the domain
of the function, it shows the direction of greatest rate of increase of the
function in a small neighborhood of x. If for a given x, the gradient equals
a vector of zeros,

∇f (x) = (0, . . . , 0)

then the function does not change in a small neighborhood of x ∈ R
n. It

turns out that all points of local extrema of the objective function are
characterized by a zero gradient. As a result, the points yielding the local
extrema of the objective function are among the solutions of the system of
equations,

∣∣∣∣∣∣∣∣∣∣

∂f (x)
∂x1

= 0

. . .

∂f (x)
∂xn

= 0. (2.3)

The system of equation (2.3) is often referred to as representing the
first-order condition for the objective function extrema. However, it is only
a necessary condition; that is, if the gradient is zero at a given point in
the n-dimensional space, then this point may or may not be a point of a
local extremum for the function. An illustration is given in Figure 2.2. The
top plot shows the graph of a two-dimensional function and the bottom
plot contains the contour lines of the function with the gradient calculated
at a grid of points. There are three points marked with a black dot that
have a zero gradient. The middle point is not a point of a local maximum
even though it has a zero gradient. This point is called a saddle point
since the graph resembles the shape of a saddle in a neighborhood of it.
The left and the right points are where the function has two local maxima
corresponding to the two peaks visible on the top plot. The right peak is a
local maximum that is not the global one and the left peak represents the
global maximum.

This example demonstrates that the first-order conditions are generally
insufficient to characterize the points of local extrema. The additional
condition that identifies which of the zero-gradient points are points
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of local minimum or maximum is given through the matrix of second
derivatives,

H =




∂2f (x)
∂x2

1

∂2f (x)
∂x1∂x2

. . .
∂2f (x)
∂x1∂xn

∂2f (x)
∂x2∂x1

∂2f (x)
∂x2

2
. . .

∂2f (x)
∂x2∂xn

...
...

. . .
...

∂2f (x)
∂xn∂x1

∂2f (x)
∂xn∂x2

. . .
∂2f (x)
∂x2

n




, (2.4)
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which is called the Hessian matrix or just the Hessian. The Hessian is a
symmetric matrix because the order of differentiation is insignificant,

∂2f (x)
∂xi∂xj

= ∂2f (x)
∂xj∂xi

.

The additional condition is known as the second-order condition. We
will not provide the second-order condition for functions of n-dimensional
arguments because it is rather technical and goes beyond the scope of the
book. We only state it for two-dimensional functions.

In the case n = 2, the following conditions hold:

■ If ∇f (x1, x2) = (0, 0) at a given point (x1, x2) and the determinant of the
Hessian matrix evaluated at (x1, x2) is positive, then the function has:

— A local maximum in (x1, x2) if

∂2f (x1, x2)
∂x2

1

< 0 or
∂2f (x1, x2)

∂x2
2

< 0.

— A local minimum in (x1, x2) if

∂2f (x1, x2)
∂x2

1

> 0 or
∂2f (x1, x2)

∂x2
2

> 0.

■ If ∇f (x1, x2) = (0, 0) at a given point (x1, x2) and the determinant of the
Hessian matrix evaluated at (x1, x2) is negative, then the function f has
a saddle point in (x1, x2)

■ If ∇f (x1, x2) = (0, 0) at a given point (x1, x2) and the determinant of the
Hessian matrix evaluated at (x1, x2) is zero, then no conclusion can be
drawn.

2.2.2 Convex Functions

In section 2.2.1, we demonstrated that the first-order conditions are insuf-
ficient in the general case to describe the local extrema. However, when
certain assumptions are made for the objective function, the first-order con-
ditions can become sufficient. Furthermore, for certain classes of functions,
the local extrema are necessarily global. Therefore, solving the first-order
conditions, we obtain the global extremum.

A general class of functions with nice optimal properties is the class of
convex functions. Not only are the convex functions easy to optimize but
they have also important application in risk management. In Chapter 6,
we discuss general measures of risk. It turns out that the property which
guarantees that diversification is possible appears to be exactly the convexity
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property. As a consequence, a measure of risk is necessarily a convex
functional.1

Precisely, a function f (x) is called a convex function if it satisfies the prop-
erty:For agivenα ∈ [0, 1] andallx1 ∈ R

n andx2 ∈ R
n in the functiondomain,

f (αx1 + (1 − α)x2) ≤ αf (x1) + (1 − α)f (x2). (2.5)

The definition is illustrated in Figure 2.3. Basically, if a function is
convex, then a straight line connecting any two points on the graph lies
‘‘above’’ the graph of the function.

There is a related term to convex functions. A function f is called
concave if the negative of f is convex. In effect, a function is concave if it

f (x1)

f (x2)

f (xa)

a f (x1) + (1 − a)f (x2)

f (x)

x1 xa x2

FIGURE 2.3 Illustration of the definition of a
convex function in the one-dimensional case. Any
straight line connecting two points on the graph
lies ‘‘above’’ the graph. On the plot, xα = αx1 +
(1 − α)x2

1A function in mathematics can be viewed as a rule assigning to each element of a
set D a single element of a set C. The set D is called the domain of f and the set C
is called the codomain of f . A functional is a special kind of a function that takes
other functions as its argument and returns numbers as output; that is, its domain is
a set of functions. For example, the definite integral can be viewed as a functional
because it assigns a real number to a function—the corresponding area below the
function graph. A risk measure can also be viewed as a functional because it assigns
a number to a random variable. Any random variable is mathematically described as
a certain function the domain of which is the set of outcomes �. Chapter 1 provides
more details on the theory of probability.
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satisfies the property: For a given α∈[0,1] and all x1∈ R
n and x2∈ R

n in the
function domain,

f (αx1 + (1 − α)x2) ≥ αf (x1) + (1 − α)f (x2).

We use convex and concave functions in the discussion of the efficient
frontier in Chapter 8.

If the domain D of a convex function is not the entire space R
n, then

the set D satisfies the property,

αx1 + (1 − α)x2 ∈ D (2.6)

where x1 ∈ D, x2 ∈ D, and 0 ≤ α ≤ 1. The sets that satisfy equation (2.6)
are called convex sets. Thus, the domains of convex (and concave) functions
should be convex sets. Geometrically, a set is convex if it contains the
straight line connecting any two points belonging to the set. Rockafellar
(1997) provides detailed information on the implications of convexity in
optimization theory.

We summarize several important properties of convex functions:

■ Not all convex functions are differentiable. If a convex function is
two times continuously differentiable, then the corresponding Hessian
defined in equation (2.4) is a positive semidefinite matrix.2

■ All convex functions are continuous if considered in an open set.
■ The sublevel sets

Lc = {x : f (x) ≤ c}, (2.7)

where c is a constant, are convex sets if f is a convex function. The
converse is not true in general. Section 2.2.3 provides more information
about non-convex functions with convex sublevel sets.

■ The local minima of a convex function are global. If a convex function
f is twice continuously differentiable, then the global minimum is
obtained in the points solving the first-order condition,

∇f (x) = 0.

■ A sum of convex functions is a convex function:

f (x) = f1(x) + f2(x) + . . . + fk(x)

is a convex function if fi, i = 1, . . . , k are convex functions.

2A matrix H is a positive semidefinite matrix if x′Hx ≥ 0 for all x ∈ R
n and

x �= (0, . . . , 0).



Optimization 43

A simple example of a convex function is the linear function,

f (x) = a′x, x ∈ R
n

where a ∈ R
n is a vector of constants. In fact, the linear function is the

only function that is both convex and concave. In finance, if we consider a
portfolio of assets, then the expected portfolio return is a linear function of
portfolio weights, in which the coefficients equal the expected asset returns.

As a more involved example, consider the following function,

f (x) = 1
2 x′Cx, x ∈ R

n (2.8)

where C = {cij}n
i,j = 1 is a n × n symmetric matrix. In portfolio theory, the

variance of portfolio return is a similar function of portfolio weights. In this
case, C is the covariance matrix. The function defined in (2.8) is called a
quadratic function because writing the definition in terms of the components
of the argument X, we obtain

f (x) = 1
2


 n∑

i = 1

ciix2
i +

∑
i �= j

cijxixj




which is a quadratic function of the components xi, i = 1, . . . , n. The func-
tion in (2.8) is convex if and only if the matrix C is positive semidefinite.
In fact, in this case the matrix C equals the Hessian matrix, C = H. Since
the matrix C contains all parameters, we say that the quadratic function is
defined by the matrix C.

Figures 2.4 and 2.5 illustrate the surface and contour lines of a convex
and nonconvex two-dimensional quadratic functions. The contour lines
of the convex function are concentric ellipses and a sublevel set Lc is
represented by the points inside some ellipse. The convex quadratic function
is defined by the matrix,

C =
(

1 0.4
0.4 1

)

and the nonconvex quadratic function is defined by the matrix,

C =
(−1 0.4

0.4 1

)
.

A property of convex functions is that the sum of convex functions is a
convex function. As a result of the preceding analysis, the function

f (x) = λx′Cx − a′x, (2.9)
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FIGURE 2.4 The surface of a two-dimensional convex
quadratic function f (x) = 1

2 x′Cx and the corresponding
contour lines.

where λ > 0 and C is a positive semidefinite matrix, is a convex function
as a sum of two convex functions. We will consider functions similar to
equation (2.9) in Chapter 8 in the discussion of the mean-variance efficient
frontier. Let us use the properties of convex functions in order to solve the
unconstrained problem of minimizing the function in (2.9),

min
x ∈ Rn

λx′Cx − a′x
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This function is differentiable and we can search for the global minimum
by solving the first-order conditions,3

∇f (x) = 2λCx − µ = 0.

3In calculating the derivatives, we use the following rules in matrix form,

f (x) = c′x 	⇒ ∇f (x) = cand
f (x) = x′Cx 	⇒ ∇f (x) = 2Cx.

The validity of these rules can be directly checked by computing the components of
the gradient.
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Therefore, the value of x minimizing the objective function equals

x0 = 1
2λ

C−1µ,

where C−1 denotes the inverse of the matrix C.

2.2.3 Quasiconvex Functions

Besides convex functions, there are other classes of functions with convenient
optimal properties. An example of such a class is the class of quasiconvex
functions. Formally, a function is called quasiconvex if all sublevel sets
defined in (2.7) are convex sets. Alternatively, a function f (x) is called
quasiconvex if, f (x1) ≥ f (x2)

implies f (αx1 + (1 − α)x2) ≤ f (x1),

where x1 and x2 belong to the function domain, which should be a convex
set, and 0 ≤ α ≤ 1. A function f is called quasiconcave if −f is quasiconvex.

An illustration of a two-dimensional quasiconvex function is given in
Figure 2.6. The top plot shows the graph of the function and the bottom
plot illustrates the contour lines. A sublevel set is represented by all points
inside some contour line. From a geometric viewpoint, the sublevel sets
corresponding to the plotted contour lines are convex because any of them
contains the straight line connecting any two points belonging to the set.
Nevertheless, the function is not convex, which becomes evident from the
surface on the top plot. It is not guaranteed that a straight line connecting
any two points on the surface will remain ‘‘above’’ the surface.

Several properties of the quasiconvex functions are summarized below.

■ Any convex function is also quasiconvex. The converse is not true,
which is demonstrated in Figure 2.6.

■ In contrast to the differentiable convex functions, the first-order con-
dition is not necessary and sufficient for optimality in the case of
differentiable quasiconvex functions.4

■ It is possible to find a sequence of convex optimization problems
yielding the global minimum of a quasiconvex function. Boyd and
Vandenberghe (2004) provide further details. Its main idea is to find

4There exists a class of functions larger than the class of convex functions but
smaller than the class of quasiconvex functions, for which the first-order condition is
necessary and sufficient for optimality. This is the class of pseudoconvex functions.
Mangasarian (2006) provides more detail on the optimal properties of pseudoconvex
functions.
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FIGURE 2.6 An example of a two-dimensional
quasiconvex function f (x1, x2) and its contour lines. Even
though the sublevel sets are convex, f (x1, x2) is not a
convex function.

the smallest value of c for which the corresponding sublevel set Lc is
nonempty. The minimal value of c is the global minimum, which is
attained in the points belonging to the sublevel set Lc.

■ Suppose that g(x) > 0 is a concave function and f (x) > 0 is a convex
function. Then the ratio g(x)/f (x) is a quasiconcave function and the
ratio f (x)/g(x) is a quasiconvex function.



48 ADVANCED STOCHASTIC MODELS

Quasiconvex functions arise naturally in risk management when consid-
ering optimization of performance ratios. This topic is covered in Chapter 10.

2.3 CONSTRAINED OPTIMIZATION

In constructing optimization problems solving practical issues, it is very
often the case that certain constraints need to be imposed in order for the
optimal solution to make practical sense. For example, long-only portfolio
optimization problems require that the portfolio weights, which represent
the variables in optimization, should be nonnegative and should sum up
to one. According to the notation in this chapter, this corresponds to a
problem of the type,

min
x

f (x)

subject to x′e = 1
x ≥ 0,

(2.10)

where:

f(x) is the objective function.

e∈ R
n is a vector of ones, e = (1, . . . , 1).

x′e equals the sum of all components of x, x′e = ∑n
i xi.

x ≥ 0 means that all components of the vector x ∈ R
n are nonnegative.

In problem (2.10), we are searching for the minimum of the objective
function by varying x only in the set

X =
{

x ∈ R
n :

x′e = 1
x ≥ 0

}
, (2.11)

which is also called the set of feasible points or the constraint set. A more
compact notation, similar to the notation in the unconstrained problems, is
sometimes used,

min
x ∈ X

f (x)

where X is defined in equation (2.11).
We distinguish between different types of optimization problems de-

pending on the assumed properties for the objective function and the con-
straint set. If the constraint set contains only equalities, the problem is
easier to handle analytically. In this case, the method of Lagrange multi-
pliers is applied. For more general constraint sets, when they are formed
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by both equalities and inequalities, the method of Lagrange multipliers
is generalized by the Karush-Kuhn-Tucker conditions (KKT conditions).
Like the first-order conditions we considered in unconstrained optimization
problems, none of the two approaches leads to necessary and sufficient
conditions for constrained optimization problems without further assump-
tions. One of the most general frameworks in which the KKT conditions
are necessary and sufficient is that of convex programming. We have a
convex programing problem if the objective function is a convex function
and the set of feasible points is a convex set. As important subcases of con-
vex optimization, linear programming and convex quadratic programming
problems are considered.

In this section, we describe first the method of Lagrange multipliers,
which is often applied to special types of mean-variance optimization
problems in order to obtain closed-form solutions. Then we proceed with
convex programming that is the framework for reward-risk analysis. The
mentioned applications of constrained optimization problems is covered in
Chapters 8, 9, and 10.

2.3.1 Lagrange Multipliers

Consider the following optimization problem in which the set of feasible
points is defined by a number of equality constraints,

min
x

f (x)

subject to h1(x) = 0
h2(x) = 0
. . .

hk(x) = 0. (2.12)

The functions hi(x), i = 1, . . . , k build up the constraint set. Note that
even though the right-hand side of the equality constraints is zero in the
classical formulation of the problem given in equation (2.12), this is not
restrictive. If in a practical problem the right-hand side happens to be
different than zero, it can be equivalently transformed, for example,

{x ∈ R
n : v(x) = c} ⇐⇒ {x ∈ R

n : h1(x) = v(x) − c = 0}.

In order to illustrate the necessary condition for optimality valid for
(2.12), let us consider the following two-dimensional example:

min
x ∈ R2

1
2 x′Cx

subject to x′e = 1, (2.13)
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where the matrix is

C =
(

1 0.4
0.4 1

)
.

The objective function is a quadratic function and the constraint set
contains one linear equality. In Chapter 8, we see that the mean-variance
optimization problem in which short positions are allowed is very similar to
(2.13). The surface of the objective function and the constraint are shown on
the top plot in Figure 2.7. The black line on the surface shows the function
values of the feasible points. Geometrically, solving problem (2.13) reduces
to finding the lowest point of the black curve on the surface. The contour
lines shown on the bottom plot in Figure 2.7 imply that the feasible point
yielding the minimum of the objective function is where a contour line is
tangential to the line defined by the equality constraint. On the plot, the
tangential contour line and the feasible points are in bold. The black dot
indicates the position of the point in which the objective function attains its
minimum subject to the constraints.

Even though the example is not general in the sense that the con-
straint set contains one linear rather than a nonlinear equality, the same
geometric intuition applies in the nonlinear case. The fact that the mini-
mum is attained where a contour line is tangential to the curve defined by
the nonlinear equality constraints in mathematical language is expressed
in the following way: The gradient of the objective function at the point
yielding the minimum is proportional to a linear combination of the
gradients of the functions defining the constraint set. Formally, this is
stated as

∇f (x0) − µ1∇h1(x0) − · · · − µk∇hk(x0) = 0. (2.14)

where µi, i = 1, . . . , k are some real numbers called Lagrange multipli-
ers and the point x0 is such that f (x0) ≤ f (x) for all x that are
feasible. Note that if there are no constraints in the problem, then
(2.14) reduces to the first-order condition we considered in unconstrained
optimization. Therefore, the system of equations behind (2.14) can be
viewed as a generalization of the first-order condition in the uncons-
trained case.

The method of Lagrange multipliers basically associates a function
to the problem in (2.12) such that the first-order condition for uncon-
strained optimization for that function coincides with (2.14). The method
of Lagrange multiplier consists of the following steps.
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FIGURE 2.7 The top plot shows the surface of a
two-dimensional quadratic objective function and the
linear constraint x1 + x2 = 1. The black curve on the
surface shows the objective function values of the
points satisfying the constraint. The bottom plot
shows the tangential contour line to the constraint.

1. Given the problem in (2.12), construct the following function:

L(x, µ) = f (x) − µ1h1(x) − · · · − µkhk(x) (2.15)

where µ = (µ1, . . . , µk) is the vector of Lagrange multipliers. The func-
tion L(x, µ) is called the Lagrangian corresponding to problem (2.12).
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2. Calculate the partial derivatives with respect to all components of x and
µ and set them equal to zero as follows:

∂L(x, µ)
∂xi

= ∂f (x)
∂xi

−
k∑

j = 1

µj
∂hj(x)
∂xi

= 0, i = 1, . . . , n

and
∂L(x, µ)

∂µm
= hm(x) = 0, m = 1, . . . , k. (2.16)

Basically, the system of equations (2.16) corresponds to the first-
order conditions for unconstrained optimization written for the La-
grangian as a function of both x and µ, L : R

n + k → R.
3. Solve the system of equalities in (2.16) for x and µ. Note that even

though we are solving the first-order condition for unconstrained opti-
mization of L(x, µ), the solution (x0, µ0) of (2.16) is not a point of local
minimum or maximum of the Lagrangian. In fact, the solution (x0, µ0)
is a saddle point of the Lagrangian.

The first n equations in (2.16) make sure that the relationship between
the gradients given in (2.14) is satisfied. The following k equations in (2.16)
make sure that the points are feasible. As a result, all vectors x solving (2.16)
are feasible and the gradient condition is satisfied in them. Therefore, the
points that solve the optimization problem (2.12) are among the solutions
of the system of equations in (2.16).

This analysis suggests that the method of Lagrange multipliers provides
a necessary condition for optimality. Under certain assumptions for the
objective function and the functions building up the constraint set, (2.16)
turns out to be a necessary and sufficient condition. For example, if f (x)
is a convex and differentiable function and hi(x), i = 1, . . . , k are affine
functions,5 then the method of Lagrange multipliers identifies the points
solving (2.12). Figure 2.7 illustrates a convex quadratic function subject to
a linear constraint. In this case, the solution point is unique.

2.3.2 Convex Programming

The general form of convex programming problems is the following:

min
x

f (x)

subject to gi(x) ≤ 0, i = 1, . . . , m
hj(x) = 0, j = 1, . . . , k, (2.17)

5A function h(x) is called affine if it has the form h(x) = a + c′x, where a is a constant
and c = (c1, . . . , cn) is a vector of coefficients. All linear functions are affine.
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where:

f(x) is a convex objective function.

g1(x), . . . , gm(x) are convex functions defining the inequality constraints.

h1(x), . . . , hk(x) are affine functions defining the equality constraints.

Generally, without the assumptions of convexity, problem (2.17) is
more involved than (2.12) because besides the equality constraints, there
are inequality constraints. The KKT condition, generalizing the method
of Lagrange multipliers, is only a necessary condition for optimality in
this case. However, adding the assumption of convexity makes the KKT
condition necessary and sufficient.

Note that, similar to problem (2.12), the fact that the right-hand side
of all constraints is zero is nonrestrictive. The limits can be arbitrary real
numbers.

Consider the following two-dimensional optimization problem;

min
x ∈ R2

1
2 x′Cx

subject to (x1 + 2)2 + (x2 + 2)2 ≤ 3 (2.18)

in which

C =
(

1 0.4
0.4 1

)
.

The objective function is a two-dimensional convex quadratic function
and the function in the constraint set is also a convex quadratic function. In
fact, the boundary of the feasible set is a circle with a radius of

√
3 centered

at the point with coordinates (−2, −2). The top plot in Figure 2.8 shows the
surface of the objective function and the set of feasible points. The shaded
part on the surface indicates the function values of all feasible points. In fact,
solving problem (2.18) reduces to finding the lowest point on the shaded
part of the surface. The bottom plot shows the contour lines of the objective
function together with the feasible set that is in gray. Geometrically, the
point in the feasible set yielding the minimum of the objective function is
positioned where a contour line only touches the constraint set. The position
of this point is marked with a black dot and the tangential contour line is
given in bold.

Note that the solution points of problems of the type (2.18) can happen
to be not on the boundary of the feasible set but in the interior. For example,
suppose that the radius of the circle defining the boundary of the feasible set
in (2.18) is a larger number such that the point (0, 0) is inside the feasible
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FIGURE 2.8 The top plot shows the surface of a
two-dimensional convex quadratic function and a convex
quadratic constraint. The shaded section on the surface
corresponds to the feasible points. The bottom plot shows
the tangential contour line to the feasible set.

set. Then, the point (0, 0) is the solution to problem (2.18) because at this
point the objective function attains its global minimum.

In the two-dimensional case, when we can visualize the optimization
problem, geometric reasoning guides us to finding the optimal solution
point. In a higher dimensional space, plots cannot be produced and
we rely on the analytic method behind the KKT conditions. The KKT
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conditions corresponding to the convex programming problem (2.17) are the
following:

∇f (x) +
m∑

i = 1

λi∇gi(x) +
k∑

j = 1

µj∇hj(x) = 0

gi(x) ≤ 0 i = 1, . . . , m

hj(x) = 0 j = 1, . . . , k

λigi(x) = 0, i = 1, . . . , m

λi ≥ 0, i = 1, . . . , m. (2.19)

A point x0 such that (x0, λ0, µ0) satisfies (2.19) is the solution to
problem (2.17). Note that if there are no inequality constraints, then the KKT
conditions reduce to (2.16) in the method of Lagrange multipliers. Therefore,
the KKT conditions generalize the method of Lagrange multipliers.

The gradient condition in (2.19) has the same interpretation as the
gradient condition in the method of Lagrange multipliers. The set of
constraints,

gi(x) ≤ 0 i = 1, . . . , m
and hj(x) = 0 j = 1, . . . , k

guarantee that a point satisfying (2.19) is feasible. The next conditions,

λigi(x) = 0, i = 1, . . . , m,

are called complementary slackness conditions. If an inequality constrain
is satisfied as a strict inequality, then the corresponding multiplier λi turns
into zero according to the complementary slackness conditions. In this
case, the corresponding gradient ∇gi(x) has no significance in the gradient
condition. This reflects the fact that the gradient condition concerns only
the constraints satisfied as equalities at the solution point.

Important special cases of convex programming problems include lin-
ear programming problems and convex quadratic programming problems
which we consider in the remaining part of this section.

2.3.3 Linear Programming

Optimization problems are said to be linear programming problems if the
objective function is a linear function and the feasible set is defined by
linear equalities and inequalities. Since all functions are linear, they are also
convex, which means that linear programming problems are also convex
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problems. The definition of linear programming problems in standard form
is the following:

min
x

c′x

subject to Ax ≤ b
x ≥ 0, (2.20)

where A is a m × n matrix of coefficients, c = (c1, . . . , cn) is a vector
of objective function coefficients, and b = (b1, . . . , bm) is a vector of real
numbers. As a result, the constraint set contains m inequalities defined by
linear functions. The feasible points defined by means of linear equalities
and inequalities are also said to form a polyhedral set. In practice, before
solving a linear programming problem, it is usually first reformulated in the
standard form given in (2.20).

Figure 2.9 shows an example of a two-dimensional linear programming
problem that is not in standard form as the two variables may become
negative. The top plot contains the surface of the objective function, which
is a plane in this case, and the polyhedral set of feasible points. The shaded
area on the surface corresponds to the points in the feasible set. Solving
problem (2.20) reduces to finding the lowest point in the shaded area on the
surface. The bottom plot shows the feasible set together with the contour
lines of the objective function. The contour lines are parallel straight lines
because the objective function is linear. The point in which the objective
function attains its minimum is marked with a black dot.

A general result in linear programming is that, on condition that the
problem is bounded, the solution is always at the boundary of the feasible
set and, more precisely, at a vertex of the polyhedron. Problem (2.20)
may become unbounded if the polyhedral set is unbounded and there are
feasible points such the objective function can decrease indefinitely. We can
summarize that, generally, due to the simple structure of (2.20), there are
three possibilities:

1. The problem is not feasible, because the polyhedral set is empty.
2. The problem is unbounded.
3. The problem has a solution at a vertex of the polyhedral set.

From computational viewpoint, the polyhedral set has a finite number
of verices and an algorithm can be devised with the goal of finding a vertex
solving the optimization problem in a finite number of steps. This is the basic
idea behind the simplex method, which is an efficient numerical approach to
solving linear programming problems. Besides the simplex algorithm, there
are other more contemporary methods such as the interior point method
for example.
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FIGURE 2.9 The top plot shows the surface of a
linear function and a polyhedral feasible set. The
shaded section on the surface corresponds to the
feasible points. The bottom plot shows the tangential
contour line to the feasible set.

The application of linear programming in practice is immense. A few
classes of practical problems that are solved by the method of linear pro-
gramming include the transportation problem, the transshipment problem,
the network flow problem, and so on. Dantzig (1998) provides an excellent
background on the theory and application of linear programing.

2.3.4 Quadratic Programming

Besides linear programming, another class of problems with simple structure
is the class of quadratic programming problems. It contains optimization
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problems with a quadratic objective function and linear equalities and
inequalities in the constraint set,

min
x

c′x + 1
2 x′Hx

subject to Ax ≤ b, (2.21)

where:

c = (c1, . . . , cn) is a vector of coefficients defining the linear part of the
objective function.

H = {hij}n
i, j = 1 is an n × n matrix defining the quadratic part of the

objective.

A = {aij} is a k × n matrix defining k linear inequalities in the constraint
set.

b = (b1, . . . , bk) is a vector of real numbers defining the right-hand side
of the linear inequalities.

In optimal portfolio theory, mean-variance optimization problems in
which portfolio variance is in the objective function are quadratic program-
ming problems. We consider such problems in Chapter 8.

From the point of view of optimization theory, problem (2.21) is a
convex optimization problem if the matrix defining the quadratic part of the
objective function is positive semidefinite. In this case, the KKT conditions
can be applied to solve it.

2.4 SUMMARY

In this chapter, we considered selected topics from optimization theory
that form the background needed to understand optimal portfolio selection
problems covered in Chapters 8, 9, and 10. The material is divided into two
parts: unconstrained optimization and constrained optimization. Concern-
ing unconstrained optimization, we state the necessary first-order condition
and consider the classes of convex functions and quasiconvex functions. In
constrained optimization, we start with the method of Lagrange multipliers
and then focus on the general framework of convex programming. As special
cases of convex optimization problems, we consider linear programming
and convex quadratic programming.
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Ruszczyński, A. (2006). Nonlinear optimization, Princeton, NJ: Princeton University
Press.





CHAPTER 3
Probability Metrics

3.1 INTRODUCTION

The development of the theory of probability metrics started with the
investigation of problems related to limit theorems in probability theory.
The limit theorems take a very important place in probability theory,
statistics, and all their applications. A well-known example by nonspecialists
in the field is the celebrated Central Limit Theorem (CLT) but there are
many other limit theorems, such as the generalized CLT, the maxstable
CLT, functional limit theorems, and so on. Without delving into the
details, the applicability of the limit theorems stems from the fact that
the limit law can be regarded as an approximation to the stochastic model
considered and, therefore, can be accepted as an approximate substitute.
The central question arising is how large an error we make by adopting
the approximate model. This question can be investigated by studying the
distance between the limit law and the stochastic model and whether it is,
for example, sum or maxima of independent identically distributed (i.i.d.)
random variables makes no difference as far as the universal principle is
concerned.

Generally, the theory of probability metrics studies the problem of
measuring distances between random quantities. On one hand, it provides
the fundamental principles for building probability metrics—the means of
measuring such distances. On the other, it studies the relationships between
various classes of probability metrics. The second realm of study concerns
problems that require a particular metric, while the basic results can be
obtained in terms of other metrics. In such cases, the metrics relationship is
of primary importance.

Certainly, the problem of measuring distances is not limited to ran-
dom quantities only. In its basic form, it originated in different fields of

61
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mathematics. Nevertheless, the theory of probability metrics was developed
due to the need of metrics with specific properties. Their choice is very often
dictated by the stochastic model under consideration and to a large extent
determines the success of the investigation. Rachev (1991) provides more
details on the methods of the theory of probability metrics and its numerous
applications in both theoretical and more practical problems.

Note that there are no limitations in the theory of probability metrics
concerning the nature of the random quantities. This makes its methods
fundamental and appealing. Actually, in the general case, it is more appro-
priate to refer to the random quantities as random elements. They can be
random variables, random vectors, random functions or random elements of
general spaces. For instance, in the context of financial applications, we can
study the distance between two random stocks prices, or between vectors of
financial variables building portfolios, or between entire yield curves which
are much more complicated objects. The methods of the theory remain the
same, no matter the nature of the random elements.

In this chapter, we start with a gentle introduction to the problem
of measuring distances between random variables. We include examples
with discrete distributions which build up intuition for the continuous case.
Then we proceed with the classification of primary, simple, and compound
metrics. The appendix to this chapter contains a more technical treatment
of some of the questions under consideration. We limit the discussion to the
one-dimensional variables only.

3.2 MEASURING DISTANCES: THE DISCRETE CASE

How can we measure the distance between two random quantities?
This is the question we partial answer in this and subsequent sections.
We start with random quantities having discrete distributions as the
examples are very clear and help prepare for the more complicated con-
tinuous case. The discussion is divided into three sections with increasing
complexity.

Throughout section 3.2, we do not comment on the axiomatic structure
of probability metrics and the definition of the classes of primary, simple,
and compound metrics. This discussion starts in section 3.3 and a few topics
are further developed in the appendix to this chapter.

Important topics discussed in section 3.2:

■ Examples of metrics defined on sets of characteristics of discrete distri-
butions

■ Examples of metrics based on the cumulative distribution function of
discrete random variables
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■ Examples of metrics defined on the joint probability of discrete random
variables

■ Minimal and maximal distances

3.2.1 Sets of Characteristics

Consider a pair of unfair dice and label the elements of the pair die X and die
Y. The probabilities of each die faces are provided in Table 3.1. In the case
of die X, the probability of face 1 is higher than 1/6, which is the probability
of a face of a fair die, and the probability of face 3 is less than 1/6. The
probabilities of die Y have similar deviations from those of a fair die.

We can view the pair of dice as an example of two discrete random
variables. We adopt the shorthand notation X for die X and Y for die Y.
Clearly, the two discrete random variables have different distributions and,
also, different characteristics, such as the mean and higher moments. There-
fore, we can compare the two random variables in terms of the differences
in some of their characteristics, if these characteristics have special meaning
for us. For example, let us choose the mathematical expectation. It is easy
to calculate,

EX =
6∑

i = 1

ipi = 40/12

and

EY =
6∑

i = 1

iqi = 44/12.

The distance between the two random variables, µ(X, Y), may be com-
puted as the absolute difference between the corresponding mathematical
expectations,

µ(X, Y) = |EX − EY| = 4/12.

TABLE 3.1 The Probabilities of the Faces of Die X and Die Y.

Die X face 1 2 3 4 5 6

Probability, pi 3/12 2/12 1/12 2/12 2/12 2/12

Die Y face 1 2 3 4 5 6

Probability, qi 2/12 2/12 2/12 1/12 2/12 3/12
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In a similar way, we may add another characteristic to the mathematical
expectation, or consider it separately. For instance, this could be the second
moment,

EX2 =
6∑

i = 1

i2pi = 174/12 and EY2 =
6∑

i = 1

i2qi = 202/12.

If we add it to the mathematical expectation, for the distance we obtain

µ(X, Y) = |EX − EY| + |EX2 − EY2| = 32/12.

If we considered a pair of fair dice, these characteristics would coincide
and we would obtain that the distance between the two random variables is
zero. This is quite understandable as two fair dice cannot be distinguished
when considered separately, that is, not in one probability space. However,
it is possible to obtain zero deviation between given characteristics in the
case of unfair dice. Let us illustrate this with the variance of X and Y. The
variance of a random variable Z, DZ, is defined as,

DX = E(Z − EZ)2.

It is easier to calculate the variance not directly through the definition
but making use of a formula that arises directly from the definition,

DZ = E(Z − EZ)2 = EZ2 − (EZ)2.

In this way, we can take advantage of the already calculated quantities.
The variance of X equals

DX = EX2 − (EX)2 = 174
12

−
(

40
12

)2

= 61
18

and the variance of Y equals

DY = EY2 − (EY)2 = 202
12

−
(

44
12

)2

= 61
18

.

In effect, we obtain that DX = DY. Thus, any attempts to measure the
distance between the two random variables in terms of differences in variance
will indicate zero distance, even though die X is quite different from die Y.

3.2.2 Distribution Functions

Intuitively, by including more additional characteristics when measuring
the distance between two random variables, we incorporate in µ(X, Y)
more information from their distribution functions. When X and Y have
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discrete distributions, we may try finding out how many characteristics we
have to include, so that we can be sure that the entire distribution function
of X, FX(x) = P(X ≤ x) agrees to the entire distribution of Y, FY(x) =
P(Y ≤ x), on condition that all selected characteristics agree. For example,
let us consider

µ(X, Y) =
n∑

k = 1

|EXk − EYk| (3.1)

assuming that X and Y are the two dice considered above but this time
we do not know the probabilities pi and qi, i = 1, 6. How large should n
be so that µ(X, Y) = 0 guarantees that the distributions of X and Y agree
completely? Since µ(X, Y) = 0 is equivalent to

∣∣∣∣∣∣∣∣

EX = EY
EX2 = EY2

. . .

EXn = EYn

⇐⇒

∣∣∣∣∣∣∣∣∣

∑6
i = 1 i(pi − qi) = 0∑6
i = 1 i2(pi − qi) = 0

. . .∑6
i = 1 in(pi − qi) = 0,

then we need exactly five equations in order to guarantee that P(X = i) =
pi = P(Y = i) = qi, i = 1, 6. This is true because there are six differences
pi − qi in the equations and we need five equations from the ones above
plus the additional equation

6∑
i = 1

(pi − qi) = 0,

which holds because all probabilities should sum up to one.
The reasoning can readily be extended to any pair of discrete random

variables, the values of which are finitely many positive integers. For
instance, if X and Y are positive integers valued with k outcomes, then we
need k − 1 equations in order to solve the linear system.

In summary, we have discovered that if a given number of character-
istics of two discrete random variables with finitely many outcomes agree,
then their distribution functions agree completely. Then, instead of trying
to figure out how many characteristics to include in a metric of a given
type such as equation (3.1), is it possible to consider ways of measuring
the distance between X and Y directly through their distribution function?
This question is very reasonable because, using the distribution function,
we can calculate the probability of any event. Therefore, if the distribution
functions of two random variables coincide, then we have equal corre-
sponding probabilities of any event and we can conclude that they have
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the same probabilistic properties. In the pair of dice example, all events
are described by the set of all possible unions of the outcomes. Actually,
the distribution functions FX(x) and FY(x) of die X and die Y are easy to
calculate,

FX(x) =
{

0, [x] < 1∑[x]
i = 1 pi, [x] ≥ 1

=




0, x < 1
3/12, 1 ≤ x < 2
5/12, 2 ≤ x < 3
6/12, 3 ≤ x < 4
8/12, 4 ≤ x < 5
10/12, 5 ≤ x < 6
1, x ≥ 6 (3.2)

and

FY(x) =
{

0, [x] < 1∑[x]
i = 1 qi, [x] ≥ 1

=




0, x < 1
2/12, 1 ≤ x < 2
4/12, 2 ≤ x < 3
6/12, 3 ≤ x < 4
7/12, 4 ≤ x < 5
9/12, 5 ≤ x < 6
1, x ≥ 6, (3.3)

where [x] denotes the largest integer smaller than x.
One way to calculate the distance between two discrete cumulative

distribution functions (c.d.f.s) FX(x) and FY(x) is to calculate the maximal
absolute difference between them,

µ(X, Y) = max
x ∈ R

|FX(x) − FY(x)|. (3.4)

In the case of the two dice example, equation (3.4) can be readily computed,
maxx∈R|FX (x) − FY(x)| = 1/12. The maximum is attained at any x ∈ [1, 3)⋃

[4, 6).
Another approach is to compute the area closed between the graphs

of the two functions. If the area is zero, then due to the properties of the
c.d.f.s we can conclude that the two functions coincide. In the two dice
example, this can be done by summing the areas of the rectangles formed by
the two graphs, see Figure 3.1. One of the sides of the rectangles is always
equal to one because the random variables are integer valued. The formula
for the total area between the graphs of the two step functions is easy to
arrive at,

µ(X, Y) =
6∑

k = 1

∣∣∣∣∣
k∑

i = 1

pi −
k∑

i = 1

qi

∣∣∣∣∣ . (3.5)
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FIGURE 3.1 The plot shows the c.d.f.s of die X and die Y.
The area closed between the graphs of the two c.d.f.s is
shaded.

Using the probabilities given in Table 3.1, we compute that the
µ(X, Y) = 4/12. A formula similar to (3.5) holds in the general case
of positive, integer-valued random variables.

A similar approach can be adopted with respect to the quantile function
of a random variable Z, or the inverse of the c.d.f. If the inverse c.d.f.s
of two random variables coincide, then the distribution functions coincide.
As a result, the distance between two random variables can be measured
through the distance between the inverse of the c.d.f.s. The inverse F−1

Z (t) of
the c.d.f. is defined as

F−1
Z (t) = inf{x : FZ(x) ≥ t}.

For example, the inverse c.d.f.s of (3.2) and (3.3) are

F−1
X (t) =




1, 0 < t ≤ 3/12
2, 3/12 < t ≤ 5/12
3, 5/12 < t ≤ 6/12
4, 6/12 < t ≤ 8/12
5, 8/12 < t ≤ 10/12
6, 10/12 < t ≤ 1 (3.6)

and

F−1
Y (t) =




1, 0 < t ≤ 2/12
2, 2/12 < t ≤ 4/12
3, 4/12 < t ≤ 6/12
4, 6/12 < t ≤ 7/12
5, 7/12 < t ≤ 9/12
6, 9/12 < t ≤ 1. (3.7)
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FIGURE 3.2 The plot shows the
inverse c.d.f.s of die X and die Y.
The area closed between the
graphs of the two functions is
shaded.

In much the same way as with the c.d.f.s, the distance between the
inverse c.d.f.s, and, hence, between the corresponding random variables,
can be computed as the maximal absolute deviation between them,

µ(X, Y) = sup
t

|F−1
X (t) − F−1

Y (t)|,

or as the area between their graphs. Actually, the area between the graphs of
the c.d.f.s and the inverse c.d.f.s is one and the same, therefore formula (3.5)
holds. The graphs of the inverse c.d.f.s are shown on Figure 3.2. Compare
the shaded areas on Figure 3.1 and Figure 3.2.

3.2.3 Joint Distribution

In the previous two sections, we considered the discrete random variables X
and Y separately, without bearing in mind their joint distribution. The two
unfair dice we used to illustrate a few basic ways to construct metrics can be
dependent in a particular way and we can construct metrics directly using
their joint distribution. In this section, we give examples of such metrics and
instead of dice, to make things simpler, we use two coins.

First, let us consider a pair of fair coins with joint probabilities as
given in Table 3.2. The outcomes are traditionally denoted by zero and one
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TABLE 3.2 The Joint Probabilities of
the Outcomes of Two Fair Coins.

Coin X

0 1

Coin Y 0 1/4 1/4

1 1/4 1/4

and the joint probabilities indicate that the outcomes of the two coins are
independent events.

Both coins are fair and, therefore, they are indistinguishable if con-
sidered separately, as standalone random mechanisms. If we apply the
approach from the previous sections, we conclude that the distance between
the two random variables behind the random mechanism is zero. They have
the same distribution functions and, consequently, all kinds of characteris-
tics are also the same. In effect, any kind of metric based on the distribution
function would indicate zero distance between the two random variables.

Of course, the two random variables are not the same. They only have
identical probabilistic properties. For instance, the conditional probability
P(X = 0|Y = 1) = 1/2, and it follows that the events {X = 0, Y = 1} and
{X = 0, Y = 0} may both occur if we observe realizations of the pair. We
conclude that if we would like to measure the distance between the random
variables themselves, we need a different approach than the ones described
in the previous sections. If the random variables are defined on the same
probability space (i.e., if we know their joint distribution), then we can take
advantage of the additional information.

One way to calculate the distance between the two random variables is
through an absolute moment of the difference X − Y, for example,

µ(X, Y) = E|X − Y|. (3.8)

A simple calculation shows that µ(X, Y) = 1/2 for the joint distribution in
Table 3.2.

From probability theory we know that the joint distribution of a pair of
random variables (X, Y) provides a complete description of the probabilistic
properties of the pair. We can compute the one-dimensional distribution
functions; that is, we know the probabilistic properties of the variables if
viewed on a standalone basis, and we also know the dependence between
X and Y. If we keep the one-dimensional distributions fixed and change the
dependence only, does the distance between the random variables change?
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TABLE 3.3 The Joint Probabilities of
the Outcomes of Two Fair Coins
Yielding the Minimal E|X − Y|.

Coin X

0 1

Coin Y 0 1/2 0

1 0 1/2

The answer is yes and we can illustrate it with the metric (3.8) using the
joint distribution in Table 3.2. The absolute difference |X − Y| in this
case may take only two values: zero and one. Therefore, the mean E|X
− Y| can increase or decrease depending on the probabilities of the two
outcomes. We have to keep in mind that the one-dimensional probabilities
should remain unchanged, that is, the sums of the numbers in the rows
and the columns should be fixed to 1/2. Now it is easy to see how the
probability mass has to be reallocated so that we obtain the minimal E|X −
Y|. We have to increase the probability of the outcome (X = 0, Y = 0) and
(X = 1, Y = 1) and reduce the probabilities of the other two outcomes. We
arrive at the conclusion that the minimal E|X − Y| is attained at the joint
distribution given in Table 3.3. The minimal E|X − Y| is called the minimal
metric.

Note that the minimal E|X − Y| in this case is equal to zero. This is
quite reasonable because the joint distribution in Table 3.3 implies that the
only possible outcomes are (X = 0, Y = 0) and (X = 1, Y = 1), which
means that the two random variables cannot be distinguished. In all states
of the world with nonzero probability, they take identical values.

The exercise of finding the maximal E|X − Y| is an alternative to
finding the minimal metric. The same reasoning as above shows that now
we have to increase the probability of (X = 0, Y = 1) and (X = 1,
Y = 0) and reduce the probabilities of the other two outcomes. Finally, we
find that the maximal E|X − Y| is attained at the joint distribution given in
Table 3.4. The maximal E|X − Y| is called the maximal distance because it
does not have metric properties. We discuss these questions more deeply in
the appendix to this chapter.

Note that in this case the only possible outcomes are (X = 0, Y = 1)
and (X = 1, Y = 0) and thus the two random variables are, in a certain
sense, maximally distinct; that is, there is not a single state of the world
with nonzero probability in which the two random variables take identical
values.
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TABLE 3.4 The Joint Probabilities of
the Outcomes of Two Fair Coins
Yielding the Maximal E|X − Y|.

Coin X

0 1

Coin Y 0 0 1/2

1 1/2 0

TABLE 3.5 The Joint Probabilities of
the Outcomes Coin U and Coin V.

Coin U

0 1

Coin V 0 3/20 7/20

1 2/20 8/20

When considering two fair coins, we checked that the minimal
E|X − Y| is equal to zero because the two random variables take iden-
tical values in all states of the world with nonzero probability and, as a
consequence, the realizations of the absolute difference |X − Y| are zero
in them. The fact that the minimal E|X − Y| is zero is a consequence
of both the dependence, which we tune to minimize E|X − Y|, and the
one-dimensional distributions. If the one-dimensional distribution of the
coins were not the same then we would not obtain a zero distance from the
minimal metric. For example, let us consider two coins, coin U and coin V,
with joint probabilities as given in Table 3.5.

From the joint probabilities given in Table 3.5, it becomes clear that
coin V is fair, while coin U is unfair—the event 0 happens with probability
5/20 and the event 1 with probability 15/20. The same arguments as in
the fair-coin example show that the minimal E|U − V| and the maximal
E|U − V| are achieved at the joint distributions given in Tables 3.6 and
3.7. The minimal E|U − V| equals 1/4. It cannot equal zero because the
one-dimensional distributions are different.

There is a remarkable relationship between minimal metrics and the
metrics based on the distribution functions that we considered in the previ-
ous section. For example, the metric (3.5) applied to the one-dimensional
distributions of the two coins U and V yields exactly 1/4, which is also the



72 ADVANCED STOCHASTIC MODELS

TABLE 3.6 The Joint Probabilities
Yielding Minimal E|U − V|.

Coin U

0 1

Coin V 0 1/4 1/4

1 0 1/2

TABLE 3.7 The Joint Probabilities
Yielding Maximal E|U − V|.

Coin U

0 1

Coin V 0 0 1/2

1 1/4 1/4

value of the minimal E|U − V|. At this point, we leave this fact without
further comments. We get back to it in the next section.

3.3 PRIMARY, SIMPLE, AND COMPOUND METRICS

The goal of section 3.2 was to introduce the concept of measuring distances
between random quantities in the discrete case without giving much theoret-
ical background. Several examples of probability metrics were introduced
directly, without showing the underlying axiomatic structure. Important
concepts, such as minimal and maximal distances, were only illustrated.

The goal of the current section is to revisit the ideas considered in
section 3.2 but at a more advanced level. The examples are constructed with
continuous random variables as they were in the discrete case in section 3.2.

Important topics discussed in section 3.3 are:

■ Axiomatic construction of probability metrics.
■ Distinction between the three classes of primary, simple, and compound

metrics.
■ Minimal and maximal distances.
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3.3.1 Axiomatic Construction

Throughout section 3.2, we used the term metric without defining it.
Generally, a metric, or a metric function, defines the distance between
elements of a given set. Metrics are introduced axiomatically; that is, any
function that satisfies a set of axioms is a metric. We give a description of
the axiomatic construction of metrics used to measure distances between
random quantities in particular. In the appendix to this chapter, we include
several remarks on metrics in general.

Generally speaking, a functional,1 which measures the distance between
random quantities, is called a probability metric. These random quanti-
ties can be of a very general nature. For instance, they can be random
variables, such as the daily returns of equities, the daily change of an
exchange rate, and the like, or stochastic processes, such as a price evo-
lution in a given period, or much more complex objects such as the daily
movement of the shape of the yield curve. We limit the discussion to
one-dimensional random variables only. Rachev (1991) provides a more
general treatment.

Not any functional can be used to measure distances between random
variables. There are special properties that should be satisfied in order for
the functional to be called a probability metric. These special properties
are the axioms that constitute the building blocks behind the axiomatic
construction. They are very natural and intuitive. The first axiom states that
the distance between a random quantity and itself should be zero while in
general, it is a nonnegative number,

Property 1. µ(X, Y) ≥ 0 for any X, Y and µ(X, X) = 0.

Any other requirement will necessarily result in logical inconsistencies.
The second axiom demands that the distance between X and Y should

be the same as the distance between Y and X and is referred to as the
symmetry axiom,

Property 2. µ(X, Y) = µ(Y, X) for any X, Y.

1A functional is a function that takes other functions as its arguments and returns
a numeric value. Random variables are complicated objects that are viewed as
functions defined on a probability space. Any probability metric takes two random
variables as arguments and returns a single number that denotes the distance between
the two random variables. Therefore, probability metrics are defined as functionals
rather than functions.
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The third axiom is essentially an abstract version of the triangle
inequality—the distance between X and Y is not larger than the sum
of the distances between X and Z and between Z and Y,

Property 3. µ(X, Y) ≤ µ(X, Z) + µ(Z, Y) for any X, Y, Z.

Any functional satisfying Property 1, 2, and 3 is called probability
metric.

The appendix to this chapter gives a more technical treatment of the
axioms and also provides a few caveats.

3.3.2 Primary Metrics

The theory of probability metrics distinguishes between three categories of
probability metrics. The principal criterion is contained in the answer to
the question: What are the implications for X and Y, provided that they
have a zero distance? At first thought, the question may seem redundant.
Intuitively, if the distance between X and Y is zero, then they should
coincide. This line of thought is fine, but it is incomplete when talking
about random elements in general. Suppose that X and Y stand for the
random returns of two equities. Then what is meant by X being the same
or coincident to Y? It is that X and Y are indistinguishable in a certain
sense. This sense could be to the extent of a given set of characteristics of
X and Y. For example, X is to be considered indistinguishable to Y if their
expected returns and variances are the same. Therefore, a way to define the
distance between them is through the distance between the corresponding
characteristics, that is, how much their expected returns and variances
deviate. One example is

µ(X, Y) = |EX − EY| + |σ 2(X) − σ 2(Y)|.

Such probability metrics are called primary metrics, and they imply the
weakest form of sameness. Primary metrics may turn out to be relevant
in the following situation. Suppose that we adopt the normal distribution
to model the returns of two equities X and Y. We estimate the mean of
equity X to be larger than the mean of equity Y, EX > EY. We may want
to measure the distance between X and Y in terms of their variances only
because if |σ 2(X)−σ 2(Y)| turns out to be zero, then, on the basis of our
assumption, we conclude that we prefer X to Y. Certainly this conclusion
may turn out to be totally incorrect because the assumption of normality
may be completely wrong. Section 3.2.1 contains more examples with
discrete random variables.
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Common examples of primary metrics include:

1. The engineer’s metric.

EN(X, Y) := |EX − EY|,

where X and Y are random variables with finite mathematical expecta-
tion, EX < ∞ and EY < ∞.

2. The absolute moments metric.

MOMp(X, Y) := |mp(X) − mp(Y)|, p ≥ 1,

where mp(X) = (E|X|p)1/p and X and Y are random variables with finite
moments, E|X|p < ∞ and E|Y|p < ∞, p ≥ 1.

3.3.3 Simple Metrics

From probability theory we know that a random variable X is completely
described by its cumulative distribution function FX(x) = P(X ≤ x). If
we know the distribution function, then we can calculate all kinds of
probabilities and characteristics. In the case of equity returns, we can
compute the probability of the event that the return falls below a given
target or the expected loss on condition that the loss is below a target.
Therefore, zero distance between X and Y can imply complete coincidence
of the distribution functions FX(x) and FY(x) of X and Y. Of course, this
implies complete coincidence of their characteristics and is, therefore, a
stronger form of sameness. Probability metrics that essentially measure the
distance between the corresponding distribution functions are called simple
metrics.

In line with the arguments made in section 3.2.2, here we can ask the
same question. By including additional characteristics in a primary metric,
we include additional information from the distribution functions of the
two random variables. In the general case of continuous random variables,
is it possible to determine how many characteristics we need to include so
that the primary metric turns essentially into a simple metric? In contrast
to the discrete case, the question does not have a simple answer. Generally,
a very rich set of characteristics ensure that the distribution functions
coincide. Such a set is, for example, the set of all moments Eg(X) where
the function g is a bounded, real-valued continuous function. Clearly, this
is without any practical significance because this set of characteristics is
not denumerable; that is, it contains more characteristics than the natural
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numbers. Nevertheless, this argument shows the connection between the
classes of primary and simple metrics.

Common examples of simple metrics are stated in the following:

1. The Kolmogorov metric.

ρ(X, Y) := sup
x ∈ R

|FX(x) − FY(x)|, (3.9)

where FX(x) is the distribution function of X and FY(x) is the distribution
function of Y. The Kolmogorov metric is also called the uniform metric.
It is applied in the CLT in probability theory.

Figure 3.3 illustrates the Kolmogorov metric. The c.d.f.s of two
random variables are plotted on the top plot and the bottom plot shows
the absolute difference between them, |FX(x)−FY(x)|, as a function
of x. The Kolmogorov metric is equal to the largest absolute difference
between the two c.d.f.s. A arrow shows where it is attained.

If the random variables X and Y describe the return distribution
of two common stocks, then the Kolmogorov metric has the following
interpretation. The distribution function FX(x) is by definition the
probability that X loses more than a level x, FX(x) = P(X ≤ x).
Similarly, FY(x) is the probability that Y loses more than x. Therefore,
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FIGURE 3.3 Illustration of the Kolmogorov metric.
The bottom plot shows the absolute difference
between the two c.d.f.s plotted on the top plot. The
arrow indicates where the largest absolute difference
is attained.



Probability Metrics 77

the Kolmogorov distance ρ(X, Y) is the maximum deviation between
the two probabilities that can be attained by varying the loss level x. If
ρ(X, Y) = 0, then the probabilities that X and Y lose more than a loss
level x coincide for all loss levels.

Usually, the loss level x, for which the maximum deviation is
attained, is close to the mean of the return distribution, that is, the
mean return. Thus, the Kolmogorov metric is completely insensitive to
the tails of the distribution which describe the probabilities of extreme
events—extreme returns or extreme losses.

2. The Lévy metric.

L(X, Y) := inf
ε > 0

{FX(x − ε) − ε ≤ FY(x)

≤ FX(x + ε) + ε, ∀x ∈ R} (3.10)

The Lévy metric is difficult to calculate in practice. It has important
theoretic application in probability theory as it metrizes the weak
convergence.

The Kolmogorov metric and the Lévy metric can be regarded as met-
rics on the space of distribution functions because ρ(X, Y) = 0 and L(X,
Y) = 0 imply coincidence of the distribution functions FX(x) and FY(x).

The Lévy metric can be viewed as measuring the closeness between
the graphs of the distribution functions while the Kolmogorov metric
is a uniform metric between the distribution functions. The general
relationship between the two is

L(X, Y) ≤ ρ(X, Y). (3.11)

For example, suppose that X is a random variable describing the
return distribution of a portfolio of stocks and Y is a deterministic
benchmark with a return of 2.5% (Y = 2.5%). (The deterministic
benchmark in this case could be either the cost of funding over a specified
time period or a target return requirement to satisfy a liability such as a
guaranteed investment contract.) Assume also that the portfolio return
has a normal distribution with mean equal to 2.5% and a volatility σ .
Since the expected portfolio return is exactly equal to the deterministic
benchmark, the Kolmogorov distance between them is always equal to
1/2 irrespective of how small the volatility is,

ρ(X, 2.5%) = 1/2, ∀ σ > 0.

Thus, if we rebalance the portfolio and reduce its volatility, the
Kolmogorov metric will not register any change in the distance between
the portfolio return and the deterministic benchmark. In contrast to the
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Kolmogorov metric, the Lévy metric will indicate that the rebalanced
portfolio is closer to the benchmark.

3. The Kantorovich metric.

κ(X, Y) :=
∫

R

|FX(x) − FY(x)|dx. (3.12)

where X and Y are random variables with finite mathematical expecta-
tion, EX < ∞ and EY < ∞.

The Kantorovich metric can be interpreted along the lines of the Kol-
mogorov metric. Suppose that X and Y are random variables describing
the return distribution of two common stocks. Then, as we explained,
FX(x) and FY(x) are the probabilities that X and Y, respectively, lose
more than the level x. The Kantorovich metric sums the absolute devi-
ation between the two probabilities for all possible values of the loss
level x. Thus, the Kantorovich metric provides aggregate information
about the deviations between the two probabilities. This is illustrated
on Figure 3.4.

In contrast to the Kolmogorov metric, the Kantorovich metric
is sensitive to the differences in the probabilities corresponding to
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FIGURE 3.4 Illustration of the Kantorovich metric. The bottom plot shows the
absolute difference between the two c.d.f.s plotted on the top plot. The
Kantorovich metric equals the shaded area.
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extreme profits and losses but to a small degree. This is because the
difference |FX(x)−FY(x)| converges to zero as the loss level (x) increases
or decreases and, therefore, the contribution of the terms corresponding
to extreme events to the total sum is small. As a result, the differences
in the tail behavior of X and Y is reflected in κ(X, Y) but only to a
small extent.

4. The Lp-metrics between distribution functions.

θp(X, Y) :=
(∫ ∞

−∞
|FX(x) − FY(x)|pdx

)1/p

, p ≥ 1, (3.13)

where X and Y are random variables with finite mathematical expecta-
tion, EX < ∞ and EY < ∞.

The financial interpretation of θp(X, Y) is similar to the inter-
pretation of the Kantorovich metric, which appears as a special case,
κ(X, Y) = θ1(X, Y). The metric θp(X, Y) is an aggregate metric of the
difference between the probabilities that X and Y lose more than the
level x. The power p exercises a very special effect. It makes the smaller
contributors to the total sum of the Kantorovich metric become even
smaller contributors to the total sum in (3.13). Thus, as p increases,
only the largest absolute differences |FX(x)−FY(x)| start to matter. At the
limit, as p approaches infinity, only the largest difference |FX(x)−FY(x)|
becomes significant and the metric θ∞(X, Y) turns into the Kolmogorov
metric. Therefore, if we would like to accentuate on the differences
between the two return distributions in the body of the distribution, we
can choose a large value of p.

5. The uniform metric between inverse distribution functions.

W(X, Y) = sup
0 < t < 1

|F−1
X (t) − F−1

Y (t)|, (3.14)

where F−1
X (t) is the inverse of the distribution function of the random

variable X.
The uniform metric between inverse distribution functions has

the following financial interpretation. Suppose that X and Y describe
the return distribution of two common stocks. Then the quantity
−F−1

X (t) is known as the value-at-risk (VaR) of common stock X
at confidence level (1 − t)100%. It is used as a risk measure and
represents a loss threshold such that losing more than it happens with
probability t. The probability t is also called the tail probability because
the VaR is usually calculated for high confidence levels, e.g., 95%,
99%, and the corresponding loss thresholds are in the tail of the
distribution.
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FIGURE 3.5 Illustration of the uniform metric
between inverse distribution functions. The right
plot shows the absolute difference between the two
inverse c.d.f.s plotted on the left plot. The arrow
indicates where the largest absolute difference is
attained.

Therefore, the difference F−1
X (t) − F−1

Y (t) is nothing but the difference
between the VaRs of X and Y at confidence level (1 − t)100%. Thus,
the probability metric W(X, Y) is the maximal difference in absolute
value between the VaRs of X and Y when the confidence level is varied.
Usually, the maximal difference is attained for values of t close to
zero or one that correspond to VaR levels close to the maximum loss
or profit of the return distribution. As a result, the probability metric
W(X, Y) is entirely centered on the extreme profits or losses.

Figure 3.5 illustrates this point. Note that the inverse c.d.f.s plotted
on Figure 3.5 correspond to the c.d.f.s on Figure 3.3.

6. The Lp-metrics between inverse distribution functions.

�p(X, Y) :=
(∫ 1

0
|F−1

X (t) − F−1
Y (t)|pdt

)1/p

, p ≥ 1, (3.15)

where X and Y are random variables with finite mathematical expecta-
tion, EX < ∞ and EY < ∞ and F−1

X (t) is the inverse of the distribution
function of the random variable X.

The metric �1(X, Y) is also known as first difference pseudomoment
as well as the average metric in the space of distribution functions
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because �1(X, Y) = θ1(X, Y). Another notation used for this metric
is κ(X, Y), note that θ1(X, Y) = κ(X, Y). This special case is called
the Kantorovich metric because great contributions to the properties of
�1(X, Y) were made by Kantorovich in 1940s.

We provide another interpretation of the Kantorovich metric arising
from equation (3.15). Suppose that X and Y are random variables
describing the return distribution of two common stocks. We explained
that the VaRs of X and Y at confidence level (1 − t)100% are equal to
−F−1

X (t) and −F−1
Y (t) respectively. Therefore, the metric

�1(X, Y) =
∫ 1

0
|F−1

X (t) − F−1
Y (t)|dt

equals the sum of the absolute differences between the VaRs of X and Y
across all confidence levels. In effect, it provides aggregate information
about the deviations between the VaRs of X and Y for all confidence
levels. This is illustrated on Figure 3.6.
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FIGURE 3.6 Illustration of the �1(X, Y) metric. The right plot shows the absolute
difference between the two inverse c.d.f.s plotted on the left plot. The �1(X, Y)
metric equals the shaded area.



82 ADVANCED STOCHASTIC MODELS

The power p in equation (3.15) acts in the same way as in the case
of θp(X, Y). The smaller contributors to the sum in �1(X, Y) become
even smaller contributors to the sum in �p(X, Y). Thus, as p increases,
only the larger absolute differences between the VaRs of X and Y across
all confidence levels become significant in the total sum. The larger
differences are in the tails of the two distributions. Therefore, the metric
�p(X, Y) accentuates on the deviations between X and Y in the zone of
the extreme profits or losses. At the limit, as p approaches infinity, only
the largest absolute differences matter and the �p(X, Y) metric turns
into the uniform metric between inverse c.d.f.s W(X, Y).

7. The uniform metric between densities.

�(X, Y) := sup
x ∈ R

|fX(x) − fY(x)|, (3.16)

where f X(x) = F′
X(x) is the density of the random variable X.

Figure 3.7 illustrates the uniform metric between densities. The
densities of two random variables are plotted on the plot and the
bottom plot shows the absolute difference between them, |f X(x)−f Y(x)|,
as a function of x. The uniform metric between densities is equal to the
largest absolute difference between the two densities. A arrow shows
where it is attained.
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FIGURE 3.7 Illustration of the uniform metric
between densities. The bottom plot shows the
absolute difference between the two densities plotted
on the top plot. The arrow indicates where the
largest absolute difference is attained.
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The uniform metric between densities can be interpreted through
the link between the density function and the c.d.f. The probability that
X belongs to a small interval [x, x + �x], where �x > 0 is small number,
can be represented approximately2 as

P(X ∈ [x, x + �x]) ≈ fX(x).�x.

Suppose that X and Y are two random variables describing the
return distribution of two common stocks. Then the difference between
the densities f X(x)−f Y(x) can be viewed as a quantity approximately
proportional to the difference between the probabilities that X and Y
realize a return belonging to the small interval [x, x + �x],

P(X ∈ [x, x + �x]) − P(Y ∈ [x, x + �x]).

Thus, the largest absolute difference between the two density func-
tions is attained at such a return level x that the difference between
the probabilities3 of X and Y gaining return [x, x + �x] is largest in
absolute value.

Just as in the case of the Kolmogorov metric, the value of x for
which the maximal absolute difference between the densities is attained
is close to the mean return. Therefore, the metric �(X, Y) is not sensitive
to extreme losses or profits.

8. The total variation metric.

σ (X, Y) = sup
all events A

|P(X ∈ A) − P(Y ∈ A)|. (3.17)

If the random variables X and Y have densities f X(x) and f Y(x), then
the total variation metric can be represented through the area closed
between the graphs of the densities,

σ (X, Y) = 1
2

∫ ∞

−∞
|fX(x) − fY(x)|dx. (3.18)

In financial terms, the interpretation is straightforward. Suppose
that X and Y are random variables describing the return distribution of
two common stocks. We can calculate the probabilities P(X ∈ A) and
P(Y ∈ A) where A is an arbitrary event. For example, A can be the event

2Technically, this is the first-order Taylor series approximation of the distribution
function.
3This is not a joint probability.
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that the loss exceeds a given target x, or that the loss is in a given bound
(x%, y%), or in an arbitrary unions of such bounds. The total variation
metric is the maximum absolute difference between these probabilities.
The reasoning is very similar to the one behind the interpretation of
the Kolmogorov metric. The principal difference from the Kolmogorov
metric is that in the total variation metric, we do not fix the events
to be only of the type ‘‘losses exceed a given target x.’’ Instead, we
calculate the maximal difference by looking at all possible types of
events. Therefore, the general relationship4 between the two metrics is

ρ(X, Y) ≤ σ (X, Y). (3.19)

The definition in equation (3.17) is useful to arrive at an inter-
pretation but cannot be used to compute the total variation metric in
practice. This can be done using the more convenient equation (3.18).

Note that formula (3.5) is an application of κ(X, Y) for discrete random
variables. In the example in section 3.2 concerning the inverse distribution
functions of discrete random variables, we took advantage of the fact that
�1(X, Y) = κ(X, Y), which is obvious for discrete distributions.

Not all instances of simple metrics involve distribution functions directly
such as e.g. �p(X, Y) and the like. Nevertheless, if any of these metrics turn
into zero, then it follows that the distribution functions of the corresponding
random variables coincide. Other examples of simple metrics are given in
the appendix to this chapter.

3.3.4 Compound Metrics

We noted that coincidence of distribution functions is stronger than coin-
cidence of certain characteristics, such as absolute moments. There is a
stronger form of identity than the coincidence of distribution functions,
which is actually the strongest possible. Consider the case in which no mat-
ter what happens, the returns of equity 1 and equity 2 are identical. Hence,
we can describe the two random variables as being coincident in each state
of the world. As a consequence, their distribution functions are the same
because the probabilities of all events of the return of equity 1 are exactly
equal to the corresponding events of the return of equity 2. This identity
is also known as almost everywhere identity because it considers all states
of the world that happen with nonzero probability. The probability metrics

4Compare equations (3.11) and (3.19) in order to see the relationship between the
Kolmogorov, the Lévy and the total variation metrics.
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that imply the almost everywhere identity are called compound metrics.
Common examples of compound metrics are stated in the following:

1. The p-average compound metric.

Lp(X, Y) = (E|X − Y|p)1/p, p ≥ 1, (3.20)

where X and Y are random variables with finite moments, E|X|p < ∞
and E|Y|p < ∞, p ≥ 1.

From a financial viewpoint, we can recognize two widely used mea-
sures of deviation that belong to the family of the p-average compound
metrics. If p is equal to one, we obtain the mean absolute deviation
between X and Y,

L1(X, Y) = E|X − Y|.

Suppose that X describes the returns of a stock portfolio and Y
describes the returns of a benchmark portfolio. Then the mean absolute
deviation is a way to measure how closely the stock portfolio tracks the
benchmark. If p is equal to two, we obtain

L2(X, Y) =
√

E(X − Y)2

which is a quantity very similar to the tracking error between the two
portfolios. The problem of tracking a benchmark is considered in more
detail in Chapter 9.

2. The Ky Fan metric.

K(X, Y) := inf{ε > 0 : P(|X − Y| > ε) < ε}, (3.21)

where X and Y are real-valued random variables. The Ky Fan metric
has an important application in theory of probability as it metrizes
convergence in probability of real-valued random variables.

Assume that X is a random variable describing the return distribu-
tion of a portfolio of stocks and Y describes the return distribution of a
benchmark portfolio. The probability

P(|X − Y| > ε) = P
(
{X < Y − ε}

⋃
{X > Y + ε}

)

concerns the event that either the portfolio will outperform the bench-
mark by ε or it will underperform the benchmark by ε. Therefore, the
quantity 2ε can be interpreted as the width of a performance band.
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The probability 1 − P(|X − Y| > ε) is actually the probability that the
portfolio stays within the performance band, that is, it does not deviate
from the benchmark more than ε in an upward or downward direction.

As the width of the performance band decreases, the probability
P(|X − Y| > ε) increases because the portfolio returns will be more
often outside a smaller band. The Ky Fan metric calculates the width
of a performance band such that the probability of the event that the
portfolio return is outside the performance band is smaller than half of it.

3. The Birnbaum-Orlicz compound metric.

�p(X, Y) =
(∫ ∞

−∞
τ p(t; X, Y)dt

)1/p

, p ≥ 1, (3.22)

where τ (t; X, Y) = P(X ≤ t < Y) + P(Y ≤ t < X).
The function τ (t;X, Y), which is the building block of the Birnbaum-

Orlicz compound metric, can be interpreted in the following way.
Suppose that X and Y describe the return distributions of two common
stocks. The function argument, t, can be regarded as a performance
divide. The term P(X ≤ t < Y) is the probability that X underperforms t
and, simultaneously, Y outperforms t.5 If t is a very small number, then
the probability P(X ≤ t < Y) will be close to zero because the stock
X will underperform it very rarely. If t is a very large number, then
P(X ≤ t < Y) will again be close to zero because stock Y will rarely
outperform it. A similar conclusion holds for other term of τ (t; X, Y) as
it only treats the random variables in the opposite way. Therefore, we
can conclude that the function τ (t; X, Y) calculates the probabilities of
the relative underperformance or outperformance of X and Y, and has
a maximum for moderate values of the performance divide t.

In the case of p = 1, the Birnbaum-Orlicz compound metric sums all
probabilities of this type for all values of the performance divide t. Thus,
it is an aggregate measure of the deviations in the relative performance
of X and Y. In fact, it is exactly equal to the mean absolute deviation,

�1(X, Y) = E|X − Y| = L1(X, Y).

3.3.5 Minimal and Maximal Metrics

From the discussion of the three classes of probability metrics, it becomes
apparent that they are interrelated. We noted that they are contained in

5Note that we consider joint probabilities in contrast to the previous section where
we considered probabilities on a standalone basis.
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one another. We also noted that primary metrics can be ‘‘enriched’’ so
that they turn into simple metrics by the following process. Suppose that
we have a list of characteristics which defines the primary metric. Then
we start adding additional characteristics which cannot be expressed in
any way by means of the ones currently in the list. That is, by enriching
the list, we are making our criterion for sameness, or distance, finer and
finer. Assume that this process continues indefinitely, until we exhaust all
possible characteristics. The primary metric obtained by means of the set of
all possible characteristics is actually a simple metric. This is true because
the set of all possible characteristics is so rich that by matching it, we end
up with coincident distribution functions and therefore the primary metric
turns into a simple one.

The theory of probability metrics shows general approaches of passing
from one class to another. For instance, assume that we have a compound
metric. As we remarked, it is influenced not only by the distribution functions
but also by the dependence between the random variables. We can ask the
question, is it possible to construct a simple metric on the basis of it? The
answer is positive and the simple metric is built by constructing the minimal
metric. The process is the following. Choose two random variables X and Y.
Compute the distances between all possible random variables having the
same distribution as the ones selected using the compound metric. Set the
minimum of these distances to be the distance between the random variables
X and Y. The result is a simple metric because due to the minimization, we
remove the influence on the dependence structure and only the distribution
functions remain. In essence, by this process, we associate a simple metric
to any compound metric.

The minimal metrics have an important place in the theory of probability
metrics and there is notation reserved for them. Denote by µ the selected
compound metric. The functional µ̂ defined by the equality

µ̂(X, Y) := inf{µ(X̃, Ỹ) : X̃ d= X, Ỹ
d= Y} (3.23)

is said to be the minimal metric with respect to µ.6

Many of the well-known simple metrics arise as minimal metrics
with respect to some compound metric. For example, the Lp metrics
between distribution functions and inverse distribution functions defined
in equations (3.13) and (3.15) are minimal metrics with respect to the
p-average compound metric (3.20) and the Birnbaum-Orlicz compound

6Rachev (1991) provides a mathematical proof that the functional defined by
equation (3.23) is indeed a probability metric. This fact is a nontrivial one.
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metric (3.22),
�p(X, Y) = L̂p(X, Y)

and
θp(X, Y) = �̂p(X, Y).

The Kolmogorov metric (3.9) can be represented as a special case of the
simple metric θp,

ρ(X, Y) = θ∞(X, Y)

and, therefore, it also arises as a minimal metric,

ρ(X, Y) = �̂∞(X, Y).

Not all simple metrics arise as minimal metrics. A compound metric
such that its minimal metric is equivalent to a given simple metric is called
protominimal with respect to the given simple metric. For instance, �1(X, Y)
is protominimal to the Kantorovich metric κ(X, Y). As we noted, not all
simple metrics have protominimal ones and, also, some simple metrics have
several protominimal ones.

The definition of the minimal metric (3.23) shows that the compound
metric and the minimal metric relative to it are related by the inequality

µ̂(X, Y) ≤ µ(X, Y).

We can find an upper bound to the compound metric by a process very
similar to finding the minimal metric. We choose two random variables
X and Y and compute the distances by means of the compound metric
between all possible random variables having the same distribution as the
ones selected. Then we set the maximum of these distances to be the needed
upper bound. Naturally, this upper bound is called maximal metric. It is
denoted by

µ̌(X, Y) := sup {µ(X̃, Ỹ) : X̃ d= X, Ỹ d= Y} (3.24)

Thus, we can associate a lower and an upper bound to each compound
metric,

µ̂(X, Y) ≤ µ(X, Y) ≤ µ̌(X, Y).

It turns out that the maximal distance is not a probability metric because
the identity property may not hold, µ̌(X, X) > 0, as it is an upper bound
to the compound metric µ(X, Y). Functionals that satisfy only Property 2
and Property 3 from the defining axioms of probability metrics are called
moment functions. Therefore, the maximal metric is a moment function.
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We illustrate the notions of minimal and maximal metrics in the next
example. Suppose that the pair of random variables (X, Y) has some bivariate
distribution with zero-mean normal marginals, X ∈ N(0, σ 2

X), Y ∈ N(0, σ 2
Y ).

The particular form of the bivariate distribution, or how the two normals are
coupled together in a two-dimensional distribution, is insignificant. Let us
calculate the minimal and the maximal metrics of the 2-average compound
metric L2(X, Y) = (E(X − Y)2)1/2. In fact, the compound metric L2(X, Y)
stands for the standard deviation of the difference X − Y. The variance of
the difference, σ 2

X − Y, can be calculated explicitly,

σ 2
X − Y = σ 2

X + σ 2
Y − 2σXσYcorr(X, Y),

where corr(X, Y) denotes the correlation coefficient between X and Y.
Holding the one-dimensional distributions fixed and varying the dependence
model, or the copula function, in this case means that we hold fixed the
variances σ 2

X and σ 2
Y and we vary the correlation corr(X, Y). This is true

because the one-dimensional normal distributions are identified only by
their variances. Recall that the absolute value of the correlation coefficient
is bounded by one,

−1 ≤ corr(X, Y) ≤ 1,

and, as a result, the lower and upper bounds of the variance σ 2
X − Y are

σ 2
X + σ 2

Y − 2σXσY ≤ σ 2
X − Y ≤ σ 2

X + σ 2
Y + 2σXσY .

