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Preface

What is this book about?

This is a course on advanced microeconomics. It covers a lot of ground,

from decision theory to game theory, from bargaining to auction theory,

from household theory to oligopoly theory and from the theory of general

equilibrium to regulation theory. It has been used for several years at the

university of Leipzig in the Master program “Economics” that started in

2009.

What about mathematics ... ?

A course in advanced microeconomics can use more advanced mathematics.

However, it is not realistic to assume that the average student knows what

an open set is, how to apply Brouwer’s fix-point theorem etc. The question

arises of when and where to deal with the more formal and mathematical

aspects. I decided not to relegate these concepts to an appendix but to deal

with them where they are needed. The index directs the reader to the first

definition of these concepts and to major uses.

Exercises and solutions

The main text is interspersed with questions and problems wherever they

arise. Solutions or hints are given at the end of each chapter. On top,

we add a few exercises without solutions. The reader is reminded of the

famous saying by Savage (1972) which holds for economics as well as for

mathematics: “Serious reading of mathematics is best done sitting bolt

upright on a hard chair at a desk.”

Thank you!!

I am happy to thank many people who helped me with this book. Several

generations of students were treated to (i.e., suffered through) continuously

improved versions of this book. Frank Hüttner gave his hand in trans-

lating some of the material from German to English and in pointing out

many mistakes. He and Andreas Tutic gave their help in suggesting in-

teresting and boring exercises, both of which are helpful in understanding

the difficult material. Franziska Beltz has done an awful lot to improve the

quality of the many figures in the textbook. Some generations of (Mas-

ter) students also provided feedback that helped to improve the manuscript.
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Michael Diemer, Pavel Brendler, Mathias Klein, Hendrik Kohrs, Max Lil-

lack, Katharina Lotzen, and Katharina Zalewski deserve special mention.

Hendrik Kohrs and Katharina Lotzen checked the manuscript and the cor-

responding slides in detail. The latter also produced the index.

Leipzig, February 2014

Harald Wiese





CHAPTER I

Cooperation as the central focus of

microeconomics

1. Three modes of cooperation

Human beings do not live or work in isolation because cooperation often

pays. For economics (and social sciences beyond economics) cooperation is a

central concern. While cooperation between individuals is a micro phenome-

non, economics is also interested in the consequences for macro phenomena:

prices, distribution of income, inflation etc. This is the topic of both micro-

and macroeconomics. Cooperation is also influenced by institutions and

implicit and explicit norms — the subject matter of institutional economics.

We follow Moulin (1995) and consider three different modes of coopera-

tion, the decentral mechanism, bargaining and dictatorship.

1.1. Decentral mechanism. The market, auctions and elections are

decentral mechanisms. Everybody does what he likes without following

somebody’s order and without prior agreement. The macro result (price,

bid, quantity handed over to buyer or bidder, law voted for) follows from the

many individual decisions. Microeconomics puts forth models of auctions,

perfect competition, monopoly and oligopoly theory. Political science deals

with different voting mechanisms. The analysis of these mechanism uses one

or other equilibrium concept (Walras equilibrium for perfect competition,

Nash equilibrium or subgame-perfect equilibrium in oligopoly theory, ...).

Oftentimes, the mechanism is given (exogenous). Sometimes, economists

or political scientists ask the question of which mechanism is best for cer-

tain purposes. For example, is a Walras equilibrium of perfect competition

always Pareto efficient. Which auction maximizes the auctioneer’s expected

revenue? Is the voting mechanism immune against log rolling? This is the

field of mechanism design.

The adjective “decentral” can be misleading. From the point of view of

mechanism design, a mechanism is put in place by a center, the auctioneer

in case of an auction, the election by the political institutions, ... . However,

from the point of view of individual participants, “decentral” makes sense.

Every market participant, bidder or voter is an island and makes the buying

or selling, the bidding and voting decision for him- or herself.

1.2. Bargaining. In contrast to decentral mechanisms, bargaining is

a few-agents affair and often face to face. Bargaining is analyzed by way of

1



2 I. COOPERATION AS THE CENTRAL FOCUS OF MICROECONOMICS

noncooperative game theory (e.g., the Rubinstein alternating offer game) or

by way of cooperative game theory (Nash bargaining solution, core, Shapley

value). Parallel to mechanism design for decentral mechanisms, we can ask

the question of which bargaining protocol is best (in a sense to be speci-

fied). Also, the bargaining is normally preceded by the search for suitable

bargaining partners.

Under ideal conditions (no transaction cost, no uncertainty), one might

expect that the agents exhaust every posssibility for Pareto improvements.

Then, by definition, they have achieved a Pareto efficient outcome. For

example, Pareto efficiency

• between consumers is characterized by the equality of the marginal

rates of substitution (in an Edgeworth box),

• between countries by the equality of the marginal rates of transfor-

mation (this is the law of Ricardo).

1.3. Dictatorship. The third mode is called “dictatorship”. Here, we

are mainly concerned with arrangements or rules enacted by the government.

As a theoretical exercise, one may consider the actions taken by a “benevo-

lent dictator”. This fictitious being is normally assumed to aim for Pareto

efficiency and other noble goals. We can then ask questions like these:

• Are minimum wages good?

• Should cartels be allowed?

• Should the government impose taxes on environmentally harmful

activities?

• Should we allow markets for all kinds of goods? How about security,

slaves, prositution, roads?

In some models, the benevolent dictator has not only noble aspirations, but

also no restrictions in terms of knowledge. More to the point are mod-

els where the government has to gather the information it uses where the

providers may have an incentive to hide the true state of affairs. Public-

choice theory argues against these models, too. Governments and bureau-

cracies consist of agents with selfish interests.

2. This book

2.1. Overview. In this book, we deal with most topics alluded to in

the previous section. I finally decided on the following order:

• Part A on decision and preference theory covers decision theory

in both strategic and extensive form. It also deals with utility

functions for bundles of goods and for lotteries.

• Part B is an application of decision and preference theory on spe-

cific groups of deciders, households and firms. In that part, we deal

with household optima, perfect substitutes, Slutsky equations, con-

sumers’ rent, profit maximization, supply functions and the like.
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• Part C is on noncooperative games. Of the many examples we use

in that part, most are from industrial organization which analyses

oligopolistic markets.

• Part D comes under the heading of “Bargaining theory and Pareto

optimality”. In chapter XIV, We have a look at diverse microeco-

nomic models from the point of view of Pareto optimality. Pareto

optimality can be considered the most popular concept of cooper-

ative game theory. The two other very famous concepts are the

Shapley value and the core — the subject matter of chapter XV.

We close this part with a short chapter on the (non-cooperative)

Rubinstein bargaining model.

• Turning again to noncooperative games, part E is concerned with

game theory under uncertainty. The central concept is the Bayesian

game where some payoffs are not known to some players. We define

those games, develop the equilibrium concept for them and analyze

auctions. We also consider the question of what kind of outcomes

are achievable for suitably chosen games — the subject matter of

mechanism design.

• The second-to-last part F deals with perfect competition which

is often seen as a welfare-theoretic benchmark. We contrast this

benchmark with other competition theories due to Hayek, Schum-

peter, Kirzner etc. We also comment on competition laws and

competition theory.

• Part G deals with contract theory and in particular principal-agent

theory. We cover asymmetric information as well as hidden action.

2.2. Concept. This book is written with three main ideas (and some

minor ones) in mind.

• Apart from differentiation techniques, we introduce (nearly) all the

mathematical concepts necessary to understand the material which

is sometimes difficult. Thus, the book is self-contained. Also, we

present the mathematical definitions and theorems when and where

we need them. Thus, we decided against a mathematical appendix.

After all, the mathematics has to be presented sometime and stu-

dents would probably not be amused if a micro course begins with

3 weeks of mathematics.

• Some basic game theory concepts can already be explained within

the simpler decision framework. Therefore, part A prepares for

part C by covering

— the strategic-form concepts dominance, best responses, and

rationalizability and

— the extensive-form notions actions and strategies, subtree per-

fection, and backward induction.
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ChapterChapterChapterChapter IIIIIIII
Decisions

in strategic form

DecisionDecisionDecisionDecision theorytheorytheorytheory GameGameGameGame theorytheorytheorytheory

ChapterChapterChapterChapter IIIIIIIIIIII
Decisions

in extensive form

ChapterChapterChapterChapter XXXX
Games

in strategic form

ChapterChapterChapterChapter XIIXIIXIIXII
Games

in extensive form

F����� 1. Game theory builds on decision theory

Thus, the basic chapters on decision and game theory are related

in the manner depicted in fig. 1.

• Apart from microeconomics in a narrow sense, we also introduce

the reader to some basic notions from cooperative game theory. Of

course, one can argue that cooperative game theory has no role to

play in a microeconomic textbook. After all, the players in coop-

erative game theory do not act, do not form expectations, do not

maximize a profit or utility function, all of which are considered

central characteristics of microeconomic models.

We do not take such a puristic view. First of all, cooperative con-

cepts do not belong to macroeconomics either and any standard

curriculum (being based on micro- and macroeconomics) would

leave out these important methods and ways of economic think-

ing. After all, any economist worth his salt should be familiar with

Pareto efficiency, the Shapley value or the core. Second, analyzing

non-cooperative concepts from a cooperative point of view and vice

versa, are illuminating ways to gain further insight, compared to a

purely non-cooperative or to a purely cooperative approach.



Part A

Basic decision and preference

theory



The first part of our course introduces the reader to decision theory. We

focus on one agent or one decision maker. The part has four chapters, only.

We present some elementary decision theory along with interesting examples

in the first two chapters. Chapter II treats the strategic (viz., static) form

and chapter III the extensive (viz., dynamic) form. Chapters IV and V

deal with preference theory. A central topic of preference theory concerns

utility functions that are used to describe preferences. Chapter IV presents

the general theory and chapter V treats the special case of preferences for

lotteries.

The basic decision and preference theory stops short of explaining house-

hold theory and the theory of the firm. This is done in part B.



CHAPTER II

Decisions in strategic form

The first two chapters have two aims. First, they are an introduction to

important aspects of decision theory. Second, they help to ease into game

theory, the subject matter of the third part of our book. Indeed, some basic

game theory concepts can already be explained within the simpler decision

framework. In particular, we treat

• dominance, best responses, and rationalizability in this chapter and

• actions and strategies, subtree perfection, and backward induction

in the next.

Strategic-form decision theory (this chapter) is concerned with one-time

(or once-and-for-all) decisions where the decision maker’s outcome (payoff)

depends on the decision maker’s strategy and also on the so-called state of

the world.

1. Introduction and three examples

Assume a firm that produces umbrellas or sunshades. In order to avoid

preproduction costs, it decides on the production of either umbrellas or

sunshades (in the given time period). The firm’s profits depend on the

weather. There are two states of the world, good or bad weather. The

following payoff matrix indicates the profit as a function of the firm’s decision

(strategy) and of the state of the world.

state of the world

bad weather good weather

strategy

production

of umbrellas
100 81

production

of sunshades
64 121

F����� 1. Payoff matrix

The highest profit is obtained if the firm produces sunshades and the weather

is good. However, the production of sunshades carries the risk of a very low

profit, in case of rain. The payoff matrix examplifies important concepts in

7



8 II. DECISIONS IN STRATEGIC FORM

our basic decision model: strategies, states of the world, payoffs and payoff

functions.

• The firm has two strategies, producing umbrellas or producing sun-

shades.

• There are two states of the world, bad and good weather.

• The payoffs are 64, 81, 100 or 121.

• The payoff function determines the payoffs resulting from strategies

and states of the world. For example, the firm obtains a profit of

121 if it produces sunshades and it is sunny.

We have the following definition:

D�������
� II.1 (decision situation in strategic form). A decision situ-

ation in strategic form is a triple

∆ = (S,W,u) ,

where

• S is the decision maker’s strategy set,

• W is the set of states of the world, and

• u : S ×W → R is the payoff function.

∆ = (S, u : S → R) is called a decision situation in strategic form without
uncertainty.

In the umbrella-sunshade decision situation, we have the strategy set

S = {umbrella, sunshade} and the payoff function u given by

u (umbrella, bad weather) = 100,

u (umbrella, good weather) = 81,

u (sunshade, bad weather) = 64,

u (sunshade, good weather) = 121.

If both the strategy set and and the set of states of the world are finite, a

payoff matrix is often a good way to write down the decision situation in

strategic form. We always assume that S and W are set up so that the

decision maker can choose one and only one strategy from S and that one

and only one state of the world from W can actually happen.

A decision situation in strategic form without uncertainty is a decision

situation in strategic form where u (s,w1) = u (s,w2) for all s ∈ S and all

w1, w2 ∈ W. For instance, this holds in case of |W | = 1 where |W | is called

the cardinality of W and denotes the number of elements in W .

Our second example is called Newcomb’s problem. An agent (you!) are

presented with two boxes. In box 1, there are 1000 Euro while box 2 holds

no money or 1 million Euro. You have the option of opening box 2, only, or

both boxes. Before you jump to the conclusion that both boxes are clearly

preferable to one box, consider the following twist to the story. You know

that a Higher (and rich) Being has put the money into the boxes depending
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prediction:

box 2, only

prediction:

both boxes

you open

box 2, only
1 000 000 Euro 0 Euro

you open

both boxes
1 001 000 Euro 1 000 Euro

F����� 2. A payoff matrix for Newcomb’s problem

prediction

is correct

prediction

is wrong

you open

box 2, only
1 000 000 Euro 0 Euro

you open

both boxes
1 000 Euro 1 001 000 Euro

F����� 3. A second payoff matrix for Newcomb’s problem

on a prediction of your choice. If the Higher Being predicts that you open

box 2, only, He puts 1 million Euro into box 2. If, however, the Higher Being

thinks you will open both boxes, He leaves box 2 empty.

You have to understand that the Higher Being is not perfect. He can

make good predictions because He knows the books you read and the classes

you attend. The prediction about your choice and the filling of the boxes are

done (yesterday) once you are confronted with the two boxes (today). The

Higher Being cannot and will not change the content of the boxes today.

E������� II.1. What would you do?

The decision depends on how you write down your set of states of the

world W . Matrix 2 distinguishes between prediction “box 2, only” and pre-

diction “both boxes”. Matrix 3 dissectsW differently: Either the predicition

is correct or it is wrong.

It seems to me that the first matrix is the correct one. The next section

shows how to “solve” this decision problem.

Before turning to that section, we consider a third example. If you

know some microeconomics, everything will be clear to you. If you do not

understand, don’t panic but wait until chapter XI.



10 II. DECISIONS IN STRATEGIC FORM

D�������
� II.2 (Cournot monopoly). A Cournot monopoly is a deci-

sion situation in strategic form without uncertainty ∆ = (S,Π), where

• S = [0,∞) is the set of output decisions,

• Π : S → R is the payoff function defined by an inverse demand
function p : S → [0,∞) , a cost function C : S → [0,∞) and by

Π(s) = p (s) s−C (s) .

2. Sets, functions, and real numbers

2.1. Sets, tuples and Cartesian products. The above definition of a

decision situation in strategic form contains several important mathematical

concepts. In line with the philosophy of this book to explain mathematical

concepts wherever they arise for the first time, we offer some comments on

sets, tuples, the Cartesian product of sets, functions and real numbers.

First, a set is any collection of objects that can be distinguished from

each other. A set can be empty in which case we use the symbol ∅. The

objects are called elements. In the above definition, we have the sets S, W ,

and R and also the Cartesian product S ×W.

D�������
� II.3 (set and subset). Let M be a nonempty set. A set N

is called a subset of M (denoted by N ⊆ M) if and only if every element

from N is contained in M. We use curly brackets {} to indicate sets. Two
sets M1 and M2 are equal if and only if M1 is a subset of M2 and M2 is a

subset of M1. We define strict inclusion N ⊂M by N ⊆M and M � N.

The reader will note the pedantic use of “if and only if” in the above

definition. In definitions (!), it is quite sufficient to write “if” instead of “if

and only if” (or the shorter “iff”).

Sets need to be distinguished from tuples where the order is important:

D�������
� II.4 (tuple). Let M be a nonempty set. A tuple on M is

an ordered list of elements from M . Elements can appear several times. A

tuple consisting of n entries is called an n-tuple. We use round brackets

() to denote tuples. Two tuples (a1, ..., an) and (b1, ..., bm) are equal if they

have the same number of entries, i.e., if n = m holds, and if the respective

entries are the same, i.e., if ai = bi for all i = 1, ..., n = m.

Oftentimes, we consider tuples where each entry stems from a particular

set. For example, S×W is the set of tuples (s, w) where s is a strategy from

S and w a state of the world from W.

D�������
� II.5 (Cartesian product). LetM1 andM2 be nonempty sets.

The Cartesian product of M1 and M2 is denoted by M1×M2 and defined by

M1 ×M2 := {(m1,m2) : m1 ∈M1,m2 ∈M2} .
E������� II.2. Let M := {1, 2, 3} and N := {2, 3}. Find M ×N and

depict this set in a two-dimensional figure where M is associated with the

abscissa (x-axis) and N with the ordinate (y-axis).
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2.2. Injective and surjective functions. We now turn to the con-

cept of a function. The payoff function u : S ×W → R is our first example.

D�������
� II.6 (function). LetM and N be nonempty sets. A function

f : M → N associates with every m ∈ M an element from N , denoted by

f (m) and called the value of f at m. The set M is called the domain (of

f), the set N is range (of f) and f (M) := {f (m) : m ∈M} the image (of
f). A function is called injective if f (m) = f (m′) implies m = m′ for all
m,m′ ∈ M . It is surjective if f (M) = N holds. A function that is both

injective and surjective is called bijective.

E������� II.3. LetM := {1, 2, 3} andN := {a, b, c}. Define f :M → N

by f (1) = a, f (2) = a and f (3) = c. Is f surjective or injective?

When describing a function, we use two different sorts of arrows. First,

we have → in f : M → N where the domain is left of the arrow and the

range to the right. Second, on the level of individual elements of M and N,

we use → to write m → f (m) . For example, a quadratic function may be

written as

f : R→ R,

x → x2.

If the domain and the range are obvious or unimportant, we can also write

f : x → x2. It is also not unusual to talk about the function f (x) , but this

is not correct and sometimes seriously misleading. Strictly speaking, f (x)

is an element from the image of f , i.e., the value the function f takes at the

specific element x from the domain.

If a function is bijective, we can take an inverse look at it:

D�������
� II.7 (inverse function). Let f : M → N be an injective

function. The function f−1 : f (M) →M defined by

f−1 (n) = m⇔ f (m) = n

is called f ’s inverse function.

Functions help to find out whether a set is larger than another one. For

example, if a function f : M → N is injective, there are at least as many

elements in N as in M. If f : M → N is bijective, we can say that M and

N contain the same number of elements. If M is finite, that is obvious. If

M is not finite, it is a matter of definition:

D�������
� II.8 (cardinality). Let M and N be nonempty sets and let

f : M → N be a bijective function. We then say that M and N have

the same cardinality (denoted by |M | = |N |). If a bijective function f :

M → {1, 2, ..., n} exists, we say that M is finite and contains n elements.

Otherwise M is infinite.

E������� II.4. Let M := {1, 2, 3} and N := {a, b, c}. Show |M | = |N |.
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2.3. Real numbers. Finally, we want to explain real numbers. They

contain natural numbers (1, 2, 3, ...), integers (...,−2,−1, 0, 1, 2, ...) and ra-

tional numbers (the numbers gained by dividing an integer by a natural

number). These sets are defined in this table:

sets symbol elements

natural numbers N {1, 2, 3, ...}
integers Z {...,−2,−1, 0, 1, 2, ...}
rational numbers Q

�
p
q : p ∈ Z, q ∈ N

�

irrational real numbers R\Q
√
2 = 1.414 2..., e = 2.7183..., etc.

Of course, we have N ⊂ Z ⊂ Q. The set of real numbers contains the other

three sets but is much bigger. For example, irrational real numbers are√
2, e or π := 3.1416... . The dots point to the fact that the number is never

finished and, indeed, there is no pattern that is repeated again and again.

E������� II.5. 1
8 and

4
7 are rational numbers. Write these numbers as

0.1... and 0.5... and show that a repeating pattern emerges.

D�������
� II.9 (countably infinite set). Let M be a set obeying |M | =
|N|. Then M is called a countably infinite set.

Without proof, we note the following theorem:

T��
��� II.1 (cardinality). The sets N,Z and Q are countably infinite
sets, i.e., there exist bijective functions f : N→ Z and g : N→ Q. (The ex-
citing point is that f and g are surjective.) Differently put, their cardinality

is the same:

|N| = |Z| = |Q| .
However, we have

|Q| < |R|
and even

|Q| < |{x ∈ R : a ≤ x ≤ b}|
for any numbers a, b with a < b.

Thus, there are “more” real numbers in the interval between 0 and 1 (or

0 and 1
1000) than there are rational numbers.

D�������
� II.10 (interval). Intervals are denoted by

[a, b] : = {x ∈ R : a ≤ x ≤ b} ,
[a, b) : = {x ∈ R : a ≤ x < b} ,
(a, b] : = {x ∈ R : a < x ≤ b} ,
(a, b) : = {x ∈ R : a < x < b} ,
[a,∞) : = {x ∈ R : a ≤ x} and

(−∞, b] : = {x ∈ R : x ≤ b} .
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E������� II.6. Given the above definition for intervals, can you find an

alternative expression for R?

3. Dominance and best responses

Dominance means that a strategy is better than the others. We distin-

guish between (weak) dominance and strict dominance:

D�������
� II.11 (dominance). Let∆ = (S,W, u) be a decision situation

in strategic form. Strategy s ∈ S (weakly) dominates strategy s′ ∈ S if and

only if u (s,w) ≥ u (s′, w) holds for all w ∈W and u (s, w) > u (s′, w) is true
for at least one w ∈ W. Strategy s ∈ S strictly dominates strategy s′ ∈ S

if and only if u (s, w) > u (s′, w) holds for all w ∈ W. Then, strategy s′

is called (weakly) dominated or strictly dominated, respectively. A strategy

that dominates every other strategy is called dominant (weakly or strictly,

respectively).

The decision matrix 2 (p. 9) is clearly solvable by strict dominance.

Opening both boxes, gives extra Euro 1 000, no matter what.

There is a simple procedure to find out whether we have dominant strate-

gies. For every state of the world, we find the best strategy and put a “R”

into the corresponding field. The letter “R” is reminiscent of response —

the decision maker responds to a state of the world by choosing the payoff

maximizing strategy for that state. Take, for example, the second Newcomb

matrix:

prediction

is correct

prediction

is wrong

you open

box 2, only
1 000 000 Euro R 0 Euro

you open

both boxes
1 000 Euro 1 001 000 Euro R

Since the best strategy (best response) depends on the state of the world,

no strategy is dominant. The R -procedure needs to be formalized. Before

doing so, we familiarize the reader with the notion of a power set and with

argmax.

D�������
� II.12 (power set). Let M be any set. The set of all subsets

of M is called the power set of M and is denoted by 2M .

For example, M := {1, 2, 3} has the power set

2M = {∅, {1} , {2} , {3} , {1, 2} , {1, 3} , {2, 3} , {1, 2, 3}} .
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Note that the empty set ∅ also belongs to the power set of M, indeed to the

power set of any set. M := {1, 2, 3} has eight elements which is equal to

23 = 2|{1,2,3}|. This is a general rule: For any set M, we have
��2M

�� = 2|M |.
2 plays a special role in the definition of a power set. The reason is simple

— every element m belongs to or does not belong to a given subset.

In order to introduce argmax, consider a firm that tries to maximize its

profit Π by choosing the output x optimally. The output x is taken from

a set X (for example the interval [0,∞)) and the profit is a real (Euro)

number. Then, we have a profit function Π : X → R and

Π(x) ∈ R : profit resulting from the output x,

max
x

Π(x) ∈ R : maximal profit by choosing x optimally,

argmax
x

Π(x) ⊆ X : set of outputs that lead to the maximal profit

Again: max
x

Π(x) is the maximal profit (in Euro) while argmaxx Π(x) is

the set of optimal decision variables. Therefore, we have

max
x

Π(x) = Π(x∗) for all x∗ from argmax
x

Π(x) .

We have three different cases:

• argmaxx Π(x) contains several elements and each of these elements

leads to the same profit.

• argmaxxΠ(x) contains just one element. We often write x∗ =

argmaxxΠ(x) instead of the very correct {x∗} = argmaxxΠ(x).

• max
x

Π(x) does not exist and argmaxx Π(x) is the empty set.

As an example consider X := [0, 1) := {x ∈ R : 0 ≤ x < 1} and

Π(x) = x. For every x ∈ X, we have 1 > 1+x
2 > x ≥ 0 so that no

x from X maximizes the profit. The reason is somewhat artificial.

We cannot find a greatest number smaller than 1 if we search within

the rational or real numbers. (For more on solution theory, consult

pp. 139.)

Now, at long last, we can proceed with the main text:

D�������
� II.13 (best response). Let

∆ = (S,W, u)

be a decision situation in strategic form. The function sR :W → 2S is called

a best-response function (a best response) if sR is given by

sR (w) := argmax
s∈S

u (s,w)

E������� II.7. Use best-response functions to characterize s as a dom-

inant strategy. Hint: “characterization” means that you are to find a state-

ment that is equivalent to the definition.
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4. Mixed strategies and beliefs

4.1. Probability distribution. In this section, we introduce proba-

bility distributions on the set of pure strategies and on the set of states of

the world. This important concept merits a proper definition, where [0, 1] is

short for {x ∈ R : 0 ≤ x ≤ 1}:
D�������
� II.14 (probability distribution). Let M be a nonempty set.

A probability distribution on M is a function

prob : 2M → [0, 1]

such that

• prob (∅) = 0,

• prob (A∪B) = prob (A) + prob (B) for all A,B ∈ 2M obeying A ∩
B = ∅ and

• prob (M) = 1.

Subsets of M are also called events. For m ∈ M , we often write prob (m)

rather than prob ({m}) . If a m ∈ M exists such that prob (m) = 1, prob is

called a trivial probability distribution and can be identified with m.

The requirement prob (M) = 1 is called the summing condition.

E������� II.8. Throw a fair dice. What is the probability for the event

A, “the number of pips (spots) is 2”, and the event B, “the number of pips is

odd”. Apply the definition to find the probability for the event “the number

of pips is 1, 2, 3 or 5”.

Thus, a probability distribution associates a number between 0 and 1 to

every subset of M . (This definition is okay for finite sets M but a problem

can arise for sets with M that are infinite but not countably infinite. For

example, in case of M = [0, 1], a probability cannot be defined for every

subset of M, but for so-called measurable subsets only. However, it is not

easy to find a subset of [0, 1] that is not measurable. Therefore, we do not

discuss the concept of measurability.)

4.2. Mixing strategies and states of the world. Imagine a decision

maker who tosses the dice before making an actual strategy choice. He does

not choose between “pure” strategies such as umbrella or sunshade, but

between probability distributions on the set of these pure strategies. For

example, he produces umbrellas in case of 1, 2, 3 or 5 pips and sunshades

otherwise.

D�������
� II.15 (mixed strategy). Let S be a finite strategy set. A

mixed strategy σ is a probability distribution on S, i.e., we have

σ (s) ≥ 0 for all s ∈ S

and �

s∈S
σ (s) = 1 (summing condition).
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The set of mixed strategies is denoted by Σ. A pure strategy s ∈ S is identified

with the (trivial) mixed strategy σ obeying σ (s) = 1. σ ∈ Σ is called a

properly mixed strategy if σ is not trivial. If there are only finitely many

pure strategies and if the order of the strategies is clear, a mixed strategy σ

can be specified by a vector
�
σ (s1) , σ (s2) , ..., σ

�
s|S|

��
.

D�������
� II.16 (decision situation with mixed strategies). If mixed

strategies are allowed, ∆ = (S,W, u) is called a decision situation in strategic

form with mixed strategies.

We can also consider mixing states of the world:

D�������
� II.17 (belief). Let W be a set of states of the world. We

denote the set of probability distributions on W by Ω. ω ∈ Ω is called a

belief. If there are only finitely many states of the world and if their or-

der is clear, a probability distribution on W can be specified by a vector�
ω (w1) , ..., ω

�
w|W |

��
.

4.3. Extending payoff definitions.

4.3.1. ... for beliefs (lotteries). So far, our payoff function u : S×W → R
is defined for a specific strategy and a specific state of the world, (s,w) ∈
S ×W . We can now extend this definition so as to take care of probability

distributions on S (mixed strategies) and on W (beliefs). We begin with

beliefs.

Let us revisit the producer of umbrellas and sunshades whose payoff

matrix is given below. According to our belief ω, bad weather occurs with

probability 1
4 and good weather with probability 3

4 .

state of the world

bad weather, 14 good weather, 34

strategy

production

of umbrellas
100 81

production

of sunshades
64 121

F����� 4. Umbrellas or sunshades?

The strategy “produce umbrellas” yields the payoff 100 with probability
1
4 and 81 with probability 3

4 . Thus, the probability distribution on the set

of states of the world leads to a probability distribution for payoffs, in this

example denoted by

Lumbrella =

�
100, 81;

1

4
,
3

4

�
.
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D�������
� II.18 (lottery). A tuple

L = [x; p] := [x1, ..., xℓ; p1, ..., pℓ]

is called a lottery where

• xj ∈ R is the payoff accruing with probability pj ≥ 0, j = 1, ..., ℓ,

and

•
�ℓ

j=1
pj = 1 holds.

In case of ℓ = 1, L is called a trivial lottery. We identify L = [x; 1] with

x. The set of simple lotteries is denoted by L.

A very important characteristic of a lottery is its expected value:

D�������
� II.19 (expected value). Assume a simple lottery

L = [x1, ..., xℓ; p1, ..., pℓ] .

Its expected value is denoted by E (L) and given by

E (L) =
ℓ�

j=1

pjxj . (II.1)

This definition contains the answer to our initial question: How can we

extend the payoff function u : S ×W → R to payoff function

u : S ×Ω → R?

Given a strategy s and a belief ω ∈ Ω, the payoff under s and ω is defined

by

u (s, ω) :=
�

w∈W
ω (w)u (s,w)

or, equivalently, by

u (s, ω) := E (Ls) for Ls =
	
(u (s,w))w∈W ; (ω (w))w∈W



.

4.3.2. ... for mixed strategies. After mixing states of the world, we can

now proceed to mix strategies.

E������� II.9. Consider the umbrella-sunshade decision situation given

above and calculate the expected payoff if the firm chooses umbrella with 1
3

and sunshade with probability 2
3 . Differentiate between w =“bad weather”

and w =“good weather”. Hint: You can write u
��
1
3 ,
2
3

�
, w

�
where

�
1
3 ,
2
3

�
is

the mixed strategy.

If you have worked out the above exercise, the following definition is no

surprise to you:

D�������
� II.20. Given a mixed strategy σ and a state of the world w,

the payoff under σ and w is defined by

u (σ,w) :=
�

s∈S
σ (s)u (s,w) (II.2)
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Thus, the payoff for a mixed strategy is the mean of the payoffs for the

pure strategies. This definition has important consequences for best mixed

strategies.

L���� II.1. Best pure and best mixed strategies are related by the fol-

lowing two claims:

• Any mixed strategy that puts positive probabilities on best pure

strategies, only, is a best strategy.

• If a mixed strategy is a best strategy, every pure strategy with

positive probability is a best strategy.

For the time being (until chapter V), we will not worry about risk atti-

tudes. If payoffs are risky (because the agent chooses a mixed strategy or

because we have probabilities for states of the world), the decision maker is

happy to maximize his expected profit or his expected payoff.

4.3.3. ... for mixed strategies and beliefs. Finally, we can mix both

strategies and states of the world. Do you know how to define u (σ, ω)?

E������� II.10. Consider again the umbrella-sunshade decision situa-

tion in which

• the firm chooses umbrella with probability 13 and sunshade with prob-
ability 2

3 and

• the weather is bad with probability 1
4 and good with probability

3
4 .

Calculate u
��
1
3 ,
2
3

�
,
�
1
4 ,
3
4

��
!

If you proceed according to the example of the above exercise, you do

not need to worry about the summing condition.

D�������
� II.21. Given a mixed strategy σ and a belief ω, the payoff

under σ and ω is defined by

u (σ, ω) : =
�

s∈S

�

w∈W
σ (s)ω (w)u (s,w)

=
�

s∈S
σ (s)u (s, ω)

=
�

w∈W
ω (w)u (σ,w)

4.4. Four different best-response functions. Depending on mixing

or not mixing the strategy set and/or the set of states of the world, we modify

definition II.13:
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D�������
� II.22. Given∆ = (S,W,u) , we distinguish four best-response

functions:

sR,W : W → 2S, given by sR,W (w) := argmax
s∈S

u (s, w) ,

σR,W : W → 2Σ, given by σR,W (w) := argmax
σ∈Σ

u (σ,w) ,

sR,Ω : Ω → 2S , given by sR,Ω (ω) := argmax
s∈S

u (s, ω) , and

σR,Ω : Ω → 2Σ, given by σR,Ω (ω) := argmax
σ∈Σ

u (σ, ω)

If there is no danger of confusion, we stick to the simpler sR or σR instead

of sR,W etc.

E������� II.11. Complete the sentence: σ ∈ σR,W (w) implies σ (s) = 0

for all ... .

In line with lemma II.1, we obtain the following results:

T��
��� II.2. Let ∆ = (S,W,u) be a decision situation in strategic

form. We have

• σ ∈ Σ and
�

s∈sR,Ω(ω)
σ (s) = 1 imply σ ∈ σR,Ω (ω) and

• σ ∈ σR,Ω (ω) implies s ∈ sR,Ω (ω) for all s ∈ S with σ (s) > 0.

These implications continue to hold for W and w rather than Ω and ω.

Best-response functions σR,Ω can be depicted graphically. Consider, for

example, the decision matrix

w1 w2
s1 4 1

s2 1 2

Let ω := ω (w1) be the probability of w1. We have s1 ∈ sR,Ω in case of

ω · 4 + (1− ω) · 1 ≥ ω · 1 + (1− ω) · 2,
i.e., if ω ≥ 1

4 holds. Remember that the best-response function is σR,Ω :

Ω → 2Σ. For ω �= 1
4 , there is exactly one best strategy, σ = 0 (standing for

σ = (0, 1) = s2) or σ = 1 (standing for σ = (1, 0) = s1) while ω = 1
4 implies

that every pure strategy and hence every mixed strategy is best. We obtain

σR,Ω (ω) =





1, ω > 1
4

[0, 1] , ω = 1
4

0, ω < 1
4

and the graph given in fig. 5.

E������� II.12. Sketch the best-response function σR,Ω for

w1 w2
s1 1 3

s2 2 1
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4
1 1

1

ω

σ

F����� 5. The best-response function

5. Rationalizability

There are obvious reasons not to choose a strictly dominated strategy.

We now develop a criterion for strategies that a “rational” decision maker

might consider. Assume the following payoff matrix:

w1 w2
s1 4 4

s2 1 5

s3 5 1

A rational decision maker may choose s2 if he thinks that state of the world

w2 will materialize. s3 also seems a sensible choice. How about s1? s1 is a

best strategy neither for w1 nor for w2. However, a rational decision maker

may entertain the belief ω on W with ω (w1) = ω (w2) = 1
2 . Given this

belief, s1 is a perfectly reasonable strategy:

E������� II.13. Show s1 ∈ sR,Ω
��
1
2 ,
1
2

��
!

D�������
� II.23 (rationalizability). Let ∆ = (S,W,u) be a decision

situation in strategic form. A mixed strategy σ ∈ Σ is called rationalizable

with respect to W if a w ∈W exists such that σ ∈ σR,W (w). Strategy σ ∈ Σ

is called rationalizable with respect to Ω if a belief ω ∈ Ω exists such that

σ ∈ σR,Ω (ω).

The above example shows that a strategy (such as (1, 0, 0)) may be

rationalizable with respect to Ω but not with respect to W .
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6. Topics and literature

The main topics in this chapter are

• strategic form decision making

• payoff function

• strategy

• state of the world

• dominance

• best response

• mixed strategy

• lottery

• rationalizability

• set, element, interval

• real numbers, rational numbers, natural numbers, integers

• cardinality

• tuple

• Cartesian product

• power set

• function: injective, surjective, bijective

• domain

• range

• image

• probability distribution

• max, argmax

We recommend the mathematical textbooks by de la Fuente (2000) and

Chiang & Wainwright (2005).

7. Solutions

Exercise II.1

Are you sure? The other part of humankind makes the opposite choice.

See Nozick (1969) and Brams (1983).

Exercise II.2

We find M ×N = {(1, 2) , (1, 3) , (2, 2) , (2, 3) , (3, 2) , (3, 3)} and figure 6.

Exercise II.3

f is not injective because we have f (1) = f (2) but 1 �= 2. f is not

surjective because of b ∈ N\f (M).

Exercise II.4

Define f : M → N by f (1) = a, f (2) = b and f (3) = c. f is surjective

(we have f (M) = N) and injective (there are no different elements from M

that point to the same element from N).

Exercise II.5
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1

2

3

1 2 3

F����� 6. The Cartesian product of M and N

We calculate 1
8 = 0.125 and 4

7 = 0.571428571428... where 571428 repeats

itself indefinitely.

Exercise II.6

R can also be written as (−∞,∞).

Exercise II.7

s is a dominant strategy if s ∈ sR (w) for all w ∈ W and for every

s′ ∈ S\ {s}, we have at least one w ∈W such that s′ /∈ sR (w).

Exercise II.8

We have prob (A) = 1
6 and prob (B) = 1

2 for the two events and, by

A ∩B = ∅, prob (A∪B) = prob (A) + prob (B) = 1
6 +

1
2 = 4

6 .

Exercise II.9

Bad weather yields the payoff

u

��
1

3
,
2

3

�
, bad weather

�

=
1

3
u (umbrella, bad weather) +

2

3
u (sunshade, bad weather)

=
1

3
· 100 + 2

3
· 64 = 76

while good weather leads to

u

��
1

3
,
2

3

�
, good weather

�

=
1

3
u (umbrella, good weather) +

2

3
u (sunshade, good weather)

=
1

3
· 81 + 2

3
· 121 ≈ 108 > 76

Exercise II.10

Using the result of exercise II.9, we obtain

u

��
1

3
,
2

3

�
,

�
1

4
,
3

4

��
=

1

4
· 76 + 3

4
·
�
1

3
· 81 + 2

3
· 121

�
=

399

4
≈ 100.
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3

2 1

1

ω

σ

F����� 7. Exercise: the best-reply function

Alternatively, we find

u (σ, ω) =
�

s∈S

�

w∈W
σ (s)ω (w)u (s, w)

=
1

3
· 1
4
· 100 + 1

3
· 3
4
· 81 + 2

3
· 1
4
· 64 + 2

3
· 3
4
· 121

=
399

4
≈ 100

Exercise II.11

σ ∈ σR,W (w) implies σ (s) = 0 for all s /∈ sR,W (w) .

Exercise II.12

By ω · 1 + (1− ω) · 3 ≥ ω · 2 + (1− ω) · 1 we find ω ≤ 2/3 and hence

σR,Ω (ω) =





s1, ω < 2
3

{s1, s2} , ω = 2
3

s2, ω > 2
3

This best-response function is depicted in fig. 7.

Exercise II.13

By u
�
s1,

�
1
2 ,
1
2

��
= 4 and u

�
s2,

�
1
2 ,
1
2

��
= u

�
s3,

�
1
2 ,
1
2

��
= 1

2 · 1 + 1
2 · 5 =

6
2 < 4 we have s1 ∈ sR,Ω

��
1
2 ,
1
2

��
.
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8. Further exercises without solutions

P�
#$�� II.1.

(a) If strategy s ∈ S strictly dominates strategy s′ ∈ S and strategy s′

strictly dominates strategy s′′ ∈ S, is it always true that strategy

s strictly dominates strategy s′′?
(b) If strategy s ∈ S weakly dominates strategy s′ ∈ S and strategy s′

weakly dominates strategy s′′ ∈ S, is it always true that strategy s

weakly dominates strategy s′′?

P�
#$�� II.2.

Consider the problem of a monopolist faced with the inverse demand func-

tion p(q) = a − b · q, in which a can either be high, ah, or low, al. The

monopolist produces with constant marginal and average cost c. Assume

that ah > al > c and b > 0. Think of the monopolist as setting the quantity,

q, and not the price, p.

(a) Formulate this monopolist’s problem as a decision problem in strate-

gic form. Determine sR,W !

(b) Assume ah = 6, al = 4, b = 2, c = 1 so that you obtain the plot given

in fig. 8. Show that any strategy q /∈
�
al−c
2·b ,

ah−c
2·b

�
is dominated

by either sR,W
�
ah
�

or sR,W
�
al
�
. Show also that no strategy q ∈�

al−c
2·b ,

ah−c
2·b

�
dominates any other strategy q′ ∈

�
al−c
2·b ,

ah−c
2·b

�
.

(c) Determine all rationalizable strategies with respect to W .

(d) Difficult: Determine all rationalizable strategies with respect to

Ω. Hint: Show that the optimal output is a linear combination of

sR,W
�
ah
�

and sR,W
�
al
�
.

P�
#$�� II.3.

Prove the following assertions or give a counter-example!

(a) If σ ∈ Σ is rationalizable with respect to W , then σ is rationalizable

with respect to Ω.

(b) If s ∈ S is a weakly dominant strategy, then it is rationalizable

with respect to W .

(c) If s ∈ S is rationalizable with respect to W , then s is a weakly

dominant strategy.

P�
#$�� II.4.
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F����� 8. Problem: profits for high demand and for low demand

Compare the following two decision problems ∆k =
�
Sk,W k, uk

�
, k ∈ {1, 2} ,

given by

S1 = {l, r}
W 1 = {a, b}

u1 (l, a) = u1 (r, b) = 1

u1 (r, a) = u1 (l, b) = 0

and

S2 = [0, 1]

W 2 = {a, b}
u2 (1− s, a) = u2 (s, b) = s.

(a) Are there any dominant strategies?

(b) Calculate u1 (σ, a) and u1 (σ, b) for σ ∈ �1. What interpretation

of s ∈ S2 does this suggest?

(c) Can we capture mixed strategies over n strategies in a game without

mixed strategies?

P�
#$�� II.5.

Calculate:

(a) argmaxx {x+ 1 | x ∈ [0, 1)} ,
(b) min argmaxy {(−1)y | y ∈ N}





CHAPTER III

Decisions in extensive form

Strategic-form decision theory is static. Once a decision maker has cho-

sen his strategy s or σ, he knows what to do and, depending on the state of

the world ω, he obtains u (s, ω) or u (σ, ω). We now turn to multi-stage de-

cision making, also called extensive-form decision making. We will see later

how to reduce extensive-form to strategic-form decision making. We begin

with two examples and then go on to discuss more involved concepts such

as decision trees, strategies and subtree perfection. We also introduce the

reader to backward induction which was well known to Indian fable tellers:

The tragedy that follows a wrong plan,

The Triumph that results from the right plan,

To the rules of Polity both are linked;

so the wise can point them out,

as if displayed in advance.

(Panchatantra, translated by Olivelle 2006, p. 77)

1. Introduction and two examples

Let us consider a very simple two-stage example. An umbrella-producing

firm considers an investment and marketing activities. It has two actions

(not strategies!) at his disposal at stage 1: action I (invest) and action

nI (not invest). At stage 2, the choice is between actions M (marketing

activities) and nM (no marketing activities).

Fig. 1 depicts the corresponding decision tree. It consists of nodes that

have predecessors (those to the left) and successors (those to the right).

The leftmost node v0 in that figure is called initial node. Here, the decision

maker has to make his first decision, to invest or not to invest. The initial

node has no predecessor and the terminal nodes (the rightmost ones) have

no successors.

The payoff information is recorded at the terminal nodes after all deci-

sions are made. We assume the payoffs

u (v3) = 10,

u (v4) = 5,

u (v5) = 6,

u (v6) = 7.

The more formal definitions will follow soon.

27
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F����� 2. To exit or not to exit?

Our second example is more exciting. It is about an absent-minded

driver. He takes a rest near the highway and plans his further route. He

knows that it is best to take the second exit. He also knows that he is tired

and that he will not know whether the exit he will find himself at is the

first or the second. Fig. 2 represents this decision situation. The dotted

line linking the first two nodes indicates that the driver cannot distinguish

between these nodes.

Thus, the driver has two decision nodes. However, since he cannot dis-

tinguish between these two nodes, the actions for the first node, “exit” and

“go on”, are the actions for the second node, too. What should the driver

do?

In the above two examples, we have seen two different kinds of nodes.

Nodes indicate that

• I have to make a decision, or that

• I get something.
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Before delving into the next section, the reader should contemplate the

difference between the two actions “M” in the upper figure and the two

actions “exit” in the lower figure. The decision maker can distinguish the

two actions “M” in the investment-marketing decision situation. In a strict

sense, they are two different actions and we could have made the difference

clear by indicating, MI and MnI. In contrast, the absent-minded driver

cannot distinguish between the actions “exit”. Therefore, it is important

not to denote them by exitfirst and exitsecond .

2. Decision trees and actions

2.1. Perfect information. Before defining a decision situation in ex-

tensive form, we need to clarify what we mean by a partition.

D�������
� III.1 (partition). Let M be any nonempty set. A partition

of M is a subset PM = {M1, ...,Mk} of the power set 2M such that
k�

j=1

Mj = M ,

Mj ∩Mℓ = ∅ for all j, ℓ ∈ {1, ..., k} , j �= ℓ

holds. By PM (m) we mean the element of PM that contains m ∈ M . The

elements of partitions are often called components. A component with one

element only is called a singleton.

Most of the time, a partition will not contain the empty set but we allow

for this possibility.

E������� III.1. Write down two partitions of M := {1, 2, 3} . Find
PM (1) in each case.

We begin by describing a decision situation. (This description is not a

formal definition but leans on the tree pictures.)

D�������
� III.2. A decision situation (in extensive form and for perfect

information) ∆ =
�
V, u, (Ad)d∈D

�
is given by

• a tree with node set V where the nodes are often denoted by v0,
v1, ... together with

• links that connect the nodes, directly or indirectly.
Additionally:

• A tree has a an initial node v0 and for every node v there exists
exactly one trail (consisting of links) from v0 to v (see below).

• The length of a trail is defined in the obvious manner (just go from
one node to successor nodes and count the number of steps). The

length of a tree is defined by its longest trail.
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• D is the set of non-terminal nodes that are also called decision

nodes. Ad is the set of actions that can be chosen at decision node

d. Every link at d corresponds to exactly one action. The set of all

actions is defined by A = ∪d∈DAd.

• E is the set of end nodes where a payoff function u : E → R records
the payoffs.

We have three decision nodes and six actions in the investment-marketing

decision situation. The link from v1 to v3 in fig. 1 corresponds to action

M if the firm has chosen I at the first stage. Action M after action nI is a

different link (the one from v2 to v5).

Consider the investment-marketing case. The trail �v0, v3� has length 2

while the length of trail �v1, v3� is 1.

E������� III.2. What is the length of the investment-marketing tree

above? How about the absent minded driver?

2.2. Imperfect information. The above definition refers to “perfect

information”. This means that the decision maker knows the decision node

at which he finds himself. In contrast, under “imperfect information” the

decision maker does not know exactly the current decision node. We rep-

resent imperfect information by information sets that gather decision nodes

between which the decision maker cannot distinguish. Therefore, the actions

available at different nodes in an information set have to be the same. The

absent-minded driver provides an example.

D�������
� III.3. A decision situation (in extensive form and for im-

perfect information) ∆ =
�
V, u, I, (Ad)d∈D

�
equals the one for perfect in-

formation with the following exception: There exists a partition I (called

information partition) of the decision nodes D. The elements of I are called

information sets (which are components of I). The actions at decision nodes

belonging to the same information set have to be identical: Ad = Ad′ for all

d, d′ ∈ I (d).

In general, for some d ∈ D, we have I (d) = {d} and the decision maker

knows where he is. In others, we have several nodes d, d′ in one information

set and obtain I (d) = I (d′) = {d, d′, ...}.
E������� III.3. For the absent-minded driver, specify I (v0) and Av0?

However Av1?

The absent minded driver presents an example, where we have I (v0) =

I (v1) = {v0, v1} and Av0 = Av1 = {go on, exit} .

3. Strategies and subtrees: perfect information

3.1. Strategies. So far, we did not use the term strategy in extensive-

form decision situations. A strategy is a full-fledged plan on how to act at

each decision node. We begin with perfect information.
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D�������
� III.4 (strategy). Let ∆ =
�
V, u, (Ad)d∈D

�
with A = ∪d∈DAd

be a decision situation in extensive form for perfect information. A strategy

is a function s : D → A obeying s (d) ∈ Ad.

Thus, s is a strategy if it tells us how to act at each decision node. Of

course, the actions available at d have to be from Ad. For example,

s (v0) = nI, s (v1) = M, s (v2) = nM

is a strategy in the investment-marketing decision situation. A more conve-

nient way to write this strategy is

⌊nI, M, nM⌋
if the nodes to which M and nM refer are clear.

E������� III.4. How many strategies do we have in the decision situa-

tion of fig. 1 (p. 28)?

In case of perfect information, we have |S| =
�

d∈D
|Ad| . Note that some

strategies contain information that we do not need, at the moment. For

example, if the decision maker chooses not to invest (action nI), he does not

need to worry about his action at v1 which is reached in case he does invest.

Would you make detailed plans for a stay in Berlin next Sunday if you plan

to visit Munich? Of course, you might end up in Berlin after getting on the

wrong train ... .

A strategy tells us how to act at every decision node. Therefore, we can

trace the nodes “visited” by a strategy:

D�������
� III.5 (trail provoked by strategy). A node v or a trail

�v0, v1, ..., vk = v� is provoked or brought about by strategy s ∈ S if we arrive

at v by choosing the actions prescribed by s. The terminal node provoked by

strategy s is denoted by vs. Also, every strategy provokes v0.

A strategy s provokes exactly one maximal trail, i.e., the trail from v0
to a vs ∈ E. This idea allows us to define a payoff function S → R on the

basis of the payoff function E → R:

D�������
� III.6 (payoff function). In ∆ =
�
V, u, (Ad)d∈D

�
, we define

u : S → R by
u (s) := u (vs) , s ∈ S.

D�������
� III.7 (best strategies). The set of best strategies for ∆ =�
V, u, (Ad)d∈D

�
is defined by

sR (∆) := argmax
s∈S

u (s) .

E������� III.5. Indicate all the nodes provoked by the strategy ⌊I, M, M⌋
in the investment-marketing example. Which strategies are best in the invest-

ment-marketing decision situation?
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3.2. Subtrees and subtree perfection. Students often wonder why

we define strategies in the very complete manner seen above. First of all,

the definition of a strategy is simpler this way. The definition of a more

restricted strategy would be rather cumbersome. The second reason is that

we want to distinguish between the two best strategies

1. strategy: s (v0) = I, s (v1) =M,s (v2) =M

2. strategy: s (v0) = I, s (v1) =M,s (v2) = nM

Both of them are optimal, but the first is somewhat peculiar. It advises the

decision maker to choose M, should he find himself at v2. However, at v2
action nM is better than action M. In order to get rid of this peculiarity,

we define subtree perfection. Before doing so, we define the restriction of a

function.

D�������
� III.8 (restriction). Let f : X → Y be a function. For

X ′ ⊆ X, f |X′ : X ′ → Y is called the restriction of f to X ′ if f |X′ (x) = f (x)

holds for all x ∈ X ′.

Thus, a restriction of a function reduces the domain of a function but

stays the same otherwise.

D�������
� III.9 (subtree). Let ∆ =
�
V, u, (Ad)d∈D

�
be a decision sit-

uation in extensive form for perfect information and w ∈ D. Let W be the

set of w together with its successor nodes (direct or indirect). Then, we

obtain w’s decisional subtree of ∆ called ∆w = (W, u|W∩E , A|W ). We call

sw : D ∩W → A a substrategy of s ∈ S in ∆w if sw = s|W∩D holds. By S
w

we denote the set of substrategies in ∆w. ∆w is called a minimal subtree if

its length is one. ∆w is called a proper subtree if w �= v0.

Thus, we obtain ∆w from ∆ by choosing a w ∈ D and restricting the

strategies accordingly. Note ∆v0 = ∆.

D�������
� III.10 (subtree perfection). A strategy s is subtree-perfect

if, for every w ∈ D, sw is a best strategy in the decisional subtree ∆w.

The strategy ⌊I,M,M⌋ noted above is not subtree perfect. At v2 a

subtree ∆v2 begins. It has two actions and also two strategies and M is not

the best.

E������� III.6. Consider the decision trees of fig. 3 and 4 and check

whether they are optimal strategies and/or subtree-perfect ones.

3.3. Backward induction for perfect information. Backward in-

duction is a very powerful instrument for solving decision situations. The

idea is to consider minimal subtrees. Once we know what to do at these

“final” decision nodes, we can climb down the tree (climb leftwards).
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F����� 4. Subgame-perfect strategy?

A$�
����� III.1. Let ∆ = (V, u,A) be of finite length. Backward-

induction proceeds as follows:

(1) Consider the minimal subtrees ∆w and take note of the best strate-

gies in ∆w, sR (∆w) := argmaxsw∈Sw u|W (sw). If any of these sets

are empty (for the reason explained on p. 14), the procedure stops.

Otherwise, proceed at point 2.

(2) Cut the tree by replacing all minimal subtrees ∆w by a terminal node

w carrying the payoff information obtained at point 1. If sR (∆w)

contains several best strategies, construct several trees.
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F����� 6. Backward induction, second and third step

(3) If the new trees contain minimal subtrees, turn to point 1. Other-

wise, the final tree contains (the final trees contain) just one ter-

minal node which is the initial node of the original tree. This tree

(all these tree) carries the same and maximal payoff.

The maximal trails and the strategies generated by the backward-induction

procedure are called backward-induction trails and backward-induction strate-

gies, respectively.

The algorithm is explained in fig. 5 and 6 by way of example.
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F����� 8. A decision tree

If you like to economize on paper, you may prefer another method to

find the backward-induction trails in a decision tree. Consider fig. 7. We

identify the minimal subtrees (they start at v1 and v2) and mark the link

leading to the best action. We then consider the subtrees which have v1 and

v2 as immediate successors. In our simple example, there is only one, the

original tree itself. Since 10 is greater than 7, action I is the best action.

E������� III.7. Solve the decision tree of fig. 8 by applying backward

induction. How many backward-induction trails and how many backward-

induction strategies can you find?

Without proof, we note the following theorem:
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T��
��� III.1. Let ∆ =
�
V, u, (Ad)d∈D

�
be of finite length. Then, the

set of subtree-perfect strategies and the set of backward-induction strategies

coincide.

C
�
$$��	 III.1. Every decision situation ∆ =
�
V, u, (Ad)d∈D

�
with

|V | <∞ has a subtree-perfect strategy.
Do you see that a finite node set implies a finite tree length, but not vice

versa? The corollary (which is Kuhn’s theorem) is easy to prove. Since the

number of nodes is finite, so is the number of actions at each decision node.

Therefore, best actions always exist and the backward-induction procedure

does not stop halfway. Then, the set of backward-induction strategies is not

empty.

We summarize:

T��
��� III.2. Let ∆ be of finite length. A strategy s is subtree-perfect

iff s is a backward-induction strategy.

3.4. The money pump. A central axiom of utility theory (chapter

IV) is transitivity. Transitivity means: if a person prefers z to y and y to x,

then she should also prefer z to x. Here x, y and z are objects, not payoffs.

Assume a decision maker whose strict preferences are not transitive:

x ≺ y ≺ z ≺ x.

x ≺ y means that y is strictly preferred to x.

The money-pump argument against intransitive preferences works as

follows: Assume, our agent has x. If the agent can exchange x against y,

he is happy to do so and is even ready to offer a small amount of money.

He now has y − ε instead of x where y − ε is shorthand for object y and a

reduction of his money stock by ε. Consider fig. 9 to follow the argument.

Now, again, an offer is made to exchange z against y. By y ≺ z the agent is

again willing to accept and also to throw in the very small ε, y ≺ z − ε. He

now holds z− 2ε. Finally, the agent changes z against x− ε so that he ends

up with x− 3ε.

Of course, that is too bad. The agent starts with x and ends with

x − 3ε. It seems as if one could pump money out of the agent again and
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F����� 10. Backward induction for the money pump

again. However, we are not forced to accept the argument without further

ado. Should the agent not foresee the whole line of transactions and decline

immediately? Let us look more closely!

The decision maker can opt for one of the two actions three times. Thus,

we have 23 = 8 strategies, among which we find

⌊accept, accept, accept⌋ ,
⌊accept, reject, accept⌋ and

⌊reject, accept, reject⌋

E������� III.8. Write down all strategies that lead to payoff y − ε.

Let us try backward induction. Assume

x ≺ y − ε ≺ z − 2ε ≺ x− 3ε

and also

x− 3ε ≺ y − ε

which seems reasonable by x ≺ y. Backward induction is depicted in fig. 10.

At the last decision node, the decision maker has to accept by z−2ε ≺ x−3ε.

At the second-to-last node, the above strict preference yields reject. At the

first node, the decision maker compares x to y−ε and will accept. Therefore,

backward induction does not support the money-pump argument.

4. Strategies and subtrees: imperfect information

4.1. Strategies and subtrees. We now consider decision situations

with information sets as found for the absent-minded driver. The definitions

are somewhat more involved because we need to make sure that the decision

maker acts in the same fashion at every decision node belonging to the same

information set.

D�������
� III.11 (decision situation). Let ∆ =
�
V, u, I, (Ad)d∈D

�
be a

decision situation in extensive form for imperfect information. A strategy

is a function s : D → A obeying s (d) ∈ Ad and s (d) = s (d′) for all
d, d′ ∈ I (d).
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D�������
� III.12 (subtree). Let ∆ be a decision situation in extensive

form for imperfect information. Assume a w ∈ D with the following prop-

erty: If an information set from I intersects W (w and all its successors),

then that information set is included in W . Then, we obtain w’s decisional

subtree of ∆ called ∆w = (W, u|W∩E , I|W , A|W , ) where

• I|W is the subpartition of I whose components are contained in W
and

• A|W is equal to (Ad)d∈D∩W .

We call sw a substrategy of s ∈ S in ∆w if sw = s|W∩D holds. By S
w

we denote the set of substrategies in ∆w. ∆w is called a minimal subtree if

it does not contain proper subtrees (proper subtrees differ from the tree from

which they are derived).

Here, with imperfect information, we have an additional requirement on

w : The newly formed subtree must not cut into any information set from

I. Rather, any information set from I that intersects with W is wholly

contained in W . Therefore, the decision situation of the absent-minded

driver has one decisional subtree only, the orginal decision situation.

While a strategy s is a more complicated object under imperfect infor-

mation than under perfect information, the definitions of

• nodes provoked by s (definition III.5)

• the payoff function u : S → R (definition III.6),

• the set of best strategies (definition III.7), and

• subtree perfection (definition III.10)

are the same for imperfect as for perfect information.

E������� III.9. Consider, again, the absent-minded driver. What is his

best strategy? What is his subtree-perfect strategy?

The driver cannot do any better with a mixed strategy. A mixed strategy

yields an average of 1 and 0 which cannot be more than 1. Wait, we did not

define a mixed strategy for the extensive form as yet. Here it is:

D�������
� III.13 (mixed strategy). Let ∆ =
�
V, u, I, (Ad)d∈D

�
be a

decision situation in extensive form for (perfect or) imperfect information.

A mixed strategy is a probability distribution σ on the set of (pure) strategies

from S. The set of mixed strategies is denoted by Σ.

Consider, now, a given terminal node v ∈ E. It can be provoked by

different strategies.

D�������
� III.14. Under a mixed strategy σ ∈ Σ, the overall probability

of reaching v ∈ V is denoted by

τσ ({v}) := τσ (v) :=
�

s∈S,
s provokes v

σ (s) .

We also say that σ provokes v (or {v}) with probability τσ (v) .
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E������� III.10. Find τσ (v0)!

E������� III.11. Consider the investment-marketing decision situation

of fig. 7 (p. 35) and the mixed strategy σ given by

σ (s) =





1
3 , s = ⌊I, M, nM⌋
1
6 , s = ⌊nI, M, nM⌋
1
12 , s otherwise

Why is σ well-defined? What is the probability for node v3?

4.2. Behavioral strategies. As mentioned in the previous section, the

absent-minded driver cannot succeed in obtaining the payoff 4 by way of

mixed strategies. However, there is one clever alternative to a mixed strategy

that allows the driver to fare better than with any pure or mixed strategy.

The idea is to mix actions rather than strategies:

D�������
� III.15 (behavioral strategy). Let ∆ = (V, u, I,A) be a de-

cision situation in extensive form for (perfect or) imperfect information. A

behavioral strategy is a tuple of probability distributions β = (βd)d∈D where,
for every d ∈ D, βd is a probability distribution on Ad that obeys βd = βd′

for all d, d′ ∈ I (d) .

We now show what behavioral strategies can do in the absent-minded

driver’s case (reconsider fig. 2, p. 28). Since v0 and v1 are in the same

information set, the probability for exit has to be the same at these two

nodes. Let βexit := βv0 (exit) be the probability for exit. Then, the driver

obtains the expected payoff

βexit����
exit probability

at v0

· 0 + (1− βexit)βexit� �� �
exit probability

at v1

· 4 + (1− βexit) (1− βexit)� �� �
probability

of going on

· 1

= −3β2exit + 2βexit + 1

Note that 0 < βexit < 1 allows payoff 4 with a positive probability. The

optimal behavioral strategy is given by

β∗exit = argmax
βexit

�
−3β2exit + 2βexit + 1

�
=

1

3
.

Thus, a behavioral strategy (here: β∗exit) can achieve a probability distribu-

tion on terminal nodes that no mixed strategy can achieve. The reason for

the power of behavioral strategies does not lie in the fact that we have a

decision situation with imperfect information. The Rubinstein decision tree

is special in that the driver cannot recall at v1 that he has been at v0 before.

4.3. Imperfect recall and strategies. We have imperfect recall when

at an information set {v, v′} the decision maker’s experience at v differs from

that at v′.
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D�������
� III.16 (experience). Let ∆ =
�
V, u, I, (Ad)d∈D

�
be a deci-

sion situation in extensive form for imperfect information. At v ∈ D, the

experience X (v) is the sequence of information sets and actions at these

information sets as they occur from v0 to v. An information set is the last

element of an experience.

Thus, an experience is a tuple with an odd number of entries: informa-

tion set — action — information set — ... — information set. In the absent-

minded driver example, we have

• X (v0) = (I (v0)) and

• X (v1) = (I (v0) , go on, I (v1)) .

D�������
� III.17 (perfect recall). Let ∆ =
�
V, u, I, (Ad)d∈D

�
be a de-

cision situation in extensive form for imperfect information. ∆ is char-

acterized by perfect recall if for all v, v′ ∈ D with I (v) = I (v′) we have
X (v) = X (v′).

Inversely, if you do not know where you are although your past experi-

ence has been different, you suffer from imperfect recall. We do not have

perfect recall for the absent-minded driver because v0 and v1 belong to the

same information set I (v0) = I (v1) while the experiences X (v0) and X (v1)

differ.

E������� III.12. Can you explain why perfect information implies per-

fect recall?

E������� III.13. Show that the decision situation of fig. 11 exhibits

imperfect recall!

While fig. 11 exhibits imperfect recall, strategies seem to be able to

overcome this deficiency. For example, the strategy ⌊I, M⌋ leads to terminal
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node v3 while the strategy ⌊I, nM⌋ provokes the node v4. This is somewhat

odd given that the decision maker does not know whether he finds himself at

v1 or at v2 when choosing action M or nM. After all, shouldn’t the strategy

⌊I, M⌋ tell him that he is at v1?

What do you think about this interpretation for strategy ⌊I, M⌋? The

decision maker has a definite plan on how to act at v0 and at I (v1) =

{v1, v2}. After investing at v0, he forgets this action (it was written with

magic ink that disappeared after choosing I) but he still knows that he is to

perform marketing activities. Thus, at {v1, v2} he does not know whether he

ends up at v3 or v5 but after receiving the payoff 10, he can surely reconstruct

this fact.

Summarizing, we have

• perfect information if every information set contains one element,

only,

• (properly) imperfect information if there is an information set with

more than one element,

• perfect recall if all decision nodes in an information set are associ-

ated with the same experience and

• imperfect recall if two decision nodes exist that belong to the same

information set but result from different experiences.

4.4. Equivalence of mixed and behavioral strategies. The exam-

ple presented in the preceding section prompts the question of whether be-

havioral strategies are always “more powerful” than mixed strategies. With-

out giving a proof, we state an important result:

T��
��� III.3 (Kuhn’s equivalence theorem). Let∆ =
�
V, u, I, (Ad)d∈D

�

be a decision situation in extensive form for imperfect information, but per-

fect recall. A given probability distribution on the set of terminal nodes is

achievable by a mixed strategy if and only if it is achievable by a behav-

ioral strategy. We then say that mixed and behavioral strategies are payoff

equivalent.

The theorem says that behavioral strategies and mixed strategies can

achieve the same distribution on the set of terminal nodes in case of per-

fect recall. For imperfect recall, sometimes, behavioral strategies are more

powerful than mixed strategies and sometimes it is the other way around.

5. Moves by nature, imperfect information and perfect recall

5.1. Decision situation. One origin of imperfect informaton is im-

perfect recall. A second and maybe more important reason for imperfect

information is a move by nature. For example, the weather may be good

or bad and the decision maker does not know before he chooses important

actions. Revisiting the umbrella-sunshade producer of chapter II, we con-

sider two different trees that reflect the decision maker’s uncertainty. The
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F����� 12. Uncertainty about the weather

left tree in fig. 12 is one of perfect information. The decision maker moves

at the initial node and nature moves at the second stage. The nodes where

nature makes its moves are denoted by “0”. The right-hand tree is one of

imperfect information. Nature moves first and the decision maker does not

know nature’s “choice”. This is indicated by the information set linking the

two non-initial decision nodes.

D�������
� III.18 (decision situation). A decision situation in extensive

form for imperfect information with moves by nature is a tuple

∆ =
�
V, u, ι, I, (Ad)d∈D , β0

�

where

• ι : D → {0, 1} is a player-selection function that yields a partition
{D0,D1} of D, where D0 := {d ∈ D : ι (d) = 0} refers to nature
and D1 := {d ∈ D : ι (d) = 1} to the decision maker,

• I, a partition of the decision nodes D1, is the information partition,

• A = (A0, A1) is the tuple of action sets where A0 := (Ad)d∈D0
is

nature’s tuple of action sets and A1 = (Ad)d∈D1
is the decision

maker’s tuple of action sets which, of course, obey Ad = Ad′ for all

d, d′ ∈ I (d),

and, finally,

• β0 is a tuple of probability distributions (βd)d∈D0
on A0.

In a sense, we have two players, the decision maker and nature. We

model the moves by nature as a behavioral strategy. Consider the two

decision trees of figures 13 and 14. They report the probability distribution

(there is only one) β0 at the node denoted by 0.

The definition of a strategy is the same as the one on p. 37. For ex-

ample, in fig. 13, the decision maker’s strategies are quadruples such as
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F����� 14. Perfect or imperfect recall?

⌊I, nI, U, U⌋ . Can you find out the probability for nodes provoked by strate-

gies without a formal definition?

E������� III.14. Reconsider the decision tree of fig. 13. Indicate the

probability distributions on the set of terminal nodes provoked by the strate-

gies ⌊I, nI, S, U⌋ and by ⌊nI, nI, S, S⌋ by writing the probabilities near these
nodes.

With or without moves by nature, we obtain the following definition:
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D�������
� III.19. Let ∆ =
�
V, u, ι, I, (Ad)d∈D , β0

�
be a decision situ-

ation. We define u : S → R by

u (s) :=
�

v∈E
τs (v)u (v) .

We feel there is no need to define mixed strategies, subtree perfection

and behavioral strategies for decision situations with moves by nature. Three

remarks may be in order:

• definition of subtrees: Subtrees may start at nodes from D =

D0∪D1. In particular, the whole tree is always a subtree of itself.

• definition of experience: If nature moves at v0 or at any other node

along a trail leading to a decision node v ∈ D1, X (v) does not

feature v0 or other nodes from D0 and contains the last entry I (v).

Of course, the decision maker acts at decision nodes from D1, only.

• Kuhn’s theorem remains valid for moves by nature.

E������� III.15. Do the decision trees of figures 13 and 14 reflect perfect

or imperfect recall? How many subtrees can you identify?

5.2. Backward induction for imperfect information. Although

the chances of finding subtrees are slimmer in case of imperfect information,

backward induction is still a useful instrument. We need to adjust the

procedure (see section 3.3) a little bit because, in general, not every decision

node gives rise to a subtree. The point is that subtrees are not allowed to

cut into information sets (please consult definition III.12 on p. 38). Taking

account of this difficulty, backward induction can be applied and yields

backward-induction tails and backward-induction strategies as in the case

of perfect information.

Without proof, we note the following theorem:

T��
��� III.4. Let ∆ =
�
V, u, ι, I, (Ad)d∈D , β0

�
be of finite length.

Then, the set of subtree-perfect strategies and the set of backward-induction

strategies coincide.

C
�
$$��	 III.2. Every decision situation ∆ =
�
V, u, ι, I, (Ad)d∈D , β0

�

with |V | <∞ has a subtree-perfect strategy.

E������� III.16. Consider the decsion tree of fig. 15. Is it character-

ized by perfect recall? How many subtrees do you find? Apply backward

induction! How many subtree-perfect strategies do you find?
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F����� 15. Backward induction?

6. Topics

The main topics in this chapter are

• information partition, information set

• perfect versus imperfect information

• strategy, mixed strategy, behavioral strategy

• absent-mindedness

• perfect recall

• subtree perfection

• moves by nature

• player-selection function

• trees and subtrees

• successor function

• predecessor

• decision node

• terminal node

• initial node

• partition

• restriction of a function

7. Solutions

Exercise III.1

The following collections of subsets are partitions of M :

{{1, 2} , {3}} with PM (1) = {1, 2} ,
{M} with PM (1) = M,

{{1} , {2} , {3}} with PM (1) = {1} ,
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F����� 16. Two profitable one-node deviations

while these are not:

{{1} , {3}} , {{1, 2} , {2, 3}} , {1, 2, 3} .
Exercise III.2

2 for both decision situations.

In the investment-marketing decision situation we have four maximal

trails: �v0, v1, v3� , �v0, v1, v4� , �v0, v2, v5� , and �v0, v2, v6� . The length of the

tree is 2. In the absent-minded driver example, we find three maximal trails:

�v0, v3� , �v0, v1, v4� , and �v0, v1, v2� . The length of the tree is 2.

Exercise III.3

We find I (v0) = I (v1) = {v0, v1} and Av0 = Av1 = {go on, exit} .
Exercise III.4

We have eight strategies:

1. strategy: s (v0) = I, s (v1) =M, s (v2) =M

2. strategy: s (v0) = I, s (v1) =M, s (v2) = nM

3. strategy: s (v0) = I, s (v1) = nM, s (v2) =M

4. strategy: s (v0) = I, s (v1) = nM, s (v2) = nM

5. strategy: s (v0) = nI, s (v1) =M,s (v2) =M

6. strategy: s (v0) = nI, s (v1) =M,s (v2) = nM

7. strategy: s (v0) = nI, s (v1) = nM, s (v2) =M

8. strategy: s (v0) = nI, s (v1) = nM, s (v2) = nM

Exercise III.5

The three provoked nodes are v0, v1, and v3. The first two strategies from

the previous exercise are best strategies because they lead to the maximal

payoff 10.

Exercise III.6
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F����� 17. Backward induction

The strategy indicated in fig. 3 is not optimal and hence not subtree-

perfect. The strategy of fig. 4 is optimal but not subtree-perfect. The best

strategy is not chosen in the subtree highlighted in fig. 16.

Exercise III.7

Fig. 17 depicts the backward-indcution solution. There are two backward-

induction trails. They lead to payoff 10. There are four backward-induction

strategies because there are two nodes at which there are two best actions.

Exercise III.8

There are only two strategies compatible with exactly one exchange:

⌊accept, reject, accept⌋ and

⌊accept, reject, reject⌋ .
Exercise III.9

The driver’s action choices have to be the same at v0 and v1 which are

the only decision nodes. If he chooses {v3, v4} (exit), he obtains 0 while

{v1, v2} (go on) yields 1. Therefore, going on is the best strategy. The only

decisional subtree is the whole tree itself. Therefore, go on is subtree perfect.

Exercise III.10

Since every strategy provokes v0, we have τσ (v0) = 1.

Exercise III.11

In order to be well-defined, the probabilities need to be non-negative

and their sum equal to 1. The second requirement is fulfilled by

1

3
+

1

6
+ 6 · 1

12
= 1.

The probabiliy of reaching v3 is given by

σ (⌊I, M, nM⌋) + σ (⌊I, M, M⌋) = 1

3
+

1

12
=

5

12
.

Exercise III.12
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F����� 18. Probabity distributions provoked by strategies

Perfect information implies that all information sets are singletons, i.e.,

|I (v)| = 1 for all v ∈ D. That’s it.

Exercise III.13

We have I (v1) = I (v2) but

X (v1) = ({v0} , I, {v1, v2}) �= ({v0} , nI, {v1, v2}) = X (v2) .

Exercise III.14

Fig. 18 records the two probability distributions on the set of terminal

nodes.

Exercise III.15

Both figures reflect imperfect information. Apart from the original trees,

there are no further subtrees. In fig. 13, we have imperfect recall while 14

reflects perfect recall.

Exercise III.16

The decision maker can not tell v1I and v1nI apart although the expe-

rience is different. Therefore, we do not have perfect recall. We have five

subtrees, the original tree (where nature moves) and the subtrees originating

in v1, v2, v2I, and v2nI. Fig. 19 contains the backward-induction solution.

Note that there is no subtree at v1I. Every subtree-perfect strategy contains

action S at v2I. At v1, either I-S or nI-U are optimal. Therefore, in the order

of nodes v1, v1I, v1nI, v2, v2I, and v2nI, the subtree-perfect strategies are

⌊I, S, S, I, S, U⌋ , ⌊I, S, S, I, S, S⌋ (invest at v1) and

⌊nI, U, U, I, S, U⌋ , ⌊nI, U, U, I, S, S⌋ (do not invest at v1).
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F����� 19. Backward induction!

8. Further exercises without solutions

P�
#$�� III.1.

The example of fig. 11 shows that sometimes mixed strategies are more

powerful than behavioral strategies. Can you see, why?

P�
#$�� III.2.

Consider the following decision situation in extensive form:

5 3

2 6

v0

v
1

v
2

v3 v4

v5

v6 v7

(a) Identify the following objects: Vterm and D, Ĉ(v0), C(v1), and

C−1(v7), and finally, Av5 and Av2 .
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(b) Prove or give a counter-example! For any pair v, v′ ∈ V : v′ ∈
Ĉ−1(v) if and only if v ∈ Ĉ(v′).

(c) How many strategies does the decider have? Determine all the best

strategies in this decision situation!

P�
#$�� III.3.

Consider the following decision situation in extensive form:

1

1−downdowndowndown

0v

2v

1v
3v

4v

5v

6v

upupupup

upupupup

upupupupdowndowndowndown

downdowndowndown

1−

1

(a) True or false? In this game, any behavioral strategy can be char-

acterized by specifying two probabilities.

(b) Determine the equivalent behavioral strategy for the following mixed

strategy! σ(⌊up, up⌋) = 1
5 , σ(⌊up, down⌋) = 2

5 , σ(⌊down, down⌋) =
1
5 , σ(⌊down, up⌋) = 1

5 .

(c) Is this a game of perfect recall?

(d) Determine the equivalent mixed strategy for the following behav-

ioral strategy! βv0(up) = 1
3 , β{v1,v2}(up) = 1

4 .

(e) Determine the best mixed strategy and the best behavioral strat-

egy!

P�
#$�� III.4.

Find a decision problem in extensive form with |V | = |N| that has no

subgame-perfect equilibrium.
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Consider the following decision problem without moves by nature:

(a) Is this a situation with perfect recall?

(b) Consider the mixed strategy σ given by

σ([a, c]) =
1

4
, σ([a, d]) =

1

2
,

σ([b, c]) =
1

8
, σ([b, d]) =

1

8
.

Is this strategy optimal?

(c) Find two behavioural strategies, which lead to the node v4 with

probability 1
2 !

(d) Can you find a behavioural strategy leading to the same probability

distribution on the terminal nodes as the mixed strategy given in

b)!





CHAPTER IV

Ordinal preference theory

Preferences are a relation between objects. Deciders prefer (would rather

like to have) one object to another. So far, the preferences of decision makers

are depicted by “payoffs”. We did not discuss where the payoffs come from

and what they mean. We now take a closer look. The objects over which

preferences hold are bundles of goods that we introduce in section 1. We need

to learn some topology for the set of bundles in order to define important

preference concepts such as convex or continuous preferences.

The decision maker is often called a household.

1. The vector space of goods and its topology

1.1. The vector space of goods. Our household is confronted with

a finite number ℓ of goods. These goods have certain characteristics (for

example, apples of a certain weight and class) and are further differentiated

according to the region, where they are on offer, and the time interval during

which they can be bought. It is also possible to define contingent products,

i.e., products distinguished by states of nature. The good in question may

be 4 pounds of apple of certain characteristics to be delivered at time t if

it does not rain the day before. Payment for such apples is made at point

0. Thus, it may well happen that payments occur but apples cannot be

consumed (rain the day before in our example).

Formally, bundles of goods are elements of the vector space Rℓ. The real

line depicts the set of real numbers, R. The set of all vectors with two real

numbers, R2, is visualized by the two-dimensional plane and the set of all

vectors with three real numbers, R3, by the three-dimensional space. You

know how to calculate in a vector space?

E������� IV.1. Consider the vectors x = (x1, x2) = (2, 4) and y =

(y1, y2) = (8, 12) . Find x+ y, 2x and 1
4x+ 3

4y!

1
4x + 3

4y is called a linear combination of vectors x and y because the

coefficients are non-negative and they sum to 1. It is to be found on the line

between x and y. 1
4x+

3
4y is closer to y because y’s coefficient is the highest.

An extreme case is 0x+ 1y.

In general (for an arbitrary dimension ℓ ∈ N) we write

Rℓ := {(x1, ..., xℓ) : xg ∈ R, g = 1, ..., ℓ} .
53
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x

y euclidian
distance: c

city-block
distance: a+bc

a

b

infinity
distance: max(a, b)

F����� 1. Different methods to measure distance

0 ∈ Rℓ is the null vector (0, 0, ..., 0). The vectors are often called points (in

Rℓ).

R����+ IV.1. For vectors x and y with ℓ entries, we define

• x ≥ y by xg ≥ yg for all g from {1, 2, ..., ℓ} ,
• x > y by x ≥ y and x �= y,

• x≫ y by xg > yg for all g from {1, 2, ..., ℓ} .

In household theory, we will work with the goods space

Rℓ
+ :=

�
x ∈ Rℓ : x ≥ 0

�

rather than Rℓ where negative amounts of goods are allowed.

1.2. Distance and balls. We will need some topological concepts and

need to learn how to define the distance between points and the difference

between open and closed sets. While most of our definitions refer to Rℓ, we

sometimes use Rℓ
+, the goods space, instead.

D�������
� IV.1 (distance). In Rℓ the distance between two points x

and y is given by the city-block norm (or 1-norm)

 x− y 1 :=
ℓ�

g=1

|xg − yg| ,

by the euclidian (or 2-) norm

 x− y :=  x− y 2 :=

����
ℓ�

g=1

(xg − yg)
2

or by the infinity norm

 x− y ∞ := max
g=1,...,ℓ

|xg − yg| .
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x

*x
ε

F����� 2. A point close to the ball’s center

Fig. 1 illustrates these norms.

When we later define certain terms such as open sets, bounded sets, etc.,

it is not important which of these norms we use. The two norms above are

the most common and have a simple geometric interpretation. What is it?

We will often just write  x and the reader is free to imagine any of these

norms.

E������� IV.2. What is the distance (in R2) between (2, 5) and (7, 1) ,

measured by the 2-norm  · 2 and by the inifinity norm  · ∞?

D�������
� IV.2 (ball). Let x∗ ∈ Rℓ and ε > 0.

K =
�
x ∈ Rℓ :  x− x∗ < ε

�

is called the (open) ε-ball with center x∗. Within the goods space Rℓ
+, the

ε-ball with center x∗ ∈ Rℓ
+ is defined by K =

�
x ∈ Rℓ

+ :  x− x∗ < ε
�
.

If ε is small, x is “very close to” x∗ (see fig. 2). Note that  x− x∗ = ε

holds for all x on the circular line while K stands for all the points within.

E������� IV.3. Assuming the goods space R2+, sketch three 1-balls with
centers (2, 2) , (0, 0) and (2, 0) , respectively.

D�������
� IV.3 (boundedness). A set M is called bounded if there

exists an ε-ball K such that M ⊆ K.

E���$� IV.1. The set [0,∞) = {x ∈ R : x ≥ 0} (see p. II.10) is not
bounded.

1.3. Open and closed sets.

D�������
� IV.4 (interior point). x∗ is called an interior point of some
set M if there exists an ε-ball K with center x∗ such that K ⊆M.

E���$� IV.2. Point 1 is not an interior point of [0, 1] . x∗ is an interior
point of the ε-ball K with center x∗.
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x

*x

F����� 3. The open ball is an open set

*x

M\
M

R2

F����� 4. A boundary point

D�������
� IV.5 (open set). A set that consists of interior points only

is called open. The empty set (symbol ∅) is open.
A set M is open if you can take an arbitrary point of this set and find

an ε-ball K that is contained in M .

E���$� IV.3. In R1, (0, 1) = {x ∈ R : 0 < x < 1} is an open set. Rℓ

is open. Every ε-ball is an open set. You can see this by sketching the ε-ball

and by finding a second, smaller one, around every point in the ε-ball (see

fig. 3).

D�������
� IV.6 (complement). Rℓ\M =
�
x ∈ Rℓ : x /∈M

�
is the com-

plement of M (in Rℓ).

D�������
� IV.7 (boundary point). x∗ is called boundary point of a set
M if for all ε-balls K with center x∗ the following two conditions are fulfilled:

K ∩M �= ∅ and
K ∩

�
Rℓ\M

�
�= ∅.

Fig. 4 illustrates the definition of a boundary point in two-dimensional

space.

E������� IV.4. Find the boundary points of (0, 1) ⊂ R, of [0, 1] and of
[0, 0]!
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L���� IV.1. Assume that x∗ is contained inM . Then, x∗ is an interior
point of M if and only if x∗ is not a boundary point of M.

P�

�. If x∗ is an interior point of M, we can find an ε-ball K with

center x∗ such thatK ⊆M. Then, K∩
�
Rℓ\M

�
= ∅ and x∗ is not a boundary

point of M . If x∗ is not an interior point of M , every ε-ball K with center

x∗ fulfills K � M or, differently put, K ∩
�
Rℓ\M

�
�= ∅. Also, every ε-balls

K with center x∗ contains x∗. Therefore, x∗ is contained in both K and M

so that K ∩M �= ∅ holds. Thus, x∗ is a boundary point of set M. �

D�������
� IV.8 (closed set). A set containing all its boundary points

is called closed. Rℓ itself is also closed.

E���$� IV.4. In R1, [0, 1] = {x ∈ R : 0 ≤ x ≤ 1} is a closed set.
L���� IV.2. The complement of an open set is a closed set and the

complement of a closed set is an open set.

It can be the case that a set is neither closed nor open. Consider, for

example, the set {0}∪ (1, 2). On the other hand, Rℓ and ∅ are both open

and closed.

D�������
� IV.9 (compact set). A set M ⊆ Rℓ is called compact if it is

closed and bounded.

E���$� IV.5. [0, 1] is compact. Rℓ is closed but not bounded. ε-balls

are bounded but not closed. Hence, neither Rℓ nor ε-balls are compact.

1.4. Sequences and convergence. It is often helpful to consider the

above concepts from the point of view of sequences in Rℓ.

D�������
� IV.10 (sequence). A sequence
�
xj
�
j∈N in R

ℓ is a function

N→ Rℓ.

E���$� IV.6. 1, 2, 3, 4, ... is a sequence in R that can also be defined
by

xj := j.

Examples in R2 are
(1, 2) , (2, 3) , (3, 4) , ...

or �
1,

1

2

�
,

�
1,

1

3

�
,

�
1,

1

4

�
,

�
1,

1

5

�
, ... .

Sometimes, a sequence gets closer and closer to some point:

D�������
� IV.11 (convergence). A sequence
�
xj
�
j∈N in R

ℓ converges

towards x ∈ Rℓ if for every ε > 0 there is an N ∈ N such that the distance
from xj to x is smaller than ε for all j > N, i.e., if

  xj − x
  < ε for all j > N

holds. A sequence that converges towards some x ∈ Rℓ is called convergent.
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Convergence towards x means: Given any ε-ball K with center x, nearly

all members of the sequence (i.e., all members except a finite number) belong

to that ball.

E���$� IV.7. The sequence

1, 2, 3, 4, ...

is not convergent towards any x ∈ R,
while

1, 1, 1, 1, ...

converges towards 1 and

1,
1

2
,
1

3
, ...

converges towards zero.

We do not provide a proof for the following lemma but you can try to

confirm it for yourself.

L���� IV.3. Let
�
xj
�
j∈N be a sequence in R

ℓ.

• If
�
xj
�
j∈N converges towards x and y, we have x = y.

•
�
xj
�
j∈N =

�
xj1, ..., x

j
ℓ

�
j∈N
converges towards (x1, ..., xℓ) if and only

if xjg converges towards xg for every g = 1, ..., ℓ.

E������� IV.5. Are the sequences

(1, 2) , (1, 3) , (1, 4) , ...

or �
1,

1

2

�
,

�
1,

1

3

�
,

�
1,

1

4

�
,

�
1,

1

5

�
, ... .

convergent?

Now, we can provide alternative definitions for “boundary point” (see

fig. 5) and “closed set”.

L���� IV.4. A point x∗ ∈ Rℓ is a boundary point of M ⊆ Rℓ if and

only if there is sequence of points in M and another sequence of points in

Rℓ\M so that both converge towards x∗.

L���� IV.5. A set M ⊆ Rℓ is closed if and only if every converging

sequence in M with convergence point x ∈ Rℓ fulfills x ∈M .

Differently put, M is not closed if we can find a converging sequence in

M with convergence point outside M .

E������� IV.6. Use the above lemma to show that the sets {0}∪ (1, 2)

and R\ [{0}∪ (1, 2)] are not closed. Can you find out whether they are open

with the help of lemma IV.2?
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*x

M
M\R2

F����� 5. The sequence definition of a boundary point

2. Preference relations

2.1. Relations and equivalence classes. Our aim is to consider re-

lations on the goods space Rℓ
+. However, we begin with three examples from

outside preference theory.

E���$� IV.8. For any two inhabitants from Leipzig, we ask whether

• one is the father of the other or
• they are of the same sex.

E���$� IV.9. For the set of integers Z (the numbers ..., −2, −1, 0,

1, 2, ...) , we consider the difference and examine whether this difference is

an even number (i.e., from ..., −2, 0, 2, 4, ...).

All three examples define relations, the first two on the set of the in-

habitants from Leipzig, the last on the set of integers. Often, relations are

expressed by the symbol ∼ . To take up the last example on the set of inte-

gers, we have 5 ∼ −3 (the difference 5− (−3) = 8 is even) and 5 ≁ 0 (the

difference 5− 0 = 5 is odd).

D�������
� IV.12 (relation). A relation on a set M is a subset of M ×
M. If a tuple (a, b) ∈ M ×M is an element of this subset, we often write

a ∼ b.

Relations have, or have not, specific properties:

D�������
� IV.13 (properties of relations). A relation ∼ on a set M is
called

• reflexive if a ∼ a holds for all a ∈M,

• transitive if a ∼ b and b ∼ c imply a ∼ c for all a, b, c ∈M,

• symmetric if a ∼ b implies b ∼ a for all a, b ∈M,

• antisymmetric if a ∼ b and b ∼ a imply a = b for all a, b ∈M , and

• complete if a ∼ b or b ∼ a holds for all a, b ∈M .

L���� IV.6. On the set of integers Z, the relation ∼ defined by

a ∼ b :⇔ a− b is an even number
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is reflexive, transitive, and symmetric, but neither antisymmetric nor com-

plete.

“:⇔” means that the expression left of the colon is defined by the ex-

pression to the right of the equivalence sign.

P�

�. We have a − a = 0 for all a ∈ Z and hence a ∼ a; therefore,

∼ is reflexive. For transitivity, consider any three integers a, b, c that obey

a ∼ b and b ∼ c. Since the sum of two even numbers is even, we find that

(a− b) + (b− c)

= a− c

is also even. This proves a ∼ c and concludes the proof of transitivity.

Symmetry follows from the fact that a number is even if and only if its

negative is even.

∼ is not complete which can be seen from 0 ≁ 1 and 1 ≁ 0. Finally, ∼
is not antisymmetric. Just consider the numbers 0 and 2. �

E������� IV.7. Which properties do the relations “is the father of” and

“is of the same sex as” have? Fill in “yes” or “no”:

property is the father of is of the same sex as

reflexive

transitive

symmetric

antisymmetric

complete

D�������
� IV.14 (equivalence relation). Let ∼ be a relation on a setM
which obeys reflexivity, transitivity and symmetry. Then, any two elements

a, b ∈ M with a ∼ b are called equivalent and ∼ is called an equivalence
relation. By an equivalence class of a ∈M, we mean the set

[a] := {b ∈M : b ∼ a} .

Our relation on the set of integers (even difference) is an equivalence

relation. We have two equivalence classes:

[0] = {b ∈M : b ∼ 0} = {...,−2, 0, 2, 4, ...} and

[1] = {b ∈M : b ∼ 1} = {...,−3,−1, 1, 3, ...}

E������� IV.8. Continuing the above example, find the equivalence class-

es [17] , [−23] , and [100]. Reconsider the relation “is of the same sex as”.

Can you describe its equivalence classes?

Generalizing the above example, a ∼ b implies [a] = [b] for every equiv-

alence relation. Here comes the proof. Consider any a′ ∈ [a] . We need to

show a′ ∈ [b]. Now, a′ ∈ [a] means a′ ∼ a. Together with a ∼ b, transitivity
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implies a′ ∼ b and hence a′ ∈ [b] . We have shown [a] ⊆ [b] . The converse,

[b] ⊆ [a], can be shown similarly.

The following lemma uses the above result and the observation a ∈ [a]

which is true by reflexivity.

L���� IV.7. Let ∼ be an equivalence relation on a set M . Then, we
have

�

a∈M
[a] = M and

[a] �= [b] ⇒ [a] ∩ [b] = ∅.

Thus, equivalence classes form a partition of the underlying set.

The other direction holds also: Once we have a partition, we can define

an equivalence relation whose equivalence classes are equal to the compo-

nents of the partition. Just say that two elements are related if they belong

to the same component.

2.2. Preference relations and indifference curves. We now as-

sume that every household i has weak preferences (a weak preference rela-

tion) on the goods space Rℓ
+, denoted by �i. x �i y means that household

i finds y at least as good as x. If there is no doubt about the household we

are talking about, we omit the index.

D�������
� IV.15 (preference relation). A (weak) preference relation

� is a relation on Rℓ
+ that is complete, transitive and reflexive. Given a

preference relation �, the indifference relation is defined by

x ∼i y :⇔ x �i y and y �i x

and the strict preference by

x ≺i y :⇔ x �i y and not y �i x.

While it is hard to imagine preferences without reflexivity, completeness

and transitivity are not as innocent as they seem. Completeness means that

households can always make up their mind. However, “real” households will

sometimes have a hard time to find out what they “really” want. Also, if

confronted with many good bundles, people will often violate transitivity.

We discuss the money-pump argument against the violation of transitivity

in chapter III, pp. 36.

E������� IV.9. Is the indifference relation a preference relation or an

equivalence relation? How about the strict preference relation? Fill in:

property indifference strict preference

reflexive

transitive

symmetric

complete
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2x

1x

3
6

2x

1x

6
3

F����� 6. Numbers associated with indifference curves

D�������
� IV.16 (better set, indifference set). Let � be a preference

relation on Rℓ
+. The better set By of y is given by

By :=
�
x ∈ Rℓ

+ : x � y
�
.

The worse set Wy of y is

Wy :=
�
x ∈ Rℓ

+ : x � y
�
.

y’s indifference set Iy is the intersection of its better and worse set:

Iy := By ∩Wy =
�
x ∈ Rℓ

+ : x ∼ y
�

The geometric locus of an indifference set is called an indifference curve.

The set of indifference sets partition the goods space. This means that

every bundle belongs to one and only one indifference curve. You know from

intermediate microeconomics that indifference curves cannot intersect. This

follows from the fact that indifference relations are equivalence relations and,

in particular, from [a] �= [b] ⇒ [a] ∩ [b] = ∅ in lemma IV.7.

When we draw indifference curves, we often associate them with numbers

where a higher number indicates strict preference. Consider fig. 6. The left-

hand graph stands for preferences of so-called goods where the consumer

would like to have more of both goods. The right-hand graph represents

so-called bads, i.e., the consumer wants as small an amount of both goods

as possible. Think of dirt and noise.

E������� IV.10. Sketch indifference curves for a goods space with just

2 goods and, alternatively,

• good 2 is a bad (the consumer would like to have less of that good),
• good 1 represents red matches and good 2 blue matches,
• good 1 stands for right shoes and good 2 for left shoes.

Lexicographic preferences �lex are very interesting preferences. In the

two-good case they are defined by

x �lex y :⇔ x1 < y1 or (x1 = y1 and x2 ≤ y2).
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M
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y

x

y

x
interior
point

M

M

boundary
point

strictly convexnot convex convex, 
but not strictly convex

F����� 7. Convex sets?

Thus, one good (good 1 in our example) is the “most important” good and

households look at the amount of this good first when they decide between

good bundles.

E������� IV.11. What do the indifference curves for lexicographic pref-

erences look like?

3. Axioms: convexity, monotonicity, and continuity

3.1. Convex preferences. We will often assume convexity of prefer-

ences and monotonicity. We will first need some math.

D�������
� IV.17 (convex combination). Let x and y be elements of

Rℓ. Then,

kx+ (1− k) y, k ∈ [0, 1]

is called the convex combination of x and y.

We have seen a convex combination before, in exercise IV.1 (p. 53). The

convex combination of x and y lies on the line connecting x and y. The

smaller k, the closer the convex combination to y, which is also clear from

kx+ (1− k) y = y + k (x− y) .

D�������
� IV.18 (convex set). A set M ⊆ Rℓ is called convex if for

any two points x and y from M, their convex combination is also contained

in M .

Here, convexity is a property of sets and is not to be confused with the

convexity of functions. In fig. 7, the left-hand example shows a set that is

not convex while the other two sets exhibit convexity.

E������� IV.12. Show that the intersection of two convex sets is also

convex.

D�������
� IV.19 (strictly convex set). A setM is called strictly convex

if for any two points x and y from M, x �= y,

kx+ (1− k) y
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set better

1x

2x

set worse

1x

2x

in point
interior

R+2
in point

interior
R+2

F����� 8. Two interior points

is an interior point of M for any k ∈ (0, 1).

The right-most set in fig. 7 is strictly convex while the middle set is

convex but not strictly so. Convince yourself that open and closed ε-balls

in R2 are strictly convex while a closed rectangle is not.

E������� IV.13. Are the intervals (0,∞) , [0, 3] or [0,∞) convex or

strictly convex?

D�������
� IV.20 (convex preference relation). A preference relation �

on Rℓ
+ is

• convex if all its better sets By are convex,

• strictly convex if all its better sets By are strictly convex,

• concave if its worse sets Wy are convex,

• strictly concave if its worse sets Wy are strictly convex.

A rough description of convexity is “mixtures are prefered to extremes”.

I, for example, would rather have 1 glass of milk and one donut than two

glasses of milk or two donuts.

For many preference relations, we have B0 = Rℓ
+. For the goods space

Rℓ
+, every point x is an interior point of Rℓ

+. Take a close look at exercise

IV.3, p. 55, again. Consider, also, fig.8 where you see two interior points,

one within a better set and one within a worse set. The left-hand indifference

curve indicates strictly convex preferences while the right-hand indifference

curve points to strictly concave preferences.

E������� IV.14. Are the preferences depicted in fig. 9 convex or strictly

convex?

3.2. Monotonicity of preferences. We now have a closer look at

monotonicity of preferences. Broadly speaking, monotonicity means “more

is better”. It comes in three different forms:

D�������
� IV.21 (monotonicity). A preference relation � obeys

• weak monotonicity if x > y implies x � y,

• strict monotonicity if x > y implies x ≻ y, and
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(a)

set better

1x

2x

(b)

set better

1x

2x

(d)

set better

1x

2x

(c)

set better

1x

2x

F����� 9. Convex or strictly convex preferences?

• local non-satiation at y if in every ε-ball with center y a bundle x
with x ≻ y can be found.

Weak monotonicity excludes the possibility of having “too much of a

good thing”. Alternatively, it can be seen as the option to throw away

unwanted items — this property is often referred to as free disposal. Strict

monotonicity is stronger and implies that the agent is strictly better off if he

has more of one good and less of no good. Strict monotonicity also implies

local non-satiation.

E������� IV.15. Sketch the better set of y = (y1, y2) in case of weak

monotonicity!

Sometimes, consumers prefer a limited amount of goods to more or to

less of that good. For example, how may tables would you want in your

appartment if you could get them for free? The existence of a so-called bliss

point (see fig. 10) violates all three definitions of monotonicity.

3.3. Continuous preferences. Finally, we consider the property of

continuity.

D�������
� IV.22 (continuous preferences). A preference relation � is

called continuous if for all y ∈ Rℓ
+ the sets

Wy =
�
x ∈ Rℓ

+ : x � y
�

and

By =
�
x ∈ Rℓ

+ : y � x
�

are closed.
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9

2x

1x

F����� 10. Bliss point

4

2

2

2x

1x

F����� 11. A better set for lexicographic preferences

Lexicographic preferences are not continuous. Have a look at fig. 11.

The hatched area is the “better-set” of point (2, 4) , i.e., all bundles weakly

preferred to (2, 4). All points (x1, x2) obeying x1 > 2 belong to this better-

set and also all bundles with x1 = 2 and x2 ≥ 4.

Now, take point (2, 2) which is a boundary point of the better-set of

(2, 4) . However, (2, 2) does not belong to the better-set. Therefore, the

better-set of (2, 4) is not closed and lexicographic preferences are not conti-

nous.

4. Utility functions

4.1. Definition. Utility functions are used to describe (or “represent”)

preferences:
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D�������
� IV.23 (utility function). For an agent i ∈ N with preference

relation �i

U i : Rℓ
+ → R

is called a utility function if

U i (x) ≥ U i (y) ⇔ x �i y, x, y ∈ Rℓ
+

holds. We then say that U i represents the preferences �i .

This definition implies that we subscribe to ordinal utility theory. That

is, the utility function is only used to rank bundles. Therefore, the claims

“the utility of bundle x is twice as high as the utility of y” and “the utiliy of

bundle x is higher than the utility of y” both express the preference x ≻ y

and nothing more.

It is natural to ask two questions:

• Existence: Can we find a representation of all sorts of preferences?

• Uniqueness: Can there be several representations?

4.2. Examples. We present a few prominent examples of utility func-

tions.

• Cobb-Douglas utility functions are given by U (x1, x2) = xa1x
1−a
2

with 0 < a < 1. They are weakly monotonic but not strictly

so. (Why?) We postpone the question of convexity until after the

introduction of the marginal rate of substitution.

• Goods 1 and 2 are called perfect substitutes (the red and blue

matches) if the utility function is given by U (x1, x2) = ax1 + bx2
with a > 0 and b > 0. Draw the indifference curve for a = 1, b = 4

and the utility level 5!

• Perfect complements (left and right shoes) are described by utility

functions such as U (x1, x2) = min (ax1, bx2) with a > 0 and b > 0.

Draw the indifference curve for a = 1, b = 4 (a car with four wheels

and one engine) and the utility level 5! Does x1 denote the number

of wheels or the number of engines?

4.3. Nondecreasing transformations (uniqueness). We start with

the second point: If a utility function U represents preferences �, we can

easily find other utility functions standing for the same preferences.

D�������
� IV.24 (equivalent utility functions). Two utility functions

U and V are called equivalent if they represent the same preferences.

Two utility functions U and V represent the same preferences � if there

is a strictly increasing function τ : R→ R such that V = τ ◦ U (i.e., V is

the composition of τ and U). The proof rests on the equivalence

U (x) ≥ U (y)

⇔ V (x) = τ (U (x)) ≥ τ (U (y)) = V (y) .
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For example, multiplying U by 2 or subtracting −17 keeps the ordering

intact.

L���� IV.8 (equivalent utility functions). Two utility functions U and

V are called equivalent if there is a strictly increasing function τ : R→ R
such that V = τ ◦ U.

E������� IV.16. Which of the following utility functions represent the

same preferences? Why?

a) U1 (x1, x2, x3) = (x1 + 1) (x2 + 1) (x3 + 1)

b) U2(x1, x2, x3) = ln (x1 + 1) + ln (x2 + 1) + ln (x3 + 1)

c) U3(x1, x2, x3) = − (x1 + 1) (x2 + 1) (x3 + 1)

d) U4(x1, x2, x3) = − [(x1 + 1) (x2 + 1) (x3 + 1)]−1

e) U5(x1, x2, x3) = x1x2x3

4.4. Existence.

4.4.1. Existence is not guaranteed. The existence of a utility function is

not always guaranteed. In particular, lexicographic preferences cannot be

represented by a utility function. To see this, consider fig. 12. We assume

that good 1 is the important good. On the x1-axis, we have real numbers

r′, r′′, and r′′′. If (!!) a utility function for lexicographic preferences exists,

we have

U
�
A′
�
< U

�
B′
�
< U

�
A′′

�
< U

�
B′′

�
< U

�
A′′′

�
< U

�
B′′′

�

where these utilities are real numbers, not necessarily rational numbers.

However, we can be sure to find at least one (indeed, an infinity of) rational

number(s) within the nonempty interval (U (A′) , U (B′)) which we denote

by q′. Similarly, the rational numbers q′′ and q′′′ can be found in the intervals

above r′′ and r′′′, respectively. By the above chain of inequalities, we have

q′ < q′′ < q′′′. In particular, all the rational numbers picked out in this

manner are pairwise different. In this fashion, we can define an injective

function

f :
	
r′, r′′′



→ Q

that associates with every real number in the interval [r′, r′′′] a rational

number. However, by theorem II.1, there are simply not enough rational

numbers to make such a function possible. This is the desired contradiction.

We cannot find a utility function for lexicographic preferences because

they are not continuous. This is clear from the theorem to be presented

shortly.

4.4.2. Existence of a continuous utility function. Continuous preferences

do not only guarantee the existence of a utility function. We can also be sure

that the utility function is continuous itself. We will explain the meaning of

a continuous function in a minute. The proof of the following theorem can

be found in Debreu (1959, pp. 56).
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F����� 12. No utility function for lexicographic preferences
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F����� 13. How to construct a utility curve

T��
��� IV.1. If the preference relation �i of an agent i is continuous,

there is a continuous utility function U i that represents �i .

We sketch the idea of a proof, compare fig. 13. Consider any bundle

x = (x1, ..., xℓ) and the indifference curve Ix through x. Let us assume a

bundle x45◦ := (x̄, ..., x̄) such that x ∼ x45◦ . Thus, x45◦ is a bundle on

the 45◦-line that is indifferent to x. We can be sure of its existence if �i

is monotonic and continuous. Anyway, if such a bundle exists for every

x ∈ Rℓ
+, we can specify a utility function U by

U (x) := x̄.

E������� IV.17. Assume a utility function U that represents the pref-

erence relation � . Can you express weak monotonicity, strict monotonicity
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F����� 14. Continuity at x

and local non-satiation of � (see definition IV.21, p. 64) through U rather

than �?

Belatedly, we now supply the definition of a continuous function. Intu-

itively, a function f from X to Y is continuous at x ∈ X if the distance

between f (x) and f (x′) can be made arbitrarily small (smaller than some

given ε) by choosing x′ from some δ-ball with center x with a sufficiently

small δ.