Note that the bounds for the correlation coefficient are not tied to any
sort of distributional hypothesis and are a consequence of a very fundamen-
tal inequality in mathematics known as the Cauchy-Bunyakovski-Schwarz
inequality. As a result, we obtain bounds for the standard deviation of the
difference X − Y, which is the two-average compound metric,

|σX − σY| ≤ L2(X, Y) ≤ σX + σY.

We have followed strictly the process of obtaining minimal and maximal
metrics. Therefore, we conclude that, in the setting of the example,

L̂2(X, Y) = |σX − σY|
and

L2(X, Y) = σX + σY .

In fact, the assumption of normality for the one-dimensional distribu-
tions is not very limiting. The minimal and the maximal metrics have the
above form for other one-dimensional distributions as well.
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An example of an explicit expression for a maximal metric is the
p-average maximal distance

Ľp(X, Y) =
(∫ 1

0
(F−1

X (t) − F−1
Y (1 − t))pdt

)1/p

, p ≥ 1 (3.25)

where F−1
X (t) is the inverse of the distribution function of the random

variable X.

3.4 SUMMARY

In this chapter, we provided a basic introduction into the theory of proba-
bility metrics. We illustrated the basic ideas starting from the more simple
discrete case and then proceeding to the general case of arbitrary probability
distributions. We considered the classes of primary, simple, and compound
probability metrics and the construction of minimal and maximal metrics.
We gave numerous examples of probability metrics, which were interpreted
within the context of finance.

3.5 TECHNICAL APPENDIX

In the field of mathematics, the problem of how to measure distance between
various objects, such as vectors, matrices, functions, and the like, is well
known, and its importance is well appreciated. Such distances are measured
by means of special functions called metrics.

The notion of a metric function, usually denoted by ρ(x, y), is actually
fundamental. It defines the distance between elements of a given set. The
most common example is the Euclidean metric,

ρ(x, y) =
√√√√ n∑

i = 1

(x2
i − y2

i ),

where x = (x1, . . . , xn) and y = (y1, . . . , yn) are vectors in R
n, which has

a very intuitive meaning in the real plane. It calculates the length of the
straight line connecting the two points x and y.

Metric functions are defined through a number of axioms. A set S is
said to be a metric space endowed with the metric ρ if ρ is a mapping from
the product S × S to [0, ∞) having the following properties for each x, y,
z ∈ S:
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Identity property. ρ(x, y) = 0 ⇐⇒ x = y

Symmetry. ρ(x, y) = ρ(y, x)

Triangle inequality. ρ(x, y) ≤ ρ(x, z) + ρ(z, y)

An example of a metric space is the n-dimensional vector space R
n with

the metric

ρ(x, y) = ||x − y||p =
(

n∑
i = 1

|xi − yi|p
)1/p

, p ≥ 1.

Clearly, the Euclidean metric appears when p = 2.
The same ideas behind the definition of a metric function ρ are used

in the definition of probability metrics that we discussed in the chapter.
However, there are certain peculiarities which arise because the random
variables are more complicated objects. In the next section, we comment on
the defining properties of probability metrics.

3.5.1 Remarks on the Axiomatic Construction
of Probability Metrics

In this section, we include additional remarks on the axioms discussed in
the chapter, as well as state relaxations of some of them leading to different
notions such as probability distances, semimetrics, and quasimetrics.

The general assumption throughout this section is that the random
variables we consider are defined in one and the same probability space
(�, A, P) and take values on the real line R. There are also additional
regularity conditions that we do not mention here. Rachev (1991) considers
a much more general setting and provides all necessary technical conditions.

We already noted in section 3.3.1 that the first axiom, called the identity
property, is a reasonable requirement we cannot do without in the problem
of calculating distances. In the theory of probability metrics, we distinguish
between two varieties,

ID. µ(X, Y) ≥ 0 and µ(X, Y) = 0, if and only if X ∼ Y.

ĨD. µ(X, Y) ≥ 0 and µ(X, Y) = 0, if X ∼ Y.

The notation X ∼ Y denotes that X is equivalent to Y. The meaning
of equivalence depends on the type of metrics. If we consider compound
metrics, then the equivalence is in almost sure sense. If we consider simple
metrics, then ∼ means equality of distribution and, finally, if we consider
primary metrics, then ∼ stands for equality of some characteristics of
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X and Y. The axiom ĨD is weaker than ID. Actually, the primary and the
simple probability metrics are semimetrics when considered on the space of
pairs of random variables.

The symmetry axiom makes sense in the general context of calculating
distances between elements of a space,

SYM. µ(X, Y) = µ(Y, X).

The third axiom is the triangle inequality,

TI. µ(X, Y) ≤ µ(X, Z) + µ(Z, Y) for any X, Y, Z.

The triangle inequality is important because it guarantees, together with
ID, that µ is continuous in any of the two arguments. This nice mathematical
property appears as a result of the consequence of TI,

|µ(X, Y) − µ(X, Z)| ≤ µ(Z, Y).

Observe that if the distance between Z and Y as measured by µ(Z, Y)
is small, so is the left-hand side of the inequality above. That is, intuitively,
small deviations in the second argument of the functional µ(X, ·) correspond
to small deviations in the functional values. The same conclusion holds for
the first argument.

The triangle inequality can be relaxed to the more general form called
triangle inequality with parameter K,

T̃I. µ(X, Y) ≤ K(µ(X, Z) + µ(Z, Y)) for any X, Y, Z and K ≥ 1.

Notice that the traditional version TI appears when K = 1.
Notice that in the two versions of the triangle inequality, the statement

that the inequality holds for any X, Y, Z is not very precise. In fact, we
are evaluating the functional µ for a pair of random variables, for example
(X, Y), and µ shows the distance between the random variables in the
pair. The pair cannot be dismantled to its constituents because the random
variables X and Y are coupled together by their dependence structure and
if µ is a compound functional, then how X and Y are coupled is important.
Therefore, the triangle inequality holds for the three pairs (X, Y), (X, Z),
and (Y, Z).

As matter of fact, the three pairs cannot be arbitrary. Suppose that we
choose the first pair (X, Y) and the second pair (X, Z); that is, we fix the
dependence between X and Y in the first pair, and X and Z in the second
pair. Under these circumstances, it is obvious that the dependence between
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Z and Y cannot be arbitrary but should be consistent with the dependence
of the chosen pairs (X, Y) and (X, Z). But then, is there any freedom in the
choice of the pair (Z, Y)? Do these arguments mean that by choosing the
two pairs (X, Y) and (X, Z) we have already fixed the pair (Z, Y)? It turns
out that the pair (Z, Y) is not fixed by the choice of the other two ones. We
are free to choose the dependence in the pair (Z, Y) as long as we do not
break the following consistency rule:

Consistency rule. The three pairs of random variables (X, Y), (X, Z),
and (Z, Y) should be chosen in such a way that there exists a
consistent three-dimensional random vector (X, Y, Z) and the three
pairs are its two-dimensional projections.

Here is an example illustrating the consistency rule. Choose a metric
µ. Suppose that we would like to verify if the triangle inequality holds by
choosing three pairs of random variables. The distribution of all pairs is
assumed to be bivariate normal with zero mean, (X, Y) ∈ N(0, �1), (X, Z) ∈
N(0, �2), and (Z, Y) ∈ N(0, �3) where the covariance matrices are given by

�1 =
(

1 0.99
0.99 1

)
,

�2 =
(

1 0.99
0.99 1

)
,

and

�3 =
(

1 0
0 1

)
.

Do these three pairs satisfy the consistency rule? Note that the cor-
relation between X and Y is very strongly positive, corr(X, Y) = 0.99.
The correlation between X and Z is also very strongly positive, corr(X, Z)
= 0.99. Then, is it possible that Z and Y be independent? The answer is
no because, under our assumption, when X takes a large positive value,
both X and Y take large positive values, which implies strong dependence
between them. The consistency rule states that the dependence between Y
and Z should be such that the three pairs can be consistently embedded in
a three-dimensional vector. Then, can we find a value for the correlation
between Z and Y so that this becomes possible? We can find a partial
answer to this question by searching for a consistent three-dimensional
normal distribution such that its two dimensional projections are the given
bivariate normal distributions. That is, we are free to choose the correlation
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between Z and Y, corr(Z, Y) = σ ZY, on condition that the matrix,

 1 0.99 0.99

0.99 1 σZY

0.99 σZY 1


 ,

is a valid covariance matrix, i.e. it should be positive definite. For this
particular example, it can be calculated that the consistency condition holds
if σ ZY ≥ 0.9602.

Combinations of the defining axioms considered above imply different
properties and, consequently, the functionals defined by them have specific
names. If a functional µ satisfies:

ID, SYM and TI. Then µ is called probability metric.

ĨD, SYM, TI. Then µ is called probability semimetric.

ID, SYM, T̃I. Then µ is called probability distance.

ĨD, SYM, T̃I. Then µ is called probability semidistance.

In financial applications in particular, the symmetry axiom is not
important and it is better to omit it. Thus, we extend the treatment of these
axioms in the same way as it is done in the field of functional analysis.
In case the symmetry axiom, SYM, is omitted, then quasi- is added to the
name. That is, if µ satisfies:

ID and TI. Then µ is called probability quasimetric.

ĨD, TI. Then µ is called probability quasisemimetric.

ID, T̃I. Then µ is called probability quasidistance.

ĨD, T̃I. Then µ is called probability quasisemidistance.

Note that by removing the symmetry axiom we obtain a larger class in
which the metrics appear as symmetric quasimetrics.

3.5.2 Examples of Probability Distances

The difference between probability semimetrics and probability semidis-
tances is in the relaxation of the triangle inequality. Probability semidistances
can be constructed from probability semimetrics by means of an additional
function H(x) : [0, ∞) → [0, ∞) that is nondecreasing and continuous and
satisfies the following condition:

KH := sup
t> 0

H(2t)
H(t)

< ∞, (3.26)



Probability Metrics 95

which is known as Orlicz’s condition. There is a general result which states
that if ρ is a metric function, then H(ρ) is a semimetric function and satisfies
the triangle inequality with parameter K = KH. We denote all functions
satisfying the properties above and Orlicz’s condition (3.26) by H.

In this section, we provide examples of probability distances that are
related to the probability metrics stated in the chapter. We show how limit
cases are defined, state relationships between some families of probability
distances, and mention their application.

Primary Distances

The engineer’s distance.

EN(X, Y; H) := H (|EX − EY|) , H ∈ H, (3.27)

where the random variables X and Y have finite mathematical
expectation, E|X| < ∞, E|Y| < ∞.

Simple Distances

1. The Kantorovich distance.

�H(X, Y) :=
∫ 1

0
H(|F−1

X (t) − F−1
Y (t)|)dt, H ∈ H, (3.28)

where the random variables X and Y have finite mathematical expec-
tation, E|X| < ∞, E|Y| < ∞. If we choose H(t) = tp, p ≥ 1, then
(�H(X, Y))1/p turns into the Lp metric between inverse distribution func-
tions, �p(X, Y), defined in (3.15). Note that Lp metric between inverse
distribution functions, �p(X, Y), can be slightly extended to

�p(X, Y) :=
(∫ 1

0
|F−1

X (t) − F−1
Y (t)|pdt

)1/ min(1,1/p)

, p > 0. (3.29)

Under this slight extension, the limit case p → 0 appears to be the
total variation metric defined in (3.17),

�0(X, Y) = σ (X, Y) = sup
all events A

|P(X ∈ A) − P(Y ∈ A)|. (3.30)

The other limit case provides a relation to the uniform metric
between inverse distribution functions W(X, Y) given by (3.14),

�∞(X, Y) = W(X, Y) = sup
0 < t < 1

|F−1
X (t) − F−1

Y (t)|.
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2. The Birnbaum-Orlicz average distance.

θH(X, Y) :=
∫

R

H(|FX(x) − FY(x)|)dx, H ∈ H, (3.31)

where the random variables X and Y have finite mathematical expec-
tation, E|X| < ∞, E|Y| < ∞. If we choose H(t) = tp, p ≥ 1, then
(θH(X, Y))1/p turns into the Lp metric between distribution functions,
θp(X, Y), defined in (3.13). Note that Lp metric between distribution
functions, θp(X, Y), can be slightly extended to

θp(X, Y) :=
(∫ ∞

−∞
|FX(x) − FY(x)|pdx

)1/ min(1, 1/p)

, p > 0. (3.32)

At limit as p → 0,

θ0(X, Y) :=
∫ ∞

−∞
I{x : FX(x) �= FY(x)}dx, (3.33)

where the notation I{A} stands for the indicator of the set A. That is,
the simple metric θ0(X, Y) calculates the Lebesgue measure of the set
{x : FX(x) �= FY(x)}.

If p → ∞, then we obtain the Kolmogorov metric defined in (3.9),
θ∞(X, Y) = ρ(X, Y).

3. The Birnbaum-Orlicz uniform distance.

ρH(X, Y) : = H(ρ(X, Y))

= sup
x ∈ R

H(|FX(x) − FY(x)|), H ∈ H. (3.34)

The Birnbaum-Orlicz uniform distance is a generalization of the
Kolmogorov metric.

4. The parametrized Lévy metric.

Lλ(X, Y) := inf{ε > 0 : FX(x − λε) − ε ≤ FY(x)

≤ FX(x + λε) + ε, ∀x ∈ R}. (3.35)

This is a parametric extension of the Lévy metric, L(X, Y), defined
by equation (3.10). The obvious relationship with the Lévy metric
is L1(X, Y) = L(X, Y). It is possible to show that the parametric
extension Lλ(X, Y) is related to the celebrated Kolmogorov met-
ric, ρ(X, Y), defined by equation (3.9) and the uniform metric
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between inverse distribution functions, W(X, Y), given by equation
(3.14),

lim
λ→ 0

Lλ(X, Y) = ρ(X, Y)

and
lim

λ→∞
λLλ(X, Y) = W(X, Y).

Compound Distances

1. The H-average compound distance.

LH(X, Y) := E(H(|X − Y|)), H ∈ H. (3.36)

If we choose H(t) = tp, p ≥ 1, then (LH(X, Y))1/p turns into the
p-average metric, Lp(X, Y), defined in equation (3.20). Note that the
p-average metric can be slightly extended to

Lp(X, Y) := (E|X − Y|p)1/ min(1,1/p), p > 0. (3.37)

At the limit, as p → 0, we define

L0(X, Y) := P({w : X(w) �= Y(w)}). (3.38)

If p → ∞, then we define

L∞(X, Y) := inf{ε > 0 : P(|X − Y| > ε) = 0}. (3.39)

These limit cases are related to the Ky-Fan distance.
2. The Ky-Fan distance.

KFH(X, Y) := inf{ε > 0 : P(H(|X − Y|) > ε) < ε}, H ∈ H (3.40)

A particular case of the Ky-Fan distance is the parametric family of
Ky-Fan metrics

Kλ(X, Y) := inf{ε > 0 : P(|X − Y| > λε) < ε}, λ > 0. (3.41)

The parametric family Kλ(X, Y) has application in the theory of
probability since, for each λ > 0, Kλ(X, Y) metrizes the convergence in
probability. That is, if X1, . . . , Xn, . . . is a sequence of random variables,
then

Kλ(Xn, Y) → 0 ⇐⇒ P(|Xn − Y| > ε) → 0, for any ε > 0.
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The parametric family Kλ(X, Y) is related to the p-average com-
pound metric. The following relations hold,

lim
λ→ 0

Kλ(X, Y) = L0(X, Y)

and
lim

λ→∞
λKλ(X, Y) = L∞(X, Y).

Even though the Ky-Fan metrics imply convergence in probability,
these two limit cases induce stronger convergence. That is, if X1, . . . ,
Xn, . . . is a sequence of random variables, then

L0(Xn, Y) → 0 ⇒
�⇐ Xn → Y ‘‘in probability’’

and
L∞(Xn, Y) → 0 ⇒

�⇐ Xn → Y ‘‘in probability.’’

3. The Birnbaum-Orlicz compound average distance.

�H(X, Y) :=
∫ ∞

−∞
H(τ (t; X, Y))dt, H ∈ H, (3.42)

where τ (t; X, Y) = P(X ≤ t < Y) + P(X < t ≤ Y). If we choose
H(t) = tp, p ≥ 1, then (�H(X, Y))1/p turns into the Birnbaum-Orlicz aver-
age metric, �p(X, Y), defined in (3.22). Note that the Birnbaum-Orlicz
average metric can be slightly extended to

�p(X, Y) :=
(∫ ∞

−∞
(τ (t; X, Y))pdt

)1/ min(1, 1/p)

, p > 0. (3.43)

At the limit, as p → 0, we define

�0(X, Y) :=
∫ ∞

−∞
I{t : τ (t; X, Y) �= 0}dt, (3.44)

where I{A} is the indicator of the set A. If p → ∞, then we define

�∞(X, Y) := sup
t ∈ R

τ (t; X, Y). (3.45)

4. The Birnbaum-Orlicz compound uniform distance.

RH(X, Y) := H(�∞(X, Y)) = sup
t ∈ R

H(τ (t; X, Y)), H ∈ H (3.46)

This is the compound uniform distance of the Birnbaum-Orlicz
family of compound metrics.
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3.5.3 Minimal and Maximal Distances

We noted that two functionals can be associated to any compound
metric µ(X, Y)—the minimal metric µ̂(X, Y) and the maximal metric
µ̌(X, Y)—defined with equations (3.23) and (3.24), respectively. By con-
struction, the relationship between the three functionals is

µ̂(X, Y) ≤ µ(X, Y) ≤ µ̌(X, Y).

Exactly the same process as the one described in section 3.3.5 can be
followed in order to construct minimal and maximal distances, minimal and
maximal semidistances, minimal and maximal quasidistances, and so on. It
turns out that the minimal functional

µ̂(X, Y) = inf{µ(X̃, Ỹ) : X̃ d= X, Ỹ
d= Y}

is metric, distance, semidistance or quasisemidistance whenever µ(X, Y)
is metric, distance, semidistance or quasisemidistance.7 The minimization
preserves the essential triangle inequality with parameter Kµ̂ = Kµ and also
the identity property assumed for µ.

In contrast, the maximal functional

µ̌(X, Y) = sup{µ(X̃, Ỹ) : X̃ d= X, Ỹ d= Y}

does not preserve all properties of µ(X, Y) and, therefore, it is not a
probability distance. In fact, the maximization does not preserve the impor-
tant identity property, while the triangle inequality holds with parameter
Kµ̌ = Kµ. As we noted in the chapter, functionals that satisfy properties
SYM and T̃I and fail to satisfy the identity property are called moment
functions. Thus the maximal distance is a moment function.

Many simple probability distances arise as minimal semidistances with
respect to some compound semidistance. We state the basic relationships
between the examples provided in the previous section. If H ∈ H is a convex
function, then

�H(X, Y) = L̂H(X, Y),

θH(X, Y) = �̂H(X, Y),

7This fact can be seen from the mathematical proof that the minimal distance µ̂(X, Y)
is, indeed, a probability semidistance when µ(X, Y) is a probability semidistance.
Rachev (1991) provides a proof of this fact.
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and
ρH(X, Y) = R̂H(X, Y).

A very general result, which is used to obtain explicit expressions
for minimal and maximal functionals such as µ̂(X, Y) and µ̌(X, Y), is the
Cambanis-Simons-Stout theorem. This theorem provides explicit forms of
the minimal and maximal functionals with respect to a compound functional
having the general form

µφ(X, Y) := Eφ(X, Y),

where φ(x, y) is a specific function called quasi-antitone. The index φ is a
reminder that the functional has the particular form with the φ function.
Then for the minimal and the maximal functionals µ̂φ(X, Y) and µ̌φ(X, Y)
we have the explicit representations,

µ̂φ(X, Y) =
∫ 1

0
φ(F−1

X (t), F−1
Y (t))dt (3.47)

and

µ̌φ(X, Y) =
∫ 1

0
φ(F−1

X (t), F−1
Y (1 − t))dt (3.48)

The function φ(x, y) is called quasi-antitone if it satisfies the following
property:

φ(x, y) + φ(x′, y′) ≤ φ(x′, y) + φ(x, y′) (3.49)

for any x′ > x and y′ > y. This property is related to how the function
increases when its arguments increase. Also, the function φ should satisfy
the technical condition that φ(x, x) = 0. There is another technical condition
which is related to the random variables X and Y. The following moments
should be finite, Eφ(X, a) < ∞ and Eφ(Y, a) < ∞, a ∈ R.

General examples of quasi-antitone functions include:

1. φ(x, y) = f (x − y) where f is a nonnegative convex function in R, for
instance φ(x, y) = |x − y|p, p ≥ 1.

2. φ(x, y) = −F(x, y) where F(x, y) is the distribution function of a two
dimensional random variable.

How do we apply the Cambanis-Simons-Stout theorem? There are three
steps:

Step 1. Identify the function φ(x, y) from the particular form of the
compound metric.
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Step 2. Verify if the function φ(x, y) is quasi-antitone and whether
φ(x, x) = 0. This can be done by verifying first if φ(x, y)
belongs to any of the examples of quasi-antitone functions given
above.

Step 3. Keep in mind that whenever we have to apply the result
in the theorem for particular random variables (X, Y), then the
following moments should satisfy the conditions Eφ(X, a) < ∞ and
Eφ(Y, a) < ∞, a ∈ R. Otherwise, the corresponding metrics may
explode.

Let us see how the Cambanis-Simons-Stout result is applied to the
H-average compound distance LH(X, Y) defined in (3.36). The compound
functional has the general form,

LH(X, Y) = E(H(|X − Y|)), H ∈ H

and, therefore, the function φ(x, y) = H(|x − y|), x, y ∈ R. Due to the
properties of the function H, φ(x, x) = H(0) = 0 and, if we assume addi-
tionally that H is a convex function, we obtain that φ(x, y) is quasi-antitone.
Applying the theorem yields the following explicit forms of the minimal and
the maximal distance,

L̂H(X, Y) =
∫ 1

0
H(|F−1

X (t) − F−1
Y (t)|)dt, H ∈ H

and

ĽH(X, Y) =
∫ 1

0
H(|F−1

X (t) − F−1
Y (1 − t)|)dt, H ∈ H. (3.50)

We tacitly assume that the technical conditions E(H(|X − a|)) < ∞ and
E(H(|Y − a|)) < ∞, a ∈ R hold.

Besides the Cambanis-Simons-Stout theorem, there is another method
of obtaining explicit forms of minimal and maximal functionals. This
method is, essentially, direct application of the celebrated Fréchet-Hoeffding
inequality between distribution functions,

max(FX(x) + FY(y) − 1, 0) ≤ P(X ≤ x, Y ≤ y)

≤ min(FX(x), FY(y)). (3.51)
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We show how this inequality is applied to the problem of find-
ing the minimal distance of the Birnbaum-Orlicz distance defined in
equation (3.42).

�H(X, Y) =
∫ ∞

−∞
H(P(X ≤ t < Y) + P(X < t ≤ Y))dt

=
∫ ∞

−∞
H(P(X ≤ t) + P(Y ≤ t) − 2P(X ≤ t, Y ≤ t)))dt

≥
∫ ∞

−∞
H(FX(t) + FY(t) − 2 min(FX(t), FY(t)))dt

=
∫ ∞

−∞
H(|FX(t) − FY(t)|)dt = θH(X, Y).

The inequality follows because we take advantage of the upper bound
of the Fréchet-Hoeffding inequality and because H is nondecreasing by
assumption.

In fact, the Fréchet-Hoeffding inequality is not unrelated to the
Cambanis-Simons-Stout result. The minimal and the maximal function-
als are obtained at the upper and the lower Fréchet-Hoeffding bounds and
they can also be represented in terms of random variables as

µ̂φ(X, Y) = Eφ(F−1
X (U), F−1

Y (U)) (3.52)
and

µ̌φ(X, Y) = Eφ(F−1
X (U), F−1

Y (1 − U)), (3.53)

where U is a uniformly distributed random variable in the interval (0, 1).
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CHAPTER 4
Ideal Probability Metrics

4.1 INTRODUCTION

Limit theorems in probability theory have a long and interesting history.
The first account of a limit result dates back to 1713 when the Swiss
mathematician Jacob Bernoulli gave a rigorous proof that the average
number of heads resulting from many tosses of a coin converges to the
probability of having a head. Later, in 1835, the French mathematician
Simeon-Denis Poisson described this result as ‘‘The Law of Large Numbers’’
and formulated an approximation valid in the case of rare events; that is,
when the probability of success, or having a head, is small. Nowadays,
this result is known as the approximation of Poisson to the binomial
distribution.

In 1733, the English mathematician Abraham de Moivre published an
article in which he calculated approximately the probability of the number
of heads resulting from many independent tosses of a fair coin. In this cal-
culation, he used the normal distribution as approximation. In the century
that followed, the discovery of de Moivre was almost forgotten. It was redis-
covered and extended in 1812 by the French mathematician Pierre-Simon
Laplace. This is now known as the theorem of de Moivre-Laplace of the
normal approximation to the binomial distribution. It has many appli-
cations in different areas. In the field of finance, for example, it is the
theoretical foundation behind the construction of binomial trees for option
pricing.

The theorem of de Moivre-Laplace is a special case of the Central Limit
Theorem (CLT), but it was not until the beginning of the 20th century
that the importance of the CLT was fully recognized. In 1901, the Russian
mathematician Aleksandr Lyapunov gave a more abstract formulation and
showed that the limit result holds under certain very general conditions
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known as Lyapunov’s conditions. Later, other conditions were established
that generalized Lyapunov’s conditions. A final solution to the problem
was given by Bernstein, Lindeberg, and Feller who specified necessary and
sufficient conditions for the CLT.

In the past century, the limit theory has been widely extended. For
example, the abstract ideas behind the CLT were applied to stochastic
processes and it was shown that Brownian motion is the limit process in the
Functional Limit Theorem or Invariance Principle about which Jacod and
Shiryaev (2002) provide a detailed discussion. Brownian motion is the basic
ingredient of the subsequently developed theory of Ito processes, which has
huge application in finance. The celebrated Black-Scholes equation and, in
general, derivative pricing, are based on it.

The CLT itself was also extended. Generally, when summing indepen-
dent and identically distributed infinite variance random variables, we do
not obtain the normal distribution at the limit but another law. This result is
known as the generalized CLT. The limit distributions that arise are called
the Lévy alpha-stable distributions because of the fundamental work of the
French mathematician Paul Lévy. The normal distribution is only a special
case of the stable distributions. Feller (1971) and Shiryaev (1996) provide
further details.

Besides stability with respect to sums of independent and identically
distributed random variables, other schemes were also considered. The
limit theory of maxstable distributions was developed, which, as the name
suggests, studies the limit distribution with respect to maxima of random
variables. It has wide application in actuarial mathematics and estimation
of operational risk in the field of finance.

From the standpoint of the applications, the limit theorems are appealing
because the limit law can be regarded as an approximate model of the
phenomenon under study.1 For example, if we go back to the result of
de Moivre-Laplace, the limiting normal distribution can be accepted as an
approximate model for calculation of the number of heads in many tosses
of a fair coin. In the maxstable scheme, the limiting maxstable distribution
can be regarded as an approximate model for the maximum loss a financial
institution may face in a given period of time. Certainly, the maximum loss
follows a different law, but because of the limit theorem, we can use the
maxstable distribution as an approximation. This approach is applicable in
estimating operational risk, for example. Similarly, in modeling returns for
financial assets, the alpha-stable distributions can be used as an approximate
model as they generalize the widely applied normal distribution and are the
limiting distribution in the Generalized CLT.

1Technically, this is known as the domains of attraction property.
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In summary, in the field of applications we are replacing the phe-
nomenon under study with the limiting distribution. Therefore, an important
question arises that concerns the error we make with this replacement. How
close is the limiting distribution to the considered phenomenon? The only
way to answer this question is to employ the theory of probability metrics. In
technical terms, we are looking for a way to estimate the rate of convergence
to the limit distribution.

This chapter is organized as follows. We give a brief introduction to
the classical CLT and the first attempt to estimate the rate of convergence
to the normal distribution—the celebrated Berry-Esseen result. Then we
give examples of the application of probability metrics to the problem of
estimating the convergence rate in the Generalized CLT. They are based
on probability metrics called ideal metrics, which arise from a modified
axiomatic structure. The construction of the ideal metrics is an example of
how the set of defining axioms can be modified with the goal of obtaining a
metric best suited for the problem under study.

4.2 THE CLASSICAL CENTRAL LIMIT THEOREM

We start with the classical result of de Moivre-Laplace, which shows that
the normal distribution can be adopted as a model when we consider the
experiment of flipping a fair coin. This is a fairly simplified situation in which
we can easily recognize the true merits of the limit theorem. As a next step, we
proceed by answering the bigger question of whether the normal distribution
can be adopted as a model under more general conditions, what error we
could make by adopting it, and when it fails to be an appropriate model.

From the standpoint of the field of finance, these questions are related
to the problem of choosing a probabilistic model for financial asset returns
distributions and its approximation in pricing options and other derivatives.

4.2.1 The Binomial Approximation to the Normal
Distribution

In this section, we consider the simple experiment of flipping an unfair coin.
We are interested in calculating the probability that the number of heads
resulting from a large number of independent trials belongs to a certain
interval, that is, if we toss a coin 10,000 times, then what is the probability
that the number of heads is between 6,600 and 7,200, provided that the
probability of a head is equal to 2/3?

Let us first derive a simple formula that gives the probability that
we obtain exactly a given number of heads. Consider a small number of
independent tosses, for example, four. Denote by p the probability that a
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head occurs in a single experiment, by q = 1 − p the probability that a tail
occurs in a single experiment, and by X the random variable indicating the
number of heads resulting from the experiment. In this simple setting, the
probability that no head occurs is given by

P(X = 0) = q · q · q · q = q4

because we multiply the probabilities of the outcomes since we assume
independent trials.

The probability that exactly one head occurs is a little more difficult to
calculate. If the head occurs on the very first toss, then the probability of the
event ‘‘exactly one head occurs’’ is equal to p · q · q · q = pq3. But the head
may occur on the second trial. If this is the case, then the corresponding
probability is q · p · q · q = pq3. Similarly, if the head occurs on the very
last trial, the probability is q · q · q · p = pq3. The probability of the event
‘‘exactly one head occurs in a sequence of four independent tosses’’ is equal
to the sum of the probabilities of the events in which we fix the trial when
the head occurs. This is because the head may occur either in the first or in
the second or in the third, or in the fourth trial,

P(X = 1) = 4pq3.

Similar reasoning shows that the probability of the event ‘‘exactly two
heads occur in a sequence of four independent tosses’’ equals

P(X = 2) = 6p2q2

as there are six ways to obtain two heads in a row of four experiments. For
the other two events, that the heads are exactly three and four, we obtain

P(X = 3) = 4p3qand
P(X = 4) = p4.

Note that the power of p coincides with the number of heads, the power
of q coincides with the number of tails, and the coefficient is the number of
ways the given number of heads may occur in the experiment. In fact, the
coefficient can be calculated by means of a formula known as the binomial
coefficient. It computes the coefficients that appear in front of the unknowns
when expanding the expression (x + y)n in which x and y are the unknowns.
For example,

(x + y)4 = (x + y)2 · (x + y)2

= (x2 + 2xy + y2) · (x2 + 2xy + y2)

= x4 + 4x3y + 6x2y2 + 4xy3 + y4.
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When the power increases, we need a formula since the direct compu-
tation becomes very time consuming. The general formula is given by the
equation

(x + y)n =
(

n
0

)
xn +

(
n
1

)
xn − 1y +

(
n
2

)
xn − 2y2 + · · ·

+
(

n
n − 1

)
xyn − 1 +

(
n
n

)
yn (4.1)

in which n is a positive integer and the coefficients
(n

k

)
and k = 0, . . . , n are

the binomial coefficients. They are calculated through the formula,

(
n
k

)
= n!

k!(n − k)!
(4.2)

where the notation n! stands for the product of all positive integers smaller
or equal to n, n! = 1 · 2 . . . (n − 1) · n.

In the context of the independent tosses of a coin, n stands for the total
number of tosses and k denotes the number of heads. Thus the probability
of the event ‘‘exactly two heads occur in a sequence of four independent
tosses’’ can be written as

P(X = 2) =
(

4
2

)
p2q2 = 1 · 2 · 3 · 4

(1 · 2) · (1 · 2)
p2q2 = 6p2q2.

The same reasoning can be used to obtain an equation calculating the
probability that k heads occur in a sequence of n independent trials. This
probability can only be expressed by means of a binomial coefficient. In
order to emphasize the number of trials, we denote the random variable by
Xn, where n stands for the number of trials,

P(Xn = k) =
(

n
k

)
pkqn − k, k = 0, 1 . . . n. (4.3)

The probability distribution defined in equation (4.3) is known as the
binomial distribution. We can think of it in the following general terms.
Replace the tossing of a coin by an experiment in which we identify a certain
event as ‘‘success.’’ All other events do not lead to success and we say that
‘‘failure’’ occurs. Thus, the binomial distribution gives the probability that
exactly k successes occur on condition that we carry out n experiments. The
mean value of the binomial distribution equals EX = np and the variance
equals DX = npq.
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TABLE 4.1 The Probability that Exactly k Heads Occur Resulting from
20 Independent Tosses of a Fair Coin.

Number of heads, k 4 7 10 13 16

Probability, P(X = k) 0.46% 7.39% 17.62% 7.39% 0.46%

Let us consider the experiment of tossing a fair coin, i.e., p = q = 1/2,
and fix the number of tosses to 20. What is the probability that exactly four
heads occur? We can easily calculate this by means of equation (4.3),

P(X20 = 4) =
(

20
4

) (
1
2

)4 (
1
2

)16

≈ 0.46%.

Table 4.1 gives the corresponding probabilities for other choices of the
number of heads. Figure 4.1 graphically displays all probabilities, when the
number of heads range from zero to 20.

Note that the probabilities change in a symmetric way around the value
mean value k = 10, which very much resembles the density of the normal
distribution. This similarity is by no means random. As the number of
experiments, n, increases, the similarity becomes more and more evident
(see Figure 4.2). The limit theorem that proves this fact is known as the
theorem of de Moivre-Laplace. It states that, for large values of n, the
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FIGURE 4.1 The probabilities that exactly k heads
occur in 20 independent tosses of a fair coin.
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FIGURE 4.2 The probabilities that exactly k heads
occur when the number of tosses, n, equals 3, 4, 6
and 8. The smooth curve represents the limiting
normal distribution. The quality of the normal
approximation improves as the number of tosses
increases.

probability that k heads occur equals approximately the density function
of a normal distribution evaluated at the value k. The mean value of the
normal distribution is np and the standard deviation is

√
npq, in short-hand

notation N(np, npq). The density of a normal distribution with mean m and
variance σ 2 is given by

f (x) = 1√
2πσ 2

exp
(

− (x − m)2

2σ 2

)
, x ∈ R.

Therefore, the limit result2 states that

P(Xn = k) =
(

n
k

)
pkqn − k ≈ 1√

2πnpq
exp

(
− (k − np)2

2npq

)
(4.4)

for large values of n. In this sense, we can say that the normal distribution can
be adopted as an approximate model because the probabilistic properties of
the binomial distribution for large values of n are ‘‘close’’ to the probabilistic
properties of the normal distribution.

2In the theory of probability, the limit result is known as the local theorem of de
Moivre-Laplace.
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Are there other indications that the normal distribution can be adopted
as an approximate model? The answer is affirmative. Let us consider the
question we asked at the beginning of the section. Provided that n is large,
what is the probability that the number of heads resulting from independent
tosses of an unfair coin is between two numbers a and b? For example,
suppose that we toss an unfair coin 10,000 times. Then, what is the
probability that the number of heads is between a = 6,600 and b = 7,200?
Any attempt to tackle this question in a straightforward way is doomed.
This becomes evident from the following analysis.

Suppose that we independently toss an unfair coin 20 times. The prob-
ability of the event that no more than three heads occur can be computed
directly in the following way—we sum the probabilities P(X20 = 0), P(X20 =
1), P(X20 = 2), and P(X20 = 3). Similarly, in order to calculate the the prob-
ability that the number of heads is between a = 6,600 and b = 7,200 in
10,000 tosses, we have to sum up the probabilities P(X10,000 = k) where
6,600 ≤ k ≤ 7,200. Apparently, this is not a simple thing to do. The limit
result in the theorem of de Moivre-Laplace can be adapted to calculate such
probabilities. We can use the limiting normal distribution in order to calculate
them,

P(a ≤ Xn ≤ b) ≈
∫ b

a

1√
2πnpq

exp
(

− (x − np)2

2npq

)
dx (4.5)

which means that instead of summing up the binomial probabilities, we
are summing up the normal probabilities.3 The calculation of the right
hand-side of (4.5) is easier because it can be represented through the
cumulative distribution function (c.d.f.) of the normal distribution,

P(a ≤ Xn ≤ b) ≈ F(b) − F(a),

where F(x) is the c.d.f. of the normal distribution with mean np and
variance npq. The c.d.f. of the normal distribution is tabulated and is also
available in software packages. In fact, if we assume that p = 2/3, then the
actual probability, P(6,600 ≤ X10,000 ≤ 7,200) = 0.9196144 and, through
the corresponding normal distribution, we obtain F(7,200) − F(6,600) =
0.92135, which means that we make an error of about 0.17%.

Equation (4.5) has another very important implication. It means that
the c.d.f. of the binomial distribution is approximated by the c.d.f. of the
corresponding normal distribution,

P(Xn ≤ b) ≈ F(b).

3In the theory of probability, the limit result is known as the integral theorem of de
Moivre-Laplace.
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FIGURE 4.3 The binomial c.d.f. resulting from
200 independent tosses of a fair coin and the
normal approximation.

This is a very important argument in favor of adopting the normal
distribution as an approximate model as it virtually means that the proba-
bilistic properties of the binomial distribution are approximately the same
as the ones of the normal distribution. This is illustrated in Figure 4.3, where
we plot the c.d.f. of a binomial distribution resulting from 200 independent
tosses of a fair coin and the corresponding normal approximation.

The approximations (4.4) and (4.5) have wide application in the field
of finance. In particular, generalizations of these results are used in pricing
options and other derivatives, the price of which depends on another instru-
ment called underlying instrument. The binomial distribution is behind
the construction of binomial trees employed to evolve the price of the
underlying into the future.4 Deeper theory is necessary for a complete
illustration, which goes beyond the scope of the book, but the basic
principle is that, as the steps in the tree increase (the number of trials),
the binomial path becomes closer to a sample path of the price process
of the underlying instrument. Therefore, this technique provides a pow-
erful numerical way to pricing path-dependent derivatives. Focardi and
Fabozzi (2004) provide more details on the mathematics behind derivative
pricing.

4The binomial approach to option pricing was introduced by Cox et al. (1979),
Rendleman and Bartter (1979), and Sharpe (1978).
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4.2.2 The General Case

In the previous section, we considered the normal approximation to the
binomial distribution when the number of independent trials is large.
However, we did not state any limit results but only illustrated them.
Usually, the convergence to the normal distribution is derived by means
of centered and normalized binomial distributions while we considered the
binomial distribution directly. In this setting, it is not possible to obtain
a nondegenerate limit as the number of trials approaches infinity because,
in this case, the mean value of np and the variance npq explode and the
normal approximation N(np, npq), which is well-defined for any finite n,
stops making any sense.

The procedure of centering and normalizing a random variable means
that we subtract the mean of the random variable and divide the difference
by its standard deviation so that the new random quantity has a zero mean
and a unit variance. For instance, in the case of the binomial distribution,
the random quantity

Yn = Xn − np√
npq

has a zero mean and unit variance, EYn = 0 and DYn = 1. Therefore, it
makes more sense to consider the limit distribution of Yn as n approaches
infinity because it may converge to a nondegenerate limit distribution as its
mean and variance do not depend on the number of trials.

In fact, the approximation in equation (4.5) is an illustration of the
limit result

lim
n →∞

P
(

u ≤ Xn − np√
npq

≤ v
)

= 1√
2π

∫ v

u
e−x2/2 dx (4.6)

which means that as the number of trials approaches infinity, the centered
and normalized binomial distribution approaches the standard normal
distribution N(0, 1). By observing the centered binomial distributions, we
can visually compare the improvement in the approximation as the scale is
not influenced by n. This is shown on Figure 4.4.

The fact that the centered normal distribution is the limit distribu-
tion when the number of independent tosses approaches infinity is truly
remarkable. Suppose that in the n-tosses experiment we look at each toss
separately. That is, each toss is a random variable that can take only two
values—zero with probability q (if a tail occurs), and one with probability
p (if a head occurs). Since each toss is a new experiment in itself, we denote
these random variables by δi where i is the number of the corresponding
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FIGURE 4.4 The centered and normalized
binomial c.d.f.s resulting from 5, 10, 20, and 40
independent tosses of a fair coin and the normal
approximation.

toss. Thus, if δ2 takes the value zero, it means that on the second toss, a tail
has occurred. In this setting, the random variable Xn describing the number
of heads resulting from n independent tosses of a coin can be represented as
a sum of the corresponding single-toss experiments,

Xn = δ1 + δ2 + · · · + δn (4.7)

where the random variables δi, i = 1, . . . , n are independent and identically
distributed (i.i.d.). Therefore, it appears that the limit relation (4.6) con-
cerns a sum of i.i.d. random variables in which the number of summands
approaches infinity.

It turns out that the limit relation (4.6) holds true for sums of i.i.d.
random variables, just as in (4.7), the distribution of which may be quite
arbitrary. They only need to satisfy certain regularity conditions. This result
is the celebrated central limit theorem. There are several sets of regularity
conditions. In this section, we describe only two of them, as they have vast
implications concerning when the normal distribution can be accepted as
approximate model.

The Meaning of Summation in Financial Variables Before proceeding with the
regularity conditions, let us discuss briefly why summing random variables
is important in the context of finance. A huge topic in finance is imposing a
proper distributional assumption for the returns of a variable such as stock
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returns, exchange rate returns, changes in interest rates, and the like. Usually,
the distributional hypothesis concerns the logarithmic returns in particular
or the changes in the values, which are also known as the increments.

Let us consider the price Pt of a common stock. The logarithmic return,
or simply the log-return, for a given period (t, T) is defined as

r(t,T) = log
PT

Pt
.

If the period (t, T) is one month, then r(t,T) is the monthly log-return. We
split this period into two smaller periods (t, t1) and (t1, T). The log-return
of the longer period is actually the sum of the log-returns of the shorter
periods,

r(t,T) = log
Pt1

Pt
+ log

PT

Pt1

= r(t,t1) + r(t1,T).

In this fashion, we can split further the time interval and we obtain that
the log-return of the longer period is the sum of the log-returns of the shorter
periods. Thus the monthly log-return is the sum of the daily log-returns. The
daily log-returns are the sum of the 10-minute log-returns in one day, and
so on. The general rule is that the lower frequency log-returns accumulate
the corresponding higher frequency log-returns.

Exactly the same conclusion holds with respect to the increments.
Consider an interest rate in a period (t, T). The increments are defined as,

�IR(t,T) = IRT − IRt

which is simply the difference between the interest rate at moment t and T.
Splitting the interval into two smaller intervals results in

�IR(t,T) = IRt1 − IRt + IRT − IRt1 = �IR(t,t1) + IR(t1,T),

meaning that the increment in the longer period equals the sum of the
increments in the smaller period. In this way, the monthly increment equals
the sum of the daily increments, and so on.

In effect, the concept that a variable accumulates the effects of other
variables is natural in finance. Therefore, it makes sense to adopt a model
describing the log-returns of a variable, which describes approximately
the probabilistic properties of sums of other variables. This observation
makes the limit theorems in probability theory appealing because they show
the limit distribution of sums of random variables without the complete
knowledge of the distributions of the summands. Nevertheless, there are



Ideal Probability Metrics 115

certain conditions that the summands should satisfy in order for the sum
to converge to a particular limit distribution. We continue the discussion of
two sets of such conditions.

Two Regularity Conditions Suppose that the random variables X1, X2, . . . ,
Xn, . . . are independent and share a common distribution with mean µ and
variance σ 2. Consider their sum

Sn = X1 + X2 + · · · + Xn. (4.8)

The CLT states that the centered and normalized sequence of Sn con-
verges to the standard normal distribution as n approaches infinity on
condition that the variance σ 2 is finite. The mean of the sum equals the sum
of the means of the summands,

ESn = EX1 + EX2 + · · · + EXn = nµ.

The same conclusion holds for the variance because the summands are
assumed to be independent,

DSn = DX1 + DX2 + · · · + DXn = nσ 2.

Thus, subtracting the mean and dividing by the standard deviation, we
obtain the statement of the CLT,

lim
n →∞

P
(

u ≤ Sn − nµ

σ
√

n
≤ v

)
= 1√

2π

∫ v

u
e−x2/2 dx. (4.9)

The truly striking implication of the CLT is that the result is, to a large
extent, invariant on the distributions of the summands. The distributions
only need to be i.i.d. and their variance needs to be finite, σ 2 < ∞. The
common distribution of the summands may be discrete, see equation (4.6)
for the binomial distribution, or skewed, or it may have point masses. It
really makes no difference. The limit distribution is the standard normal
law. This is illustrated on Figure 4.5, which shows the c.d.f.s of the
sum of exponential distributions (solid line) converging to the standard
normal distribution function (dashed line). The exponential distribution by
definition takes only positive values, which means that it is also asymmetric.
Figure 4.6 shows the convergence of the corresponding density functions.

Note that the CLT states that the distribution function of the centered
and normalized sum converges to the distribution function of the standard
normal distribution. Thus, for a large number of summands,

P
(

Sn − nµ

σ
√

n
≤ v

)
≈ 1√

2π

∫ v

−∞
e−x2/2 dx.
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FIGURE 4.5 The c.d.f.s of the centered and
normalized sum of exponential distributions (solid
line) resulting from 2, 5, 10, and 20 summands and
the normal approximation (dashed line).
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FIGURE 4.6 The density functions of the centered
and normalized sum of exponential distributions
(solid line) resulting from 2, 5, 10, and 20
summands and the normal approximation (dashed
line).
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which is the same as saying that the c.d.f of a normal distribution with
mean nµ and variance nσ 2 is close to the distribution function of the sum
Sn. In this sense, we can say that when the number of summands is large,
the normal distribution can be accepted as an approximate model because
the probabilistic properties of the N(nµ, nσ 2) are close to the probabilistic
properties of the corresponding sum.

The fact that the CLT holds when the summands in (4.8) are i.i.d. with
finite variance is already a very strong result with far-reaching consequences.
Nevertheless, it can be further improved. The assumption of common
distribution can be replaced by a different property. It states that as n
grows to infinity, the summands should become negligible with respect
to the total sum. That is, the contribution of each summand to the sum
should become more and more negligible as their number increases; that is,
none of the summands should dominate.5 This property is called asymptotic
negligibility. Note that the summands need not have a common distribution.
Some of them may be discrete random variables, some may have symmetric
distribution, others asymmetric. The only conditions they have to satisfy in
order for the CLT to hold is, first, they have to be independent and, second,
they have to be asymptotically negligible.

Application of the CLT in Modeling Financial Assets Let us go back to the
discussion of the behavior of financial variables. We noted that the daily
log-returns accumulate, for example, the 10-minute log-returns. If the daily
log-returns appear as a sum of so many short-period log-returns, can we safely
assume, on the basis of the CLT, that the distribution of the daily log-return
is approximately normal? Such a direct application of the limit result is not
acceptable because there are certain conditions which need to be satisfied
before we can say that the limit result holds. We have to answer two questions:

1. Is it true that the shorter period log-returns are independent?
2. Are they asymptotically negligible? Is it true that if we sum them up,

the total sum is not dominated by any of the summands?

The answer to the first question is negative because of the empirically
observed clustering of the volatility effect and the autocorrelations existing
in the high-frequency time series. The answer to the second question is also
negative. Usually, there are big outliers in the log-returns time series (very
large log-returns in absolute value) that dominate the sum and dictate its
behavior. They translate into what is known as the heavy-tailed behavior of
the log-returns time series of stock prices. While the autocorrelations and

5The appendix to this chapter contains a more precise statement.
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the clustering of the volatility can be taken care of by advanced time-series
models, the outliers available in the data creep into the residual and, very
often, can only be modeled by a nonnormal, heavy-tailed distribution.6 As
a result, we can reject the normal distribution as a realistic approximate
model of the log-returns of stock prices. This conclusion has also been
verified in a large number of empirical studies.

4.2.3 Estimating the Distance from the Limit
Distribution

In the previous section, we stated two sets of conditions which guarantee
that the CLT holds. Under these conditions, we can adopt the normal
distribution as an approximate model for the sum of random variables (4.8)
when the number of summands is large. As we explained, the rationale is
that the distribution function of the sum with the number of summands
fixed is close to the distribution function of the corresponding normal
distribution. We say ‘‘the corresponding normal distribution’’ because its
mean and variance should equal the mean and variance of the sum.

We would like to quantify the phenomenon that the two c.d.f.s do not
deviate too much. For this purpose, we take advantage of a probability met-
ric which computes the distance between the two c.d.f.s. and is, therefore, a
simple metric.7 Such a general treatment is necessary because of the general-
ity of the limit theorem itself. For example, suppose that we would like to fix
the number of summands to 20. If the distribution of the summands is sym-
metric, then we may expect that the sum of 20 terms could be closer to the
normal distribution compared to a sum of 20 asymmetric terms. Therefore,
we need a way to estimate the error of adopting the limit distribution as a
model that is not influenced by the particular distribution of the summands.

This is reasonable from a practical viewpoint as well. Suppose we have
reasons to assume that in a given month the daily log-returns of a stock
price are roughly independent. There are no outliers in the data that seem
homogeneous. Therefore, we can think that the daily log-returns are roughly
i.i.d. Thus we can assume that the monthly log-return has, approximately,
the normal distribution. If we do not know the distribution of the daily
log-returns, we need a more general approach to calculate the error that we
make by adopting the normal distribution in terms of the distance between
the distribution functions of the sum and the normal law.

6Rachev et al. (2007) provide more details on the application of time series models
in finance.
7Chapter 3 discusses the definition and classification of probability metrics.
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In the classical setting, when the sum (4.8) consists of i.i.d. summands,
there is a result,8 which states how quickly the distance between the c.d.f.
of the centered and normalized sum, and the c.d.f. of the standard normal
distribution, decays to zero in terms of the Kolmogorov metric.9 Denote by
S̃n the centered and normalized sum,

S̃n = Sn − nµ

σ
√

n
= X1 + · · · + Xn − nµ

σ
√

n
.

The result states that if E|X1|3 < ∞, then in terms of the Kolmogorov
metric the distance between the two c.d.f.s can be bounded by

ρ (̃Sn, Z) ≤ C · E|X1|3
σ 3

√
n

(4.10)

in which C is an absolute constant that does not depend on the distribution
of X1, Z ∈ N(0, 1), and the Kolmogorov metric ρ is defined as

ρ (̃Sn, Z) = sup
x ∈ R

|FS̃n
(x) − FZ(x)|.

The right part of the inequality in (4.10) contains a constant C, the third
absolute moment E|X1|3 of the common distribution of the summands and
the standard deviation σ . None of these quantities depends on the number
of summands. The only term that depends on n is

√
n in the denominator.

The only facts about the common distribution of the summands we have to
know are the standard deviation σ and the moment E|X1|3.

As a result, the ‘‘speed’’ with which the c.d.f. FS̃n
(x) approaches FZ(x) as

the number of summands increases, or the convergence rate, is completely
characterized by n−1/2. It is important to note that the convergence in (4.10)
cannot be faster under these general conditions.

For practical purposes, we also need the value of the constant C.
Currently, its exact value is unknown but it should be in the interval
(2π )−1/2 ≤ C < 0.8. At any rate, an implication of the inequality (4.10) is
that the convergence of the c.d.f. of S̃n to the c.d.f. of the standard normal
distribution may be quite slow. This is an important observation that we
mention in the next section.

8In the theory of probability, this result is known as the Berry-Esseen theorem.
9Chapter 3 provides more background on probability metrics in general and the
Kolmogorov metric in particular.
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4.3 THE GENERALIZED CENTRAL LIMIT THEOREM

In section 4.2, we considered the classical CLT in which the normal
distribution appears as a limit of sums of i.i.d. random variables with finite
variance. We discussed the asymptotic negligibility condition that states
that as the number of summands grows, none of them should dominate and
dictate the behavior of the total sum. A very important question is, what
happens if this condition is relaxed; if the summands are so erratic that one
of them can actually dominate the others and thus influence the behavior
of the entire sum? The normal distribution is not the limit law under these
conditions but still there are nondegenerate limit distributions. The limit
theorem is a generalization of the CLT and is known as the Generalized
CLT. The limit distributions are the stable distributions.

The actual conditions under which the Generalized CLT holds are
easy to state. Any properly centered and normalized sum of i.i.d. random
variables converges at the limit to a stable distribution. This means that
the stable distributions are the only distributions that can arise as limits of
sums of i.i.d. random variables. This feature makes the stable distributions
very attractive for the modeling of financial assets because only they can
be used as an approximate model for sums of i.i.d. random variables.
Understandably, the normal distribution is a special case of the stable
distributions, just as the CLT is a special case of the Generalized CLT. In
contrast to the normal distribution, which is symmetric and cannot account
for the heavy-tailed nature of the returns of financial variables, the class of
nonnormal stable distributions has skewed and heavy-tailed representatives.
Because of these differences, stable nonnormal laws are also called stable
Paretian or Lévy stable.10

4.3.1 Stable Distributions

The class of the stable distributions is defined by means of their characteristic
functions.11 With very few exceptions, no closed-form expressions are

10Stable Paretian is used to emphasize that the tails of the non-Gaussian stable
density have Pareto power-type decay. Levy stable is used in recognition of the
seminal work of Paul Levy’s introduction and characterization of the class of
non-Gaussian stable laws.
11A characteristic function provides a third possibility (besides the cumulative
distribution function and the probability density function) to uniquely define a
probability distribution. It is a mapping from the set of real numbers R into the
set of complex numbers C denoted by ϕX(t) = Eit X, which represents the so-called
‘‘Fourier transform’’ of the distribution of the random variable X. Knowing the
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known for their densities and distribution functions. A random variable X
is said to have a stable distribution if there are parameters 0 < α ≤ 2, σ >

0, − 1 ≤ β ≤ 1, µ ∈ R such that its characteristic function ϕX(t) = Eeit X has
the following form:

ϕX(t) =
{

exp{−σ α|t|α(1 − iβ t
|t| tan( πα

2 )) + iµt}, α �= 1
exp{−σ |t|(1 + iβ 2

π

t
|t| ln(|t|)) + iµt}, α = 1, (4.11)

where t
|t| = 0 if t = 0. Zolotarev (1986) and Samorodnitsky and Taqqu

(1994) provide further details on the properties of stable distributions.
The parameters appearing in equation (4.11) are the following:

α is called the index of stability or the tail exponent.

β is a skewness parameter.

σ is a scale parameter.

µ is a location parameter.

Since stable distributions are uniquely determined by the four parame-
ters, the common notation is Sα(σ , β, µ).

Figure 4.7 shows several stable densities with different tail expo-
nents and β = 0.6. All densities are asymmetric but the skewness is more
pronounced when the tail exponent is lower. Figure 4.8 shows several
stable densities with different tail exponents and β = 0. All densities are
symmetric.

The parameter α determines how heavy the tails of the distribution are.
That is why it is also called the tail exponent. The lower the tail exponent,
the heavier the tails. If α = 2, then we obtain the normal distribution.
Figure 4.8 illustrates the increase of the tail thickness as α decreases.
Thicker tails indicate that the extreme events become more frequent. Due
to the important effect of the parameter α on the properties of the stable
distributions, they are often called α-stable or alpha stable.

Apart from the appealing feature that the probabilistic properties of
only the stable distributions are close to the probabilistic properties of sums
of i.i.d. random variables, there is another important characteristic which
is the stability property. According to the stability property, appropriately
centered and normalized sums of i.i.d. α-stable random variables is again
α-stable. This property is unique to the class of stable laws.

characteristic function ϕX(t) is mathematically equivalent to knowing the probability
density function f X(x) or the cumulative distribution function FX(x).
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FIGURE 4.7 The density functions of stable laws
with parameters α = 1.8, 1.4, 1, and 0.8, β = 0.6,
σ = 1, µ = 0.
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FIGURE 4.8 The density functions of stable laws
with parameters α = 1.8, 1.4, 1, and 0.8, β = 0,
σ = 1, µ = 0.

4.3.2 Modeling Financial Assets with Stable
Distributions

Let us revisit the problem of modeling the log-return distribution of stock
prices started in the previous section. We noted that a major criticism for
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assuming the normal distribution as a model is that very often there are out-
liers in the high-frequency data that dominate in the sum of high-frequency
returns or translate into the residuals of a times-series model. These outliers
cannot be modeled by the normal distribution. In contrast to the normal
distribution, the stable Paretian distributions are heavy-tailed, and they have
the potential to describe the heavy-tails and the asymmetry of the empirical
data.

The stable Paretian distributions arise as limit distributions of sums
of i.i.d. random variables with infinite variance, and their variance is also
unbounded. In fact, if X ∈ Sα(σ , β, µ), then the moment E|X|p < ∞ only if
p < α ≤ 2. This means that if we assume a stable Paretian distribution as
a model for the log-returns of a price time series, then we assume that the
variance of the log-returns is infinite. From a practical viewpoint, this is not
a desirable consequence.

Nevertheless, a large number of empirical studies have shown that the
stable distributions provide a very good fit to the observed daily log-returns
for common stocks in different countries and, thus, the overall idea of using
the limit distributions in the Generalized CLT as a probabilistic model has
empirical support.12 As a result, the probabilistic properties of the daily
log-returns for common stocks seem to be well approximated by those
of the stable distributions. The infinite variance of the stable hypothesis
appears as an undesirable consequence. Therefore, it is reasonable to search
for distributions close to the stable distributions and, at the same time, have
finite variance.

The methods to obtain such distributions concern truncating the tail of
the stable law very far away from the center of the distribution. A straightfor-
ward approach is to cut the tails of the distribution and to make the random
variable defined not on the entire real line but on the interval defined by
the two truncation points. Another, more sophisticated approach involves
replacing the stable tails very far away from the center of the distribution by
the tails of another distribution so that the variance becomes finite. This is the
method behind the smoothly truncated stable distributions that have been
very successfully used in option pricing.13 The distributions resulting from
the tail truncation method are close to the stable distributions as the only dif-
ference is the tail behavior very far away from the center of the distribution.

The tail truncation method is reasonable from a practical viewpoint
as well—it may not be regarded only as a technical transformation aimed

12Rachev and Mittnik (2000) provide an extensive review of the application of
stable Paretian distributions in finance.
13Rachev et al. (2005) provide more details on the application of fat-tailed distribu-
tions in finance and, in particular, the smoothly truncated stable distributions.
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at taming the infinite variance. On every stock exchange, there are certain
regulations according to which trading stops if the market index loses more
than a given percentage. In fact, this is a practical implementation of tail
truncation because huge losses (very small negative log-returns) usually
happen when there is a crisis and in market crashes the market index
plunges. Thus, astronomical losses (incredibly small negative log-returns)
are not possible in practice.

From the point of view of the limit theorems, the tail truncation results in
finite variance, which means that sums of i.i.d. truncated stable distributions
converge to the normal distribution. From this perspective, don’t we actually
assume that it is the normal distribution that drives the properties of the
monthly log-returns if the daily log-returns are assumed to follow the
truncated stable distribution? This is not the case because the truncated
stable distributions converge very slowly to the normal distribution. The
c.d.f. of the sum will begin to resemble the normal c.d.f. only when the
number of summands becomes really huge.14 For small and medium number
of summands, the density of the sum is actually closer to the density of
the corresponding stable distribution. This fact has been established using
the theory of probability metrics and is also known as a prelimit theorem.
Rachev and Mittnik (2000) provide more details on the prelimit theorems
and their importance in the applications.

4.4 CONSTRUCTION OF IDEAL PROBABILITY METRICS

The questions addressed in section 4.2.3 arise in the context of the Gener-
alized CLT as well. That is, provided that we fix the number of summands,
how close is the sum of i.i.d. variables to the limit distribution? In general,
what is the convergence rate? In the literature, there are many results that
state the convergence rate in terms of different simple probability metrics,
such as the Kolmogorov metric, the total variation metric, the uniform
metric between densities, the Kantorovich metric, and the like.15 In fact, it
turned out that probability metrics with special structure have to be intro-
duced in order for exact estimates of the convergence rate to be obtained
in limit theorems. These metrics are called ideal metrics and their special
structure is dictated by the particular problem under study—different addi-
tional axioms are added depending on the limit problem. In this respect,
they are called ideal because they solve the problem in the best possible way

14In section 4.2.3, we give an estimate of the speed of convergence in the CLT for
i.i.d. random variables, which is not dependent on the distribution of the summands.
15See Chapter 3 for definitions and discussion.



Ideal Probability Metrics 125

due to their special structure. In this section, we describe without delving
into details the notion of ideal probability metrics used to obtain exact
convergence rates in the Generalized CLT. It appears that the additional
axioms have an interesting interpretation from the point of view of finance.
This discussion continues in Chapter 9, in the context of the problem of
benchmark tracking.

4.4.1 Definition

In Chapter 3, we introduced the axiomatic definition of probability metrics.
We briefly repeat the definition discussed in section 3.3.1 of Chapter 3.
A probability metric µ(X, Y) is a functional that measures the ‘‘closeness’’
between the random variables X and Y, satisfying the following three
properties:

Property 1. µ(X, Y) ≥ 0 for any X, Y and µ(X, X) = 0

Property 2. µ(X, Y) = µ(Y, X) for any X, Y

Property 3. µ(X, Y) ≤ µ(X, Z) + µ(Z, Y) for any X, Y, Z

The three properties are called the identity axiom, the symmetry axiom, and
the triangle inequality, respectively.

The ideal probability metrics are probability metrics that satisfy two
additional properties that make them uniquely positioned to study problems
related to the Generalized CLT. The two additional properties are the
homogeneity property and the regularity property.

Homogeneity Property The homogeneity property is:

Property 4. µ(cX, cY) = |c|rµ(X, Y) for any X, Y and constants c ∈ R

and r ∈ R.

Basically, the homogeneity property states that if we scale the two
random variables by one and the same constant, the distance between the
scaled quantities (µ(cX, cY)) is proportional to the initial distance (µ(X, Y))
by |c|r. In particular, if r = 1, then the distance between the scaled quantities
changes linearly with c.

The homogeneity property has a financial interpretation that is fully
developed in section 9.3 of Chapter 9. We briefly remark that if X and Y
are random variables describing the random return of two portfolios, then
converting proportionally into cash, for example, 30% of the two portfolios
results in returns scaled down to 0.3X and 0.3Y. Since the returns of the
two portfolios appear scaled by the same factor, it is reasonable to assume
that the distance between the two scales down proportionally.
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Regularity Property The regularity property is:

Property 5. µ(X + Z, Y + Z) ≤ µ(Y, X) for any X, Y, and Z indepen-
dent of X and Y.

The regularity property states that if we add to the initial random
variables X and Y one and the same random variable Z independent of X
and Y, then the distance decreases.

The regularity property has a financial interpretation, which is also fully
developed in section 9.3 of Chapter 9. Suppose that X and Y are random
variables describing the random values of two portfolios and Z describes
the random price of a common stock. Then buying one share of stock Z
per portfolio results in two new portfolios with random wealth X + Z and
Y + Z. Because of the common factor in the two new portfolios, we can
expect that the distance between X + Z and Y + Z is smaller than the one
between X and Y.

Any functional satisfying Property 1, 2, 3, 4, and 5 is called an ideal
probability metric of order r.

4.4.2 Examples

There are examples of both compound and simple ideal probability met-
rics. For instance, the p-average compound metric Lp(X, Y) defined in
equation (3.20) in Chapter 3 and the Birnbaum-Orlicz metric 	p(X, Y)
defined in equation (3.22) in Chapter 3 are ideal compound probabil-
ity metrics of order one and 1/p respectively. In fact, almost all known
examples of ideal probability metrics of order r > 1 are simple metrics.

Almost all of the simple metrics discussed in section 3.3.3 in Chapter 3
are ideal:

1. The uniform metric between densities 
(X, Y) defined in equation (3.16)
is an ideal metric of order −1.

2. The Lp-metrics between distribution functions θp(X, Y) defined in
equation (3.13) is an ideal probability metric of order 1/p, p ≥ 1.

3. The Kolmogorov metric ρ(X, Y) defined in equation (3.9) is an ideal
metric of order 0. This can also be inferred from the relationship ρ(X,
Y) = θ∞(X, Y).

4. The Lp-metrics between inverse distribution functions 
p(X, Y) defined
in equation (3.15) is an ideal metric of order 1.

5. The Kantorovich metric κ(X, Y) defined in equation (3.12) is an ideal
metric of order 1. This can also be inferred from the relationship
κ(X, Y) = 
1(X, Y).
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FIGURE 4.9 The left part shows the densities of X and Y and the absolute
difference between them. The right part shows the same information but for the
scaled random variables 0.5X and 0.5Y.

6. The total variation metric σ (X, Y) defined in equation (3.17) is an ideal
probability metric of order 0.

7. The uniform metric between inverse c.d.f.s W(X, Y) defined in equation
(3.14) is an ideal metric of order 1.

Let us illustrate the order of ideality, or the homogeneity order, by the
ideal metrics 
(X, Y) and σ (X, Y), which are both based on measuring
distances between density functions. The left part of Figure 4.9 shows the
densities f X(x) and f Y(x) of two random variables X and Y. At the bottom
of the figure, we can see the absolute difference between the two densities
|f X(x) − f Y(x)| as a function of x. The upper right plot shows the densities
of the scaled random variables 0.5X and 0.5Y. Note that they are more
peaked at the means of X and Y. The lower right plot shows the absolute
difference |f X/2(x) − f Y/2(x)| as a function of x.

Recall from Section (3.3.3) of Chapter 3 that


(X, Y) = max
x ∈ R

|fX(x) − fY(x)|,

which means that the uniform distance between the two densities is equal
to the maximum absolute difference. On Figure 4.9 we can see that the
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maximum between the densities of the scaled random variables is clearly
larger than the maximum of the nonscaled counterparts. Actually, it is
exactly twice as large,


(X/2, Y/2) = 2
(X, Y)

because of the metric 
(X, Y) is ideal of order −1.
In section (3.3.3) of Chapter 3 we explained that the total variation met-

ric σ (X, Y) can be expressed as one half the area closed between the graphs
of the two densities. Since the total variation metric is ideal of order zero,

σ (X/2, Y/2) = σ (X, Y),

then it follows that the surface closed between the two graphs is not changed
by the scaling. Therefore, the shaded areas on Figure 4.9 are exactly the same.

Suppose that X and Y are random variables describing the return of two
portfolios. In line with the interpretation of the homogeneity property, if we
start converting those portfolios into cash, then their returns appear scaled
by a smaller and smaller factor. Our expectations are that the portfolios
should appear more and more alike; that is, when decreasing the scaling
factor, the ideal metric should indicate that the distance between the two
portfolios decreases. We verified that the metrics 
(X, Y) and σ (X, Y)
indicate otherwise. Therefore, in the problem of benchmark tracking that
we address in Chapter 9, it makes more sense to consider ideal metrics of
order greater than zero, r > 0.

Besides the ideal metrics we have listed above, there are others that
allow for interesting interpretations:

1. The Zolotarev ideal metric.
Zolotarev’s family of ideal metrics is very large. Here we state only one
example:

ζ2(X, Y) =
∫ ∞

−∞

∣∣∣∣
∫ x

−∞
FX(t)dt −

∫ x

−∞
FY(t)dt

∣∣∣∣ dx (4.12)

where X and Y are random variables with equal means, EX = EY,
and they have finite variances. The metric ζ 2(X, Y) is ideal of order 2.
Zolotarev (1997) provides further details on the properties of the
Zolotarev ideal metric.

The Zolotarev ideal metric ζ 2(X, Y) can be related to the theory of
preference relations of risk-averse investors. Risk-averse investors are
characterized by the shape of their utility functions—they have concave
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utility functions. Suppose that X and Y are random variables describing
the returns on two investments. Rothschild and Stiglitz (1970) showed
that investment X is preferred to investment Y by all risk-averse investors
if and only if EX = EY and

∫ t

−∞
FX(x) dx ≤

∫ t

−∞
FY(x) dx, ∀t ∈ R. (4.13)

This relation is known as Rothschild-Stiglitz dominance. The
Zolotarev ideal metric ζ 2(X, Y) sums up the absolute deviations between
the two quantities in inequality (4.13) for all values of t. Therefore, it
measures the distance between the investments returns X and Y directly
in terms of the quantities defining the preference relation of all risk-averse
investors. As a result, we can use it to quantify the preference order. For
example, if we know that investment X is preferred to investment Y by
all risk-averse investors, we can answer the question of whether X is
preferred to Y only to a small degree (if ζ 2(X, Y) is a small number), or
whether X dominates Y significantly (if ζ 2(X, Y) is a large number).

2. The Rachev ideal metric.
The Rachev family of ideal metrics is also very large. We state only one
example. The appendix to this chapter provides further details.

ζs,p(X, Y) = Cs

(∫ ∞

−∞
|E(t − X)s

+ − E(t − Y)s
+|pdt

)1/p

, (4.14)

where:

Cs is a constant, Cs = 1/(s − 1)!.

p is a power parameter, p ≥ 1.

s takes integer values, s = 1, 2, . . . , n, . . . .

(t − x)s
+ is a notation meaning the larger quantity between t − x

and zero raised to the power s, (t − x)s
+ = (max(t − x, 0))s.

X, Y are random variables with finite moments E|X|s < ∞ and
E|Y|s < ∞.

The quantity E(t − X)s
+ appearing in the definition of the metric is

also known as the lower partial moment of order s. The simple metric
ζ s,p(X, Y) is ideal with order r = s + 1/p − 1.

Suppose that X and Y are random variables describing the return
distribution of two common-stocks. The quantity E(t − X)+ calculates
the average loss of X provided that the loss is larger than the performance
level t. Likewise, E(t − Y)+ calculates the average loss of Y larger than t.
The absolute difference |E(t − X)+ − E(t − Y)+| calculates the deviation
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between the average loss of X and the average loss of Y for one and the
same performance level t.

In the case p = 1, the metric

ζ1,1(X, Y) =
∫ ∞

−∞
|E(t − X)+ − E(t − Y)+|dt

sums up the absolute deviations for all possible performance levels.
In this respect, it is an aggregate measure of the deviations between
the average losses above a threshold. If s > 1, then the metric ζ s,1(X,
Y) sums up the deviations between the lower partial moments for all
possible performance levels.

As the power p increases, it makes the smaller contributors to
the total sum in ζ 1,1(X, Y) become even smaller in the Rachev ideal
metric ζ 1,p(X, Y) defined in (4.14). Thus, as p grows, only the largest
absolute differences |E(t − X)+ − E(t − Y)+| start to matter. At
the limit, as p approaches infinity, only the largest difference |E(t
− X)+ − E(t − Y)+| becomes significant and the metric ζ 1,p(X, Y)
turns into

ζ1,∞(X, Y) = sup
t ∈ R

|E(t − X)+ − E(t − Y)+|. (4.15)

Note that the Rachev ideal metric given in equation (4.15) is entirely
concentrated on the largest absolute difference between the average loss
of X and Y for a common performance level t.

Similarly, the Rachev ideal metric ζ s,∞(X, Y) is calculated to be
represented by the expression

ζs,∞(X, Y) = Cs sup
t ∈ R

|E(t − X)s
+ − E(t − Y)s

+|.

It is entirely concentrated on the largest absolute difference between
the lower partial moments of order s of the two random variables.

In fact, the Zolotarev ideal metric defined in equation (4.12) appears
as a special case of the Rachev ideal metric. The appendix to this chapter
gives the Rachev ideal metric in its general form.

In financial theory, the lower partial moments are used to character-
ize preferences of difference classes of investors. For example, the lower
partial moment of order 2 characterizes the investors preferences who
are nonsatiable, risk-averse, and prefer positively skewed distributions.
Suppose that X and Y describe the return distribution of two portfolios.
X is preferred to Y by this class of investors if EX = EY and

E(t − X)2
+ ≤ E(t − Y)2

+, ∀t ∈ R.
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The Rachev ideal metric ζ 2,p(X, Y) quantifies such a preference
order in a natural way—if X is preferred to Y, then we can calculate the
distance by ζ 2,p(X, Y) and check whether X significantly dominates Y.

Lower partial moments are also used as risk measures in the optimal
portfolio selection problem and also a Capital Asset Pricing Model can
be built upon them. Bawa (1975) and Bawa and Lindenberg (1977)
provide more details.

4.5 SUMMARY

In this chapter, we described the basic results behind the classical Central
Limit Theorem and the Generalized Central Limit Theorem. We also moti-
vated the application of the limit distributions as a viable model for asset
return distributions. We considered the axiomatic construction of ideal
probability metrics for the study of sums of independent and identically
distributed random variables and provided a financial interpretation of the
new axioms. Finally, we provided two new examples of such metrics—the
Zolotarev ideal metric and the Rachev ideal metric.

4.6 TECHNICAL APPENDIX

In this appendix, we provide more details on the conditions related to
the CLT. In particular, we remark on the asymptotic negligibility condi-
tion mentioned in the chapter and also on the necessary and sufficient
condition for the CLT. Concerning the ideal metrics, we state the general
forms of the Zolotarev and the Rachev ideal metrics and also the fami-
lies of the Kolmogorov-Rachev metrics obtained by smoothing other ideal
metrics.

4.6.1 The CLT Conditions

The two sets of conditions mentioned in the chapter are sufficient conditions.
That is, if any of them holds, then the CLT is valid. In the literature, usually
the condition of Lindeberg-Feller is given as a general sufficient condition
for the CLT. However, the Lindeberg-Feller condition is equivalent to the
asymptotic negligibility condition, which we discuss below.

The Asymptotic Negligibility Condition In the chapter, we explained that
asymptotic negligibility holds if the summands become negligible with
respect to the total sum as their number increases. That is, none of the
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summands dominates and dictates the behavior of the total sum. In this
section, we give a more precise formulation of this statement.

Consider a sequence of independent random variables X1, X2, . . . , Xn,
. . . and denote by Sn the sum

Sn = X1 + · · · + Xn.

We do not assume that the distribution of the random variables is the
same, meaning that the means and the variances of the random variables
may differ. Denote by µn the mean of the sum Sn and by σ 2

n the variance of
the sum,

ESn = EX1 + · · · + EXn = µnand
DSn = DX1 + · · · + DXn = σ 2

n .

The asymptotic negligibility condition holds if

max
1 ≤ j ≤ n

P
( |Xj − µn|

σn
> δ

)
−→ 0, n → ∞ for each δ > 0. (4.16)

The asymptotic relation (4.16) can be interpreted in the following way.
The standard deviation σ n describes the variability of the total sum. The
ratio |Xj − µn|/σn compares each of the terms in Sn to the variability of the
total sum and, thus, the probability in (4.16) measures the variability of each
summand relative to the variability of the sum. Therefore, the asymptotic
negligibility condition states that as the number of summands increases
indefinitely, the most variable term in Sn is responsible for a negligible
amount of the variability of the total sum.

In the Generalized CLT, the condition (4.16) does not hold. In fact, the
Lévy stable distributions, which are the limit distributions in the Generalized
CLT, satisfy a property that is converse to the asymptotic negligibility
condition. It states that the large deviations of a sum of i.i.d. Lévy stable
random variables are due to, basically, one summand, x

P(Y1 + · · · + Yn > x) ∼ P
(

max
1 ≤ k ≤ n

Yk > x
)

,

where Y1, . . . , Yn are i.i.d. Lévy stable random variables. That is, the
probability that the sum is large is approximately equal to the probability
that one of the summands is large. This fact is a manifestation of the
fundamental difference between the Lévy stable distributions and the normal
distribution.
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The Necessary and Sufficient Condition While the asymptotic negligibility
condition is very general, it is not a necessary and sufficient condition. The
CLT may hold even if it is violated. Next, we formulate the necessary and
sufficient condition.

Denote by S̃n the centered and normalized sum,

S̃n = Y1 + · · · + Yn = Sn − µn

σn

where the summands Yj = (Xj − EXj)/σn. The CLT holds for the centered

and normalized sum, S̃n
d→ Z ∈ N(0, 1), if and only if for every ε > 0,

n∑
j = 1

∫
|x| >ε

|FYj (x) − FZj (x)||x| dx −→ 0, n → ∞, (4.17)

where Zj has a normal distribution with variance equal to the variance of Yj,

Zj = σYjZ, Zj ∈ N
(
0, σ 2

Yj

)
.

Thus, the absolute difference |FYj (x) − FZj (x)| is between two distribu-
tion functions of random variables with equal scales. The expression in
(4.17) sums up the deviations between the c.d.f.s of the summands Yj and
the scaled normal distributions FZj(x).

The necessary and sufficient condition (4.17) has a more simple form
if the random variables X1, . . . , Xn, . . . have equal distribution. Under this
assumption, their means and variances are the same, EXj = µ and DXj = σ 2.
Then the sum in (4.17) disappears and we obtain that for every ε > 0,

∫
|x| >ε

√
n
|FX̃1

(x) − FZ(x)||x| dx → 0, n → ∞ (4.18)

in which X̃1 = (X1 − µ)/σ . Note that as n increases, it is only the integration
range that changes in (4.18).

4.6.2 Remarks on Ideal Metrics

We did not specify in the chapter the exact conditions, which need to be
satisfied in order for the ideal metrics considered to be finite. In this section,
we briefly mention a few general conditions.
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Suppose that the probability metric µ(X, Y) is a simple ideal metric of
order r. The finiteness of µ(X, Y) guarantees equality of all moments up to
order r,

µ(X, Y) < ∞ �⇒ E(Xk − Yk) = 0, k = 1, 2, . . . , n < r.

Conversely, if all moments k = 1, 2, . . . , n < r agree and, in addition to
this, the absolute moments of order r are finite, then metric µ(X, Y) is finite,

EXk = EYk

E|X|r < ∞,
E|Y|r < ∞

�⇒ µ(X, Y) < ∞,

where k = 1, 2, . . . , n < r.
The conditions that guarantee finiteness of the ideal metric µ are very

important when investigating the problem of convergence in distribution of
random variables in the context of the metric µ.16 Consider a sequence of
random variables X1, X2, . . . , Xn, . . . and a random variable X that satisfy
the conditions,

EXk
n = EXk, ∀n, k = 1, 2, . . . , n < r

and

E|X|r < ∞, E|Xn|r < ∞, ∀n.

For all known ideal metrics µ(X, Y) of order r > 0, given the above
moment assumptions, the following holds: µ(Xn, X) → 0 if and only if Xn

converges to X in distribution and the absolute moment of order r converge,

µ(Xn, X) → 0

if and only if

Xn
d−→ X

and

E|Xn|r → E|Xr|.

16Technically, it is said that the metric µ metrizes the convergence in distribution
if a sequence of random variables X1, . . . , Xn, . . . converges in distribution to the
random variable X, if and only if µ(Xn, X) → 0 as n → ∞.
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This abstract result has the following interpretation. Suppose that
X and Y describe the returns of two portfolios. Choose an ideal met-
ric µ of order 3 < r < 4, for example. The convergence result above
means that if µ(X, Y) ≈ 0, then both portfolios have very similar distri-
bution functions and also they have very similar means, volatilities, and
skewness.

Note that, generally, the c.d.f.s of two portfolios being close to each
other does not necessarily mean that their moments will be approximately
the same. It is of crucial importance which metric is chosen to measure
the distance between the distribution functions. The ideal metrics have this
nice property that they guarantee convergence of certain moments. Rachev
(1991) provides an extensive review of the properties of ideal metrics and
their application.

In the remaining part of the section, we revisit the examples given in
the chapter and extend them.

1. The Zolotarev ideal metric. In the chapter, we gave only a special case
of the Zolotarev ideal metric. The general form of the Zolotarev ideal
metric is

ζs(X, Y) =
∫ ∞

−∞

∣∣Fs,X(x) − Fs,Y(x)
∣∣ dx, (4.19)

where s = 1, 2, . . . and

Fs,X(x) =
∫ x

−∞

(x − t)s−1

(s − 1)!
dFX(t) (4.20)

The Zolotarev metric ζ s(X, Y) is ideal of order r = s. Zolotarev
(1997) provides more information.

2. The Rachev metric. The general form of the Rachev metric is

ζs,p,α(X, Y) =
(∫ ∞

−∞

∣∣Fs,X(x) − Fs,Y(x)
∣∣p |x|αp′

dx
)1/p′

(4.21)

where p′ = max(1, p), α ≥ 0, p ∈ [0, ∞], and Fs,X(x) is defined in equa-
tion (4.20). If α = 0, then the Rachev metric ζ s,p,0(X, Y) is ideal of order
r = (s − 1)p/p′ + 1/p′.

Note that ζ s,p,α(X, Y) can be represented in terms of lower partial
moments,

ζs,p,α(X, Y) = 1
(s − 1)!

(∫ ∞

−∞

∣∣E(t − X)s
+ − E(t − X)s

+
∣∣p |t|αp′

dt
)1/p′

.
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The metric defined in equation (4.14) in the chapter arises from the
metric in (4.21) when α = 0,

ζs,p(X, Y) = ζs,p,0(X, Y).

3. The Kolmogorov-Rachev metrics. The Kolmogorov-Rachev metrics
arise from other ideal metrics by a process known as smoothing. Suppose
the metric µ is ideal of order 0 ≤ r ≤ 1. Consider the metric defined as

µs(X, Y) = sup
h ∈ R

|h|sµ(X + hZ, X + hZ) (4.22)

where Z is independent of X and Y and is a symmetric random variable
Z d= −Z. The metric µs(X, Y) defined in this way is ideal of order r = s.
Note that while (4.22) always defines an ideal metric of order s, this
does not mean that the metric is finite. The finiteness of µs should be
studied for every choice of the metric µ.

For example, suppose that µ(X, X) is the total variation metric
σ (X, Y) defined in (3.17) in Chapter 3 and Z has the standard normal
distribution, Z ∈ N(0, 1). We calculate that

σs(X, Y) = sup
h ∈ R

|h|sσ (X + hZ, X + hZ)

= sup
h ∈ R

|h|s 1
2

∫
R

|fX(x) − fY(x)| fZ(x/h)
h

dx

= sup
h ∈ R

|h|s 1
2

∫
R

|fX(x) − fY(x)| 1√
2πh2

e− x2

2h2 dx. (4.23)

in which we use the explicit form of the standard normal density,
fZ(u) = exp(−u2/2)/

√
2π , u ∈ R. Note that the absolute difference

between the two densities of X and Y in (4.23) is averaged with respect
to the standard normal density. This is why the Kolmogorov-Rachev
metrics are also called smoothing metrics.

The Kolmogorov-Rachev metrics are applied in estimating the
convergence rate in the Generalized CLT and other limit theorems.
Rachev and Rüschendorf (1998) and Rachev (1991) provide more
background and further details on the application in limit theorems.
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CHAPTER 5
Choice under Uncertainty

5.1 INTRODUCTION

Agents in financial markets operate in a world in which they make choices
under risk and uncertainty. Portfolio managers, for example, make invest-
ment decisions in which they take risks and expect rewards. They choose to
invest in a given portfolio because they believe it is ‘‘better’’ than any other
they can buy. Thus the chosen portfolio is the most preferred one among
all portfolios that are admissible for investment. Not all portfolio managers
invest in the same portfolio because their expectations and preferences vary.

The theory of how choices under risk and uncertainty are made was
introduced by John von Neumann and Oskar Morgenstern in 1944 in The-
ory of Games and Economic Behavior. They gave an explicit representation
of investor’s perferences in terms of an investor’s utility function. If no
uncertainty is present, the utility function can be interpreted as a mapping
between the available alternatives and real numbers indicating the ‘‘relative
happiness’’ the investor gains from a particular alternative. If an individual
prefers good A to good B, then the utility of A is higher than the utility
of B. Thus, the utility function characterizes individual’s preferences. Von
Neumann and Morgenstern showed that if there is uncertainty, then it is
the expected utility that characterizes the preferences. The expected utility
of an uncertain prospect, often called a lottery, is defined as the probability
weighted average of the utilities of the simple outcomes. In fact, the expected
utility model was first proposed by Daniel Bernoulli in 1738 as a solution
to the famous St. Petersburg paradox, but von Neumann and Morgen-
stern proved that only the expected utility can characterize preferences over
lotteries.

The expected utility theory in von Neumann and Morgenstern (1944)
defines the lotteries by means of the elementary outcomes and their probabil-
ity distribution. In this sense, the lotteries can also be interpreted as random

139
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variables that can be discrete, continuous, or mixed, and the preference rela-
tion is defined on the probability distributions of the random variables. The
probability distributions are regarded as objective; that is, the theory is con-
sistent with the classical view that, in some sense, the randomness is inherent
in nature and all individuals observe the same probability distribution of a
given random variable.

In 1954, a decade after the pioneering von Neumann–Morgenstern
theory was published, a new theory of decision making under uncertainty
appeared. It was based on the concept that probabilities are not objective,
rather they are subjective and are a numerical expression of the decision
maker’s beliefs that a given outcome will occur. This theory was developed
by Leonard Savage in The Foundations of Statistics. Savage (1954) showed
that individual’s preferences in the presence of uncertainty can be character-
ized by an expected utility calculated as a weighted average of the utilities
of the simple outcomes and the weights are the subjective probabilities of
the outcomes. The subjective probabilities and the utility function arise as
a pair from the individual’s preferences. Thus, it is possible to modify the
utility function and to obtain another subjective probability measure so that
the resulting expected utility also characterizes the individual’s preferences.
In some aspects, Savage’s approach is considered to be more general than
the von Neumann-Morgenstern theory.

Another mainstream utility theory describing choices under uncer-
tainty is the state-preference approach of Kenneth Arrow and Gérard
Debreu. The basic principle is that the choice under uncertainty is reduced
to a choice problem without uncertainty by considering state-contingent
bundles of commodities. The agent’s preferences are defined over bun-
dles in all states-of-the-world and the notion of randomness is almost
ignored. This construction is quite different from the theories of von
Neumann–Morgenstern and Savage because preferences are not defined
over lotteries. The Arrow-Debreu approach is applied in general equilib-
rium theories where the payoffs are not measured in monetary amounts but
are actual bundles of goods.1

In 1992, a new version of the expected utility theory was advanced
by Amos Tversky and Daniel Kahneman—the cumulative prospect theory.
Instead of utility function, they introduce a value function that measures
the payoff relative to a reference point. Tversky and Kahneman (1992) also
introduce a weighting function which changes the cumulative probabilities
of the prospect. The cumulative prospect theory is believed to be a superior
alternative to the von Neumann-Morgenstern expected utility theory as
it resolves some of the puzzles related to it. Nevertheless, the cumulative

1The equilibrium model was published in Arrow and Debreu (1954).
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prospect theory is a positive theory, explaining individual’s behavior, in con-
trast to the expected utility theory, which is a normative theory prescribing
the rational behavior of agents.

The appeal of utility theories stems from the generality in which
the choice under uncertainty is considered. On the basis of such general
thinking, it is possible to characterize classes of investors by the shape of
their utility function, such as nonsatiable investors, risk-averse investors,
and so on. Moreover, we are able to identify general rules that a class
of investors would follow in choosing between two risky ventures. If all
investors of a given class prefer one prospect from another, we say that this
prospect dominates the other. In this fashion, the first-, second-, and the
third-order stochastic dominance relations arise.2 The stochastic dominance
rules characterize the efficient set of a given class of investors; the efficient set
consists of all risky ventures that are not dominated by other risky ventures
according to the corresponding stochastic dominance relation. Finally, the
consequences of stochastic dominance relations are so powerful that any
newly formed theory of choice under risk and uncertainty is tested as to
whether it is consistent with them.

In this chapter, we briefly describe expected utility theory and the
stochastic dominance relations that result. We apply the stochastic domi-
nance relations to the portfolio choice problem and check how the theory
of probability metrics can be combined with the stochastic dominance
relations.

5.2 EXPECTED UTILITY THEORY

We start with the well-known St. Petersburg Paradox, which is historically
the first application of the concept of the expected utility function. As a
next step, we describe the essential result of von Neumann–Morgenstern
characterization of the preferences of individuals.

5.2.1 St. Petersburg Paradox

St. Petersburg Paradox is a lottery game presented to Daniel Bernoulli by his
cousin Nicolas Bernoulli in 1713. Daniel Bernoulli published the solution
in 1734 but another Swiss mathematician, Gabriel Cramer, had already
discovered parts of the solution in 1728.

2The theory of stochastic dominance was formulated in the following papers: Hadar
and Russel (1969), Hanoch and Levy (1969), Rothschild and Stiglitz (1970), and
Whitmore (1970)
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The lottery goes as follows. A fair coin is tossed until a head appears.
If the head appears on the first toss, the payoff is $1.3 If it appears on the
second toss, then the payoff is $2. After that, the payoff increases sharply.
If the head appears on the third toss, the payoff is $4, on the fourth toss it is
$8, and the like. Generally, if the head appears on the n-th toss, the payoff
is 2n−1 dollars.

At that time, it was commonly accepted that the fair value of a lottery
should be computed as the expected value of the payoff. Since a fair
coin is tossed, the probability of having a head on the n-th toss equals
1/2n,

P(First head on trial n) = P(Tail on trial 1) · P(Tail on trial 2)

· . . . · P(Tail on trial n − 1) · P(Head on trial n) = 1
2n

Therefore, the expected payoff is calculated as

Expected payoff = 1 · 1
2 + 2 · 1

4 + . . . + 2n − 1 · 1
2n + . . .

= 1
2 + 1

2 + . . . + 1
2 + . . .

= ∞.

This result means that people should be willing to participate in the
game no matter how large the price of the ticket. Any price makes the
game worthwhile because the expected payoff is infinite. Nevertheless, in
reality very few people would be ready to pay as much as $100 for a
ticket.

In order to explain the paradox, Daniel Bernoulli suggested that instead
of the actual payoff, the utility of the payoff should be considered. Therefore
the fair value is calculated by

Fair value = u(1) · 1
2

+ u(2) · 1
4

+ . . . + u(2n − 1) · 1
2n

+ . . .

=
∞∑

k = 1

u(2k − 1)
2n

,

where the function u(x) is the utility function. The general idea is that the
value is determined by the utility an individual gains and not directly by the
monetary payoff.

3Actually, the payoff was in terms of ducats—a gold coin used as a trade currency
in Europe before World War I.
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Daniel Bernoulli considered utility functions with diminishing marginal
utility; that is, the utility gained from one extra dollar diminishes with the
sum of money one has. In the solution of the paradox, Bernoulli considered
logarithmic utility function, u(x) = log x, and showed that the fair value of
the lottery equals approximately $2.

The solutions of Bernoulli and Cramer are not completely satisfactory
because the lottery can be changed in such a way that the fair value becomes
infinite even with their choice of utility functions. Nevertheless, their attempt
to solve the problem uses concepts that were later developed into theories
of decision making under uncertainty.

5.2.2 The von Neumann – Morgenstern Expected
Utility Theory

The St. Petersburg Paradox shows that the naive approach to calculate
the fair value of a lottery can lead to counter-intuitive results. A deeper
analysis shows that it is the utility gained by an individual that should be
considered and not the monetary value of the outcomes. The theory of
von Neumann-Morgenstern gives a numerical representation of individual’s
preferences over lotteries. The numerical representation is obtained through
the expected utility, and it turns out that this is the only possible way of
obtaining a numerical representation.

We used the term lottery in the discussion of the game behind the St.
Petersburg Paradox without providing a definition. Technically, a lottery is
a probability distribution defined on the set of payoffs. In fact, the lottery
in the St. Petersburg Paradox is given in Table 5.1. Generally, lotteries
can be discrete, continuous, and mixed. Table 5.1 provides an example
of a discrete lottery. In the continuous case, the lottery is described by the
cumulative distribution function (c.d.f.) of the random payoff. Any portfolio
of common stocks, for example, can be regarded as a continuous lottery
defined by the c.d.f. of the portfolio payoff. We use the notation PX to
denote the lottery (or the probability distribution), the payoff of which is
the random variable X. The particular values of the random payoff (the
outcomes) we denote by lower-case letters, x, and the probability that
the payoff is below x is denoted by P(X ≤ x) = FX(x), which is in fact
the c.d.f.

TABLE 5.1 The Lottery in the St. Petersburg Paradox.

Probability 1/2 1/4 1/8 . . . 1/2n . . .

Payoff 1 2 4 . . . 2n−1 . . .
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Denote by X the set of all lotteries. Any element of X is considered a
possible choice of an economic agent. If PX ∈ X and PY ∈ X, then there are
the following possible cases:

■ The economic agent may prefer PX to PY or be indifferent between
them, denoted by PX � PY.

■ The economic agent may prefer PY to PX or be indifferent between
them, denoted by PY � PX.

■ If both relations hold, PY � PX and PX � PY , then we say that the
economic agent is indifferent between the two choices, PX ∼ PY.

Sometimes, for notational convenience, we use X � Y instead of PX �
PY without changing the assumption that we are comparing the probability
distributions.

A preference relation or a preference order of an economic agent on the
set of all lotteries X is a relation concerning the ordering of the elements of X,
which satisfies certain axioms called the axioms of choice. A more detailed
description of the axioms of choice is provided in the appendix to this
chapter. A numerical representation of a preference order is a real-valued
function U defined on the set of lotteries, U: X → R, such that PX � PY if
and only if U(PX) ≥ U(PY),

PX � PY ⇐⇒ U(PX) ≥ U(PY).

Thus the numerical representation characterizes the preference order. In
fact, we can take advantage of the numerical representation as comparing
real numbers is easier than dealing with the preference order directly.

The von Neumann–Morgenstern theory states that if the preference
order satisfies certain technical continuity conditions, then the numerical
representation U has the form

U(PX) =
∫

R

u(x)dFX(x), (5.1)

where u(x) is the utility function of the economic agent defined over the
elementary outcomes of the random variable X, the probability distribution
function of which is FX(x). Equation (5.1) is actually the mathematical
expectation of the random variable u(X),

U(PX) = Eu(X),

and for this reason the numerical representation of the preference order is
the expected utility.



Choice under Uncertainty 145

Note that the preference order is defined by the economic agent; various
agents may have different preference orders. In the equivalent numerical
representation, it is the utility function u(x) that characterizes U and,
therefore, determines the preference order. In effect, the utility function can
be regarded as the fundamental building block that describes the agent’s
preferences.

As we explained, lotteries may be discrete, continuous, or mixed. If
the lottery is discrete, then the payoff is a discrete random variable and
equation (5.1) becomes

U(PX) =
n∑

j = 1

u(xj)pj, (5.2)

where xj are the outcomes and pj is the probability that the j-th outcome
occurs, pj = P(X = xj). The formula for the fair value in the St. Petersburg
Paradox given by Daniel Bernoulli has the form of equation (5.2). Thus,
the St. Petersburg Paradox is resolved by calculating the fair value through
the expected utility of the lottery. If the lottery is such that it has only
one possible outcome (i.e., the profit is equal to x with certainty), then the
expected utility coincides with the utility of the corresponding payoff, u(x).

5.2.3 Types of Utility Functions

Some properties of the utility function are derived from common arguments
valid for investors belonging to a certain category. For example, concerning
certain prospects, all investors who prefer more to less are called nonsatiable.
If there are two prospects, one with a certain payoff of $100 and another,
with a certain payoff of $200, a nonsatiable investor would never prefer the
first opportunity. Therefore, the utility function of any such investor should
indicate that the utility corresponding to the first prospect should not be
less than the utility of the second one, u(200) ≥ u(100). We can generalize
that the utility functions of nonsatiable investors should be nondecreasing,
and the nondecreasing property is

u(x) ≤ u(y), if x ≤ y for any x, y ∈ R.

The outcomes x and y can be interpreted as the payoffs of two oppor-
tunities without an element of uncertainty, that is, both x and y occur with
probability one. If the utility function is differentiable, then the nondecreas-
ing property translates as a nonnegative first derivative, u′(x) ≥ 0, x ∈ R.

Other characteristics of investor’s preferences can also be described
by the shape of the utility function. Suppose that the investor gains a
lower utility from a venture with some expected payoff and a prospect
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with a certain payoff, equal to the expected payoff of the venture; that
is, the investor is risk averse. Assume that the venture has two possible
outcomes—x1 with probability p and x2 with probability 1 − p, p ∈ [0, 1].
Therefore, the expected payoff of the venture equals px1 + (1 − p)x2. In
terms of the utility function, the risk-aversion property is expressed as

u(px1 + (1 − p)x2) ≥ pu(x1) + (1 − p)u(x2), ∀x1, x2 and p ∈ [0, 1] (5.3)

where the left-hand side corresponds to the utility of the certain prospect
and the right-hand side is the expected utility of the venture. By definition, if
a utility function satisfies (5.3), then it is concave and, therefore, the utility
functions of risk-averse investors should be concave. That is, concavity u(x)
with support on a set S is said to be a concave function if S is a convex set
and if u(x) satisfies (5.3) for all x1, x2 ∈ S and p ∈ [0, 1]. If the utility function
is twice differentiable, the concavity property translates as a negative second
derivative, u′′ (x) ≤ 0, ∀x ∈ S.

A formal measure of absolute risk aversion is the coefficient of absolute
risk aversion4 defined by

rA(x) = −u′′(x)
u′(x)

, (5.4)

which indicates that the more curved the utility function is, the higher the
risk-aversion level of the investor (the more pronounced the inequality in
(5.3) becomes).

Some common examples of utility functions are described as follows.

1. Linear utility function.
u(x) = a + bx.

The linear utility function always satisfies (5.3) with equality and,
therefore, represents a risk-neutral investor. If b > 0, then it represents
a nonsatiable investor.

2. Quadratic utility function.

u(x) = a + bx + cx2.

If c < 0, then the quadratic utility function is concave and represents
a risk-averse investor.

3. Logarithmic utility function.

u(x) = log x, x > 0.

4It is also known as the Arrow-Pratt measure of absolute risk aversion after the
economists Kenneth Arrow and John W. Pratt. See Pratt (1964) and Arrow (1965).
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The logarithmic utility represents a nonsatiable, risk-averse investor.
It exhibits a decreasing absolute risk aversion since rA(x) = 1/x and the
coefficient of absolute risk aversion decreases with x.

4. Exponential utility function.

u(x) = −e−ax, a > 0.

The exponential utility represents a nonsatiable, risk-averse investor.
It exhibits a constant absolute risk aversion since rA(x) = a and the
coefficient of absolute risk aversion does not depend on x.

5. Power utility function.

u(x) = −x−a

a
, x > 0, a > 0.

The power utility represents a nonsatiable, risk-averse investor. It
exhibits a decreasing absolute risk aversion since rA(x) = a/x and the
coefficient of absolute risk aversion decreases with x.

5.3 STOCHASTIC DOMINANCE

In section 5.2.3, we noted that key characteristics of investor’s preferences
determine the shape of the utility function. For example, all nonsatiable
investors have nondecreasing utility functions and all risk-averse investors
have concave utility functions. Thus different classes of investors can be
defined through the general unifying properties of their utility functions.

Suppose that there are two portfolios X and Y, such that all investors
from a given class do not prefer Y to X. This means that the probability
distributions of the two portfolios differ in a special way that, no matter
the particular expression of the utility function, if an investor belongs to
the given class, then Y is not preferred by that investor. In this case, we say
that portfolio X dominates portfolio Y with respect to the class of investors.
Such a relation is often called a stochastic dominance relation or a stochastic
ordering.

Since it is only a relationship between the probability distributions
of X and Y that determines whether X dominates Y for a given class
of investors, it appears possible to obtain a criterion characterizing the
stochastic dominance, involving only the cumulative distribution functions
(c.d.f.s) of X and Y. Thus, we are able to identify by only looking at
distribution functions of X and Y if any of the two portfolios is preferred
by an investor from the class. This section discusses such criteria for three
important classes of investors.
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5.3.1 First-Order Stochastic Dominance

Suppose that X is an investment opportunity with two possible outcomes—
the investor receives $100 with probability 1/2 and $200 with probability
1/2. Similarly, Y is a venture with two payoffs—$150 with probability
1/2 and $200 with probability 1/2. A nonsatiable investor would never
prefer the first opportunity because of the following relationship between
the corresponding expected utilities,

U(PX) = u(100)/2 + u(200)/2 ≤ u(150)/2 + u(200)/2 = U(PY).

The inequality arises because u(100) ≤ u(150) as a nonsatiable investor
by definition prefers more to less.

Denote by U1 the set of all utility functions representing nonsatiable
investors; that is, the set contains all nondecreasing utility functions. We say
that the venture X dominates the venture Y in the sense of the first-order
stochastic dominance (FSD), X �FSD Y, if a nonsatiable investor would not
prefer Y to X. In terms of the expected utility,

X �FSD Y if Eu(X) ≥ Eu(Y), for any u ∈ U1.

The condition in terms of the c.d.f.s of X and Y characterizing the FSD
order is the following,

X �FSD Y if and only if FX(x) ≤ FY(x), ∀ x ∈ R. (5.5)

where FX(x) and FY(x) are the c.d.f.s of the two ventures.
Figure 5.1 provides an illustration of the relationship between the two

c.d.f.s. If X and Y describe the payoff of two portfolios with distribution
functions such as the ones plotted in Figure 5.1, then we can conclude that
a nonsatiable investor would never invest in Y.

A necessary condition for FSD is that the expected payoff of the
preferred venture should exceed the expected payoff of the alternative,
EX ≥ EY if X �FSD Y. This is true because the utility function u(x) = x
represents a nonsatiable investor as it is nondecreasing and, therefore, it
belongs to the set U1. Consequently, if X is preferred by all nonsatiable
investors, then it is preferred by the investor with utility function u(x) = x,
which means that the expected utility of X is not less than the expected
utility of Y, EX ≥ EY.

In general, the converse statement does not hold. If the expected payoff
of a portfolio exceeds the expected payoff of another portfolio, it does not
follow that any nonsatiable investor would necessarily choose the portfolio
with the larger expected payoff. This is because the inequality between the



Choice under Uncertainty 149

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1

x

FX(x)

FY(y)

FIGURE 5.1 An illustration of the first-order
stochastic dominance condition in terms of the
distribution functions, X �FSD Y.

c.d.f.s of the two portfolios given in equation (5.5) may not hold. In effect,
there will be nonsatiable investors who would choose the portfolio with the
larger expected payoff and other nonsatiable investors who would choose
the portfolio with the smaller expected payoff. It depends on the particular
expression of the utility function such as whether it is a logarithmic or a
power utility function.

5.3.2 Second-Order Stochastic Dominance

For decision making under risk, the concept of first-order stochastic domi-
nance is not very useful because the condition in (5.5) is rather restrictive.
According to the analysis in the previous section, if the distribution func-
tions of two portfolios satisfy (5.5), then a nonsatiable investor would never
prefer portfolio Y. This conclusion also holds for the subcategory of the
nonsatiable investors who are also risk-averse. Therefore, the condition in
(5.5) is only a sufficient condition for this subcategory of investors but is
unable to characterize completely their preferences. This is demonstrated in
the following example.

Consider a venture Y with two possible payoffs—$100 with proba-
bility 1/2 and $200 with probability 1/2, and a prospect X yielding $180
with probability one. A nonsatiable, risk-averse investor would never prefer
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Y to X because the expected utility of Y is not larger than the expected
utility of X,

Eu(X) = u(180) ≥ u(150) ≥ u(100)/2 + u(200)/2 = Eu(Y),

where u(x) satisfies property (5.3) and is assumed to be nondecreasing.
The distribution functions of X and Y do not satisfy (5.5). Nevertheless, a
nonsatiable, risk-averse investor would never prefer Y.

Denote by U2 the set of all utility functions that are nondecreasing and
concave. Thus, the set U2 represents the nonsatiable, risk-averse investors
and is a subset of U1, U2 ⊂U 1. We say that a venture X dominates venture
Y in the sense of second-order stochastic dominance (SSD), X �SSD Y, if a
nonsatiable, risk-averse investor does not prefer Y to X. In terms of the
expected utility, X �SSD Y if Eu(X) ≥ Eu(Y), for any u ∈ U2.

The condition in terms of the c.d.f.s of X and Y characterizing the SSD
order is the following,

X �SSD Y ⇐⇒
∫ x

−∞
FX(t)dt ≤

∫ x

−∞
FY(t)dt, ∀x ∈ R, (5.6)

where FX(t) and FY(t) are the c.d.f.s of the two ventures.
Similarly to FSD, inequality between the expected payoffs is a necessary

condition for SSD, EX ≥ EY if X �SSD Y, because the utility function u(x) =
x belongs to the set U2. In contrast to the FSD, the condition in (5.6) allows
the distribution functions to intersect. It turns out that if the distribution
functions cross only once, then X dominates Y with respect to SSD if FX(x) is
below FY(x) to the left of the crossing point. Such an illustration is provided
in Figure 5.2.

5.3.3 Rothschild-Stiglitz Stochastic Dominance

In the SSD order, we considered the class of all nonsatiable and risk-averse
investors. Rothschild and Stiglitz (1970) introduce a slightly different order
by dropping the requirement that the investors are nonsatiable. A venture X
is said to dominate a venture Y in the sense of Rothschild-Stiglitz stochas-
tic dominance (RSD),5 X �RSD Y, if no risk-averse investor prefers Y to
X. In terms of the expected utility, X �RSD Y if Eu(X) ≥ Eu(Y), for any
concave u(x).

The class of risk-averse investors is represented by the set of all concave
utility functions, which contains the set U2. Thus, the condition in (5.6) is
only a necessary condition for the RSD but it is not sufficient to characterize

5The Rothschild-Stiglitz stochastic dominance order is also called concave order.



Choice under Uncertainty 151

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1

x

FX(x)

FY(y)

FIGURE 5.2 An illustration of the second-order
stochastic dominance condition in terms of the
distribution functions, X �SSD Y.

the RSD order. If the portfolio X dominates the portfolio Y in the sense
of the RSD order, then a risk-averter would never prefer Y to X. This
conclusion holds for the nonsatiable risk-averters as well and, therefore, the
relation in (5.6) holds as a consequence,

X �RSD Y ⇒ X �SSD Y.

The converse relation is not true. This can be demonstrated with
the help of the example developed in section 5.3.2. If the portfolio Y
pays off $100 with probability 1/2 and $200 with probability 1/2, then
no risk-averse investor would prefer it to a prospect yielding $150 with
probability one,

u(150) = u(100/2 + 200/2) ≥ u(100)/2 + u(200)/2 = Eu(Y),

which is just an application of the assumption of concavity in (5.3). It is not
possible to determine whether a risk-averse investor would prefer a prospect
yielding $150 with probability one or the prospect X yielding $180 with
probability one. Those who are nonsatiable would certainly prefer the larger
sum but this is not universally true for all risk-averse investors because we
do not assume that u(x) is nondecreasing.
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The condition that characterizes the RSD stochastic dominance is the
following one,

X �RSD Y ⇐⇒



EX = EY,∫ x

−∞
FX(t)dt ≤

∫ x

−∞
FY(t)dt, ∀ x ∈ R.

(5.7)

In fact, this is the condition for the SSD order with the additional assumption
that the mean payoffs should coincide.

5.3.4 Third-Order Stochastic Dominance

We defined the coefficient of absolute risk aversion rA(x) in equation
(5.4). Generally, its values vary for different payoffs depending on the
corresponding derivatives of the utility function. Larger values of rA(x)
correspond to a more pronounced risk-aversion effect.

In section 5.2.3, we noted that a negative second derivative of the
utility function for all payoffs means that the investor is risk-averse at any
payoff level. Therefore, the closer u′′(x) to zero, the less risk-averse the
investor since the coefficient rA(x) decreases, other things held equal. The
logarithmic utility function is an example of a utility function exhibiting
decreasing absolute risk aversion. The larger the payoff level, the less curved
the function is, which corresponds to a closer to zero second derivative and a
less pronounced risk-aversion property. An illustration is given in Figure 5.3.

Utility functions exhibiting a decreasing absolute risk aversion are
important because the investors they represent favor positive to negative
skewness. This is a consequence of the decreasing risk aversion—at higher
payoff levels such investors are less inclined to avoid risk in comparison to
lower payoff levels at which they are much more sensitive to risk taking.
Technically, a utility function with a decreasing absolute risk aversion has
a nonnegative third derivative, u′′ ′(x) ≥ 0, as this means that the second
derivative is nondecreasing. A plot of the density graphs of a positively and
a negatively skewed distribution is given in Figure 1.4 in Chapter 1.

Denote by U3 the set of all utility functions that are nondecreasing,
concave, and have a nonnegative third derivative, u′′ ′(x) ≥ 0. Thus, U3

represents the class of nonsatiable, risk-averse investors who prefer positive
to negative skewness. A venture X is said to dominate a venture Y in the
sense of third-order stochastic dominance (TSD), X �TSD Y, if an investor
with a utility function from the set U3 does not prefer Y to X. In terms of
the expected utility, X �TSD Y if Eu(X) ≥ Eu(Y), for any u ∈ U3.

The set of utility functions U3 is contained in the set of nondecreasing,
concave utilities, U3 ⊂U 2. Therefore, the condition (5.6) for SSD is only
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FIGURE 5.3 The graph of the logarithmic utility
function, u(x) = logx. For smaller values of x, the
graph is more curved while, for larger values of x, the
graph is closer to a straight line and thus to risk
neutrality.

sufficient in the case of TSD,

X �SSD Y ⇒ X �TSD Y.

The condition which characterizes the TSD stochastic dominance is the
following one,

X �TSD Y ⇐⇒ E(X − t)2
+ ≤ E(Y − t)2

+, ∀ t ∈ R (5.8)

where the notation (x − t)2
+ means the maximum between x − t and

zero raised to the second power, (x − t)2
+ = (max(x − t, 0))2. The quantity

E(X − t)2
+ is known as the second lower partial moment of the random

variable X. It measures the variability of X below a target payoff level t.
Suppose that X and Y have equal means and variances. If X has a positive
skewness and Y has a negative skewness, then the variability of X below
any target payoff level t will be smaller than the variability of Y below the
same target payoff level.

At first sight, equation (5.8) has nothing to do with (5.6) and it is
not clear that SSD entails TSD. In fact, it is only a matter of algebraic
manipulations to show that, indeed, if (5.6) holds, then (5.8) holds as
well.
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5.3.5 Efficient Sets and the Portfolio Choice Problem

Taking advantage of the criteria for stochastic dominance discussed in the
previous sections, we can characterize the efficient sets of the corresponding
categories of investors. The efficient set of a given class of investors is
defined as the set of ventures not dominated with respect to the corre-
sponding stochastic dominance relation. For example, the efficient set of the
nonsatiable investors is the set of those ventures which are not dominated
with respect to the FSD order. As a result, by construction, any venture
which is not in the efficient set will be necessarily discarded by all investors
in the class.

The portfolio choice problem of a given investor can be divided into
two steps. The first step concerns finding the efficient set of the class of
investors which the given investor belongs to. Any portfolio not belonging
to the efficient set will not be selected by any of the investors in the class and
is, therefore, suboptimal for the investor. Such a class may be composed of,
for example, all nonsatiable, risk-averse investors if the utility function of
the given investor is nondecreasing and concave. In this case, the efficient set
comprises all portfolios not dominated with respect to the SSD order. Note
that in this step, we do not take advantage of the particular expression for
the utility function of the investor.

Once we have obtained the efficient set, we proceed to the second step
in which we calculate the expected utility of the investor for the portfolios in
the efficient set. The portfolio that maximizes the investor’s expected utility
represents the optimal choice of the investor.

The difficulty of adopting this approach in practice is that it is very hard
to obtain explicitly the efficient sets. That is why the problem of finding
the optimal portfolio for the investor is very often replaced by a more
simple one, involving only certain characteristics of the portfolios return
distributions, such as the expected return and the risk. In this situation, it is
critical that the more simple problem is consistent with the corresponding
stochastic dominance relation in order to guarantee that its solution is
among the portfolios in the efficient set. Checking the consistency reduces to
choosing a risk measure which is compatible with the stochastic dominance
relation.

5.3.6 Return versus Payoff

Note that the expected utility theory deals with the portfolio payoff and
not the portfolio return. Nevertheless, all relations defining the stochastic
dominance orders can be adopted if we consider the distribution functions
of portfolio returns rather than portfolio profits. In the following, we
examine the FSD and SSD orders concerning log-return distributions and
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the connection to the corresponding orders concerning random payoffs.
The logarithmic return, or simply the log-return, is a central concept in
fundamental theories in finance, such as derivative pricing and modern
portfolio theory. Therefore, it makes sense to consider stochastic orders
with respect to log-return distributions rather than payoff.

Suppose that Pt is a random variable describing the price of a common
stock at a future time t, t > 0 where t = 0 is present time. Without loss of
generality, we can assume that the stock does not pay dividends. Denote by
rt the log-return for the period (0, t),

rt = log
Pt

P0
,

where P0 is the price of the common stock at present and is a nonran-
dom positive quantity. The random variable Pt can be regarded as the
random payoff of the common stock at time t, while rt is the corresponding
random log-return. The formula expressing the random payoff in terms of
the random log-return is

Pt = P0 exp(rt).

Even though log-returns and payoffs are directly linked by means
of the above formulae, it turns out that, generally, stochastic dominance
relations concerning two log-return distributions are not equivalent to
the corresponding stochastic dominance relations concerning their payoff
distributions.

Consider an investor with utility function u(x) where x > 0 stands for
payoff. In the appendix to this chapter, we demonstrate that the utility
function of the investor concerning the log-return can be expressed as

v(y) = u(P0 exp(y)), y ∈ R (5.9)

where y stands for the log-return of a common stock and P0 is the price at
present.6 Equation (5.9) and the inverse,

u(x) = v(log(x/P0)), x > 0 (5.10)

provide the link between utilities concerning log-returns and payoff.
It turns out that an investor who is nonsatiable and risk-averse with

respect to payoff distributions may not be risk-averse with respect to

6In fact, the correct relationship is a positive linear transform of the function u but
this detail is immaterial for the discussion which follows.
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log-return distributions. The utility function u(x) representing such an
investor has the properties

u′(x) ≥ 0 and u′′(x) ≤ 0, ∀ x > 0,

but it does not follow that the function v(y) given by equation (5.9) will
satisfy them. In fact, v(y) also has nonpositive first derivative but the sign of
the second derivative can be arbitrary. Therefore, the investor is nonsatiable,
but may not be risk-averse with respect to log-return distributions. This is
illustrated in Figure 5.4 for the exponential utility function.

Conversely, an investor who is nonsatiable and risk-averse with respect
to log-return distributions, is also nonsatiable and risk-averse with con-
cerning payoff distributions. This is true because if v(y) satisfies the
corresponding derivative inequalities, so does u(x) given by (5.10). Conse-
quently, it follows that the investors who are nonsatiable and risk-averse
on the space of log-return distributions are a subclass of those who are
nonsatiable and risk-averse on the space of payoff distributions.

This analysis implies that the FSD order of two common stocks,
for example, remains unaffected as to whether we consider their payoff
distributions or their log-return distributions,

P1
t �FSD P2

t ⇐⇒ r1
t �FSD r2

t ,
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FIGURE 5.4 u(x) represents a nonsatiable and
risk-averse investor on the space of payoffs and v(y)
is the corresponding utility on the space of
log-returns. Apparently, v(y) is not concave.
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where P1
t and P2

t are the payoffs of the two common stocks at time
t > t0, and r1

t and r2
t are the corresponding log-returns for the same period.

However, such an equivalence does not hold for the SSD order. Actually,
the SSD order on the space of payoff distributions implies the same order
on the space of log-return distributions but not vice versa,

P1
t �SSD P2

t ⇒ r1
t �SSD r2

t .

In the appendix to this chapter, we demonstrate that the same conclusion
holds for the TSD order and, generally, for the n-th order stochastic
dominance, n > 1. Such kind of relations deserve a closer scrutiny as optimal
portfolio problems are usually set in terms of returns and consistency with a
stochastic dominance relation implies that the stochastic dominance relation
is also set on the space of return distributions, not on the space of payoff
distributions. Moreover, in this section we considered only one-period
returns. In a multiperiod setting, for example in the area of asset-liability
management, matters get even more involved.

Note that these relations are always true if the present values of the
two ventures are equal P1

0 = P2
0. Otherwise they may be violated. Consider,

for example, the FSD order of random payoffs. Suppose that P1
t dominates

P2
t with respect to the FSD order, P1

t �FSD P2
t . Then, according to the

characterization in terms of the c.d.f.s we obtain

FP1
t
(x) ≤ FP2

t
(x), ∀x ∈ R.

We can represent this inequality in terms of the log-returns r1
t and r2

t in
the following way:

P
(

r1
t ≤ log

x
P1

0

)
≤ P

(
r2

t ≤ log
x
P2

0

)
, ∀x ∈ R.

In fact, the above inequality implies that r1
t �FSD r2

t if P1
0 = P2

0. In case
the present values of the ventures differ a lot, it may happen that the c.d.f.s
of the log-return distributions do not satisfy the inequality Fr1

t
(y) ≤ Fr2

t
(y)

for all y ∈ R, which means that the FSD order may not hold.

5.4 PROBABILITY METRICS AND STOCHASTIC
DOMINANCE

The conditions for stochastic dominance involving the distribution functions
of the ventures X and Y represent a powerful method to determine if an
entire class of investors would prefer any of the portfolios. For example, in
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order to verify if any nonsatiable, risk-averse investor would not prefer Y
to X, we have to verify if condition (5.6) holds. Note that a negative result
does not necessarily mean that any such investor would actually prefer Y
or be indifferent between X and Y. It may be the case that the inequality
between the quantities in (5.6) is satisfied for some values of the argument,
and for others, the converse inequality holds. That is, neither X �SSD Y nor
Y �SSD X is true. Thus, only a part of the nonsatiable, risk-averse investors
may prefer X to Y; it now depends on the particular investor we consider.

Suppose the verification confirms that either X is preferred or the
investors are indifferent between X and Y, X �SSD Y. This result is only
qualitative, there are no indications whether Y would be categorically
disregarded by all investors in the class, or the differences between the two
portfolios are very small. Similarly, if we know that no investors from the
class prefer Y to Z, Z �SSD Y, then can we determine whether Z is more
strongly preferred to Y than X is?

The only way to approach these questions is to add a quantitative
element through a probability metric since only by means of a probability
metric can we calculate distances between random quantities.7 For example,
we can choose a probability metric µ and we can calculate the distances
µ(X, Y) and µ(Z, Y). If µ(X, Y) < µ(Z, Y), then the return distribution of
X is closer to the return distribution of Y than are the return distributions
of Z and Y. On this ground, we can draw the conclusion that Z is more
strongly preferred to Y than X is, on condition that we know in advance
the relations X �SSD Y and Z �SSD Y.

However, not any probability metric appears suitable for this calcula-
tion. This is illustrated by the following example. Suppose that Y and X
are normally distributed random variables describing portfolio returns with
equal means, X ∈ N(a, σ 2

X) and Y ∈ N(a, σ 2
Y ), with σ 2

X < σ 2
Y . Z is a prospect

yielding a dollars with probability one. The c.d.f.s FX(x) and FY(x) cross
only once at x = a and the FX(x) is below FY(x) to the left of the crossing
point because the variance of X is assumed to be smaller than the variance
of Y. Therefore, according to the condition in (5.7), no risk-averse investor
would prefer Y to X and consequently X �SSD Y. The prospect Z provides
a nonrandom return equal to the expected returns of X and Y, EX = EY
= a, and, in effect, any risk-averse investor would rather choose Z from the
three alternatives, Z �SSD X �SSD Y.

A probability metric with which we would like to quantify the
second-order stochastic dominance relation should be able to indicate that,
first, µ(X, Y) < µ(Z, Y) because Z is more strongly preferred to Y and,
second, µ(Z, X) < µ(Z, Y) because Y is more strongly rejected than X with

7Chapter 3 provides more background on probability metrics.
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FIGURE 5.5 The distribution functions of two
normal distributions with equal means, EX = EY
= a and the distribution function of Z = a with
probability one. The arrows indicate the
corresponding Kolmogorov distances.

respect to Z. The assumptions in the example give us the information to
order completely the three alternatives and that is why we are expecting the
two inequalities should hold.

Let us choose the Kolmogorov metric,8

ρ(X, Y) = sup
x ∈ R

|FX(x) − FY(x)|,

for the purpose of calculating the corresponding distances. It computes the
largest absolute difference between the two distribution functions. Applying
the definition to the distributions in the example, we obtain that ρ(X, Z)
= ρ(Y, Z) = 1/2 and ρ(X, Y) < 1/2. As a result, the Kolmogorov metric
is capable of showing that Z is more strongly preferred relative to Y but
cannot show that Y is more strongly rejected with respect to Z. Figure 5.5
contains a plot of the c.d.f.s of the three random variables. The arrows
indicate where the largest absolute difference between the corresponding
c.d.f.s is located. The arrow length equals the Kolmogorov distance.

The example shows that there are probability metrics, which are not
appropriate to quantify a stochastic dominance order. The task of finding
a suitable metric is not a simple one because the structure of the metric

8The Kolmogorov metric ρ(X, Y) is introduced in Chapter 3. See equation (3.9).
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should be based on the conditions defining the dominance order. Inevitably,
we cannot expect that one probability metric will appear suitable for all
stochastic orders, rather, a probability metric may be best suited for a
selected stochastic dominance relation.

Technically, we have to impose another condition in order for the
problem of quantification to have a practical meaning. The probability
metric calculating the distances between the ordered random variables
should be bounded. If it explodes, then we cannot draw any conclusions.
For instance, if µ(X, Y) = ∞ and µ(Z, Y) = ∞, then we cannot compare
the investors’ preferences.

Concerning the FSD order, a suitable choice for a probability metric is
the Kantorovich metric,

κ(X, Y) =
∫ ∞

−∞
|FX(x) − FY(x)|dx,

introduced in section 3.3 of Chapter 3. Note that the condition in (5.5) can
be restated as FX(x) − FX(x) ≤ 0, ∀ x ∈ R. Thus summing up all absolute
differences gives an idea how close X is to Y, which is a natural way of
measuring the distance between X and Y with respect to the FSD order.
The Kantorovich metric is finite as long as the random variables have finite
means. We can always count on this assumption if the random variables
describe portfolio returns, for example.

The RSD order can also be quantified in a similar fashion. Consider the
Zolotarev ideal metric,

ζ 2(X, Y) =
∫ ∞

−∞

∣∣∣∣
∫ x

−∞
FX(t)dt −

∫ x

−∞
FY(t)dt

∣∣∣∣ dx,

introduced in section 4.4 of Chapter 4. The structure of this probability
metric is directly based on the condition in (5.7), and it calculates in a
natural way the distance between X and Y with respect to the RSD order.
The requirement that EX = EY in (5.7) combined with the additional
assumption that the second moments of X and Y are finite, EX2 < ∞ and
EY2 < ∞, represents the needed sufficient conditions for the boundedness of
ζ 2(X, Y). Additional information about ideal metrics is provided in Chapter
4 and its appendix.

Due to the similarities of the conditions (5.6) and (5.8), defining the
SSD and the TSD orders and the structure of the Rachev ideal metric
defined in (4.14) in section 4.4 of Chapter 4, it is reasonable to expect
that the Rachev ideal metric is best suited to quantify the SSD and the
TSD orders. The appendix to this chapter contains a generalization of the
FSD, SSD, and TSD orders that confirms that the Rachev ideal metric has
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the appropriate structure to quantify the n-th order stochastic dominance.
There are additional assumptions that have to be made for the random
variables X and Y ensuring that the Rachev ideal metric is finite. These
assumptions are related to the equality of certain moments and are common
for all ideal metrics. They can be found in the appendix to Chapter 4.

5.5 SUMMARY

In this chapter, we considered the problem of choice under uncertainty
as described by the classical von Neumann–Morgenstern expected utility
theory. We also described the most important types of stochastic dominance
relations resulting from the theory, which characterize the choices of entire
classes of investors. One application of the theory of probability metrics
in stochastic dominance relations is to add a quantitative element to their
qualitative nature. Instead of knowing only that a venture is preferred to
another venture by a whole class of investors, a probability metric is capable
of showing if the differences between the two ventures are very small, or
one of the two ventures is categorically discarded by the entire class.

Another major point concerning stochastic dominance relations is to
take into account if probability distributions of returns or payoffs are
considered. Usually, optimal portfolio problems are set in terms of returns
and consistency with the SSD order is sought. In such a case, the SSD order
concerns distributions of returns, rather than payoffs, and this should be
borne in mind when analyzing the solution.

5.6 TECHNICAL APPENDIX

In this appendix, we state the axioms of choice, which are the basis for von
Neumann–Morgenstern theory, and we comment on the uniqueness of the
expected utility representation of a preference order. The stochastic orders
given in the chapter concern the most important classes of investors. We
give examples of several others in the appendix. Finally, we briefly mention
a parallel between representations of probability metrics known as dual and
stochastic orders.

5.6.1 The Axioms of Choice

The axioms of choice are fundamental assumptions defining a preference
order. In the following, X stands for the set of the probability distributions
of the ventures also known as lotteries, and the notation PX � PY means
that the economic agent prefers PX to PY or is indifferent between the two
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choices. The notation PX � PY means that PX is strictly preferred to PY. The
axioms of choice are the following:

Completeness. For all PX, PY ∈ X, either PX � PY or PY � PX or both
are true, PX ∼ PY.

Transitivity. If PX � PY and PY � PZ, then PX � PZ, where PX, PY and
PZ are three lotteries.

Archimedean axiom. If PX, PY, PZ ∈ X are such that PX � PY � PZ,
then there is an α, β ∈ (0, 1) such that αPX + (1 − α)PZ � PY and
also PY � βPX + (1 − β)PZ.

Independence axiom. For all PX, PY, PZ ∈ X and any α ∈ [0, 1], PX � PY

if and only if αPX + (1 − α)PZ � αPY + (1 − α)PZ.

The completeness axiom states that economic agents should always be
able to compare two lotteries, that is, two portfolios. They either prefer
one or the other, or are indifferent. The transitivity axiom rules out the
possibility that an investor may prefer PX to PY, PY to PZ, and also PZ to
PX. It states that if the first two relations hold, then necessarily the investor
should prefer PX to PZ. The Archimedean axiom is like a ‘‘continuity’’
condition. It states that given any three distributions strictly preferred to
each other, we can combine the most and the least preferred distribution
through an α ∈ (0, 1) such that the resulting distribution is strictly preferred
to the middle distribution. Likewise, we can combine the most and the least
preferred distribution through a β ∈ (0, 1) so that the middle distribution
is strictly preferred to the resulting distribution. The independence axiom
claims that the preference between two lotteries remains unaffected if they
are both combined in the same way with a third lottery.

The basic result of von Neumann–Morgenstern is that a preference
relation satisfies the four axioms of choice if and only if there is a real-valued
function, U: X→R, such that:

1. U represents the preference order,

PX � PY ⇐⇒ U(PX) ≥ U(PY)

for all PX, PY ∈ X.
2. U has the linear property,9

U(αPX + (1 − α)PY) = αU(PX) + (1 − α)U(PY)

for any α ∈ (0, 1) and PX, PY ∈ X.

9Functions satisfying this property are also called affine.
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Moreover, the numerical representation U is unique up to a positive
linear transform. That is, if U1 and U2 are two functions representing one
and the same preference order, then U2 = aU1 + b where a > 0 and b are
some coefficients.

It turns out that the numerical representation has a very special form
under some additional technical continuity conditions. It can be expressed as

U(PX) =
∫

R

u(x)dFX(x)

where the function u(x) is the utility function of the economic agent and
FX(x) is the c.d.f. of the probability distribution PX. Thus the numerical
representation of the preference order of an economic agent is the expected
utility of X. The fact that U is known up to a positive linear transform
means that the utility function of the economic agent is not determined
uniquely from the preference order but is also unique up to a positive linear
transform.

5.6.2 Stochastic Dominance Relations of Order n

In this chapter, we introduced the first-, second-, and third-order stochastic
dominance relations that represent nonsatiable investors, nonsatiable and
risk-averse investors, and nonsatiable, risk-averse investors preferring pos-
itive to negative skewness. That is, including additional characteristics of
the investors by imposing conditions on the utility function, we end up with
more refined stochastic orders.

This method can be generalized in the n-th order stochastic dominance.
Denote by Un the set of all utility functions, the derivatives of which satisfy
the inequalities (−1)k+1u(k)(x) ≥ 0, k = 1, 2, . . . , n where u(k)(x) denotes the
k-th derivative of u(x). For each n, we have a set of utility functions that is
a subset of Un−1,

U1 ⊂ U2 ⊂ . . . ⊂ Un ⊂ . . .

The classes of investors characterized by the first-, second-, and third-order
stochastic dominance are U1, U2, and U3.

Imposing further properties on the derivatives of the utility function
requires that we make more assumptions for the moments of the random
variables we consider. We assume that the absolute moments E|X|k and
E|Y|k, k = 1, . . . , n of the random variables X and Y are finite. We say
that the portfolio X dominates the portfolio Y in the sense of the n-th order
stochastic dominance, X �n Y, if no investor with a utility function in the
set Un would prefer Y to X,

X �n Y if Eu(X) ≥ Eu(Y), ∀u(x) ∈ Un.



164 ADVANCED STOCHASTIC MODELS

Therefore, the first-, second-, and third-order stochastic dominance appear
as special cases from the n-th order stochastic dominance with n = 1, 2,3.

There is an equivalent way of describing the n-th order stochastic
dominance in terms of the c.d.f.s of the ventures only. The condition is the
following one,

X �n Y ⇐⇒ F(n)
X (x) ≤ F(n)

Y (x), ∀x ∈ R (5.11)

where F(n)
X (x) stands for the n-th integral of the c.d.f. of X, which can be

defined recursively as

F(n)
X (x) =

∫ x

−∞
F(n − 1)

X (t)dt.

An equivalent form of the condition in (5.11) can be derived, which is
close to the form of (5.8),

X �n Y ⇐⇒ E(t − X)n − 1
+ ≤ E(t − Y)n − 1

+ , ∀t ∈ R, (5.12)

where (t − x)n − 1
+ = max(t − x, 0)n − 1. This equivalent formulation clarifies

why it is necessary to assume that all absolute moments until order n are
finite.

Since, in the n-th order stochastic dominance, we furnish the conditions
on the utility function as n increases, the following relation holds,

X �1 Y ⇒ X �2 Y ⇒ . . . ⇒ X �n Y,

which generalizes the relationship between FSD, SSD, and TSD given in the
chapter.

Further on, it is possible to extend the n-th order stochastic dominance
to the α-order stochastic dominance in which α ≥ 1 is a real number
and instead of the ordinary integrals of the c.d.f.s, fractional integrals are
involved. Ortobelli et al. (2007) provide more information on extensions
of stochastic dominance orderings and their relation to probability metrics
and risk measures.

5.6.3 Return versus Payoff and Stochastic Dominance

The lotteries in von Neumann–Morgenstern theory are usually interpreted
as probability distributions of payoffs. That is, the domain of the utility
function u(x) is the positive half-line, which is interpreted as the collection
of all possible outcomes in terms of dollars from a given venture. Assume
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that the payoff distribution is actually the price distribution Pt of a financial
asset at a future time t. In line with the von Neumann–Morgenstern theory,
the expected utility of Pt for an investor with utility function u(x) is given by

U(Pt) =
∫ ∞

0
u(x)dFPt (x) (5.13)

where FPt (x) = P(Pt ≤ x) is the c.d.f. of the random variable Pt. Further
on, suppose that the price of the common stock at the present time is P0.
Consider the substitution x = P0exp(y). Under the new variable, the c.d.f.
of Pt changes to

FPt (P0 exp(y)) = P(Pt ≤ P0 exp(y)) = P
(

log
Pt

P0
≤ y

)
,

which is the distribution function of the log-return of the financial asset rt =
log(Pt/P0). The integration range changes from the positive half-line to the
entire real line and equation (5.13) becomes

U(Pt) =
∫ ∞

−∞
u(P0 exp(y))dFrt (y). (5.14)

On the other hand, the expected utility of the log-return distribution
has the form

U(rt) =
∫ ∞

−∞
v(y)dFrt (y) (5.15)

where v(y) is the utility function of the investor on the space of log-returns
which is unique up to a positive linear transform. Note that v(y) is defined
on the entire real line as the log-return can be any real number.

Compare equations (5.14) and (5.15). From the uniqueness of the
expected utility representation, it appears that (5.14) is the expected utility
of the log-return distribution. Therefore, the utility function v(y) can be
computed by means of the utility function u,

v(y) = a.u(P0 exp(y)) + b, a > 0 (5.16)

in which the constants a and b appear because of the uniqueness result.
Conversely, the utility function u(x) can be expressed via v,

u(x) = c.v(log(x/P0)) + d, c > 0. (5.17)

Note that the two utilities in equations (5.14) and (5.15) are identical (up
to a positive linear transform), and this is not surprising. In our reasoning,
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the investor is one and the same. We only change the way we look at the
venture, in terms of payoff or log-return, but the venture is also fixed. As a
result, we cannot expect that the utility gained by the investor will fluctuate
depending on the point of view.

Because of the relationship between the functions u and v, properties
imposed on the utility function u may not transfer to the function v and vice
versa. We remark on what happens with the properties connected with the
n-th order stochastic dominance given in this appendix. Suppose that the
utility function v(y) belongs to the set Un, i.e., it satisfies the conditions

(−1)k + 1v(k)(y) ≥ 0, k = 1, 2, . . . , n

where v(k)(y) denotes the k-th derivative of v(y). It turns out that the
function u(x) given by (5.17) satisfies the same properties and, therefore, it
also belongs to the set Un. This is verified directly by differentiation.

In the reverse direction, the statement holds only for n = 1. That is, if
u ∈ Un, n > 1, then the function v given in (5.16) may not belong to Un,
n > 1, and we obtain a set of functions to which Un is a subset. In effect, the
n-th degree stochastic dominance, n > 1, on the space of payoffs implies the
n-th degree stochastic dominance, n > 1, on the space of the corresponding
log-returns but not vice versa,

P1
t �n P2

t ⇒ r1
t �n r2

t .

where P1
t and P2

t are the payoffs of the two common stocks, for example,
at time t > 0, and r1

t and r2
t are the corresponding log-returns for the same

period.
Note that this relationship holds if we assume that the prices of the two

common stocks at the present time are equal to P1
0 = P2

0 = P0. Otherwise,
as we demonstrated in the chapter, no such relationship may exist.

5.6.4 Other Stochastic Dominance Relations

There are ways of obtaining stochastic dominance relations other than the
n-th order stochastic dominance, which is based on certain properties of
investors’ utility functions. We borrow an example from reliability theory
and adapt it for distributions describing payoffs, losses or returns.10 The
condition defining the order relation is based on the tail behavior of the
corresponding distribution.

10Rachev (1985) and Kalashnikov and Rachev (1990) provide more details on the
application of the stochastic order discussed in this section in reliability theory.
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Consider the conditional probability

QX(t, x) = P(X > t + x|X > t). (5.18)

where x ≥ 0 and suppose that X describes a random loss. Then equation
(5.18) calculates the probability of losing more than t + x on condition that
the loss is larger than t. This probability may vary depending on the level t
with the additional amount of loss being fixed (x does not depend on t). For
example, if t1 ≤ t2, then the corresponding conditional probabilities may be
related in the following way,

QX(t1, x) ≥ QX(t2, x). (5.19)

Thus the deeper we go into the tail, the less likely it is to lose additional
x dollars provided that the loss is larger than the selected threshold.
Conversely, if the inequality is

QX(t1, x) ≤ QX(t2, x), (5.20)

then the further we go into the tail, the more likely it becomes to lose
additional x dollars. Basically, the inequalities in (5.19) and (5.20) describe
certain tail properties of the random variable X.

Denote by FX(x) = 1 − FX(x) = P(X > x) the tail of the random variable
X. Then, according to the definition of conditional probability, equation
(5.18) can be stated in terms of FX(x),

QX(t, x) = FX(x + t)

FX(t)
. (5.21)

Denote by Q the class of all random variables for which QX(t, x) is
a nonincreasing function of t for any x ≥ 0, and by Q* the class of all
random variables for which QX(t, x) is a nondecreasing function of t for any
x ≥ 0. The random variables belonging to Q satisfy inequality (5.19) and
those belonging to Q* satisfy inequality (5.20) for any x ≥ 0.

In case the random variable X has a density f X(x), then it can be
determined whether it belongs to Q or Q* by the behavior of the function

hX(t) = fX(t)

FX(t)
, (5.22)

which is known as the hazard rate function or the failure rate function.
If hX(t) is a nonincreasing function, then X ∈ Q. If it is a nondecreasing
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function, then X ∈ Q*. In fact, the only distribution that belongs to both
classes is the exponential distribution. The hazard rate function of the
exponential distribution is constant with respect to t.

In the following, we introduce a stochastic dominance order assuming
that the random variables describe random profits. Then we show how the
dominance order definition can be modified if the random variables describe
losses or returns. Denote by �X(t) the transform

�X(t) = − log(FX(t)). (5.23)

A positive random variable X is said to dominate another positive
random variable Y with respect to the � transform, X �� Y, if the random
variable Z = �Y(X) is such that Z ∈ Q.

The rationale behind the � transform is the following. First, consider
the special case Y = X. The random variable Z = �Y(X) has exactly the
exponential distribution because FY(X) is uniformly distributed. If Y has a
heavier tail than X, then Z has a tail, that increases no more slowly than
the tail of the exponential distribution and, therefore, Z ∈ Q. Thus the
stochastic order �� emphasizes the tail behavior of X relative to Y.

This stochastic order is interesting since it does not arise from a class
of utility functions through the expected utility theory and, nevertheless, it
has application in finance describing choice under uncertainty. We illustrate
this by showing a relationship with SSD.

Suppose that X �� Y. Then Kalashnikov and Rachev (1990) show that
the following condition holds

∫ ∞

x
FX(t)dt ≤

∫ ∞

x
FY(t)dt, ∀x ≥ 0. (5.24)

The converse statement is not true; that is, condition (5.24) does not
ensure X �� Y. Equation (5.24) can be directly connected with SSD. In fact,
if (5.24) holds and we assume that the expected payoffs of X and Y are
equal, then

∫ x

0
FX(t)dt ≤

∫ x

0
FY(t)dt, ∀x ≥ 0.

This inequality means that X dominates Y with respect to RSD and,
therefore, with respect to SSD. Thus if we have demonstrated that if EX =
EY, then

X �� Y ⇒ X �RSD Y ⇒ X �SSD Y. (5.25)
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Suppose that the random variables describe losses. This interpretation
has application in operational risk management where losses are modeled as
positive random variables. We modify the stochastic order in the following
way. A positive random variable X is said to dominate another positive
random variable Y with respect to the � transform, X ��∗ Y, if the random
variable Z = �Y(X) is such that Z ∈ Q*. In this case, the tail of X is heavier
than the tail of Y.

If the random variables describe returns, then the left tail describes losses
and the right tail describes profits. The random variable can be decomposed
into two terms,

X = X+ − X−,

where X+ = max(X, 0) stands for the profit and X− = max(−X, 0) denotes
the loss. By modifying the stochastic order, we can determine the tail of
which of the two components influences the stochastic order. Consider two
real valued random variables X and Y describing random returns. The order
�� compares the tails of the profits X+ and Y+, and ��∗ compares the tails
of the losses X− and Y−.

The stochastic orders �� and ��∗ are constructed without considering
first a particular class of investors but by imposing directly a condition on
the tail of the random variable. There may or may not be a corresponding
set of utility functions such that if Eu(X) ≥ Eu(Y) for all u(x) in this class,
then X �� Y, for example. Nevertheless, we have demonstrated that the
order �� is consistent with SSD and is not implied by it. We can generalize
by concluding that if practical problems require introducing a stochastic
order on the basis of certain characteristics of the profit, the loss or the
return distribution, the stochastic order can be defined without seeking first
a class of investors which can generate it. In case this question appears
important, we can only search for a consistency relation with an existing
stochastic order, such as the one in equation (5.25).
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CHAPTER 6
Risk and Uncertainty

6.1 INTRODUCTION

There has been a major debate on the differences and common features
of risk and uncertainty. Both notions are related but they do not coincide.
Risk is often argued to be a subjective phenomenon involving exposure and
uncertainty.1 That is, generally, risk may arise whenever there is uncertainty.

While risk is an essential factor in every human decision making, in
this chapter we consider it only in the context of investment management.
In our context, exposure is identified with monetary loss. Thus investment
risk is related to the uncertain monetary loss to which a manager may
expose a client. Subjectivity appears because two managers may define
the same investment as having different risk—it is a question of personal
predisposition.

A major activity in many financial institutions is to recognize the
sources of risk, then manage and control them. This is possible only if risk
is quantified. If we can measure the risk of a portfolio, then we can identify
the financial assets that constitute the main risk contributors, reallocate the
portfolio, and, in this way, minimize the potential loss by minimizing
the portfolio risk. Even though the recognition that risk involves exposure
and uncertainty is illuminating, it appears insufficient in order for risk to
be quantified. It merely shows that both uncertainty and monetary loss are
essential characteristics. For example, if an asset will surely lose 30% of
its value tomorrow, then it is not risky even though money will be lost.
Uncertainty alone is not synonymous with risk, either. If the price of an

1Holton (2004) provides a thorough analysis of the notion of risk. Knight (1921)
started the debate about risk and uncertainty.
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asset will certainly increase between 5% and 10% tomorrow then there is
uncertainty but no risk as there is no monetary loss. As a result, risk is
qualified as an asymmetric phenomenon in the sense that it is related to
loss only.

Concerning uncertainty, it is our assumption that it is an intrinsic
feature of the future values of traded assets on the market. If we consider
two time instants, the present and a future one, then the inherent uncertainty
materializes as a probability distribution of future prices or returns; that is,
these are random variables as of the present instant. Investment managers
do not know the probabilistic law exactly but can infer it, to a degree,
from the available data—they approximate the unknown law by assuming
a parametric model and by calibrating its parameters. Uncertainty relates
to the probable deviations from the expected price or return where the
probable deviations are described by the unknown law. Therefore, a measure
of uncertainty should be capable of quantifying the probable positive and
negative deviations. In this aspect, any uncertainty measure is symmetric.
As an extreme case, consider a variable characterized by no uncertainty
whatsoever. It follows that this variable is nonrandom and we know its
future value with certainty.

A classical example of an uncertainty measure is variance. It equals the
average squared deviation from the mean of a distribution—it captures both
the upside and the downside deviations from the mean of the distribution.
Another measure is the standard deviation, which is the square root of the
variance. It is more understandable as it is measured in the same units as
the random variable. For instance, if the random variable describes prices,
then the standard deviation is measured in dollars; if the random variable
describes percentage return, then the standard deviation is measured in
percentage points. There are many other measures of uncertainty besides
standard deviation, which we discuss in this chapter.

Besides the essential features of risk discussed above, there are other
characteristics. For example, investment risk may be relative. In benchmark
tracking problems, it is reasonable to demand a smaller risk of the strategy
relative to a benchmark, that is, smaller potential loss but relative to the loss
of the benchmark. If there are multiple benchmarks, then there are multiple
relative risks to take into account and strategy construction becomes a
multidimensional, or a multicriterion, problem.

Depending on the sources of risk, a financial institution may face market,
credit or operational risk.2 Market risk describes the portfolio exposure to
the moves of certain market variables. There are four standard market

2This distinction is made by the Basel Commettee on Banking Supervision. The Basel
Committee consists of representatives from central banks and regulatory authorities
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risk variables—equities, interest rates, exchange rates, and commodities.
A financial instrument is dependent on those market factors and its price
fluctuates as the underlying market factors move. Credit risk arises due
to a debtor’s failure to satisfy the terms of a borrowing arrangement.
Operational risk is defined as the risk of loss resulting from inadequate
or failed internal processes, people, and systems. Its contribution to total
portfolio risk varies from firm to firm and its management falls under the
responsibility of internal auditors.

Apparently, a true functional definition of investment risk is out of
reach. Nevertheless, financial institutions have made a lot of effort to model
it. Generally, a risk model consists of two parts. First, probabilistic models
are constructed for the underlying sources of risk, such as market or credit
risk factors, and the portfolio loss distribution is described by means of
the probabilistic models. Second, risk is quantified by means of a risk
measure that associates a real number to the portfolio loss distribution. It is
important to recognize that both steps are crucial. Nonrealistic probabilistic
models may compromise the risk estimate just as an inappropriate choice
for the risk measure may do.

Due to the lack of a functional definition of risk, no perfect risk measure
exists. A risk measure captures only some of the characteristics of risk and,
in this sense, every risk measure is incomplete. Nonetheless, we believe that
it is reasonable to search for risk measures that are ideal for the particular
problem under investigation.

In this chapter, we provide several examples of widely used dispersion
measures that quantify the notion of uncertainty. A few of their basic features
can be summarized into axioms leading to an axiomatic construction of
dispersion measures and deviation measures, which are convex dispersion
measures. The notion of a probability metric is related to the notion of
dispersion. In fact, we demonstrate that probability metrics can be used to
generate dispersion measures.

Measures of dispersion are inadequate for quantifying risk. We discuss
in detail value-at-risk (VaR), its properties, estimation methods, and why it
fails to be a true risk measure.

An axiomatic construction of risk measures is possible by setting key
characteristics as axioms. We describe this approach in the section devoted
to coherent risk measures and illustrate the defining axioms depending on

of the G10 countries. It has issued two banking supervision Accords, Basel I and
Basel II, with the purpose of ensusring that financial institutions retain enough
capital as a protection against unexpected losses. In the two accords, a distinction
is made between market, credit, and operational risk, and a simple methodology is
provided for their quantification.
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whether the random variable describes return or payoff. It turns out that
the ‘‘coherent’’ properties very much depend on the interpretation of the
random variable. If a risk measure is coherent for return distributions, it
may not be coherent for payoff distributions.

Finally, we stress the importance of consistency of a true risk mea-
sure with the second-order stochastic dominance as it concerns risk-averse
investors.

6.2 MEASURES OF DISPERSION

Measures of dispersion can be constructed by means of different descrip-
tive statistics. They calculate how observations in a dataset are distributed,
whether there is high or low variability around the mean of the distribution.
Intuitively, if we consider a nonrandom quantity, then it is equal to its mean
with probability one and there is no fluctuation whatsoever around the mean.

In this section, we provide several descriptive statistics widely used in
practice and we give a generalization that axiomatically describes measures
of dispersion.

6.2.1 Standard Deviation

Standard deviation is, perhaps, the most widely used measure of uncertainty.
It is calculated as the square root of variance, which itself can be regarded
as a measure of uncertainty. The standard deviation is usually denoted by
σ X,3 where X stands for the random variable we consider

σX =
√

E(X − EX)2 (6.1)

in which E stands for mathematical expectation. For a discrete distribution,
equation (6.1) changes to

σX =
(

n∑
k = 1

(xk − EX)2pk

)1/2

,

where xk, k = 1, . . . , n are the outcomes, pk, k = 1, . . . , n are the probabilities
of the outcomes, and

EX =
n∑

k = 1

xkpk

3At times, we will use the notation σ (X) instead of σX to accentuate that the
standard deviation is a functional of the underlying distribution.
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is the mathematical expectation. The standard deviation is always a
nonnegative number; if it is equal to zero, then the random variable is
equal to its mean with probability one and, therefore, it is nonrandom. This
conclusion holds for an arbitrary distribution.

In order to see why the standard deviation can measure uncertainty,
consider the following simple example. Suppose that X describes the out-
comes in a game in which one wins $1 or $3 with probabilities equal to 1/2.
The mathematical expectation of X, the expected win, is $2,

EX = 1(1/2) + 3(1/2) = 2.

The standard deviation equals $1,

σX =
(

(1 − 2)2 1
2

+ (3 − 2)2 1
2

)1/2

= 1.

In this equation, both the positive and the negative deviations from the mean
are taken into account. In fact, all possible values of the random variable
X are within the limits EX ± σ X. That is why it is said that the standard
deviation is a measure of statistical dispersion, that is, how widely spread
the values in a dataset are.

The interval EX ± σX covers all the possible values of X only in a few
isolated examples. Suppose that X has the normal distribution with mean
equal to a, X ∈ N(a, σX). Then, the probability of the interval a ± σX is
0.683. That is, when sampling from the corresponding distribution, 68.3%
of the simulations will be in the interval (a − σX, a + σX). The probabilities
of the intervals a ± 2σX and a ± 3σX are 0.955 and 0.997 respectively.
Figure 6.1 provides an illustration for the standard normal case.

The probabilities in this example are specific for the normal distribution
only. Actually, in the general case when the distribution of the random
variable X is unknown, we can obtain bounds on the probabilities by means
of Chebyshev’s inequality,

P(|X − EX| > x) ≤ σ 2
X

x2
, (6.2)

provided that the random variable X has a finite second moment,
E|X|2 < ∞. With the help of Chebyshev’s inequality, we calculate that
the probability of the interval EX ± kσX, k = 1, 2, . . . exceeds 1 − 1/k2,

P(|X − EX| ≤ kσX) ≥ 1 − 1/k2.