D�������
� IV.25 (continuous function). Let f be a function Rℓ → R.
f is called continuous at x ∈ Rℓ if for all ε > 0 there is a δ > 0 such that

  f (x)− f
�
x′
�  < ε

for every x′ obeying   x− x′
  < δ.

f is called continuous if it is continuous at every point in Rℓ.

Thus, in order to check continuity at x, we first fix ε > 0 and then

find a suitable δ which will in general depend on both ε and x. If x′ is

sufficiently close to x (in terms of δ), f (x′) will be near f (x) (defined by

ε). Consider fig. 14 where we have continuity at x and δ = x + δ − x is

sufficiently small so that all the x′ in the δ-ball with center x (the open

interval (x− δ, x+ δ)) have values f (x′) in the ε-ball with center f (x) (the

open interval (f (x)− ε, f (x) + ε)).

Discontinuity can be seen from fig. 15. For the given ε on the y-axis, the

chosen δ on the x-axis or any other delta is not sufficient to guarantee that

x′ from the δ-interval around x produces a value f (x′) inside the ε-interval

around f (x).

A utility function U i is continuous if the difference between two utility

levels can be made arbitrarily small by applying U i to two bundles that are
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F����� 15. Discontinuity at x

sufficiently close to each other. In other words, there is no jump at x. If

we jump at x, we cannot guarantee (by getting very close to x) to get the

distance  f (x)− f (x′) closer than the jump’s height.

Sometimes, you might prefer to use another criterion for continuity which

builds on sequences:

T��
��� IV.2. f : Rℓ → R is continuous at x ∈ Rℓ if and only if, for

every sequence
�
xj
�
j∈N in R

ℓ that converges towards x, the corresponding

sequence in the range,
�
f
�
xj
��

j∈N , converges towards f (x).

Consider fig. 16. Can you see that we obtain discontinuity according to

this second criterion, also? The sequence of points on the x-axis (domain)

converges towards x. The sequence on the graph above (range) does not

converge towards f (x).

5. Quasi-concave utility functions and convex preferences

The convexity of preferences is equivalent to a property of utility function

called quasi-concavity:

D�������
� IV.26 (quasi-concavity). f : Rℓ → R is called quasi-concave
if

f (kx+ (1− k) y) ≥ min (f (x) , f (y))

holds for all x, y ∈ Rℓ and all k ∈ [0, 1] . f is strictly quasi-concave if

f (kx+ (1− k) y) > min (f (x) , f (y))

holds for all x, y ∈ Rℓ with x �= y and all k ∈ (0, 1) .

Quasi-concavity means that the value of the function (the utility, if f

is a utility function) at a point between x and y is at least as high as the
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x x

( )xf

excluded

( )xf

F����� 16. Discontinuity at x, once more

lowest of the values f (x) and f (y) . You see examples of quasi-concavity in

fig. 17 while fig. 18 depicts a function that is not quasi-concave.

( )ykkx −+ 1x y x

( )xf

( )( )ykkxf −+ 1

( )yf

Also 
quasi-concave:

F����� 17. Strictly quasi-concave functions

E���$� IV.10. Any monotonically increasing or decreasing function

f : R→ R is quasi-concave.

Better and worse sets and indifference sets are definable for utility func-

tions in the obvious manner:

D�������
� IV.27. Let U be a utility function on Rℓ
+. Then, we have

the better set By of y :

BU(y) := By =
�
x ∈ Rℓ

+ : U (x) ≥ U (y)
�
,

the worse set Wy of y :

WU(y) :=Wy =
�
x ∈ Rℓ

+ : U (x) ≤ U (y)
�
,
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( )ykkx −+ 1x y x

( )( )ykkxf −+ 1

( )yf

( )xf

F����� 18. A function that is not quasi-concave

and y’s indifference set (indifference curve) Iy :

IU(y) := Iy = By ∩Wy =
�
x ∈ Rℓ

+ : U (x) = U (y)
�

D�������
� IV.28. :Let U be a utility function on Rℓ
+. The indifference

curve Iy is called concave if U (x) = U (y) implies

U (kx+ (1− k) y) ≥ U (x)

for all x, y ∈ Rℓ
+ and all k ∈ [0, 1] . Iy is strictly concave if U (x) = U (y)

implies

U (kx+ (1− k) y) > U (x)

for all x, y ∈ Rℓ
+ with x �= y and all k ∈ (0, 1) .

:Fig. 19 presents four examples where strict concavity holds only in

subfigure (a) and (d) is an example of a non-concave indifference curve.

We note without proof:

L���� IV.9. Let U be a continuous utility function on Rℓ
+. A preference

relation � is convex (in the sense of convex better sets, see definition IV.20)

if and only if

• all the indifference curves are concave, or
• U is quasi-concave.

:These non-strict results and strict results are summarized in fig. 20.

6. Marginal rate of substitution

6.1. Mathematics: some differentiation rules. We assume that

the reader is familiar with the usual differentiation rules for a function f :

M→ R with open set M ⊆ R (product rule, quotient rule, chain rule). If M

is a subset of Rℓ, the partial derivative of f with respect to xi is again a real
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(a)

x

(b)

(d)(c)

y

( )ykkx −+ 1
x

y

x

y

x

y

F����� 19. Concave or strictly concave indifference curves?

U quasi-
concave

U ’s indifference
curves concave

U strictly
quasi-concave

⇒

U ’s indifference
curves strictly
concave

⇒

⇔ U ’s better
sets convex

c

U ’s better
sets strictly
convex

⇐

c

U ’s better
sets strictly
convex and
local
nonsatiation

⇒

F����� 20. Concavity and convexity

valued function, but the variables other than xi are hold constant. Partial

derivates are denoted by

∂f

∂xi
rather than

df

dxi
.

We can again apply the simple differentiation rules.

We remind the reader of the chain rule of differentiation (which applies

to compositions f ◦ g of functions f and g):

d (f ◦ g)
dx

=
df

dg

dg

dx

However, differentiation for M ⊆ Rℓ is not equivalent to partial differen-

tiation. For example, it can happen that a function has partial derivatives

everywhere but that the function itself is not differentiable (in a sense not
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defined by us in this text). We ignore these ugly possibilities and use a

definition that will do for all practical purposes:

D�������
� IV.29. Let f : M → R be a real-valued function with open
domain M ⊆ Rℓ. f is called differentiable if all the partial derivatives

∂f

∂xi
(i = 1, ..., ℓ)

exist and are continuous. In that case, the column vector

f ′ (x) :=




f1 (x)

f2 (x)

fℓ (x)




is called f ’s derivative at x.

T��
��� IV.3 (adding rule). Let f : Rℓ → R be a differentiable function
and let g1, ..., gℓ be differentiable functions R→ R. Let F : R→ R be defined
by

F (x) = f (g1 (x) , ..., gℓ (x)) .

Then we have

dF

dx
=

ℓ�

i=1

∂f

∂gi

dgi
dx

.

6.2. Economics: the marginal rate of substitution. Consider two

goods 1 and 2 (if other goods are present, hold them constant). A bundle

y = (y1, y2) defines an indifference curve

Iy =
�
(x1, x2) ∈ R2+ : (x1, x2) ∼ (y1, y2)

�
.

We now consider an amount x1 of good 1 and look for the amount x2 of

good 2 such that (x1, x2) is contained in Iy (see fig. 21 for an illustration).

In this manner, we can sometimes define a function

Iy : x1 → x2.

Note that we have used the symbol Iy in two different ways, as a subset of

the goods space and as a function. We do this to economize on symbols and

also to make clear that the function Iy is closely related to the indifference

curve.

D�������
� IV.30 (marginal rate of substitution). If the function Iy is

differentiable and if preferences are monotonic, we call

MRS =

����
dIy (x1)

dx1

����

the marginal rate of substitution between good 1 and good 2 (or of good 2 for

good 1).



76 IV. ORDINAL PREFERENCE THEORY

( )21,yy

1y

2y

1x

2x

2x

1x

F����� 21. An implicit function

We can readily interpret the marginal rate of substitution: if one ad-

ditional unit of good 1 is consumed while good 2’s consumption is reduced

by MRS units, the consumer stays indifferent. We could also say: MRS

measures the willingness to pay for one additional unit of good 1 in terms

of good 2.

R����+ IV.2. Note that the above definition “does not work” if one of

the goods is a bad. In that case, consuming more of good 1 (nice music) leaves

the consumer indifferent if he endures more of good 2 (filthy smoky air).

However, since we deal with goods (in the sense of monotonic preferences)

most of the time, there is no harm in that definition. Of course, if we

are interested in the slope of the indifference curve, we can simply calculate
dIy(x1)
dx1

. In order to avoid tedious repetitions, we will not always point to the

fact that we have monotonic preferences.

R����+ IV.3. Marginal this and marginal that is standard staple for

economists. It is a somewhat peculiar way of saying that we consider the

derivative of a function. Apart from the marginal rate of substitution, we

will encounter “marginal utility”, “marginal cost”, “marginal revenue” etc.

As an example, consider the utility function given by U (x1, x2) = ax1+

bx2, a > 0 and b > 0, i.e., the case of perfect substitutes. Along an indif-

ference curve, the utility is constant at some level k so that we focus on

all good bundles (x1, x2) fulfilling ax1 + bx2 = k. We find the slope of that

indifference curve by

• solving for x2 — x2 (x1) =
k
b − a

bx1 — and

• forming the derivative with respect to x1 — dx2
dx1

= −a
b .

Therefore, the marginal rate of substitution for perfect substitutes is a
b .
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So far, we did not make use of a utility function (possibly) representing

the preferences. If such a function is available, calculating the marginal rate

of substitution is an easy exercise:

L���� IV.10. Let � be a preference relation on Rℓ
+ and let U be the

corresponding utility function. If U is differentiable, the marginal rate of

substitution between good 1 and good 2 can be obtained by

MRS (x1) =

����
dIy (x1)

dx1

���� =
∂U
∂x1
∂U
∂x2

.

Here, we make use of the partial derivatives of the utility function, ∂U
∂x1

and ∂U
∂x2

, for goods 1 and 2, respectively. They are called ... marginal utility.

P�

�. Along an indifference curve, the utility is constant, i.e., we have

constant = U (x1, Iy (x1)) .

By the adding rule IV.3, differentiating with respect to x1 yields

0 =
∂U

∂x1
+
∂U

∂x2

dIy (x1)

dx1
.

�

Thus, we can find the slope of the function Iy even if Iy is not given

explicitly. This is an application of the so-called implicit-function theorem.

Let us return to the case of perfect substitutes considered above. The

marginal rate of substitution is found easily:

MRS (x1) =

∂(ax1+bx2)
∂x1

∂(ax1+bx2)
∂x2

=
a

b

We note without proof:

L���� IV.11. Let U be a differentiable utility function and Iy an in-

difference curve of U . This indifference curve is concave if and only if the

marginal rate of substitution is a decreasing function in x1.

This lemma is depicted in fig. 22. In that figure, we have x1 < y1 and

MRS (x1) > MRS (y1).

For example, the MRS of Cobb-Douglas utility functions (which is given

by U (x1, x2) = xa1x
1−a
2 , 0 < a < 1) is

MRS =
∂U
∂x1
∂U
∂x2

=
axa−11 x1−a

2

(1− a)xa1x
−a
2

=
a

1− a

x2
x1
.

If we increase x1, we need to decrease x2 > 0 along any indifference curve

(Cobb-Douglas preferences are monotonic) — x2
x1

is therefore a decreasing

function of x1. Thus, the MRS decreases in x1 and Cobb-Douglas in-

difference curves are concave (Cobb-Douglas preferences convex or Cobb-

Douglas utility functions quasi-concave). Similarly, the utility function

U (x1, x2) = x1x2 with MRS = x2
x1

is quasi-concave.
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1y1x

2x

1x

F����� 22. Concave indifference curve, increasing MRS

7. Topics

The main topics in this chapter are

• preference relation

• indifference

• strict preference

• better set

• worse set

• indifference set, indifference curve

• lexicographic preferences

• Cobb-Douglas preferences

• perfect substitutes

• perfect complements

• utility function

• the vector space Rℓ

• the first quadrant of Rℓ, Rℓ
+

• ≥, >, and ≫ for vectors

• the distance between points x and y in Rℓ,  x− y 
• the Euclidian norm,  x− y 2 =

'�ℓ
g=1 (xg − yg)

2

• the infinity norm,  x− y ∞ = maxg=1,...,ℓ |xg − yg|
• ε-ball with center x∗

• bounded set

• interior point

• boundary point

• open set

• closed set

• sequence

• convergence
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• continuity of a function

• relation

• preference relation

• equivalence relation

• convex set

• symmetry

• transitivity

• reflexivity

• completeness

• continuity of preferences

• quasi-concave functions

8. Solutions

Exercise IV.1

Adding two vectors reduces to adding the components:

x+ y = (2, 4) + (8, 12)

= (2 + 8, 4 + 12) = (10, 16)

Multiplying a vector with a real number is also defined component-by-

component:

2x = 2 (2, 4) = (2 · 2, 2 · 4) = (4, 8)

Using both operations, we find

1

4
x+

3

4
y =

1

4
(2, 4) +

3

4
(8, 12)

=

�
1

4
· 2, 1

4
· 4
�
+

�
3

4
· 8, 3

4
· 12

�

=

�
1

2
, 1

�
+ (6, 9)

=

�
6
1

2
, 10

�

Exercise IV.2

We have

 (2, 5)− (7, 1) 2 =  (−5, 4) 2 =
√
25 + 16 =

√
41 ≈ 6, 4

and

 (2, 5)− (7, 1) ∞ =  (−5, 4) ∞ = max (5, 4) = 5.

Exercise IV.3

The 1-ball with center (2, 2) is a circle with radius 1. The 1-ball with

center (0, 0) is a quarter-circle with radius 1 that goes through (1, 0) and

(0, 1) . The 1-ball with center (2, 0) is a half-circle with radius 1 visiting,

inter alia, the points (1, 0) , (3, 0) and (2, 1) .

Exercise IV.4
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The boundary points of both (0, 1) and [0, 1] are 0 and 1, the boundary

point of [0, 0] ist 0.

Exercise IV.5

The sequence (1, 2) , (1, 3) , (1, 4) , ... does not converge because of the sec-

ond entry. The sequence
�
1, 12

�
,
�
1, 13

�
,
�
1, 14

�
,
�
1, 15

�
, ... converges towards

(1, 0) .

Exercise IV.6

We consider the sequence
�
3
2

�
,
�
4
3

�
,
�
5
4

�
,
�
6
5

�
, ... which is a sequence

in {0}∪ (1, 2). In R, it converges towards 1 /∈ {0}∪ (1, 2) . By lemma

IV.5, {0}∪ (1, 2) is not closed. The sequence
�
1
2

�
,
�
1
3

�
,
�
1
4

�
,
�
1
5

�
, ... is con-

tained in R\ [{0}∪ (1, 2)] and converges towards 0 /∈ R\ [{0}∪ (1, 2)] . There-

fore, R\ [{0}∪ (1, 2)] is also not closed. By lemma IV.2, we know that

R\ [{0}∪ (1, 2)] is not open because its complement

R\ (R\ [{0}∪ (1, 2)]) = {0}∪ (1, 2)

is not closed. Similarly, {0}∪ (1, 2) is also not open.

Exercise IV.7

Did you also obtain

property is the father of is of the same sex as

reflexive no yes

transitive no yes

symmetric no yes

antisymmetric no no

complete no no

Exercise IV.8

We have [17] = [−23] = [1] and [100] = [0] . The relation “is of the same

sex as” is an equivalence relation (see exercise IV.7). The equivalent classes

are “the set of all males” and “the set of all females”.

Exercise IV.9

The indifference relation is not a preference relation, but an equivalence

relation. The strict preference relation inherits transitivity from the transi-

tivity of weak preference:

property indifference strict preference

reflexive yes no

transitive yes yes

symmetric yes no

complete no no

Exercise IV.10

If you have problems drawing these indifference curves, go back to an

intermediate-microeconomics textbook. Your three pictures should look like

this:

• If good 2 is a bad, the indifference curve is upward sloping.
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1y

2y

part of 
better set

2x

1x

F����� 23. Weak monotonicity

• Red and blue matches are perfect substitutes. They are depicted

by linear indifference curves with slope −1.

• Left and right shoes are perfect complements and the indifference

curves are L-shaped.

Exercise IV.11

There is no indifference between two points. Therefore, every point is

an indifference curve for itself.

Exercise IV.12

Let M1 and M2 be convex sets. M := M1 ∩M2 is the intersection of

these two sets. Two points x and y from M are contained in M1 and in M2.

By convexity

kx+ (1− k) y

is also contained in both sets and therefore in their intersection, M .

Exercise IV.13

All these sets are strictly convex.

Exercise IV.14

The preferences indicated in (a) are strictly convex, while those in (b)

and (c) are convex but not strictly convex. The preferences depicted in (d)

are not convex. They are strictly concave.

Exercise IV.15

The set of those bundles x =
�
x1, x2

�
for which we have x ≥ y, can be

seen in fig. 23. In case of weak monotony all those bundles fulfill x � y,

i.e., they belong to y’s better-set.

Exercise IV.16

We have lnU1(x1, x2, x3) = U2(x1, x2, x3) and d ln y
y = 1

y > 0. Therefore,

U1 and U2 are equivalent. By d(−y)−1

y
= (−1) (−y)−2 (−1) = 1

y2
> 0, U1 and
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U4 are also equivalent. Equivalence of utility functions is an equivalence

relation (do you see, why?) so that U1, U2 and U4 are equivalent.

U1 and U3 are not equivalent because we have

U1 (0, 0, 0) = 1 < 2 = U1 (1, 0, 0) but

U3 (0, 0, 0) = −1 > −2 = U3 (1, 0, 0) .

U1 and U5 are also not equivalent, because of

U1 (0, 0, 0) = 1 < 2 = U1 (1, 0, 0) but

U5 (0, 0, 0) = 0 = 0 = U3 (1, 0, 0) .

You can also check that U3 and U5 are not equivalent.

Exercise IV.17

U obeys

• weak monotonicity iff x > y implies U (x) ≥ U (y) ,

• strict monotonicity iff x > y implies U (x) > U (y), and

• local non-satiation at y iff a bundle x with U (x) > U (y) can be

found in every ε-ball with center y.
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9. Further exercises without solutions

P�
#$�� IV.1.

Show that lexicographic preferences are not continuous by applying lemma

IV.5. Hint: Consider the better set B(2,4) and the sequence

�
xj
�
j∈N =

�
2 +

1

j
, 2

�
.

P�
#$�� IV.2.

Provide a definition of strict anti-monotonicity. In the matrix below, sketch

indifference curves for each of the four cases!

strict monotonicity strict anti-monotonicity

strict convexity

strict concavity

P�
#$�� IV.3.

Which of the properties (strict) monotonicity, (strict) convexity and conti-

nuity do the following preferences satisfy?

(a) U(x1, x2) = x1 · x2,
(b) U(x1, x2) = min {a · x1, b · x2} where a, b > 0 holds,

(c) U(x1, x2) = a · x1 + b · x2 where a, b > 0 holds,

(d) lexicographic preferences

P�
#$�� IV.4.

Let U be a continous utility function representing the preference relation

� on Rl
+. Show that � is continous as well. Also, give an example for a

continous preference relation that is represented by a discontinous utility

function. Hint: Define a function U ′ that differs from U for x = 0, only.

P�
#$�� IV.5.

Let ≻ be a strict preference relation. Show that ≻
(a) need not be complete,

(b) is always transitive

P�
#$�� IV.6.

A preference relation � is called homothetic, if x � y implies αx � αy for

all α ≥ 0.

(a) Show that x ∼ y implies αx ∼ αy!

(b) Consider a world with two goods. Sketch two indifference curves.

(c) Show that homogeneous utility functions (defined by U (αx) =

αλU (x) for some λ > 0) represent homothetic preferences.

(d) Are lexicographic preferences homothetic?





CHAPTER V

Decisions under risk

So far, we have considered decision theory under certainty or for risk

neutrality. In this chapter, we focus on the risk attitude of the agents. The

model presented by von Neuman und Morgenstern allows to formalize risk

aversion and risk loving. The objects of choice are lotteries, i.e., payoffs

together with probabilities. We present and discuss the axioms that govern

the choice between lotteries. We also introduce important concepts such as

the certainty equivalent, the risk premium and the Arrow-Pratt measure of

risk averseness.

1. Simple and compound lotteries

1.1. Simple lotteries as bundles and trees. We introduce lotteries

on pp. 16. We repeat the definition and show how lotteries can be understood

• as bundles of goods (see chapter VI) or

• as extensive-form decision situations (see chapter III).

We also introduce compound lotteries where the “payoffs” are lotteries them-

selves. The reader is reminded of our umbrellas-sunshades example:

state of the world

bad weather, 14 good weather, 34

strategy

production

of umbrellas
100 81

production

of sunshades
64 121

F����� 1. Umbrellas or sunshades?

The lotteries

Lumbrella =

�
100, 81;

1

4
,
3

4

�
and

Lsunshade =

�
64, 121;

1

4
,
3

4

�

are also depicted in fig. 2 (the probabilities are noted at the axes). Thus,

given the probabilities, lotteries are bundles of goods.

85
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( )4

2

3 prob.

 weather good
 of case in

  payment x

10064

121

81

sunshade
production

umbrella
production

( )4

1

1 prob.

weather bad
 of case in

  payment x

F����� 2. The lotteries resulting from umbrella and sun-

shade production

We repeat the definition of an expected value:

D�������
� V.1 (expected value). Assume a simple lottery

L = [x1, ..., xℓ; p1, ..., pℓ] .

Its expected value is denoted by E (L) and given by

E (L) =
ℓ�

j=1

pjxj .

In case of two payoffs and two probabilities (ℓ = 2), the expected value

can be derived graphically. Consider the lottery L =
	
2, 10; 14 ,

3
4



which is

depicted in fig. 3. Its expected payoff is 1
4 · 2 + 3

4 · 10 = 8. The line crossing

through L is the locus of lotteries (for probabilities 1/4 and 3/4, respectively)

that also have this mean. This can be seen from 8 = p1x1 + p2x2 (which is

obviously fulfilled by lottery L) or

x2 =
8

p2
− p1
p2
x1

with slope −p1
p2

= 1
3 . Now, the lottery on that line which also lies on the

45◦-line (fulfilling x1 = x2) has expected value

E (L) = p1x1 + p2x2

= p1x1 + p2x1

= x1.
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Therefore, given a lottery L, you draw a line through L with slope −p1
p2

(the

line of constant expected value) and the 45◦-line (the line of equal payoffs)

and then, either entry of the crossing point equals L’s expected value.

( )4

2
3 prob.

x

( )4

1
1 prob.

x( )LE=82

10

( )LE=
8

L

°45

3
1

4
3

4
1

2

1

1

2 −=−=−=
p

p

dx

dx

F����� 3. Deriving the expected payoff

As an alternative to the bundle-of-goods interpretation, we can under-

stand a simple lottery as a decision situation in extensive form with moves

by nature ∆ = (V,C, u, ι, A, β0) with Vterm = V \ {v0} and D0 = {v0} (see

p. 42). Vterm = V \ {v0} implies that the tree is of length 1. Therefore, lot-

tery
	
0, 10; 13 ,

2
3



can be depicted as in fig. 4 — a decision situation without

decision maker.

0v

2v

1v

3
2

3

1
0

10

0

F����� 4. A simple lottery as a decision situation

E������� V.1. Do you prefer L1 =
	
0, 10; 13 ,

2
3



to L2 =

	
5, 10; 14 ,

3
4



if

the payoff numbers are Euro amounts?

E������� V.2. Do you prefer the lottery L =
	
95, 105; 12 ,

1
2



to a certain

payoff of 100?
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1.2. Compound lotteries. For theoretical purposes, we need to pre-

sent compound lotteries:

D�������
� V.2 (compound lottery). Let L1, ..., Lℓ be simple lotteries

(lotteries in the sense of definition II.18, p. 17). Then

L = [L1, ..., Lℓ; p1, ..., pℓ]

is called a compound or two-stage lottery. We also allow for an infinite ℓ.

E������� V.3. Consider the two simple lotteries L1 =
	
0, 10; 13 ,

2
3



and

L2 =
	
5, 10; 14 ,

3
4



. Express the compound lottery L =

	
L1, L2;

1
2 ,
1
2



as a

simple lottery! Can you draw the appropriate trees, one of length 2 and one

of length 1?

2. The St. Petersburg lottery

2.1. The paradox. Imagine Peter throwing a fair coin j times until

“head” occurs for the first time. Head (H) rather than tail (T) occurs at

the first coin toss (sequence H) with probability 1
2 , at the second coin toss

(sequence TH) with probability 1
4 and at the jth toss (sequence T...TH)

with probability 1
2j

. Peter pays 2j to Paul if “head” occurs for the first time

at the jth toss. Thus, the lottery is an infinite one and defined by

L =

�
2, 4, 8, ..., 2j, ...;

1

2
,
1

4
,
1

8
, ...,

1

2j
, ...

�
.

The probabilities are positive. However, do they sum up to 1? Note that

any (but the first) probability is the product of the previous probability and
1
2 . In general, if the absolute value of the factor q (here: 1

2) is smaller than 1,

|q| < 1, the infinite geometric series
�∞

j=0
cqj = c+ cq+ cq2+ ... converges

and we have

infinite geometric series =
first term

1− factor
=

c

1− q
.

E������� V.4. Apply the above rule to the sum of the probabilities 12 +
1
4 +

1
8 + ... !

E������� V.5. How much are you prepared to pay for the St. Petersburg

lottery?

Lottery L is known as the St. Petersburg lottery. Its expected payoff is

infinite:

E (L) =
∞�

j=1

1

2j
· 2j = ∞

In any case, your willingness to pay is well below the expected value

of the lottery. This discrepancy between the infinite expected value of the

lottery and the very low willingness to pay for it is called the St. Petersburg

paradox.
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2.2. Limited resources as a resolution? Can we make sense of the

paradox? One argument refers to Peter’s limited resources. Assume Peter

is a millionaire who possesses one million Euro which he is willing to pay

to Paul. Then, rather than the infinite lottery above, we have the resource-

restricted lottery

Lmillionaire =

�
2, 4, 8, ..., 218, 219;

1

2
,
1

4
,
1

8
, ...,

1

218
,
1

218

�
.

(It is easy to remember 210 = 1024 ≈ 103. Therefore 220 is slightly above

106 so that the maximum payment Peter can effect is 219.) Now, by

1−
�
1

2
+

1

4

�
=

1

4
and, similarly,

1−
18�

j=1

1

2j
=

1

218

the expected value of this lottery is

E (Lmillionaire) =
18�

j=1

1

2j
· 2j + 1

218
· 219

= 20.

Thus, the resource restriction puts a serious limit to an expected-value max-

imizer’s willingness to pay.

Aumann (1977) thinks that this is a cheap way out of the difficulty posed

by the St. Petersburg paradox. He points to the possibility that the util-

ity arises from “religious, aesthetic, or emotional experiences, like entering

a monastery, climbing a mountain, or engaging in research with possibly

spectacular results. It seems reasonable to suppose that before engaging in

such an activity, Paul would perceive the utility of the resulting sensation as

a random variable and there is no particular reason to assume that this ran-

dom variable is bounded.” Thus, we can construct a St. Petersburg lottery

that does not refer to Peter’s limited resources.

2.3. Expected utility as a resolution? A second argument chal-

lenges the rationale of maximizing the expected value. Instead, decision

makers maximize (should maximize) the expected utility as Daniel Bernoulli

proposed in 1738. The idea is to transform the payoffs xj by a utility func-

tion u which is defined on R.

D�������
� V.3. Assume a simple L = [x1, ..., xℓ; p1, ..., pℓ] and a utility

function u : R→ R. The expected utility is denoted by Eu (L) and given by

Eu (L) =
ℓ�

j=1

pju (xj) .

For example, assume the utility function u = ln.
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E������� V.6. Do you know how to rewrite or calculate ln (1) and, for

x, y > 0, ln
�
x
y

�
, ln (xy) , lnxb, and d lnx

dx
?

Without resource restriction, we obtain the expected utility of the St.

Petersburg lottery

Eln (L) =
∞�

j=1

1

2j
ln
�
2j
�
= ln 2

∞�

j=1

1

2j
j

= ln 2
∞�

j=1

1

2j
j

= 2 ln2

where you do not need to check the last equality. Your willingness to pay

WtoPay for that lottery is then given by

Eln ([WtoPay; 1])
!
= 2 ln2

and hence by

WtoPay = eln(WtoPay) = eEln([WtoPay;1]) !
= e2 ln 2 =

�
eln 2

�2
= 22 = 4.

2.4. Bounded utility. This expected-utility argument is fine for the

original St. Petersburg lottery. However, given the ln utility function, we

can construct a lottery that leads to the same paradox:

Lln =

�
4, 16, 256, ..., 2(2

j), ...;
1

2
,
1

4
,
1

8
, ...,

1

2j
, ...

�
.

E������� V.7. Calculate the expected utility of the above lottery with

respect to the utility function ln, i.e., find Eln (Lln)!

Thus, it seems that we cannot escape the St. Petersburg paradox! As it

turns out, the culprit is a utility function that is not bounded.

D�������
� V.4. A real-valued function f is bounded if a K ∈ R exists
such that |f (x)| ≤ K for all x from f ′s domain.

E������� V.8. Consider the utility functions on the domain R+ :

• u (x) = lnx

• u (x) = x

• u (x) =
√
x

• u (x) = 1− 1
1+x

Which of these are bounded?

L���� V.1. Let u be an unbounded utility function. Then, a St. Pe-

tersburg lottery Lu can be found such that Eu (Lu) is infinite.

This lemma is due to Menger (1967). The idea is to associate the prob-

ability 1
2j

with a payoff x such that 1
2j
u (x) ≥ 1. By the unboundedness of

u, such an x can be found. That’s it. The inverse is even simpler:
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E������� V.9. Show the following proposition: For any bounded utility

function obeying u (x) ≤ K for all x ≥ 0 and for any lottery L, we have

Eu (L) ≤ K.

Aumann (1977) suggests to look here for a resolution to the St. Peters-

burg paradox: It is simply not true that utility functions are unbounded.

Aumann corroborates the claim of boundedness by a thought experiment.

Assume Paul has an unbounded utility function. Let x be a very good life

(“long, happy, and useful”, in Aumann’s words) and let y be a very miser-

able life for Paul. By unboundedness there is another very, very good life

for Paul, z, such that

1

10100
u (z) +

�
1− 1

10100

�
u (y) > u (x)

holds.

Although we find Aumann’s argument for bounded utilities convincing,

we will often work with unbounded utility functions, just for the sake of

convenience. Of course, so far, we do not even know whether the procedure

of calculating the expected utility makes sense. And what is the meaning of

u and its shape? This is the topic of the next section.

3. Preference axioms for lotteries and von Neumann

Morgenstern utility

3.1. Preference axioms. We assume a weak preference relation on the

set of lotteries. Given a weak preference relation �, we can define indiffer-

ence ∼ and strict preference ≻ . The first two axioms are old acquaintances:

Completeness axiom: For two lotteries L1 and L2, we have L1 � L2
or L2 � L1.

Transitivity axiom: Assume three lotteries L1, L2 and L3 obeying

L1 � L2 and L2 � L3. Then, we have L1 � L3.

The third axiom uses the special structure of lotteries:

Continuity axiom: For any three lotteries L1, L2 and L3 with L1 �

L2 � L3 there is a probability p ∈ [0, 1] such that

L2 ∼ [L1, L3; p, 1− p]

holds.

Assume three real-life lotteries L1, L2 and L3 where L3 means certain

death, L1 a payoff of 10 Euros and L2 a payoff of 0. Hopefully, you are not

suicidal and your preferences are given by L1 ≻ L2 ≻ L3. Determine your

personal p so that you are indifferent between L2 (obtaining nothing) and

the lottery [L1, L3; p, 1− p] where you risk your life with some probability

1− p and obtain 10 Euros with probability p.

Now the following problem arises. Most people in rich countries point

to a probability close to 1. In fact, many say that any probability below 1

makes them prefer the zero payoff. However, a probability p = 1 leads to
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[L1, L3; 1, 0] = L1 ≻ L2. Therefore, one has a reason to be critical towards

the continuity axiom. Note, however, that many people are willing to cross

the road to pick a 10 Euro bill. Since crossing the road is a dangerous activity

which leads to death with a nonzero probability, these people should be able

to name a p below 1.

Finally, we turn to the independence axiom which is of central impor-

tance for decisions between lotteries. It claims that the decision between

compound lotteries depends on the differences between these lotteries:

Independence axiom: Assume three lotteries L1, L2 and L3 and a

probability p > 0. We have

[L1, L3; p, 1− p] � [L2, L3; p, 1− p] ⇔ L1 � L2.

E������� V.10. Assume a decision maker who is indifferent between

L1 =

�
0, 100;

1

2
,
1

2

�
and L2 =

�
16, 25;

1

4
,
3

4

�
.

Can you show the indifference between L3 =
	
0, 50, 100; 14 ,

1
2 ,
1
4



and L4 =	

16, 25, 50; 18 ,
3
8 ,
1
2



by verifying

L3 =

�
L1, 50;

1

2
,
1

2

�
and L4 =

�
L2, 50;

1

2
,
1

2

�
.

The independence axiom has been heavily critized. Consider the follow-

ing four lotteries:

L1 =

�
12 · 106, 0; 10

100
,
90

100

�
,

L2 =

�
1 · 106, 0; 11

100
,
89

100

�
,

L3 =
	
1 · 106; 1



,

L4 =

�
12 · 106, 1 · 106, 0; 10

100
,
89

100
,

1

100

�
.

Pause for a moment to consider your preferences between L1 and L2 on the

one hand and between L3 and L4 on the other hand.

Many people prefer L1 to L2 and L3 to L4. However, these preferences

are in violation of the independence axiom. By L1 ≻ L2, this axiom im-

plies
	
L1, L3;

1
2 ,
1
2



≻
	
L2, L3;

1
2 ,
1
2



, while L3 ≻ L4 leads to

	
L2, L3;

1
2 ,
1
2



≻	

L2, L4;
1
2 ,
1
2



. Transitivity implies

	
L1, L3;

1
2 ,
1
2



≻
	
L2, L4;

1
2 ,
1
2



.

E������� V.11. Reduce
	
L1, L3;

1
2 ,
1
2



and

	
L2, L4;

1
2 ,
1
2



to simple lot-

teries!

The result reported in the exercise shows that the preferences L1 ≻ L2
and L3 ≻ L4 do not conform with the independence and transitivity axioms.

Too bad for the axioms! Or too bad for your preferences?

Indeed, how do you react when somebody points out the violation of

these axioms. You may say: “Well, I made a mistake”, and then you change
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your preference between L1 and L2 (or between L3 and L4). After all, we all

make mistakes in complicated situations in the same way as we sometimes

do not manage to add up numbers correctly. Others take these examples as

an argument against the independence axiom (rarely against the transitivity

axiom).

Whatever your position is, we assume from now on decision makers who

adhere to all four axioms explained above. Apart from the intrinsic appeal

of the independence axiom, the preference theory built on these axioms is

very intriguing and helpful in the analysis of decisions under risk.

3.2. A utility function for lotteries. We begin with a startling and

far-reaching statement:

T��
��� V.1. Preferences between lotteries obey the four axioms men-

tioned in the previous section if and only if there is a utility function u :

R+ → R such that

L1 � L2 ⇔ Eu (L1) ≥ Eu (L2)

holds for all L1, L2 ∈ L. In that case, the utility function u is said to

represent the preferences � on the set of lotteries L. u is called a von

Neumann Morgenstern utility function (vNM utility function).

The theorem makes two claims. First, if a decision maker’s preferences

are represented by expected utility for a suitably chosen utility function

u : R+ → R, these preferences obey the four axioms. Second, if preferences

on the set of lotteries do not violate any of the four axioms, we can find a

utility function u (that depends on the preferences) such that the expected

utility with respect to u delivers all the preference information.

It is important to distinguish the two utility notions very strictly:

• u : R+ → R is the vNM (von Neumann and Morgenstern) utility

function and has payoffs as its domain,

• Eu : L → R is the expected utility and has lotteries as its domain.

The preferences that an expected utility function represents are not

changed by strictly monotonic transformations (for a more detailed discus-

sion, see pp. 4.3). For example, we can multiply Eu by 4 or 1
5 or we can

apply the ln or square-root function if Eu (L) is nonnegative for all L ∈ L.

However, we have no reason to do that. It is more interesting that we can

change u in certain ways without affecting the preferences to be represented:

L���� V.2. If u represents the preferences �, so does any utility func-

tion v that obeys v (x) = a+ bu (x) for a ∈ R and b > 0.

The lemma says that we can subject u to an affine transformation

(adding a constant and multiplying by a positive constant) without changing

the preferences u represents.
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E������� V.12. Find a vNM utility function that is simpler than u (x) =

100 + 3x+ 9x2 while representing the same preferences.

The proof of the lemma is not difficult:

E������� V.13. Consider two lotteries LA :=
�
xA1 , ..., x

A
ℓA
; pA1 , ..., p

A
ℓA

�

and LB :=
�
xB1 , ..., x

B
ℓB
; pB1 , ..., p

B
ℓB

�
. Let v be an affine transformation of u.

Show

Eu

�
LA

�
≥ Eu

�
LB

�
⇔ Ev

�
LA

�
≥ Ev

�
LB

�
.

3.3. The construction of the vNM utility function. We still do

not know how to construct u and how to interpret it. We use the conti-

nuity axiom for the construction of u. Consider a very bad lottery Lbad

and a very good lottery Lgood (Lgood ≻ Lbad) and consider an in-between

lottery L obeying Lgood � L � Lbad. By the continuity axiom, there exists

a probability p (L) such that L ∼ [Lgood, Lbad; p (L) , 1− p (L)] holds.

E������� V.14. Find p (Lgood) and p (Lbad)! Hint: Translate

L ∼ [Lgood, Lbad; p (L) , 1− p (L)]

into a statement on expected utilities.

For a payment x we consider the trivial lottery L := [x; 1] and define a

vNM utility function u by

u (x) := p (L) .

Then, we have indifference between x and [Lgood, Lbad;u (x) , 1− u (x)] . u (x)

is a value between 0 (the probability for Lbad) and 1 (the probability for

Lgood) and u represents the preferences of the decision maker as shown by

Myerson (1991, pp. 12). We assume that u is strictly increasing but allow

for convex or concave shapes.

4. Risk attitudes

4.1. Concave and convex functions. We will see that risk preference

is closely related to the concavity or convexity of vNM utility functions.

D�������
� V.5. Let f : M→ R be a function on a convex domain
M ⊆ R. f is called concave if we have

f (kx+ (1− k) y) ≥ kf (x) + (1− k) f (y)

for all x, y ∈M and for all k ∈ [0, 1]. f is called strictly concave if

f (kx+ (1− k) y) > kf (x) + (1− k) f (y)

holds for all x, y ∈ M with x �= y and for all k ∈ (0, 1). If the inequality

signs are the other way around, f is convex or strictly convex, respectively.
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Fig. 5 illustrates concave functions. You see that the value at the

point in between x and y is higher than the average of the values at x and

y. Graphically speaking, concavity means that the straight line connecting

f (x) and f (y) lies below the graph of f .

If f : R→ R is differentiable, we have another way to characterize con-

cavity. Consider the slopes (derivatives of f) at points A and B. Both slopes

are negative but the slope is lower at B than at A. This means that the first

derivative declines, or, differently put, that the second derivative is nega-

tive. Just think of a mountain walk. At first, the slope may be positive but

you reach a plateau and go downhill afterwards. The slope gets steeper and

steeper (until you fall off).

( )ykkx −+ 1x y x

( )xf

( ) ( ) ( )yfkxkf −+ 1

( )( )ykkxf −+ 1

( )yf

A

B

Also concave:

F����� 5. Concave functions and negative second derivative

L���� V.3. Let f : M → R with convex domain M ⊆ R be twice
differentiable. f is concave on a convex set M ⊆ R if and only if

f ′′ (x) ≤ 0

holds for all x ∈M . f is convex on a convex set M ⊆ R if and only if
f ′′ (x) ≥ 0

holds for all x ∈M .

Convexity is the opposite of concavity (see fig. 6). If you march down

a hill, the slope gets less steep; if you march upwards, the slope increases

steadily.

E������� V.15. Comment: If a function f : R→ R is not concave, it
is convex.

In chapter IV, we introduce quasi-concavity. In chapter VIII (exercise

VIII.2, p. 206), you will be asked to show that concavity implies quasi-

concavity in a more general setting. At this point, it may suffice to present

the four different possibilities — see fig. 7.
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B

A

( )ykkx −+ 1x y x

( )xf

( ) ( ) ( )yfkxkf −+ 1

( )( )ykkxf −+ 1

( )yf

Also convex:

F����� 6. Convex functions and positive second derivative

concave

not concave

quasi-concave not quasi-concave

concavity implies
quasi-concavity

F����� 7. Concavity versus quasi concavity

4.2. Risk aversion and risk loving. We now show that the curvature

of u reflects the decision maker’s attitude towards risk. But first of all, we

need the appropriate definitions:

D�������
� V.6. Assume preferences � on L. A decision maker is
called

• risk neutral in case of
L ∼ [E (L) ; 1] or Eu (L) = u (E (L)) ;

• risk-averse in case of
L � [E (L) ; 1] or Eu (L) ≤ u (E (L)) ;

and

• risk-loving in case of
L � [E (L) ; 1] or Eu (L) ≥ u (E (L))
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payoff

vNM utility

( )LE95 105

( )95u

( )105u

( )LEu

( )( )LEu

F����� 8. risk averseness

for all lotteries L ∈ L.

Thus, a risk-loving decision maker prefers every lottery to the expected

value of that lottery. A risk neutral person cares only for the expected

value of the lottery. Of course, we can also express the three attitudes

towards risk by way of expected utility. For a risk-averse decision maker,

the expected utility of a lottery L is not higher than the utility of the

lottery [E (L) ; 1] which equals u (E (L)) . Thus, risk-averseness can also be

expressed by Eu (L) ≤ u (E (L)) .

Consider the lottery
	
95, 105; 12 ,

1
2



. Its expected value is 100 and its

expected utility 1
2u (95) +

1
2u (105) . Have a look at fig. 8 and observe the

concave shape of the vNM utility function u. Apparently, we have

u (100) = u (E (L)) > Eu (L) =
1

2
u (95) +

1

2
u (105) ,

i.e., the utility of the expected value is greater than the expected utility.

In other words, the decision maker prefers the (sure) expected value to the

(uncertain) lottery. He is risk averse. This is true in general and the inverse

holds, too:

L���� V.4. Assume preferences � on L and an associated vNM utility
function u. A decision maker is

• risk neutral iff u is an affine function (i.e., u (x) = ax+ b, a > 0),

• risk-averse iff u is concave, and
• risk-loving iff u is convex.Consider

E������� V.16. Do the preferences characterized by the following utility

functions exhibit risk-averseness?

• u1(x) = x2, x > 0

• u2(x) = 2x+ 3
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95 105

premium risk

( )LCE payoff

vNM utility

( )95u

( )105u

( )LEu

( )( )LEu

( )LE

F����� 9. Certainty equivalent and risk premium

• u3(x) = ln(x), x > 0

• u4(x) = −e−x

• u5 (x) =
x1−θ

1−θ , θ > 0, θ �= 1

Hint: apply lemma V.3.

4.3. Certainty equivalent and risk premium. For a risk-averse de-

cision maker, the expected value of a lottery is worth more than the lottery

itself. An amount smaller than the expected value may yield indifference:

D�������
� V.7. Assume preferences � on L. For any lottery L ∈ L,
the payoff CE (L) is called certainty equivalent of L, if

L ∼ [CE (L) ; 1]

holds.

Fig. 9 shows a concave vNM utility function and the certainty equivalent

which is definable by Eu (L) = u (CE (L)) (why?). If the risk-averse decision

maker has the chance to obtain E (L) in exchange for L, he is happy to do so

and to throw in at most the difference between the expected value and the

certainty equivalent. The decision maker’s willingness to pay for exchanging

L against E (L) is called the risk premium.

D�������
� V.8. Assume preferences � on L and an associated vNM
utility function u. For any lottery L ∈ L, the risk premium is denoted by
RP (L) and defined by

RP (L) := E (L)−CE (L) .

Thus, the risk premium is the amount the individual is willing to pay

for being relieved of the risk.
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4.4. Arrow Pratt measure of risk aversion. Sometimnes, it is help-

ful to have a measure of risk aversion:

D�������
� V.9. Let u be a twice differentiable vNM utility function.

We denote the Arrow-Pratt measure of absolute risk aversion by

ARAu (x) := −u
′′ (x)
u′ (x)

and the Arrow-Pratt measure of relative risk aversion by

RRAu (x) := −xu
′′ (x)
u′ (x)

.

The Arrow-Pratt measures are positive for risk-aversion.

E������� V.17. Calculate the two Arrow-Pratt measures for the follow-

ing utility functions:

• u1(x) = x2, x > 0

• u2(x) = 2x+ 3

• u3(x) = ln(x), x > 0

• u4(x) = −e−x

• u5 (x) =
x1−θ

1−θ , θ ≥ 0, θ �= 1

The relative Arrow-Pratt measure has an elasticity interpretation. (Do

you remember the definition of the price elasticity of demand at price p for

a demand function x (p)? In chapter VI, we will denote this elasticity by εx,p
and write

εx,p :=
dx
x
dp
p

=
dx

dp

p

x
.)

Indeed, we obtain

x
u′′ (x)
u′ (x)

= x
du′

dx

u′
=

du′

u′

dx
x

=: εu′,x.

Thus, if x is increased by 1 percent, marginal utility decreases by RRA (x)

percent. Roughly speaking, the higher RRA (x) the more concave the vNM

utility function.

4.5. Risk aversion and risk loving in an x1-x2-diagram. If a deci-

sion maker’s preferences on lotteries are determined by a vNM utility func-

tion u, the utility function Eu represents his preferences on these lotteries.

Fixing the probabilities p = (p1, ..., pℓ) for the ℓ outcomes x = (x1, ..., xℓ),

we are in the framework developed in the previous chapter with the utility

function Ep
u defined by

Ep
u : Rℓ

+ → R

(x1, ..., xℓ) → Ep
u (x) = Eu (x, p) .

In the case of ℓ = 2, we can then decribe the agent’s preferences by indif-

ference curves. Consider fig. 10. It depicts an agent’s indifference curves
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for given probabilities p1 and p2. The agent is risk averse. He would rather

have the lottery’s mean than the lottery itself.

°45

( )LEu

L

2

1

p

p−

equal expected payoff

equal expected utility

2x

1x

F����� 10. The indifference curve of a risk-averse agent

Note that the indifference curve touches a constant-mean curve at the

45◦-line (slope −p1
p2
, compare fig. 3, p. 87). This is no coincidence. Indeed,

the absolute value of the slope of the indifference curve is

MRS =
∂E

p
u

∂x1

∂E
p
u

∂x2

=

∂[p1u(x1)+p2u(x2)]
∂x1

∂[p1u(x1)+p2u(x2)]
∂x2

=
p1

∂u(x1)
∂x1

p2
∂u(x2)
∂x2

which reduces to

MRS =
p1
p2

for x1 = x2.

Thus, the slopes are identical along the 45◦-line.

Along an indifference curve, an increase in x1, together with a decrease

in x2, leads to a decrease in ∂u(x1)
∂x1

by lemma V.3 (p. 95) and to an increase

in ∂u(x2)
∂x2

(again by that lemma) so that the marginal rate of substitution

MRS (x1) =
p1

∂u(x1)
∂x1

p2
∂u(x2)
∂x2

decreases. By lemma IV.11 (p. 77), risk aversion is equivalent to concave

indifference curves and therefore to convex better sets.
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In case of risk neutrality, the vNM utility function is given by u (x) =

ax+ b, a > 0. Then, we have

MRS (x1) =
p1

∂u(x1)
∂x1

p2
∂u(x2)
∂x2

=
p1a

p2a
=
p1
p2

so that the slope of the indifference curve is constant and equal to the slope

of a constant-mean curve.

5. Stochastic dominance

5.1. Distribution and density functions. We introduce probability

distributions on a set M on p. 15. We now let M := R+ and consider

events [0, x] for x ≥ 0. Then, distribution functions may be used to describe

probabilities. We present this alternative because it allows handy charac-

terizations for an agent’s preferences over lotteries.

D�������
� V.10. A monotonically increasing, but not necessarily con-

tinuous, function F : R→ [0, 1] obeying

lim
x→−∞

F (x) = 0 and

lim
x→∞

F (x) = 1

is called a distribution function. If F is constant and equal to zero on some

interval (−∞, x
¯
] or constant and equal to 1 on interval [x̄,∞) , we can focus

on the distribution functions F : [x
¯
,∞) → [0, 1] , F : (−∞, x̄] → [0, 1] and/or

F : [x
¯
, x̄] → [0, 1] . If there is a function f : [x

¯
, x̄] → [0, 1] (allow for x

¯
= −∞

and x̄ = ∞) with

F (x) =

x(

x
¯

f (t)dt, (V.1)

f is called F ’s density function.

We understand F (x) as the probability of having payoff x or below.

Thus, for x < y,

F (y)− F (x) or

y(

x

f (t) dt

is the probability for values between x and y.

F does not need to be continuous as you can see in fig. 11 which reflects

the lottery

Lumbrella =

�
100, 81;

1

4
,
3

4

�
.

Here, the umbrella producer obtains 81 or less with probability 3
4 . He also

obtains 100 or less with probability 1.
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81 100

1

x

4

3

( )

( )
4

1
1

4

3
81

=

=

Euro 00 

Euro  

prob

prob

F����� 11. The distribution function for two payoffs

D�������
� V.11. Let F : [x
¯
, x̄] → [0, 1] be a discrete distribution func-

tion with ℓ different values x1, ..., xℓ. It represents the lottery

LF = [x1, ..., xℓ; p1, ..., pℓ]

given by

F (x0) : = 0 and

pj : = F (xj)− F (xj−1) , j = 1, ..., ℓ.

The relationship between a continuous (!) distribution function F and its

density function f is governed by the “Fundamental Theorem of Calculus”.

D�������
� V.12. Let f : [x
¯
, x̄] → R be a real-valued function (allow for

x
¯
= −∞ and x̄ = ∞). A continuous function F : [x

¯
, x̄] → R is called the

antiderivative of f if it obeys F ′ = f.

T��
��� V.2 (Fundamental Theorem of Calculus). Let f : [x
¯
, x̄] → R

be a continuous function.

• Define F : [x
¯
, x̄] → R by

F (x) :=

( x

x
¯

f (t)dt.

Then, F is an antiderivative of f.

• Let F be any antiderivative of f . Then, we have, for x
¯
≤ a ≤ b ≤ x̄,

( b

a

f (t) dt = F (b)− F (a) =: F (x)|ba .

As an example of a density function, consult fig. 12 with the payoff

interval [0, x̄] . The probability for the small payoff interval ∆x = [a, b] is the

corresponding area under the density function, i.e.,
( b

a

f (x) dx.
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By definition V.10, the area under the whole interval [0, x̄] is,
( x̄

0
f (x)dx = 1.

?

xx∆ x
4

3

x∆ interval payoff
 within payoffs for

 yprobabilit

x
4

1
x

2

1
x4
1

x

1

x

2

x

F����� 12. A density function (to be completed)

E������� V.18. Fig. 12 is not complete. Find a constant (!) f (x)

for x ∈
	
3
4 x̄, x̄



Calculate and draw the corresponding distribution function!

Hint: You need to distinguish four cases!

The advantage of working with F rather than f is that f cannot be used

to describe discrete lotteries. Indeed, any F obeying eq. V.1 is continuous.

5.2. First-order stochastic dominance. Consider fig. 13 and tell

which distribution function you prefer. You may be tempted to point to G

which lies above F everywhere, G (x) ≥ F (x) for all x.

1

G

F

x

F����� 13. F first-order stochastically dominates G
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D�������
� V.13. Consider two distribution functions F and G : [x
¯
, x̄] →

[0, 1]. F is said to first-order stochastically dominate G if

F (x) ≤ G (x)

for all x ∈ [x
¯
, x̄] .

F is better than G. After all, G (100) ≥ F (100) means that the prob-

ability of obtaining 100 or less is greater for G than for F . This implies

that the probability of obtaining more than 100 is larger for F than for G.

This is the intuitive reason behind the following two theorems, the first for

continuous distribution functions, the second for discrete ones.

If density functions exist, we obtain

T��
��� V.3. Distribution function F (with density function f) first-

order stochastically dominates distribution function G (with density function

g) iff ( x̄

x
¯

f (x)u (x)dx ≥
( x̄

x
¯

g (x)u (x)dx

holds for every vNM utility function u.

If we have no density function but discrete lotteries, we have the discrete

counterpart of the above theorem:

T��
��� V.4. The discrete distribution function F (with lottery LF =�
xF1 , ..., x

F
ℓF
; pF1 , ..., p

F
ℓF

�
) first-order stochastically dominates the discrete dis-

tribution function G (with lottery LG =
�
xG1 , ..., x

G
ℓG
; pG1 , ..., p

G
ℓG

�
) iff

Eu (LF ) =

ℓF�

j=1

pFj u
�
xFj

�

≥
ℓG�

j=1

pGj u
�
xGj

�

= Eu (LG)

holds for every vNM utility function u.

Read the two theorems carefully. They say that any agent prefers F to

G whenever F first-order stochastically dominates G. However, it may well

be the case that F does not first-order stochastically dominate G while some

agent prefers F to G.

5.3. Second-order stochastic dominance. First-order stochastic do-

minance is equivalent to every agent preferring the dominating distribution.

Similarly, second-order stochastic dominance means that every risk-averse

agent prefers the dominating distribution. The best way to approach second-

order stochastic dominance is by mean-preserving spreads. For example,	
95, 105; 12 ,

1
2



is a mean-preserving spread of [100; 1] (compare exercise V.2,
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p. 87). The mean is the same while the payoffs are spread out. A risk-averse

agent prefers the non-spread lottery to the spread-out one.

In this fashion, the risk-averse agent gets to worser and worser lotteries

as the payoffs are spread out more as in fig. 14. Mean-preserving spreads

can also be shown with density functions. In fig. 15, the payoffs between
1
2 x̄ and 3

4 x̄ have density 2
x̄ in the upper subfigure. In the lower subfigure

this density is reduced to 3
2x̄ , half of which goes to interval

	
1
4 x̄,

1
2 x̄



and the

other half to interval
	
3
4 x̄, x̄



.

Since spreading payoffs means increasing risk, we obtain

mean-
preserving
spread

m
ea

n-

pr
es
er
vi
ng

sp
re
ad

100

105

95

21

21

32

31 101

107

43

41 98

32

31
92

95

21

21

32

31 101

107

95

21

21

mean-
preserving
spread

F����� 14. Mean-preserving spreads

T��
��� V.5. Consider two lotteries L and L̂ that have the same ex-

pected value. Lottery L = [x1, ..., xℓ; p1, ..., pℓ] is a mean preserving spread

of lottery L̂ =
	
x̂1, ..., x̂ℓ̂; p̂1, ..., p̂ℓ̂



if

Eu (L) ≤ Eu

�
L̂
�

holds for every concave vNM utility function u.

Beautifully, this theorem can be connected to second-order stochastic

dominance:

D�������
� V.14. Consider two distribution functions F and G : [x
¯
, x̄] →

[0, 1]. F is said to second-order stochastically dominate G if
( b

x
¯

F (x)dx ≤
( b

x
¯

G (x) dx

for all b ∈ [x
¯
, x̄] .
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xxx
4

3
x

4

1
x

2

1

x2

( )x23
( )x45
x1

( )x43

( )x41

x

x2

x1
( )x43

( )x41

x
4

1
x

2

1
x

4

3
x

F����� 15. Mean-preserving spread

Note that this definition applies to both discrete and continuous distri-

bution functions.

G

F

are
a A

are
a B

1

x

F����� 16. F second-order stochastically dominates G

Of course, first-order stochastic dominance implies second-order stochas-

tic dominance. Just have a look at fig. 13 and compare the area below the

two curves. On the other hand, fig. 16 shows two distribution functions
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where F second-order stochastically dominates G. We see this from the fact

that area A is larger than area B. The integral under F does not overtake

(but may catch up). Also, the means of G and F differ. It can be shown

that two distribution functions have the same mean if the areas under the

curves are the same. Therefore, we can have both. Fig. 17 (taken from

Mas-Colell, Whinston & Green 1995, p. 199) provides an illustration where

F second-order stochastically dominates G and still has the same mean.

Then, the above theorem evolves into

T��
��� V.6. Assume two distribution functions F (with density func-

tion f) and G (with density function g) with the same mean, i.e., obeying
( x̄

x
¯

f (x)xdx =

( x̄

x
¯

g (x)xdx.

We have

• F stochastically dominates G iff

• every risk-averse agent prefers F over G, i.e., if
( x̄

x
¯

f (x)u (x)dx ≥
( x̄

x
¯

g (x)u (x)dx

holds for every concave vNM utility function u iff

• G is a mean-preserving spread of F .

G

F

A

B

C

D

D area  B areaC area  A area
B area  A area

+=+
≥

1

x

F����� 17. Second-order stochastic dominance and same mean
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6. Topics

The main topics in this chapter are

• compound lottery

• expected value

• expected utility

• Bernoulli principle

• independence axiom

• continuity axiom

• risk aversion, risk neutrality and risk loving

• St. Petersburg lottery

• Arrow-Pratt measure

• risk premium

• certainty equivalent

• first-order stochastic dominance

• second-order stochastic dominance

• concave and convex function

• Fundamental Theory of Calculus

7. Solutions

Exercise V.1

If L1 is your preferred lottery you do not understand the concept of a

lottery, the concept of probability or you hate money.

Exercise V.2

There is no correct answer here. However, if you prefer the lottery to

the expected value of the lottery, you are a risk-loving person.

Exercise V.3

We find

L =

�
L1, L2;

1

2
,
1

2

�

=

�
0, 5, 10;

1

2
· 1
3
,
1

2
· 1
4
,
1

2
· 2
3
+

1

2
· 3
4

�

=

�
0, 5, 10;

1

6
,
1

8
,
17

24

�

The two-stage lottery
	
L1, L2;

1
2 ,
1
2



is depicted in fig. 18 and the one-stage

lottery
	
0, 5, 10; 16 ,

1
8 ,
17
24



in fig. 19.

Exercise V.4

We obtain
1
2

1− 1
2

= 1.

Exercise V.5

Again, no correct answer. However, your willingness to pay should be

greater than 2.
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0

5

10

10

3
2

4
3

2
1

2

1

3

1

4
1

F����� 18. The two-stage lottery

5

0

10

6
1

8
1

24

17

F����� 19. The one-stage lottery

Exercise V.6

You may remember (otherwise commit to your memory!)

• ln (1) = 0,

• ln
�
x
y

�
= lnx− ln y

• ln (xy) = lnx+ ln y

• lnxb = b lnx

• d lnx
dx = 1

x .

Exercise V.7

For the ln utility function, the lottery Lln yields an infinite expected

utility:

Eln (Lln) =
∞�

j=1

1

2j
ln
�
2(2

j)
�
=

∞�

j=1

1

2j
2j ln 2

= ln 2
∞�

j=1

1

2j
2j = ln2 (1 + 1 + ...) = ∞.
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Exercise V.8

Only the last one is bounded, by 1.

Exercise V.9

Here is the proof of the simple proposition:

Eu (L) =
ℓ�

j=1

pj · u (xj) ≤
ℓ�

j=1

pj ·K = K
ℓ�

j=1

pj = K

Exercise V.10

We find indifference between L1 and L4 :

�
0, 50, 100;

1

4
,
1

2
,
1

4

�

=

�
L1, 50;

1

2
,
1

2

�
(compound lottery)

∼
�
L2, 50;

1

2
,
1

2

�
(independence axiom, L1 ∼ L2)

=

�
16, 25, 50;

1

8
,
3

8
,
1

2

�
(compound lottery)

Exercise V.11

We find

�
L1, L3;

1

2
,
1

2

�
=

�
12 · 106, 1 · 106, 0; 1

2
· 10

100
,
1

2
· 1, 1

2
· 90

100

�

=

�
12 · 106, 1 · 106, 0; 5

100
,
50

100
,
45

100

�

and

�
L2, L4;

1

2
,
1

2

�

=

�
12 · 106, 1 · 106, 0; 1

2
· 10

100
,
1

2
· 11

100
+

1

2
· 89

100
,
1

2
· 89

100
+

1

2
· 1

100

�

=

�
12 · 106, 1 · 106, 0; 5

100
,
50

100
,
45

100

�
.

Oops.

Exercise V.12

An obvious choice is v (x) = −100
3 + 1

3u (x) = x+ 3x2.

Exercise V.13
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Let v be defined by v (x) = a + bu (x) for a ∈ R and b > 0. Then, we

obtain the desired chain of equivalences

Ev

�
LA

�
≥ Ev

�
LB

�

⇔
ℓA�

j=1

pAj v
�
xAj

�
≥

ℓB�

j=1

pBj v
�
xBj

�

⇔
ℓA�

j=1

pAj
	
a+ bu

�
xAj

�

≥

ℓB�

j=1

pBj
	
a+ bu

�
xBj

�


⇔ a

ℓA�

j=1

pAj + b

ℓA�

j=1

pAj u
�
xAj

�
≥ a

ℓB�

j=1

pBj + b

ℓB�

j=1

pBj u
�
xBj

�

⇔
ℓA�

j=1

pAj u
�
xAj

�
≥

ℓB�

j=1

pBj u
�
xBj

�
(b>0)

⇔ Eu

�
LA

�
≥ Eu

�
LB

�
.

Exercise V.14

L ∼ [Lgood, Lbad; p (L) , 1− p (L)] means Eu (L) = p (L)Eu (Lgood) +

[1− p (L)]Eu (Lbad) for the appropriate vNM utility u. For L := Lgood

we obtain

[1− p (Lgood)] [Eu (Lgood)−Eu (Lbad)] = 0.

By Eu (Lgood) > Eu (Lbad) , we find p (Lgood) = 1 and p (Lbad) = 0.

Exercise V.15

Consider the function f : M→ R with convex domain M ⊆ R and

defined by f (x) =

)
1, x ∈ Q

0, x /∈ Q
. It is neither concave, nor convex. If f

is twice differentiable, it is easy to find a function that is concave on some

subset of M and convex on the other.

Exercise V.16

By

• u′′1 (x) = 2 > 0,

• u′′2 (x) = 0,

• u′′3 (x) = − 1
x2
< 0, and

• u′′4 (x) = −e−x < 0 (chain rule)

• u′′5 (x) = −θx−θ−1 < 0

we have a risk-lover in case of u1, a risk-neutral decision maker in case

of u2 and risk-averse decision maker in case of u3, u4, and u5.

Exercise V.17

We obtain

• ARAu1 (x) = − 2
2x = − 1

x and RRAu1 (x) = −1

• ARAu2 (x) = 0 and RRAu2 (x) = 0

• ARAu3 (x) = −− 1
x2
1
x

= 1
x and RRAu3 (x) = 1
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• ARAu4 (x) = −−e−x

e−x
= 1 and RRAu4 (x) = x

• ARAu5 (x) = −−θc−θ−1

(1−θ)c−θ

1−θ

= θ
c

and RRAu5 (x) = θ

Exercise V.18

For x ∈
	
3
4 x̄, x̄



, we have

1 =
1

4x̄
· 1
4
x̄+

1

x̄
· 1
4
x̄+

2

x̄
· 1
4
x̄+ f (x) · 1

4
x̄

and hence

f (x) =
3

4x̄
.

We now calculate the corresponding distribution function F and distin-

guish four cases (see fig. 20):

• 0 ≤ b ≤ 1
4 x̄ :

F (b) =

( b

0

1

4x̄
dx =

1

4x̄
x

����
b

0

=
1

4x̄
b

• 1
4 x̄ ≤ b ≤ 1

2 x̄ :

F (b) =
1

4x̄

1

4
x̄+

( b

1
4
x̄

1

x̄
dx =

1

16
+

1

x̄
x

����
b

1
4
x̄

=
1

16
+

1

x̄
b− 1

x̄

1

4
x̄ =

1

x̄
b− 3

16

• 1
2 x̄ ≤ b ≤ 3

4 x̄ :

F (b) =
1

x̄

1

2
x̄− 3

16
+

( b

1
2
x̄

2

x̄
dx =

1

2
− 3

16
+

2

x̄
x

����
b

1
2
x̄

=
1

2
− 3

16
+

2

x̄
b− 2

x̄

1

2
x̄ =

2

x̄
b− 11

16

• 3
4 x̄ ≤ b ≤ x̄ :

F (b) =
2

x̄

3

4
x̄− 11

16
+

( b

3
4
x̄

3

4x̄
dx =

3

2
− 11

16
+

3

4x̄
x

����
b

3
4
x̄

=
3

2
− 11

16
+

3

4x̄
b− 3

4x̄

3

4
x̄ =

3

4x̄
b+

1

4
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1

1613

165

161

x

x2

x1
( )x43

( )x41

x
4
1

x
2
1

x
4
3

x

xxx
4

3
x

4

1
x

2

1

F����� 20. Deriving the distribution function from the den-

sity function

8. Further exercises without solutions

P�
#$�� V.1.

Socrates has an endowment of 225 million Euro most of which is invested

in a luxury cruise ship worth 200 million Euro. The ship sinks with a

probability of 1
5 . Socrates vNM utility function is given by u (x) =

√
x.

What is his willingness to pay for full insurance?

P�
#$�� V.2.

Identify the certainty equivalent and the risk premium in fig. 10 (p. 100).

P�
#$�� V.3.

Let W = {w1, w2} be a set of 2 states of the world. The contingent good

1 that pays one Euro in case of state of the world w1 and nothing in the

other state is called an Arrow security. Determine this Arrow security in an

x1-x2-diagram.

P�
#$�� V.4.
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Sarah may become a paediatrician or a clerk in an insurance company. She

expects to earn 40 000 Euro as a clerk every year. Her income as paediatri-

cian depends on the number of children that will be born. In case of a baby

boom, her yearly income will be 100 000 Euro, otherwise 20 000 Euro. She

estimates the probability of a babyboom at 1
2 . Sarah’s vNM utility function

is given by u (x) = 300 + 4
5x.

• Formulate Sarah’s choices as lotteries!

• What is Sarah’s choice?

• The Institute of Advanced Demography (IAD) has developed a

secret, but reliable, method of predicting a baby boom. Sarah

can buy the information for constant yearly rates. What is the

maximum yearly willingness to pay?

• Sketch Sarah’s decision problem in x1-x2 space where income with-

out babyboom is noted at the x1-axis and income with babyboom

at the x2-axis.

P�
#$�� V.5.

Consider fig. 9, p. 98, and draw a corresponding figure for risk neutral and

risk-loving preferences.

P�
#$�� V.6.

André’s von Neumann and Morgenstern utility function satisfies u(0) = 0

and u(1) = 1. In addition, André is risk averse.

(a) Show that u(x) ≥ x holds for all x ∈ [0, 1]. Hint: Begin with

x = (1− x) · u(0) + x · u (1)!
(b) André has to choose between the following two lotteries:

LA =

�
0, 0.3, 0.6, 1;

4

10
,
3

10
,
2

10
,
1

10

�
and

LB =

�
0, 0.3, 0.6, 1;

29

50
,
1

10
,
1

10
,
11

50

�
.

Can we infer something about his preferences over these two lot-

teries?

— Hint: Just calculate the expected utilities and use (a)!

— Alternative hint: Apply second-order stochastic dominance

twice:

∗ replace 0.6 by a lottery involving the payoffs 0 and 1,

∗ reduce the probability for 0.3 from 3
10 to 1

10 and introduce

a lottery involving the payoffs 0 and 0.6 instead.

P�
#$�� V.7.

Show that we have first-order domination between the lotteries

L1 =

�
1

8
,
1

6
,
1

4
,
1

2
;
1

4
,
1

4
,
1

4
,
1

4

�
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and

L2 =

�
1

8
,
1

6
,
1

4
,
1

2
;
1

4
,
1

6
,
1

6
,
5

12

�
.

Show that we do not have first-order domination between

L3 =

�
2, 4, 6, 8;

1

4
,
1

4
,
1

4
,
1

4

�

and

L4 =

�
2, 4, 6, 8;

1

3
,
1

6
,
1

6
,
1

3

�

by using the vNM utility functions u (x) = x2 and v (x) = lnx.





Part B

Household theory and theory of

the firm



We now turn to the second part of the course where the deciders are

households or firms. We begin with household theory. We need to describe

the bundle of goods a household can afford (the budget) and the preferences

of the household. The relationship between preferences and utility functions

has been worked out in the two previous chapters. The budget and the

optimal goods bundle chosen by the household are considered in chapter VI.

Finally, in chapter VII, we examine how the household’s decision depends

on the parameters of the model, i.e., we turn to comparative statics.

We then deal with the very simple theory of the firm. It is simple in

that we assume a single decider who tries to maximize his profits. We cover

production theory in chapter VIII and both cost minimization and profit

maximization in chapter IX. For the time being, we leave aside principal-

agent problems. The simple theory of the firm benefits from household

theory (or vice versa) — many concepts can be transferred from one setting

to the other. It also lays the groundwork for oligopoly theory treated in part

C and for general equilibrium theory (part F, chapter XIX).

A simplifying assumption assumed throughout this part is price taker-

ship. That is, households and firms consider prices of goods and factors

as given. If households and firms are small relative to the market, this as-

sumption is not too weird. Of course, in later chapters, we will do without

it.



CHAPTER VI

The household optimum

We now consider decisions in the face of prices. Assuming price taker-

ship, the households buy a best bundle within their budget. Therefore, we

analyze the budget first and then derive a best bundle on the basis of budget

and preferences.

1. Budget

1.1. Money budget. We first assume that the household has some

monetary amount m at his disposal. The budget is the set of good bundles

that the household can afford, i.e., the set of bundles whose expenditure is

not above m. The expenditure for a bundle of goods x = (x1, x2, ..., xℓ) at a

vector of prices p = (p1, p2, ..., pℓ) is the dot product (or the scalar product),

of the two vectors:

p · x :=
ℓ�

g=1

pgxg.

D�������
� VI.1 (money budget). For a price vector p ∈ Rℓ and mon-

etary income m ∈ R+, the money budget is defined by

B (p,m) :=
�
x ∈ Rℓ

+ : p · x ≤ m
�

where �
x ∈ Rℓ

+ : p · x = m
�

is called the budget line.

For example, in case of two goods, the budget is the set of bundles

fulfilling p1x1 + p2x2 ≤ m. If the household does not consume good 1

(x1 = 0), he can consume up to m/p2 units of good 2. (Just solve the

inequality for x2.). In fig. 1, the household can afford bundles A and B, but

not C.

The following theorem should be no surprise to you. If you double all

prices and income, your budget remains unchanged:

L���� VI.1. For any number α > 0, we have B (αp,αm) = B (p,m) .

E������� VI.1. Fill in: For any number α > 0, we have B (αp,m) =

B (p, ?) .

119
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A

B

C

1p

m

2p

m

2x

1x

F����� 1. The budget for two goods

E������� VI.2. Assume that the household consumes bundle A in fig.

1. Identify the “left-over” in terms of good 1, in terms of good 2 and in

money terms.

L���� VI.2. The money budget is nonempty, closed, and convex. If

p >> 0 holds, the budget is bounded.

P�

�. The budget is nonempty because we have (0, ..., 0) ∈ Rℓ
+ and

0 · p = 0 ≤ m. It is closed because it is defined by way of weak inequalities

(xg ≥ 0, g = 1, ..., ℓ, x · p ≤ m). We now show convexity. Consider two

bundles x and x′ from B (p,m) and a number k ∈ [0, 1] . Then x ·p ≤ m and

x′ · p ≤ m hold and we have (kx+ (1− k)x′) · p = kx · p + (1− k)x′ · p ≤
km + (1− k)m = m so that kx + (1− k)x′ is also contained in B (p,m) .

Therefore, the budget is convex. Finally, the budget is bounded in case of

p >> 0 because every bundle x in the budget fulfills 0 ≤ x ≤
�

m
p1
, ..., m

pℓ

�
. �

E������� VI.3. Verify that the budget line’s slope is given by −p1
p2
(in

case of p2 �= 0).

If both prices are positive, the budget line is negatively sloped.

D�������
� VI.2. If prices are non-negative and the price of good 2 is

positive, the marginal opportunity cost of consuming one unit of good 1 in

terms of good 2 is denoted by MOC (x1) and given by

MOC (x1) =

����
dx2
dx1

���� =
p1
p2
.

Thus, if the household wants to consume one additional unit of good 1,

he needs to forgo MOC units of good 2 (see also fig. 2). Note that we use

the absolute value of the budget line’s slope — very similar to the definition

of the marginal rate of substitution on p. 75.
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1p

m

2p

m

1x∆

1
2

1

12

x
p

p
xMOCx

∆

∆∆

=

=  

2x

1x

F����� 2. The opportunity cost of one additional unit of

good 1

1.2. Endowment budget.

1.2.1. Definition. In the previous section, the budget is defined by some

monetary income m. We now assume that the household has some endow-

ment ω ∈ Rℓ
+ which he can consume or, at the prevailing prices, use to buy

another bundle. In any case, we obtain the following definition:

D�������
� VI.3. For a price vector p ∈ Rℓ and an endowment ω ∈ Rℓ
+,

the endowment budget is defined by

B (p, ω) :=
�
x ∈ Rℓ

+ : p · x ≤ p · ω
�
.

Again, equality defines the budget line.

By m := ω ·p, endowment budgets turn into money budgets. Therefore,

lemma VI.2 holds for an endowment budget as well.

In case of two goods, the budget line is written as

p1x1 + p2x2 = p1ω1 + p2ω2

and depicted in fig. 3.

1.2.2. Application: consumption today versus consumption tomorrow .

We now present three very important examples of endowment budgets. Our

first example deals with intertemporal consumption. Consider a household

whose monetary income in periods 1 and 2 is ω1 and ω2, respectively. His

consumption is denoted by x1 and x2. We assume that he can borrow (x1 >

ω1) or lend (x1 < ω1). Of course, he can also decide to just consume what

he earns (x1 = ω1). In either case, he has to break even at the end of the

second period. At a given rate of interest r, his second-period consumption
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2x

2

1

1

2

p

p

dx

dx −=

1ω

2

2211

p

pp ωω +

1

2211

p

pp ωω +

2ω

1x

F����� 3. The endowment budget

is

x2 = ω2����
second-period

income

+ (ω1 − x1)� �� �
amount borrowed (<0)

or lended (>0)

+ r (ω1 − x1)� �� �
interest payed (<0)

or earned (>0)

= ω2 + (1 + r) (ω1 − x1)

We can rewrite the break-even condition (the budget equation) in two dif-

ferent fashions.

• Equalizing the future values of consumption and income yields

(1 + r)x1 + x2 = (1 + r)ω1 + ω2,

while

• the equality of the present values of consumption and income is

behind the budget equation

x1 +
x2

1 + r
= ω1 +

ω2
1 + r

.

Consider also fig. 4 where the present value of the income stream (ω1, ω2)

is found at the x1-axis and the future value at the x2-axis. The marginal

opportunity cost of one additional unit of consumption in period 1 is

MOC =

����
dx2
dx1

���� = 1+ r

units of consumption in period 2.

1.2.3. Application: leisure versus consumption. A second application

concerns the demand for leisure or, differently put, the supply of labor.

We depict the budget line in fig. 5. Recreational hours are denoted by xR.

By definition, the household works 24− xR hours. For obvious reasons, we

have 0 ≤ xR ≤ 24 = ωR. Recreational time is good 1, the second good is
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2x

2ω

( ) 211 ωω ++  r

( )r+
+

1
2

1

ωω

endowment
point

consumption point 
of a borrower

consumption point 
of a lender

( )r
dx

dx +−= 1
1

2

1x1ω

F����� 4. Save or borrow?

real consumption xC . xC may stand for the only consumption good (bread)

bought and sold at price p. Alternatively, you can think of a bundle of goods

xC and an aggregate price (index) p.

At a wage rate w, the household earns w (24− xR) . He may also obtain

some non-labor income pωC where p is the price index and ωC the real

non-labor income. Thus, the household’s consumption in nominal terms is

pxC = pωC +w (24− xR)

which can also be rewritten in endowment-budget form

wxR + pxC = w24 + pωC

where (24, ωC) is the endowment point. Thus, the price of leisure is the wage

rate. Indeed, if a household chooses to increase its recreational time by one

unit, he foregoes w (in monetary consumption terms) or w
p (in real consump-

tion terms). The marginal opportunity cost of one unit of recreational time

is

MOC =

����
dxC
dxR

���� =
w

p

units of real consumption.

1.2.4. Application: contingent consumption. Our last application deals

with contingent consumption and insurance. (You may want to revisit fig-

ures 3 (p. 87) and 10 (p. 100). We consider a household whose wealth Amay

be hit by some calamity resulting in a damage D. Let p be the probability

of this bad event. Then, the household is confronted with the lottery

L = [A−D,A; p, 1− p] .

For a given damage probability p, this lottery is the no-insurance point in x1-

x2-space as shown in fig. 6. We now assume the possibility to insure against

the damage. The household’s decision is the insurance sum K which is to
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F����� 5. Recreational versus labor time

be paid to the household in case of loss. The insurance premium (to be paid

to the insurance company) is γK. Thus, the household has

x1 = A−D +K − γK = A−D + (1− γ)K (VI.1)

in case of damage or

x2 = A− γK (VI.2)

if no damage occurs.

The special case of full insurance is defined by K := D and leads to the

payoffs

x1 = x2 = A− γD.

Equations VI.1 and VI.2 can be rewritten into a single equation by solving

the second for K and substituting into the first. After rearranging the terms

appropriately, we obtain

x1 +
1− γ

γ
x2 = (A−D) +

1− γ

γ
A

which has the usual form of an endowment-budget equation.

In fig. 6, the part of the budget line left of the no-insurance point results

from K < 0. This means that the premium γK is paid to the household who

pays K to the insurance company if the damage occurs. This is a negative

insurance.

E������� VI.4. Interpret the part of the budget line right of the full-

insurance point.

2. The household optimum

2.1. The household’s decision situation and problem. In chapter

II (p. 8), a decision situation in strategic form without uncertainty is denoted
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F����� 6. Insure or not insure?

by ∆ = (S, u : S → R). A household’s strategy set is the budget set B.

Therefore, we propose the following

D�������
� VI.4 (a household’s decision situation). A household’s de-

cision situation is a tuple

∆ = (B,�) with

B = B (p,m) ⊆ Rℓ
+ or B = B (p, ω) ⊆ Rℓ

+

where p ∈ Rℓ is a vector of prices and � a preference relation on Rℓ
+. The

household’s problem is to find the best-response function given by

xR (B) :=
�
x ∈ B: there is no x′ ∈ B with x′ ≻ x

�

If � is representable by a utility function U on Rℓ
+, we have the decision

situation ∆ = (B,U) and the best-response function

xR (B) := argmax
x∈B

U (x) .

Any x∗ from xR (B) is called a household optimum. We often write xR (p,m)

or x (p,m).

Thus, the household aims to find the highest indifference curve attainable

with his budget. As a very obvious corollary from lemma VI.1, we have

L���� VI.3. For any number α > 0, we have xR (αp,αm) = xR (p,m) .

E������� VI.5. Look at the household situations depicted in fig. 7.

Assume monotonicity of preferences. Are the highlighted points A or B

optima?
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F����� 7. Household optima?

E������� VI.6. Assume a household’s decision problem with endowment

∆ = (B (p, ω) ,�). xR (∆) consists of the bundles x that fulfill the two

conditions:

(1) The household can afford x:

p · x ≤ p · ω

(2) There is no other bundle y that the household can afford and that

he prefers to x:

y ≻ x⇒??

Substitute the question marks by an inequality.

2.2. MRS versus MOC. A good part of household theory can be

couched in terms of the marginal rate of substitution and the marginal

opportunity cost. Consider fig. 8. We can ask two questions:

• What is the household’s willingness to pay for one additional unit

of good 1 in terms of units of good 2? The answer is MRS units of

good 2.

• What is the household’s cost for one additional unit of good 1 in

terms of units of good 2? The answer: MOC units of good 2.

Now, the interplay of the marginal rate of substitution MRS and marginal

opportunity cost MOC helps to find the household optimum. Consider the
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Marginal willingness to pay: MRS =

����
dx2
dx1

����

If the household consumes

one additional unit of good 1,

how many units of good 2 movement on the

can he forgo so as to remain indifference curve

indifferent.

Marginal opportunity cost: MOC =

����
dx2
dx1

����

If the household consumes

one additional unit of good 1,

how many units of good 2 movement on the

does he have to forgo so as to remain budget line

within his budget.

F����� 8. Willingness to pay and opportunity cost

inequality

MRS =

����
dx2
dx1

����
� �� �

absolute value

of the slope of

the indifference

curve

>

����
dx2
dx1

����
� �� �

absolute value

of the slope of

the budget line

=MOC.

If, now, the household increases his consumption of good 1 by one unit, he

can decrease his consumption of good 2 by MRS units and still stay on the

same indifference curve. Compare fig. 9. However, the increase of good 1

necessitates a decrease of only MOC < MRS units of good 2. Therefore,

the household needs to give up less than he would be prepared to. In case of

strict monotonicity, increasing the consumption of good 1 leads to a higher

indifference curve.

Thus, we cannot have MRS > MOC at the optimal bundle unless it

is impossible to further increase the consumption of good 1. This is the

situation depicted in fig. 10.

Thus, if the household consumes both goods in positive quantities, we

can derive the optimality condition

MRS
!
=MOC
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F����� 10. The willingness to pay can be higher than the cost.

(if both terms are defined).

Alternatively, we can derive this first-order condition with the help of a

utility function (if we have one). The household tries to maximize

U

�
x1,

m

p2
− p1
p2
x1

�
.

If the household increases the consumption of good 1 by one unit, we have

two effects. First, his utility increases by ∂U
∂x1

. Second, an increase in x1 leads

to a reduction in x2 by MOC =
���dx2dx1

��� = p1
p2

and this reduced consumption

of good 2 decreases utility (chain rule). Therefore, the household increases
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x1 as long as
∂U

∂x1����
marginal benefit

of increasing x1

>
∂U

∂x2

����
dx2
dx1

����
� �� �

marginal cost

of increasing x1

holds. Dividing by ∂U
∂x2

, an increase in x1 leads to an increase in utility if

MRS =
∂U
∂x1
∂U
∂x2

(chapter IV on p. 73)

>

����
dx2
dx1

���� =MOC

holds.

The MRS- versus-MOC rule can help to derive the household optimum

in some cases:

• Cobb-Douglas utility functions U (x1, x2) = xa1x
1−a
2 with 0 < a < 1

lead to

MRS =
∂U
∂x1
∂U
∂x2

=
a

1− a

x2
x1

!
=
p1
p2

and, together with the budget line, the household optimum

x1 (m,p) = a
m

p1
,

x2 (m,p) = (1− a)
m

p2
.

• Goods 1 and 2 are perfect substitutes if the utility function is given

by U (x1, x2) = ax1 + bx2 with a > 0 and b > 0. An increase of

good 1 enhances utility if

a

b
=MRS > MOC =

p1
p2

holds so that we find the household optimum

x (m, p) =





�
m
p1
, 0
�
, a

b >
p1
p2��

x1,
m
p2

− p1
p2
x1
�
∈ R2+ : x1 ∈

�
0, m

p1

��
a
b
= p1

p2�
0, mp2

�
a
b <

p1
p2

• Preferences are concave with utility function U (x1, x2) = x21 + x22.

We have the marginal rate of substitution

MRS =
∂U
∂x1
∂U
∂x2

=
2x1
2x2

=
x1
x2

so that
x1
x2

=MRS > MOC =
p1
p2
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holds for sufficiently large x1 which calls for an increase of x1. In-

versely,
x1
x2

=MRS < MOC =
p1
p2

holds for sufficiently large x2 so that an increase of x2 seems a good

idea. Therefore, we need to compare the extreme bundles
�

m
p1
, 0
�

and
�
0, m

p2

�
and obtain

�
m

p1

�2
+ 02 ≥ 02 +

�
m

p2

�2
and

p1 ≤ p2

and finally

x (m,p) =





�
m
p1
, 0
�
, p1 ≤ p2��

m
p1
, 0
�
,
�
0, mp2

��
p1 = p2�

0, m
p2

�
p1 ≥ p2

2.3. Household optimum and monotonicity. We now turn to spe-

cific implications that can be drawn from the fact that some x∗ is a household

optimum and that some sort of monotonicity holds.

L���� VI.4. Let x∗ be a household optimum of the decision situation
∆ = (B (p,m) ,�). Then, we have the following implications:

• Walras’ law: Local nonsatiation implies p · x∗ = m.

• Strict monotonicity implies p >> 0.

• Local nonsatiation and weak monotonicity imply p ≥ 0.

P�

�. We use proofs by contradiction for each statement:

• Because of x∗ ∈ B, we can exclude p · x∗ > m. Assume p · x∗ < m.

Then, the household can afford bundles sufficiently close to x∗. By

local nonsatiation, within the set of those affordable bundles, a

bundle y exists that the household strictly prefers to x∗ (see fig.

11). This is a contradiction to x∗ being a household optimum.

• Turning to the second implication, assume a household optimum

and a price pg which is zero or negative. Then, the household

can afford more of good g. By strict monotonicity, the household is

better off implying the desired contradiction (existence of household

optimum).

• Assume a negative price for some good g. By weak monotonic-

ity the household can “buy” additional units of that good without

being worse off. Since the price is negative, the household has ad-

ditional funding for preferred bundles which exist by nonsatiation.

Again, a contradiction to the existence of a household optimum

follows.
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F����� 11. Proving Walras’ law

�

3. Comparative statics and vocabulary

3.1. Vocabulary. In household theory, we carefully distinguish para-

meters and variables. If we focus on the price pg of good xg, we treat the

other prices and the income or endowment as parameters. That means, they

are fix for the time being. If we plot xRg (pg, ...) as a function of pg, we obtain

a demand curve. A change in pg results in a movement along the demand

curve while a parameter change shifts the whole demand curve:

D�������
� VI.5. In household theory, we omit the R and often write

x (p,m) or x (p, ω) instead of xR (p,m,�) or the like. Holding some of the

parameters constant, we distinguish

• the (Marshallian) demand function for good g, denoted by xg (pg),
• the Engel function for good g, denoted by xg (m), and

• the cross demand function for good g with respect to the price pk of
some other good k �= g, denoted by xg (pk) .

In case of an endowment budget, the household is called a net supplier of

good g in case of xg (p, ω) < ωg and a net demander in case of xg (p, ω) > ωg.

Once we know the three functions defined in the above definition, we

can form the derivatives:

D�������
� VI.6. We call a good g

• ordinary if
∂xg
∂pg

≤ 0

holds and non-ordinary otherwise (demand function),
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• normal if
∂xg
∂m

≥ 0

holds and inferior otherwise (Engel function),

• a substitute of good k if
∂xg
∂pk

≥ 0

holds and

• a complement of good k if
∂xg
∂pk

≤ 0

holds.

E������� VI.7. Consider the demand functions x1 = am
p1
and x2 =

(1− a) m
p2
, 0 < a < 1, in case of a money budget (arising from a Cobb-

Douglas utility function) and find out

• Is good 1 an ordinary good?
• Is good 1 normal?
• Is good 1 a substitute or a complement of good 2?

3.2. Price-consumption curve and demand curve. The demand

function defined in the previous section is sometimes qualified as “Marshal-

lian” in order to differentiate between Marshallian demand and Hicksian

demand which is a central topic in the next chapter. In this section, we

show how to derive demand curves.

Assume a money budget for two goods 1 and 2. For fixed values p2 and

m, we vary the price p1 of good 1 in x1-x2-space (prices pB1 , pC1 and pD1
with pB1 > pC1 > pD1 ) and obtain the price-consumption curve which is the

geometric locus of household optima (see the upper part of fig. 12). We

then associate all the different prices of good 1 with the demand for that

good. The graph obtained (the lower part of our figure) is called the demand

curve where — normally — the ordinate is the price axis.

E������� VI.8. Assuming that good 1 and good 2 are complements,

sketch a price-consumption curve and the associated demand curve for good

1.

Assuming the utility function U(x1, x2) = x
1
3
1 · x

2
3
2 , we now calculate the

price-consumption curve and the demand curve for good 1. You remember

that the household optimum (x∗1, x
∗
2) is given by

x∗1 =
1

3

m

p1
, x∗2 =

2

3

m

p2
.

Thus, the demand curve for good 1 is x∗1 = f (p1) =
1
3
m
p1
.

In general, the price-consumption curve for variing p1 is determined by

the following procedure:
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F����� 12. The price-consumption curve and the demand curve

• We associate each p1 with the household optimum (x∗1 (p1) , x
∗
2 (p1)).

• We look for the geometric locus of these optima and express it as

a function x2 = h (x1) . It is important that h is not a function of

p1.

In our example, x∗2 = h (x1) =
2
3
m
p2

is already the price-consumption curve

— the price of good 1 affects the demand of good 1, but not of good 2.

Therefore, the price-consumption curve is a horizontal line.

E������� VI.9. Can you also find the demand function for good 2?

Be careful and check for zero and negative prices; you can use the case

distinction given by

x2 (p1, p2,m) =





?, p1 > 0, p2 > 0

?, p1 ≤ 0 or p2 ≤ 0

?, p1 > 0, p2 = 0

?, p1 = 0, p2 > 0

Determine the price-consumption curve for the the case of perfect comple-

ments, U (x1, x2) = min (x1, 2x2)!

Sometimes, demand curves hit the axes (see fig. 13):
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F����� 13. Saturation quantity and prohibitive price

D�������
� VI.7. Let xg (pg) be the quantity demanded for any price

pg ≥ 0. We call

xsatg := xg (0)

the saturation quantity and

pproh1 := min {pg ≥ 0 : xg (pg) = 0}

the prohibitive price.

3.3. Income-consumption curve and Engel curve. Fig. 14 shows

how to derive the Engel curve from the income-consumption curve. The

latter one connects the household optima in our x1-x2 diagram.

E������� VI.10. Assuming that good 1 and good 2 are complements,

sketch an income-consumption curve and the associated Engel curve for good

1!

Assuming the same Cobb-Douglas utility function as in the previous

section, we determine the income-consumption curve and the Engel curve.

Algebraically, the Engel curve can be obtained from the household optimum

and is given by

x∗1 = q (m) =
1

3

m

p1
.

In order to express the income-consumption curve algebraically, we have to

write x2 as a function of x1, but not of income m (which takes on all values).

We solve good 1’s demand for m and obtain m = 3p1x∗1. Subsituting in x∗2
yields
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F����� 14. Deriving the Engel curve

x∗2 =
2

3

m

p2

=
2

3

3p1x
∗
1

p2

= 2
p1
p2
x∗1

and hence the income-consumption curve x∗2 = g (x∗1) = 2p1
p2
x∗1.

E������� VI.11. Determine the income-consumption curve for the the

case of perfect complements, U (x1, x2) = min (x1, 2x2)! Can you also find

the Engel-curve function for good 2?

3.4. Defining substitutes and complements. The definitions of sub-

stitutes and complements seem innocuous. However, they are highly prob-

lematic as you will realize when you solve the following exercise:

E������� VI.12. Determine ∂x1(p,m)
∂p2

and ∂x2(p,m)
∂p1

for the quasi-linear

utility function given by

U (x1, x2) = lnx1 + x2 (x1 > 0)!

Assume positive prices and m
p2
> 1, in order to avoid a corner solution!
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Thus, good g can be the substitute of good k while k is not a (strict)

substitute of g. We will see how to avoid this problem in the next chapter.

3.5. Price elasticities of demand. An important characteristic of

demand is
dxg
dpg

, i.e., the question how demand changes if the price of a good

changes. However, this slope of the demand curve depends on the units of

measurement — do we have Euros or dollars? This problem can be avoided

by using relative quantities. By how many percent does demand change if

price is changed by one percent?

D�������
� VI.8. Let xg (pg) be the demand at price pg (and other prices

which are hold constant). The price elasticity (of demand) is denoted by

εxg,pg and given by

εxg,pg :=

dxg
xg

dpg
pg����

mathematically

doubtful, but

easily interpretable

=
dxg
dpg

pg
xg
.

E������� VI.13. Calculate the price elasticities of demand for the de-

mand function (individual or aggregate) given by

xg (pg) = 100− pg and xk (pk) =
1

pk
.

If we know that we are dealing with ordinary goods, we can consider

the absolute value of the price elasticity. Then |εx,p| < 1 and εx,p > −1

are equivalent. The price elasticity can help to assess the effect of a price

change on expenditure, i.e., we are interested in

d (px (p))

dp
.

If the absolute value of the price elasticity is smaller than 1, the expenditure

increases if the price increases. You can see this from

d (px (p))

dp
= x+ p

dx

dp

= x

�
1 +

p

x

dx

dp

�

= x (1 + εx,p)

= x (1− |εx,p|) > 0.

This result can be used as an argument for a liberal drug policy. It is plau-

sible that demand for drugs is inelastic, |εx,p| < 1. Assume the government

increases the price of drugs by taxing them or by criminalizing selling or buy-

ing. Then the expenditure of drug users increases and so does drug-related

crime (stealing money in order to finance the addiction).
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F����� 15. Inferior and normal, luxury and necessity goods

3.6. Income elasticity of demand. In a similar fashion, we can de-

fine the income elasticity. Income increases by one percent. By how many

percent does demand increase?

D�������
� VI.9. Let xg (m) be the demand at income m. The income

elasticity (of demand) is denoted by εxg,m and given by

εxg,m :=

dxg
xg

dm
m

=
dxg
dm

m

xg
.

If a good is normal, its income elasticity is positive. We can subdivide

normal goods in

• luxury goods such as Kaviar: your consumption increases stronger

than your income and

• necessity goods such as oat groates: your consumption increases

weaker than your income.

D�������
� VI.10. We call a good g

• a luxury good if
εxg,m ≥ 1

holds

• a necessity good if
0 ≤ εxg,m ≤ 1

holds.

E������� VI.14. Calculate the income elasticity of demand for the Cobb-

Douglas utility function U(x1, x2) = x
1
3
1 · x

2
3
2 ! How do you classify (demand

for) good 1?

In a sense, an income elasticity of 1 is very normal.

L���� VI.5. Assume local nonsatiation and the household optimum x∗.
Then the average income elasticity is 1:

ℓ�

g=1

sgεxg ,m = 1
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( )px1

p

( )px2

p

( )px

p

F����� 16. Aggregation of individual demand curves

where the weights are the relative expenditures, sg :=
pgxg
m

.

According to Walras’ law (lemma VI.4, p. 130), the household chooses

x∗ on the budget line, p · x∗ (m) = m. Of course, if there is only one good,

ℓ = 1, we have x = m
p

and the income elasticity is

εx,m =
dx

dm

m

x
=

1

p

m
m
p

= 1.

To show the lemma in the general case, we form the derivative of the budget

equation m =
�ℓ

g=1
pgx

∗
g (m) with respect to m to obtain

1 =
ℓ�

g=1

pg
dx∗g
dm

and, by multiplying the summands with
x∗g
m

m
x∗g

= 1,

1 =
ℓ�

g=1

pg
dx∗g
dm

x∗g
m

m

x∗g
=

ℓ�

g=1

pgx∗g
m

dx∗g
dm

m

x∗g
=

ℓ�

g=1

sgεxg,m

3.7. Aggregation of individual demand curves. Household theory

shows how to derive individual demand curves. We now aggregate several

individual demand curves in order to arrive at an aggregate demand curve.

D�������
� VI.11. Let xi (p) be the demand functions of individuals

i = 1, ..., n. Aggregate demand is then given by

x (p) :=
n�

i=1

xi (p) .

Consider fig. 16 to see how "horizontal aggregation" works. For every

price, the quantities demanded by households A and B are added.
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F����� 17. Demand curve and inverse demand curve

E������� VI.15. Consider the individual demand functions for good g

given by

x1g (pg) = max (0, 100− pg) ,

x2g (pg) = max (0, 50− 2pg) and

x3g (pg) = max (0, 60− 3pg) .

Find the aggregate demand function. Hint: Find the prohibitive prices first!

Individual and aggregate demand functions can sometimes be inversed:

Have a look at fig. 17. It can be considered as a graphical representation of

the demand curve. At price p̂g (ordinate) we obtain the quantity demanded

xg (p̂g) . Inversely, for a given quantity x̂g of good g, we can ask for the price

pg (x̂g) that is just sufficient to yield the quantity x̂g. The resulting function

is called the inverse demand function:

D�������
� VI.12. Let x1 :
�
0, pproh1

�
→

	
0, xsat1



be an injective (indi-

vidual or market) demand function. The inverse of this function is called

the inverse (individual or market) demand function and given by

p1 = x−11 :
	
0, xsat1



→

�
0, pproh1

�

x1 → p1 (x1) where p1 (x1) is the unique price

resulting in x1.

4. Solution theory

4.1. The general setup of an optimization problem. We now

want to take a broader, more general view of the problem facing a house-

hold. (We present solution theory in this section and in a later chapter on

pp. 228.) Usually, an optimization problem consists of a feasible set and a
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preference relation on that set. If the preference relation is expressed by a

function, this function is often called an objective function. For example,

a firm’s profit function or a household’s utility functions are examples of

objective functions.

Feasible sets can be strategy sets as in chapter II or budgets as in the

present chapter. In chapter VIII, we introduce production sets which de-

scribe the production possibilities open to a firm.

Summarizing these examples,

• in decision theory (and similarly in game theory), we have

— feasible set = strategy set and

— preference relation �ω on the set of strategies S for a belief ω

on W defined by s �ω s′ :⇔ u (s, ω) ≥ u (s′, ω)
• in household theory, we find

— feasible set = budget and

— preference relation on the set of good bundles, possibly defin-

able by a utility function

• in the theory of the firm, we encounter

— feasible set = production set and

— preference relation given by a profit function

D�������
� VI.13. Let f : Rℓ→ R be an objective function and M ⊆ Rℓ

the feasible set. (f,M) is called an optimization problem if it is a maximiza-

tion or a minimization problem, i.e., if we look for a maximal or a minimal

element in f (M), respectively. x∗ ∈M is called a solution to the

• maximization problem if f (x∗) ≥ f (x) for all x ∈M holds,

• minimization problem if f (x∗) ≤ f (x) for all x ∈M holds.

x∗ ∈ M is called a solution if it is a solution to the maximization or the

minimization problem.

Mathematically, the above definition of the optimization problem (f,M)

is equivalent to looking for a maximum or minimum of the function f |M .

Solution theory deals with two questions:

• Existence: Can we be sure that a solution to the optimization

problem exists?

• Uniqueness: Are there several solution or is there just one solution?

In the best of all worlds, we have exactly one solution.

4.2. Existence. Not every maximization (or minimization) problem

needs to have a solution. The two most relevant examples can be shown

with the help of fig. 18. In both subfigures, the value of the objective

function can be increased by increasing the variable x. In (a), the domain is

R+ (and hence not bounded) and for any x from the domain, x+ 1 yields

a higher value. In (b), for every x ∈ [0, 1) (which is not closed), we have

1 > 1+x
2 > x ≥ 0. That is, we cannot find a greatest number smaller than 1.
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F����� 18. No solutions

In household theory, these problems do not need to bother us a lot. The

reason lies in the following theorem and its corollary:

T��
��� VI.1. Let f : M → R be a continuous function where M ⊆
Rℓ is nonempty, closed and bounded. Then, f adopts a maximum and a

minimum on M .

We only hint at a proof. By the continuity of f, the image f (M) is

also closed and bounded. Every closed and bounded subset of R takes on a

maximum and a minimum.

C
�
$$��	 VI.1. Let � be a continuous preference relation and let

p ∈ Rℓ
+ obey p >> 0. Then, the household’s decision problem has a solution,

i.e., x (p,m) or x (p, ω) is nonempty for every m ≥ 0 and ω ∈ Rℓ
+.

The corollary follows from the above theorem together with theorem

IV.1 (p. 69) and lemma VI.2 (p. 120).

4.3. Uniqueness. Optimization problems can have several solutions as

you have seen in fig. 7 (c), p. 126. Subfigure (a) hints at the importance of

convexity:

T��
��� VI.2. Let f :M → R be a strictly quasi-concave function on
a convex domain M ⊆ Rℓ. Then, we cannot have two different solutions to

a maximization problem.

Let f : M → R be a quasi-concave function that obeys strict monotonicity
or local nonsatiation (see exercise IV.17, 69) and let M be a strictly con-

vex domain M ⊆ Rℓ. Then, we cannot have two different solutions to a

maximization problem.

P�

�. We provide a proof (by contradiction) of the first assertion. Let

x, y ∈M be two solutions with x �= y. By the convexity of M , we have

kx+ (1− k) y ∈M.

Strict quasi-concavity implies

f (kx+ (1− k) y) > min (f (x) , f (y)) = f (x) = f (y) .
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Thus, we have found an element from our feasible set M that yields a higher

value. Therefore, neither x nor y can be solutions which is the desired

contradiction. �

C
�
$$��	 VI.2. Let U be a strictly quasi-concave utility function.

Then, the household’s decision problem has at most one solution.

Returning to fig. 7 (c) on p. 126, note that

• the utility function is quasi-concave but not strictly quasi-concave

and

• the budget is convex but not strictly convex.

Therefore, this example does fit neither the first nor the second part of the

theorem.

The corollary is derived from the first part of the theorem. With respect

to the second part, just reconsider fig. 7 (d) and exchange the indifference

and budget curves.

Uniqueness in the above theorem is possible from strict quasi-concav-

ity of the objective function or strict convexity of the domain. If we have

neither, we cannot hope for uniqueness, but we can still ensure that the

solutions form a convex set:

T��
��� VI.3. Let f :M → R be a quasi-concave function on a convex
domain M ⊆ Rℓ. Then the set of solutions is convex.

Therefore, if you have two solutions, every convex combination of these

solutions is also a solution. A good example is provided by perfect sub-

stitutes where x (p,m) is an interval if the budget line’s slope happens to

coincide with the indifference curves’ slopes.

4.4. Local solutions and global solutions.

D�������
� VI.14. A solution x∗ ∈M is also called a global solution. A

solution x∗ ∈M is called a local solution if we have an ε-ball K with center

x∗ such that x∗ is a solution to (f,M ∩K) .

Of course, every global solution is a local one (consider fig. 19).

The inverse is more interesting:

T��
��� VI.4. Let f :M → R be a strictly quasi-concave function on
a convex domain M ⊆ Rℓ. Then, a local maximum of f on M is a global

one.

P�

�. Assume a local maximum at x∗ ∈ M and hence an ε-ball K

with center x∗ such that f (x∗) ≥ f (x) for all x ∈M ∩K (see fig. 20).

Assume further that x∗ is no global solution. Then we have an x′ ∈ M

obeying f (x∗) < f (x′) . By the convexity of M, we have

kx∗ + (1− k)x′ ∈M
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x

F����� 19. Every global solution is a local one.

( ) '1* xkkx −+
*x 'x

F����� 20. A local solution is global.

for every k ∈ (0, 1). Strict quasi-concavity yields

f
�
kx∗ + (1− k)x′

�
> f (x∗) .

Now, we can have k so large that kx∗ + (1− k)x′ is included in the ε-ball

K with center x∗. This is the desired contradiction to the local maximum

at x∗. �

C
�
$$��	 VI.3. Let U be a strictly quasi-concave utility function.

Then, a local solution to the household’s decision problem is already a global

one.

4.5. Interior solutions, boundary solutions, and corner solu-

tions. Assume an optimization problem (f,M) . We distinguish between

different kinds of solutions:

D�������
� VI.15. A solution x∗ ∈M is called an interior solution if it

is an interior point of M . A solution x∗ ∈M is called a boundary solution

if it is a boundary point of M . If all solutions are boundary solutions, the

feasibility constraint is called binding.

For interior solutions, we have an obvious necessary condition:
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F����� 21. Solutions: interior, boundary, corner

T��
��� VI.5. Let x∗ ∈M be an interior solution to an optimization

problem (f,M) and let f be differentiable. Then,

∂f

∂xg

����
x∗

= 0

for all g = 1, .., ℓ.

The reason is obvious. If the derivative with respect to any xg were not

zero, we could increase or decrease xg and increase or decrease the value of

our objective function.

By lemma IV.1 (p. 57), a solution x∗ ∈ M is an interior solution if

and only if it is not a boundary solution. In contrast to fig. 8 on p. 64,

we consider M (the budget set) a subset of Rℓ rather than Rℓ
+. Of course,

in household theory, we are especially interested in the boundary solutions

defined by the budget line (see fig. 21) because this line gets displaced by

changes in income (endowment) and prices.

There are two sorts of boundary solutions on the budget line. A corner

solution means that at least one good is not consumed at all. Non-corner

solutions are those where every good is consumed with a non-zero quantity:

D�������
� VI.16. A solution x∗ ∈ M is called a non-corner solution

if x∗ >> 0 holds. A solution is called a corner solution if we have x∗g = 0

for at least one g ∈ {1, .., ℓ}.
Boundary non-corner solutions are of special interest.

5. Boundary non-corner solutions and the Lagrange method

5.1. The Lagrange theorem. In a previous section (see p. 128), we

argue that the household maximizing

U

�
x1,

m

p2
− p1
p2
x1

�
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pays the additional utility from consuming another unit of good 1 with a

reduction of utility stemming from consuming less of good 2. The Lagrange

method helps to find the optimum by merging the feasibility constraint with

the objective function.

T��
��� VI.6 (Lagrange theorem). Let f and g be differentiable func-

tions Rℓ → R where f is the obejctive function and g (x) = 0 specifies the

side condition. If the optimization problem
�
f,
�
x ∈ Rℓ : g (x) = 0

��
has a

local non-corner solution x∗, there exists a λ ∈ R such that

f ′ (x∗) = −λg′ (x∗) .

Note that the Lagrange theorem does not tell whether a solution exists.

If (!) we have a local non-corner solution, it fulfills the above equation. In

the next subsection, we learn how to apply the Lagrange method to our

household problem.

5.2. Applying the Lagrange method. Assume strict quasi-concav-

ity of the utility function U and positive prices, p >> 0. Furthermore,

assume strict monotonicity of U . The Lagrange function is given by

L (x, λ) = U (x) + λ


m−

ℓ�

g=1

pgxg


 .

For the time being, think of λ, the so-called Lagrange multiplier, as a positive

parameter. It translates a budget surplus (in case of m >
�ℓ

g=1 pgxg) into

additional utility. Thus, increasing consumption has a positive direct effect

via the utility function U and negative indirect effect via a decreasing budget

surplus and λ. Therefore (we do not give a proof), maximizing L with

respect to x and λ is equivalent to maximizing U on B (p,m).

Indeed, we differentiate L with respect to xg to obtain

∂L (x1, x2, ..., λ)

∂xg
=
∂U (x1, x2, ..., xℓ)

∂xg
− λpg

!
= 0 (VI.3)

or
∂U (x1, x2, ..., xℓ)

∂xg

!
= λpg. (VI.4)

We want to check whether these conditions are those claimed in theorem

VI.6. Letting

• objective function f := U and

• side condition g (x) := m−�ℓ
g=1 pgxg = 0

the theorem claims — in the presence of a local non-corner solution x∗ — the

existence of λ ∈ R such that f ′ (x∗) = −λg′ (x∗) holds, i.e., such that

∂U (x1, x2, ..., xℓ)

∂xg
= −λ

∂
�
m−�ℓ

g=1 pgxg
�

∂xg
= −λ (−pg) = λpg
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F����� 22. Direct versus indirect utility function

is true for all g = 1, ..., ℓ (see definition IV.29, p. 75). Thus, our recipe is in

accordance with the above theorem.

Now, dividing condition VI.4 for a good g by the same condition for

good k yields
∂U(x1,x2,...,xℓ)

∂xg

∂U(x1,x2,...,xℓ)
∂xk

!
=
pg
pk

which, again, is our familiar condition MRS
!
=MOC.

E������� VI.16. Set the derivative of L with respect to λ equal to 0.

What do you find?

λ is called the shadow price of the restriction (the budget equation).

It can be shown that λ is equal to the additional utility accruing to the

household if the restriction is eased by one unit:

λ =
dU

dm
.

Thus, we say that λ is the marginal utility of income. However, this is not

quite correct. After all, U does not have income m as an argument but

only bundles of goods. One purpose of the next section is to deal with this

problem.

6. Indirect utility function

6.1. Definition. If the household problem has a solution, the maxi-

mum utility attainable can be expressed as a function of the budget:

D�������
� VI.17. Consider a household with utility function U . The

function (if it exists)

V : Rℓ ×R+ → R,

(p,m) → V (p,m) := U (x (p,m))

is called indirect utility function.

Fig. 22 compares the utility function and the indirect utility function.
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E������� VI.17. Determine the indirect utility function for the Cobb-

Douglas utility function U (x1, x2) = xa1x
1−a
2 (0 < a < 1)!

6.2. Revisiting the Lagrange multiplier. The aim of this section is

to substitute the somewhat incorrect λ = dU
dm by λ = dV

dm . This is not diffi-

cult. We differentiate both the budget equation and the indirect utility func-

tion with respect to income m. For the budget equation
�ℓ

g=1 pgxg (p,m) =

m, we obtain
ℓ�

g=1

pg
∂xg
∂m

=
dm

dm
= 1. (VI.5)

The indirect utility function is defined by

V (p,m) = U (x (p,m)) .

Forming the derivative with respect to m yields

∂V

∂m
=

ℓ�

g=1

∂U

∂xg

∂xg
∂m

.

where the derivative on the right-hand side uses the adding rule (p. 75).

Now, we obtain the desired result:

∂V

∂m
=

ℓ�

g=1

λpg
∂xg
∂m

(eq. VI.4, p. 145)

= λ
ℓ�

g=1

pg
∂xg
∂m

(distributivity) (VI.6)

= λ (Gl. VI.5). (VI.7)

We can now rewrite the above optimization condition VI.4 in this fashion:

∂U (x1, x2, ..., xℓ)

∂xg� �� �
marginal utility

!
= λpg =

∂V

∂m
pg

� �� �
marginal cost

That is, the household consumes every good so that the marginal utility of

his consumption (left side) is equal to the marginal cost (also in terms of

utility) of consumption (right side) where consuming one additional unit of

good g means that the expenditure increases by pg so that the income left

for the consumption of other goods decreases by the same amount and hence

the utility decreases by dV
dm
pg.

6.3. The indirect utility function is quasi-convex in prices and

income. We plan to show that the indirect utility function is quasi-convex

in both prices and income. Reversing the inequality signs and turning the

min into the max operator in definition IV.26 (p. 71), we obtain the following
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D�������
� VI.18 (quasi-convexity). f : Rℓ → R is called quasi-convex
if

f (kx+ (1− k) y) ≤ max (f (x) , f (y))

holds for all x, y ∈ Rℓ and all k ∈ [0, 1] . f is strictly quasi-convex if

f (kx+ (1− k) y) < max (f (x) , f (y))

holds for all x, y ∈ Rℓ with x �= y and all k ∈ (0, 1) .

Thus, the value of the function f at a point between x and y is smaller

than or equal to the largest of the values f (x) and f (y) . Consider the

examples of quasi-convexity in fig. 23 while fig. 24 depicts a function that

is not quasi-convex.

( )ykkx −+ 1x y x

( )xf

( )( )ykkxf −+ 1

( )yf

Also 
quasi-convex:

F����� 23. Strictly quasi-convex functions

( )ykkx −+ 1x y x

( )( )ykkxf −+ 1

( )yf
( )xf

F����� 24. A function that is not quasi-convex

E���$� VI.1. Any monotonically increasing or decreasing function

f : R→ R is quasi-convex.
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convex

not convex

quasi-convex not quasi-convex

convexity implies
quasi-convexity

F����� 25. Convexity versus quasi convexity

Similar to fig. 7 on p. 96, we contrast convexity (see the definition on

p. 94 and also fig. 6 on p. 96) and quasi-convexity in fig. 25.

T��
��� VI.7. The indirect utility function is quasi-convex in both

prices and income.

P�

�. We assume two vectors

�
p′,m′� ,
�
p′′,m′′�

from Rℓ ×R+ and consider the linear combination

(p∗,m∗) := k
�
p′,m′�+ (1− k)

�
p′′,m′′� . (VI.8)

We want to show

V (p∗,m∗) ≤ max
�
V
�
p′,m′� , V

�
p′′,m′′�� .

Let x∗ := x (p∗,m∗) be the household optimum at prices p∗ and income m∗.
We find

kp′x∗ + (1− k) p′′x∗ = p∗x∗ (eq. VI.8, distributivity)

≤ m∗ (budget inequality)

= km′ + (1− k)m′′ (eq. VI.8)

Therefore, we obtain

p′x∗ ≤ m′ or

p′′x∗ ≤ m′′
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gp

sat
gxgx̂

proh
gp

gp̂

inverse demand curve
= willingness to pay

h
gp consumer`s

rent

aggregate willingness
to pay

gx

F����� 26. Willingness to pay and consumer’s rent

and hence the hoped-for inequality:

V
�
k
�
p′,m′�+ (1− k)

�
p′′,m′′��

= V ((p∗,m∗)) (eq. VI.8)

= U (x∗) (x∗ = x (p∗,m∗) is the household optimum)

≤ max
�
V
�
p′,m′� , V

�
p′′,m′′�� (x∗ affordable at

�
p′,m′� or

�
p′′,m′′� )

Do you see why the last inequality holds? Since x∗ is affordable at (p′,m′) or

(p′′,m′′), the utility V (p′,m′) or V (p′′,m′′) obtainable at these price-income

vectors is at least as high as U (x∗) so that we have U (x∗) ≤ V (p′,m′) or

U (x∗) ≤ V (p′′,m′′). �

7. Consumer’s rent and Marshallian demand

One can use the Marshallian demand curve x1 (p1) to derive an impor-

tant welfare-theoretical concept, consumer’s rent. We take the first-order

condition

MRS =
p1
p2

as a starting point. We concentrate on good 1 and assume that good 2

stands for “all the other goods” (also called money) and has price 1. Then,

the willingness to pay for one extra unit of good 1 measured in terms of good

2 is p1. Thus, the price is a good indication for the consumer’s willingness

to pay.

Have a look at the inverse demand function in fig. 26. From the point

of view of the above discussion, pg (xg) can be addressed as the marginal

willingness to pay for one extra unit of good g.

Then, we can distinguish several aggregate concepts:
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D�������
� VI.19. Let pg be an inverse demand function. The Mar-

shallian willingness to pay for the quantity x̂g is defined by
( x̂g

0
pg (xg) dxg.

The Marshallian willingness to pay for a price decrease from phg to p̂g < phg
is defined by ( phg

p̂g

xg (pg) dpg.

The Marshallian consumer’s rent at price p̂g ≤ pprohg is

CRMarshall (p̂g) =

( xg(p̂g)

0
pg (xg) dxg − p̂gxg (p̂g)

=

( xg(p̂g)

0
(pg (xg)− p̂g)dxg

=

( p
proh
g

p̂g

xg (pg)dpg.

Sketch the different integrals to check on our definitions. According to

the last equality, the Marshallian consumer’s rent at price p̂g is the Mar-

shallian willingness to pay for a price decrease from pprohg to p̂g < pprohg .

The aggregate Marshallian concepts are somewhat incorrect. Consider

the Marshallian willingness to pay for the quantity x̂g,
/ x̂g
0 pg (xg)dxg. We

have to “sum” the prices for all the units from 0 up to x̂g. The problem with

this procedure is that it builds on another assumption than the Marshallian

demand curve that it uses:

• According to Marshallian demand, the consumers pay one price for

all the units.

• In contrast, the integral
/ x̂g
0 pg (xg)dxg presupposes that the con-

sumer pays (in general) different prices for the first, the second,

and so on, units.

Now, if higher prices are to be paid for the first units, the household has less

income available to spend on the additional units so that we cannot expect

that the “real” consumer’s rent is as high as Marshallian demand has us

believe. You will have to wait until the next chapter where we can present

a correct graphical representation of the consumer’s willingness to pay for a

price decrease.
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8. Topics

The main topics in this chapter are

• money budget

• endowment budget

• marginal opportunity cost

• feasibility

• objective function

• indirect utility function

• marginal utility of income

• labor supply

• intertemporal consumption

• contingent consumption

• demand function

• cross demand function

• Engel function

• substitutes and complements

• ordinary and nonordinary goods

• normal and inferior goods

• Marshallian consumer’s rent

• local solution

• global solution

• interior solutions

• boundary solutions

• corner solutions

• Lagrange method

• Lagrange multiplier

9. Solutions

Exercise VI.1

For any number α > 0, we have B (αp,m) = B
�
p, mα

�
.

Exercise VI.2

Fig. 27 shows the left-over in terms of good 1 and good 2. In order to

obtain the left-over in money terms, we need to multiply the left-over of

good 1 with p1 (or the left-over of good 2 with p2).

Exercise VI.3

Solving p1x1 + p2x2 = m for x2 yields x2 = m
p2

− p1
p2
x1 so that the

derivative of x2 (as a function of x1) is −p1
p2

.

Exercise VI.4

In fig. 6, The part of the budget line right of the full-insurance point is

associated with insurance sums K > D. In case of a loss, the household is

refunded the damage D plus some extra. Then, the household benefits from

the damage. This is called over-insurance.

Exercise VI.5
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1p

m

2p

m

left-over in terms of good 2

left-over in terms of good 1

2x

1x

F����� 27. The left-over

In subfigure (a), points A and B do not correspond to an optimum. The

preferences are strictly convex and every point between A and B is better

than A or B. Subfigure (b) depicts perfect substitutes. Point A is the

household optimum. In subfigure (c), points A and B are optima but so are

all the points in between. Turning to subfigure (d), the point of tangency

A is the worst bundle of all the bundles on the budget line. There are two

candidates for household optima in this case of concave preferences, the two

extreme bundles
�

m
p1
, 0
�

and
�
0, mp2

�
.

Exercise VI.6

If y is better than x, the household optimum, the household cannot

afford y :

y ≻ x⇒ p · y > p · ω
Exercise VI.7

Good 1 is an ordinary good by ∂x1
∂p1

< 0, it is normal because of ∂x1
∂m

> 0

and is it both a substitute and a complement of good 2 by ∂x1
∂p2

= 0.

Exercise VI.8

Consider figure 28.

Exercise VI.9

The household optima can be found via x1 = 2x2 and the budget line

and are given by
�
x∗1 =

m
p1+

1
2
p2
, x∗2 =

m
2p1+p2

�
. Hence good 2’s demand curve

is given by x2 = f (p2) =
m

2p1+p2
for positive prices p1 and p2. The complete

demand curve is given by

x2 (p1, p2,m) =





m
2p1+p2

, p1 > 0, p2 > 0

∅, p1 ≤ 0 or p2 ≤ 0�
m
2p1

,∞
�

p1 > 0, p2 = 0
m
p2
, p1 = 0, p2 > 0
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1p

Bp1

Cp1

Dp1

1x

2x

C

B

D

Bp1
Cp1

Dp1

1x

Bx1
Cx1

Dx1

Cx1
Dx1

Bx1

F����� 28. The price-consumption curve and the demand

curve for perfect complements

The price-consumption curve seems to be x2 = h (x1) = 1
2x1. However,

for p2 < 0, no household optimum and hence no price-consumption curve

exists. For p2 = 0, optima exist for p1 > 0 only (see the left-hand graph

in fig. 29). For p2 > 0, the price-consumption curve consists of two parts

which are depicted in the right-hand graph:

x2 =





1
2x1, x1 ≤ m

1
2
p2

(p1 > 0)

m
p2
, x1 >

m
1
2
p2

(p1 = 0)

Exercise VI.10

See figure 30.

Exercise VI.11

Again, we use x1 = 2x2 and x∗2 =
m

2p1+p2
. The income-consumption curve

is given by x2 = g (x1) =
1
2x1 and the Engel curve is x2 = q (m) = m

2p1+p2
.

Exercise VI.12

The first-order condition

∂U
∂x1
∂U
∂x2

=
1

x1

!
=
p1
p2
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2x

1x

02 =p
2x

1x

2p

m

22
1
p

m

02 >p

F����� 29. The price-consumption curves in case of perfect complements

1x

2x

C

B

D

Bm Cm Dm

1x
m

Bm

Cm

Dm

Bx1
Cx1

Dx1

Bx1
Cx1

Dx1

F����� 30. The income-consumption curve and the Engel

curve for perfect complements

and the budget constraint p1x1 + p2x2 = m yield

x (m, p) =

�
p2
p1
,
m

p2
− 1

�
.
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Therefore, we have

∂x1 (p,m)

∂p2
=

1

p1
> 0 and

∂x2 (p,m)

∂p1
= 0.

Exercise VI.13

We find

εxg,pg =
dxg
dpg

pg
xg

= (−1)
pg

100− pg
and

εxk,pk =
dxk
dpk

pk
xk

= (−1)
1

p2k

pk
1
pk

= −1.

Exercise VI.14

We have found x∗1 = q (m) = 1
3
m
p1

. The income elasticity is

εx1,m =
∂x1
∂m

m

x1
=

1
3

p1

m
1
3
m
p1

= 1

and the good is normal, just in between luxury and necessity.

Exercise VI.15

We find the prohibitive prices

100 for x1g max (0, 100− pg) ,

25 for x2g max (0, 50− 2pg) and

20 for x3g max (0, 60− 3pg)

and therefore aggregate demand xg given by

xg (p) =





0, pg ≥ 100

100− pg, 25 ≤ pg < 100

150− 3pg 20 ≤ pg < 25

210− 6pg 0 ≤ pg < 20

Exercise VI.16

Setting the derivative of L with respect to λ equal to 0 is just a refor-

mulation of the budget equality.

Exercise VI.17

We know from p. 129 the household optimum

x1 (m,p) = a
m

p1
,

x2 (m,p) = (1− a)
m

p2
.
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Therefore, we obtain the indirect utility function as

V (p,m) = U (x (p,m))

=

�
a
m

p1

�a�
(1− a)

m

p2

�1−a

=

�
a

p1

�a�1− a

p2

�1−a

m.
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10. Further exercises without solutions

P�
#$�� VI.1.

Discuss the units in which to measure price, quantity, expenditure. If you

are right, expenditure should be measured in the same units as the product

of price and quantity.

P�
#$�� VI.2.

Sketch budget lines or the displacements of budget lines for the following

examples:

• Time T = 18 and money m = 50 for football F (good 1) or basket

ball B (good 2) with prices

— pF = 5, pB = 10 in monetary terms,

— tF = 3, tB = 2 and temporary terms

• Two goods, bread (good 1) and other goods (good 2). Transfer in

kind with and without prohibition to sell:

— m = 20, pB = 2, pother = 1

— Transfer in kind: B = 5

P�
#$�� VI.3.

Assume two goods 1 and 2. Abba faces a price p for good 1 in terms of

good 2. Think of good 2 as the numeraire good with price 1. Abba’s utility

functions U is given by U (x1, x2) =
√
x1+x2. His endowment is ω = (25, 0) .

Find Abba’s optimal bundle. Hint: Distinguish p ≥ 1
10 and p <

1
10 !

P�
#$�� VI.4.

Show by way of example that ∂x1(p,m)
∂p1

< 0 and ∂x1(p,ω)
∂p1

> 0 may well happen.

Hint: use perfect complements.

P�
#$�� VI.5.

Derive the indirect utility functions of the following utility functions:

(a) U(x1, x2) = x1 · x2,
(b) U(x1, x2) = min {a · x1, b · x2} where a, b > 0 holds,

(c) U(x1, x2) = a · x1 + b · x2 where a, b > 0 holds.

P�
#$�� VI.6.
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Discuss the following claim: The lexicographic preference relation on R2+,

where good 1 is the important good, gives rise to the indirect utility function

given by V (p1, p2,m) = m
p1

in case of p >> 0. How about p1 = 0 or p2 = 0?

P�
#$�� VI.7.

True or false: If � is strictly monotonic and homothetic (compare Problem

6 in Chapter IV), then xR (p, λω) = λ · xR (p, ω) holds for all λ > 0?

Hint: This is somewhat difficult. Begin by showing that

• the two bundles cost the same (how much?),

• household optimality implies xR (p, λω) � λ · xR (p, ω) for all bun-

dles of both sets and ? �? for all bundles of both sets,

• homotheticity then implies 1
λx

R (p, λω) � xR (p, ω) so that we find

? ∼? and, again using homotheticity, ? ∼?

P�
#$�� VI.8.

Consider the preferences given by the utility function U (x1, x2) = x1+2x2.

Find x (p,m) . Sketch the demand functionn for good 1. Sketch the Engel

curve for good 1 in case of p1 <
1
2p2 while observing the usual convention

that the x1-axis is the abscissa!





CHAPTER VII

Comparative statics and duality theory

In this chapter, we deal with the effects that prices or income have on

the household optimum. Differently put, we discuss demand functions, the

cross demand functions and the Engel functions. We also discuss monetary

measures for changes affecting the household.

1. The duality approach

1.1. Maximization problem and minimization problem. The prob-

lem facing a household can be expressed as a maximization problem as we

have done in the previous chapter. In good-natured problems, there is basi-

cally no difference between the following two problems:

• Maximization problem: Find the bundle that maximizes the utility

for a given budget line.

• Minimization problem: Find the bundle that minimizes the expen-

diture needed to achieve a given utility level.

This fact is illustrated by fig. 1. Given the bold budget line (the lower

one) with income m, the household maximizes utility by choosing bundle B

rather than bundle C which he can also afford. The household then achieves

the utility level Ū . This is the utility-maximization problem. Turning to

the minimization problem, we fix the utility level Ū and try to find the min-

imal expenditure necessary. The expenditure-minimizing bundle is (again!)

bundle B rather than bundle A.

We say that the maximization and the minimization problem are dual

problems. They are basically identical. We do not, however, define “dual”

or “basically” formally. In this chapter we spell out the duality approach

to household theory in some detail and present some important theoretical

results.

1.2. The expenditure function. From chapter VI, we are familiar

with the indirect utility function

V : Rℓ ×R+ → R,

(p,m) → V (p,m) := max
x∈B(p,m)

U (x) .

It tells us the maximum utility achievable with a given income. We now turn

this question on its head and ask for the minimum expenditure necessary

161
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A

B

C

budget line with
income level m

indifference curve with
utility level U

2x

1x

F����� 1. Maximizing utility corresponds to minimizing expenditure

to achieve a specific utility level (or a specific indifference curve) or a better

one:

D�������
� VII.1. Consider a household with utility function U . The

function (if it exists)

e : Rℓ ×R→ R,
�
p, Ū

�
→ e

�
p, Ū

�
:= min

x with
U(x)≥Ū

px

is called expenditure function. The solution to this minimization problem (if

there is any) is the function

χ : Rℓ ×R→ Rℓ
+,�

p, Ū
�
→ χ

�
p, Ū

�
:= arg min

x with
U(x)≥Ū

px

χ is called the Hicksian demand function where the Greek letter χ (to be

pronounced chi) resembles the Roman letter x and also hints to the H in

Hicks.

E������� VII.1. Express

• e in terms of χ and

• V in terms of the household optima!

E������� VII.2. Determine the expenditure function and the Hicksian

demand function for the Cobb-Douglas utility function U (x1, x2) = xa1x
1−a
2

with 0 < a < 1! Hint: From exercise VI.17 (p. 147) we know that the
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indirect utility function V is given by

V (p,m) = U (x (p,m))

=

�
a
m

p1

�a�
(1− a)

m

p2

�1−a

=

�
a

p1

�a�1− a

p2

�1−a

m.

From chapter VI, we know x (αp,αm) = x (p,m) and hence V (αp, αm) =

V (p,m) for any number α > 0.We have a similar result for Hicksian demand

and the expenditure function:

L���� VII.1. For any α > 0, we have χ
�
αp, Ū

�
= χ

�
p, Ū

�
and

e
�
αp, Ū

�
= αe

�
p, Ū

�
.

P�

�. For α > 0, we have

χ
�
αp, Ū

�
= arg min

x with
U(x)≥Ū

αpx = arg min
x with
U(x)≥Ū

px = χ
�
p, Ū

�
;

the bundle x with U (x) ≥ Ū that minimizes px also minimizes αpx. Now,

if prices are changed by a factor α > 0, the expenditure necessary to buy

χ
�
p, Ū

�
is also changed by the same factor α :

e
�
αp, Ū

�
= αe

�
p, Ū

�
.

�

The Hicksian demand function is also called compensating demand func-

tion. It tells how to change demand in response to price changes while in-

come is adapted in order to keep the utility constant. In contrast, the usual

demand function x (which is also called Marshallian demand function) holds

income constant. Fig. 2 juxtaposes utility maximization and expenditure

minimization.

1.3. Applying the Lagrange method to expenditure minimiza-

tion. As in chapter VI (pp. 144), we assume strict quasi-concavity of the

utility function U, positive prices, p >> 0 and strict monotonicity of U . The

Lagrange function for expenditure minimization is given by

L (x, µ) =
ℓ�

g=1

pgxg + µ
	
Ū − U (x)



.

Differentiating with respect to xg and µ yields

∂L (x1, x2, ..., µ)

∂xg
= pg − µ

∂U (x1, x2, ..., xℓ)

∂xg

!
= 0

and the side condition

∂L (x, µ)

∂µ
= Ū − U (x)

!
= 0.
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utility

maximization

expenditure

minimization

objective function utility expenditure

parameters prices p, income m prices p, utility Ū

notation for

best bundle(s)
x (p,m) χ

�
p, Ū

�

name of

demand function
Marshallian Hicksian

value of

objective function

V (p,m)

= U (x (p,m))

e
�
p, Ū

�

= p · χ
�
p, Ū

�

F����� 2. Duality

The Lagrange multiplier µ has an economic interpretation. It translates a

utility surplus (in case of U (x) > Ū) into a possible reduction of expenditure.

Thus, increasing consumption has a positive direct effect on expenditure (ex-

penditure increases) and a negative indirect effect via a utility surplus (scope

for expenditure reduction). Therefore (we do not give a proof), maximizing

L with respect to x and µ is equivalent to minimizing expenditure for p and

Ū .

A comparison with eq. VI.3 (p. 145) shows that expenditure minimiza-

tion also leads to the MRS
!
= MOC condition. The comparison of the

Lagrange multipliers is also instructive:

• λ is the shadow price for utility maximization. It tells how addi-

tional income leads to higher utility: λ = ∂V
∂m or, somewhat impre-

cise, λ = dU
dm .

• µ is the shadow price for expenditure minimization. Increasing Ū

by one unit leads to an increase of expenditure by µ =
∂e(p,Ū)

∂Ū
.

This comparison does not prove but makes plausible the (correct) equation

µ =
1

λ
.

1.4. The duality theorem. The duality of utility maximization and

expenditure minimization means that we can use the solution of one prob-

lem to find the solution of the other. However, this cannot always work.

Consider, for example, the bliss point B of fig. 3 (p. 165) which is an

interior point of the budget with income m. The household optimum is

the bliss point. However, in order to achieve the utility of the bliss point

(V (p,m) = 9), the budget indicated by the budget line is not necessary, a

smaller budget is sufficient to afford the bliss point. Thus, in this case, we
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A

6
7

9B

2x

1x

F����� 3. Duality does not work here.

have

e (p, V (p,m)) < m.

We now present a theorem that states conditions under which duality

does work:

T��
��� VII.1. Let U : Rℓ
+→ R be a continuous utility function that

obeys local nonsatiation and let p >> 0 be a price vector. We then obtain

duality in both directions:

• If x (p,m) is the household optimum for m > 0, we have

χ (p, V (p,m)) = x (p,m) (VII.1)

and

e (p, V (p,m)) = m. (VII.2)

• If χ
�
p, Ū

�
is the expenditure-minimizing bundle for Ū > U (0) , we

have

x
�
p, e

�
p, Ū

��
= χ

�
p, Ū

�
(VII.3)

and

V
�
p, e

�
p, Ū

��
= Ū . (VII.4)

The duality theorem implies that the expenditure is an increasing func-

tion of the utility level:

L���� VII.2. Let U : Rℓ
+→ R be a continuous utility function that obeys

local nonsatiation and let p >> 0 be a price vector. We have

∂e
�
p, Ū

�

∂Ū
> 0.
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P�

�. Assume two utility levels Ū l and Ūh with Ū l < Ūh. By the

definition of the expenditure function, we have

e
�
p, Ū l

�
= min

x with
U(x)≥Ū l

px

≤ min
x with

U(x)≥Ūh

px (we have less bundles to choose from)

= e
�
p, Ūh

�

We now assume e
�
p, Ū l

�
= e

�
p, Ūh

�
, i.e., p · χ

�
p, Ū l

�
= p · χ

�
p, Ūh

�
. This

means e
�
p, Ū l

�
is the minimum expenditure necessary for the achievement

of utility level Ū l, but the higher utility level Ūh can be obtained without

additional expenditure. By duality (equation VII.3), the above equality can

be written as

p · x
�
p, e

�
p, Ū l

��
= p · x

�
p, e

�
p, Ūh

��
.

Also, we find

U
�
x
�
p, e

�
p, Ū l

���
= V

�
p, e

�
p, Ū l

��
(definition of indirect utility)

= Ū l (duality theorem, equation VII.4)

< Ūh (assumption)

= V
�
p, e

�
p, Ūh

��
(duality theorem, eq. VII.4)

= U
�
x
�
p, e

�
p, Ūh

���
(def. of indirect utility).

This means that the bundles x
�
p, e

�
p, Ū l

��
and x

�
p, e

�
p, Ūh

��
are equally

expensive, but the first one leads to a lower utility than the second one.

This is a contradiction to household maximization.

Thus, the strict inequality e
�
p, Ū l

�
< e

�
p, Ūh

�
holds, proving the lemma.

�

1.5. Main results. In this last subsection, we present some important

results about Hicksian demand and the expenditure function. Some of these

results are derived with the help of the duality approach. The rest of this

chapter is devoted to proving these propositions and discussing important

conclusions.

T��
��� VII.2. Consider a household with a continuous utility func-

tion U , Hicksian demand function χ and expenditure function e. We have

the following results:

• Shephard’s lemma (p. 170): The price increase of good g by one
small unit increases the expenditure necessary to uphold the utility

level by χg.
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• Monotonicity of expenditure function (p. 165): In case of local
nonsatiation and strictly positive prices, the expenditure function

is monotonic in utility.

• Hicksian law of demand (pp. 172 and 175): If the price of a good
g increases, the Hicksian demand χg does not increase.

• Concavity of expenditure function (p. 174): The expenditure func-
tion is concave in its prices.

• The Hicksian cross demands are symmetric (p. 175): ∂χg(p,Ū)
∂pk

=

∂χk(p,Ū)
∂pg

.

• Roy’s identity (p. 171): A price increase of good g by one small
unit decreases the budget available for the other goods by χg and

indirect utility by the product of the marginal utility of income ∂V
∂m

and χg.

• Convexity of indirect utility function (pp. 147): The indirect utility
function is convex in prices and income.

• Slutsky equations (pp. 179): Marshallian demand and Hicksian
demand are related by the money-budget Slutsky equation

∂xg
∂pg

=
∂χg

∂pg
− ∂xg
∂m

χg

and the endowment Slutsky equation

∂xendowmentg

∂pg
=
∂χg

∂pg
+
∂xmoneyg

∂m

�
ωg − χg

�

2. Envelope theorems and Shephard’s lemma

2.1. The example of an expenditure function. This section deals

with a set of useful mathematical results that we will need several times.

The application at hand concerns the expenditure function. Assume a price

increase of one good g, from pg to p′g. If the household consumes the same

bundle as before (and therefore achieves the same utility level), he has to

increase expenditure by �
p′g − pg

�
χg

where χg is the quantity consumed at the old price. Therefore, we have

e
�
p′, Ū

�
≤ e

�
p, Ū

�
+
�
p′g − pg

�
χg

where p′ and p are the same vectors for all goods except good g.

The inequality may be strict if the household reshuffles his expenditure-

minimizing bundle in response to the price increase. An implication of the

envelope theorem is that reshuffling does not pay in case of a very small

price increase. Then, e
�
p′, Ū

�
= e

�
p, Ū

�
+
�
p′g − pg

�
χg implies

∂e
�
p, Ū

�

∂pg
= lim

p′g→pg

e
�
p′, Ū

�
− e

�
p, Ū

�

p′g − pg
= lim

p′g→pg

�
p′g − pg

�
χg

p′g − pg
= χg.
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2.2. Envelope theorem without constraints. There are two enve-

lope theorems: one without, and one with, constraints. We begin with the

simpler case and assume a function f with values f (a, x) where a is a pa-

rameter and x a variable. For example, x may denote an output decision

undertaken by a firm whose profit is influenced by some weather or demand

parameter a. In contrast to chapter II, we assume that both x and a are

taken from some interval of the real line.

The problem is to choose x so as to maximize f (a, x) . The optimal value

of x (we assume that there is exactly one) is a function of a, written as

xR (a) .

This is our well-known best-response function. On the basis of f , we define

another function:

D�������
� VII.2. Let f : R×R → R be a differentiable function with
values f (a, x). We call a a parameter and x a variable. Assume

��xR (a)
�� = 1

for all a ∈ R. Then,

f̂ : R→ R,

a → f̂ (a) := f
�
a, xR (a)

�

is a well-defined function. We assume that xR is a differentiable function of

a

Now, a change in a influences the value f̂ (a) directly (through a) and

indirectly (through xR (a)). The envelope theorem claims that we can forget

about the indirect effect if we consider derivatives:

T��
��� VII.3. Let f and f̂ be given as in the preceding definition.

Assume that xR (a) is an interior solution for every a ∈ R. Then, we have

df̂

da
=

∂f

∂a

����
xR(a)

.

P�

�. The proof follows from

df̂

da
=

df
�
a, xR (a)

�

da
(this is not the partial derivative of f !)

=
∂f

∂a

����
xR(a)

+
∂f

∂x

����
xR(a)

dxR

da
(theorem IV.3, p. 75)

=
∂f

∂a

����
xR(a)

+
∂f

∂x

����
xR(a)� �� �
0

dxR

da
(theorem VI.5, p. 144)

=
∂f

∂a

����
xR(a)

.

�
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2.3. Envelope theorem with equality constraints. We now as-

sume an optimization problem with equality constraint:

D�������
� VII.3. Let f : R×R → R be a differentiable function with
values f (a, x) where a is a parameter and x a variable. x has to obey an

equality constraint

g (a, x) = 0

where g : R×R → R is also differentiable. Assume
��xR (a)

�� = 1 for all

a ∈ R and that xR is a differentiable function of a. Then,

f̂ : R→ R,

a → f̂ (a) := f
�
a, xR (a)

�

is a well-defined function.

Again, a change in a influences the value f̂ (a) directly (through a)

and indirectly (through xR (a)). The envelope theorem claims that we are

allowed to ignore the indirect effect if we consider derivatives. However, we

need to take the constraint into account:

T��
��� VII.4. Let f and f̂ be given as in the preceding definition.

Assume f ’s Lagrange function L given by

L (a, x, λ) := f (a, x) + λg (a, x) .

Assume that xR (a) is the solution obtained by the Lagrange method for every

a ∈ R. Then, we have

df̂

da
=

∂f (a, x)

∂a

����
xR(a)

+ λ
∂g (a, x)

∂a

����
xR(a)

.

Thus, in order to find the effect of the parameter a on the optimal value,

we can ignore the change of the optimal response to a.

P�

�. The conditions of theorem VI.6 (p. 145) are fulfilled. The

Lagrange function is given by

L (a, x, λ) = f (a, x) + λg (a, x) .

By theorem VI.6 (p. 145), we find

∂L

∂x

����
xR(a)

=
∂f

∂x

����
xR(a)

+ λ
∂g

∂x

����
xR(a)

= 0
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The proof now follows from

df̂

da
=

dL
�
a, xR (a) , λ

�

da
(this is not the partial derivative of f !)

=
∂L

∂a

����
xR(a)

+
∂L

∂x

����
xR(a)

dxR

da
(theorem IV.3 (p. 75))

=
∂L

∂a

����
xR(a)

+
∂L

∂x

����
xR(a)� �� �
0

dxR

da
(just shown)

=
∂L

∂a

����
xR(a)

=
∂f (a, x)

∂a

����
xR(a)

+ λ
∂g (a, x)

∂a

����
xR(a)

.

�

2.4. Application: Shephard’s lemma. We apply definition VII.3

and theorem VII.4 to the question of how the minimal expenditure varies

with a price change of a good pg. We take the other prices p−g as given and

use the following correspondances:

• the role of f (a, x) is taken over by the expenditure e (pg, x) = p ·x,
• f̂ (a) = f

�
a, xR (a)

�
is translated into the minimal expenditure

ê (pg) := p · χ (pg) and

• the equality constraint is U (x)− Ū = 0.

Note that the equality constraint does not depend on the parameter pg and

that theorem VII.4 says: Forget about indirect effects (working through χ).

Thus, we obtain

∂e
�
p, Ū

�

∂pg

=
dê

dpg
(definition of ê) (VII.5)

=
∂e (pg, χ)

∂pg

����
χ(pg)

+ λ
∂
�
U (χ)− Ū

�

∂pg

�����
χ(pg)

(theorem VII.4)

=
∂e (pg, χ)

∂pg

����
χ(pg)

(U (χ) does not depend on pg)

=
∂
�ℓ

k=1
pkχk

∂pg

�������
χ(pg)

(definition of dot product, partial (!) derivative)

= χg, (VII.6)

a result known as Shephard’s lemma. (There are several lemmata due to

this name.)
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2.5. Application of the application: Roy’s identity. In the last

subsection, we apply Shephard’s lemma in order to find out how a price

change affects the achievable utility, i.e., to examine

∂V

∂pg

for some good g. We use the duality equation

Ū = V
�
p, e

�
p, Ū

��

known from p. 165. We differentiate both sides with respect to pg and

obtain

0 =
∂V

∂pg
+
∂V

∂m

∂e

∂pg

=
∂V

∂pg
+
∂V

∂m
χg (Shephard’s Lemma)

which can be rewritten as Roy’s identity:

∂V

∂pg
=
∂V

∂m

�
−χg

�
. (VII.7)

A price increase increases necessary expenditure (necessary to keep the util-

ity level constant) by χg (this is Shephard’s lemma). If, however, the budget

is given, the budget for the other good decreases by χg. The marginal utility

of income ∂V
∂m (see also p. 147 in chapter VI) translates this budget reduction

into a reduction of utility.

3. Concavity, the Hesse matrix and the Hicksian law of demand

3.1. Compensated (Hicksian) law of demand. We now continue

our examination of the expenditure function and the Hicksian demand func-

tion. The Hicksian law of demand states that prices and quantities move

inversely.

Let p and p′ be two price vectors from Rℓ and let χ
�
p, Ū

�
∈ Rℓ

+ and

χ
�
p′, Ū

�
∈ Rℓ

+ be the respective expenditure-minimizing bundles necessary

to achieve a utility of at least Ū . By definition, the expenditure-minimizing

bundle at p′ cannot lead to a higher expenditure than another bundle (here:

the expenditure-minimizing bundle at p):

p′ · χ
�
Ū, p′

�
� �� �

expenditure-

minimizing

bundle at p′

≤ p′ · χ
�
Ū , p

�
� �� �

expenditure-

minimizing

bundle at p

.

Analogously, we have

p · χ
�
Ū , p′

�
≥ p · χ

�
Ū , p

�
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which we then multiply by −1 to obtain

−p · χ
�
Ū , p′

�
≤ −p · χ

�
Ū , p

�
.

Adding the first and the third inequalities yields

p′ · χ
�
Ū , p′

�
− p · χ

�
Ū , p′

�
≤ p′ · χ

�
Ū , p

�
− p · χ

�
Ū , p

�

and hence 	
p′ − p



· χ

�
Ū , p′

�
≤
	
p′ − p



· χ

�
Ū , p

�

and finally 	
p′ − p



·
	
χ
�
Ū , p′

�
− χ

�
Ū , p

�

≤ 0.

This inequality can be applied to a price change of only one good ĝ. In that

case, we have

0 ≥
	
p′ − p



·
	
χ
�
Ū , p′

�
− χ

�
Ū , p

�


=
ℓ�

g=1

	
p′g − pg



·
	
χg

�
Ū , p′

�
− χg

�
Ū , p

�


=
	
p′ĝ − pĝ



·
	
χĝ

�
Ū , p′

�
− χĝ

�
Ū , p

�

.

Thus, if the price of one good increases, the demand of that good cannot

increase:
∂χg

∂pg
≤ 0. (VII.8)

This result is a special case of a more general result that we can derive from

the fact that the expenditure function is concave in the prices.

3.2. Concavity and the Hesse matrix. Generalizing definition V.5

(p. 94) to a multi-dimensional domain, we obtain:

D�������
� VII.4. Let f : M→ R be a function on a convex domain
M ⊆ Rℓ. f is called concave if we have

f (kx+ (1− k) y) ≥ kf (x) + (1− k) f (y)

for all x, y ∈M and for all k ∈ [0, 1]. f is called strictly concave if

f (kx+ (1− k) y) > kf (x) + (1− k) f (y)

holds for all x, y ∈ M with x �= y and for all k ∈ (0, 1). If the inequality

signs are the other way around, f is convex or strictly convex, respectively.

Graphically, concavity means that the value at the convex combination

kx+(1− k) y is greater than the convex combination of the values f (x) and

f (y).

If f : M→ R with M ⊆ R is twice differentiable, we can characterize

concavity by the second derivative, f ′′ (x) ≤ 0 for all x ∈ M . If we are

dealing with several goods, we also need the second derivative which is called

the Hesse matrix. It is an ℓ × ℓ matrix whose entries are the second-order

partial derivatives of a function:
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D�������
� VII.5. Let f : Rℓ → R be a function. The second-order
partial derivative of f with respect to xi and xj (if it exists) is given by

fij (x) :=
∂ ∂f(x)

∂xi

∂xj
.

If all the second-order partial derivatives exist, the Hesse matrix of f is given

by

f ′′ (x) =




f11 (x) f12 (x) f1ℓ (x)

f21 (x) f22 (x)

fℓ1 (x) fn2 (x) fℓℓ (x)




.

E������� VII.3. Determine the Hesse matrix for the function f given

by f (x, y) = x2y + y2. How about the off-diagonal elements?

The Hesse matrix is symmetric if all the second-order partial derivatives

are continuous:

L���� VII.3. Let f : Rℓ → R be twice differentiable. If fij is continu-
ous, so is fji and we have

fij (x) = fji (x) .

D�������
� VII.6. Let T = (tij) i=1,..,ℓ
j=1,...,ℓ

be a matrix with real entries.

For any column vector with ℓ entries z =




z1
z2

zℓ



,

ztTz

is a real number. T is called

• negative-semidefinite if we obtain ztTz ≤ 0 for all z ∈ Rℓ,

• negative-definite if we obtain ztTz < 0 for all z ∈ Rℓ\ {0} ,
• positive-semidefinite if we obtain ztTz ≥ 0 for all z ∈ Rℓ and

• positive-definite if we obtain ztTz > 0 for all z ∈ Rℓ\ {0} .

E������� VII.4. Show that the diagonal entries of a negative-semide-

finite matrix are nonpositive. Hint: Apply the vectors ei ∈ Rℓ whose ith

entry is 1 and 0 otherwise, ei =


0, ..., 0, 1����

ith entry

, 0, ..., 0




t

.

Now, at long last, we come to the lemma that allows to check the con-

cavity or convexity of a function:
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L���� VII.4. A function f : M → R with convex domain M ⊆ Rℓ

that is twice differentiable with continuous derivative is (strictly) concave if

and only if its Hesse matrix is negative-semidefinite (negative-definite). It

is (strictly) convex if and only if its Hesse matrix is positive-semidefinite

(positive-definite).

We do not provide a proof. Instead, we show that the function given by

f (x, y) = x2 + y2 is convex. We first calculate its Hessian

f ′′ (x, y) =
�

2 0

0 2

�
.

We then find

(z1, z2)

�
2 0

0 2

��
z1
z2

�
= (z1, z2)

�
2z1
2z2

�
= 2z21 + 2z22 ≥ 0 for z ∈ R2.

Therefore, f is strictly convex by lemma VII.4.

E������� VII.5. Show that the function given by f (x, y) = xy is neither

convex or concave by identifying vectors z, ẑ ∈ Rℓ such that ztTz < 0 and

ẑtT ẑ > 0.

The reader might be curious to learn the relationship between quasi-

concavity and concavity. However, since we have no special interest in quasi-

concave expenditure functions, we postpone this discussion until chapter

VIII where the concavity of a production function carries a certain meaning

absent in the concavity of a utility function.

3.3. The expenditure function is concave. In order to show the

concavity of the expenditure function, assume price vectors p, p′ and their

convex combination

p̄ = kp+ (1− k) p′, k ∈ [0, 1] .

Using a similar argument as before, we have

e
�
p, Ū

�
= p · χ

�
p, Ū

�
≤ p · χ

�
p̄, Ū

�
and

e
�
p′, Ū

�
= p′ · χ

�
p′, Ū

�
≤ p′ · χ

�
p̄, Ū

�

for any given utility level Ū . Therefore, we obtain

e
�
kp+ (1− k) p′, Ū

�

=
	
kp+ (1− k) p′



· χ

�
p̄, Ū

�
(definition of χ)

= kp · χ
�
p̄, Ū

�
+ (1− k) p′ · χ

�
p̄, Ū

�
(distributivity)

≥ ke
�
p, Ū

�
+ (1− k) e

�
p′, Ū

�
(above inequalities)

which shows the concavity of e with respect to prices (see definition VII.4

on p. 172).
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3.4. Application: the diagonal entries of the expenditure func-

tion’s Hesse matrix. The concavity of the expenditure function has two

useful implications. First, we can analyze the effect of a price change on

Hicksian demand,
∂χg

�
p, Ū

�

∂pk
.

Second, we can define substitutes and complements.

By Shephard’s lemma, we have

∂e
�
p, Ū

�

∂pg
= χg

�
p, Ū

�

and thus

∂χg

�
p, Ū

�

∂pk
=
∂
∂e(p,Ū)

∂pg

∂pk
=
∂2e

�
p, Ū

�

∂pg∂pk
.

Now, since the expenditure function is concave in its prices, lemma VII.4

(p. 174) implies that the Hesse matrix of a (twice differentiable) expenditure

function e

e′′
�
p, Ū

�
=




∂2e(p,Ū)
(∂p1)

2

∂2e(p,Ū)
∂p1∂p2

∂2e(p,Ū)
∂p1∂pℓ

∂2e(p,Ū)
∂p2∂p1

∂2e(p,Ū)
(∂p2)

2

∂2e(p,Ū)
∂pℓ∂p1

∂2e(p,Ū)
∂pℓ∂p2

∂2e(p,Ū)
(∂pℓ)

2




.

is negative-semidefinite so that its diagonal elements obey

∂χg

�
p,U

�

∂pg
=
∂
∂e(p,Ū)

∂pg

∂pg
=
∂2e

�
p, Ū

�

(∂pg)
2 ≤ 0 (VII.9)

by exercise VII.4. This result has already been obtained (by different means)

in section 3.1.

3.5. Application: the off-diagonal entries of the expenditure

function’s Hesse matrix. We now turn to the off-diagonal elements of

the expenditure function’s Hesse Matrix. If all the entries of this matrix are

continuous, lemma VII.3 (p. 173) claims the equality

∂χg

�
p, Ū

�

∂pk
=
∂χk

�
p, Ū

�

∂pg
.

This important fact means that the following definition is okay:

D�������
� VII.7. Let e be a twice continously differentiable function

in its prices. Goods g and k are called substitutes if

∂χg

�
p, Ū

�

∂pk
=
∂χk

�
p, Ū

�

∂pg
≥ 0
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holds and complements in case of

∂χg

�
p, Ū

�

∂pk
=
∂χk

�
p, Ū

�

∂pg
≤ 0.

Compare the definition of substitutes and complements via Marshallian

demand and exercise VI.12 on p. 135.

One final remark: We know from lemma VII.1 (p. 163) that

χg

�
αp, Ū

�
= χg

�
p, Ū

�

holds for all α > 0. Doubling all prices does not change the bundle that

needs to be consumed for utility level Ū . Differentiating this equality with

respect to α yields

ℓ�

k=1

∂χg

�
αp, Ū

�

∂pk
· pk =

∂χg

�
αp, Ū

�

∂α
=
∂χg

�
p, Ū

�

∂α
= 0

and hence
ℓ�

k=1,
k �=g

∂χg

�
αp, Ū

�

∂pk
· pk = −

∂χg

�
αp, Ū

�

∂pg� �� �
≤0

· pg ≥ 0.

This inequality implies

L���� VII.5. Assume ℓ ≥ 2 and p >> 0. Every good has at least one

substitute.

4. Slutsky equations

4.1. Three effects of a price increase. The Hicksian demand curve

is downward sloping. How about Marshallian demand, i.e., can we expect

∂xg (p,m)

∂pg
≤ 0?

No.

We can dissect the overall effect of a price increase on Marshallian de-

mand into three components:

(1) Substitution effect or opportunity-cost effect:

A price increase of good 1 increases the marginal opportunity

cost p1/p2 of good 1 in terms of good 2. For this reason alone, the

household is inclined to consume less of good 1, i.e., to substitute

x2 for x1. However, in order to separate this opportunity-cost ef-

fect from the income effect (see below), we adjust income to hold

purchasing power constant (see next subsection).

(2) Consumption-income effect:

A price increase reduces the consumption possibilities of a house-

hold. The household’s budget buys less and the household will

therefore consume less of all normal goods. Of course, this effect

is the strongest, the greater the household’s consumption of the
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2x

1x

2x

1x

substitution
budget line
(old bundle
purchasable)

new
budget
line

old budget
line

new
budget
line

substitution
budget line
(old utility level
achievable)

old budget
line

F����� 4. Two substitution effects

good in question. If the household’s budget is a money budget, we

are done. However, in case of an endowment budget, we have to

consider a third component.

(3) Endowment-income effect:

A price increase enhances the value of the household’s endow-

ment in line with the amount of the specific good. The household

will consume more, in general and in particular more of the more

expensive good (if it is normal). Expenditure effect and endow-

ment effect are opposing effects. Indeed, the difference between

the household’s endowment of the more expensive good and his

consumption of this good will turn out to be crucial.

4.2. Two different substitution effects. In response to a price change,

there are two different ways to keep real income constant:

• Old-household-optimum substitution effect: The household’s in-

come is increased so as to enable the household to buy the old

bundle (chosen before the price increase).

• Old-utility-level substitution effect: The household’s income is in-

creased so as to keep the household on his old indifference curve.

Fig. 4 illustrates these two methods. Imagine a price increase of good 1 so

that the bundles of affordable goods diminish. In the left-hand graph you

see the “the old bundle can still be purchased” method while the right-hand

graph depicts the “the old utility level can still be achieved” method. Either

you pivot the old budget line around the old household optimum or you slide

along the indifference curve. In any case, the substitution budget line has

the slope of the new budget line.

Depending on the application, either of these two substitution effects

can be relevant. Imagine spending your money on train rides T (abscissa)

and other goods G (ordinate). A train ride costs 20 cents per kilometer,

other goods 1 Euro. The “Bahncard 50” allows to buy one train kilometer

with 10 cents rather than 20 cents. Find your willingness to pay for the

“Bahncard 50” in terms of the other goods! Which substitution effect do

you need?
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F����� 5. The willingness to pay for a Bahncard 50

We look for the willingness to pay for the improvement “lower price for

good T”. Therefore, we use the old-utility-level substitution effect. Fig. 5

shows how to determine this willingness to pay in terms of good G.

Sometimes, the old-household-optimum substitution effect may be rele-

vant. Assume that the government wants to push back the consumption of a

good (energy, cigarettes etc.) without, however, eating into the purchasing

power of the consumers. A tax-and-rebate scheme could be employed for

that purpose. Turning to a concrete example, assume you are a smoker — 10

cigarettes per day. The government imposes a quantity tax of 10 cents on

cigarettes but pays you an additional income (rebate) of 1 Euro per day.

Consult fig. 6. You could afford to continue smoking as before. However,

smoking has become more expensive and you will (in most cases) choose

another bundle with a smaller amount of cigarettes. (A higher amount of

cigarettes had been available before and you did not choose it!) Then, the

government suffers a budget deficit while you are better off.

4.3. The Slutsky equation for the money budget. From p. 165,

we know the important duality equation

χg

�
p, Ū

�
= xg

�
p, e

�
p, Ū

��
.

It is the starting point for the derivation of the so-called Slutsky equations.

In case of a money budget, we differentiate with respect to pk to obtain

∂χg

∂pk
=

∂xg
∂pk

+
∂xg
∂m

∂e

∂pk

=
∂xg
∂pk

+
∂xg
∂m

χk (Shephard’s Lemma) (VII.10)
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F����� 6. Tax and rebate

If we focus on the own-price effect (g = k) and on normal goods, we find

the money-budget Slutsky equation

∂xg
∂pg

=
∂χg

∂pg����
≤0

− ∂xg
∂m����
> 0

for normal goods

χg (VII.11)

and the following

L���� VII.6. If good g is normal, it is also ordinary. In that case,

the effect of a price increase is stronger on Marshallian demand than on

Hicksian demand. If the income effect is zero (∂xg∂m = 0), Hicksian demand

does not depend on the utility level to be attained.

The intuitive reason for this lemma lies in the consumption-income ef-

fect. A price increase reduces the consumption possibilities so that the

opportunity-cost effect and the consumption-income effect work together

achiving a strong effect on Marshallian demand. In case of Hicksian demand,

we compensate for the price increase so as to hold the utiltiy constant. Fig.

7 serves as an illustration. Consider

• a utility level Ū ,

• a price p̂g (the other prices are constant) and

• the corresponding Hicksian demand χg

�
p̂g, Ū

�
where the Hicksian

demand function is given by the right-hand dotted line in the figure.

By the duality equation

χg

�
p̂g, Ū

�
= xg

�
p̂g, e

�
p̂g, Ū

��
,

the Hicksian demand equals the Marshallian demand for income e
�
p̂g, Ū

�
.

If we increase (or decrease) the price pg, the Marshallian reaction is stronger

than the Hicksian reaction because of the substitution effect.
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F����� 7. Marshallian versus Hicksian demand

Of course, in case of inferior goods, the Marshallian demand curve is

steeper than the Hicksian demand curves. In fact, the Marshallian demand

may be so steep that the good in question becomes non-ordinary. In that

case, we have so-called Giffen goods.

4.4. The Slutsky equation for the endowment budget.

4.4.1. Derivation. The derivation of the Slutsky equation for the endow-

ment budget is also not difficult. Note

xendowment
g (p, ω) = xmoney

g (p, p · ω)
where the budget type (money or endowment) is explicitly noted. Differen-

tiation with respect to pk yields

∂xendowment
g

∂pk
=

∂xmoney
g

∂pk
+
∂xmoney

g

∂m

∂ (p · ω)
∂pk

=
∂xmoney

g

∂pk
+
∂xmoney

g

∂m
ωk (definition of dot product)

=
∂χg

∂pk
− ∂xmoney

g

∂m
χk +

∂xmoney
g

∂m
ωk (eq. VII.11)

=
∂χg

∂pk
+
∂xmoney

g

∂m
(ωk − χk) (VII.12)

and hence the endowment Slutsky equation for the own-price effect (g = k)

∂xendowment
g

∂pg
=
∂χg

∂pg����
≤0

+
∂xmoney

g

∂m� �� �
> 0

for a normal

good g

�
ωg − χg

�
� �� �

< 0

for net demander

. (VII.13)
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L���� VII.7. If good g is normal and the household consumes more

than his endowment, it is also ordinary. A normal good g may be non-

ordinary if the household is a net supplier.

4.4.2. Application: consumption today versus consumption tomorrow .

The intertemporal budget equation in terms of the future value (if necessary,

consult p. 121) is

(1 + r)x1 + x2 = (1 + r)ω1 + ω2.

It leads to the Slutsky equation

∂xendowment
1

∂ (1 + r)
=

∂χ1
∂ (1 + r)� �� �

≤0

+
∂xmoney

1

∂m� �� �
> 0

for normal good

first-period consumption

(ω1 − χ1)� �� �
> 0

for lender

where
∂x

m oney
1
∂m stands for the effect an outward shift of the budget line has

on consumption in the first period.

We can have a non-ordinary price reaction if the household is a lender

(ω1 > χ1) and if first-period consumption is a normal good. In that case,

the income effects are positive and work against the negative substitution

effect.

4.4.3. Application: leisure versus consumption. On p. 122, we derive

the budget equation for the leisure-consumption model

wxR + pxC = w24 + pωC .

The associated Slutsky equation reads

∂xendowment
R

∂w
=
∂χR

∂w����
≤0

+
∂xmoney

R

∂m� �� �
> 0

for normal

good recreation

(24− χ1)� �� �
≥ 0

by definition

.

You can derive the appropriate conclusions yourself, can you?

4.4.4. Application: contingent consumption. Contingent consumption is

introduced on pp. 123. We obtain the budget equation

x1 +
1− γ

γ
x2 = (A−D) +

1− γ

γ
A

where γK is the payment to the insurance if K is to be paid to the insuree

in case of damage D. After multiplying this equation by γ
1−γ , we can write

down the Slutsky equation for the first good, i.e., for consumption in case
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Equivalent

variation

Compensating

variation

in lieu of an event

monetary variation

is equivalent

(i.e., achieving the same utility)

because of an event

monetary variation

compensates for event

(i.e., holding utility constant)

F����� 8. Variations are monetary values of events

of damage:

∂xendowment
1

∂ γ
1−γ

=
∂χ1
∂ γ
1−γ� �� �
≤0

+
∂xmoney

1

∂m� �� �
> 0

for normal

good consumption

in case of damage

(A−D − χ1)� �� �
≤ 0

in case of

a nonnegative insurance

.

Usually, the insuree aspires to a higher consumption level in case of damage

than the endowment level A − D, i.e., the insurance sum K obeys K ≥
0. Then, the income effects are negative and an increase of γ

1−γ (which is

equivalent to an increase in γ) leads to a reduction in consumption in case

of damage A−D+(1− γ)K. Note that this does not help in telling whether

K decreases or increases.

5. Compensating and equivalent variations

5.1. The case of good air quality. We link the theory developed so

far to the problem of putting a monetary value on changes of all different

kinds. For example, the air may have become better or worse, a price has

increased or decreased. These changes are also called events. We distinguish

equivalent variations from a compensating ones (see also fig. 8):

D�������
� VII.8. A variation (a sum of money) is called equivalent to

an event, if both (the event or the variation) lead to the same indifference

curve. A variation is compensating if it restores the individual to its old

indifference curve (prior to the event). Variations are denoted by EV (event)

or CV (event) , respectively. Both variations are defined as positive sums of

money.
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F����� 9. Variations for better (or worse) air

Consider fig. 9. It depicts the variations for an improvement (from low

air quality q1 to high air quality q2) or a degradation (from high to low qual-

ity) of air. Consider, for example, point b. A degradation of air quality (the

movement from b to a) leads to the lower indifference curve. The equivalent

variation of this event is the money EV (b → a) ≥ 0 taken from the individ-

ual that also leads to the lower indifference curve, i.e., EV = m2−m1. The

compensating variation of this event is the money CV (b → a) = m3 −m2

given to the individual that keeps him on the original high indifference curve,

i.e., that compensates for the worse air quality.

If a utility function U (m, q) is given (with income m and air quality q),

the other two variations are implicitly defined by

U (m2, q1) = U (m2 −CV (a → b) , q2) and

U (m2 +EV (a → b) , q1) = U (m2, q2)

Do you see why we have EV (a → b) = CV (b → a)?

We can link up the variations with the terms “willingness to pay” and

“compensation money” (or “loss compensation”):

• If some amount of money is given to the individual, it can also be

addressed as compensation money. For example, CV (degradation)

is the compensation money for the degradation of the air quality.

• If money is taken from the individual, we talk about the willing-

ness to pay. EV (degradation) is the willingness to pay for the

prevention of the degradation.

If your variation turns out to be negative, you should exchange −EV for

EV or EV for −EV (similarly for CV ).

5.2. Compensating or equivalent variation? Is there a way to de-

cide which variation (compensating or equivalent) is the “correct” one? Not
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in general. However, in the framework of markets and usual property rights,

we will certainly focus on compensating variations:

• A consumer asks himself how much he is prepared to pay for a good.

That is the compensating variation for obtaining the good (the

event). The corresponding equivalent variation is the compensation

payment for not getting the good. You go into a shop and ask for

compensation for not taking (stealing?) the good.

• A producer’s compensating variation is the compensation money he

gets for selling a good. Framed in terms of an equivalent variation,

the producer asks himself how much he would be willing to pay if

the good were not taken away from him.

Summarizing, exchange is governed by “quid pro quo” so that we will usu-

ally deal with compensating variations. This does not say that equivalent

variations are useless. For example, the inhabitants of a region may have the

impression that they have a right to good air quality. They may then ask

themselves how much they should get as a compensation for forgoing the

better quality which is nothing but EV (improvement). Also, every com-

pensating variation for an event can be expressed by way of an equivalent

variation of the opposite event.

5.3. Price changes. The air-quality example is easily transferred to

price changes. Let phg be a higher price than plg < phg . Using the intuitive

notation “plg → phg” and “phg → plg”, we have the willingness to pay for the

price decrease of good g

CV
�
phg → plg

�
= EV

�
plg → phg

�

and the compensation money for the price increase of good g

EV
�
phg → plg

�
= CV

�
plg → phg

�
.

We now link these terms to the theory learned in this chapter.

Sometimes, one may not be sure whether a change is a good or a bad

thing. Then, we use small-letter symbols for the variations, cv and ev.

L���� VII.8. Consider the event of a price change from pold to pnew

(in general, these are price vectors). Iff CV and EV are the compensating

and equivalent variations of this event, respectively, we find

Uold : = V
�
pold,m

�
= V (pnew,m+ cv) , CV = |cv| and(VII.14)

Unew : = V (pnew,m) = V
�
pold,m+ ev

�
, EV = |ev| , (VII.15)

respectively.

The above lemma provides an implicit definition of variations for price

changes.
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F����� 10. Compensating variation for price increase

E������� VII.6. Tell the sign of cv and ev for a price increase of all

goods.

We consider the situation of a household who is confronted with a price

increase of good 1 (see fig. 10). The old optimum is at point O, the new one

at point A. How much is the household affected by the price increase? The

compensating variation is the amount of money necessary to keep the house-

hold on the old (high) indifference curve. By a parallel upward movement

of the new (steeper) budget line, we finally reach point C and find CV2, the

compensating variation in terms of good-2 units (or CV1, the compensating

variation in terms of good-1 units). Multiplying by p2 (or pnew1 ) yields the

compensating variation

CV = pnew1 ·CV1 = p2 ·CV2.
Consider, for example, Cobb-Douglas preferences given by

U (x1, x2) = xa1x
1−a
2 (0 < a < 1)

and a price decrease from ph1 to pl1 < ph1 . Eq. VII.14 translates into
�
a
m

ph1

�a�
(1− a)

m

p2

�1−a

� �� �
utility at the old, high price

=

0
a
m+ cv

�
ph1 → pl1

�

pl1

1a0
(1− a)

m+ cv
�
ph1 → pl1

�

p2

11−a

� �� �
utility at the new, lower price

and compensating variation

.
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We find

cv
�
ph1 → pl1

�
= −

�
1−

�
pl1
ph1

�a�
m < 0

which means that the household has to pay for the price decrease.

E������� VII.7. Determine the equivalent variation for a price decrease

in case of Cobb-Douglas utility preferences.

It can be shown (by some algebraic manipulations) that, in absolute

terms, the willingness to pay for the price decrease is smaller than the com-

pensation money: CV
�
ph1 → pl1

�
< EV

�
ph1 → pl1

�
. We will soon learn the

reason for this discrepancy (see p. 187).

E������� VII.8. Determine the compensating variation and the equiva-

lent variation for the price decrease from ph1 to p
l
1 < ph1 and the quasi-linear

utility function given by

U (x1, x2) = lnx1 + x2 (x1 > 0)!

Assume m
p2
> 1! Hint: the household optimum is x (m, p) =

�
p2
p1
, mp2 − 1

�
.

The exercise shows that the willingness to pay and the compensation

money has the same absolute magnitude in case of quasi-linear utility func-

tions.

5.4. Applying duality. Duality theory now helps to find explicitly

define the compensating and the equivalent variations. We begin with the

duality equation e (p, V (p,m)) = m which can be written as

e
�
pold, V

�
pold,m

��
= m and (VII.16)

e (pnew, V (pnew,m+ cv)) = m+ cv (VII.17)

where the price-income vector is
�
pold,m

�
in the first and (pnew,m+ cv) in

the second equation. The explicit definition of the compensating variation

is given by

CV = |cv| = |e (pnew, V (pnew,m+ cv))−m| (eq. VII.17)

=
���e
�
pnew, Uold

�
− e

�
pold, Uold

���� (eq. VII.14, eq. VII.16)(VII.18)

Thus, the compensating variation is the (absolute value of the) expenditure

at the new prices minus the expenditure at the old prices where the utility

level stays at the original level Uold. The household is given, or is relieved

of, the money necessary to uphold the old utility level.

Similarly, the duality equation e (p, V (p,m)) = m also leads to

e (pnew, V (pnew,m)) = m and (VII.19)

e
�
pold, V

�
pold,m+ ev

��
= m+ ev. (VII.20)
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so that we find

EV = |ev| =
���e
�
pold, V

�
pold,m+ ev

��
−m

��� (eq. VII.20)

=
���e
�
pold, Unew

�
− e (pnew, Unew)

��� (eq. VII.15, eq. VII.19)

The equivalent variation is the expenditure at the old prices minus the

expenditure at the new prices (again, the absolute value) where the util-

ity is Unew = V (pnew,m) . Assume that the new prices would make the

household better off, V (pnew,m) > V
�
pold,m

�
. The equivalent variation

is the amount of money necessary to increase the household’s income from

m = e (pnew, Unew) to e
�
pold, Unew

�
so that the household can achieve the

new utility level Unew because of the income change rather than the price

change.

5.5. Variations for a price change and Hicksian demand.

5.5.1. Applying the fundamental theorem of calculus. The definitions for

both the compensating and the equivalent variations build on a given utility

level. Since the Hicksian demand holds utility constant, we can try to use

Hicksian demand for an alternative characterization. An important ingredi-

ent is the “Fundamental Theorem of Calculus” that we know from p. 102.

We obtain

cv
�
phg → plg

�

= e
�
plg, V

�
phg ,m

��
− e

�
phg , V

�
phg ,m

��
(eq. VII.18)

= −
�
e
�
phg , V

�
phg ,m

��
− e

�
plg, V

�
phg ,m

���

= − e
�
pg, V

�
phg ,m

�����
phg

plg

(Fundamental Theorem)

= −
( phg

plg

∂e
�
p, V

�
phg ,m

��

∂pg
dpg (e is

∂e

∂pg
’s antiderivative)

= −
( phg

plg

χg

�
pg, V

�
phg ,m

��
dpg (Shephard’s lemma)

Thus, we have a graphical expression for the compensating variation for a

price decrease: the area to the left of the Hicksian demand curve associ-

ated with the utility level V
�
phg ,m

�
(see fig. 11). The minus sign reminds

us of the fact that we are dealing with willingness to pay, not with loss

compensation.

5.5.2. Comparisons. The willingness to pay for a price decrease from phg
to plg is CV

�
phg → plg

�
which is the small area in fig. 12. Following a price

decrease, this payment by the consumer keeps him on the low utility level

V
�
phg ,m

�
. The compensation money for the price increase CV

�
plg → phg

�

is calculated so as to hold the higher utility level V
�
plg,m

�
constant. The

higher utility level is associated with higher expenditure (see lemma VII.2, p.
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F����� 12. Variations for a price change

165) and, for a normal good g, with a higher demand of good g. Thus, in case

of a normal good g, the willingness to pay is lower than the compensation

money.

Fig. 12 also shows that (again for normal goods) the willingness to pay

for a price decrease (which we can measure with the Hicksian demand curve)

is smaller, in absolute terms, than the area to the left of the Marshallian

demand curve (compare p. 150 in the previous chapter). The reason is

explained above, with the help of fig. 7, p. 180.

We summarize these results:
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T��
��� VII.5. Consider any good g and any price decrease from phg
to plg < phg . We find

cv
�
phg → plg

�
= −

( phg

plg

χg

�
pg, V

�
phg ,m

��
dpg.

If g is a normal good, we obtain

CV
�
phg → plg

�

� �� �
(Hicksian)

willingness to pay

≤
( phg

plg

xg (pg)dpg

� �� �
Marshallian

willingness to pay

≤ CV
�
plg → phg

�

� �� �
(Hicksian)

loss compensation

.

5.5.3. Consumers’ rent. We remind the reader of the Marshallian con-

sumers’ rent (pp. 150). We can now define the Hicksian concept of a con-

sumer’s rent. Remember that the prohibitive price pproh is the smallest price

for which demand is choked off.

D�������
� VII.9. The Hicksian consumer’s rent at price p̂g < pprohg is

given by

CRHicks (p̂g) : = CV
�
pprohg → p̂g

�

=

( p
proh
g

p̂g

χg

�
pg, V

�
pprohg ,m

��
dpg.
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6. Topics

The main topics in this chapter are

• duality theory

• expenditure function

• Hicksian demand

• Marshallian demand

• Shephard’s lemma

• Roy’s identity

• Slutsky equations

• substitution effect

• income effect

• compensating variation

• equivalent variation

• willingness to pay

• compensation money (loss compensation)

• Hicksian consumer’s rent

• the vector space Rℓ

• the first quadrant of Rℓ, Rℓ
+

• envelope theorem

• Hesse matrix

• concavity

7. Solutions

Exercise VII.1

We have

e
�
p, Ū

�
= pχ

�
p, Ū

�

as well as

V (p,m) = U (x (p,m)) .

Exercise VII.2

In order to achieve utility level Ū , the household needs to spend

e
�
p, Ū

�
:=

Ū
�

a
p1

�a �
1−a
p2

�1−a
.

This defines the expenditure function e : R2 × R→ R. The solution to the

minimization problem is
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χ1
�
p, Ū

�
= x1

�
p, e

�
p, Ū

��
(why?)

= a
e
�
p, Ū

�

p1

= a

Ū�
a
p1

�a�
1−a
p2

�1−a

p1

and

χ2
�
p, Ū

�
= (1− a)

e
�
p, Ū

�

p2
.

Exercise VII.3

The Hesse matrix is given by

f ′′ (x, y) =
�

2y 2x

2x 2

�
.

Exercise VII.4

The claim follows from etiTei = tii.

Exercise VII.5

We obtain f ′′ (x, y) =

�
0 1

1 0

�
and

(z1, z2)

�
0 1

1 0

��
z1
z2

�
= (z1, z2)

�
z2
z1

�
= 2z1z2.

Therefore, we have ztTz < 0 for z1 = 1, z2 = −1, but ẑtT ẑ > 0 for ẑ1 =

ẑ1 = 1.

Exercise VII.6

A price increase leaves the household worse off. In order to compensate

for this negative event, the household’s income has to change by cv > 0.

Instead of higher prices (which would lead to a lower indifference curve), we

can reduce the household’s income (ev < 0) so that he is as worse off as he

would be under a price increase.

Exercise VII.7
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Which sum (paid to the consumer) makes him as well off as the price

decrease would? We use eq. VII.15 to obtain
�
a
m

pl1

�a�
(1− a)

m

p2

�1−a

� �� �
utility at the new, low price

=

0
a
m+ ev

�
ph1 → pl1

�

ph1

1a0
(1− a)

m+ ev
�
ph1 → pl1

�

p2

11−a

� �� �
utility at the old, higher price

and equivalent variation

and therefore

ev
�
ph1 → pl1

�
=

��
ph1
pl1

�a

− 1

�
m > 0

and finally

EV
�
ph1 → pl1

�
=
���ev

�
ph1 → pl1

���� .
Exercise VII.8

We obtain the variations from

ln
p2

ph1
+
m

p2
− 1

= V
�
ph1 ,m

�
= V

�
pl,m+ cv

�
= ln

p2

pl1
+
m+ cv

p2
− 1 and

ln
p2
pl1

+
m

p2
− 1

= V
�
pl,m

�
= V

�
ph,m+ ev

�
= ln

p2
ph1

+
m+ ev

p2
− 1

and, solving for cv and ev, respectively, yields

cv
�
ph1 → pl1

�
= p2

�
ln
p2
ph1

− ln
p2
pl1

�
= −p2

�
lnph1 − ln pl1

�
< 0 and

ev
�
ph1 → pl1

�
= p2

�
ln
p2
pl1

− ln
p2
ph1

�
= p2

�
ln ph1 − lnpl1

�
> 0.
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8. Further exercises without solutions

P�
#$�� VII.1.

Determine the expenditure functions and the Hicksian demand function for

U (x1, x2) = min (x1, x2) and U (x1, x2) = 2x1 + x2. Can you confirm the

duality equations

χ (p, V (p,m)) = x (p,m) and

x
�
p, e

�
p, Ū

��
= χ

�
p, Ū

�
?

P�
#$�� VII.2.

Derive the Hicksian demand functions and the expenditure functions of the

following utility functions:

(a) U(x1, x2) = x1 · x2,
(b) U(x1, x2) = min (a · x1, b · x2) with a, b > 0,

(c) U(x1, x2) = a · x1 + b · x2 with a, b > 0.

P�
#$�� VII.3.

Verify Roy’s identity for the utility function U(x1, x2) = x1 · x2!

P�
#$�� VII.4.

Draw a figure that shows the equivalent variation following a price increase.

Hint: consult fig. 10.





CHAPTER VIII

Production theory

In household theory, preference relations are the primitive concepts from

which indifference curves and utility functions are derived. Similarly, pro-

duction sets form the basis of production theory. Production sets describe

all the feasible input-output combinations and allow to define important

concepts such as setup or sunk costs and returns to scale. Also, we can de-

rive isoquants and production functions from production sets. A production

function is a handy description of the production possibilities — similar to

utility functions in preference theory. This chapter borrows from Mas-Colell

et al. (1995, chapter 5.B) and Debreu (1959, pp. 37).

1. The production set

1.1. The vector space of goods and inputs. In chapter IV (p. 53)

we consider the set of goods bundles

Rℓ
+ := {(z1, ..., zℓ) : zg ∈ R+, g = 1, ..., ℓ} .

We now explicitly allow for zg < 0. Goods of a negative amount are called

input or factors of production while goods of a positive amount are called

output or produced goods. Thus, we consider Rℓ rather than Rℓ
+.

The plane R2 is depicted in fig. 1. If z1 and z2 are positive, both are

produced goods. Of course, one cannot have output without input so these

points should be excluded (see the next section). z1 < 0 and z2 > 0 means

that good 2 is produced by factor 1 where −z1 units of factor 1 are employed.

Finally, consider z1 < 0 and z2 < 0. These points are inefficient. After all, it

should be possible to do nothing at all and choose the inaction point (0, 0).

1.2. Definition of a production set. A production set contains fea-

sible input-output combinations. Feasibility means that there is some tech-

nological or other process that allows to produce the output (the goods with

a positive sign) from the input (the goods with a negative sign):

D�������
� VIII.1 (production set). A production set Z ⊆ Rℓ is the set

of input-output combinations such that

• Z is nonempty,

• Z is closed,

195
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F����� 1. Sign convention

• for every bundle of inputs (z1, ..., zm) ∈ Rm
− , there is a bundle of

outputs (zm+1, ..., zℓ) ∈ Rℓ−m
+ such that


z1, ..., zm� �� �

inputs

, zm+1, ..., zℓ� �� �
outputs


 ∈ Z

holds,

•






zm+1, ..., zℓ� �� �

outputs


 ∈ Rℓ−m

+ :


z1, ..., zm� �� �

inputs

, zm+1, ..., zℓ� �� �
outputs


 ∈ Z




is bound-

ed for every input bundle


z1, ..., zm� �� �

inputs


 ∈ Rm

− ,

• Z does not contain any element z > 0 and

• z ∈ Z implies −z /∈ Z.

The elements in Z are called production vectors, production plans or input-

output vectors.

Consider fig. 2 and the production set Z ⊆ R2 (that is the area below the

bold curve) passing through (0, 0) . For example, point (ẑ1, ẑ2) is an element

of Z. By ẑ1 < 0 and ẑ2 > 0, good 1 is the input (factor) and good 2 the

output. We have ẑ2 units of output and −ẑ1 units of input. However, (ẑ1, ẑ2)

is not efficient because it is possible to produce more with a smaller input.

The six conditions are readily interpreted. If Z is empty, there is nothing

to talk about. The closedness of Z means that if you can realize a sequence

of production vectors that converge towards some production vector z, you

can also realize z. The third requirement says that there is some output
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F����� 2. Axioms for production sets

(which can be zero) for every input. These three conditions are more about

mathematical convenience than about production.

The fourth requirement means that you cannot have an infinite amount

of any good. Turning to the fifth requirement, note that there is no point

z ∈ Z that fulfills z > 0 in fig. 2. This is the no-free-lunch property or,

in Latin, the condition “ex nihilo nihil” (from nothing, nothing). Similarly,

“divine production” refers to the verse from a famous Chrismas carol:

Then let us all with one accord sing praises to our heavenly

Lord, who hath made heaven and earth from naught ...

One interesting aspect about the production-set model is that factors of

production and goods produced are not determined a priori. For example,

one needs electricity as a factor of production to produce coal (to get coal out

of the ground). Inversely, we can produce electricity from coal (coal-fired

power generation). Now, the sixth property says that inverting does not

work 100%. Image producing apples juice from apples (easy enough) and

reverting the process by forming apples from apple juice (not that easy).

Fig. 2 illustrates this property: (z̄1, z̄2) is in the production set while its

reversal − (z̄1, z̄2) is not.

1.3. Further axioms. Apart from the six requirements mentioned in

the definition, production sets may also obey or not obey other axioms.

D�������
� VIII.2. A production set Z ⊆ Rℓ obeys

• the possibility of inaction if 0 ∈ Z holds,

• the property of free disposal if z ∈ Z and z′ ≤ z implies z′ ∈ Z,

• nonincreasing returns to scale if z ∈ Z implies kz ∈ Z for all

k ∈ [0, 1],
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F����� 3. Setup costs, inaction and convexity

• nondecreasing returns to scale if z ∈ Z implies kz ∈ Z for all k ≥ 1,

• Z-convexity if Z is convex.

The production set of fig. 2 clearly obeys the possibility of inaction. In-

deed, it seems a quite natural requirement. However, the production process

may require setup costs. If these costs are sunk, we obtain a production set

as in fig. 3 (a) where −z1 units of good 1 are a condition sine qua non

for producing any positive output. Production set (b) looks very much the

same as (a). However, the setup costs are not sunk and the possibility of

inaction is still valid.

Free disposal means that goods can be thrown away and unnecessary

factors of production do no harm. With respect to goods, the free-disposal

property assumes away any waste problem. After all, goods may be bads.

Fig. 2 is an example of a production set fulfilling nonincreasing returns to

scale. For example, 12 (z̄1, z̄2) (halfway between (0, 0) and (z̄1, z̄2) is contained

in Z. Nonincreasing returns to scale imply the possibility of inaction. Do

you see why?

Nonincreasing returns to scale are violated in fig. 3 (b) and (c). Non-

decreasing returns to scale are not fulfilled by the production set of fig. 2.

Just compare (z̄1, z̄2) ∈ Z and 2 (z̄1, z̄2) /∈ Z.

Thus returns to scale are nonincreasing if production can be scaled down

and nondecreasing if production can be scaled up. Z-convexity is related

to nonincreasing returns to scale. Indeed, Z-convexity and possibility of

inaction imply nonincreasing returns to scale. However, there is more to

convexity than downscaling. Consider fig. 3 (d). We will see that Z-

convexity implies convexity (in the sense known from preference theory).
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As in preference theory, a rough description of convexity is “mixtures are

prefered to extremes”. The production vector in the middle uses the average

amount of input (where the averaging concerns the two extreme production

vectors) and produces the average amount of output. If the production

set is strictly convex, the resulting middle point is not efficient and it is

possible to produce more than the average with the given input. We return

to “mixtures better than extremes” once we have introduced the isoquants.

2. Efficiency

2.1. Input efficiency and output efficiency. If a firm wants to max-

imize output or minimize input, it can discard all but a few points from the

production set. Consider, for example, point (z1, z2) in fig. 2. The firm can

keep on producing z2 while reducing −z1 (move to the right) — this is an

instance of input inefficiency. (z1, z2) is also output-inefficient, the firm can

produce more than z2 while keeping z1 constant (move upwards). Thus, we

have two different inefficiency definitions.

D�������
� VIII.3. Let Z ⊆ Rℓ be a production set. A point

z =


z1, ..., zm� �� �

inputs

, zm+1, ..., zℓ� �� �
outputs




is not input-efficient if another input-output vector

ẑ =


ẑ1, ..., ẑm� �� �

inputs

, zm+1, ..., zℓ� �� �
outputs




exists such that (ẑ1, ..., ẑm) > (z1, ..., zm) . In that case, ẑ is called an input

improvement over z.

If z is input-inefficient, we can reduce one input factor without increasing

others while still producing the same output.

D�������
� VIII.4. Let Z ⊆ Rℓ be a production set. A point

z =


z1, ..., zm� �� �

inputs

, zm+1, ..., zℓ� �� �
outputs




is not output-efficient if another input-output vector

ẑ =


z1, ..., zm� �� �

inputs

, ẑm+1, ..., ẑℓ� �� �
outputs




exists such that (ẑm+1, ..., ẑℓ) > (zm+1, ..., zℓ) . In that case, ẑ is called an

output improvement over z.
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Output inefficiency means that the same input can generate another

output such that we produce more of one good without producing less of

another one.

D�������
� VIII.5. Let Z ⊆ Rℓ be a production set. A point

z =


z1, ..., zm� �� �

inputs

, zm+1, ..., zℓ� �� �
outputs




is not efficient if another input-output vector

ẑ =


 ẑ1, ..., ẑℓ� �� �
inputs and outputs




exists such that ẑ > z holds. In that case, ẑ is called an improvement over

z.

2.2. Definitions: production function and isoquant. We now con-

centrate on output efficiency. We begin with one output. If we restrict the

production set to output-efficient vectors, we are led to the concept of a

production function:

D�������
� VIII.6. Let Z ⊆ Rℓ be a production set. Define a function

f : Rℓ−1
+ → R+ by

f (x1, ..., xℓ−1) = max {y ∈ R+ : (−x1, ...,−xℓ−1, y) ∈ Z} .

f is called the production function for y.

Note that a production function is well-defined by the requirements laid

down in definition VIII.1. In particular, the set

{y ∈ R+ : (−x1, ...,−xℓ−1, y) ∈ Z}

is closed, nonempty and bounded. Obviously,

(−x1, ...,−xℓ−1, f (x1, ..., xℓ−1))

is output-efficient.

If a utility function corresponds to a production function, an indifference

curve is preference theory’s analogue to an isoquant in production theory:

D�������
� VIII.7. Let f be a production function on Rℓ−1
+ . Then, we

have the better set Bx̂ of x̂ :

Bx̂ :=
�
x ∈ Rℓ−1

+ : f (x) ≥ f (x̂)
�

the worse set Wx̂ of x̂ :

Wx̂ :=
�
x ∈ Rℓ−1

+ : f (x) ≤ f (x̂)
�
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F����� 4. Isoquants for perfect complements

and x̂’s isoquant Ix̂ :

Ix̂ := Bx̂ ∩Wx̂ =
�
x ∈ Rℓ−1

+ : f (x) = f (x̂)
�

Fig. 4 depicts two isoquants in the case of perfect complements (which

you are familiar with from utility theory). Obviously, there exist points that

are not input-efficient.

The analogy between indifference curves and isoquants should be evi-

dent. In spite of the ordinality of preferences, the monotonicity concepts

defined for preferences and utility functions carry over to those for a pro-

duction function:

D�������
� VIII.8. A production function f obeys

• weak monotonicity iff x > x′ implies f (x) ≥ f (x′) ,
• strict monotonicity iff x > x′ implies f (x) > f (x′), and
• local non-satiation at x′ iff a bundle x with f (x) > f (x′) can be
found in every ε-ball with center x′.

2.3. Edgeworth box and transformation curve. Production func-

tions provide an answer to this question: Which points in a production set

survive the output-efficiency test in case of one output? There is a neat

way to examine the output-efficient elements in a production set in case of

two inputs and two outputs if the two output processes are separated. For

example, they are not separated in case of wool and milk from sheep.
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D�������
� VIII.9. Let Z ⊆ R4 be a production set. Z obeys the

separation property if


−x1,−x2� �� �

inputs

, yA, yB� �� �
outputs


 ∈ Z is equivalent to the ex-

istence of xA1 ∈ [0, x1] and x
A
2 ∈ [0, x2] such that x1 = xA1 + xB1 , x2 =

xA2 + xB2 ,


−xA1 ,−xA2� �� �

inputs

, yA, 0����
outputs


 ∈ Z and


−xB1 ,−xB2� �� �

inputs

, 0, yB� �� �
outputs


 ∈ Z hold.

Separation means that inputs are attributable to specific output. In that

case, a production Edgeworth box can be used to explain output efficiency.

Consider fig. 5. It is called a production Edgeworth box. It consists of two

families of isoquants, one for output A and one for output B (turn the book

by 180 degrees). The breadth indicates the amount of factor 1 and the height

the amount of factor 2. Every point inside that box shows how the inputs

1 and 2 are allocated to produce the outputs A and B. Thus, every point

corresponds to a quadruple of two inputs and two ouputs. The quantities

produced are indicated by the isoquants and the numbers associated with

them. Consider, for example, points E and F. They both use the same input

tuple (x1, x2) (the overall use of both factors), but the output is different,

(7, 5) in case of point E and (7, 3) in case of point F .

Point F is not output efficient. It is possible to produce more of output

B while leaving output A constant. Fig. 6 illustrates what we can do

about output inefficiency. If we have two crossing isoquants (and some other

conditions), we find a lens between these isoquants. This lens contains the
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set of all output improvements over the crossing point. The improvement is

marked by an arrow in our figure.

No further improvements are possible if the lens shrinks down to a point,

a point of tangency between two isoquants. The locus of all these points is

called the production curve and shown in fig.

7.
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A production function associates one specific output with a tuple of

inputs. The Edgeworth box shows how to associate a set of two outputs

with a tuple of inputs. This set can be read from the isoquants. Referring

again to fig. 7, the points (9, 5) and (11, 3) belong to this set. In that manner,

a transformation curve (also known as production-possibility frontier) can

be derived from a production curve.

For an illustration, consider fig. 8.

E������� VIII.1. Using a transformation curve, discuss output effi-

ciency.

The slope of the transformation curve tells us by how much output yB
decreases if output yA is increased by one small unit.

D�������
� VIII.10 (marginal rate of transformation). Assume that the

transformation curve defines a differentiable function yA → yB. We call

MRT :=

����
dyB
dyA

����

the marginal rate of transformation between good A and good B.

3. Convex production sets and convave production functions

3.1. Convexity of the production set and concavity of the pro-

duction function. Above, we have defined a production function f : Rℓ−1
+ →

R+ on the basis of a production set. Inversely, and assuming free disposal,

the production set associated with f is

Z :=
�
(− (x1, ..., xℓ−1) , y) ∈ Rℓ−1

− ×R+ : f (x1, ..., xℓ−1) ≥ y
�

In this section, we want to establish an important equivalence:
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L���� VIII.1. Let Z be a production set where the first ℓ−1 entries are

always nonpositive. Let f be the production function associated with Z and

let Z obey free disposal. Then, Z is convex if and only if the corresponding

production function f is concave.

P�

�. Concavity of f : Rℓ−1
+ → R+ means

f
�
kx+ (1− k)x′

�
≥ kf (x) + (1− k) f

�
x′
�

for all x, x′ ∈ Rℓ−1 and for all k ∈ [0, 1]. Assume, now, that Z is convex. We

need to show that the concavity of f ensues. For any x, x′ ∈ Rℓ−1 (−x, f (x))
and (−x′, f (x′)) belong to Z. By the convexity of Z,

k (−x, f (x)) + (1− k)
�
−x′, f

�
x′
��

also belongs to Z for any k ∈ [0, 1] . This vector can be rewritten as
�
k (−x) + (1− k)

�
−x′

�
, kf (x) + (1− k) f

�
x′
��
,

i.e., kf (x)+(1− k) f (x′) is producible from kx+(1− k)x′. By the definition

of a production function (observe the max operator), we have the above

inequality.

For the inverse implication, we assume that f is concave and consider

two elements (−x, y) and (−x′, y′) from Z. By the definition of a production

function, we have

f (x) ≥ y and f
�
x′
�
≥
�
y′
�
.

We now obtain

f
�
kx+ (1− k)x′

�
≥ kf (x) + (1− k) f

�
x′
�

(concavity of f)

≥ ky + (1− k) y′ (the above inequalities)

for any k ∈ [0, 1] so that kx + (1− k)x′ produces at least ky + (1− k) y′

units of output. Free disposal implies

Z ∋
�
k (−x) + (1− k)

�
−x′

�
, ky + (1− k) y′

�

= k (−x, y) + (1− k)
�
−x′, y′

�
.

�

3.2. Convex production sets versus convex better sets. It is of

some interest to know how Z-convexity (convex production sets) corresponds

to convexity in the sense of convex better sets. We know from lemma IV.9

(p. 73) that quasi-concavity is equivalent to convex better sets. However,

a function can be quasi-concave without being concave. That is, a produc-

tion function can have convex better sets without the production set being

convex.

Consider, for example, the production function given by

f (x, y) = xy.
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F����� 9. Concavity and convexity

It obeys strict quasi-concavity as we know from chapter IV (p. 77). It is not

concave which can be seen from

f (k (0, 0) + (1− k) (1, 1)) = f (1− k, 1− k) = (1− k)2 < 1− k

= k · 0 + (1− k) · 1
= kf (0, 0) + (1− k) f (1, 1) .

for 0 < k < 1.

We can, however, show the inverse:

E������� VIII.2. Show that every concave function is quasi-concave.

The following lemma summarizes the result of the above exercise and

important other relationships. The reader is invited to compare fig. 20 on

p. 74.

L���� VIII.2. Let f be a continuous production function on Rℓ
+. Then,

the relationships summarized in fig. 9 hold.

3.3. What about concave utility functions? Comparing the above

discussion on quasi-concave and concave functions, one may wonder why

concave functions did not figure more prominently in preference theory. By

exercise VIII.2 above, concave utility functions are quasi-concave and have

convex better sets. However, utility functions exist that are not concave but

still quasi-concave.
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F����� 10. Two explorations in the production mountain

Consider, for example, the utility functions U and V given by U (x, y) =

xy and V (x, y) = x
1
3 y

1
3 . They represent the same preferences because we

can apply the nondecreasing function τ : R→ R given by τ (U) = U
1
3 and

obtain

(τ ◦ U) (x, y) = τ (U (x, y))

= τ (xy)

= (xy)
1
3

= V (x, y)

Thus, from the point of view of preference theory, U and V are basically the

same. However, U is neither convex nor concave (see p. 174) but still quasi-

concave while V is concave (trust me) and, therefore, quasi-concave. Thus,

in preference theory, quasi-concavity is more important than concavity.

4. Exploring the production mountain (function)

4.1. Factor variations. When exploring the production mountain, we

do not engage in a random walk but follow carefully laid-out paths. These

paths can be characterized by factor variations:

• Partial factor variation: We change one factor only and keep the

other factors constant (see fig. 10).

• Proportional factor variation: We change all the factors while keep-

ing proportions constant (see fig. 10).

• Isoquant factor variation: We change the factors so as to keep

output constant (see fig. 11).

• Isoclinic factor variation: We change the factors so as to keep the

marginal rate of technical substitution constant (see fig. 11).
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In contrast to the previous notation, we now use ℓ (rather than ℓ−1) factors

of production, i.e., we have the input vector x = (x1, ..., xℓ) and output

y = f (x) = f (x1, .., xℓ).

4.2. Partial factor variation: marginal productivity, average

productivity and production elasticity. In line with utility theory, we

can define the marginal productivity of factor i by

MPi :=
∂f

∂xi
.

Average productivity is a concept not known from utility theory (why?). It

is defined by

APi :=
f (xi)

xi
.

E������� VIII.3. Consult definition VI.8 (p. 136) and suggest a de-

finition of production elasticity. Do you see how the production elasticity

depends on the marginal and the average productivity?

E������� VIII.4. Calculate factor 1’s production elasticity for the Cobb-

Douglas production function f given by f (x1, x2) = xa1x
b
2, a, b ≥ 0.

4.3. Marginal something equals average something. The mar-

ginal productivity sometimes equals the average productivity. An analogy

may be helpful:

• If I (Wiese) am the first to enter a lecture hall, the average age (my

age divided by one) is equal to the marginal age (the additional age

from increasing the number of persons from zero to one, i.e., my

age minus zero).

• If I enter the lecture hall with many students present, the marginal

age (the additional age from adding myself) is above (well above,

indeed) the average age. Therefore, my entering has the average

age increase.

Translating the first point from a discrete formulation to a continuous one,

we have the equality of marginal age and average age for 0 persons. Here,

we run into the difficulty of obtaining the average age as 0
0 which is not

defined. However, we can apply de l’Hospital’s rule:

T��
��� VIII.1. Let f and g be two functions R→ R for which we have
f (x0) = g (x0) = 0 for some x0 ∈ R. Then, if f and g are differentiable at
x0 and if g

′ (x0) �= 0, we have

lim
x→x0,
x�=x0

f (x)

g (x)
=
f ′ (x0)
g′ (x0)

.

P�

�. It is quite simple to prove de l’Hospital’s rule. Since f and g

are differentiable at x0, both limx→x0
f(x)−f(x0)

x−x0
and limx→x0

g(x)−g(x0)
x−x0

exist
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and are denoted by f ′ (x0) and g′ (x0), respectively. We find

f ′ (x0)
g′ (x0)

(g′ (x0) �= 0)

=
limx→x0,

x�=x0

f(x)−f(x0)
x−x0

limx→x0,
x�=x0

g(x)−g(x0)
x−x0

(definition of derivatives)

= lim
x→x0,
x�=x0

f(x)−f(x0)
x−x0

g(x)−g(x0)
x−x0

(rules for limits)

= lim
x→x0,
x�=x0

f(x)
x−x0
g(x)
x−x0

(f (x0) = g (x0) = 0)

= lim
x→x0,
x�=x0

f (x)

g (x)
(x− x0 �= 0)

�

With the support of de l’Hospital’s rule, we can now formulate the anal-

ogon of “me entering first”:

L���� VIII.3. Let f : R→ R be any differentiable (production) func-
tion. We find df

dx

���
x=0

= f(x)
x

���
x=0
if f (0) = 0 holds.

P�

�. We apply de l’Hospital’s rule and define g by g (x) = x. For

x0 := 0, the conditions laid out in theorem VIII.1 are fulfilled and we obtain

lim
x→0,
x�=0

f (x)

x
=
f ′ (0)
1

=
df

dx

����
0

.

�

In contrast, “me entering last” is reflected in the following lemma:

L���� VIII.4. Let f : R→ R be any differentiable (production) func-
tion. Assume x > 0. Then we have

df

dx
> (<)

f (x)

x
⇔ df(x)

x

dx
> (<) 0.

Thus, if the marginal productivity is above the average productivity, the

average productivity increases. Also, if the marginal productivity equals the

average productivity, the average productivity is constant. Of course, these

two lemmata hold for any marginal something and average something:

• marginal revenue and average revenue (see p. 281),

• marginal cost and average cost and

• marginal profit and average profit.
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4.4. Proportional factor variation: returns to scale. Proportional

factor variation means multiplying the factors of production x by a scalar

t :

(x1, ..., xℓ) → t (x1, ..., xℓ) = (tx1, ..., txℓ) .

D�������
� VIII.11. A production function f : Rℓ
+ → R+ is character-

ized

• by constant returns to scale if
f (tx) = tf (x) for all t ≥ 0

holds for all x ∈ Rℓ
+,

• by increasing returns to scale if
f (tx) ≥ tf (x) for all t ≥ 1

holds for all x ∈ Rℓ
+ and

• by decreasing returns to scale if
f (tx) ≤ tf (x) for all t ≥ 1

holds for all x ∈ Rℓ
+.

Alternatively, we can define returns to scale by way of the scale elasticity:

D�������
� VIII.12. Let f : Rℓ
+ → R+ be a production function. The

scale elasticity at x = (x1, ..., xℓ) is defined by

εy,t =

df(tx)
f(tx)

dt
t

������
t=1

=
df (tx)

dt

t

f (tx)

����
t=1

.

L���� VIII.5. We have

• increasing returns to scale at x ∈ Rℓ
+ iff εy,t ≥ 1 holds,

• decreasing returns to scale at x ∈ Rℓ
+ in case of εy,t ≤ 1 and

• constant returns to scale at x ∈ Rℓ
+ iff εy,t = 1 holds.

E������� VIII.5. Calculate the scale elasticity for the Cobb-Douglas

production function f given by f (x1, x2) = xa1x
b
2, a, b ≥ 0.

4.5. Isoquant factor variation: Marginal rate of technical sub-

stitution. In preference theory, we have come across the marginal rate of

substitution. The corresponding concept in production theory is called the

marginal rate of technical substitution. If we increase factor 1 by one unit,

by how many units do we need to increase factor 2 in order to hold output

constant? In mathematical terms, we have an implicit function

Iy : x1 → x2

which reflects the amount of factor 2 needed when we want to produce

output y with the help of x1 units of factor 1. Totally analogous to utility

theory (see pp. 73) are the following definition and lemma:
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isoclinic
factor variation

isoquant 
factor variation

2x

1x

F����� 11. Isoquant and isoclinic factor variations

D�������
� VIII.13 (marginal rate of technical substitution). If the

function Iy is differentiable and if the production function is monotonic,

we call

MRTS =

����
dIy (x1)

dx1

����
the marginal rate of technical substitution between factor 1 and factor 2 (or

of factor 2 for factor 1).

L���� VIII.6. Let f be a differentiable production function, the mar-

ginal rate of technical substitution between factor 1 and factor 2 can be ob-

tained by

MRTS (x1) =

∂f
∂x1
∂f
∂x2

.

Refer back to pp. 201 where we analyze efficient production in an Edge-

worth box. You can see that efficiency requires the equality of the marginal

rates of technical substitution. Indeed, let the production of two goods A

and B be such that the marginal rates of technical substitution differ:

(3 =)

����
dxA2
dxA1

���� =MRTSA < MRTSB =

����
dxB2
dxB1

���� (= 5) (VIII.1)

Assume, now, that we decrease factor 1 by one unit in the production of

good A. A marginal rate of technical substitution of 3 means that the pro-

duction of good A can be held at the current level if factor 2 is increased by

MRTSA = 3 units.

We now show that the transfer of one unit of factor 1 from the production

of A to the production of B allows to produce more of good B without

producing less of good A (a so-called Pareto improvement). Indeed, while

we need 3 units of factor 2 in order to keep good A’s production quantity

constant, we can release up to five units of factor 2 in the production of good
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B. Or, alternatively, we can take the 2 spare units of factor 2 to increase

the production of good B.

4.6. Isoclinic factor variation: the next chapter. The importance

of isoclinic factor variations becomes obvious in the next chapter where we

deal with cost minimization (see pp. 221).
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5. Topics

The main topics in this chapter are

• production set

• production function

• no-free-lunch property

• setup costs

• sunk costs

• nonincreasing returns to scale

• nondecreasing returns to scale

• constant returns to scale

• free disposal

• possibility of inaction

• production Edgeworth box

• production curve

• transformation curve

• marginal productivity

• average productivity

• production elasticity

• increasing (constant, decreasing) returns to scale

• scale elasticity

• partial factor variation

• proportional factor variation

• isoquant factor variation

• isoclinic factor variation

• de l’Hospital’s rule

6. Solutions

Exercise VIII.1

Every point on the transformation curve is output-efficient, every point

inside of it output-inefficient.

Exercise VIII.2

Consider any vectors x, y ∈ Rℓ and any k ∈ [0, 1] . If f is concave, we

find what we hoped to find:

f (kx+ (1− k) y) ≥ kf (x) + (1− k) f (y)

≥ kmin (f (x) , f (y)) + (1− k)min (f (x) , f (y))

= min (f (x) , f (y)) .

Exercise VIII.3
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We define and obtain

εy,xi :=

dy
y

dxi
xi����

mathematically

doubtful, but

easily interpretable

=
∂y

∂xi

xi
y

=
MPi

APi
.

Exercise VIII.4

We obtain

εy,x1 =
∂
�
xa1x

b
2

�

∂x1

x1
y

= axa−11 xb2
x1

xa1x
b
2

= a.

Exercise VIII.5

We find (tx1)
a (tx2)

b = ta+bxa1x
b
2 and obtain the memorable result that,

for Cobb-Douglas production functions, the scale elasticity is equal to the

sum of the production elasticities:

εy,t =
d
�
(tx1)

a (tx2)
b
�

dt

t

(tx1)
a (tx2)

b

������
t=1

= (a+ b) ta+b−1xa1x
b
2

t

(tx1)
a (tx2)

b

�����
t=1

= a+ b

= εy,x1 + εy,x2.



7. FURTHER EXERCISES WITHOUT SOLUTIONS 215

7. Further exercises without solutions

P�
#$�� VIII.1.

Sketch a few isoquants that reflect decreasing returns to scale.

P�
#$�� VIII.2.

Prove lemma VIII.4 (p. 209)! Hint: Calculate
d
f(x)
x

dx
!

P�
#$�� VIII.3.

Find the production functions for the production set

Y =
�
(x1, x2) ∈ R2 | x2 ≤ − (x1)

2 if x1 ≥ 0 and x2 ≤ −1
2x1 if x1 < 0

�
.

P�
#$�� VIII.4.

Determine the production set for the production function y = f (x) =

min {x1, x2} , x1, x2 ≥ 0.

P�
#$�� VIII.5.

The law of diminishing marginal product claims

lim
xi→∞

∂f

∂xi
= 0.

True or false? If the law of diminishing marginal product did not hold, the

world’s food supply could be grown in a flowerpot. (Hal Varian, Intermediate

Microeconomics).

P�
#$�� VIII.6.

Let f be a homogeneous function of degree λ (i.e., f (tx) = tλ · f (x)). Show

�

i

∂f (x)

∂xi
xi = λtλ−1f (x)

and, for λ = 1, Euler’s theorem,
�

i

∂f (x)

∂xi
xi = f (x) .

Hint: Calculate ∂f(tx)
∂t and

∂[tλf(x)]
∂t .





CHAPTER IX

Cost minimization and profit maximization

1. Revisiting the production set

1.1. Definition of profit. The production possibilities have been ex-

plored in the previous chapter. We now turn to the two interrelated ques-

tions of

• which factors of production does the firm demand and

• which output does it offer.

The production set introduced in the previous chapter allows to address

these questions. However, we first need to define the firm’s profit. The

profit definition is very simple because of the sign convention according to

with goods with negative amounts are factors of production while output

goods have positive amounts:

D�������
� IX.1 (profit (production set)). Let Z ⊆ Rℓ be a production

set and p ∈ Rℓ
+ a price vector. The firm’s profit at point y ∈ Z, its revenue

and cost are given by

p · z����
profit

:=
ℓ�

i=1,
zi≥0

pizi

� �� �
revenue

−
ℓ�

i=1,
zi<0

pi (−zi)

� �� �
cost

.

For a specific profit level Π̄,

�
z ∈ Rℓ : p · z = Π̄

�

is called the isoprofit line.

1.2. Which good is an input and which an output? Consider,

now, the production set depicted in fig. 1 for ℓ = 2. The firm’s problem

is to find the highest isoprofit line (with maximal distance from the (0, 0)

point) that has at least one point in common with Z. We see that for a

relatively high price of good 1, the firm produces at (y1, y2) so that good 1

(with y1 < 0!) is a factor of production. Thus, in general, we do not need to

tell (and cannot tell) which good is an output and which good is an input.

However, from now on, we will assume we can address certain goods as

inputs and others as output. We assume ℓ (sometimes ℓ := 2) input factors.