If we choose k = 2, we compute that P(X ∈ EX ± 2σX) is at least 0.75.
Table 6.1 contains the corresponding bounds on the probabilities computed
for several choices of k.
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FIGURE 6.1 The standard normal density and the
probabilities of the intervals EX ± σX, EX ± 2σX,
and EX ± 3σX, where X ∈ N(0, 1), as a
percentage of the total mass.

TABLE 6.1 The Values pk = 1 − 1/k2 Provide a
Lower Bound for the Probability P(X ∈ EX ± kσX)
When the Distribution of X is Unknown.

k 1.4 2 3 4 5 6 7

pk 0.5 0.75 0.889 0.94 0.96 0.97 0.98

6.2.2 Mean Absolute Deviation

Even though the standard deviation is widely used, it does not provide
the only way to measure uncertainty. In fact, there are important cases
where it is inappropriate—there are distributions for which the standard
deviation is infinite. An example of an uncertainty measure also often used,
which may be finite when the standard deviation does not exist, is the mean
absolute deviation (MAD). This measure is defined as the average deviation
in absolute terms around the mean of the distribution,

MADX = E|X − EX|, (6.3)

where X is a random variable with finite mean. For a discrete distribution,
equation (6.3) becomes

MADX =
n∑

k = 1

|xk − EX|pk,
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where xk, k = 1, . . . , n, are the outcomes and pk, k = 1, . . . , n, are the corre-
sponding probabilities. It is clear from the definition that both the positive
and the negative deviations are taken into account in the MAD formula.
Similar to the standard deviation, the MAD is a nonnegative number and if
it is equal to zero, then X is equal to its mean with probability one.

The analysis made for the standard deviation can be repeated for
the MAD without any modification. Therefore, the MAD and the standard
deviation are merely two alternative measures estimating the uncertainty of a
random variable. There are distributions, for which one of the quantities can
be expressed from the other. For example, if X has a normal distribution, X ∈
N(a, σ 2

X), then

MADX = σX

√
2
π

.

Thus, for the normal distribution case, the MAD is just a scaled standard
deviation.

6.2.3 Semistandard Deviation

The semistandard deviation is a measure of dispersion, which differs from the
standard deviation and the MAD in that it takes into account only the posi-
tive or only the negative deviations from the mean. Therefore, it is not sym-
metric. The positive and the negative semistandard deviations are defined as

σ+
X = (E(X − EX)2

+)1/2

and
σ−

X = (E(X − EX)2
−)1/2, (6.4)

where:

(x − EX)2
+ equals the squared difference between the outcome x and the

mean EX if the difference is positive, (x − EX)2
+ = max(x − EX, 0)2.

(x − EX)2
− equals the squared difference between the outcome x and the

mean EX if the difference is negative, (x − EX)2
− = min(x − EX, 0)2.

Thus σ+
X takes into account only the positive deviations from the mean

and it may be called an upside dispersion measure. Similarly, σ−
X takes into

account only the negative deviations from the mean and it may be called a
downside dispersion measure.

As with the standard deviation, both σ−
X and σ+

X are nonnegative
numbers which are equal to zero if and only if the random variable equals
its mean with probability one.
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If the random variable is symmetric around the mean, then the upside
and the downside semistandard deviations are equal. For example, if X has
a normal distribution, X ∈ N(a, σ 2

X), then both quantities are equal and can
be expressed by means of the standard deviation,

σ−
X = σ+

X = σX√
2

.

If the distribution of X is skewed,4 then σ−
X �= σ+

X . Positive skewness
corresponds to larger positive semistandard deviation, σ−

X < σ+
X . Similarly,

negative skewness corresponds to larger negative semistandard deviation,
σ−

X > σ+
X . Figure 1.4 in section 5.3.4 in Chapter 5 illustrates positive and

negative skewness.

6.2.4 Axiomatic Description

Besides the examples considered in section 6.2, measures of dispersion also
include interquartile range and can be based on central absolute moments.
The interquartile range is defined as the difference between the 75% and
the 25% quantile. The central absolute moment of order k is defined as

mk = E|X − EX|k

and an example of a dispersion measure based on it is

(mk)1/k = (E|X − EX|k)1/k.

The common properties of the dispersion measures we have considered
can be synthesized into axioms. In this way, a dispersion measure is called
any functional satisfying the axioms. Rachev et al. (2007) provide the
following set of general axioms. We denote the dispersion measure of a
random variable X by D(X).

Positive shift. D(X + C) ≤ D(X) for all X and constants C ≥ 0.

Positive homogeneity. D(0) = 0 and D(λX) = λD(X) for all X and all
λ > 0.

Positivity. D(X) ≥ 0 for all X, with D(X) > 0 for nonconstant X.

4Symmetric random variables are described through their distribution function; that
is, X is symmetric (around zero) if X has the same distribution function as −X,

X d= −X, where the notation d= means equality in distribution. If the mean of the

distribution is not zero, then the condition of symmetry changes to X − EX d= −(X −
EX), and we say that X is symmetric around the mean.
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According to the positive shift property, adding a positive constant
does not increase the dispersion of a random variable. According to the
positive homogeneity and the positivity properties, the dispersion measure
D is equal to zero only if the random variable is a constant. This property
is very natural for any measure of dispersion. Recall that it holds for the
standard deviation, MAD, and semistandard deviation—all examples we
considered in the previous sections.

An example of a dispersion measure satisfying these properties is the
colog measure defined by

colog(X) = E(X log X) − E(X)E(log X),

where X is a positive random variable. The colog measure is sensitive to
additive shifts and has applications in finance as it is consistent with the
preference relations of risk-averse investors.

6.2.5 Deviation Measures

Rockafellar et al. (2006) provide an axiomatic description of dispersion
measures which arises as a special case of our approach in section 6.2.4.
The axioms of Rockafellar et al. (2006) define convex dispersion measures
called deviation measures. An interesting link exists between deviation
measures and risk measures, which we illustrate in section 6.5 in this
chapter. Moreover, the deviation measures can be described by the method
of probability metrics. This is noted in Chapter 9.

Besides the axioms given in section 6.2.4, the deviation measures satisfy
the property

Subadditivity. D(X + Y) ≤ D(X) + D(Y) for all X and Y.

and the positive shift property is replaced by

Translation invariance. D(X + C) = D(X) for all X and constants
C ∈ R.

As a consequence of the translation invariance axiom, the deviation
measure is influenced only by the difference X − EX. If X = EX in all states
of the world, then the deviation measure is a constant and, therefore, it
is equal to zero because of the positivity axiom. Conversely, if D(X) = 0,
then X = EX in all states of the world. The positive homegeneity and the
subadditivity axioms establish the convexity property of D(X).

Apparently not all deviation measures are symmetric; that is, it is
possible to have D(X) �= D(−X) if the random variable X is not symmetric.
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This is not a drawback of the construction. Quite the opposite, this is an
advantage because an investment manager is more attentive to the negative
deviations from the mean. Examples of asymmetric deviation measures
include the semistandard deviation, σ−

X defined in equation (6.4). Deviation
measures which depend only on the negative deviations from the mean
are called downside deviation measures. As a matter of fact, symmetric
deviation measures can easily be constructed. The quantity D̃(X) is a
symmetric deviation measure if we define it as

D̃(X) := 1
2 (D(X) + D(−X)),

where D(X) is an arbitrary deviation measure.
A downside deviation measure possesses several of the characteristics of

a risk measure but it is not a risk measure. Here is an example. Suppose that
we have initially in our portfolio a common stock, X, with a current market
value of $95 and an expected return of 0.5% in a month. Let us choose
one particular deviation measure, D1, and compute D1(rX) = 20%, where
rX stands for the portfolio return. Assume that we add to our portfolio a
risk-free government bond, B, worth $95 with a face value of $100 and a
one-month maturity. The return on the bond equals rB = $5/$95 = 5.26%
and is nonrandom. Our portfolio now consists of equal shares of the
common stock and the bond and its return equals rp = rX/2 + rB/2. Using
the positive homogeneity and the translation invariance axioms from the
definition we obtain D1(rp) = D1(rX)/2 = 10%. Indeed, the uncertainty of
the portfolio return rp decreases twice since the share of the risky stock
decreases twice, this is what the deviation measure is informing us about.
Intuitively, the risk of rp decreases more than twice if compared to rX because
half of the new portfolio earns a sure profit of 5.26%. This effect is due to
the translation invariance, which makes the deviation measure insensitive
to nonrandom profit.

Examples of deviation measures include the standard deviation, the
MAD, the semistandard deviation.

6.3 PROBABILITY METRICS AND DISPERSION
MEASURES

Probability metrics were introduced in Chapter 3. They are functionals
which are constructed to measure distances between random quantities.
Thus, every probability metric involves two random variables X and Y, and
the distance between them is denoted by µ(X, Y), where µ stands for the
probability metric.
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Suppose that µ is a compound probability metric.5 In this case, if
µ(X, Y) = 0, it follows that the two random variables are coincident in all
states of the world. Therefore, the quantity µ(X, Y) can be interpreted as a
measure of relative deviation between X and Y. A positive distance, µ(X,
Y) > 0, means that the two variables fluctuate with respect to each other
and zero distance, µ(X, Y) = 0, implies that there is no deviation of any of
them relative to the other.

This idea is closely related to the notion of dispersion; but it is much
more profound because we obtain the notion of dispersion measures as a
special case by considering the distance between X and the mean of X, µ(X,
EX). In fact, the functional µ(X, EX) provides a very general notion of a
dispersion measure as it arises as a special case from a probability metric,
which represents the only general way of measuring distances between
random quantities. In the appendix to this chapter, we demonstrate how
the family of symmetric deviation measures arises from probability metrics.
Stoyanov et al. (2007) consider similar questions and provide a more general
treatment.

6.4 MEASURES OF RISK

As we noted in the introduction, risk is related to uncertainty but it is
not synonymous with it. Therefore, a risk measure may share some of the
features of a dispersion measure but is, generally, a different object.

From a historical perspective, Markowitz (1952) was the first to rec-
ognize the relationship between risk and reward and introduced standard
deviation as a proxy for risk. The standard deviation is not a good choice
for a risk measure because it penalizes symmetrically both the negative
and the positive deviations from the mean. It is an uncertainty measure
and cannot account for the asymmetric nature of risk, that is, risk concerns
losses only. The deficiencies of the standard deviation as a risk measure were
acknowledged by Markowitz who was the first to suggest the semistandard
deviation as a substitute, Markowitz (1959). In section 6.2.5, we gave an
example illustrating why the semistandard deviation, as well as any other
deviation measure, cannot be a true risk measures.

In this section, we provide several examples of risk measures. We
consider the VaR and we comment on its properties, and different calculation
methods. Where possible, the definitions and equations are geometrically
interpreted, making the ideas more intuitive and understandable. We also

5Section 3.3.1 provides more details on primary, simple, and compound probability
metrics.
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consider the more general family of coherent risk measures which includes
the average value-at-risk (AVaR) and the spectral risk measures as particular
representatives. The AVaR and the spectral risk measures are considered in
detail in Chapter 7. Finally, we address the question of consistency of a risk
measure with a stochastic dominance order and remark on the relationship
between risk measures and uncertainty measures.

6.4.1 Value-at-Risk

A risk measure which has been widely accepted since 1990s is the
value-at-risk (VaR). In the late 1980s, it was integrated by JP Morgan
on a firmwide level into its risk-management system. In this system, they
developed a service called RiskMetrics which was later spun off into a
separate company called RiskMetrics Group. It is usually thought that JP
Morgan invented the VaR measure. In fact, similar ideas had been used by
large financial institutions in computing their exposure to market risk. The
contribution of JP Morgan was that the notion of VaR was introduced to a
wider audience.

In the mid-1990s, the VaR measure was approved by regulators as
a valid approach to calculating capital reserves needed to cover market
risk. The Basel Commettee on Banking Supervision released a package of
amendments to the requirements for banking institutions allowing them
to use their own internal systems for risk estimation. In this way, capital
reserves, which financial institutions are required to keep, could be based
on the VaR numbers computed internally by an in-house risk management
system. Generally, regulators demand that the capital reserve equal the VaR
number multiplied by a factor between 3 and 4. Thus regulators link the
capital reserves for market risk directly to the risk measure.

VaR is defined as the minimum level of loss at a given, sufficiently high,
confidence level for a predefined time horizon. The recommended confidence
levels are 95% and 99%. Suppose that we hold a portfolio with a one-day
99% VaR equal to $1 million. This means that over the horizon of one day,
the portfolio may lose more than $1 million with probability equal to 1%.

The same example can be constructed for percentage returns. Suppose
that the present value of a portfolio we hold is $10 million. If the one-day
99% VaR of the return distribution is 2%, then over the time horizon of
one day, we lose more than 2% ($200,000) of the portfolio present value
with probability equal to 1%.

Denote by (1 − ε)100% the confidence level parameter of the VaR.
As we explained, losses larger than the VaR occur with probability ε. The
probability ε, we call tail probability. Depending on the interpretation of
the random variable, VaR can be defined in different ways. Formally, the
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VaR at confidence level (1 − ε)100% (tail probability ε) is defined as the
negative of the lower ε-quantile of the return distribution,

VaRε(X) = − inf
x

{x|P(X ≤ x) ≥ ε} = −F−1
X (ε) (6.5)

where ε ∈ (0, 1) and F−1
X (ε) is the inverse of the distribution function. If the

random variable X describes random returns, then the VaR number is given
in terms of a return figure. The definition of VaR is illustrated in Figure 6.2.

If X describes random payoffs, then VaR is a threshold in dollar terms
below which the portfolio value falls with probability ε,

VaRε(X) = inf
x

{x|P(X ≤ x) ≥ ε} = F−1
X (ε) (6.6)

where ε ∈ (0, 1) and F−1
X (ε) is the inverse of the distribution function of the

random payoff. VaR can also be expressed as a distance to the present value
when considering the profit distribution. The random profit is defined as
X − P0 where X is the payoff and P0 is the present value. The VaR of the
random profit equals,

VaRε(X − P0) = − inf
x

{x|P(X − P0 ≤ x) ≥ ε} = P0 − VaRε(X)

in which VaRε(X) is defined according to (6.6) since X is interpreted as a
random payoff. In this case, the definition of VaR is essentially given by
equation (6.5).

VaR

VaR
0.05

Density function

Distribution function

FIGURE 6.2 The VaR at 95% confidence level of a
random variable X. The top plot shows the density of
X, the marked area equals the tail probability, and the
bottom plot shows the distribution function.
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According to the definition in equation (6.5), VaR may become a
negative number. If VaRε(X) is a negative number, then this means that
at tail probability ε we do not observe losses but profits. Losses happen
with even smaller probability than ε. If for any tail probability VaRε(X)
is a negative number, then no losses can occur and, therefore, the random
variable X bears no risk as no exposure is associated with it. In this chapter,
we assume that random variables describe either random returns or random
profits and we adopt the definition in equation (6.5).

We illustrate one aspect in which VaR differs from the deviation
measures and all uncertainty measures. As a consequence of the definition,
if we add to the random variable X a nonrandom profit C, the resulting VaR
can be expressed by the VaR of the initial variable in the following way

VaRε(X + C) = VaRε(X) − C. (6.7)

Thus adding a nonrandom profit decreases the risk of the portfolio.
Furthermore, scaling the return distribution by a positive constant λ scales
the VaR by the same constant,

VaRε(λX) = λVaRε(X). (6.8)

It turns out that these properties characterize not only VaR. They are
identified as key features of a risk measure. We will come back to them in
section 6.4.4.

Consider again the example developed in section 6.2.5. Initially, the
portfolio we hold consists of a common stock with random monthly return
rX. We rebalance the portfolio so that it becomes an equally weighted
portfolio of the stock and a bond with a nonrandom monthly return of
5.26%, rB = 5.26%. Thus the portfolio return can be expressed as

rp = rX(1/2) + rB(1/2) = rX/2 + 0.0526/2.

Using equations (6.7) and (6.8), we calculate that if VaRε(rX) = 12%,
then VaRε(rp) ≈ 3.365%, which is by far less than 6%—half of the initial
risk. Recall from section 6.2.5 that any deviation measure would indicate
that the dispersion (or the uncertainty) of the portfolio return rp would be
twice as smaller than the uncertainty of rX.

A very important remark has to be made with respect to the performance
of VaR and, as it turns out, of any other risk measure. It is heavily dependent
on the assumed probability distribution of the variable X. An unrealistic
hypothesis may result in underestimation or overestimation of true risk. If
we use VaR to build reserves in order to cover losses in times of crises, then
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underestimation may be fatal and overestimation may lead to inefficient
use of capital. An inaccurate model is even more dangerous in an optimal
portfolio problem in which we minimize risk subject to some constraints. It
may adversely influence the optimal weights and not reduce the true risk.

Even though VaR has been largely adopted by financial institutions and
approved by regulators, it turns out that VaR has important deficiencies.
While it provides an intuitive description of how much a portfolio may lose,
generally, it should be abandoned as a risk measure. The most important
drawback is that, in some cases, the reasonable diversification effect that
every portfolio manager should expect to see in a risk measure is not present;
that is, the VaR of a portfolio may be greater than the sum of the VaRs of
the constituents,

VaRε(X + Y) > VaRε(X) + VaRε(Y), (6.9)

in which X and Y stand for the random payoff of the instruments in the
portfolio. This shows that VaR cannot be a true risk measure.

We give a simple example which shows that VaR may satisfy equa-
tion (6.9). Suppose that X denotes a bond which either defaults with
probability 4.5% and we lose $50 or it does not default and in this case the
loss is equal to zero. Let Y be the same bond but assume that the defaults of
the two bonds are independent events. The VaR of the two bonds at 95%
confidence level (5% tail probability) is equal to zero,

VaR0.05(X) = VaR0.05(Y) = 0.

Being the 5% quantile of the payoff distribution in this case, VaR
fails to recognize losses occurring with probability smaller than 5%. A
portfolio of the two bonds has the following payoff profile: It loses $100
with probability of about 0.2%, loses $50 with probability of about 8.6%,
and the loss is zero with probability 91.2%. Thus the corresponding 95%
VaR of the portfolio equals $50 and clearly,

$50 = VaR0.05(X + Y) > VaR0.05(X) + VaR0.05(Y) = 0.

What are the consequences of using a risk measure that may satisfy
property (6.9)? It is going to mislead portfolio managers that there is no
diversification effect in the portfolio and they may make the irrational
decision to concentrate it only into a few positions. As a consequence, the
portfolio risk actually increases.

Besides being sometimes incapable of recognizing the diversification
effect, another drawback is that VaR is not very informative about losses
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beyond the VaR level. It only reports that losses larger than the VaR level
occur with probability equal to ε but it does not provide any information
about the likely magnitude of such losses, for example.

Nonetheless, VaR is not a useless concept to be abandoned altogether.
For example, it can be used in risk-reporting only as a characteristic of
the portfolio return (payoff) distribution since it has a straightforward
interpretation. The criticism of VaR is focused on its wide application
by practitioners as a true risk measure which, in view of the deficiencies
described above, is not well grounded and should be reconsidered.

6.4.2 Computing Portfolio VaR in Practice

In this section, we provide three approaches for portfolio VaR calculation
which are used in practice. We assume that the portfolio contains common
stocks which is only to make the description easier to grasp; this is not a
restriction of any of the approaches.

Suppose that a portfolio contains n common stocks and we are interested
in calculating the daily VaR at 99% confidence level. Denote the random
daily returns of the stocks by X1, . . . , Xn and by w1, . . . , wn the weight of
each stock in the portfolio. Thus the portfolio return rp can be calculated as

rp = w1X1 + w2X2 + · · · + wnXn.

The portfolio VaR is derived from the distribution of rp. The three
approaches vary in the assumptions they make.

The Approach of RiskMetrics The approach of RiskMetrics Group is cen-
tered on the assumption that the stock returns have a multivariate normal
distribution. Under this assumption, the distribution of the portfolio return
is also normal. Therefore, in order to calculate the portfolio VaR, we only
have to calculate the expected return of rp and the standard deviation
of rp. The 99% VaR will appear as the negative of the 1% quantile of the
N(Erp, σ 2

rp
) distribution.

The portfolio expected return can be directly expressed through the
expected returns of the stocks,

Erp = w1EX1 + w2EX2 + · · · + wnEXn =
n∑

k = 1

wkEXk, (6.10)

where E denotes mathematical expectation. Similarly, the variance of the
portfolio return σ 2

rp
can be computed through the variances of the stock
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returns and their covariances,

σ 2
rp

= w2
1σ

2
X1

+ w2
2σ

2
X2

+ · · · + w2
nσ

2
Xn

+
∑
i �= j

wiwjcov(Xi, Xj),

in which the last term appears because we have to sum up the covariances
between all pairs of stock returns. There is a more compact way of writing
down the expression for σ 2

rp
using matrix notation,

σ 2
rp

= w ′�w, (6.11)

in which w = (w1, . . . , wn) is the vector of portfolio weights and � is the
covariance matrix of stock returns,

� =




σ 2
X1

σ12 . . . σ1n

σ21 σ 2
X2

. . . σ2n

...
...

. . .
...

σn1 σn2 . . . σ 2
Xn


 ,

in which σ ij, i �= j, is the covariance between Xi and Xj, σij = cov(Xi, Xj). As
a result, we obtain that the portfolio return has a normal distribution with
mean given by equation (6.10) and variance given by equation (6.11).

The standard deviation is the scale parameter of the normal distribution
and the mean is the location parameter. Due to the normal distribution
properties, if rp ∈ N(Erp, σ 2

rp
), then

rp − Erp

σrp

∈ N(0, 1).

Thus, because of the properties (6.7) and (6.8) of the VaR, the 99% portfolio
VaR can be represented as

VaR0.01(rp) = q0.99σrp − Erp (6.12)

where the standard deviation of the portfolio return σrp is computed from
equation (6.11), the expected portfolio return Erp is given in (6.10), and
q0.99 is the 99% quantile of the standard normal distribution.

Note that q0.99 is a quantity independent of the portfolio composition,
it is merely a constant which can be calculated in advance. The parameters
that depend on the portfolio weights are the standard deviation of portfolio
returns σrp and the expected portfolio return. As a consequence, VaR under
the assumption of normality is symmetric even though, by definition, VaR
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is centered on the left tail of the distribution; that is, VaR is asymmetric
by construction. This result appears because the normal distribution is
symmetric around the mean.

The approach of RiskMetrics can be extended for other types of
distributions. Lamantia et al. (2006a) and Lamantia et al. (2006b) provide
such extensions and comparisons for Student’s t- and stable distributions.

The Historical Method The historical method does not impose any distri-
butional assumptions; the distribution of portfolio returns is constructed
from historical data. Hence, sometimes the historical simulation method is
called a nonparametric method. For example, the 99% daily VaR of the
portfolio return is computed as the negative of the empirical 1% quantile of
the observed daily portfolio returns. The observations are collected from a
predetermined time window such as the most recent business year.

While the historical method seems to be more general as it is free of any
distributional hypotheses, it has a number of major drawbacks.

1. It assumes that the past trends will continue in the future. This is not a
realistic assumption because we may experience extreme events in the
future, for instance, which have not happened in the past.

2. It treats the observations as independent and identically distributed
(i.i.d.), which is not realistic. The daily returns data exhibits clustering
of the volatility phenomenon, autocorrelations and so on, which are
sometimes a significant deviation from the i.i.d. assumption.

3. It is not reliable for estimation of VaR at very high confidence levels. A
sample of one year of daily data contains 250 observations, which is a
rather small sample for the purpose of the 99% VaR estimation.

The Hybrid Method The hybrid method is a modification of the historical
method in which the observations are not regarded as i.i.d. But certain
weights are assigned to them depending on how close they are to the present.
The weights are determined using the exponential smoothing algorithm. The
exponential smoothing accentuates the most recent observations and seeks
to take into account time-varying volatility phenomenon.

The algorithm of the hybrid approach consists of the following steps:

1. Exponentially declining weights are attached to historical returns, start-
ing from the current time and going back in time. Let rt − k + 1, . . . , rt −1, rt

be a sequence of k observed returns on a given asset, where t is the
current time. The i-th observation is assigned a weight

θi = c∗λt − i,
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where 0 < λ < 1, and c = 1−λ

1−λk is a constant chosen such that the sum
of all weights is equal to one,

∑
θi = 1.

2. Similarly to the historical simulation method, the hypothetical future
returns are obtained from the past returns and sorted in increasing
order.

3. The VaR measure is computed from the empirical c.d.f. in which each
observation has probability equal to the weight θ i.

Generally, the hybrid approach is appropriate for VaR estimation of
heavy-tailed time series. It overcomes, to some degree, the first and the
second deficiency of the historical method but it is also not reliable for VaR
estimation of very high confidence levels.

The Monte Carlo Method In contrast to the historical method, the Monte
Carlo method requires specification of a statistical model for the stocks
returns. The statistical model is multivariate, hypothesizing both the behav-
ior of the stock returns on a stand-alone basis and their dependence. For
instance, the multivariate normal distribution assumes normal distribu-
tions for the stock returns viewed on a standalone basis and describes the
dependencies by means of the covariance matrix. The multivariate model
can also be constructed by specifying explicitly the one-dimensional dis-
tributions of the stock returns, and their dependence through a copula
function.

The Monte Carlo method consists of the following basic steps:

Step 1. Selection of a statistical model. The statistical model should be
capable of explaining a number of observed phenomena in the data
such as heavy-tails, clustering of the volatility, and the like, which
we think influence the portfolio risk.

Step 2. Estimation of the statistical model parameters. A sample of
observed stocks returns is used from a predetermined time window,
for instance the most recent 250 daily returns.

Step 3. Generation of scenarios from the fitted model. Independent
scenarios are drawn from the fitted model. Each scenario is a
vector of stock returns that depend on each other according to the
presumed dependence structure of the statistical model.

Step 4. Calculation of portfolio risk. Compute portfolio risk on the basis
of the portfolio return scenarios obtained from the previous step.

The Monte Carlo method is a very general numerical approach to
risk estimation. It does not require any closed-form expressions and, by
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choosing a flexible statistical model, accurate risk numbers can be obtained.
A disadvantage is that the computed portfolio VaR is dependent on the
generated sample of scenarios and will fluctuate a little if we regenerate the
sample. This side effect can be reduced by generating a larger sample. An
illustration is provided in the following example.

Suppose that the daily portfolio return distribution is standard normal
and, therefore, at Step 4 of the algorithm we have scenarios from the
standard normal distribution. Under the assumption of normality, we can
use the approach of RiskMetrics and compute the 99% daily VaR directly
from formula (6.12). Nevertheless, we will use the Monte Carlo method to
gain more insight into the deviations of the VaR based on scenarios from
the VaR computed according to formula (6.12).

In order to investigate how the fluctuations of the 99% VaR change
about the theoretical value, we generate samples of different sizes: 500,
1,000, 5,000, 10,000, 20,000, and 100,000 scenarios. The 99% VaR is
computed from these samples and the numbers are stored. We repeat the
experiment 100 times. In the end, we have 100 VaR numbers for each
sample size. We expect that as the sample size increases, the VaR values will
fluctuate less about the theoretical value which is VaR0.01(X) = 2.326, X ∈
N(0, 1).

Table 6.2 contains the result of the experiment. From the 100 VaR
numbers, we calculate the 95% confidence interval for the true value given
in the third column. The confidence intervals cover the theoretical value
2.326 and also we notice that the length of the confidence interval decreases
as the sample size increases. This effect is best illustrated with the help of

TABLE 6.2 The 99% VaR of the Standard Normal Distribution Computed
from a Sample of Scenarios. The 95% Confidence Interval is Calculated from
100 Repetitions of the Experiment. The True Value is VaR0.01(X) = 2.326.

Number of Scenarios 99% VaR 95% Confidence Interval

500 2.067 [1.7515, 2.3825]

1,000 2.406 [2.1455, 2.6665]

5,000 2.286 [2.1875, 2.3845]

10,000 2.297 [2.2261, 2.3682]

20,000 2.282 [2.2305, 2.3335]

50,000 2.342 [2.3085, 2.3755]

100,000 2.314 [2.2925, 2.3355]
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FIGURE 6.3 Boxplot diagrams of the fluctuation of the 99%
VaR of the standard normal distribution based on scenarios.
The horizontal axis shows the number of scenarios and the
boxplots are computed from 100 independent samples.

the boxplot diagrams6 shown in Figure 6.3. A sample of 100,000 scenarios
results in VaR numbers that are tightly packed around the true value while
a sample of only 500 scenarios may give a very inaccurate estimate.

This simple experiment shows that the number of scenarios in the
Monte Carlo method has to be carefully chosen. The approach we used
to determine the fluctuations of the VaR based on scenarios is a statistical
method called parametric bootstrap. The bootstrap methods in general are
powerful statistical methods which are used to compute confidence intervals
when the problem is not analytically tractable but the calculations may be
quite computationally intensive.

The true merits of the Monte Carlo method can only be realized when
the portfolio contains complicated instruments such as derivatives. In this
case, it is no longer possible to use a closed-form expression for the portfolio
VaR (and any risk measure in general) because the distribution of portfolio

6A boxplot, or a box-and-whiskers diagram, is a convenient way of depicting several
statistical characteristics of the sample. The size of the box equals the difference
between the third and the first quartile (75% quantile – 25% quantile), also known
as the interquartile range. The line in the box corresponds to the median of the data
(50% quantile). The lines extending out of the box are called whiskers and each of
them is long up to 1.5 times the interquartile range. All observations outside the
whiskers are labeled outliers and are depicted by a plus sign.
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return (or payoff) becomes quite arbitrary. The Monte Carlo method
provides the general framework to generate scenarios for the risk-driving
factors, then revaluates the financial instruments in the portfolio under each
scenario, and, finally, estimates portfolio risk on the basis of the computed
portfolio returns (or payoffs) in each state of the world.

While it may seem a straightforward approach, the practical implemen-
tation is a very challenging endeavor from both software development and
financial modeling point of view. The portfolios of big financial institutions
often contain products which require yield curve modeling, development
of fundamental and statistical factor models, and, on top of that, a proba-
bilistic model capable of describing the heavy tails of the risk-driving factor
returns, the autocorrelation, clustering of the volatility, and the dependence
between these factors. Processing large portfolios is related to manipula-
tion of colossal data structures which requires excellent skills of software
developers in order to be efficiently performed.

6.4.3 Backtesting of VaR

If we adopt VaR for analysis of portfolio exposure, then a reasonable
question is whether the VaR calculated according to any of the methods
discussed in the previous section is realistic. Suppose that we calculate the
99% daily portfolio VaR. This means that according to our assumption for
the portfolio return (payoff) distribution, the portfolio loses more than the
99% daily VaR with 1% probability. The question is whether this estimate
is correct; that is, does the portfolio really lose more than this amount with
1% probability? This question can be answered by backtesting of VaR.

Generally, the procedure consists of the following steps.

Step 1. Choose a time window for the backtesting. Usually the time
window is the most recent one or two years.

Step 2. For each day in the time window, calculate the VaR number.

Step 3. Check if the loss on a given day is below or above the VaR
number computed the day before. If the observed loss is larger, then
we say that there is a case of an exceedance. Figure 6.4 provides an
example.

Step 4. Count the number of exceedances. Check if there are too many
or too few of them by verifying if the number of exceedances belong
to the corresponding 95% confidence interval.

If in Step 4 we find out that there are too many number of exceedances,
then the VaR numbers produced by the model are too optimistic. Losses
exceeding the corresponding VaR happen too frequently. If capital reserves
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FIGURE 6.4 The observed daily returns of S&P 500 index between December 31,
2002, and December 31, 2003, and the negative of VaR. The marked observation
is an example of an exceedance.

are determined on the basis of VaR, then there is a risk of being incapable
of covering large losses. Conversely, if the we find out that there are too few
number of exceedances, then the VaR numbers are too pessimistic. This is
also an undesirable situation. Note that the actual size of the exceedances is
immaterial, we only count them.

The confidence interval for the number of exceedances is constructed
on the basis of the indicator-type events ‘‘we observe an exceedance,’’ ‘‘we
do not observe an exceedance’’ on a given day. If we consider the 99% VaR,
then the probability of the first event, according to the model, is 1%. Let us
associate a number with each of the events similar to a coin tossing experi-
ment. If we observe an exceedance on a given day, then we say that the num-
ber 1 has occurred, otherwise 0 has occurred. If the backtesting time window
is two years, then we have a sequence of 500 zeros and ones and the expected
number of exceedances is 5. Thus finding the 95% confidence interval for
the number of exceedances reduces to finding an interval around 5 such that
the probability of the number of ones belonging to this interval is 95%.

If we assume that the corresponding events are independent, then there
is a complete analogue of this problem in terms of coin tossing. We toss
independently 500 times an unfair coin with probability of success equal
to 1%. What is the range of the number of success events with 95%
probability? Similar questions to this one are discussed in section 4.2 of
Chapter 4. In order to find the 95% confidence interval, we can resort to
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the normal approximation to the binomial distribution. The formula is,

Left bound = Nε − F−1(1 − 0.05/2)
√

Nε(1 − ε),

Right bound = Nε + F−1(1 − 0.05/2)
√

Nε(1 − ε),

where N is the number of indicator-type events, ε is the tail probability of the
VaR, and F−1(t) is the inverse distribution function of the standard normal
distribution. In the example, N = 500, ε = 0.01, and the 95% confidence
interval for the number of exceedances is [0, 9]. Similarly, if we are backtesting
the95%VaR,under thesamecircumstances theconfidence interval is [15,34].

Note that the statistical test based on the backtesting of VaR at a certain
tail probability cannot answer the question if the distributional assumptions
for the risk-driving factors are correct in general. For instance, if the portfolio
contains only common stocks, then we presume a probabilistic model for
stocks returns. By backtesting the 99% daily VaR of portfolio return, we
verify if the probabilistic model is adequate for the 1% quantile of the
portfolio return distribution; that is, we are backtesting if a certain point
in the left tail of the portfolio return distribution is sufficiently accurately
modeled. This should not be confused with statistical tests such as the
Kolmogorov test or the Kolmogorov-Smirnov test, which concern accepting
or rejecting a given distributional hypothesis.

6.4.4 Coherent Risk Measures

Even though VaR has an intuitive interpretation and has been widely
adopted as a risk measure, it does not always satisfy the important property
that the VaR of a portfolio should not exceed the sum of the VaRs of
the portfolio positions. This means that VaR is not always capable of
representing the diversification effect.

This fact raises an important question. Can we find a set of desirable
properties that a risk measure should satisfy? An answer is given by Artzner
et al. (1998). They provide an axiomatic definition of a functional which
they call a coherent risk measure. The axioms follow with remarks given
below each axiom. We denote the risk measure by the functional ρ(X)
assigning a real-valued number to a random variable. Usually, the random
variable X is interpreted as a random payoff and the motivation for the
axioms in Artzner et al. (1998) follows this interpretation. In the remarks
below each axiom, we provide an alternative interpretation which holds if
X is interpreted as random return.

The Monotonicity Property

Monotonicity. ρ(Y) ≤ ρ(X), if Y ≥ X in almost sure sense.
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Monotonicity states that if investment A has random return (payoff) Y that
is not less than the return (payoff) X of investment B at a given horizon in
all states of the world, then the risk of A is not greater than the risk of B.
This is quite intuitive but it really does matter whether the random variables
represent random return or profit because an inequality in almost sure sense
between random returns may not translate into the same inequality between
the corresponding random profits and vice versa.

Suppose that X and Y describe the random percentage returns on two
investments A and B and let Y = X + 3%. Apparently, Y > X in all states
of the world. The corresponding payoffs are obtained according to the
following equations:

Payoff(X) = IA(1 + X)and
Payoff(Y) = IB(1 + Y) = IB(1 + X + 3%),

where IA is the initial investment in opportunity A and IB is the initial
investment in opportunity B. If the initial investment IA is much larger than
IB, then Payoff(X) > Payoff(Y) irrespective of the inequality Y > X. In
effect, investment A may seem less risky than investment B it terms of payoff
but in terms of return, the converse may hold.

The Positive Homogeneity Property

Positive homogeneity. ρ(0) = 0, ρ(λX) = λρ(X), for all X and all
λ > 0.

The positive homogeneity property states that scaling the return (payoff)
of the portfolio by a positive factor scales the risk by the same factor.
The interpretation for payoffs is obvious—if the investment in a position
doubles, so does the risk of the position. We give a simple example
illustrating this property when X stands for a random percentage return.

Suppose that today the value of a portfolio is I0 and we add a certain
amount of cash C. The value of our portfolio becomes I0 = +C. The value
tomorrow is random and equals I1 + C in which I1 is the random payoff.
The return of the portfolio equals

X = I1 + C − I0 − C
I0 + C

= I1 − I0

I0

(
I0

I0 + C

)

= h
I1 − I0

I0
= hY,

where h = I0/(I0 + C) is a positive constant. The axiom positive homogene-
ity property implies that ρ(X) = hρ(Y); that is, the risk of the new portfolio
will be the risk of the portfolio without the cash but scaled by h.
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The Subadditivity Property

Subadditivity. ρ(X + Y) ≤ ρ(X) + ρ(Y), for all X and Y.

If X and Y describe random payoffs, then the subadditivity property states
that the risk of the portfolio is not greater than the sum of the risks of the
two random payoffs.

The positive homogeneity property and the subadditivity property imply
that the functional is convex

ρ(λX + (1 − λ)Y) ≤ ρ(λX) + ρ((1 − λ)Y)
= λρ(X) + (1 − λ)ρ(Y),

where λ ∈ [0, 1]. If X and Y describe random returns, then the random
quantity λX + (1 − λ)Y stands for the return of a portfolio composed of
two financial instruments with returns X and Y having weights λ and 1 − λ

respectively. Therefore, the convexity property states that the risk of a
portfolio is not greater than the sum of the risks of its constituents, meaning
that it is the convexity property which is behind the diversification effect
that we expect in the case of X and Y denoting random returns.

The Invariance Property

Invariance. ρ(X + C) = ρ(X) − C, for all X and C ∈ R.

The invariance property has various labels. Originally, it was called transla-
tion invariance while in other texts it is called cash invariance.7 If X describes
a random payoff, then the invariance property suggests that adding cash to
a position reduces its risk by the amount of cash added. This is motivated
by the idea that the risk measure can be used to determine capital require-
ments. As a consequence, the risk measure ρ(X) can be interpreted as the
minimal amount of cash necessary to make the position free of any capital
requirements,

ρ(X + ρ(X)) = 0.

The invariance property has a different interpretation when X describes
random return. Suppose that the random variable X describes the return
of a common stock and we build a long-only portfolio by adding a gov-
ernment bond yielding a risk-free rate rB. The portfolio return equals

7This label can be found in Föllmer and Schied (2002).
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wX + (1 − w)rB, where w ∈ [0, 1] is the weight of the common stock in
the portfolio. Note that the quantity (1 − w)rB is nonrandom by assump-
tion. The invariance property states that the risk of the portfolio can be
decomposed as

ρ(wX + (1 − w)rB) = ρ(wX) − (1 − w)rB

= wρ(X) − (1 − w)rB

(6.13)

where the second equality appears because of the positive homogeneity
property. In effect, the risk measure admits the following interpretation:
Assume that the constructed portfolio is equally weighted, that is, w = 1/2,
then the risk measure equals the level of the risk-free rate such that the risk of
the equally weighted portfolio consisting of the risky asset and the risk-free
asset is zero. The investment in the risk-free asset will be, effectively, the
reserve investment.

Alternative interpretations are also possible. Suppose that the present
value of the position with random percentage return X is I0. Assume that we
can find a government security earning return r∗

B at the horizon of interest.
Then we can ask the question in the opposite direction: How much should
we reallocate from I0 and invest in the government security in order to
hedge the risk ρ(X)? The needed capital C should satisfy the equation

I0 − C
I0

ρ(X) − C
I0

r∗
B = 0,

which is merely a restatement of equation (6.13) with the additional
requirement that the risk of the resulting portfolio should be zero. The
solution is

C = I0
ρ(X)

ρ(X) + r∗
B

.

Note that if in the invariance property the constant is nonnegative,
C ≥ 0, then it follows that ρ(X + C) ≤ ρ(X). This result is in agreement
with the monotonicity property as X + C ≥ X. In fact, the invariance
property can be regarded as an extension of the monotonicity property
when the only difference between X and Y is in their means.

According to the discussion in the previous section, VaR is not a
coherent risk measure because it may violate the subadditivity property.

An example of a coherent risk measure is the AVaR defined as the aver-
age of the VaRs which are larger than the VaR at a given tail probability ε.
The accepted notation is AVaRε(X) in which ε stands for the tail probability
level. A larger family of coherent risk measures is the family of spectral
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risk measures, which includes the AVaR as a representative. The spectral
risk measures are defined as weighted averages of VaRs. The AVaR and the
spectral risk measures will be considered in detail in Chapter 7.

6.5 RISK MEASURES AND DISPERSION MEASURES

In the introduction to this chapter, we remarked that there is a certain rela-
tionship between risk and uncertainty. While the two notions are different,
without uncertainty there is no risk. Having this in mind, it is not surprising
that there are similarities between the axioms behind the deviation measures
in section 6.2.5 and the axioms behind the coherent risk measures in section
6.4.4. Both classes, the deviation measures and the coherent risk measures,
are not the only classes capable of quantifying statistical dispersion and
risk respectively.8 Nevertheless, they describe basic features of uncertainty
and risk and, in effect, we may expect that a relationship between them
exists.9

Inspecting the defining axioms, we conclude that the common properties
are the subadditivity property and the positive homogeneity property. The
specific features are the monotonicity property and the invariance property
of the coherent risk measures and the translation invariance and positivity
of deviation measures. The link between them concerns a subclass of the
coherent risk measures called strictly expectation-bounded risk measures
and a subclass of the deviation measures called lower-range-dominated
deviation measures. This link has an interesting implication for constructing
optimal portfolios, which is discussed in Chapter 8.

A coherent risk measure ρ(X) is called strictly expectation-bounded if
it satisfies the condition

ρ(X) > −EX (6.14)

for all nonconstant X, in which EX is the mathematical expectation of X.
If X describes the portfolio return distribution, then the inequality in (6.14)
means that the risk of the portfolio is always greater than the negative of the
expected portfolio return. A coherent risk measure satisfying this condition
is the AVaR, for example.

A deviation measure D(X) is called lower-range dominated if it satisfies
the condition

D(X) ≤ EX (6.15)

8The appendix to this chapter contains an example of a class of risk measures which
is more general than the coherent risk measures. This is the class of convex risk
measures.
9The relationship is studied in Rockafellar et al. (2006).
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for all nonnegative random variables, X ≥ 0. A deviation measure that is
lower range dominated is, for example, the downside semistandard deviation
σ −

X defined in (6.4).
The relationship between the two subclasses is a one-to-one correspon-

dence between them established through the equations

D(X) = ρ(X − EX) (6.16)

and
ρ(X) = D(X) − E(X). (6.17)

That is, if ρ(X) is a strictly expectation-bounded coherent risk measure,
then through the formula in (6.16) we obtain the corresponding lower
range dominated deviation measure and, conversely, through the formula in
(6.17), we obtain the corresponding strictly expectation bounded coherent
risk measure.

In effect, there is a deviation measure behind each strictly expectation
bounded coherent risk measure. Consider the AVaR for instance. Since
it satisfies the property in (6.14), according to the relationship discussed
above, the quantity

Dε(X) = AVaRε(X − EX)

represents the deviation measure underlying the AVaR risk measure at
tail probability ε. In fact, the quantity Dε(X), as well as any other
lower-range-dominated deviation measure, is obtained by computing the
risk of the centered random variable. The definition of AVaR and different
calculation methods are provided in Chapter 7.

6.6 RISK MEASURES AND STOCHASTIC ORDERS

In section 5.3 of Chapter 5, we considered stochastic dominance relations.
The second-order stochastic dominance (SSD), for example, states that X
dominates Y with respect to SSD when all risk-averse investors prefer X to
Y. Suppose that we estimate the risk of X and Y through a risk measure ρ. If
all risk-averse investors prefer X to Y, then does it follow that ρ(X) ≤ ρ(Y)?
This question describes the issue of consistency of a risk measure with the
SSD order. Intuitively, a realistic risk measure should be consistent with the
SSD order since there is no reason to assume that an investment with higher
risk as estimated by the risk measure will be preferred by all risk-averse
investors.
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Note that monotonicity property of the coherent risk measures implies
consistency with first-order stochastic dominance (FSD). The condition that
X ≥ Y in all states of the world translates into the following inequality in
terms of the c.d.f.s,

FX(x) ≤ FY(x), ∀x ∈ R,

which, in fact, characterizes the FSD order.10 As a result, if all nonsatiable
investors prefer X to Y, then any coherent risk measure will indicate that
the risk of X is below the risk of Y.

Concerning the more important SSD order, the consistency question is
more involved. The defining axioms of the coherent risk measures cannot
guarantee consistency with the SSD order. Therefore, if we want to use
a coherent risk measure in practice, we have to verify separately the
consistency with the SSD order.

DeGiorgi (2005) shows that the AVaR, and spectral risk measures in
general, are consistent with the SSD order. Note that if the AVaR, for
example, is used to measure the risk of portfolio return distributions, then
the corresponding SSD order concerns random variables describing returns.
Similarly, if the AVaR is applied to random variables describing payoff,
then the SSD order concerns random payoffs. SSD orders involving returns
do not coincide with SSD orders involving payoffs, see section 5.3.6 in
Chapter 5 for further details.

6.7 SUMMARY

In this chapter, we described different approaches to quantifying risk and
uncertainty. We discussed in detail the following dispersion measures:

1. The standard deviation.
2. The mean absolute deviation.
3. The upside and downside semistandard deviations.
4. An axiomatic description of dispersion measures.
5. The family of deviation measures.

We also discussed in detail the following risk measures:

1. The value-at-risk.
2. The family of coherent risk measures.

10Section 5.3 of Chapter 5 provides more details.
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We emphasized that a realistic statistical model for risk estimation
includes two essential components:

■ A realistic statistical model for the financial assets return distributions
and their dependence, capable of accounting for empirical phenomena,
and

■ A true risk measure capable of describing the essential characteristics of
risk.

We explored a link between risk measures and dispersion measures
through two subclasses of coherent risk measures and deviation measures.
Behind every such coherent risk measure, we can find a corresponding
deviation measure and vice versa. The intuitive connection between risk and
uncertainty materializes quantitatively in a particular form.

Finally, we emphasized the importance of consistency of risk measures
with the SSD order. In the appendix to this chapter, we demonstrate a
relationship between probability metrics and deviation measures.

6.8 TECHNICAL APPENDIX

In this appendix, we provide an example of a class of risk measures more
general than the coherent risk measures described in the chapter. Then
we demonstrate that all symmetric deviation measures are generated from
probability metrics.

6.8.1 Convex Risk Measures

In the chapter, we noted that the subadditivity and the positive homogeneity
properties of coherent risk measures guarantee that they are convex. The
convexity property is the essential feature describing the diversification effect
when the random variables are interpreted as portfolio returns. Thus, it is
possible to postulate convexity directly and obtain the larger class of convex
risk measures.

A risk measure ρ is said to be a convex risk measure if it satisfies the
following properties.

Monotonicity. ρ(Y) ≤ ρ(X), if Y ≥ X in almost sure sense.

Convexity. ρ(λX + (1 − λ)Y) ≤ λρ(X) + (1 − λ)ρ(Y), for all X, Y and
λ ∈ [0, 1]

Invariance. ρ(X + C) = ρ(X) − C, for all X and C ∈ R.
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The remarks from section 6.4.4 concerning the interpretation of the
axioms of coherent risk measures depending on whether X describes payoff
or return are valid for the convex risk measures as well. The convex risk
measures are more general than the coherent risk measures because every
coherent risk measure is convex but not vice versa. The convexity property
does not imply positive homogeneity. Föllmer and Schied (2002) provide
more details on convex risk measures and their relationship with preference
relations.

6.8.2 Probability Metrics and Deviation Measures

In this section, we demonstrate that the symmetric deviation measures11

arise from probability metrics equipped with two additional properties—
translation invariance and positive homogeneity. In fact, not only the
symmetric but all deviation measures can be described with the general
method of probability metrics by extending the framework. This is illustrated
in the appendix to Chapter 9. Stoyanov et al. (2007) provide a more general
treatment of similar relationships.

We briefly repeat the definition of a probability semimetric given in
section 3.3.1 of Chapter 3 and in the appendix to Chapter 3. The probability
semimetric is denoted by µ(X, Y) in which X and Y are random variables.
The properties that µ(X, Y) should satisfy are the following:

Property 1. µ(X, Y) ≥ 0 for any X, Y and µ(X, Y) = 0 if X = Y in
almost sure sense.

Property 2. µ(X, Y) = µ(Y, X) for any X, Y.

Property 3. µ(X, Y) ≤ µ(X, Z) + µ(Z, Y) for any X, Y, Z.

A probability metric is called translation invariant and positively homo-
geneous if, besides properties 1, 2, and 3, it satisfies also

Property 4. µ(X + Z, Y + Z) = µ(Y, X) for any X, Y, Z.

Property 5. µ(aX, aY) = aµ(X, Y) for any X, Y and a > 0.

Property 4 is the translation invariance axiom and Property 5 is the positive
homogeneity axiom.

Note that translation invariance and positive homogeneity have a
different meaning depending on whether probability metrics or dispersion

11Deviation measures are described in section 6.2.5.
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measures are concerned. To avoid confusion, we enumerate the axioms
of symmetric deviation measures given in section 6.2.5 of this chapter. A
symmetric deviation measure D(X) satisfies the following axioms.

Property 1*. D(X + C) = D(X) for all X and constants C ∈ R.

Property 2*. D(X) = D(−X) for all X.

Property 3*. D(0) = 0 and D(λX) = λD(X) for all X and all λ > 0.

Property 4*. D(X) ≥ 0 for all X, with D(X) > 0 for nonconstant X.

Property 5*. D(X + Y) ≤ D(X) + D(Y) for all X and Y.

We demonstrate that the functional

µD(X, Y) = D(X − Y) (6.18)

is a probability semimetric satisfying properties 1 through 5 if D satisfies
properties 1* through 5*. Furthermore, the functional

Dµ(X) = µ(X − EX, 0) (6.19)

is a symmetric deviation measure if µ is a probability metric satisfying
properties 2 through 5.

Demonstration of Equation (6.18) We show that properties 1 through 5 hold
for µD defined in equation (6.18).

Property 1. µD(X, Y) ≥ 0 follows from the nonnegativity of D,
Property 4*. Further on, if X = Y in almost sure sense, then
X − Y = 0 in almost sure sense and µD(X, Y) = D(0) = 0 from
Property 3*.

Property 2. A direct consequence of Property 2*.

Property 3. Follows from Property 5*:

µ(X, Y) = D(X − Y) = D(X − Z + (Z − Y))
≤ D(X − Z) + D(Z − Y) = µ(X, Z) + µ(Z, Y)

Property 4. A direct consequence of the definition in (6.18).

Property 5. Follows from Property 3*.
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Demonstration of Equation (6.19) We show that properties 1* through 5*
hold for Dµ defined in equation (6.19).

Property 1*. A direct consequence of the definition in (6.19).

Property 2*. Follows from Property 4 and Property 2:

Dµ(−X) = µ(−X + EX, 0) = µ(0, X − EX)
= µ(X − EX, 0) = Dµ(X)

Property 3*. Follows from Property 1 and Property 5. Dµ(0) = µ(0, 0) =
0 and

Dµ(λX) = λµ(X − EX, 0) = λDµ(X)

Property 4*. Follows because µ is a probability metric. If Dµ(X) = 0,
then X − EX is equal to zero almost surely which means that X is
a constant in all states of the world.

Property 5*. Arises from Property 3 and Property 4:

D(X + Y) = µ(X − EX + Y − EY, 0) = µ(X − EX, −Y + EY)
≤ µ(X − EX, 0) + µ(0, −Y + EY)
= µ(X − EX, 0) + µ(Y − EY, 0)
= D(X) + D(Y)

Conclusion Equation (6.19) shows that all symmetric deviation measures
arise from the translation invariant, positively homogeneous probability
metrics.

Note that because of the properties of the deviation measures, µD is a
semimetric and cannot become a metric. This is because D is not sensitive
to additive shifts and this property is inherited by µD,

µD(X + a, Y + b) = µD(X, Y),

where a and b are constants. In effect, µD(X, Y) = 0 implies that the two
random variables differ by a constant, X = Y + c in all states of the world.

Due to the translation invariance property, equation (6.19) can be
equivalently restated as

Dµ(X) = µ(X, EX). (6.20)

As we remarked in the chapter, equation (6.20) represents a very
natural generic way of defining measures of dispersion. Starting from
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equation (6.20) and replacing the translation invariance property by the
regularity property of ideal probability metrics given in section 4.4 of
Chapter 4, the subadditivity property (Property 5*) of Dµ(X) breaks down
and a property similar to the positive shift property given in the chapter
holds instead of Property 1*,

Dµ(X + C) = µ(X + C, EX + C) ≤ µ(X, EX) = Dµ(X)

for all constants C. In fact, this property is more general than the positive
shift property as it holds for arbitrary constants.
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CHAPTER 7
Average Value-at-Risk

7.1 INTRODUCTION

The value-at-risk (VaR) measure has been adopted as a standard risk
measure in the financial industry. Nonetheless, it has a number of deficiencies
recognized by financial professionals. In Chapter 6, we remarked that there
is one very important property which does not hold for VaR. This is the
subadditivity property which ensures that the VaR measure cannot always
account for diversification. There are cases in which the portfolio VaR is
larger than the sum of the VaRs of the portfolio constituents. This shows
that VaR cannot be used as a true risk measure.

The average value-at-risk (AVaR) is a risk measure that is a superior
alternative to VaR. Not only does it lack the deficiencies of VaR, but it also
has an intuitive interpretation. There are convenient ways for computing and
estimating AVaR that allows its application in optimal portfolio problems.
Moreover, it satisfies all axioms of coherent risk measures and it is consistent
with the preference relations of risk-averse investors.

In this chapter, we explore in detail the properties of AVaR and illustrate
its superiority to VaR. We develop new geometric interpretations of AVaR
and the various calculation methods. We also provide closed-form expres-
sions for the AVaR of the normal distribution, Student’s t-distribution,
and a practical formula for Lévy stable distributions. Finally, we describe
different estimation methods and remark on potential pitfalls.

Besides AVaR, we consider a more general family of risk measures
satisfying the axioms of coherent risk measures. This is the class of spectral
risk measures which contains AVaR as a special case. In contrast to AVaR,
spectral risk measures in general are harder to work with. There are subtle
conditions that have to be satisfied in order for spectral risk measures to
be a practical concept. Such conditions are stated in the appendix to this
chapter.

207
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At the end of the chapter, we note an interesting link between probability
metrics and risk measures. Having selected a risk measure, it is possible to
find a probability metric which ensures that random variables closer to each
other with respect to the probability metric have similar risk profiles.

7.2 AVERAGE VALUE-AT-RISK

In section 6.4.1 of Chapter 6, we noted that a disadvantage of VaR is that it
does not give any information about the severity of losses beyond the VaR
level. Consider the following example. Suppose that X and Y describe the
random returns of two financial instruments with densities and distribution
functions such as the ones in Figure 7.1. The expected returns are 3% and
1%, respectively. The standard deviations of X and Y are equal to 10%.1

The cumulative distribution functions (c.d.f.s) FX(x) and FY(x) cross at
x = −0.15 and FX(−0.15) = FY(−0.15) = 0.05. According to the definition
of VaR in equation (6.5), the 95% VaRs of both X and Y are equal to 15%.
That is, the two financial instruments lose more than 15% of their present
values with probability of 5%. In effect, we may conclude that their risks
are equal because their 95% VaRs are equal.

This conclusion is wrong because we pay no attention to the losses
which are larger than the 95% VaR level. Figure 7.1 shows that the left tail
of X is heavier than the left tail of Y.2 Therefore, it is more likely that the
losses of X will be larger than the losses of Y on condition that they are
larger than 15%. Thus, looking only at the losses occurring with probability
smaller than 5%, the random return X is riskier than Y. Note that both
X and Y have equal standard deviations. If we base the analysis on the
standard deviation and the expected return, we would conclude that not
only is the uncertainty of X equal to the uncertainty of Y but X is actually
preferable because of the higher expected return. In fact, we realize that
it is exactly the opposite, which shows how important it is to ground the
reasoning on a proper risk measure.

The disadvantage of VaR, that it is not informative about the magnitude
of the losses larger than the VaR level, is not present in the risk measure
known as average value-at-risk. In the literature, it is also called conditional

1In fact, X = 0.05
√

3Z + 0.03, where Z has Student’s t-distribution with 4 degrees
of freedom and Y has a normal distribution with standard deviation equal to 0.1
and mathematical expectation equal to 0.01. The coefficient of Z is chosen so that
the standard deviation of X is also equal to 0.1.
2By comparing the c.d.f.s, we notice that the c.d.f. of X is ‘‘above’’ the c.d.f. of Y to
the left of the crossing point, FX(x) ≥ FY(x), x ≤ −0.15.
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FIGURE 7.1 The top plot shows the densities of X
and Y and the bottom plot shows their c.d.f.s. The
95% VaRs of X and Y are equal to 0.15 but X has a
thicker tail and is more risky.

value-at-risk3 or expected shortfall, but we will use AVaR because as it best
describes the quantity it references.

The AVaR at tail probability ε is defined as the average of the VaRs
which are larger than the VaR at tail probability ε. Therefore, by construc-
tion, the AVaR is focused on the losses in the tail which are larger than the

3This term is adopted in Rockafellar and Uryasev (2002).
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corresponding VaR level. The average of the VaRs is computed through the
integral

AVaRε(X) := 1
ε

∫ ε

0
VaRp(X)dp (7.1)

where VaRp(X) is defined in equation (6.5) in Chapter 6. As a matter
of fact, the AVaR is not well-defined for all real-valued random vari-
ables but only for those with finite mean; that is AVaRε(X) < ∞ if
E|X| < ∞. This should not be disturbing because random variables with
infinite mathematical expectation have limited application in the field of
finance. For example, if such a random variable is used for a model of stock
returns, then it is assumed that the common stock has infinite expected
return which is not realistic.

The AVaR satisfies all the axioms of coherent risk measures. One
consequence is that, unlike VaR, it is convex for all possible portfolios
which means that it always accounts for the diversification effect.

A geometric interpretation of the definition in equation (7.1) is provided
in Figure 7.2. In this figure, the inverse c.d.f. of a random variable X is
plotted. The shaded area is closed between the graph of F−1

X (t) and the
horizontal axis for t ∈ [0, ε], where ε denotes the selected tail probability.
AVaRε(X) is the value for which the area of the drawn rectangle, equal
to ε × AVaRε(X), coincides with the shaded area which is computed by
the integral in equation (7.1). The VaRε(X) value is always smaller than
AVaRε(X). In Figure 7.2, VaRε(X) is shown by a dash-dotted line and is
indicated by an arrow.

Let us revisit the example developed at the beginning of this section.
We concluded that even though the VaRs at 5% tail probability of both
random variables are equal, X is riskier than Y because the left tail of X is
heavier than the left tail of Y; that is, the distribution of X is more likely to
produce larger losses than the distribution of Y on condition that the losses
are beyond the VaR at the 5% tail probability. We apply the geometric
interpretation illustrated in Figure 7.2 to this example. First, notice that the
shaded area in Figure 7.2, which concerns the graph of the inverse of the
c.d.f. can also be identified through the graph of the c.d.f. This is done in
Figure 7.3, which shows a magnified section of the left tails of the c.d.f.s
plotted in Figure 7.1. The shaded area appears as the intersection of the area
closed below the graph of the distribution function and the horizontal axis,
and the area below a horizontal line shifted at the tail probability above
the horizontal axis. In Figure 7.3, we show the area for FX(x) at 5% tail
probability. The corresponding area for FY(x) is smaller because FY(x) ≤
FX(x) to the left of the crossing point of the two c.d.f.s, which is exactly at
5% tail probability.
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FIGURE 7.2 Geometrically, AVaRε(X) is the height
for which the area of the drawn rectangle equals the
shaded area closed between the graph of the inverse
c.d.f. and the horizontal axis for t ∈ [0, ε]. The
VaRε(X) value is shown by a dash-dotted line.
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FIGURE 7.3 The AVaRs of the return distributions
from Figure 7.1 in line with the geometric intuition.
Even though the 95% VaRs are equal, the AVaRs at
5% tail probability differ, AVaR0.05(X) > AVaR0.05(Y).
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In line with the geometric interpretation, the AVaR0.05(X) is a number,
such that if we draw a rectangle with height 0.05 and width equal to
AVaR0.05(X), the area of the rectangle (0.05 × AVaR0.05(X)) equals the
shaded area in Figure 7.3. The same exercise for AVaR0.05(Y) shows that
AVaR0.05(Y) < AVaR0.05(X) because the corresponding shaded area is
smaller and both rectangles share a common height of 0.05.

Besides the definition in equation (7.1), AVaR can be represented
through a minimization formula,4

AVaRε(X) = min
θ ∈ R

(
θ + 1

ε
E(−X − θ )+

)
(7.2)

where (x)+ denotes the maximum between x and zero, (x)+ = max(x, 0)
and X describes the portfolio return distribution. It turns out that this
formula has an important application in optimal portfolio problems based
on AVaR as a risk measure. In the appendix to this chapter, we provide
an illuminating geometric interpretation of equation (7.2), which shows the
connection to definition of AVaR.

How can we compute the AVaR for a given return distribution?
Throughout this section, we assume that the return distribution function
is a continuous function, that is, there are no point masses. Under this
condition, after some algebra and using the fact that VaR is the negative of
a certain quantile, we obtain that the AVaR can be represented in terms of
a conditional expectation,

AVaRε(X) = −1
ε

∫ ε

0
F−1

X (t)dt

= −E(X|X < −VaRε(X)), (7.3)

which is called expected tail loss (ETL) and is denoted by ETLε(X). The
conditional expectation implies that the AVaR equals the average loss
provided that the loss is larger than the VaR level. In fact, the average of
VaRs in equation (7.1) equals the average of losses in equation (7.3) only if
the c.d.f. of X is continuous at x = VaRε(X). If there is a discontinuity, or a
point mass, the relationship is more involved. The general formula is given
in the appendix to this chapter.

Equation (7.3) implies that AVaR is related to the conditional loss distri-
bution. In fact, under certain conditions, it is the mathematical expectation
of the conditional loss distribution, which represents only one characteristic

4Equation (7.2) was first studied by Pflug (2000). A proof that equation (7.1) is
indeed the AVaR can be found in Rockafellar and Uryasev (2002).
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of it. In section 7.9.1 in the appendix to this chapter, we introduce several
sets of characteristics of the conditional loss distribution, which provide a
more complete picture of it. Also, in section 7.9.2, we introduce the more
general concept of higher-order AVaR.

For some continuous distributions, it is possible to calculate explicitly
the AVaR through equation (7.3). We provide the closed-form expressions
for the normal distribution and Student’s t-distribution. In the appendix
to this chapter, we give a semi-explicit formula for the class of stable
distributions.5

1. The Normal distribution. Suppose that X is distributed according to
a normal distribution with standard deviation σ X and mathematical
expectation EX. The AVaR of X at tail probability ε equals

AVaRε(X) = σX

ε
√

2π
exp

(
− (VaRε(Y))2

2

)
− EX, (7.4)

where Y has the standard normal distribution, Y ∈ N(0, 1).
2. The Student’s t-distribution. Suppose that X has Student’s t-distribution

with ν degrees of freedom, X ∈ t(ν). The AVaR of X at tail probability
ε equals

AVaRε(X) =




�
(

ν + 1
2

)
�

(
ν

2

)
√

ν

(ν − 1)ε
√

π

(
1 + (VaRε(X))2

ν

) 1 − ν
2

, ν > 1

∞ , ν = 1,

where the notation �(x) stands for the gamma function. It is not
surprising that for ν = 1 the AVaR explodes because the Student’s
t-distribution with one degree of freedom, also known as the Cauchy
distribution, has infinite mathematical expectation.6

Note that equation (7.4) can be represented in a more compact way,

AVaRε(X) = σXCε − EX, (7.5)

5Section 4.3.1 in Chapter 4 provides an introduction to stable distributions.
6As we remarked, AVaRε(X) can be infinite only if the mathematical expectation
of X is infinite. Nevertheless, if this turns out to be an issue, one can use instead
of AVaR the median of the loss distribution provided that the loss is larger than
VaRε(X) as a robust version of AVaR. The median of the conditional loss is always
finite and, therefore, the issue disappears but at the cost of violating the coherence
axioms. Section 7.9.1 in the appendix to this chapter provides more details.
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where Cε is a constant which depends only on the tail probability ε.
Therefore, the AVaR of the normal distribution has the same structure
as the normal VaR given in (6.12) in Chapter 6—the difference between
the properly scaled standard deviation and the mathematical expectation.
In effect, similar to the normal VaR, the normal AVaR properties are
dictated by the standard deviation. Even though AVaR is focused on the
extreme losses only, due to the limitations of the normal assumption, it is
symmetric.

Exactly the same conclusion holds for the AVaR of Student’s
t-distribution. The true merits of AVaR become apparent if the underlying
distributional model is skewed.

7.3 AVaR ESTIMATION FROM A SAMPLE

Suppose that we have a sample of observed portfolio returns and we
are not aware of their distribution. Provided that we do not impose any
distributional model, the AVaR of portfolio return can be estimated from
the sample of observed portfolio returns. Denote the observed portfolio
returns by r1, r2, . . . , rn at time instants t1, t2, . . . , tn. The numbers in
the sample are given in order of observation. Denote the sorted sample by
r(1) ≤ r(2) ≤, . . . , ≤ r(n). Thus, r(1) equals the smallest observed portfolio return
and r(n) is the largest. The AVaR of portfolio returns at tail probability ε is
estimated according to the formula7

ÂVaRε(r) = −1
ε

(
1
n

�nε�− 1∑
k = 1

r(k) +
(

ε − �nε� − 1
n

)
r(�nε�)

)
(7.6)

where the notation �x� stands for the smallest integer larger than x.8 The
‘‘hat’’ above AVaR denotes that the number calculated by equation (7.6)
is an estimate of the true value because it is based on a sample. This is a
standard notation in statistics.

We demonstrate how equation (7.6) is applied in the following example.
Suppose that the sorted sample of portfolio returns is –1.37%, –0.98%,
–0.38%, –0.26%, 0.19%, 0.31%, 1.91% and our goal is to calculate the
portfolio AVaR at 30% tail probability. In this case, the sample contains

7This formula is a simple consequence of the definition of AVaR for discrete
distributions, see the appendix to this chapter. A detailed derivation is provided by
Rockafellar and Uryasev (2002).
8For example, �3.1� = �3.8� = 4.
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seven observations and �nε� = �7 × 0.3� = 3. According to equation (7.6),
we calculate

ÂVaR0.3(r) = − 1
0.3

(
1
7

(−1.37% − 0.98%) + (0.3 − 2/7)(−0.38%)
)

= 1.137%.

Formula (7.6) can be applied not only to a sample of empirical
observations. We may want to work with a statistical model for which
no closed-form expressions for AVaR are known. Then we can simply
sample from the distribution and apply formula (7.6) to the generated
simulations.

Besides formula (7.6), there is another method for calculation of AVaR.
It is based on the minimization formula (7.2) in which we replace the
mathematical expectation by the sample average,

ÂVaRε(r) = min
θ ∈ R

(
θ + 1

nε

n∑
i = 1

max(−ri − θ , 0)

)
. (7.7)

Even though it is not obvious, equations (7.6) and (7.7) are completely
equivalent.

The minimization formula in equation (7.7) is appealing because it
can be calculated through the methods of linear programming. It can be
restated as a linear optimization problem by introducing auxiliary variables
d1, . . . , dn, one for each observation in the sample,

min
θ , d

θ + 1
nε

n∑
k = 1

dk

subject to −rk − θ ≤ dk, k = 1, n
dk ≥ 0, k = 1, n
θ ∈ R.

(7.8)

The linear problem (7.8) is obtained from (7.7) through standard meth-
ods in mathematical programming. We briefly demonstrate the equivalence
between them. Let us fix the value of θ to θ*. Then the following choice of
the auxiliary variables yields the minimum in (7.8). If −rk −θ* < 0, then
dk = 0. Conversely, if it turns out that −rk −θ* ≥ 0, then −rk −θ* = dk.
In this way, the sum in the objective function becomes equal to the sum of
maxima in equation (7.7).
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Applying (7.8) to the sample in the example above, we obtain the
optimization problem,

min
θ , d

θ + 1
7 × 0.3

7∑
k = 1

dk

subject to 0.98% − θ ≤ d1

−0.31% − θ ≤ d2

−1.91% − θ ≤ d3

1.37% − θ ≤ d4

0.38% − θ ≤ d5

0.26% − θ ≤ d6

−0.19% − θ ≤ d7

dk ≥ 0, k = 1, 7
θ ∈ R.

The solution to this optimization problem is the number 1.137%, which
is attained for θ = 0.38%. In fact, this value of θ coincides with the VaR at
30% tail probability and this is not by chance but a feature of the problem
that is demonstrated in the appendix to this chapter. We verify that the
solution of the problem is indeed the number 1.137% by calculating the
objective in equation (7.7) for θ = 0.38%,

AVaRε(r) = 0.38% + 0.98% − 0.38% + 1.37% − 0.38%
7 × 0.3

= 1.137%.

Thus we obtain the number calculated through equation (7.6).

7.4 COMPUTING PORTFOLIO AVaR IN PRACTICE

The ideas behind the approaches of VaR estimation can be applied to AVaR.
We revisit the four methods from section 6.4.2 of Chapter 6 focusing on the
implications for AVaR. We assume that there are n common stocks with
random returns described by the random variables X1, . . . , Xn. Thus the
portfolio return is represented by

rp = w1X1 + · · · + wnXn,

where w1, . . . , wn are the weights of the common stocks in the portfolio.

7.4.1 The Multivariate Normal Assumption

We noted in section 6.4.2 of Chapter 6 that if the stock returns are assumed
to have a multivariate normal distribution, then the portfolio return has a
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normal distribution with variance w ′�w, where w is the vector of weights
and � is the covariance matrix between stock returns. The mean of the
normal distribution is

Erp =
n∑

k = 1

wkEXk

where E stands for the mathematical expectation. Thus, under this assump-
tion the AVaR of portfolio return at tail probability ε can be expressed in
closed-form through equation (7.4),

AVaRε(rp) =
√

w ′�w

ε
√

2π
exp

(
− (VaRε(Y))2

2

)
− Erp

= Cε

√
w ′�w − Erp, (7.9)

where Cε is a constant independent of the portfolio composition and
can be calculated in advance. In effect, due to the limitations of the
multivariate normal assumption, the portfolio AVaR appears symmetric
and is representable as the difference between the properly scaled standard
deviation of the random portfolio return and portfolio expected return.

7.4.2 The Historical Method

As we noted in section 6.4.2 of Chapter 6, the historical method is not related
to any distributional assumptions. We use the historically observed portfolio
returns as a model for the future returns and apply formula (7.6) or (7.7).

The historical method has several drawbacks mentioned in section
6.4.2. We emphasize that it is very inaccurate for low-tail probabilities
such as 1% or 5%. Even with one year of daily returns, which amounts
to 250 observations, to estimate the AVaR at 1% probability, we have to
use the three smallest observations which is quite insufficient. What makes
the estimation problem even worse is that these observations are in the
tail of the distribution; that is, they are the smallest ones in the sample.
The implication is that when the sample changes, the estimated AVaR may
change a lot because the smallest observations tend to fluctuate a lot.

7.4.3 The Hybrid Method

According to the hybrid method described in section 6.4.2 of Chapter 6,
different weights are assigned to the observations by which the more recent
observations get a higher weight. The rationale is that the observations far
back in the past have less impact on the portfolio risk at the present time.



218 ADVANCED STOCHASTIC MODELS

The hybrid method can be adapted for AVaR estimation. The weights
assigned to the observations are interpreted as probabilities and, thus, the
portfolio AVaR can be estimated from the resulting discrete distribution
according to the formula

ÂVaRε(r) = −1
ε


 kε∑

j = 1

pjr(j) +

ε −

kε∑
j = 1

pj


 r(kε + 1)


 (7.10)

where r(1) ≤ r(2) ≤ · · · ≤ r(km) denotes the sorted sample of portfolio returns
or payoffs and p1, p2, . . . , pkm stand for the probabilities of the sorted
observations; that is, p1 is the probability of r(1). The number kε in equation
(7.10) is an integer satisfying the inequalities,

kε∑
j = 1

pj ≤ ε <

kε+1∑
j = 1

pj.

Equation (7.10) follows directly from the definition of AVaR9 under
the assumption that the underlying distribution is discrete without the
additional simplification that the outcomes are equally probable. In the
appendix to this chapter, we demonstrate the connection between equation
(7.10) and the definition of AVaR in equation (7.1).

7.4.4 The Monte Carlo Method

The basic steps of the Monte Carlo method are described in section 6.4.2 of
Chapter 6. They are applied without modification. Essentially, we assume
and estimate a multivariate statistical model for the stocks return distribu-
tion. Then we sample from it, and we calculate scenarios for portfolio return.
On the basis of these scenarios, we estimate portfolio AVaR using equation
(7.6) in which r1, . . . , rn stands for the vector of generated scenarios.

Similar to the case of VaR, an artifact of the Monte Carlo method is
the variability of the risk estimate. Since the estimate of portfolio AVaR
is obtained from a generated sample of scenarios, by regenerating the
sample, we will obtain a slightly different value. We illustrate the variability
issue by a simulation example, similar to the one developed for VaR in
section 7.3.6.

9A formal proof can be found in Rockafellar and Uryasev (2002). The reasoning
in Rockafellar and Uryasev (2002) is based on the assumption that the random
variable describes losses while in equation (7.10), the random variable describes the
portfolio return or payoff.
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Suppose that the portfolio daily return distribution is the standard
normal law, rp ∈ N(0, 1). By the closed-form expression in equation (7.4),
we calculate that the AVaR of the portfolio at 1% tail probability equals,

AVaR0.01(rp) = 1

0.01
√

2π
exp

(
−2.3262

2

)
= 2.665.

To investigate how the fluctuations of the 99% AVaR change about the
theoretical value, we generate samples of different sizes: 500, 1,000, 5,000,
10,000, 20,000, and 100,000 scenarios. The 99% AVaR is computed from
these samples using equation (7.6) and the numbers are stored. We repeat
the experiment 100 times. In the end, we have 100 AVaR numbers for each
sample size. We expect that as the sample size increases, the AVaR values
will fluctuate less about the theoretical value, which is AVaR0.01(X) = 2.665,
X ∈ N(0, 1).