217
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1z

2z
good 1 relatively cheap

and therefore factor of 
production

good 1 relatively expensive
and therefore output

( )21 zz ,

Z

F����� 1. Factors of production are endogenous

1.3. Revealed profit maximization. We now employ a technique

called revealed profit maximization. The idea is that a firm’s choices tell us

something about its demand for factors of production and supply of output

goods — if we base our analysis on the assumption of profit maximization.

We use revealed profit maximzation to show the following

L���� IX.1. Assume the existence of best elements in the production

set Z for price changes of output and input goods that do not change the

role of input and output goods. Then,

• a price increase for a factor of production cannot increase demand
for that factor and

• a price increase for an output good cannot decrease the supply of
that factor.

P�

�. Without loss of generality, we consider two factors of production

and one output good, only. Assume two price vectors
�
pA, wA

1 , w
A
2

�
and�

pB, wB
1 , w

B
2

�
and the associated supply-and-demand vectors

�
yA, xA1 , x

A
2

�

and
�
yB, xB1 , x

B
2

�
. Since the A supply-and-demand vector is best at the A

prices, we have

pAyA −wA
1 x

A
1 −wA

2 x
A
2 ≥ pAyB −wA

1 x
B
1 −wA

2 x
B
2 .

Inversing the roles, we also find

pByB −wB
1 x

B
1 −wB

2 x
B
2 ≥ pByA −wB

1 x
A
1 −wB

2 x
A
2

and therefore

−pByA +wB
1 x

A
1 +wB

2 x
A
2 ≥ −pByB +wB

1 x
B
1 +wB

2 x
B
2 .
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We add the first and the third inequality to obtain
�
pA − pB

�
yA −

�
wA
1 −wB

1

�
xA1 −

�
wA
2 −wB

2

�
xA2

≥
�
pA − pB

�
yB −

�
wA
1 −wB

1

�
xB1 −

�
wA
2 −wB

2

�
xB2

and finally

∆p∆y −∆w1∆x1 −∆w2∆x2 ≥ 0

where ∆p :=
�
pA − pB

�
, ∆x1 := xA1 − xB1 etc. �

2. Cost minimization

2.1. The problem. Instead of attacking the maximal profit problem

directly, we prefer a two-step procedure and ask a simpler question first:

how can the firm minimize its cost? For the rest of this chapter, we restrict

attention to producers of one input, only.

D�������
� IX.2 (isocost line). For a factor price vector w ∈ Rℓ the

cost of using the factors of production x ∈ Rℓ
+ is defined by

w · x.

For a specific level of cost C̄,
�
x ∈ Rℓ

+ : w · x = C̄
�

is called the isocost line.

E������� IX.1. Assume two factors of production 1 and 2. Can you tell

the slope of the isocost line? Hint: use the household analogy!

The firm’s problem can be desribed in the following

D�������
� IX.3 (cost-minimization problem). A firm’s cost-minimiza-

tion problem is a tuple

∆ = (f,w, y)

where f is the production function Rℓ
+ → R+, w ∈ Rℓ is a vector of factor

prices and y ∈ R+ is an element of f ’s range, the output. The firm’s problem
is to find the best-response function given by

χR (∆) := arg min
x∈Rℓ+

{w · x: f (x) ≥ y}

If χR (∆) has one element only, we consider χR (∆) an element of Rℓ
+ rather

than a subset of Rℓ
+. Depending on the focus, we often write χ

R (y) or

χR (w, y) instead of χR (f,w, y).

Assume that the cost-minimizing problem has a solution. The functions

C : Rℓ
+ ×R+ → R+,

(w, y) → C (w, y) = w · χR (y)
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Household theory:

expenditure

minimization

Theory of the firm:

cost

minimization

objective

function

expenditure p · x
(for the consumption

of goods x)

expenditure w · x
(for the use

of factors x)

parameters

prices p,

utility Ū

(indifference curve)

factor prices w,

output y

(isoquant)

first-order

condition
MRS

!
= p1

p2
MRTS

!
= w1

w2

notation for

best bundle(s)
χ
�
p, Ū

� χR (w, y) or

χR (y)

name of

demand

function

Hicksian demand
Hicksian factor

demand function

minimal

value of

objective

function

e
�
p, Ū

�

= p · χ
�
p, Ū

� C (y) = C (w, y)

= w · χR (w, y)

F����� 2. Expenditure versus cost

or

C : R+ → R+,

y → C (y) = w · χR (y)

are called cost functions.

The use of the Greek letter χ will become clear in the next section.

E������� IX.2. Fill in the missing term:

χR (∆) =
�
x ∈ Rℓ

+: f (x) ≥ y and,

for any x′ ∈ Rℓ
+, f

�
x′
�
≥ y ⇒ w · x′ ≥??

�

E������� IX.3. Define marginal cost and average cost. Hint: Consult

p. 208.

2.2. A comparison with household theory. The problem of finding

a cost-minimizing factor combination turns out to be analogous to the ques-

tion of expenditure minimization known from household theory (chapter

VII). Indeed, fig. 2 juxtaposes expenditure minimization and cost mini-

mization.
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y

2x

1y

2y

3y

1x
C

1C

2C

3C

1y 2y 3y

cost-minimization curve

cost curve

F����� 3. Deriving the cost curve

E������� IX.4. Consider the production function f given by f (x1, x2) =

x1 + 2x2. Find C (y) .

2.3. Isoclinic factor variation and the graphical derivation of

the cost function. At given factor prices, the first-order condition

MRTS
!
=
w1
w2

(IX.1)

makes clear why isoclinic factor variations (change of production factors so as

to keep the marginal rate of technical substitution constant) are important.

Consdier fig. 3. The upper part of the diagram depicts the cost-minimizing

factor combinations in x1-x2 space. The lower part shows how to derive the

cost curve from this cost-minization curve.

2.4. Cost-minimization and its dual. The cost-minimization prob-

lem is depicted in fig. 4. In order to achieve output level y, the firm looks

out for the isocost line that is closest to the origin. It chooses factor com-

bination B, not the more expensive combination A. Very similar to the de-

velopment described in chapter VII, we have a dual maximization problem:

Find the maximal output for a given isocost line. Thus, for expenditure C̄,

the household produces at B rather than at C. Have also a look at table 5
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isoquant with output level y

isocost line with
expenditures C

2x

1x

A

B

C

F����� 4. Cost minimization and output maximization

that contrasts household theory and the theory of the firm for the respective

maximization problems.

D�������
� IX.4 (output-maximization problem). A firm’s output-maxi-

mization problem is a tuple

∆ =
�
f,w, C̄

�

where f is the production function Rℓ
+ → R+, w ∈ Rℓ is a vector of factor

prices, and C̄ ∈ R+ is expenditure for the factors of production. The firm’s
best-response function is given by

xR (∆) := arg max
x∈Rℓ+

�
f (x) : w · x ≤ C̄

�
.

E������� IX.5. Fill in:

xR (∆) =
�
x ∈ Rℓ

+: w · x ≤ C̄ and, for any x′ ∈ Rℓ
+, w · x′ ≤ C̄ ⇒ ...

�

We can now present the twin theorem of theorem IX.1, p. 222:

T��
��� IX.1. Let f : Rℓ
+→ R be a continuous production function

that obeys local nonsatiation (see p. 201 for the definition) and let w >> 0

be a factor-price vector. We then obtain duality in both directions:

• If xR
�
C̄
�
is the output-maximizing bundle for C̄ > 0, we have

χR
�
w, f

�
xR

�
C̄
���

= xR
�
C̄
�

(IX.2)

and

C
�
f
�
xR

�
C̄
���

= C̄. (IX.3)

• If χR (y) is the cost-minimizing bundle for y > f (0) , we have

xR (C (y)) = χR (y) (IX.4)
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Household theory:

utility

maximization

Theory of the firm:

output

maximization

objective

function
utility function production function

parameters
prices p,

money budget m

factor prices w,

cost budget C̄

first-order

condition
MRS

!
= p1

p2
MRTS

!
= w1

w2

notation for

best bundle(s)
x (p,m) xR

�
w, C̄

�

name of

demand

function

Marshallian demand
Marshallian factor

demand function

maximal

value of

objective

function

V (p,m)

= U (x (p,m))
f
�
xR

�
w, C̄

��

F����� 5. Utility versus output

and

max
x∈Rℓ+

{f (x) : w · x ≤ C (y)} = y. (IX.5)

2.5. Main results. In line with chapter VII (pp. 166), we present

some important results:

T��
��� IX.2. Consider a firm with a continuous production function

f , cost-minimizing factor combination χR and cost function C. We have the

following results:

• Shephard’s lemma: The factor price increase of factor i by one
small unit increases the cost by χR

i .

• Monotonicity of cost function: In case of local nonsatiation of the
production function and strictly positive factor prices, the cost func-

tion is monotonic in the output.

• Concavity of cost function: The cost function is concave in its fac-
tor prices.

• The Hicksian cross demands are symmetric: ∂χRi (y)
∂wj

=
∂χRj (y)

∂wi
.

• Hicksian law of demand: If the price of a factor i increases, the
cost-minimizing factor demand χR

i does not increase.

• If the production function f is concave, C is a convex function of
y.

• If the production function f is of constant returns to scale, we have
C (αy) = αC (y) for all α > 0.
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• If the production function f is of increasing returns to scale, average
costs are a decreasing function of output.

The first five propositions are basically reformulations of the corresponding

household results. The last three propositions link properties of the produc-

tion function to properties of the cost function. Note that convexity of C

implies nondecreasing marginal cost by lemma V.3 (p. 95).

E������� IX.6. What happens to the minimal costs if all factor prices

are multiplied by α > 0?

3. Long-run and short-run cost minimization

3.1. Fixed factors and short-run cost function. Sometimes, some

factors of production are fixed for some time. For example, workers can be

released from work (and pay!) only after some time has elapsed. Also, a

production hall cannot be downsized easily. We present the definitions and

results for two factors of production:

D�������
� IX.5 (short-run cost). Assume two factors of production 1

and 2 at prices w1 and w2. Factor 2 is called fixed at x̄2 > 0 if it cannot be

reduced below x̄2 “in the short run”. The long run is the time period after

which x2 can be set to any nonnegative value. Assuming that factor 1 is

variable (not fixed) and that factor 2 is fixed, the short-run cost of using the

factor combination (x1, x̄2) is defined by

w1x1 +w2x̄2.

The firm’s long-run cost function is the cost function introduced in a previous

section. The short-run cost function is denoted by Cs (where s points to

short-run) and given by

Cs (y, x̄2) := min
x1∈R+

{w1x1 +w2x̄2: f (x) ≥ y} .

E������� IX.7. Consider the production function f given by f (x1, x2) =

x
1
3
1 x2 and the fixed amount of factor 2, x̄2. Find the short-run cost function!

3.2. Fixed and quasi-fixed cost. If factor 2 is fixed at x̄2 > 0, part

of the short-run cost is w2x̄2. It is called a fixed cost:

D�������
� IX.6 (fixed cost). Let Cs : R+ → R+ be a short-run cost
function. We call

F := Cs (0)

fixed cost.

Cv (y) := Cs (y)− F

is called the variable cost of producing y.
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F����� 6. Fixed and variable cost

Fig. 6 shows how total cost can be subdivided into fixed and variable

cost.

Fixed cost can also be expressed through the production set known from

chapter VIII (see fig. 3 (a) on p. 198). Expressed in the terminology intro-

duced in that chapter, fixed cost result from the impossibility of inaction.

Thus, subfigure (a) stands for the short-run situation where −y1 units of

good 1 represent sunk cost.

In contrast, subfigure (b) shows setup costs that are not sunk. This

means that inaction is possible (no fixed factors) and C (0) = 0 holds. In

that case, w1 (−y1) are called quasi-fixed cost:

D�������
� IX.7 (quasi-fixed cost). Let C : R+ → R+ be a cost function
that is not continuous at 0. In case of C (0) = 0 and limy→0,

y>0
C (y) > 0, we

call

Fq := lim
y→0,
y>0

C (y)

quasi-fixed cost.

Thus, quasi-fixed cost can be avoided if nothing is produced. If, however,

the firm wants to produce a small quantity, it has to incur the setup cost

Fq. Examples are provided by the janitor, who opens the production hall,

or by research and development.

4. Profit maximization

4.1. Profit maximization (output space). Once we have found a

(short-run or long-run) cost function, we can define profit by
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D�������
� IX.8 (profit (output space)). Let C : R+ → R+ be a cost
function. A firm’s profit in output space is defined by

Π : R+ → R and

Π(y)� �� �
profit

: = py����
revenue

−C (y)� �� �
cost

.

The first-order condition for profit maximization is

MC
!
= p.

D�������
� IX.9 (supply function). Let C : R+ → R+ be a (short-run
or long-run) cost function. A firm’s supply function is denoted by S and

defined by

S : R+ → R+,

p → S (p) := arg max
y∈R+

Π(y) .

It is clear from the first-order condition, that the inverse supply curve

S−1 is basically the marginal-cost curve — at least its upward sloping part:

By lemma IX.1, the supply curve (or its inverse) is not downward sloping.

However, we need to take a closer look:

E������� IX.8. Consider the short-run cost function Cs given by

Cs (y) := 6y2 + 15y + 54, y ≥ 0

and the long-run cost function C defined by

C (y) :=

)
6y2 + 15y + 54, y > 0

0, y = 0

Determine the short-run and the long-run supply functions Ss and S. Hint:

Use the above first-order condition and compare the profit at the resulting

output with the profit at output zero.

Let us now assume that the supply at price p is

• either dictated by the “marginal cost equals price”-rule and thus

some output y∗ > 0

• or equal to zero.

For the short-run supply, we have

Ss (p) = y∗ (rather than Ss (p) = 0)

⇔ Πs (y
∗) ≥ Πs (0) = −F

⇔ py∗ −Cv (y
∗)− F ≥ −F

⇔ p ≥ Cv (y
∗)

y∗
=: AV C (y)
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F����� 7. Short-rund and long-run supply curves

where AV C (y) stands for average variable cost. Turning to long-run supply,

we find

S (p) = y∗ (rather than Ss (p) = 0)

⇔ Π(y∗) ≥ Π(0) = 0

⇔ py∗ −C (y∗) ≥ 0

⇔ p ≥ C (y∗)
y∗

= AC (y) .

Thus, we arrive at fig. 7 which shows the short-run and the long-run supply

curves. Note that there is a range of prices at which the firm suffers losses

(by p < AC) but still prefers to produce a positive quantity because part of

the fixed cost is covered (by p > AV C).

4.2. Producer’s rent. We have introduced consumers’ rent in chap-

ters VI (pp. 150) and VII (p. 189) and now turn to producers’ rent. Let the

output price be p̂. The producer’s rent is the absolute value |CV (0 → S (p̂))|
of the compensating variation for giving the consumers S (p̂) units of quan-

tity at price p̂, rather than 0:

D�������
� IX.10 (producer’s rent). The producer’s rent at price p̂ is

given by

PR (p̂) : = CV (0 → S (p̂))

= p̂S (p̂)−Cv (S (p̂))

=

( S(p̂)

0
[p̂−MC (X)] dX.

Thus, the producer’s rent is defined as the difference of revenue and

variable cost for quantity S (p̂) (see fig. 8). In the absence of fixed cost, the
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F����� 8. Producer’s rent

producer’s rent equals profit. However, in the short run, we can have fixed

cost. Then, we obtain

PR (p̂) = p̂S (p̂)−Cv (S (p̂)) (definition of producer’s rent)

= p̂S (p̂)− [F +Cv (S (p̂))] + F (adding 0 = F − F )

= Π(S (p̂)) + F (definition of profit).

4.3. Solution theory, second part. In the chapter on household the-

ory, we have devoted section 4 (pp. 139) to solution theory. We now add

some remarks on first-order and second-order conditions that are of general

interest and will be applied in the next subsection.

T��
��� IX.3. Let f : M → R be a twice-differentiable real-valued
function with open domainM ⊆ Rℓ. Assume some x̂ ∈M that obeys f ′ (x̂) =
0.

• If the Hesse matrix f ′′ (x̂) is negative-definite (positive-definite), we
have a local maximum (minimum) at x̂.

• If f is concave (i.e., the Hesse matrices f ′′ (x) are is negative-
semidefinite for all x ∈M), we have a global maximum at x̂.

• If f is strictly concave (i.e., the Hesse matrices f ′′ (x) are is negative-
definite for all x ∈M), we have a unique global maximum at x̂.

Of course, this theorem holds for ℓ = 1, too. You obtain propositions

about minimization, by considering the second and the third claim above

and by substituting concave by convex, negative by positive and maximum

by minimum.

4.4. Profit maximization (input space). Profit is also definable in

terms of input factors. Such a definition comes in particularly handy if we

do not avail of a cost function.
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D�������
� IX.11 (profit (input space)). Let f : Rℓ
+ → R+ be a produc-

tion function. A firm’s profit in input space is defined by

Π : Rℓ
+ → R and

Π(x)� �� �
profit

: = pf (x)� �� �
revenue

−w · x����
cost

.

By partial differentiations, we obtain the first-order conditions

MVPi (x) := p MPi = p
∂f

∂xi

!
= wi, i = 1, ..., ℓ, (IX.6)

where MVPi is factor i’s marginal value product at x. If the firm increases

the amount of factor i by one unit, it produces an additional output ∂f
∂xi

which it can sell at the prevailing market price p. As long as the gain from

increasing factor i (MV Pi) exceeds the cost (wi), the firm is well advised to

do so. These are the “marginal value product equals factor price”-rules.

D�������
� IX.12 (factor demand function). Let f : Rℓ
+ → R+ be a

production function. A firm’s factor demand function is denoted by D and

defined by

D : Rℓ
+ → Rℓ

+,

w → D (w) := arg max
x∈Rℓ+

Π(x) .

We know from lemma IX.1 that demand curves for factors of production

are not upward sloping, i.e., production factors are ordinary. The following

exercise does not provide a counter example:

E������� IX.9. Consider the production function f given by f (x1, x2) =

x
1
3
1 x2 and the fixed amount of factor 2, x̄2. Find the short-run demand func-

tion! How about the long-run demand function? (Hint: Careful!!)

E������� IX.10. Can you show that profit maximization implies cost

minimization? Hint: Divide eq. IX.6 for factor 1 by the corresponding

equation for factor 2. What do you find?

5. Profit maximization?

5.1. Two problems of our theory of the firm. This chapter is based

on the assumption of profit maximization. A not too unfair characterization

of a firm is “a production function in search of a profit-maximizing input

combination”. Indeed, finding the optimal input combination is just an

operations-research problem. This is why we can talk about the theory of

the firm without mentioning

• principal-agent problems (how can a manager get the workers to

work hard?),

• organization (how is the firm subdivided?),

• hierarchy (why are there bosses?, who reports to whom?) or
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• delegation (who is allowed to make what kind of decisions?).

Obviously, we have been missing out on some very important aspects of

real-world firms. Some of them will be addressed in later chapters.

A second problem with the story told so far is that it takes the existence

of firms as given. Economic theory has traditionally been concerned more

with markets than with firms. Several high-profile theorems highlight the

efficiency of markets. Why, then, do we need firms? A quick answer may

• point to increasing returns to scale realizable by huge organizations,

• stress economies of scope the benefit of which can be reaped by

multi-product firms,

• mention “economies of massed reserves” according to which the use

of several machines can help to ensure production if, by chance, one

of them fails and, finally,

• argue that demand fluctuations are smaller if several markets are

served by one (big) firm.

Alas, all these synergies are not a very convincing argument for the exis-

tence of firms. After all, they can be realized by contracts between many

individual economic units. For example, a janitor firm could offer its service

to several firms at the same time. Of course, setting up all these contracts

and supervising them, may also be a costly procedure. Thus, we may have

to compare the costs of different arrangements (which is the subject matter

of transaction-cost economics). In any case, we cannot take the existence of

firms for granted.

We will not go into a detailed discussion of these problems here. Instead

we discuss reasons for which profit maximization is, or is not, a sensible

assumption.

5.2. Profit maximization! Arguably, we have a good justfication for

profit maximization if we can show that it flows from preference theory.

Indeed, utility can be expected to increase with a firm’s profit if

• the firm is owned by one individual (see subsection 5.3),

• who decides by himself rather than having a manager decide (see

chapters XXII and XXIII),

• and without cost to himself (see subsection 5.4),

on how to combine the factors of production

• in a world of certainty

• where prices are not affected by the firm’s input-output choice.

If one of these conditions is violated, the assumption of profit maximization

becomes dubious. We treat the first and the third point in some detail in

the following sections. The second point refers to managers who do not tell

the owner all he needs to know (asymmetric information) or do not work

as hard as the owner would like them to (hidden action). We will take up

these problems in later chapters.
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The second-to-last item can easily be settled. In case of risk, profit

maximization can only mean maximization of expected profit. However,

if the individual is not risk neutral, maximization of expected profit is not

equivalent to maximization of expected utility (as we know well from chapter

V).

Turning to the last point, if the owner consumes goods and offers factors

of production, he may be interested in the firm’s behavior for reasons other

than profit. For example, he may want the firm to produce a lot of the good

he plans to buy or to use factors of production he likes to offer.

5.3. Several owners and risk.

5.3.1. The consumer-owner economy. Let us now deal with several own-

ers of a firm.

D�������
� IX.13 (consumer-owner economy). A consumer-owner econ-

omy is a tuple

E =
�
N,G, p, y,

�
ωi
�
i∈N ,

�
θi
�
i∈N ,

�
�i
�
i∈N

�

consisting of

• the set of consumer-owner N = {1, 2, ..., n} ,
• the finite set of goods and factors G = {1, ..., ℓ} ,
• a price vector p ∈ Rℓ

• a production plan y carried out by the firm
• the economy’s ownership vector

�
θi
�
i∈N where the shares obey θ

i ≥
0 for all i ∈ N and

�n
i=1 θ

i = 1 holds.

and for every agent i ∈ N

• income ωi that is independent of profit and

• a preference relation �i.

D�������
� IX.14 (consumer-owner decision situation). Assume a consu-

mer-owner economy E. A consumer-owner’s decision situation is a tuple

∆i =
�
B
�
p, ωi + θip · y

�
,�i

�
(see p. 125).

Thus, every consumer-owner i ∈ N has property rights on endowments

and “consumes” a bundle xi ∈ Rℓ (containing both goods and factors of

production) that obeys

p · xi ≤ ωi + θip · y.
We can be sure that all owners want their firm to maximize profit if

• prices are not affected by the firm’s input and output choice,

• there is no risk involved (otherwise, different beliefs or risk attitudes

may come into play) and

• managers are fully controllable by owners (if not, managers decide

at whim).
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Section 5.3 elaborates on the second point (no risk). Before presenting a

concrete example, we need to introduce the concept of complete financial

markets.

5.3.2. Arrow securities. In the “Further exercises” section of chapter V,

we introduce Arrow securities.

D�������
� IX.15 (Arrow security). LetW = {w1, ..., wm} be a set of m
states of the world. The contingent good i ∈ {1, ..,m} that pays one Euro in
case of state of the world wi and nothing in other states is called an Arrow

security.

E������� IX.11. Reconsidering fig. 9, find owner A’s willingness to pay

for the Arrow security 1. Hint: Calculate the expected gain from one unit of

Arrow security 1.

If we are lucky, there are as many Arrow securities as there are states of

the world.

D�������
� IX.16 (complete financial markets). Let W = {w1, ..., wm}
be a set of m states of the world. If for each state of the world wi an Arrow

security i can be bought and sold for some given price pi, we say that financial

markets are complete.

We now argue that the prices of all Arrow securities sum to 1 in equilib-

rium (which we did not, so far, define formally). Assume, to the contrary,

p1 + p2 < 1. Then, an agent could buy both Arrow securities and obtain

a secure payoff of 1 (either w1 or w2 happens) for an investment below 1.

In that case, nobody would be prepared to offer Arrow securities. In case

of p1 + p2 > 1, selling Arrow securities is profitable while buying is not. It

should also be clear that an Arrow security cannot have a negative price.

D�������
� IX.17. Let W = {w1, ..., wm} be a set of m states of the
world with complete financial markets. The Arrow securities are said to be

priced correctly if
m�

i=1

pi = 1

holds.

Thus, the prices of Arrow securities share the properties of probability

distributions.

5.3.3. An instructive example. Taking up the topic of differing risk as-

sessment or differing risk attitudes, assume two agents A and B who possess

a firm. Following Gravelle & Rees (1992, p. 175), the agents consider an

investment with cost 100 that may yield an return of 80 (state of the world

w1) or of 110 (state of the world w2). The agent’s probability distributions

differ (see fig. 9). If both agents are risk neutral, agent A prefers to carry

out the investment while agent B is against it.
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w1
(return 80)

w2
(return 110)

expected value

of investment

A’s prob.

distribution
2
10

8
10

2
10 · 80 + 8

10 · 110− 100 = 4

B’s prob.

distribution
1
2

1
2

1
2 · 80 + 1

2 · 110− 100 = −5

F����� 9. Different probability distributions for returns on investment

It is not difficult to concoct an example where different opinions arise

from different risk attitudes rather than different beliefs. Interestingly, both

problems can be solved by Arrow securities:

We can now show that the profitability of an investment can be evaluated

with the Arrow prices in case of complete financial markets. Beliefs and risk

attitudes have no role to play. In terms of the above example, the two owners

just check whether

p180 + p2110− 100 > 0 (IX.7)

holds in which case the investment is to be carried out. If (!) p1 and p2 were

probabilities, this inequality amounts to the check whether the expected

profit is positive. We need to show that both owners should agree with this

criterion.

They consider the investment package:

• spend 100 Euros on the investment,

• buy 20 units of Arrow good 1 and

• sell 10 units of Arrow good 2.

In state of the world 1, the owners obtain

80����
revenue

from

investment

+ 20����
revenue

from

Arrow good 1

= 100

in state of the world 2, they get

110����
revenue

from

investment

+ −10����
revenue

from

Arrow good 2

= 100

Therefore, the two owners are indifferent between the two cases. The Arrow

securities take all the risk away from them. In state of the world 1, the
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investment package is profitable iff the following condition holds:

0 < 80����
revenue

from

investment

− (100 + p120− p210)� �� �
cost of

investment

package

+ 20����
revenue

from

Arrow good 1

= −p120 + p210

= −p120 + p210− 100(1− p1 − p2)� �� �
0

= p180 + p2110− 100

which is nothing but inequality IX.7.

E������� IX.12. Show that the profitability of the investment package

is equivalent to the investment criterion for state of the world 2, also.

Thus, with the help of complete financial markets, beliefs and risk atti-

tudes can be made irrelevant for owners who need to assess the profitability

of an investment.

5.4. The cost of managing the own firm.

5.4.1. Utility maximization by the owner-manager. Following Gravelle

& Rees (2004, pp. 159), we now assume that the owner manages the firm

himself. The owner-manager’s effort level and cost of effort is denoted by e,

the firm’s gross profit is Π(e) . Thus, the manager’s work is not renumerated

while the payment for the other factors of production is taken care of by Π.

For the manager, profit is a good and effort a bad. Thus, the indifference

curves are upward-sloping. Also, preferences are convex so that additional

effort has to be compensating for by ever increasing monetary income y (see

fig. 10). Thus, for the time being, we assume that the owner does not

pay himself. The owner aims for the highest indifference curve touching the

profit curve and chooses effort level e∗.
The owner-manager’s preferences are representable by a utility function

U so that e∗ is given by

e∗ = argmax
e≥0

U (e,Π(e)) .

Algebraically, the condition “slope of indifference curve I equals slope of

profit curve” is

dΠ

de

����
e∗

!
= −

∂U
∂e

��
(e∗,I(e∗))

∂U
∂y

���
(e∗,I(e∗))

.

Here, I is an indifference curve and also a function of e. For example, we

have I0 (e0) = y0. The reader is invited to compare pp. 75.
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F����� 10. Utility maximization by the owner-manager

5.4.2. Does utility maximization imply profit maximization? We now

come back to the original question of whether firms maximize profit. It

is obvious from the previous section, that the owner-manager does not max-

imize profit Π (we have dΠ
de

��
e∗
> 0 in fig. 10). However, it can be argued

that the suitable profit concept should be net profit

n (e)����
net profit

:= Π(e)� �� �
gross profit

− w (e)� �� �
factor payment

where w is the wage paid to the manager at effort level e.

Reconsider fig. 10. We assume that the owner-manager does not work

in his own firm, but realizes effort level e0 in another firm and therefore

obtains the salary w (e0). He also obtains n (0) = Π (0) from his firm. Then,�
e0, y0 = w

�
e0
�
+Π(0)

�
is a realizable point. It lies on the indifference

curve denoted by I0. Thus, if the owner worked in his own firm, his wage

at effort level e0 would have to be at least y0 −Π(0) . If the owner worked

at some other effort level in his own firm, the opportunity cost is “height

of indifference curve I0 − Π(0)”. In particular, the opportunity wage at e‘∗

is indicated by the longer two-arrow line. In this fashion, we define a wage

function

e → w (e) := I0 (e)−Π(0) .

The firm’s marginal opportunity cost of the manager’s effort level is therefore

equal to the slope of indifference curve I0 :

dw (e)

de

���� =
dI0
de

���� = −
∂U
∂e

��
(e,I0(e))

∂U
∂y

���
(e,I0(e))

.

We now come back to the above definition of net profit. If the firm wants to

maximize net profit n (e), it does so by forming the derivative with respect
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to e, i.e., by

dΠ

de

����
ê

!
= −

∂U
∂e

��
(ê,I(ê))

∂U
∂y

���
(ê,I(ê))

Thus, utility maximization means finding the effort level where the slope

of the indifference curve I1 equals the slope of the profit function (at e∗).
In contrast, in order to find the profit-maximizing effort level ê, the slope

of the indifference curve I0, rather than I1, has to be used. Only if the

two indifference curves happen to have the same slope at e∗, can we expect

ê = e∗. As we know from chapter VII, the slopes are identical if the income

effect is zero. However, as a business man gets richer, he probably spends

more time playing golf and chess. Such a business man is not a profit

maximizer with respect to the firm he owns and manages.

5.4.3. A market for manager effort. We now show that a functioning

market for management input prevents the problems described in the previ-

ous section. Let e be the manager effort offered by our owner-manager and

let ef be the effort level used in the owner’s firm. The owner-manager can

buy additional effort above the effort supplied by himself (e < ef ) or can

offer his excess effort on the market (e > ef ). In any case, the firm’s profit

function is

n (ef ) = Π (ef )−wef ,

where w is the constant wage for managers. The owner-manager’s income

is

y = n (ef ) +we

so that the decision about the own effort and the decision about the effort

used in the own firm are separated.

The profit-maximizing effort level is

e∗f := argmax
ef≥0

Π(ef )−wef

while the utility-maximizing effort level obeys

e∗ = argmax
e≥0

U (e,Π(ef )−wef +we) .

The first-order condition for profit maximization is

dΠ

def

����
e∗f

!
= w,
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F����� 11. Separation made possible by a market for man-

ager effort

while utility maximization demands

∂U

∂e

����
(e∗,I(e∗))

+
∂U

∂y

����
(e∗,I(e∗))

w
!
= 0 (differentiating w.r.t. e) and,

∂U

∂y

����
(e∗f ,I(e

∗

f))

d (Π (ef )−wef +we)

def

����
(e∗f ,I(e∗f))

=
∂U

∂y

����
(e∗f ,I(e

∗

f))

0
dΠ

def

����
e∗
f

−w

1
!
= 0 (differentiating w.r.t. ef )

The last equality shows that utility maximization implies profit maximiza-

tion. The owner’s income is Π(ef ) − wef + we so that his utility is not

maximized if profit Π(ef )−wef is not maximized.

Fig. 11 illustrates. The wage for managers equals the slope of the wage

line we. Profit maximization determines the effort level e∗f where the slope

of the wage line equals the slope of the gross-profit curve. In the figure, the

owner-manager works in his own firm and buys additional manager effort

e∗f − e∗ on the market. Can you draw a picture for the opposite case?

6. The separation function of markets

We have come to know several examples where markets allow a separa-

tion:

• If markets for consumption goods exist, a household with an en-

dowment can consume his endowment but also any other bundle

which does not cost more (chapter VI).

• If a market for manager effort is available, an owner-manager can

buy additional (on top of his own) manager effort for his firm or

supply effort to other firms (this chapter, pp. 234).
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cloth

wine

transformation
curve

production and 
consumption point 
under autarchy

consumption point 
under trade

production point 
under trade

W

C

p

p−

F����� 12. International trade versus autarky

• If Arrow securities are correctly priced, the profitability of an in-

vestment decision can be assessed separately from the beliefs and

risk attitudes of the several owners (this chapter, pp. 231).

• International trade allows an economy to consume a bundle differ-

ent from the bundle produced.

In all these cases, a higher indifference curve becomes available which shows

an important welfare-characteristic of markets.

The example of international trade needs some explanation. Consider

the economy-wide transformation curve (for an explanation, see pp. 201)

depicted in fig. 12. The economy produces cloth (C) and wine (W ). Under

autarky, the economy produces and consumes the very same bundle. If in-

ternational trade becomes possible, at prices pC and pW , the economy can

produce a bundle different from the one it consumes. In our example, the

economy exports cloth and imports wine. Indeed, the production decision is

separated not only from consumption but also from the community prefer-

ences. Optimally, the economy produces where the value of the production

pCC + pWW

is maximal.
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7. Topics

The main topics in this chapter are

• cost minimization

• isocost line

• fixed cost

• quasi-fixed cost

• variable cost

• long-run cost minimization

• short-run cost minimization

• supply function

• profit maximization

• input space, output space

• revealed profit

• international trade

• Arrow security

• owner-manager

• effort

• utility versus profit maximization

• producer’s rent

8. Solutions

Exercise IX.1

Along an isocost line, we have dx2
dx1

= −w1
w2
.

Exercise IX.2

A factor combination x ∈ Rℓ
+ is cost minimizing if any other factor

combination x′ that also serves to produce y or more is at least as expensive

as x :

χR (∆) =
�
x ∈ Rℓ

+: f (x) ≥ y and,

for any x′ ∈ Rℓ
+, f

�
x′
�
≥ y ⇒ w · x′ ≥ w · x

�

Exercise IX.5

A factor combination x ∈ Rℓ
+ is output maximizing if any other factor

combination x′ that also cost C̄ or less produces f (x) or less:

xR (∆) =
�
x ∈ Rℓ

+: w · x ≤ C̄ and,

for any x′ ∈ Rℓ
+, w · x′ ≤ C̄ ⇒ f

�
x′
�
≤ f (x)

�

Exercise IX.3

Marginal cost is defined byMC (y) = dC
dy , average cost byAC (y) = C(y)

y .

Exercise IX.4
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We obtain

χR (w, y) =





�
0, y2

�
, w1 >

1
2w2��

x1,
y−x1
2

�
∈ R2+ : x1 ∈ [0, y]

�
w1 =

1
2w2

(y, 0) , w1 <
1
2w2

and

C (y) = min
x1+2x2=y

w1x1 +w2x2

= w1χ1 +w2χ2

=

)
w2

y
2 , w1 ≥ 1

2w2
w1y, w1 <

1
2w2

Exercise IX.6

If all factor prices are multiplied by α > 0, cost is also multiplied by this

factor:

C (αw, y) = min
x∈Rℓ+

{αw · x: f (x) ≥ y}

= α min
x∈Rℓ+

{w · x: f (x) ≥ y}

= αC (w, y) .

Exercise IX.7

We obtain

Cs (y, x̄2) = min
x1∈R+

)
w1x1 +w2x̄2: x

1
3
1 x̄2 ≥ y

5

= min
x1∈R+

)
w1x1 +w2x̄2: x1 ≥

y3

x̄32

5

= w1
y3

x̄32
+w2x̄2.

Exercise IX.8

If the firm does not produce (y = 0), we find Πs (0) = 0−Cs (0) = −54

in the short run and Π(0) = 0− C (0) = 0 in the long run. The first-order

condition is

MC (y) = 12y + 15
!
= p

or

y
!
=
p− 15

12
.

In case of y > 0, we obtain the profit

Πs (y) = Π(y) = (12y + 15) y −
�
6y2 + 15y + 54

�

= 6y2 − 54 ≥
)

Πs (0) = −54, y ≥ 0 (p ≥ 15)

Π(0) = 0, y ≥ 3 (p ≥ 51)

and hence the short-run supply function

Ss (p) =

) p−15
12 , p ≥ 15

0, p < 15
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and the long-run supply function

S (p) =

) p−15
12 , p ≥ 51

0, p < 51

Exercise IX.9

The first-order conditions are

p
∂f

∂x1
=

1

3
px
− 2
3

1 x2
!
= w1 and

p
∂f

∂x2
= px

1
3
1

!
= w2 (if applicable).

Thus, the short-run demand function is

Ds (w) =

0�
1

3

px̄2
w1

� 3
2

, x̄2

1

and the long-run is obtained by simultaneously solving the two first-order

equations for x1 and x2. The second one yields x1
!
=

w32
p3

and, substituting

into the first, we obtain

D (w) =

�
w32
p3
, 3w1

w22
p3

�
.

However, the comparative-statics results are implausible for the long-run

demand function: Factor demand depends positively on factor prices and

negatively on the output price, i.e., the comparative-statics results contra-

dict lemma IX.1.

Indeed, a solution to the factor-demand problem need not exist because

the second-order condition (Hesse matrix negative-semidefinite) is not full-

filled for the profit function

Π(x1, x2) = px
1
3
1 x2 −w1x1 −w2x2.

The Hesse matrix is given by

Π′′ (x) =




∂2Π(x)

(∂x1)
2

∂2Π(x)
∂x1∂x2

∂2Π(x)
∂x2∂x1

∂2Π(x)

(∂x2)
2




=




�
1
3 − 1

�
1
3px

1
3
−2
1 x2

1
3px

1
3
−1
1

1
3px

1
3
−1

1 0




=




−2
9p

x2

x
5
3
1

1
3

p

x
2
3
1

1
3

p

x
2
3
1

0
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and is not negative-semidefinite which can be seen from

(z1, z2)




−2
9p

x2

x
5
3
1

1
3

p

x
2
3
1

1
3

p

x
2
3
1

0



�
z1
z2

�

= (z1, z2)




−2
9p

x2

x
5
3
1

z1 +
1
3

p

x
2
3
1

z2

1
3

p

x
2
3
1

z1




= −2

9
p
x2

x
5
3
1

z21 +
2

3

p

x
2
3
1

z1z2

which is greater than zero for any z1 := 1 and sufficiently large z2.

Thus, the second-order condition is not fulfilled so that a maximum is

not guaranteed. Indeed, we do not have a maximum because

Π(x1, x2) = px
1
3
1 x2 −w1x1 −w2x2

=

�
px

1
3
1 −w2

�
x2 −w1x1

can be made arbitrarily large by making x1 so large that px
1
3
1 −w2 is positive

and by choosing x2 sufficiently large.

Exercise IX.10

The suggested division yields

p MP1
p MP2

!
=
w1
w2

and hence the well-known (see p. IX.1) first-order condition for cost mini-

mization

MRTS =
MP1
MP2

!
=
w1
w2
.

Exercise IX.11

Owner A’s expected gain from buying one unit of Arrow security 1 is

2

10
· 1 + 8

10
· 0− p1.

Therefore, he is indifferent between buying and not buying at price p1 =
2
10 .

Exercise IX.12

In state of the world 2, the investment package is profitable if

110����
revenue

from

investment

− (100 + p120− p210)� �� �
cost of

investment

package

+ −10����
revenue

from

Arrow good 2

= −p120 + p210 > 0

which is the same inequality as in the main text.
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9. Further exercises without solutions

P�
#$�� IX.1.

A firm has two factories A and B that obey the production functions

fA (x1, x2) = x1 · x2 and fB (x1, x2) = x1 + x2, respectively. Given the

factor-price ratio w = w1
w2

, how to distribute output in order to minimize

costs?

Hints:

• You are free to assume w1 ≤ w2.

• Find the cost functions for the two factories.

• Are the marginal-cost curves upward-sloping or downward-sloping?

P�
#$�� IX.2.

Discuss: In the long run, all factors of production are variable and therefore,

C (0) = 0.

P�
#$�� IX.3.

Prominent examples for economies of scope are provided by

• sheep that yield both milk and wool or

• corn with the two subproducts flour and straw.

Working with a multi-product cost function, can you suggest a definition of

economies of scope?

P�
#$�� IX.4.

Suppose a profit-maximizing firm has a technology with free disposal. What

happens if we have factors/goods with negative prices?

P�
#$�� IX.5.

Draw the companion figure of fig. 11 (p. 237) where the owner of a firm

works in his own firm and also in another firm.





Part C

Games and industrial organization



The third part of our course in advance microeconomics deals with the

basics of monopoly and oligopoly theory — important applications of nonco-

operative game theory. The Cournot, Bertrand and Stackelberg models are

the workhorse models in IO (industrial organization). We will repeatedly

refer to these models when discussing competition and regulatory issues in

part F. The reader interested in a broader view of industrial organization

and competition theory is invited to throw a glance or two at chapter XXI.

This part consists of four chapters. In chapter X , some game theory

is presented: bimatrix games, dominant and mixed strategies, and Nash

equilibrium. In chapter XI, we put these concepts to work and analyze

price competition (Bertrand) and quantity competition (Cournot) in one-

stage models. In order to tackle models of several stages, we deal with

games in extensive form in chapter XII where we dwell on the Stackelberg

model. In that chapter, we also introduce the important class of multi-

stage games, together with a worked-out example of variety competition. A

specific subclass of multi-stage games concerns repeated games, the subject

matter of chapter XIII. They are relevant for discussing the possibility of

cartel formation.



CHAPTER X

Games in strategic form

Game theory is a central piece of microeconomic theory. There are only

very few chapters in this book that do not use game theory. In fact, even the

decision theory presented in the first part of this book provides preparatory

work for game theory. We present strategic games in this chapter by building

on chapter II (decisions in strategic form) while chapter III (decisions in

extensive form) prepares the ground for extensive-form games.

The aim of game theory is to describe a multiperson decision situation

and then to suggest “solutions”. Solutions are strategy combinations or sets

of strategy combinations for which we find theoretical arguments. These

arguments typically point to stability of some sort. In this chapter, we

propose solutions by way of dominance arguments and Nash equilibria.

1. Introduction, examples and definition

1.1. Nobel prices in Game theory. The Sveriges Riksbank Prize in

Economic Sciences in Memory of Alfred Nobel was awarded to game theorists

several times, most notably in 1994 and in 2005. In 1994, it was awarded

to the US economists John C. Harsanyi (University of California, Berkeley),

John F. Nash (Princeton University) and to the German Reinhard Selten

(Rheinische Friedrich-Wilhelms-Universität, Bonn)

for their pioneering analysis of equilibria

in the theory of non-cooperative games.

According to the press release by the Royal Swedish Academy of Sciences,

Game theory emanates from studies of games such as chess

or poker. Everyone knows that in these games, players have

to think ahead - devise a strategy based on expected coun-

termoves from the other player(s). Such strategic interac-

tion also characterizes many economic situations, and game

theory has therefore proved to be very useful in economic

analysis.

The foundations for using game theory in economics were

introduced in a monumental study by John von Neumann

and Oskar Morgenstern entitled Theory of Games and Eco-

nomic Behavior (1944). Today, 50 years later, game theory

has become a dominant tool for analyzing economic issues.

247
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In particular, non-cooperative game theory, i.e., the branch

of game theory which excludes binding agreements, has had

great impact on economic research. The principal aspect of

this theory is the concept of equilibrium, which is used to

make predictions about the outcome of strategic interaction.

John F. Nash, Reinhard Selten and John C. Harsanyi are

three researchers who have made eminent contributions to

this type of equilibrium analysis.

John F. Nash introduced the distinction between coop-

erative games, in which binding agreements can be made,

and non-cooperative games, where binding agreements are

not feasible. Nash developed an equilibrium concept for non-

cooperative games that later came to be called Nash equilib-

rium.

Reinhard Selten was the first to refine the Nash equilib-

rium concept for analyzing dynamic strategic interaction. He

has also applied these refined concepts to analyses of compe-

tition with only a few sellers.

John C. Harsanyi showed how games of incomplete in-

formation can be analyzed, thereby providing a theoretical

foundation for a lively field of research - the economics of

information - which focuses on strategic situations where dif-

ferent agents do not know each others’ objectives.

[...] As far back as the early nineteenth century, begin-

ning with Auguste Cournot in 1838, economists have devel-

oped methods for studying strategic interaction. But these

methods focused on specific situations and, for a long time,

no overall method existed. The game-theoretic approach now

offers a general toolbox for analyzing strategic interaction.

A second time, the prize was awared in 2005, to Robert J. Aumann (Hebrew

University of Jerusalem) and Thomas C. Schelling (University of Maryland,

USA)

for having enhanced our understanding of conflict and cooperation

through game-theory analysis.

The press release issued by the Royal Swedish Academy of Sciences mentions

both price and atomic wars as an application of game theory:

[...] Against the backdrop of the nuclear arms race in the

late 1950s, Thomas Schelling’s book The Strategy of Con-

flict set forth his vision of game theory as a unifying frame-

work for the social sciences. Schelling showed that a party

can strengthen its position by overtly worsening its own op-

tions, that the capability to retaliate can be more useful than
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the ability to resist an attack, and that uncertain retaliation

is more credible and more efficient than certain retaliation.

These insights have proven to be of great relevance for con-

flict resolution and efforts to avoid war.

Schelling’s work prompted new developments in game

theory and accelerated its use and application throughout

the social sciences. Notably, his analysis of strategic com-

mitments has explained a wide range of phenomena, from

the competitive strategies of firms to the delegation of polit-

ical decision power.

[...] Robert Aumann was the first to conduct a full-

fledged formal analysis of so-called infinitely repeated games.

His research identified exactly what outcomes can be upheld

over time in long-run relations.

The theory of repeated games enhances our understand-

ing of the prerequisites for cooperation: Why it is more dif-

ficult when there are many participants, when they interact

infrequently, when interaction is likely to be broken off, when

the time horizon is short or when others’ actions cannot be

clearly observed. Insights into these issues help explain eco-

nomic conflicts such as price wars and trade wars, as well

as why some communities are more successful than others in

managing common-pool resources. The repeated-games ap-

proach clarifies the raison d’être of many institutions, ranging

from merchant guilds and organized crime to wage negotia-

tions and international trade agreements.

All the names mentioned in these press releases are important in this book:

• In this chapter, we will encounter Nash and his existence theorem.

• Selten’s contribution is the subject matter of chapter XII on exten-

sive games.

• Harsanyi is rightly famous for his work on Bayesian games that we

will explain in chapter XVII.

• Aumann’s (and others’) work on repeated games is summarized

in chapter XIII. Aumann’s concept of correlated equilibria is ex-

plained in chapter XVII.

• In our view, Cournot has to be credited with founding non-coopera-

tive game theory. We cover his oligopoly theory in the next chapter.

1.2. Some simple bimatrix games. Before formally defining strate-

gic games in section 1.3, we have a look at some simple and prominent
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examples. We first consider the stag hunt:

hunter 2

hunter 1

stag hare

stag 5, 5 0, 4

hare 4, 0 4, 4

The first number in each field indicates the payoff for player 1 (hunter 1) and

the second number is the payoff for player 2 (hunter 2). The two hunters

cannot hunt both animals at the same time but have to focus on one of them.

Stag hunting requires the communal effort while the hare can be brought

down by a single hunter. Hunter 1 is willing to take part in the stag hunt if

hunter 2 also engages in stag hunting. If hunter 2 chases the hare, hunter 1

would just waste his effort trying to catch the stag.

The stag hunt is an instance of a bimatrix game. Indeed, we need two

matrixes to describe the payoffs of the two players — hence the term bi-

matrix.

Our second example of a bimatrix game is called “matching pennies” or

“head or tail”. Two players have the choice between head or tail. Player 1

wins one Euro if both choose head or both choose tail. Player 2 wins if their

choices differ. We obtain the following game matrix:

player 2

player 1

head tail

head 1,−1−1, 1

tail −1, 1 1,−1

The third game is the battle of the sexes. A couple argues about how to

spend the evening. Player 1, she, would like to go to the theatre, player

2, he, prefers football. However, both have a preference for spending the

evening together. The following matrix captures these preferences:

he

she

theatre football

theatre 4, 3 2, 2

football 1, 1 3, 4

Another famous game is called the game of chicken. Two car drivers head

towards each other. Their strategies are “continue” and “swerve”. Who-

ever swerves is a chicken (a coward) and obtains a low payoff. However,
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continuing is a risky business:

driver 2

driver 1

continue swerve

continue 0, 0 4, 2

swerve 2, 4 3, 3

We finally consider the following game:

player 2

player 1

deny confess

deny 4, 4 0, 5

confess 5, 0 1, 1

It is known as the “prisoners’ dilemma”. Two prisoners sit in separate cells.

They either confess their crime or deny it. If both confess, they will have

to go to jail for some moderate time (payoff 1). If one confesses while the

other denies, the first will obtain favorable terms (payoff 5) while the second

will go to jail for a long time (payoff 0). If both deny, punishment will be

small, due to the problem to prove them guilty (payoff 4). Sometimes, the

first strategy is called cooperative where the cooperation refers to the other

criminal, not the court.

1.3. Definition of a game in strategic form. Bimatrix games (you

have seen some examples in the previous section) belong to the class of

games in strategic form:

D�������
� X.1 (Game in strategic form). A game in strategic form is

a triple

Γ =
�
N, (Si)i∈N , (ui)i∈N

�
= (N,S, u) ,

where

• N = {1, ..., n} is a nonempty and finite set of n := |N | (|N | is the
cardinality of N and denotes the number of elements in N),

• Si is the strategy set for player i ∈ N ,

• S =×i∈NSi is the Cartesian product of all the players’ strategy

sets with elements s = (s1, s2, ..., sn) ∈ S, and

• ui : S → R is player i’s payoff function.

Elements of strategy sets are called strategies and elements of S are called

strategy combinations.
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For example, the “battle of the sexes” has N = {she, he} , Sshe = She =

{theatre,football} and the bimatrix reveals that ushe is given by

ushe (theatre, theatre) = 4,

ushe (theatre, football) = 2,

ushe (football, theatre) = 1,

ushe (football, football) = 3.

A strategy combination s ∈ S is a n-tuple containing a strategy for every

player. Removing player i’s strategy leads to a strategy combination s−i of

the remaining players from N\ {i}:
s−i ∈ S−i :=×j∈N,

j �=i

Sj.

We can now write player i’s payoff as ui (s) = ui (si, s−i) which will come in

handy soon.

Note our abuse of notation:

• S = (Si)i∈N is a tuple of strategy sets that we use to describe the

game while

• S =×i∈NSi is the set of strategy combinations, the domain for

the utility functions.

2. Dominance

2.1. Definition. As in chapter II, dominance means that a strategy is

better than the others. Again, we distinguish between (weak) dominance

and strict dominance:

D�������
� X.2 (dominance). Let (N,S, u) be a game in strategic form

and let i be from N . Strategy si ∈ Si (weakly) dominates strategy s
′
i ∈ Si if

ui (si, s−i) ≥ ui (s
′
i, s−i) holds for all s−i ∈ S−i and ui (si, s−i) > ui (s

′
i, s−i)

is true for at least one s−i ∈ S−i. Strategy si ∈ Si strictly dominates strategy

s′i ∈ Si if ui (si, s−i) > ui (s′i, s−i) holds for all s−i ∈ S−i. Then, strategy s′i is
called (weakly) dominated or strictly dominated. A strategy that dominates

every other strategy is called dominant (weakly or strictly, whatever the case

may be).

We will spare the reader the corresponding definition for rationalizabil-

ity. Some games are solvable by dominance (or rationalizability) arguments,

applied once or several times. We present some examples.

2.2. The prisoners’ dilemma. On p. 251 we present the prisoners’

dilemma. It is easy to see that both players have a strictly dominant strategy,

“confess”. It may seem that the solution is very obvious and the game

a boring one. Far from it! The prisoners’ dilemma is one of the most

widely discussed two-person games in economics, philosophy and sociology.

Although the choice is obvious for each individual player, the overall result
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is unsatisfactory, viz., Pareto inferior. Pareto inferiority means that it is

possible to make everybody better off: ui (confess, confess) = 4 > 1 =

ui (deny, deny) for i = 1, 2.

This contradiction between individual rationality (choose the dominant

strategy!) and collective rationality (avoid Pareto-inferior payoffs) is not

atypical. For example, tax payers like others to pay for public expenditures

while shying away from the burden themselves. However, they (often) prefer

the paying of taxes by everybody to nobody paying taxes.

As another example consider two firms with the strategies of charging a

high price or a low price:

firm 2

firm 1

high low

high 4, 4 0, 5

low 5, 0 1, 1

A high price is the nice, cooperative strategy and corresponds to the strategy

of denying in the original game.

In the literature, there are attempts to soften the dilemma. For exam-

ple, it has been suggested that players promise each other to stick to the

cooperative strategy (to choose “deny”). However, such a promise does not

help; confess is still a dominant strategy.

The twin argument is also popular and builds on the symmetry of the

prisoners’ dilemma game. According to the twin argument, the players

(should) deliberate as follows: Whatever reason leads one player to choose

strategy 1 over strategy 2, is also valid for the other player. Therefore, the

players’ choice reduces to the diagonal payoffs and they choose the cooper-

ative strategy by 4 > 1. The problem with this argument is that players

choose simultaneously and independently. The choice by one player does

not influence the other player’s choice of strategy.

E������� X.1. Is the stag hunt solvable by dominance arguments? How

about “head or tail”, “game of chicken”, or the battle of the sexes.

2.3. The second-price auction. William Vickrey is one of the two

1996 Nobel price winners in economics. He is famous for his analysis of

auctions. Consider an object for which several players make simultaneous

bids. The Vickrey auction is a second-price auction, i.e., the highest bidder

obtains the object but pays the second-highest price, only. We will show

that every bidder has a dominant strategy.

We restrict attention to two players or bidders, i = 1, 2, but the argument

basically applies for any finite number of players. We assume that every

player i ∈ {1, 2} has a reservation price for the object, ri. He is indifferent
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between obtaining the object for a price ri or not obtaining it. The strategy

of player i, si, is simply the Euro value bidder i writes on a piece of paper

and hands over to the auctioneer. The auctioneer gives the object to the

player with the highest bid. If the bidders happen to quote the same value,

the auctioneer tosses a fair coin. Thus, bidder 1’s payoff function is given

by

u1 (s1, s2) =





0, s1 < s2,
1
2 (r1 − s2) , s1 = s2,

r1 − s2, s1 > s2

We now show that the strategy s1 := r1 dominates all the others. We

distinguish three cases: r1 < s2, r1 = s2, and r1 > s2.

(1) r1 < s2
If player 1’s reservation price is below player 2’s bid, s1 = r1

leads to payoff 0 for player 1 who does not obtain the object. Player

1 does not receive the object and still obtains payoff zero for any

bid s1 < s2, be the bid below or above r1. If, however, player 1’s

bid fulfills s1 ≥ s2, he obtains the object and a negative payoff of

r1 − s2 < 0 or 1
2 (r1 − s2) < 0.

(2) r1 = s2
If player 1’s reservation price happens to be equal to player

2’s bid, s1 = r1 leads to the expected payoff of 1
2 (r1 − s2) = 0.

Understating (s1 < r1) or overstating (s1 > r1) affects the chance

of getting the object but not the expected payoff which remains at

0.

E������� X.2. Show that s1 = r1 is a dominant strategy in case of

r1 > s2.

Summing up, the auction game due to Vickrey is dominance solvable.

Every player has a dominant strategy.

2.4. Take it or leave it. Sometimes, dominance is enough to solve a

game. In other cases, we need to apply dominance several times to come

to a definite strategy combination. The key idea is to delete dominated

strategies. We present two examples, a very simple bargaining game and

the Basu game. The most simple bargaining game has player 1 make an

offer that player 2 can accept or reject. That’s it. Player 2 is not allowed a

counteroffer. We will see that this bargaining game gives all the bargaining

power to player 1. Indeed, if player 1 knows player 2’s reservation price, he

can make sure that player 2 does not obtain any gains from trade.

Assume that the players need to divide three coins of Euros that cannot

be subdivided. Player 1’s strategy is to quote the number of coins he of-

fers player 2. Player 2 fixes the minimum number of coins acceptable to him:



2. DOMINANCE 255

player 2 accepts player 2

if he is offered does not

0-3 coins accept

0 1 2 3

player 1 0 (3, 0) (0, 0) (0, 0) (0, 0) (0, 0)

offers 1 (2, 1) (2, 1) (0, 0) (0, 0) (0, 0)

player 2 2 (1, 2) (1, 2) (1, 2) (0, 0) (0, 0)

0-3 coins 3 (0, 3) (0, 3) (0, 3) (0, 3) (0, 0)

If player 2 is rational, he accepts any offer which leads to a payment strictly

above 0. He is indifferent between declining or accepting an offer of 0.

Thus, player 2 will not choose any of the last three strategies. Deleting

these strategies leads to the following payoff matrix:

player 2 accepts

if he is offered

0-1 coins

0 1

player 1 0 (3, 0) (0, 0)

offers 1 (2, 1) (2, 1)

player 2 2 (1, 2) (1, 2)

0-3 coins 3 (0, 3) (0, 3)

Now, after this deletion, player 1 finds that the strategies of offering 2 or

3 coins are dominated by the strategy of offering just 1 coin. Let us delete

player 1’s last two strategies to obtain:

player 2 accepts

if he is offered

0-1 coins

0 1

player 1 0 (3, 0) (0, 0)

offers 1 (2, 1) (2, 1)
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Traveler 2 requests so many coins

2 3 4 · · · 98 99 100

Trav. 1 2 (2, 2) (4, 0) (4, 0) (4, 0) (4, 0) (4, 0) (4, 0)

3 (0, 4) (3, 3) (5, 1) (5, 1) (5, 1) (5, 1) (5, 1)

requests 4 (0, 4) (1, 5) (4, 4) (6, 2) (6, 2) (6, 2) (6, 2)

... (0, 4) (1, 5) (2, 6)

so many 98 (0, 4) (1, 5) (2, 6) (98, 98) (100, 96) (100, 96)

99 (0, 4) (1, 5) (2, 6) (96, 100) (99, 99) (101, 97)

coins 100 (0, 4) (1, 5) (2, 6) (96, 100) (97, 101) (100, 100)

F����� 1. The Basu game

This game is not reducible any more. Player 1 can guarantee two coins for

himself by offering one coin to player 2.

2.5. The Basu game (the insurance game). Basu (1994) presents

an interesting matrix game which severely questions iterative dominance as

a solution concept. Basu concocts this story: Two travelers to a remote

island buy an antique and unique object they are made to believe very

valuable. The airline smashes both objects that happen to be identical.

The travelers turn to the airline company for compensation. The manager

of the airline cannot estimate the real worth of the objects and offers the

following compensation rule. Both travelers note the worth of the object

on a piece of paper. Whole numbers between 2 (thousand Euro) and 100

(thousand Euro) are allowed. We denote the numbers by s1 and s2 for the

two travelers 1 and 2, respectively. The manger assumes the lower figure to

be more trustworthy. Both obtain the lower figure. However, in order to

give the travelers an incentive for honesty, the traveler with the lowest figure

obtains this figure +2 while the other obtains the lowest figure -2. Player

1’s payoff is

u1 (s1, s2) =





s1 + 2, if s1 < s2,

s1, if s1 = s2,

s2 − 2, if s1 > s2;

The bimatrix of this game is indicated by the matrix of fig. 1.

E������� X.3. Find a strategy that dominates another.
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E������� X.4. Consider the reduced Basu game where players can choose

2 or 3 coins, only. Have you seen it (in general terms) before?

Deleting the dominated strategies one after the other, 100 for both play-

ers first, then 99 for both players etc., the strategies s1 = 2 and s2 = 2

remain, a depressing result from the travelers’ point of view. Since many

people intuitively feel that the players should be able to do much better, this

result has been termed a paradox, the Basu paradox. In chapter XI, we will

consider the price setting behavior of firms and will encounter the so-called

Bertrand paradox, a close cousin to the Basu paradox. The Basu paradox

poses a serious challenge to the iterative deletion of dominated strategies.

Two other important examples are treated in later chapters. The Clarke-

Groves mechanism is dominance solvable and dealt with in chapter XVIII.

The Cournot-Dyopol can be solved by iterative rationalizability; it is treated

in chapter XI.

3. Best responses and Nash equilibria

3.1. Definition of the Nash equilibrium. For a game in strategic

form, the strategy combination is a Nash equilibrium if no player, by himself,

can do any better:

D�������
� X.3 (Nash equilibrium). Let

Γ = (N,S, u)

be a strategic-form game. The strategy combination

s∗ = (s∗1, s
∗
2, ..., s

∗
n) ∈ S

is a Nash equilibrium (or simply: an equilibrium) if for all i from N

ui
�
s∗i , s

∗
−i

�
≥ ui

�
si, s

∗
−i

�

holds for all si from Si.

At a Nash equilibrium, no player i ∈ N has an incentive to deviate

unilaterally, i.e., to choose another strategy if the other players chooses s∗−i.

3.2. Matrix games and best responses. The prisoners’ dilemma is

dominance solvable. The strategy combination of dominant strategies is a

Nash equilibrium. Indeed, if a strategy is best, whatever the other player

does, it is certainly optimal against a given strategy.
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E������� X.5. Determine the equilibria of the following game:

player 2

player 1

left right

up 4, 4 4, 4

down 0, 0 4, 4

E������� X.6. Find the equilibrium or the equilibria of the Basu game

above.

We have a simple procedure that helps determine all the equilibria in

matrix games. For every row (strategy chosen by player 1) we determine the

best strategy or the best strategies for player 2 and mark the corresponding

field or fields by a “2”. You remember the R -procedure introduced in chap-

ter II? For every column, we find the best strategy or the best strategies

for player 1 and put a “1” into the corresponding field. Any field with two

marks points to an equilibrium strategy combination. No player wins by

deviating unilaterally. The stag hunt provides an example of two equilibria:

hunter 2

hunter 1

stag hare

stag 5, 5 1 2 0, 4

hare 4, 0 4, 4 1 2

E������� X.7. Using the marking technique, determine the Nash equi-

libria of the following three games:

player 2

player 1

left right

up 1,−1−1, 1

down−1, 1 1,−1

player 2

left right

up 4, 4 0, 5

down 5, 0 1, 1

player 2

left right

up 1, 1 1, 1

down 1, 1 0, 0

The marking technique highlights the best strategies a player can choose:

D�������
� X.4. Let

Γ = (N,S, u)

be a strategic-form game and i a player from N . The function sRi : S−i → 2Si

is called a best-response function (a best response, a best answer) for player
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i ∈ N, if sRi is given by

sRi (s−i) := arg max
si∈Si

ui (si, s−i)

E������� X.8. Use best-response functions to characterize (s∗1, s
∗
2, ..., s

∗
n)

as a Nash equilibrium.

4. ... for mixed strategies, also

4.1. Introductory remarks. There are games where it is important

not to let the other players know your strategy. “Head or tail” is a clear

example. In this game, players do not choose “pure” strategies such as head

or tail, but probability distributions on the set of these pure strategies. A

probability distribution on the set of pure strategies is called a mixed strat-

egy. For example, choosing head with probability 1
3 and tail with probability

2
3 is a mixed strategy.

Apart from this literal interpretation of choosing probability distribu-

tions, two other interpretations come to mind. According to the first, the

player does not actually randomize. His choice depends on information

available to him but not observable by the other player. From the point of

view of the other player it looks as if a mixed strategy was played when,

in fact, it was not. We formalize this idea in chapter XVII (pp. 428). The

second interpretation assumes a multitude of players programmed to play a

certain pure strategy. Some players are chosen by chance and play against

each other. For the individual player is seems as if he is playing against

an opponent who mixes his pure strategies according to the shares of the

population programmed on these pure strategies.

Games with pure strategies only do not need to have an equilibrium.

Extending the strategy sets to include probability distributions on the set

of pure strategies removes this problem (if it is one).

4.2. Definitions.

D�������
� X.5 (mixed strategy). Let Si be a finite strategy set for

player i ∈ N . A mixed strategy σi for player i is a probability distribution

on Si, i.e., we have

σi
�
sji

�
≥ 0 for all j = 1, ..., |Si|

and
|Si|�

j=1

σi

�
sji

�
= 1.

The set of player i’s mixed strategies is denoted by Σi and we have Σ :=×i∈NΣi and Σ−i :=×j∈N,j �=iΣj for the combination of mixed strategies

of all players or of all players except player i, respectively. σi ∈ Σi is called

a properly mixed strategy if there is no pure strategy si ∈ Si with σi (si) = 1.
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As long as the order of pure strategies is clear, we can also write

σi =
�
σi
�
s1i
�
, σi

�
s2i
�
, ..., σi

�
s
|Si|
i

��

The first pure strategy of player i, s1i , is identified with the mixed strategy

(1, 0, 0, ..., 0) .

An element from Σ is an n-tuple

σ = (σ1, σ2, ..., σn) ,

while an element from Σ−i is an n− 1-tuple

σ−i = (σ1, σ2, ..., σi−1, σi+1, ..., σn) .

With a little exercise, it is not difficult to calculate the expected payoff.

E������� X.9. Consider the battle of the sexes (p. 250) and calculate

the expected payoff for player 1 if player 1 chooses theatre with probability 12
and player 2 chooses theatre with probability 1

3 !

L���� X.1. The payoff for a mixed strategy is the mean of the payoffs

for the pure strategies:

ui (σi, σ−i) =

|Si|�

j=1

σi

�
sji

�
ui

�
sji , σ−i

�
(X.1)

The definition of the mixed-strategies Nash equilibrium is very familiar:

D�������
� X.6 (mixed-strategy Nash equilibrium). Let

Γ = (N,S, u)

be a strategic-form game. The strategy combination

σ∗ = (σ∗1, σ
∗
2, ..., σ

∗
n) ∈ Σ

is a Nash equilibrium (or simply: an equilibrium) in mixed strategies if for

all i from N

ui
�
σ∗i , σ

∗
−i

�
≥ ui

�
σi, σ

∗
−i

�

holds for all σi from Σi.

Alternatively, we could say that (σ∗1, σ
∗
2, ..., σ

∗
n) is a Nash equilibrium if

σ∗i ∈ σRi
�
σ∗−i

�
holds for all i ∈ N .
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4.3. Equilibria. “Head or tail” does not have an equilibrium in pure

strategies. However, understood as a game in mixed strategies, “head or

tail” has an equilibrium. We will see that every matrix game has at least

one such equilibrium.

How do we know that “Head or tail” has an equilibrium in mixed strate-

gies? We remind the reader of eq. X.1: the payoff for a mixed strategy is

the mean of the payoffs for the pure strategies. The reader can also go back

to proposition II.1 on p. 18. Assume an equilibrium in mixed strategies

exists. Then, player 1 (or any other player) has no incentive to choose any

other strategy. In particular, the payoffs for the pure strategies “head” or

“tail” cannot be higher than the payoff for the mixed strategy in question.

Therefore, a mixed strategy can only be part of an equilibrium if every pure

strategy with a probability above zero has the same payoff as the mixed

strategy. As a consequence, every mixed strategy that mixes best pure

strategies is a best mixed strategy.

We now turn to “head or tail”. If (!) a properly mixed strategy for

player 1 exists, we have u1 (head, σ2) = u1 (tail, σ2) which leads to

u1 (head, σ2) = u1 (tail, σ2) and hence

σ2 (head) · 1 + σ2 (tail) · (−1) = σ2 (head) · (−1) + σ2 (tail) · 1

By σ2 (head) + σ2 (tail) = 1, we obtain

σ2 (head) =
1

2
= σ2 (tail)

in a Nash equilibrium. This is a peculiar result: player 2 has to mix his

strategies in a certain manner so that player 1 is indifferent between his pure

strategies. Interchanging players 1 and 2 leads to σ1 (head) = 1
2 = σ1 (tail)

so that player 2 is indifferent between his pure strategies. If both players are

indifferent between their pure strategies, they are indifferent between any

mixed strategies so that a mixed-strategy equilibrium has been found.

There can be no other equilibrium in properly mixed strategies. For

example, σ2 (head) > 1
2 leads to σR1 (σ2) = head. Indeed, if player 2 chooses

“head” with a sufficiently high probability, “head” by player 1 is the unique

best response. And, given that player 1 chooses “head” (with probability 1),

player 2 should choose “tail” with probability 1 contradicting σ2 (head) > 1
2 .

We now present an alternative way to find the equilibria. Consider player

1 in the battle of the sexes. His payoff function is given by

u1 (σ1, σ2) = 4σ1σ2 + 2σ1 (1− σ2) + (1− σ1)σ2 + 3 (1− σ1) (1− σ2)

where σ1 is player 1’s (her) probability for theatre and σ2 is player 2’s (his)

probability for theatre. We consider the derivative of u1 with respect to σ1
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to find her best response:

∂u1
∂σ1

= 4σ2 + 2(1− σ2)− σ2 − 3 (1− σ2)

= 4σ2 − 1





< 0, σ2 <
1
4

= 0, σ2 =
1
4

> 0, σ2 >
1
4

leads to

σR1 (σ2) =





0, σ2 <
1
4

[0, 1] , σ2 =
1
4

1, σ2 >
1
4

Again, she is indifferent if he mixes in a particular manner. The best-

response functions can be drawn in an σ1-σ2-Diagram. The intersection of

best-response functions marks the equilibrium. Can you do it yourself?

E������� X.10. Find all the equilibria in pure and properly mixed strate-

gies for the following games:

player 2

player 1

left right

up 5, 5 0, 4

down 4, 0 4, 4

player 2

player 1

left right

up 1, 1 1, 1

down 1, 1 0, 0

player 2

player 1

left right

up 4, 3 2, 2

down 1, 1 3, 4

player 2

player 1

left right

up 4, 4 0, 5

down 5, 0 1, 1

Please draw the best responses for each game!

4.4. The police game. The players of the police game are the police

(tax administration, environmental agency, police department) and an agent

(a potential tax evader, a prospective environmental criminal, a car driver)

who has to be monitored. This game is from Rasmusen (2001, S. 81f.).

According to the game matrix in fig. 2, the police officer obtains a utility

of 4 if she can deter or detect the misdoing. However, she incurs control costs

of C with 0 < C < 4. The potential criminal (you!) has a utility of 1 if he

is not caught. Otherwise, he has to suffer a punishment of F > 1. (Why is

a punishment below 1 ineffective?)
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agent

police

officer

fraud
no

fraud

control 4−C, 1− F 4−C, 0

no

control
0, 1 4, 0

F����� 2. The police game

E������� X.11. Find all the pure-strategy equilibria!

In order to find the mixed-strategy equilibrium, we assume that the agent

commits a crime with probability σa. In a properly-mixed equilibrium, σa
has to be chosen so that the police officer is indifferent between “control”

and “no control”:

σa (4−C) + (1− σa) (4−C)
!
= σa · 0 + (1− σa) 4 ⇔ σa

!
=

1

4
C.

E������� X.12. Which controlling probability σp chosen by the police

officer makes the agent indifferent between committing and not committing

the crime?

In equilibrium, the payoffs are

up =
1

F
(4−C) +

�
1− 1

F

�
1

4
C · 0 +

�
1− 1

F

��
1− 1

4
C

�
4 = 4−C

for the police and

ua =
1

4
C

1

F
(1− F ) +

1

4
C

�
1− 1

F

�
1 +

�
1− 1

4
C

�
· 0 = 0

for the prospective criminal.

5. Existence and number of mixed-strategy equilibria

5.1. Number. In this section, we offer two theoretical remarks. The

first deals with the number of equilibria we may expect and the second

tackles the existence problem. Both theorems work for finite games, only.

According to our definition, a game in strategic form (p. 251) has a finite

set of players, |N | <∞. A finite strategic game has finite strategy sets, too:

D�������
� X.7. A game in strategic form Γ = (N,S, u) is called finite

if |S| <∞ holds (or |Si| <∞ for all i ∈ N).

The number of strategy combinations can be found easily:

|S| = |S1| · |S2| · ... · |Sn|
A matrix game Γ = (N,S, u) is defined by the payoffs of all players for all

strategy combinations. Since for every strategy combination we need the
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payoff information for every player, a point in Rn|S| defines a finite matrix

game Γ = (N,S, u). Rn|S| is the set of all vectors with n · |S| real-valued

entries.

E������� X.13. How many payoffs do we need to describe a game for

two players with two and three strategies, respectively.

Wilson shows that “nearly all” finite strategic games have a finite and

odd number of equilibria. Indeed, many of our examples had 1 or 3 equilib-

ria.

Wilson (1971) found:

T��
��� X.1 (number of Nash equilibria). Nearly all finite strategic

games have a finite and odd number of equilibria in mixed strategies.

What does “nearly all” mean? Using the terminology of “distance and

balls” (see p. 54), we can make precise what the theorem says:

• If you have a game Γ∗ in Rn|S| with a finite and odd number of

equilibria,

— you can jiggle all or some entries of that point (some or all

payoffs) by a little, or, alternatively,

— you can find an ε-ball K with center Γ∗ and take any game

within that ball

and you have found another point (another game) with the same

number of equilibria.

• If you have a point Γ∗ in Rn|S| with an infinite or even number of

equilibria,

— you can find another game very close to this point, or, alter-

natively,

— you can find a game within any ε-ball K with center Γ∗

so that this other game has a finite and odd number of equilibria.

This is a remarkable theorem. As always, the proof of the pudding is in the

eating:

E������� X.14. How many equilibria do the following games have?

player 2

player 1

left right

up 1, 1 1, 1

down 1, 1 0, 0

player 2

player 1

left right

up 1, 1 0, 0

down 0, 0 0, 0

Both games do not fit the “finite and odd”-bill. From Wilson’s theorem,

we know that we need to jiggle but a little to obtain games with a finite
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and odd number of equilibria. We begin with the second game (taken from

Fudenberg & Tirole 1991, S. 480) and vary it in the following manner:

player 2

player 1

left right

up 1, 1 α, α

down 0, 0 β, β

where the α and β can be very small. Confirm:

• For 0 < α < 1 and β ≤ 0, we obtain a game with one equilibrium.

• For α = 0 and β < 0, we also find one equilibrium.

• For α = 0 and β > 0, we have three equilibria.

You can show the effect of a small jiggle for the first game of the above

exercise:

E������� X.15. How many equilibria has the following game for ε > 0

and how many for ε < 0?

player 2

player 1

left right

up 1 + ε, 1 + ε 1, 1

down 1, 1 0, 0

5.2. Existence. The existence theorem is due to John Nash (1950,

1951):

T��
��� X.2 (Existence of Nash equilibria). Any finite strategic game

Γ = (N,S, u) has a mixed-strategy Nash equilibrium.

The proof is relegated to chapter XIX (pp. 484) where the formal appa-

ratus needed is ready.

6. Critical reflections on game theory

Equilibria are meant to help us predict how players will play some spe-

cific game. Of course, even in games with only one equilibrium, we might

be reluctant to accept it as a good prediction, as the Basu game (p. 256)

corroborates very nicely.
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Sometimes, even a theoretical answer is difficult. In case of several equi-

libria clear-cut solutions are not available. Evolutionary game theory and

risk dominance may provide some help. Harsanyi & Selten (1988) offer a

very general approach on how to select equilibria in matrix games. Their

method is very involved and finally not very convincing. Bowles (2004, p. 53)

argues that we should not (always) look for a solution to the multiplicity

issue within game theory. Theory, according to his mind, is necessarily insuf-

ficient and we need additional information from outside game theory to help

to select among several equilibria — history matters. Discuss these issues for

the stag hunt, the battle of the sexes and the chicken game.
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7. Topics and literature

The main topics in this chapter are

• games in strategic form

• strategy combination

• Nash equilibrium

• dominance

• iterated dominance

• battle of the sexes

• prisoners’ dilemma

• head or tail (matching pennies)

• stag hunt

• game of chicken

• second-price auction

• take it or leave it

• Basu game (insurance game)

• mixed strategies

• police game

8. Solutions

Exercise X.1

There is no dominant strategy in any of these games.

Exercise X.2

If player 1 chooses s1 = r1, he will obtain the object and pay s2 so

that his payoff is r1 − s2. This payoff stays the same as long as s1 > s2.

If, however, player 1 chooses s1 = s2, his payoff is 1
2 (r1 − s2) with 0 <

1
2 (r1 − s2) < r1 − s2 while s1 < s2 reduces the payoff to 0 < r1 − s2.

Exercise X.3

The game is symmetric, it suffices to consider player 1. Strategy s1 = 100

is dominated by s1 = 99. No strategy other than 100 is dominated.

Exercise X.4

The two-strategies Basu game is the prisoners’ dilemma:

traveller 2

traveler 1

2 3

2 2, 2 4, 0

3 0, 4 3, 3

where 3 is the cooperative strategy.

Exercise X.5

There are three Nash equilibria, the strategy combinations (up, left),

(up, right) and (down, right) .
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player 2

player 1

left right

up 1,−1 1 −1, 1 2

down −1, 1 2 1,−1 1

player 2

left right

up 4, 4 0, 5 2

down 5, 0 1 1, 1 1 2

player 2

player 1

left right

up 1, 1 1 2 1, 1 1 2

down 1, 1 1 2 0, 0

F����� 3. Matrices and markings

Exercise X.6

In the Basu game, there is exactly one equilibrium, the strategy combi-

nation (2, 2).

Exercise X.7

After marking, the three matrices look like fig. 3. The first does not

have an equilibrium, the second has exactly one and the third has three

equilibria.

Exercise X.8

(s∗1, s
∗
2, ..., s

∗
n) is a Nash equilibrium iff s∗i ∈ sRi

�
s∗−i

�
for all i ∈ N .

Exercise X.9

Player 1’s payoff function is given by

u1 (σ1, σ2) = 4σ1σ2 + 2σ1 (1− σ2) + (1− σ1)σ2 + 3 (1− σ1) (1− σ2)

so that σ1 =
1
2 and σ2 =

1
3 leads to

u1

�
1

2
,
1

3

�
= 4 · 1

2
· 1
3
+ 2 · 1

2
·
�
1− 1

3

�
+

+

�
1− 1

2

�
· 1
3
+ 3 ·

�
1− 1

2

�
·
�
1− 1

3

�
=

5

2
.

Exercise X.10

The stag hunt is depicted in fig. 4 top left, a second game with in-

finitely many equilibria top right, the battle of the sexes bottom left (did

you recognize it?) and the prisoners’ dilemma bottom right. The stag hunt

and the battle of the sexes admit three equilibria, where one is in purely

mixed strategies. The prisoners’ dilemma has one equilibrium only, in pure

strategies. The top-right game has infinitely many equilibria.

Exercise X.11
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1σ

2σ

1σ

2σ

1σ

2σ

1σ

2σ

1

1

5
4

5
4

1

1

1

1

1

1

4
1

4
3

F����� 4. Equilibria

There are none. If the police officer controls, the agent will not commit

a crime. If the agent is law-abiding, there is no need for control.

Exercise X.12

We calculate:

σp (1− F ) + (1− σp) 1
!
= σp · 0 + (1− σp) · 0 ⇔ σp

!
=

1

F
.

Exercise X.13

We have six strategy combinations and for each strategy combination

we have two payoffs. Therefore, we need 12 payoff values.

Exercise X.14

The first matrix game has an infinite number of equilibria, the second

has two equilibria in pure strategies, but none in properly mixed strategies.

Exercise X.15

For ε > 0 the game has one equilibrium. For ε < 0, it has two equilibria

in pure strategies and one in properly mixed strategies.



270 X. GAMES IN STRATEGIC FORM

9. Further exercises without solutions

P�
#$�� X.1.

Consider a first price auction. There are n = 2 players i = 1, 2 who

submit bids bi ≥ 0 simultaneously. Player i’s willingness to pay for the

object is given by wi. Assume w1 > w2 > 0. The player with the highest

bid obtains the object and has to pay his bid. If both players submit the

highest bid, the object is given to player 1. The winning player i ∈ {1, 2}
obtains the payoff wi−bi and the other the payoff zero. Determine the Nash

equilibria in this game!

P�
#$�� X.2.

(a) Find a game in which a player has a weakly dominant strategy

which is not played in one of the Nash equilibria.

(b) Is it possible that a player has a strictly dominant strategy that is

not played in equilibrium?

P�
#$�� X.3.

Read the opening scene of Mozart’s and Schikaneder’s “Magic Flute”.

Two players i = 1, 2 are involved in a dispute over an object. The willingness

to pay for the object is wi, i = 1, 2. Assume w1 ≥ w2 > 0. Time is modeled

as a continuous variable that starts at 0 and runs indefinitely. Each player

i chooses the time si ≥ 0 when to concede the object to the other player.

Until the first concession each player loses one unit of payoff per unit of

time. Player i’s payoff function is given by

ui (si, sj) =





−si, si < sj
wi
2 − si, si = sj
wi − sj , si > sj.

Determine the Nash equilibria in this game!

P�
#$�� X.4.

Find all (mixed) Nash Equilibria of the following game:

player 1

player 2

l c r

o (4, 5) (2, 1) (4, 4)

m (0, 1) (1, 5) (3, 2)

u (1, 1) (0, 0) (6, 0)



CHAPTER XI

Price and quantity competition

This chapter presents industrial-organization applications of the previ-

ous chapter on strategic games. We concentrate on one-stage price and

quantity competition. In contrast to the usual procedure (quantity compe-

tition first, then price competition), we begin with price competition.

We prepare the stage by monopoly models. Here, we assume that a single

firm is a producer and does not fear entry by other firms. Governmental

entry restrictions may be responsible for this state of affairs.

In this chapter, we assume that the products are homogeneous. By this

we mean that the consumers consider the products (even if from different

suppliers) as equally good or bad. As a consequence, the only difference

between the products (if there is any) concerns the price.

1. Monopoly: Pricing policy

1.1. The linear model. Assume the demand function X given by

X (p) = d− ep,

where d and e are positive constants and p obeys p ≤ d
e
. It is depicted in

fig. 1. The reader is invited to go back to pp. 131 where he can find the

definitions for saturation quantity, prohibitive price and price elasticity of

demand.

E������� XI.1. Find the saturation quantity, the prohibitive price and

the price elasticity of demand of the above demand curve.

D�������
� XI.1 (a monopolist’s profit). A monopoly’s profit in terms

of price p is given by

Π(p)����
profit

: = R(p)����
revenue

−C(p)� �� �
cost

= pX(p)−C [X (p)] (XI.1)

where X is the demand function. In our linear model, we obtain

Π(p) = p (d− ep)− c ((d− ep)) , p ≤ d

e
,

where d, e and c are positive parameters.

271
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X

p

d

e

d

( )pX

e

d

2

0, =pXε

1, =pXε

∞=pX ,ε

F����� 1. Price elasticity along a linear demand curve

Note that costs are a function of the quantity produced (as in chapter

IX), but that the quantity itself is determined by the price. In fig. 3, you see

that the cost curve is downward-sloping (with the price on the abscissa!). c

can be addressed as both marginal and average cost.

D�������
� XI.2 (a monopolist’s decision situation (price setting)). A

monopolist’s decision situation with price setting is a tuple

∆ = (X,C) ,

where

• X is the demand curve and

• C is the cost function.

The price setting monopolist’s problem is to find the profit maximizing price

given by

pR (∆) := argmax
p∈R

Π(p)

pR (∆) is also denoted by pM and referred to as monopoly price.

E������� XI.2. What is the interpretation of p? in fig. 2?

In order to make meaningful comparisons, units of measurement have to

be the same. Prices are measured in monetary units
quantity units while revenue (price times

quantity!) is measured in

monetary units

quantity units
· quantity units

= monetary units.

E������� XI.3. And how about the interpretation of the p? in fig. 3?
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RX ,

p

d

X

maxRp

R

?p
e

d

F����� 2. Find the economic meaning of the question mark!

cd

C

?p

R

?p ?p ?p

RC,

p

F����� 3. Same question, different answer

1.2. Marginal revenue and elasticity. Differentiating equation XI.1

leads to marginal revenue with respect to price and to marginal cost with

respect to price. The former is given by

dR(p)

dp
=
d [pX(p)]

dp
= X + p

dX

dp

and consists of two summands:

• A price increase by one Euro increases revenue by X; for every unit

sold the firm obtains an extra Euro.

• A price increase by one Euro reduces demand by dX
dp

so that sales

are reduced by pdX
dp .
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RX ,

p

d

X

1, −=pXε

R

=maxRp
e

d

2 e

d

F����� 4. Revenue and price elasticity

Using the price elasticity of demand, the marginal revenue with respect to

price can also be written as

dR(p)
dp = pdX(p)dp +X(p)

= X(p)
�
1 + p

X(p)
dX(p)
dp

�

= −X(p) [|εX,p| − 1]

> 0 for |εX,p| < 1.

(XI.2)

Thus, marginal revenue with respect to price is equal to zero (and hence

revenue maximal) if the price elasticity of demand is equal to −1. A price

increase by one percent reduces demand by one percent and therefore rev-

enue remains constant. Consider fig. 4 where revenue R (p) = p (d− ep) =

pd− ep2 is maximal at pRmax := d
2e . Relationships between marginal some-

thing and elasticity of something are called Amoroso-Robinson equations.

We will encounter several of these.

E������� XI.4. Comment! A firm can increase profit if it produces at

a point where demand is inelastic, i.e., where 0 > εX,p > −1 holds.

Marginal cost with respect to price dC
dp is related to marginal cost (with

respect to quantity), dC
dX . Indeed, we have

dC

dp
=

dC

dX����
>0

dX

dp����
<0

< 0.

1.3. Profit maximization. The first-order condition for profit maxi-

mization is
dR

dp
!
=
dC

dp
.
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As you see on p. 286, the optimal price rule

p− dC
dX

p
!
=

1

|εX,p|
is easily obtained. It shows how far the monopolist can increase the price

above marginal cost. We find that the optimal relative price-cost margin is

high if the demand is inelastic. That makes sense: If demand is inelastic, a

relative price increase is met by a relatively low relative quantity decrease.

This demand reaction gives the monopolist an incentive to increase the price.

In our linear case, we find the profit-maximizing price (also called monopoly

price)

pM =
d+ ce

2e
=

1

2

�
d

e
+ c

�

which is the mean of the prohibitive price and the marginal cost.

E������� XI.5. Confirm the formula for the above monopoly price.

Which firm maximizes revenue? How does the monopoly price change if

average cost c changes?

1.4. Price differentiation. The monopolist can increase his profit

above Π
�
pM

�
by not selling all units at a unique price, i..e, by engaging

in price differentiation or price discrimination. In this section, we deal with

perfect price differentiation (also called price differentiation of the first de-

gree) and price differentiation of the third degree:

• First-degree price differentiation means that every consumer pays a

price equal to his willingness to pay. Using the Marshallian concept

of consumers’ rent (see pp. 150), the monopolist’s revenue is given

by the area under the Marshallian demand curve. We return to

this case in subsection 3.7 below (pp. 287).

• Third-degree price differentiation means that we have several mar-

kets and for each market a (possibly) different price.

E������� XI.6. A monopolist is active in two markets with demand

functions X1 and X2 given by

X1 (p1) = 100− p1,

X2 (p2) = 100− 2p2.

He has constant unit cost c of 20 Euro.

• Find the profit-maximizing prices pM1 and pM2 .
• Assume that price differentiation is not possible. Find the one
profit-maximizing price pM . Hint 1: Find the prohibitve prices for

each submarket before summing demand. Hint 2: You arrive at two

solutions. Compare profits.
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2p 1p

( )22
1 pX

( )1pX

1x

F����� 5. Firm 1’s demand function

2. Price competition

2.1. The game. We start with the same market demand as in the

monopoly section. Assuming that the products offered by the two firms 1

and 2 are homogeneous, all consumers buy from the firm with the lower

price. Finally, we assume that demand is shared equally at identical prices.

We then arrive at the demand function for firm 1 :

x1(p1, p2) =





d− ep1, p1 < p2
d−ep1
2 , p1 = p2

0, p1 > p2.

(XI.3)

It is shown in fig. 5.

Assuming unit cost c1, firm 1’s profit is then given by

Π1(p1, p2) = (p1 − c1)x1(p1, p2). (XI.4)

It is a function of firm 1’s own price and the competitor’s price and depicted

in fig. 6 for several cases.

We can now define the strategic pricing game:

D�������
� XI.3 (Pricing (Bertrand) game). A pricing game (Bertrand)

is the strategic form

Γ =
�
N, (Si)i∈N , (Πi)i∈N

�
,

where

• N is the set of firms,

• Si :=
	
0, d

e



is the set of prices and

• Πi : S → R is firm i’s profit function analogous to eq. XI.4.

Equilibria of this game are called Bertrand equilibria or Bertrand-Nash equi-

libria.
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2.2. Accomodation and Bertrand paradox. We now consider two

firms. We are dealing with both actual competition (between firms on the

market) and potential competition (by firms as yet outside). In most models,

we focus attention on just two firms. With respect to entry, Bain (1956) has

taught us to differentiate between

• accomodated entry (both firms are actual competitors),

• blockaded entry (one firm is in the market and can charge the

monopoly price while the other firm does not find entry profitable)

and

• deterred entry (which is like blockaded entry with the difference

that the incumbent firm holds the price sufficiently low so as to

deter entry of the other firm).

Throughout this chapter, we will repeatedly refer to these three terms.

We begin with accomodation and assume identical marginal and unit

cost below the prohibitive price:

c := c1 = c2 <
d

e
.

Homogeneity of the products makes undercutting very profitable. Therefore,
�
pB1 , p

B
2

�
= (c, c)

is a good Nash-equilibrium candidate. B stands for “Bertrand” (more in

a minute). The strategy combination
�
pB1 , p

B
2

�
leads to the quantities and

profits

xB1 = xB2 =
1

2
X(c) =

d− ec

2
, (XI.5)

ΠB
1 = ΠB

2 = 0. (XI.6)

L���� XI.1 (Bertrand paradox). Assume the game of definition XI.3

with N = {1, 2} and c := c1 = c2 <
d
e
. This game has one and only one

equilibrium
�
pB1 , p

B
2

�
= (c, c) .

For a proof, we need to check that (c, c) is an equilibrium, and further-

more that there are no other equilibria. This is not difficult to do.

The result of this lemma is known as Bertrand paradox. In light of the

incentives to undercut a rival, the equilibrium may not be really astonish-

ing. However, quantity competition does not lead to the equality of price

and marginal cost unless we have perfect price differentiation or perfect

competition.

Of course, the Bertrand paradox is somewhat unsatisfactory — from the

point of view of the oligopolists and also from the theoretical perspective.

Several ways out of the paradox can be pursued:

• Firms typically meet several times under similar conditions. The

theory of repeated games presented in chapter XIII explains when
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case A case B

case C

1Π 1Π

1Π

1c

12 cp <

Mppc 121 <<
21 ppM ≤

Mp1
Mp1 1c1c 2p 2p1p 1p

1p

2p

F����� 6. Firm 1’s profit function

and how firms may escape the dire consequences of the Bertrand

paradox.

• Different average costs are treated in the next section.

• A price cartel allows firms to share the monopoly profit.

• Products may not be homogeneous but differentiated. We follow

up on this possibility in chapter XII.

E������� XI.7. Assume two firms with identical unit costs of 10 Euro.

The strategy sets are S1 = S2 = {1, 2, ..., } . Determine all Bertrand equilib-
ria.

2.3. Blockaded entry and deterred entry. So far, we have con-

sidered the case of identical unit costs and hence accomodation. We now

assume c1 < c2 so that firm 1 produces cheaper than firm 2. Fig. 6 presents

firm 1’s profit function depending on both c1 and p2.

2.3.1. Market entry blockaded for both firms. If the marginal costs of

both firms lie above the prohibitive price,

c1 ≥
d

e
, c2 ≥

d

e
,

market entry is blockaded for both firms.

2.3.2. Market entry of firm 2 blockaded. We now assume

c1 <
d

e
and c2 ≥ pM1 .

Entry is not blockaded for firm 1 and firm 2’s average cost lies above firm 1’s

monopoly price. Firm 2 can avoid losses by setting p2 = c2. Our assumptions
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are then reflected in fig. 6, case A. The strategy combination

�
pB1 , p

B
2

�
=
�
pM1 , c2

�
=

�
d

2e
+
c1
2
, c2

�

is then an equilibrium where

xB1 =
d− ec1

2
, xB2 = 0,

ΠB
1 =

(d− ec1)
2

4e
, ΠB

2 = 0

hold.

E������� XI.8. Can you find other equilibria?

2.3.3. Market entry of firm 2 deterred. We now assume that the monop-

oly price set by firm 1 is not sufficient to keep firm 2 out of the market. This

is the case for

c1 <
d

e
and c2 < pM1 .

The reader is invited to consult fig. 6, case B. p2 := c2 prompts firm 1’s best

response c2 − ε where ε is a very small monetary unit. Strictly speaking,

and for reasons explained on p. 140, a best response does not exist here.

The reader will pardon us to ignore these purely mathematical problems.

In contrast to the previous section, firm 1 now needs to actively prevent

entry by firm 2. Thus, firm 1’s profit is lower under deterrence than under

blockade. The entry-deterring price is also called limit price. It is denoted

by

pL1 (c2) := c2 − ε.

We have the Bertrand-Nash equilibrium

�
pB1 , p

B
2

�
=
�
pL1 (c2), c2

�
= (c2 − ε, c2)

with the associated quantities and profits

xB1 ≈ d− ec2, xB2 = 0,

ΠB
1 ≈ (c2 − c1) (d− ec2) , ΠB

2 = 0.

2.3.4. Summary. Depending on marginal costs, we find six cases that are

listed in table 7 and depicted in fig. 8. c1 = c2 yields the Bertrand paradox

which is the 45◦-line in this figure. The other five cases are reflected in an

area of our c1-c2-space. For example, entry is blockaded for firm 2 in case

of c2 > pM1 (c1) =
d
2e +

c1
2 . The corresponding demarcation line is the left of

the two dashed lines.
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1. no supply,
c1 ≥ d

e and

c2 ≥ d
e

2. Entry of firm 2 blockaded
0 ≤ c1 <

d
e and

pM1 = d+ec1
2e < c2

3. Entry of firm 2 deterred
0 ≤ c1 <

d
e and

c1 < c2 ≤ d+ec1
2e = pM1

4. Bertrand-Paradox
c1 = c2 =: c and

0 ≤ c < d
e

5. Entry of firm 1 deterred
0 ≤ c2 <

d
e and

c2 < c1 ≤ d+ec2
2e = pM2

6. Entry of firm 1 blockaded
0 ≤ c2 <

d
e and

pM2 = d+ec2
2e < c1

F����� 7. Solutions to pricing competition for different

combinations of unit costs

duopoly,
Bertrand-Paradox 
(case 4)

deterrence
(case 3)

deterrence
(case 5)

monopoly 1

no supply
(case 1)

blockade (case 6)

blockade (case 2)

monopoly 2

1c

2c

e

d

e

d

2

e

d

2

e

d

F����� 8. Deterred and blockaded entry

3. Monopoly: quantity policy

3.1. The linear model. The quantity setting monopoly presupposes

an inverse demand function. Again, we work with a linear specification.

E������� XI.9. Assume the linear inverse demand function p given by

p (X) = a− bX, with positive constants a and b. Determine

(1) the slope of the inverse linear demand function,

(2) the slope of its marginal-revenue curve,

(3) saturation quantity and

(4) prohibitive price.
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D�������
� XI.4. A monopoly’s profit in terms of quantity X ≥ 0 is

given by

Π(X)� �� �
profit

: = R(X)� �� �
revenue

−C(X)� �� �
cost

= p (X)X −C (X)

where p is the inverse demand function. In our linear model, we obtain

Π(X) = (a− bX)X − cX,X ≤ a

b
,

where a, b and c are positive parameters.

D�������
� XI.5 (a monopolist’s decision situation (quantity setting)).

A monopolist’s decision situation with quantity setting is a tuple

∆ = (p, C) ,

where

• p is the inverse demand function and

• C is the cost function.

The quantity setting monopolist’s problem is to find the profit maximizing

quantity given by

XR (∆) := argmax
X∈R

Π(X)

XR (∆) is also denoted by XM and referred to as monopoly quantity.

3.2. Marginal revenue. In our linear model, marginal cost is simply

c. Marginal revenue is more interesting. It is given by

MR (X) = p+X
dp

dX
and consists of two summands:

• If the monopolist increases his quantity by one unit, he obtains the

current price for that last unit sold.

• The bad news is that a quantity increase decreases the price by dp
dX
.

Without price differentiation, this price decrease applies to all units

sold. Thus, in case of a negatively sloped inverse demand curve,

revenue is changed by X dp
dX ≤ 0.

There are three cases where marginal revenue equals price:

• The demand curve is horizontal ( dp
dX = 0) in which case marginal

revenue equals price Then, the monopoly’s output decision has no

effect on the market price.

• We have MR = p for the first “small” unit (X = 0). Indeed, the

price can also be understood as average revenue, R (X) /X = p.

On pp. 208, we have seen the general argument for any marginal

something versus any average something. In our specific case, the

firm obtains the prohibitive price (or just below) for the first unit

it sells.
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• First-degree price differentiation also implies MR = p. In a sense,

we also have X = 0 because the price decrease implied by the

quantity increase is not applied to all consumers buying “so far”

(the so-called infra-marginal consumers). We will deal with perfect

price differentiation in some detail later on, see pp. 287.

Marginal revenue can also be expressed by the price elasticity of demand.

In fact, we need its inverse 1
εX,p

which is the relative effect of a one percent

increase in quantity on price. We obtain the Amoroso-Robinson equation

MR = p+X
dp

dX
= p

�
1 +

dp

dX

X

p

�

= p

�
1 +

1

εX,p

�

= p

�
1− 1

|εX,p|

�
> 0 for |εX,p| > 1.

3.3. Monopoly profit. The profit at some quantity X̄ is given by

Π
�
X̄
�

= p(X̄)X̄ −C
�
X̄
�

=
	
p(X̄)−AC

�
X̄
�

X̄ (average definition)

=

X̄(

0

[MR (X)−MC (X)] dX (marginal definition)

Graphically, this profit can be reflected in two different manners:

• Average viewpoint: For X̄ > 0, the monopoly profit is equal to

average profit (p(X̄) − AC
�
X̄
�
) times quantity X̄. In fig. 9, the

corresponding area is the rectangle EGHF.

• Marginal viewpoint: We add the marginal profit for the first, the

second etc. units. Algebraically, we have the above integral, graph-

ically, we address the area between marginal-revenue curve and

marginal-cost curve, DCBA.

3.4. Profit maximization. The first-order condition for profit maxi-

mization is

MC
!
=MR.

E������� XI.10. Find the profit-maximizing quantity XM for the in-

verse demand curve p (X) = 24−X and constant unit cost c = 2!

E������� XI.11. Find the profit-maximizing quantity XM for the in-

verse demand curve p (X) = 1
X and constant unit cost c!

The profit-maximizing rule “marginal revenue equals marginal cost” de-

termines XM (see fig. 10 for the linear case). The consumers have to pay

the price pM = p
�
XM

�
. M =

�
XM , pM

�
is sometimes denoted as Cournot

point. Antoine Augustin Cournot (1801-1877) was a French philosopher,
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F����� 9. Average versus marginal profit
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F����� 10. The Cournot monopoly

mathematician and economist. He is rightly famous for his 1838 treatise

“Recherches sur les principes mathématiques de la théorie des richesses”. In

chapter 5, Cournot deals with the main elements of monopoly theory and

chapter 7 contains oligopoly theory (see section 4).

For c ≤ a, the Cournot point lies in the elastic part of market demand

(see exercise XI.4, p. 274). The case of c > a is depicted in fig. 11. The

optimal quantiy is summarized by

XM = XM(c, a, b) =

6
1
2
(a−c)

b , c ≤ a

0, c > a.
(XI.7)

We will assume c ≤ a for the rest of this monopoly section.



284 XI. PRICE AND QUANTITY COMPETITION

X

( )Xp

p

c

a

ACMC =

MR

F����� 11. A blockaded monopolist

In our linear case, it is easy to do some comparative statics. For that

purpose, we write down the equilibrium variables XM , pM and ΠM together

with the partial derivatives with respect to a, b and c :

XM(a, b, c) = 1
2
(a−c)

b , where ∂XM

∂c < 0; ∂XM

∂a > 0; ∂XM

∂b < 0,

pM(a, b, c) = 1
2(a+ c), where ∂pM

∂c > 0; ∂pM

∂a > 0; ∂pM

∂b = 0,

ΠM(a, b, c) = 1
4
(a−c)2

b , where ∂ΠM

∂c < 0; ∂ΠM

∂a > 0; ∂ΠM

∂b < 0.

(XI.8)

E������� XI.12. Consider ΠM(c) = 1
4
(a−c)2

b and calculate dΠM

dc ! Hint:

Use the chain rule!

For a monopolist, it does not matter whether he chooses the profit-

maximizing quantity or the profit-maximizing price. The equivalence of

these two profit-maximizing rules can be seen from fig. 12.

3.5. The influence of average cost on maximal profit. We now

reconsider the question asked in the last exercise: How does average cost c

influence the maximal profit ΠM (c)? With a glance at

ΠM = p(XM)XM − cXM ,

a first guess may be
dΠM (c)

dc
= −XM .

However, shouldn’t a cost increase influence the optimal quantity? Indeed,

we have determined

XM (c) =
1

2

(a− c)

b
.

Thus, an increase of c leads to a decrease of the optimal quantity so that we

should find dΠM (c)
dc > −XM . If we are dealing with a discrete cost increase,
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III

III IV

Π

Π

p

M

X

MCAC =

b
ca −

b
ca

2
−=MX( )

b
ca

4

2−

( )
b
ca

4

2−

MR
2

ca +=Mp

c

a

( )Xp

F����� 12. Monopoly price and quantity

this argument is correct. For example, consider an increase of c from 0 to
a
2 . Holding XM (0) = a

2b constant, we have p(XM (0)) = 1
2(a+ 0) = a

2 and

therefore profit

ΠM =
�
p(XM (0))− a

2

�
XM (0) = 0.

Now, if we adjust the quantity in an optimal fashion, we obtain XM
�
a
2

�
=

1
2

(a−a
2
)

b = a
4b and the price p(XM

�
a
2

�
) = 1

2(a + a
2 ) = 3

4a. Then, profit is

higher than 0 :

ΠM =
�
p
�
XM

�a
2

��
− a

2

�
XM

�a
2

�
=

=

�
3

4
a− a

2

�
1

4

a

b
=

1

16

a2

b
> 0.

Thus, adjusting pays in the descrete case. Interestingly, this argument does

not apply to “very small” increases of c. In order to see why, we write the

monopoly profit as

ΠM (c) = Π
�
c,XM (c)

�
.
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The maximal profit depends both directly and indirectly on c. Differentiat-

ing both sides of this equation, we find

dΠM (c)

dc
=

∂Π

∂c����
< 0

direct effect

+
∂Π

∂X

����
X=XM� �� �
= 0

first-order condition

for profit maximization

dXM

dc
.

� �� �
< 0

high marginal cost leads

to a lower optimal quantity

� �� �
= 0

indirect effect

On the right-hand side, we use ∂ because of partial differentiation, with

respect to c and with respect to XM (c) . Differentiation means considering

the effect of very small changes. A very small change in c leads to a very

small change in output X. Since ∂Π
∂X is zero at X = XM , it is also zero very

close to XM . This explains why the indirect effect is zero. Indeed, for the

left-hand side, the solution to exercise XI.12 shows

dΠM (c)

dc
= −XM

and the direct effect on the right-hand side leads to the same result:

∂Π
�
c,XM (c)

�

∂c
=
∂
�
p
�
XM

�
XM − cXM

�

∂c
= −XM .

Did you realize that this is just another application of the envelope theorem

that we introduced in chapter VII (pp. 168)?

E������� XI.13. In order to apply definition VII.2 and theorem VII.3

(pp. 168), transfer the symbols beginning with Π := f.