Table 7.1 contains the result of the experiment. From the 100 AVaR
numbers, we calculate the 95% confidence interval reported in the third
column. The confidence intervals cover the theoretical value 2.665 and also
we notice that the length of the confidence interval decreases as the sample
size increases. This effect is illustrated in Figure 7.4 with boxplot diagrams.
A sample of 100,000 scenarios results in AVaR numbers, which are tightly
packed around the true value while a sample of only 500 scenarios may give
a very inaccurate estimate.

By comparing Table 7.1 to Table 6.2 in section 6.4.2 of Chapter 6,
we notice that the length of the 95% confidence intervals for AVaR are
larger than the corresponding confidence intervals for VaR. This result is

TABLE 7.1 The 99% AVaR of the Standard Normal Distribution Computed from
a Sample of Scenarios. The 95% Confidence Interval is Calculated from 100
Repetitions of the Experiment. The True Value is AVaR0.01(X) = 2.665.

Number of Scenarios AVaR at 99% 95% Confidence Interval

500 2.646 [2.2060, 2.9663]

1,000 2.771 [2.3810, 2.9644]

5,000 2.737 [2.5266, 2.7868]

10,000 2.740 [2.5698, 2.7651]

20,000 2.659 [2.5955, 2.7365]

50,000 2.678 [2.6208, 2.7116]

100,000 2.669 [2.6365, 2.6872]
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FIGURE 7.4 Boxplot diagrams of the fluctuation of the AVaR
at 1% tail probability of the standard normal distribution
based on scenarios. The horizontal axis shows the number of
scenarios and the boxplots are computed from 100 independent
samples.

not surprising. Given that both quantities are at the same tail probability of
1%, the AVaR has larger variability than the VaR for a fixed number of
scenarios because the AVaR is the average of terms fluctuating more than
the 1% VaR. This effect is more pronounced the more heavy-tailed the
distribution is.

7.5 BACKTESTING OF AVaR

Suppose that we have selected a method for calculating the daily AVaR of a
portfolio. A reasonable question is how we can verify whether the estimates
of daily AVaR are realistic.

In section 6.4.2 of Chapter 6, we considered the same issue in the
context of VaR and the solution was to carry out a backtesting of VaR.
Essentially, VaR backtesting consists of computing the portfolio VaR for
each day back in time using the information available up to that day only. In
this way, we have the VaR numbers back in time as if we had used exactly
the same methodology in the past. On the basis of the VaR numbers and the
realized portfolio returns, we can use statistical methods to assess whether
the forecasted loss at the VaR tail probability is consistent with the observed
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losses. If there are too many observed losses larger than the forecasted VaR,
then the model is too optimistic. Conversely, if there are too few losses
larger than the forecasted VaR, then the model is too pessimistic.

Note that in the case of VaR backtesting, we are simply counting the
cases in which there is an exceedance; that is, when the size of the observed
loss is larger than the predicted VaR. The magnitude of the exceedance is
immaterial for the statistical test.

Unlike VaR, backtesting of AVaR is not straightforward and is a much
more challenging task. By definition, the AVaR at tail probability ε is the
average of VaRs larger than the VaR at tail probability ε. The most direct
approach to test AVaR than would be to perform VaR backtests at all tail
probabilities smaller than ε. If all these VaRs are correctly modeled, then so
is the corresponding AVaR.

One general issue with this approach is that it is impossible to perform
in practice. Suppose that we consider the AVaR at tail probability of 1%,
for example. Backtesting VaRs deeper in the tail of the distribution can be
infeasible because the backtesting time window is too short. The lower the
tail probability, the larger time window we need in order for the VaR test to
be conclusive. Another general issue is that this approach is too demanding.
Even if the VaR backtesting fails at some tail probability ε1 below ε, this
does not necessarily mean that the AVaR is incorrectly modeled because
the test failure may be due to purely statistical reasons and not to incorrect
modeling.

These arguments illustrate why AVaR backtesting is a difficult
problem—we need the information about the entire tail of the return
distribution describing the losses larger than the VaR at tail probability ε

and there may be too few observations from the tail upon which to base
the analysis. For example, in one business year, there are typically 250 trad-
ing days. Therefore, a one-year backtesting results in 250 daily portfolio
returns, which means that if ε = 1%, then there are only two observations
available from the losses larger than the VaR at 1% tail probability.

As a result, in order to be able to backtest AVaR, we can assume a certain
‘‘structure’’ of the tail of the return distribution that would compensate for
the lack of observations. There are two general approaches:

1. Use the tails of the Lévy stable distributions10 as a proxy for the tail of
the loss distribution and take advantage of the practical semianalytic
formula for the AVaR given in the appendix to this chapter to construct
a statistical test.

10Section 4.3.1 of Chapter 4 provides more details on the class of stable distributions
and its application as a model in finance.
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2. Make the weaker assumption that the loss distribution belongs to the
domain of attraction of a maxstable distribution. The behavior of the
large losses can then be approximately described by the limit maxstable
distribution and a statistical test can be based on it.

The rationale of the first approach is that generally the Lévy stable
distribution provides a good fit to the stock returns data and, thus, the
stable tail may turn out to be a reasonable approximation. Moreover, from
the Generalized Central Limit Theorem,11 we know that stable distributions
have domains of attraction that make them an appealing candidate for an
approximate model.

The second approach is based on a weaker assumption. The family of
maxstable distributions arises as the limit distribution of properly scaled
and centered maxima of i.i.d. random variables. If the random variable
describes portfolio losses, then the limit maxstable distribution can be used
as a model for the large losses (i.e., the ones in the tail). Unfortunately, as
a result of the weaker assumption, estimators of poor quality have to be
used to estimate the parameters of the limit maxstable distribution, such as
the Hill estimator for example. This represents the basic trade-off in this
approach.

7.6 SPECTRAL RISK MEASURES

By definition, the AVaR at tail probability ε is the average of the VaRs
larger than the VaR at tail probability ε. It appears possible to obtain a
larger family of coherent risk measures by considering the weighted average
of the VaRs instead of simple average. Thus the AVaR becomes just one
representative of this larger family which is known as spectral risk measures.
Acerbi (2004) provides a detailed description of spectral risk measures.

Spectral risk measures are defined as,12

ρφ(X) =
∫ 1

0
VaRp(X)φ(p)dp, (7.11)

where φ(p), p ∈ [0, 1] is the weighting function also known as risk spectrum
or risk-aversion function. It has the following interpretation. Consider a
small interval [p1, p2] of tail probabilities with length p2 − p1 = 
p. The

11Section 4.3 of Chapter 4 provides more information on the Generalized Central
Limit Theorem.
12In fact, the formal definition is more involved. See Acerbi (2004) for further details.
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weight corresponding to this interval is approximately equal to φ(p1) ×

p. Thus, the VaRs at tail probabilities belonging to this interval have
approximately the weight φ(p1) × 
p.

The risk-aversion function should possess some properties in order for
ρφ(X) to be a coherent risk measure, it should be:

Positive. φ(p) ≥ 0, p ∈ [0, 1].

Nonincreasing. Larger losses are multiplied by larger weights, φ(p1) ≥
φ(p2), p1 ≤ p2.

Normed. All weights should sum up to 1,
∫ 1

0 φ(p)dp = 1.

If we compare equations (7.11) and (7.1), we notice that the AVaR at
tail probability ε arises from a spectral risk measure with a constant risk
aversion function for all tail probabilities below ε. The left plot in Figure 7.5
illustrates a typical risk-aversion function. The right plot shows the graph
of the risk-aversion function yielding the AVaR at tail probability ε.

It is possible to obtain formulae through which we can estimate the
spectral risk measures from a sample of observations. They are essentially
counterparts of (7.6) and (7.7). (See Acerbi and Simonetti (2002) for further
details.)

In section 6.4.2 of Chapter 6 and section 7.4 of this chapter, we
emphasized that if a sample is used to estimate VaR and AVaR, then there
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FIGURE 7.5 Examples of risk-aversion functions.
The right plot shows the risk-aversion function
yielding the AVaR at tail probability ε.
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is certain variability of the estimates. We illustrated it through a Monte
Carlo example for the standard normal distribution. Comparing the results
we concluded that the variability of AVaR is larger than the VaR at the
same tail probability because in the AVaR, we average terms with larger
variability. The heavier the tail, the more pronounced this effect becomes.

When spectral risk measures are estimated from a sample, the variability
of the estimate may become a big issue. Note that due to the non-increasing
property of the risk-aversion function, the larger losses, which are deeper
in the tail of the return distribution, are multiplied by a larger weight.
The larger losses (VaRs at lower tail probability) have higher variability
and the multiplication by a larger weight further increases the variability
of the weighted average. Therefore, larger number of scenarios may turn
out to be necessary to achieve given stability of the estimate for spectral
risk measures than for AVaR. Ultimately, this is dependent on the choice
of the risk-aversion function and the assumed distribution of portfolio
return.

In fact, the distributional assumption for the random variable X is
very important because it may lead to unbounded spectral risk measures
for some choices of the risk-aversion function. An infinite risk measure is
not informative for decision makers and an unfortunate combination of
a distributional model and a risk-aversion function cannot be identified
by looking at the sample estimate of ρφ(X). In practice, when ρφ(X) is
divergent in theory, we will observe high variability of the risk estimates
when regenerating the simulations and also nondecreasing variability of the
risk estimates as we increase the number of simulations. We can regard
these effects as symptoms for a bad combination of a statistical model and
a risk-aversion function. The appendix to this chapter contains guidelines
for avoiding inappropriate choices of a risk-aversion function depending on
certain information about the probability distribution of X.

We would like to stress that this problem does not exist for AVaR
because a finite mean of X guarantees that the AVaR is well defined on all
tail probability levels. The problem for the spectral measures of risk arises
from the non-increasing property of the risk-aversion function. Larger losses
are multiplied by larger weights which may result in an unbounded weighted
average.

7.7 RISK MEASURES AND PROBABILITY METRICS

In Chapter 3, we introduced the notion of probability metrics and remarked
that they provide the only way of measuring distances between random
quantities. It turns out that a small distance between random quantities
does not necessarily imply that selected characteristics of those quantities
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are close to each other. For example, a probability metric may indicate that
two distributions are close to each other and, still, the standard deviations
of the two distributions may be arbitrarily different. As a very extreme
case, one of the distributions may even have an infinite standard deviation.
Thus, if we want small distances measured by a probability metric to imply
similar characteristics, the probability metric should be carefully chosen.
In section 4.4 of Chapter 4, we described the ideal probability metrics. A
small distance between two random quantities estimated by an ideal metric
means that the two random variables have similar absolute moments. The
technical appendix to Chapter 4 provides more details.

A risk measure can be viewed as calculating a particular characteristic
of a random variable. Furthermore, there are problems in finance in which
the goal is to find a random variable closest to another random variable.
For instance, such is the benchmark tracking problem which is at the heart
of passive portfolio construction strategies. Essentially, we are trying to
construct a portfolio tracking the performance a given benchmark.13 In
some sense, this can be regarded as finding a portfolio return distribution
which is closest to the return distribution of the benchmark. Usually, the
distance is measured through the tracking error, which is the standard
deviation of the active return.

Suppose that we have found the portfolio tracking the benchmark most
closely with respect to the tracking error. Can we be sure that the risk of
the portfolio is close to the risk of the benchmark? Generally, the answer is
affirmative only if we use the standard deviation as a risk measure. Active
return is refined as the difference between the portfolio return rp and the
benchmark return rb, rp − rb. The conclusion that smaller tracking error
implies that the standard deviation of rp is close to the standard deviation
of rb is based on the inequality,

|σ (rp) − σ (rb)| ≤ σ (rp − rb).

The right part corresponds to the tracking error and, therefore, smaller
tracking error results in σ (rp) being closer to σ (rb).

In order to guarantee that small distance between portfolio return
distributions corresponds to similar risks, we have to find a suitable prob-
ability metric. Technically, for a given risk measure we need to find a
probability metric with respect to which the risk measure is a continuous
functional,

|ρ(X) − ρ(Y)| ≤ µ(X, Y),

13Chapter 9 provides more details on the benchmark tracking problem.
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where ρ is the risk measure and µ stands for the probability metric. We
continue with examples of how this can be done for VaR, AVaR, and the
spectral risk measures.14

1. VaR. Suppose that X and Y describe the return distributions of two
portfolios. The absolute difference between the VaRs of the two port-
folios at any tail probability can be bounded by,

|VaRε(X) − VaRε(Y)| ≤ max
p ∈ (0,1)

|VaRp(X) − VaRp(Y)|

= max
p ∈ (0,1)

|F−1
Y (p) − F−1

X (p)|

= W(X, Y),

where W(X, Y) is the uniform metric between inverse distribution func-
tions defined in equation (3.14) in section 3.3.3 of Chapter 3. If the
distance between X and Y is small, as measured by the metric W(X, Y),
then the VaR of X is close to the VaR of Y at any tail probability level ε.

2. AVaR. Suppose that X and Y describe the return distributions of two
portfolios. The absolute difference between the AVaRs of the two
portfolios at any tail probability can be bounded by,

|AVaRε(X) − AVaRε(Y)| ≤ 1
ε

∫ ε

0
|F−1

X (p) − F−1
Y (p)|dp

≤
∫ 1

0
|F−1

X (p) − F−1
Y (p)|dp

= κ(X, Y),

where κ(X, Y) is the Kantorovich metric defined in equation (3.12) in
section 3.3.3 of Chapter 3. If the distance between X and Y is small, as
measured by the metric κ(X, Y), then the AVaR of X is close to the
AVaR of Y at any tail probability level ε. Note that the quantity,

κ ε(X, Y) = 1
ε

∫ ε

0
|F−1

X (p) − F−1
Y (p)|dp,

can also be used to bound the absolute difference between the AVaRs.
It is a probability semimetric,15 giving the best possible upper bound on
the absolute difference between the AVaRs.

14The examples are based on Stoyanov et al. (2007).
15The technical appendix to Chapter 3 describes the differences between probability
metrics and probability semimetrics.
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3. Spectral risk measures. Suppose that X and Y describe the return
distributions of two portfolios. The absolute difference between the
spectral risk measures of the two portfolios for a given risk-aversion
function can be bounded by,

|ρφ(X) − ρφ(Y)| ≤
∫ 1

0
|F−1

X (p) − F−1
Y (p)|φ(p)dp

= κφ(X, Y)

where κφ(X, Y) is a weighted Kantorovich metric. If the distance
between X and Y is small, as measured by the metric κφ(X, Y), then
the risk of X is close to the risk of Y as measured by the spectral risk
measure ρφ .

7.8 SUMMARY

In this chapter, we considered in detail the AVaR risk measure. We noted
the advantages of AVaR, described a number of methods for its calculation
and estimation, and remarked some potential pitfalls including estimates
variability and problems on AVaR backtesting. We illustrated geometrically
many of the formulae for AVaR calculation, which makes them more
intuitive and easy to understand.

Besides the AVaR, we considered a more general family of coherent risk
measures—the spectral risk measures. The AVaR is a spectral risk measure
with a specific risk-aversion function. We emphasized the importance of
proper selection of the risk-aversion function to avoid explosion of the risk
measure.

Finally, we demonstrated a connection between the theory of probability
metrics and risk measures. Basically, by choosing an appropriate probability
metric we can guarantee that if two portfolio return distributions are close
to each other, their risk profiles are also similar.

7.9 TECHNICAL APPENDIX

We start with a more general view that better describes the conditional loss
distribution in terms of certain characteristics in which AVaR appears as a
special case. We continue with the notion of higher-order AVaR, generating
a family of coherent risk measures. Next, we provide an intuitive geometric
interpretation of the minimization formula for the AVaR calculation. We
also provide a semianalytic expression for the AVaR of stable distributions
and compare the expected tail-loss measure to AVaR. Finally, we comment
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on the proper choice of a risk-aversion function in spectral risk measures
that does not result in an infinite risk measure.

7.9.1 Characteristics of Conditional Loss
Distributions

In the chapter, we defined AVaR as a risk measure and showed how it can
be calculated in practice. While it is an intuitive and easy to use coherent
risk measure, AVaR represents the average of the losses larger than the VaR
at tail probability ε, which is only one characteristic of the distribution of
extreme losses. We remarked that if the distribution function is continuous,
then AVaR coincides with ETL, which is the mathematical expectation
of the conditional loss distribution. Besides the mathematical expectation,
there are other important characteristics of the conditional loss distribution.
For example, AVaR does not provide any information about how dispersed
the conditional losses are around the AVaR value. In this section, we state
a couple of families of useful characteristics in which AVaR appears as one
example.

Consider the following tail moment of order n at tail probability ε,

mn
ε (X) = 1

ε

∫ ε

0
(F−1

X (t))ndt, (7.12)

where n = 1, 2, . . . , F−1
X (t) is the inverse c.d.f. of the random variable X. If

the distribution function of X is continuous, then the tail moment of order
n can be represented through the following conditional expectation,

mn
ε (X) = E(Xn|X < VaRε(X)), (7.13)

where n = 1, 2, . . . In the general case, if the c.d.f. has a jump at VaRε(X), a
link exists between the conditional expectation and equation (7.12), which
is similar to formula (7.23) for AVaR. In fact, AVaR appears as the negative
of the tail moment of order one, AVaRε(X) = −m1

ε (X).
The higher-order tail moments provide additional information about

the conditional distribution of the extreme losses. We can make a parallel
with the way the moments of a random variable are used to describe certain
properties of it. In our case, it is the conditional distribution that we are
interested in.

In addition to the moments mn
ε (X), we introduce the central tail

moments of order n at tail probability ε,

Mn
ε (X) = 1

ε

∫ ε

0
(F−1

X (t) − m1
ε (X))ndt, (7.14)
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where m1
ε (X) is the tail moment of order one. If the distribution function

is continuous, then the central moments can be expressed in terms of the
conditional expectation,

Mn
ε (X) = E((X − m1

ε (X))n|X < VaRε(X)).

The tail variance of the conditional distribution appears as M2
ε (X) and

the tail standard deviation equals

(M2
ε (X))1/2 =

(
1
ε

∫ ε

0
(F−1

X (t) − m1
ε (X))2dt

)1/2

.

There is a formula expressing the tail variance in terms of the tail
moments introduced in (7.13),

M2
ε (X) = m2

ε (X) − (m1
ε (X))2

= m2
ε (X) − (AVaRε(X))2.

This formula is similar to the representation of variance in terms of the
first two moments,

σ 2
X = EX2 − (EX)2.

The tail standard deviation can be used to describe the dispersion of
conditional losses around AVaR as it satisfies the general properties of
dispersion measures given in section 6.2.4 of Chapter 6. It can be viewed
as complementary to AVaR in the sense that if there are two portfolios
with equal AVaRs of their return distributions but different tail standard
deviations, the portfolio with the smaller standard deviation is preferable.

Another central tail moment that can be interpreted is M3
ε (X). After

proper normalization, it can be employed to measure the skewness of the
conditional loss distribution. In fact, if the tail probability is sufficiently
small, the tail skewness will be quite significant. In the same fashion, by
normalizing the central tail moment of order 4, we obtain a measure of
kurtosis of the conditional loss distribution.

In a similar way, we introduce the absolute central tail moments of
order n at tail probability ε,

µn
ε (X) = 1

ε

∫ ε

0
|F−1

X (t) − m1
ε (X)|ndt. (7.15)

The tail moments µn
ε (X) raised to the power of 1/n, (µn

ε (X))1/n, can be
applied as measures of dispersion of the conditional loss distribution if the
distribution is such that they are finite.
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In the chapter, we remarked that the tail of the random variable can
be so heavy that AVaR becomes infinite. Even if it is theoretically finite,
it can be hard to estimate because the heavy tail will result in the AVaR
estimator having a large variability. Under certain conditions it may turn
out to be practical to employ a robust estimator instead. The median tail
loss (MTL) defined as the median of the conditional loss distribution, is a
robust alternative to AVaR. It has the advantage of always being finite no
matter the tail behavior of the random variable. Formally, it is defined as

MTLε(X) = −F−1
X (1/2|X < −VaRε(X)), (7.16)

where F−1
X (p|X < −VaRε(X)) stands for the inverse distribution function of

the c.d.f. of the conditional loss distribution

FX(x|X < −VaRε(X)) = P(X ≤ x|X < −VaRε(X))

=
{

P(X ≤ x)/ε, x < −VaRε(X)
1, x ≥ −VaRε(X).

In effect, MTL, as well as any other quantile of the conditional loss
distribution, can be directly calculated as a quantile of the distribution
of X,

MTLε(X) = −F−1
X (ε/2)

= VaRε/2(X), (7.17)

where F−1
X (p) is the inverse c.d.f. of X and ε is the tail probability of the

corresponding VaR in equation (7.16). Thus MTL shares the properties of
VaR. Equation (7.17) shows that MTL is not a coherent risk measure even
though it is a robust alternative to AVaR which is a coherent risk measure.

In the universe of the three families of moments that we introduced,
AVaR is one special case providing only limited information. It may be
the only coherent risk measure among them but the other moments can
be employed in addition to AVaR in order to gain more insight into
the conditional loss distribution. Furthermore, it could appear that other
reasonable risk measures can be based on some of the moments. We believe
that they all should be considered in financial applications.

7.9.2 Higher-Order AVaR

By definition, AVaR is the average of VaRs larger than the VaR at tail
probability ε. In the same fashion, we can pose the question of what
happens if we average all AVaRs larger than the AVaR at tail probability ε.
In fact, this quantity is an average of coherent risk measures and, therefore,
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is a coherent risk measure itself since it satisfies all defining properties of
coherent risk measures given in section 6.4.4 of Chapter 6. We call it AVaR
of order one and denote it by AVaR(1)

ε (X) because it is a derived quantity
from AVaR. In this section, we consider similar derived quantities from
AVaR, which we call higher-order AVaRs.

Formally, the AVaR of order one is represented in the following way,

AVaR(1)
ε (X) = 1

ε

∫ ε

0
AVaRp(X)dp,

where AVaRp(X) is the AVaR at tail probability p. Replacing AVaR by the
definition given in equation (7.1), we obtain

AVaR(1)
ε (X) = −1

ε

∫ ε

0

(∫ 1

0
F−1

X (y)gp(y)dy
)

dp

= −1
ε

∫ 1

0
F−1

X (y)
(∫ ε

0
gp(y)dp

)
dy,

where

gp(y) =
{

1/p, y ∈ [0, p]
0, y > p.

and after certain algebraic manipulations, we get the expression

AVaR(1)
ε (X) = −1

ε

∫ ε

0
F−1

X (y) log
ε

y
dy

=
∫ ε

0
VaRy(X)φε(y)dy. (7.18)

In effect, the AVaR of order one can be expressed as a weighted average
of VaRs larger than the VaR at tail probability ε with a weighting function
φε(y) equal to

φε(y) =



1
ε

log
ε

y
, 0 ≤ y ≤ ε

0, ε < y ≤ 1.

The AVaR of order one can be viewed as a spectral risk measure with
φε(y) being the risk aversion function.

Similarly, we define the higher-order AVaR through the recursive
equation

AVaR(n)
ε (X) = 1

ε

∫ ε

0
AVaR(n − 1)

p (X)dp, (7.19)
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where AVaR(0)
p (X) = AVaRp(X) and n = 1, 2 . . . Thus the AVaR of order

two equals the average of AVaRs of order one, which are larger than the
AVaR of order one at tail probability ε. The AVaR of order n appears as
an average of AVaRs of order n − 1.

The quantity AVaR(n)
ε (X) is a coherent risk measure because it is an

average of coherent risk measures. This is a consequence of the recursive
definition in (7.19). It is possible to show that AVaR of order n admits the
representation

AVaR(n)
ε (X) = 1

ε

∫ ε

0
VaRy(X)

1
n!

(
log

ε

y

)n

dy (7.20)

and AVaR(n)
ε (X) can be viewed as a spectral risk measure with a risk

aversion function equal to

φ(n)
ε (y) =




1
εn!

(
log

ε

y

)n

, 0 ≤ y ≤ ε

0, ε < y ≤ 1.

As a simple consequence of the definition, the sequence of higher-order
AVaRs is monotonic,

AVaRε(X) ≤ AVaR(1)
ε (X) ≤ · · · ≤ AVaR(n)

ε (X) ≤ · · · .

In the chapter, we remarked that if the random variable X has a finite
mean, E|X| < ∞, then AVaR is also finite. This is not true for spectral risk
measures and the higher-order AVaR in particular. In line with the general
theory developed in section 7.9.6 in this appendix, AVaR(n)

ε (X) is finite
if all moments of X exist. For example, if the random variable X has an
exponential tail, then AVaR(n)

ε (X) < ∞ for any n < ∞.

7.9.3 The Minimization Formula for AVaR

In this section, we provide a geometric interpretation of the minimiza-
tion formula (7.2) for AVaR. We restate equation (7.2) in the following
equivalent form,

AVaRε(X) = 1
ε

min
θ ∈ R

(εθ + E(−X − θ )+) , (7.21)

where (x)+ = max(x, 0). Note the similarity between equation (7.21) and the
definition of AVaR in (7.1). Instead of the integral of the quantile function
in the definition of AVaR, a minimization formula appears in (7.21). We
interpreted the integral of the inverse c.d.f. as the shaded area in Figure 7.2.
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Similarly, we will find the area corresponding to the objective function in
the minimization formula and we will demonstrate that as θ changes, there
is a minimal area that coincides with the area corresponding to the shaded
area in Figure 7.2. Moreover, the minimal area is attained for θ = VaRε(X)
when the c.d.f. of X is continuous at VaRε(X). In fact, all illustrations in this
section are based on the assumption that X has a continuous distribution
function.

Consider first the expectation in equation (7.21). Assuming that X has
a continuous c.d.f., we obtain an expression for the expectation involving
the inverse c.d.f.,

E(−X − θ )+ =
∫

R

max(−x − θ , 0)dFX(x)

=
∫ 1

0
max(−F−1

X (t) − θ , 0)dt

= −
∫ 1

0
min(F−1

X (t) + θ , 0)dt.

This representation implies that the expectation E(−X −θ )+ equals the
area closed between the graph of the inverse c.d.f. and a line parallel to the
horizontal axis passing through the point (0, −θ ). This is the shaded area
on the right plot in Figure 7.6. The same area can be represented in terms
of the c.d.f. This is done on the left plot in Figure 7.6.

0

0

FX
−1(t )FX(X)

−θ

−θ

FIGURE 7.6 The shaded area is equal to the
expectation E(−X −θ )+ in which X has a
continuous distribution function.
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Let us get back to equation (7.21). The tail probability ε is fixed. The
product ε × θ equals the area of a rectangle with sides equal to ε and θ . This
area is added to E(−X −θ )+. Figure 7.7 shows the two areas together. The
shaded areas on the top and the bottom plots equal ε × AVaRε(X). The top
plot shows the case in which −θ < −VaRε(X). Comparing the plot to Figure
7.6, we find out that by adding the marked area to the shaded area we obtain
the total area corresponding to the objective in the minimization formula,
εθ + E(−X −θ )+. If −θ > −VaRε(X), then we obtain a similar case shown
on the bottom plot. Again, adding the marked area to the shaded area we
obtain the the total area computed by the objective in the minimization

0−VaRε(X ) −θ

ε

FX(X )

0−VaRε(X )−θ

ε

FX(X )

FIGURE 7.7 The marked area is in addition to
the shaded one. The marked area is equal to zero
if θ = VaRε(X).
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formula. By varying θ , the total area changes but it always remains larger
than the shaded area unless θ = VaRε(X).

Therefore, when θ = VaRε(X) the minimum area is attained, which
equals exactly ε × AVaRε(X). According to equation (7.21), we have to
divide the minimal area by ε in order to obtain the AVaR. As a result,
we have demonstrated that the minimization formula in equation (7.2)
calculates the AVaR.

7.9.4 AVaR for Stable Distributions

Section 4.3.1 in Chapter 4 provides an introduction to stable distribu-
tions and explains why they represent an appealing model for financial
assets return distribution. Working with the class of stable distributions
in practice is difficult because there are no closed-form expressions for
their densities and distribution functions. Thus, practical work relies on
numerical methods.

Stoyanov et al. (2006) give an account of the approaches to estimating
AVaR of stable distributions. It turns out that there is a formula that is
not exactly a closed-form expressions, such as the ones for the normal
and Student’s t AVaR stated in the chapter, but is suitable for numerical
work. It involves numerical integration but the integrand is nicely behaved
and the integration range is a bounded interval. Numerical integration can
be performed by standard toolboxes in many software packages, such as
MATLAB for example. Moreover, there are libraries freely available on the
Internet. Therefore, numerical integration itself is not a severe restriction
for applying a formula in practice. Since the formula involves numerical
integration, we call it a semianalytic expression.

Suppose that the random variable X has a stable distribution with
tail exponent α, skewness parameter β, scale parameter σ , and location
parameter µ, X ∈ Sα(σ , β, µ). If α ≤ 1, then AVaRε(X) = ∞. The reason is
that stable distributions with α ≤ 1 have infinite mathematical expectation
and the AVaR is unbounded.

If α > 1 and VaRε(X) 	= 0, then the AVaR can be represented as

AVaRε(X) = σAε, α, β − µ,

where the term Aε,α,β does not depend on the scale and the location
parameters. In fact, this representation is a consequence of the positive
homogeneity and the invariance property of AVaR. Concerning the term
Aε,α,β ,

Aε, α, β = α

1 − α

|VaRε(X)|
πε

∫ π/2

−θ0

g(θ ) exp
(−|VaRε(X)| α

α − 1 v(θ )
)

dθ
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where

g(θ ) = sin(α(θ0 + θ ) − 2θ )

sin α(θ0 + θ )
− α cos2 θ

sin2
α(θ0 + θ )

,

v(θ ) = (
cos αθ0

) 1
α − 1

(
cos θ

sin α(θ0 + θ )

) α
α − 1 cos(αθ0 + (α − 1)θ )

cos θ
,

in which θ0 = 1
α

arctan
(
β tan πα

2

)
, β = −sin(VaRε(X))β, and VaRε(X) is

the VaR of the stable distribution at tail probability ε.
If VaRε(X) = 0, then the AVaR admits a very simple expression,

AVaRε(X) = 2�
(

α−1
α

)
(π − 2θ0)

cos θ0

(cos αθ0)1/α
.

in which �(x) is the gamma function and θ0 = 1
α

arctan(β tan πα

2 ).

7.9.5 ETL versus AVaR

The expected tail loss and the average value-at-risk are two related concepts.
In the chapter, we remarked that ETL and AVaR coincide if the portfolio
return distribution is continuous at the corresponding VaR level. However,
if there is a discontinuity, or a point mass, then the two notions diverge.
Still, the AVaR can be expressed through the ETL and the VaR at the same
tail probability. In this section, we illustrate this relationship and show why
the AVaR is more appealing. Moreover, it will throw light on why equation
(7.6) should be used when considering a sample of observations.

The ETL at tail probability ε is defined as the average loss provided that
the loss exceeds the VaR at tail probability ε,

ETLε(X) = −E(X|X < −VaRε(X)). (7.22)

As a consequence of the definition, the ETL can be expressed in terms of
the c.d.f. and the inverse c.d.f. Suppose additionally, that the c.d.f. of X has
a jump at −VaRε(X). In this case, the loss VaRε(X) occurs with probability
equal to the size of the jump and, because of the strict inequality in (7.22),
it will not be included in the average.

Figure 7.8 shows the graphs of the c.d.f. and the inverse c.d.f. of a
random variable X with a point mass at −VaRε(X). If ε splits the jump of
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0
0

FX(X )

0

0 

FX
−1(t )

ε

ε0

VaRε(X )

 −VaRε(X )

ε0 ε

FIGURE 7.8 The c.d.f. and the inverse c.d.f. of a
random variable X with a point mass at −VaRε(X). The
tail probability ε splits the jump of the c.d.f.

the c.d.f. as on the left plot in Figure 7.8, then the ETL at tail probability ε

equals,

ETLε(X) = −E(X|X < −VaRε(X))

= −E(X|X < −VaRε0 (X))

= ETLε0 (X).

In terms of the inverse c.d.f., the quantity ETLε0 (X) can be represented as

ETLε0 (X) = − 1
ε0

∫ ε0

0
F−1

X (t)dt.

The relationship between AVaR and ETL follows directly from the
definition of AVaR.16 Suppose that the c.d.f. of the random variable X is as

16Formal derivation of this relationship can be found, for example, in Rockafellar
and Uryasev (2002).
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on the left plot in Figure 7.8. Then

AVaRε(X) = −1
ε

∫ ε

0
F−1

X (t)dt

= −1
ε

(∫ ε0

0
F−1

X (t)dt +
∫ ε

ε0

F−1
X (t)dt

)

= −1
ε

∫ ε0

0
F−1

X (t)dt + ε − ε0

ε
VaRε(X),

where the last inequality holds because the inverse c.d.f. is flat in the interval
[ε0, ε] and the integral is merely the surface of the rectangle shown on the
right plot in Figure 7.8. The integral in the first summand can be related to
the ETL at tail probability ε and, finally, we arrive at the expression

AVaRε(X) = ε0

ε
ETLε(X) + ε − ε0

ε
VaRε(X). (7.23)

Equation (7.23) shows that AVaRε(X) can be represented as a weighted
average between the ETL and the VaR at the same tail probability as the
coefficients in front if the two summands are positive and sum up to one. In
the special case in which there is no jump, or if ε = ε1, then AVaR equals ETL.

Why is equation (7.23) important if in all statistical models we assume
that the random variables describing return or payoff distribution have
densities? Under this assumption, not only are the corresponding c.d.f.s
continuous, but they are also smooth. Equation (7.23) is important because
if the estimate of AVaR is based on the Monte Carlo method, then we use
a sample of scenarios that approximate the nicely behaved hypothesized
distribution. Even though we are approximating a smooth distribution
function, the sample c.d.f. of the scenarios is completely discrete, with
jumps at the scenarios the size of which equals the 1/n, where n stands for
the number of scenarios.

In fact, equation (7.6) given in the chapter is actually equation (7.23)
restated for a discrete random variable. The outcomes are the available
scenarios that are equally probable. Consider a sample of observations or
scenarios r1, . . . , rn and denote by r(1) ≤ r(2) ≤ · · · ≤ r(n) the ordered sample.
The natural estimator of the ETL at tail probability ε is

ÊTLε(r) = − 1
�nε� − 1

�nε�−1∑
k = 1

r(k), (7.24)

where �x� is the smallest integer larger than x. Formula (7.24) means that
we average �nε� − 1 of the �nε� smallest observations, which is, in fact, the
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definition of the conditional expectation in (7.22) for a discrete distribution.
The VaR at tail probability ε is equal to the negative of the empirical
quantile,

V̂aRε(r) = −r(�nε�). (7.25)

It remains to determine the coefficients in (7.23). Having in mind that
the observations in the sample are equally probable, we calculate that

ε0 = �nε� − 1
n

.

Plugging ε0, (7.25), and (7.24) into equation (7.23), we obtain (7.6), which
is the sample AVaR.

Similarly, equation (7.10) also arises from (7.23). The assumption is
that the underlying random variable has a discrete distribution but the
outcomes are not equally probable. Thus the corresponding equation for
the average loss on condition that the loss is larger than the VaR at tail
probability ε is given by

ÊTLε(r) = − 1
ε0

kε∑
j = 1

pjr(j), (7.26)

where ε0 = ∑kε

j = 1 pj and kε is the integer satisfying the inequalities,

kε∑
j = 1

pj ≤ ε <

kε+1∑
j = 1

pj.

The sum
∑kε

j = 1 pj stands for the cumulative probability of the losses larger
than the the VaR at tail probability ε. Note that equation (7.26) turns
into equation (7.24) when the outcomes are equally probable. With these
remarks, we have demonstrated the connection between equations (7.6),
(7.10), and (7.23).

The differences between ETL and AVaR are not without any practical
importance. In fact, ETL is not a coherent risk measure. Furthermore, the
sample ETL in (7.24) is not a smooth function of the tail probability while
the sample AVaR is smooth. This is illustrated in Figure 7.9. The top plot
shows the graph of the sample ETL and AVaR with the tail probability
varying between 1% and 10%. The sample contains 100 independent
observations on a standard normal distribution, X ∈ N(0, 1). The bottom
plots show the same but the sample is larger. It contains 250 independent
observations on a standard normal distribution.
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FIGURE 7.9 The graphs of the sample ETL and
AVaR with tail probability varying between 1%
and 10%. The top plot is produced from a sample
of 100 observations and the bottom plot from a
sample of 250 observations. In both cases, X ∈
N(0, 1).

Both plots demonstrate that the sample ETL is a step function of the
tail probability, while the AVaR is a smooth function of it. This is not
surprising because, as ε increases, new observations appear in the sum in
(7.24) producing the jumps in the graph of the sample ETL. In contrast,
the AVaR changes gradually as it is a weighted average of the ETL and the
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VaR at the same tail probability. Note that, as the sample size increases,
the jumps in the graph of the sample ETL diminish. In a sample of 5,000
scenarios, both quantities almost overlap. This is because the standard
normal distribution has a smooth c.d.f. and the sample c.d.f. constructed
from a larger sample better approximates the theoretical c.d.f. In this case,
as the sample size approaches infinity, the AVaR becomes indistinguishable
from the ETL at the same tail probability.17

7.9.6 Remarks on Spectral Risk Measures

In the chapter, we remarked that by selecting a particular risk-aversion
function, we can obtain an infinite risk measure for some return distribu-
tions. The AVaR can also become infinite, but all distributions for which
this happens are not reasonable as a model for financial assets returns
because they have infinite mathematical expectation. This is not the case
with the spectral risk measures. There are plausible statistical models that, if
combined with an inappropriate risk-aversion function, result in an infinite
spectral risk measure.

In this section, we provide conditions that guarantee that if a
risk-aversion function satisfies them, then it generates a finite spectral
risk measure. These conditions can be divided into two groups depending
on what kind of information about the random variable is used. The first
group of conditions is based on information about existence of certain
moments, and the second group contains more precise conditions based on
the tail behavior of the random variable. This section is based on Stoyanov
(2005).

Moment-Based Conditions Moment-based conditions are related to the exis-
tence of a certain norm of the risk-aversion function. We take advantage of
the norms behind the classical Lebesgue spaces of functions denoted by

Lp([0, 1]) :=
{

f : ||f ||p =
∫ 1

0
|f (t)|pdt < ∞

}
,

where || · ||p denotes the corresponding norm. If p = ∞, then the norm is the
essential supremum, ||f ||∞ = ess supt ∈ [0,1]|f (t)|. If the function f is continuous
and bounded, then ||f ||∞ is simply the maximum of the absolute value of the
function.

17In fact, this is a consequence of the celebrated Glivenko-Cantelli theorem claiming
that the sample c.d.f. converges almost surely to the true c.d.f.
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The sufficient conditions for the finiteness of the spectral risk measure
involve the quantity

Iφ(X) =
∫ 1

0
|F−1

X (p)φ(p)|dp (7.27)

which is, essentially, the definition of the spectral risk measure but the
integrand is taken in absolute value. Therefore,

|ρφ(X)| ≤ Iφ(X)

and, as a consequence, if the quantity Iφ(X) is finite, so is the spectral
risk measure ρφ(X). Formally, this is a sufficient condition for the absolute
convergence of the integral behind the definition of spectral risk measures.

Moment-based conditions are summarized by the following
inequalities,

C · E|X| ≤ Iφ(X) ≤ (E|X|s)1/s ||φ||r (7.28)

where 0 ≤ C < ∞ is a constant and 1/s + 1/r = 1 with r, s > 1. Further on,
if r = 1 or s = 1, the second inequality18 in (7.28) changes to

Iφ(X) ≤ sup
u ∈ [0,1]

|F−1
X (u)|, if r = 1

Iφ(X) ≤ E|X| · ||φ||∞, if s = 1. (7.29)

As a consequence of equation (7.28), it follows that if the absolute
moment of order s exists, E|X|s < ∞, s > 1, then φ ∈ Lr([0, 1]) is a sufficient
condition for ρφ(X) < ∞. The AVaRε(X) has a special place among ρφ(X)
because if AVaRε(X) = ∞, then E|X| = ∞ and ρφ(X) is not absolutely
convergent for any choice of φ. In the reverse direction, if there exists φ ∈
L1([0, 1]) such that Iφ(X) < ∞, then AVaRε(X) < ∞.

The limit cases in inequalities (7.29) show that if X has a bounded
support, then all possible risk spectra are meaningful. In addition, if we
consider the space of all essentially bounded risk spectra, then the existence
of E|X| is a necessary and sufficient condition for the absolute convergence
of ρφ(X).

Conditions Based on the Tail Behavior of X More precise sufficient conditions
can be derived assuming a particular tail behavior of the distribution

18As a matter of fact, the right-hand side inequalities of both cases can be unified as
a consequence of the norm relationship ||fg||1 ≤ ||f ||r||g||s, where f ∈ Lr and g ∈ Ls

and r and s are conjugate exponents, that is, 1/s + 1/r = 1 and 1 ≤ r, s ≤ ∞. See,
for example, Rudin (1970).
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function of X. A fairly general assumption for the tail behavior is regular
variation. A monotonic function f (x) is said to be regularly varying at
infinity with index α, f ∈ RVα, if

lim
x →∞

f (tx)
f (x)

= tα. (7.30)

Examples of random variables with regularly varying distribution
functions include stable distributions, Student’s t-distribution, and Pareto
distribution. Thus, it is natural to look for sufficient conditions for the
convergence of ρφ(X) in the general setting of regularly varying tails. A set
of such conditions is provided next.

Suppose that ρφ(X) is the spectral measure of risk of a random variable
X such that E|X| < ∞ and P(−X > u) ∈ RV−α. Let the inverse of the risk
spectrum φ−1 ∈ RV−δ, if existing. Then

ρφ(X) = ∞, if 1 < δ ≤ α/(α − 1)
and

ρφ(X) < ∞, if δ > α/(α − 1).

The inverse of the risk-aversion function φ−1 exists if we assume that φ

is smooth because by assumption φ is a monotonic function.
In some cases, we may not know explicitly the inverse of the risk-aversion

function, or the inverse may not be regularly varying. Then, the next suffi-
cient condition can be adopted. It is based on comparing the risk-aversion
function to a power function.

Suppose that the same condition as above holds, the random variable
X is such that E|X| < ∞ and P(−X > u) ∈ RV−α. If the condition

lim
x → 0

φ(x)xβ = C

is satisfied with 0 < β < α − 1
α

and 0 ≤ C < ∞, then ρφ(X) < ∞. If
α − 1

α
≤ β < 1 and 0 < C < ∞, then ρφ(X) = ∞.
This condition emphasizes that it is the behavior of the risk-aversion

function φ(t) close to t = 0 that matters. This is reasonable because in this
range, the risk-aversion function defines the weights of the very extreme
losses and if the weights increase very quickly as t → 0, then the risk
measure may explode.

In fact, these conditions are more specific than assuming that a certain
norm of the risk-aversion function is finite. It is possible to derive them
because of the hypothesized tail behavior of the distribution function of X,
which is a stronger assumption than the existence of certain moments.
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CHAPTER 8
Optimal Portfolios

8.1 INTRODUCTION

A portfolio is a collection of investments held by an institution or a private
individual. Portfolios are constructed and held as a part of an investment
strategy and for the purpose of diversification. The concept of diversification
is very strong and intuitive. Including a number of assets in a portfolio may
greatly reduce portfolio risk while not necessarily reducing performance.
Diversification of portfolio risk is, therefore, a key aspect of investment
management.

Optimal portfolio selection concerns prudent decision making about
the portfolio composition. Basically, the problem of choosing a portfolio
is a problem of choice under uncertainty because the payoffs of financial
instruments are uncertain. An optimal portfolio is a portfolio that is most
preferred in a given set of feasible portfolios by an investor or a certain
category of investors.

In Chapter 5, we discussed expected utility theory, which is an accepted
theory describing choice under uncertainty. Investors preferences are charac-
terized by utility functions and they choose the venture that yields maximum
expected utility. As a consequence of the theory, stochastic dominance
relations arise, describing the choice of groups of investors, such as the
risk-averse investors. While the foundations of expected utility theory as a
normative theory are solid, its practical application is limited as the resulting
optimization problems are very difficult to solve. For example, given a set
of feasible portfolios, it is hard to find the ones that will be preferred by
all risk-averse investors by applying directly the characterization in terms of
the cumulative distribution functions (c.d.f.s).

A different approach toward the problem of optimal portfolio choice
was introduced by Harry Markowitz in the 1950, mean-variance analysis
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(M-V analysis) and popularly referred to as modern portfolio theory (MPT).
Markowitz (1952) suggested that the portfolio choice be made with respect
to two criteria: the expected portfolio return and the variance of the
portfolio return, the latter used as a proxy for risk. A portfolio is preferred
to another portfolio if it has higher expected return and lower variance. Not
only is M-V analysis intuitive, but it is easy to apply in practice. There are
convenient computational recipes for the resulting optimization problems
and geometric interpretations of the trade-off between the expected return
and variance. Initially, the approach of Markowitz (1952), which he later
expanded in his book (Markowitz 1959), generated little interest, but later
on the financial community adopted the framework and currently many
financial models are built on it.

Even though M-V analysis is an approach different from that of expected
utility theory, consistency with the latter is always looked for. For example,
if all risk-verse investors identify a given portfolio as most preferred, then
is the same portfolio identified by M-V analysis also optimal? Basically, the
answer to this question is negative. Generally, M-V analysis is not consistent
with second-order stochastic dominance (SSD) unless the joint distribution
of investment returns is multivariate normal, which is a very restrictive
assumption. Alternatively, M-V analysis describes correctly the choices
made by investors with quadratic utility functions. Again, the assumption
of quadratic utility functions is very restrictive even though we can extend it
and consider all utility functions that can be sufficiently well approximated
by quadratic utilities.

Another well-known drawback is that in M-V analysis variance is used
as a proxy for risk. In Chapter 6, we demonstrated that variance is not a risk
measure but a measure of uncertainty. This deficiency was recognized by
Markowitz (1959) and he suggested the downside semistandard deviation
as a proxy for risk. In contrast to variance, the downside semistandard
deviation is consistent with SSD.

M-V analysis can be significantly extended by adopting a true risk
measure instead of variance. If the risk measure is consistent with SSD,
so is the optimal solution to the optimization problem. Furthermore, the
optimization problem is appealing from a practical viewpoint because it is
computationally feasible and there are similar geometric interpretations as in
M-V analysis. We call this generalization mean-risk analysis (M-R analysis).

In this chapter, we describe M-V analysis and its generalization, M-R
analysis. We demonstrate how the underlying optimization problems can be
simplified if the average value-at-risk (AVaR) is selected as a risk measure.
In Chapter 6, we discussed an interesting relationship between coherent risk
measures and dispersion measures. In this chapter, we show the consequences
of this relationship for the efficient frontier generated by M-R analysis.
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M-R analysis can also be extended by using a function other than the
expected return as a measure of reward. This is demonstrated in the appendix
to this chapter, which also provides more details on other topics discussed.

8.2 MEAN-VARIANCE ANALYSIS

The classical mean-variance framework introduced by Markowitz (1952,
1959), and developed further in Markowitz (1987), is the first proposed
model of the reward-risk type. The expected portfolio return is used as
a measure of reward and the variance of portfolio return indicates how
well-diversified the portfolio is. Lower variance means higher diversification
level.

The portfolio choice problem is typically treated as a one-period prob-
lem. Suppose that at time t0 = 0 we have an investor who can choose to invest
among a universe of n assets. Having made the decision, he keeps the alloca-
tion unchanged until the moment t1 when he can make another investment
decision based on the new information accumulated up to t1. In this sense,
it is also said that the problem is static, as opposed to a dynamic problem
in which investment decisions are made for several time periods ahead.

The main principle behind M-V analysis can be summarized in two
ways:

1. From all feasible portfolios with a given lower bound on the expected
performance, find the ones that have the minimum variance (i.e., the
maximally diversified ones).

2. From all feasible portfolios with a given upper bound on the variance of
portfolio return (i.e., with an upper bound on the diversification level),
find the ones that have maximum expected performance.

Whether a portfolio is feasible or not is determined by certain limitations
the portfolio manager faces. These limitations can be strategy specific. For
example, there may be constraints on the maximum capital allocation to
a given industry, or a constraint on the correlation with a given market
segment. The limitations can also be dictated by liquidity considerations,
for instance a maximum allocation to a given position, constraints on
transaction cost or turnover.

8.2.1 Mean-Variance Optimization Problems

We can find two optimization problems behind the formulations of the
main principle of M-V analysis. In order to state optimization problems, we
introduce the following notation. We will use matrix notation to make the
problem formulations concise.
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Suppose that the investment universe consists of n financial assets.
Denote the assets returns by the vector X′ = (X1, . . . , Xn) in which Xi

stands for the return on the i-th asset. The returns are random and their
mean is denoted by µ′ = (µ1, . . . , µn), where µi = EXi. The returns are also
dependent on each other in a certain way. The dependence will be described
by the covariances between them. The covariance between the i-th and the
j-th return is denoted by

σij = cov(Xi, Xj) = E(Xi − µi)(Xj − µj).

Note that in this notation, σ ii stands for the variance of the return of the
i-th asset,

σii = E(Xi − µi)2.

The result of an investment decision is a portfolio, the composition of
which is denoted by w ′ = (w1, . . . , wn), where wi is the portfolio weight
corresponding to the i-th instrument. We will consider long-only strategies
which means that all weights should be nonnegative, wi ≥ 0, and should
sum up to one,

w1 + w2 + · · · + wn = w ′e = 1,

where e ′ = (1, 1, . . . , 1). These conditions will be set as constraints in the
optimization problem. The return of a portfolio rp can be expressed by
means of the weights and the returns of the assets,

rp = w1X1 + w2X2 + · · · + wnXn =
n∑

i = 1

wiXi = w ′X. (8.1)

Similarly, the expected portfolio return can be expressed by the vector
of weights and expected assets returns,

Erp = w1µ1 + w2µ2 + · · · + wnµn =
n∑

i = 1

wiµi = w ′µ. (8.2)

Finally, the variance of portfolio returns σ 2
rp

can be expressed by means of
portfolio weights and the covariances σij between the assets returns,

σ 2
rp

= E(rp − Erp)2

=
n∑

i = 1

n∑
j = 1

wiwjσij.
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The covariances of all asset returns can be arranged in a matrix and σ 2
rp

can be expressed as
σ 2

rp
= w ′�w (8.3)

where � is a n × n matrix of covariances,

� =




σ11 σ12 . . . σ1n

σ21 σ22 . . . σ2n

...
...

. . .
...

σn1 σn2 . . . σnn




Now we are in position to state the optimization problems. The opti-
mization problem behind the first formulation of the main principle of M-V
analysis is

min
w

w ′�w

subject to w ′e = 1
w ′µ ≥ R∗
w ≥ 0, (8.4)

where w ≥ 0 means that all components of the vector are nonnegative,
wi ≥ 0, i = 1, n. The objective function of (8.4) is the variance of port-
folio returns and R∗ is the lower bound on the expected performance.
Similarly, the optimization problem behind the second formulation of the
principle is

max
w

w ′µ

subject to w ′e = 1
w ′�w ≤ R∗

w ≥ 0, (8.5)

in which R∗ is the upper bound on the variance of the portfolio return
σ 2

rp
.

We illustrate the two optimization problems with the following example.
Suppose that the investment universe consists of three common stocks with
expected returns µ′ = (1.8%, 2.5%, 1%) and covariance matrix,

� =

1.68 0.34 0.38

0.34 3.09 −1.59
0.38 −1.59 1.54


 .
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The variance of portfolio return equals

σrp = (w1, w2, w3)


1.68 0.34 0.38

0.34 3.09 −1.59
0.38 −1.59 1.54





w1

w2

w3




= 1.08w2
1 + 3.09w2

2 + 1.54w2
3 + 2 × 0.34w1w2

− 2 × 1.59w2w3 + 2 × 0.38w1w3

and the expected portfolio return is given by

w ′µ = 0.018w1 + 0.025w2 + 0.01w3.

It is difficult to imagine how the three stock returns depend on each
other by directly looking at the covariance matrix. Covariances are hard to
compare because their magnitude depends on how dispersed the random
variables are. For this reason, correlations, which are essentially scaled
covariances, are a more useful concept. The correlation ρ ij between the ran-
dom return of the i-th and the j-th asset are computed by dividing the
corresponding covariance by the product of the standard deviations of the
two random returns,

ρij = σij√
σiiσjj

.

The correlation is always bounded in the interval [ − 1, 1]. The
closer it is to the boundaries, the stronger the dependence between the
two random variables. If ρij = 1, then the random variables are positively
linearly dependent (i.e., Xi = aXj + b, a > 0); if ρij = −1, they are negatively
linearly dependent (i.e., Xi = aXj + b, a < 0). If the two random variables
are independent, then the covariance between them is zero and so is the
correlation.

The correlation matrix ρ corresponding to the covariance matrix in this
example is

ρ =

1 0.15 0.23

0.15 1 −0.72
0.23 −0.72 1


 .

The correlation between the third and the second stock return (ρ32) is
−0.72, which is a strong negative correlation. This means that if we observe
a positive return on the second stock, it is very likely that the return on the
third stock will be negative. Thus we can expect that an investment split
between the second and the third stock will result in a diversified portfolio.
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Suppose that we choose the expected return of the first stock (µ1 =
0.018) for the lower bound R∗. Optimization problem (8.4) has the following
form,

min
w1,w2,w3

(
1.08w2

1 + 3.09w2
2 + 1.54w2

3 + 2 × 0.34w1w2

−2 × 1.59w2w3 + 2 × 0.38w1w3

)

subject to w1 + w2 + w3 = 1
0.018w1 + 0.025w2 + 0.01w3 ≥ 0.018
w1, w2, w3 ≥ 0. (8.6)

Solving this problem, we obtain the optimal solution w̃1 = 0.046, w̃2 =
0.509, and w̃3 = 0.445. The expected return of the optimal portfolio equals
w̃ ′µ = 0.018 and the variance of the optimal portfolio return equals w̃ ′�w̃ =
0.422. There is another feasible portfolio with the same expected return,
and this is the portfolio composed of only the first stock. The variance of the
return of the first stock is represented by the first element of the covariance
matrix, σ11 = 1.68. If we compare the optimal portfolio w̃ and the portfolio
composed of the first stock only, we notice that the variance of the return
of w̃ is about four times below σ 11, which means that the optimal portfolio
w̃ is much more diversified.

In a similar way, we consider problem (8.5). Suppose that we choose
the variance of the return of the first stock σ11 = 1.68 for the upper bound
R∗. Then, the optimization problem becomes

max
w1,w2,w3

0.018w1 + 0.025w2 + 0.01w3

subject to w1 + w2 + w3 = 1
1.08w2

1 + 3.09w2
2 + 1.54w2

3 + 2 × 0.34w1w2

−2 × 1.59w2w3 + 2 × 0.38w1w3 ≤ 1.68
w1, w2, w3 ≥ 0. (8.7)

The solution to this problem is the portfolio with weights w̃1 =
0.282, w̃2 = 0.69, and w̃3 = 0.028. The expected return of the optimal
portfolio equals w̃ ′µ = 0.0226 and the variance of the optimal portfolio
return equals w̃ ′�w̃ = 1.68. Therefore, the optimal portfolio has the same
diversification level, as indicated by variance, but it has a higher expected
performance.

8.2.2 The Mean-Variance Efficient Frontier

In section 8.2.1, we demonstrated how practical optimal portfolio problems
can be formulated on the basis of the main principle behind M-V analysis.
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We continue the analysis by describing the set of all optimal portfolios
known as the mean-variance efficient portfolios.

Consider problem (8.4) and suppose that we solve it without any
constraint on the expected performance. In this way, we obtain the global
minimum variance portfolio. It will be the most diversified portfolio, but
it will have the lowest expected performance. If we include a constraint
on the expected return and start increasing the lower bound by a small
amount, the optimal portfolios will become less and less diversified and
their expected performance will increase. The portfolio with the highest
expected performance also has the highest concentration. It is composed of
only one asset, and this is the asset with the highest expected performance.

By varying the constraint on the expected return and solving problem
(8.4), we obtain the mean-variance efficient portfolios. Knowing the efficient
portfolios, we can easily determine the trade-off between variance and
expected performance of the optimal portfolios. This trade-off is known as
the efficient frontier. The efficient frontier can be obtained not only from
problem (8.4) but also from problem (8.5). The difference is that we vary
the upper bound on the variance and maximize the expected performance.

The top plot in Figure 8.1 shows the efficient frontier corresponding
to the example developed in section 8.2.1. The dot indicates the posi-
tion of the portfolio with composition w1 = 0.8, w2 = 0.1, and w3 = 0.1
in the mean-variance plane. It is suboptimal as it does not belong to the
mean-variance efficient portfolios. We consider this portfolio as the initial
portfolio. The part of the efficient frontier that contains the set of all portfo-
lios more efficient than the initial portfolio can be obtained in the following
way. First, we solve problem (8.4) setting the lower bound R∗ equal to the
expected return of the initial portfolio. The corresponding optimal solution
can be found on the efficient frontier by following the horizontal arrow
in Figure 8.1. Second, we solve problem (8.5) setting the upper bound R∗

equal to the variance of the initial portfolio. The corresponding optimal
solution can be found on the efficient frontier by following the vertical
arrow in Figure 8.1. The arc on the efficient frontier closed between the two
arrows corresponds to the portfolios that are more efficient than the initial
portfolio according to the criteria of M-V analysis—these portfolios have
lower variance and higher expected performance.

The bottom plot in Figure 8.1 shows the mean-variance efficient port-
folios. For each point on the efficient frontier, it shows the corresponding
optimal allocation. The top and the bottom plot share the horizontal axis.
For example, the optimal solution corresponding to the maximum perfor-
mance portfolio consists of the second stock only. This portfolio is at the
highest point of the efficient frontier and its composition is the first bar
on the bottom plot looking from right to left. The black rectangle shows
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FIGURE 8.1 The top plot shows the efficient frontier
in the mean-variance plane. The dot indicates the
position of a suboptimal initial portfolio and the
arrows indicate the position of the optimal portfolios
obtained by minimizing variance or maximizing
expected return. The lower plot shows the
compositions of the optimal portfolios along the
efficient frontier. The black rectangle indicates the
portfolios more efficient than the initial portfolio.

the compositions of the more efficient portfolios than the initial portfolio.
We find these by projecting the arc closed between the two arrows on the
horizontal axis and then choosing the bars below it.

Sometimes, the efficient frontier is shown with standard deviation
instead of variance on the horizontal axis. Actually, variance and standard
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deviation are interchangeable notions in this case. The set of mean-variance
efficient portfolios remains unchanged because it does not matter whether
we minimize the variance or the standard deviation of portfolio return as
any of the two can be derived from the other by means of a monotonic
function. Only the shape of the efficient frontier changes since we plot the
expected return against a different quantity. In fact, in illustrating notions
such as the capital market line or the Sharpe ratio, it is better if standard
deviation is employed.

8.2.3 Mean-Variance Analysis and SSD

In Chapter 5, we discussed stochastic dominance relations resulting from
expected utility theory. The second order stochastic dominance (SSD) con-
cerns the nonsatiable, risk-averse investors. A venture dominates another
venture according to SSD if all nonsatiable, risk-averse investors prefer it.
Since portfolios are, essentially, risky ventures, the following consistency
question arises. Suppose that a portfolio with composition w = (w1, . . . , wn)
dominates another portfolio v = (v1, . . . , vn) according to SSD on the space
of returns. Is it true that M-V analysis will identify the portfolio v as not
more efficient than w? It seems reasonable to expect that such a consistency
should hold,

w ′X �SSD v′X �⇒
{

v′µ ≤ w ′µ
v′�v ≥ w ′�w.

However, it turns out that the consistency question has, generally,
a negative answer. It is only under specific conditions concerning the
multivariate distribution of the random returns X that such a consistency
exits. For example, if X has a multivariate normal distribution with mean µ

and covariance �, X ∈ N(µ, �), other conditions are given in the appendix
to this chapter. Thus, the behavior of an investor making decisions according
to M-V analysis is not in keeping with the class of nonsatiable, risk-averse
investors. Nevertheless, it is possible to identify a group of investors the
behavior of which is consistent with M-V analysis. This is the class of
investors with quadratic utility functions,

u(x) = ax2 + bx + c, x ∈ R.

Denote the set of quadratic utility functions by Q. If a portfolio is not
preferred to another portfolio by all investors with quadratic utility functions,
then M-V analysis is capable of identifying the more efficient portfolio,

Eu(w ′X) ≥ Eu(v′X), ∀u ∈ Q �⇒
{

v′µ ≤ w ′µ
v′�v ≥ w ′�w.
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The consistency with investors having utility functions in Q arises
from the fact that, besides the basic principle in M-V analysis, there is
another way to arrive at the mean-variance efficient portfolios. There is an
optimization problem that is equivalent to problems (8.4) and (8.5). This
problem is

max
w

w ′µ − λw ′�w

subject to w ′e = 1
w ≥ 0, (8.8)

where λ ≥ 0 is a parameter called the risk aversion parameter.1 By vary-
ing the risk aversion parameter and solving the optimization problem, we
obtain the mean-variance efficient portfolios. For example, if λ = 0, then
we obtain the portfolio with maximum expected performance. If the risk
aversion parameter is a very large positive number, then the relative impor-
tance of the variance w′�w in the objective function becomes much greater
than the expected return. As a result, it becomes much more significant to
minimize the variance than to maximize return and we obtain a portfolio
that is very close to the global minimum variance portfolio.

The objective function in problem (8.8) with λ fixed is in fact the
expected utility of an investor with a quadratic utility function,

w ′µ − λw ′�w = E(w ′X) − λE(w ′X − E(w ′X))2

= −λE(w ′X)2 + E(w ′X) + λ(E(w ′X))2

= E(−λ(w ′X)2 + w ′X + λ(E(w ′X))2)

= Eg(w ′X),

where the utility function g(x) = −λx2 + x + λb with b equal to the squared
expected portfolio return, b = (E(w ′X))2. Since the mean-variance efficient
portfolios can be obtained through maximizing quadratic expected utilities,
it follows that none of these efficient portfolios can be dominated with
respect to the stochastic order of quadratic utility functions.

The fact that M-V analysis is consistent with the stochastic order
arising from quadratic utilities, or, alternatively, it is consistent with SSD
under restrictions on the multivariate distribution, means that the practical
application of problems (8.4), (8.5), and (8.8) is limited. Nevertheless,

1The parameter λ is also known as a Lagrange multiplier after the French mathe-
matician Joseph-Louis Lagrange who developed the method of finding the extrema
of a function of several variables subject to one or more constraints.
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sometimes quadratic approximations to more general utility functions may
be sufficiently accurate, or under certain conditions the multivariate normal
distribution may be a good approximation for the multivariate distribution
of asset returns. The appendix to this chapter contains an example of a
more general approach.

8.2.4 Adding a Risk-Free Asset

If we add a risk-free asset to the investment universe, the efficient frontier
changes. In fact, Tobin (1958), Sharpe (1964), and Lintner (1965) show
that efficient portfolios with a risk-free asset added to the investment
universe is superior to that available to investors without the risk-free asset.
The efficient portfolios essentially consist of a combination of a particular
portfolio of the risky assets called the market portfolio and the risk-free
asset. In order to illustrate this result, we take advantage of the efficient
frontier in the mean-standard deviation plane.

Suppose that in addition to the risky assets in the investment universe,
there is a risk-free asset with return rf. The investor can choose between
the n risky asset and the risk-free one. The weight corresponding to the
risk-free asset we denote by wf which can be positive or negative if we
allow for borrowing or lending at the risk-free rate. We keep the notation
w = (w1, . . . , wn) for the vector of weights corresponding to the risky assets.
If we include the risk-free asset in the portfolio, the expected portfolio return
equals

Erp = w ′µ + wf rf

and the expression for portfolio variance remains unchanged because the
risk-free asset has zero variance and, therefore, does not appear in the
expression,

σ 2
rp

= w ′�w.

As a result, problem (8.4) transforms into

min
w,wf

w ′�w

subject to w ′e + wf = 1
w ′µ + wf rf ≥ R∗
w ≥ 0, wf ≤ 1 (8.9)

and the equivalent problems (8.5) and (8.8) change accordingly. The new
set of mean-variance efficient portfolios is obtained by varying the lower
bound on the expected performance R∗.
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The fundamental result on the structure of the mean-variance efficient
portfolios states that the optimal portfolios of problem (8.9) are always
a combination of one and the same portfolio of the risky assets and the
risk-free asset. Changing the lower bound R∗ results in different relative
proportions of the two. The portfolio of the risky assets is known as
the market portfolio and is denoted by wM = (wM, . . . , wMn) in which the
weights sum up to one.2 All efficient portfolios can be represented as

rp = (awM)′X + (1 − (awM)′e)rf

= (awM)′X + (1 − a)rf , (8.10)

where awM denotes the scaled weights of the market portfolio, a is the
scaling coefficient, 1 − a = rf is the weight of the risk-free asset, and we
have used that w′

Me = 1. The market portfolio is located on the efficient
frontier, where a straight line passing through the location of the risk-free
asset is tangent to the efficient frontier. The straight line is known as the
capital market line and the market portfolio is also known as the tangency
portfolio.

Figure 8.2 shows the efficient frontier of the example in the previous
section but with standard deviation instead of variance on the horizontal
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FIGURE 8.2 The capital market line and the
mean-variance efficient frontier. The dot indicates the
position of the market portfolio.

2We show how wM is calculated in the next chapter.
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axis. The risk-free rate rf is shown on the vertical axis and the straight line is
the capital market line. A dot indicates the location of the market portfolio,
where the capital market line is tangent to the efficient frontier.

It is possible to derive the equation of the capital market line. First, using
equation (8.10), the expected return of an efficient portfolio set equals,

E(rp) = aE(rM) + (1 − a)rf

= rf + a(E(rM) − rf ),

where rM = w′
MX equals the return of the market portfolio. The scaling

coefficient a can be expressed by means of the standard deviation. The
second term in equation (8.10) is not random and therefore the standard
deviation σrp equals

σrp = aσrM .

As a result, we derive the capital market line equation

E(rp) = rf +
(

E(rM) − rf

σrM

)
σrp (8.11)

which describes the efficient frontier with the risk-free asset added to the
investment universe.

Since any efficient portfolio is a combination of two portfolios, equation
(8.10) is sometimes referred to as two-fund separation. We remark that a
fund separation result such as (8.10) may not hold in general. It holds under
the constraints in problem (8.9) but may fail if additional constraints on the
portfolio weights are added.

8.3 MEAN-RISK ANALYSIS

The key concept behind M-V analysis is diversification. In order to measure
the degree of diversification, variance, or standard deviation, is employed.
The main idea of Markowitz is that the optimal trade-off between risk
and return should be the basis of financial decision making. The standard
deviation of portfolio returns can only be used as a proxy for risk as it is
not a true risk measure but a measure of dispersion.3 If we employ a true

3The differences between dispersion measures and risk measures are discussed in
Chapter 6.
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risk measure and then study the optimal trade-off between risk and return,
we obtain an extension of the framework of M-V analysis, which we call
mean-risk analysis (M-R analysis).

The main principle of M-R analysis can be formulated in a similar way
to M-V analysis:

1. From all feasible portfolios with a given lower bound on the expected
performance, find the ones that have minimum risk.

2. From all feasible portfolios with a given upper bound on risk, find the
ones that have maximum expected performance.

A key input to M-R analysis is the particular risk measure we would
like to employ. The risk measure is denoted by ρ(X) where X is a random
variable describing portfolio return.

8.3.1 Mean-Risk Optimization Problems

We can formulate two optimization problems on the basis of the main
principle of M-R analysis. They are very similar to the corresponding
mean-variance optimization problems considered in section 8.2.1.

The optimization problem behind the first formulation of the principle is

min
w

ρ(rp)

subject to w ′e = 1
w ′µ ≥ R∗
w ≥ 0 (8.12)

The objective function of (8.4) is the risk of portfolio return rp = w ′X
as computed by the selected risk measure ρ and R∗ is the lower bound on the
expected portfolio return. Similarly, the the optimization problem behind
the second formulation of the principle is

max
w

w ′µ

subject to w ′e = 1
ρ(rp) ≤ R∗

w ≥ 0, (8.13)

where R∗ is the upper bound on portfolio risk.
Mean-risk optimization problems are different from their counterparts

in M-V analysis. In order to calculate the risk of the portfolio return ρ(rp), we
need to know the multivariate distribution of the asset returns. Otherwise,
it will not be possible to calculate the distribution of the portfolio return
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and, as a result, portfolio risk will be unknown. This requirement is not so
obvious in the mean-variance optimization problems where we only need the
covariance matrix as input. Nevertheless, M-V analysis leads to reasonable
decision making only under certain distributional hypotheses such as the
multivariate normal distribution. Therefore, while it is not obvious from
the optimization problem structure, we need to make a certain hypothesis
in order for the results to make sense.

The principal difference between mean-risk and mean-variance opti-
mization problems is that the risk measure ρ may capture completely
different characteristics of the portfolio return distribution. We illustrate
problems (8.12) and (8.13) when the average value-at-risk (AVaR) is selected
as a risk measure.

AVaR is the main topic of Chapter 7. By definition, AVaR at tail
probability ε, AVaRε(X), is the average of the value-at-risk (VaR) numbers
larger than the VaR at tail probability ε. The formal definition is given in
equation (7.1) in Chapter 7. Substituting AVaRε(X) for ρ(X) in (8.12) and
(8.13), we obtain the corresponding AVaR optimization problems.

The choice of AVaR as a risk measure allows certain simplifications of
the optimization problems. If there are available scenarios for assets returns,
we can use the equivalent AVaR definition in equation (7.2) and construct
problem (7.8) in Section 7.3 of Chapter 7 and substitute problem (7.8) for
the risk measure ρ.

Denote the scenarios for the assets returns by r1, r2, . . . , rk where rj is a
vector of observations,

rj = (rj
1, rj

2, . . . , rj
n),

which contains the returns of all assets observed in a given time instant
denoted by the index j. Thus, all observations can be arranged in a k × n
matrix,

H =




r1
1 r1

2 . . . r1
n

r2
1 r2

2 . . . r2
n

...
...

. . .
...

rk
1 rk

2 . . . rk
n


 , (8.14)

in which the rows contain assets returns observed in a given moment and the
columns contain all observations for one asset in the entire time period. In
this way, the notation r1, r2, . . . , rk stands for the corresponding rows of the
matrix of observations H. We remark that the matrix H may not only be a
matrix of observed returns. For example, it can be a matrix of independent
and identically distributed scenarios produced by a multivariate model. In
this case, k denotes the number of multivariate scenarios produced by the
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model and n denotes the dimension of the random vector. In contrast, if H
contains historical data, then k is the number of time instants observed and
n is the number of assets observed.

Problem (7.8) contains one-dimensional observations on a random
variable which, in our case, describes the return of a given portfolio.
Therefore, the observed returns of a portfolio with composition w are r1w,
r2w, . . . , rkw, or simply as the product Hw of the historical data matrix H
and the vector-column of portfolio weights w. We restate problem (7.8)
employing matrix notation,

AVaRε(Hw) = min
θ ,d

θ + 1
kε

d′e

subject to −Hw − θe ≤ d
d ≥ 0, θ ∈ R, (8.15)

where d′ = (d1, . . . , dk) is a vector of auxiliary variables, e = (1, . . . , 1), e ∈
R

k is a vector of ones, and θ ∈ R is the additional parameter coming
from the minimization formula given in equation (7.2) in Chapter 7. The
first inequality in (8.15) concerns vectors and is to be interpreted in a
component-by-component manner,

−Hw − θe ≤ d ⇐⇒

∣∣∣∣∣∣∣∣

−r1w − θ ≤ d1

−r2w − θ ≤ d2

. . .

−rkw − θ ≤ dk.

The optimization problem in (8.15) calculates the AVaR of a portfolio
with a given composition w. It may seem involved because of the matrix
notation, but in fact it has a very simple structure. The objective function
is linear and all constraints are linear equalities and inequalities. There
are very efficient algorithms for solving problems of this type, which are
also called linear programming problems. Our goal is to obtain a more
simplified version of problem (8.12) in which we minimize portfolio AVaR
by changing the portfolio composition w. Employing (8.15) to calculate
AVaR, this means that we have to perform an additional minimization
with respect to w and, at the same time, adding all constraints existing in
problem (8.12). The resulting optimization problem is

min
w,θ ,d

θ + 1
kε

d′e

subject to −Hw − θe ≤ d
w ′e = 1
w ′µ ≥ R∗
w ≥ 0, d ≥ 0, θ ∈ R. (8.16)
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As a result, problem (8.16) has a more simple structure than (8.12)
since the objective function is linear and all constraints are linear equalities
or inequalities. In the appendix to this chapter, we provide more details
on the numerical difficulties in solving the two problems. It turns out
that (8.16) is not always superior as far as the computational burden is
concerned.

There is a similar analogue to problem (8.13). It is constructed in the
same way, the difference is that AVaR is in the constraint set and not in
the objective function. For this reason, we include the objective function of
(8.15) in the constraint set,

max
w,θ ,d

w ′µ

subject to −Hw − θe ≤ d
w ′e = 1
θ + 1

kε
d′e ≤ R∗

w ≥ 0, d ≥ 0, θ ∈ R. (8.17)

The structure of the resulting problem (8.17) is more simple than the
one of (8.13) and is a linear programming problem.

The method of combining (8.15) with (8.12) and (8.13) may seem
artificial and not quite convincing that, for example, the solution of (8.17)
and (8.13) with ρ(rp) = AVaRε(Hw) will coincide. However, it can be
formally proved that the solutions coincide.4

8.3.2 The Mean-Risk Efficient Frontier

Problems (8.12) and (8.13) are the main problems illustrating the principle
behind M-R analysis. Varying the lower bound on expected return R∗ in
(8.12) or the upper bound on portfolio risk R∗ in (8.13), we obtain the set of
efficient portfolios. In a similar way to M-V analysis, plotting the expected
return and the risk of the efficient portfolios in the mean-risk plane, we
arrive at the mean-risk efficient frontier. It shows the trade-off between risk
and expected return of the mean-risk efficient portfolios.

We illustrate the mean-risk efficient frontier with the following example.
Suppose that we choose AVaR as a risk measure and the investment
universe consists of three stocks in the S&P 500 index—Sun Microsystems
Inc. with weight w1, Oracle Corp. with weight w2, and Microsoft Corp.

4Palmquist et al. (2002) give a formal proof that the solutions of (8.12) and
(8.13) with ρ(rp) = AVaRε(Hw) coincide with the solutions of (8.16) and (8.17),
respectively.
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with weight w3. We use the observed daily returns in the period from
December 31, 2002, to December 31, 2003. Thus, the historical data matrix
H in equation (8.14) has three columns and 250 rows. Since there are only
250 observations, we choose 40% for the tail probability ε in order to have
a higher stability of the AVaR estimate from the sample. This means that
the risk measure equals the average of the VaRs larger than the VaR at
40% tail probability, which approximately equals the average loss provided
that the loss is larger than the VaR at 40% tail probability.5 The expected
daily returns are computed as the sample average and equal µ1 = 0.17%,
µ2 = 0.09%, and µ2 = 0.03% where the indexing is consistent with the
weight indexes.