3.6. Alternative expressions for profit maximization. Using the

Amoroso-Robinson equation, the profit-maximization rule can be expressed

by

MC
!
=MR = p

�
1− 1

|εX,p|

�
, (XI.9)

p
!
=

|εX,p|
|εX,p| − 1

MC or (XI.10)

p−MC

p
!
=

1

|εX,p|
. (XI.11)

According to eq. XI.9, the monopolist extends his quantity until marginal

cost reach marginal revenue. Eq. XI.10 tells us that the profit-maximizing

price can be understood as a multiplicative surcharge on marginal cost. The

surcharge itself is a function of the price elasticity of demand.
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Cournot point

AC

MR

MC

( )Xp

XMX

p

Mp

F����� 13. Monopoly power versus monopoly profit

D�������
� XI.6 (Lerner index). Assuming a monopoly, the Lerner in-

dex of market power is defined by

p−MC

p
.

p−MC
p

is addressed as the relative price-cost margin, also known as

Lerner index. It tells how far the monopolist can increase the price above

marginal cost, relative to the price. In perfect competition, we have p =MC

so that the Lerner index is a measure for the distance between monopoly

and perfect competition. It is sometimes said that perfect competition epit-

omizes the absence of power. From that perspective, the Lerner index mea-

sures market power. According to eq. XI.11, the optimal price-cost margin

varies inversely with the absolute value of market elasticity.

Monopoly power and monopoly profit are not the same as fig. 13 makes

clear. The monopolist has monopoly power by p > MC but no profit

because of AC
�
XM

�
=

C(XM)
XM = pM .

3.7. First-degree price differentiation. First-degree price differen-

tiation means that every consumer pays according to his willingness to pay

and that marginal revenue

MR = p+X
dp

dX
= p+ 0 · dp

dX

equals the price. The price decrease following a quantity increase concerns

the marginal, but not the infra-marginal consumers.

Of course, we have derived MR = p in a somewhat rough-and-ready

manner. More formally, the price-discriminating monopolist maximizes

Marshallian willingness to pay − cost

=

( X

0
p (q)dq −C (X)
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where the Marshallian willingness to pay is defined on p. 150. Differentiating

with respect to X now yields

p (X)
!
=
dC

dX

and thus our “price equals marginal cost” rule.

Consider fig. 10 on p. 283. The perfectly discriminating monopoly’s

profit is equal to the triangle AFD.

3.8. Third-degree price differentiation (two markets, one fac-

tory) . In this section, we deal with a monopolist who produces in one

factory, but supplies two markets. In the following section, we consider the

opposite case: one market, two factories. The two-markets-one-factory case

can be used to examine third-degree price differentiation. Let x1 and x2 be

the output on the two markets 1 and 2. Let p1 and p2 be the corresponding

inverse demand functions. The monopolist’s profit is equal to

Π(x1, x2) = p1 (x1)x1 + p2 (x2)x2 −C (x1 + x2) ,

with first-order conditions

∂Π(x1, x2)

∂x1
= MR1 (x1)−MC (x1 + x2)

!
= 0,

∂Π(x1, x2)

∂x2
= MR2 (x2)−MC (x1 + x2)

!
= 0.

We immediately see that the marginal revenues in both markets should

coincide. Assume MR1 < MR2. The monopolist can transfer one unit from

market 1 to market 2. Revenue and profit (we have not changed total output

x1 + x2) increases by MR2 −MR1.

Fig. 14 provides an illustration. The horizonal line parallel to the ab-

scissa guarantees MR1 (x
∗
1) =MR2 (x

∗
2) . As long as

MC (x∗1 + x∗2) < MR1 (x
∗
1) =MR2 (x

∗
2)

holds, the monopolist should produce more in both markets.

Price differentiation of the third degree obeys the inverse elasticities rule:

|ε1| > |ε2| ⇒ pM1 < pM2 .

Just use the Amoroso-Robinson equation to rewrite the optimization condi-

tion MR1 (x∗1) =MR2 (x∗2) as follows:

pM1

�
1− 1

|ε1|

�
!
= pM2

�
1− 1

|ε2|

�
.

E������� XI.14. A monopolist sells his product in two markets:

p1 (x1) = 100− x1,

p2 (x2) = 80− x2.
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1x2x

1p

1MR2MR

*
1x*

2x

2p

*
1p

*
2p

market 1market 2

p

total output

F����� 14. Equality of marginal revenues

(1) Assume price differentiation of the third degree and the cost func-

tion given by C (X) = X2. Determine the profit-maximizing quan-

tities and the profit.

(2) Repeat the first part of the exercise with the cost function C (X) =

10X.

(3) Assume, now, that price differentiation is not possible any more.

Using the cost function C (X) = 10X, find the profit-maximizing

output and price. Hint: You need to distinguish quantities below

and above 20.

3.9. One market, two factories. Mirrowing the above section, we

now turn to a monopolist who serves one market but operates two factories.

With obvious notation, we have

Π(x1, x2) = p (x1 + x2) (x1 + x2)−C1 (x1)−C2 (x2) .

and

∂Π(x1, x2)

∂x1
= MR (x1 + x2)−MC1 (x1)

!
= 0,

∂Π(x1, x2)

∂x2
= MR (x1 + x2)−MC2 (x2)

!
= 0.

Thus, the firm produces at MC1
!
=MC2. Assume, to the contrary, MC1 <

MC2. A transfer of one unit of production from the (marginally!) more

expensive factory 2 to the cheaper factory 1, decreases cost, and increases

profit, by MC2 −MC1. Fig. 15 depicts the two marginal-cost curves and

the horizontal line where the equality holds.

As a corollary, the equality of the marginal costs also holds for a cartel

of two or more firms.
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1x
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2x

1MC

*
1x*

2x

2MC

factory 1factory 2

total output

F����� 15. Equality of marginal costs

3.10. Welfare-theoretic analysis of monopoly.

3.10.1. Introduction. Welfare theory is a branch of normative economics

that is concerned with the evaluation of economic policies or, more generally,

economic changes of any sort. The most simple analysis just rests on

• Marshallian consumers’ rent (see chapter VI, pp. 150),

• producers’ rent (chapter IX, pp. 227) and

• taxes.

They measure the monetary advantage accruing to consumers, producers

and the government, respectively. We just sum these three components into

an aggregate called welfare. Distributional aspects are disregarded and it

makes no difference which group benefits.

Sometimes, we make the assumption that the government tries to maxi-

mize welfare. The underlying reason need not be benevolence. Perhaps, the

government just maximizes its support (chances of reelection) by benefit-

ting consumers, producers, beneficiaries of publicly provided goods and tax

payers.

3.10.2. Perfect competition as benchmark. Perfect competition is a mar-

ket form with many consumers and producers. In perfect competition (see

more in chapter XIX), households and consumers are price takers and the

profit-maximizing rule for producers is “price equals marginal cost” (see

pp. 225). We talk about it here because perfect competition provides a

welfare-theoretical benchmark. This can be seen by two different lines of

argumentation.

(1) Consider the demand and supply curve in fig. 16. At point R,

supply and demand meet, this is the equilibrium. The marginal
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supply

demand

X

PR

CR

p

R

F����� 16. Welfare is maximal under perfect competition

PCXMX

p

Mp

MR

MC

( )Xp

MCp =

MCMR =

X

PCp

F����� 17. Wefare loss due to monopoly

consumer’s willingness to pay equals the marginal firm’s loss com-

pensation (marginal cost). Therefore, the quantity produced and

consumed at R is optimal.

(2) At R, the sum of consumers’ and producers’ rents is maximal. Just

examine what happens if the price is higher or lower than at R.

3.10.3. Cournot monopoly. We are now set to analyze the Cournot mo-

nopoly from a welfare point of view. The Cournot quantityXM is lower than

the welfare-maximizing quantity XPC produced in perfect competition, as

illustrated in fig. 17. The wefare loss is measured by the shaded area.

E������� XI.15. Assume that the monopolist cannot price discriminate.

His marginal-cost curve is given by MC = 2X and he faces the inverse

demand curve p (X) = 12 − 2X. Determine the welfare loss! Hint: Sketch

the situation and apply the triangle rule!
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The welfare loss is due to the positive external effect of a quantity in-

crease unrealized in a Cournot monopoly. We have

CR
�
X̄
�
=

( X̄

0
p (X) dX − p

�
X̄
�
X̄

and

dCR
�
X̄
�

dX̄
=

d
/ X̄

0 p (X)dX

dX̄
− d

	
p
�
X̄
�
X̄



dX̄

= p
�
X̄
�
−
�
p
�
X̄
�
+

dp

dX̄
X̄

�
= − dp

dX̄
X̄ > 0.

The Cournot monopolist offers too small a quantity. If, however, the monop-

olist were to take account of the positive external effect, he would maximize
	
p(X̄)X̄ −C(X̄)



+CR

�
X̄
�
.

Then, the first-order condition would be
�
p
�
X̄
�
+

dp

dX̄
X̄ − dC

dX̄

�
− dp

dX̄
X̄

!
= 0

or

p
�
X̄
� !
=
dC

dX̄
and hence the first-order conditions for perfect competition or price differ-

entiation of the first degree.

4. Quantity competition

4.1. Price versus quantity competition. For the development of

economic theory, the treatise offered by Cournot in 1838 is of upmost impor-

tance. After all, Cournot has to be regarded as the founder of noncooperative

game theory. From the point of view of the history of economic thought,

we have chosen the wrong sequence of presentation. After all Cournot’s

oligopoly theory (for quantity setters) goes back to 1838 while Bertrand’s

oligopoly theory (for price setters) was published much later, 1883 (compare

1838 versus 1883). The French mathematician Bertrand criticizes Cournot

for having firms choose quantities rather than prices.

However, we do not necessarily need to subscribe to Bertrand’s criticism.

The Cournot model can be defended via two different arguments. First,

there are goods where quantity competition seems to be the correct model.

Consider, for example, agricultural production or oil production where some

time elapses between sowing (drilling) and the delivery of the product to

the consumer. The firms do not have a direct influence on prices. Rather,

they produce and can only observe the resulting price some time later. In

contrast, the competition of mail-order firms is best modeled by price-setting

firms who cannot change prices easily.

Second, and certainly related to the first point, a very interesting vin-

dication of Cournot has been offered by Kreps & Scheinkman (1983), just
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100 years after Bertrand’s publication. These authors present a two-stage

model where the firms decide on capacity at the first stage and on prices at

the second. They find out that the quantities obtained from the two-stage

model equal the Cournot equilibrium quantities. Roughly speaking, they

justify the formula

simultaneous capacity construction

+ Bertrand competition

= Cournot results

4.2. The game. The Cournot model is about simultaneous quantity

competition between producers of a homogeneous good:

D�������
� XI.7 (Quantity (Cournot) game). A quantity game (Cournot

game) is the strategic form

Γ =
�
N, (Si)i∈N , (Πi)i∈N

�
,

where

• N is the set of firms,

• Si := [0,∞) is the set of quantities and

• Πi : S → R is firm i’s profit function given by

Πi (xi,X−i) := p (xi +X−i)xi −C (xi) .

Here, X−i stands for
�n

j=1,
j �=i

xj. Equilibria of this game are called Cour-

not equilibria or Cournot-Nash equilibria.

In the previous chapter (pp. 257), we learned that Nash equilibria are

definable by the crossing of all best-response functions. In case of two firms

1 and 2, the best-response functions (often called reaction functions) are

denoted by xR1 and xR2 and the Nash equilibrium is given by
�
xC1 , x

C
2

�
with

xC1 = xR1
�
xC2

�
and xC2 = xR2

�
xC1

�
.

4.3. Accomodation.

4.3.1. Equilibrium. In the linear case, we find the first-order condition

for firm 1

∂Π1(x1,x2)

∂x1
=MR1(x1)−MC1(x1) = a− 2bx1 − bx2 − c1

!
= 0

and its reaction function

xR1 (x2) =
a− c1
2b

− 1

2
x2 = xM1 − 1

2
x2.

Thus, in response to the increase of x2 by one unit, firm 1 wants to decrease

x1 by half a unit. Sometimes, we say that quantities are strategic substitutes.

In household theory, butter and margarine are called substitutes because the

demand for butter decreases if the demand for margarine increases (due to

a price decrease of margarine, see p. 175). See fig. 18 for an illustration of

both reaction functions and their intersection
�
xC1 , x

C
2

�
.
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Cournot-Nash
equilibrium

1xCx1

Mx2

Cx2

2x

( )21 xx R

( )12 xxR

C

Mx1

F����� 18. Reaction functions and Cournot-Nash equilibrium

Solving the two best-response functions for x1 and x2, we obtain the

equilibrium
�
xC1 , x

C
2

�
with

xC1 =
1

3b
(a− 2c1 + c2) , (XI.12)

xC2 =
1

3b
(a− 2c2 + c1) (XI.13)

and hence

XC = xC1 + xC2 =
1

3b
(2a− c1 − c2) ,

pC =
1

3
(a+ c1 + c2) ,

ΠC
1 =

1

9b
(a− 2c1 + c2)

2 ,

ΠC
2 =

1

9b
(a− 2c2 + c1)

2 ,

ΠC = ΠC
1 +ΠC

2 < ΠM .

4.3.2. Iterative rationalizability. The Cournot duopoly can also be solved

by rationalizability (see chapter II), applied several times. Examples of it-

erative dominance can be found in the previous chapter.

With a view to eq. XI.7, p. 283, we see that the reaction functions of

fig. 18 are not complete. Instead, the complete reaction function for firm 2

is given by

xR2 (x1) =

)
a−c2
2b − x1

2 , x1 <
a−c2
b

0, otherwise

and depicted in fig. 19.

xL1 :=
a− c2
b
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Lx1

Mx2 ( )12 xx R

2x

1x

F����� 19. Firm 2’s complete reaction function

is firm 1’s limit quantity. Because of p
�
xL1

�
= c2, firm 2 would rather not

offer a positive quantity in response to any x1 ≥ xL1 .

Now, our argument rests on fig. 20. Firm 1 may choose any non-

negative quantity. From firm 2’s point of view, we can restrict attention

to the quantities between 0 and xL1 . One glance at firm 2’s reaction curve

makes clear that every quantity x2 from

I1 : =
	
xR2

�
xL1

�
, xR2 (0)




=
	
0, xM2




can be rationalized while any quantity x2 > xM2 cannot, due to strict dom-

inance by xM2 = 1
2
a−c
b . Turning to firm 1, the best responses to quantities

from I1 are collected in

I2 : =
	
xR1

�
xM2

�
, xR1 (0)




=

�
1

4

a− c1
b

, xM1

�
.

After all, outputs smaller than x1 = 1
4
a−c
b

are dominated by 1
4
a−c
b

. The

third step is firm 2’s interval I3 :=
	
1
4
a−c2
b
, 38

a−c2
b



.

The intervals get smaller and smaller and converge towards the intersec-

tion point of the two reaction curves. Thus, the Cournot model is solvable

by iterative rationalizability.

4.3.3. Cartel treaty between two duopolists. We now consider two firms

1 and 2 and their quantities x1 and x2, respectively. They form a cartel

in order to realize Pareto improvements (from the point of view of the two

firms!). We write the cartel profit as

Π1,2 (x1, x2) = Π1 (x1, x2) + Π2 (x1, x2)

= p (x1 + x2) · (x1 + x2)−C1 (x1)−C2 (x2) .

The first-order conditions are

∂Π1,2
∂x1

= p+
dp

dX
(x1 + x2)−

dC1
dx1

!
= 0
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1x

2x
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( )21 xxR
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F����� 20. Iterative dominance in a Cournot duopoly

for the quantity x1 and

∂Π1,2
∂x2

= p+
dp

dX
(x1 + x2)−

dC2
dx2

!
= 0

for x2. As in section 3.9 (pp. 289), the marginal costs are the same for both

firms (if both of them produce a positive quantity).

More importantly, the Cournot duopolists do not achieve Pareto opti-

mality because they do not take account of the negative externalities that

each exerts on the other. As we will explain in chapter XIV (pp. 373), an

externality means that consumption or production activities are influenced

positively or negatively while no compensation is paid for this influence.

The relationship between two suppliers is a case in point. A price decrease

caused by an increase in x1 has a negative effect not only on firm 1’s sales�
dp
dX

dX
dx1

x1 < 0
�

but also on firm 2’s sales
�

dp
dX

dX
dx1

x2 < 0
�
:

∂Π2
∂x1

< 0.

The cartel agreement asks firms not to disregard this negative externality

as you can see from the above first-order conditions.

4.3.4. Comparative statics and cost competition. Firms may have com-

mon interests and conflicting interests. With respect to a and b, firms have

common interests. Both profit from an increase in a and a decrease in b.

They may try to enhance overall demand for their products by collaborative

advertising campaigns. Lower costs for both firms are also in their common

interest. For example, they may lobby for governmental subsidies or take a

common stance against union demands.

E������� XI.16. Two firms sell gasoline with unit costs c1 = 0.2 and

c2 = 0.5, respectively. The inverse demand function is p (X) = 5− 0.5X.

(1) Determine the Cournot equilibrium and the resulting market price.
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(2) The government charges a quantity tax t on gasoline. How does the

tax affect the price payable by consumers?

We now use the envelope theorem to analyze how marginal-cost changes

affect profit. Cost leadership can be obtained directly (by decreasing one’s

own cost) or indirectly (by raising the rival’s cost):

• Own cost may be decreased by cost-saving measures or by research

and development.

• Sabotage or, politically more correct, the support of environmental

groups in the competitor’s country are examples of the indirect way.

In order to analyze the direct way, we write down firm 1’s reduced profit

function

ΠC
1 (c1, c2) = Π1

�
c1, c2, x

C
1 (c1, c2) , x

C
2 (c1, c2)

�
.

Differentiating with respect to c1 yields

∂ΠC
1

∂c1
=

∂Π1
∂c1����
< 0

direct effect

+
∂Π1
∂x1����
= 0

∂xC1
∂c1

+
∂Π1
∂x2����
<0

∂xC2
∂c1����
>0� �� �

< 0

strategic effect

< 0.

The first summand is the direct effect. How is profit Π1 affected if c1 is

increased while xC1 and xC2 are not changed? Negative, of course. The second

summand vanishes because of the envelope theorem (firm 1’s marginal profit

is zero in equilibrium). The last summand is the strategic effect. A decrease

in c1 reduces xC2 (see also fig. 21) which is an effect welcome to firm 1

because of the associated price increase. Thus, in order to maximize profit,

a dyopolist invests more in cost reductions than advisable from the direct

effect alone.

The indirect way can be shown by differentiating Π1 with respect to c2.

We find

∂ΠC
1

∂c2
=

∂Π1
∂c2����
= 0

direct effect

+
∂Π1
∂x1����
= 0

∂xC1
∂c2

+
∂Π1
∂x2����
<0

∂xC2
∂c2����
<0� �� �

> 0

strategic effect

> 0.

The strategic effect is positive. A rival’s cost increase increases a firm’s

profit. Indeed, if a firm 2 produces with higher marginal cost c2, its equilib-

rium quantity decreases (see fig. 22) so that firm 1’s profit increases, again

due to a price increase.
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F����� 21. Cournot-Nash equilibria for decreasing costs

Cournot-Nash
equilibrium

1x

2x

increases 2c

( )21 xx R

( )12 xxR

F����� 22. Cournot-Nash equilibria for increasing rival costs

4.3.5. Replicating the Cournot model. Replication means making copies

of the agents and their properties. We now want to replicate the Cournot

model and hope to arrive at perfect-competition results. We consider an

example taken from Bester (2007, p. 128).

We assume m identical consumers and n identical firms. Every consumer

has the demand function

1− p

and every firm j is characterized by the production function

C (xj) =
1

2
x2j .
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We now derive the inverse market demand function. The m consumers’

demand is X = m (1− p) so that inverse aggregate demand is

p (X) =
m−X

m
.

Therefore, firm j’s profit function is

Πj (X) = p (X)xj −C (xj)

=

�
1−

xj +
�

i�=j xj

m

�
xj −

1

2
x2j

=

�
1− xj +X−j

m

�
xj −

1

2
x2j ,

yielding the reaction function xRj given by

xRj (X−j) =
m−X−j

m+ 2
.

We now restrict attention to symmetric equilibria. Thus, we let X−j =

(n− 1)xj and find

xj =
m− (n− 1)xj

m+ 2
and hence (by solving for xj) the equilibrium quantity

xCj =
m

m+ 1+ n
.

Aggregate output in equilibrium is

XC = nxCj =
nm

m+ 1 + n

and we obtain the market price

pC = 1− n

m+ 1 + n
.

Now, we can set replication into effect. Instead of n firms and m consumers,

we consider λn firms and λm consumers. The λ-fold replication yields the

market price

pC (λ) = 1− λn

λm+ 1 + λn
and marginal cost

MCj (λ) =
λm

λm+ 1 + λn
.

The price-cost margin is

pC (λ)−MCj (λ) = 1− λn

λm+ 1 + λn
− λm

λm+ 1 + λn

=
λm+ 1 + λn− λn− λm

λm+ 1+ λn

=
1

λm+ 1 + λn

=
1

λ (m+ n) + 1
.
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monopoly
firm 1

2x

1xLx1
Mx1

Mx2

( )21 xx R

( )12 xx R

C

M

F����� 23. Cournot equilibrium with blockaded entry

Letting λ go towards infinity, we find

lim
λ→∞

1

λ (m+ n) + 1
= 0.

Thus, we obtain the same result as under perfect competition: MC = p.

4.4. Blockaded entry and deterred entry. It is, of course, no for-

gone conclusion that both firms offer positive quantities in equilibrium. If

the marginal costs are sufficiently different, one firm may choose not to enter.

Let us assume c1 < c2.

4.4.1. Market entry blockaded for both firms. Market entry is blockaded

for both firm if

c1 ≥ a and c2 ≥ a

holds.

4.4.2. Market entry of firm 2 blockaded. Market entry for firm 2 is block-

aded if its unit cost is above firm 1’s monopoly price:

c2 ≥ pM (c1) =
1

2
(a+ c1) .

In terms of the reaction functions, we obtain fig. 23. You see two reaction

functions for firm 2. The lower one represents higher unit cost c2. This

curve intersects firm 1’s reaction curve at
�
xM1 , 0

�
. In other words, we have

xM1 > xL1 so that firm 1’s monopoly quantity is sufficient to keep firm 2 off

the market.

4.4.3. Summary. We distinguish four cases that are listed in table 7

and depicted in fig. 8.
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1. no supply,
c1 ≥ a and

c2 ≥ a

2. Entry of firm 2 blockaded
0 ≤ c1 < a and

c2 ≥ pM (c1) =
1
2 (a+ c1)

3. Entry of firm 1 blockaded
0 ≤ c2 < a and

c1 ≥ pM (c2) =
1
2 (a+ c2)

4. Accomodation
c1 < pM (c2) and

c2 < pM (c1)

F����� 24. Solutions to quantity competition for different

combinations of unit costs

duopoly

no supply

monopoly 1

monopoly 2

1ca

2c

a

2
a

2

a

F����� 25. Cournot competition: accomodation and blockade

5. Topics and literature

The main topics in this chapter are

• monopoly

• oligopoly

• pricing policy

• quantity competition

• potential competition

• rent

• reaction curve

• Cournot point

• marginal revenue

• marginal cost

• price differentiation

• direct and indirect effects
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C

0=Πp

R

maxRp maxΠp 0=Π=== RCXp

cd

p

RC,

F����� 26. Solution

• envelope theorem

• local solution

• global solution

This chapter owes a lot to the German textbook by Pfähler & Wiese (2008).

6. Solutions

Exercise XI.1

The saturation quantity is X (0) = d, the prohibitive price is implicitly

defined by X (p) = 0 and hence equal to d
e
. The price elasticity of demand

is

εX,p =
dX

dp

p

X
= (−e) p

d− ep
.

Exercise XI.2

Sorry, there is none.

Exercise XI.3

The answer is provided in fig. 26. Note that we have to shift the cost

curve upwards in order to find the price at which the difference between

revenue and cost is maximal.

Exercise XI.4

If demand is inelastic at the monopoly price (|εX,p| < 1), a price increase

leads to a revenue increase. Thus, revenue can be increased and cost can be

decreased (a smaller quantity normally leads to lower cost). Therefore, the

claim is correct.

Exercise XI.5
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The monopolist’s profit function is given by

Π(p) = X (p) p− cX (p)

= (d− ep) p− c (d− ep)

= dp− ep2 − cd+ cep.

Setting the derivative equal to zero and solving for p yields

dΠ

dp
= d− 2ep+ ce

!
= 0 and, indeed,

pM =
d+ ce

2e
=

d

2e
+
c

2
.

The revenue-maximizing price is d
2e (just let c = 0). We find

∂pM

∂c
=

1

2
.

Thus, an increase of the unit cost by one unit leads to a price increase by 1
2 .

Exercise XI.6

If we have price differentiation of the third degree, we just need to solve

two isolated profit-maximization problems. We obtain

pM1 = 60,

pM2 = 35.

The prohibitive prices are 100 and 50, respectively. The aggregate demand

is therefore given by

X (p) =





0, p > 100

100− p, 50 < p ≤ 100

200− 3p, 0 ≤ p ≤ 50.

We find two local solutions, at p =4313 and p =60. A comparison of profits

yields the global maximum at

pM = 43
1

3
.

Exercise XI.7

(10, 10) is still an equilibrium. (11, 11) is a second one.

Exercise XI.8

All strategy combinations
�
pM1 , p2

�
fulfilling p2 > pM1 are also equilibria.

Exercise XI.9

(1) The slope of the inverse demand curve is dp
dX = −b.

(2) Revenue is given by R (X) = p (X)X = aX − bX2 so that we

obtain the marginal revenue

dR (X)

dX
= a− 2bX.

The marginal revenue is −2b and hence twice as steep as the de-

mand curve itself (see fig. 27).

(3) The saturation quantity is a
b .
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X

p

a

b

a

( )Xp

1

b

MR1

b2

b

a

2

F����� 27. Demand curve and marginal-revenue curve

(4) a is the prohibitive price.

Exercise XI.10

The monopoly quantity is XM = 11.

Exercise XI.11

Mean question! For any output, revenue is constant, R (X) = p (X)X =

1. Differently put, marginal revenue is zero:

MR = p+X
dp

dX

=
1

X
+X

�
− 1

X2

�
= 0.

Thus, the monopolist should produce one very small unit, only.

Exercise XI.12

You should have obtained

dΠM

dc
=

d
�
1
4
(a−c)2

b

�

dc

=
1

4b
2(a− c) (−1)

= −a− c

2b

Exercise XI.14

(1) The firm’s profit function is

Π(x1, x2) = p1 (x1)x1 + p2 (x2)x2 −C (x1 + x2)

= (100− x1)x1 + (80− x2)x2 − (x1 + x2)
2 .

Partial differentiations yield

xM1 = 20 and xM2 = 10.
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p

X32

4

8

12

6

MR

MC

( )Xp

F����� 28. The welfare loss in a monopoly

The monopolist earns ΠM (20, 10) = 1400.

(2) We find the optimal outputs xM1 = 45 and xM2 = 35; profit is

ΠM = 3250.

(3) The aggregate inverse demand function is

p (X) =

)
100−X, X < 20

90− 1
2X, X ≥ 20.

At XM = 80, the monopolist’s profit is 3200<3250.

Exercise XI.13

The above result is a corollary from theorem VII.3 if we let Π :=

f,ΠM := f̂ , c := a and XM (c) := xR (a) .

Exercise XI.15

The situation is depicted in fig. 28. The welfare loss is equal to

(8− 4) (3− 2)

2
= 2.

Exercise XI.16

(1) Did you get xC1 = 3.4, xC2 = 2.8 and pC = 1.9?

(2) The market price is pC = 1.9 + 2
3t. Differentiation with respect to

t yields dp
dt

= 2
3 , i.e., a tax increase by one Euro leads to a price

increase by 2
3 Euros.



306 XI. PRICE AND QUANTITY COMPETITION

7. Further exercises without solutions

P�
#$�� XI.1.

Consider a monopolist with profit function C (X) = cX, c > 0, and

demand function X (p) = apε, ε < −1.

(1) Find the price elasticity of demand and the marginal revenue with

respect to price!

(2) Express the monopoly price pM as a function of ε!

(3) Find and interpret dpM

d|ε| !

P�
#$�� XI.2.

Assume simultaneous price competition and two firms where firm 2 has

capacity constraint cap2 such that

1
2X (c) < cap2 < X (c) .

Is (c, c) an equilibrium?

P�
#$�� XI.3.

Three firms operate on a market. The consumers are uniformly distrib-

uted on the unit interval, [0, 1]. The firms i = 1, 2, 3 simultaneously choose

their respective location li ∈ [0, 1]. Each consumer buys one unit from the

firm which is closest to her position; if more than one firm is closest to

her position, she splits her demand evenly among them. Each firm tries to

maximize its demand. Determine the Nash equilibria in this game!

P�
#$�� XI.4.

Assume a Cournot monopoly. Analyze the welfare effects of a unit tax

and a profit tax.

Consider the welfare effects of a unit tax in the Cournot oligopoly with

n > 1 agents and linear demand. Restrict attention to symmetric Nash

equilibria! What happens for n→ ∞?

P�
#$�� XI.5.

Assume a Cournot monopoly. Analyze the quantity effects of a price

cap.



CHAPTER XII

Games in extensive form

This chapter on games in extensive form is a convex combination of

chapter III (on extensive-form decisions) and chapter X (on games in strate-

gic form). We consider games of (nearly) perfect information without moves

by nature. Games with imperfect information due to moves by nature are

dealt with in chapter XVII.

With respect to industrial organization, we explain

• the Stackelberg model (as the archetypal extensive-form game),

• product differentiation and the Hotelling model,

• strategic trade policy.

1. Examples: Non-simultaneous moves in simple bimatrix games

In chapter X, we consider the bimatrix games “stag hunt”, “head or

tail” and “chicken”. We now revisit these games and have player 1 move

first and then player 2 follow. We assume that player 2 observes the action

undertaken by player 1.

Let us begin with the stag hunt:

hunter 2

hunter 1

stag hare

stag 5, 5 1 2 0, 4

hare 4, 0 4, 4 1 2

The boxes 1 and 2 indicate the players’ best responses (see p. 258).

Player 1 chooses “stag” or “hare”. He knows that player 2 knows his (player

1’s) action. Assuming that player 2 is rational, player 1 predicts that player

2 chooses “stag” in response to “stag” and “hare” in response to “hare”. In

other words, player 2 acts according to his best response and player 1 knows

this. Thus, both players choose the actions “stag”.

Of course, the above reasoning is just the backward-induction argument.

To visualize backward induction, we draw the game tree of the stag hunt as

in fig. 1. Note that the nonterminal nodes indicate the acting players. The

edges are reinforced in basically the same manner as in chapter III. The

only difference is that we have two deciders instead of just one.

307
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hare

1

2

2

hare

hare

stag

stag

stag

( )5,5

( )0,4

( )4,0

( )4,4

F����� 1. The stag hunt in extensive form

The backward-induction strategies are ⌊stag, hare⌋ for player 2 and

⌊stag⌋ for player 1. Indeed, player 1 has two strategies and player 2 four

strategies.

Consider the strategies ⌊stag⌋ for player 1 and ⌊stag, stag⌋ for player 2.

These strategies are in equilibrium because they lead to the maximal payoff

of 5 for both hunters. However, there is something wrong with player 2’s

strategy. If you do not know, consult p. 32 in a decision-theoretic context.

E������� XII.1. Find the backward-induction solution for the game of

chicken (p. 250).

2. Three Indian fables

2.1. The tiger and the traveller. In a recent articel, Wiese (2012)

shows that backward induction has already been applied in Indian animal

tales. We present three examples. The first example is the tale of the

tiger and the traveller known from the Hitopadesha collection of fable-based

advice (see, for example, Kale & Kale (1967, pp. 7-9) or the comic book by

Chandakant & Fowler (1975, pp. 14-18)).

This is the story: A tiger that finds himself on one side of a lake sees a

traveller passing by on the opposite side. The tiger attempts to catch and

eat the traveller by offering a golden bracelet to him. Since the traveller

is suspicious of the tiger’s intentions, the tiger argues that he would not

(he claims to have profoundly changed his former evil behavior) and could

not (he claims to be old and weak) do any harm to the traveller. Finally,

the traveller is convinced, gets into the murky waters where he gets stuck.

Immediately, the tiger takes advantage of the traveller’s misfortune and kills

him as planned.

Consider the payoffs in figure 2. The first number at the final nodes

refers to the tiger, the second one to the traveller. The tiger’s payoffs are
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eats and
attackslake

 enters titititi

bracelet
over hands ( )52,−

( )00,
trtrtrtr

lake enter
not does

( )10010−,

eats and
attacks

lake
 enters titititi

bracelet
over hands ( )52,−

( )00,
trtrtrtr

lake enter
not does

( )10010−,

titititi
bracelet
promises

bracelet
 promise

not does

F����� 2. The tiger and the traveller

−2 for giving away the bracelet and not eating the traveller, 10 for keeping

the bracelet and enjoying a good meal, and 0 for the status quo of keeping

the bracelet but staying hungry. The corresponding traveller’s payoffs are

5, −100, and 0.

The tragic sequence of events sketched above is indicated by the arrows.

The tiger (ti) moves first by promising the bracelet (upper branch). The

traveller (tr) enters the lake (upper branch) and then the tiger kills the

traveller (lower branch).

The game tree of this story has three stages. First, the tiger offers the

bracelet and talks about his guru who has convinced him to lead a more

virtuous life or the tiger refrains from offering the bracelet and/or from

talking convincingly. Then, the traveller needs to decide on whether or not

to accept the tiger’s invitation to join him by crossing the lake. Finally, the

tiger fulfills his promise or reneges on it.

One may of course speculate why the traveller is so “stupid”. Did “greed

cloud the mind” or did he act on some probability assessment about the lion

telling the truth? Indeed, the tiger claims to have studied the Vedas to lend

credibility to his peaceful intentions. However, it seems obvious that the

fable writer does not think of this example under the heading of “better safe

than sorry”. Instead he argues that the tiger’s preferences being as they are

the traveller should have known his fate in advance. Before being killed, the

traveller has time for some wise insights to share with the readers (see Kale

& Kale 1967, p. 8):
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That he reads the texts of religious law and studies the

Vedas, is no reason why confidence should be reposed in

a villain: it is the nature that predominates [sic] in such a

case: just as by nature the milk of cows is sweet.

Knowledge of backward induction would also have led the traveller to

avoid the lake. By 10 > −2, he should have foreseen his being eaten after

entering the lake so that keeping clear of the lake is best by 0 > −100.

Interestingly, the traveller should refrain from entering the lake inde-

pendent of whether or not the tiger talks about his guru who advised the

tiger to pursue a more virtuous life. In game-theory parlance, the tiger’s

arguments, the first step in our game tree, are just “cheap talk”. Both a

mischievous and a benevolent tiger could claim their benevolence without

any cost. Therefore, this claim is not credible.

Pious appearances are also used by the cat in an animal tale from the

Panchatantra (see, for example Olivelle 2006, pp. 393-399). The cat is

chosen as a judge in a dispute between a partridge and a hare. Although

wary of the danger, the two contestants finally approach the cat who kills

them without much ado.

2.2. The lion, the mouse, and the cat. The second animal tale is

also taken from the Hitopadesha (see Kale & Kale 1967, p. 51). A lion that

lives in a cave is infuriated by a mouse that also lives in his cave. The mouse

regularly gnaws at the sleeping lion’s mane. Since the lion does not succeed

in catching the mouse, he invites a hungry and desperate cat to live and eat

in his cave.

The arrangement between the lion and the cat works out well. The

mouse does not dare to show up while the cat is present. Therefore, the

lion is happy to share his food with the cat as promised although he does

not particularly like the cat’s company by itself. One day, the mouse is

detected by the cat who catches and kills it. The lion does not see any

reason to extend his hospitality and makes the cat leave his cave. Soon, the

cat returns to its former miserable state.

The moral to be drawn from this fable is obvious: Do your work but see

to it that you are also needed in the future.

The reader is invited to have a look at figure 3. The first number at the

final nodes refers to the lion, the second to the cat. Both players obtain a

payoff of 0 if the lion does not invite the cat to stay so that the lion’s mouse

problem is not solved and the cat cannot eat the food provided by the lion.

The lion’s payoff is 5 if the mouse does not annoy him and increases up to

7 if, on top, the cat does not stay in the cave. The cat in the cave has a

payoff of 3 if it can stay in the cave and an increased payoff of 4 for eating

the mouse and staying in the cave.

The arrows indicate the story as told in the Hitopadesha. This is not the

backward-induction result which, again, is indicated by the thickened lines.
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F����� 3. The lion, the mouse, and the cat

The wise cat would foresee that it is in the best interest of the lion to get rid

of it after the mouse is killed (7 > 5). Therefore, the cat should have kept

on warding off the mouse (payoff 3) rather than killing the mouse and be

thrown out of the convenient cave (payoff 1). Working backwards one final

step, we see that the lion was right to invite the cat into his cave (5 > 0).

Indeed, because of the cat’s mistake, the lion is even better off obtaining 7

rather than 5.

Again, one may ask the question whether there are defensible reasons for

the violation of backward induction. Did the cat think that another mouse

would show up promptly so that the lion would need the cat’s services again?

It seems that the fable’s author did not think along these lines, but had the

more straight-forward didactic aim of teaching the forward-looking behavior

the cat did not master.

A second possibility comes to mind: The cat may have entertained the

hope that the lion would show thankfulness to the cat for freeing the lion

of the mouse for good. However, in line with the cynical realism observed

by Zimmer, we would rather not follow this line of thought, but insist on

the lesson that friendship has no worth and that the behaviors of humans

or animals are dictated by future gains and losses, rather than by friendly

acts in the past.

2.3. The cat and the mouse. In the previous animal tale, the lion

profited from the opponent’s mistake. Sometimes, however, players hope

that opponents react rationally. To show this, we finally present a fable

from book 12 of the grand epic Mahabharata (see Fitzgerald 2004, pp. 513-

518). A he-cat is caught in a net laid out by a trapper. The mouse is happy

to see her enemy in this difficult situation when she realizes that an owl is

about to attack from above and a mongoose is sneaking up on her. She offers
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F����� 4. The cat and the mouse

the cat to destroy the net if the cat gives her shelter. The mouse realizes

that her plan needs a good deal of rationality and foresight on the cat’s part

(p. 514):

So I will make use of my enemy the cat. I shall contribute

to his welfare ... And now may this enemy of mine happen

to be smart.

Fortunately, the cat agrees to the bargain. When seeing the mouse under

the cat’s protection, owl and mongoose look out for other prey. The cat is

dismayed to find that the mouse is in no hurry to fulfill her promise. Indeed,

the mouse realizes that freeing the cat immediately makes her an easy victim

of the cat. In a long dialogue, the logic of the situation is explicitly spelled

out. As the mouse remarks (p. 517):

No one is really an ally to anyone, no one is really a friend

to anyone ... When a job has been finished, no one pays

any attention to the one who did it; so one should make

sure to leave all his tasks with something still to be done.

At just the right time, sir, you will be filled with fear of

the [trapper] and intent on getting away, and you won’t

be able to capture me.

Thus, the mouse waits until the trapper approaches. At the very last

moment, the mouse liberates the cat that now has better things to do than

mouse hunting. Both manage to find a safe place to hide, but certainly not

the same.

Figure 4 shows the game tree of this animal tale. The first payoff accrues

to the mouse (m), the second one to the cat. The mouse obtains 0 for
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escaping unharmed and suffers the payoff of −100 for being killed by owl,

mongoose, or cat. The cat’s payoff is zero for escaping unharmed, 2 for

escaping and eating the mouse, −50 for being killed by the trapper and −48

for being killed by the trapper after eating the mouse.

Foreseeing that the cat will kill the mouse if liberated well before the

trapper arrives (2 > 0), the mouse prefers to wait until the trapper ap-

proaches (0 > −100). The cat is clever enough not to kill the mouse before

he is liberated (0 > −48). Thus, indeed, the mouse made a clever move to

seek the cat’s protection (0 > −100).

Unlike the first two stories, in this story, the sequence of events is the

one predicted by backward induction. Neither the mouse nor the cat makes

a mistake.

3. Example: the Stackelberg model

3.1. Recipe: How to solve the Stackelberg model. The models

due to Cournot and Bertrand (see chapter XI) exemplify simultaneous-moves

games in IO. The Stackelberg model is the most famous sequential model.

We present the basic ideas. We have two quantity-setting firms 1 and 2.

Firm 1 is the Stackelberg leader and moves first. Firm 2 is the second mover

and called the Stackelberg follower. We assume the profit functions

Π1 (x1, x2) = (a− b (x1 + x2))x1 − c1x1,

Π2 (x1, x2) = (a− b (x1 + x2))x2 − c2x2.

The leader moves first and chooses some quantity x1. The follower observes

x1 and chooses his profit-maximizing quantity, i.e.,

xR2 (x1) = argmax
x2

Π2 (x1, x2) =
a− c2
2b

− 1

2
x1.

The leader foresees the follower’s optimal output choice. Hence, firm 1’s

reduced profit function (a new term for you!) is

Π1 (x1) := Π1
�
x1, x

R
2 (x1)

�
= p

�
x1 + xR2 (x1)

�
x1 − c1x1.

Therefore, firm 1’s optimization problem is to find the best point (best for

firm 1) on the follower’s reaction curve (fig. 5).

The leader’s first-order condition is

MR1(x1) = a− b
�
x1 + xR2 (x1)

�
+ x1 (−b) + x1 (−b)

�
−1

2

�

= a− b

�
x1 +

a− c2
2b

− 1

2
x1

�
+ x1 (−b) + x1 (−b)

�
−1

2

�

= a− bx1 −
b(a− c2)

2b
!
= c1 =MC1(x1)

which yields the profit-maximizing quantity

xS1 =
a− 2c1 + c2

2b
.
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F����� 5. The follower’s reaction curve
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F����� 6. Stackelberg point for identical unit costs

We also find

xS2 : = xR2
�
xS1

�
=
a+ 2c1 − 3c2

4b
,

XS : = xS1 + xS2 =
3a− 2c1 − c2

4b
,

p
�
XS

�
=

1

4
(a+ 2c1 + c2) ,

ΠS
1 =

1

8

(a+ c2 − 2c1)
2

b
,

ΠS
2 =

1

16

(a− 3c2 + 2c1)
2

b
.

Fig. 6 shows the Stackelberg point
�
xS1 , x

S
2

�
on the follower’s, not the

leader’s, reaction curve.

E������� XII.2. Assume three firms in a homogeneous market with in-

verse demand curve p (X) = 100 − X. Average and marginal cost of all
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F����� 7. A sketch of the Stackelberg tree

firms are equal to zero. Consider the sequence where firm 1 moves first and

firms 2 and 3 move second and simultaneously. Solve the model by backward

induction. Hint: Solve for a Cournot equilibrium between firms 2 and 3.

So far, the Stackelberg model for Bachelor students.

3.2. Strategies and equilibria. We sketch the Stackelberg tree in

fig. 7. It is only a sketch because every firm has the action set [0,∞) in

the model, but only some prominent quantities are chosen. Player 1 moves

at the tree’s origin. Depending on his action, player 2 moves at the nodes

denoted by “2”.

Since every 2-node results from a specific quantity chosen by firm 1, we

can write firm 2’s strategies as functions

s2 : [0,∞) → [0,∞) ,

x1 → s2 (x1)
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F����� 8. A threat strategy in the Stackelberg tree

that associate an output x2 = s2 (x1) with output x1 chosen by firm 1. A

specific example is given by

sM2 : x1 →
)
xM2 , x1 = 0

xL2 , x1 > 0.

This example can be put into these words:

• If firm 1 chooses output 0, firm 2 produces its monopoly output.

• If, however, firm 1 choses any non-negative quantity, firm 2 floods

the market by choosing its limit quantity xL2 := a−c1
b .

This strategy is a threat. Either firm 1 (the Stackelberg leader) stays out of

the market, or it will make a loss.

Fig. 8 depicts this threat strategy. What is firm 1’s best response to

that strategy? Since any quantity x1 > 0 leads to loss Π1
�
x1, x

L
2

�
< 0, firm

1’s best response to sM2 is x1 = 0. Therefore,
�
0, sM2

�

is a Nash equilibrium.
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F����� 9. Backward induction in the Stackelberg tree

Of course, the above equilibrium is not the one derived in the previous

section which assumes that the follower maximizes his profit after observing

the leader’s choice. Consider fig. 9 where the backward-induction solution

is indicated by bold lines. The corresponding equilibrium is
�
xS1 , x

R
2

�

where xS1 is an element from [0,∞) while xR2 is the reaction function, i.e., a

function [0,∞) → [0,∞) .

We elaborate on that point because it is very important. The equilibrium�
xS1 , x

R
2

�
has to be distinguished from the Stackelberg quantities

�
xS1 , x

R
2

�
xS1
��
.

To be very explicit,

• xR2 is a function [0,∞) → [0,∞) , in particular the best-response

function of firm 2,

• xR2
�
xS1

�
or xR2 (0) are values of that function at xS1 or 0, respectively,

i.e., elements from the range [0,∞) .
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Elements from [0,∞) such as 5, xS2 or xC2 can also be considered strate-

gies, constant strategies where firm 2 plans to choose quantity 5, xS2 or xC2
whatever firm 1’s choice. Constant strategies are optimal by chance only.

E������� XII.3. Which of the following strategy combinations are Nash

equilibria of the Stackelberg model?

(1)
�
xS1 , x

R
2

�
xS1
��

(2)
�
xS1 , x

R
2

�

(3)
�
xC1 , x

C
2

�

3.3. Cournot versus Stackelberg. The difference between the Cour-

not and the Stackelberg models can be seen from the marginal revenues in

both cases. Let X = x1 + xR2 (x1) and R1 (x1) = p (X)x1. We then obtain

the marginal revenue as

MR1(x1) = p (X) +
dp

dX

∂X

∂x1
x1 (chain rule)

= p (X) +
dp

dX

d
�
x1 + xR2 (x1)

�

dx1
x1 (X = x1 + xR2 (x1) )

= p(X) +
dp

dX

∂x1
∂x1

x1 +
dp

dX

dxR2
dx1

x1

= p(X) + x1
dp (X)

dX� �� �
direct effect

+ x1
dp (X)

dX� �� �
<0

dxR2 (x1)

dx1� �� �
<0� �� �

> 0

follower effect

(
dx1
dx1

= 1).

The follower effect is absent in the Cournot model. After all, firms move

simultaneously and there is no time for a reaction. In our linear model (and

in many other specifications), the follower effect is positive. A quantity

increase by the leader firm 1 is partly compensated for by the follower firm

so that the price decrease is less pronounced. Therefore, marginal revenue

is higher in the Stackelberg than in the Cournot model. This is the reason

for xS1 > xC1 .

4. Defining strategies

After doing all the difficult work in decision theory, life is rather easy

now. We copy the definitions from chapter III.

D�������
� XII.1. A game in extensive form for perfect information

without moves by nature is a tuple

Γ =
�
V,N, u, ι, (Ad)d∈D

�

where

• V is a tree with the set of non-terminal nodes D and the set of

terminal nodes E (see the definition on p. 29),
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• N = {1, ..., n} is the player set,
• u : E → Rn is a vector (ui)i∈N of payoff functions ui : E → R
• ι : D → N is a surjective player-selection function. We define

the set of player i’s decision nodes Di := {d ∈ D : ι (d) = i} (then,
{D1, ..,Dn} is a partition of D)

• Ad is the set of actions that can be chosen by player ι (d) at decision

node d. Every link at d corresponds to exactly one action.

As in a decision tree, a node is either terminal (and we note the payoff

information near that node) or a decision node (and we write the player

whose turn it is near that node). Even the player-selection function is not

new to us, see definition III.18 on p. 42.

As an example, we revisit the take-it-or-leave-it game presented on pp.

254. The matrix given in that chapter (on strategic-form games!) is

player 2 accepts player 2

if he is offered does not

0-3 coins accept

0 1 2 3

player 1 0 (3, 0) (0, 0) (0, 0) (0, 0) (0, 0)

offers 1 (2, 1) (2, 1) (0, 0) (0, 0) (0, 0)

player 2 2 (1, 2) (1, 2) (1, 2) (0, 0) (0, 0)

0-3 coins 3 (0, 3) (0, 3) (0, 3) (0, 3) (0, 0)

The extensive-form of this game is depicted in fig. 10.

E������� XII.4. Consider the bargaining game of fig. 10. Identify N,

D2 and A1 in the game tree. How many strategies does player 2 have?

Player 1 has four strategies in accordance with the above matrix. How-

ever, player 2 has more than five strategies. For example,

⌊accept, reject, accept, reject⌋
is the strategy where, from top to bottom, player 2 accepts when offered 0

or 2 and rejects otherwise.

E������� XII.5. Write down the strategy (with four actions) that cor-

responds to

• player 2 does not accept,
• player 2 accepts if at least 2 coins are offered to him,
• player 2 accepts if no coin or two coins are offered to him, otherwise
he rejects.
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F����� 10. The take-it-or-leave-it game

By answering the above exercises, you show that you can transfer the

concept of a strategy from the decision context to the game context. We

now “copy” the definition of a strategy and some other related definitions:

D�������
� XII.2. Let Γ =
�
V,N, u, ι, (Ad)d∈D

�
be a game in extensive

form for perfect information.

• A strategy for player i ∈ N is a function si : Di → A obeying

si (d) ∈ Ad.

• A trail T (v0, v) = �v0, v1, ..., vk = v� is provoked or brought about by
strategy combination s ∈ S if we arrive at v by choosing the actions

prescribed by s. The terminal node provoked by strategy combination

s is denoted by vs.

• We define u : S → R by

u (s) := u (vs) , s ∈ S,

so that best replies and Nash equilibria are defined as in chapter X.

5. Subgame perfection and backward induction

So far, we have shown how to transform a game in extensive form into

a strategic-form game. We can now address the problems of Nash equilibria

and subgame-perfect Nash equilibria.
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E������� XII.6. Consider the strategy combination

(⌊2⌋ , ⌊reject, reject, accept, accept⌋)
in the bargaining game of the previous section. Which terminal node does it

provoke? Is it a Nash equilibrium? Answer these questions for the strategy

combination (⌊2⌋ , ⌊accept, reject, accept, reject⌋), too.
While (⌊2⌋ , ⌊reject, reject, accept, accept⌋) is a Nash equilibrium, it is

not subgame perfect. The reason is that player 2 plans to reject an offer of

1 which yields a utility of 1 > 0. We have encountered this type of problem

in the investment-marketing game (p. 32) under the name of subtree im-

perfection and in the Stackelberg model, also. In any case, it is dealt with

by the concept of subtrees (decision theory) or subgames (game theory):

D�������
� XII.3. Let Γ =
�
V,N, u, ι, (Ad)d∈D

�
be a game and let w ∈

D. Let W be the set of nodes that comprise w and all its successors together

with the same links as in V. Then, w’s subgame of Γ is given by

Γw =
�
W, ι (D ∩W ) , u|E∩W , ι|D∩W , (Ad)d∈D∩W

�

where u|E∩W is to be understood as a function E ∩W → R|ι(D∩W )|. Let
AW = ∪d∈D∩WAd. For player i ∈ ι (D ∩W ), swi : Di ∩W → AW denotes

his substrategy of si ∈ Si in Γw if swi (d) = si (d) for all d ∈ Di ∩W. By

Sw
i (S

w) we denote the set of player i’s substrategies (the set of substrategy

combinations) in Γw. Γw is called a minimal subtree if w is the only decision

node in Γw.

We obtain Γw from Γ by choosing a w ∈ D and restricting N, u, ι and

(Ad)d∈D accordingly. Note that u|E∩W is restricted twofold, with respect

to the domain (E ∩W rather than E) and with respect to the number of

entries (one entry for each player from ι (D ∩W ) rather than from N).

D�������
� XII.4. A strategy combination s is subgame perfect if sw is

a Nash equilibrium in every subgame Γw.

A$�
����� XII.1. Let Γ =
�
V,N, u, ι, (Ad)d∈D

�
be of finite length.

Backward-induction proceeds as follows:

(1) Consider the minimal subtrees Γw and take note of the best strate-

gies in Γw. If any of these sets is empty (for the reason explained

on p. 14), the procedure stops. Otherwise, proceed at point 2.

(2) Cut the tree by replacing all minimal subtrees Γw by a terminal node

w carrying the maximal payoff for player ι (w) received at point 1

and add the payoff information for all the other players from N . If

Bw
ι(w) contains several best strategies, construct several trees.

(3) If the new trees contain minimal subtrees, turn to point 1. Other-

wise, the final tree contains (the final trees contain) just one ter-

minal node which is the initial node of the original tree but carries

the payoff information for all the players.
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The maximal trails and the strategy combinations generated by the backward-

induction procedure are called backward-induction trails and backward-induc-

tion strategy combinations, respectively.

E������� XII.7. Solve the game of fig. 10 by applying backward in-

duction. How many backward-induction trails and how many backward-

induction strategy combinations can you find?

Without proof, we note the following theorem:

T��
��� XII.1. Let Γ =
�
V,N, u, ι, (Ad)d∈D

�
be of finite length. Then,

• the set of subgame-perfect strategy combinations and
• the set of backward-induction strategy combinations

coincide.

C
�
$$��	 XII.1. Every decision situation Γ =
�
V,N, u, ι, (Ad)d∈D

�

with |V | <∞ has a subgame-perfect strategy combination.

6. Multi-stage games

6.1. Definition. The games considered in this chapter and many games

in the chapters to come, can be seen as multi-stage games. The idea of multi-

stage games is that

• every player chooses at most one action at every stage and

• the players know all the actions undertaken in previous stages,

• but no action other than one’s own in the present stage.

Thus, within each stage, the players choose actions simultaneously so that we

are concerned with a mild form of imperfect information. It is cumbersome

and not helpful to spell out the many orders in which the players act within

a stage. After all, it should not matter to a player whether he moves first or

second if, in any case, he does not know the move undertaken by the other

player. In a multi-stage game, we still use the set D but a node d from D is

addressed as a stage node rather than a decision node. At stage nodes, all

players simultaneously choose an action. As always, strategies are functions

from D to the actions available at all d ∈ D.

Instead of providing a formal definition of a multi-stage game, we show

the usefulness of the concept by way of a few examples. We also introduce

a description of extensive-form games without moves by nature, the “very

compact form”.

6.2. Cournot and Stackelberg games. From the point of view of

extensive-form games, the Cournot dyopoly can be depicted as a two-stage

game. Indeed, there are two different ways to depict the Cournot tree.

Either firm 1 moves first (see the left-hand side of fig. 11) or firm 2 moves

first (the right-hand side of that figure). The important issue is that the

second mover does not know the quantity chosen by the first mover.
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F����� 13. The very compact form of the Stackelberg game

We propose to use the “very compact form” instead. It is given by fig.

12. The fact that the two firms move simultaneously is hinted at by playing

x1 and x2 above each other.

The Stackelberg dyopoly is also a multi-stage game, albeit a two-stage

one. At each stage node, one firm chooses the action “do nothing”. Of

course, we do not explicitly write down the “do nothing” action. Instead,

the Stackelberg’s very compact form is given in fig. 13.
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F����� 14. The positioning and pricing game

E������� XII.8. Draw the very compact form of the take-it-or-leave-it

game!

6.3. Backward induction for multi-stage games. The very com-

pact form is well suited for applying backward induction. You have seen

the example of the Stackelberg game. We first concentrate on the last stage

and obtain firm 2’s reaction function xR2 . In firm 1’s profit function, we

substitute x2 by xR2 (x1) so as to obtain firm 1’s reduced profit function —

function of x1, only. We denote the leader’s profit-maximizing quantity by

xS1 . We then have

• the quantities in equilibrium
�
xS1 , x

R
2

�
xS1

��
and

• the subgame-perfect equilibrium
�
xS1 , x

R
2

�
(also addressable as back-

ward-induction strategy combination).

This procedure is also applicable to multi-stage games where some or all

of the players act simultaneously (without knowing the actions of the other

players) within stages. By now, you know how to read the very compact

forms of fig. 14. We have two firms 1 and 2 with actions ai (chosing a

product variety, for example) and pi (choosing a price), respectively. The

upper very compact form depicts a two-stage game where both firms choose

product varieties simultaneously and then prices simultaneously. The lower

very compact form depicts a three-stage game.

The backward-induction procedure works as follows for the upper-part

very compact form.

• At the last stage, the firms choose equilibrium prices which are, in

general, a function of first-stage actions:
�
pB1 (a1, a2) , pB2 (a1, a2)

�
.
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• We substitute p1 and p2 in the two firm’s profit functions by the

equilibrium prices pB1 (a1, a2) and pB2 (a1, a2) and obtain the re-

duced profit functions which depend on a1 and a2.

• We can now find the equilibrium varieties
�
aN1 , a

N
2

�
.

The subgame-perfect (backward-induction) equilibrium of the overall game

is ��
aN1 , p

B
1

�
,
�
aN2 , p

B
2

��

where both pB1 and pB2 are functions (a1, a2) → R. The prices chosen in

equilibrium are pB1
�
aN1 , a

N
2

�
and pB2

�
aN1 , a

N
2

�
.

The next section shows how to calculate the prices and varieties in the

context of the Hotelling model.

7. Product differentiation

7.1. Hotelling’s one-street village. The second to last chapter of

this part deals with product differentiation. Consumers pay attention to

the prices and also to other characteristics of the goods. For some goods, all

consumers may have the same ranking of the goods (when prices are equal),

for others, they may differ. The first case — identical ranking — is often

referred to as vertical product differentiation or quality differentiation. Most

people would agree that a Trabbi is inferior to a Mercedes-Benz C-Class. In

contrast, horizontal product differentiation means that some people prefer

one good while others prefer another one — think of a Mercedes-Benz C-Class

versus an Audi A4.

A simple model for horizontal product differentiation is provided by the

Hotelling linear space. It has a normed length of 1 with the corner points

0 and 1 (see fig. 15). Imagine two firms 1 and 2 that are located at a1
and a2, respectively. Without loss of generality, we assume a1 ≤ a2. One

may address a1 as firm 1’s “home turf”. A position in this space can be

interpreted in two different manners:

• If the linear space is geographic space (a one-street village or a

beach), you are invited to image firms that sell identical products

(ice-cream at the beach, for example) at the locations a1 and a2.

A consumer who likes to consume at position h has to incur trans-

portation cost in order to buy from 1 or from 2.

• Alternatively, we can think of variants of a good. The ice-cream

may be more or less sweet where 0 refers to zero-sugar ice-cream

and 1 to a disgustingly sweat version. Consumers differ in their

preferences. Some (those near 0) prefer to have a low content of

sugars while others are of the sweet-tooth fraction. A consumer

who cannot obtain the very variant he likes best incurs a disutility

(the analogue of transportation cost) from having to choose another

one.
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transportation cost / disutility

1a 2ah0 1

( )2
1aht − ( )2

2 hat −

F����� 15. Hotelling’s one-street village

7.2. Demand functions. We assume that consumers are distributed

equally along the normed Hotelling space. The consumer at h incurs trans-

portation cost (disutility of not consuming the best-liked variant) of

t (h− a1)
2 or t (a2 − h)2 (XII.1)

depending on the firm he patronizes.

Factor t is the transportation-cost rate (geographic space) or parameter

of heterogeneity (variant space). If t is large, the different locations matter

a lot. t = 0 implies homogeneity. Homogeneity also holds for a1 = a2.

D�������
� XII.5. Two products 1 and 2 are homogeneous if p1 < p2
implies x2 (p1, p2) = 0 and if p1 > p2 implies x1 (p1, p2) = 0.

We use a very simple procedure to derive the demand functions. First

of all, we assume that every consumer buys one unit of the good from either

firm 1 or firm 2. Therefore, we have x1 + x2 = 1. We also suppose that a

consumer at location h buys from firm 1 if

p1 + t (h− a1)
2 ≤ p2 + t (a2 − h)2 (XII.2)

where the sum of price and transportation cost is referred to as effective

price. Solving for h, we find that all consumers obeying

h ≤ a2 + a1
2

+
p2 − p1

2t (a2 − a1)
=: h∗. (XII.3)

buy good 1. Thus, the demand curve for firm 1 is given by

x1(p1, p2, a1, a2) = h∗ = a����
demand

for p1 = p2

+
1

2t∆a� �� �
competition

intensity

(p2 − p1)� �� �
firm 1’s

price advantage

,

(XII.4)

where a := a2+a1
2 and ∆a := a2 − a1 hold. Consequently, we have

x2(p1, p2, a1, a2) = 1− h∗ = (1− a)− 1

2t∆a
(p2 − p1). (XII.5)
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F����� 16. The positioning and pricing game

We do not fret about the problem that the quantities may turn out to be

negative for one of the firms.

The demand curves are interesting:

• Product differentiation makes demand inelastic.
To make things simple, consider p1 = p2 = p. The price elasticity

of demand for firm 1 is

εx1,p1 |p1=p2=p =
∂x1
∂p1

p1
x1

����
p1=p2=p

=
−1

2t∆a

p1
x1

����
p1=p2=p

= − p

t∆a
. (XII.6)

• Demand for equal prices.
a represents the customers who buy from firm 1 if the prices are

identical or if product differentiation is very high.

• Product differentiation lessens competition intensity.
The more differentiated the two products are, the less important

is the impact of prices on consumers’ decisions and the more mo-

nopolistic the firms can behave in their respective submarket. We

interpret 1
2t∆a =

���∂x1∂p1

��� as a measure of competition intensity. In

general, competition intensity is high if small changes in competi-

tion variables lead to huge changes of sales or profits.

7.3. The game. We now present the two-stage game where the two

firms first decide on positions and then on prices:

D�������
� XII.6 (Pricing (Bertrand) game). The two-stage positioning

and pricing game is defined by N = {1, 2}, by the time structure presented
in fig. 16 and by the profit functions given by

Π1 = (p1 − c)x1 = (p1 − c)

�
a+

p2 − p1
2t∆a

�
,

Π2 = (p2 − c)x2 = (p2 − c)

�
1− a+

p1 − p2
2t∆a

�
.

We assume a1 ≤ a2.

Thus, the firms do not incur any costs of positioning but only (identical)

unit production costs.
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E������� XII.9. Assume that the government regulates prices at p1 =

p2 > c1 = c2 where c1 and c2 are the average costs of the two firms. The firms

1 and 2 simultaneously determine their positions a1 and a2, respectively. Can

you find an equilibrium?

7.4. Solving the two-stage game.

7.4.1. The second stage. In order to apply backward induction, we first

solve for the second stage of our model. Disregarding any corner solutions,

we obtain

pR1 (p2) = argmax
p1

Π1 =
p2 + c+ 2ta∆a

2
, (XII.7)

pR2 (p1) = argmax
p2

Π2 =
p1 + c+ 2t (1− a)∆a

2
. (XII.8)

Thus, the reaction functions are positively sloped. We also say that the com-

petition variables are strategic complements. You remember from household

theory that two goods are called complements if the demand increase for one

good (due to a price decrease) leads to a demand increase of the complement

(left and right shoe, cinema and popcorn). Similarly, action parameters that

are strategic complements decrease both or increase both.

Because of
∂pR1 (p2)

∂a1
= −ta1 and

∂pR1 (p2)

∂a2
= ta2 (XII.9)

the optimal price is relatively low if the firms are positioned near each other.

This is not astonishing because close positions signal a high competition

intensity.

The equilibrium is given by

pB1 = c+
2

3
t (1 + a)∆a,

pB2 = c+
2

3
t (2− a)∆a

(XII.10)

and depicted in fig. 17 at the crossing point of the two reaction functions.

We obtain the quantities

xB1 =
1

3
(1 + a) ≥ 0,

xB2 =
1

3
(2− a) ≥ 0

and the reduced profits

ΠB
1 =

2

9
t (1 + a)2∆a ≥ 0,

ΠB
2 =

2

9
t (2− a)2∆a ≥ 0.

(XII.11)

In contrast to the Bertrand model presented in chapter XI, product

differentiation allows the firms to realize positive profits.
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( )21 pp R

( )12 ppR

1p

2p

Bp1
BSp1

Bp2

BSp2

F����� 17. Pricing equilibria

As an exercise, you are invited to consider sequential pricing competi-

tion. Firm 1 moves first and firm 2 moves second, just as in the Stackelberg

model. You then obtain the equilibrium

�
pBS
1 , pR2

�
,

where firm 1 chooses price pBS
1 (where B stands for Bertrand and S for

sequential) and firm 2 chooses his price optimally, i.e., obeys his reaction

function. Reconsider fig. 17 where you find the prices chosen in the sequen-

tial case.

In the framework of a specific model, we can find out whether a firm

would rather be the first mover (firm 1) or the second mover:

E������� XII.10. Assume maximal differentiation, i.e., a1 = 0 and

a2 = 1. Solve the sequential pricing game described above. Show that we

have a second-mover advantage. Show also that the leader’s profit is higher

in the sequential case than in the simultaneous one. Do you see why this is

necessarily true?

7.4.2. The first stage. The firms know how the positions affect the pric-

ing game so that they use the reduced (after incorporating the equilibrium

prices) profit functions

ΠB
1 (a1, a2) =

2

9
t (1 + a)2∆a ≥ 0,

ΠB
2 (a1, a2) =

2

9
t (2− a)2∆a ≥ 0.
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1a

1Π

t9
1

t9
2

t9
3

t9
4

18,06,04,02,00

12 =a

8,02 =a

6,02 =a

4,02 =a

2,02 =a

F����� 18. Firm 1’s reduced profit function

Finding the solution to firm 1’s maximizing problem,

aR1 (a2) = argmax
a1

ΠB
1 (a1, a2) = argmax

a1

2

9
t(1 + a)2∆a

= argmax
a1

1

18
t (2 + a1 + a2)

2 (a2 − a1) ,

is not too easy.

Consider fig. 18 which shows how firm 1’s profit varies as a function of

a1 for some alternative a2-values. Given 0 ≤ a1 ≤ a2, we always have a

negative marginal profit,

∂ΠB
1

∂a1
= − t

18
(2 + a1 + a2) (2 + 3a1 − a2) < 0.

Therefore, firm 1’s reaction function is given by

aR1 (a2) = 0.

Again assuming a1 ≤ a2, we also find that firm 2 likes to move away from

the other firm as far as possible, aR2 (a1) = 1. Obviously, the first-stage

equilibrium is �
aN1 , a

N
2

�
= (0, 1) .

We obtain

pB1 = c+ t, pB2 = c+ t,

xB1 = 1
2 , xB2 = 1

2 ,

ΠB
1 = 1

2t, ΠB
2 = 1

2t.

Thus, the firms have positive profits that depend on the heterogeneity pa-

rameter (unit transportation cost) t.
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7.5. Direct and strategic effects.

7.5.1. Accomodation. Similar to the anaylsis found on pp. 296, we eval-

uate the effect of firm 1 “moving closer” to firm 2 on both firm 1’s and firm

2’s profits. Firm 1’s reduced profit can be written as

ΠB
1 (a1, a2) = Π1

�
a1, a2, p

B
1 (a1, a2) , p

B
2 (a1, a2)

�
.

Forming the derivative with respect to a1 yields

∂ΠB
1

∂a1
=

∂Π1
∂a1����
> 0

direct or

demand effect

+
∂Π1
∂p1����
=0

∂pB1
∂a1

� �� �
= 0

first-order condition

at stage 2

(envelope theorem)

+
∂Π1
∂p2����
>0

∂pB2
∂a1����
<0� �� �

.

< 0

strategic effect

of positioning

Using Π1 = (p1 − c)x1, we obtain

ΠB
1 (a1, a2) =

�
pB1 (a1, a2)− c

�
x1

�
a1, a2, p

B
1 (a1, a2) , p

B
2 (a1, a2)

�

and

∂ΠB
1

∂a1
=
�
pB1 (a1, a2)− c

� ∂x1
∂a1� �� �

> 0

direct or

demand effect

+
�
pB1 (a1, a2)− c

�
� �� �

>0

∂x1
∂p2����
>0

∂pB2
∂a1����
<0� �� �

.

< 0

strategic effect

of positioning

(XII.12)

The two effects may well carry a different sign. The direct effect tends to

be positive because moving closer to ones rival increases market share. (In

extreme circumstances, the direct effect can also be negative (see Pfähler &

Wiese 2008, pp. 269).) The strategic effect is negative — more homogeneity

entails more intense competition.

Of course, the decisive question is which of the two effects prevails. In

our simple model (with quadratic transportation costs), the strategic effect

proves to outweigh the demand effect.

7.5.2. Entry deterrence. We can also examine how the position of firm

1 affects the profit of firm 2. This is an interesting question if firm 1 tries to

push firm 2 out of the market or looks for a constellation that makes entry

unattractive. Therefore, we consider

ΠB
2 (a1, a2) = Π2

�
a2, a1, p

B
2 (a1, a2) , p

B
1 (a1, a2)

�
,
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and

∂ΠB
2

∂a1
=

∂Π2
∂a1����
< 0

direct or

demand effect

+
∂Π2
∂p2����
=0

∂pB2
∂a1

� �� �
= 0

first-order condition

at stage 2

(envelope theorem)

+
∂Π2
∂p1����
>0

∂pB1
∂a1����
<0� �� �

.

< 0

strategic effect

of positioning

(XII.13)

Both the demand effect and the strategic effect are negative. Therefore, for

the purpose of entry deterrence, it may be a good idea to move closer to the

rival than attention to ones own (short-term) profits dictates.

8. Application: Strategic trade policy

8.1. Free trade or strategic trade policy. Thirty years ago, trade

theory and policy were analyzed with models of perfect competition. Free

trade was a usual implication of these models. Since the beginning of the

1980s, models and recommendations have changed. At first, the researchers

used Cournot models. Brander (1981) and Brander & Krugman (1983) show

that free trade can lead to the exchange of identical products. From a global

perspective, this cannot be an optimal outcome because of transportation

costs.

In another strand of the literature, Brander & Spencer (1981, 1983)

reason that export subsidies can benefit exporting firms over and above the

subsidies. The idea is that the subsidies induce changes in the other firms

behavior. This is the subject matter of strategic trade policy.

8.2. The model. We assume two firms that are located in two coun-

tries, a domestic firm d in country d (Germany, for example) and a foreign

firm f in country f (France). The two firms produce for the market in some

third country (Italy). We focus on the domestic welfare effects of an export

tax or subsidy levied (or granted) to firm d.

Taking a third country simplifies the analysis because we can disregard

the consumers’ rent. Thus, our welfare analysis is concerned with profit and

taxes, only.

The other assumptions are taken from the linear Cournot model. The

inverse demand function in Italy is given by p (X) = a − bX and the two

firms have identical marginal and average cost c := cd = cf with c < a. The

German government tries to maximize welfare by choosing an appropriate

unit subsidy s benefitting its firm d. Then, welfare is the sum of the firm’s

profit minus the subsidy payments:

W (s) = ΠC
d (c− s, c)− sxCd (c− s, c) .
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Thus, the German government’s subsidy defines a simultaneous game with a

specific equilibrium. Assuming accomodation (pp. 293), the domestic firm’s

quantity is

xCd (c− s, c) =
1

3b
(a− 2 (c− s) + c) =

1

3b
(a− c+ 2s)

and its profit amounts to

ΠC
d (c− s, c) =

1

9b
(a− 2 (c− s) + c)2 =

(a− c+ 2s)2

9b
.

Therefore, we find

W (s) =
(a− c+ 2s)2

9b
− s

1

3b
(a− c+ 2s)

and, by differentiating,

s∗ := argmax
s∈R

W (s) =
a− c

4
> 0.

8.3. Understanding the logic of strategic trade policy. Appar-

ently, strategic policy can pay. The domestic government should fix a strictly

positive unit subsidy if its firm engages in quantity competition with a for-

eign firm on a third market. Why?

The subsidy has a direct effect on welfare and a strategic effect. The

direct effect (holding the outputs constant) is zero. From our welfare point

of view, it does not matter whether a sum of money ends up in the pockets

of the domestic firm or in those of the government. Therefore, we can

concentrate on the strategic effect.

The subsidy amounts to a cost decrease for the domestic firm d. On p.

296, we have shown that the strategic effect

∂Π1
∂x2����
<0

∂xC2
∂c1����
>0� �� �

<0

< 0

is negative. For strategic trade policy, this means

∂Πd

∂xf����
<0

∂xCf
∂s����
<0

� �� �
>0

> 0,

where a subsidy increase leads to a reduction of cd = c− s.

Hence, the subsidy for firm d entails an outward shift of d’s reaction

curve and hence a reduction of firm f ’s equilibrium quantity xCf (see fig.

19). It is this reduction that implies the sought-after profit increase for firm

d — via the associated price increase. Note that the subsidy’s overall effect

is a price decrease. However, the strategic effect concerns the price increase

effected by firm f .
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Cournot-Nash
equilibria

1x

2x

            grantedgrantedgrantedgranted    isisisis    0>s

R
dx

R
fx

sR
dx

,

F����� 19. Effect of an export subsidy

Since the subsidy awarded to firm d has no direct effect on welfare, it

should be chosen so as to maximize firm d’s profit net of the subsidy. The

optimal subsidy picks the profit-maximizing (for firm d!) point on firm

f ’s reaction curve. This is the Stackelberg point! Indeed, for the welfare-

maxizing subsidy s∗ = a−c
4 , we find

xCd (c− s∗, c) =
a− c+ 2s∗

3b

=
a− c

2b

= xSd (c, c) .

8.4. Strategic trade policy for price competition. As an alterna-

tive to quantity competition, we now have a look at pricing competition

on the Hotelling linear space. We assume that the two firms d and f offer

maximally differentiated products, ∆a = 1. The domestic government would

like to support its firm d with a subsidy s because the trade minister had

studied Brander & Spencer (1981).

On the basis of equations XII.4 and XII.5 (p. 326), we see that the

demand functions are given by

xd =
1

2
+
pf − pd

2t
and

xf =
1

2
+
pd − pf

2t
.

Unit profits are pd−(c− s) for firm d and pf −c for firm f. Hence, we obtain

the equilibrium prices

pBd = t+ c− 2

3
s
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for the domestic firm d and

pBf = t+ c− 1

3
s

for the foreign firm f . The equilibrium quantity supplied by firm d is

xBd =
1

2
+
pBf − pBd

2t
=

1

2
+

1

6

s

t
.

We now obtain

W (s) = ΠB
d (c− s, c)− sxBd (c− s, c)

=
	
pBd − (c− s)



xBd − sxBd =

	
pBd − c



xBd

=

�
t+ c− 2

3
s− c

��
1

2
+

1

6

s

t

�

=

�
t− 2

3
s

��
1

2
+

1

6

s

t

�

and hence

dW

ds
= −2

3

�
1

2
+

1

6

s

t

�
+

�
t− 2

3
s

�
1

6t
= − 1

18

�
4
s

t
+ 3

�

Thus, the welfare maximizing “subsidy”

s∗ = −3

4
t,

i.e., the government should tax exports rather than subsidize them.

Again, there is a strategic reason for this intervention. By taxing the

domestic firm, the government pushes both firms to an equilibrium with

higher prices. The higher foreign price is the reason why this form of strate-

gic trade policy pays: a higher pf leads to a higher demand for the domestic

firm.

Thus, we see that the optimal strategic trade policy depends on whether

firms are engaged in price competition (export tax) or in quantity compe-

tition (export subsidy). The trade minister should also have noticed Eaton

& Grossman (1986) who provide the main ingredients for this section.

8.5. Judging strategic trade policy. We have shown that strategic

trade policy can increase a country’s welfare. Nevertheless, there are many

good reasons not to advocate for strategic trade policy. We cite Helpman

& Krugman (1989, p. 186): “One can always do better than free trade,

but the optimal tariffs or subsidies seem to be small, the potential gains

tiny, and there is plenty of room for policy errors that may lead to eventual

losses rather than gains. [...] The case for free trade has always rested

on an argument that it represents a good rule of thumb given uncertainty

about the alternatives, realistic appreciation of the difficulties of managing

political intervention, and the need to avoid trade wars.”

The remark about trade wars is important. Note that we considered

strategic trade policy from the point of view of the domestic government,
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only. Of course, the other government may have similar ideas. One might

envision a two-stage model where both governments simultaneously choose

taxes or subsidies sd and sf , respectively. ...
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( )0,0

( )4,2

( )2,4

( )3,3

1

2

2continue

continue

continue

swerve

swerve

swerve

F����� 20. Backward induction for the game of chicken

9. Topics and literature

The main topics in this chapter are

• sequential moves

• accomodation

• blockade

• deterrence

• multi-stage game

• reduced profit function

• heterogeneous products

• vertical product differentiation

• horizontal product differentiation

• competition advantage

• price advantage

We cannot but recommend the textbook by Pfähler & Wiese (2008).

10. Solutions

Exercise XII.1

Driver 1 has a first-mover advantage in the game of chicken. He chooses

“continue” so that driver 2 is forced to swerve. The game tree and its

backward-induction solution is depicted in fig. 20.

Exercise XII.2

Firm 2’s profit function is

Π2 (x1, x2, x3) = p (X)x2 −C (x2)

= (100− x1 − x2 − x3)x2 −C (x2) .
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so that its reaction function is given by

xR2 (x1, x3) =
100− x1 − x3

2
.

Firms 2 and 3 are symmetric and we have firm 3’s reaction function

xR3 (x1, x2) =
100− x1 − x2

2
.

Since these two fims act simultaneously after observing x1, we obtain the

Cournot equilibrium by solving these two equations for x2 and x3. We find

xC2 (x1) =
100− x1

3
,

xC3 (x1) =
100− x1

3
.

The leader firm 1 plugs these values into its profit function to obtain the

reduced profit function

Π1
�
x1, x

C
2 (x1) , x

C
3 (x1)

�
=
�
100− x1 − xC2 (x1)− xC3 (x1)

�
x1 − 0.

Finally, we obtain

xS1 = 50 and xC2 (50) = xC3 (50) =
50

3
.

Exercise XII.3

The first combination is not an equilibrium. Facing xS2 = xR2
�
xS1
�
, firm

1’s optimal choice is xR1
�
xS2

�
�= xS1 (compare fig. 6, p. 314). The other two

combinations are Nash equilibria, but the last one is not subgame perfect

(see below).

Exercise XII.4

The answer is indicated in fig. 21. We have N = {1, 2} . Player 1 is

noted below the initial node and player 2 below the other decision nodes.

A1 = D2 is the set of nodes highlighted by the arrows. Player 2 has 16

strategies, among them

⌊reject, accept, accept, accept⌋ and ⌊reject, accept, reject, accept⌋ .
Exercise XII.5

The first two strategies are reflected in the game matrix, the third is

not:

• player 2 does not accept:

⌊reject, reject, reject, reject⌋
• player 2 accepts if at least 2 coins are offered to him:

⌊reject, reject, accept, accept⌋
• player 2 accepts if no coin or two coins are offered to him, otherwise

he rejects:

⌊accept, reject, accept, reject⌋
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0

accept

reject

(1, 2)

(0, 0)

accept

reject

(0, 3)

(0, 0)

1

2

3

accept

reject

(3, 0)

(0, 0)

accept

reject

(2, 1)

(0, 0)

1

2

2

2

2

F����� 21. The take-it-or-leave-it game - the exercise

Exercise XII.6

(⌊2⌋ , ⌊reject, reject, accept, accept⌋) is Nash equilibrium with payoff vec-

tor (1, 2) which clearly indicates the terminal node brought about by that

strategy combination. (⌊2⌋ , ⌊accept, reject, accept, reject⌋) is not a Nash

equilibrium because player 1 could offer 0 and obtain payoff 3 > 1.

Exercise XII.7

The solutions are indicated in fig. 22. Player 2 is indifferent between

accepting and rejecting if offered a payoff of 0. Therefore, we obtain two

backward-induction trees, two backward-induction trails and two backward-

induction strategy combinations.

Exercise XII.8

The game is a two-stage game and it is depicted in fig. 23. Player

1 makes an offer x1 (x1 ∈ {0, 1, 2, 3}) and player 2 gives an answer a2
(a2 ∈ {accept, reject}) to that offer.

Exercise XII.9

There is one and only one equilibrium, (a1, a2) =
�
1
2 ,
1
2

�
. If a firm devi-

ates, its sales are reduced by 1
2 times the positional change.

Exercise XII.10
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2

2

F����� 22. The backward-induction solution of the bargain-

ing game

1x 2a
2

1

Π
Π

F����� 23. The very compact form of the take-it-or-leave-it game

You should have found

pBS
1 = argmax

p1

�
Π1(p1, p

R
2 (p1))

�

= c+
3

2
t > c+ t

and

pR2
�
pBS
1

�
= c+

5

4
t < c+

3

2
t.
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A second-mover advantage exists because of

ΠBS
1 =

�
pBS
1 − c

��1

2
+
pR2 (p

BS
1 )− pBS

1

2t

�
=

18

32
t

<
25

32
t

=
�
pR2 (p

BS
1 )− c

��1

2
+
pBS
1 − pR2 (p

BS
1 )

2t

�
= ΠBS

2 .

However, this does not mean that the price leader would rather be a firm in

the simultaneous case. After all, he is free to choose the crossing point of

the two reaction functions. He deviates from that point in order to realize

a higher profit:

ΠBS
1 =

9

16
t >

8

16
t = ΠB

1 .
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1
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1
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(99, 
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g

f

g

f

g

f

g

f

g

F����� 24. The centipede game

11. Further exercises without solutions

P�
#$�� XII.1.

Consider the backward-induction solution for the stag hunt on pp. 307.

Do likeweise for "head or tail" (p. 250).

P�
#$�� XII.2.

Reconsider the police game (p. 262). Let the police be the first mover

and assume that the indifferent agent abstains from committing a crime.

Find the optimal control probability!

P�
#$�� XII.3.

Consider the centipede game depicted in fig. 24! The players 1 and 2

take turns in choosing between "finish" (action f) or "go on" (action g). For

every player, a strategy is a 99-tuple. For example, ⌊g, g, g, g, f, ..., f⌋ is

the strategy according to which a player chooses "go on" at his first four

decision nodes and chooses "finish" at all the others.

• Which strategy would you choose if you were player 1? Does your

answer depend on who takes on 2’s role?

• Can player 1’s strategy ⌊g, g, g, g, f, ..., f⌋ be part of a subgame-

perfect strategy combination?

• Solve the centipede game by backward induction!

• Do you want to reconsider your answer to the first question?

P�
#$�� XII.4.

Work through the innovation chapter in Pfähler & Wiese (2008, pp.

225).



CHAPTER XIII

Repeated games

The last chapter of this part focuses on a specific class of multi-stage

games — repeated games. In these games, the actions available at each

stage game are the same at each stage. Thus, we have an underlying stage

game that gets repeated a finite or an infinite number of times. Arguably,

repeated games are relevant for discussing cartel issues. After all, firms

typically meet under similar conditions for long stretches of time on one and

the same market.

1. Example: Repeating the pricing game

Repeated games are especially simple extensive-form games. A stage

game is played repeatedly by the same players. The repetitions are called

stages or periods. Since “strategies” refer to a plan for the whole, repeated,

game, we use the word “action” for what the players do within the stages.

Consider the following pricing game played by two firms:

firm 2

firm 1

high price cut price

high price 4, 4 0, 5

cut price 5, 0 1, 1

If both charge high prices, profits are relatively high for both which obtain a

payoff of 4 (million Euro). However, each firm has an incentive to undercut

its rival (5 > 4) and to charge a low price if the other firm does (1 > 0).

Thus, it is likely that both firms charge a low price and obtain low profits

1. The alert reader will have noticed that this game is nothing but the

prisoners’ dilemma (see p. 251).

One might think and hope (for the firms’ sake, not the consumers’) that

a repetition of this game may help firms to coordinate on a high price.

After all, could not a high-price firm punish a low-price firm by charging a

low price itself? Let us consider the twofold repetition of the pricing game

depicted in fig. 1.

Player 1 moves first in each of the two stages. He chooses action h (high

price) or c (cut price). These actions correspond to the strategies of the

stage game. Player 2 does not learn player 1’s choice which is indicated by

343
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F����� 1. The two-stage prisoners’ dilemma

the dashed line. He also chooses between a high and a low price. Then the

first stage is over and both players observe what happened in that stage.

Note that the imperfect information of player 2 at the second stage refers

not to player 1’s action at the first stage but only to player 1’s action at the

second stage.

E������� XIII.1. Can you make sense of the payoff pairs (4, 9) and

(10, 0)? How many subgames can you find?

There are two ways to simplify fig. 1. First of all, this figure contains

information that we do not need. The important issue is that, within each

stage, each player makes his decision without knowing the other’s move.

However, we do need to know which player moves first. For example, the

Cournot model can be understood as an extensive-form game where firm 1 or

firm 2 moves first and the other firm, who does not know the first-mover’s

action, second. Fig. 2 is the simplification for our two-stage prisoners’

dilemma game.

If we are mainly interested in the actions that the players can choose

and in the information they have, we can employ the “very compact form”

introduced in the previous chapter (fig. 3). The fact that the prices p1 and

p2 are chosen simultaneously at stage 1 (or p1 after p2 without knowledge
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F����� 2. The two-stage prisoners’ dilemma in a more com-

pact form

2
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p

2
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Π
Π

2

1

p

p

first stage second stage

F����� 3. The two-stage prisoners’ dilemma in compact form

of p2) is reflected in the vertical alignment. At stage 2, both stage-1 prices

are known to both players.

Some stage games have equilibria in pure strategies (we do not consider

mixed-strategy equilibria in this chapter). For example, there are inefficient

price-cutting equilibria in our stage game. If every player chooses “cut price”

whenever it is his turn to act, the resulting strategies form an equilibrium.

The interesting question (from the point of view of competition policy) is

whether we have other equilibria. How about tit for tat? Every player
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begins with the nice action (high price, in our example) and copies the other

player’s last period action in later stages. Indeed, if both players choose that

strategy, each of them obtains 8 rather than just 2.

E������� XIII.2. Describe player 2’s tit-for-tat strategy as a quintuple

of the form

⌊ c����
Action at

the first stage

, h����
Action at

the second stage

after h by both

, c����
Action at

the second stage

after h by player 1

,

h����
Action at

the second stage

after h by player 2

, c����
Action at

the second stage

after c by both

⌋!

The strategy combination where both players choose tit for tat is not

an equilibrium. For example, player 1 can increase his profits by choosing c

at the second stage after both players chose h at the first stage. His payoff

incrases from 8 to 9.

Indeed, by the strict dominance of c in the stage game, there is no

equilibrium of any finitely repeated game where a player chooses h. However,

knowing that every player chooses c at the last stage, no player can choose h

at the second-to-last stage. Thus, in a finitely repeated prisoners’ dilemma

game, every player chooses the noncooperative action at every stage.

E������� XIII.3. Defining the order of subgames as in the previous

exercise, are the strategy combinations

• (⌊c, c, c, c, c⌋ , ⌊c, c, c, c, c⌋) or
• (⌊c, h, h, h, c⌋ , ⌊c, h, h, h, c⌋)

Nash equilibria of the twice repeated pricing game?

The prospects for cooperation are much better when we consider in-

finitely repeated rather then finitely repeated pricing games. In fact, the

above argument for noncooperative behavior depends on the existence of a

last stage.

2. Definitions

Repeated games are a special instance of multi-stage games. They have

two peculiarities:

• In repeated games, the action sets Ad
i and the action tuples Ad are

the same for all stages d ∈ D.

• he utility is the (discounted) sum of the payoffs received in every

stage game.



2. DEFINITIONS 347

In order to avoid confusion between the symbols used for the stage game

and the multi-stage game, we use AΓi (rather than Si) for player i’s strategy

set in stage game Γ and g (rather than u) for the payoff functions in stage

game Γ.

D�������
� XIII.1 (Finitely repeated game). Let Γ =
�
N,

�
AΓi

�
i∈N , g

�

be a strategic game and let δ ∈ [0, 1]. The t-fold repetition of Γ with discount

factor δ is the multi-stage game Γt,δ where

• at each stage node d ∈ D every player i ∈ N chooses an action

from Ad
i := AΓi ,

• a strategy for player i is a function si : D → AΓi where D is the set

of stage nodes that depend on the actions chosen at previous stages

and

• payoffs are given by

ui (s) =

�t−1
τ=0

δτgi (s (dτ ))
�t−1

τ=0
δτ

where

— d0 is the initial node,

— d1 the node resulting from the action combination s (d0)

— ...

— dt−1 is the node resulting from action combinations s (d0) -
through s (dt−2)

While it is quite possible to define the payoff function u : E → Rn, it

is easier to immediately state the payoff as a function of strategies. s (dτ )

is the action combination chosen at stage node dτ . The stage game Γ gives

the payoff for each stage. However, the payoff is discounted according to a

discount factor that lies between 0 and 1. You can think of δ as 1
1+r with

interest rate r. In case of δ = 0, we have ui (s) = gi (s (d0)) for all players

i ∈ N because of 00 = 1. Then, the players are very impatient and the payoff

of the first period, only, counts. The other extreme is δ = 1 where payoffs are

not discounted at all and we obtain the utility ui (s) =
1
t

�t−1
τ=0

gi (s (dτ )) .

Note that the payoff functions contain the denominator
�t−1

τ=0
δτ . This is

a normalization which does not influence best responses or equilibria. It

allows a comparison of multi-stage payoffs with payoffs in the stage game.

E������� XIII.4. Assume that all players use constant strategies, i.e.,

we have s (d) = a ∈ AΓ for all d ∈ D. Find ui (s) .

So far, we have defined the finite repetition of a stage game Γ. This

definition needs to be adapted for infinite repetitions. In particular, in

case of infinite repetitions, there are no terminal nodes (we have V = D).

Therefore, we attach utility information to infinite trails rather than terminal
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nodes. Also, in order to guarantee the convergence of the infinite sum, we

disallow δ = 1 :

D�������
� XIII.2 (Infinitely repeated game). Let Γ =
�
N,

�
AΓi

�
i∈N , g

�

be a strategic game and let δ ∈ [0, 1). The infinite repetition of Γ with dis-

count factor δ is the multi-stage game Γ∞,δ where

• at each stage node d ∈ D every player i ∈ N chooses an action

from Ad
i := AΓi ,

• a strategy for player i is a function si : D → AΓi where D is the set

of stage nodes that depend on the actions chosen at previous stages

and

• payoffs for δ < 1 are given by

ui (s) =

�∞
τ=0

δτgi (s (dτ ))
�∞

τ=0
δτ

The denominator in the utility functions can be simplified. By δ < 1

and

infinite geometric series =
first term

1− factor
=

δ0

1− δ
=

1

1− δ
,

the utility function can be rewritten as

ui (s) = (1− δ)
∞�

τ=0

δτgi (s (dτ )) .

3. Equilibria of stage games and of repeated games

In this section, we show how to generate multi-stage equilibria from one-

stage equilibria. Indeed, any equilbrium in a stage game Γ gives rise to the

obvious equilibrium in the repeated game Γt or Γ∞ :

T��
��� XIII.1. Let Γ =
�
N,

�
AΓi

�
i∈N , g

�
be a strategic game and let

δ ∈ [0, 1). Let a∗ = (a∗1, a
∗
2, ..., a

∗
n) ∈ AΓ be an equilibrium of Γ. Then, s∗ is a

subgame-perfect equilibrium of Γt or Γ∞ if all the strategies s∗i are constant
and equal to a∗i , i.e., if for all i ∈ N we have

s∗i : D → AΓi , d → s∗i (d) = a∗i .

P�

�. We need to show that a unilateral deviation from s∗ does not

pay for any player. Let si be any strategy for player i from N. For the finite
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game Γt, we find

ui
�
si, s

∗
−i

�
=

�t−1
τ=0

δτgi
�
si (dτ ) , s

∗
−i (dτ )

�

�t−1
τ=0

δτ

=

�t−1
τ=0

δτgi
�
si (dτ ) , a

∗
−i

�

�t−1
τ=0

δτ

≤
�t−1

τ=0
δτgi

�
a∗i , a

∗
−i

�

�t−1
τ=0

δτ

=

�t−1
τ=0

δτgi
�
s∗i (dτ ) , s

∗
−i (dτ )

�

�t−1
τ=0

δτ

= ui
�
s∗i , s

∗
−i

�

so that s∗i is a best reply to s∗−i. �

Thus, if the stage game admits an equilibrium, we can construct an equi-

librium for the multi-stage game in the obvious manner. We can show more:

If a stage game has several equilibria, acting accordingly in any prespecified

order, is also an equilibrium. This is the assertion of the following theorem

for the case of two one-stage equilibria. It can be extended to any number

of one-stage equilibria without any problems.

T��
��� XIII.2. Let Γ =
�
N,

�
AΓi

�
i∈N , g

�
be a strategic game. Let

a∗ = (a∗1, a
∗
2, ..., a

∗
n) and b

∗ = (b∗1, b
∗
2, ..., b

∗
n) be equilibria of Γ. Then, s

∗ is a
subgame-perfect equilibrium of Γt or Γ∞ if there exists a partition {Da∗ , Db∗}
of D such that the strategies s∗i : D → AΓi , i ∈ N, obey

d → s∗i (d) = a∗i for all i ∈ N and all d ∈ Da∗

and

d → s∗i (d) = b∗i for all i ∈ N and all d ∈ Db∗ .

If the stage game is repeated a finite number of times, the inverse also holds.

The theorem claims that we obtain subgame-perfect equilibria of re-

peated games by alternating between the one-stage equilibria. The inverse

also holds for finite repetitions: All the equilibria of finitely repeated games

are of the make described in our theorem. In particular, any finite repetition

of a stage game with only one equilibrium, such as the prisoners’ dilemma,

has a unique subgame-perfect equilibrium.

E������� XIII.5. Apply the above theorem to the battle of the sexes (p.

250) and show that a finitely repeated game with δ = 1 may result in an

average equilibrium payoff 334 for her.
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Repeated games allow to discuss the punishment one player inflicts on

another. For example, one might think that players in a prisoners’ dilemma

can use some tit-for-tat or similar strategy to threaten the other players into

nice, cooperative behavior. Alas, the finitely repeated prisoners’ dilemma

does not provide this opportunity in a subgame perfect equilibrium as the

above theorem shows.

4. The infinitely repeated prisoners’ dilemma

The theorems of the previous section hold for finite repetitions as well

as for infinite repetitions. We focus on the prisoners’ dilemma and examine

whether players can cooperate if they play an infinite number of times.

4.1. Worst punishment. While finite repetitions of the prisoners’

dilemma game admit only one subgame-perfect equilibrium, we obtain a

great many number of subgame-perfect equilibria in case of infinite repeti-

tions. We will see that infinite repetitions allow for punishment strategies

in equilibrium. Therefore, we begin by defining the worst punishment that

players from N\ {i} can inflict on player i in each stage game:

D�������
� XIII.3 (Worst punishment). Let Γ =
�
N, (Ai)i∈N , g

�
be a

strategic game. The worst punishment that can be inflicted on player i ∈ N

is defined by

wi = min
a−i

max
ai

gi (ai, a−i) .

We call

• w = (w1, ..., wn) is called the worst-punishment point and

• apun−i := argmina−i maxai gi (ai, a−i) the worst-punishment action

combination(s) undertaken by players from N\ {i} .

In order to understand wi correctly, note

gi (ai, a−i) : i’s payoff resulting from (ai, a−i) ,

max
ai

gi (ai, a−i) : i’s maximal payoff, given a−i,

min
a−i

max
ai

gi (ai, a−i) : i’s minimal (over a−i) payoff,

argmin
a−i

max
ai

gi (ai, a−i) : punishing action combination a−i

Thus, the players from N\ {i} choose a punishment action tuple apun−i . If

player i chooses his best response to apun−i , he obtains

wi = max
ai

gi
�
ai, a

pun
−i

�
.

Of course, it may well happen that player i obtains less than wi. After all,

the strategies in Γ (which are actions in Γ∞) are chosen simultaneously. wi

is the guaranteed minimum that can be inflicted on player i.
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E������� XIII.6. Consider the following game and determine the worst

punishment for player 1 .

player 2

player 1

left right

up 2, 1 4, 0

down 3, 0 1, 1

The importance of the worst punishment is obvious ´from the following

lemma:

L���� XIII.1. A player’s equilibrium payoff in a finitely or infinitely

repeated stage game is not smaller than his worst punishment.

P�

�. We first show the lemma for the stage game Γ =
�
N, (Ai)i∈N , g

�

itself, i.e., for t = 1. Let i ∈ N be any player. Of course, for every a−i ∈ A−i,

we have wi = mina−i maxai gi (ai, a−i) ≤ maxai gi (ai, a−i) . If a∗ =
�
a∗i , a

∗
−i

�

is an equilibrium of the stage game, a∗i is a best response to a∗−i and the

inequality implies wi ≤ maxai gi
�
ai, a

∗
−i

�
= gi

�
a∗i , a

∗
−i

�
.

Consider, now, the t-fold repetition of Γ. Let s∗ =
�
s∗i , s

∗
−i

�
be an equi-

librium of Γt and let si be player i’s strategy defined by

si (d) := Bi

�
s∗−i (d)

�
= argmax

ai
gi
�
ai, s

∗
−i (d)

�
.

Thus, s∗−i (d) is an element of A−i and si (d) ∈ Ai is a best response to this

action combination. Let T (v0 = d0, vE) =
7
d0, d1, ..., dt−1, vt = v(si,s∗−i)

8
be

the trail from v0 to terminal node vE = v(si,s∗−i)
provoked by

�
si, s

∗
−i

�
. We

then obtain

ui (s
∗) ≥ ui

�
si, s

∗
−i

�
(s∗ is an equilibrium)

=

�t−1
τ=0

δτgi
�
si (dτ ) , s

∗
−i (dτ )

�

�t−1
τ=0

δτ
(trail T

�
v0 = d0, v(si,s∗−i)

�
)

=

�t−1
τ=0

δτ maxai gi
�
ai, s

∗
−i (dτ )

�

�t−1
τ=0

δτ
(definition of si)

≥
�t−1

τ=0
δτwi

�t−1
τ=0

δτ
(definition of worst punishment)

= wi,

which concludes the proof for finitely repeated games. The proof for infin-

itely repeated games (δ < 1) proceeds along the same lines. �
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4.2. Folk theorems for equilibria. We now remind the reader of the

prisoners’ dilemma presented in the introduction:

firm 2

firm 1

high price cut price

high price 4, 4 0, 5

cut price 5, 0 1, 1

Lemma XIII.1 says that the equilibrium payoffs cannot fall below w1 =

w2 = 1. To characterize the equilibrium payoff tuples, we need to define the

convex hull of payoff vectors. You are familiar with convex combinations

(see p. IV.17). A convex hull is a generalization from two payoff vectors

(or consumption vectors) to any number. In any case, we have nonnegative

scalars which sum to 1 and a convex hull is the set of all linear combinations

that can be achieved by looking at all those scalar combinations:

D�������
� XIII.4. Let M ⊆ Rn be a set of finite (consumption, payoff,

etc.) vectors with m := |M |. The convex hull of M is denoted by hull (M)

and defined by
6
y ∈ Rn : there exist xℓ ∈M,αℓ ≥ 0, and

m�

ℓ=1

αℓ = 1 s.t. y =
m�

ℓ=1

αℓxℓ

9
.

We can now define the convex hull of a stage game Γ = (N,A, g) which

is nothing but the convex hull of the payoff vectors:

D�������
� XIII.5. Let Γ = (N,A, g) be a stage game. The convex hull

of Γ is given by

hull (Γ) := hull ({g (a) : a ∈ A}) .
The convex hull of Γ above w is defined by

hullw (Γ) := hull (Γ) ∩ {π ∈ Rn : πi > wi}

For example, the convex hull of our prisoners’ dilemma game is depicted

in fig. 4. The convex hull above (1, 1) is the subset northeast of the worst-

punishment point (1, 1) .

T��
��� XIII.3. Let Γ =
�
N, (Ai)i∈N , g

�
be a strategic game with

worst-punishment point w. In the infinite repetition Γ∞, every payoff vector
from hullw (Γ) can be obtained in equilibrium if the discount factor δ < 1 is

sufficiently large. I.e., for every π ∈ hullw (Γ) , there is a δ0 ∈ (0, 1) such

that Γ∞,δ has a Nash equilibrium s with u (s) = π for all δ ∈
�
δ0, 1

�
.

P�

�. Let π be from hullw (Γ). Assume the existence of an action

combination a with g (a) = π. Consider the following strategy combination

s∗ : Every player i ∈ N chooses ai at stage 1. At every other node d, he
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1

5

4

1 4 5

F����� 4. The convex hull of the prisoners’ dilemma

continues to choose ai if a has been chosen at every node reached before or

if more than one player deviated from a. If, however, exactly one player j

chooses an action different from aj at any node reached before, every player

i �= j chooses his action in apun−j at any node following d. If, finally, player

i himself deviates at any node reached before, he chooses an action from

Bi

�
apun−j

�
∈ Ai at any node following d.

We now show that strategy combination s∗ is an equilibrium for suffi-

ciently large δ. s∗ implies s∗ (d) = a for every node d belonging to the trail

�v0 = d0, d1, ..., d, ...� provoked by s∗ so that player i obtains the payoff

ui (s
∗) = (1− δ)

∞�

τ=0

δτgi (s
∗ (dτ ))

= (1− δ)
∞�

τ=0

δτgi (a)

= (1− δ)
∞�

τ=0

δτπi = πi > wi.

We now construct a strategy si for player i who deviates from ai at node

d and stage t. The maximal deviation (stage) payoff is

max
bi

gi (bi, a−i) =: πdevi .
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and the future stage payoffs are wi because player i will be punished forever.

Therefore, player i obtains the overall payoff

ui
�
si, s

∗
−i

�
= (1− δ)

0
t−1�

τ=0

δτπi + δtπdevi +
∞�

τ=t+1

δτwi

1

= (1− δ)

�
1− δt

1− δ
πi + δtπdevi +

δt+1

1− δ
wi

�

=
�
1− δt

�
πi + (1− δ) δtπdevi + δt+1wi

and deviating does not pay in case of

πi >
�
1− δt

�
πi + (1− δ) δtπdevi + δt+1wi

which is equivalent to
	
1−

�
1− δt

�

πi > (1− δ) δtπdevi + δt+1wi

and also to

πi > (1− δ)πdevi + δtwi.

By πi > wi, this inequality is fulfilled by sufficiently large δ < 1.

Finally, we need to show that a payoff vector π > w can be supported

by an equilibrium even if we do not have π = g (a) for a suitably chosen

a ∈ A. The idea (which we do not formalize) is to approximate π as close

as we like by alternating appropriate action combinations. Given such a

sequence of action combinations, a deviation from that sequence does not

pay for sufficiently large δ. �

The central idea of the proof is to punish players who deviate. If the

discount factor is large, the punishment can be more severe than the gain

obtained by a one-time deviation. In that case, the strategy combination

mentioned in the above proof is subgame perfect for the prisoners’ dilemma.

Indeed, either the players plan to adhere to a. Then, they have nothing

to gain by deviating once. Or, the players find themselves in punishment

mode. Then, they act according to the equilibrium of the stage game and

we have subgame perfection in line with theorem XIII.1.

4.3. Folk theorem for subgame-perfect equilibria. Consider, the

following adaption to the prisoners’ dilemma:

firm 2

firm 1

high price cut price punishment

high price 4, 4 0, 5 −1, −1

cut price 5, 0 1, 1 0, −1

punishment −1, −1 −1, 0 −1, −1
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The two firms have a third option which is called the punishment action.

Assume the strategy combination where both firms choose high price until

one of the firms, say firm 2, deviates. From then on, firm 1 chooses the pun-

ishment strategy and firm 2 its optimal response which is the cut price. For

sufficiently high δ, these strategies form a Nash equilibrium of the infinitely

repeated game. However, the equilibrium is not subgame perfect. Assume a

node where player 2 has deviated and is subject to punishment. While that

cannot happen in equilibrium for sufficiently high δ, it may well occur off

the equilibrium path. Assuming such a node, the punishment sequence is

started and player 2 chooses an optimal response at every stage yielding the

punishment payof w2 = 0. The problem is that player 1 can deviate from

his punishment action by choosing the cut price at every stage.