The efficient frontier is shown on the top plot in Figure 8.3. The
horizontal axis ranges from about 1.5% to about 2.8%. Thus, the AVaR at
40% tail probability is about 1.5% for the global minimum risk portfolio
and about 2.8% for the maximum expected return portfolio. The bottom
plot contains the compositions of the efficient portfolios along the efficient
frontier. The weight of Sun Microsystems Inc. gradually increases as we
move from the global minimum risk portfolio to the maximum expected
return portfolio. This is an expected effect because this stock has the highest
expected daily return, µ1 = 0.17%.

We can estimate the densities of the efficient portfolios and check
how they change as we move from the global minimum risk portfolio to
the maximum expected return portfolio. The densities of three selected
portfolios are plotted in the bottom part of Figure 8.4. The top plot shows
the same efficient frontier as the top plot in Figure 8.3 and dots indicate
the positions of the three portfolios in the mean-risk plane. Portfolio 1
is the global minimum risk portfolio and its density is very concentrated
about the portfolio expected return. Portfolio 2 is in the middle part of the
efficient frontier. Its density is more dispersed and slightly skewed to the
right. The density of Portfolio 3, which is close to the maximum expected
return portfolio, is much more dispersed.

Besides problems (8.12) and (8.13), there exists another, equivalent way
to obtain the mean-risk efficient frontier. This approach is based on the
optimization problem

max
w

w ′µ − λρ(rp)

subject to w ′e = 1
w ≥ 0, (8.18)

5In fact, 40% of the observations in the sample will be used in the AVaR estimation.
section 7.4.4 of Chapter 7 provides more information about stability of AVaR
estimation.
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FIGURE 8.3 The top plot shows the efficient frontier in
the mean-risk plane. The bottom plot shows the
compositions of the optimal portfolios along the efficient
frontier. Both plots have the same horizontal axis.

where λ ≥ 0 is a risk-aversion parameter. By varying λ and solving problem
(8.18), we derive a set of efficient portfolios that is obtained either through
(8.12) or (8.13).

Note that the general shape of the mean-risk efficient frontier in
Figure 8.3 is very similar to the shape of the mean-variance efficient
frontier in Figure 8.1. Both are increasing functions; that is, the more risk
we are ready to undertake, the higher the expected portfolio return. Also,



Optimal Portfolios 265

0.016 0.018 0.02 0.022 0.024 0.026 0.028
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
x 10−3

AVaR0.4(r
p)

E
xp

ec
te

d 
R

et
ur

n

Portfolio 1

Portfolio 2

Portfolio 3

−0.1 −0.05 0 0.05 0.1 0.15
0

5

10

15

20

25

30
Portfolio 1
Portfolio 2
Portfolio 3

FIGURE 8.4 The top plot shows the efficient frontier with
three portfolios selected. The bottom plot shows the
densities of the three portfolios computed from the
empirical data.

both efficient frontiers have a concave shape; that is, the expected portfolio
return gained by undertaking one additional unit of risk decreases. The
efficient frontiers are very steep at the global minimum risk portfolio and
become more flat close to the maximum expected return portfolio. These
common properties are not accidental. It turns out that they are governed
by the properties of the risk measure ρ(X), or the standard deviation in the
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case of M-V analysis. If ρ(X) is convex, then the efficient frontier generated
by problems (8.12), (8.13), or (8.18) is a concave, monotonically increasing
function. If ρ(X) belongs to the class of coherent risk measures, for example,
then it is convex and, therefore, the corresponding efficient frontier has a
general shape such as the one in Figure 8.3.6 In the appendix to this chapter,
we consider an even more general setting in which the efficient frontier
retains the same shape. Stoyanov et al. (2007) provide a formal proof of the
most general case.

8.3.3 Mean-Risk Analysis and SSD

The question of consistency with SSD arises for M-R analysis as well. We
considered this question with respect to M-V analysis in section 8.2.3.
Suppose that nonsatiable, risk-averse investors do not prefer a portfolio
with composition v = (v1, . . . , vn) to another portfolio with composition
w = (w1, . . . , wn). If X is a random vector describing the returns of the
assets in the two portfolios, then is M-R analysis capable of indicating that
the portfolio with return v′X is not less efficient than w′X? A reasonable
consistency condition is the following one

w ′X �SSD v′X �⇒
{

v′µ ≤ w ′µ
ρ(v′X) ≥ ρ(w ′X). (8.19)

Note that, essentially, it is the risk measure ρ(X) that should be endowed
with certain properties in order for (8.19) to hold true.

A fairly general class of risk measures, which we considered in Chapter 6,
is the class of coherent risk measures. It turns out that if ρ(X) is a coherent
risk measure, then it does not necessarily follow that (8.19) will hold.
Nevertheless, for some particular representatives, the consistency condition
is true. For instance, if ρ(X) is AVaR or, more generally, a spectral risk
measure, then it is consistent with SSD.7 DeGiorgi (2005) provides more
information and a formal proof of this fact.

Since AVaR is consistent with SSD, the set of efficient portfolios,
generated for instance by problem (8.12) with ρ(X) = AVaRε(X), does not
contain a pair of two portfolios w and v such that all nonsatiable, risk-averse
investors prefer strictly one to the other, w′X �SSD v′X. In order to verify
that this is the case, assume the converse. If w′X dominates strictly v′X
according to SSD, then one of the inequalities in (8.19) is strict. In effect, the

6Coherent risk measures are a general family of risk measures which we consider in
Chapter 6.
7These two examples are considered in Chapter 7.
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portfolio v cannot be a solution to the optimization problems generating the
efficient frontier, which results in a contradiction to the initial assumption.
The conclusion is that none of the efficient portfolios can dominate strictly
another efficient portfolio with respect to SSD. Therefore, which portfolio
on the efficient frontier an investor would choose depends entirely on the
particular functional form of the investor’s utility function. If the investor
is very risk-averse, then the optimal choice will be a portfolio close to the
globally minimum risk portfolio and if the investor is risk-loving, then a
portfolio close to the other end of the efficient frontier may be preferred.

8.3.4 Risk versus Dispersion Measures

The global minimum risk portfolio can be calculated from problem (8.12)
by removing the lower bound on the expected portfolio return. In this way,
we solve a problem without any requirements on the expected performance.
However, it turns out that even though we remove the constraint, the
expected portfolio return may still influence the optimal solution.

Suppose that ρ(X) is a coherent risk measure. Then, changing only the
expectation of the portfolio return distribution by adding a positive constant
results in a decrease of risk,

ρ(X + C) = ρ(X) − C,

where C is a positive constant. Thus any coherent risk measure can be
represented as

ρ(X) = ρ(X − EX) − EX. (8.20)

The first term in the difference is completely independent of the expected
value of X. As a result of this decomposition, problem (8.12) can be restated
without the expected return constraint in the following way,

max
w

w ′µ − ρ(rp − w ′µ)

subject to w ′e = 1
w ≥ 0, (8.21)

where we have changed the minimization to maximization and have flipped
the sign of the objective function. The solution to problem (8.21) is the
global minimum risk portfolio and the expected portfolio return w′µ has a
certain impact on the solution as it appears in the objective function.

In contrast, the global minimum variance portfolio in M-V analysis
does not share this property. It is completely invariant of the expected
returns of the assets in the investment universe. This difference between
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M-R analysis and M-V analysis is not to be regarded as a drawback of
one or the other. It is one consequence of employing a risk measure in
the optimization problem. In spite of the differences between the two,
under certain conditions it appears possible to extend the mean-risk efficient
frontier by substituting the risk measure for a suitable dispersion measure
so that the mean-risk efficient frontier properties become more similar to
the properties of the mean-variance efficient frontier. In the appendix to
this chapter, we build up a general approach to this question. The current
section contains an application of the general approach to the family of
coherent risk measures.

In section 6.5 of Chapter 6 we remarked that there exists a connection
between a subfamily of the coherent risk measures and a family of dispersion
measures. The relationship between the corresponding risk and dispersion
measures is the following. Suppose that ρ(X) is a coherent risk measure (i.e.,
it satisfies the properties in section 6.4.4 of Chapter 6) and, additionally,
it satisfies the property ρ(X) > −EX. Furthermore, suppose that D(X)
is a deviation measure (i.e., it satisfies the properties in Section 6.2.5 of
Chapter 6) and, additionally, it satisfies the property D(X) ≤ EX for all
nonnegative random variables, X ≥ 0. Under these assumptions, any of the
two functionals can be expressed from the other in the following way,

D(X) = ρ(X − EX)
and

ρ(X) = D(X) − EX.

Throughout this section, it is always assumed that D(X) and ρ(X) are such
that this relationship holds.

Consider the objective function of problem (8.18). Applying the decom-
position in equation (8.20), we obtain

w ′µ − λρ(rp) = w ′µ − λρ(rp − w ′µ) + λw ′µ

= (1 + λ)w ′µ − λρ(rp − w ′µ)

= (1 + λ)
(

w ′µ − λ

1 + λ
ρ(rp − w ′µ)

)
.

Since λ ≥ 0, we can safely ignore the positive factor 1 + λ in the objective
function because it does not change the optimal solution. In effect, we obtain
the following optimization problem, which is equivalent to (8.18),

max
w

w ′µ − λ

1 + λ
ρ(rp − w ′µ)

subject to w ′e = 1
w ≥ 0. (8.22)
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We recognize the deviation measure D(rp) = ρ(rp − w ′µ) in the objective
function. Note that the aversion coefficient is not an arbitrary positive
number, λ/(1 + λ) ∈ [0, 1], because of the assumption that the risk-aversion
coefficient is nonnegative. As a result of this analysis, we can see the parallel
between (8.22) and the corresponding problem with a deviation measure,

max
w

w ′µ − cD(rp)

subject to w ′e = 1
w ≥ 0, (8.23)

where c ≥ 0 is the corresponding aversion coefficient. The set of optimal
portfolios obtained from (8.23) by varying the parameter c contains the set
of mean-risk efficient portfolios of (8.22). Furthermore, the efficient frontier
corresponding to (8.23) has properties similar to the mean-variance efficient
frontier since D(rp) does not depend on the expected portfolio return.

The optimal portfolios, which appear in addition to the mean-risk
efficient portfolios, are obtained with c > 1. If c < 1, then there is an
equivalent λ = c/(1 − c) such that the optimal portfolios of (8.22) coincide
with the optimal solutions of (8.23).8 Increasing c, we obtain more and
more diversified portfolios. In effect, the left part of the mean-risk efficient
frontier gets extended by problem (8.23). Actually, in the mean-risk plane,
the extended part curves back because these portfolios are sub-optimal
according to M-R analysis while in mean-deviation plane, the efficient
frontier is a concave, monotonically increasing function. The difference
between the mean-risk and the mean-deviation planes is merely a change in
coordinates given by equation (8.20).

The set of optimal portfolios additional to the mean-risk efficient
portfolios can be large or small depending on the magnitude of the expected
returns of the assets. If the expected returns are close to zero, the set is small
and it completely disappears if the expected returns are exactly equal to
zero. In practice, if we use daily returns, the efficient portfolios generated
by (8.22) and (8.23) almost coincide. Larger discrepancies may appear with
weekly or monthly data.

In order to see the usual magnitude of the extension of the mean-risk
efficient portfolios by (8.23), we increase five times the expected returns of
the common stocks in the example developed in section 8.3.2 keeping every-
thing else unchanged.9 The increase roughly corresponds to the magnitude

8The case c = 1 coincides with the global minimum risk portfolio.
9AVaR is a coherent risk measure and satisfies the condition AVaRε(X) > −EX, ε ∈
(0, 1). The corresponding deviation measure is D(X) = AVaRε(X − EX). This is
noted also in section 6.5 of Chapter 6.
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FIGURE 8.5 The top plot shows the efficient
frontier in the mean-risk plane. The bottom plot
shows the compositions of the optimal portfolios
along the efficient frontier. Both plots have the same
horizontal axis.

of weekly expected returns. The resulting mean-risk efficient frontier and set
of efficient portfolios is given in Figure 8.5. The efficient portfolios generated
by problem (8.23) with D(X) = AVaR0.4(X − EX) are shown in Figure 8.6.
The rectangle on the bottom plot indicates the optimal portfolios that are
additional to the mean-risk efficient portfolios. The upper plot in Figure 8.6
shows the coordinates of the optimal portfolios in the mean-deviation plane.
Note the difference between the horizontal axes in Figures 8.5 and 8.6.
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FIGURE 8.6 The top plot shows the efficient
portfolios of (8.23) in the mean-deviation plane. The
bottom plot shows the compositions of the optimal
portfolios. Both plots have the same horizontal axis.
The rectangle indicates the portfolios additional to
the mean-risk efficient portfolios.

As a next step, we plot the coordinates of the additional portfolios
in the mean-risk plane. These portfolios are suboptimal according to M-R
analysis and, therefore, the extension of the mean-risk efficient frontier will
curve backwards. This is illustrated in Figure 8.7. The portfolios which are
indicated by the rectangle on the bottom plot in Figure 8.6 are shown with
a dashed line in the mean-risk plane in Figure 8.7. The fact that they are
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FIGURE 8.7 The mean-risk efficient frontier with the
coordinates of the additional optimal portfolios
plotted with a dashed line.

sub-optimal has an easy geometric illustration. For any of these portfolios,
we can find an equally risky portfolio with a higher expected return, which
is on the mean-risk efficient frontier.

If M-R analysis leads to the conclusion that these portfolios are
sub-optimal, why do we consider them at all? Suppose that we are uncertain
about the reliability of the expected return estimates and we want to mini-
mize the impact of this uncertainty on the optimal solution. Since the means
affect the global minimum risk portfolio, we may want to reduce further
the effect of the means by moving to the extension of the efficient frontier
given by the mean-deviation optimization problem (8.23). The portfolio that
appears at the very end of the dashed line in Figure 8.7 is the minimum dis-
persion portfolio, the composition of which is not influenced by the means
at all. In effect, even though the mean-deviation optimal portfolios are sub-
optimal, under certain circumstances they may still be of practical interest.

On the basis of the analysis outlined in this section, we can classify all
optimal portfolios obtained from the mean-risk optimization problem of
the following type

min
w

ρ(rp)

subject to w ′e = 1
w ′µ = R∗
w ≥ 0. (8.24)
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Note that the expected return constraint in (8.12) is an inequality and in
(8.24) it is an equality. This may seem to be an insignificant modification of
the initial problem but it results in problem (8.24) being more general than
(8.12) in the following sense. The optimal portfolios obtained by varying
the bound R∗ in (8.24) contain the mean-risk efficient portfolios and, more
generally, the mean-deviation efficient portfolios. A more formal argument
will be given in the appendix to this chapter but, intuitively, by fixing the
expected portfolio return to be equal to R∗, we are essentially minimizing
portfolio dispersion. By equation (8.20), the objective function of problem
(8.24) can be written as

ρ(rp) = D(rp) − w ′µ = D(rp) − R∗,

in which R∗ is a constant and, therefore, it cannot change the optimal
solution. In practice, we are minimizing the dispersion D(rp).

As a result, the optimal portfolios generated by problem (8.24) by
varying R∗ can be classified into three groups. Figure 8.8 illustrates the
groups. The dark gray group contains the mean-risk efficient portfolios
generated by (8.12). They are obtained from (8.24) with high values of R∗.
The gray group contains the mean-deviation efficient portfolios produced by
problem (8.23) which are not mean-risk efficient. They are obtained from
(8.24) with medium values of R∗. Finally, the white set consists of optimal
portfolios which are not mean-deviation efficient but solve (8.24). They

All optimal portfolios

Mean–deviation efficient 
portfolios

Mean–risk efficient 
portfolios

FIGURE 8.8 Classification of the optimal portfolios
generated by problem (8.24) by varying the expected
return bound R∗.
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are obtained with small values of R∗. This set has no practical significance
since the portfolios belonging to it have small expected returns and high
dispersions.

8.4 SUMMARY

In this chapter, we described M-V analysis and the associated optimal
portfolio problems. We discussed the mean-variance efficient frontier and
consistency of M-V analysis with the stochastic dominance order of the
class of non-satiable, risk-averse investors. In the appendix to this chapter,
we remark on the asymptotic validity of quadratic utility functions as
reasonable approximations to expected utilities.

Considering a true risk measure instead of standard deviation leads to
M-R analysis. The same reasoning leads to the mean-risk efficient frontier
which, under certain conditions, is related to a mean-dispersion efficient
frontier. As a result of this relationship, we demonstrated that all optimal
portfolios can be classified into three groups—mean-risk efficient portfolios,
mean-dispersion efficient portfolios that are not mean-risk efficient, and
optimal portfolios that are not mean-dispersion efficient.

In the appendix to this chapter, we remark on the numerical difficulties
in solving the optimal portfolio problems when AVaR is selected as a risk
measure.

8.5 TECHNICAL APPENDIX

We discuss in more detail several topics that are of practical or theoretical
value to optimal portfolio problems. We begin with a description of what
kind of constraints defining the set of feasible portfolios are typically
imposed. They do not depend on whether we consider M-V analysis, M-R
analysis, or a more general framework, and are determined by exogenous
factors. Next, we proceed with a discussion of how the mean-variance
optimization problems are solved in practice and the theoretic plausibility
of quadratic utility functions. Then we consider questions concerning the
practical solution of mean-risk optimization problems and a generalization
of M-R analysis called reward-risk analysis.

8.5.1 Types of Constraints

In the chapter, we noted that M-R analysis concerns feasible portfolios.
Whether a portfolio is feasible or not depends on conditions imposed by the
portfolio manager.
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A risk-averse portfolio manager would not want to see a high concen-
tration of a particular, or any, asset in the portfolio. At the same time, for
some of the assets a minimal holding may be required. These two conditions
can be implemented by means of box-type constraints,

ai ≤ wi ≤ bi,
and

i = 1, 2, . . . , n,

where ai is a lower bound and bi is an upper bound on the weight of the
i-th asset. For some assets, the lower bound can simply be zero, ai = 0. For
example, suppose there are three assets in the investment universe and we
want to invest no more than 60% of the capital in any of them and in asset
number 3 to invest at least 10%. This is modeled by the constraints,

0 ≤ w1 ≤ 0.6,

0 ≤ w2 ≤ 0.6,
and

0.1 ≤ w3 ≤ 0.6.

In defining box-type constraints, we have to be careful not to end up
with an overly stringent set of constraints. For example, this happens in
the above illustration if the upper bound is 20% instead of 60%. Since all
weights have to sum up to one, the sum of lower bounds should not be
above 1,

∑n
i = 1 ai ≤ 1, and the sum of upper bound should not be below 1,∑n

i = 1 bi ≥ 1.
In a similar manner, the portfolio manager may want to impose con-

straints on certain groupings of assets. Suppose that the investment universe
consists of common stocks. Depending on the strategy type, a reasonable
condition is a lower and an upper bound on the exposure in a given industry.
This is a constraint on the sum of the weights corresponding to all stocks
from the investment universe belonging to that industry,

a ≤
∑
i ∈ I

wi ≤ b,

in which I denotes the indices of the common stocks from the given industry.
The general rule that is followed when building constraints is that the

resulting set of feasible portfolios should be convex. This is guaranteed if
each of the inequalities or equalities building up the constraints define a
convex set. Then the set of feasible portfolios is the intersection of these
convex sets, which in turn is a convex set.
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If the set of feasible portfolios is not convex, then the optimization
problem may become hard to solve numerically. An example of a type of
constraint that does not lead to a convex set of feasible portfolios is the
following. In the previous example, suppose that if an asset is to be included
in the portfolio, then it should have at least 10% of the capital allocated to
it. This is modeled by the constraints

w1 = 0 or 0.1 ≤ w1 ≤ 0.6,

w2 = 0 or 0.1 ≤ w2 ≤ 0.6,
and

w3 = 0 or 0.1 ≤ w3 ≤ 0.6,

which do not result in a convex set. Problems of this type can be solved by
the more general methods of mixed-integer programming and can be very
computationally intensive.

The set of feasible portfolios has a simpler structure if it contains only
linear inequalities or equalities. In this case, it is said to be polyhedral. Every
polyhedral set is convex since any linear inequality or equality defines a
convex set. A polyhedral set has a simpler structure because its borders are
described by hyperplanes, which is a consequence of the fact that the set is
composed of linear inequalities or equalities.

8.5.2 Quadratic Approximations to Utility Functions

In the chapter, we remarked that M-V analysis is, generally, inconsistent with
SSD. It is consistent with the order implied by investors with quadratic utility
functions. The assumption that investors have quadratic utility functions
is a significant limitation. Nevertheless, under certain conditions, quadratic
utility functions may represent a reasonable approximation of more general
types of utility functions. Therefore, there are cases in which the decisions
made by investors with quadratic utilities are consistent with the decisions
made by larger classes of investors depending on the accuracy of the
approximation.

Consider a utility function u(x) and its Taylor series approximation in
a neighborhood of the point EX where X is a random variable,

u(x) = u(EX) + u′(EX)(x − EX) + 1
2

u′′(EX)(x − EX)2

+ 1
n!

∞∑
k = 3

u(k)(EX)(x − EX)k, (8.25)

where u(k)(x) denotes the k-th derivative of u(x) and x is in a neighborhood
of the point EX. We assume that the infinite series expansion is valid for any
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x ∈ R; that is, the infinite power series converges to the value u(x) for any
real x. This condition is already a limitation on the possible utility functions
that we consider. Not only do we require that the utility function is infinitely
many times differentiable but we also assume that the corresponding Taylor
expansion is convergent for any real x. Functions satisfying these conditions
are called analytic functions.

We can calculate the expected utility taking advantage of the expansion
in (8.25) which we integrate term by term,

Eu(X) = u(EX) + 1
2

u′′(EX)E(X − EX)2

+ 1
n!

∞∑
k = 3

u(k)(EX)E(X − EX)k. (8.26)

The second term vanishes because E(X − EX) = 0. As a result, we obtain
that the expected utility can be expressed in terms of the derivatives of the
utility function evaluated at EX and all moments mk = E(X − EX)k, k =
1, 2, . . . Note that even for analytic utilities u(x), expression (8.26) may not
hold. If the random variable X has infinite moments, then (8.26) does not
hold. Therefore, a critical assumption is that the random variable X has
finite moments of any order.

If u(x) is analytic and the random variable X is such that mk < ∞,
k = 1, 2, . . . , then we may choose the first three terms as a reasonable
approximation,

Eu(X) ≈ u(EX) + 1
2

u′′(EX)E(X − EX)2

= u(EX) + 1
2

u′′(EX)σ 2
X, (8.27)

for the expected utility function. We recognize the moment σ 2
X = E(X −

EX)2 as the variance of X. In effect, the expected utility is approximated by
the mean and the variance of X. If we consider risk-averse investors, then
the utility function u(x) is concave and, therefore, it has a negative second
derivative. As a result, the expected utility maximization problem can be
linked to M-V analysis.

Samuelson (1970) shows that under certain conditions, the approxima-
tion in (8.27) is indeed reasonable. If the choice under uncertainty concerns
a very short interval of time and the random variable describes the payoff
of a venture at the end of the time period, then under a few regularity con-
ditions the approximation in (8.27) holds. Ohlson (1975) considers weaker
conditions under which (8.27) is reasonable.
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8.5.3 Solving Mean-Variance Problems in Practice

The main optimization problems behind M-V analysis are (8.4), (8.5), and
(8.8). We remark on the type of each of these problems.

In problem (8.4), the portfolio variance is minimized with a constraint
on the expected return. The objective function of this problem is quadratic
and if the set of feasible portfolios is polyhedral, then the optimization
problem is said to be a quadratic programming problem. There are efficient
numerical methods for solving quadratic problems, which are available in
software packages such as MATLAB.

Problem (8.5) has a more simple objective as we maximize the expected
portfolio return, which is a linear function of portfolio weights. In the set
of feasible portfolios, we include an upper bound on the portfolio variance
which results in a quadratic constraint. There are efficient methods for
solving such types of problems as well. If all the other constraints are
linear, the optimization problems can be formulated as second order cone
programming problems.10

Finally, problem (8.8) is very similar in structure to (8.4). The objective
function is also quadratic, the difference from (8.4) is that it has a linear part
represented by the expected portfolio return. In effect, (8.8) is a quadratic
programming problem.

As far as the computational complexity is concerned, the quadratic
and, more generally, the conic programming problems are between the
linear optimization problems and the convex optimization problems with
nonlinear constraints.

Under certain conditions, it is possible to obtain a closed-form solution
to mean-variance optimization problems. In fact, these conditions lead to a
simpler problem in which there are no inequality constraints. For example,
the optimization problem

min
w

w ′�w

subject to w ′e = 1
w ′µ = R∗, (8.28)

which is a simplified analogue of (8.4), allows for a closed-form solution.
We have replaced the inequality constraint in (8.4) on the expected portfolio
return by an equality constraint and we have removed the requirement that
the weights should be nonnegative. As a result, problem (8.28) allows for
taking a short position in an asset, which is indicated by a negative weight
in the optimal solution.

10Quadratic programming problems can also be formulated as second order conic
problems. Therefore, the conic programing problems are a more general class.
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The closed-form solution is obtained by applying the method of
Lagrange multipliers, which is as follows. First, we build the corresponding
Lagrangian represented by the function

L(w, λ) = w ′�w + λ1(1 − w ′e) + λ2(R∗ − w ′µ)

in which λ1 and λ2 are the Lagrange multipliers. Second, we solve for w the
system of equations resulting from the first-order optimality conditions of
the Lagrangian,

∣∣∣∣∣∣∣∣∣

∂L(w, λ)
∂w

= 0

∂L(w, λ)
∂λ

= 0.

Since the Lagrangian is a quadratic function of w, the resulting system of
equations is composed of linear equations that can be solved for w. As a
result, we obtain that the optimal solution can be computed according to
the formula in matrix form

w = (C�−1µ − B�−1e)m + A�−1e − B�−1µ

AC − B2
,

where �−1 stands for the inverse of the covariance matrix �, A =
µ′�−1µ, B = e ′�−1µ, and C = e ′�−1e.

If there are inequality constraints, this approach is not applicable. In this
case, the optimization problem is more general and the Karush-Kuhn-Tucker
conditions, which generalize the method of Lagrange multipliers, can be
applied but they rarely lead to nice closed-form expressions, as the resulting
system of equations is much more involved.

8.5.4 Solving Mean-Risk Problems in Practice

The optimization problems arising from M-R analysis have a different
structure than the quadratic problems of M-V analysis, which depends on
the assumed properties of the risk measure. In Chapter 6, we considered
two classes of risk measures introduced axiomatically. Generally, the most
important property that determines to a large extent the structure of the
optimization problem is the convexity property. It also has a significant
practical implication as it guarantees the diversification effect; that is, the
risk of a portfolio of assets is smaller than the corresponding weighted
average of the individual risks.
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Under the general assumption of convexity, problems (8.12), (8.13), and
(8.18) are convex programming problems. In (8.12) and (8.18), the objective
functions are convex functions and, in (8.13), there is a convex function in the
constraint set. Therefore, the three problems can be solved in practice using
the general methods of convex programming. There are commercial solvers
in which such algorithms are implemented. Also, in software packages such
as MATLAB, there are libraries solving numerically convex problems.

Under certain conditions, simplification of the optimization problem
structure is possible for some risk measures. If we choose AVaR as a risk
measure, then the three problems can be reduced to linear optimization
problems provided that future scenarios are available. In the chapter, we
demonstrated that (8.16) and (8.17) correspond to (8.12) and (8.13) and
both (8.16) and (8.17) have linear objective functions and the set of feasible
portfolios is defined through linear inequalities and equalities. As a result,
both problems are linear programming problems, which are significantly
simpler than a convex optimization problem.

However, reducing the convex problem to a linear problem comes at
the cost of increasing the problem dimension. For instance, problem (8.12)
has n variables and n + 2 linear constraints, where n denotes the number
of assets in the portfolio. In contrast, the corresponding linear problem
(8.16) has n + k + 1 variables and 2k + n + 2 linear constraints, in which
k denotes the number of scenarios. The dimension and the computational
difficulty of the linear problem then increases with the number of scenarios
because we introduce one auxiliary variable and two constraints for each
scenario. Furthermore, adding more scenarios makes the matrix defining
the linear constraints in the linear programming problem become more
nonsparse. A matrix is called sparse if most of the numbers in it are zeros
and the numerical methods for linear programming are more efficient if the
matrix is more sparse. In summary, we are simplifying the problem structure
but we are increasing the problem dimension. As a result, when increasing
the number of scenarios there will be a point at which the two effects will
balance off and there will not be an advantage in solving the linear problem.
In this case, one may consider directly

min
w

ÂVaRε(Hw)

subject to w ′e = 1
w ′µ ≥ R∗
w ≥ 0. (8.29)

in which ÂVaRε(Hw) is the sample AVaR defined in equation (7.6) in
Chapter 7 and H is the matrix with scenarios defined in (8.14). Problem
(8.29) can be solved as a convex programming problem.
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In fact, there is another way of viewing problems (8.29) and (8.12)
with ρ(rp) = AVaRε(rp). Suppose that we know exactly the multivariate
distribution of the assets returns but we cannot obtain explicitly the AVaR
risk measure as a function of portfolio weights. However, we have a ran-
dom number generator constructed that we can use to draw independent
scenarios from the multivariate law. In this situation, we cannot solve
(8.12) because we cannot evaluate the objective function for a given vector
of portfolio weights. Nevertheless, we can draw a matrix of independent
simulations from the multivariate law and compute approximately the
AVaR for any vector of portfolio weights through the formula of the
sample AVaR. Thus, we can solve problem (8.29), or (8.16), which can
be viewed as an approximation to (8.12) obtained through the Monte
Carlo method. The larger the number of scenarios, the more accurate
the approximation. Also, the larger the portfolio, the more simulations
we need to achieve a given level of accuracy since the generated vec-
tors are supposed to approximate a distribution in a higher dimensional
space. Therefore, the linear problem (8.16) may not be advantageous if
higher accuracy is needed or, alternatively, if the portfolio is sufficiently
large and there is a target accuracy. If this is the case, one can use
(8.29) in which directly the sample AVaR is getting minimized without
increasing the problem dimension by including additional variables and
constraints.

8.5.5 Reward-Risk Analysis

In M-R analysis developed in the chapter, we consider two criteria as a
major determinant of efficient portfolios. They are the expected portfolio
return, being a measure of the expected performance, and a risk measure
estimating portfolio risk. Instead of the expected portfolio return, we can
include a more general functional estimating expected performance. We
denote this functional by ν(X). Thus we can generalize M-R analysis by
considering ν(X) and the risk measure ρ(X) as criteria for obtaining efficient
portfolios. M-R analysis appears as a special case when ν(X) = EX. The
functional ν(X) we call a reward measure and the resulting more general
analysis is called reward-risk analysis (RR analysis).

In this section, we impose several properties on the functional ν(X)
and explore the resulting optimization problems. Consider the following
properties:

1. Monotonicity. Suppose that X ≤ Y in almost sure sense. It is reasonable
to expect that the expected reward of Y will be larger than that of X,
ν(X) ≤ ν(Y).
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2. Superadditivity. We assume that for any X and Y, the following inequal-
ity holds:

ν(X + Y) ≥ ν(X) + ν(Y).

That is, the reward of a portfolio is not smaller than the sum of
the portfolio constituents rewards. There is an additional stimulus in
holding a portfolio.

3. Positive homogeneity. The rationale of this assumption is the same as
in the case of risk measures.

ν(hX) = hν(X), h ≥ 0.

4. Invariance property. Adding a nonrandom term to the portfolio in-
creases the reward by the nonrandom quantity,

ν(X + C) = ν(X) + C,

and ν(0) = 0.

These axioms suggest that the negative of a coherent risk measure is in
fact a reward measure; that is, if ν(X) = −ρ(X) where ρ(X) is a coherent risk
measure, then the above properties hold. For this reason, if ν(X) satisfies the
properties above, we call it a coherent reward measure. The superadditivity
and the positive homogeneity properties guarantee that any coherent reward
measure is a concave function,

ν(aX + (1 − a)Y) ≥ aν(X) + (1 − a)ν(Y),

where a ∈ [0, 1]. This property, along with the convexity of the risk measure,
guarantees nice properties of the resulting optimization problems.

The main principles of RR analysis can be formulated in the same way
as for M-R analysis:

1. From all feasible portfolios with a given lower bound on the reward
measure, find the portfolios that have minimum risk.

2. From all feasible portfolios with a given upper bound on risk, find the
portfolios that provide maximum reward.

The corresponding optimal portfolio problems are the following:

min
w

ρ(rp)

subject to w ′e = 1
ν(rp) ≥ R∗
w ≥ 0, (8.30)
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where R∗ is the lower bound on the portfolio reward. Similarly, the the
optimization problem behind the second formulation is

max
w

ν(rp)

subject to w ′e = 1
ρ(rp) ≤ R∗

w ≥ 0, (8.31)

where R∗ is the upper bound on portfolio risk. Problem (8.30) is a convex
optimization problem and (8.31) is reducible to a convex problem by
flipping the sign of the objective function and considering minimization.
Convex optimization problems are appealing because a local minimum is
necessarily the global one. The necessary and sufficient conditions are given
by the Karush-Kuhn-Tucker theorem.

In a manner similar to M-R analysis, the optimal solutions obtained
from the two problems by varying the limits on the portfolio reward or risk
respectively are called reward-risk efficient portfolios. The coordinates of the
reward-risk efficient portfolios in the reward-risk plane form the reward-risk
efficient frontier. Stoyanov et al. (2007) prove that the reward-risk efficient
frontier is a concave, monotonically increasing function if the reward
measure is a concave function, and the risk measure is a convex function.
Therefore, the general shape of the reward-risk efficient frontier is the same
as the one plotted in Figure 8.3, for example. As a consequence of the
Karush-Kuhn-Tucker conditions, the efficient frontier can also be generated
by the problem

max
w

ν(rp) − λρ(rp)

subject to w ′e = 1
w ≥ 0, (8.32)

where λ ≥ 0 is the risk-aversion parameter, or the Lagrange multiplier.
We demonstrate that the reward-risk efficient portfolios can be derived

from a reward-dispersion optimal portfolio problem. Consider the opti-
mization problem (8.32). The objective function is transformed in the
following way:

ν(rp) − λρ(rp) = ν(rp) − λρ(rp − ν(rp) + ν(rp))

= (λ + 1)ν(rp) − λρ(rp − ν(rp))

= (λ + 1)
(

ν(rp) − λ

(λ + 1)
ρ(rp − ν(rp))

)
.
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The positive multiplier λ + 1 does not change the optimal solutions and
we can safely ignore it. As a result, we obtain the equivalent optimization
problem

max
w

ν(rp) − λ

(λ + 1)
ρ(rp − ν(rp))

subject to w ′e = 1
w ≥ 0, (8.33)

where λ ≥ 0 and, as a result, the multiplier λ/(λ + 1) ∈ [0, 1). It turns out
that the functional G(X) = ρ(X − ν(X)) is a dispersion measure under the
additional condition ρ(X) ≥ −ν(X), as it satisfies the general properties
outlined in section 6.2.4 of Chapter 6, which we illustrate as follows:

Positive shift. G(X + C) = ρ(X + C − ν(X + C)) = G(X) for all X and
constants C ∈ R.

Positive homogeneity. G(0) = ρ(0 − ν(0)) = 0 and G(hX) = ρ(hX −
ν(hX)) = hG(X) for all X and all h > 0.

Positivity. Under the additional condition ρ(x) ≥ − ν(x), it follows
directly that G(x) is positive, G(x) ≥ 0 for all X, with G(x) > 0 for
nonconstant X, from the representation

G(X) = ρ(X − ν(X)) = ρ(X) + ν(X).

As a result, we can consider the more general reward-dispersion optimal
portfolio problem

max
w

ν(rp) − aG(rp)

subject to w ′e = 1
w ≥ 0, (8.34)

where a ≥ 0 and G(X) = ρ(X − ν(X)). The reward-risk efficient portfolios
are obtained from (8.34) with a ∈ [0, 1]. The optimal portfolios obtained
with a > 1 are in addition to the mean-risk efficient portfolios and are
sub-optimal according to RR analysis.

Note that problem (8.34) may not be a convex optimization problem
for all values of a because the functional G is, generally, arbitrary as it
equals a sum of a convex and a concave functional. However, if a ∈ [0, 1]
then (8.34) is a convex optimization problem because it is equivalent
to (8.33).

The purpose of the general framework developed in this section is
to demonstrate that the set of efficient portfolios can be obtained from
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a reward-deviation optimization problem. We showed in Chapter 6 that
dispersion measures can be derived from probability metrics. The set of
efficient portfolios can then be related to the theory of probability metrics
through the reward-dispersion optimization problem.

In the chapter, we showed a special case of this relationship in which
the reward measure equals the expected portfolio return and the ρ(X) is
a coherent risk measure satisfying ρ(X) ≥ −EX. Under these conditions,
the functional G(X) turns into a deviation measure, which is an example
of a dispersion measure, and the corresponding problem (8.34) has better
optimal properties.
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CHAPTER 9
Benchmark Tracking Problems

9.1 INTRODUCTION

An important problem for fund managers is comparing the performance of
their portfolios to a benchmark. The benchmark could be a market index or
any other portfolio or liability measure in the case of defined benefit pension
plans. In general, there are two types of strategies that managers follow:
active or passive. An active portfolio strategy uses available information and
forecasting techniques to seek a better performance than a portfolio that is
simply diversified broadly. Essential to all active strategies are expectations
about the factors that could influence the performance of an asset class. The
goal of an active strategy is to outperform the benchmark after management
fees by a given number of basis points. A passive portfolio strategy involves
minimal expectational input and instead relies on diversification to match
the performance of some benchmark. In effect, a passive strategy, commonly
referred to as indexing, assumes that the marketplace will reflect all available
information in the price paid for securities. There are various strategies for
constructing a portfolio to replicate the index but the key in these strategies
is designing a portfolio whose tracking error relative to the benchmark
is as small as possible. Tracking error is the standard deviation of the
difference between the return on the replicating portfolio and the return on
the benchmark.

In effect, the benchmark tracking problem can be formulated as an
optimization problem. Roll (1992) provides a mean-variance analysis of the
tracking error; Treynor and Black (1973) also consider a quadratic objec-
tive in analyzing tracking error. Besides variance, other researchers, such
as Rudolf et al. (1999), consider the first absolute moment and first abso-
lute partial moments as relevant characteristics for the deviation between
portfolio returns and benchmark returns, leading to linear optimization
problems.

287
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Solving in practice the optimization poses another range of statistical
estimation related problems that should be taken into account. For instance,
as noted by Pope and Yadav (1994), the presence of serial correlation
in tracking error results in a biased estimate of the standard deviation
which may lead to wrong rebalancing decisions. This effect is particularly
important when working with high-frequency data.

In this chapter, we consider the benchmark tracking problem from a
very general viewpoint, replacing the traditional tracking error measures by
a general functional satisfying a number of axioms. We call this functional
a metric of relative deviation because it calculates the relative performance
of the portfolio to the benchmark. Our approach is based on the universal
methods of the theory of probability metrics. As a result, the optimization
problems that arise are a significant generalization of the currently existing
approaches to benchmark tracking.

The chapter is organized as follows. We start with a description of the
tracking error problem and the axioms defining the metric of relative devia-
tion. Then we provide examples of the new metrics and a numerical example.

9.2 THE TRACKING ERROR PROBLEM

In Chapter 8, we considered the mean-variance analysis, the mean-risk
analysis, and the arising optimization problems. These optimal portfolio
problems have one feature in common, in that the risk measure, or the
dispersion measure, concerns the distribution of portfolio returns without
any reference to another portfolio. In contrast, benchmark-tracking prob-
lems include a benchmark portfolio against which the performance of the
managed portfolio will be compared. As a result, the arising optimization
problems include the distribution of the active portfolio return, defined as
the difference rp − rb in which rp denotes the return of the portfolio and
rb denotes the return of the benchmark. If the active return is positive, this
means that the portfolio outperformed the benchmark and, if the active
return is negative, then the portfolio underperformed the benchmark.

In the ex post analysis, we observe a specified historical period in time
and try to evaluate how successful the portfolio manager was relative to
the benchmark. In this case, there are two time series corresponding to the
observed portfolio returns and the observed benchmark returns. A measure
of the performance of the portfolio relative to the benchmark is the average
active return, also known as the portfolio alpha and denoted by αp. Alpha
is calculated as the difference between the average of the observed portfolio
returns and the average of the observed benchmark returns,

α̂p = rp − rb,
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where:

α̂p denotes the estimated alpha.

rp = 1
k

∑k
i = 1 rpi denotes the average of the observed portfolio returns

rp1, rp2, . . . , rpk.

rb = 1
k

∑k
i = 1 rbi denotes the average of the observed benchmark returns

rb1, rb2, . . . , rbk.

A widely used measure of how close the portfolio returns are to the
benchmark returns is the standard deviation of the active return, also known
as tracking error. More specifically, when it is calculated using historical
observations, it is referred to as the ex post or backward-looking tracking
error. If the portfolio returns are equal to the benchmark returns in the
specified historical period, rpi = rbi for all i, then the observed active return
is equal to zero and, therefore, the tracking error will be equal to zero.
Intuitively, the closer the tracking error to zero, the closer the risk profile of
the portfolio matches the risk profile of the benchmark.

In the ex ante analysis, portfolio alpha equals the mathematical expec-
tation of the active return,

αp = E(rp − rb)

= w ′µ − Erb, (9.1)

where rp = w′X in which w denotes the vector of portfolio weights, X
is a random vector describing the future assets returns, and µ = EX is a
vector of the expected assets returns. The tracking error equals the standard
deviation of the active return,

TE(w) = σ (rp − rb),

where σ (Y) denotes the standard deviation of the random variable Y.
Tracking error in this case is referred to as ex ante or forward-looking
tracking error.

If the strategy followed is active, then the goal of the portfolio man-
ager is to gain a higher alpha at the cost of deviating from the risk
profile of the benchmark portfolio; that is, the manager will accept higher
forward-looking tracking error. Thus active strategies are characterized by
high alphas and high forward-looking tracking errors.

In contrast, if the strategy is passive, then the general goal is to construct
a portfolio so as to have a forward-looking tracking error as small as possible
in order to match the risk profile of the benchmark. As a consequence, the
alpha gained is slightly different from zero. In effect, passive strategies are
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characterized by very small alphas and very small forward-looking tracking
errors.

In this framework, strategies that are in the middle between the active
and the passive ones are called enhanced indexing.1 In following such a
strategy, the portfolio manager constructs a portfolio with a risk profile close
to the risk profile of the benchmark but not identical to it. Enhanced indexing
strategies are characterized by small- to medium-sized forward-looking
tracking errors and small to medium-sized alphas.

The optimal portfolio problem originating from this framework is
the minimal tracking error problem.2 Its structure is very similar to the
mean-variance optimization problems. The difference is that the active
portfolio return rp − rb is used instead of the absolute portfolio return rp.
The minimal tracking error problem has the following form:

min
w

σ (rp − rb)

subject to w ′e = 1
w ′µ − Erb ≥ R∗
w ≥ 0, (9.2)

where R∗ denotes the lower bound of the expected alpha. The goal is to find
a portfolio that is closest to the benchmark in a certain sense, while setting a
threshold on the expected alpha. In this case, the ‘‘closeness’’ is determined
by the standard deviation.

By varying the limit R∗, we obtain the entire spectrum from passive
strategies (obtained with R∗ close to zero), through enhanced indexing
(obtained with R∗ taking medium-sized values), to active strategies (obtained
with R∗ taking from medium-sized to large values). The set of the optimal
portfolios generated by problem (9.2) is the set of efficient portfolios that,
if plotted in the plane of expected alpha versus tracking-error, form the
corresponding efficient frontier.

The efficient frontier is illustrated in Figure 9.1. If the investment
universe is the same as or larger than the universe of the benchmark
portfolio, then the global minimum tracking error is equal to zero. In this
case, the optimal portfolio coincides with the benchmark portfolio. The
the global minimum tracking error portfolio represents a typical passive
strategy. Increasing the lower bound on the expected alpha we enter the

1In terms of tracking error, Loftus (2000, p. 84), classifies the three strategies for
equity portfolio strategies as follows: indexing, 0 to 20 basis points, 50 to 200 basis
points, and active management, 400 basis points and greater.
2Throughout the rest of this chapter, we drop the term ‘‘forward-looking’’ to describe
the type of tracking error because we are dealing with the portfolio selection process.



Benchmark Tracking Problems 291

E
xp

ec
te

d 
A

lp
ha

Tracking Error
0

Enhanced indexing Active strategies

FIGURE 9.1 The efficient frontier generated
from the minimal tracking error problem. The
passive strategies are positioned to the left of
enhanced indexing strategies.

domain of enhanced indexing. Increasing further R∗ leads to portfolios that
can be characterized as active strategies.

In Chapter 6, we remarked that a serious disadvantage of the standard
deviation is that it penalizes in the same way the positive and the negative
deviations from the mean of the random variable. Therefore, the tracking
error treats in the same fashion the underperformance and the outperfor-
mance, while our attitude toward them is asymmetric.3 We are inclined to
pay more attention to the underperformance. This argument leads to the
conclusion that, from an asset management perspective, a more realistic
measure of closeness should be asymmetric.

Our aim is to restate the minimal tracking error problem in the more
general form

min
w

µ(rp, rb)

subject to w ′e = 1
w ′µ − Erb ≥ R∗
w ≥ 0, (9.3)

where µ(X, Y) is a measure of the deviation of X relative to Y. Due
to this interpretation, we regard µ as a functional that metrizes4 relative

3See, among others, Szegö (2004) and the references therein.
4We use metrize in a broad sense and not in the sense of metrizing a given topological
structure.
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deviation and we call it a relative deviation metric or simply, r.d.
metric.

Intuitively, if the portfolio rp is an exact copy of the benchmark, that is,
it contains exactly the same stocks in the same amounts, then the relative
deviation of rp to rb should be close to zero.5 The converse should also
hold but, generally, could be in a somewhat weaker sense. If the deviation
of rp relative to rb is zero, then the portfolio and the benchmark are
indistinguishable but only in the sense implied by µ. They may, or may not,
coincide with probability 1.

The benchmark-tracking problem given by (9.3) belongs to a class
of problems in which distance between random quantities is measured. In
order to gain more insight into the properties that µ should satisfy, we relate
the benchmark-tracking problem to the theory of probability metrics. This
is a field in probability theory that studies functionals measuring distances
between random quantities. In Chapters 3 and 4, we described the notion
of a probability metric and offered many examples of probability metrics
and distances.

9.3 RELATION TO PROBABILITY METRICS

As explained in Chapter 3, the theory of probability metrics gives a reason-
able axiomatic definition of a probability metric and is constructive in the
sense that it explains how to build metrics endued with certain properties.

Generally speaking, as explained in Chapter 3, a functional which
measures the distance between random quantities is called a probability
metric. These random quantities can be of a very general nature. For
instance, they can be random variables (such as the daily returns of equities,
the daily change of an exchange rate, etc.) or stochastic processes (such as
a price evolution in a given period), or much more complex objects (such
as the daily movement of the shape of the yield curve). Needless to say, an
arbitrary functional cannot be used to measure distances. The probability
metric is defined through a set of axioms; that is, any functional that
satisfies these axioms is called a probability metric. The axiomatic structure
of probability metrics was introduced in Section 3.3 of Chapter 3. Further
remarks are provided in the appendix to Chapter 3.

The ideas in the theory of probability metrics show a great deal of
potential for application in the field of finance and the benchmark-tracking
problem in particular. As a matter of fact, from the standpoint of the theory
of probability metrics, the benchmark-tracking problem given by (9.3) can

5It would not be equal to zero due to transaction costs.
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be viewed as an approximation problem. In it, we are trying to find a
random variable rb in the set of feasible portfolios that is closest to the
random variable rb and the distance is measured by the functional µ. This
functional should satisfy the properties stated in Section 3.3 of Chapter 3, or
some versions of them, in order for the problem to give meaningful results.
Actually, the fact that we are applying these ideas to a specific problem may
make it necessary to modify the set of fundamental axioms by changing
some of them or adding new ones because the nature of the problem may
require it. To this end, let us reexamine the set of properties, Property 1
through Property 3, stated in section 3.3 of Chapter 3 to verify if some of
them can be relaxed.

Property 1 and Property 3, we leave intact. The reason is that anything
other than Property 1 is just nonsensical and Property 1 together with
Property 3 guarantee nice mathematical properties such as continuity of
µ. Property 3 alone makes sense because of the interpretation that we are
measuring distance. In contrast to Property 1 and Property 3, Property 2
can be dropped. The rationale is that, as we noted, in problem (9.3) the
assumption of asymmetry is a reasonable property because of our natural
tendency to be more sensitive to underperformance than to outperformance
relative to the benchmark portfolio.

Now we turn to more subtle questions that give rise to additional
properties. Let us consider two equity portfolios with returns X and
Y. Suppose that we convert proportionally into cash 100a% in total
of both portfolios where 0 ≤ a ≤ 1 stands for the weight of the
cash amount. As a result, the two portfolios returns scale down to
(1 − a)X and (1 − a)Y, respectively. Since both random quantities get
scaled down by the same factor, we may assume that the distance between
them scales down proportionally. Actually, our assumption will be more
general. We assume that the distance scales down by the same factor raised
by some fixed power s,

ν(aX, aY) = asν(X, Y) for any X, Y and a ≥ 0.

If s = 1, then the scaling is proportional. The reason we presume a more
general property is that different classes of r.d. metrics originate and, depend-
ing on s, they may have different robustness in the approximation problem.
This property we call positive homogeneity of degree s. It is similar to the
homogeneity property of ideal probability metrics described in Chapter 4.

As a next step, consider an equity with return Z which is independent
of the two portfolios returns X and Y. Suppose that we invest the cash
amounts into equity Z. The returns of the two portfolios change to (1 −
a)X + aZ and (1 − a)Y + aZ, respectively, where 0 ≤ a ≤ 1 denotes the
weight of equity Z in the portfolio. In this way, we introduce a completely
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independent common factor into the two portfolios. A relevant question is,
how does the distance change? Certainly, there is no reason to expect that
the distance should increase. It either remains unchanged or decreases. In
terms of the functional, we assume the property

ν(X + Z, Y + Z) ≤ ν(X, Y)

for all Z independent of X, Y. Any functional ν satisfying this property, we
call weakly regular, a label we borrow from the probability metrics theory.
In fact, this is the weak regularity property of ideal probability metrics
described in Chapter 4.6 If the distance between the two new portfolios
remains unchanged for any Z irrespective of the independence hypothesis,
then we say that ν is translation invariant.

Note that if the positive homogeneity property and the weak regularity
property hold, then the inequality

ν((1 − a)X + aZ, (1 − a)Y + aZ) ≤ ν(X, Y), a ∈ (0, 1) (9.4)

holds as well, and this is exactly the mathematical expression behind the
conclusion in the example. While the weak regularity property may seem
more confined than postulating directly (9.4), we assume it as an axiom
because (9.4) is tied to the interpretation of the random variables as return
on investment. Suppose that this is not the case and X, Y denote the random
wealth of the two portfolios under consideration and Z denotes random
stock price. Furthermore, assume that the present value of both portfolios
are equal and that we change both portfolios by buying one share of stock
Z. Then the random wealth of both portfolios becomes X + Z and Y + Z,
respectively, and, because of the common stochastic factor Z, we expect the
relative deviation to decrease; that is ν(X + Z, Y + Z) ≤ ν(X, Y). In effect, it
appears that the weak regularity property is the fundamental property that
we would like to impose.

In order to state the last axiom, suppose that we add to the two initial
portfolios other equities, such that returns of the portfolios become X + c1

and Y + c2, where c1 and c2 are some constants. We assume that the distance
between the portfolios remains unchanged because it is only the location of
X and Y that changes. That is,

ν(X + c1, Y + c2) = ν(X, Y)

for all X, Y and constants c1, c2. We call this property location invariance.

6Rachev (1991) and Rachev and Rüschendorf (1998) provide more information on
the weak regularity property and the application of ideal probability metrics.
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As a corollary, this property allows measuring the distance only between
the centered portfolios returns. We demonstrate how such a functional ν

can be constructed, for example, from a given probability metric. Suppose
that µ(X, Y) is a given probability metric and denote by g the mapping

g : X → X − EX.

The mapping takes as an argument a random variable with a finite mean
and returns as output the random variable with its mean subtracted, g(X) =
X − EX. The mapping g has the property that shifting the random variable
X does not change the output of the mapping,

g(X + a) = X − EX = g(X).

Let us define the functional ν as7

ν(X, Y) = µ(g(X), g(Y)). (9.5)

Thus ν calculates the distance between the centered random variables X −
EX and Y − EY by means of the probability metric µ. As a consequence,
the functional ν defined in (9.5) is location invariant,

ν(X + c1, Y + c2) = µ(g(X + c1), g(Y + c2))

= µ(g(X), g(Y))

= ν(X, Y).

The definition in equation (9.5) can be written in a more compact form
without introducing an additional notation for the mapping,

ν(X, Y) = µ(X − EX, Y − EY).

It may be argued that in practice the expected return of the portfolio is a
very important characteristic and it seems that we are eliminating it from the
problem. This is certainly not the case because this characteristic, as some
others, can be incorporated into the constraint set of the benchmark-tracking
problem (9.3). For example, the expected alpha constraint imposes a lower
bound on the expected alpha, or the expected outperformance relative to

7Precisely, the functional ν defined in this way is a probability metric only on the
subspace of zero-mean random variables where it coincides by construction with
the probability metric µ. Generally, ν cannot be a probability metric because the
location invariance property would imply that ν equals either 0 or infinity.
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the benchmark. In this chapter, we are not going to examine the possible
constraint sets as it is the objective function of the optimization problem
which is our main focus.

We are finally in position to define the r.d. metrics:

Any functional µ which is weakly regular, location invariant, positively
homogeneous of degree s, and satisfies Property 1 and Property 3.

The construction of the r.d. metrics implies that the structural classifi-
cation of probability metrics described in Chapter 3 holds for r.d. metrics as
well. We distinguish between compound, simple, and primary r.d. metrics
depending on the degree of sameness implied by the r.d. metric.

Now let us revisit the classical tracking error and try to classify it. First,
it is a special case of the average compound metric given by (3.20) with
p = 2 and therefore it satisfies Property 1 through Property 3. Of course,
this also means it is a compound metric, hence it implies the strongest form
of sameness—in almost sure sense. Second, concerning the group of the
additional axioms, it is positively homogeneous of degree 1, translation
invariant, and satisfies the location invariance property.

In the rest of the chapter, our goal is to give other examples of r.d.
metrics, which are substantially different from classical tracking error, and
to see their properties in a practical setting.

9.4 EXAMPLES OF r.d. METRICS

In Chapter 6, we discussed a family of dispersion measures called deviation
measures. In a way similar to the standard deviation or the first centered
absolute moment, D(X) is defined to measure the uncertainty of a random
variable.

A deviation measure D(X) can generate a functional that is a reasonable
candidate for a measure of distance in the optimization problem (9.3). For
example, in the technical appendix to Chapter 6, we demonstrated that

µD(X, Y) = D(X − Y) (9.6)

is a translation invariant probability semimetric, homogeneous of degree
1 on condition that D is a symmetric deviation measure. Furthermore, a
converse relation holds as well. That is,

Dµ(X) = µ(X − EX, 0) (9.7)

is a symmetric deviation measure, where µ is a translation invariant proba-
bility metric, homogeneous of degree 1. In the appendix to this chapter, we
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demonstrate that if D is general deviation measure, then µD is a r.d. metric.
In a similar way, if µ is a r.d. metric, then Dµ is a general deviation measure.
As a corollary, all deviation measures turn out to be spawned from the class
of translation invariant r.d. metrics with degree of homogeneity s = 1.

This relationship already almost completely classifies the functional µD

arising from the deviation measure D. In order to finish, note that µD is a
compound metric and therefore it implies the strongest, almost sure sense of
similarity. Intuitively, this can be seen by considering an example in which
X and Y are independent and identically distributed. Then the difference
X − Y is a random variable with nonzero uncertainty, hence D(X − Y) > 0.

The functional µD significantly generalizes the tracking error but still
it belongs to the same categories as the tracking error itself and does
not illustrate fully the diversity of the class of r.d. metrics in general. We
proceed by providing two r.d. metrics belonging to a completely different
category—they both are simple and therefore the sense of similarity they
imply is only up to equality of distribution functions.

These functionals are defined through the equations

θ∗
p(X, Y) =

[∫ ∞

−∞
(max(FX(t) − FY(t), 0))pdt

]1/p

, p ≥ 1 (9.8)

and

�∗
p(X, Y) =

[∫ 1

0
(max(F−1

Y (t) − F−1
X (t), 0))pdt

]1/p

, p ≥ 1 (9.9)

where X and Y are zero-mean random variables, FX(t) = P(X < t) is the
distribution function of X and F−1

X (t) = inf{x : FX(x) ≥ t} is the generalized
inverse of the distribution function.8

The intuition behind (9.9) and (9.8) is the following. Suppose that X
and Y represent the centered random return of two portfolios and that
their distribution functions are as shown in Figure 9.2. Both functionals
measure the relative deviation of X and Y using only the part of the
distribution functions, or the inverse distribution functions, that describes
losses. For example, a closer look at the left plot in the figure reveals that
the difference FX(t) − FY(t) is nonnegative only for negative values of t and,
therefore, θ

∗
p(X, Y) essentially uses the information about losses contained

in the distribution function. The same holds for the other functional. In
the case where p = 1, then θ

∗
p(X, Y) calculates the area between the two

distribution functions to the left of the origin, which is exactly the same area

8For a proof that (9.9) and (9.8) are r.d. metrics, see Stoyanov, Rachev, Ortobelli,
and Fabozzi (2007).
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FIGURE 9.2 The distribution functions (left) and the inverse distribution functions
(right) of X and Y.

between the inverse distribution functions to the left of t = 1/2. It is easy to
notice that θ ∗

1(X, Y) = �∗
1(X, Y) but this is, generally, not true if p �= 1.

We are not going to illustrate that all defining properties hold for (9.8)
and (9.9). A remark on only Property 1 follows as there is a subtle nuance
that has to be explained. Clearly, if the two distribution functions coincide,
then both (9.9) and (9.8) become equal to zero. We demonstrate that the
converse statement holds as well. Suppose that the two r.d. metrics are
equal to zero. Then, the distribution functions of the random variables may
diverge but only in a very special way,

θ ∗
p(X, Y) = 0 	⇒ FX(t) ≤ FY(t), ∀t ∈ R.

Figure 9.3 illustrates the inequality. However, this inequality is impossi-
ble to hold for r.d. metrics because of the location invariance property; that
is, we consider only zero-mean random variables and the inequality between
the distribution functions above implies that EX ≤ EY, hence one of the
random variables may have a nonzero mean. As a result, if θ ∗

p (X, Y) = 0,
then it follows that the c.d.f.s coincide for all values of the argument,
FY(t) = FX(t), ∀t ∈ R and, therefore, the two random variables have identical
probabilistic properties. Exactly the same argument applies to �∗

p(X, Y).
In summary, we showed that Property 1 holds in a stronger sense for

(9.9) and (9.8). Not only does the distance between X and X equal zero,
µ(X, X) = 0, but if µ(X, Y) = 0, then for these two cases, because of the
location invariance property, it follows that X is equivalent to Y to the extent
that their distribution functions coincide. However, there are examples of
r.d. metrics for which the location invariance property is insufficient to
guarantee this stronger identity property.
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FIGURE 9.3 The distribution functions (left) and the inverse distribution functions
(right) of X and Y.

Now we turn to a more practical question. Is is possible to calculate
explicitly the r.d. metrics (9.9) and (9.8)? Generally, the answer is negative
but in some special cases, this can be done. Suppose that p = 1 and
that both random variables have the normal distribution, X ∈ N(0, σ 2

X)
and Y ∈ N(0, σ 2

Y ). Due to the equality θ ∗
1(X, Y) = �∗

1(X, Y), it makes no
difference which r.d. metric we choose for this calculation. Then, under
these assumptions,

�1(X, Y) =
∫ 1

0
(max(F−1

Y (t) − F−1
X (t), 0))dt

= 1√
2π

|σX − σY| . (9.10)

Note that (9.10) in this special case is actually a primary metric because
it measures the distance between the standard deviations of the portfolio
return and the benchmark return. It is because we have restricted our
reasoning to the normal distribution only that the simple metric �1 takes
this special form. Otherwise, it is a simple r.d. metric.

Looking more carefully at (9.10), we notice that the symmetry property
holds due to the absolute value; that is, in this special case, �1(X, Y) =
�1(Y, X). This may appear striking because equation (9.9) is asymmetric
by construction, or so it may seem. The symmetry property appears, again,
because of the normality assumption—the left and the right tails of the dis-
tributions disagree symmetrically in this case. In other words, the particular
form of (9.9) allows for asymmetry if the corresponding distributions are
skewed. If X and Y are symmetric, then this is a fundamental limitation and
the potential for asymmetry, granted by the r.d. metric, cannot be exploited.
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We can use equation (9.10) to illustrate a point about the relationship
between the compound r.d. metrics and the minimal r.d. metrics corre-
sponding to them. One one hand, using very general arguments, basically,
only the triangle inequality, we can show that equation (9.10) is related to
the tracking error through the inequality

|σX − σY| ≤ σ (X − Y). (9.11)

This relationship is true not only when X and Y are normal but
in general. Equation (9.11) shows that if the tracking error is zero,
then |σX − σY| = 0 which, in the normal distribution case, means that
�1(X, Y) = 0. Conversely, in the normal distribution case one can find
two random variables X and Y with σ X = σ Y and, yet, the tracking error
can be nonzero, σ (X − Y) �= 0, because of the dependence between the two
random variables. For example, if they are independent, then X − Y is a
random variable with the normal distribution and its standard deviation
is strictly positive. In effect, �1(X, Y) = 0 = |σX − σY| means that X and
Y have the same probabilistic properties and, nevertheless, the tracking
error may be strictly positive. Similar conclusion holds in general, when we
consider compound versus simple metrics but an inequality such as (9.11)
is guaranteed to hold between compound metrics and the minimal metrics
corresponding to them. It is in the normal distribution case that the left
side of (9.11) coincides with the minimal metric of the tracking error. More
details on minimal metrics are provided in the technical appendix to this
chapter.

9.5 NUMERICAL EXAMPLE

We showed that both functionals (9.9) and (9.8) are meaningful objectives
in the benchmark-tracking problem. They are very different from the
classical tracking error as they are simple metrics and imply a weaker
form of sameness. Even if they are both simple, the optimal solutions
corresponding to (9.9) and (9.8) will, generally, not be the same if p �= 1.
This is understandable as the functionals are not identical. There is one
important difference between them concerning Property 4 that we would
like to emphasize. The functional θ ∗

p(X, Y) is positively homogeneous of
degree 1/p while �∗

p(X, Y) is positively homogeneous of degree 1 irrespective
of the value of p.

In this section, we provide a numerical example. Our goals are:

1. Observe the difference between the optimal solutions of the classical
tracking error on the one hand and (9.9) and (9.8) on the other. In this
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example, the optimal solution is represented by a portfolio, the empirical
c.d.f. of which is closest to the empirical c.d.f. of the benchmark as
measured by the corresponding r.d. metric.

2. Examine the effect of the degree of homogeneity in the case of θ ∗
p(X, Y),

our expectation being that the higher the degree of homogeneity, the
more sensitive θ

∗
p(X, Y) is.

Our dataset includes 10 randomly selected stocks from the S&P 500
universe and the benchmark is the S&P 500 index.9 The data cover the
one-year period from December 31, 2002 to December 31, 2003.

The optimization problem we solve is the benchmark-tracking problem
given by (9.3) in which R∗ = 0 and the objective function µ(rp, rb) is
represented by the corresponding empirical counterpart,

σ̂ (rp − rb) (9.12)

θ̂
∗
p(rp0, rb0) (9.13)

and
�̂∗

p(rp0, rb0) (9.14)

where the index 0 signifies that the corresponding returns are centered. In
the case of tracking error, the sample counterpart σ̂ is the sample standard
deviation. The formula and a short example are provided in section 10.3.2
of Chapter 10. Technical details concerning the calculation of (9.13) and
(9.14) are given in the appendix to this chapter.

In the three problems, we start from an equally weighted portfolio and
then solve the optimization problems. Therefore, in all cases, our initial
portfolio is an equally weighted portfolio of the 10 randomly selected
stocks. The constraint set guarantees that the expected return of the optimal
portfolio will not be worse than that of the benchmark. For this reason,
we compare the inverse distribution functions of the centered returns of
the optimal portfolios in order to assess which problem better tracks the
benchmark in terms of the distribution function. Note that it makes no
difference whether we compare the distribution functions or the inverse
distribution functions., the conclusion will not change.

Figure 9.4 compares the inverse distribution functions of the centered
returns of the initial portfolio, the optimal portfolio of the classical tracking

9The stocks are Sun Microsystems Inc., Oracle Corp., Microsoft Corp., Sand
Technology Inc., Allegheny Energy Inc., T Rowe Price Group Inc., Allied Capital
Corp., EMC Corp./Massachusetts, AMB Property Corp., and Linear Technology
Corp.
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FIGURE 9.4 The inverse distribution functions
of the S&P 500 index (the benchmark), equally
weighted portfolio (initial portfolio), and the
two optimal portfolios.
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error problem and the optimal portfolio obtained with objective (9.14)
in which p = 1. It is obvious that both optimization problems provide
solutions that better track the benchmark than the trivial strategy of holding
an equally weighted portfolio. Not surprisingly, the functional (9.14) does
a better job at approximating the distribution function of the benchmark
returns, allowing for asymmetries in the loss versus the profit part. Note
that the part of the inverse distribution function of the optimal solution
describing losses, the one closer to t = 0 is closer to the corresponding part
of the inverse distribution function of the benchmark returns, while this
is not true for the profit part closer to t = 1. Actually, the fact that the
inverse distribution function of the optimal solution is above the inverse
distribution function of the benchmark returns close to t = 1 means that
the probability of a large positive return of the optimal portfolio is larger
than that of the benchmark.

In order to explore the question of how the degree of homogeneity
might influence the solution, we solve the tracking problem with objective
(9.13) in which we choose p = 1 and p = 10. The degree of homogeneity
is equal to 1 and 1/10, respectively. We noted already that θ∗

1(rp0, rb0) =
�∗

1(rp0, rb0) and, therefore, the optimal solutions will coincide. The inverse
distribution functions of the returns of the optimal portfolios are shown on
Figure 9.5. Apparently, the degree of sensitivity of the objective is directly
influenced by the parameter p in line with our expectations. The integrand
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FIGURE 9.5 The inverse distribution functions of the SP
500 index (the benchmark), and the optimal portfolios
obtained with (9.13) as objective with p = 10.
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in the functional (9.13) measures the differences of the two distribution
functions and therefore its functional values are small numbers, converging
to zero in the tails. Holding other things equal, raising the integrand to a
higher power deteriorates the sensitivity of the functional with respect to
deviations in the tails of the two distribution functions. This observation
becomes obvious when we compare the bottom plot of Figure 9.4 to
Figure 9.5.

Generally, the optimization problems involving simple r.d. metrics may
not belong to the family of convex problems because the simple r.d. metric
may not appear to be a convex function of portfolio weights. Stoyanov,
Rachev, and Fabozzi (2007) show that, in particular, this holds for the
minimal r.d. metrics. In the appendix to this chapter, we demonstrate that
both (9.8) and (9.9) arise as minimal r.d. metrics and, as a consequence,
the corresponding optimal portfolio problems are not convex programming
problems. Nevertheless, for the purposes of illustration, we obtained the
optimal solutions by finding a local minimum starting from the initial
portfolio.

9.6 SUMMARY

In this chapter, we considered the problem of benchmark tracking. The
classical problem relies on the tracking error to measure the degree of
similarity between the portfolio and the benchmark. Making use of the
approach of the theory of probability metrics, we extended significantly the
framework by introducing axiomatically relative deviation metrics replacing
the tracking error in the objective function of the optimization problem.
We provided two examples of relative deviation metrics and a numerical
illustration of the corresponding optimization problems.

9.7 TECHNICAL APPENDIX

In this appendix, we explore the connections between r.d. metrics and
probability metrics and how the theory of probability metrics can be
employed to better understand the full variety of questions arising from
practical problems such as the benchmark tracking problem. We start with
a short note concerning the link between deviation measures and r.d. metrics
and proceed with several remarks on the defining axioms. We demonstrate
how the notion of the minimal metric applies to r.d. metrics, and, finally,
we consider the practical problem of calculating simple r.d. metrics given a
sample of observations.
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9.7.1 Deviation Measures and r.d. Metrics

In the technical appendix to Chapter 6, we demonstrated that if µ is a
translation invariant and positively homogeneous of degree 1 probability
metric, then the functional Dµ defined in equation (9.7) is a symmetric
deviation measure. In a similar way, if D is a symmetric deviation measure,
then the functional µD defined in equation (9.6) is a translation invariant and
positively homogeneous of degree 1 probability semimetric. Following the
arguments, we notice that the symmetry properties of µ and D influence only
the symmetry properties of Dµ and µD, respectively. Therefore, relaxing the
assumption that µ is symmetric (Property 2) results in Dµ being asymmetric
as well. As a result, we obtain that if µ is a translation invariant and positively
homogeneous of degree 1 r.d. metric, then Dµ is a general deviation measure.
In a similar way, if D is a general deviation measure, then µD is a translation
invariant and positively homogeneous of degree 1 r.d. metric.10

9.7.2 Remarks on the Axioms

The appendix to Chapter 3 provides detailed remarks on the axiomatic
framework behind probability. Recall that a probability semimetric that
does not satisfy the symmetry axiom SYM given in section 3.5.1 is called
probability quasisemimetric.

We are in position to illustrate how we can modify a probability metric
so that it becomes better suited for the benchmark-tracking problem. Let
us choose two classical examples of compound probability metrics—the
average compound metric

Lp(X, Y) = (E|X − Y|p)1/p, p ≥ 1

and the Birnbaum-Orlicz compound metric,

�p(X, Y) =
[∫ ∞

−∞
(τ (t; X, Y))pdt

]1/p

, p ≥ 1,

where τ (t; X, Y) = P(X ≤ t < Y) + P(Y ≤ t < X). Both Lp(X, Y) and
�p(X, Y) are ideal because they satisfy the positive homogeinity property
and the weak regularity property. Chapter 3 provides more background on
these two metrics.

Consider, first, the average compound metric. It satisfies all properties
of relative deviation metrics described in the chapter but it is symmetric, a

10A formal argument is given in Stoyanov, Rachev, and Fabozzi (2007).
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property we would like to break. One possible way is to replace the absolute
value by the max function. Thus we obtain the asymmetric version

L∗
p(X, Y) = (E(max(Y − X, 0))p)1/p, p ≥ 1. (9.15)

In Stoyanov, Rachev, Ortobelli, and Fabozzi (2007), we show that L∗
p(X, Y)

is an ideal quasisemimetric; that is, using the max function instead of the
absolute value breaks only the symmetry axiom SYM.

What is the intuition behind removing the absolute value and consid-
ering the max function? In the setting of the benchmark-tracking problem,
suppose that the random variable X stands for the return of the port-
folio and Y denotes the return of the benchmark. Then the difference
Y − X can be interpreted as the portfolio loss relative to the bench-
mark, or the portfolio underperformance. If in a given state of the world,
ω ∈ 	, the difference is positive, Y(ω)−X(ω) > 0, then in this state of
the world the portfolio is underperforming the benchmark. In effect, the
expectation

L∗
1(X, Y) = E max(Y − X, 0)

measures the average portfolio underperformance. When we minimize L∗
1

in the optimization problem, we are actually minimizing the average port-
folio underperformance. The same is idea behind the general case L∗

p(X, Y).
There is additional flexibility in that the power p ≥ 1 allows increasing the
importance of the larger losses by increasing p.

If we consider directly the classical probability metric L1(X, Y), then
the interpretation in the setting of the benchmark-tracking problem is the
following. The absolute difference |X − Y| is either underperformance or
outperformance of the benchmark depending on whether the difference
Y(ω)−X(ω) is positive or negative in a given state of the world ω ∈ 	. Actu-
ally, the absolute difference can be decomposed into an underperformance
and an outperformance term

|X(ω) − Y(ω)| = max(X(ω) − Y(ω), 0) + max(Y(ω) − X(ω), 0).

If the first summand is positive, then we have outperformance and if the
second summand is positive we have underperformance in the correspond-
ing state of the world ω ∈ 	. Therefore, if we minimize L1(X, Y) in
the benchmark tracking problem, then we minimize simultaneously both
the portfolio outperformance and underperformance. A similar conclusion
holds for the general case Lp(X, Y).
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The same idea, but implemented in a different way, stays behind the
asymmetric version of the Birnbaum-Orlicz metric,

�∗
p(X, Y) =

[∫ ∞

−∞
(τ ∗(t; X, Y))pdt

]1/p

, p ≥ 1, (9.16)

where τ*(t; X, Y) = P(X ≤ t < Y). In Stoyanov, Rachev, Ortobelli, and
Fabozzi (2007), we show that (9.16) is an ideal quasisemimetric. That is,
considering only the first summand of the function τ (t; X, Y) from the
Birnbaum-Orlics compound metric breaks the SYM axiom only.

Let us start by interpreting the integrand—the τ*(t; X, Y) function.
Just as in the case of the asymmetric version of the average compound
metric, suppose that the random variable X represents the return of the
portfolio and Y represents the benchmark return. Then, for a fixed value of
the argument t, which we interpret as a threshold, the function τ* calculates
the probability of the event that the portfolio return is below the threshold
t and, simultaneously, the benchmark return is above the threshold t,

τ ∗(t; X, Y) = P(X ≤ t < Y) = P({X ≤ t} ∩ {t < Y}).

Hence, the function τ* calculates the probability that the portfolio return is
below the benchmark return with respect to the threshold t. As a result, we
can interpret �∗

p(X, Y) as a measure of the probability that portfolio loses
more than the benchmark. Therefore, in the benchmark-tracking problem,
by minimizing �∗

p(X, Y), we are indirectly minimizing the probability of the
portfolio losing more than the benchmark.

Interestingly, the special case p = 1,

�∗
1(X, Y) =

∫ ∞

−∞
τ ∗(t; X, Y)dt

allows for a very concrete interpretation. �∗
1(X, Y) is exactly equal to the

average underperformance; that is, �∗
1(X, Y) = L∗

1(X, Y). This statement
holds because �∗

1(X, Y) is just an alternative way of writing down the
integral behind the expectation in L∗

1(X, Y).