Indeed, the problem of the punishment sequences may be that punish-

ment is a costly option. Punishment concurs with subgame perfection if the

punishment actions form an equilibrium of the stage game:

T��
��� XIII.4. Let Γ =
�
N, (Ai)i∈N , g

�
be a strategic game with

equilibria aℓ∗ =
�
aℓ∗1 , a

ℓ∗
2 , ..., a

ℓ∗
n

�
, ℓ = 1, ...,m.

u :=

�
min

ℓ=1,...,m
u1

�
aℓ∗

�
, ..., min

ℓ=1,...,m
un

�
aℓ∗

��

defines a payoff vector from Rn. In the infinite repetition Γ∞, every payoff
vector from hullu (Γ) can be obtained in a subgame—perfect equilibrium if

the discount factor δ < 1 is sufficiently large. I.e., for every π ∈ hullu (Γ) ,

there is a δ0 ∈ (0, 1) such that Γ∞,δ has a subgame-perfect equilibrium s with

u (s) = π for all δ ∈
�
δ0, 1

�
.

Thus, there is a theoretical argument for thinking that prisoners’ dilemma

problems (of the kind encountered by oligopolists) can be overcome in games

with infinite stages or in games where the last stage is not known in advance.
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5. Topics

The main topics in this chapter are

• stage game

• repeated game

6. Solutions

Exercise XIII.1

The payoff pair (4, 9) comes about if player 1 chooses “high price” in

both periods while player 2 is cooperative at one stage and noncooperative

at the other. We obtain the payoff pair (10, 0) if player 1 chooses the cut

price in both periods and player 2 the high price in both periods.

Since we have four action combinations at the first stage, the repeated

game has five subgames, corresponding to player 1’s five decision nodes.

Exercise XIII.2

Player 2’s tit-for-tat strategy is

⌊ h����
Action at

the first stage

, h����
Action at

the second stage

after h by both

, h����
Action at

the second stage

after h by player 1

,

c����
Action at

the second stage

after h by player 2

, c����
Action at

the second stage

after c by both

⌋.

Exercise XIII.3

(⌊c, c, c, c, c⌋ , ⌊c, c, c, c, c⌋) is the Nash equilibrium where both players

plan to act noncooperatively at both stages. (⌊c, h, h, h, c⌋ , ⌊c, h, h, h, c⌋)
leads to the same outcome (both choosing c at both stages). If player 2

chooses h at the first stage and c at the second, he can increase his profit

from 2 = 1 + 1 to 5 = 0 + 4. Therefore, the second strategy combination is

not a Nash equilibrium.

Exercise XIII.4

We obtain

ui (s) =

�t−1
τ=0

δτgi (s (dτ ))
�t−1

τ=0
δτ

=

�t−1
τ=0

δτgi (a)
�t−1

τ=0
δτ

= gi (a)

�t−1
τ=0

δτ

�t−1
τ=0

δτ
= gi (a) .

Exercise XIII.5

We consider the fourfold repetition of the battle of the sexes. If the

players go to the theater three times and to the football match once (the

order is irrelevant because of δ = 1), her payoff is

3 · 4 + 3

4
=

15

4
= 3

3

4
.
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Exercise XIII.6

Player 1’s worst punishment is

w1 = min
a2

max
a1

g1 (a1, a2) = min (3, 4) = 3.
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player 2

player 1

a12 a22 a32

a11 (3, 0) (0, 1) (0, 1)

a21 (0, 0) (2, 2) (1, 0)

a31 (0, 0) (0, 0) (0, 0)

F����� 5. A stage game with a unique equilibrium

7. Further exercises without solutions

P�
#$�� XIII.1.

Consider the battle of the sexes:

he

she

theatre football

theatre 4, 3 2, 2

football 1, 1 3, 4

Can you identify all the equilibria of the twice repeated game? Which of

these equilibria are subgame perfect? Write the strategies as quintuples

⌊a, aTT , aTF , aFT , aFF ⌋ ,

where a is the action (theatre or football) at the first stage and aTF the

action if she chose theatre at the first stage and he football.

P�
#$�� XIII.2.

Consider the stage game of fig. 5. How many equilibria can you find? Is

there an equilibrium of the twofold repetition where the two players choose

the first actions at the first stage and the second actions at the second stage?

P�
#$�� XIII.3.

Is there only one equilibrium in a finitely repeated prisoners’ dilemma?

Hint: Consider the following game:
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( )88,

( )94,

( )49,

( )77,

1

2

2

2

2

( )hh,

( )hh,

( )hh,

( )hh,

( )hh,

( )ch,

( )hc,

( )cc,

( )94,

( )100,

( )55,

( )83,
( )49,

( )55,

( )010,

( )38,

( )77,

( )83,

( )38,

( )66,

( )ch,

( )hc,

( )cc,

F����� 6

firm 2

firm 1

high price cut price

high price 4, 4 0, 5

cut price 5, 0 3, 3

and assume the following tit-for-tat strategy by player 2 :

• Choose c in the first period.

• If player 1 chooses c in the first period, choose c in the second

period.

• If player 1 chooses h in the first period, choose h in the second

period.

Also, the following game in stage-form should be helpful:

P�
#$�� XIII.4.

Show that a finitely repeated Prisoner’s Dilemma has a unique subgame

perfect equilibrium, in which each player chooses D in every period.

P�
#$�� XIII.5.

Let M > 1 be a natural number and have a look at the sequence of stage

outcomes (aτ ) = (1, 0, 0, ...) , the entries of which are only zeros except for

the 1st entry, and at the sequence of outcomes (bτ ) =


0, 0, ..., 0� �� �

M times

, 1, 1, ...




that starts with M zeros and continues with ones afterwards. Show: for
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every δ ∈ (0, 1), there is a M such that the outcomes (aτ ) are prefered to

(bτ ). Hint: For δ ∈ (0, 1) we have
�T

τ=0 δ
τ = 1−δT

1−δ



Part D

Bargaining theory and Pareto

optimality



The first three parts of our course stay within the confines of non-

cooperative game theory. Bargaining theory, our third main topic, is dealt

with from the non-cooperative and the cooperative point of view. This part

has three chapters. The aim of chapter XIV is to present a wide range of

micro models through the lens of the Pareto principle. We then revisit the

core and the Pareto principle in the context of cooperative games in some

detail in chapter XV. The last chapter deals with the (non-cooperative)

Rubinstein bargaining model.



CHAPTER XIV

Pareto optimality in microeconomics

Although the Pareto principle belongs to cooperative game theory, it

sheds an interesting light on many different models in microeconomics. We

consider bargaining between consumers, producers, countries in interna-

tional trade, and bargaining in the context of public goods and externalities.

We can also subsume profit maximization and household theory under this

heading. It turns out that it suffices to consider three different cases with

many subcases:

• equality of marginal rates of substitution

• equality of marginal rates of transformation and

• equality of marginal rate of substitution and marginal rate of trans-

formation

Thus, we consider a wide range of microeconomic topics through the lense

of Pareto optimality. The reader is invited to consult p. 75 for a definition

of the marginal rate of substitution and p. 204 if he is unsure what marginal

rate of transformation means.

1. Introduction: Pareto improvements

Economists are somewhat restricted when it comes to judgements on

the relative advantages of economic situations. The reason is that ordinal

utility does not allow for comparison of the utilities of different people.

However, situations can be ranked according to their Pareto efficiency

(Vilfredo Pareto, Italian sociologue, 1848-1923). Situation 1 is called Pareto

superior to situation 2 if no individual is worse off in the first than in the

second while at least one individual is strictly better off. Then, the move

from 2 to 1 is called a Pareto improvement. Situations are called Pareto

efficient, Pareto optimal or just efficient if Pareto improvements are not

possible. Compare the definition of Pareto inferiority (= absence of Pareto

optimality) on p. 252.

E������� XIV.1. Define Pareto optimality by way of Pareto improve-

ments.

E������� XIV.2. a) Is the redistribution of wealth a Pareto improve-

ment if it reduces social inequality?

b) Can a situation be efficient if one individual possesses everything?

363
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This chapter rests on the premise that bargaining leads to an efficient

outcome under ideal conditions. As long as Pareto improvements are avail-

able, there is no reason (so one could argue) not to “cash in” on them.

However, the existence of Pareto improvements does not make their re-

alization a forgone conclusion. This is obvious from the prisoners’ dilemma

and we revisit this theme later on in the context of bargaining under uncer-

tainty (pp. 440).

2. Identical marginal rates of substitution

2.1. Exchange Edgeworth box.

2.1.1. Introducing the Edgeworth box for two consumers. We consider

agents or households that consume bundles of goods. A distribution of such

bundles among all households is called an allocation. In a two-agent two-

good environment, allocations can be visualized via the Edgeworth box.

Exchange Edgeworth boxes allow to depict preferences by the use of indif-

ference curves. The reader may remember the production Edgeworth box

introduced in chapter VIII, pp. 201.

The analysis of bargaining between consumers in an exchange Edgeworth

box is due to Francis Ysidro Edgeworth (1881) (1845-1926). Edgeworth is

the author of a book with the beautiful title “Mathematical Psychics”. Fig.

1 represents the exchange Edgeworth box for goods 1 and 2 and individuals

A and B. The exchange Edgeworth box exhibits two points of origin, one

for individual A (bottom left corner) and another one for individual B (top

right).

Every point in the box denotes an allocation: how much of each good

belongs to which individual. One possible allocation is the (initial) endow-

ment. For all allocations
�
xA, xB

�
with xA =

�
xA1 , x

A
2

�
for individual A and

xB =
�
xB1 , x

B
2

�
for individual B we have

xA1 + xB1 = ωA
1 + ωB

1 and

xA2 + xB2 = ωA
2 + ωB

2 .

Individual A possesses an endowment ωA =
�
ωA
1 , ω

A
2

�
, i.e., ωA

1 units of

good 1 and ωA
2 units of good 2. Similarly, individual B has an endowment

ωB =
�
ωB
1 , ω

B
2

�
.

E������� XIV.3. Do the two individuals in fig. 1 possess the same

quantities of good 1, i.e., do we have ωA
1 = ωB

1 ?

E������� XIV.4. Interpret the length and the breadth of the Edgeworth

box!

2.1.2. Equality of the marginal rates of substitution. Seen from the re-

spective points of origin, the Edgeworth box depicts the two individuals’

preferences via indifference curves. Refer to fig. 1 when you work on the

following exercise.
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A

B

Ax1

Ax2

Bx2

Bx1

A
1ω

B
1ω

B
2ωA

2ω

indifference
curve A

indifference curve B

( )BBU ω

( )AAU ω

exchange lens

F����� 1. The exchange Edgeworth box

E������� XIV.5. Which bundles of goods does individual A prefer to

his endowment? Which allocations do both individuals prefer to their en-

dowments?

The two indifference curves in fig. 1, crossing at the endowment point,

form the so-called exchange lens which represents those allocations that are

Pareto improvements to the endowment point. A Pareto efficient allocation

is achieved if no further improvement is possible. Then, no individual can be

made better off without making the other worse off. Oftentimes, we imagine

that individuals achieve a Pareto efficient point by a series of exchanges. As

long as no Pareto optimum has been reached, they will try to improve their

lots.

E������� XIV.6. Sketch an inequitable Pareto optimum in an exchange

Edgeworth box. Is the relation “allocation x is a Pareto improvement over

allocation y” complete (see definition IV.13, p. 59)?

Finally, we turn to the equality of the marginal rates of substitution.

Consider an exchange economy with two individuals A and B where the

marginal rate of substitution of individual A is smaller than that of individ-

ual B:

(3 =)

����
dxA2
dxA1

���� =MRSA < MRSB =

����
dxB2
dxB1

���� (= 5)

We can show that this situation allows Pareto improvements. Individual A is

prepared to give up a small amount of good 1 in exchange for at least MRSA

units (3, for example) of good 2. If individual B obtains a small amount of

good 1, he is prepared to give up MRSB (5, for example) or less units of
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A

B

Ax1

Ax2

Bx2

Bx1

contract curve

good 1

good 1

good 2 good 2

F����� 2. The contract curve

good 2. Thus, if A gives one unit of good 1 to B, by MRSA < MRSB

individual B can offer more of good 2 in exchange than individual A would

require for compensation. The two agents might agree on MRSA+MRSB

2 = 4

units so that both of them would be better off. Thus, the above inequality

signals the possibility of mutually beneficial trade.

Differently put, Pareto optimality requires the equality of the marginal

rates of substitution for any two agents A and B and any pair of goods 1

and 2. The locus of all Pareto optima in the Edgeworth box is called the

contract curve or exchange curve (see fig. 2).

2.1.3. Deriving the utility frontier. The contract curve can be trans-

formed into the so-called utility frontier which is nothing but the exchange

Edgeworth box’ equivalent of the transformation curve (production-possibil-

ity frontier) known from the production Edgeworth box. Fig. 3 shows how

to construct this curve. Take point R in the upper part of figure 3. Here,

individual A achieves his utility level UA
R . Since R is a Pareto efficient point

on the contract curve, it is not possible for individual B to achieve a higher

level of utility than UB
R . The pair of utility levels

�
UA
R , U

B
R

�
is depicted in

the lower part. In a similar fashion, point T (upper part) is transformed into

point T (lower part). The resulting curve is called utility frontier. Given

some utility level of individual A, this curve represents the maximal utility

level possible for individual B.

E������� XIV.7. Are points S and T in fig. 4 Pareto efficient?

E������� XIV.8. Two consumers meet on an exchange market with

two goods. Both have the utility function U (x1, x2) = x1x2. Consumer A’s
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AU

BU

B
TU

B
RU

A
RU

A
TU

R

T

B
TU B

RU

A
RU

A
TU

R
T

A

B

utility frontier

F����� 3. Construction of the utility frontier

S

T

AU

BU

F����� 4. Utility-possibility curve

endowment is (10, 90), consumer B’s is (90, 10).

a) Depict the endowments in the Edgeworth box!

b) Find the contract curve and draw it!

c) Find the best bundle that consumer B can achieve through exchange!

d) Draw the Pareto improvement (exchange lens) and the Pareto-efficient

Pareto improvements!

e) Sketch the utility frontier!
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2.1.4. The generalized Edgeworth box. We now generalize the two-agents

two-goods Edgeworth box to n households, i = 1, ..., n, each of which pos-

sesses an endowment of ℓ goods. The set of households is denoted by

N := {1, 2, .., n}. ωi
g stands for household i’s endowment of good g. We

write ωi for
�
ωi
1, ..., ω

i
ℓ

�
and ωg for

�
ω1g, ..., ω

n
g

�
. ω is the sum of the endow-

ments of all households
�n

i=1 ω
i. Observe

�n
i=1 ω

i �= �ℓ
g=1 ωg.

E������� XIV.9. Consider two goods and three households and explain

ω3, ω1 and ω.

Households may consume their endowment but they do not need to if

they can exchange goods or buy and sell on a market. Consumption vectors

are also called allocations. Here, we will consider vectors with nonnegative

entries only.

D�������
� XIV.1. Allocations are functions from the set of households

N to the goods space Rℓ
+. Differently put, an allocation is a vector (x

i)i=1,...,n
or

�
xi
�
i∈N where x

i is a bundle from Rℓ
+.

Allocations may or may not be compatible with the endowment of all

the households taken together:

D�������
� XIV.2. An allocation is called feasible if
n�

i=1

xi ≤
n�

i=1

ωi

holds.

Thus, any point in an Edgeworth box is a feasible allocation.

2.2. Production Edgeworth box. With respect to the production

Edgeworth box, we can argue in a similar fashion. Remember producer

1’s marginal rate of technical substitution MRTS1 =
���dC1dL1

��� . We now un-

derstand this expression as producer 1’s marginal willingness to pay for an

additional unit of labor in terms of capital units. If two producers 1 and 2

produce goods 1 and 2, respectively, with inputs labor and capital, both can

increase their production as long as the marginal rates of technical substi-

tution differ. Thus, Pareto efficiency means
����
dC1
dL1

���� =MRTS1
!
=MRTS2 =

����
dC2
dL2

����
so that the marginal willingness to pay for input factors are the same.

2.3. Two markets — one factory. The third subcase under the head-

ing “equality of the marginal willingness to pay” concerns a firm that pro-

duces in one factory but supplies two markets 1 and 2. The idea is to consider

the marginal revenue MR = dR
dxi

as the monetary marginal willingness to

pay for selling one extra unit of good i. How much can a firm pay for the

sale of one additional unit?
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Thus, the marginal revenue is a marginal rate of substitution
��� dRdxi

���. The

role of the denominator good is taken over by good 1 or 2, respectively, while

the nominator good is “money” (revenue). Now, profit maximization by a

firm selling on two markets 1 and 2 implies
����
dR

dx1

���� =MR1
!
=MR2 =

����
dR

dx2

����
as we have seen in chapter XI, p. 288.

2.4. Two firms (cartel). The monetary marginal willingness to pay

for producing and selling one extra unit of good y is a marginal rate of

substitution where the denominator good is good 1 or 2 while the nomina-

tor good represents “money” (profit). We know from chapter XI (p. 295)

that two cartelists 1 and 2 producing the quantities x1 and x2, respectively,

maximize their joint profit

Π1,2 (x1, x2) = Π1 (x1, x2) + Π2 (x1, x2)

by obeying the first-order conditions

∂Π1,2
∂x1

!
= 0

!
=
∂Π1,2
∂x2

so that their marginal rates of substitution are the same if profit is under-

stood as joint profit. If
∂Π1,2
∂x2

were higher than
∂Π1,2
∂x1

the cartel could increase

profits by shifting the production of one unit from firm 1 to firm 2.

Note that a similar condition holds for the Cournot equilibrium (see p.

293),
∂Π1
∂x1

!
= 0

!
=
∂Π2
∂x2

.

However, this is definitely not an example for Pareto optimality (although

two marginal rates of substitution coincide). Rather, for each individual

firm, it is an example of Pareto optimality where a marginal rate of sub-

stitution equals a marginal rate of transformation (see subsection 4.4, p.

372).

3. Identical marginal rates of transformation

3.1. Two factories — one market. While the marginal revenue can

be understood as the monetary marginal willingness to pay for selling, the

marginal cost MC = dC
dy

can be seen as the monetary marginal opportunity

cost of production. How much money (the second good) must the producer

forgo in order to produce an extra unit of y (the first good)? Thus, the

marginal cost can be seen as a special case of the marginal rate of transfor-

mation, MRT =
���dx2dx1

���
transformation curve

.

According to chapter XI, p. 289, a firm supplying a market from two

factories (or a cartel in case of homogeneous goods), obeys the equality

MC1
!
=MC2.
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The cartel also makes clear that Pareto improvements and Pareto optimality

have to be defined relative to a specific group of agents. While the cartel

solution (maximizing the sum of profits) is optimal for the producers, it is

not, in general, for the economy as a whole because the sum of producers’

and consumers’ (!) rent may well be below the welfare optimum.

3.2. Bargaining between countries (international trade). David

Ricardo (1772—1823) has shown that international trade is profitable as long

as the rates of transformation between any two countries are different. Let

us consider the classic example of England and Portugal producing wine (W )

and cloth (Cl). Suppose that the marginal rates of transformation differ:

4 =MRTP =

����
dW

dCl

����
P

>

����
dW

dCl

����
E

=MRTE = 2.

In that case, international trade is Pareto-improving. Indeed, let England

produce another unit of cloth Cl that it exports to Portugal. England’s

production of wine reduces by MRTE = 2 gallons. Portugal, that imports

one unit of cloth, reduces the cloth production and can produce additional

MRTP = 4 units of wine. Therefore, if England obtains 3 gallons of wine

in exchange for the one unit of cloth it gives to Portugal, both countries are

better off.

Ricardo’s theorem is known under the heading of “comparative cost

advantage”. So far, it is unclear why this is a good name for his theorem.

The answer is provided by the following

L���� XIV.1. Assume that f is a differentiable transformation func-

tion x1 → x2. Assume also that the cost function C (x1, x2) is differentiable.

Then, the marginal rate of transformation between good 1 and good 2 can be

obtained by

MRT (x1) =

����
df (x1)

dx1

���� =
MC1
MC2

.

P�

�. Reconsider the production Edgeworth box encountered in chap-

ter VIII. We assume a given volume of factor endowments and given factor

prices (perfect competition!). Then, the overall cost for the production of

goods 1 and 2 is constant and does not change along the transformation

curve. Therefore, we can write

C (x1, x2) = C (x1, f (x1)) = constant.

If, now, we produce more of good 1 and less of good 2, the costs do not

change:
∂C

∂x1
+
∂C

∂x2

df (x1)

dx1
= 0.

Solving for the marginal rate of transformation yields

MRT = −df (x1)
dx1

=
MC1
MC2

.
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�

Now we have Ricardo’s result in the form it is usually presented: As long

as the comparative costs (more precise: the ratio of marginal costs) between

two goods differ, international trade is worthwhile for both countries.

Thus, Pareto optimality requires the equality of the marginal oppor-

tunity costs between any two goods produced in any two countries. The

economists before Ricardo clearly saw that absolute cost advantages make

international trade profitable. If England can produce cloth cheaper than

Portugal while Portugal can produce wine cheaper than England, we have

MCE
Cl < MCP

Cl and

MCE
W > MCP

W

so that England should produce more cloth and Portugal should produce

more wine. Ricardo observed that for the implied division of labor to be

profitable, it is sufficient that the ratio of the marginal costs differ:

MCE
Cl

MCE
W

<
MCP

Cl

MCP
W

.

Do you see that this inequality follows from the two inequalities above, but

not vice versa?

4. Equality between marginal rate of substitution and marginal

rate of transformation

4.1. Base case. Imagine two goods consumed at a marginal rate of

substitutionMRS and produced at a marginal rate of transformationMRT .

We now show that optimality also implies MRS = MRT. Assume, to the

contrary, that the marginal rate of substitution (for a consumer) is lower

than the marginal rate of transformation (for a producer):

MRS =

����
dx2
dx1

����
indifference curve

<

����
dx2
dx1

����
transformation curve

=MRT.

If the producer reduces the production of good 1 by one unit, he can increase

the production of good 2 by MRT units. The consumer has to renounce the

one unit of good 1, and he needs at leastMRS units of good 2 to make up for

this. By MRT > MRS the additional production of good 2 (come about

by producing one unit less of good 1) more than suffices to compensate

the consumer. Thus, the inequality of marginal rate of substitution and

marginal rate of transformation points to a Pareto-inefficient situation.

4.2. Perfect competition. We want to apply the formula

MRS
!
=MRT

to the case of perfect competition. For the output space, we have the con-

dition

p
!
=MC.
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We have derived “price equals marginal cost” as the profit-maximizing con-

dition on p. 225 and have discussed the welfare-theoretic implications on p.

290.

We can link the two formulas by letting good 2 be money with price 1.

• Then, the marginal rate of substitution tells us the consumer’s mon-

etary marginal willingness to pay for one additional unit of good

1 (see pp. 150). Cum grano salis, the price can be taken to mea-

sure this willingness to pay for the marginal consumer (the last

consumer prepared to buy the good).

• The marginal rate of transformation is the amount of money one

has to forgo for producing one additional unit of good 1, i.e., the

marginal cost.

Therefore, we obtain

price = marginal willingness to pay
!
= marginal cost.

In a similar fashion, we can argue for inputs. The marginal value prod-

uct MV P = pdy
dx is the monetary marginal willingness to pay for the factor

use while the factor price w can be understood as the monetary marginal

opportunity cost of employing the factor. Thus, we reobtain the optimiza-

tion condition for a price taker on both the input and the output market

introduced on p. 228:

marginal value product
!
= factor price.

4.3. First-degree price discrimination. The Cournot monopoly clear-

ly violates the “price equals marginal cost” rule. However, first-degree price

discrimination fulfills this rule as shown on pp. 287.

4.4. Cournot monopoly. A trivial violation of Pareto optimality en-

sues if a single agent acts in a non-optimal fashion. Just consider con-

sumer and producer as a single person. For the Cournot monopolist, the

MRS
!
=MRT formula can be rephrased as the equality between

• the monetary marginal willingness to pay for selling — this is the

marginal revenue MR = dR
dy (see above p. 368) — and

• the monetary marginal opportunity cost of production, the mar-

ginal cost MC = dC
dy (p. 369).

4.5. Household optimum. A second violation of efficiency concerns

the consuming household. He “produces” goods by using his income to buy

them, m = p1x1 + p2x2 in case of two goods.

E������� XIV.10. The prices of two goods 1 and 2 are p1 = 6 and

p2 = 2, respectively. If the household consumes one additional unit of good

1, how many units of good 2 does he have to renounce?
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The exercise helps us understand that the marginal rate of transforma-

tion is the price ratio,

MRT =
p1
p2
,

that we also know under the heading of “marginal opportunity cost”. (Al-

ternatively, consider the transformation function x2 = f (x1) =
m
p2

− p1
p2
x1.).

Seen this way, MRS
!
=MRT is nothing but the famous condition for house-

hold optimality dervied on pp. 126.

4.6. External effects and the Coase theorem.

4.6.1. External effects and bargaining. The famous Coase theorem can

also be interpreted as an instance of MRS
!
=MRT.We present this example

in some detail.

External effects are said to be present if consumption or production

activities are influenced positively or negatively while no compensation is

paid for this influence. Environmental issues are often discussed in terms

of negative externalities. Also, the increase of production exerts a negative

influence on other firms that try to sell subsitutes. Reciprocal effects exist

between beekeepers and apple planters.

Consider a situation where A pollutes the environment doing harm to B.

In a very famous and influential paper, Coase (1960) argues that economists

have seen environmental and similar problems in a misguided way.

First of all, externalities are a “reciprocal problem”. By this Coase

means that restraining A from polluting harms A (and benefits B). Accord-

ing to Coase, the question to be decided is whether the harm done to B

(suffering the polluting) is greater or smaller than the harm done to A (by

stopping A’s polluting activities).

Second, many problems resulting from externalities stem from missing

property rights. Agent A may not be in a position to sell or buy the right

to pollute from B simply because property exists for cars and real estate

but not for air, water or quietness. Coase suggests that the agents A and B

bargaining about the externality. If, for example, A has the right to pollute

(i.e., is not liable for the damage caused by him), B can give him some

money so that A reduces his harmful (to B) activity. If B has the right

not to suffer any pollution (i.e., A is liable), A could approach B and offer

some money in order to pursue some of the activity benefitting him. Coase

assumes (as we have done in this chapter) that the two parties bargain about

the externality so as to obtain a Pareto-efficient outcome.

The Nobel prize winner (of 1991) presents a startling thesis: the ex-

ternality (the pollution etc.) is independent of the initial distribution of

property rights. This thesis is also known as the invariance hypothesis.
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4.6.2. Straying cattle. Coase (1960) discusses the example of a cattle

raiser and a crop farmer who possess adjoining land. The cattle regularly

destroys part of the farmer’s crop. In particular, consider the following table:

number of steers marginal profit marginal crop loss

1 4 1

2 3 2

3 2 3

4 1 4

The cattle raiser’s marginal profit from steers is a decreasing function

of the number of steers while the marginal crop loss increases. Let us begin

with the case where the cattle raiser is liable. He can pay the farmer up to

4 (thousand Euros) for allowing him to have one cattle destroy crop. Since

the farmer’s compensating variation is 1, the two can easily agree on a price

of 2 or 3.

The farmer and cattle raiser will also agree to have a second steer roam

the fields, for a price of 212 . However, there are no gains from trade to be had

for the third steer. The willingness to pay of 2 is below the compensation

money of 3.

If the cattle raiser is not liable, the farmer has to pay for reducing the

number of steers from 4 to 3. A Pareto improvement can be had for any

price between 1 and 4. Also, the farmer will convince the cattle raiser to

take the third steer, but not the second one, off the field.

Thus, Coase seems to have a good point — irrespective of the property

rights (the liability question), the number of steers and the amount of crop

damaged is the same.

The reason for the validity (so far) of the Coase theorem is the fact

that forgone profits are losses and forgone losses are profits. Therefore, the

numbers used in the comparisons are the same.

It is about time to tell the reader why we talk about the Coase theorem

in the MRS
!
= MRT section. From the cartel example, we are familiar

with the idea of finding a Pareto optimum by looking at joint profits. We

interpret the cattle raiser’s marginal profit as the (hypothetical) joint firm’s

willingness to pay for another steer and the marginal crop loss incurred by

the farmer as the joint firm’s marginal opportunity cost for that extra steer.

We close this section by throwing in two caveats:

• If consumers are involved, the distribution of property rights has

income effects. Then, Coase’s theorem does not hold any more (see

Varian 2010, chapter 31).

• More important is the objection raised by Wegehenkel (1980). The

distribution of property rights determines who pays whom. Thus,
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if the property rights were to change from non-liability to liability,

cattle raising becomes a less profitable business while growing crops

is more worthwhile as before. In the medium run, agents will move

to the profitable occupations with effects on the crop losses (the

sign is not clear a priori).

4.7. Public goods. Public goods are defined by non-rivalry in con-

sumption. While an apple can be eaten only once, the consumption of a

public good by one individual does not reduce others’ consumption possi-

bilities. Often-cited examples include street lamps or national defence.

Consider two individualsA andB who consume a private good x (quanti-

ties xA and xB, respectively) and a public good G. The optimality condition

is

MRSA +MRSB

=

����
dxA

dG

����
indifference curve

+

����
dxB

dG

����
indifference curve

!
=

�����
d
�
xA + xB

�

dG

�����

transformation curve

=MRT.

Assume that this condition is not fulfilled. For example, let the marginal

rate of transformation be smaller than the sum of the marginal rates of

substitution. Then, it is a good idea to produce one additional unit of the

public good. The two consumers need to forgo MRT units of the private

good. However, they are prepared to give up MRSA +MRSB units of the

private good in exchange for one additional unit of the public good. Thus,

they can give up more than they need to. Assuming monotonicity, the two

consumers are better off than before and the starting point (inequality) does

not characterize a Pareto optimum.

Once more, we can assume that good x is the numéraire good (money

with price 1). Then, the optimality condition simplifies and Pareto efficiency

requires that the sum of the marginal willingness’ to pay equals the marginal

cost of the public good.

E������� XIV.11. In a small town, there live 200 people i = 1, ..., 200

with identical preferences. Person i’s utility function is Ui (xi,G) = xi+
√
G,

where xi is the quantity of the private good and G the quantity of the public

good. The prices are px = 1 and pG = 10, respectively. Find the Pareto-

optimal quantity of the public good.

Thus, by the non-rivalry in consumption, we do not quite get a subrule

of MRS
!
=MRT but something similar.

5. Topics

The main topics in this chapter are
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• Pareto efficiency

• Pareto improvement

• exchange Edgeworth box

• contract curve

• exchange lens

• international trade

• external effects

• quantity cartel

• public goods

• first-degree price discrimination

6. Solutions

Exercise XIV.1

A situation is Pareto optimal if no Pareto improvement is possible.

Exercise XIV.2

a) A redistribution that reduces inequality will harm the rich. Therefore,

such a redistribution is not a Pareto improvement.

b) Yes. It is not possible to improve the lot of the have-nots without harming

the individual who possesses everything.

Exercise XIV.3

No, obviously ωA
1 is much larger than ωB

1 .

Exercise XIV.4

The length of the exchange Edgeworth box represents the units of good 1

to be divided between the two individuals, i.e., the sum of their endowments

of good 1. Similarly, the breadth of the Edgeworth box is ωA
2+ ωB

2 .

Exercise XIV.5

Individual A prefers all those bundels xA that lie to the right and above

the indifference curve that crosses his endowment point. The allocations

preferred by both individuals are those in the hatched part of fig. 1.

Exercise XIV.6

For the first question, you should have drawn something like fig. 5. Fig.

6 makes clear that we can have bundles A and B where A is no Pareto

improvement over B and B is no improvement over A. Thus, the relation is

not complete.

Exercise XIV.7

Point S is not Pareto efficient. At T , individual B is better off while A’s

utility level is the same as at S. From T no Pareto improvement is possible.

Therefore, T is Pareto efficient.

Exercise XIV.8

a) See fig. 7,

b) xA1 = xA2 ,

c) (70, 70) .
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A

B

Ax1

Ax2

Bx2

Bx1

F����� 5. Pareto optimality and equality

A

B

Ax1

Ax2

Bx2

Bx1

B

A

F����� 6. Incompleteness

d) The exchange lens is dotted in fig. 7. The Pareto efficient Pareto

improvements are represented by the contract curve within this lens.

e) The utility frontier is downward sloping and given by UB (UA) =�
100−√

UA

�2
.

Exercise XIV.9

• ω3 =
�
ω31, ω

3
2

�
is the third household’s endowment,
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good 1
10080604020

100

80

60

40

20

204060

60

80

80

100

100

20

40

good 1

A

B

good 2 good 2

F����� 7. The answer to parts a) and d)

• ω1 =
�
ω11, ω

2
1, ω

3
1

�
represents the endowment of good 1, distributed

among the three households, and

• ω =
�
ω11 + ω21 + ω31, ω

1
2 + ω22 + ω32

�
stands for the endowment pre-

sent in the whole economy. Thus, ω marks the size of the Edgeworth

box.

Exercise XIV.10

If the household consumes one additional unit of good 1, he has to pay

Euro 6. Therefore, he has to renounce 3 units of good 2 that also cost Euro

6 = Euro 2 times 3.

Exercise XIV.11

The marginal rate of transformation

����
d(
�200
i=1 xi)
dG

���� equals pG
px

= 10
1 = 10.

The marginal rate of substitution for inhabitant i is
����
dxi

dG

����
indifference curve

=
MUG

MUxi
=

1
2
√
G

1
=

1

2
√
G
.

Applying the optimality condition yields

200 · 1

2
√
G

!
= 10

and hence G = 100.
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7. Further exercises without solutions

P�
#$�� XIV.1.

Agent A has preferences on (x1, x2), represented by uA(xA1 , x
A
2 ) = xA1 .

Agent B has preferences, which are represented by the utility function

uB(xB1 , x
B
2 ) = xB2 . Agent A starts with ωA

1 = ωA
2 = 5, and B has the

initial endowment ωB
1 = 4, ωB

2 = 6.

(a) Draw the Edgeworth box, including

— ω,

— an indifference curve for each agent through ω!

(b) Is (xA1 , x
A
2 , x

B
1 , x

B
2 ) = (6, 0, 3, 11) a Pareto-improvement compared

to the initial allocation?

(c) Find the contract curve!

P�
#$�� XIV.2.

Consider the player set N = {1, ..., n} . Player i ∈ N has 24 hours to

spend on leisure or work, 24 = li + ti where li denotes i’s leisure time and

ti the number of hours that i contributes to the production of a good that

is equally distributed among the group. In particular, we assume the utility

functions ui (t1, ..., tn) = li +
1
n

�
j λtj , i ∈ N. Assume 1 < λ and λ < n.

(a) Find the Nash equilibrium.

(b) Is the Nash equilibrium pareto-efficient?





CHAPTER XV

Cooperative game theory

1. Introduction

1.1. Introductory remarks: Cooperative and non-cooperative

game theory. The aim of this chapter is to familiarize the reader with co-

operative game theory. It is sometimes suggested that non-cooperative game

theory is more fundamental than cooperative game theory. Indeed, from an

economic or sociological point of view, cooperative game theory seems odd

in that it does not model people who “act”, “know about things”, or “have

preferences”. In cooperative game theory, people just get payoffs. Coop-

erative game theory is payoff-centered game theory. Non-cooperative game

theory (which deals with strategies and equilibria) could be termed action-

centered or strategy-centered. Of course, non-cooperative game theory’s

strength does not come without cost. The modeller is forced to specify in

detail (sequences of) actions, knowledge and preferences. More often than

not, these details are specfied arbitrarily. Cooperative game theory is better

at providing a bird’s eye view.

Cooperative game theory builds on two pillars. First, the economic (or

political or sociological ...) situation is described by a so-called coalition

function. We concentrate on the simple transferable-utility case. Second,

solution concepts are applied to coalition functions in order to tell the payoffs

of all the players. We focus on two central solution concepts from cooperative

game theory, the Shapley value and the core.

1.2. Nobel prizes. The Sveriges Riksbank Prize in Economic Sciences

in Memory of Alfred Nobel was awarded for work on cooperative game theory

in 2012, to the US economists Alwin Roth (Harvard University and Harvard

Business School) and Lloyd Shapley (University of California, Los Angeles)

for the theory of stable allocations and the practice of market design

The press release by the Royal Swedish Academy of Sciences reads

This year’s Prize concerns a central economic problem: how

to match different agents as well as possible. For example,

students have to be matched with schools, and donors of

human organs with patients in need of a transplant. How

can such matching be accomplished as efficiently as possi-

ble? What methods are beneficial to what groups? The

381
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prize rewards two scholars who have answered these ques-

tions on a journey from abstract theory on stable allocations

to practical design of market institutions.

Lloyd Shapley used so-called cooperative game theory to

study and compare different matching methods. A key is-

sue is to ensure that a matching is stable in the sense that

two agents cannot be found who would prefer each other

over their current counterparts. Shapley and his colleagues

derived specific methods — in particular, the so-called Gale-

Shapley algorithm — that always ensure a stable matching.

These methods also limit agents’ motives for manipulating

the matching process. Shapley was able to show how the

specific design of a method may systematically benefit one

or the other side of the market.

Alvin Roth recognized that Shapley’s theoretical results

could clarify the functioning of important markets in prac-

tice. In a series of empirical studies, Roth and his colleagues

demonstrated that stability is the key to understanding the

success of particular market institutions. Roth was later able

to substantiate this conclusion in systematic laboratory ex-

periments. He also helped redesign existing institutions for

matching new doctors with hospitals, students with schools,

and organ donors with patients. These reforms are all based

on the Gale-Shapley algorithm, along with modifications that

take into account specific circumstances and ethical restric-

tions, such as the preclusion of side payments.

Even though these two researchers worked independently

of one another, the combination of Shapley’s basic theory

and Roth’s empirical investigations, experiments and prac-

tical design has generated a flourishing field of research and

improved the performance of many markets. This year’s prize

is awarded for an outstanding example of economic engineer-

ing.

2. The coalition function

Our discussion uses a specific example, the gloves game. Some players

have a left glove and others a right glove. Single gloves have a worth of zero

while pairs have a worth of 1 (Euro). The coalition function for the gloves

game is given by

vL,R : 2N → R

K → vL,R (K) = min (|K ∩ L| , |K ∩R|) ,

where
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• N is the set of players (also called the grand coalition),

• L (set of left-glove holders) and R (set of right-glove holders) form

a partition of N ,

• vL,R denotes the coalition function for the gloves game,

• 2N stands for N ’s power set, i.e., the set of all subsets of N (the

domain of vL,R),

• K is a coalition, i.e., K ⊆ N or K ∈ 2N

Thus, to each coalition K, the coalition function vL,R attributes that coali-

tion’s number of pairs of gloves.

D�������
� XV.1 (player sets and coalition functions). Player sets and

coalition functions are specified by the following definitions:

• Finite and nonempty player sets are denoted by N . More often
than not, we have N = {1, ..., n} with n ∈ N.

• v : 2N → R is called a coalition function if v fulfills v (∅) = 0. v (K)

is called coalition K’s worth.

• For any given coalition function v, its player set can be addressed
by N (v) or, more simply, N .

• We denote the set of all games on N by VN and the set of all games

(for any player set N) by V.

E������� XV.1. Assume N = {1, 2, 3, 4, 5}, L = {1, 2} and R =

{3, 4, 5}. Find the worths of the coalitions K = {1} , K = ∅, K = N

and K = {2, 3, 4}.
The above exercise makes clear that vL,R is, indeed, a coalition function.

The requirement of v (∅) = 0 makes perfect sense: a group of zero agents

cannot achieve anything.

E������� XV.2. Which of the following propositions make sense? Any

coalition K and any grand coalition N fulfill

• K ∈ N and K ∈ 2N ,

• K ⊆ N and K ⊆ 2N ,

• K ∈ N and K ⊆ 2N and/or

• K ⊆ N and K ∈ 2N?

In this book, we focus on transferable utility where v attaches a real

number to all coalitions. v (K) is the worth or the utility sum created by

the members of K. The basic idea is to distribute v (K) or v (N) among the

members of K or N . Thus, the utility is “transferable”.

Transferability is a severe assumption and does not work well in every

model. We need non-transferable utility for the analysis of exchange within

an Edgeworth box. Transferable utility is justfied if utility can be measured

in terms of money and if the agents are risk neutral.

We can interpret the gloves game as a market game where the left-glove

owners form one market side and the right-glove owners the other. We need
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to distinguish the worth (of a coalition) from the payoff accruing to players.

If the owner of a left glove obtains payoff 7
10 , two interpretations come to

mind:

• The player sells his left glove for a price of 7
10 .

• The player buys a right glove for the price of 3
10 , assembles a pair

of gloves which he uses (or sells for price 1) so that his payoff is

1− 3
10 = 7

10 .

We can sum payoffs and worths which leads us to the next section.

3. Summing and zeros

Payoffs for players are summarized in payoff vectors:

D�������
� XV.2. For any finite and nonempty player set N = {1, ..., n} ,
a payoff vector

x = (x1, ..., xn) ∈ Rn

specifies payoffs for all players i = 1, ..., n.

It is possible to sum coalition functions and it is possible to sum payoff

vectors. Summation of vectors is easy — just sum each component individu-

ally:

E������� XV.3. Determine the sum of the vectors




1

3

6


+




2

5

1


!

If we have three players, it is obvious that the first component belongs

to player 1, the second to player 2 etc. Note the difference between payoff-

vector summation

x+ y =




x1
x2

xn


+




y1
y2

yn


 =




x1 + y1
x2 + y2

xn + yn




and payoff summation

n�

i=1

xi.

Vector summation is possible for coalition functions, too. For example,

we obtain the sum v{1},{2,3}+v{1,2},{3} by summing the worths v{1},{2,3} (K)+

v{1,2},{3} (K) for every coalition K, from the empty set ∅ down to the grand
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coalition {1, 2, 3} :



∅ : 0

{1} : 0

{2} : 0

{3} : 0

{1, 2} : 1

{1, 3} : 1

{2, 3} : 0

{1, 2, 3} : 1




+




∅ : 0

{1} : 0

{2} : 0

{3} : 0

{1, 2} : 0

{1, 3} : 1

{2, 3} : 1

{1, 2, 3} : 1




=




∅ : 0

{1} : 0

{2} : 0

{3} : 0

{1, 2} : 1

{1, 3} : 2

{2, 3} : 1

{1, 2, 3} : 2




Of course, we need to agree upon a specific order of coalitions.

Mathematically speaking, Rn and VN can be considered as vector spaces.

Vector spaces have a zero. The zero from Rn is

0
∈Rn

=

�
0
∈R
, ..., 0

∈R

�

where the zero on the left-hand side is the zero vector while the zeros on the

right-hand side are just the zero payoffs for all the individual players. In the

vector space of coalition functions, 0 ∈ VN is the function that attributes

the worth zero to every coalition, i.e.,

0
∈VN

(K) = 0
∈R

for all K ⊆ N

4. Solution concepts

For the time being, cooperative game theory consists of coalition func-

tions and solution concepts. The task of solution concepts is to define and

defend payoffs as a function of coalition functions. That is, we take a coali-

tion function, apply a solution concept and obtain payoffs for all the players.

Solution concepts may be point-valued (solution function) or set-valued

(solution correspondence). In each case, the domain is the set of all games

V for any finite player sets N . A solution function associates each game

with exactly one payoff vector while a correspondence allows for several or

no payoff vectors.

D�������
� XV.3 (solution function, solution correspondence). A func-

tion σ that attributes, for each coalition function v from V, a payoff to each
of v’s players,

σ (v) ∈ R|N(v)|,
is called a solution function (on V). Player i’s payoff is denoted by σi (v) .
In case of N (v) = {1, ..., n} , we also write (σ1 (v) , ..., σn (v)) for σ (v) or
(σi (v))i∈N(v) .
A correspondence that attributes a set of payoff vectors to every coalition

function v,

σ (v) ⊆ R|N(v)|

is called a solution correspondence (on V).
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Solution functions and solution correspondences are also called solution

concepts (on V).

Ideally, solution concepts are described both algorithmically and ax-

iomatically. An algorithm is some kind of mathematical procedure (a more

or less simple function) that tells us how to derive payoffs from the coalition

functions. Consider, for example, these four solution concepts in algorithmic

form:

• player 1 obtains v (N) and the other players zero,

• every player gets 100,

• every player gets v (N) /n,

• every player i’s payoff set is given by [v ({i}) , v (N)] (which may

be the empty set).

Alternatively, solution concepts can be defined by axioms. For example,

axioms might demand that

• all the players obtain the same payoff,

• no more than v (N) is to be distributed among the players,

• player 1 is to get twice the payoff obtained by player 2,

• the names of players are irrelevant,

• every player gets v (N)− v (N\ {i}) .
Axioms pin down the players’ payoffs, more or less. Axioms may also make

contradictory demands. We present the most familiar axioms in the follow-

ing sections.

Before looking at some well-known solution concepts, we should ask

ourselves which payoffs to expect for the gloves game. How do you feel

about these properties:

• Prices of gloves should not be negative.

• The more left-hand gloves we have, the lower the price of left-hand

gloves.

• The sum of all the players’ payoffs should equal the number of glove

pairs.

• Owners of left gloves obtain the same payoff as owners of right

gloves.

• All owners of left gloves obtain the same payoff.

5. Pareto efficiency

Arguably, Pareto efficiency is the single most often applied solution

concept in economics — rivaled only by the Nash equilibrium from non-

cooperative game theory. For the gloves game, Pareto efficiency is defined

by �

i∈N
xi = vL,R (N) .
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Thus, the sum of all payoffs is equal to the number of glove pairs. It is

instructive to write this equality as two inequalities:
�

i∈N
xi ≤ vL,R (N) (feasibility) and

�

i∈N
xi ≥ vL,R (N) (the grand coalition cannot block x).

According to the first inequality, the players cannot distribute more than

they (all together) can “produce”. This is the requirement of feasibility.

Imagine that the second inequality were violated. Then,
�n

i=1 xi <

vL,R (N) holds and the players would leave “money on the table”. All players

together could block (or contradict) the payoff vector x. This means they

can propose another payoff vector that is both feasible and better for the

players. Indeed, the payoff vector y = (y1, ..., yn) defined by

yi = xi +
1

n

0
vL,R (N)−

n�

i=1

xi

1
, i ∈ N,

does the trick. y is an improvement upon x.

E������� XV.4. Show that the payoff vector y is feasible.

Normally, Pareto efficiency is defined by “it is impossible to improve

the lot of one player without making other players worse off”. If a sum of

money is distributed among the players, we can also define Pareto efficiency

by “it is impossible to improve the lot of all players”. The additional sum

of money that makes one player better off (first definition) can be spread

among all the players (second definition).

D�������
� XV.4 (feasibility and efficiency). Let v ∈ VN be a coalition

function and let x ∈ Rn be a payoff vector. x is called

• blockable by N in case of
n�

i=1

xi < v (N) ,

• feasible in case of
�

i∈N
xi ≤ v (N)

• and efficient or Pareto efficient in case of
�

i∈N
xi = v (N) .

Thus, an efficient payoff vector is feasible and cannot be blocked by the

grand coalition N . Obviously, Pareto efficiency is a solution correspondence,

not a solution function.

E������� XV.5. Find the Pareto-efficient payoff vectors for the gloves

game v{1},{2}!
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For the gloves game, the solution concept “Pareto efficiency” has two

important drawbacks:

• We have very many solutions and the predictive power is weak. In

particular, a left-hand glove can have any price, positive or negative.

• The payoff for a left-glove owner does not depend on the number

of left and right gloves in our simple economy. Thus, the relative

scarcity of gloves is not reflected by this solution concept.

We now turn to a solution concept that generalizes the idea of blocking from

the grand coalition to all coalitions.

6. The core

Pareto efficiency demands that the grand coalition should not be in the

position to make all players better off. Extending this idea to all coalitions,

the core consists of those feasible (!) payoff vectors that cannot be improved

upon by any coalition with its own means. Formally, we have

D�������
� XV.5 (blockability and core). Let v ∈ VN be a coalition

function. A payoff vector x ∈ Rn is called blockable by a coalition K ⊆ N if
�

i∈K
xi < v (K)

holds. The core is the set of all those payoff vectors x fulfilling

xi ≤ v (N) (feasibility) and
�

i∈K
xi ≥ v (K) for all K ⊆ N (no blockade by any coalition).

Do you see that every payoff vector from the core is also Pareto efficient?

Just take K := N .

The core is a stricter concept than Pareto efficiency. It demands that no

coalition (not just the grand coalition) can block any of its payoff vectors.

Let us consider the gloves game for L = {1} and R = {2} . By Pareto

efficiency, we can restrict attention to those payoff vectors x = (x1, x2) that

fulfill x1+x2 = 1. Furthermore, xmay not be blocked by one-man coalitions:

x1 ≥ vL,R ({1}) = 0 and

x2 ≥ vL,R ({2}) = 0.

Hence, the core is the set of payoff vectors x = (x1, x2) obeying

x1 + x2 = 1, x1 ≥ 0, x2 ≥ 0.

Are we not forgetting about K = ∅? Let us check
�

i∈∅
xi ≥ vL,R (∅) .

Since there is no i from ∅ (otherwise ∅ would not be the empty set), the sum�
i∈∅ xi has no summands and is equal to zero. Since all coalition functions
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have worth zero for the empty set, we find
�

i∈∅ xi = 0 = vL,R (∅) for the

gloves game and also for any coalition function.

E������� XV.6. Determine the core for the gloves game vL,R with L =

{1, 2} and R = {3} .
In case of |L| = 2 > 1 = |R| right gloves are scarcer than left gloves.

In such a situation, the owner of a right glove should be better off than the

owner of a left glove. The core reflects the relative scarcity in a drastic way.

Consider the Pareto-efficient payoff vector

y =

�
1

10
,
1

10
,
8

10

�

that does not lie in the core. This payoff vector can be blocked by coali-

tion {1, 3} . Its worth is v ({1, 3}) = 1 which can be distributed among its

members in a manner that both are better off.

Note that the core is a set-valued solution concept. It can contain one

payoff vector (see the above exercise) or very many payoff vectors (in case

of L = {1} and R = {2}). Later on, we will see coalition functions with an

empty core: every feasible payoff vector is blockable by at least one coalition.

The core for coalition functions has first been defined by Gillies (1959).

Shubik (1981, S. 299) mentions that Lloyd Shapley proposed this concept as

early as 1953 in unpublished lecture notes. In the framework of an exchange

economy, Edgeworth (1881) proposes a very similar concept (see chapter

??).

7. The Shapley value: the formula

In contrast to Pareto efficiency and the core, the Shapley value is a

point-valued solution concept, i.e., a solution function. For every coalition

function, it spits out exactly one payoff vector. Shapley’s (1953) article is

famous for pioneering the twofold approach of algorithm and axioms.

We begin with the Shapley formula. It rests on a simple idea. Every

player obtains

• an average of

• his marginal contributions.

Beginning with the latter, the marginal contribution of player i with respect

to coalition K is

“the value with him” minus “the value without him”.

Thus, the marginal contributions reflect a player’s productivity:

D�������
� XV.6 (marginal contribution). Let i ∈ N be a player from

N and let v ∈ VN be a coalition function on N . Player i’s marginal con-

tribution with respect to a coalition K is denoted by MCK
i (v) and given

by

MCK
i (v) := v (K∪{i})− v (K\ {i}) .
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The marginal contribution of a player depends on the coalition function

and the coalition. It does not matter whether i is a member of K or not,

i.e., we have MC
K∪{i}
i (v) =MC

K\{i}
i (v).

E������� XV.7. Determine the marginal contributions for v{1,2,3},{4,5}
and

• i = 1,K = {1, 3, 4} ,
• i = 1,K = {3, 4} ,
• i = 4,K = {1, 3, 4} ,
• i = 4,K = {1, 3} .

We now need to explain the kind of averaging employed by the Shapley

formula. In order to calculate the Shapley value, one considers all rank

orders of the n players. (3, 1, 2) is one rank order of the players 1 to 3. Just

imagine that the players 3, 1 and 2 stand outside the door and enter, one

after the other. We are interested in the marginal contributions. For rank

order (3, 1, 2), one finds the marginal contributions

v ({3})− v (∅) , v ({1, 3})− v ({3}) and v ({1, 2, 3})− v ({1, 3}) .

They add up to v (N)− v (∅) = v (N).

D�������
� XV.7 (rank order). Let N = {1, ..., n} be a player set. Bi-
jective functions ρ : N → N are called rank orders or permutations on N .

The set of all permutations on N is denoted by RON . The set of all players

“up to and including player i under rank order ρ” is denoted by Ki (ρ) and

given by

ρ (j) = i and Ki (ρ) = {ρ (1) , .., ρ (j)} .

Player i’s marginal contribution with respect to rank order K is denoted by

MCρ
i (v) and given by

MCρ
i (v) :=MC

Ki(ρ)
i (v) = v (Ki (ρ))− v (Ki (ρ) \ {i}) .

E������� XV.8. Find player 2’s marginal contributions for the rank

orders (1, 3, 2) and (3, 1, 2)!

For every player, his Shapley value is the average of his marginal con-

tributions where each rank order is equally likely. Thus, we can employ the

following algorithm:

• We first determine all the possible rank orders.

• We then find the marginal contributions for every rank order.

• For every player, we add his marginal contributions.

• Finally, we divide the sum by the number of rank orders.
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Consider the simple example given by N = {1, 2, 3} , L = {1, 2} and R =

{3} . We find the rank orders:

(1, 2, 3) , (1, 3, 2) ,

(2, 1, 3) , (2, 3, 1) ,

(3, 1, 2) , (3, 2, 1) .

For three players, there are 1 · 2 · 3 = 6 different rank orders. It is not

difficult to see, why. For a single player 1, we have just one rank order (1) .

The second player 2 can be placed before or after player 1 so that we obtain

the 1 · 2 rank orders

(1, 2) ,

(2, 1) .

For each of these two, the third player 2 can be placed before the two players,

in between or after them:

(3, 1, 2) , (1, 3, 2) , (1, 2, 3) ,

(3, 2, 1) , (2, 3, 1) , (2, 1, 3) .

Therefore, we have 2 · 3 = 6 rank orders. Generalizing, , for n players, we

have 1 · 2 · ... · n rank orders. We can also use the abbreviation

n! := 1 · 2 · ... · n

which is to be read “n factorial”.

E������� XV.9. Determine the number of rank oders for 5 and for 6

players!

E������� XV.10. Consider N = {1, 2, 3} , L = {1, 2} and R = {3} and
determine player 1’s marginal contribution for each rank order.

D�������
� XV.8 (Shapley value). The Shapley value is the solution

function Sh given by

Shi (v) =
1

n!

�

ρ∈RON

MCρ
i (v)

According to the previous exercise, we have

Sh1
�
v{1,2},{3}

�
=

1

6
.

The Shapley values of the other two players can be obtained by the same pro-

cedure. However, there is a more elegant possibility. The Shapley values of

players 1 and 2 are identical because they hold a left glove each and are sym-

metric (in a sense to be defined shortly). Thus, we have Sh2
�
v{1,2},{3}

�
= 1

6 .
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Also, the Shapley value satisfies Pareto efficiency which means that the sum

of the payoffs equals the worth of the grand coalition:

3�

i=1

Shi
�
v{1,2},{3}

�
= v ({1, 2, 3}) = 1

Thus, we find

Sh
�
v{1,2},{3}

�
=

�
1

6
,
1

6
,
2

3

�
.

The following table reports the Shapley values for an owner of a right glove

in a market with r right-glove owners and l left-glove owners:

number l of left-glove owners

0 1 2 3 4

number r 1 0 0,500 0,667 0,750 0,800

of 2 0 0,167 0,500 0,650 0,733

right-glove 3 0 0,083 0,233 0,500 0,638

owners 4 0 0,050 0,133 0,271 0,500

This table clearly shows how the payoff increases with the number of

players on the other market side. The payoff Sh3
�
v{1,2},{3}

�
= 2

3 is high-

lighted.

8. The Shapley value: the axioms

The Shapley value fulfills four axioms:

• the efficiency axiom: the worth of the grand coalition is to be dis-

tributed among all the players,

• the symmetry axiom: players in similar situations obtain the same

payoff,

• the null-player axiom: a player with zero marginal contribution to

every coalition, obtains zero payoff, and

• additivity axiom: if players are subject to two coalition functions,

it does not matter whether we apply the Shapley value to the sum

of these two coalition functions or apply the Shapley value to each

coalition function separately and sum the payoffs.

A solution function σ may or may not obey the four axioms mentioned

above.

D�������
� XV.9 (efficiency axiom). A solution function σ is said to

obey the efficiency axiom or the Pareto axiom if
�

i∈N
σi (v) = v (N)

holds for all coalition functions v ∈ V.

In the gloves game, two left-glove owners are called symmetric.
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D�������
� XV.10 (symmetry). Two players i and j are called sym-

metric (with respect to v ∈ V) if we have
v (K ∪ {i}) = v (K ∪ {j})

for every coalition K that does not contain i or j.

E������� XV.11. Show that any two left-glove holders are symmetric

in a gloves game vL,R.

E������� XV.12. ShowMCK
i =MCK

j for two symmetric players i and

j fulfilling i /∈ K and j /∈ K.

It may seem obvious that symmetric players obtain the same payoff:

D�������
� XV.11 (symmetry axiom). A solution function σ is said to

obey the symmetry axiom if we have

σi (v) = σj (v)

for any game v ∈ V and any two symmetric players i and j.

In any gloves game obeying L �= ∅ �= R, every player has a non-zero

marginal contribution for some coalition K.

D�������
� XV.12 (null player). A player i ∈ N is called a null player

(with respect to v ∈ VN) if

v (K ∪ {i}) = v (K)

holds for every coalition K.

Shouldn’t a null player obtain nothing?

D�������
� XV.13 (null-player axiom). A solution function σ is said to

obey the null-player axiom if we have

σi (v) = 0

for any null player (with respect to v ∈ V) i ∈ N.

E������� XV.13. Under which condition is a player from L a null player

in a gloves game vL,R?

The last axiom that we consider at present is the additivity axiom. It

rests on the possibility to add both payoff vectors and coalition functions

(see section 3).

D�������
� XV.14 (additivity axiom). A solution function σ is said to

obey the additivity axiom if we have

σ (v +w) = σ (v) + σ (w)

for any player set N and any two coalition functions v, w ∈ VN .
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Do you see the difference? On the left-hand side, we add the coalition

functions first and then apply the solution function. On the right-hand side

we apply the solution function to the coalition functions individually and

then add the payoff vectors.

E������� XV.14. Can you deduce σ (0) = 0 from the additivity axiom?

Hint: use v = w := 0.

Now we note a stunning result:

T��
��� XV.1 (Shapley axiomatization). The Shapley formula is the

unique solution function that fulfills the symmetry axiom, the efficiency ax-

iom, the null-player axiom and the additivity axiom.

The theorem means that the Shapley formula fulfills the four axioms.

Consider now a solution function that fulfills the four axioms. According to

the theorem, the Shapley formula is the only solution function to do so.

Differently put, the Shapley formula and the four axioms are equivalent

— they specify the same payoffs. Cooperative game theorists say that the

Shapley formula is “axiomatized” by the set of the four axioms.

E������� XV.15. Determine the Shapley value for the gloves game for

L = {1} and R = {2, 3, 4}! Hint: You do not need to write down all 4! rank
orders. Try to find the probability that player 1 does not complete a pair.

9. Simple games

9.1. Definition. We first define monotonic games and then turn to

simple games.

D�������
� XV.15 (monotonic game). A coalition function v ∈ VN is

called monotonic if ∅ ⊆ S ⊆ S′ implies v (S) ≤ v (S′) .

Thus, monotonicity means that the worth of a coalition cannot decrease

if other players join. Differently put, if S′ is a superset of S (or S a subset

of S′), we cannot have v (S) = 1 and v (S′) = 0.

Simple games are a special subclass of monotonic games:

D�������
� XV.16 (simple game). A coalition function v ∈ VN is called

simple if

• we have v (K) = 0 or v (K) = 1 for every coalition K ⊆ N ,

• the grand coalition’s worth is 1, and
• v is monotonic.

Coalitions with v (K) = 1 are called winning coalitions and coalitions with

v (K) = 0 are called losing coalitions. A winning coalition K is a minimal

winning coalition if every strict subset of K is not a winning coalition.
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9.2. Veto players and dictators. According to the previous exercise,

all interesting simple games have v (N) = 1. Sometimes, certain players are

of central importance:

D�������
� XV.17 (veto player, dictator). Let v be a simple game. A

player i ∈ N is called a veto player if

v (N\ {i}) = 0

holds. i is called a dictator if

v (S) =

)
1, i ∈ S

0, otherwise

holds for all S ⊆ N .

Thus, without a veto player, the worth of a coalition is 0 while a dictator

can produce the worth 1 just by himself.

E������� XV.16. Can there be a coalition K such that v (K\ {i}) = 1

for a veto player i or a dictator i?

E������� XV.17. Is every veto player a dictator or every dictator a

veto player?

9.3. Simple games and voting mechanisms. Oftentimes, simple

games can be used to model voting mechanisms. As a matter of consistency,

complements of winning coalitions have to be losing coalitions. Otherwise, a

coalition K could vote for something and N\K would vote against it, both

of them successfully.

D�������
� XV.18 (contradictory, decidable). A simple game v ∈ VN

is called non-contradictory if v (K) = 1 implies v (N\K) = 0.

A simple game v ∈ VN is called decidable if v (K) = 0 implies v (N\K) =

1.

Thus, a contradictory voting game can lead to opposing decisions — for

example, some candidate A is voted president (with the support of some

coalition K) and then some other candidate B (with the support of N\K)

is also voted president. A non-decidable voting game can prevent any deci-

sion. Neither A nor B can gain enough support because coalition K blocks

candidate B while N\K blocks candidate A.

E������� XV.18. Show that a simple game with a veto player cannot

be contradictory. Also show: A simple game with two veto players cannot

be decidable.

9.4. Unanimity games. Unanimity games are famous games in coop-

erative game theory. We will use them to prove the Shapley theorem.
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D�������
� XV.19 (unanimity game). For any T �= ∅,

uT (K) =

)
1, K ⊇ T

0, otherwise

defines a unanimity game.

Thus, a coalition K obtains the payoff of 1 if K contains all the players

from T . The players from T are the productive or powerful members of

society.

• Every player from T is a veto player and no player from N\T is a

veto player.

• In a sense, the players from T exert common dictatorship. For

example, each player i ∈ T possesses part of a treasure map.

While u∅ is also explained, it is not called a unanimity game.

E������� XV.19. Find the null players in the unanimity game uT .

E������� XV.20. Find the core and the Shapley value for N = {1, 2, 3, 4}
and u{1,2}.

9.5. Apex games. The apex game has one important player i ∈ N

who is nearly a veto player and nearly a dictator.

D�������
� XV.20 (apex game). For i ∈ N with n ≥ 2, the apex game

hi is defined by

hi (K) =





1, i ∈ K and K\ {i} �= ∅
1, K = N\ {i}
0, otherwise

Player i is called the main, or apex, player of that game.

Thus, there are two types of winning coalitions in the apex game:

• i together with at least one other player or

• all the other players taken together.

Generally, we work with apex games for n ≥ 4.

E������� XV.21. Consider h1 for n = 2 and n = 3. What do these

games look like?

E������� XV.22. Is the apex player a veto player or a dictator?

E������� XV.23. Show that the apex game is decidable and non-contra-

dictory.

Let us now find the Shapley value for the apex game. Consider all the

rank orders. The apex player i ∈ N obtains the marginal contribution 1

unless

• he is the first player in a rank order (then his marginal contribution

is v ({i})− v (∅) = 0− 0 = 0) or
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• he is the last player (with marginal contribution v (N)−v (N\ {i}) =
1− 1 = 0).

Since every position of the apex player in a rank order has the same proba-

bility, the following exercise is easy:

E������� XV.24. Find the Shapley value for the apex game h1!

9.6. Weighted voting games.

9.6.1. Definition. Weighted voting games form an important subclass of

the simple games. We specify weights for every player and a quota. If the

sum of weights for a coalition is equal to or above the quota, that coalition

is a winning one.

D�������
� XV.21 (weighted voting game). A voting game v is specified

by a quota q and voting weights gi, i ∈ N, and defined by

v (K) =

)
1,

�
i∈K gi ≥ q

0,
�

i∈K gi < q

In that case, the voting game is also denoted by [q; g1, ..., gn] .

For example, �
1

2
;
1

n
, ...,

1

n

�

is the majority rule, according to which fifty percent of the votes are nec-

essary for a winning coalition. Do you see that n = 4 implies that the

coalition {1, 2} is a winning coalition and also the coalition of the other

players, {3, 4}? Thus, this voting game is contradictory.

The apex game h1 for n players can be considered a weighted voting

game given by �
n− 1;n− 3

2
, 1, ..., 1

�
.

E������� XV.25. Consider the unanimity game uT given by t < n and

T = {1, ..., t} . Can you express it as a weighted voting game?

9.6.2. UN Security Council. Let us consider the United Nations’ Secu-

rity Council. According to http://www.un.org/en/sc/members/ (November

2013), it has 5 permanent members and 10 non-permanent ones. The per-

manent members are China, France, Russian Federation, the United King-

dom and the United States. In 2013, the non-permanent members were

Argentina, Australia, Azerbaijan, Guatemala, Luxembourg, Morocco, Pak-

istan, Republic of Korea, Rwanda, and Togo.

We read (not on the UN webpage above, but on a subpage of http://www.

norway-un.org, as of April 2014):

Each Council member has one vote. ... Decisions on sub-

stantive matters require nine votes, including the concurring



398 XV. COOPERATIVE GAME THEORY

votes of all five permanent members. This is the rule of "great

Power unanimity", often referred to as the "veto" power.

Under the Charter, all Members of the United Nations

agree to accept and carry out the decisions of the Security

Council. While other organs of the United Nations make

recommendations to Governments, the Council alone has the

power to take decisions which Member States are obligated

under the Charter to carry out.

Obviously, the UN Security Council has a lot of power and so its voting

mechanism deserves analysis. The above rule for "substantive matters" can

be translated into the weighted voting game

[39; 7, 7, 7, 7, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

where the weights 7 accrue to the five permanent and the weights 1 to the

non-permanent members.

E������� XV.26. Using the above voting game, show that every perma-

nent member is a veto player. Show also that the five permanent members

need the additional support of four non-permanent ones.

E������� XV.27. Is the Security Council’s voting rule non-contradictory

and decidable?

It is not easy to calculate the Shapley value for the Security Council.

After all, we have

15! = 1.307.674.368.000

rank orders for the 15 players. Anyway, the Shapley values are

0, 19627 for each permanent member

0, 00186 for each non-permanent member.

10. Five non-simple games

10.1. Buying a car. Following Morris (1994, S. 162), we consider three

agents involved in a car deal. Andreas (A) has a used car he wants to sell,

Frank (F) and Tobias (T) are potential buyers with willingness to pay of

700 and 500, respectively. This leads to the coalition function v given by

v (A) = v (F ) = v (T ) = 0,

v (A,F ) = 700,

v (A, T ) = 500,

v (F, T ) = 0 and

v (A,F, T ) = 700.

One-man coalitions have the worth zero. For Andreas, the car is useless (he

believes in cycling rather than driving). Frank and Tobias cannot obtain
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the car unless Andreas cooperates. In case of a deal, the worth is equal to

the (maximal) willingness to pay.

We use the core to find predictions for the car price. The core is the set

of those payoff vectors (xA, xF , xT ) that fulfill

xA + xF + xT = 700

and

xA ≥ 0, xF ≥ 0, xT ≥ 0,

xA + xF ≥ 700,

xA + xT ≥ 500 and

xF + xT ≥ 0.

Tobias obtains

xT = 700− (xA + xF ) (efficiency)

≤ 700− 700 (by xA + xF ≥ 700)

= 0

and hence zero, xT = 0. By xA + xT ≥ 500, the seller Andreas can obtain

at least 500.

Summarizing (and checking all the conditions above), we see that the

core is the set of vectors (xA, xF , xT ) obeying

500 ≤ xA ≤ 700,

xF = 700− xA and

xT = 0.

Therefore, the car sells for a price between 500 and 700.

10.2. The Maschler game. Aumann & Myerson (1988) present the

Maschler game which is the three-player game given by

v (K) =





0, |K| = 1

60, |K| = 2

72, |K| = 3

Obviously, the three players are symmetric. It is easy to see that all players

of symmetric games are symmetric.

D�������
� XV.22 (symmetric game). A coalition function v is called

symmetric if there is a function f : N → R such that

v (K) = f (|K|) , K ⊆ N.

E������� XV.28. Find the Shapley value for the Maschler game!
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According to the Shapley value, the players 1 and 2 obtain less than

their common worth. Therefore, they can block the payoff vector suggested

by the Shapley value. Indeed, for any efficient payoff vector, we can find a

two-player coalition that can be made better off. Differently put: the core

is empty.

This can be seen easily. We are looking for vectors (x1, x2, x3) that fulfill

both

x1 + x2 + x3 = 72

and

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0,

x1 + x2 ≥ 60,

x1 + x3 ≥ 60 and

x2 + x3 ≥ 60.

Summing the last three inequalities yields

2x1 + 2x2 + 2x3 ≥ 3 · 60 = 180

and hence a contradiction to efficiency.

10.3. The gloves game, once again. Above, we have calculated the

core for the gloves game L = {1, 2} and R = {3}. The core clearly shows

the bargaining power of the right-glove owner. We will now consider the

core for a case where the scarcity of right gloves seems minimal:

L = {1, 2, ..., 100}
R = {101, ..., 199} .

If a payoff vector

(x1, ..., x100,x101, ..., x199)

is to belong to the core, we have

199�

i=1

xi = 99

by the efficiency axiom. We now pick any left-glove holder j ∈ {1, 2, ..., 100} .
We find

v (L\ {j}∪R) = 99

and hence

xj = 99−
199�

i=1,
i�=j

xi (efficiency)

≤ 99− 99 (blockade by coalition L\ {j}∪R)

= 0.

Therefore, we have xj = 0 for every j ∈ L.
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Every right-glove owner can claim at least 1 because he can point to

coalitions where he is joined by at least one left-glove owner. Therefore,

every right-glove owner obtains the payoff 1 and every left-glove owner the

payoff zero. Inspite of the fact that the scarcity is minimal, the right-glove

owners get everything.

If two left-glove owners burned their glove, the other left-glove owners

would get a payoff increase from 0 to 1. (Why?)

E������� XV.29. Consider a generalized gloves game where

• player 1 has one left glove,
• player 2 has two left gloves and
• players 3 and 4 have one right glove each.

Calculate the core. How does the core change if player 2 burns one of

his two gloves?

The burn-a-glove strategy may make sense if payoffs depend on the

scarcity in an extreme fashion as they do for the core.

10.4. The chess game. Chess players enjoy playing. Thus, an even

number of players is best.

D�������
� XV.23 (chess game). The chess game v is defined by

v (K) =

6
|K|
2 , |K| is even
|K|−1
2 , |K| is odd

Find the core!

I copied this game from lectures notes by Chris Wallace (Trinity College,

Oxford) who calls this game a treasure hunt.

11. Cost-division games

We model cost-division games (for doctors sharing a secretarial office

or faculties sharing computing facilities) by way of cost functions and cost-

savings functions.

D�������
� XV.24 (cost-division game). For a player set N , let c :

2N → R+ be a coalition function that is called a cost function. On the basis
of c, the cost-savings game is defined by v : 2N → R and

v (K) =
�

i∈K
c ({i})− c (K) ,K ⊆ N.

The idea behind this definition is that cost savings can be realized if

players pool their resources so that
�

i∈K
c ({i}) is greater than c (K) and

v (K) is positive.

Following Young (1994, pp. 1195), we consider a specific example. Two

towns A and B plan a water-distribution system.Town A could build such

a system for itself at a cost of 11 million Euro and town B would need 7
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million Euro for a system tailor-made to its needs. The cost for a common

water-distribution system is 15 million Euro. The cost function is given by

c ({A}) = 11, c ({B}) = 7 and

c ({A,B}) = 15.

The associated cost-savings game is v : 2{A,B} → R defined by

v ({A}) = 0, c ({B}) = 0 and

v ({A,B}) = 7 + 11− 15 = 3.

v’s core is obviously given by
�
(xA, xB) ∈ R2+ : x1 + x2 = 3

�
.

The cost savings of 3 = 11+7−15 can be allotted to the towns such that no

town is worse off compared to going it alone. Thus, the set of undominated

cost allocations is
�
(cA, cB) ∈ R2 : cA + cB = 15, cA ≤ 11, cB ≤ 7

�
.
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12. Topics and literature

The main topics in this chapter are

• coalition

• coalition function

• gloves game

• weighted voting games

• UN Security Council

• unanimity game

• apex game

• simple game

• dictator

• veto player

• Maschler game

• cost-division game

• core

• efficiency

• feasibility

• marginal contribution

• axioms

• symmetry

• null player

• Shapley value

We recommend the textbook by Wiese (2005).

13. Solutions

Exercise XV.1

The values are

vL,R ({1}) = min (1, 0) = 0,

vL,R (∅) = min (0, 0) = 0,

vL,R (N) = min (2, 3) = 2 and

vL,R ({2, 3, 4}) = min (1, 2) = 1.

Exercise XV.2

The first three propositions are nonsensical, the last one is correct.

Exercise XV.3

We obtain the sum of vectors



1

3

6


+




2

5

1


 =




1 + 2

3 + 5

6 + 1


 =




3

8

7




Exercise XV.4
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Feasibility follows from

n�

i=1

yi =
n�

i=1

xi +
n�

i=1

1

n


vL,R (N)−

n�

j=1

xj




=
n�

i=1

xi +
1

n




n�

i=1

vL,R (N)−
n�

i=1

n�

j=1

xj




=
n�

i=1

xi +
1

n


nvL,R (N)− n

n�

j=1

xj




= vL,R (N) .

Exercise XV.5

The set of Pareto-efficient payoff vectors (x1, x2) is described by x1+x2 =

1. In particular, we may well have x1 < 0.

Exercise XV.6

The core obeys the conditions

x1 + x2 + x3 = vL,R (N) = 1,

xi ≥ 0, i = 1, 2, 3,

x1 + x2 ≥ 0,

x1 + x3 ≥ 1 and

x2 + x3 ≥ 1.

Substituting x1 + x3 ≥ 1 into the efficiency condition yields

x2 = 1− (x1 + x3) ≤ 1− 1 = 0.

Hence (because of x2 ≥ 0), we have x2 = 0. For reasons of symmetry, we also

have x1 = 0. Applying efficiency once again, we obtain x3 = 1−(x1 + x2) =

1. Thus, the only candidate for the core is x = (0, 0, 1) . Indeed, this payoff

vector fulfills all the conditions noted above. Therefore,

(0, 0, 1)

is the only element in the core.

Exercise XV.7
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The marginal contributions are

MC
{1,3,4}
1

�
v{1,2,3},{4,5}

�
= v ({1, 3, 4} ∪ {1})− v ({1, 3, 4} \ {1})
= v ({1, 3, 4})− v ({3, 4})
= 1− 1 = 0,

MC
{3,4}
1

�
v{1,2,3},{4,5}

�
= v ({3, 4} ∪ {1})− v ({3, 4} \ {1})
= v ({1, 3, 4})− v ({3, 4})
= 1− 1 = 0,

MC
{1,3,4}
4

�
v{1,2,3},{4,5}

�
= v ({1, 3, 4} ∪ {4})− v ({1, 3, 4} \ {4})
= v ({1, 3, 4})− v ({1, 3})
= 1− 0 = 1,

MC
{1,3}
4

�
v{1,2,3},{4,5}

�
= v ({1, 3} ∪ {4})− v ({1, 3} \ {4})
= v ({1, 3, 4})− v ({1, 3})
= 1− 0 = 1.

Exercise XV.8

The marginal contributions are the same: v ({1, 2, 3})− v ({1, 3}) .
Exercise XV.9

We find 5! = 1 ·2 ·3 ·4 ·5 = 120 rank orders for 5 players and 6! = 5! ·6 =

120 · 6 = 720 rank orders for 6 players.

Exercise XV.10

We find the marginal contributions

v ({1})− v (∅) = 0− 0 = 0, rank order (1, 2, 3)

v ({1})− v (∅) = 0− 0 = 0, rank order (1, 3, 2)

v ({1, 2})− v ({2}) = 0− 0 = 0, rank order (2, 1, 3)

v ({1, 2, 3})− v ({2, 3}) = 1− 1 = 0, rank order (2, 3, 1)

v ({1, 3})− v ({3}) = 1− 0 = 1, rank order (3, 1, 2)

v ({1, 2, 3})− v ({2, 3}) = 1− 1 = 0, rank order (3, 2, 1) .

Exercise XV.11

Let i and j be players from L and let K be a coalition that contains

neither i nor j. Then K ∪ {i} contains the same number of left and the

same number of right gloves as K ∪ {j}. Therefore,

vL,R (K ∪ {i}) = min (|(K ∪ {i}) ∩L| , |(K ∪ {i}) ∩R|)
= min (|(K ∪ {j}) ∩ L| , |(K ∪ {j}) ∩R|)
= vL,R (K ∪ {j}) .

Exercise XV.12
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The equality follows from

MCK
i = v (K ∪ {i})− v (K\ {i})

= v (K ∪ {i})− v (K)

= v (K ∪ {j})− v (K)

= v (K ∪ {j})− v (K\ {j})
= MCK

j .

Exercise XV.13

A player i from L is a null player iff R = ∅ holds. R = ∅ implies

vL,∅ (K) = min (|K ∩ L| , |K ∩ ∅|)
= min (|K ∩ L| , 0)
= 0

for every coalition K. R �= ∅ means that i has a marginal contribution of 1

when he comes second after a right-glove holder.

Exercise XV.14

We first obtain

σ (0) = σ (0 + 0)

= σ (0) + σ (0) (additivity)

and then the desired result by subtracting σ (0) on both sides.

Exercise XV.15

The left-glove holder 1 completes a pair (the only one) whenever he does

not come first. The probability for coming first is 1
4 for player 1 (and any

other player). Thus, player 1 obtains
�
1− 1

4

�
· 1. The other players share

the rest. Therefore, symmetry and efficiency lead to

ϕ1
�
v{1},{2,3,4}

�
=

3

4
,

ϕ2
�
v{1},{2,3,4}

�
= ϕ3

�
v{1},{2,3,4}

�
= ϕ4

�
v{1},{2,3,4}

�
=

1

12
.

Exercise XV.16

If i is a veto player, we have v (K\ {i}) ≤ v (N\ {i}) = 0 for every

coalitionK ⊆ N and hence v (K\ {i}) = 0. Thus, a veto player i ∈ N cannot

fulfill v (K\ {i}) = 1. A dictator i cannot fulfill v (K\ {i}) = 1 because the

worth of a coalition is 1 if and only if the dictator belongs to the coalition.

Exercise XV.17

A dictator is always a veto player — without him the coalition cannot

win. However, a veto player need not be a dictator. Just consider the simple

game v on the player set N = {1, 2} defined by v ({1}) = v ({2}) = 0,

v ({1, 2}) = 1. Players 1 and 2 are two veto players but not dictators.

Exercise XV.18

Let v be a simple game with a veto player i ∈ N . Then v (K) = 1

implies i ∈ K. By i /∈ N\K, we obtain v (N\K) = 0 — the desired result.
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Let v be a simple game with two veto players i and j, i �= j. Then

v ({i}) = 0 (by j /∈ {i}) and v (K\ {i}) = 0 (by i /∈ K\ {i}) hold.

Exercise XV.19

For the unanimity game uT , the null players are the players from N\T .

Exercise XV.20

The core is
�
(x1, x2, x3, x4) ∈ R4+ : x1 + x2 = 1, x3 = x4 = 0

�

and the Shapley value is given by

Sh
�
u{1,2}

�
=

�
1

2
,
1

2
, 0, 0

�
.

Exercise XV.21

For n = 2, we have

h1 (K) =

)
0, K = {1} or K = ∅
1, otherwise

= u{2}.

n = 3 yields the symmetric game

h1 (K) =

)
1, |K| ≥ 2

0, otherwise

(Symmetry means that the worths depend on the number of the players,

only.)

Exercise XV.22

No, the apex player is neither a veto player nor a dictator. If all the

other player unite against the apex player, they win:

hi (N\ {i}) = 1.

Exercise XV.23

We first show that hi is non-contradictory. Assume hi (K) = 1 for any

coalition K ⊆ N . Then, one of two cases holds. Either we have K = N\ {i}.
This implies hi (N\K) = hi ({i}) = 0. Or we have i ∈ K and |K| ≥ 2. Then,

hi (N\K) = 0. Thus, hi is non-contradictory.

We now show that hi is decidable. Take any K ⊆ N with hi (K) = 0.

This implies K = {i} or K � N\ {i}. In both cases, the complements are

winning coalitions: N\K = N\ {i} or N\K 	 {i} .
Exercise XV.24

Since the apex player obtains the marginal contributions for positions 2

through n− 1, his Shapley payoff is

n− 2

n
· 1.

Due to efficiency, the other (symmetric!) players share the rest so that each

of them obtains
1

n− 1

�
1− n− 2

n

�
=

2

n (n− 1)
.
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Thus, we have

Sh (h1) =

�
n− 2

n
,

2

n (n− 1)
, ...,

2

n (n− 1)

�
.

Exercise XV.25

One possible solution is
�
1;

1

t
, ...,

1

t
, 0, ..., 0

�

where 1
t is the weight for the powerful T -players while 0 is the weight for

the unproductive N\T -players.

Exercise XV.26

Every permanent member is a veto player by 4 · 7 + 10 · 1 = 38 < 39.

Because of 5 · 7 + 4 · 1 = 39, four non-permanent members are necessary for

passing a resolution.

Exercise XV.27

The voting rule is non-contradictory and not decidable. This is just a

corollary of exercise XV.18 (p. 395).

Exercise XV.28

By efficiency and symmetry, we have

Sh (v) = (24, 24, 24) .

Exercise XV.29

The core has to fulfill

x1 + x2 + x3 + x4 = 2

and also the inequalities

xi ≥ 0, i = 1, ..., 4,

x1 + x3 ≥ 1,

x1 + x4 ≥ 1,

x2 + x4 ≥ 1 and

x2 + x3 + x4 ≥ 2.

We then find

x1 = 2− (x2 + x3 + x4) ≤ 0

and hence

x1 = 0 (because of x1 ≥ 0),

x3 ≥ 1 and x4 ≥ 1.

Using efficiency once more supplies x2 = 0 and

(0, 0, 1, 1)

is the only candidate for a core. Indeed, this is the core. Just check all

the inequalities above and also those omitted. Player 2’s payoff is 0 in this

situation. If he burns his second glove, we find (non-generalized) gloves
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game v{1,2},{3,4} where player 2 may achieve any core payoff between 0 and

1.





CHAPTER XVI

The Rubinstein bargaining model

The aim of this very short chapter is to introduce the Rubinstein (1982)

bargaining model. It squarely belongs to non-cooperative game theory and

can be seen as the obvious extension of the "take it or leave it" bargaining

game in chapter X (pp. 254) and chapter XII (pp. 319) to a multi-period

setting. The idea is that players can counter offers by counteroffers and

counter-counteroffers.

1. Introduction

The extension of the "take it or leave it" game due to Rubinstein allows

the players to make offers alternately. The Rubinstein game is infinite.

However, the bargainers have an incentive to close the deal fast because the

"cake" shrinks. If the agents manage to agree immediately, the cake has size

1, after the first round it shrinks to size δ, 0 < δ < 1, then to size δ2 < δ.

An alternative interpretation points to the utility reduction stemming

from consuming the cake later. Then, δ is not a shrinking factor but a

discount factor and equal to 1
1+r for interest rate r. In any case, δ is a

measure for the agents’ impatience.

Fig. 1 sketches the game. Player 1 makes the first move, an offer of

a1. This means that he wants a1 for himself and suggests to leave 1− a1 to

player 2. If player 2 accepts, the payoffs are a1 and 1 − a1, respectively. If

player 2 rejects the offer, he makes a counter offer a2 at stage 2. This means

that player 2 demands 1−a2 for himself and offers a2 to player 1. However,

by the impatience of the players, the payoffs are

δa2 for player 1 and δ (1− a2) for player 2

if player 1 accepts the counteroffer.

If player 1 declines the counteroffer, it is up to him to make the counter-

counteroffer at stage 3. If bargaining stops at that point, payoffs are

δ2a1 for player 1 and δ2 (1− a1) for player 2.

Et cetera, et cetera.

It should be clear that the offers a1 and a2 may differ from stage to

stage.

411



412 XVI. THE RUBINSTEIN BARGAINING MODEL

1a1 2 1 2
1a2a 2a

( )11 1, aa −

( )( )22 1, aa −δδ

( )( )1
2

1
2 1, aa −δδ

accept accept accept

F����� 1. The infinite Rubinstein game

2. Many equilibria

The Rubinstein game admits many equilibria which is typical for bar-

gaining games. The next exercise helps you to understand the logic behind

this multiplicity. Strategies are very complicated objects. They need to

specify for every player which offer to decline or accept and what counterof-

fer to make. These decisions can be a complicated function of the game’s

history up to the current stage.

E������� XVI.1. Assume 0 ≤ α ≤ 1 and consider the following strate-

gies of two players 1 and 2. Player 1 demands a1 = α whenever it is his

turn to make an offer. He declines any offer obeying a2 < α and accepts

those with a2 ≥ α. Player 2 accepts every offer with a1 ≤ α and declines

those with a1 > α. Player 2’s offer is always a2 = α. Do these strategies

form a Nash equilibrium?

The α-equilibria described in the above exercise suffer from a major

drawback. They are not subgame perfect. Note that fig. 1 is a sketch of

the game tree only. Fig. 2 is somewhat more specific, and we will use this

figure to discuss the problem of subgame perfection.

Consider player 1 whose offer is not α (for example, 0.6 in fig. 2), but

slightly higher, at a1 (for example, 0.7) which obeys α < a1 < 1− δ (1− α)

(for δ < 0.75). Acccording to the α-strategies, player 2 should decline the

offer although he obtains

1− a1 (0.3, to pursue the example)

by accepting while rejection and counteroffer α yield

δ (1− α) < 1− a1.

Thus, the strategies in the above exercise suggest a behavior that is not

optimal, should a deviation from the equilibrium path occur for some reason.

Differently put, the α-equilibrium is sustained by empty threats. Player 1

sticks to offer α because he forsees rejection at a1 > α although the rejection
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1

2
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1
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2,0
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reject

accept










10

3
,

10

7










10

8
,
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F����� 2. Rubinstein’s game tree

is not in player 2’s interest once the worse offer (from player 2’s point of view)

is on the table. Therefore, the α- equilibria are not subgame perfect.

In order to identify subgame perfect equilibria, backward induction is

used. However, the problem with the Rubinstein game is the infinity of the

game tree. Despite this handicap, we successfully apply backward induction.

3. Backward induction for a three-stage Rubinstein game

In order to solve the subgame perfection problem, it may be a good idea

to describe a player’s strategy by two numbers, the first indicating the offer

the player makes (a1 or a2, respectively), the second reflecting his agreement

threshold. We now consider and solve a simplified Rubinstein game, with

three stages only. In the next section, we see that the original Rubinstein

game is solvable by a clever trick.

The three-stage game is depicted in fig. 3. Player 1 makes an offer a1
that player 2 can counter with a2. If player 1 rejects the counteroffer, the

game is over and an externally fixed division of the cake is implemented. For

example, a mediator gives share a1 to player 1 and share 1− a1 to player 2.

This game is backward solvable. Let us agree on the following principle:

If a player is indifferent

between accepting or rejecting an offer,

he accepts.

This principle is just a technical assumption. The following exercise helps

to see why it is needed.
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1a1 2 1
2a

( )11 1, aa −

( )( )21 1, aa −δδ

( )( )1
2

1
2 1, aa −δδ

reject

accept accept

F����� 3. The finite Rubinstein game

E������� XVI.2. Consider a "take it or leave it"-game where player 1

offers a1, 0 ≤ a1 ≤ 1, and the players get (a1, 1− a1) if player 2 accepts

but (0, 0) if player 2 rejects. Assume that player 2 rejects when indifferent.

What is player 1’s optimal offer?

We now solve the game by backward induction:

• At stage 3, if player 1 rejects player 2’s counteroffer, he obtains

δ2a1, otherwise δa2. Accepting is the best option for player 1 in

case of δa2 ≥ δ2a1, i.e., if

a2 ≥ δa1

holds.

• At stage 2, player 2 has to decide whether to accept player 1’s offer

(made at stage 1). If player 2 rejects player 1’s offer, two cases need

to be distinguished. Either player 2 offers a2 ≥ δa1 and player 1

accepts. Or player 2 offers less than δa1 and player 1 rejects. In

the first case, player 2 has no reason to be generous and chooses

a2 = δa1

which leads to payoff δ (1− δa1) for himself. By

δ (1− δa1) > δ2 (1− a1)

he prefers making an acceptable offer to making a non-acceptable

one.

We still need to find out, under what circumstances player 2

accepts player 1’s offer. Accepting the offer should not make him

worse off than the counteroffer, i.e., the condition for accepting is

1− a1 ≥ δ (1− δa1) ⇔ a1 ≤ 1− δ (1− δa1) .

• At stage 1, player 1 has the option to make the offer

a1 = 1− δ (1− δa1)
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which is accepted by player 2 or ask for more in which case player 1

accepts player 2’s counteroffer a2 = δa1 (made at stage 2) at stage

3. Because of

δ2a1 < 1− δ (1− δa1) ⇔ 0 < 1− δ

player 1 prefers to make an acceptable offer to player 2.

Payoffs are 1− δ (1− δa1) for player 1 and δ (1− δa1) for player 2.

4. Backward induction for the Rubinstein game

Backward induction for the three-stage game leads to the offer made by

player 1 at stage 1

a1 = 1− δ (1− δa1) = 1− δ + δ2a1

that is accepted by player 2. We now employ a trick to get at the backward-

induction solution of the infinite game. At stage 3 of the infinite game,

player 1 is basically in the same position as at stage 1. He sees before him

an infinite sequence of offers and counteroffers. The only difference is that

all payoffs are to be multiplied by δ2, as a consequence of discounting or

shrinking. The shares the players can expect are not affected. Therefore,

at stage 3 he can expect the share he offers at stage 1. This more or less

convincing reasoning leads to a1 := a1 and therefore a1 = 1 − δ (1− δa1)

which can be written as

a1 =
1− δ

1− δ2
=

1− δ

(1− δ) (1 + δ)
=

1

1 + δ
.

Maybe you do not find our trick convincing. We therefore offer an alternative

argument. The idea is to defer the mediator’s decision from the third to the

fifth stage. And then to the seventh etc. If the mediator fixes a1 for the

fifth stage, player 1 can demand

[1− δ (1− δa1)]

at the third stage and player 2 accepts. Therefore, at the first stage, player

1 makes the acceptable offer

1− δ (1− δ [1− δ (1− δa1)]) = 1− δ + δ2 − δ3 + δ4a1.

The general pattern should be clear by now. If we defer the monitor’s

decision to the seventh stage, player 1 obtains

1− δ (1− δ [1− δ (1− δ [1− δ (1− δa1)])])

= 1− δ + δ2 − δ3 + δ4 − δ5 + δ6a1.

The monitor’s decision becomes less and less important because of δ < 1.

Letting the monitor’s stage go to infinity, we obtain player 1’s payoff as the

limit of the infinite geometric series

1− δ + δ2 − δ3 + δ4 − δ5 + δ6 − δ7 + δ8 − ...
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Note that one term is the product of the previous term and (−δ) , i.e., we

have an infinite geometric series (see p. 88). We find, once again,

infinite geometric series =
first term

1− factor
=

1

1− (−δ) =
1

1 + δ
.

5. Subgame perfect strategies for the Rubinstein game

Note that a1 =
1
1+δ

does not, by itself, tell player 1’s strategy. We also

need to know when player 1 accepts an offer. Since an offer by player 2 of

δa1 „today“ has the same worth as a1 „tomorrow“, player 1’s strategy is:

Make an offer of 1
1+δ

at stages 1, 3, ...,

accept any offer of or above δ 1
1+δ

at stages 2, 4, ..., and

reject any offer below δ 1
1+δ at stages 2, 4, ...!

Correspondingly, player 2’s strategy is

Make an offer of δ 1
1+δ at stages 2, 4, ...,

accept any offer of or below 1
1+δ at stages 1, 3, ..., and

reject any offer above 1
1+δ at stages 1, 3, ...!

We still need to check these strategies for Nash equilibrium. Given the

strategy operated by player 1, player 2 can obtain

1− 1

1 + δ

immediately (by accepting), or making the counteroffer δ 1
1+δ

which (given

player 1’s strategy) leads to payoff

δ

�
1− δ

1

1 + δ

�
.

Since these two payoffs are equal, player 2 accepts as his strategy suggests.

Therefore, player 2’s strategy is a best response to player 1’s strategy.

E������� XVI.3. Confirm that player 1’s strategy is a best response to

player 2’s strategy.

Can we be sure that the above equilibrium is subgame perfect? Per-

haps, this equilibrium rests on empty threats in a similar manner as the

α-equilibria? For example, would it be in player 1’s interest to accept offers

slightly below δ 1
1+δ

? No. If, in contrast to the players’ strategies (off the

equilibrium path), player 2 makes an offer

a2 < δ
1

1 + δ
,

player 1 should reject in accordance with his strategy. Due to shrinkage, his

counteroffer yields

δ
1

1 + δ
> a2.
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In a similar fashion, we can confirm that the players’ strategies have the

mutual best-response property even after we find ourselves (for example by

mistake) off the equilibrium path.

6. Patience in bargaining

The time is ripe to reap the benefits of the Rubinstein model. It says

that the portion appropriable by player 1 is the higher, the more impatient

the players are. If player 2 is very impatient, he is forced to accept a rather

bad (in player 2’s eyes) offer by player 1. If δ is close to 1 (no impatience),

both players obtain half the cake.

The model would be nicer if it allowed for different discount factors, δ1
for player 1 and δ2 for player 2. Indeed, this extension is not difficult. You

can do it yourself.

E������� XVI.4. Replace δ by δ1 and δ2, respectively, in fig. 3 and

find player 1’s offer for this modified game! Use the same trick as above

(a1 = a1) to obtain player 1’s offer player 2 cannot reject.

E������� XVI.5. Interpret the results from the preceding exercise for

• δ1 > 0, δ2 = 0 and

• δ1 = 0, δ2 > 0!
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7. Topics

The main topics in this chapter are

• alternating offers

• subgame perfection

• bargaining theory

8. Solutions

Exercise XVI.1

These two strategies form an equilibrium. Player 1’s offer of a1 = α is

immediately accepted by player 2. If player 1 asks for less than α, player 2

also accepts, but player 1 obtains less than at α. If player 1 asks for more

than α, player 2 declines and makes a counteroffer which is worse by the

shrinking factor δ. In later periods, player 1 cannot hope for more than a

share of α, which amounts to less because the cake has shrunk. In a similar

fashion, one ascertains that player 2 cannot find a better strategy.

Exercise XVI.2

Player 1 tries to maximize a1 under the condition that player 2 accepts.

Therefore, player 1 has to make sure that 1− a1 > 0 holds because player 2

rejects otherwise. However, there is no largest number a1 < 1 in the realm

of real (or rational) numbers. It is certainly not 0.99 because 0.999 is larger

and still smaller than 1.

Exercise XVI.3

Player 1 can make the offer, and obtain, 1
1+δ . Given player 2’s strategy,

asking for less is a bad idea. If he asks for more than 1
1+δ

,player 2 rejects and

makes the counteroffer δ 1
1+δ

. This counteroffer (at stage 2) is less attractive

to player 1 than obtaining 1
1+δ

at stage 1 : 1
1+δ

> δ
�
δ 1
1+δ

�
. Rejecting player

2’s counteroffer does not help either because then player 1, at stage 3, has

to make an offer giving no higher share than the share obtainable at stage 1.

Note that shrinking has progressed from stage 1 to stage 3 by δ2. Therefore,

player 1’s strategy is, indeed, a best response to player 2’s strategy.

Exercise XVI.4

Fig. 4 shows how to work with δ1 and δ2. Backward solving yields

a1 = 1− δ2 (1− δ1a1)

by the very same arguments as in the main text.

Letting a1 := a1 leads to

a1 = 1− δ2 (1− δ1a1)

=
1− δ2
1− δ1δ2

.
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1a1 2 1
2a

( )11 1, aa −

( )( )2221 1, aa −δδ

( )( )1
2
21

2
1 1, aa −δδ

reject

accept accept

F����� 4. The finite Rubinstein game for different discount factors

The result in the main text is obtained for δ := δ1 = δ2. Obviously, player

1’s portion is an increasing function of δ1. Differentiation with respect to δ2
shows that player 1 benefits from player 2’s impatience.

Exercise XVI.5

If player 2 is so impatient that he cannot enjoy the cake at stage 2, he

accepts any offer by player 1. In the extreme case of δ1 > 0, δ2 = 0 player 2

gets

1− a1 = 1− 1− δ2
1− δ1δ2

= 1− 1

1
= 0.

If player 1 is very impatient, he knows that he accepts any counteroffer made

by player 2. Therefore, δ1 = 0, δ2 > 0 leads to the very modest offer

a1 =
1− δ2
1− δ1δ2

= 1− δ2.





Part E

Bayesian games and mechanism

design



This part of the course deals with game theory under uncertainty —

Bayesian games and mechanism design.



CHAPTER XVII

Static Bayesian games

This chapter has several aims. On the methodological level, we con-

sider static Bayesian games. We use them to shed some light on mixed

strategies in strategic games, to introduce correlated equilibria, and to an-

alyze the first-price auction. Finally, we present double auctions and the

Myerson-Satterthwaite theorem which argues that we cannot expect Pareto

optimality in bargaining if both bargaining parties have imperfect informa-

tion. Thus, this chapter furnishes the reader with a befitting cautionary

note on “bargaining theory and Pareto optimality”.

1. Introduction and an example

In this chapter, we deal with imperfect information in extensive-form

games where the main source of this imperfection is due to moves by nature.

As one of the main applications, we consider the first-price auction. As in

the second-price auction (see chapter X, pp. 253), the bidders put down

their bids simultaneously and the highest bidder obtains the object. While

the successful bidder in the second-price auction pays the highest bid offered

by the other bidders, in the first-price auction he has to pay his bid.

For the second-price auction, we have shown that the strategy to bid

according to one’s reservation price is a dominant strategy. The first-price

auction is more complicated for the bidders. On the one hand, they want

to obtain the object if it is obtainable at a price below their willingness to

pay. On the other hand, they want to pay as small a price as possible. We

assume that the bidders are uncertain about the other bidders’ willingness

to pay. Therefore, to find an optimal strategy and the equilibrium is not an

easy matter.

We assume two bidders 1 and 2. They know their own willingness to pay

which is also called their “type”. Thus, player 1 is of type t1 and player 2

of type t2. The extensive form of the game is rather simple. First, nature

decides the players’ types, then, the players make their bids. A player can

condition his bid on his own type, but not on the other player’s type.

Of course, a player will never bid above his willingness to pay because

he may win the auction and obtain the negative payoff “willingness to pay

minus bid”. Assume a bid below the willingness to pay. An increase of the

bid has two effects. First, it increases the bidder’s chance of winning the

auction. Second, it increases the price to be paid if the bid should win. In

423
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order to balance these two effects, a bidder needs to reason about the other

player’s bid which is possible only on the basis of probabilistic information

about that player’s type. We spell out this model in section 6.

The first-price auction is a special instance of a static Bayesian game.

Bayesian games are characterized by moves by nature that determine the

players’ types, for example the willingness to pay in the first-price auction.

In static Bayesian games, all players act simultaneously after learning their

own types. Static Bayesian games are close to strategic-form games. How-

ever, each player’s action depends on the own type (which is unknown to

the other players).

2. Definitions

2.1. Static Bayesian game. We now define static Bayesian games.

It is possible to define static Baysian games as extensive-form games where

nature moves first and the players second. Consider the extensive form of a

static Bayesian game in fig. 1. There are two players 1 and 2 with two types

each, types t11 and t21 for player 1 and types t12 and t22 for player 2. Thus,

we have T1 =
�
t11, t

2
1

�
and T2 =

�
t12, t

2
2

�
. Every player chooses between two

actions, A1 = {a, b} and A2 = {c, d}.
At the initial node, nature chooses a type combination t = (t1, t2) ∈

T1×T2. The probabilities are not specified. Then, player 1 chooses between

a and b. Since he knows his own type, only, he has two information sets,

the upper one for t11, the lower one for t21. Then, player 2 moves. He also

has two information sets. He does neither know player 1’s type nor player

1’s action. The left information set refers to type t12, the right to t22.

While static Bayesian games can be defined as extensive-form games

(that is what they are, basically), it is simpler to choose a definition which

leans on strategic-form games:

D�������
� XVII.1 (Static Bayesian game). A static Bayesian game is

a quintuple

Γ =
�
N, (Ai)i∈N , (Ti)i∈N , τ , (ui)i∈N

�
= (N,A, T, τ , u) ,

where

• N = {1, ..., n} is the player set,
• Ai is the action set for player i ∈ N with Cartesian product A =×i∈NAi and elements ai and a, respectively,

• T = (Ti)i∈N is the tuple of type sets Ti for players i ∈ N,

• τ is the probability distribution on T, and

• ui : A× Ti → R is player i’s payoff function.

The probability distribution on T can be understood as a behavioral

strategy chosen by nature which we have referred to as β0 in chapter III

(p. 42). For the time being, we assume a finite number of types for every

player. For a continuum of types, see pp. 428.
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F����� 1. A static Bayesian game in extensive form

2.2. Beliefs. Ex ante, before the players learn their own types, their

beliefs are summarized by τ . The (a priori) probability for type ti is given

by

τ (ti) :=
�

t−i∈T−i
τ (t−i, ti)

After nature reveals their respective types, the players form (a posteriori)

expectations about the other players’ types by calculating the conditional

probability (see p. ??):

D�������
� XVII.2 (Belief). Let Γ be a static Bayesian game with prob-

ability distribution τ on T . Player i’s ex-post (posterior) belief τ i is the

probability distribution on T−i given by the conditional probability

τ i (t−i) := τ (t−i |ti ) =
τ (t−i, ti)

τ (ti)
=

τ (t−i, ti)�
t−i∈T−i

τ (t−i, ti)
. (XVII.1)

E������� XVII.1. Assume two bidders 1 and 2 with probability distri-

bution τ on T where T1 = T2 = {high, low} refers to the willingness to pay
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for the good to be auctioned off. Consider

τ (high, high) =
1

3
, τ (high, low) =

1

3
,

τ (low, high) =
1

9
, τ (low, low) =

2

9

and calculate τ (t2 = high) and also τ1 (high) if player 1 has learned that his

own willingness to pay is high.

2.3. Actions, strategies, and equilibria. Static Bayesian games are

called static because the players act simultaneously. However, they act on

the knowledge of their own type. In fact, we need to differentiate between

ex ante and ex post. Ex ante means before the uncertainty about the own

type is removed. A strategy is an ex-ante concept: A player i’s strategy

is a complete plan of how to act for each type ti from Ti. According to a

strategy, actions can be conditioned on the own type, i.e., an action is an

ex-post concept. Note that the payoff functions ui : A× Ti → R are to be

understood ex post.

D�������
� XVII.3. Let Γ be a static Bayesian game.

• A strategy for player i ∈ N is a function si : Ti → Ai. We some-

times write s (t) instead of (s1 (t1) , ..., sn (tn)) ∈ A.

• The tuple of payoffs (ui (a, ti))i∈N is also denoted by u (a, t).
• We define u : S → R by

u (s)����
ex-ante utility

:=
�

t∈T
τ (t) u (s (t) , ti)� �� �

ex-post utility

, s ∈ S,

so that best replies and Nash equilibria are defined as in chapter X.

The ex-ante and ex-post dichotomy leads to different (but equivalent!)

definitions of equilibria. We start with the ex-ante definition:

D�������
� XVII.4 (Bayesian equilibrium (ex ante)). Let Γ be a static

Bayesian game. A strategy combination s∗ = (s∗1, s
∗
2, ..., s

∗
n) is a Bayesian

equilibrium (ex ante) if

s∗i ∈ arg max
si∈Si

ui
�
s∗i , s

∗
−i

�

= argmax
si∈Si

�

ti∈Ti

�

t−i∈T−i
τ (ti, t−i)ui

�
si (ti) , s

∗
−i (t−i) , ti

�

holds for all i ∈ N.

Thus, in the light of s∗−i and τ, s∗i maximizes player i’s expected payoff.

A type ti that occurs with probability τ (ti) = 0, can choose any action from

Ai. We now turn to the ex-post definition. After learning his type, player

i chooses the action that maximizies his expected payoff given his belief τ i
(which is a conditional probability, see above):
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D�������
� XVII.5 (Bayesian equilibrium (ex post)). Let Γ be a static

Bayesian game. A strategy combination s∗ = (s∗1, s
∗
2, ..., s

∗
n) is a Bayesian

equilibrium (ex post) if

s∗i (ti) ∈ arg max
ai∈Ai

�

t−i∈T−i
τ i (t−i)ui

�
ai, s

∗
−i (t−i) , ti

�

holds for all i ∈ N and all ti ∈ Ti obeying τ (ti) > 0.

The qualification τ (ti) > 0 is necessary because τ i (t−i) (see eq. XVII.1)

is ill-defined otherwise. Again, τ (ti) = 0 implies “anything goes”.

3. The Cournot model with one-sided cost uncertainty

3.1. The model. We modify the Cournot dyopoly (chapter XI) by

introducing one-sided cost uncertainty. Consider two firms 1 and 2 that serve

the same market with a homogenous good. The inverse demand function

p is given by p (X) = 80 − X where X is the total supply and p (X) the

resulting price. Both firms have constant unit costs:

• c2 = 20 for firm 2 and

• cl1 = 15 or ch1 = 25 for firm 1.

The cost c2 is known to both firms but the cost c1 ∈
�
cl1, c

h
1

�
is known to

firm 1, only. From the point of view of firm 2, the probability for cl1 is 1/2.

This situation can be described as a static Bayesian game

Γ = (N, (A1, A2) , (T1, T2) , τ , (u1, u2))

where

• N = {1, 2} is the set of the two firms,

• A1 = A2 = [0,∞) are the sets of quantities chosen by the firms,

• T1 =
�
cI1, c

h
1

�
= {15, 25} and T2 = {20} are the type sets,

• τ is the prob. distribution on T given by τ (15, 20) = τ (25, 20) = 1
2

and

• the payoff functions are defined by

u2 (x1, x2, t2) = (p (X)− c2)x2 = (80− (x1 + x2)− 20)x2

(i.e., we have a linear inverse demand function where 80 is the

prohibitive price) and

u1 (x1, x2, t1) =

) �
p (X)− cl1

�
x1 = (80− (x1 + x2)− 15)x1, t1 = cl1�

p (X)− ch1
�
x1 = (80− (x1 + x2)− 25)x1, t1 = ch1

Since player 2’s type set has one element only, a strategy s2 : T2 → A2
is basically just an action from A2. Player 1’s strategy set is the set of

functions from T1 to A1,

S1 =
�
s1 :

�
cI1, c

h
1

�
→ [0,∞)

�
.
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E������� XVII.2. Can you show that the a-priori probabilities for the

players’ types is equal to the belief formed by the players. (In different words:

Can you show that the types are independent (see definition ??, p. ??)?

3.2. The static Bayesian equilibrium. We employ the ex-post defi-

nition of an equilibrium. The strategy combination (s∗1, s
∗
2) is an equilibrium

(ex post) if

s∗i (ti) ∈ arg max
ai∈Ai

�

t−i∈T−i
τ i (t−i)ui

�
ai, s

∗
−i (t−i) , ti

�

holds for all i ∈ N and all ti ∈ Ti obeying τ (ti) > 0. Firm 1’s choice depends

on its type:

s∗1 (t1) =

)
argmaxx1∈[0,∞)

�
80− (x1 + x2)− cl1

�
x1, t1 = cl1

argmaxx1∈[0,∞)
�
80− (x1 + x2)− ch1

�
x1, t1 = ch1

=

) 65
2 − 1

2x2, t1 = cl1
55
2 − 1

2x2, t1 = ch1

Firm 2’s profit is the expected value

1

2

�
80−

�
s∗1
�
cl1

�
+ x2

�
− 20

�
x2 +

1

2

�
80−

�
s∗1
�
ch1

�
+ x2

�
− 20

�
x2

=

�
80−

�
1

2

�
s∗1
�
cl1

�
+ s∗1

�
ch1

��
+ x2

�
− 20

�
x2

=

�
60− 1

2

�
s∗1
�
cl1

�
+ s∗1

�
ch1

���
x2 − x22

which leads to the reaction function

x∗2 = s∗2 (20) =

�
60− 1

2

	
s∗1
�
cl1
�
+ s∗1

�
ch1
�
�

2

= 30− 1

4

�
s∗1
�
cl1

�
+ s∗1

�
ch1

��
.

We now have three equations in the three unknowns x2, s
∗
1

�
cl1
�
, and s∗1

�
ch1
�
.

They lead to the Nash equilibrium

x∗2 = 20, s∗1
�
cl1

�
=

45

2
, and s∗1

�
ch1

�
=

35

2
.

Because of the one-sidedness, the model is easy to solve. We now consider the

first-price auction where all the bidders are unsure about the other bidders’

reservation prices.

4. Revisiting mixed-strategy equilibria

4.1. Continuous types. Before dealing with uncertainty in matrix

games, we need to introduce continuous types and probability distributions

for these types. We assume two players i = 1, 2 with types ti from Ti = [0, x] ,

x > 0. In our Bayesian game (to be defined in the next section), τx is a

probability distribution on T = T1×T2. However, for the rest of the chapter,

we assume that the events “type t1 lies between a and b” and “type t2 lies
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0 a b x

1/x

it

F����� 2. The total area is 1.

between c and d” are independent. Then, we can look at the probability for

the event “type t1 lies between a and b” without regard to type 2. We use

the symbol, τx, to denote this probability, namely as τx ([a, b]).

Consider, now, the density distribution depicted in fig. 2. The density

is equal to 1/x for types between 0 and x and 0 for other types:

τx (a) =

) 1
x , a ∈ [0, x]

0, a /∈ [0, x]

For this density distribution, we find

τx ([a, b]) =

b(

a

τx (t) dt =
b− a

x
, 0 ≤ a ≤ b ≤ x.

This formula implies that the probability for a specific type a is zero:

τx ([a, a]) =
a− a

x
= 0

Thus, while τx is a probability distribution on [0, x]× [0, x] in the first place,

it can also be understood as a probability (or density) distribution on [0, x].

Since we assume identical densities for players 1 and 2, τx ([a, b]) can refer

to either of them. Please distinguish τx ([a, a]) from τx (a) . τx ([a, a]) is the

probability for the specific type a, while τx (a) refers to the density at point

a which need not be zero.

4.2. Introducing uncertainty. In chapter X, we consider games in

strategic form. John Nash has shown that any finite strategic game Γ =

(N,S, u) has a mixed-strategy Nash equilibrium. This is a neat result but

many people feel uneasy about the very concept of a mixed strategy. In real

life, we sometimes wonder whether action a or action b is the better one,

but we throw a die in rare cases, only. Static Bayesian games allow a fresh

look on mixed equilibria. For a given matrix game with a mixed-strategy
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equilibrium, we construct a sequence of static Bayesian games that converge

towards that game. In a Bayesian game, no player i ∈ N randomizes.

However, from the point of view of the other players from N\ {i} who do not

know the type ti, it may well seem as if player i is a randomizer. For example,

in the first-price auction, player 1 fixes his equilibrium bid according to his

strategy s1 which is defined by s1 (t1) =
t1
2 . Thus, player 1 with types from

the interval [0, 1] does not randomize. But player 2 expects bids between 0

and 1
2 which are indistinguishable, from 2’s perspective, from a probability

distribution on this interval.

We illustrate these ideas (due to Harsanyi (1973)) with the battle of the

sexes (see p. 250). The concrete numbers are taken from Gibbons (1992, p.

153):

Peter

Cathy

theatre football

theatre 2 + tC , 1 0, 0

football 0, 0 1, 2 + tP

The types tC and tP are called Vollmer parameters and refer to the theatre

and football madness entertained by Cathy or Paul, respectively.

E������� XVII.3. Determine all three equilibria of the above matrix

game. Assume tC = tP = 0.

We now construct a static Bayesian game. Cathy and Peter know their

own types, tC and tP , respectively, but not the other player’s type. We

assume tC , tP ∈ [0, x] for some number x > 0 and also a constant density 1
x
.

Thus, we have

τx ([a, b]) =
b− a

x
. (XVII.2)

Formally, the corresponding static Bayesian game Γx = (N,A, T, τ , u) is

given by

• N = {C,P} ,
• AC = AP = {theatre, football} ,
• TC = TP = [0, x] ,

• the probability distribution τx on TC × TP defined in the previous

section, and

• the payoff functions uC : AC ×AP × TC → R and uP : AC ×AP ×
TP → R defined by the above matrix.

E������� XVII.4. What do Peter’s strategies look like? Do you see

that any strategy chosen by Peter determines a probability distribution on

{theatre, football}?
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4.3. The equilibria. Let θP be Peter’s probability for choosing theatre

(given the probability distribution for his types and given his strategy).

Cathy prefers theatre to football if

(2 + tC) · θP + 0 · (1− θP )� �� �
Cathy’s expected payoff

for choosing theatre

≥ 0 · θP + 1 · (1− θP )� �� �
Cathy’s expected payoff

for choosing football

holds. Solving for tC , Cathy’s optimal response to θ and to Peter’s strategy

is

tC →
6

theatre, tC ≥ 1−3θP
θP

,

football, tC < 1−3θP
θP

.

Note that Cathy’s optimal response is a threshold strategy. She chooses

theatre if her type tC is equal to or above the threshold t̄C := 1−3θP
θP

. The

same is true for Peter whose optimal response to θC (Cathy’s probability

for theatre) is also a threshold strategy.

E������� XVII.5. Find Peter’s threshold type t̄P if Cathy’s probability

for choosing theatre is θC !

Summarizing the results so far,

• Cathy chooses theatre if tC ≥ t̄C := 1−3θP
θP

while

• Peter chooses theatre in case of tP ≤ t̄P := 3θC−2
1−θC

.

Of course, Peter’s probability for theatre, θP , is related to his threshold type

t̄P . By eq. XVII.2, we find

θP = τx ([0, t̄P ]) =
t̄P − 0

x
.

Similarly, we obtain

θC = τx ([t̄C , x]) =
x− t̄C
x

.

Using the above definitions of t̄C and t̄P , we get two equations in two un-

knowns:

t̄C =
1− 3θP
θP

=
1− 3 t̄P

x
t̄P−0
x

=
x− 3t̄P
t̄P

and

t̄P =
3θC − 2

1− θC
=

3x−t̄C
x − 2

1− x−t̄C
x

=
x− 3t̄C
t̄C

.

E������� XVII.6. Confirm t̄C = t̄P ! Hint: Consider t̄C t̄P .

We now solve the quadratic equation

t̄2 + 3t̄− x = 0

to find

t̄1,2 = −3

2
±
:

9

4
+ x.
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Since the sought-after threshold types belong to [0, x] , we obtain

t̄∗C = t̄∗P = −3

2
+

:
9

4
+ x

which specify the equilibrium for every x > 0 :

L���� XVII.1. Let Γx be the static Bayesian game defined above. The

strategy combination (s∗C , s
∗
P ) defined by

s∗C : [0, x] → {theatre, football}

tC → s∗C (tc) =




theatre, tC ≥ −3

2 +
'

9
4 + x,

football, tC < −3
2 +

'
9
4 + x.

and

s∗P : [0, x] → {theatre, football}

tP → s∗P (tP ) =




theatre, tP ≤ −3

2 +
'

9
4 + x,

football, tP > −3
2 +

'
9
4 + x.

is the equilibrium.

4.4. Purification. We now turn to the clou of the whole exercise.

Above, we have found Cathy’s mixed-equilibrium strategy
�
2
3 ,
1
3

�
. We can

reproduce this strategy by considering x = 0. For a given x > 0, Cathy’s

probability for choosing theatre is

θC =
x− t̄C
x

=
x−

�
−3
2 +

'
9
4 + x

�

x

= 1−
−3
2 +

'
9
4 + x

x
.

Here, we cannot substitute x for 0 because then we have 0
0 which is not

defined. However, we can apply de l’Hospital’s rule which is theorem VIII.1

(p. 208):

lim
x→0


1−

−3
2 +

'
9
4 + x

x


 = lim

x→0
1− lim

x→0

−3
2 +

'
9
4 + x

x

= 1− lim
x→0

1

2
�

9
4
+x

· 1

1
(de l’Hospital’s rule)

= 1− lim
x→0

1
2· 3
2

· 1
1

=
2

3
.

Thus, Cathy’s probabilities in the static Bayesian games (which depend on

x) converge to the mixed-strategy probability in the matrix game. Since
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Cathy chooses a pure action (in dependence on her type), substituting a

matrix game by a sequence of static Bayesian games and a mixed-strategy

equilibrium by a sequence of equilibria is called purification.

5. Correlated equilibria

5.1. Telling how to play. In the examples considered so far, the types

refer to the players’ payoffs. In this section, we consider types that refer to

the players’ actions. In these games, the players learn the action they are

supposed to choose. Of course, they are free to ignore the suggestion. Some-

times, the players will find it beneficial to follow the suggestions. Consider

the battle of the sexes and suggestions where both players are told to choose

theatre with probability 1
2 and football with probability 1

2 . Then, it is in

Cathy’s interest to follow the advice if she thinks that Peter will do as told.

Thus, in these static Bayesian games we have Ti = Ai for each player

i ∈ N so that player i’s strategy is a function si : Ai → Ai. Obeying

the suggestion is tantamount to using the identity function as a strategy,

si = idi : Ai → Ai, ai → idi (ai) = ai. We are particularly interested in

knowing when s = (id1, id2, ..., idn) is an equilibrium strategy combination.

Consider, now, the prisoners’ dilemma:

player 2

player 1

deny confess

deny 4, 4 0, 5

confess 5, 0 1, 1

The type sets are T1 = T2 = {deny, confess} . Assume the probability dis-

tribution τ on T = T1 × T2 is given by τ (deny, deny) = 1. This probability

distribution implies that both players learn the suggestion “deny” with prob-

ability 1. This is a very good suggestion because — if followed — the players

obtain 4 rather than 1 in the dominant-strategy equilibrium of the strategic

game. Of course, the “if” is essential. Even if player 1 assumes that player

2 will follow the recommendation, player 1 prefers to choose confess.

Thus, we look for suggestions that players like to follow in equilibrium.

5.2. The recommendation game and equilibria of strategic games.

As in the purification effort, the recommendation game builds on a strategic

game. This static Bayesian game has two peculiarities. First, every player’s

type set is his action set. Second, the payoffs do not depend on the types:

D�������
� XVII.6. Let Γ = (N,A, u) be a strategic game. The recom-

mendation game Γτ is the static Bayesian game (N,A, T, τ , (u1, u2)) where

Ti = Ai
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holds for all i ∈ N and the payoff functions ui : A× T → R obey

ui (a, ti)� �� �
payoff function

for recommendation game Γτ

= ui (a)� �� �
payoff function

for strategic game Γ

,

i.e., the payoffs do not depend on the types. If s∗ = (id1, id2, ..., idn) is an

equilibrium strategy combination in Γτ , τ is called a correlated equilibrium

of Γ.

Thus, a correlated equilibrium is a probability distribution on the set of

action combinations such that the players are happy to follow the recom-

mendation obtained. If τ puts the whole probability mass on one or several

equilibria of the strategic game Γ, τ is a correlated equilibrium. This is the

statement of the following theorem which is somewhat similar to theorem

XIII.2 on p. 349.

T��
��� XVII.1. Let Γ = (N,A, u) be a strategic game and let Γτ be

the corresponding recommendation game. Let a∗ = (a∗1, a
∗
2, ..., a

∗
n) and b

∗ =
(b∗1, b

∗
2, ..., b

∗
n) be equilibria of Γ. If τ (a

∗) + τ (b∗) = 1, s∗ = (id1, id2, ..., idn)

is an equilibrium of Γτ .

P�

�. Consider a player i ∈ N who learns his type a∗i ∈ Ti = Ai. By

τ (a∗) + τ (b∗) = 1, i knows that a∗i is part of an equilibrium and that the

other players learn the strategy combination a∗−i ∈ T−i such that
�
a∗i , a

∗
−i

�
is

a Nash equilibrium of Γ. Thus, if i believes that the other players j ∈ N\ {i}
have strategy s∗j = idj : Aj → Aj and will therefore choose s∗j

�
a∗j
�
) = a∗j ,

the best that i can do is to choose a∗i ∈ argmaxai∈Ai ui
�
ai, a

∗
−i

�
himself.

Thus s∗i = idi is a best response to s∗−i = (id1, ..., idi−1, idi+1, ..., idn) . �

By playing a recommendation game, the players can realize any payoff

vector that lies in the convex hull (p. 352) of the equilibrium payoff vectors

belonging to Γ. However, one can do even better.

5.3. Going beyond the convex hull. Aumann (1974, S. 72) shows

that correlated equilibria may lie outside the convex hull of the equilibria —

in pure or mixed strategies. Let us consider his example:

player 2

player 1

a12 a22

a11 6, 6 2, 7

a21 7, 2 0, 0
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2

7

2 5 7
1u

2u

°45

3
14

3
5.13

convex hull

Payoffs
in pure-strategy equilibria,
in mixed-strategy equilibrium,
in correlated equilibrium

F����� 3. The convex hull and beyond

This game has two equilibria in pure strategies,
�
a11, a

2
2

�
and

�
a21, a

1
2

�
. Be-

cause of theorem X.1 (p. 264) it makes sense to look for a third equilibrium.

It is
��
2
3 ,
1
3

�
,
�
2
3 ,
1
3

��
with payoffs

�
14
3 ,

14
3

�
. The convex hull of these equilibria

is given in fig. 3.

We now look for a correlated equilibrium that is better than the mixed-

strategy equilibrium and also better than a “fair” mixture of the two pure-

strategy equilibria. Alas, while τ
�
a11, a

1
2

�
= 1 promises the payoff 6, τ

is not a correlated equilibrium. If player 2 chooses s2 = id2 (follows the

recommendation), it is in player 1’s interest to deviate. Thus, this τ will not

do. Consider, however, the probability distribution τ on T = A given by

τ
��
a11, a

1
2

��
= τ

��
a21, a

1
2

��
= τ

��
a11, a

2
2

��
=

1

3

and depicted by

player 2

player 1

a12 a22

a11
1
3

1
3

a21
1
3 0

The idea behind this probability distribution is to avoid the zero payoff

associated with the action combination
�
a21, a

2
2

�
. It yields the payoff

1

3
· 7 + 1

3
· 6 + 1

3
· 2 = 5

for each player (see fig. 3). So far, so good. We still need to confirm that

s1 = id1 is a best reply to s2 = id2 (and vice versa). Assume player 1
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observes the recommendation a11. He then believes that player 2 got the

recommendation a12 with (conditional) probability

τ1
�
a12
�
= τ

�
a12

��a11
�
=
τ
�
a12, a

1
1

�

τ
�
a11
� =

τ
�
a12, a

1
1

�

τ
�
a11, a

1
2

�
+ τ

�
a11, a

2
2

� =
1
3
2
3

=
1

2
.

Thus, player 1 prefers to follow his recommendation and choose a11 if he

assumes that player 2 is obedient:

τ1
�
a12
�
u
�
a11, a

1
2

�
+ τ1

�
a22
�
u
�
a11, a

2
2

�

> τ1
�
a12
�
u
�
a21, a

1
2

�
+ τ1

�
a22
�
u
�
a21, a

2
2

�

⇔ 1

2
· 6 + 1

2
· 2 > 1

2
· 7 + 1

2
· 0.

Assume, on the other hand, recommendation a21. From observing a21, player

1 knows that player 2 got recommendation a12. Just look at τ or calculate

the conditional probability

τ1
�
a12
�
= τ

�
a12

��a21
�
=
τ
�
a12, a

2
1

�

τ
�
a21
� =

τ
�
a12, a

2
1

�

τ
�
a21, a

1
2

� =
1
3
1
3

= 1.

Given a12, player 1’s best response is a21 which is just what he was told.

Thus, we have found a correlated equilibrium that allows to obtain

payoffs not reachable by mixing pure-strategy equilibria or by the mixed-

strategy equilibrium.

6. The first-price auction

6.1. The model. We now follow up on the first-price auction explained

in the introduction to this chapter. We assume two bidders 1 and 2 with

independent types t1, t2 ∈ [0, 1] . A bidder’s type stands for his willingness to

pay. Consider, now, the density distribution depicted in fig. 4 and defined

by

τ (a) =

)
1, a ∈ [0, 1]

0, a /∈ [0, 1]

The probability for types between a and b is given by

τ ([a, b]) =

b(

a

τ (t) dt = b− a, 0 ≤ a ≤ b ≤ 1.

Formally, the first-price auction is the static Bayesian game

Γ = (N, (A1, A2) , (T1, T2) , τ , (u1, u2))

where

• N = {1, 2} is the set of the two bidders,

• A1 = A2 = [0,∞) are the sets of bids chosen by the bidders,

• T1 = T2 = [0, 1] are the type sets,

• τ is the probability distribution on T given by τ ([a, b] , [c, d]) =

(b− a) (d− c) where 0 ≤ a ≤ b ≤ 1 and 0 ≤ c ≤ d ≤ 1 hold, and
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0 a b 1

1

1t

F����� 4. The density is 1.

• the payoff functions are defined by

u1 (a, t1) =





t1 − a1, a1 > a2,
t1−a1
2 , a1 = a2,

0, a1 < a2,

and u2 (a, t2) =





0 a1 > a2,
t2−a2
2 a1 = a2,

t2 − a2 a1 < a2.

Thus, the utility is zero if a bidder is outbid by another bidder. If a

bidder wins the auction, his payoff is t1 − a1, i.e., willingness to pay minus

the bid. If the bids happen to be identical, a fair coin decides the winner.

6.2. Solution. In order to solve the first-price auction, we use the ex-

post equilibrium definition. For example, if player 1 is of type t1 ∈ [0, 1], his

condition for the equilibrium strategy combination (s∗1, s
∗
2) is

s∗1 (t1) ∈ arg max
a1∈A1



(t1 − a1) τ ({t2 ∈ [0, 1] : a1 > s∗2 (t2)})� �� �

probability that player 1’s bid
is higher than player 2’s bid

+
1

2
(t1 − a1) τ ({t2 ∈ [0, 1] : a1 = s∗2 (t2)})� �� �

probab ility for equal bids


 .

Following Gibbons (1992, pp. 155), we restrict our search for equilibrium

strategies to linear strategies of the forms

s∗1 (t1) = c1 + d1t1 (d1 > 0),

s∗2 (t2) = c2 + d2t2 (d2 > 0).
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By

τ ({t2 ∈ [0, 1] : a1 > c2 + d2t2}) = τ

�)
t2 ∈ [0, 1] : t2 <

a1 − c2
d2

5�

= τ

��
0,
a1 − c2
d2

��

=
a1 − c2
d2

,

player 1’s maximization problem is solved by

s∗1 (t1) = arg max
a1∈A1

(t1 − a1)
a1 − c2
d2

=
c2 + t1

2
. (XVII.3)

However, this is not the complete answer.

• A bid below c2 cannot be better than the bid a1 = c2 because agent

1 obtains the object with probability 0 for any a1 ≤ c2.

• Any bid a1 ≥ c2 + d2 means that bidder 1 obtains the object with

probability 1. Therefore, a bid above c2 + d2 increases the price to

be paid by bidder 1 without increasing the chance of obtaining the

object.

The two restrictions c2 ≤ a1 ≤ c2 + d2 lead to a1−c2
d2

∈ [0, 1] (i.e., the

probability that t2 is smaller than a1−c2
d2

). Note also that player 1’s best

response to c2 (and hence to player 2’s strategy) is a linear strategy with

c1 =
c2
2 and d1 =

1
2 .

Analogously, bidder 2’s best response is

s∗2 (t2) =
c1 + t2

2

with c2 = c1
2 and d2 = 1

2 . Thus, we cannot have an equilibrium in linear

strategies unless c1 = c2
2 =

c1
2
2 = c1

4 and hence c1 = 0. Therefore, the

strategy combination

s∗ = (s∗1, s
∗
2)

with

s∗1 : [0, 1] → R+, t1 → s∗1 (t1) =
t1
2

and

s∗2 : [0, 1] → R+, t2 → s∗2 (t2) =
t2
2

is a candidate for our equilibrium. These are the “half-bid strategies”.

These strategies form an equilibrium because the strategies are best

reponses to each other. If player 2 uses the (linear) strategy s∗2, s
∗
1 (t1) =

t1
2

is a best response as shown above. Thus, s∗1 turns out to be a linear strategy.

Therefore, we have found an equilibrium in linear strategies but cannot

exclude the possibility of an equilibrium in non-linear strategies.
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6.3. First-price or second-price auction? We now take the auc-

tioneer’s perspective and ask the question whether the first-price auction is

preferable to the second-price auction. For given bids, the first-price auc-

tion is better for the auctioneer. However, bidders do not bid in accordance

with their types but bid half of the willingness to pay, only. The auctioneer

compares the prices

• min (t1, t2) for the second-price auction and

• max
�
1
2 t1,

1
2 t2

�
for the first-price auction.

We assume a risk-neutral auctioneer who maximizes the expected payoff.

Let t1 be a point in the closed interval [0, 1]. The integral

( t1

0
1dt2 = t1

is the area in fig. 2 between 0 and t1,.i.e., the probability for types below

t1. The probability for types above t1 is given by

( 1

t1

1dt2 = 1− t1.

We now calculate the auctioneer’s expected payoff for the second-price auc-

tion and find

(

t1∈[0,1]

0(

t2∈[0,1]
min (t1, t2) dt2

1
dt1

=

(

t1∈[0,1]

�( t1

0
min (t1, t2) dt2 +

( 1

t1

min (t1, t2)dt2

�
dt1

(splitting the t2 integral)

=

(

t1∈[0,1]

�( t1

0
t2dt2 + t1

( 1

t1

dt2

�
dt1

=

(

t1∈[0,1]

0
1

2
t22

����
t1

0

+ t1 (1− t1)

1
dt1

=

(

t1∈[0,1]

�
1

2
t21 + t1 (1− t1)

�
dt1

=

(

t1∈[0,1]

�
−1

2
t21 + t1

�
dt1

=

�
−1

3

1

2
t31 +

1

2
t21

�����
1

0

= −1

6
+

1

2
− 0 =

1

3
.

E������� XVII.7. Calculate the auctioneer’s expected payoff if he choos-

es the first-price auction and the bidder act non-strategically, i.e., choose

actions according to strategies si (ti) = ti.
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According to the above exercise, the first-price auction is better than the

second-price auction if (!) the bidders act non-strategically. They cannot

be expected to do so. Bidder i will not bid ti but half his willingness to pay,

t1/2. Therefore, the auctioneer can expect the payoff 1
3 from the first-price

auction. This is the same payoff as for the second-price auction. Therefore,

the auctioneer is indifferent between the first-price and the second-price

auction!

7. The double auction

7.1. The model. The double auction is a special kind of auction where

both the seller and the buyer simultaneously submit a bid r (an announced

reservation price) and w (an announced willingness to pay), respectively.

If the buyer’s willingness to pay w is above the seller’s reservation price r,

trade occurs at the price just in between,

p =
r +w

2
.

E������� XVII.8. Calculate the seller’s and the buyer’s rent in case of

r ≤ w and in case of r > w. Assume that the announced reservation price

and the announced willingness to pay are equal to the true reservation price

and the true willingness to pay, respectively.

As is obvious from the exercise, Pareto-efficient trade cannot occur unless

the true willingness to pay is at least as high as the true reservation price.

In that case, the gains from trade (willingness to pay minus reservation

price) are positive. Of course, the bids r and w do not necessarily equal

the true reservation price and the true willingness to pay, respectively. The

true figures (the types) are drawn independently from a constant density

distribution.

We model a double auction as the static Bayesian game

Γ = ({s, b} , (As, Ab) , (Ts, Tb) , τ , (u1, u2))

where

• N = {s, b} is the set of the two players, the seller s and the buyer

b,

• As = Ab = [0,∞) are the sets of bids (announced reservation price

and announced willingness to pay),

• Ts = Tb = [0, 1] are the type sets (true reservation price and true

willingness to pay),

• τ is the the probability distribution on T defined as in the first-price

auction, and
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• the payoff functions are defined by

us (a, ts) =

)
0, as > ab,
ab+as
2 − ts, as ≤ ab,

and

ub (a, tb) =

)
0, as > ab,

tb − ab+as
2 , as ≤ ab.

Thus, the utility is zero if the announced reservation price is higher

than the announced willingness to pay. Otherwise, the seller ob-

tains the rent “price minus true reservation price” and the buyer

the rent “true willingness to pay minus price”.

7.2. Equilibrium in linear strategies. As in the analysis of the first-

price auction, we look out for linear strategies r and w for the seller and the

buyer, respectively, given by

r : Ts → As, ts → cs + dsts (ds > 0) and

w : Tb → Ab, tb → cb + dbtb (db > 0).

Given the buyers strategy w, the seller’s announced reservation price as
leads to trade if as < w (tb) holds, i.e., if the reservation price is below the

announced willingness to pay of buyer b with true willingness to pay tb.

Since as < w (tb) is equivalent to as < cb + dbtb or tb >
as−cb
db

, the seller’s

announced reservation price determines the probability for trade,

τ ({tb ∈ [0, 1] : as < w (tb)})
= τ ({tb ∈ [0, 1] : as < cb + dbtb})

= τ

�)
tb ∈ [0, 1] : tb >

as − cb
db

5�

= 1− as − cb
db

.

Note

0 ≤ 1− as − cb
db

≤ 1

⇔ cb ≤ as ≤ cb + db

so that τ ({tb ∈ [0, 1] : as < w (tb)}) is the probability for cb ≤ as ≤ cb + db.

While the average tb type is 1+0
2 = 1

2 , the expected tb type conditional

on tb >
as−cb
db

is larger:

E

�
tb : tb >

as − cb
db

�
=

1+ as−cb
db

2
=

1

2

as − cb
db

+
1

2
≥ 1

2
.
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We use these equations to derive the seller’s best bid (announced reservation

price):

r∗ (ts) ∈ arg max
as∈As



(as − ts) τ ({tb ∈ [0, 1] : as = w (tb)})� �� �

probability that the seller’s bid
equals the buyer’s bid

+

+

�
ab + as

2
− ts

�
τ ({tb ∈ [0, 1] : as < w (tb)})� �� �

probability that the seller’s bid
is smaller than the buyer’s bid




= arg max
as∈As

�
ab + as

2
− ts

�
τ ({tb ∈ [0, 1] : as < w (tb)})

= arg max
as∈As



cb + dbE

�
tb : tb >

as−cb
db

�
+ as

2
− ts



�
1− as − cb

db

�

= arg max
as∈As



cb + db

1+
as−cb
db

2 + as

2
− ts



�
1− as − cb

db

�

=
1

3
(cb + db) +

2

3
ts

Thus, if we assume that the buyer’s best bid is a linear strategy, the seller’s

best bid turns out to be a linear strategy, too. In a similar fashion, we find

τ ({ts ∈ [0, 1] : r (ts) < ab})
= τ ({ts ∈ [0, 1] : cs + dsts < ab})

= τ

�)
ts ∈ [0, 1] : ts <

ab − cs
ds

5�

=
ab − cs
ds

and the buyer’s best bid (announced willingness to pay)

w∗ (tb) ∈ arg max
ab∈Ab

�
tb −

ab + as
2

�
τ ({ts ∈ [0, 1] : r (ts) < ab})

= arg max
ab∈Ab


tb −

ab + cs + dsE
�
ts : ts <

ab−cs
ds

�

2


 ab − cs

ds

= arg max
ab∈Ab

0
tb −

ab + cs + ds
ab−cs
2ds

2

1
ab − cs
ds

=
1

3
cs +

2

3
tb.
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Thus, the seller uses the linear strategy

r∗ (ts) =
1

3
(cb + db) +

2

3
ts

= cs + dsts

while the buyer’s linear strategy is

w∗ (tb) =
1

3
cs +

2

3
tb

= cb + dbtb.

Hence, we have

r∗ (ts) =
1

3

�
1

3
cs +

2

3

�
+

2

3
ts

=
1

9
cs +

2

9
+

2

3
ts = cs +

2

3
ts

=
1

4
+

2

3
ts

and

w∗ (tb) =
1

3
cs +

2

3
tb

=
1

12
+

2

3
tb

We have found linear equilibrium strategies. It cannot be excluded that

non-linear equilibrium strategies also exist.

E������� XVII.9. Do players ever announce their true reservation price

or their true willingness to pay, respectively?

The seller announces a reservation price above his true reservation price

in case of r∗ (ts) = 1
4 +

2
3ts > ts which is equivalent to ts <

3
4 . Sellers with

reservation prices above 3
4 understate their reservation price. Note that

this does not contradict optimality. The probability of announcing the true

reservation price is zero because this happens for the type ts =
3
4 , only. The

buyer announces his true willingness to pay in case of tb =
1
4 , only.

7.3. Inefficient trade. It may well happen that the strategies derived

in the previous section preclude trade although trade would be mutually

beneficial. This unfortunate event is characterized by

ts < tb (willingness to pay greater than reservation price) and

r∗ (ts) > w∗ (tb) (no trade in equilibrium).

Since 1
4 + 2

3 ts >
1
12 + 2

3 tb is equivalent to ts +
1
4 > tb, Pareto inefficiency

results in case of

ts < tb < ts +
1

4
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and with probability

1(

0




ts+
1
4(

ts

dtb


 dts =

1(

0



min{ts+ 1

4
,1}(

ts

dtb


 dts

=

3
4(

0




ts+
1
4(

ts

dtb


 dts +

1(

3
4




1(

ts

dtb


dts

=

3
4(

0

1

4
dts +

1(

3
4

(1− ts)dts

=
1

4

�
3

4
− 0

�
+

�
ts −

1

2
t2s

�����
1

3
4

=
3

12
+

�
1− 1

2

�
−
�
3

4
− 1

2

9

16

�

=
9

32

Myerson & Satterthwaite (1983) show that this negative result is not

only exemplary but hints at a very general result. In case of two-sided

uncertainty we cannot always expect trade if it is efficient. Thus, the link

between bargaining theory and the Pareto principle is not as close as the

title of the previous part of the book might suggest.

E������� XVII.10. Show that in our model, we cannot have “too much”

trade, i.e., it is not possible that trade occurs while the true reservation price

is above the true willingness to pay.



9. SOLUTIONS 445

8. Topics

The main topics in this chapter are

• Bayesian games

• cost uncertainty

• mixed strategies and purification

• correlated equilibrium

• first-price auction

• double auction

9. Solutions

Exercise XVII.1

τ (t2 = high) is the a priori probability for player 2 entertaining a high

willingness to pay. It is equal to 1
3 +

1
9 =

4
9 . Player 1’s belief for this event is

τ1 (t2 = high) = τ (t2 = high |t1 = high) =
τ (high, high)

τ (t1 = high)
=

1
3
2
3

=
1

2
.

Exercise XVII.2

The ex-ante probabilities for c2 = 20, c1 = 15 and c1 = 25 are

τ (20) : = τ (15, 20) + τ (25, 20) =
1

2
+

1

2
= 1,

τ (15) : = τ (15, 20) =
1

2
, and

τ (25) : = τ (25, 20) =
1

2
.

The ex-post probability for c2 = 20, i.e., player 1’s belief, is

τ1 (20) =
τ (t1, 20)

τ (t1)
=

1
2
1
2

= 1 = τ (20) .

We also find the equality of τ2 (15) and τ (15):

τ2 (15) =
τ (15, 20)

τ (20)
=

1
2

1
=

1

2
= τ (15) .

Exercise XVII.3

The game has three equilibria, two of which are in pure strategies:

(theatre, theatre) and (football, football). The mixed-strategy equilibrium

is
��
2
3 ,
1
3

�
,
�
1
3 ,
2
3

��
; she chooses theatre with probability 2

3 and he with prob-

ability 1
3 .

Exercise XVII.4

Peter’s strategies are functions sP : [0, x] → {theatre, football}. Thus,

his probability for choosing theatre (from Cathy’s point of view) is

τx ({tP ∈ [0, x] : sP (tP ) = theatre}) .
Exercise XVII.5
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By

1 · θC + 0 · (1− θC)� �� �
Peter’s expected payoff

for choosing theatre

≥ 0 · θC + (2 + tP ) · (1− θC)� �� �
Peter’s expected payoff

for choosing football

we obtain Peter’s strategy sP given by

tP →
6

theatre, tP ≤ 3θC−2
1−θC

,

football, tP > 3θC−2
1−θC

.

Exercise XVII.6

We obtain x− 3t̄P = t̄C t̄P = x− 3t̄C and hence the desired equality.

Exercise XVII.7

In case of non-strategic bidding, the first-price auction yields the price

max (t1, t2) for given t1 and t2 and hence the expected payoff

(

t1∈[0,1]

0(

t2∈[0,1]
max (t1, t2) dt2

1
dt1

=

(

t1∈[0,1]

�( t1

0
max (t1, t2)dt2 +

( 1

t1

max (t1, t2) dt2

�
dt1

(splitting the t2 integral)

=

(

t1∈[0,1]

�
t1

( t1

0
dt2 +

( 1

t1

t2dt2

�
dt1

=

(

t1∈[0,1]

0
t21 +

1

2
t22

����
1

t1

1
dt1

=

(

t1∈[0,1]

�
t21 +

1

2
− 1

2
t21

�
dt1

=

(

t1∈[0,1]

�
1

2
t21 +

1

2

�
dt1

=

�
1

3

1

2
t31 +

1

2
t1

�����
1

0

=
1

6
+

1

2
− 0 =

2

3

Exercise XVII.8

The seller’s rent is

p− r =
r +w

2
− r =

w − r

2

) ≥ 0, r ≤ w

< 0, r > w

while the buyer’s rent is

w − p = w − r +w

2
= p− r.

Thus, the rents are equalized at a price in the middle of reservation price

and willingness to pay.
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Exercise XVII.9

In case of ts =
3
4 and tb =

1
4 , both bidders announce their true reservation

price.

Exercise XVII.10

Too much trade means

tb < ts (willingness to pay smaller than reservation price) and

r∗ (ts) < w∗ (tb) (trade in equilibrium).

Since 1
4 +

2
3ts = r∗ (ts) < w∗ (tb) = 1

12 +
2
3 tb is equivalent to ts +

1
4 < tb, we

obtain the contradiction

ts +
1

4
< tb < ts.
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10. Further exercises without solutions

P�
#$�� XVII.1.

There are two players 1 and 2. They play one of two games. In both

games, player 1 chooses from his action set A1 = {up, down} and player 2

chooses from his action set A2 = {left, right}. Assume L > M > 1.They

play the game GA with probability p > 1
2 and the game GB with probability

1− p.

GA left right

up M , M 1 , −L

down −L , 1 0 , 0

GB left right

up 0 , 0 1 , −L

down −L , 1 M , M

(a) Assume that both players are informed about which game they play

before they choose their actions, respectively. Formulate this game

as a static Bayesian game!

(b*) Assume that player 1 learns whether they play GA or GB while

player 2 does not. Formulate this game as a static Bayesian game

and determine all of its equilibria!

P�
#$�� XVII.2.

Ernie and Bert want to spend some time together. There are two options:

They can go to a concert or to a soccer match. Each player is unaware

whether the other prefers music or soccer. A player who prefers to go to the

concert has the following utility function:

uc(c, c) = 2,

uc(m,m) = 1,

uc(c,m) = uc(s,m) = 0,

in which, e.g., (c,m) denotes the event that Ernie goes to the concert and

Bert to the (soccer) match. Conversely, a player who prefers the soccer

match over the concert has the following utility function:
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um(m,m) = 2,

um(c, c) = 1,

um(c,m) = um(m, c) = 0.

Each player thinks that the other player prefers to go the concert with

probability p = 3
4 . Formulate this situation as a static Bayesian game and

determine all of its equilibria! What is the probability for both listening to

music or for both watching the soccer match?

P�
#$�� XVII.3.

Consider the battle of the sexes

Football Theatre

Football 2 , 1 0 , 0

Theatre 0 , 0 1 , 2

and let the players throw a dice according to which both choose football if 1

through 3 pips show up and both choose theatre if 4 through 6 pips appear.

Can you give a game-theoretic interpretation of what they do?





CHAPTER XVIII

The revelation principle and mechanism design

This chapter is a follow-up on the previous one. There, we were con-

cerned with static Bayesian games. In these games, players learn their own

types and they choose actions in dependence of their types. The main

focus in this chapter is on mechanism design. By mechanism design, we

understand the problem of setting up a game so as to benefit the principal.

Normally, the principal is not as well informed as the agents who possess

some private information. For example, in the previous chapter, we con-

sider the question of which auction, first-price or second-price, yields the

highest expected payoff. In that example, the auctioneer is the principal.

In other examples, one tries to find a Pareto-efficient solution to some prob-

lem; then, a benevolent dictator is the principal. The problem of finding

the best mechanism is made complicated by the fact that players do not, in

general, “tell the truth”. For example, the bidders in the first-price auction

or in the double auction do not announce their true reservation price or their

true willingness to pay. Here, the revelation principle allows a considerable

simplification. According to this principle, we do not lose anything by re-

stricting attention to mechanisms where players “tell the truth” or “reveal

their own type”. Thus, the revelation principle helps in finding the best

mechanism by restricting the set of candidate mechanisms.

1. Introduction

In 2007, the Sveriges Riksbank Prize in Economic Sciences in Memory

of Alfred Nobel 2007 was awarded to the US economists Leonid Hurwicz

(University of Minnesota), Eric S. Maskin (Institute for Advanced Study,

Princeton), and Roger B. Myerson (University of Chicago)

for having laid the foundations of mechanism design theory.

According to the press release by the Royal Swedish Academy of Sciences ,

Adam Smith’s classical metaphor of the invisible hand refers

to how the market, under ideal conditions, ensures an effi-

cient allocation of scarce resources. But in practice condi-

tions are usually not ideal; for example, competition is not

completely free, consumers are not perfectly informed and

451
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privately desirable production and consumption may gener-

ate social costs and benefits. Furthermore, many transac-

tions do not take place in open markets but within firms, in

bargaining between individuals or interest groups and under

a host of other institutional arrangements. How well do dif-

ferent such institutions, or allocation mechanisms, perform?

What is the optimal mechanism to reach a certain goal, such

as social welfare or private profit? Is government regulation

called for, and if so, how is it best designed?

These questions are difficult, particularly since informa-

tion about individual preferences and available production

technologies is usually dispersed among many actors who

may use their private information to further their own inter-

ests. Mechanism design theory, initiated by Leonid Hurwicz

and further developed by Eric Maskin and Roger Myerson,

has greatly enhanced our understanding of the properties of

optimal allocation mechanisms in such situations, account-

ing for individuals’ incentives and private information. The

theory allows us to distinguish situations in which markets

work well from those in which they do not. It has helped

economists identify efficient trading mechanisms, regulation

schemes and voting procedures. Today, mechanism design

theory plays a central role in many areas of economics and

parts of political science.

A cute example of a mechanism can be seen at the house Homburgstr. 55

in 37619 Bodenwerder (Germany) where the author found the following

sentence:

Wünsch mir ein jeder, was er will — Gott gebe ihm dreimal

so viel. Anno 1726

Thus, everybody will wish the house owner well, if only to obtain the three-

fold amount.

2. Revisiting the first-price auction

As an example, we revisit the first-price auction considered in chapter

XVII (pp. 6). The first-price auction is a mechanism which allots the object

to the highest bidder who has to pay according to his announced willingness

to pay. Therefore, every bidder i, i ∈ {1, 2} , acts strategically because his

bid does not only influence the chance of getting the object but also the price

he has to pay in case of winning the auction. On learning his true willingness

to pay t1, player 1 finds it profitable to announce t1/2 if he assumes that

player 2 will also announce half his true willingness to pay.
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Thus, we found the equilibrium strategy combination

s∗ = (s∗1, s
∗
2)

defined by

s∗1 : [0, 1] → R+, t1 → s∗1 (t1) =
t1
2

and

s∗2 : [0, 1] → R+, t2 → s∗2 (t2) =
t2
2
.

In that combination, every player uses the half-bid strategy.

Now consider another mechanism for the problem of allocating the ob-

ject. In this new mechanism, the object also goes to the highest bidder but

the payment is set at half the announced willingness to pay. Let us call

this mechanism the half-price auction. This auction is constructed from the

first-price auction and the half-bid strategies in the obvious manner:

• The half-bid strategies have every bidder halve his type, ai =
ti
2 .

Under the first-price auction, the successful bidder pays ai =
ti
2 .

• The half-price auction tries to achieve the same outcome for players

who tell the truth. Thus, the factor 1
2 (stemming from the play-

ers’ strategic behavior) is brought into the half-price auction by

requiring that the successful bidder pays ai
2 , only.

Assume, now, that both players truthfully announce their respective will-

ingness to pay. Expressed formally, player i’s strategy is

idi : [0, 1] → [0, 1]

ti → idi (ti) = ti.

Then, the first-price auction and the half-price auction lead to the same

outcome:

• Both give the object to the bidder with the highest willingness to

pay. This follows from

t1 ≤ t2� �� �
comparison of the player’s

truthful announcements

under the half-price auction

⇔ t1
2

≤ t2
2� �� �
.

comparison of the player’s

strategic announcements

under the first-price auction

• The successful bidder i pays ti/2. In the first-price auction, he un-

derstates his willingness to pay and pays this announced willingness

to pay, ti/2. In the half-price auction, he truthfully announces his

willingness to pay, but the price set by the mechanism is half this

value, again ti/2.

We now want to show that (id1, id2) is a Bayesian equilibrium of the half-

price auction. Of course, the very fact that the strategy combination id

leads to the same outcome in the half-price auction as the equilibrium (!)
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strategy combination s∗ in the first-price auction, is not sufficient proof.

This is clear from price versus quantity competition. For example, if firms

1 and 2 choose the quantities that result from Bertrand competition, these

quantities do, in general, not constitute a Cournot Nash equilibrium.

We now proceed to the proof. The main input is the fact that s∗ (which

requires each bidder to halve his willingness to pay) is an equilibrium of the

first-price auction. If s1 = id1 were not the best response to s2 = id2, we

would have a type t1 and an action (announced type) a1 �= t1 such that

player 1’s payoff under the untruthful bid a1 �= t1 is higher than his payoff

under the truthful bid:

�
t1 −

a1
2

�
τ ({t2 ∈ [0, 1] : a1 > t2})� �� �

probability that player 1’s untruthful bid

is higher than player 2’s truthful bid
� �� �

half-price auction:

expected payoff for type t1
using action a1 �= t1

>

�
t1 −

t1
2

�
τ ({t2 ∈ [0, 1] : t1 > t2})� �� �

probability that player 1’s truthful bid

is higher than player 2’s truthful bid
� �� �

half-price auction:

expected payoff for type t1
using truthful announcement a1 = t1

We now rewrite this inequality by just dividing the inequalities in the τ

terms by 2. We then obtain an inequality for the first-price rather than the
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half-price auction:
�
t1 −

a1
2

�
τ

�)
t2 ∈ [0, 1] :

a1
2
>
t2
2

5�

� �� �
probability that player 1’s bid a1/2 �= t1/2

is higher than player 2’s half-bid
� �� �

first-price auction:

expected payoff for type t1
using action a1

2 �= t1
2

>

�
t1 −

t1
2

�
τ

�)
t2 ∈ [0, 1] :

t1
2
>
t2
2

5�

� �� �
probability that player 1’s half-bid

is higher than player 2’s half-bid
� �� �

first-price auction:

expected payoff for type t1
using action a1

2 = t1
2

This inequality is a contradiction to s∗1 being a best response to s∗2. Therefore,

our initial assumption (s1 = id1 is not the best response to s2 = id2) is false.

3. Social choice problems and mechanisms

The set up for mechanism design is somewhat complicated. Before going

into the formal definitions, we would like the reader to know where we are

heading. According to fig. 1,

• (first,) the principal designs a mechanism which defines a Bayesian

game for the players who

• (second,) learn their types and

• (third,) choose a message according to an equilibrium of that Bayes-

ian game whereupon

• (fourth,) the principal effects an outcome that

• (fifth,) leads to certain payoffs for the players.

This is the overview, now the nitty-gritty. We first introduce the concept of

a social choice problem. This is a set of feasible outcomes Z for a player set

N together with type and utility information. In the example of an auction,

Z may contain the elements

• the object goes to bidder 1 and bidder 2 pays 3 Euros to bidder 3

and 2 Euros to the principal or

• the object goes to bidder 1 who pays 3 Euros to the principal, or

• the object stays with the principal.

These outcomes cannot be judged without knowing the bidders’ types. If

bidder 2 has the highest willingness to pay among the bidders and if this
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Tt ∈ ( )( ) Zts ∈∗ζ( )ζ,M

Principal
chooses
mechanism.

Nature 
chooses the
players‘ types.

( ) Mts ∈∗

Players
choose
messages.

Players
realize
utility.

Principal
chooses
outcome.

( )( )( )ii ttsu ,∗ζ

Social choice function
implemented by the mechanism

F����� 1. Mechanism design and the social choice function

willingness to pay is higher than the seller’s (the principal’s) reservation

price, neither of the three outcomes is Pareto efficient. Thus, the description

of a social choice problem also includes types and utility functions. We let

player i’s payoff depend on an outcome z from Z and on his type ti from Ti.

Thus, we have this definition:

D�������
� XVIII.1. A tuple (N,T, τ , Z, u) is called a social choice

problem where

• N, T and τ are defined as usual,

• Z is a (feasible) outcome set, and

• u = (ui)i∈N is the tuple of utility functions ui : Z×Ti → R, i ∈ N.

Knowing the social choice problem, one can specify a “best” outcome for

each type combination t ∈ T . For example, “best” may refer to Pareto

efficiency.

D�������
� XVIII.2. Let (N,T, τ , Z, u) be a social choice problem. A

function

f : T → Z

is called a solution to this problem or a social choice function. f is called

ex-post efficient if it is impossible to improve upon f, i.e., if no (z, t) ∈ Z×T
exists such that

ui (z, ti) ≥ ui (f (t) , ti) for all i ∈ N and

ui (z, ti) > ui (f (t) , ti) for some i ∈ N .

We envision a principal who is not identical to one of the players from

N . This principal may be the auctioneer who tries to maximize his expected

payoff or a benevolent dictator on the look-out for a Pareto-efficient social

choice function. The principal is confronted with the social choice problem

and tries to design a best mechanism. He asks the n players for a message

(which may, or may not, be related to the players’ types) and executes an

outcome z ∈ Z as a function ζ of these messages. ζ is the Greek letter for

z.
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D�������
� XVIII.3. Let (N,T, τ , Z, u) be a social choice problem. A

mechanism for (N,T, τ , Z, u) is a tuple (M, ζ) where

• M = (Mi)i∈N is the tuple of message spaces and
• ζ is the mechanism function

ζ :M → Z.

Note the similarity between the social choice function f and the mechanism

function ζ. Both pick an outcome. The social choice function’s argument is a

type combination (the true characteristics of the players) and the argument

feeding into a mechanism function is a message combination. Thus, the

outcome chosen by the mechanism function does not directly depend on the

players’ types which are unknown to the principal.

The principal’s mechanism leads to a game for the players:

D�������
� XVIII.4. Let (M, ζ) be a mechanism for (N,T, τ , Z, u). The

static Bayesian game

Γ =
�
N,M, T, τ , (ui)i∈N

�

is called the message game induced by (M,ζ) (and (N,T, τ , Z, u)). In that

game, the message spaces Mi take over the role of the action spaces Ai

known from chapter XVII and ui : M × Ti → R is defined by ui (m, ti) :=
ui (ζ (m) , ti).

We (and the principal!) are interested in finding a mechanism that yields

a desired social choice function. The principal tries to achieve certain out-

comes for certain type combinations. Since he does not know the players’

types, he asks them for a message. He then takes these messages and effects

an outcome according to the mechanism function. If he is lucky, the players

of types t choose messages s (t) such that the outcome ζ (s (t)) , determined

by the mechanism function, equals the outcome f (t) that the social choice

function f would pick. In fact, we prefer to depend on equilibrium strategies

rather than on luck:

D�������
� XVIII.5. Let (M, ζ) be a mechanism for (N,T, τ , Z, u) and

Γ =
�
N,M,T, τ , (ui)i∈N

�
the corresponding message game. We say that

(M, ζ) implements the social choice function f,

• through a dominant-strategy equilibrium if a dominant-strategy equi-
librium s∗ exists such that f (t) = ζ (s∗ (t)) for all t ∈ T or

• through a Bayesian equilibrium if a Bayesian equilibrium s∗ exists
such that f (t) = ζ (s∗ (t)) for all t ∈ T.

In a sense, the mechanism defined by the principal is the first step of a two-

stage game. Note, however, that we did not specify a strategy set for the

principal. Such a set would contain all the message tuples from which the

principal could choose plus all the functions from all these message tuples to

the outcome set Z. Things get worse for the agents. In this two-set game,
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player i’s strategy is a very complicated object. For every message set Mi

plus mechanism function chosen by the principal, player i’s strategy specifies

the function Ti →Mi. Thus, we better stay with the informal description of

the two-stage setup.

4. The revelation principle

As we have seen in the previous section, mechanisms can use any message

sets. Thanks to the revelation principle, we can restrict attention to message

sets Mi = Ti. Furthermore, we can even restrict attention to cases where

players “tell the truth”.

D�������
� XVIII.6. A mechanism (M,ζ) is called direct if M = T

holds. A social choice function f is truthfully implementable by a direct

mechanism (T, ζ) if s∗ = id is a dominant-strategy equilibrium or a Bayesian

equilibrium and f (t) = ζ (id (t)) = ζ (t) holds for all t ∈ T .

From the previous chapter, we know the recommendation game (p. 433).

In that game, we also have Ai = Ti for all the players. However, the recom-

mendation game is a very different game from the message game induced by

a direct mechanism:

• A recommendation game builds on a strategic game with action sets

Ai, i ∈ N. By Ti := Ai, the types are the recommended actions.

• In a message game, a principal asks for information about the play-

ers’ types so that the action sets equal the type sets, (Mi =)Ai :=

Ti.

We now consider any mechanism (M, ζ) and a strategy combination s∗ for

the corresponding message game. s∗ can (but need not) be an equilibrium.

With the help of s∗ we can transform (M, ζ) into a direct mechanism.

D�������
� XVIII.7. Let (M, ζ) be a mechanism for (N,T, τ , Z, u) and

let s∗ be a strategy combination of the corresponding message game Γ =�
N,M,T, τ , (ui)i∈N

�
. Then,

�
T, ζs

∗

�
defined by

ζs
∗

= ζ ◦ s∗ :
T → Z,

t → ζs
∗

(t) = ζ (s∗ (t))

is the direct mechanism derived from (M,ζ) by s∗.

In the introductory section, we present a suitable example. There, the

mechanism

(T , first-price auction)

is used to derive the mechanism

(T, half-price auction)
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T Z

∗sζ

M

∗s ζ

( ) ( )( )tstt

ZTs
s

s

∗

∗

=
→=

∗

ζζ
ζζ

a

o :*

F����� 2. Deriving a direct mechanism

by the half-bid strategy combination s∗. Fig. 2 depicts ζs
∗

as the composi-

tion ζ ◦ s∗ of functions ζ and s∗ where

• first, s∗ is applied to a type combination t ∈ T to yield a message

combination s∗ (t) ∈M and

• second, ζ is applied to that message combination so that we obtain

an outcome ζ (s∗ (t)) ∈ Z.

We now turn to the celebrated revelation principle. We give a proof for

implementation via dominant strategies (theorem XVIII.1) and via Bayesian

equilibria (theorem XVIII.2).

T��
��� XVIII.1 (Revelation principle, dominant-strategy equilibrium).

Let (M,ζ) be a mechanism for (N,T, τ , Z, u) and s∗ be a dominant-strategy
equilibrium of the corresponding message game Γ =

�
N,M, T, τ , (ui)i∈N

�
.

Let ζs
∗

, defined by ζs
∗

(t) := ζ (s∗ (t)) , be the social choice function im-

plemented by (M,ζ) and s∗. Then, the direct mechanism
�
T, ζs

∗

�
(for

�
N,T, T, τ , (ui)i∈N

�
) derived from (M,ζ) by s∗ has the dominant-strategy

equilibrium id = (id1, ..., idn) and ζ
s∗ is implemented by

�
T, ζs

∗

�
as well as

by (M,ζ).

P�

�. We need to show that idi : Ti → Ti is a best strategy for player

i ∈ N whatever strategies the other players choose. Assume player i ∈ N

and his true type ti ∈ Ti. Let mi be any announced type from Ti and m−i be

any announced type combination from T−i. Under the mechanism
�
T, ζs

∗

�
,
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we have

ui


ζs

∗


 mi����

∈Ti

,m−i����
∈T−i


 , ti




= ui (ζ (s
∗ (mi,m−i)) , ti) (definition of ζs

∗

)

= ui


ζ


s∗i (mi)� �� �

∈Mi

, s∗−i (m−i)� �� �
∈M−i


 , ti




≤ ui
�
ζ
�
s∗i (ti) , s

∗
−i (m−i)

�
, ti
�

(s∗i is a dominant strategy in Γ)

= ui (ζ (s
∗ (ti,m−i)) , ti)

= ui
�
ζs

∗

(ti,m−i) , ti
�

(definition of ζs
∗

)

= ui


ζs

∗


idi (ti)� �� �

∈Ti

,m−i����
∈T−i


 , ti




for all t−i ∈ T−i and hence

�

t−i∈T−i
τ i (t−i)ui


ζs

∗


 mi����

∈Ti

,m−i����
∈T−i


 , ti




≤
�

t−i∈T−i
τ i (t−i)ui


ζs

∗


idi (ti)� �� �

∈Ti

,m−i����
∈T−i


 , ti


 .

�

T��
��� XVIII.2 (Revelation principle, Bayesian equilibrium). Let

(M, ζ) be a mechanism for (N,T, τ , Z, u) and let s∗ be a Bayesian equilibrium
of the corresponding message game Γ =

�
N,M,T, τ , (ui)i∈N

�
. Let ζs

∗

, de-

fined by ζs
∗

:= ζ (s∗ (t)) , be the social choice function implemented by (M, ζ)

and s∗. Then, the direct mechanism
�
T, ζs

∗

�
(for

�
N,T, T, τ , (ui)i∈N

�
)

derived from (M, ζ) by s∗ has the equilibrium strategy combination id =

(id1, ..., idn) and ζ
s∗ is implemented by

�
T, ζs

∗

�
as well as by (M, ζ).

P�

�. We need to show that idi : Ti → Ti is a best reply to id−i ∈ S−i

in
�
N,T, T, τ , (ui)i∈N

�
for every player i ∈ N. We use the ex-post Bayesian

equilibrium. Assume player i ∈ N and his true type ti ∈ Ti. Let mi be any
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announced type from Ti. Under the mechanism
�
T, ζs

∗

�
, we have

ui


ζ

s∗


 mi����

∈Ti

, (idj (tj))j∈N\{i}� �� �
∈T−i


 , ti




= ui
�
ζs

∗

(mi, t−i) , ti
�

(definition of idj : Tj → Tj, j �= i)

= ui (ζ (s
∗ (mi, t−i)) , ti) (definition of ζs

∗

)

= ui


ζ


s∗i (mi)� �� �

∈Mi

, s∗−i (t−i)� �� �
∈M−i


 , ti




≤ ui
�
ζ
�
s∗i (ti) , s

∗
−i (t−i)

�
, ti
�

(s∗ is an equilibrium in Γ)

= ui (ζ (s
∗ (ti, t−i)) , ti)

= ui
�
ζs

∗

(ti, t−i) , ti
�

(definition of ζs
∗

)

= ui


ζ

s∗


idi (ti)� �� �

∈Ti

, (idj (tj))j∈N\{i}� �� �
∈T−i


 , ti




for all t−i ∈ T−i and hence
�

t−i∈T−i
τ i (t−i)ui

�
ζs

∗

�
mi, (idj (tj))j∈N\{i}

�
, ti
�

≤
�

t−i∈T−i
τ i (t−i)ui

�
ζs

∗

�
idi (ti) , (idj (tj))j∈N\{i}

�
, ti
�
.

�

Thus, in terms of implementable social choice functions, it is sufficient

to look for direct mechanisms and for truthful equilibria s∗ = id of the

corresponding message game.

Let us try to explain these results in a more informal fashion. Imagine

a mechanism (M, ζ) and an equilibrium (Bayesian equilibrium or dominant-

strategy equilibriuim) s∗ for the corresponding Bayesian game. Now, we

consider the derived mechanism
�
T, ζs

∗

�
= (T, ζ ◦ s∗). In a sense, it relieves

the players from the burden to act strategically. In fact, if a player i ∈ N

truthfully reveals his type ti, the derived mechanism transforms this type

into the message s∗i (ti) ∈ Mi, i.e., the very message the player intends to

send under the original mechanism. If, now, the other players truthfully re-

veal their types (use the strategy combination id−i), the derived mechanism

generates the message combination s∗−i (t−i) ∈M−i. For the original mecha-

nism (M, ζ) , player i’s best reply to this message combination is s∗i (ti) ∈Mi.

As noted above, this message is generated by
�
T, ζs

∗

�
if i tells the truth,

too.
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5. The Clarke-Groves mechanism

5.1. Public-goods problems and functions. Imagine the provision

of a public good, i.e., a good with non-rivalry in consumption. We assume

players i ∈ N with types ti ∈ R which denote the willingness to pay for

the public good in question. (We allow for ti < 0.) The cost of this good

is denoted by C and we assume that every player contributes C
n to the

cost. The public-good problem is concerned with whether the public good in

question should be provided (b = 1) or not (b = 0). The outcome comprises

b and also a tax zi ∈ R to be paid by every consumer. This tax is called

the Clarke-Groves tax and it is used to induce player i to reveal his true

willingness to pay, mi = ti.

D�������
� XVIII.8. The social choice problem (N,T, τ , Z, u) is called

a public-good problem where

• N is the set of consumers of the public good,

• T is defined by Ti = R for all i ∈ N,

• τ is a probability distribution on T

• Z = {0, 1}×Rn is the outcome set, and

• u = (ui)i∈N is the tuple of utility functions ui : Z×Ti → R, i ∈ N,

given by (b, z1, ..., zn) →
)
ti − C

n − zi, b = 1

−zi, b = 0

The public good should be provided if and only if the aggregate will-

ingness to pay is not smaller than the cost of providing the good. Thus,

efficiency has nothing to do with who contributes how much to the cost C.

D�������
� XVIII.9. Let (N,T, τ , Z, u) be a public-good problem.

f : T → Z

is called a public-good (social choice) function if

�

i∈N
ti ≥ C ⇔ b = 1

holds.

5.2. The definition of the Clarke-Groves mechanism. We now

present the Clarke-Groves mechanism. It is a direct mechanism that induces

truth-telling. The general idea is this: A player, whose willingness to pay

changes the decision of the other players, creates an externality for which

he has to pay a tax. A player changes the decision of the others if

• the other players would have opted for the public good (which is a

translation for
�

j∈N\{i}
mj ≥ n−1

n
C) but the good is not provided

because of player i (
�

j∈N
mj < C) or
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• the other players are against the public good (
�

j∈N\{i}
mj <

n−1
n C) but the public good is provided due to player i (

�
j∈N

mj ≥
C).

In both cases, player i is to “blame” for his announced willingness to pay.

He has to pay for the negative externality that his announcement creates.

Note, however, that the above inequalities use n−1
n C if one player is absent.

Of course, without player i, the other players still have to pay C.

D�������
� XVIII.10 (Clarke-Groves mechanism). Let T and Z be de-

fined as above. The direct mechanism (T, ζ) with tuple of message sets

M := T is called the Clarke-Groves mechanism if ζ : M → Z is defined

by

ζ (m) = (b (m) , ζ1 (m) , ..., ζn (m))

with

b (m) =





1,
�

i∈N
mi ≥ C

0,
�

i∈N
mi < C

and, for every player i ∈ N ,

ζi (m) =





n−1
n C −

�

j∈N\{i}
mj ,

�

j∈N
mj ≥ C and

�

j∈N\{i}
mj <

n−1
n C

�

j∈N\{i}
mj − n−1

n
C,

�

j∈N
mj < C and

�

j∈N\{i}
mj ≥ n−1

n
C

0, otherwise

Note that the additional payment as defined by ζi is always non-negative.

If the other players prefer not to have the public good (and pay for it), the

damage they suffer is n−1
n C −

�
j∈N\{i}

mj , their share of the cost burden

minus their (announced) willingness to pay.

5.3. Lemma and proof. The Clarke-Groves mechanism leads to a

static Bayesian game for the consumers of the public good. By definition,

it is clear that a public-good function is realized. Also, every player i ∈ N

can do no better than choose mi = ti in this Bayesian game, irrespective of

the messages m−i sent by the other players.

L���� XVIII.1 (Clarke-Groves mechanism). Let (T, ζ) be the Clarke-

Groves mechanism. s∗ = id is a dominant-strategy equilibrium in the mes-

sage game induced by that mechanism.

P�

�. Assume the message tuple m−i ∈ T−i. We need to consider four

cases:

(1)
�

j∈N\{i}
mj+ti ≥ C and

�
j∈N\{i}

mj ≥ n−1
n C (a truthful player

i does not change the other players’ decision in favor of the public

good)
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(2)
�

j∈N\{i}
mj+ti ≥ C and

�
j∈N\{i}

mj <
n−1
n
C (a truthful player

i is responsible for the provision)

(3)
�

j∈N\{i}
mj+ti < C and

�
j∈N\{i}

mj ≥ n−1
n C (the public good

is not provided and a truthful player i is to blame)

(4)
�

j∈N\{i}
mj+ti < C and

�
j∈N\{i}

mj <
n−1
n C (a truthful player

i does not change the other players’ decision against the public

good)

Let us begin with the first case and consider player 1. The truthful

announcement of his type leads to the provision of the public good and

z1 = 0. His utility is

u1 (1, 0, ...) = t1 −
C

n
.

Player 1 has no incentive to overstate his willingness to pay (that will not

change anything). Indeed, a utility change occurs only if player 1 understates

his willingness to pay so that the public good is not provided. Then, player

1 has to pay
�

j∈N\{1}
mj − n−1

n C (third case). Player 1 is harmed by this

understatement:

u1 (1, 0, ...) = t1 −
C

n

≥


C −

�

j∈N\{1}
mj


− C

n
(case 1)

= −


 �

j∈N\{1}
mj −

n− 1

n
C




= u1


0,

�

j∈N\{1}
mj −

n− 1

n
C, ...




We now turn to the second case where player 1’s enthusiasm leads to the

provision of the public good and externality payments n−1
n C−

�
j∈N\{i}

mj.

Overstating the willingness to pay brings no change. Understatement may
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abolish the externality payment but will reduce the utility by

u1


1,

n− 1

n
C −

�

j∈N\{1}
mj, ...




= t1 −
C

n
−


n− 1

n
C −

�

j∈N\{1}
mj




≥


C −

�

j∈N\{1}
mj


− C

n
−


n− 1

n
C −

�

j∈N\{1}
mj


 (case 2)

= 0

= u1 (0, 0, ...)

The cases 3 and 4 can be treated similarly. �

5.4. Discussion. The Clarke-Groves mechanism suffers from the prob-

lem that it cannot guarantee a balanced budget. In the way we presented

the lemma, there will be a budget surplus. If this surplus is divided among

the players or used for causes that the players take an interest in, the lemma

does not hold any more.

The reader will note a similarity to the second-price auction. The an-

nounced willingness to pay determines

• who obtains the object in the second-price auction and

• whether the public good will be provided according to the Clarke-

Groves mechanism

but has no effect

• on how much the successful bidder pays for the object (second-price

auction) and

• on the size of the externality payment (Clarke-Groves mechanism).
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6. Topics and literature

The main topics in this chapter are

• mechanism design

• revelation principle

• Clarke-Groves mechanism

• truth telling

• social choice problem

• social choice function

We recommend the textbook by Baron (1989) who looks at regulatory mech-

anisms, i.e., he provides an application of mechanism design theory to in-

dustrial organization.
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7. Further exercises without solutions

P�
#$�� XVIII.1.

Consider the third case in the proof of lemma XVIII.1 where the inequal-

ities
�

j∈N\{1}
mj + t1 < C and

�
j∈N\{1}

mj ≥ n−1
n
C hold (the public

good is not provided and a truthful player 1 is to blame). Show that player

1 cannot do any better than tell the truth.

P�
#$�� XVIII.2.

There are n individuals having the valuation vi = i and a common good

with price p is supposed to be voted on by the help of the Clarke-Groves

mechanism. What might be the outcome? Hint:
�k

i=1 vi =
k(k+1)
2 .

P�
#$�� XVIII.3.

Assume the utilities on the set of outcomes Z to be strictly different. Ex-

plain, why a social choice rule that always chooses the second best outcome

according to some fixed player i’s utility function cannot be implemented

by a dominant strategy equilibriuim!

P�
#$�� XVIII.4.

We say a choice rule f is monotonic if whenever z ∈ f (t) but z �∈ f (t′) there

must be a y ∈ Z such that ui (z, ti) ≥ ui (y, ti) and ui (z, t′i) < ui (y, t′i). In

words, if z is not choosen under t′ anymore, there has to be a player that

ranks z lower than y under t′ but at least as good as y under t.

(a) Is the choice rule that selects weakly pareto efficient outcomes

f (t) = {z ∈ Z | there is no y ∈ Z such that ui (y, ti) > ui (z, ti) for all i}
monotonic?

We say a choice rule f has no veto power if whenever ui (z, ti) ≥ u (y, ti) for

at least |N | − 1 players and all y ∈ Z, it must be that z ∈ f (t).

(b) Does the choice rule that selects weakly pareto efficient outcomes

have veto power?

(c) Show: If f can be Nash-implemented, f must be monotonic.
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CHAPTER XIX

General equilibrium theory I: the main results

1. Introduction to General Equilibrium Theory

1.1. Introductory remarks. Allocation of goods takes place in two

different modes—the first of which being person-to-person. For example,

voluntary exchange in a peaceful economy is person-to-person, making all

agents better off (see pp. 364). Person-to-person does not necessarily imply

face-to-face. Indeed, Abu Abdullah Muhammad Ibn Battuta, a fourteenth

century prolific traveler and geographer, describes the silent trade that took

place along the Volga (see Bowles 2004, p. 233):

“Each traveler ... leaves the goods he has brought ... and they

retire to their camping ground. Next day they go back to ...

their goods and find opposite them skins of sable, miniver,

and ermine. If the merchant is satisfied with the exchange he

takes them, but if not he leaves them. The inhabitants then

add more skins, but sometimes they take away their goods

and leave the merchant’s. This is their method of commerce.

Those who go there do not know whom they are trading with

... ”

The second mode is impersonal trading (not just anonymous, silent trading),

expounded by General Equilibrium Theory (GET). Here, agents observe

prices and choose their bundles accordingly. GET envisions a market system

with perfect competition. This means that all agents (households and firms)

are price takers. The aim is to find prices such that

• all actors behave in a utility, or profit, maximizing way and

• the demand and supply schedules can be fulfilled simultaneously.

In that case, we have found a Walras equilibrium. Note that the price-

finding process is not addressed in GET. Walras suggests that an auctioneer

might try to inch towards an equilibrium price vector. This is the so-called

tâtonnement. A careful introduction into the General Equilibrium Theory

is presented by Hildenbrandt & Kirman (1988).

Finding equilibrium prices for the whole economy is an ambitious un-

dertaking. We need an elaborated mathematical mechanism and a list of

restrictive assumptions:

• The goods are private and there are no external effects.

• The individuals interact via market transactions only.

471
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• The individuals take prices as given.

• There are no transaction costs.

• The goods are homogeneous but there can be many goods.

• The preferences are monotonic and convex (and, of course, transi-

tive, reflexive, and symmetric).

1.2. Nobel prizes. The Sveriges Riksbank Prize in Economic Sciences

in Memory of Alfred Nobel was awarded for work on General Equilibrium

Theory three times:

• in 1972, to the British economist John R Hicks (Oxford University)

and to the US economist Kenneth Arrow (Harvard University)

for their pioneering contributions

to general economic equilibrium theory and welfare theory,

• in 1982, to the French-born US economist Gerard Debreu (Univer-

sity of California, Berkeley)

for having incorporated new analytical methods into economic theory

and for his rigorous reformulation of the theory of general equilibrium

and

• in 1988, to the French economist Maurice Allais (Ecole Nationale

Supérieure des Mines de Paris, France)

for his pioneering contributions to the theory of markets

and efficient utilization of resources.

With respect to Debreu’s prize, the press release by the Royal Swedish Acad-

emy of Sciences reads

This year’s prize is awarded for penetrating basic research

work in one of the most central fields of economic science,

the theory of general equilibrium.

In a decentralized market system, individual consumers

and firms make decisions on the purchase and sale of goods

and services solely on the basis of self-interest. Adam Smith

had already raised the question of how these decisions, appar-

ently independent of one another, are coordinated, and result

in a situation whereby sellers usually find outlets for their

planned production, while consumers realize their planned

consumption. Smith’s answer was that, given price and wage

flexibility, price systems automatically bring about the de-

sired coordination of individual plans. Towards the end of



1. INTRODUCTION TO GENERAL EQUILIBRIUM THEORY 473

the 19th century, Léon Walras formulated this idea in math-

ematical terms as a system of equations to represent con-

sumers’ demand for goods and services, producers’ supply of

these same goods and services and their demand for factors of

production, and equality between supply and demand, i.e.,

equilibrium in each market. But it was not until long af-

terward that this system of equations was scrutinized to as-

certain whether it had an economically meaningful solution,

i.e., whether this theoretical structure of vital importance for

understanding the market system was logically consistent.

Gerard Debreu’s major achievement is his work in prov-

ing the existence of equilibrium-creating prices. His first fun-

damental contribution came in the early 1950s in collabora-

tion with Professor Kenneth Arrow. Arrow received the 1972

Prize in Economic Sciences in Memory of Alfred Nobel for

his work in this and other adjacent fields.

Arrow and Debreu designed a mathematical model of a

market economy where different producers planned their out-

put of goods and services and thus also their demand for fac-

tors of production in such a way that their profit was max-

imized. Thus, connections were generated within the model

between the supply of goods and demand for factors of pro-

duction on the one hand, and all prices, on the other. By

making additional assumptions about consumer behaviour,

Arrow and Debreu were able to generate demand functions

or "correspondences", i.e., relations between prices and sup-

plied and demanded quantities. In this model, Arrow and

Debreu managed to prove the existence of equilibrium prices,

i.e., they confirmed the internal logical consistency of Smith’s

and Walras’s model of the market economy.

Subsequent to these pioneering efforts, there has been

considerable development and extensions of such proofs with

Gerard Debreu at the forefront. His book, Theory of Value,

from the late 1950s has already become a classic both for its

universality and for its elegant analytical approach. The the-

ory developed in this study lends itself to many far-reaching

interpretations and applications. The concept of "goods",

for instance, is defined so broadly that the theory may be

used in pure static equilibrium analysis, the analysis of the

spatial distribution of production and consumption activi-

ties, intertemporal analysis and the analysis of uncertainty.

Thus, within the same model, Debreu’s general equilibrium
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theory integrates the theory of location, the theory of capital,

and the theory of economic behaviour under uncertainty.

We will explain in some detail the simple case of an exchange economy, the

positive theory (existence and uniqueness of an equilibrium) in section 2

and the normative theory (the welfare theorems) in section 4. The more

general case of an exchange and production economy is shown in section 3.

The next chapter presents alternative views, criticism, and applications of

General Equilibrium Theory.

Following Hildenbrandt & Kirman (1988), it is helpful to differentiate

between

• the implications of Pareto efficiency on the one hand (this is the

Edgeworthian theme of cooperation) and

• the implications of individual utility and profit maximization for

markets (the Walrasian theme of decentralization).

2. Exchange economy: positive theory

2.1. Exchange Edgeworth box: prices and equilibria. Before

delving into the General Equilibrium Theory, we will give you a short pre-

view of where we are heading to. The General Equilibrium Theory has two

grand themes. The first is Pareto improvements through exchanges (see pp.

364). The second topic is decentralization through prices.

It is possible to add price information into Edgeworth boxes. If house-

hold A buys a bundle
�
xA1 , x

A
2

�
with the same worth as his endowment, we

have

p1x
A
1 + p2x

A
2 = p1ω

A
1 + p2ω

A
2 .

Starting from an endowment point, positive prices p1 and p2 lead to nega-

tively sloped budget lines for both individuals. In fig. 1, two price lines with

prices pl1 < ph1 are depicted. The indifference curves indicate which bundles

the households prefer.

E������� XIX.1. Why do the two price lines in fig. 1 cross at the

endowment point ω?

Of course, we would like to know whether these prices are compatible in

the sense of allowing both agents to demand the preferred bundle. If that

is the case, the prices and the bundles at these prices constitute a Walras

equilibrium.

E������� XIX.2. The low price pl1 is not possible in a Walras equilib-

rium, because there is excess demand for good 1 at this price:

xA1 + xB1 > ωA
1 + ωB

1 .

Do you see that? How about good 2?
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A

B

Ax1

Ax2

Bx2

Bx1

A
1ω

B
1ω

B
2ωA

2ω

E

AD

BD

2

1

p

ph

−

2

1

p

pl

−

F����� 1. Walras equilibrium

2.2. Definition of an exchange economy. We now proceed to the

formal definition of an exchange economy.

D�������
� XIX.1 (exchange economy). An exchange economy is a tu-

ple

E =
�
N,G,

�
ωi
�
i∈N ,

�
�i
�
i∈N

�

consisting of

• the set of agents N = {1, 2, ..., n} ,
• the finite set of goods G = {1, ..., ℓ} ,

and for every agent i ∈ N

• an endowment ωi =
�
ωi
1, ..., ω

i
ℓ

�
∈ Rℓ

+, and

• a preference relation �i.

Thus, every agent has property rights on endowments. The total endow-

ment of an exchange economy is given by ω =
�

i∈N ωi. A household’s

consumption possibilities are described by the budget. We refer the reader

to chapter VI.

D�������
� XIX.2. Consider an exchange economy E.
• A bundle (yi)i∈N ∈ Rℓ·n

+ is an allocation.

• An allocation (yi)i∈N is called feasible if
�

i∈N yi ≤ �
i∈N ωi holds.

2.2.1. Excess Demand and Market Clearance. In this section we deal

with the question whether the demand for one good is greater than the

supply for this good.
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D�������
� XIX.3. Assume an exchange economy E, a good g ∈ G and

a price vector p ∈ Rℓ. If every household i ∈ N has a unique household

optimum xi
�
p, ωi

�
, good g’s excess demand is denoted by zg (p) and defined

by

zg (p) :=
n�

i=1

xig
�
p, ωi

�
−

n�

i=1

ωi
g.

The corresponding excess demand for all goods g = 1, ..., ℓ is the vector

z (p) := (zg (p))g=1,...,ℓ .

The excess demand is a quantity of goods and a vector of quantities of

goods respectively. In contrast, the value of the excess demand, which is

given by

p · z (p) ,
is a scalar amount of money. We remind the reader of Walras’ law (p. 130)

which immediately implies the following version:

L���� XIX.1 (Walras’ law). Every consumer demands a bundle of

goods obeying p ·xi ≤ p ·ωi where local nonsatiation implies equality. For all

consumers together, we have

p · z (p) =
n�

i=1

p ·
�
xi − ωi

�
≤ 0

and, assuming local-nonsatiation, p · z (p) = 0.

Walras’ law is of great importance for General Equilibrium Theory. We

will later look at the conditions under which excess demand is zero. Then,

the problem is to get from z (p) · p = 0 ∈ R to z (p) = 0 ∈ Rℓ.

D�������
� XIX.4. A market g is called cleared if excess demand zg (p)

on that market is equal to zero.

The following two exercises are adapted from Leach (2004, pp. 54) .

E������� XIX.3. Consider a market where the excess demand of three

individuals 1, 2, and 3 is given by

z1 (p) =
8

p
− 4, z2 (p) =

4

p
− 2, z3 (p) =

12

p
− 2.

Find the market-clearing price. Is individual 3 a buyer or a seller?

E������� XIX.4. Abba (A) and Bertha (B) consider buying two goods

1 and 2, and face the price p for good 1 in terms of good 2. Think of good

2 as the numéraire good with price 1. Abba’s and Bertha’s utility func-

tions, uA and uB, respectively, are given by uA
�
xA1 , x

A
2

�
=

'
xA1 + xA2 and

uB
�
xB1 , x

B
2

�
=
'
xB1 +xB2 . Endowments are ω

A = (18, 0) and ωB = (0, 10) .

Find the bundles demanded by these two agents. Then find the price p that

fulfills ωA
1 + ωB

1 = xA1 + xB1 and ω
A
2 + ωB

2 = xA2 + xB2 .
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In the above exercise, what if only market 1 is cleared? The following

lemma shows that local nonsatiation excludes this possibility.

L���� XIX.2 (Market clearance). In case of local nonsatiation,

(1) if all markets but one are cleared, the last one also clears or its

price is zero,

(2) if at prices p≫ 0 all markets but one are cleared, all markets clear.

P�

�. If ℓ−1 markets are cleared, the excess demand on these markets

is 0. Without loss of generality, markets g = 1, ..., ℓ−1 are cleared. Applying

Walras’s law we get

0 = p · z (p)
= pℓzℓ (p) ,

and hence both claims. �

2.3. Walras equilibrium.

2.3.1. Definition. Are there prices for all ℓ goods, for which all individual

demands are possible at the same time? Differently put, is there a price

vector ;p, such that the demand for all ℓ goods does not exceed the initial

endowment:

D�������
� XIX.5. A price vector ;p and the corresponding demand sys-
tem

�
;xi
�
i=1,...,n

= (xi
�
;p, ωi

�
)i=1,...,n is called a Walras equilibrium if

n�

i=1

;xi ≤
n�

i=1

ωi

or

z (;p) ≤ 0

holds.

The equilibrium condition requires that

(1) all households choose an optimal bundle, i.e., every household i

chooses the bundle of goods xi
�
;p, ωi

�
(or a bundle from xi

�
;p, ωi

�
)

at given prices ;p,
(2) the resulting allocation is feasible, or, differently put, for every

good, the quantity demanded is not larger than the available quan-

tity.

E������� XIX.5. Rewrite the equilibrium condition

n�

i=1

xi
�
;p, ωi

�
≤

n�

i=1

ωi

so that it is clear that the inequalities must hold for each good.
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The equilibrium condition excludes that the demand for one good is

greater than the supply for this good. The reader might find this definition

of the equilibrium confusing at the first glance. Why do we not define

equilibrium through the equality of supply and demand? The definition is

weaker and we will show in the next section that under certain conditions a

nonpositive excess demand implies an excess demand of zero.

2.3.2. Market clearing in the Walras equilibrium. In this section, we will

present the conditions for which a market in equilibrium has an excess de-

mand of zero, i.e. the market is cleared. Consider the following definitions

and lemmata:

D�������
� XIX.6. A good is called free if its price is equal to zero.

L���� XIX.3 (free goods). Assume local nonsatiation and weak mono-

tonicity for all households. If
�
;p,
�
;xi
�
i=1,...,n

�
is a Walras equilibrium and

the excess demand for a good is negative, this good must be free.

P�

�. Assume, to the contrary, that pg > 0 holds. We obtain a con-

tradiction to Walras law for local nonsatiation:

p · z (p) = pgzg (p)� �� �
<0

+
ℓ�

g′=1,
g′ �=g

pg′zg′ (p) (zg (p) < 0)

<
ℓ�

g′=1,
g′ �=g

pg′����
≥0

zg′ (p)� �� �
≤0

(lemma VI.4, p. 130)

≤ 0.

�

Finally (for now), we need to define the desiredness of goods:

D�������
� XIX.7. A good is desired if the excess demand at price zero

is positive.

L���� XIX.4 (desiredness). If all goods are desired and if local nonsa-

tiation and weak monotonicity hold and if ;p is a Walras equilibrium, then
z (;p) = 0.

P�

�. Suppose that there is a good g with zg (;p) < 0. Then g must be

a free good according to lemma XIX.3 and have a positive excess demand

by the definition of desiredness, zg (;p) > 0. �

2.3.3. Example: The Cobb-Douglas Exchange Economy with Two Agents.

We remember from chapter VI that income m and Cobb-Douglas utility

function

u (x1, x2) = xa1x
1−a
2
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implies the household optimum

x1 = a
m

p1
,

x2 = (1− a)
m

p2
.

Consider, now, individual 1 with Cobb-Douglas utility function u1 and pa-

rameters a1 (for good 1) and 1 − a1 (for good 2). The initial endowment

of individual 1 equals ω1 = (1, 0). Individual 2 possesses a Cobb-Douglas

utility function u2 with parameters a2 (for good 1) and 1− a2 (for good 2).

His initial endowment is ω2 = (0, 1). Parameters a1 and a2 obey the follow-

ing conditions: 0 < a1 < 1 and 0 < a2 < 1. Both goods are desired and

local strict monotonicity holds. According to lemma XIX.4, the market is

in equilibrium only if it is cleared. Substituting the value of the endowment

for income, we get the demand for good 1 for individual 1 :

x11
�
p1, p2, ω

1 · p
�

= a1
ω1 · p
p1

= a1

and the demand for good 1 for individual 2

x21
�
p1, p2, ω

2 · p
�

= a2
ω2 · p
p1

= a2
p2
p1
.

Assuming positive prices, lemma XIX.2 (p. 477) says that both markets are

cleared if one is cleared. Market 1 is cleared if demand equals supply, i.e., if

a1 + a2
p2
p1

= 1,

which is equivalent to
p2
p1

=
1− a1
a2

.

All prices, which satisfy these equations, are equilibrium prices. Obviously,

only relative prices are determined.

Figure 2 sketches the equilibrium in the two-goods case.

2.4. Existence of the Walras equilibrium.

2.4.1. Proposition. So far we have not questioned the existence of the

Walras equilibrium. Fortunately, the following theorem holds:

T��
��� XIX.1 (Existence of the Walras Equilibrium). If the following

conditions hold:

• aggregate excess demand is a continuous function (in prices)
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A

B

Ax1

Ax2

Bx2

Bx1

F����� 2. The General Equilibrium in the exchange Edge-

worth box

• the value of the excess demand is zero and
• the preferences are strictly monotonic,

there exists a price vector ;p such that z(;p) ≤ 0.

The proof of this theorem uses Brouwer’s fixed-point theorem. There-

fore, we introduce this theorem in the next section and then present the

proof of the proposition in section 2.5.3.

2.4.2. Brouwer’s fixed-point theorem.

T��
��� XIX.2. Suppose f :M →M is a function on the nonempty,

compact and convex set M ⊆ Rℓ. If f is continuous, there exists x ∈ M

such that f (x) = x. x is called a fixed point.

Note that the range of f is included in M . One can figure out Brouwer’s

fixed-point theorem for the one-dimensional case by means of a continuous

function on the unit interval. If either f (0) = 0 or f (1) = 1 hold, a fixed

point is found. Otherwise, fig. 3 shows a continuous function fulfilling

f (0) > 0 and f (1) < 1. The graph of such a figure cuts the 45◦-line. The

projection of this intersection point onto the x- or the y-axis is the sought-

after fixed point.

The fixed-point theorem can be nicely illustrated. Put a handkerchief

on the square [0, 1]× [0, 1] from R2. This subset is nonempty, compact and

convex. A continuous function

f : [0, 1]× [0, 1] → [0, 1]× [0, 1]

corresponds to the following process:



2. EXCHANGE ECONOMY: POSITIVE THEORY 481

x

( )xf

1

1

0

F����� 3. Brouwer fixed-point theorem

• rumple the handkerchief,

• put the rumpled handkerchief again on the square and

• press it flat.

The handkerchief must not be torn because tearing corresponds to a non-

continuous f . Brouwer’s fixed-point theorem now claims that there is at

least one spot on the handkerchief which, before and after rumpling, lies on

the same place of the square. Alternatively, one can imagine stirring cake

dough with a wooden spoon so that the dough does not lose its coherence.

At least one participle of the dough does not change its place despite the

stirring movements.

We do not prove the theorem but ask you to try the following exercise.

E������� XIX.6. Assume, one of the requirements for the fixed-point

theorem does not hold. Show, by a counter example, that there is a function

such that there is no fixed point. Specifically, assume that

a) M is not compact

b) M is not convex

c) f is not continuous.

German-speaking people may learn Brouwer’s fixed-point theorem by

memorizing the poem due to Hans-Jürgen Podszuweit (found in Homo Oe-

conomicus, XIV (1997), p. 537):

Das Nilpferd hört perplex:

Sein Bauch, der sei konvex.

Und steht es vor uns nackt,

sieht man: Er ist kompakt.

Nimmt man ’ne stetige Funktion

von Bauch
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in Bauch

— Sie ahnen schon —,

dann nämlich folgt aus dem

Brouwer’schen Theorem:

Ein Fixpunkt muß da sein.

Dasselbe gilt beim Schwein

q.e.d.

2.4.3. Proof of the existence theorem XIX.1. In order to apply Brouwer’s

fixed-point theorem to proposition XIX.1, we first construct a convex and

compact set. The prices of the ℓ goods are normed such that the sum of the

nonnegative (!, we have strict monotonicity) prices equals 1. Just divide all

prices by the sum of the prices. We can restrict our search for equilibrium

prices to the ℓ− 1- dimensional unit simplex:

Sℓ−1 =



p ∈ R

ℓ
+ :

ℓ�

g=1

pg = 1



 .

Sℓ−1is nonempty, compact (closed and bounded as a subset of Rℓ) and con-

vex.

E������� XIX.7. Draw S1 = S2−1.

The idea of the proof is as follows: First, we define a continuous function

f on this (nonempty, compact and convex) set. Brouwer’s theorem says that

there is at least one fixed point of this function. Second, we show that such

a fixed point fulfills the condition of the Walras equilibrium.

The continuous function mentioned above

f =




f1
f2
.

.

.

fℓ




: Sℓ−1 → Sℓ−1

is defined by

fg (p) =
pg +max (0, zg (p))

1 +
�ℓ

g′=1max
�
0, zg′ (p)

� , g = 1, ..., ℓ

f is continuous because every fg, g = 1, ..., ℓ, is continuous. The latter is

continuous because z (according to our assumption) and max are continuous

functions. Finally, we can confirm that f is well defined, i.e., that f (p) lies
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in Sℓ−1 for all p from Sℓ−1 :
ℓ�

g=1

fg (p) =
ℓ�

g=1

pg +max (0, zg (p))

1 +
�ℓ

g′=1max
�
0, zg′ (p)

�

=
1

1 +
�ℓ

g′=1max
�
0, zg′ (p)

�
ℓ�

g=1

(pg +max (0, zg (p)))

=
1

1 +
�ℓ

g′=1max
�
0, zg′ (p)

�


1 +

ℓ�

g=1

max (0, zg (p))




= 1.

The function f increases the price of a good g in case of fg (p) > pg, only,

i.e. if
pg +max (0, zg (p))

1 +
�ℓ

g′=1max
�
0, zg′ (p)

� > pg

or

max (0, zg (p)) > pg

ℓ�

g′=1

max
�
0, zg′ (p)

�

or
max (0, zg (p))�ℓ

g′=1max
�
0, zg′ (p)

� > pg�ℓ
g′=1 pg′

holds.

The last formula has a nice interpretation: when the relative excess

demand for a good is greater than the relative price for the same good

(as measured by the sum of the excess demand, respectively the sum of

the prices), the function f increases the price. Behind f, we imagine the

workings of the Walras auctioneer, who changes prices upon observing excess

demands. This so-called tâtonnement may (or may not) converge towards

the equilibrium price vector.

We now complete the proof: according to Brouwer’s fixed-point theorem

there is one ;p such that

;p = f (;p) ,

from which we have

;pg =
;pg +max (0, zg (;p))

1 +
�ℓ

g′=1max
�
0, zg′ (;p)

�

and finally

;pg
ℓ�

g′=1

max
�
0, zg′ (;p)

�
= max (0, zg (;p))

for all g = 1, ..., ℓ.

Next we multiply both sides for all goods g = 1, ..., ℓ by zg(;p):

zg(;p);pg
ℓ�

g′=1

max
�
0, zg′ (;p)

�
= zg(;p)max (0, zg (;p))
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and summing up over all g yields

ℓ�

g=1

zg(;p);pg
ℓ�

g′=1

max
�
0, zg′ (;p)

�
=

ℓ�

g=1

zg(;p)max (0, zg (;p)) .

By assumption, the left-hand expression is equal to zero. The right-hand

one consists of a sum of expressions, which are equal either to zero or to

(zg (;p))2. Therefore, zg (;p) ≤ 0 for all g = 1, ..., ℓ. This is what we wanted

to show.

2.5. Existence of the Nash equilibrium. In chapter X we note the

Nash theorem:

T��
��� XIX.3 (Existence of Nash equilibria). Any finite strategic

game Γ = (N,S, u) (i.e., |N | <∞ and |S| <∞) has a Nash equilibrium.

The proof follows Nash’s (1951) second proof which rests upon Brouwer’s

fixed-point theorem and is somewhat similar to the proof of the Walras

equilibrium. That is the reason why we present it here rather than in chapter

X.

P�

�. We construct a continuous function f : Σ → Σ whose fixed

point is the sought-after Nash equilibrium. Note that Σ is compact, convex,

and non-empty. Now, fix a player i ∈ N and a strategy si ∈ Si. The function

φsi : Σ → R is defined by

φsi(σ) := max(0, ui(si, σ−i)− ui(σ)) ≥ 0, σ ∈ Σ. (XIX.1)

φsi(σ) is strictly positive iff the pure strategy si yields a higher payoff than

the mixed strategy σi, given that the other players choose σ−i. Remember

that the payoff ui(σ) is the mean of the payoffs for pure strategies:

ui (σi, σ−i) =

|Si|�

j=1

σi

�
sji

�
ui

�
sji , σ−i

�

Consider the strategies sji with σi
�
sji

�
> 0. At least one of these pure strate-

gies yields a payoff ui
�
sji , σ−i

�
that is equal to or smaller than ui (σi, σ−i) .

For this strategy φsi(σ) is zero:

L���� XIX.5. For every i ∈ N, there is some ŝi ∈ Si such that σ
∗
i (ŝi) >

0 and φŝi(σ
∗) = 0.

We now consider the function

fi : Σ → Σi

σ → fi (σ) defined by

fi (σ) (si) :=
σi(si) + φsi(σ)

1 +
�

s′i∈Si
φs′i(σ)
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Obviously, we have fi (σ) (si) ≥ 0. The reader will note the parallel construc-

tion of fg in the section above. Similarly, we can show
�

j∈Si
fi (σ)

�
sji

�
=

1. Therefore, the functions fi, i ∈ N, are well-defined.

By

fi (σ) (si) > σi(si)

⇔ σi(si) + φsi(σ)

1 +
�

s′i∈Si
φs′i(σ)

> σi(si)

⇔ φsi(σ) > σi(si)
�

s′i∈Si
φs′i(σ)

⇔ φsi(σ)�

s′i∈Si
φs′i(σ)

>
σi(si)�

s′i∈Si
σi (s′i)

the function fi makes player i increase the probability attached to pure

strategy si if the relative utility surplus of si is above the relative probability.

The utility functions ui are continuous and so are the functions φsi and fi.

Therefore,

f =




f1
f2
.

.

.

fℓ




: Σ → Σ

is also continuous.

The fixed point σ∗ which we know to exist due to Brouwer’s theorem,

obeys

f (σ∗) !
= σ∗,

fi (σ
∗) !

= σ∗i for all i ∈ N, and hence

fi (σ
∗) (si) =

σ∗i (si) + φsi(σ
∗)

1 +
�

s′i∈Si
φs′i(σ

∗)

!
= σ∗i (si) for all i ∈ N and all si ∈ Si (*)

By lemma XIX.5, we can be sure of some ŝi ∈ Si such that σ∗i (ŝi) > 0 and

φŝi(σ
∗) = 0. For such a strategy ŝi, we obtain

σ∗i (ŝi)

1 +
�

s′i∈Si
φs′i(σ

∗)
=
σ∗i (ŝi) + φŝi(σ

∗)

1 +
�

s′i∈Si
φs′i(σ

∗)

!
= σ∗i (ŝi)

and hence
�

s′i∈Si
φs′i(σ

∗) = 0. We now use the result for fi (σ
∗) (si) (see

(*)) and obtain φsi(σ
∗) = max(0, ui(si, σ∗−i)− ui(σ∗)) = 0 and ui(si, σ∗−i)−
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ui(σ
∗) ≤ 0 for all i ∈ Si. Thus, there is no pure strategy that yields a higher

payoff than the mixed strategy σ∗i , given σ∗−i. This means that σ∗ is a Nash

equilibrium.

3. Exchange and production economy: positive theory

GET can deal with production and exchange at the same time. The

necessary production and profit theory has been covered in chapters VIII

and IX. We do not delve seriously into this more complicated theory but

just show that the necessary conditions can be supplied. We remind the

reader that he has seen an ownership structure before in the simple case of

just one firm, on p. 231.

D�������
� XIX.8. A production and exchange economy is a tuple E =�
N,M,G,

�
ωi
�
i∈N ,

�
�i
�
i∈N ,

�
Zj

�
j∈M ,

�
θij
�
i∈N,
j∈M

�
consisting of

• the set of households N = {1, 2, ..., n} ,
• the set of firms M = {1, 2, ...,m} ,
• the set of goods G = {1, ..., ℓ} ,
• for every household i ∈ N

— an endowment ωi ∈ Rℓ
+ and

— a preference relation �i,

• for every firm j ∈M a production set Zj ⊆ Rℓ and

• the economy’s ownership structure
�
θij
�
i∈N,
j∈M

where θij ≥ 0 for all

i ∈ N, j ∈M and
�n

i=1 θ
i
j = 1 for all j ∈M hold.

We now turn to the feasibility of such an economy. Do the production

and consumption plans match?

D�������
� XIX.9. Let E be a production and exchange economy. The
production plans zj , j ∈M, and the consumption plans xi, i ∈ N, are called

feasible if they fulfill

• zj ∈ Zj for all j ∈M and

•
�

j∈M
zjg ≥

�
i∈N

�
xig − ωi

g

�
for all g ∈ G.

Finally, we are set to define the Walras equilibrium:

D�������
� XIX.10. A price vector ;p ∈ Rℓ, together with the corre-

sponding production plans
�
ŷj
�
j∈M and consumption plans

�
;xi
�
i∈N , is called

a Walras equilibrium of a production and exchange economy E if
• the production and consumption plans are feasible,
• for every household i ∈ N, ;xi is a best bundle for consumer i from
the budget set

B
�
;p, ωi,

�
θij
�
j∈M

�
:=



x

i ∈ Rℓ
+ : ;p · xi ≤ ;p · ωi +

�

j∈M
θij;p · ŷj
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slope of holding constant algebraic expression

indifference curve utility U (x1, x2) MRS =
∂U
∂x1
∂U
∂x2

isoquant output f (x1, x2) MRTS =
∂f
∂x1
∂f
∂x2

transformation

curve
cost C (x1, x2) MRT =

∂C
∂x1
∂C
∂x2

F����� 4. All the same

and

• for every firm j ∈M , ŷj is from

arg max
zj∈Zj

;p · zj .

4. Normative theory

4.1. The first welfare theorem from the point of view of partial

analysis.

4.1.1. Marginal this and that. In previous chapters, we have come to

know some handy formulae for the marginal rate of substitution (p. 77),

the marginal rate of technical substitution (p. 211) and the marginal rate of

transformation (p. 370). Table 4 provides a summary.

4.1.2. Three steps, twice. A theoretical reason for the confidence of many

economists in the efficiency of the market mechanism lies in the first the-

orem of welfare economics. This theorem states that a system of perfectly

competitive markets is Pareto efficient.

We attack this claim by way of partial analysis first and turn to total

analysis later on. Our partial analysis (we concentrate on one or two markets

leaving the repercussions on and from other markets aside) concerns

• exchange optimality (is it possible to make a consumer better off

without making another one worse off?),

• production optimality (is it possible to produce more of one good

without producing less of any other good?) and

• the optimal product mix (is it better to produce more of one good

and less of another one?).

In the next three subsections, we consider each type of optimality separately.

Within each type, we go through three steps:

(1) We first characterize Pareto optimality (concerning exchange, pro-

duction, and product mix). Clearly, for this specification prices are

unimportant.
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(2) We then consider how households and firms adapt to given good

and factor prices.

(3) We finally show that the adaption according to the second point

(price-taking assumption) is done in a way compatible with the first

(Pareto optimality).

4.1.3. Exchange optimality. We know the exchange Edgeworth box from

chapter XIV (pp. 364). Assume two households A and B and two goods 1

and 2. Along the contract curve or exchange curve,
����
dxA2
dxA1

���� =MRSA !
=MRSB =

����
dxB2
dxB1

����

holds. This is the first step.

The second step consists of determining the decisions taken by the house-

holds at the given prices. Since at each of the two household optima, the

marginal rate of substitution equals the price ratio, we find

MRSA !
=
p1
p2

!
=MRSB.

Thus, the Walras equilibrium implies exchange optimality.

4.1.4. Production optimality. In chapter VIII (p. 211), we have come to

know the efficiency condition for the use of inputs. Assuming two goods 1

and 2 produced by factors of production C (capital) and L (labor), Pareto

efficiency implies
����
dC1
dL1

���� =MRTS1
!
=MRTS2 =

����
dC2
dL2

���� .

The two cost-minimizing firms adjust to factor prices by letting

MRTS1
!
=
w

r
!
=MRTS2

where w is the wage rate and r the interest rate. Thus, production optimality

holds in the Walras equilibrium.

4.1.5. Optimal product mix. Every point on the production-possibility

frontier defines the extent of an exchange Edgeworth box as you can see in

fig. 5. Exchange optimality demands that the marginal rates of substitution

inside the exchange Edgeworth box are the same for consumers A and B.

Production optimality is reflected by the very fact that a point on (rather

than below) the production-possibility frontier is chosen. The optimal prod-

uct mix now refers to the question of whether consumers can be made better

off by producing more of good 1 and less of good 2 (along the transformation

curve, of course).

Mixing products optimally requires the equality of the marginal rates of

substitution for each individuals with the marginal rate of transformation

as we have shown on p. 371. Profit-maximizing firms obey the “marginal

cost equals price” condition so that the equality implied by Pareto efficiency
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1x

2x
α tan

1

2 =−
dx

dx

α

α

A

B

F����� 5. Exchange Edgeworth box and production-

possibility frontier

holds in a Walras equilibrium:

MRS =

����
dx2
dx1

����
indifference curve

!
=����

household

optimum

p1
p2

!
=����

profit

maximization

MC1
MC2

= MRT =

����
dx2
dx1

����
transformation curve

The equality of the marginal rate of transformation and the marginal rate

of substitution can be seen graphically in fig. 5. Point B, on the trans-

formation curve, defines an exchange Edgeworth box for two individuals, A

and B. At an exchange optimum the marginal rate of substitution of every

household is equal to the marginal rate of transformation.

The following exercise is adapted from Leach (2004, pp. 78).

E������� XIX.8. Consider Abba (A) and Bertha (B), whose utility

functions are given by uA
�
xA1 , x

A
2

�
=

'
xA1

'
xA2 and uB

�
xB1 , x

B
2

�
= xB1 +

2xB2 , respectively. The production possibility frontier obeys x2 = 2
√
10− x1.

Calculate the marginal rates of substitution and the marginal rate of trans-

formation. Find the Pareto-optimal allocation that leads to a utility level of

8 for Bertha.

4.1.6. Summary. Fig. 6 summarizes the proof. The conditions for Pareto

optimality are shown on the left-hand side of the diagram, the equilibrium

equations for price takers on the right.

The first welfare theorem is a very remarkable result. Every household

and every producer follows the incentives given by prices. Still, all behave

in such a way,
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Pareto optimality

requires

in case of perfect

competition

MRSA !
=MRSB

optimal exchange

MRSA !
=
p1
p2

!
=MRSB

MRTS1
!
=MRTS2

optimal

production

MRTS1
!
= w

r

!
=MRTS2

MRS
!
=MRT

optimal product mix

MRS
!
=
p1
p2

!
=
MC1
MC2

=MRT

F����� 6. Pareto optimality in three steps

(1) that it is impossible to improve the situation of one household with-

out making another household worse off,

(2) that it is impossible to reallocate the given input factors such that

we produce more of one good without producing less of another

good, and

(3) that producing more of one good and producing less of another

good cannot improve the situation of any household.