9.7.3 Minimal r.d. Metrics

Any probability metric is defined on a pair of random variables (X, Y).
We noted in section 3.5.1 of Chapter 3 that, depending on the implied
equivalence in property ID, we distinguish between three classes of
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metrics—primary, simple, and compound. The primary metrics imply the
weakest form of sameness, only up to equality of certain characteristics. The
simple metrics have stronger implications. It is only if the distribution func-
tions of the random variables agree completely that the measured distance
between them becomes zero. The compound metrics imply the strongest
possible identity—in almost sure sense.

We noted that there are links between the corresponding classes. By
including more and more characteristics, we obtain primary metrics that
essentially require that the distribution functions of the random variables
should coincide; that is, they turn into simple metrics. Also, by minimizing
any compound metric on all possible dependencies between the two random
variables we obtain a metric that actually depends only on the distribution
functions and is, therefore, simple. This is the construction of the minimal
metric, which is defined by

µ̂(X, Y) = inf{µ(X̃, Ỹ) : X̃ d= X, Ỹ d= Y}.

For more information on minimal metrics, refer to section 3.3.5 and the
appendix to Chapter 3.

In this section, we verify if minimal r.d. metrics can be constructed in
the same manner as minimal probability metrics. It turns out that this is
possible and the approach can be used to construct nontrivial examples of
simple r.d. metrics such as (9.8) and (9.9).

It is possible to show that, if µ is a functional satisfying properties ID
or ĨD, TI, or T̃I, then µ̂ also satisfies ID or ĨD, TI, or T̃I.11 That is, omitting
the symmetry property results only in asymmetry in the minimal functional
µ̂ and influences nothing else. These are, basically, the results in the proof
that µ̂ is a probability (semi)distance. In addition to that, it is easy to check
that if positive homogeneity holds for µ, then the same property holds for
µ̂ as well. The same holds for the weak regularity.

The construction of the minimal r.d. metric, just as the minimal prob-
ability metric, is an important tool because some of the properties above
are easy to check for a compound metric and difficult to check for a simple
metric. For example, this is the case with the weak regularity property.
Therefore, starting with a compound r.d. metric, we are sure that the
minimal functional corresponding to it is a simple r.d. metric.

Sometimes, it is possible to calculate explicitly the minimal functional.
As explained in the appendix to Chapter 3, this can be done either through
the Cambanis-Simons-Stout theorem or through the Frechet-Hoffding

11Refer to the appendix to Chapter 3 for the definition of these properties.
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inequality. Section 3.5.3 provides details on the Cambanis-Simons-Stout
result and its application.

Now we will show how the Cambanis-Simons-Stout result is applied to
the functional

L∗
p(X, Y) = (E(max(Y − X, 0))p)1/p, p ≥ 1.

It is easy to check that ĨD, TI, R̃E, and Property 4 hold for L∗
p(X, Y).

The previous section provides more details. We identify the function φ,
φ(x, y) = (max(x − y, 0))p. Clearly φ(x, x) = 0 and φ is quasi-antitone
because f (x) = (max(x, 0))p, p ≥ 1 is a nonnegaive, convex function.
In effect, the Cambanis-Simons-Stout theorem applies and, therefore, the
minimal functional is given by

�∗
p(X, Y) = L̂∗

p(X, Y) =
[∫ 1

0
(max(F−1

Y (t) − F−1
X (t), 0))pdt

]1/p

,

which is equation (9.9) in the chapter.
Besides the Cambanis-Simons-Stout theorem, there is another method

of obtaining explicit forms of minimal functionals via the celebrated
Frechet-Hoeffding inequality between distribution functions defined in
(3.51) of Chapter 3. See section 3.3 of Chapter 3 for an example. We
show how this inequality is applied to the problem of finding the minimal
r.d. metric of the Birnbaum-Orlicz quasisemimetric defined in (9.16) by
taking advantage of the upper bound.

Consider the following representation of the τ* function defined in
(9.16),

τ ∗(t; X, Y) = P(X ≤ t, Y < t)

= P(X ≤ t) − P(X ≤ t, Y ≤ t).

This representation is correct because by summing P(X ≤ t, Y > t)
and P(X ≤ t, Y ≤ t), the influence of the random variable Y is cancelled
out. Now by replacing the joint probability by the upper bound from the
Frechet-Hoeffding inequality, we obtain

τ ∗(t; X, Y) ≥ FX(t) − min(FX(t), FY(t))

= max(FX(t) − FY(t), 0).

Raising both sides of the above inequality to the power p ≥ 1 and
integrating over all values of t does not change the inequality. In effect, we
obtain [∫ ∞

−∞
(max(FX(t) − FY(t), 0))pdt

]1/p

≤ �∗
p(X, Y),



310 ADVANCED STOCHASTIC MODELS

which gives, essentially, the corresponding minimal r.d. metric. The left
side of the inequality coincides with (9.8) from the chapter, θ

∗
p(X, Y) =

�̂
∗
p(X, Y).

9.7.4 Limit Cases of L∗
p (X , Y ) and Θ∗

p (X , Y )

There are several interesting limit cases of the two r.d. metrics, which help
better understand their behavior. We do not consider all limit cases, but only
the most intuitive ones. In line with the setting of the benchmark-tracking
problem, in the interpretations in this section we assume that X represents
portfolio return and Y represents the benchmark return.

Generally, there are two ways to obtain limit representatives—if we
let p approach infinity, or zero. However, we defined both r.d. metrics for
p ≥ 1, and we will slightly change the definitions so that we can see what is
going on as p → 0. The slightly extended definitions are,

L∗
p(X, Y) = (E(max(Y − X, 0))p)1/ min(1, 1/p), p ≥ 0 (9.17)

and

�∗
p(X, Y) =

[∫ ∞

−∞
(τ ∗(t; X, Y))pdt

]1/ min(1, 1/p)

, p ≥ 0. (9.18)

Note that the change affects the case p ∈ [0, 1) and if p ≥ 1, then we
obtain the previous definitions.

As p → ∞, the r.d. metric L∗
p(X, Y) approaches L∗

∞(X, Y) defined as

L∗
∞(X, Y) = inf{ε > 0 : P(max(Y − X, 0) > ε) = 0}.

This limit case can be interpreted in the following way. L∗
∞(X, Y)

calculates the smallest threshold so that the portfolio loss relative to the
benchmark is larger than this threshold with zero probability. Note that this
quasisemimetric is entirely focused on the very extreme loss.

In the other direction, if p → 0, the r.d. metric L∗
p(X, Y) approaches

L∗
0(X, Y) where

L∗
0(X, Y) = EI{ω : max(Y(ω) − X(ω), 0) �= 0}

= P(Y > X).

The notation I{ω ∈ A} stands for the indicator function of the event A,
that is, if ω happens to be in A, then I{ω ∈ A} = 1 and otherwise it is equal
to zero. This result is self-explanatory, L∗

0(X, Y) calculates the probability
of the event the portfolio to lose relative to the benchmark.
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Concerning the Birnbaum-Orlicz quasisemimetric given by (9.18), there
is an interesting limit case as p → ∞,

�∗
∞(X, Y) = sup

t ∈ R
P(X ≤ t < Y).

Let us briefly look at the properties of the function τ*(t; X, Y) = P(X ≤
t < Y) in order to see what this limit case calculates. As t decreases to −∞,
the sets {ω: X(ω) ≤ t} become progressively smaller and at the limit they
approach the empty set, limt→∞{ω: X(ω) ≤ t} = ∅. The same conclusion is
valid for the sets {ω: Y(ω) > t} as t increases to infinity. Since the function
τ*(t; X, Y) is, essentially, the probability of the intersection of these two
events, it follows that τ*(t; X, Y) decays to zero as t decreases or increases
unboundedly,

lim
t →−∞

τ ∗(t; X, Y) = 0

and
lim

t →∞
τ ∗(t; X, Y) = 0.

As a result, it follows that the maximum of the function τ*(t; X, Y)
will not be attained for very small or very large values of the threshold t.
Therefore, �∗

∞(X, Y) is not sensitive to the extreme events in the tail because
the threshold t, for which P(X ≤ t < Y) is maximal, is near the center of the
distributions.

Exactly the same effect is present in the minimal quasisemimetric
generated by it, θ ∗

p(X, Y). As p increases to infinity, we obtain

θ
∗
∞(X, Y) = sup

t ∈ R
[max(FX(t) − FY(t), 0)],

which is an asymmetric version of the celebrated Kolmogorov metric.
Section 3.3 and the appendix to Chapter 3 provide more details on the
Kolmogorov metric and its applications. Basically, θ∗

∞(X, Y) calculates the
maximal difference between the distribution functions, FX(t)−FY(t). There-
fore, θ ∗

∞(X, Y) is not sensitive to the deviations between the two distribution
functions in the tails, which describe the probability of extreme events,
because as t approaches either of the infinities, the difference FX(t)−FY(t)
decays to zero.

9.7.5 Computing r.d. Metrics in Practice

In this section, we state a number of closed-form expressions for some of the
r.d. metrics considered in the previous sections and we give examples in the
setting of the benchmark-tracking problem. Generally, it is not possible to
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arrive at a closed-form expression but under additional assumptions for the
joint distribution of the pair of random variables, explicit representations
can be provided.

Explicit Form of L∗
p (X , Y ) When (X, Y) has Joint Normal Distribution Suppose

that (X, Y) has a centered, bivariate normal distribution. We know that, in
this case, the difference Y − X has a zero-mean, normal distribution with
standard deviation σ (Y − X), Y − X ∈ N(0, σ 2(Y − X)). The difference
has the same distribution as σ (Y − X)Z, where Z ∈ N(0, 1). We use this
representation only to calculate the expectation. In effect, we obtain

L∗
p(X, Y) = Cp.σ (Y − X), p ≥ 1, (9.19)

where Cp = (E(max(Z, 0))p)1/p is a positive constant that can be explicitly
computed.

Note that the parameter p influences the constant Cp only and, therefore,
L∗

p(X, Y) is just a scaled standard deviation of the difference Y − X. It
turns out that this is not true only under the hypothesis of joint normal
distribution. If (X, Y) has a joint elliptical distribution with finite variance,
then L∗

p(X, Y) has, essentially, the form given by (9.19). Certainly, in the
elliptical case, one has to ensure additionally that X and Y have finite p-th
absolute moment, that is, E|X|p < ∞ and E|Y|p < ∞. Otherwise, L∗

p(X, Y)
may become infinite.

Apparently, the closed-form expression (9.19) can be regarded as typical
of the large class of bivariate elliptical distributions in which the joint
normal distribution is just a special case. It may seem strange that even
though by definition the r.d. metric L∗

p(X, Y) is asymmetric, equation (9.19)
is symmetric. The reason is the elliptical assumption because it implies
symmetric distributions of X, Y, and the difference Y − X and, therefore,
L∗

p(X, Y) cannot be asymmetric because of this restrictive assumption.
Let us apply equation (9.19) to the benchmark-tracking problem. To

this end, we interpret the random variable X as the portfolio return rp and
the random variable Y as the benchmark return rb. Concerning the random
vector of assets returns, we assume that it follows the multivariate normal,
or multivariate elliptical, in order to make sure that the distribution of
the portfolio return rp is normal, or elliptical, for any choice of portfolio
weights. As a result, the r.d. metric has the form

L∗
p(rp0, rb0) = Cp.σ (rp − rb), p ≥ 1,

which means that L∗
p(rp0, rb0) is just a scaled tracking error. Therefore,

the tracking error is the building block of the L∗
p(rp0, rb0) r.d. metric in
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the multivariate normal, or, more generally, in the multivariate elliptical
case. This will not happen under the assumption of a multivariate skewed
distribution.

Explicit Form of �∗
p (X , Y ) When X and Y Have Normal Distribution The minimal

r.d. metric �∗
p(X, Y) is simple and, therefore, we do not need a distributional

assumption for the pair (X, Y), but only for the marginal laws of X and
Y. Suppose that both X and Y have the centered normal distribution,
X ∈ N(0, σ 2

X) and Y ∈ N(0, σ 2
Y ). Both distributions can be represented as a

scaled N(0, 1) distributions and, as a result, we obtain

�∗
p(X, Y) = Cp.|σX − σY|, p ≥ 1, (9.20)

where Cp = (E(max(Z, 0))p)1/p and Z ∈ N(0, 1).
In the setting of the benchmark-tracking problem, assume additionally

that r follows the multiavriate normal distribution with covariance matrix
, r0 ∈ N(0, ). We obtain the explicit formula

�∗
p(rb

0, w ′r0) = Cp.|
√

w ′w − σ (rb)|, p ≥ 1.

where w denotes the vector of portfolio weights. In the chapter, we provided
the case p = 1 in which C1 = 1/

√
2π . Olkin and Rachev (1999) provide a

number of related results.

Explicit Forms of Θ∗
p (X , Y ) and θ∗

p (X , Y ) It is much harder to calculate closed-
form expressions for �∗

p(X, Y) and θ
∗
p(X, Y) even under additional assump-

tions for the joint distribution of (X, Y). Nevertheless, for some choices of
p, it is possible to link the two r.d. metrics to other classes for which the
calculation is not so complicated. For instance, �∗

1(X, Y) = L∗
1(X, Y) and

θ
∗
1(X, Y) = �∗

1(X, Y) and we can use the already derived explicit forms.

Estimating r.d. Metrics from a Sample How can we calculate the simple r.d.
metrics (9.8) and (9.9) for a given portfolio with weights w = (w1, . . . , wn)
if we have a sample of daily observations for the equity returns and the
benchmark returns? Notice that they both involve either the distribution
functions of the portfolios returns or the inverse of the distribution functions
and these functions we do not know in practice. Therefore, they have to be
estimated either directly from the data making no distributional hypotheses
or assuming a parametric model and estimating its parameters from the
sample.

For example, we may assume that the equity returns and the benchmark
returns are jointly distributed according to the multivariate normal distribu-
tion. From this hypothesis alone, it follows that the equity returns also have
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the multivariate normal distribution and, consequently, the return rp of any
portfolio with weights w also has the normal distribution, rp ∈ N(0, w′w),
where  is the covariance matrix of the equity returns. As a result, in order
to calculate (9.8) and (9.9), we have to estimate the unknown parameters
in the first place; that is, the covariance matrix  and the variance of the
benchmark returns, σ 2(rb). Once we know the estimates ̂ and σ̂ 2(rb), we
can calculate (9.8) by plugging in the distribution functions of the centered
normal distribution with variance equal to the corresponding estimates.
Afterwards, in the general case, the integrals can be calculated numerically
using an available software package such as MATLAB.

The r.d. metric (9.9) can be calculated, in this case, by taking advantage
of the closed-form expression (9.20),

�̂∗
p(rp0, rb0) = Cp

∣∣∣(w ′̂w)1/2 − σ (r̂b)
∣∣∣ .

Note that when p = 1, we have the following special case,

θ̂
∗
1(rp0, rb0) = �̂∗

1(rp0, rb0) = 1√
2π

∣∣∣(w ′̂w)1/2 − σ (r̂b)
∣∣∣ .

Suppose that we do not want to make any distributional hypotheses.
Then, the r.d. metrics can be computed through the empirical distribution
functions and the empirical inverse distribution functions. Thus, in the case
of (9.13), we use

θ̂
∗
p(rp0, rb0) =

[∫ ∞

−∞
(max(̂Frb0

(t) − F̂rp0 (t), 0))pdt
]1/p

, p ≥ 1,

where F̂X(t) = 1
n

∑n
i = 1 I{Xi≤t}, denotes the empirical distribution function and

n is the sample size. The integral can be calculated numerically using an
available software package.

The empirical r.d. metric (9.14) can be easily simplified because the
stocks in our sample and the index have the same number of observations.
In order to give the formula, we introduce additional notation. Let us fix
the portfolio weights w, then denote by r(1)

p0 ≤ r(2)
p0 ≤ . . . ≤ r(n)

p0 the sorted
sample of the corresponding observed centered portfolio returns. Similarly,
let r(1)

b0 ≤ r(2)
b0 ≤ . . . ≤ r(n)

b0 be the sorted sample of the observed centered
benchmark returns. Then

�̂∗
p(rp0, rb0) =

[
1
n

n∑
i = 1

(max(r(i)
b0 − r(i)

p0, 0))p

]1/p

, p ≥ 1.



Benchmark Tracking Problems 315

From the point of view of computational burden, minimizing �̂∗
p(rp0, rb0)

is a lot easier than θ̂
∗
p (rp0, rb0) because the numerical integration adds more

complexity to the problem.
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CHAPTER 10
Performance Measures

10.1 INTRODUCTION

A key step in the investment management process is measurement and
evaluation of portfolio performance. In this step, it is determined whether
the portfolio manager has met the goals set by the clients. The criteria
for performance evaluation may vary depending on the goals of the client.
Usually, the performance of the portfolio is measured with respect to the
performance of some benchmark portfolio, which can be a broad-based
market index, a specialized index, or a customized index. In recent years,
some defined benefit plans have developed liability-driven indexes.

The formula that quantifies the portfolio performance is called a perfor-
mance measure. A widely used measure for performance evaluation is the
Sharpe ratio introduced by Sharpe (1966). The Sharpe ratio calculates the
adjusted return of the portfolio relative to a target return. In essence, it is the
ratio between the average active portfolio return and the standard deviation
of the portfolio return. In this way, it is a reward-to-variability ratio in
which the variability is computed by means of the standard deviation.

We noted in Chapter 6 that the standard deviation penalizes both the
upside and the downside potential of portfolio return. Therefore, it is not a
very appropriate choice as a measure of performance. This deficiency is well
recognized and as a result many alternatives to the Sharpe ratio have been
proposed in the literature. Some of them are reward-to-variability ratios
in which a downside dispersion measure is used in the denominator. One
example is the Sortino ratio, in which the downside semi-standard deviation
is used as a measure of variability.

Other types of performance measures are the reward-to-risk ratios. In
contrast to the reward-to-variability ratios, these ratios calculate the risk-
adjusted active reward of the portfolio. For example, the Sortino-Satchell
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ratio (Sortino and Satchell, 2001) calculates the average active return
divided by a lower partial moment of the portfolio return distribution and
the STARR (Rachev et al., 2006) calculates the average active return divided
by average value-at-risk (AVaR) at a given tail probability.

There are examples in which a reward measure is used instead of the
average active return. For instance, a one-sided variability ratio introduced
by Farinelli and Tibiletti (2002) is essentially a ratio between an upside
and a downside partial moment of the portfolio return distribution and the
Rachev ratio (R-ratio) (Biglova et al., 2004) is a ratio between the average
of upper quantiles of the portfolio return distribution and AVaR.

Measuring a strategies performance is an ex post analysis. The per-
formance measure is calculated using the realized portfolio returns during
a specified period back in time (e.g., the past one year). Alternatively,
performance measures can be used in an ex ante analysis, in which certain
assumptions for the future behavior of the assets are introduced. In this case,
the general goal is to find a portfolio with the best characteristics as calcu-
lated by the performance measure. The performance measure problems of
the ex ante type can be related to the efficient frontier generated by mean-risk
analysis, and more generally by reward-risk analysis, developed in Chapter 8.

In this chapter, we consider these two types of performance measures
and their relationship to the efficient frontier. We provide examples of
frequently used performance measures and remark on their advantages and
disadvantages. In the appendix to this chapter, the performance measures
described in the chapter are classified according to their structure. The
properties of the corresponding optimal portfolio problems arising from the
ex ante analysis of the generic quasiconcave ratio are explained. Finally,
we consider the capital market line in the case of the general reward-risk
analysis with a risk-free asset added to the investment universe.

10.2 REWARD-TO-RISK RATIOS

One general type of a performance measure is the reward-to-risk (RR) ratio.
It is defined as the ratio between a reward measure of the active portfolio
return and the risk of active portfolio return,

RR(rp) = ν(rp − rb)
ρ(rp − rb)

, (10.1)

where

rp − rb is the active portfolio return.

rp = w ′X denotes the return of the portfolio with weights w and assets
returns described by the random vector X.
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rb denotes the return of the benchmark portfolio.

ν(rp) is a reward measure of rp.

ρ(rp) calculates the risk of rp.

Risk measures were described in detail in Chapter 6 and reward measures
were described in section 8.5.5 of Chapter 8. The benchmark return rb can
either be a fixed target, for instance 8% annual return, or the return of
another portfolio or reference interest rate meaning that rb can also be a
random variable.

In this section, we consider a simpler version of the reward-to-risk ratio
in which the reward functional is the expected active portfolio return,

RR(rp) = E(rp − rb)
ρ(rp − rb)

, (10.2)

and the general ratio defined in equation (10.1) is left for the appendix to
this chapter.

In the ex post analysis, equation (10.2) is calculated using the available
historical returns in a certain period back in time. In this case, the numerator
is the average of the realized active return and the denominator is the risk
estimated from the sample. The past performance of different portfolios can
be compared by the resulting ratios. The portfolio with the highest RR ratio
is said to have the best performance in terms of this measure.

In the ex ante analysis, the joint distribution of the portfolio return
and the benchmark return is hypothesized. The parameters of the assumed
distribution are estimated from the historical data and the RR ratio is
calculated from the fitted distribution. In this setting, the portfolio manager
is interested in finding a feasible portfolio with highest RR ratio as this
portfolio is expected to have the highest return for a unit of risk in its future
performance. Formally, this optimization problem is the following:

max
w

E(rp − rb)
ρ(rp − rb)

subject to w ′e = 1
w ≥ 0, (10.3)

where we use the notation introduced in Chapter 8. On condition that
the risk measure is a convex function of portfolio weights,1 the objective

1If ρ(X) is a coherent risk measure, or a convex risk measure, then it is a convex
function of portfolio weights.
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function has nice mathematical properties that guarantee that the solution
to (10.3) is unique.

In this section, we discuss the relationship of the solution to problem
(10.3) with the efficient frontier generated by mean-risk (M-R) analysis. We
provide examples of RR ratios and discuss their properties.

10.2.1 RR Ratios and the Efficient Portfolios

The principle of M-R analysis is introduced in section 8.3 of Chapter 8.
According to it, from all feasible portfolios with a lower bound on expected
return, we find the portfolio with minimal risk. This portfolio represents the
optimal portfolio given the constraints of the problem. By varying the lower
bound on the expected return, we obtain a set of optimal portfolios that
are called efficient portfolios. Plotting the expected return of the efficient
portfolio versus their risk we derive the efficient frontier.

In the following, we demonstrate that the portfolio with maximal RR
ratio, that is the solution to problem (10.3), is among the efficient portfolios
when the benchmark return is a constant target. If it is the return of another
portfolio, then rb is a random variable and the RR ratio cannot be directly
related to the efficient frontier resulting from M-R analysis. Nonetheless,
it can be related to the efficient frontier of a benchmark-tracking type of
optimal portfolio problem.

For the sake of simplicity, we start the analysis assuming that the
benchmark return is equal to zero. In this case, the maximal ratio portfolio
is the solution to problem

max
w

w ′µ

ρ(rp)
subject to w ′e = 1

w ≥ 0, (10.4)

which is derived from (10.3) by setting rb = 0 and making use of the equality
E(rp) = w ′µ.

Consider the efficient frontier generated by the optimal portfolio prob-
lem (8.12) given in Chapter 8. Suppose that the shape of the efficient
frontier is as the one plotted in Figure 10.1; that is, we assume that the risk
measure is a convex function of portfolio weights.2 Each feasible portfolio
in the mean-risk plane is characterized by the RR ratio calculated from
its coordinates. In fact, the RR ratio equals the slope of the straight line
passing through the origin and the point corresponding to this portfolio in

2Chapter 8 provides more information on how the shape of the efficient frontier
depends on the properties of the reward and the risk measures.
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FIGURE 10.1 The efficient frontier and the
tangent portfolio.

the mean-risk plane. Moreover, all portfolios having equal RR ratios lie on
a straight line passing through the origin. Therefore, the portfolio with the
largest RR ratio lies on the straight line passing through the origin, which is
tangent to the efficient frontier because it is the line with the largest slope on
which there are feasible portfolios. This line is also called the tangent line. In
Figure 10.1, the portfolio denoted by C has the largest RR ratio. Portfolios
A and B have equal RR ratios. Portfolio A is an efficient portfolio since it
lies on the efficient frontier and portfolio B is suboptimal because another
portfolio exists which is less risky while it has an equal expected return.
This is portfolio C, which is also called ρ-tangent portfolio to emphasize
that it is the tangent portfolio to the efficient frontier generated by a risk
measure ρ(X).

This analysis demonstrates that if rb = 0, then the portfolio with
the highest RR ratio is one of the efficient portfolios as it lies on the
efficient frontier and coincides with the tangent portfolio. As a second case,
suppose that the benchmark return is a constant. Then, under the additional
assumption that the risk measure ρ(X) satisfies the invariance property

ρ(X + C) = ρ(X) − C,

where C is a constant, the maximal RR ratio portfolio is a solution to the
optimization problem

max
w

w ′µ − rb

ρ(rp) + rb

subject to w ′e = 1
w ≥ 0. (10.5)



322 ADVANCED STOCHASTIC MODELS

0

E
xp

ec
te

d 
R

et
ur

n

Shifted risk

E(rp)

r(rp) + rb

rb

FIGURE 10.2 The efficient frontier and the tangent
portfolio in the mean-shifted risk plane.

The additional assumption on the risk measure is satisfied by all coherent
risk measures and all convex risk measures which were described in detail
in Chapter 6 and, therefore, it is not restrictive.

Consider the efficient portfolios generated by problem (8.12) given
in Chapter 8 and the corresponding efficient frontier in which the risk
coordinate is replaced by the shifted risk defined by the sum ρ(rp) + rb.
The RR ratio of any feasible portfolio is equal to the slope of a straight
line passing through the point with zero shifted risk and expected return
equal to rb and the point in the mean-shifted risk plane corresponding to
the feasible portfolio. This is illustrated in Figure 10.2. The portfolio with
the maximal RR ratio is the tangent portfolio since it is identified by the
corresponding straight line with the largest slope. In effect, the portfolio
with the highest RR ratio in this case is also an efficient portfolio and it is a
ρ-tangent portfolio in the mean-shifted risk plane.

The analysis corresponding to rb = 0 can be obtained as a special
case from (10.5). If the benchmark return is equal to zero, then (10.5) is
the same as (10.4). Geometrically, starting from rb = 0 and increasing rb

continuously means that we shift the efficient frontier in Figure 10.1 to the
right while moving upwards the crossing point between the tangent line and
the vertical axis. As a result, the tangent portfolio moves away from the
minimum risk portfolio and gets closer to the global maximum expected
return portfolio. At the same time, the slope of the tangent line decreases.
At the limit, when the benchmark return equals the expected return of
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the global maximum expected return portfolio, the tangent line becomes
parallel to the horizontal axis.

Conversely, starting from rb = 0 and decreasing continuously rb, we
shift the efficient frontier in Figure 10.1 to the left while moving downward
the crossing point between the tangent line and the vertical axis. In effect,
the tangent portfolio moves toward the minimum risk portfolio. At the
limit, when the benchmark return equals the negative of the risk of the
global minimum risk portfolio, the tangent line becomes coincident with
the vertical axis. The slope of the tangent line in this case is not defined
as the RR ratio explodes because the denominator turns into zero. This
scenario can be considered as a limit case in which the optimal RR ratio
portfolio approaches the global minimum risk portfolio.

In summary, when the benchmark return varies from the negative of
the risk of the global minimum risk portfolio to the expected return of the
global maximum performance portfolio, the solutions to (10.5) describe the
entire efficient frontier. We have tacitly assumed in this analysis that the risk
of all feasible portfolios is nonnegative and that ρ is a coherent risk measure
that is needed in order for the efficient frontier to have the nice concave
shape as plotted in Figure 10.1.

The general case, in which rb is the return of a benchmark portfolio,
is more complicated, and it is not possible to link the solution of (10.3) to
the efficient frontier obtained without the benchmark portfolio because rb is
a random variable. Nevertheless, it is possible to simplify the optimization
problem at the cost of introducing an additional variable and provided that
the risk measure satisfies the positive homogeneity property described in
section 6.4.4 of Chapter 6 and a few other technical conditions. Stoyanov
et al. (2007) demonstrate that the following problem:

min
v,t

ρ(v ′X − trb)

subject to v ′e = t
E(v ′X − trb) = 1
v ≥ 0, t ≥ 0, (10.6)

where v ′X denotes the returns of a portfolio with scaled weights and t ∈ R

is an additional variable, is equivalent to problem (10.3) in the sense that
if (v, t) is a solution to (10.6), then v/t is a vector of weights solving
(10.3). This equivalence holds only if the optimal ratio problem (10.3) is
well-defined; that is, for all feasible portfolios the risk ρ(rp − rb) is strictly
positive and there are feasible portfolios with positive mean active return.
The equivalent problem (10.6) is discussed in more detail in the appendix
to this chapter.
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10.2.2 Limitations in the Application
of Reward-to-Risk Ratios

The risk of a random variable as calculated by a risk measure may not
always be a positive quantity. In Chapter 6, we considered the coherent
risk measures, which satisfy the invariance property. The rationale behind
the invariance property is the interpretation of the risk measure in terms of
capital requirements. Investments with a zero or negative risk are acceptable
in the sense that no capital reserves are required to insure against losses. In
effect, if a portfolio has risk equal to zero, then its RR ratio is not defined.

This observation has more profound consequences in the ex ante
analysis. Suppose that the set of feasible portfolios contains one portfolio
with risk equal to zero.3 Then problem (10.3) becomes unbounded and
cannot be solved. In practice, it is difficult to assess whether the set of feasible
portfolios contains a portfolio having zero risk. The global minimum risk
portfolio and the global maximum return portfolio can be used to construct
a criterion. If the former has a negative risk and the risk of the latter is
positive, then the feasible set contains a portfolio with zero risk and problem
(10.3) is unbounded.

Having a feasible portfolio with a zero risk or a negative risk is not
uncommon. For example, if we choose AVaR as a risk measure, ρ(X) =
AVaRε(X), then for any portfolio with a positive expected return, there exists
a tail probability ε∗ such that AVaRε∗ (X) = 0. This is a direct consequence
of the definition of AVaR given in equation (7.1) in Chapter 7. AVaR
is a continuous nonincreasing function of the tail probability and is not
below the negative of the mathematical expectation of the portfolio return
distribution. If ε1 ≤ ε2, then

AVaRε1 (rp) ≥ AVaRε2 (rp) ≥ −E(rp).

Therefore, under these assumptions, if for some small tail probabil-
ity AVaR is positive, then there exists a tail probability ε∗ such that
AVaRε∗ (rp) = 0. As a result, the AVaR of any portfolio with positive
expected return may become equal to zero. It depends on the choice of the
tail probability.

A way to avoid the issue of an unbounded ratio is through the linearized
forms of RR ratios. Intuitively, comparing two investments, if they have

3In fact for any convex risk measure, if the feasible set of portfolios is convex
and there exist a feasible portfolio with negative risk and a feasible portfolio with
positive risk, then problem (10.3) is unbounded. This statement holds as, due to the
convexity of the risk measure, there exists necessarily a portfolio with risk equal to
zero.
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equal expected return but different risks, then we prefer the investment
with the larger RR ratio. Moreover, if M-R analysis is consistent with
second-order stochastic dominance (SSD), then the ratio is also consistent
with SSD,4

w ′X �SSD v ′X �⇒ v ′µ − rb

ρ(v ′X) + rb
≤ w ′µ − rb

ρ(w ′X) + rb
,

where rb is a constant benchmark the values of which are in the range
discussed in the previous chapter, v and w denote the compositions of the
two portfolios, and X stands for the vector of random returns of the assets
in the portfolios. The following functional, which is also consistent with
SSD, is called a linearized form of a RR ratio

LRR(w, λ) = w ′µ − λρ(rp), (10.7)

where λ ≥ 0 is a risk-aversion coefficient. The consistency with SSD is a
consequence of the corresponding consistency of M-R analysis,

w ′X �SSD v ′X �⇒ LRR(v, λ) ≤ LRR(w, λ).

In fact, equation (10.7) coincides with the objective function of problem
(8.18) in Chapter 8. We remarked in Chapter 8 that by varying λ and
solving (8.18), we obtain the efficient frontier. Since the solution to the ratio
problem (10.5) is also a portfolio on the efficient frontier, then there exists
a particular value of λ = λrb

such that using LRR(w, λrb
) as the objective

function of (8.18), we obtain the portfolio solving the ratio problem (10.5).5

The linearized form LRR(w, λ) is capable of describing the efficient
frontier without any requirements with respect to ρ(X). The risk measure can
become equal to zero, or turn negative for a subset of the feasible portfolios,
without affecting the properties of LRR(w, λ). Therefore, provided that the
risk-aversion can be appropriately selected, the linearized form LRR(w, λ)
can be used as a performance measure.

10.2.3 The STARR

The performance ratio in which AVaR is selected as a risk measure is
called STARR, which stands for stable tail-adjusted return ratio. Rachev

4Section 8.3.3 of Chapter 8 considers the question of consistency of M-R analysis
with SSD.
5Note that if the benchmark return is a random variable, then the linearized ratio
has the general form LRR(w, λ) = E(rp − rb) − λρ(rp − rb).
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et al. (2006) suggest this name was originally constructed based on the
assumption that assets returns follow the stable distribution.6 In fact, the
concept behind STARR can be translated to any distributional assumption.
Formally, STARR is defined as

STARRε(w) = E(rp − rb)
AVaRε(rp − rb)

. (10.8)

If rb is a constant benchmark return, then STARR equals

STARRε(w) = w ′µ − rb

AVaRε(rp) + rb
. (10.9)

Suppose that our goal is ranking the past performance of several
portfolios by STARR using a constant benchmark return. The available
data consist of the observed returns of the portfolios in the past 12 months.
As a first step, the tail probability of AVaR is chosen. The chosen value
of ε depends on the extent to which we would like to emphasize the tail
risk in the comparison. A small value of ε, for instance ε = 0.01, indicates
that we compare the average realized active portfolio return per unit of the
extreme average realized losses. In contrast, if ε = 0.5, then we compare the
average realized active portfolio return per unit of the total average realized
loss. In this case, we include all realized losses and not just the extreme
ones.

Having selected the tail probability, the empirical AVaR for each
portfolio can be calculated using, for example, formula (7.6) given in
Chapter 7. The numerator of (10.9) contains the average realized active
return of each portfolio, which can be calculated by subtracting the constant
benchmark return from the average portfolio return. Finally, dividing the
observed average outperformance of the benchmark return by the empirical
portfolio AVaR, we obtain the ex post STARR of each portfolio. If all
empirical AVaRs are positive, then the portfolio with the highest STARR
had the best performance in the past 12 months with respect to this
performance measure.

In section 10.2.2, we remarked that if a portfolio has a positive expected
return, then it is always possible to find a tail probability at which the
portfolio AVaR is negative. Alternatively, for a fixed tail probability, the
portfolio AVaR can become negative if the expected return of the portfolio
is sufficiently high. This can be demonstrated in the following way. In
section 6.5 of Chapter 6, we discussed a link between the coherent risk

6Tokat et al. (2003) provide additional information on the differences between the
more general stable distribution framework and the classical Gaussian framework.
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measures and dispersion measures according to which an expectations
bounded coherent risk measure can be decomposed into two parts, one
of which is a measure of dispersion and the other is the mathematical
expectation. In the case of AVaR, this means that the first term in the
decomposition

AVaRε(rp) = AVaRε(rp − Erp) − Erp

is always non-negative. As a result, if the expected portfolio return
is sufficiently high, then portfolio AVaR can turn negative at any tail
probability.

In practice, the empirical AVaR at tail probability ε ≤ 0.5 is very
rarely negative if it is calculated with daily returns. One reason is that the
expected portfolio daily return is very close to zero. However, negative
portfolio AVaRs at tail probability ε ≤ 0.5 can be observed with monthly
returns. In this case, the portfolios performance cannot be directly compared
by ranking with respect to STARRs because a negative AVaR results
in a negative STARR. In effect, the portfolio with a negative STARR
appears at the bottom of the table in which the portfolios are sorted in
a decreasing order by their STARRs. It is among portfolios with very
poor performance even though a negative AVaR signifies an exceptional
performance.

As a consequence, if it turns out that there are portfolios with negative
empirical AVaRs, then all portfolios should be divided into two groups and a
different ordering should be applied to each group. The first group contains
the portfolios with nonpositive AVaRs and the second group contains the
portfolios with strictly positive AVaRs. We can argue that the portfolios in
the first group have a better performance than the portfolios in the second
group on the grounds that a negative risk implies that no reserve capital
should be allocated. Even thought their risk is negative, the portfolios in the
first group can be ranked. The smaller the risk is, the more attractive the
investment. Thus, smaller STARRs indicate better performance. Note that
STARRs of the portfolios in the first group are necessarily negative because
of the inequality,

AVaRε(rp) ≥ −Erp,

valid at any tail probability. This inequality implies

0 ≤ −AVaRε(rp) ≤ Erp,

meaning that if the portfolio AVaR is negative, then the portfolio expected
return is positive. As a result, if the portfolio AVaR is negative, then the
portfolio STARR is negative as well. Thus smaller STARRs in this case



328 ADVANCED STOCHASTIC MODELS

mean larger STARRs in absolute value. In contrast, the portfolios in the
second group should be ranked in the usual way. Larger STARRs imply
better performance.

The need to resort to a different ordering for the portfolios with negative
AVaR stems from the fact that STARR is not defined when AVaR is equal
to zero. In section 10.2.2, we noted that this difficulty can be avoided by
adopting a linarized form of the ratio. According to (10.7), the linearized
STARR is defined as

LSTARR(w) = E(rp) − λAVaRε(rp), (10.10)

where λ ≥ 0 is the risk-aversion parameter. The linearized STARR does not
have a singularity at AVaR equal to zero and one and the same ordering can
be used across all portfolios. Higher LSTARR indicates better performance.7

In the ex ante analysis, the problem of finding the portfolio with the
best future performance in terms of STARR is

max
w

E(rp − rb)
AVaRε(rp − rb)

subject to w ′e = 1
w ≥ 0. (10.11)

According to (10.6), this problem can be reduced to a simpler opti-
mization problem provided that all feasible portfolios have a positive
AVaR of their active return and that there is a feasible portfolio with
a positive expected active return. Under the additional assumption that
the benchmark return is a constant, the simpler optimization problem
becomes

min
v,t

AVaRε(v ′X) + trb

subject to v ′e = t
v ′µ − trb = 1
v ≥ 0, t ≥ 0. (10.12)

This optimization problem can be solved by any of the methods dis-
cussed in section 8.3 of Chapter 8 and in the appendix to Chapter 8. For
example, if there are available scenarios for the assets returns, then AVaR
can be linearized and we can formulate a linear programming problem
solving (10.12). Basically, combining equation (8.15) in Chapter 8 with

7Tokat et al. (2003) provide further details.
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problem (10.12) we derive the linear programming problem

min
v,θ ,d,t

θ + 1
kε

d′e + trb

subject to −Hv − θe ≤ d
v ′e = t
v ′µ − trb = 1
v ≥ 0, d ≥ 0, t ≥ 0, θ ∈ R, (10.13)

in which we use the notation introduced in section 8.3 of Chapter 8.

10.2.4 The Sortino Ratio

The Sortino ratio is defined as the ratio between the expected active portfolio
return and the semistandard deviation of the underperformance of a fixed
target level s. If rb is a constant return target, the ratio is defined as

SoRs(w) = w ′µ − rb

(E(s − rp)2
+)1/2

, (10.14)

where the function (x)2
+ = (max(x, 0))2. The fixed target s is also called the

minimum acceptable return level. For example, it can be set to be equal to
rb, s = rb. In effect, the function in the denominator, which is constructed on
the basis of a lower partial moment, is a proxy for portfolio risk. However,
it is not a risk measure in the sense of coherent risk measures or convex risk
measure discussed in Chapter 8.

In the ex post analysis, the Sortino ratio can be calculated as the ratio
between the average realized active return and the sample semistandard
deviation,

σ̂−(s) =
√√√√1

k

k∑
i = 1

max(s − ri, 0)2,

where r1, r2, . . . , rk is the sample of observed portfolio returns. As a result,
the empirical Sortino ratio equals

ŜoRs(w) = r − rb

σ̂−(s)
,

where r = 1
k

∑k
i = 1 ri is the average realized portfolio return and the ‘‘hat’’

denotes that the formula is an estimator.
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In the ex ante analysis, the optimal Sortino ratio problem is given by

max
w

w ′µ − rb

(E(s − rp)2
+)1/2

subject to w ′e = 1
w ≥ 0. (10.15)

Under certain technical conditions discussed in the appendix to this
chapter, it is possible to formulate a simpler optimization problem. If there
are available scenarios for the assets returns, the simpler problems take the
following form,

min
v,t,d

d′Id

subject to tse − Hv ≤ d
v ′e = t
v ′µ − trb = 1
v ≥ 0, t ≥ 0, d ≥ 0. (10.16)

where I denotes the identity matrix and the other notation is consistent
with the notation in problem (10.13). We only remark that the matrix H
contains the scenarios for the assets returns, e is a vector composed of ones,
e = (1, . . . , 1), and d is a set of additional variables, one for each observation.
As a result, e and d are vectors, the dimension of which equals the number
of available observations.

The simpler problem (10.16) is a quadratic programming problem
because the objective function is a quadratic function of the variables and
the constraint set is composed of linear equalities and inequalities.

10.2.5 The Sortino-Satchell Ratio

The Sortino-Satchell ratio is a generalization of the Sortino ratio in which a
lower partial moment of order q ≥ 1 is used as a proxy for risk. If rb is a
constant benchmark return, the Sortino-Satchell ratio is defined as

SSRs(w) = w ′µ − rb

(E(s − rp)q
+)1/q

(10.17)

where (x)q
+ = (max(x, 0))q, and q denotes the order of the lower partial

moment and the other notation is the same as in the Sortino ratio. The
Sortino ratio arises from the Sortino-Satchell ratio if q = 2.

In the ex post analysis, the Sortino-Satchell ratio is estimated as the
ratio of the sample estimates of the numerator and the denominator,

ŜSRs(w) = r − rb

σ̂−
q (s)

,
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where σ̂−
q (s) denotes the estimate of the denominator,

σ̂ −
q (s) =

(
1
k

k∑
i = 1

max(s − ri, 0)q

)1/q

. (10.18)

In the ex ante analysis, the optimal Sortino-Satchell ratio problem is
given by

max
w

w ′µ − rb

(E(s − rp)q
+)1/q

subject to w ′e = 1
w ≥ 0. (10.19)

which, following the same reasoning as in the Sortino ratio, can be reduced
to a simpler form under the same conditions as in the Sortino ratio. The
simpler problem is

min
v,t,d

k∑
i = 1

dq
i

subject to tse − Hv ≤ d
v ′e = t
v ′µ − trb = 1
v ≥ 0, t ≥ 0, d ≥ 0. (10.20)

where the notation is the same as in the Sortino ratio, and d = (d1, . . . , dk)
are the additional variables. Thus, the objective function contains the sum
of the additional variables raised to the power q.

If the selected order of the lower partial moment is q = 1, then problem
(10.20) is a linear programming problem since the objective function is a
linear function of the variables and the constraint set is composed of linear
equalities and inequalities. If q = 2, then (10.20) is a quadratic programming
problem.

10.2.6 A One-Sided Variability Ratio

Farinelli and Tibiletti (2002) propose a one-sided variability ratio that is
based on two partial moments. It is different from the Sortino-Satchell ratio
because portfolio reward is not measured by the mathematical expectation
but by an upper partial moment. The ratio is defined as

�p,q
rb

(w) = (E(rp − rb)p
+)1/p

(E(rb − rp)q
+)1/q

, (10.21)

where p ≥ 1, q ≥ 1 are the orders of the corresponding partial moments
and rb denotes the benchmark return. Thus, if the portfolio return is
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above rb, it is registered as reward and if it is below rb, it is registered
as loss.

In the ex post analysis, the ratio defined in (10.21) is computed by
replacing the numerator and the denominator by the estimates of the
mathematical expectation. The estimators can be based on (10.18).

Concerning the ex ante analysis, the optimal �p,q
rb

(w) ratio problem
does not have nice properties such as the optimal portfolio problems based
on STARR or the Sortino-Satchell ratio. The reason is that the ratio is a
fraction of two convex functions of portfolio weights and, as a result, the
optimization problem involving the performance measure given in (10.21)
may have multiple local extrema.

10.2.7 The Rachev Ratio

The Rachev ratio is a performance measure similar to the performance
measure defined in (10.21) in that it uses a reward measure which is not
the mathematical expectation of active portfolio returns. In contrast, the
Rachev ratio is constructed on the basis of AVaR. The reward measure in
the Rachev ratio is defined as the average of the quantiles of the portfolio
return distribution that are above a certain target quantile level. The risk
measure is AVaR at a given tail probability. Formally, the definition is

RaRε1,ε2 (w) = AVaRε1 (rb − rp)
AVaRε2 (rp − rb)

(10.22)

where the tail probability ε1 defines the quantile level of the reward measure
and ε2 is the tail probability of AVaR.

Even though AVaR is used in the numerator, which is a risk measure,
the numerator represents a measure of reward. This is demonstrated by

AVaRε1 (X) = − 1
ε1

∫ ε1

0
F−1

X (p)dp

= 1
ε1

∫ 1

1 − ε1

F−1
−X(p)dp,

where X = rb − rp is a random variable that can be interpreted as benchmark
underperformance and −X stands for the active portfolio return. As a
result, the numerator in the Rachev ratio can be interpreted as the average
outperformance of the benchmark provided that the outperformance is
larger than the quantile at 1 − ε1 probability of the active return distribution.
Thus there are two performance levels in the Rachev ratio. The quantile at
ε2 probability in the AVaR in the denominator and the quantile at 1 − ε1
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probability in the numerator. If the active return is below the former, it is
counted as loss and if it is above the latter, then it is registered as reward.
The probability ε2 is often called lower tail probability and ε1 is known
as upper tail probability. A possible choice for the lower tail probability is
ε2 = 0.05 and for the upper tail probability, ε1 = 0.1. An empirical example
is provided in Biglova et al. (2004).

In the ex post analysis, the Rachev ratio is computed by dividing the
corresponding two sample AVaRs, which can be calculated by any of the
methods discussed in section 7.3 of Chapter 7. Since the performance levels
in the Rachev ratio are quantiles of the active return distribution, they are
relative levels as they adjust according to the distribution. For example, if
the scale is small, then the two performance levels will be closer to each
other. As a consequence, the Rachev ratio is always well-defined.

In the ex ante analysis, optimal portfolio problems based on the Rachev
ratio are, generally, numerically hard to solve because the Rachev ratio is
a fraction of two AVaRs, which are convex functions of portfolio weights.
In effect, the Rachev ratio, if viewed as a function of portfolio weights,
may have many local extrema. In the appendix to this chapter, we consider
in more detail performance measures of this type, which are also called
nonquasiconcave performance measures.

10.3 REWARD-TO-VARIABILITY RATIOS

Another general type of performance measures are the reward-to-variability
(RV) ratios. They are defined as the ratio between the expected active
portfolio return and a dispersion measure of the active portfolio return,

RV(rp) = E(rp − rb)
D(rp − rb)

, (10.23)

where

rp − rb is the active portfolio return.

rp denotes the portfolio return.

rb denotes the return of the benchmark portfolio.

D(rp) is a dispersion measure of the random portfolio return rp.

Dispersion measures are axiomatically introduced in section 6.2.4 of
Chapter 6. The benchmark return rb can either be a fixed target, the return
of another portfolio, or a reference interest rate.

In a way similar to the RR ratios, we distinguish between application
of RV ratios in the ex post and the ex ante analysis. In the ex post analysis,
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equation (10.23) is calculated using the available historical returns in a
certain period back in time. In this case, the numerator is the average of the
realized active return and the denominator equals the sample dispersion.
For example, if D(X) is the standard deviation, then the denominator equals
the sample standard deviation of the active return. A practical example is
given in section 10.3.2.

In the ex ante analysis, the joint distribution of the portfolio return
and the benchmark return is hypothesized. The parameters of the assumed
distribution are estimated from the historical data and the RV ratio is
calculated from the fitted distribution. In this setting, the portfolio manager
is interested in finding a feasible portfolio with highest RV ratio as this
portfolio is expected to have the highest return for a unit of variability in its
future performance. Formally, this optimization problem is the following

max
w

E(rp − rb)
D(rp − rb)

subject to w ′e = 1
w ≥ 0, (10.24)

where we use the notation introduced in Chapter 8. On condition that the
dispersion measure is a convex function of portfolio weights,8 the objective
function has nice mathematical properties which guarantee that the solution
to (10.3) is unique.

We can consider a simpler version of the optimization problem (10.24),
which arises in the same fashion as the simpler version (10.6) of the optimal
RR ratio problem. Since the dispersion measure is nonnegative for any
random variable by definition, the only necessary assumption for the RV
ratio to be well-defined is that it does not turn into zero for a feasible
portfolio. This can happen, for example, if the benchmark portfolio itself
is a feasible portfolio and can be replicated. In this case, the dispersion
measure equals zero because the active portfolio return is zero in all states
of the world. Suppose the dispersion measure is strictly positive for any
feasible portfolio, it satisfies the positive homogeneity property, and there
is a feasible portfolio with positive active return. Under these assumptions,
we can consider the simpler optimization problem,

min
v,t

D(v ′X − trb)

subject to v ′e = t
E(v ′X − trb) = 1
v ≥ 0, t ≥ 0, (10.25)

8If D(X) is a deviation measure, then it is a convex function of portfolio weights.
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in which we use the same notation as in problem (10.6). If (v, t) is a solution
to (10.25), then v/t is a vector of weights solving (10.24) and, in this sense,
the two are equivalent.

In this section, we consider the relationship between the solution to
problem (10.24) and the efficient portfolios of M-R analysis if the risk
measure is an expectation bounded coherent risk measure and the dispersion
measure D(X) is the underlying deviation measure. It turns out that there is
a close relationship between the solutions to the optimal RV ratio problem
(10.24) and the optimal RR ratio problem (10.3). The link between coherent
risk measures and deviation measures is described in more detail in section
6.5 of Chapter 6. Finally, we provide several examples of widely used
RV ratios.

10.3.1 RV Ratios and the Efficient Portfolios

Suppose that the risk measure ρ in the M-R analysis is a coherent risk
measure satisfying the additional property ρ(rp) > −Erp. In section 6.5
of Chapter 6, we discussed that in this case the risk measure can be
decomposed into

ρ(rp) = D(rp) − Erp

where D(rp) = ρ(rp − Erp) is a measure of dispersion called a devi-
ation measure. In section 8.3.4 of Chapter 8, we demonstrated that,
under these assumptions, all optimal portfolios generated by problem
(8.24) can be divided into three groups. The smallest group contains the
mean-risk efficient portfolios generated, for example, by problem (8.12).
These efficient portfolios can also be obtained by varying the constant
benchmark return in the optimal RR ratio problem (10.5). The middle
group contains the mean-deviation efficient portfolios generated by problem
(8.23) in which the deviation measure is the dispersion measure underly-
ing the risk measure ρ. They contain the mean-risk efficient portfolios
and can be visualized in the mean-deviation plane as in the example in
Figure 8.6.

It can be demonstrated that the mean-deviation efficient portfolios
can be obtained from the corresponding optimal RV ratio problem by
varying the constant benchmark return. We apply the reasoning devel-
oped in section 10.2.1 directly assuming that rb 	= 0. Since deviation
measures are by definition translation invariant, that is, they satisfy the
property

D(X + C) = D(X)
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for any constant C, the optimal RV ratio problem can be formulated as

max
w

w ′µ − rb

D(rp)
subject to w ′e = 1

w ≥ 0 (10.26)

when rb is a constant benchmark. Therefore, as a consequence of the
reasoning in section 10.2.1, the portfolio yielding the maximal RV ratio
is positioned on the mean-deviation efficient frontier where a straight line
passing through the point with expected return equal to rb and deviation
equal to zero is tangent to it. This is illustrated in the top plot in Figure 10.3.
The slope of any straight line passing through the point (0, rb) on the vertical
axis is equal to the RV ratios of the portfolios lying on it. The tangent line
has the largest slope among all such straight lines with feasible portfolios
lying on them.

In contrast to the geometric reasoning in the optimal RR ratio prob-
lem, changing the benchmark return does not affect the position of the
mean-deviation efficient frontier because the deviation measure does not
depend on it. Therefore, by increasing or decreasing continuously rb, we
only change the position of the reference point on the vertical axis through
which the straight line passes. For instance, decreasing the benchmark
return to r1

b < rb, we obtain a new tangent line and a new tangent port-
folio shown on the bottom plot in Figure 10.3. The geometric intuition
suggests that decreasing further rb, we obtain portfolios closer and closer
to the global minimum deviation portfolio. As a result, with the only
exception of the global minimum deviation portfolio, any mean-deviation
efficient portfolio can be obtained as a solution to the optimal RV ratio
problem when the benchmark return varies rb ∈ (−∞, rmax

b ] in which rmax
b

denotes the expected return of the global maximum expected return
portfolio.

Since the mean-risk efficient portfolios are only a part of the mean-
deviation efficient portfolios, then, as a corollary of the geometric reasoning,
we obtain the following relationship between the optimal RR ratio and RV
ratio problems. The solution to problem (10.5) coincides with the solution
to problem (10.26) on condition that rb ∈ [−ρmin, rmax

b ] where ρmin > 0
denotes the risk of the global minimum risk portfolio. The condition
ρmin > 0 guarantees that the risk of all feasible portfolios is strictly positive
and, therefore, the RR ratio is bounded. If rb < −ρmin, then the optimal
RV ratio portfolio does not belong to the mean-risk efficient frontier but
belongs to the mean-deviation efficient frontier.
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FIGURE 10.3 The mean-deviation efficient
frontier and the tangent portfolio. Reducing the
benchmark return, we obtain a new tangent
portfolio without changing the efficient frontier.

10.3.2 The Sharpe Ratio

The celebrated Sharpe ratio arises as a RV ratio in which the dispersion
measure is represented by the standard deviation, D(rp − rb) = σ (rp − rb).
Formally, it is defined as

IR(w) = E(rp − rb)
σ (rp − rb)

(10.27)



338 ADVANCED STOCHASTIC MODELS

when the benchmark return is a random variable. In this case, the Sharpe
ratio equals the mean active return divided by the tracking error and is also
known as the information ratio (IR). If the benchmark return is a constant,
then the Sharpe ratio equals

SR(w) = w ′µ − rb

σrp

. (10.28)

The Sharpe ratio was introduced by Sharpe (1966) as a way to compute
the performance of mutual funds. In the following, we provide an example
illustrating how the Sharpe ratio is applied in the ex post analysis. Table 10.1
contains observed monthly returns of a portfolio. Assume that the monthly
target return is a constant and equals 0.5%. In order to compute the Sharpe
ratio, we have to calculate the average realized monthly active return and
divide it by the sample standard deviation of the portfolio return. The
average active return can be calculated by subtracting the target return of
0.5% from the average portfolio return,

1
4

(1.2 − 0.1 + 1.4 + 0.3) − 0.5 = 0.2.

The sample standard deviation σ̂ is calculated according to the formula

σ̂ =
√√√√ 1

k − 1

k∑
i = 1

(ri − r)2

=
√√√√ 1

k − 1

k∑
i = 1

r2
i − k

k − 1
r2, (10.29)

where r1, r2, . . . , rk denote the observed portfolio returns and r stands for
the average portfolio return. In statistics, σ̂ is called an unbiased estimator
of the standard deviation. Making use of equation (10.29) for σ̂ , we
calculate

σ̂ =
√

1
3

(1.22 + 0.12 + 1.42 + 0.32) − 4
3

0.72 = 0.716,

TABLE 10.1 Realized Monthly Returns of a Hypothetical Portfolio.

Jan Feb Mar Apr

Realized return (%) 1.2 −0.1 1.4 0.3
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where r = 0.7 is the average monthly return. Finally, the ex post Sharpe
ratio of the portfolio equals

ˆSR = r − 0.5
σ̂

= 0.2
0.716

= 0.2631.

In the ex ante analysis, the portfolio manager is looking for the port-
folio with the best future performance in terms of the Sharpe ratio. The
corresponding optimization problem is

max
w

w ′µ − rb

σrp

subject to w ′e = 1
w ≥ 0, (10.30)

which, according to the general reasoning behind optimal RV ratio prob-
lems, can be reduced to the following simpler problem:

min
v,t

σ (v ′X)

subject to v ′e = t
v ′µ − trb = 1
v ≥ 0, t ≥ 0, (10.31)

where the objective function σ (v ′X) is the standard deviation of the port-
folio with scaled weights v and t is an additional variable. In Chapter 8,
we remarked that it makes no difference whether the standard deviation or
the variance of portfolio returns is minimized as far as the optimal solution
is concerned. This holds because variance is a nondecreasing function of
standard deviation and, therefore, the portfolio yielding the minimal stan-
dard deviation subject to the constraints also yields the minimal variance. In
effect, problem (10.31) can be formulated in terms of minimizing portfolio
variance,

min
v,t

v ′�v

subject to v ′e = t
v ′µ − trb = 1
v ≥ 0, t ≥ 0, (10.32)

where � is the covariance matrix of the portfolio assets returns.
The optimization problem (10.32) is a quadratic programming problem

because the objective function is a quadratic function of the scaled portfolio
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weights and all functions in the constraint set are linear. As far as the
structure of the optimization problem is concerned, (10.32) is not more
difficult to solve than the traditional quadratic mean-variance problem (8.4)
given in Chapter 8. In fact, the only difference between the two is the
additional variable t in (10.32) but this does not increase significantly the
computational complexity.

10.3.3 The Capital Market Line and the Sharpe Ratio

In section 8.2.4 of Chapter 8, we discussed the mean-variance analysis when
there is a risk-free asset added to the investment universe. In this case,
the mean-variance efficient frontier is a straight line in the mean-standard
deviation plane, which is called the capital market line. Moreover, the
mean-variance efficient portfolios turn out to be a combination of the
risk-free asset and a portfolio composed of the risky assets known as
the market portfolio. This is a fundamental result on the structure of
the mean-variance efficient portfolios known as the two-fund separation
theorem, which is also at the heart of the Capital Asset Pricing Model
(CAPM). In this section, we demonstrate that the market portfolio is the
portfolio yielding the maximal Sharpe ratio in the universe of the risky
assets with the benchmark return equal to the risk-free return, and we
provide an interpretation of the optimal value of the additional variable t in
problem (10.32).

Consider problem (8.9) in section 8.2.4 of Chapter 8, which represents
the optimal portfolio problem behind the mean-variance analysis with a
risk-free asset. In order to make a parallel with (10.32), we restate problem
(8.9) but with an equality constraint on the expected return rather than an
inequality constraint,

min
ω,ωf

ω′�ω

subject to ω′e + ωf = 1
ω′µ + ωf rf = R∗
ω ≥ 0, ωf ≤ 1, (10.33)

where:

ωf stands for the weight of the risk-free asset rf.

ω denotes the weights of the risky assets.

R∗ denotes the bound on the expected portfolio return.

� stands for the covariance matrix between the risky assets.

Changing the inequality constraint to equality does not change the
optimal solution if the target expected return is not below the risk-free rate,
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R∗ ≥ rf. Conversely, if the target expected return is below the risk-free rate,
then (10.33) is an infeasible problem. Our assumption is R∗ > rf because in
the case of equality, the optimal portfolio consists of the risk-free asset only.

The weight ωf of the risk-free asset in the portfolio can be a positive or a
negative number. If ωf is negative, this means that borrowing at the risk-free
rate is allowed and the borrowed money is invested in the market portfolio.
In this case, it is said that we have a leveraged portfolio. Leveraged portfolios
are positioned on the capital market line, illustrated in Figure 8.2 in Chapter
8, to the right of the tangency portfolio. The efficient portfolios to the left
of the tangency portfolio have a positive weight for the risk-free asset.

We can express the weight of the risky assets in the whole portfolio by
means of the weight of the risk-free asset. The weight of the risky assets
equals 1 − ωf, which is a consequence of the requirement that all weights
should sum up to 1. We introduce a new variable in (10.33) computing the
weight of the risky assets, s = 1 − ωf, which we substitute for ωf. Thus
problem (10.33) becomes

min
ω,s

ω′�ω

subject to ω′e = s
ω′µ − srf = R∗ − rf

ω ≥ 0, s ≥ 0. (10.34)

There are many similarities between the optimal Sharpe ratio problem
(10.32) and (10.34). In fact, if rb = rf, then the only difference is in the
expected return constraint. Not only do these two problems look similar
but their solutions are also tightly connected. Denote by (ω, s) the optimal
solution to (10.34). Since by assumption R∗ − rf > 0, it follows that

v = ω

(R∗ − rf )
and

t = s
(R∗ − rf )

(10.35)

represent the optimal solution to problem (10.32). According to the anal-
ysis made for the generic optimal RV ratio problem (10.25), we obtain
that the weights w of the portfolio yielding the maximal Sharpe ratio are
computed by

w = v/t = ω/s = ω/(1 − ωf ). (10.36)

On the other hand, if (ω, s) = (ω, 1 − ωf ) is the optimal solution to
(10.33), then the weights of the market portfolio wM are calculated by

wM = ω/(1 − ωf ).



342 ADVANCED STOCHASTIC MODELS

As a result, the market portfolio is a portfolio solving the optimal Sharpe
ratio problem (10.30) with rb = rf.

From a geometric viewpoint, the link between the two problems
becomes apparent by comparing the top plot in Figure 10.3 and Figure
8.2 in Chapter 8. The tangent line in Figure 10.3 coincides with the capital
market line in Figure 8.2 if the benchmark return is equal to the risk-free rate.

Finally, formula (10.35) provides a way of interpreting the optimal
value t of the additional variable t used to simplify the optimal Sharpe ratio
problem in (10.32). The optimal value t equals the weight of the risky assets
in an efficient portfolio obtained with a risk-free rate rb = rf and a limit on
the expected return R∗, divided by the positive difference R∗ − rf. Note that
this ratio remains one and the same irrespective of the value of the limit
on the expected return R∗ and, therefore, is a characteristic of the efficient
portfolios.

In the appendix to Chapter 8, we gave a closed-form expression of the
solution to a type of mean-variance optimization problems. Taking advan-
tage of the approach described there, it is possible to derive a closed-form
solution to the mean-variance problem with a risk-free asset (10.33) and
also to the optimal Sharpe ratio problem (10.30) through the simplified
problem (10.32) by removing the inequality constraints on the weights of
the assets. Thus the optimal solution to problem

min
ω,ωf

ω′�ω

subject to ω′e + ωf = 1
ω′µ + ωf rf = R∗

is given by

ω = R∗ − rf

(µ − rf e)′�−1(µ − rf e)
�−1(µ − rf e)

ωf = 1 − R∗ − rf

(µ − rf e)′�−1(µ − rf e)
(µ − rf e)′�−1e, (10.37)

where �−1 denotes the inverse of the covariance matrix �. In a similar way,
the optimal solution to

max
w

w ′µ − rb

σrp

subject to w ′e = 1
is given by

w = �−1(µ − rbe)
(µ − rbe)′�−1e

. (10.38)
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In this simple case, the relationship in formula (10.36) between the solution
to the optimal Sharpe ratio problem and the mean-variance problem with
a risk-free asset is straightforward to check using formula (10.37) and
formula (10.38).

10.4 SUMMARY

In this chapter, we discussed performance measures from the point of view
of the ex post and ex ante analysis. We distinguish between reward-to-risk
and reward-to-variability ratios depending on whether a risk measure or a
dispersion measure is adopted in the denominator of the ratio. A number of
performance measures used in the literature are provided as examples and,
where possible, the optimal portfolio problems behind the ex ante analysis
are simplified.

The appendix to this chapter considers a general approach to classifying
performance measures in a structural way. We describe the general optimal
quasiconcave ratio problem and the arising simpler optimization problems
on condition that certain technical properties are met. Finally, we give
an account of nonquasiconcave ratios and demonstrate that the two-fund
separation theorem holds for the general reward-risk analysis when a
risk-free asset is added to the investment universe.

10.5 TECHNICAL APPENDIX

In this appendix, we demonstrate that as far as the ex ante analysis is con-
cerned, the Rachev ratio can be viewed as an extension of STARR. We also
introduce another extension of STARR, which we call the robust STARR.
Next, we develop a structural classification of performance measures in
terms of the properties of the corresponding reward and risk, or dispersion,
measures respectively. The performance measures discussed in the chapter
are categorized according to the theory developed.

10.5.1 Extensions of STARR

In this section, we revisit the problem of finding the maximal STARR
portfolio. We demonstrate that the Rachev ratio can be viewed as an
extension of STARR. Furthermore, we show that a new performance
measure extending STARR can be derived.

Consider the definition of STARR given in (10.8). In order to keep
notation simpler, we denote the active portfolio return by X = rp − rb.
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STARR can be represented as

STARRε(w) = EX
AVaRε(X)

= −εAVaRε(X) + ∫ 1
ε

F−1
X (p)dp

AVaRε(X)

= −ε + (1 − ε)
1

1 − ε

∫ 1
ε

F−1
X (p)dp

AVaRε(X)
. (10.39)

The numerator in the ratio is the average active return provided that
it is larger than the VaR at tail probability ε. In fact, the fraction can be
recognized as the Rachev ratio with ε1 = 1 − ε and ε2 = ε,

RaR1 − ε,ε(w) =
1

1−ε

∫ 1
ε

F−1
X (p)dp

AVaRε(X)
.

As a consequence, the portfolios maximizing STARR also maximize
the RaR1−ε,ε(w) as the former is a positive linear function of the latter
which is the main conclusion in (10.39). Thus from the standpoint of the
ex ante analysis, STARR and RaR1−ε,ε(w) can be regarded as equivalent
performance measures. The more general Rachev ratio appears when 1 − ε

is replaced by an arbitrary probability ε1.
The representation in (10.39) provides a way of obtaining another

generalization of STARR, which we call the robust STARR and abbreviate
by RobS.9 It is defined as

RobSδ,ε(w) =
1

δ − ε

∫ δ

ε
F−1

X (p)dp

AVaRε(X)
, (10.40)

where δ ≥ ε is an upper tail probability. The numerator can be interpreted as
the average active return between VaR at tail probability ε and the quantile
at upper tail probability δ. Since the extreme quantiles are not included, the
numerator can be viewed as a reward measure which is a robust alternative
of the mathematical expectation. A reasonable choice for δ is, for example,
δ = 0.95. The optimal STARR portfolios appear from the optimal RobSδ,ε(w)
portfolios when δ = 1.

Taking advantage of the same approach as in the derivation of the
representation in (10.39), it is possible to obtain that the optimal RobSδ,ε(w)

9Stoyanov (2005) provides a formal treatment of the robust STARR and the related
optimal portfolio problems.
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portfolios also maximize the ratio,

RobS∗
δ,ε(w) = −AVaRδ(X)

AVaRε(X)
, (10.41)

which means that (10.41) is equivalent to (10.40) as far as the ex ante analy-
sis is concerned. The formula in (10.41) turns out to be a more suitable objec-
tive function than (10.40). In effect, the optimal robust STARR problem is

max
w

−AVaRδ(rp − rb)
AVaRε(rp − rb)

subject to w ′e = 1
w ≥ 0. (10.42)

With respect to the classification developed in Section 10.2, the robust
STARR is a quasiconcave performance measure that can be optimized
through a linear programming problem.

10.5.2 Quasiconcave Performance Measures

In this section, we consider the RR ratio optimization problem of the general
form

max
w

ν(w ′X − rb)
ρ(w ′X − rb)

subject to w ′e = 1
w ≥ 0, (10.43)

where:

X is a random vector describing the return of portfolio assets.

ν is a reward measure.

ρ is a risk measure.

rb is return of a benchmark portfolio.

Depending on the properties assumed for the reward measure and the
risk measure, the optimization problem can be reduced to a simpler form.
This section is based on Stoyanov et al. (2007) and Rachev et al. (2007).
While we consider RR ratios, the theory developed can be applied to RV
ratios as well since we are discussing general properties, which may hold
for both risk and dispersion measures.

We start with a few comments on the general properties of problem
(10.43), which is also called a fractional program because the objective
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function is a ratio. First, in order for the objective function to be bounded,
we have to assume that the denominator does not turn into zero for any
feasible portfolio. For this reason, we assume that the risk of the active
portfolio return is positive for all feasible portfolios. This assumption is
crucial. If it does not hold, then the optimization problem does not have a
solution.

Second, without loss of generality, we assume that the reward measure
is positive for all feasible portfolios. This may be regarded as a restrictive
property. But if it does not hold, then we can consider the optimization
problem only on the subset of the feasible portfolios for which ν(w ′X − rb)
≥ ε > 0. The portfolios with negative reward can be safely ignored because
the optimal solution can never be among them on condition that there are
feasible portfolios with positive reward.

In summary, the basic assumptions for all feasible portfolios are the
following:

ν(w ′X − rb) > 0
and

ρ(w ′X − rb) > 0. (10.44)

If they are satisfied, then we can consider either problem (10.43), in which
we maximize the RR ratio, or problem

min
w

ρ(w ′X − rb)
ν(w ′X − rb)

subject to w ′e = 1
w ≥ 0, (10.45)

in which we minimize the inverse ratio. Under the basic assumptions in
(10.44), the portfolios solving problem (10.43) also solve problem (10.45).

The portfolio yielding the optimal ratio in (10.43) can also be interpreted
as a tangent portfolio, which is similar to the corresponding interpretation
when the benchmark is a constant target. If rb is a random variable, then the
efficient frontier is generated by an RR analysis with a reward measure ν

and a risk measure ρ, which are considered on the space of active portfolio
returns.10 The efficient portfolios are obtained by solving optimization
problem (10.43) but changing the objective function to

f (w) = ν(w ′X − rb) − λρ(w ′X − rb)

where λ ≥ 0 is the risk-aversion parameters. By varying λ and solving
the optimization problem, we obtain the set of efficient portfolios. The

10R-R analysis is discussed in the appendix to Chapter 8.
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FIGURE 10.4 The efficient frontier may have a
linear section which may result in nonunique
tangent portfolios.

portfolio yielding the maximal ratio appears as a tangent portfolio to the
efficient frontier in the reward-risk plane. The benchmark return is taken
into account by considering the risk and the reward of the active portfolio
returns. In effect, the tangent line identifying the tangent portfolio passes
through the origin. Figure 10.4 shows a case in which the tangent portfolio
is not unique.

Quasiconcave Fractional Program If the reward functional is a concave
function of portfolio weights and the risk measure is a convex function of
portfolio weights, then the objective function of (10.43) is quasiconcave
and the objective function of (10.45) is quasiconvex. If the reward measure
satisfies the properties given in the appendix to Chapter 8 and ρ is a
coherent risk measure, then they are a concave and a convex function
respectively. Quasiconcave and quasiconvex functions have nice optimality
properties which are similar to the properties of the concave and convex
functions, respectively. For example, if the objective function of (10.45) is
quasiconvex then there exists a unique solution. The differences from the
convex functions can be best illustrated if the function has a one-dimensional
argument. A quasiconvex function has one global minimum and is composed
of two monotonic sections. In contrast to convex functions, the monotonic
sections may not be strictly monotonic; that is, the graph may have some
‘‘flat’’ sections that make the optimization a more involved affair. Generally,
an optimization problem with a quasiconvex function can be decomposed
into a sequence of convex feasibility problems. The sequence of feasibility
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problem can be obtained using the set

Wt =

 w :

∣∣∣∣∣∣
ρ(wTr − rb) − tµ(wTr − rb) ≤ 0
wTe = 1
w ≥ 0


 ,

where t is a fixed positive number. For a given t, the above set is convex and
therefore we have a convex feasibility problem. A simple algorithm based
on bisection can be devised so that the smallest t is found, tmin, for which
the set is nonempty, Stoyanov et al. (2007) provide more details. If tmin is
the solution of the feasibility problem, then 1/tmin is the value of the optimal
ratio and the portfolios, in the set

Wtmin =

 w :

∣∣∣∣∣∣
ρ(wTr − rb) − tminµ(wTr − rb) ≤ 0
wTe = 1
w ≥ 0


 ,

are the optimal portfolios solving the fractional problem (10.45). The same
set of portfolios also solve problem (10.43).

Convex Programming Problem Suppose that the reward measure is a concave
function of portfolio weights and the risk measure is a convex function of
portfolio weights. In addition, suppose that both functions are positively
homogeneous,

ν(hX) = hν(X)
and

ρ(hX) = hρ(X)

where h > 0. In this case, we can formulate two convex optimization
problems equivalent to (10.43) and (10.45), respectively. The equivalent
convex problems are obtained through the substitutions t−1 = ρ(w ′X − rb)
and t−1 = ν(w ′X − rb) for the former and the latter problem, respectively,
and then setting v = tw. As a result, we obtain the problems

max
v,t

ν(v ′X − trb)

subject to v ′e = t
ρ(v ′X − trb) ≤ 1
v ≥ 0, t ≥ 0 (10.46)

and

min
v,t

ρ(v ′X − trb)

subject to v ′e = t
ν(v ′X − trb) ≥ 1
v ≥ 0, t ≥ 0. (10.47)
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The equivalence with (10.43) and (10.45), respectively, is the following.
Suppose that the pair (v1, t1) is an optimal solution to (10.46). Then w1

= v1/t1 is a portfolio yielding the maximal ratio in (10.43). The quantity
1/t1 is equal to the risk of the optimal portfolio. Furthermore, if we denote
by νmax the value of the objective function of (10.46) at the solution point
(v1, t1), then νmax is equal to the value of the optimal ratio, that is, the optimal
value of the objective function of problem (10.43). As a consequence, νmax/t1

equals the reward of the optimal portfolio.
In a similar way, if the pair (v2, t2) is an optimal solution to (10.47),

then w2 = v2/t2 is an optimal solution to (10.45) and, therefore, to (10.43).
Denote by ρmin the value of the objective function of (10.47) at the solution
point (v2, t2). Then 1/ρmin is equal to the value of the optimal ratio, that is,
the optimal value of the objective function of problem (10.43). In addition,
1/t2 is the reward and ρmin/t2 is the risk of the optimal portfolio.

The portfolios w1 and w2 may not be the same because there may be
many portfolios yielding the unique maximum of the fractional program
(10.43). Geometrically, this case arises if the efficient frontier has a linear
section and the tangent line passes through all points in the linear section.
This case is illustrated in Figure 10.4.

As a subcase in this section, suppose that both the risk and the reward
measures satisfy the invariance property described in section 6.4.4 of
Chapter 6 and the appendix to Chapter 8, respectively,

ν(X + C) = ν(X) + C
and

ρ(X + C) = ρ(X) − C. (10.48)

where C is an arbitrary constant. Under these assumptions and a few
additional technical conditions given in the appendix to Chapter 8, we can
associate an optimal RV ratio problem that is equivalent to (10.43) in the
sense that both problems have coincident optimal solutions. Consider the
following transformations of the objective function of (10.45),

ρ(w ′X − rb)
ν(w ′X − rb)

= ρ(w ′X − rb − ν(w ′X − rb)) − ν(w ′X − rb)
ν(w ′X − rb)

= ρ(w ′X − rb − ν(w ′X − rb))
ν(w ′X − rb)

− 1. (10.49)

In the appendix to Chapter 8, we demonstrated that the functional in
the numerator

ρ(w ′X − rb − ν(w ′X − rb))

can be a dispersion measure and, therefore, the ratio on the right-hand
side is the inverse of a RV ratio. On the basis of equation (10.49) and the
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relationship between (10.45) and (10.43), we arrive at the conclusion that
the optimal RV ratio problem

max
w

ν(w ′X − rb)
ρ(w ′X − rb − ν(w ′X − rb))

subject to w ′e = 1
w ≥ 0, (10.50)

has the same solution as the optimal RR ratio problem (10.43).
A special example of an optimal ratio problem belonging to the category

of convex programming problems is when the reward measure coincides
with the mathematical expectation. In this case, the objective function of
(10.43) and the reward constraint in (10.43) turn into linear functions.
We only provide the corresponding version to (10.43) since the reward
constraint can be an equality rather than an inequality,

min
v,t

ρ(v ′X − trb)

subject to v ′e = t
E(v ′X) − tE(rb) = 1
v ≥ 0, t ≥ 0. (10.51)

In the case of a linear reward measure, the relationship between the
optimal RV ratio problem (10.50) and the optimal RR ratio (10.43) explains
the relationship between the RR ratios based on the expectations bounded
coherent risk measures and the corresponding RV ratios based on deviation
measures, which is discussed in this chapter.

Recall that the assumptions made for ρ in this section are that it should
be positive for all feasible portfolios, convex, and positively homogeneous.
Generally, these properties alone do not imply that ρ is a risk measure. For
example, any deviation measure satisfies them as well. As a consequence,
the established relationship between (10.43) and (10.51) holds if there
is a deviation measure in the denominator. Consider, for instance, the
optimal Sharpe ratio problem (10.30) discussed in the chapter. The standard
deviation in the denominator is a convex, positively homogeneous function
of portfolio weights. The simpler convex programming problem, which is
the analogue of (10.51), is problem (10.31). It turns out that it can be
further simplified to the quadratic programming problem (10.32) because
of properties specific to the standard deviation.

Another optimal portfolio problem falling into this category is the
problem of maximizing the Sortino-Satchell ratio defined in the Chapter.
The functional in the denominator is

ρ(w ′X − rb) = (E(s − (w ′X − rb))q
+)1/q (10.52)
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where (x)q
+ = (max(x, 0)q), s is the minimum acceptable return level, and

q ≥ 1 is the order of the lower partial moment. Assuming that the portfolio
weights sum up to 1, it turns out that this is a convex function of portfolio
weights. In order to demonstrate this property, we consider (10.52) in the
next more suitable form,

g(w) = (E(w ′Z)q
+)1/q (10.53)

where Z = se − X + rbe and e = (1, . . . , 1). In the demonstration, we refer
to the celebrated Minkowski inequality. Consider a portfolio wλ, which is a
convex combination of two other portfolios; that is, wλ = λw1 + (1 − λ)w2.
Then

g(wλ) = (E((λw1 + (1 − λ)w2)′Z)q
+)1/q

≤ (E(λ(w ′
1Z)+ + (1 − λ)(w ′

2Z)+)q)1/q

≤ (E(λw ′
1Z)q

+)1/q + (E((1 − λ)w ′
2Z)q

+)1/q

= λ(E(w ′
1Z)q

+)1/q + (1 − λ)(E(w ′
2Z)q

+)1/q

= λg(w1) + (1 − λ)g(w2).

The first inequality follows because of the convexity of the max function
and in order to obtain the second inequality, we apply the Minkowski
inequality. As a result, the function g(w) is a convex function of portfolio
weights.

In addition to the convexity property, the function g(w) is also positively
homogeneous, g(hw) = hg(w), h > 0. Therefore, the problem of maximizing
the Sortino-Satchell ratio can be reduced to a problem of the type (10.51).
The particular form of the simpler problem is

min
v,t

E(ts − v ′X + trb)q
+

subject to v ′e = t
E(v ′X) − tE(rb) = 1
v ≥ 0, t ≥ 0, (10.54)

which is obtained after raising the objective function to the power q ≥ 1.
This transformation does not change the optimal solution points.

If there are scenarios available for the assets returns and the benchmark
return, then (10.54) can be further reduced to a more simple problem. In this
case, the objective function is the estimator of the mathematical expectation
and, therefore, it is a sum of maxima raised to the power q. The maxima are
either positive or zero and can be replaced by additional variables following
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the method of linearizing a piecewise linear convex function, which is used
also in the linearization of AVaR described in section 8.3 of Chapter 8.
In this reasoning, we consider the argument of the max function ts − v ′X
+ trb as a random variable, the scenarios of which are obtained from the
scenarios of the assets returns and the benchmark return. As a result, we
derive the optimization problem

min
v,t,d

k∑
i = 1

dq
i

subject to tse − Hv + thb ≤ d
v ′e = t
v ′µ − tErb = 1
v ≥ 0, t ≥ 0, d ≥ 0, (10.55)

where hb = (r1
b, . . . , rk

b) is a vector of the observed returns of the benchmark
portfolio.

From the point of view of the optimal portfolio problem structure, there
are two interesting cases. If q = 1, then (10.55) is a linear programming
problem. This is not surprising because in this case the objective function in
(10.54) is the expectation of the maxima function. If q = 2, then (10.55) is
a quadratic programming problem. In this case, the objective function can
be represented in matrix form as

k∑
i = 1

d2
i = d′Id,

where I stands for the identity matrix.

Reductions to Linear Programming Problems Suppose that the reward mea-
sure is a concave function of portfolio weights and the risk measure is
a convex function of portfolio weights, and that both functions are posi-
tively homogeneous. In addition to these properties, which were the basic
assumptions in the previous section, suppose that both ν and ρ can be
approximated by piecewise linear functions. Then, the convex optimization
problems (10.46) and (10.46) can be further simplified to linear program-
ming problems. It is also often said that, in this case the convex problem
allows for a linear relaxation.

A problem belonging to this category is the optimal STARR problem
discussed in the chapter. It arises when ρ(X) = AVaRε(X) and the reward
measure is the mathematical expectation. On condition that there are
scenarios for the assets returns and the benchmark return, AVaR can be
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approximated by a piecewise linear function on the basis of which the
convex optimization problem can be simplified to a linear programming
problem. This method is described in Section 8.3 of Chapter 8 and can be
directly applied to (10.51) by considering the argument of the risk measure
v ′X − trb as a random variable the scenarios of which are obtained from
the scenarios of the assets returns X and the benchmark return rb.

Another problem in this category is the optimal robust STARR problem
formulated in (10.42). The reward measure is the negative of AVaR at a
certain upper tail probability and, therefore, it is a concave function of
portfolio weights. The risk measure is AVaR. Both the reward measure and
the risk measure can be linearized by means of the approach in Section 8.3
of Chapter 8. In the case of the robust STARR, the analogue of the convex
problem (10.47) is

min
v,t

AVaRε(v ′X − trb)

subject to v ′e = t
AVaRδ(v ′X − trb) ≥ 1
v ≥ 0, t ≥ 0. (10.56)

The linear relaxation of the convex optimization problem (10.56) is

min
(v,t,θ1,d,θ2,g)

θ1 + 1
kε

d′e

subject to −Hv − θ1 ≤ d

θ2 + 1
kδ

g′e ≤ 1

−Hv − θ2 ≤ g
v ′e = t
v ≥ 0, t ≥ 0, d ≥ 0, g ≥ 0
θ1 ∈ R, θ2 ∈ R, (10.57)

where the auxiliary variables θ1 and d are because of the linearization of
the risk measure and the auxiliary variables θ2 and g are because of the
linearization of the reward measure. The remaining notation is explained
in detail in section 8.3 of Chapter 8. Stoyanov (2005) provides formal
arguments proving that (10.56) can be reduced to the linear programming
problem (10.57).

10.5.3 The Capital Market Line and Quasiconcave
Ratios

In section 10.3.3, we considered the capital market line generated by
mean-variance analysis with a risk-free asset added to the investment
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universe and the optimal Sharpe ratio problem. We demonstrated that the
market portfolio, which is a key constituent of the efficient portfolios,
yields the maximal Sharpe ratio with a constant benchmark return equal
to the return on the risk-free asset. It turns out that this property is not
valid only for the mean-variance analysis and the Sharpe ratio but also
for the more general case of reward-risk analysis and the corresponding
optimal quasiconcave ratio problem under certain technical conditions. The
necessary general technical conditions are stated in the opening part of
section 10.2 with the additional requirements that the reward measure and
the risk measure are positively homogeneous and they satisfy the invariance
property given in (10.48). Under these conditions, the optimal quasiconcave
ratio problem (10.43) can be reduced to the convex problem

min
v,t

ρ(v ′X) + trb

subject to v ′e = t
ν(v ′X) − trb ≥ 1
v ≥ 0, t ≥ 0. (10.58)

In this section, we demonstrate that the two-fund separation theorem
is valid for the efficient portfolios generated by reward-risk analysis with a
risk-free asset added to the investment universe. Similar to the Sharpe ratio,
the market portfolio appears as a solution to the optimal reward-to-risk
ratio problem (10.43).

The optimal portfolio problem behind reward-risk analysis with a
risk-free asset is given by

min
ω,ωf

ρ(ω′X) − ωf rf

subject to ω′e + ωf = 1
ν(ω′X) + ωf rf ≥ R∗
ω ≥ 0, ωf ≤ 1, (10.59)

where:

ω denotes the weights of the risky assets.

ωf stands for the weight of the risk-free asset.

rf denotes the return on the risk-free asset.

R∗ denotes the bound on the expected portfolio return.

Negative values of ωf are interpreted as borrowing at the risk-free rate with
the borrowed funds invested in the risky assets. Also, we assume that the
lower bound on the expected return is larger than the risk-free rate, R∗ > rf.
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We substitute the variable ωf for 1 − s where s calculates the total
weight of the risky assets in the portfolio. In effect, we derive the following
optimization problem, equivalent to (10.59):

min
ω,s

ρ(ω′X) + srf − rf

subject to ω′e = s
ν(ω′X) − srf ≥ R∗ − rf

ω ≥ 0, s ≥ 0. (10.60)

There are many similar features between the optimal ratio problem
(10.58) and (10.60). Denote the optimal solution of (10.60) by (ω, s). The
optimal solution to (10.58) equals

v = ω

(R∗ − rf )
and

t = s
(R∗ − rf )

. (10.61)

Formula (10.61) holds because scaling the optimal solution (ω, s) with
the positive factor 1/(R∗ − rf) makes the resulting quantities feasible for
problem (10.58). Furthermore, scaling the objective function of problem
(10.60) by the same factor does not change the optimal solution point.

Note that both v and t, being an optimal solution to (10.58), do not
depend on R∗ because R∗ is not a parameter in (10.58). Therefore, the vector
v and the scalar t can be regarded as characteristics of the efficient portfolios
generated by (10.59).

According to the analysis made for the generic optimal RR ratio problem
(10.43), we obtain that the weights w of the portfolio yielding the maximal
RR ratio are computed by

w = v/t = ω/s = ω/(1 − ωf ). (10.62)

As a consequence, the optimal RR ratio portfolio w is a fundamental
ingredient in all portfolios in the efficient set generated by (10.59). The
weights of the risky assets in the efficient portfolios are proportional to it
and can be computed according to the formula ω = w(1 − ωf ). As a result,
the optimal RR ratio portfolio represents the market portfolio and the
returns of any reward-risk efficient portfolio with a risk-free asset can be
expressed as

ωX + ωf rf = (1 − ωf )wX + ωf rf ,

where rM = wX stands for the return of the optimal RR ratio portfolio.
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The approach behind the derivation of the capital market line in the
case of mean-variance analysis described in section 8.2.4 of Chapter 8 can
be applied for the more general reward-risk analysis. We obtain that the
equation for the capital market line is

ν(rp) = rf +
(

ν(rM) − rf

ρ(rM) + rf

)
(ρ(rp) + rf ), (10.63)

where rp denotes the return of the efficient portfolio. Equation (10.63)
suggests that the capital market line coincides with the tangent line to the
efficient frontier in the reward-shifted risk plane.

10.5.4 Nonquasiconcave Performance Measures

Not all RR ratios and RV ratios belong to the class of the quasiconcave
performance measures described in the previous section. Examples include
the one-sided variability ratio defined in (10.21) and the Rachev ratio
described in the Chapter which are ratios of a convex reward measure of
portfolio weights and a convex risk measure. Other examples include the
generalized Rachev ratio, the Gini-type ratio, and the spectral-type ratio
discussed in Rachev et al. (2007).

Since these performance measures are not quasiconcave functions of
portfolio weights, there may be multiple local extrema and, therefore, any
numerical method based on convex programming will find the closest local
maximum which may not be the global one. Nevertheless, for some of
the nonquasiconcave performance measures, it could be possible to find
a method yielding the global maximum. For example, in the case of the
Rachev ratio, it is possible to find a mixed-integer programming problem
finding the global maximum of the Rachev ratio. Stoyanov et al. (2007)
provide further details.

In this section, we provide a definition of the generalized Rachev ratio as
it includes several of the ratios discussed in the chapter as special examples.
The generalized Rachev ratio is defined as

GRaRδ,γ
α,β (w) = AVaRδ

α(rb − rp)
AVaRγ

β (rp − rb)
, (10.64)

where α and β denote tail probabilities, and δ and γ are powers generalizing
the AVaR concept,

AVaRδ
α(X) =

(
1
α

∫ α

0

[
max(−F−1

X (p), 0)
]δ

dp
)1/δ

,
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in which δ ≥ 1 and X stands for the random variable which in this case can
be the active portfolio return X = rp − rb or the negative of it X = rb − rp.
If δ = 1, then the quantity AVaRδ

α(X) coincides with AVaR,

AVaR1
α(X) = AVaRα(X),

if α ≤ FX(0). As a consequence of this equality, the Rachev ratio appears as
a special example of the generalized Rachev ratio,

GRaR1,1
α,β(w) = RaRα,β(w),

when α and β are sufficiently small.
Furthermore, choosing appropriately the tail probabilities, the gener-

alized Rachev ratio generates a scaled one-sided variability ratio �p,q
rb

(w)
described in the chapter. Suppose that α1 = P(rb − rp ≤ 0) and β1 = P(rp −
rb ≤ 0). Then, on condition that the active return is an absolutely continuous
random variable,

GRaRp,q
α1,β1

(w) = C.�p,q
rb

(w),

where C = β
q
1/α

p
1 is a positive constant.

10.5.5 Probability Metrics and Performance
Measures

In Chapters 3 and 4, we described the notion of a probability metric and
offered many examples of probability metrics and distances. Concerning
the problem of evaluating the performance of a given portfolio, the ideas
behind the theory of probability metrics can be applied in the construction
of general families of performance measures.

For example, consider the following general ratio,

GRδ,γ
α,β,M(w) = AVaRδ

α,M(rb − rp)

AVaRγ

β,M(rp − rb)
, (10.65)

where

AVaRδ
α,M(X) =

(
1
α

∫ α

0

[
max(−F−1

X (p), 0)
]δ

dM(p)
)min(1,1/δ)

(10.66)

in which δ > 0 and all notation is the same as in formula (10.64) and the
function M(p) satisfies the properties of a cumulative distribution function
(c.d.f.) of a random variable defined in the unit interval.
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There are a few interesting special cases of (10.66). If M(p) is the
c.d.f. of the uniform distribution in [0, 1], then (10.66) coincides with the
generalized Rachev ratio given in (10.64). As a next case, suppose that M(p)
is the c.d.f. of the constant α, which is the tail probability in (10.66). Under
this assumption, the integral equals the value of the integrand function at
p = α. As a result, we can obtain a performance measure represented by a
scaled ratio of two VaRs,

GR1,1
α,β,M(w) = C

VaRα(rb − rp)
VaRβ(rp − rb)

,

where C = β/α is a positive constant.
Furthermore, taking advantage of the underlying structure of the perfor-

mance measure in (10.65), we can derive the next two limit cases. Suppose
that δ → ∞ and γ → ∞ and that M(p) is a continuous function. Under
these conditions and using the properties of the inverse c.d.f.,

GR∞,∞
α,β,M(w) = VaR0(rb − rp)

VaR0(rp − rb)
,

where VaR0(X) denotes the smallest value that the random variable X
can take. Thus, the performance measure GR∞,∞

α,β,M(w) is in fact the ratio
between the maximal outperformance of the benchmark and the maximal
underperformance of the benchmark. This quantity does not depend on the
selected tail probabilities and the form of the continuous c.d.f. M(p).

At the other limit, suppose that δ → 0 and γ → 0. Then, using the
properties of the inverse c.d.f., we derive the ratio

GR0,0
α,β,M(w) = βM(α)

αM(β)
,

the properties of which are driven by the assumptions behind the c.d.f.
M(p).

The general ratio defined in formula (10.65) can be regarded as an
illustration of how the theory of probability metrics can be employed in
order to obtain general classes of performance measures encompassing
other performance measures as special cases. The properties of the general
performance measure obtained in this fashion can be studied using the
methods of the theory of probability metrics.
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Absolute constant, 119
Absolute moments metric, 75
Absolute risk aversion

decrease, 147, 152
formal measure, 146

Absolute value, removal, 306
Active portfolio return, 318

definition, 288
Active strategy

expectations, 287
usage, 289–290

Affine, 52n
Allegheny Energy Inc., stock, 301n
Allied Capital Corp., stock, 301n
Almost everywhere identity, 84–85
Alpha. See Portfolio

threshold. See Expected alpha
Alpha quantile (α-quantile), 16

obtaining. See Continuous probability
distributions

Alpha stable (α-stable), 121
Alpha-stable distributions. See Lévy

alpha-stable distributions
AMB Property Corp., stock, 301n
Analytic functions, 277
Approximation of Poisson, 103
Arbitrary random variable, 31
Arbitrary real numbers, limits, 53
Archimedean axiom, 162
Arrow, Kenneth, 140
Asset pricing theory, 17
Assets

continuous return (log-return),
assumption, 25

expected returns, 43
grouping constraints, portfolio manager

imposition, 275
prices

correspondence, 25–26
dependence structure, 25

random return, 250
return. See Expected assets return

covariances, 249
Asymmetric phenomenon, 172

Asymmetry, probability distribution function
descriptor, 13–14

Asymptotic neglibility, 117
condition, 131–132

holding, 132
Attraction, domain. See Domain of attraction
Auxiliary variables, vector, 261
AVaR. See Average VaR
Average active return, 344

calculation, STARR (usage), 318
Average compound metric, selection,

305–306
Average loss, calculation, 129–130
Average metric. See Distribution function
Average portfolio underperformance,

measurement, 306
Average realized active portfolio return, 329

comparison, 326
Average VaR (AVaR), 200, 207–214. See

also Return; Tail probability
absolute difference, upper bound

(possibility), 226
alternative, 230
appendix, 227–243
backtesting, 220–222

failure, 221
bibliography, 244
change, 240–241
coherent risk measure, example, 197–198
computation, 212. See also Portfolio

AVaR
contrast. See Expected tail loss
definition

connection, 212
consequence, 214n
quantile function, integral, 232–233

empirical observations, 215
estimation, 214–217

hybrid method, adaptation, 218
sample, usage, 223–224, 263

ETL, relationship, 237–238
examples, 226
fluctuation, boxplot diagrams, 220f
geometric interpretation, 212

361
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Average VaR (AVaR), 200, 207–214. See
also Return; Tail probability
(Continued)

geometric representation, 211f
introduction, 207–208
linearization, 352
minimization formula, 232–235
numbers, 219
optimization problem, 260
risk measure selection, 246
selection, 260
tail probability, 332
usage. See Stable distributions

Average VaR of order one, 231
Aversion coefficient, 269
Axiomatic construction, 73–74. See also

Probability
Axiomatic description, 178–179
Axioms, usage, 305–307

Backtesting. See Value-at-Risk
Backward-looking tracking error (ex post

tracking error), 289
Basel Committee on Banking Supervision,

172n–173n
amendments, release, 182

Bayes formula, 18
Benchmark

deviation, 86
portfolio, return, 319, 345

complication, 323
relationship. See Probability metrics
risk profile, matching, 289–290

Benchmark return
inverse distribution function, 303
reduction, 337f
risk-free rate, equivalence, 342
standard deviation, 299
variance, 314, 323

Benchmark tracking, 85
appendix, 304–315
bibliography, 315
numerical example, 300–304

Benchmark tracking problems, 300
equations, application, 312–313
introduction, 287–288
setting, 306

examples, 311–312
Bernoulli, Daniel, 142–143
Bernoulli, Jacob, 103
Bernoulli-distributed random variable, 3
Bernoulli distribution, 3

natural generalization, 4

Berry-Essen result, 105
Berry-Essen theorem, 119n
Binomial c.d.f., result, 111f
Binomial c.d.f.s. See Centered binomial

c.d.f.s.; Normalized binomial c.d.f.s.
Binomial coefficient, 106–107
Binomial distribution, 3–4

probabilistic properties, 109
usage, 107–108

Binomial path, path closeness, 111
Binomial trees, construction, 111
Birnbaum-Orlicz average distance, 96
Birnbaum-Orlicz compound average

distance, 98
Birnbaum-Orlicz compound metric, 86

selection, 305
usage. See Symmetry axiom

Birnbaum-Orlicz compound uniform
distance, 98

Birnbaum-Orlicz distance, definition, 102
Birnbaum-Orlicz metric, 126
Birnbaum-Orlicz quasisemimetric,

consideration, 311
Birnbaum-Orlicz uniform distance, 96
Black-Scholes equation, 104
Borel sets, 2n
Bounded interval, 235
Bounded risk spectra, 242
Box-and-whiskers diagram, 191n
Box-type constraints, 275
Boxplot, 191n

diagrams. See Average VaR; 99% VaR
Brownian motion, 104

Cambanis-Simons-Stout theorem, 100
applicability, 309
application, 100–101
Fréchet-Hoeffding inequality, relationship,

102
usage, 308–309

Capital Asset Pricing Model (CAPM), 340
Capital market line, 257f

generation, mean-variance analysis
(usage), 353–354

quasiconcave ratios, relationship,
353–356

Sharpe ratio, relationship, 340–343
Capital reserve, VaR equivalence, 182
CAPM. See Capital Asset Pricing Model
Cash invariance, 196
Cauchy-Bunyakovski-Schwarz inequality, 89
c.d.f. See Cumulative distribution function
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c.d.f.s. See Cumulative distribution
functions; Discrete cumulative
distribution functions

Centered binomial c.d.f.s., 113f
Centered moment of order, 15
Centered normal distribution, limit

distribution, 112–113
Centered portfolio return, distance

measurement, 295
Centered sum

denotation, 119, 133
distribution, convergence, 115, 117

Centering, procedure. See Random variables
Central absolute moments, 178–179
Central Limit Theorem (CLT), 4, 61. See

also Classical CLT; Generalized CLT;
Max-stable CLT

application. See Financial assets
conditions, 131–133
holding, 117
implication, 115
necessary conditions, 133
result, 113
special case, 103–104
statement, 10
sufficient conditions, 133

Central moment. See Second central moment
rescaling. See Fourth central moment;

Third central moment
Characteristic function, 121
Chebyshev’s inequality, 30–31

demonstration, 30
geometric illustration, 31f
usage, 175

Choice
axioms, 161–163
problem. See Portfolio
uncertainty, impact

appendix, 161–169
bibliography, 169–170
choice, 139
introduction, 139–141

Classical CLT, 105–119
general case, 112–118
regularity conditions, 115–117

Closed-form solution, obtaining, 279
Closeness, determination, 290
CLT. See Central Limit Theorem
Codomain, 41n
Coefficients, determination, 239
Coherent reward measure, 282
Coherent risk measures, 173–174

assumption, 267, 319n

axioms, 210
class, identification, 266
identification, 194–198
subfamily, dispersion measures

(connection), 268
usage, 232

Coins
independent tosses. See Unfair coins
pair, joint distributions. See Fair coins
tosses, experiment, 112–113
tossing experiment, 193

Commodities, state-contingent bundles
(consideration), 140

Common stocks
daily log-returns, observation, 123
equal shares, 180
inclusion. See Portfolio
price

consideration, 114
random variable, description, 155

return distribution, 76
description, random variables (usage),

78, 83
VaR, 79

Complementary slackness conditions, 55
Completeness, 162
Compound distances, 97–98
Compound functional, 92–93
Compound metrics, 62–63. See also

Birnbaum-Orlicz compound metric; Ky
Fan metric; p-average compound metric

category, 84–86
upper bound, 88
usage, 72–90

Compound r.d. metrics, 296
Concave function, 41
Concave order, equivalence. See

Rothschild-Stiglitz stochastic dominance
Concave utility function, 146
Concavity, assumption, 151
Condition of Lindeberg-Feller. See

Lindeberg-Feller
Conditional distribution, tail variance, 229
Conditional loss

c.d.f., inverse distribution function, 230
dispersion, 229
distributions, characteristics, 228–230
median, 213n

Conditional probability, 11
explanation, 18

Conditions, tail behavior (basis). See Spectral
risk measures
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Confidence intervals, 190–191. See also
Exceedances

calculation. See 95% VaR
Confidence levels

parameters, 182
VaRs (absolute differences, sum), 81–82

Consistency rule, 93
pair satisfaction, 93–94

Constrained optimization, 48–58. See also
Unconstrained optimization

Constraint set, 35
identification, 48
linear equalities/inequalities, 58

Constraints. See Box-type constraints
types, 274–276

Continuity condition, 162
Continuous c.d.f., assumption, 233
Continuous distribution

function, expectation, 233f
parameters, formulae, 15f

Continuous probability distributions, 5–12
alpha quantile, obtaining, 16n
formula, 15, 16

Continuous random variable, 5
zero value, 6–7

Contour lines. See Tangential contour line;
Two-dimensional quasiconvex function

representation, 39f
transformation. See Copula density

Convergence, induction, 98
Convex dispersion, 173
Convex functions, 40–46, 101

application. See Risk management
continuousness, 42
definition, illustration, 41f
differentiation, absence, 42
domain, 42
local minima, 42
properties, 42

satisfaction, 41
sum, 42–43

Convex optimization
problem, 284–285
subcases, 49

Convex problems, 35
Convex programming, 49

problem, 348–352
programs, form, 52–53
usage, 52–55

Convex reward measure, ratio, 356
Convex risk measures, 201–202

assumption, 319n
ratio, 356

Convex sublevel sets, 47f
Convexity, 201

assumption, 280
implication. See Optimization
property, 279–280, 351

Copula. See Maximal copula; Minimal
copula

etymology, 26
function, 27
indifference, 26
probability distribution, equivalence, 32
usage, advantages, 26

Copula density. See Two-dimensional
normal distribution

contour lines, transformation, 27–28
correspondence, 27
increase, 29

Copula functions, 25–30
mathematical perspective, 26

Correlation, 20–21
coefficient, bounds, 89
covariance, relationship, 21
matrix, equation, 250

Covariance, 20–21
denotation, 21
determination, 187
matrix. See Stocks; Variance-covariance

matrix
examination, 250
inverse, denotation, 342–343
representation, 93–94

Credit risk, 172–173
contrast, 11

Cumulative distribution function (c.d.f.),
5–8. See also Discrete cumulative
distribution functions; Normal
distribution

argument, 19
cross, 208
description, 143
formula, 12
inverse distribution function. See

Conditional loss
involvement, 147
n-th integral, 164
possibility, 120n
properties, 357–358
result. See Binomial c.d.f.
speed, 119
terms, expression, 236–237
usage, 27

Cumulative distribution functions (c.d.f.s.),
245
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Cumulative probability function, 7–8
Cumulative prospect theory, 140–141
Curve area, calculation, 7

de Moivre, Alexander (theorem), 103
de Moivre-Laplace, theorem, 103–104

adaptation, 110
local theorem, 109n
usage, 108–109

Debreu, Gérard, 140
Debt obligations, default (consideration),

2–3
Decision making (theory), uncertainty

(impact), 140
Decomposition, application, 268–269
Default

annualized probability, 3
intensity, 11
rate, 11

Degree of freedom, 12
Degree of homogeneity, impact, 303–304

examination, 301
Degrees. See Positive homogeneity of degrees
Densities

absolute difference, 127f
plots, 209f
uniform distance, 127–128
uniform metric

illustration, 82f
usage, 92–93, 126

Density function, 6. See also Probability
density function; t-distribution

argument, 19
denotation, 6
distances, measurement, 127

Density generator, 25
Density graphs. See Negatively skewed

distribution; Positively skewed
distribution

Dependence
local structure, 28–29
measure, 25

Derivatives, calculation, 45n. See also Partial
derivatives

Deviation. See Standard deviation
measures, 179, 198. See also Symmetric

deviation measures
characteristics. See Downside deviation

measure
r.d. metrics, relationship, 305

Die
c.d.f.s., plot, 67f
faces, probabilities, 63t

inverse c.d.f.s., plot, 68f
Differentiable function, minima/maxmia,

37–40
Discrete cumulative distribution functions

(c.d.f.s.), 66. See also Centered binomial
c.d.f.s.; Inverse c.d.f.s.; Normalized
binomial c.d.f.s.

absolute differences, 76f, 78f
deviation, 118
plot, 67f

Discrete distribution, parameters (formulae),
15f

Discrete probability distributions, 2–5
moment of order, calculation, 15

Discrete random variables
characteristics, 65–66
example, 63
payoff, 145

Dispersion, probability distribution function
descriptor, 13

Dispersion measures, 173, 349. See also
Downside dispersion measure 177–178;
Upside dispersion measure

axiomatic introduction, 333
contrast. See Risk
relationship. See Probability metrics; Risk

measures
Distances, measurement, 293. See also

Centered portfolio return
characteristics, sets, 63–64
discrete case, 62–72

Distribution
convergence, metrizing, 134n
functional, 174n
mean, 172

Distribution function, 7, 64–68. See also
Cumulative distribution function;
Normal distributions; Probability;
Two-dimensional random variable

coincidence, 84
consideration. See n-dimensional random

vector
continuousness, absence, 8
differentiation, absence, 8
first-order partial derivatives, 19
first-order Taylor series approximation, 83n
illustration, 298f, 299f
inverse, 183
involvement, 84
jump, existence, 9f
Lp-metrics, 79, 126
probability, 159f
simple metrics, 75
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space, average metric, 80–81
Diversification

effect, recognition, 185–186
variance, degree (measurement), 258

Domain, 41n. See also Codomain
Domain of attraction, 10

property, 104n
Downside deviation measure, characteristics,

180
Dual stochastic order, 161
Ducats, payoff, 142n

Economic agent
preference, 144
preference relation/order, 144

Efficient frontier. See Mean-risk efficient
frontier; Mean-variance efficient frontier

concave shape, 265–266
correspondence, 252
description, 258
generation, minimal tracking error

problem (usage), 291f
illustration, 263, 290
linear section, nonunique tangent

portfolios, 347f
plot, 264f
portfolios, selection, 265f
representation, standard deviation (usage),

253–254
tangent portfolio

mean-shifted risk plane, 322f
relationship, 321f

Efficient portfolios, 320
relationship. See Reward-to-risk ratio;

Reward-to-variability ratio
set, 262

Efficient sets, 154
Elements. See Random elements
Elliptical distributions, 23–25. See also

n-dimensional random vector
EMC Corp/Massachusetts, stock, 301n
Empirical inverse distribution functions, 314
Empirical r.d. metric, simplification,

314–315
Engineer’s metric, 75
Enhanced indexing, 290
Equality constraints

defining, 53
zero value, 49

Equally weighted portfolio
inverse distribution function, 302f
usage, 301

Equity portfolios

consideration, 293–294
strategies, classification, 290n

Equivalence, meaning, 91–92
ETL. See Expected tail loss
Euclidean metric

appearance, 91
example, 90

Event. See Rare events
dependence. See Extreme events
joint probability, 18
probability, 6f, 20. See also Random

variable
equivalence, 106

Ex ante analysis, 289
Ex ante forward-looking tracking error,

289–290
Ex post analysis, 288–289. See also

Strategies performance
Ex post tracking error. See

Backward-looking tracking error
Exceedances, confidence interval, 193
Excess kurtosis, 15
Expectations bounded coherent risk

measure, decomposition, 327
Expected alpha

lower bound, imposition, 295–296
threshold, 290

Expected assets return, 248
Expected payoff, 142

increase, 148–149
Expected portfolio return, 248

equation, 250
impact, 267–268
lower bound, 259
representation, 278

Expected returns. See Portfolio; Stocks
constraint, variance, 252
portfolio. See Maximum expected return

portfolio
variances, equivalence, 74

Expected risks/rewards, balancing, 35
Expected shortfall, 209
Expected tail loss (ETL), 228. See also Tail

probability
AVaR, contrast, 236–241
graphs, 240f
natural estimator, 238–239
reduction, 241
relationship. See Average VaR
step function. See Tail probability

Expected utility
maximization problem, relationship. See

Mean-variance analysis
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representation, uniqueness, 165
theory, 139–140

usage, 141–147
Expected value, 14
Exponential distribution, 10–11

centered sum
c.d.f.s., 116f
density functions, 116f

convergence, 115
normalized sum

c.d.f.s., 116f
density functions, 116f

Exponential smoothing algorithm, 188
Exponential utility function, 147
Exponentially declining weights, attachment.

See Historical returns
Extrema, 37

characterization, 37–38
Extreme events, dependence, 26
Extreme value distribution, 12. See also

Fréchet-type extreme value distribution;
Generalized extreme value distribution;
Gumbel-type extreme value distribution;
Weibull-type extreme value distribution

Failure rate, 11
function, 167–168

Fair coins (pair)
heads, occurrence (probabilities), 108f,

108t
independent tosses, 111f
indistinguishability, 69
joint distributions, 68–69
one-dimensional distributions, metric

(application), 71–72
outcomes, joint probabilities, 69t, 71t

maximal metric, 71
minimal metric, yield, 70t

Fat-tailed distribution, application details,
123n

Feasible points, set. See Set of feasible points
Feasible portfolios

portfolio return, 346
set, 275–276, 278
zero/negative risk, 324

Feasible set, tangential contour line, 57f
Feasible set of portfolios, convexity, 324n
Feasible solutions, set, 35
Financial assets

consideration, 248
modeling

CLT, application, 117–118
stable distributions, usage, 122–124

Financial institutions, 173
Financial variables, summation (meaning),

113–115
Finite mathematical expectation, 95
First difference pseudomoment, 80–81
First-order condition

representation, 38
solution. See Unconstrained optimization
sufficiency, 40

First-order partial derivatives. See
Distribution function

First-order stochastic dominance (FSD), 141,
148–149

illustration, 149f
order, 154, 157

characterization, 200
consideration, 160

First-order Taylor series approximation. See
Distribution function

First quartile, 16
Fisher’s kurtosis, 15
Fisher’s skewness, 14–15
Ford Motor Company, survival (condition),

11
40% tail probability, 263
Forward-looking tracking error. See

Medium-sized forward-looking tracking
error; Small-sized forward-looking
tracking error

Foundation of Statistics, The (Savage), 140
Fourier transform, 120n
Fourth central moment, rescaling, 14
Fractional problem, solution, 348
Fractional program, 345–346. See also

Quasiconcave fractional program
Fréchet-Hoeffding inequality, 32

distribution function, relationship,
101–102

relationship, 102
two-dimensional case, 32
upper bound, 309
usage, 308–309

Fréchet lower bound, 32
Fréchet-type extreme value distribution, 12
Fréchet upper bound, 32
Freedom, degree. See Degree of freedom
FSD. See First-order stochastic dominance
Function

mathematical rule, 41n
real number, assignation, 41n

Function gradient, 38
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Functional. See Compound functional;
Distribution; Maximal functionals;
Minimal functionals; Translation
invariant functional; Weakly regular
functional

definition, 41n, 73n
equations, usage, 297

generation, deviation measure (usage),
296

Functional Limit Theorem, 104
Functional limit theorems, 61
Funding cost, 77
Future return, probability, 18

Generalized CLT, 61, 104
context, 124
knowledge, 222
limit distributions, 123
problems, study, 125
stable distributions, 120–122
usage, 120–124

Generalized extreme value distribution, 12
Generalized Rachev ratio, 357–358
Gini-type ratio, 356
Glivenko-Cantelli theorem, 241n
Global minimum. See Objective function

attaining, 36
minimal value, 47

Global minimum risk portfolio, 263
impact, 272
solution, 267–268
value, coinciding, 269n

Global minimum variance portfolio
obtaining, 252
portfolio, calculation, 255

Government security earning return, 197
Gradient. See Zero gradient

components, computation, 45n
Gumbel-type extreme value distribution, 12

H-average compound distance, 97
Hazard rate, 11

function, 167–168
Heads

occurrence, 106
probability, 108t

Higher-order AVaR, 213
monotonic sequence, 232
notion, 227–228
usage, 230–232

Higher-order tail moments, 228–229
Hill estimator, 222

Historical method. See Portfolio AVaR;
Portfolio VaR

Historical returns, exponentially declining
weights (attachment), 188

Homogeneity, impact (examination). See
Degree of homogeneity

Homogeneity property, 125
financial interpretation, 125

Hybrid method. See Portfolio AVaR;
Portfolio VaR

Hypercube. See Unit hypercube

Ideal metrics, 105
finiteness, guarantee, 134
identification, 124–125
interpretations, 128–131
remarks, 133–136

Ideal probability metrics, 103
appendix, 131–136
bibliography, 136–137
introduction, 103–105

Identity axiom, 125
Identity matrix, denotation, 330
Identity property, 91

identification, 91
Independence axiom, 162
Independent and identically distributed

(i.i.d.). See Summands
infinite variance random variables, 104
observations, 188
random variables, convergence, 120

Independent distribution. See Random
variable

Independent identically distributed (i.i.d.),
61

Independent tosses, 106, 107
Index of stability. See Stability
Indexing. See Enhanced indexing; Passive

strategy
Indicator-type events, number, 194
Individuals, preferences (von

Neumann-Morgenstern
characterization), 141

Inequality
change, 242
constraints, 340

defining, 53
implication, 119
satisfaction, 239

Infinite variance random variables. See
Independent and identically distributed
infinite variance random variables

Initial investment, size, 195
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Integer-valued random variables. See Positive
integer-valued random variables

Integral calculus, 7
Integration range, 165
Interarrival times, 11
Interquartile range, 178–179

identification, 191n
Interval

probabilities, 176f
splitting, 114
standard normal density, 176f

Invariance, 201
property, 196–198

usage, 282
Invariance Principle, 104
Inverse c.d.f., properties (usage), 358
Inverse c.d.f.s., 67–68. See also Random

variables
absolute differences, 80f

plot, 81f
graph, 211f

area, closure, 233
plot, 68f
terms, expression, 236–237

Inverse distribution functions. See
Conditional loss

comparison, 301–303
illustration, 298f, 299f
Lp-metrics, 80–82, 126
uniform metric

illustration, 80f
usage, 79–80

Investments
opportunities, sets (distributional

properties), 18
returns, description, 129

Investors
preferences, 145–146
utility function

consistency, 255
usage, 155

Ito processes, theory, 104

Joint distribution, 68–72
knowledge, 69
maximal metric, achievement, 71

Joint normal distribution, 312–313
hypothesis, 312

Joint probabilities
consideration, 86n
replacement, 309

Joint probability distributions, 17–30
definition, 19

JP Morgan, contribution, 182

k-th derivative, denotation, 166
Kahneman, Daniel, 140–141
Kantorovich distance, 95
Kantorovich metric, 78–79. See also

Weighted Kantorovich metric
definition, 126

usage, 226
illustration, 78f
interpretation, 79
protominimal, 88
selection, 160
usage, 124–125

Karush-Kuhn-Tucker (KKT) conditions, 49
analytic method, 54–55
necessity, 53
reduction, 55

Karush-Kuhn-Tucker (KKT) theorem, 283
Kolmogorov metric, 76–77, 83

asymmetric version, 311
background, 119n
conversion, 79
definition, 126
illustration, 76f
insensitivity, 77
maximum deviation, 77
obtaining, 96
selection, 159f

Kolmogorov-Rachev metric, 136
Kolmogorov-Smirnov test, 194
Kolmogorov test, 194
Kurtosis, 14. See also Excess kurtosis;

Fisher’s kurtosis; Pearson’s kurtosis
Ky Fan distance, 97–98
Ky Fan metric, 85–86

parametric family, 97

l1 (X,Y) metric, 81–82
Lagrange, Joseph-Louis, 255n
Lagrange multipliers, 49–52

method, 50
gradient condition, 55

parameter, 255n
real numbers, equivalence, 50
steps, 51–52
usage, 279

Lagrangian function, 51
Lapace distributions, 24
Law of Large Numbers, 17

usage, 103–104
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Lebesgue spaces of functions, denotation,
241–242

Level curves, concept, 24n
Leveraged portfolio, 341
Lévy, Paul, 104

work, 120n
Lévy alpha-stable distributions, 104
Lévy metric, 77–78. See also Parametrized

Lévy metric
parametric extension, 96

Lévy stable, 120, 120n
distributions, tails (usage), 221

Liability-driven indexes, development,
317

Limit cases. See Relative deviation metric
Limit distribution. See Centered normal

distribution; Generalized CLT
distance, estimation, 118–119

Limit relation, sums truth, 113
Limit theorems

appeal. See Probability
merits, 105
usefulness, 104

Limiting maxstable distribution, 104
Lindeberg-Feller, condition, 131
Linear function, surface, 57f
Linear problems, 35

convex problem, reduction, 280
obtaining, 215–216

Linear programming, 49. See also
Two-dimensional linear programming

Linear programming problems, 55–57
derivation, 329
identification, 261–262
restrictions, 352–353

Linear property, 162
Linear Technology Corp., stock, 301n
Linear utility function, 146
Linearized STARR (LSTARR), 328
Liquidity considerations, 247
Local dependence structure. See

Multidimensional random variable
Local extrema, points, 38
Local maxima, 38

function, plot, 39f
saddle point, 39f

Local minima. See Convex functions
Local minimum, 36. See also Objective

function
global tendencies, absence, 37

Location
invariance, 294–295

property, insufficiency, 298–299

parameter, 9, 121
mean, equivalence, 187

probability distribution function
descriptor, 13

Location-scale invariance, 9. See also
Normal distribution

Logarithmic utility function, 146–147
graph, 153f

Logistic distributions, 24
London Interbank Offered Rate (LIBOR),

percentage (change), 1
event, 2

Long-only portfolio, construction, 196–197
Loss

description, 218n
optimal solution, inverse distribution

function, 303
distribution

assumption, 222
median, 213n

realization, 18
thresholds, 79

Lottery. See St. Petersburg Paradox
discussion, 143
individual (preference), von

Neumann-Morgenstern numerical
representation, 143

interpretation. See von
Neumann-Morgenstern theory

Lower partial moment
selected order, 331
usage, 130–131

Lower partial moment of order, 129–130
Lower-range-dominated deviation measures,

198
Lower tail probability, 333
Lp-metrics. See Distribution function; Inverse

distribution functions
extension, 95

LRR. See Reward-to-risk ratio
LSTARR. See Linearized STARR
Lyapunov’s conditions, 104

M-R. See Mean-risk
M-V. See Mean-variance
MAD. See Mean absolute deviation
Mapping, notation, 295
Marginal distributions, 19–20

function, 27
Marginals, 27. See also Zero-mean normal

marginals
Market

crashes, 124
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portfolio, 256
location, 257
risky assets, 340

risk, 172–173
variables, 172–173

Mathematical tractability/convenience,
gain, 5

MATLAB, usage, 235, 278, 280, 314
Matrix. See Nonsparse matrix; Sparse matrix

determinant, denotation, 22
notation, usage, 187

Max-stable CLT, 61
Maxima. See Differentiable function; Local

maxima
Maximal absolute difference, calculation, 66
Maximal copula, 32
Maximal distance, 70–71

explicit forms, 101
probability metric, 88
usage, 99–102

Maximal functionals, 100
Maximal metric

achievement. See Joint distribution
illustration, 89
obtaining, process, 89
usage, 72, 86–90

Maximal RR ratio portfolio, 321–322
Maximum expected return portfolio,

265–266
Mean absolute deviation (MAD), 86

identification, 176–177
nonnegative number, 177

Mean-deviation efficient frontier, tangent
portfolio (relationship), 337f

Mean-deviation efficient portfolio,
containing, 273

Mean-deviation optimal portfolios,
sub-optimal characteristic, 272–273

Mean-deviation plane, efficient portfolios,
271f

Mean-risk (M-R) analysis, 258–274
drawback, 268
principle, basis, 259
SSD, relationship, 266–267

Mean-risk (M-R) efficient frontier, 262–266
additions, 270
containing, 273
extension, 269–271
obtaining, 263–265
optimal portfolio coordinates, 272f
portfolios, addition, 271f
shape, 264–266

Mean-risk (M-R) efficient portfolios, 336

Mean-risk (M-R) optimization problem,
259–262

M-V optimization problem, contrast, 260
Mean-risk (M-R) plane

efficient frontier, 264f, 270f
portfolios, plotting, 271–272

Mean-risk (M-R) problems, solutions,
279–281

Mean-shifted risk plane, 322
Mean-standard deviation plane, 256
Mean-variance (M-V) analysis, 245–246

drawback, 268
expected utility maximization problem,

relationship, 277
inconsistency. See Second-order stochastic

dominance
SSD, relationship, 254–256
usage, 247–258

Mean-variance (M-V) efficient frontier,
251–254

illustration, 257f
plots, 252, 253f
set, change, 256–257

Mean-variance (M-V) optimization
problems, 49

contrast. See Mean-risk optimization
problem

type, 342
usage, 247–251

Mean-variance (M-V) plane, efficient
frontier, 253f

Mean-variance (M-V) problems, solutions,
278–279

Means of something, 17
Median tail loss (MTL), 230
Medium-sized forward-looking tracking

error, 290
Metrics. See Absolute moments metric;

Engineer’s metric; Kantorovich metric;
Kolmogorov metric; Lévy metric;
Smoothing metrics; Total variation
metric; Uniform metric

construction, 68–69
function, notion, 90
indication, 128
selection, 93, 135
space, 90–91

example, 91
usage, 73

Microsoft Corp., stock, 262–263
funds, loss, 2
percentage change, 1

Minima. See Differentiable function
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Minimal copula, 32
Minimal distances, 99–102

explicit forms, 101
mathematical proof, 99n

Minimal functionals, 100
Minimal metric, 70–71

definition, 88
illustration, 89
importance, 87
obtaining, process, 89
relationship, 71–72. See also Minimal

metric; Simple metrics
usage, 72, 86–90
zero distance, obtaining, 71

Minimal r.d. metrics, 307–310
construction, 308–309
determination, 309

Minimal standard deviation, portfolio yield,
339

Minimal tracking error problem
form, 290
restatement, 291–292
usage. See Efficient frontier

Minimization formula. See Average VaR
appeal, 215
objective, 234–235
representation, 212

Minimum acceptable return level, 329
Minkowski inequality, 351
Modern portfolio theory (MPT), 246
Moment-based conditions, 241–242

summarization, 242
Moment of order, 15. See also Tails

calculation. See Discrete probability
distributions

centering. See Centered moment of order
Moments, 14. See also Sample moments;

Second moment; Statistical moments;
True moments

functions, 99–100
metric. See Absolute moments metric
rescaling. See Fourth central moment

Monetary loss, 171
Monotonicity, 201

property, 194–195
usage, 281

Monte Carlo method. See Portfolio AVaR;
Portfolio VaR

artifact, 218
merits, 191–192
steps, 189

Monthly log-return, 114
Morgenstern, Oskar, 139

MPT. See Modern portfolio theory
MTL. See Median tail loss
Multidimensional random variable, local

dependence structure, 29–30
Multivariate normal assumption, 216–217
Multivariate normal distribution, 21–23

covariance matrix, usage, 313
density function, representation, 22
example, 24
mean/covariance, specification, 254
random vector, joint distribution, 22

Multivariate probability distribution,
function. See Random vector

Multivariate t-distribution, 24

n-dimensional random vector
distribution function, consideration,

31–32
elliptical distribution, 24
spherical distribution, 24

n-dimensional space, points/gradients, 38
n-dimensional vector space, 91
n-th order stochastic dominance, 157
n × n symmetric matrix, 43
Negative probabilities, implication, 7n
Negative semistandard deviation, definition,

177
Negative skewness, measurement, 13–14
Negatively skewed distribution, density

graphs, 14f
95% confidence interval, calculation,

190t
95% VaR, equality, 211f
99% AVaR. See Standard normal

distribution
fluctuations, 219

99% VaR. See Standard normal distribution
boxplot diagrams, 191f

Non-Gaussian stable laws, 120n
Non-random quantity, 282
Nonconvex quadratic function, 43
Nondecreasing property, 145–146
Nondegenerate limit, obtaining, 112
Nonlinear equality, 50
Nonnegative convex function, 100
Nonnegative portfolio weights, 48
Nonnegative third derivative, 152
Nonparametric method, 188
Nonquasiconcave performance measures,

356–357
Nonrandom monthly return, 184
Nonsatiable investors, 141, 145

preference, 148
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representation, 146, 156f
risk aversion, 156

Nonsatiable risk-averse investors
concern, 254
preference, 149–150

Nonsparse matrix, 280
Nonunique tangent portfolios. See Efficient

frontier
Nonzero probability, 8

states, 70
Normal distribution, 8–10. See also

Multivariate normal distribution
adoption, 110
binomial approximation, 105–111
c.d.f., 110
class, 9
closed-form expressions, 213
covariance matrix, usage, 314
density, 109
explicit form, 313
location-scale invariance, 9
mean/variance, 110
probability density function. See

Two-dimensional normal distribution
summation stability, 10
usage, 213
variance, equivalence, 133

Normal distributions, distribution functions,
159f

Normalized binomial c.d.f.s., 113f
Normalized sum

denotation, 119, 133
distribution, convergence, 115, 117

Normalizing, procedure. See Random
variables

Normative theory, 141
Numerical integration, 235

Objective function, 35. See also Quadratic
objective function

contour lines, 53
global minimum, 36
local minimum, 36–37
quadratic function, equivalence, 50
values, 51f
variable, 48

One-dimensional distributions, fixed
position, 89

One-dimensional function,
minimization/maximization
(relationship), 37f

One-dimensional probabilities, nonchange,
70

One-dimensional random variables, 73
One-sided variability ratio, 318

usage, 331–332
Operational risk, 172–173
Optimal portfolio, 35

appearance, 269
appendix, 274–285
bibliography, 285
classification, 273f
compositions, 264f, 270f
generation, 273
introduction, 245–247
inverse distribution function, 302f
position, indication, 253f
problem. See Reward-dispersion optimal

portfolio problem
benchmark-tracking type, 320
STARR, basis, 332

theory, 58
Optimal ratio problem, example, 350
Optimal RR ratio problem

analysis, 355
benchmark return, 335
geometric reasoning, 336

Optimality, condition (providing), 52
Optimization, 35. See also Constrained

optimization; Unconstrained
optimization

bibliography, 59–60
introduction, 35–36
solutions, statistical estimation-related

problems, 288
theory, convexity (implication), 42

Optimization problems. See Mean-risk
optimization problem

example, 249–250
r.d. metrics, involvement, 304
result, 261–262
simplification, 334–335
solution, 216
statement, 249–250
structure, simplification, 280
types, distinction, 48–49

Option contract, consideration, 2–3
Option payments, S&P500 index value

(impact), 3t
Option pricing, binomial approach, 111
Oracle Corp., stock, 262–263, 301n
Order

absolute moment, 134
lower partial moment. See Lower partial

moment of order
moment. See Moment of order
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Order (Continued)
stochastic dominance relation, 163–164

Orlicz’s condition, 95
Outcome, 2

joint probabilities. See Fair coins
subjective probabilities, 140
unions, 66
value, 65

Outperformance, tracking error treatment,
291

p-average compound metric, 85, 98
minimal metrics, relationship, 87–88

p-average metric, 97, 126
p-tangent portfolio, 321
Parameters

formulae. See Continuous distribution;
Discrete distribution

hat, symbol, 17n
Parametric bootstrap, 191
Parametric model, assumption, 313–314
Parametrized Lévy metric, 96–97
Pareto distribution, 243
Pareto power-type decay, 120n
Partial derivatives, calculation, 52
Passive portfolio construction strategies, 225
Passive strategy (indexing), 287
Path-dependent derivatives, pricing, 111
Payoff

contrast. See Return
distributions

description, random variables (usage),
238

quantile, 185
space, 156

level, 152
space, 156f
utility, consideration, 142

Peakedness, measurement, 14
Pearson’s kurtosis, 15
Pearson’s skewness, 15
Percentage returns, construction, 182
Percentiles, 16
Performance

improvement, 327
level, absolute deviations, 130

Performance band, width (decrease), 86
Performance measures. See Nonquasiconcave

performance measures; Quasiconcave
performance measures

appendix, 343–358
bibliography, 359
introduction, 217–218

Poisson approximation. See Approximation
of Poisson

Poisson-distributed random variable, 4–5
Poisson distribution, 3, 4–5

relationship, 11
Polyhedral feasible set, surface, 57f
Polyhedral set. See Unbounded polyhedral set

formation, 56
Polyhedral set of feasible of points, 56
Portfolio. See Optimal portfolio

alpha, 288–289
equivalence, 289

assets, return, 345
AVaR calculation, 261
cash conversion, 128
c.d.f.s., 135
centered random return, 297–298
choice problem, 154

one-period problem, treatment, 247
common stocks, inclusion, 186
composition

assumption, 254
quantity, independence, 187–188

construction, 197
strategies. See Passive portfolio

construction strategies
expected return, 186–187
investment decision, 248
loss, relationship, 310–311
managers, investment style, 139
maximal ratio, yield, 349
optimal ratio, yield, 346–347
outperformance/underperformance,

minimization, 306–307
past performance, 319
processing, 192
profits, consideration, 154–155
random wealth, 294
realized monthly returns, example, 338
risk-free asset, inclusion, 256
standard deviation, 339
value, 195

decrease, 183
weights. See Nonnegative portfolio

weights
convex function, 319–320
vector, 187

Portfolio AVaR, computation, 216–220
historical method, 217
hybrid method, 217–218
Monte Carlo method, 218–220

Portfolio returns, 184. See also Expected
portfolio return
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change, 293–294
consideration, 154–155
distribution, 191–192

distance, 225–226
joint distribution, 334
observation, 214n
standard deviation, 299
upper bound, 247
variance, 248–249

equivalence, 250
Portfolio risk

calculation, 189
estimation, 192
minimization, 171–172
upper bound, 259, 262

identification, 283
Portfolio selection theory, 18

elliptical distributions, properties, 23–24
Portfolio VaR, 185

computation, 186–192
historical method, 188
hybrid method, 188–189
Monte Carlo method, 189–192
RiskMetrics Group approach, 186–188

Positive homogeneity, 202
axiom, 202
consequence, 235–236
property, 195

implication, 196
usage, 282, 284

Positive homogeneity of degrees, 293–294
Positive integer-valued random variables, 67
Positive linear transform, 155n
Positive random variable, 179
Positive semidefinite matrix, 44
Positive semistandard deviation, definition,

177
Positive shift, 284

property, replacement, 179
Positive skewness, measurement, 14
Positively skewed distribution, density

graphs, 14f
Positivity, 284
Power utility function, 147
Preference order, representation, 162
Preference relation/order. See Economic

agent
Primary distances, 95
Primary metrics, 62–63

category, 74–75
usage, 72–90

Primary r.d. metrics, 296
Probabilistic inequalities, 30–32

Probability. See Event; Nonzero probability
axiomatic framework, 305
basic concepts, 2
concepts, 1

bibliography, 33
convergence. See Real-valued random

variables
differences, 78–79
distances, 91, 94

examples, 94–98
function. See Cumulative probability

function
introduction, 1
perspective, 2n
quantity, ratio, 11
quasidistance, 94
quasimetric, 94
quasisemidistance, 94
quasisemimetric, 94
semidistance, 94
semimetric, 94
space, consideration, 64
theory, limit theorems (appeal), 114–115

Probability density function, 5–8. See also
Two-dimensional normal distribution

level lines. See Two-dimensional
probability density function

plot, 22
possibility, 120n
probability distribution, mathematical

connection, 8
providing, 6

Probability distribution. See Continuous
probability distributions; Joint
probability distributions

assumption, 184–185
c.d.f., 163
characterization, 8
function, 5–8

description, 13
skewness, distribution, 13

symmetry/asymmetry, 13–14
Probability metrics, 61, 73, 94, 118n

appendix, 90–102
application, 294n
axiomatic construction, 72, 73–74

remarks, 91–94
background, 119n
benchmark, relationship, 292–296
bibliography, 102
classes, identification, 61–62
classes, relationship, 86–87
consideration, 306–307
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Probability metrics, 61, 73, 94, 118n
(Continued)

construction, 124–131
definition, 125–126
deviation measures, relationship, 201–205
dispersion measures, relationship,

180–181
equations, demonstration, 203, 204
examples, 126–131
ideal metric of order, 134
introduction, 61–62
measurements, 75–76
notion, 173
performance measures, relationship,

357–358
quantification, 158–159
relationship. See Risk measures
selection, 225

suitability, 160
stochastic dominance, relationship,

157–161
theory, 62, 87, 357
theory, application potential, 292–293

Prospect, domination, 141
Protominimal, 88. See also Kantorovich

metric; Simple metric

Quadratic expected utilities, maximization,
255

Quadratic function, 43. See also Nonconvex
quadratic function

equivalence. See Objective function
Quadratic objective function, 58
Quadratic problems, 35
Quadratic programming, 49

explanation, 57–58
Quadratic programming problems, 57–58

formulation, 278n
identification, 278–279
optimization problem, equivalence,

339–340
Quadratic utility function, 146

description, accuracy, 246
set, denotation, 254–255
theoretic plausibility, 274
usage, 255

Quantiles, 13–17. See also Alpha quantile
probability distribution function

descriptor, 16
Quantitative element, addition, 158
Quasi-antitone functions, 100–101

verification, 101
Quasiconcave fractional program, 347–348

Quasiconcave performance measures,
345–353

Quasiconcave ratios, relationship. See
Capital market line

Quasiconvex functions, 46–48
properties, 46–47

Quasidistance. See Probability
Quasimetrics, 91. See also Probability
Quasisemidistance. See Probability
Quasisemimetric. See Probability

consideration. See Birnbaum-Orlicz
quasisemimetric

max function, usage, 306

R-R. See Reward-risk
R-ratio. See Rachev ratio
Rachev ideal metric, 129–131

concentration, 130
suitability, 160–161

Rachev metric. See Kolmogorov-Rachev
metric

Rachev metric, ideal of order, 135–136
Rachev ratio (R-ratio), 318. See also

Generalized Rachev ratio
global maximum, finding, 356
usage, 332–333

Random elements, 62
Random loss, description, 167
Random payoff, 194

interpretation, 183
Random percentage returns, 195
Random profit, VaR, 183
Random quantities, distance (measurement),

292
Random returns, 195

description, 183
Random variables. See Arbitrary random

variable; Bernoulli-distributed random
variable; Continuous random variable;
Discrete probability distributions;
Poisson-distributed random variable

behavior, 241–242
c.d.f., 237f
c.d.f.s. plot, 159
centering, procedure, 112
confidence level, 183f
consideration, 174
densities, 83–84, 167
dependence, 20, 87
dependencies, 308
description. See Common stocks;

Symmetric random variables
distance, 63
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calculation, 69
distribution, 120n

function, 308
event, probability, 7f
example. See Discrete random variables
finite moments, 75
function, coincidence, 65–66
independent distribution, 20
inequality, 298
infinite moments, 277
inverse c.d.f., 210

illustration, 237f
mathematical definition, 1n
normalizing, procedure, 112
objects, 73n
one-dimensional observations, 261
pair, joint distribution, 69–70
probability

convergence. See Real-valued random
variables

distribution. See Single random variable
real-valued number, assignation, 194
second lower partial moment, 153
subspace. See Zero-mean random variables
sum, variance, 21
tails, 167
technical condition, 100
treatment, 86
uncorrelation. See Uncorrelated random

variables
Random vector

joint distribution. See Multivariate normal
distribution

multivariate probability distribution,
function, 26

usage, 22
Rare events, 4n
r.d. See Relative deviation
Real-valued number, assignation, 194
Real-valued random variables, 210

probability, convergence, 85
Rectangle area, geometric interpretation, 31
Regularity property, 126

financial interpretation, 126
Relative deviation (r.d.) metric, 288. See also

Minimal r.d. metrics
asymmetry, 312
computation, practice, 311–315
definition, 296
estimation, sample (usage), 313–315
examples, 296–300
explicit calculation, possibility, 299
functional, 297

identification, 292
limit cases, 310–311
relationship. See Deviation
simplification. See Empirical r.d. metric
zero value, assumption, 298

Return
description, random variable (usage), 169
distributions

AVaR, 211f
description, random variables (usage),

238
payoff, contrast, 154–157, 164–166
portolio. See Maximum expected return

portfolio
stochastic dominance, contrast, 164–166

Reward-deviation optimization problem,
285

Reward-dispersion optimal portfolio
problem, 283–284

Reward-dispersion optimization problem,
285

Reward measure, 281
calculation, 319
usage, 345

Reward-risk (R-R) analysis, 281–285
optimal portfolio problem, 354
principles, formulation, 282

Reward-risk (R-R) efficient frontier,
283–284

Reward-risk (R-R) model, 247
Reward-to-risk (RR) ratio, 317–318

application, limitation, 324–325
efficient portfolios, relationship, 320–323
linearized form (LRR), 325
portfolio. See Maximal RR ratio portfolio
simplification, 319
usage, 318–333

Reward-to-variability (RV) ratio, 317
efficient portfolios, relationship, 335–337

Right-hand side inequalities, unification,
242n

Risk. See Shifted risk
aversion function, 231
aversion parameter, 255
calculation, 319
chances, 279
difference, 171
features, 172
measures

coherence. See Coherent risk measures
dispersion measures, contrast, 267–274

plane. See Mean-shifted risk plane
proxy, 246
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Risk. See Shifted risk (Continued)
spectrum, 222–223. See also Bounded risk

spectra
inverse, 243

uncertainty, synonym, 171–172
Risk, uncertainty (relationship), 171

bibliography, 205
introduction, 171–174

Risk-averse coefficiency, 325
Risk-averse investors, 141, 149

class, 150–151
portfolio preference, 266
preference, 158
prospect, preference, 151–152
representation, 156f

Risk-averse portfolio manager,
concentration avoidance, 275

Risk-aversion function, 222–223
choices, 224
examples, 223f
graph, 223
inverse, 243
properties, 223
satisfaction, 241

Risk-aversion property, 152
Risk-free asset

addition, 256–258, 353–354
combination, 340
inclusion. See Portfolio
variance, zero level, 256
weight, 341

Risk-free rate
level, 197
vertical axis representation, 258

Risk management, convex functions
(application), 40

Risk measures, 173. See also Coherent risk
measures; Spectral risk measures

absence, 180
dispersion measures, relationship,

198–199
examples, 181
interpretation, 196
probability metrics, relationship,

224–227
stochastic orders, relationship, 199–200
usage, 79, 181–198

Risk-neutral investors, 146
Risk/return, optimal trade-off, 258–259
RiskMetrics Group, 182

approach, 190. See also Portfolio VaR
Risky assets

investment, 354–355

portfolio, 257
weight, expression, 341

Rothschild-Stiglitz dominance, 129
Rothschild-Stiglitz stochastic dominance

(RSD), 150–151
concave order, equivalence, 150n
order, quantification, 160

RR. See Reward-to-risk
RSD. See Rothschild-Stiglitz stochastic

dominance
RV. See Reward-to-variability

Saddle point, 38. See also Local maxima
Sample moments, 16–17

calculation, 17t
estimates, 16

Sample space, 2
Sand Technology, Inc., stock, 301n
Savage, Leonard, 140
Scale parameter, 9, 121
Scaled random variables, 127f

densities, 127
Scaled tracking error, 312–313
Scenario

generation, 189
VaR basis, 191

Second
Second central moment, 14
Second derivatives, matrix, 39–40
Second lower partial moment. See Random

variables
Second moment, 64
Second-order stochastic dominance (SSD),

141, 149–150
condition, 152–153

illustration, 151f
consistency, 169, 266
example, 199
M-V analysis, inconsistency, 246
order, consistency, 200
relationship. See Mean-risk analysis;

Mean-variance analysis
RR ratio, consistency, 325
TSD, relationship, 153

Second quartile, 16
Semidistance. See Probability
Semimetrics, 91. See also Probability
Semistandard deviation, 177–178

definition. See Negative semistandard
deviation; Positive semistandard
deviation

Set of feasible points, 35. See also Polyhedral
set of feasible of points
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boundary, 53–54
correspondence, 54f
identification, 48

Set of feasible portfolios, 293
Set of feasible solutions, 35
Shape parameter, 9
Sharpe ratio, 317

ex post analysis, 338
future performance, 339
introduction, 338
relationship. See Capital market line
usage, 337–340

Shifted risk, 322
Short-hand notation, usage, 109
Sigma-field (sigma-algebra), 2n
Simple distance, 95–97
Simple metrics, 62–63

category, 75–84
minimal metrics, relationship, 87–88
protominimals, 88
usage, 72–90

Simple probability distances, 99–100
Simple r.d. metrics, 296
Simplex method, 56
Single random variable, probability

distribution, 18
Skewness, 13–14. See also Fisher’s skewness;

Pearson’s skewness; Probability
measurement. See Negative skewness;

Positive skewness
parameter, 121

Small-sized forward-looking tracking error,
290

Smoothing metrics, 136
Smoothly truncated stable distributions,

123–124
Sortino ratio, 317

usage, 329–330
Sortino-Satchell ratio, 317–318

ex ante analysis, 331
ex post analysis, 330–331
maximization, 350–351

problem, 351–352
usage, 330–331

Space, average metric. See Distribution
function

Sparse matrix, 280
Spectral risk measures, 222–224

absolute difference, 227
conditions, tail behavior (basis), 242–243
definition, 242
estimation, 224
examples, 227

remarks, 241–243
Spherical distribution. See n-dimensional

random vector
SSD. See Second-order stochastic dominance
St. Petersburg Paradox, 141–143

explanation, 142–143
lottery, 143t

Stability, index, 121
Stable distributions, 243. See also

Generalized CLT
AVaR, usage, 235–236
class, 10
properties, 121
usage. See Financial assets

Stable hypothesis, infinite variance, 123
Stable laws, density functions, 122f
Stable Paretian, 120

distributions, 123
usage, 120n

Stable tail-adjusted return ratio (STARR).
See Linearized STARR

equivalence, 326
extensions, 343–345
negative AVaR, impact, 327
problem, discussion, 352–353
reduction, impact, 327
usage, 325–329. See Average active return

Standard and Poor’s 500 (S&P500)
daily return, 16

observation, 193f
index, inverse distribution function, 302f

illustration, 303f
value, impact. See Option payments

Standard deviation
compound metric, 89
denotation, 21
equivalence, 175
measure, 174–176
obtaining, 13
scale parameter, 187
usage, 258–259

Standard normal density. See Interval
Standard normal distribution, 9

independent observations, 239
99% AVaR, 219t
99% VaR, 190t

STARR. See Stable tail-adjusted return ratio
Statistical dispersion, measure, 175
Statistical model

parameters, estimation, 189
selection, 189
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Statistical moments, 13–17
probability distribution function

descriptor, 14–16
Stochastic dominance, 147–157

contrast. See Return
order

assumption, 168
quantification, 159–160

relation, 141, 157, 166–169. See also
Order

relationship. See Probability metrics
Stochastic independence, 20
Stochastic order, 161

interest, 168
M-V analysis, consistency, 255–256
relationship. See Risk measures

Stock portfolio
rebalancing, 77–78
return distribution description, random

variable (usage), 77
returns, description, 85

Stock price
daily log-returns, 118
log-return distribution, 122–123

Stocks
expected return, 251
returns, covariance matrix, 187
S&P500 index placement, 262

Strategies performance, measurement (ex
post analysis), 318

Strict inequality, 55
Strictly expectation-bounded coherent risk

measures, 198
Strictly expectation-bounded risk measures,

198
Student’s t-distribution, 11–12, 243

degrees of freedom, 208
usage, 213–214

Sub-optimal portfolios, conclusion, 271–272
Subadditivity, 179

property, 196
implication, 196

Subclasses, relationship, 199
Subjectivity, appearance, 171
Sublevel sets, 42. See also Convex sublevel

sets
Summands

i.i.d., characteristic, 117
independence, assumption, 115
large value, probability, 132
number, fixation, 118
positive value, 306–307

Summation stability. See Normal distribution

Sun Microsystems
stock, 262–263, 301n
weight, increase, 263

Superadditivity, 282
SYM. See Symmetry axiom
Symmetric deviation measures, 179–180

axioms, explanation, 203
degree 1, 296–297
family, 181

Symmetric random variables, description,
178n

Symmetry, 91
property, appearance, 299–300
range, 178n

Symmetry axiom (SYM), 73–74
breakage, Birnbaum-Orlics compound

metric (usage), 307
dissatisfaction, 305
property, 125
usage, 92

T. Rowe Price Group Inc., stock, 301n
t-distribution. See Student’s t-distribution

density function, 11–12
Tail probability, 79. See also 40% tail

probability; Lower tail probability;
Upper tail probability

AVaR, 209–210, 221, 231
yield, 223

bounded capability, 226
continuous nonincreasing function,

324
ETL, 236

step function, 240–241
identification, 182–183
portfolio return, AVaR, 217
selection, 326
VaR, 224

Tails
concentration (probability distribution

function descriptor), 13, 14
distribution, heaviness, 121
exponent, 121
fatness, measurement, 14
moment of order, 228
moments, application, 229–230
structure, 221
thickness, 209f
truncation method, 123–124
variance. See Conditional distribution

Tangency portfolio, 257
Tangent line, 321

horizontality, 323
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Tangent portfolio
obtaining, 337f
relationship. See Efficient frontier;

Mean-deviation efficient frontier
Tangential contour line, 50. See also Feasible

set
Technical continuity conditions, 163

preference order, 144
Theory of Games and Economic Behavior

(von Neumann/Morgenstern), 139
Third central moment, rescaling, 14
Third-order stochastic dominance (TSD),

141
usage, 152–153

Third quartile, 16
Three-dimensional random vector, 93
Topological structure, 291n
Tosses (number), heads occurrence

(probabilities), 109f
Total sum variability (description), standard

deviation (usage), 132
Total variation metric, 83–84

definition, 136
expression, 128
probabilities, maximum absolute

difference, 84
usage, 124–125

Tracking error. See Scaled tracking error
identification, 289
optimal solution, 300–301
positive value, 300
problem, 288–292
providing, mean-variance analysis (usage),

287
reduction, 225
zero value, 300

Transitivity, 162
axiom, 162

Translation invariance, 179, 202
axioms, 180, 202
identification, 196

Translation invariant functional, 294
Translation invariant probability metric,

296–297
Translation invariant probability semimetric,

296–297
Translation invariant r.d. metrics, class, 297
Triangle inequality, 91

abstract version, 74
holding, 99
parameter K, inclusion, 92
property, 125
relaxation, 94–95

True moments, 16
True parameter, estimation, 17n
TSD. See Third-order stochastic dominance
Tversky, Amos, 140–141
Two-average compound metric, 89
Two-dimensional convex quadratic function

convex quadratic constraint, 54f
objective function, 53
surface, 44f, 54f

contour lines, 44f
Two-dimensional density function, contour

lines, 23
Two-dimensional linear programming,

problem, 56
Two-dimensional normal distribution

copula density, 28f
Two-dimensional normal distribution,

probability density function, 23f
Two-dimensional optimization problem,

consideration, 53
Two-dimensional probability density

function, level lines, 24f
Two-dimensional projections, 93–94
Two-dimensional quadratic objective

function, surface, 51f
Two-dimensional quasiconvex function

contour lines, 47f
example, 47f

Two-dimensional random variable,
distribution function, 100

Two-fund separation theorem, 340

Unbiased estimator, 338
Unbounded polyhedral set, 56
Uncertainty

features, description, 198
impact. See Choice; Decision making
measure, example, 172, 176
synonym. See Risk

Unconstrained optimization, 36–48
first-order condition, solution, 52

Unconstrained problems, notation, 48
Uncorrelated random variables, 21
Underlying instrument, 111
Underperformance, tracking error treatment,

291
Unfair coins, independent toss, 110
Uniform metric, 76

illustration. See Inverse distribution
functions

usage, 124–125. See also Densities;
Distribution function

Unit hypercube, 28
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Univariate distribution, 18
Upper tail probability, 333

quantile, 344
Upside dispersion measure, 177–178
Utility function, 139. See also Concave

utility function
derivatives, properties (imposition),

163–164
quadratic approximations, 276–277
set, 163
shape, 145–146
Taylor series approximation, 276–277
types, 145–147
usage, 148

Utility theory. See Expected utility theory
appeal, 141

Value-at-Risk (VaR). See Common stocks;
Random profit; Standard normal
distribution

absolute differences, sum, 81
absolute value, 80
average, 210
backtesting, 192–194

statistical test, basis, 194
calculation, 79
computation, 190
consideration, 181–182
deviations, aggregate information, 81
differences, 184
disadvantage, 208–209
estimation, 223–224

methods, 173
examples, 226
levels, 80
measure, 182

adoption, 207
computation, 189

measurement, 16
negative, 193f
properties, 173
usage, 182–186
weighted average, consideration, 222

Value distribution. See Extreme value
distribution; Generalized extreme value
distribution

Value function, introduction, 140–141
VaR. See Value-at-Risk
Variables. See Random variables

log-returns, 114–115
summation, meaning. See Financial

variables
Variance

calculation, 64
example, 172

Variance-covariance matrix, 25
Vector notation, usage, 22
Ventures, c.d.f., 148
Volatility, 77

clustering, 192
von Neumann, John, 139
von Neumann-Morgenstern theory

basis, 161
lotteries, interpretation, 164–165
publication, 140

von Neumann-Morgenstern utility theory,
143–145

Weakly regular functional, 294
Weibull-type extreme value distribution,

12
Weighted Kantorovich metric, 227
Whiskers, 191n

diagram. See Box-and-whiskers diagram

Yield curve, shape, 73
daily movement, 292

Zero gradient, 38
points, 38–39

Zero-mean normal marginals, 89
Zero-mean random variables

consideration, 298
subspace, 295n

Zolotarev ideal metric, 128–129
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