Thus, in a system with perfect competition, the selfish behavior of the indi-

viduals yields a “good” result.

Free markets are wonderful.

4.2. The first welfare theorem from the point of view of gen-

eral equilibrium analysis. We now turn to general equilibrium analysis

and consider the total system of markets simultaneously. For an exchange

economy, we will be able to show more than just Pareto efficiency (compare

chapter XIV, pp. 364). We will show that every Walras allocation lies in

the core in case of weak monotonicity and local non-satiation. The core

presented in this section is related to the core introduced in chapter XV.

While in that chapter, the core is defined within the framework of coalition

functions, we present a definition for allocations in the present section. In
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A

B

Ax1

Ax2

Bx2

Bx1

F����� 7. Exchange lens and core

both cases, a core is defined by Pareto efficiency and the impossibility to

block. As in chapter XV, we call a subset S ⊆ N a coalition.

A coalition S can block an allocation if it can present an allocation that

improves the lot of its members and that can be afforded by S :

D�������
� XIX.11 (blockable allocation, core). Let

E =
�
N,G,

�
ωi
�
i∈N ,

�
�i
�
i∈N

�

be an exchange economy. A coalition S ⊆ N is said to block an allocation

(yi)i∈N , if an allocation
�
zi
�
i∈N exists such that

• zi �i yi for all i ∈ S, zi ≻i yi for some i ∈ S and

• �
i∈S z

i ≤ �
i∈S ω

i

hold.

An allocation is not blockable if there is no coalition that can block it.

The set of all feasible and non-blockable allocations is called the core of an

exchange economy.

Within the Edgeworth box, the core can be depicted graphically. We

see the endowment point and the associated exchange lens in fig. 7. Every

household (considered a one-man coalition) blocks any allocation that lies

below the indifference curve cutting his endowment point. Therefore, the

core is contained inside the exchange lens. Both households together block

any allocation that is not Pareto efficient. Thus, the core is the intersection

of the exchange lens and the contract curve, roughly speaking.

We now turn to a remarkable claim:
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T��
��� XIX.4. Assume an exchange economy E with local non-satia-
tion and weak monotonicity. Every Walras allocation lies in the core.

P�

�. Consider a Walras allocation
�
;xi
�
i∈N . Lemma VI.4 (p. 130)

implies

;p
(1)

≥ 0

where ;p is the equilibrium price vector.

Assume, now, that
�
;xi
�
i∈N does not lie in the core. Then, there exists a

coalition S ⊆ N that can block
�
;xi
�
i∈N . I.e., there is an allocation

�
zi
�
i∈N

such that

• zi �i ;xi for all i ∈ S, zj ≻j ;xj for some j ∈ S and

• �
i∈S z

i ≤ �
i∈S ω

i.

The second point, together with (1), leads to the implication

;p ·
0
�

i∈S
zi −

�

i∈S
ωi

1
≤ 0. (XIX.2)

The first point implies

;p · zi
(2)

≥ ;p · ;xi = ;p · ωi for all i ∈ S (by local nonsatiation) and

;p · zj
(3)
> ;p · ;xj = ;p · ωj for some j ∈ S (otherwise, ;xj is not an optimum).

Summing over all these households from S yields

;p ·
�

i∈S
zi =

�

i∈S
;p · zi (distributivity)

>
�

i∈S
;p · ωi (above inequalities (2) and (3))

= ;p ·
�

i∈S
ωi (distributivity).

This inequality can be rewritten as

;p ·
0
�

i∈S
zi −

�

i∈S
ωi

1
> 0

contradicting eq. XIX.2. �

We now consider a case where a Walras allocation does not lie in the

core. Consider fig. 8. Agent A’s preferences violate non-satiation. He is

indifferent between all the bundles in the shaded area that comprises the

highlighted endowment point and the price line. The equilibrium point E

is the point of tangency between that price line and agent B’s indifference

curve. This point is not Pareto efficient. Agent A could forego some units

of both goods without harming himself.
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satiation
region

A

B

Ax1

Ax2

Bx2

Bx1

E

D

F����� 8. A non-efficient equilibrium

4.3. The second welfare theorem. The second welfare theorem turns

the first welfare theorem upside down:

• The first welfare theorem says: Walras allocations are Pareto effi-

cient.

• The second welfare theorem claims: Pareto-efficient allocations can

be achieved as Walras allocations.

T��
��� XIX.5. Assume an exchange economy E with convex and con-
tinuous preferences for all consumers and local non-satiation for at least one

household. Let
�
;xi
�
i∈N be any Pareto-efficient allocation. Then, there exists

a price vector ;p and an endowment
�
ωi
�
i∈N such that

�
;xi
�
i∈N is a Walras

allocation for ;p.

The reader is invited to consider fig. 9 and the Pareto opimum high-

lighted. If point E is given as endowment point, the associated Walras

allocation is indeed the Pareto optimum. If, however, the original endow-

ment is D instead of E, we can redistribute endowments by transfering some

units of good 1 from B to A.

Fig. 10 illustrates why we assume convexity in the above theorem. Agent

B does not have convex preferences. At the prices given by the price line,

he does not demand his part of the Pareto optimum but some point C.
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D E

Pareto optimum

A

B

Ax1

Ax2

Bx2

Bx1

F����� 9. The second welfare theorem

C

A

B

Ax1

Ax2

Bx2

Bx1

D E

Pareto optimum

F����� 10. Convexity is a necessary condition for the sec-

ond welfare theorem.

5. Topics and literature

The main topics in this chapter are

• exchange economy

• excess demand

• market clearing

• Walras equilibrium
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• first welfare theorem

• second welfare theorem

• Walras’ law

• free goods

• Brouwer’s fixed-point theorem

• positive theory

• normative theory

• product mix

While the nice textbook by Hildenbrandt & Kirman (1988) deals with

an exchange economy, exclusively, Debreu’s (1959) famous treatment of

General Equilibrium Theory also covers production.

6. Solutions

Exercise XIX.1

The individual is always free to consume ω. If he wants to consume

another bundle, the prices are relevant.

Exercise XIX.2

Markets clear for ph1 , but not for pl1. At price pl1, individuals A and B

want to consume more of good 1 than they possess together. Just note that

DA is to the right of DB. At price pl1, there is excess supply of good 2 :

xA2 + xB2 < ωA
2 + ωB

2 .

Exercise XIX.3

From

z1 (p) + z2 (p) + z3 (p) =
8

p
− 4 +

4

p
− 2 +

12

p
− 2

=
24

p
− 8

we obtain the market clearing price

p∗ = 3.

For individual 3, we have z3 (3) =
12
3 − 2 = 2. He is a buyer.

Exercise XIX.4

Abba will find the household optimum by

pxA1 + xA2 = 18p and |MRS| = MU1
MU2

=

1

2
√

xA1

1
=
p

1
.

Solving the second equation for xA1 , we obtain

xA1 =
1

4p2
.
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Substituting into the first yields

p
1

4p2
+ xA2 = 18p and hence

xA2 = 18p− 1

4p
.

Bertha’s optimal bundle is

xB1 =
1

4p2
, xB2 = 10− 1

4p
.

Equation ωA
1 + ωB

1 = xA1 + xB1 can be written as

18 = xA1 + xB1 =
2

4p2

and we find

p =
1

6
.

The same price is obtained from

10 = xA2 + xB2 = 18p− 1

4p
+ 10− 1

4p
.

Exercise XIX.5

We can rewrite
n�

i=1

xi
�
;p, ωi

�
≤

n�

i=1

ωi

as
n�

i=1

�
xi1

�
;p, ωi

�
, ..., xiℓ

�
;p, ωi

��
≤

n�

i=1

�
ωi
1, ..., ω

i
ℓ

�

which just means

n�

i=1

xig
�
;p, ωi

�
≤

n�

i=1

ωi
g for all g = 1, ..., ℓ.

Exercise XIX.6

a) There are two cases for which M is not compact: If M is not bounded,

e.g. M = R, the function f (x) = x + 1 maps M onto M but is does not

have a fixed point. For M being open, e.g. the function f (x) = 1+x
2 with

M = (0, 1) has no fixed point.

b) With M =
	
0, 13



∪
	
2
3 , 1



, the function f (x) = 1

2 has no fixed point.

c) Let M = [0, 1] . Then f =
�1, if 0≤x≤ 2

3

0, if 2
3
<x≤1has no fixed point.

Exercise XIX.7

S1 is the one-dimensional segment as shown in fig. 11.

Exercise XIX.8

We obtain

MRSA =
xA2
xA1

,MRSB =
1

2
,MRT =

����2
1

2
√
10− x1

(−1)

���� =
1√

10− x1
.
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1p1

1

2p

F����� 11. The 1- dimensional unit simplex

Hence Pareto optimality requires

xA2
xA1

(2)
=

1

2

(1)
=

1√
10− x1

while Bertha’s utility level of 8 is expressed by

xB1 + 2xB2
(3)
= 8.

Solving (1) yields x1 = 6. By the production possibility frontier, we obtain

x2 = 4. Therefore, we have four equations in four unknowns:

xA1 + xB1 = 6, xA2 + xB2 = 4 and also

xA1 = 2xA2 by (2) and

xB1 = 8− 2xB2 by (3).

They are solved by

xA1 = 3, xA2 =
3

2

xB1 = 3, xB2 =
5

2
.
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7. Further exercises without solutions

P�
#$�� XIX.1.

There are two farmers Tim and Bob who harvest and trade wheat (w)

and corn (c). Their endowments are ωT =
�
ωT
c , ω

T
w

�
= (10, 10) and ωB =�

ωB
c , ω

B
w

�
= (30, 0) . Tim’s preferences are represented by the utility function

UT (w, c) =
3
√
wc2. Bob’s utility is a strictly increasing function of wheat.

Assume that aggregate excess demand for corn is given by

zc (pc, pw) =
−70pc + 20pw

3pc

a) Show zc (pc, pw) = zc (kpc, kpw) for all k > 0!

b) Determine the aggregate excess demand function for wheat! Hint:

Why can you apply Walras’ law (p. 476)?

c) Determine the price ratio pc
pw

such that the corn market clears. Ap-

plying lemma XIX.2 (p. 477), which prices clear the wheat market?

d) What is Tim’s marginal rate of substitution MRS =
�� dc
dw

�� between

wheat and corn in equilibrium?

e) Is Bob a net supplier of corn?

P�
#$�� XIX.2.

Assume two states of the world g = 1, 2 that occur with probabilities p

and 1−p, respectively. Consider two players i = A,B with vNM preferences.

Draw an exchange Edgeworth box where xig denotes the payoff (money)

enjoyed by player i if state of the world g occurs. Assume that agents like

high payoffs in every state that occurs with a probability greater than zero.

Agent i’s endowment ωi
g is his payoff in the case where the two agents do

not interact.

(a) Imagine a bet between the two agents on the realization of the

state of the world. For example, player A puts a small amount of

his money on state 1. How are bets and allocations linked?

(b) Assume Agent B to be risk neutral and A to be risk averse. What

do the indifference curves look like?

(c) Consulting theorem XIX.4 (p. 492), can you confirm the following

statement: In equilibrium, agent B provides full insurance to agent

A.



CHAPTER XX

General equilibrium theory II: criticism and

applications

1. Nobel price for Friedrich August von Hayek

After introducing General Equilibrium Theory, we present some appli-

cations and shed critical light on GET. We begin by a presentation of envy

freeness in the next section. We then present the jungle economy, a Pareto

efficient but nasty alternative to GET. We also report on the views of Aus-

trian and other economists as they relate to markets and to GET. We begin

with the Nobel price awarded to von Hayek. Friedrich August von Hayek

was born in Vienna in 1899 and died in Freiburg in 1992. He studied law,

economics and psychology. In the beginning of his career, he worked on busi-

ness cycles. Later on, he became very interested in the possibility of socialist

planning and in the functioning of market systems. von Hayek worked in

Vienna, at the London School of Economics, at the universities in Chicago,

Freiburg and Salzburg.

The Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred

Nobel in 1974 was awarded to Gunnar Myrdal from Sweden and Friedrich

von Hayek

for their pioneering work

in the theory of money and economic fluctuations

and for their penetrating analysis of the interdependence

of economic, social and institutional phenomena.

According to the press release by the Royal Swedish Academy of Sciences,

von Hayek’s analysis of the functional efficiency of different

economic systems is one of his most significant contributions

to economic research in the broader sense. From the mid-

thirties he embarked on penetrating studies of the problems

of centralized planning. As in all areas where von Hayek has

carried out research, he gave a profound historical exposé of

the history of doctrines and opinions in this field. He pre-

sented new ideas with regard to basic difficulties in "socialis-

tic calculating", and investigated the possibilities of achiev-

ing effective results by decentralized "market socialism" in

various forms. His guiding principle when comparing various

499
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systems is to study how efficiently all the knowledge and all

the information dispersed among individuals and enterprises

is utilized. His conclusion is that only by far-reaching de-

centralization in a market system with competition and free

price-fixing is it possible to make full use of knowledge and

information.

2. Envy freeness

The idea of envy freeness is simple. An allocation is envy-free if no-

body strictly prefers the bundle of any other person. Thus, envy freeness

means that nobody would like to exchange bundles with any other person.

Arnsperger (1994) presents a survey.

D�������
� XX.1 (envy-free allocation). Assume an exchange economy

E =
�
N,G,

�
ωi
�
i∈N ,

�
�i
�
i∈N

�
.

A feasible allocation
�
xi
�
i∈N is called envy-free if

xi �i xj for all i, j ∈ N

holds.

E������� XX.1. Can you find an envy-free allocation without any pref-

erence information?

Pareto efficiency and envy freeness are independent concepts — neither

implies the other.

D�������
� XX.2 (fair allocation). Assume an exchange economy

E =
�
N,G,

�
ωi
�
i∈N ,

�
�i
�
i∈N

�
.

A feasible allocation
�
xi
�
i∈N is called fair if it is both envy-free and Pareto-

optimal.

E������� XX.2. Reconsider the exchange economy of exercise XIV.8 on

p. 366 where the efficient allocations are given by x1A = x2A.Which allocations

are envy-free? Which are fair? Sketch your answers.

T��
��� XX.1. Every Walras allocation is fair if all the endowments

have the same value.

P�

�. Assume that the Walras equilibrium with prices ;p and Walras

allocation
�
;xi
�
i=1,...,n

= (xi
�
;p, ωi

�
)i=1,...,n violates envy freeness although

;p · ωi = ;p · ωj holds for all agents i, j ∈ 1, ..., n. This means that there is an

agent i who envies some other agent j �= i :

xi
�
;p, ;p · ωi

�
≺i xj

�
;p, ;p · ωj

�
.
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Then, agent i cannot afford bundle xj
�
;p, ;p · ωj

�
,

;p · xj
�
;p, ;p · ωj

�
> ;p · ωi,

and, by ;p ·ωi = ;p ·ωj, neither can agent j. This is the contradiction we were

looking for. �

3. The jungle economy

3.1. Introduction. Typically, we are used to the idea of consuming

goods that we buy or exchange. Of course, there are other methods to

determine allocations. For example, in some societies the strongest members

are able to obtain the lion’s share. Indeed, this is the idea behind the

jungle economy modelled by Piccione & Rubinstein (2007). We will present

their model in this section. Thus, while the previous and following sections

are devoted to ”consuming what you buy or exchange”, we now focus on

”consuming what you can steal or grab”.

3.2. Definition of a jungle economy.

D�������
� XX.3. A jungle economy is a tuple

J =
�
N,S,G,ω,

�
�i
�
i∈N ,

�
Xi

�
i∈N

�

consisting of

• the set of agents N = {1, 2, ..., .n} ,
• a power relation S on N,
• the finite set of goods G = {1, ..., ℓ}
• a total endowment ω ∈ Rℓ

+,

and for every agent i ∈ N

• a preference relation �i, and

• a consumption set Xi ⊆ Rℓ
+.

In a jungle economy, the n agents from N consume bundles consisting of ℓ

goods from G. Consumption is determined by S, ω,
�
�i
�
i∈N , and

�
Xi

�
i∈N .

First, consumption is influenced by a power relation S. Indeed, the basic

principle of a jungle economy is that strong agents take from weak ones

whatever they like (preferences) and whatever they can physically get hold

of (consumption set). Formally, S is a binary relation such that for any

agents i and j from N,

iSj

means that i is stronger than j. Without loss of generality, we assume

1S2S...Sn.

Strength is a transitive relation, i.e., iSj and jSk imply iSk for all i, j, k ∈ N.

Second, consumption depends on the total endowment for the whole

economy. G and ω define an Edgeworth box of dimension ℓ = |G| and size
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ω = (ω1, ..., ωℓ). However, in the jungle economy there are no individual

endowments for agents.

Third, preferences also determine the consumption bundles (see chapter

IV). Fourth, and lastly, the consumption possibilities of agent i are restricted

by the consumption set Xi which we assume to be bounded. The idea is that

there are physical limits to consumption. For example, while an agent would

like to consume some units of a good (which is a question of his preferences),

he may not be able to do so because the respective good is beyond his reach.

Consumption sets imply the need to build on the feasibility concept,

defined on p. 368. A feasible allocation in a jungle economy respects both

the overall endowment and the consumption sets. In exchange economies

we did not consider consumption sets although they are quite common. The

point is that in a jungle economy without consumption sets, the strongest

agent consumes everything, ω (unless we have satiation).

D�������
� XX.4. Let J =
�
N,S,G,ω,

�
�i
�
i∈N ,

�
Xi

�
i∈N

�
be a jungle

economy. An allocation
�
xi
�
i∈N in J is called feasible if

• �n
i=1 x

i ≤ ω and

• xi ∈ Xi, i ∈ N,

hold. x0 := ω −�n
i=1 x

i ≥ 0 is called the leftover.

3.3. The jungle equilibrium. Now that we have defined the main

principles of a jungle economy, we will go on to do positive (existence and

uniqueness of equilibrium) and normative analysis (welfare theorems).

More often than not, positive analysis is equilibrium analysis. For the

jungle economy we will ask the question: Can we find an allocation such

that no agent can benefit from taking what belongs to a weaker individual?

D�������
� XX.5. Let J =
�
N,S,G,ω,

�
�i
�
i∈N ,

�
Xi

�
i∈N

�
be a jungle

economy. A feasible allocation
�
;xi
�
i∈N is called a jungle equilibrium if there

is no agent i ∈ N and no bundle yi ∈ Xi such that yi ≻ ;xi and yi ≤
;xi + x̂0 +

�
j∈N,
iSj

;xj , where x̂0 := ω −�
j∈N ;xj is the leftover.

According to this recursive definition, a strong agent can grab the left-

over and any (parts of) bundles from weaker agents as long as the preferred

bundle yi belongs to his consumption set. ;xi + x̂0 +
�

j∈N,
iSj

;xj can also be
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expressed by

;xi + x̂0 +
�

j∈N,
iSj

;xj

= ;xi +


ω −

�

j∈N
;xj

+

n�

j=i+1

;xj

= ω −
i−1�

j=1

;xj .

Thus player i is free to consume any bundle left over by those agents stronger

than him.

P�

����
� XX.1 (Existence and uniqueness of jungle equilibria). Let

J =(N,S,G, ω,
�
�i
�
i∈N ,

�
Xi

�
i∈N

�
be a jungle economy. Assume without

loss of generality 1S2S...Sn. If

• every Xi, i ∈ N , is bounded, closed, and convex, and

• every preference relation �i, i ∈ N , is continuous, strictly convex,

and strictly monotonous,

a unique jungle equilibrium exists. It is given by a feasible allocation
�
;xi
�
i∈N

such that

;x1 is the best bundle from
�
x1 ∈ X1 : x1 ≤ ω

�
,

;xi is the best bundle from



x

i ∈ Xi : xi ≤ ω −
i−1�

j=1

;xj


 , i = 2, ..., n.

Thus, player 1 who is the strongest chooses first. Player 2 then makes

his pick from the remainder. Note that player 1 may leave some goods to the

other players because of the boundedness of his consumption set. At some

stage i,
�
xi ∈ Xi : xi ≤ ω −�i−1

j=1 ;xj
�

might contain nothing but 0 ∈ Rℓ
+.

Then, all the remaining players i, i+ 1, ..., n have nothing left to consume.

Following Piccione & Rubinstein (2007, p. 888), we will consider a jungle

economy with discrete goods, e.g. houses. The consumption sets imply that

every agent can consume (live in) one house only. Preferences on the con-

sumption sets are strict. The power relation S on N is given by 1S2S...Sn,

E������� XX.3. Let J =
�
N,S,G, ω,

�
≺i
�
i∈N ,

�
Xi

�
i∈N

�
be the jungle

economy described above. Can you define G,ω, and
�
Xi

�
i∈N? Find the

jungle equilibrium.

The proposition can be easily proven in three steps. First, we have to

confirm that
�
;xi
�
i∈N is well defined, i.e., that ”the best bundle” exists for

all players. Second, we will show that
�
;xi
�
i∈N is indeed an equilibrium.

Finally, we will prove that no other equilibrium exists.
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For the first step of the proof we will define ”the best bundle” for each

player. Note that the properties of the preferences guarantee the existence of

continuous utility functions representing those preferences. Player 1’s choice

set can be written as
�
x1 ∈ X1 : x1 ≤ ω

�
= X1 ∩

�
x ∈ Rℓ

+ : x ≤ ω
�

Since both X1 and
�
x ∈ Rℓ

+ : x ≤ ω
�

are bounded and closed, so is their in-

tersection,
�
x1 ∈ X1 : x1 ≤ ω

�
. Player 2 can choose from the (bounded and

closed) set
�
x2 ∈ X2 : x2 ≤ ω − x1

�
. By an induction argument, the choice

sets of the other players are also bounded and closed. All choice sets contain

(0, ..., 0) ∈ Rℓ
+ and are not empty. Therefore, the agents’ optimization prob-

lems consist in choosing from a bounded and closed set, or, differently put,

in maximizing (continuous!) utility on a suchlike set. You might remem-

ber from chapter VI (theorem VI.1, p. 141) that any continuous function

f : X→ R on a nonempty, closed and bounded set X ⊆ Rn has a maximum

on X.

Note that the theorem does not exclude the possibility of several best

bundles. However, it can be shown that there is only one best bundle.

Since both X1 and
�
x ∈ Rℓ

+ : x ≤ ω
�

are convex, so is their intersection,�
x1 ∈ X1 : x1 ≤ ω

�
. Similarly, the choice sets of the other players are also

convex. By the strict convexity of the preferences, we know that there is

only one best bundle (see theorem VI.2, p. 141).

We now deal with the second step of our proof to show that
�
;xi
�
i∈N is an

equilibrium. Suppose that it is not an equilibrium. Then, there is an agent

i ∈ N and a bundle yi ∈ Xi such that yi ≻ ;xi and yi ≤ ;xi + x̂0 +
�

j∈N,
iSj

x̂j

with x̂0 = ω −�
j∈N ;xj . However, yi belongs to agent i’s choice set. This

can be seen from

yi ≤ ;xi + x̂0 +
�

j∈N,
iSj

;xj

= ;xi +


ω −

�

j∈N
;xj

+

n�

j=i+1

;xj

= ω −
i−1�

j=1

;xj .

Therefore yi cannot be preferred to ;xi as assumed above. This is the desired

contradiction, which completes the proof of proposition XX.1. In light of

this proposition, we are now justified to talk of ”the” jungle equilibrium.

3.4. Welfare economics of the jungle equilibrium. Although the

jungle equilibrium
�
;xi
�
i∈N might be considered unfair, it is Pareto efficient.

Let us assume that a feasible allocation
�
yi
�
i∈N is a Pareto improvement to
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�
;xi
�
i∈N . Then, agent 1 (the strongest) will weakly prefer y1 to ;x1. Since ;x1

is the best bundle from the feasible set
�
x1 ∈ X1 : x1 ≤ ω

�
, y1 cannot be

better than ;x1. Indeed, by strict convexity y1 has to be equal to ;x1. In the

same fashion, we can show that yi is equal to ;xi for all i ∈ N . Thus, the

following proposition holds:

P�

����
� XX.2 (Pareto efficiency of the jungle equilibrium). Let

J =(N,S,G,ω,
�
�i
�
i∈N ,

�
Xi

�
i∈N

�
be a jungle economy. Assume that the

properties, specified in proposition XX.1, hold. Then,
�
;xi
�
i∈N is a Pareto

efficient allocation.

This proposition is the first welfare theorem of the jungle economy. We

will now check if a second welfare theorem exists.

C
�,������ XX.1 (Second welfare theorem of the jungle economy). Let

J =(N, ·, G, ω,
�
�i
�
i∈N ,

�
Xi

�
i∈N

�
be a jungle economy with an unspecified

power relation. Assume that the properties specified in proposition XX.1

hold. Then, every Pareto efficient allocation is the jungle equilibrium of a

suitably defined power relation.

In general, this conjecture does not hold. One reason is that we have

n! power relations on N but infinitely many Pareto optima. Another way

to argue is to look at a jungle economy where the consumption sets are

sufficiently exhaustive and do not reduce consumption to the feasibility re-

striction. Then, in case of strict monotonicity, the strongest player (whoever

that may be), will consume ω, leaving nothing to the others. This excludes

all Pareto efficient allocations where more than one agent consumes positive

amounts of the goods. However, in special cases, the second welfare theorem

of the jungle economy may well hold.

To illustrate the second welfare theorem, we revisit the discrete jungle

economy of exercise XX.3. We assume a Pareto efficient allocation of houses.

Then, every agent inhabits one and only one house. We now follow Piccione

& Rubinstein (2007, p. 889) and define a power relation S in the following

manner. If j prefers i’s house to the house he lives in, i is stronger than

j. It can be shown that this power relation leads to the initial Pareto

efficient allocation of houses. While we will not present the general proof,

the following excercise will help you understand the idea.

E������� XX.4. Assume three houses and three agents with preferences

(1, 0, 0) ≺ 1 (0, 1, 0) ≺1 (0, 0, 1) ,
(1, 0, 0) ≺ 2 (0, 1, 0) ≺2 (0, 0, 1) ,
(0, 0, 1) ≺ 3 (1, 0, 0) ≺3 (0, 1, 0) .



506 XX. GET II: CRITICISM AND APPLICATIONS

Consider now the two allocations

x1 = (0, 0, 1) , x2 = (1, 0, 0) , x3 = (0, 1, 0) and

y1 = (0, 0, 1) , y2 = (0, 1, 0) , y3 = (1, 0, 0) .

Show that both allocations are efficient and define the power relations nec-

essary to obtain these allocations in jungle equilibria.

4. Applications

Under the heading of applications, we report

• how socialist planning was thought to benefit from GET (the eco-

nomic theory of socialism),

• in which way the ordoliberal school (and some of nowadays compe-

tition theory and policy) proposes to apply GET to regulation and

competition policy,

• how empirical analyses and simulation build on GET models to see

the complex consequences of policy changes.

4.1. The economic theory of socialism. Some economists have used

the General Equilibrium Theory to establish the concept of a socialist econ-

omy. The Polish economist Oskar Lange (1904-1965) has been a leading

representative of this school of thought. A pivotal and well-known piece of

his work is Lange (1936).

Lange’s socialist economy consists of state-owned firms directed by state

officials. These officials have to base their decision on the prices announced

by a central planning board. They are asked to react to these prices as

price takers, minimizing costs and maximizing profits just as firms do in

microeconomic textbooks. According to Lange’s theory the central planning

board has the same function as the Walras’ auctioneer. By a process of trial

and error, the central planning board tries to get as close as possible to the

equilibrium price vector. Lange (1936, pp. 66) claims:

..the accounting prices in a social economy can be determined

by the same process of trial and error by which prices on a

competitive market are determined. .. The only “equations”

which would have to be “solved” would be those of the con-

sumers and the managers of production plants. These are

exactly the same “equations” which are solved by the present

economy system and the persons who do the “solving” are

the same also.

Of course, Oskar Lange’s work precedes the introduction of the prob-

lems of asymmetric information and the present literature on incentives.

But even in Lange’s time, Friedrich August von Hayek (1937, 1945) and

others pointed out that there is no conceivable way that a central planning

board could obtain the information (partly contradictory), held by millions
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of consumers and producers. We will shortly return to the marvel felt by

von Hayek when considering the price system in action.

Many people will feel thankful that the General Equilibrium Theory

could not be put into practice as proposed by Oskar Lange.

4.2. The regime of competition of the Freiburg School of “Or-

doliberalism”. Walter Eucken (1891— 1950) was a leading proponent of

the Freiburg School of Ordoliberalism. Eucken’s (1990, p. 254) regime of

competition (Wettbewerbsordnung) is based on perfect competition: “die

Herstellung eines funktionsfähigen Preissystems vollständiger Konkurrenz

[wird] zum wesentlichen Kriterium jeder wirtschaftspolitischen Maßnahme

gemacht”. This is the basic principle (Grundprinzip), the first of a set

of principles called constitutive principles (konstituierende Prinzipien) (pp.

254 — 291). Other principles belonging to this set are

• monetary stability (Primat der Währungspolitik),

• open markets (Offene Märkte),

• private property (Privateigentum),

• freedom of contract (Vertragsfreiheit),

• accountability (Haftung),and

• economic policy consistency (Konstanz der Wirtschaftspolitik).

Apart from the “konstituierende Prinzipien” Eucken’s regime of competition

is build on the so-called regulating principles (regulierende Prinzipien). The

author suggests that an anti-monopoly bureaucracy (Monopolamt) should

deal with monopoly problems:

• Monopolies have to be dissolved or, should dissolution be impossi-

ble, to be regulated (see Eucken 1990, p. 294).

• The institutions (firms, unions) that wield power should be forced

to act as if perfect competition held. For example, in order to

emulate the law of one price, price discrimination is to be outlawed

(see Eucken 1990, p. 294). Also, regulation should aim for marginal-

cost pricing (see Eucken 1990, p. 297). However, since marginal

costs are difficult to ascertain, Eucken (1990, p. 297) suggests that

the intersection of average cost and demand be used instead. This

is Ramsey pricing, explained in chapter XXI (pp. 527).

• The prices fixed by the Monopolamt are meant to incite firms to

reduce costs whenever possible. Eucken (1990, p. 297) observes

that a monopoly’s production capacities are often outdated and

advises the Monopolamt to revise prices from time to time.

Lenel (1975) criticizes Eucken’s approach.

4.3. Computable General Equilibrium Theory. Computable GET

sets out to build a dynamic multi-market model where the specific functions

and values derive from real-world data. For any given set of parameters

(taxes set by government, environmental regulation, climate change), a path
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of equilibrium prices and quantities is found by empirical analyses and sim-

ulations. The prices and quantities are given in numerical form (concrete

numbers). Therefore, it is not always easy to tell why a specific policy

change had the observed consequences.

5. The Austrian perspective

The Austrian School of Economics criticizes the way competition is pre-

sented in the models of perfect competition (and industrial organization). In

this section, rather than providing a thorough discussion of the Austrian po-

sition, we will focus on some contributions to competition theory by Ludwig

von Mises, Friedrich August von Hayek and Israel Kirzner. In particular,

these economists discuss

• equilibrium analysis (they concentrate on the equilibrating forces

rather than on the equilibrium itself),

• knowledge assumptions (they stress the importance of dispersed

knowledge, imagination and surprise), and

• the role of the entrepreneur in market processes (the Austrian en-

trepreneurs do not “mechanically” maximize profits but discover

profit opportunities and act as arbitrageurs).

Joseph Schumpeter is not considered a member of the Austrian school; his

process of creative destruction is mentioned in a separate section.

5.1. Ludwig von Mises: the market process. Ludwig Heinrich

von Mises (1881 — 1973) was one of the leading Austrian economicsts. In his

major work “Human action” von Mises writes von Mises (1996, pp. 328) :

”The driving force of the market process is provided neither by the

consumers nor by the owners of the means of production — land, capital

goods, and labor — but by the promoting and speculating entrepreneurs.

These are people intent upon profiting by taking advantage of differences in

prices. Quicker of apprehension and farther-sighted than other men, they

look around for sources of profit. They buy where and when they deem

prices too low, and they sell where and when they deem prices too high.

They approach the owners of the factors of production, and their competi-

tion sends the prices of these factors up to the limit corresponding to their

anticipation of the future prices of the products. They approach the con-

sumers, and their competition forces prices of consumer goods down to the

point at which the whole supply can be sold. Profit-seeking speculation is

the driving force of the market as it is the driving force of production.

On the market agitation never stops. The imaginary construction of

an evenly rotating economy has no counterpart in reality. There can never

emerge a state of affairs in which the sum of the prices of the complementary

factors of production, due allowance being made for time preference, equals

the prices of the products and no further changes are to be expected. There
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are always profits to be earned by somebody. The speculators are always

enticed by the expectation of profit.”

It is not astonishing that von Mises (1996, pp. 356) is not impressed

by equilibrium analysis: “The mathematical description of various states of

equilibrium is mere play. The problem is the analysis of the market process.”

5.2. Friedrich August von Hayek: the price system as a ma-

chinery for registering change. Friedrich August von Hayek is concerned

with the question of who knows what and how people obtain information

in order to make good decisions. Since society needs to adapt to constant

changes, von Hayek (1945, pp. 524) insists on decentral decisions “because

only thus can we ensure that the knowledge of the particular circumstances

of time and place will be promptly used. But the “man on the spot” cannot

decide solely on the basis of his limited but intimate knowledge of the facts

of his immediate surroundings. There still remains the problem of commu-

nicating to him such further information as he needs to fit his decisions into

the whole pattern of changes of the larger economic system.”

According to von Hayek (1945, p. 526), in such circumstances, it is the

prices that “can act to coordinate the separate actions of different people

... Assume that somewhere in the world a new opportunity for the use of

some raw material, say tin, has arisen, or that one of the sources of supply

of tin has been eliminated. It does not matter for our purpose — and it

is very significant that it does not matter — which of these two causes has

made tin more scare. All that the users of tin need to know is that some

of the tin they used to consume is now more profitably employed elsewhere,

and that in consequence they must economize tin.” For von Hayek (1945,

p. 527), the price system is “a kind of machinery for registering change”.

He goes on to say: “The marvel is that in a case like that of a scarcity of

one raw material, without an order being issued, without more than perhaps

a handful of people knowing the cause, tens of thousands of people whose

identity could not be ascertained by months of investigation, are made to

use the material or its products more sparingly, i.e., they move in the right

direction.”

Summarizing the important 1945 paper, Hayek emphasizes the price sys-

tem as a machinery for registering change in a world of dispersed knowledge

of particular circumstances.

5.3. Friedrich August von Hayek: competition as discovery

procedure. Friedrich August von Hayek is also famous for his 1968 lec-

ture “Der Wettbewerb als Entdeckungsverfahren” at the “Institute for the

World Economy” in Kiel. Hayek (2002, p. 9) writes: “... wherever we make

use of competition, this can only be justified by our not knowing the es-

sential circumstances that determine the behavior of the competitors. In

sporting events, examinations, the awarding of government contracts, or the
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bestowal of prizes for poems, not to mention science, it would be patently

absurd to sponsor a contest if we knew in advance who the winner would

be.”

Hayek (2002, p. 13) then goes on to observe: “... market theory often

prevents access to a true understanding of competition by proceeding from

the assumption of a “given” quantity of scarce goods. Which goods are

scarce, however, or which things are goods, or how scarce or valuable they

are, is precisely one of the conditions that competition should discover: in

each case it is the preliminary outcomes of the market process that inform

individuals where it is worthwhile to search. Utilizing the widely diffused

knowledge in a society with an advanced division of labor cannot be based

on the condition that individuals know all the concrete uses that can be

made of the objects in their environment. Their attention will be directed

by the prices the market offers for various goods and services.”

5.4. Israel Kirzner: entrepreneurial discovery. Building on von

Hayek’s and von Mises’ ideas, Israel Kirzner’s entrepreneurial-discovery the-

ory deals with three interrelated concepts,

• the entrepreneur,

• discovery, and

• rivalrous competition.

Turning to the entrepreneur, Kirzner (1997, p. 70) writes: “Whereas each

neoclassical decision maker operates in a world of given price and output

data, the Austrian entrepreneur operates to change price/output data. In

this way ... the entrepreneurial role drives the ever-changing process of

the market. Where shortages have existed, we understand the resulting

price increases as driven by entrepreneurs recognizing, in the face of the

uncertainty of the real world, the profit opportunities available through the

expansion of supply through production, or through arbitrage. Except in the

never-attained state of complete equilibrium, each market is characterized

by opportunities for pure entrepreneurial profit. These opportunities are

created by earlier entrepreneurial errors which have resulted in shortages,

surplus, misallocated resources. The daring, alert entrepreneur discovers

these earlier errors, buys where prices are “too low” and sells where prices are

“too high”. In this way low prices are nudged higher, high prices are nudged

lower; price discrepancies are narrowed in the equilibrative direction.”

The Kirzner entrepreneur is the one who makes competition a discovery

process in Hayek’s sense. Kirzner (1997, pp. 71) is careful to distinguish

between discovery and search: “Systematic search can be undertaken for

a piece of missing information, but only because the searcher is aware of

the nature of what he does not know, and is aware with greater or lesser

certainty of the way to find out the missing information. In the economics
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of search literature, therefore, search is correctly treated as any other delib-

erate process of production. But it is in the nature of an overlooked profit

opportunity that it has been utterly overlooked, i.e., that one is not aware

at all that one has missed the grasping of any profit. From the neoclassical

perspective, therefore, a missed opportunity might seem (except as a result

of sheer, fortuitous good luck) to be destined for permanent obscurity.

It is here that the Austrian perspective offers a new insight, into the

nature of surprise and discovery. When one becomes aware of what one had

previously overlooked, one has not produced knowledge in any deliberate

sense. What has occurred is that on has discovered one’s previous (utterly

unknown) ignorance. What distinguishes discovery (relevant to hitherto un-

known profit opportunities) from successful search (relevant to the deliberate

production of information which one knew one had lacked) is that the for-

mer (unlike the latter) involves surprise which accompanies the realization

that one had overlooked something in fact readily available. (”It was under

my very nose!”) This feature of discovery characterizes the entrepreneurial

process of the equilibrating market.”

Turning to rivalrous competition, Kirzner (1997, pp. 73) emphasizes “the

dynamically competitive character of such a process. The process is made

possible by the freedom of entrepreneurs to enter markets in which they see

opportunities for profit. In being alert to such opportunities and in grasping

them, entrepreneurs are competing with other entrepreneurs. This competi-

tion is not the competitive state achieved in neoclassical equilibrium models,

in which all market participants are buying or selling identical commodities,

at uniform prices. It is, instead, the rivalrous process we encounter in the

everyday business world, in which each entrepreneur seeks to outdo his rivals

in offering goods to consumers (recognizing that, because those rivals have

not been offering the best possible deals to consumers, profit can be made

by offering consumers better deals).

It is from this perspective that Austrians stress (i) the discovery potential

in rivalrous competition, and (ii) the entrepreneurial character of rivalrous

competition.”

6. Joseph Schumpeter: creative destruction

In 1942, Joseph A. Schumpeter published a book with the title “Capital-

ism, Socialism and Democracy”. Schumpeter argues that socialism rather

than capitalism would survive in the long run. The second part of this book

(Can Capitalism Survive) contains a chapter on “The Process of Creative

Destruction”.

This process is essential for the capitalist system. Schumpeter (1976,

pp. 82) writes:
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”Capitalism ... is by nature a form or method of economic change and

not only never is but never can be stationary. And this evolutionary char-

acter of the capitalist process is not merely due to the fact that economic

life goes on in a social and natural environment which changes and by its

change alters the data of economic action; this fact is important and these

changes (wars, revolutions and so on) often condition industrial change, but

they are not its prime movers. Nor is this evolutionary character due to

a quasi-automatic increase in population and capital or to the vagaries of

monetary systems of which exactly the same thing holds true. The funda-

mental impulse that sets and keeps the capitalist engine in motion comes

from the new consumers’ goods, the new methods of production or trans-

portation, the new markets, the new forms of industrial organization that

capitalist enterprise creates.”

Then, Schumpeter (1976, p. 83) goes on to describe the process of

Creative Destruction:

”... the history of the productive apparatus of a typical farm, from the

beginnings of the rationalization of crop rotation, plowing and fattening to

the mechanized thing of today - linking up with elevators and railroads - is

a history of revolutions. So is the history of the productive apparatus of the

iron and steel industry from the charcoal furnace to our own type of furnace,

or the history of the apparatus of power production from the overshot wa-

ter wheel to the modern power plant, or the history of transportation from

the mailcoach to the airplane. The opening up of new markets, foreign or

domestic, and the organizational development from the craft shop and fac-

tory to such concerns as U.S. Steel illustrate the same process of industrial

mutation - if I may use that biological term - that incessantly revolution-

izes the economic structure from within, incessantly destroying the old one,

incessantly creating a new one. This process of Creative Destruction is the

essential fact about capitalism. It is what capitalism consists in and what

every capitalist concern has got to live in.”

Finally, Schumpeter (1976, pp. 84) criticizes the common view on com-

petition: “Economists are at long last emerging from the stage in which price

competition was all they saw. As soon as quality competition and sales ef-

fort are admitted into the sacred precincts of theory, the price variable is

ousted from its dominant position. However, it is still competition within

a rigid pattern of invariant conditions, methods of production and forms of

industrial organization in particular, that practically monopolizes attention.

But in capitalist reality as distinguished from its textbook picture, it is not

that kind of competition which counts but the competition from the new

commodity, the new technology, the new source of supply, the new type of

organization ... competition which commands a decisive cost or quality ad-

vantage and which strikes not at the margins of the profits and the outputs

of the existing firms but at their foundations and their very lives. This kind
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of competition is as much more effective than the other as a bombardement

is in comparision with forcing a door, and so much more important that it

becomes a matter of comparative indifference whether competition in the

ordinary sense functions more or less promptly: the powerful lever that in

the long run expands output and brings down prices is in any case made of

other stuff.”

Schumpeter (1976, p. 85) was well aware of the importance of potential

competition: “It disciplines before it attacks.”

Despite the similarities between Schumpeter’s and Kirzner’s approach,

Kirzner (1973, p. 127) notes: “For Schumpeter the entrepreneur is the dis-

ruptive, disequilibrating force that dislodges the market from the somno-

lence of equilibrium; for us the entrepreneur is the equilibrating force whose

activity responds to the existing tensions and provides those corrections

for which the unexploited opportunities have been crying out.” Concerning

Schumpeter’s critique of his fellow economists (”price competition was all

they saw”), Kirzner (1973, p. 129) writes that “for Schumpeter price com-

petition exemplifies the nonentrepreneurial, pedestrian kind of competition

(which he wishes to relegate to the background), whereas the dynamic, en-

trepreneurial type of competition (which for Schumpeter is the essence of

the capitalist process) is exemplified by the new commodity and new tech-

nology. For us, the process of price competition is as entrepreneurial and

dynamic as that represented by the new commodity, new technique, or new

type of organization.”

7. A critical review of GET

7.0.1. General equilibrium theory. The general equilibrium analysis is

an important part of economic theory. Using GET we can analyze any

number of markets simultaneously. In accomodating contingent markets

GET can also deal with risk (given probabilies). Bowles (2004, p. 207)

notes that GET describes some decentralized allocation mechanisms. These

mechanisms are

• privacy-preserving (actions are based on preferences, beliefs and

constraints) and

• polyarchal (interplay of many individuals determines the overall

outcome, not an individual’s or a bureaucracy’s preferences).

However, GET has some important shortcomings, some of them related to

the Austrian worldview. The following aspects are neglected by GET:

• Although many economists call GET a decentralized allocation

mechanism, in another sense it is very centralized because it in-

volves the Walrasian auctioneer.

• GET deals with many markets (specified by attributes, place, time,

contingencies) all of which are assumed to have many sellers and

buyers. However, in the real world, there are not many buyers or
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sellers of white pianos to be delivered in Leipzig in September 2012

should it rain the day before.

• Increasing returns to scale are commonplace but contradict convex

production sets. Therefore, it is unlikely that many small producers

will enter the market. Therefore, price-taking behavior is a strong

assumption.

• GET checks whether equilibrium prices exist but does not explain

how prices are formed. Thus, arbitrageurs or real estate agents (as

in “real” markets) have no role to play. Of course, excess demand

may well lead to price increases, but price takers cannot perform

this function. Of course, this is the Austrian critique of perfect

competition.

• Following up on the previous point, it is an open question how the

auctioneer suggests price vectors, based on the information of ex-

cess demands. Plausible tâtonnement processes will not guarantee

stability of the Walras equilibria. Thus, exogenous shocks will not

necessarily lead to a new equilibrium.

• The quality of goods is no problem tackled by GET. Indeed, when

people are prepared to pay a certain price for a good, they can be

sure to obtain the quality agreed upon. Thus, all the problems with

which the principal-agent theory deals are assumed away.

• Contracts in GET are complete and simple: Goods are exchanged

for other goods or against money. In contrast, contracting in every-

day life is seldom done on the basis of complete contracts. Bowles

(2004, p. 10) claims that norms and power replace contracts. “An

employment contract does not specify any particular level of ef-

fort, but the employee’s work ethic or fear of job termination or

peer pressure from workmates may accomplish what contractual

enforcement cannot.”

From the point of view of social exchange theory, Walrasian ex-

change is but a very small part of social exchange. Social exchange

often takes place in long time intervals and it is not always clear to

the participants who owes what to whom. Social exchange relations

exist in markets, between neighbors, colleagues or politicians.

• GET is based on utility maximization and is hence susceptible to

criticism levied against “rationality” (intransitivity, loss aversion,

inconsistency in temporal discounting, overvaluation of low proba-

bility events).

7.0.2. The two welfare theorems. The strong point of the economic sys-

tem, envisioned by GET, is the impersonal nature of economic transactions.

Agents just have to observe the price vector and do not need to do compli-

cated deals with other (possibly several) agents. Bowles (2004, p. 208) calls

this a “utopian capitalism” in spite of the negligence of distributive justice.
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Indeed, GET depicts a utopian state of affairs in many respects: no theft,

no quality problems, no market concentration.

Let us turn to the first welfare theorem.

• Pareto optimality and extreme inequality of consumption or income

can go hand in hand.

• Our comment on the first welfare theorem was: Free markets are

wonderful. The reader will remember that the first welfare theorem

holds in the jungle, too. This may make us think twice whether

Pareto efficiency is a reason to jubilate.

• Maybe, free markets are wonderful for reasons not directly con-

nected to the welfare theorems. According to von Hayek (1945,

p. 527), the price system is “a kind of machinery for registering

change” (see pp. 509 above). Hayek marvels about the ability of

the prices to transport the information that prompt millions of peo-

ple to move into the right direction. Of course, GET has something

to say about these reactions. Indeed, comparative statics will let

us know what “happens” if some raw material has uses not thought

about “before”. In GET, people do not “move in the right direc-

tion”, but jump to the new equilibrium bundle. The reader is also

referred to section 4.3.

The second welfare theorem shows that Pareto efficient allocations can

be achieved by suitable redistributions of endowments.

• The second welfare theorem allows to separate efficiency from dis-

tribution arguments. Redistribution is done via transfers, the mar-

ket cares for efficiency. But: if the government knows which efficient

allocations to aim at, what does it need a market for?

• If redistributive measures are pending, the agents carry out pre-

emptive measures.
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8. Topics

The main topics in this chapter are

• envy freeness

• Ludwig von Mises

• Friedrich August von Hayek

• Joseph Schumpeter

• Israel Kirzner

• Oscar Lange: The economic theory of socialism

• computable GET

9. Solutions

Exercise XX.1

If every agent has the same bundle, envy freeness is ensured. The envy-

free allocation is given by

xi =
ω

n
, i = 1, ..., n.

Exercise XX.2

The envy-free allocations have to fulfill both

uA
�
xA1 , x

A
2

�
≥ uA

�
xB1 , x

B
2

�
(for individual A)

and

uB
�
xB1 , x

B
2

�
≥ uB

�
xA1 , x

A
2

�
(for individual B)

Since the utility functions are identical, we find

uA
�
xA1 , x

A
2

�
≥ uA

�
xB1 , x

B
2

�
= uB

�
xB1 , x

B
2

�
≥ uB

�
xA1 , x

A
2

�
= uA

�
xA1 , x

A
2

�

and hence

uA
�
xA1 , x

A
2

�
= uA

�
xB1 , x

B
2

�
.

This implies

xA1 x
A
2 =

�
100− xA1

� �
100− xA2

�
,

whence we have

xA2 = 100− xA1 .

Fig. 1 sketches the envy-free allocations and the efficient ones. There is only

one fair allocation:
�
xA1 , x

A
2

�
=
�
xB1 , x

B
2

�
= (50, 50).

Exercise XX.3. We have G = {1, ..., ℓ} (as usual), the total endow-

ment ω = (1, ..., 1) ∈ Rℓ
+, and, for every agent i ∈ N , the consumption

set Xi = {(1, 0, ..., 0) , ..., (0, ..., 0, 1, 0) , (0, ..., 0, 1)} ⊆ Rℓ
+. Since preferences

are strict, the strongest agent will pick his most preferred house, then the

second strongest agent will have his choice of house. The weakest agent has

a choice set containing the house that nobody else wanted.

Exercise XX.4. In the x-allocation, both agent 1 and agent 3 obtain their

most preferred house. It is not possible to make agent 2 better off without

damaging agent 1 or agent 3. Therefore, the x-allocation is efficient. Agent

2 would like to live in agent 1’s house rather than in his own. Therefore,
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A

B

Ax1

Ax2

Bx2

Bx1

co
ntr

act
cur

ve

envy freeallocations

50

50

F����� 1. Envy free and efficient allocations

the power relation Sx (in case of allocation x) obeys 1Sx2. Agent 2 also

envies agent 3 so that we have 3Sx2. It is not possible to say whether 1

is stronger than 3 or vice versa. Both 1Sx3Sx2 and 3Sx1Sx2 lead to the

efficient allocation x.

In the y-allocation, agent 1 lives in his most preferred house. Without

making agent 1 worse off, agents 2 and 3 would both like to live in house

(0, 1, 0) . Under y, it is agent 2 who gets his will. Therefore, allocation y is

efficient, too. The power relation Sy is defined by

1Sy2Sy3.
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10. Further exercises without solutions

P�
#$�� XX.1.

Are the Nash outcomes of a first-price auction envy-free? Are the Nash

outcomes of a second-price auction envy-free?



CHAPTER XXI

Introduction to competition policy and regulation

Competition policy and regulation deals with many different problems

and models, some of which we will discuss in the introductory chapter. In

the following chapters, we will explore selected aspects of this theory in more

detail.

1. Themes

What can the government do to make the market mechanism work bet-

ter for the consumers? Since we structure the problem this way, it is natural

to ask: Where and why does the market not work to the consumers’ satisfac-

tion? Basically, consumers are interested in (low) prices and (high) quality.

Therefore, relevant questions focus on the following areas:

• How are market prices affected by the number and size of the firms?

• Should firms be allowed to merge?

• How does the number of firms on the market affect innovation?

• How do potential competitors discipline the actual competitors?

• What liability rules will increase product safety and what are the

costs?

• Should the government mandate that the underlying structure for

network industries (rails, electricity, water) be operated by firms

different from those that actually offer the services?

• How are prices for public utilities to be set? Should cross subsidies

be allowed?

Competition theory and regulation is a wide field, indeed. However,

there are some aspects outside its domain. For example, income and tax

policy and social welfare are generally not treated under this heading. Also,

competition theory and regulation starts from the premise that markets are,

in general, capable of solving our economic problems. Therefore, the theory

does not deal with socialist planning or outright nationalization.

2. Markets

2.1. The relevant market. Competition theory and policy are con-

cerned with markets. However, it is very unclear what constitutes a mar-

ket. The German anti-cartel law (Gesetz gegen Wettbewerbsbeschränkun-

gen, GWB) uses the phrase of “relevant market”. How do we find out what

is the relevant market?

519
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2.1.1. Cross price elasticity of demand. First of all, the relevant market

should contain all products that are close substitutes. We ascertain substi-

tutes using the cross price elasticity of demand:

εxg,pk =

∂xg
xg

∂pk
pk

=
∂xg
∂pk

pk
xg

In case of εxg,pk > 0, goods g and k are called substitutes (see, however,

the discussion in chapter VII, pp. 175). If the price of good k is lowered,

demand for good g goes down. Thus, if the cross elasticity is above a certain

threshold, k belongs to the market of g.

2.1.2. Supply-side substitutes. Second, however, the relevant market in-

cludes supply-side substitutes. For example, a firm, producing tables from

wood, may consider making wooden toys if the price of these toys increases.

In this sense, immediate entrants (if not their products) may also be reck-

oned to be part of the toy market.

2.1.3. SSNIP-Test. SSNIP stands for “small but significant non-transi-

tory increase in prices” and has been introduced by the US department of

justice. For instance, consider the question whether butter and margarine

belong to one market. If, hypothetically, all the producers of butter merged,

would it be in the interest of the newly-formed butter monopolist to increase

the price of butter by about 5 to 10%? If the answer is “yes”, margarine is

not a sufficiently strong substitute for butter. If the answer is no, margarine

is a strong substitute for butter. Then, butter and margarine belong to one

market. Of course, with the SSNIP test we can look at the hypothetical

merger of butter and margarine producers to examine whether honey, also,

belongs to the butter/margarine market.

2.1.4. Price correlation test. Stigler & Sherwin (1985) propose the price-

correlation test. The basic idea is as follows: If two goods belong to the same

market, their prices should follow a similar time path.

2.2. Measures of concentration. Once we have defined the relevant

market, we can consider its concentration. Measures of concentration often

refer to market shares. If firm i’s output is xi, its market share is given by

si :=
xi
X
,

where X denotes the sum of outputs of all n firms in the industry, i.e.,

X =
�n

i=1 xi.

A very simple measure of concentration is the rate of concentration Ck.

It adds up the market shares of the k largest firms. Assuming s1 ≥ s2 ≥ ...

(which is just a matter of renaming), the k-rate of concentration Ck is given

by

Ck =
k�

i=1

si.
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E������� XXI.1. Determine the C2 rate of concentration for the fol-

lowing examples:

(1) Two firms with equal market shares.

(2) Three firms with market shares of s1 = 0.8, s2 = 0.1 and s3 = 0.1.

(3) Three firms with market shares of s1 = 0.6, s2 = 0.2 and s3 = 0.2.

For n equally large firms, we obtain

Ck =
k

n
, k ≤ n

The more firms there are, the lower the rate of concentration. In general,

measures of concentration yield 1 for the monopoly case and 0 for perfect

competition. The rates of concentration fulfill this desideratum. The mo-

nopoly case leads to k = n = 1 and k
n = 1 while perfect competition means

n → ∞ and limn→∞ k
n
= 0. One may not like the fact that the merger of

two firms will not change Ck if the merged firms do not belong to the k

largest firms. This peculiarity is avoided by the Herfindahl index, to which

we now turn.

The Herfindahl indexH is another prominent concentration index. Right-

fully, it should be named the Hirschman (1964) index; it is also often called

the Herfindahl-Hirschman index. It is calculated by squaring the market

shares of all firms in an industry and summing them up:

H =
n�

i=1

�xi
X

�2
=

n�

i=1

s2i .

First, we check the monopoly and perfect competition cases. The monopoly

case yields H = 12 = 1. If we have n equally large firms in the industry, we

find

H =
n�

i=1

�
1

n

�2
= n · 1

n2
=

1

n
,

a very nice result indeed. Perfect competition yields H = 0 by limn→∞ 1
n =

0.

E������� XXI.2. Determine the Herfindahl index for the following ex-

amples:

(1) Two firms with equal market shares.

(2) Three firms with market shares of s1 = 0.8, s2 = 0.1 and s3 = 0.1.

(3) Three firms with market shares of s1 = 0.6, s2 = 0.2 and s3 = 0.2.

E������� XXI.3. Can we be sure that the Herfindahl index increases

when two firms merge?

The Herfindahl index obviously takes account not only of the number

of firms but also of the disparity of market shares. Indeed, the Herfindahl

index is a function of the number of firms in the market, n, and the variation

coefficient, V :
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H =
1 + V 2

n
.

The variation coefficient is defined by

V =
standard deviation

mean
=

'
1
n

�n
i=1

�
xi − X

n

�2
X
n

.

E������� XXI.4. Can you show H = 1+V 2

n ? Hint: Express V
2 in terms

of n and H!

3. Models

3.1. Introduction. Regulation and competition policy aims to pro-

vide methods to make the market mechanism work. How are we to judge

whether certain market outcomes are good? Obviously, we need to predict

market outcomes (positive theory) and to judge them (normative theory). In

this book, we consider these models relevant for regulation and competition

issues:

• perfect competition and the first welfare theorem (chapter XIX)

• Cournot monopoly model (chapter XI)

• oligopoly models such as the Bertrand, Cournot and Stackelberg

oligopoly models (chapter XI, also this chapter, pp. 523)

• structure-conduct-performance paradigm (this chapter, pp. 522)

• natural monopoly and Ramsey pricing (this chapter, pp. 527)

• rate-of-return restriction in the private sector (this chapter, pp.

528)

3.2. The structure-conduct-performance paradigm. The struc-

ture-conduct-performance paradigm provides an effective approach to ana-

lyze industrial performance. Established by Mason (1939) and Bain (1956),

this model introduces three important categories:

• Structure

— How many firms are there in the market/industry, how con-

centrated is the market/industry?

— Do potential competitors face entry barriers?

— Are the products differentiated?

• Conduct

— Are prices close to marginal costs?

— Are the products of high quality? Are they differentiated?

— What distributional channels do the firms use? Do they offer

their products in major cities only?

— How much do firms spend on advertising?

— How much do firms spend on research and development?

Basically, conduct refers to the four p known from marketing: price,

product, place, promotion.
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• Performance

— Do firms make profits?

— Are the products safe?

— Are prices close to marginal costs?

— Do the firms successfully innovate (process or product innova-

tion)?

The structure-conduct-performance paradigm is based on a simple idea.

Structure determines conduct and conduct determines performance. For ex-

ample, a monopoly (structure: one seller only) chooses the profit-maximizing

price (conduct: marginal cost equals marginal revenue) so that the mo-

nopolist is well-off while consumers suffer (performance: monopoly profits,

deadweight loss).

Of course, this is an incomplete picture. Profits may be used to finance

research and development (performance influences conduct). Successful in-

novation may alter the industry structure through lower costs or different

products (performance influcences structure). A third example: prices, ad-

vertising, or product differentiation (conduct) may be used to deter entry

(structure).

Concentration is a major determinant of structure.

3.3. Cournot, concentration, and monopoly power. Before turn-

ing to Selten’s model, we give a simple answer to the question why colluding

might be frowned upon from the standpoint of economic welfare. Collusion

means that several firms act as one firm. This is bad because according to

the Cournot model the deadweight loss is higher for fewer firms. First, we

show this by way of a very simple Cournot model with identical and constant

marginal costs (section 3.3.1). In that model, all firms produce the same

output and concentration is just a negative function of the number of firms.

In general, not only the number of firms, but also their sizes, matter for

concentration and market outcomes. Therefore, we have looked at different

concentration measures in section 2.2 before linking one of these measures,

the Herfindahl index, to the Cournot model in the upcoming section 3.3.2.

3.3.1. Cournot and welfare. The Cournot duopoly considers two firms

producing outputs x1 and x2, respectively. The market output is X =

x1+x2. As in chapter XI, we assume a linear inverse demand function given

by

p (X) = a− bX

and depicted in fig. 1 (we return to the deadweight loss in a minute).

Moreover, marginal costs are constant, at c1 and c2, respectively. The

two firms’ profit functions are

Π1 (x1, x2) = (a− b (x1 + x2))x1 − c1x1 and

Π2 (x1, x2) = (a− b (x1 + x2))x2 − c2x2.
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X

( ) XXp −=1

1

1

p
deadweight
loss for c=0: 2

2
1 p

F����� 1. The inverse linear demand curve

In order to simplify the profit functions even further, we assume a = 1,

b = 1, and c1 = c2 = 0 and obtain

Π1 (x1, x2) = (1− (x1 + x2))x1 and

Π2 (x1, x2) = (1− (x1 + x2))x2.

In case of identical unit costs, both firms produce a positive quantity in

equilibrium. We find the reaction functions xR1 and xR2 , given by

xR1 (x2) = argmax
x1

Π1 (x1, x2) =
1− x2

2
and

xR2 (x1) = argmax
x2

Π2 (x1, x2) =
1− x1

2
.

The Cournot-Nash equilibrium is then the strategy vector
�
xC1 , x

C
2

�
=
�
1
3 ,
1
3

�
.

Also, we find

XC = xC1 + xC2 =
2

3
,

pC =
1

3
,

ΠC
1 = ΠC

2 =
1

3
· 1
3
=

1

9
.

E������� XXI.5. Calculate the reaction function of firm 1 in case of

three firms. Use the above linear inverse demand function and identical and

constant unit costs c. Assuming a symmetric equilibrium, apply x1 = x2 =

x3 to that reaction function in order to arrive at the Nash equilibrium.

Fig. 1 above reveals that a price p (above constant marginal costs of

zero!) leads to the deadweight loss of 12p
2. We can now show that the number

of firms in the Cournot model is negatively related to the deadweight loss.
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E������� XXI.6. Calculate the monopoly output and compare the dead-

weight loss occurring for 1, 2, and 3 firms.

3.3.2. Cournot, Lerner and Herfindahl. The aversion to collusion is due

to the increasing deadweight loss. Alternatively, we can look at an important

measure of monopoly power, the so-called Lerner degree of monopoly or

Lerner measure. For an individual firm, the Lerner measure is equal to the

price-cost margin

p−MC

p
.

It equals zero for perfect competition and answers the question by how much

a firm can increase its price above marginal cost. For the whole industry

with n firms, the Lerner measure is the weighted average of the individual

Lerner measures where the market shares are used as weights:

n�

i=1

si
p−MCi

p

We will show that there is a close relation between the industry Lerner

measure and the Herfindahl index.

Consider one specific firm i in Cournot competition. Firm i’s revenue is

given by

R (xi) = p (X)xi.

In the Cournot model, firms simultaneously choose their outputs so that

dxj/dxi = 0 for i �= j and hence dX/dxi = 1. Therefore, firm i’s marginal

revenue is
dR

dxi
= p+ xi

dp

dX

dX

dxi
= p+ xi

dp

dX
.

It can be expressed as a function of its market share si =
xi
X and the price

elasticity of demand

εX,p =
dX
X
dp
p

=
dX

dp

p

X
.

Since εX,p is negative for negatively sloped demand functions (inverse or

not), we often write −|εX,p| instead of εX,p. Now, by way of some simple

manipulations we get

MRi (xi) = p+ xi
dp

dX

= p

�
1 +

xi
p

dp

dX

�
(factor out p)

= p

�
1 +

xi
X

X

p

dp

dX

�
(multiply by X/X)

= p

�
1− si

1

|εX,p|

�
(apply definitions).
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q
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2q
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saving

deadweight
loss

1q

F����� 2. Deadweight loss versus efficiency gain

The profit maximization in a Cournot equilibrium requires the equalization

of marginal revenue and marginal cost. Hence, the Lerner index for firm i

in equilibrium is equal to

p−MCi

p
=

p− p

�
1− si

|εX,p|

�

p
=

si
|εX,p|

, (XXI.1)

while the industry Lerner index equals

n�

i=1

si
p−MCi

p
=

n�

i=1

si
si

|εX,p|
=

1

|εX,p|
n�

i=1

s2i =
H

|εX,p|
. (XXI.2)

Thus, the industry Lerner degree of monopoly power is the higher,

• the less elastic market demand and

• the more concentrated the market.

3.3.3. Williamson’s naive tradeoff model. In our model there is no dif-

ference between firms’ collusion and merger. Although competition policy

opposes collusion, it has no clearcut view on mergers. The reason is that

mergers may yield economies of scale. Fig. 2, taken from Williamson (1968,

pp. 21), shows the ensuing tradeoff. Suppose that two firms (in Bertrand

competiton) have average (and marginal) costs AC1. Now, they merge which

results in a cost saving of AC1−AC2 per quantity produced. Since now costs

are lower and the merged firm uses the MR =MC rule. On one hand, there

is a deadweight loss with respect to the old costs AC1. On the other hand,

they produce cheaper because costs are lower.

Williamson (1968, pp. 26) also comments on the danger that a specific

merger could start a merger trend which may be undesirable. Other econo-

mists of the Chicago school of economics tend to stress the efficiency gains,
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PCy y

Ramseyp

p

Mp

( )Xp

MR

My

MC

AC

PCp

Ramseyy

F����� 3. A conflict between non-negative profits and wel-

fare maximization

for example Bork & Bowman, Jr. (1965, p. 594): “The difficulty with stop-

ping a trend toward a more concentrated condition at a very early stage is

that the existence of the trend is prima facie evidence that greater concen-

tration is socially desirable. The trend indicates that there are emerging

efficiencies or economies of scale — whether due to engineering and produc-

tion developments or to new control and management techniques ... ”

3.4. Natural monopoly and Ramsey prices. Some industries can

be said to be natural monopolies. This means that we have a cost struc-

ture such that one firm is best suited to serve the market at minimal cost.

Consider fig. 3 where you see three prices:

• the monopoly price pM ,

• the marginal-cost, or perfect-competition, price pPC and, finally,

• the Ramsey price pRamsey.

While the marginal-cost price pPC is welfare-maximizing, it may well lead

to negative profits as can be seen from the figure. If negative profits are

to be avoided for some reason, one may consider the following optimization

problem: Choose the welfare-maximizing prices compatible with nonnega-

tive profits. These prices are called Ramsey prices. Indeed, price pRamsey

does the trick.

One may consider applying Ramsey pricing to public utilities (such as

electricity or water supply). However, as a practical rule, Ramsey pricing

has its drawbacks. First, the informational requirements (cost functions,

elasticities!) are prohibitive. Second, in the model the cost functions are

given and not subject to the behaviour of the public utilities. Thus, the

incentives of public utilities do no play any role. Third, Ramsey pricing

does not take account of distributional issues.
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3.5. Restricting the rate of return in the private sector. Picking

up on the problem described in the previous section, the government might

be concerned about excessive profits in the private sector. It may try to im-

pose maximal cash-flow returns or maximal returns on profits. The famous

Averch-Johnson model shows that such a profit constraint may lead to an

inefficient use of the factors of production.

We use the following definitions:

cash-flow return =
revenue − labor costs

capital
,

return on profit =
profit

capital
.

Let K and L be the factors of capital and labor, respectively, and let i and

w be the factor prices. By R (K,L), we denote the revenue obtainable from

the input of K units of capital and L units of labor. Then, the firm’s profit

is given by

Π(K,L) = R (K,L)−wL− iK.

If the government imposes a maximal cash-flow return of s, capital and labor

are to be chosen in accordance with

R (K,L)−wL

K
≤ s.

By

R (K,L)−wL

K
≤ s

⇔ R (K,L)−wL ≤ sK

⇔ R (K,L)−wL− iK ≤ (s− i)K

⇔ Π(K,L)

K
≤ s− i

a cash-flow return of s corresponds to a profit return of s− i. In this sense,

a cash-flow return constraint is equivalent to a profit return constraint.

According to the last inequality, the maximal profit attainable is

π (K,L) = (s− i)K.

Now, since the use of more capital allows the firm a higher profit, it has an

incentive to substitute labor by capital. This is the result found by Averch

& Johnson (1962) and hinted at in fig. 4. In that figure, profit is depicted

as a function of capital K where labor L (K) is chosen optimally for the

respective level of capital.

4. Overall concepts of competition (policy)

Several concepts of competition exist in economic theory. Sometimes, it

is helpful to refer to these overall concepts.



4. OVERALL CONCEPTS OF COMPETITION (POLICY) 529
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F����� 4. Overuse of capital

4.1. Classical liberalism. Adam Smith favors open markets and the

abolishment of monopoly privileges, granted by the government. He does

not advocate a specific anti-cartel or anti-merger policy.

However, Smith identifies sectors where competition would not work and

where the government has to provide these goods: streets, bridges, canals,

ports, postal services, water.

4.2. Perfect competition and general equilibrium. The general

equilibrium theory and perfect competition (chapter XIX) provide another

important perspective on competition. According to this theory, many small

firms choose quantities by equalizing marginal cost and price.

4.3. Freiburg school of “ordoliberalism”. Walter Eucken (1990,

pp. 255-299) not only favors liberal principles such as open markets, pri-

vate property, and freedom of contract, but also advocates a “Monopo-

lamt”. In chapter XX (pp. 507) we show how Eucken wanted to ap-

ply the concept of perfect competition to competition policy. The Ger-

man “Act against Restraints of Competition” (Gesetz gegen Wettbewerbs-

beschränkungen, GWB) is partly inspired by Eucken’s ideas.

4.4. Chicago school of antitrust policy. The Chicago School of

Antitrust Policy argues that cartels, mergers and other business practices,

that many economists like Eucken criticize, are beneficial to consumers (see

also p. 527). From this point of view the main problem is that monopoly

power is bestowed by the government. The Chicago School representatives

argue that the model of perfect competition has no prominent status. This

is also true for the Harvard School.

According to William Landes (see Kitch 1983, p. 193), Ronald Coase, a

famous member of the Chicago school said “he had gotten tired of anti-trust

because when the prices went up the judges said it was monopoly, when the
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prices went down, they said it was predatory pricing, and when they stayed

the same, they said it was tacit collusion.”

4.5. Harvard school of workable competition. The Harvard school

of workable competition has an empirical focus. Starting from the structure-

conduct-performance paradigm (pp. 522), the Harvard scholars try to iden-

tify structural elements that lead to a good or bad performance.

4.6. Contestable markets. While the model of perfect competition

deals with actual competition, contestable-markets theory focuses on poten-

tial competition in an extreme manner.

4.7. Kantzenbach’s model of optimal competition intensity. Er-

hard Kantzenbach (1966) argues that competition intensity depends on how

fast firms react to advances of other competitors (lower prices, higher qual-

ity etc.). He suggests that in case of many firms on the market, advances

of individual competitors are not important to the other firms. From this

point of view (potential competition intensity), a small number of firms is

more conducive to competition intensity than a larger one. However, since

cartelization is more likely with a small number of firms, the so-called ef-

fective competition intensity is maximized for 4 to 6 competitors. An early

critique of Kantzenbach’s approach is Hoppmann (1966).

4.8. The Austrian school. The Austrian School of Economics does

not subscribe to the way competition is portrayed in models of perfect com-

petition (and industrial organization). Instead,

• Friedrich Hayek insists on the importance of ongoing change in an

economy and on competition as a discovery process (what would

the use of competition be if all the relevant facts were given?) while

• Israel Kirzner stresses the importance of entrepreneurial discovery.

In chapter XX (pp. 508) we present central quotes from this strand of

thought.

4.9. Joseph Schumpeter. Joseph Schumpeter describes economic and

technical change as a process of creative destruction (see pp. 511).

4.10. Freedom and competition. Hoppmann (1966) stresses the

freedom of competition (“Wettbewerbsfreiheit”). While competition may

further economic welfare, this fact should not be the main argument in

favor of competition policy.

5. Competition laws

5.1. Overview. In this section we will discuss the European and Ger-

man competition laws. Articles 81 through 86 from the Treaty of the Eu-

ropean Commission contain the main regulative principles of the European

competition policy. We cite articles 81 and 82 in the following sections.
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According to article 81, anti-competitive agreements are prohibited un-

less they are necessary for the attainment of beneficial effects (production,

distribution, technical or economic progress), a fair share of which accrue to

consumers.

Article 82 deals with the abuse of a dominant position. For example,

unfair purchase or selling prices and price discrimination are prohibited.

Furthermore, the Council and the Commision have issued clarifying and

additional regulations, notices, and guidelines. For example, the investiga-

tive powers of the Commission had to be specified.

The German law against the restriction of competition (Gesetz gegen

Wettbewerbsbeschränkungen, GWB) enforces similar rules. The first section

of the first part corresponds to article 81 while the second section of the first

part is close to article 82. The third section of the first part is concerned

with the relationship between the German competition law and the EU law.

We will cite central passages of the GWB.

5.2. Article 81 of the Treaty of the European Community . 1.

The following shall be prohibited as incompatible with the common market:

all agreements between undertakings, decisions by associations of undertak-

ings and concerted practices which may affect trade between Member States

and which have as their object or effect the prevention, restriction or dis-

tortion of competition within the common market, and in particular those

which:

(a) directly or indirectly fix purchase or selling prices or any other trading

conditions;

(b) limit or control production, markets, technical development, or in-

vestment;

(c) share markets or sources of supply;

(d) apply dissimilar conditions to equivalent transactions with other

trading parties, thereby placing them at a competitive disadvantage;

(e) make the conclusion of contracts subject to acceptance by the other

parties of supplementary obligations which, by their nature or according to

commercial usage, have no connection with the subject of such contracts.

2. Any agreements or decisions prohibited pursuant to this article shall

be automatically void.

3. The provisions of paragraph 1 may, however, be declared inapplicable

in the case of:

- any agreement or category of agreements between undertakings,

- any decision or category of decisions by associations of undertakings,

- any concerted practice or category of concerted practices,

which contributes to improving the production or distribution of goods

or to promoting technical or economic progress, while allowing consumers a

fair share of the resulting benefit, and which does not:
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(a) impose on the undertakings concerned restrictions which are not

indispensable to the attainment of these objectives;

(b) afford such undertakings the possibility of eliminating competition

in respect of a substantial part of the products in question.

5.3. Article 82 of the Treaty of the European Community. Any

abuse by one or more undertakings of a dominant position within the com-

mon market or in a substantial part of it shall be prohibited as incompatible

with the common market in so far as it may affect trade between Member

States.

Such abuse may, in particular, consist in:

(a) directly or indirectly imposing unfair purchase or selling prices or

other unfair trading conditions;

(b) limiting production, markets or technical development to the preju-

dice of consumers;

(c) applying dissimilar conditions to equivalent transactions with other

trading parties, thereby placing them at a competitive disadvantage;

(d) making the conclusion of contracts subject to acceptance by the other

parties of supplementary obligations which, by their nature or according to

commercial usage, have no connection with the subject of such contracts.

5.4. Gesetz gegen Wettbewerbsbeschränkungen. Vollzitat: Ge-

setz gegen Wettbewerbsbeschränkungen in der Fassung der Bekanntmachung

vom 15. Juli 2005 (BGBl. I S. 2114), zuletzt geändert durch Artikel 7 Abs.

11 des Gesetzes vom 26. März 2007 (BGBl. I S. 358)

§ 1 Verbot wettbewerbsbeschränkender Vereinbarungen (erster Teil, erster

Abschnitt). Vereinbarungen zwischen Unternehmen, Beschlüsse von Unter-

nehmensvereinigungen und aufeinander abgestimmte Verhaltensweisen, die

eine Verhinderung, Einschränkung oder Verfälschung des Wettbewerbs be-

zwecken oder bewirken, sind verboten.

§ 2 Freigestellte Vereinbarungen (erster Teil, erster Abschnitt). (1) Vom Ver-

bot des § 1 freigestellt sind Vereinbarungen zwischen Unternehmen, Beschl-

üsse von Unternehmensvereinigungen oder aufeinander abgestimmte Verhal-

tensweisen, die unter angemessener Beteiligung der Verbraucher an dem

entstehenden Gewinn zur Verbesserung der Warenerzeugung oder -verteilung

oder zur Förderung des technischen oder wirtschaftlichen Fortschritts beitra-

gen, ohne dass den beteiligten Unternehmen

1. Beschränkungen auferlegt werden, die für die Verwirklichung dieser

Ziele nicht unerlässlich sind, oder

2. Möglichkeiten eröffnet werden, für einen wesentlichen Teil der betre-

ffenden Waren den Wettbewerb auszuschalten.

...
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§ 19 Missbrauch einer marktbeherrschenden Stellung (erster Teil, zweiter

Abschnitt). (1) Die missbräuchliche Ausnutzung einer marktbeherrschenden

Stellung durch ein oder mehrere Unternehmen ist verboten.

(2) Ein Unternehmen ist marktbeherrschend, soweit es als Anbieter oder

Nachfrager einer bestimmten Art von Waren oder gewerblichen Leistungen

auf dem sachlich und räumlich relevanten Markt

1. ohne Wettbewerber ist oder keinem wesentlichen Wettbewerb ausge-

setzt ist oder

2. eine im Verhältnis zu seinen Wettbewerbern überragende Markt-

stellung hat; hierbei sind insbesondere sein Marktanteil, seine Finanzkraft,

sein Zugang zu den Beschaffungs- oder Absatzmärkten, Verflechtungen mit

anderen Unternehmen, rechtliche oder tatsächliche Schranken für den Mark-

tzutritt anderer Unternehmen, der tatsächliche oder potentielle Wettbewerb

durch innerhalb oder außerhalb des Geltungsbereichs dieses Gesetzes ansäs-

sige Unternehmen, die Fähigkeit, sein Angebot oder seine Nachfrage auf an-

dere Waren oder gewerbliche Leistungen umzustellen, sowie die Möglichkeit

der Marktgegenseite, auf andere Unternehmen auszuweichen, zu berück-

sichtigen.

Zwei oder mehr Unternehmen sind marktbeherrschend, soweit zwischen

ihnen für eine bestimmte Art von Waren oder gewerblichen Leistungen ein

wesentlicher Wettbewerb nicht besteht und soweit sie in ihrer Gesamtheit

die Voraussetzungen des Satzes 1 erfüllen. Der räumlich relevante Markt

im Sinne dieses Gesetzes kann weiter sein als der Geltungsbereich dieses

Gesetzes.

(3) Es wird vermutet, dass ein Unternehmen marktbeherrschend ist,

wenn es einen Marktanteil von mindestens einem Drittel hat. Eine Gesamt-

heit von Unternehmen gilt als marktbeherrschend, wenn sie

1. aus drei oder weniger Unternehmen besteht, die zusammen einen

Marktanteil von 50 vom Hundert erreichen, oder

2. aus fünf oder weniger Unternehmen besteht, die zusammen einen

Marktanteil von zwei Dritteln erreichen,

es sei denn, die Unternehmen weisen nach, dass die Wettbewerbsbedin-

gungen zwischen ihnen wesentlichen Wettbewerb erwarten lassen oder die

Gesamtheit der Unternehmen im Verhältnis zu den übrigen Wettbewerbern

keine überragende Marktstellung hat.

(4) Ein Missbrauch liegt insbesondere vor, wenn ein marktbeherrschen-

des Unternehmen als Anbieter oder Nachfrager einer bestimmten Art von

Waren oder gewerblichen Leistungen

1. die Wettbewerbsmöglichkeiten anderer Unternehmen in einer für den

Wettbewerb auf dem Markt erheblichen Weise ohne sachlich gerechtfertigten

Grund beeinträchtigt;
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2. Entgelte oder sonstige Geschäftsbedingungen fordert, die von denjeni-

gen abweichen, die sich bei wirksamem Wettbewerb mit hoher Wahrschein-

lichkeit ergeben würden; hierbei sind insbesondere die Verhaltensweisen von

Unternehmen auf vergleichbaren Märkten mit wirksamem Wettbewerb zu

berücksichtigen;

3. ungünstigere Entgelte oder sonstige Geschäftsbedingungen fordert,

als sie das marktbeherrschende Unternehmen selbst auf vergleichbaren Märk-

ten von gleichartigen Abnehmern fordert, es sei denn, dass der Unterschied

sachlich gerechtfertigt ist;

4. sich weigert, einem anderen Unternehmen gegen angemessenes Ent-

gelt Zugang zu den eigenen Netzen oder anderen Infrastruktureinrichtungen

zu gewähren, wenn es dem anderen Unternehmen aus rechtlichen oder tat-

sächlichen Gründen ohne die Mitbenutzung nicht möglich ist, auf dem vor-

oder nachgelagerten Markt als Wettbewerber des marktbeherrschenden Un-

ternehmens tätig zu werden; dies gilt nicht, wenn das marktbeherrschende

Unternehmen nachweist, dass die Mitbenutzung aus betriebsbedingten oder

sonstigen Gründen nicht möglich oder nicht zumutbar ist.

§ 20 Diskriminierungsverbot, Verbot unbilliger Behinderung. (1) Marktbe-

herrschende Unternehmen, Vereinigungen von miteinander im Wettbewerb

stehenden Unternehmen im Sinne der §§ 2, 3 und 28 Abs. 1 und Un-

ternehmen, die Preise nach § 28 Abs. 2 oder § 30 Abs. 1 Satz 1 binden,

dürfen ein anderes Unternehmen in einem Geschäftsverkehr, der gleicharti-

gen Unternehmen üblicherweise zugänglich ist, weder unmittelbar noch mit-

telbar unbillig behindern oder gegenüber gleichartigen Unternehmen ohne

sachlich gerechtfertigten Grund unmittelbar oder mittelbar unterschiedlich

behandeln.

(2) Absatz 1 gilt auch für Unternehmen und Vereinigungen von Un-

ternehmen, soweit von ihnen kleine oder mittlere Unternehmen als Anbi-

eter oder Nachfrager einer bestimmten Art von Waren oder gewerblichen

Leistungen in der Weise abhängig sind, dass ausreichende und zumutbare

Möglichkeiten, auf andere Unternehmen auszuweichen, nicht bestehen. Es

wird vermutet, dass ein Anbieter einer bestimmten Art von Waren oder

gewerblichen Leistungen von einem Nachfrager abhängig im Sinne des Satzes

1 ist, wenn dieser Nachfrager bei ihm zusätzlich zu den verkehrsüblichen

Preisnachlässen oder sonstigen Leistungsentgelten regelmäßig besondere Ver-

günstigungen erlangt, die gleichartigen Nachfragern nicht gewährt werden.

(3) Marktbeherrschende Unternehmen und Vereinigungen von Unterneh-

men im Sinne des Absatzes 1 dürfen ihre Marktstellung nicht dazu aus-

nutzen, andere Unternehmen im Geschäftsverkehr dazu aufzufordern oder zu

veranlassen, ihnen ohne sachlich gerechtfertigten Grund Vorteile zu gewähren.

Satz 1 gilt auch für Unternehmen und Vereinigungen von Unternehmen im

Sinne des Absatzes 2 Satz 1 im Verhältnis zu den von ihnen abhängigen

Unternehmen.
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(4) Unternehmen mit gegenüber kleinen und mittleren Wettbewerbern

überlegener Marktmacht dürfen ihre Marktmacht nicht dazu ausnutzen,

solche Wettbewerber unmittelbar oder mittelbar unbillig zu behindern. Eine

unbillige Behinderung im Sinne des Satzes 1 liegt insbesondere vor, wenn

ein Unternehmen Waren oder gewerbliche Leistungen nicht nur gelegentlich

unter Einstandspreis anbietet, es sei denn, dies ist sachlich gerechtfertigt.

(5) Ergibt sich auf Grund bestimmter Tatsachen nach allgemeiner Er-

fahrung der Anschein, dass ein Unternehmen seine Marktmacht im Sinne des

Absatzes 4 ausgenutzt hat, so obliegt es diesem Unternehmen, den Anschein

zu widerlegen und solche anspruchsbegründenden Umstände aus seinem

Geschäftsbereich aufzuklären, deren Aufklärung dem betroffenen Wettbe-

werber oder einem Verband nach § 33 Abs. 2 nicht möglich, dem in Anspruch

genommenen Unternehmen aber leicht möglich und zumutbar ist.

(6) Wirtschafts- und Berufsvereinigungen sowie Gütezeichengemeinschaf-

ten dürfen die Aufnahme eines Unternehmens nicht ablehnen, wenn die

Ablehnung eine sachlich nicht gerechtfertigte ungleiche Behandlung darstellen

und zu einer unbilligen Benachteiligung des Unternehmens im Wettbewerb

führen würde.

5.5. Act Against Restraints of Competition. Following the pas-

sages from the GWB above, we now present the English translation:

“Full citation: Act Against Restraints of Competition in the version

published on 15 July 2005 (Bundesgesetzblatt (Federal Law Gazette) I, page

2114; 2009 I page 3850), as last amended by Article 3 of the Act of 26 July

2011 (Federal Law Gazette I, page 1554)

PART I

Restraints of Competition

FIRST CHAPTER

Agreements, Decisions and Concerted Practices Restricting Competition

§ 1

Prohibition of Agreements Restricting Competition

Agreements between undertakings, decisions by associations of under-

takings and concerted practices, which have as their object or effect the

prevention, restriction or distortion of competition, shall be prohibited.

§ 2

Exempted Agreements

(1) Agreements between undertakings, decisions by associations of un-

dertakings or concerted practices, which, while allowing consumers a fair

share of the resulting benefit, contribute to improving the production or

distribution of goods or to promoting technical or economic progress, and

which do not

1. impose on the undertakings concerned restrictions which are not

indispensable to the attainment of these objectives, or
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2. afford such undertakings the possibility of eliminating competition in

respect of a substantial part of the products in question

shall be exempted from the prohibition of § 1.

(2) For the application of paragraph 1, Regulations of the Council or the

Commission of the European Community on the application of Article 81 (3)

of the Treaty Establishing the European Community to certain categories of

agreements, decisions by associations of undertakings and concerted prac-

tices (block exemption regulations), shall apply mutatis mutandis. This shall

also apply where the agreements, decisions and practices mentioned therein

are inappropriate to affect trade between Member States of the European

Community.

[. . . ]

SECOND CHAPTER

Market Dominance, Restrictive Practices

§ 19

Abuse of a Dominant Position

(1) The abusive exploitation of a dominant position by one or several

undertakings is prohibited.

(2) An undertaking is dominant where, as a supplier or purchaser of

certain kinds of goods or commercial services on the relevant product and

geographic market, it:

1. has no competitors or is not exposed to any substantial competition,

or

2. has a paramount market position in relation to its competitors; for

this purpose, account shall be taken in particular of its market share, its

financial power, its access to supplies or markets, its links with other un-

dertakings, legal or factual barriers to market entry by other undertakings,

actual or potential competition by undertakings established within or out-

side the scope of application of this Act, its ability to shift its supply or

demand to other goods or commercial services, as well as the ability of the

opposite market side to resort to other undertakings.

Two or more undertakings are dominant insofar as no substantial com-

petition exists between them with respect to certain kinds of goods or com-

mercial services and they jointly satisfy the conditions of sentence 1. The

relevant geographic market within the meaning of this Act may be broader

than the scope of application of this Act.

(3) An undertaking is presumed to be dominant if it has a market share

of at least one third. A number of undertakings is presumed to be dominant

if it:

1. consists of three or fewer undertakings reaching a combined market

share of 50 percent, or

2. consists of five or fewer undertakings reaching a combined market

share of two thirds,
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unless the undertakings demonstrate that the conditions of competition

may be expected to maintain substantial competition between them, or that

the number of undertakings has no paramount market position in relation

to the remaining competitors.

(4) An abuse exists in particular if a dominant undertaking as a supplier

or purchaser of certain kinds of goods or commercial services:

1. impairs the ability to compete of other undertakings in a manner

affecting competition in the market and without any objective justification;

2. demands payment or other business terms which differ from those

which would very likely arise if effective competition existed; in this con-

text, particularly the conduct of undertakings in comparable markets where

effective competition prevails shall be taken into account;

3. demands less favourable payment or other business terms than the

dominant undertaking itself demands from similar purchasers in comparable

markets, unless there is an objective justification for such differentiation;

4. refuses to allow another undertaking access to its own networks or

other infrastructure facilities against adequate remuneration, provided that

without such concurrent use the other undertaking is unable for legal or fac-

tual reasons to operate as a competitor of the dominant undertaking on the

upstream or downstream market; this shall not apply if the dominant under-

taking demonstrates that for operational or other reasons such concurrent

use is impossible or cannot reasonably be expected.

§ 20

Prohibition of Discrimination, Prohibition of Unfair Hindrance

(1) Dominant undertakings, associations of competing undertakings with-

in the meaning of §§ 2, 3, and 28 (1) and undertakings which set retail prices

pursuant to § 28 (2), or § 30 (1) sentence 1, shall not directly or indirectly

hinder in an unfair manner another undertaking in business activities which

are usually open to similar undertakings, nor directly or indirectly treat it

differently from similar undertakings without any objective justification.

(2) Paragraph 1 shall also apply to undertakings and associations of

undertakings insofar as small or medium-sized enterprises as suppliers or

purchasers of certain kinds of goods or commercial services depend on them

in such a way that sufficient and reasonable possibilities of resorting to other

undertakings do not exist. A supplier of a certain kind of goods or commer-

cial services shall be presumed to depend on a purchaser within the meaning

of sentence 1 if this purchaser regularly obtains from this supplier, in ad-

dition to discounts customary in the trade or other remuneration, special

benefits which are not granted to similar purchasers.

(3) Dominant undertakings and associations of undertakings within the

meaning of paragraph 1 shall not use their market position to invite or to

cause other undertakings in business activities to grant them advantages
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without any objective justification. Sentence 1 shall also apply to undertak-

ings and associations of undertakings in relation to the undertakings which

depend on them.

(4) Undertakings with superior market power in relation to small and

medium-sized competitors shall not use their market position directly or in-

directly to hinder such competitors in an unfair manner. An unfair hindrance

within the meaning of sentence 1 exists in particular if an undertaking

1. offers food within the meaning of § 2 (2) of the German Food and

Feed Code (Lebensmittel- und Futtermittelgesetzbuch, LFGB) below its cost

price, or

2. offers other goods or commercial services not merely occasionally

below its cost price, or

3. demands from small or medium-sized undertakings with which it com-

petes on the downstream market in the distribution of goods or commercial

services a price for the delivery of such goods and services which is higher

than the price it itself offers on such market,

unless there is, in each case, an objective justification for this. The offer

of food below cost price is objectively justified if such offer is suitable to

prevent the deterioration or the imminent unsaleability of the goods at the

dealer’s premises by a timely sale, as well as in similarly severe cases. The

donation of food to charity organisations for utilisation within the scope of

their responsibilities shall not constitute an unfair hindrance.

(5) If on the basis of specific facts and in the light of general experience it

appears that an undertaking has used its market power within the meaning

of paragraph 4, it shall be incumbent upon this undertaking to disprove

the appearance and to clarify such circumstances in its field of business on

which legal action may be based, which cannot be clarified by the competitor

concerned or by an association referred to in § 33 (2), but which can be easily

clarified, and may reasonably be expected to be clarified, by the undertaking

against which action is taken.

(6) Trade and industry associations or professional organisations as well

as quality mark associations shall not refuse to admit an undertaking if such

refusal constitutes an objectively unjustified unequal treatment and would

place the undertaking at an unfair competitive disadvantage.

Translator’s Note

The amendment of paragraphs 3 and 4 by Article 1 no. 2 of the Act

on the Prevention of Price Abuse in the areas of Energy Supply and the

Food Trade (Gesetz zur Bekämpfung von Preismissbrauch im Bereich der

Energieversorgung und des Lebensmittelhandels) of 18 December 2007 will

be reversed pursuant to Article 1a, Article 3 sentence 2 of such Act with

effect from 1 January 2013. The original version, to be reinstated as from

such date, of paragraphs 3 and 4 reads as follows:
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(3) Dominant undertakings and associations of undertakings within the

meaning of paragraph 1 shall not use their market position to invite or to

cause other undertakings in business activities to grant them advantages

without any objective justification. Sentence 1 shall also apply to under-

takings and associations of undertakings within the meaning of paragraph

2 sentence 1, in relation to the undertakings which depend on them.

(4) Undertakings with superior market power in relation to small and

medium-sized competitors shall not use their market position directly or

indirectly to hinder such competitors in an unfair manner. An unfair hin-

drance within the meaning of sentence 1 exists in particular if an undertaking

offers goods or commercial services not merely occasionally below its cost

price, unless there is an objective justification for this.”
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6. Topics

The main topics in this chapter are

• relevant market

• cross price elasticity of demand

• supply-side substitutes

• SSNIP-Test

• price correlation test

• measures of concentration

• rate of concentration

• Herfindahl index

• perfect competition and the first welfare theorem

• Lerner index of monopoly power

• Williamson’s naive tradeoff model

• oligopoly models (due to Bertrand, Cournot and Stackelberg)

• structure-conduct-performance paradigm

• natural monopoly and Ramsey pricing

• rate-of-return restriction in the private sector (Averch-Johnson the-

orem)

• classical liberalism

• Freiburg school of “ordoliberalism”

• Chicago school of antitrust policy

• Harvard school of workable competition

• contestable markets

• Kantzenbach’s model of optimal competition intensity

• Austrian school

• competition laws

• Treaty of the European Commission (articles 81 through 86)

• law against the restriction of competition (Gesetz gegen Wettbe-

werbsbeschränkungen, GWB)

7. Solutions to the exercises in the main text

Exercise XXI.1

Did you find

(1) 1
2 +

1
2 = 1

(2) 0.8 + 0.1 = 0.9

(3) 0.6 + 0.2 = 0.8

Exercise XXI.2

You have found

(1) H = 0.5

(2) H = 0.66

(3) H = 0.44

Exercise XXI.3
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If the two firms 1 and 2 merge, the Herfindahl index increases by

(s1 + s2)
2 −

	
s21 + s22



= 2s1s2 ≥ 0

with strict inequality iff s1 > 0 and s2 > 0 hold.

Exercise XXI.4

First we find

V 2 =
1
n

�n
i=1

�
xi − X

n
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=
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n

�n
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n
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X2
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0
x2i +
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1
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+
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xi
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�xi
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n
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= nH + n

�
n
1

n2

�
− 2

n�

i=1

xi
X

= nH + 1− 2 = nH − 1

and then the required formula.

Exercise XXI.5

Firm 1’s profit function is given by

Π1 (x1, x2, x3) = (1− (x1 + x2 + x3))x1.

Forming the derivative with respect to x1 and solving for x1 yields

xR1 (x2, x3) = argmax
x1

Π1 (x1, x2, x3) =
1− (x2 + x3)

2
.

Assuming a symmetric equilibrium, we obtain x1 = 1−(x1+x1)
2 and hence�

xC1 , x
C
2 , x

C
3

�
=
�
1
4 ,
1
4 ,
1
4

�
. Also, we find

XC = xC1 + xC2 + xC3 =
3

4
,

pC =
1

4
,

ΠC
1 = ΠC

2 = ΠC
3 =

1

4
· 1
4
=

1

16
.

Exercise XXI.6

The monopoly profit function is given by Π(X) = (1−X)X so that

XC = 1
2 maximizes the monopoly’s profit. The following table yields the

desired comparison:

number

of firms
XC price welfare loss

1 1
2

1
2

1
8

2 2
3

1
3

1
18

3 3
4

1
4

1
32
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8. Further exercises without solutions

P�
#$�� XXI.1.

Some agency with information about market demand wants to impose Ram-

sey prices on monopolists. In order to figure out a monopolist’s cost function,

the agency calls the monopolist to fill out a form which it uses (applying

publicly available rules) to set the Ramsey price. Will the agency succeed?

P�
#$�� XXI.2.

We want to consider two positions towards the profit/labor relation

(a) A manager claims that a modern firm cannot allow hyper pro-

ductivity workers. He therefore requires the revenue corrected by

the capital costs which is R (K,L)− iK, generated by the average

worker, to be beyond a certain level λ. Present an argument analog

to the Averch-Jonson model.

(b) A labour union campaigns for a rule that forces companies to have

at least a certain share of profit spent on the worker saleries, say at

least σ. Can we draw a similar conclusion as the Averch-Johnson

model?



Part G

Contracts and principal-agent

theories



Contract theory is the topic of this part. In most models, there is a

(badly informed) principal and a (well-informed) agent. If the informational

asymmetry concerns the type of the agent, we have an adverse-selection

model (chapter XXII). The archetypical example is a worker whose ability

is unknown to the prospective employer. The second class of asymmetric-

information models considers actions undertaken by an agent. For example,

the agent may work diligently or be a lazy sod. Since the principal cannot

observe (or verify) the action, we talk about hidden-action models (chapter

XXIII).



CHAPTER XXII

Adverse selection

In chapter XVIII, we consider a principal who defines a mechanism for

agents whose types he does not know. We pursue this theme in this chapter.

The models presented here differ from the mechanism design model in several

respects:

• Apart from the principal, we often consider one player (often called

the agent), only.

• We explicitly introduce the participation constraint for the agent.

Thus, the agent can say "no" to all the proposals put forth by the

principal.

These two characteristics hold for adverse-selection models as well as for

hidden-action models (that we consider in the next chapter). This chapter

describes the problem of adverse selection and presents two different ways

to mitigate it. In screening models, the principal moves first and offers

different contracts so that, ideally, different types reveal themselves. In

signaling models, the agent moves first and undertakes an effort to convince

the principal that he is of a good type.

1. Introduction and an example

In 2001, the Sveriges Riksbank Prize in Economic Sciences in Memory

of Alfred Nobel 2007 was awarded to the US economists George A. Akerlof

(University of California at Berkeley), A. Michael Spence (Stanford Univer-

sity), and Joseph E. Stiglitz (Columbia University)

for their analyses of markets with asymmetric information.

According to the press release by the Royal Swedish Academy of Sciences,

Many markets are characterized by asymmetric information:

actors on one side of the market have much better infor-

mation than those on the other. Borrowers know more than

lenders about their repayment prospects, managers and boards

know more than shareholders about the firm’s profitability,

and prospective clients know more than insurance companies

about their accident risk. During the 1970s, this year’s Lau-

reates laid the foundation for a general theory of markets with

asymmetric information. Applications have been abundant,

545
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ranging from traditional agricultural markets to modern fi-

nancial markets. The Laureates’ contributions form the core

of modern information economics.

George Akerlof demonstrated how a market where sellers

have more information than buyers about product quality

can contract into an adverse selection of low-quality prod-

ucts. He also pointed out that informational problems are

commonplace and important. Akerlof’s pioneering contribu-

tion thus showed how asymmetric information of borrowers

and lenders may explain skyrocketing borrowing rates on lo-

cal Third World markets; but it also dealt with the difficulties

for the elderly to find individual medical insurance and with

labour-market discrimination of minorities.

Michael Spence identified an important form of adjust-

ment by individual market participants, where the better in-

formed take costly actions in an attempt to improve on their

market outcome by credibly transmitting information to the

poorly informed. Spence showed when such signaling will ac-

tually work. While his own research emphasized education as

a productivity signal in job markets, subsequent research has

suggested many other applications, e.g., how firms may use

dividends to signal their profitability to agents in the stock

market.

Joseph Stiglitz clarified the opposite type of market ad-

justment, where poorly informed agents extract information

from the better informed, such as the screening performed

by insurance companies dividing customers into risk classes

by offering a menu of contracts where higher deductibles can

be exchanged for significantly lower premiums. In a number

of contributions about different markets, Stiglitz has shown

that asymmetric information can provide the key to under-

standing many observed market phenomena, including un-

employment and credit rationing.

Following the work done by the Nobel laureates and others, we consider

informational asymmetries that are already present before the players decide

whether or not to accept the contract or which contract to accept. The so-

called adverse-selection models deal with these problems. For example,

• the ability of a worker is known to the worker (agent) but not to

the firm (principal) who considers to hire the worker,

• the car driver (agent) is better informed than the insurance com-

pany (principal) about the driver’s accident-proneness, and, finally,
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Principal
chooses
menu of 
contracts.

Nature
chooses
the agent‘s
type.

Agent decides
which contract
(if any) 
to accept.

Screening

Signaling

Principal observes
the signal, but not
the type and 
chooses contract.

Agent decides
whether
to accept
or not.

Agent
chooses
signal.

Nature
chooses
the agent‘s
type.

Agent chooses
signal.

F����� 1. Screening and signaling

• the owner of a used car for sale (agent) may have a very good idea

about the quality of that car while the potential buyer (principal)

does not.

The problem of adverse selection is this: for a given wage, a given insurance

premium, or a given price for a used car, the badly qualified workers, the

high-risk insurees and the owners of bad cars are more eager to enter into a

contract than the opposite types of agents. For the qualified workers have

alternative employment possibilities, the low-risk insurees do not need the

insurance as badly, and the good cars are of use to their owners. At first

sight, the informational asymmetry is a problem for the badly informed

party, the principal. However, the principal’s problem immediately turns

into a problem for the agent. It is the agent who needs to convince the

principal that he is of a "good type".

We present two different classes of models (see fig. 1):

• In screening models, the principal moves first. He offers a menu

of contracts to the agent. Some contracts are more attractive to

good types, others more attractive to bad types. In this manner,

the principal tries to attenuate his informational deficit.

• In signaling models, the agent moves first. Depending on his type,

signals he might send are more or less costly. On observing these

signals, the principal offers a contract.

Screening and signaling are important activities in labor markets. Workers

send a signal by obtaining university or other degrees. Firms screen by

offering different kinds of bonus systems.

2. A polypsonistic labor market
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2.1. The market model. The model of adverse selection is originally

due to Akerlof (1970) who considers the market for used cars. Our example

refers to a labor-market model taken from Mas-Colell et al. (1995, p. 437-

443).

We begin with a short informal description of the labor market. Labor is

the only input. We have many identical firms with a binary (yes or no) unit

demand for labor. Thus, the firms want to employ one worker or none. In a

sense, there are many more firms than potential workers. Therefore, some

firms may end up without a worker. The workers are not homogeneous but

differ in their productivities:

• The marginal productivity t of any worker is constant. As a handy

shortcut, we address the worker with productivity t as worker t.

There is a continuum of workers on the type interval T :=
	
t, t




with 0 ≤ t < t <∞.

• Worker t’s marginal productivity is the same in every firm that

hires the worker.

• r (t) is the opportunity cost of employment for worker t. r (t) can

be interpreted as worker t’s productivity when working on his own.

We now proceed to the formal definition:

D�������
� XXII.1. A polypsonistic labor market is a tuple Γ = (P, T,

τ , r,A, (ut)t∈N , uP
�
where

• P is the principal,

• T =
	
t, t



is the set of agents respectively types,

• τ is a probability (or density) distribution on T,

• r : T → R is the reservation-wage function,
• A = {y, n} is the action set for each agent with actions y ("yes"
or "accept") and n ("no" or "decline"),

• ut : R×A→ R is agent t’s payoff function defined by

ut (w, a) =

)
w, a = y

r (t) , a = n

and

• uP : R×2T→ R is the principal’s payoff function defined by

uP (w,W ) = E [t : t ∈W ]−w

In this definition, w stands for wage rate and W ⊆ T for the set of workers.

E [t : t ∈W ] :=

(

t∈W

tτ (t) dt

is the average productivity of all the types who are employed. We let

E [t : t ∈ ∅] := E [t : t ∈ T ].
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D�������
� XXII.2. Let Γ be a polypsonistic labor market. An agent

strategy is a function s : T → A. The function sw : T → A, given by

sw (t) =

)
y, w ≥ r (t)

n, w < r (t)

is called the optimal agent strategy at wage rate w.

2.2. Observable productivity. We first consider the situation where

the productivity level is readily observable. Then, the profit function is

uP (w,W ) =

(

t∈W

(t−w (t)) τ (t)dt

In equilibrium, every worker is paid his marginal product:

w∗ (t) = t, t ∈ T

Thus, every worker obtains his marginal productivity. Using the optimal

agent strategy defined in the previous section, we obtain

sw
∗(t)=t (t) =

)
y, t ≥ r (t)

n, t < r (t)

so that workers obeying r (t) ≤ t get employed. These are the workers

who produce less on their own than in the firm. This is a Pareto efficient

outcome. Note, also, that the firms do not make any profit.

2.3. Unobservable productivities. If the productivities are not ob-

servable, all the workers obtain the same wage. At wage w, those workers

t ∈ T get employed whose opportunity cost is lower than the wage:

D�������
� XXII.3. Let Γ be a polypsonistic labor market and sw the

optimal agent strategy. Then,

T (w) := {t ∈ T : sw (t) = y}

is called the labor supply.

Of course, we have T (w) = {t ∈ T : w ≥ r (t)}. Note that the labor

supply definition implies an optimal response by the agents to the wage set

by the principal. This is one ingredient into our equilibrium definition. The

other is the zero-profit condition:

D�������
� XXII.4. Let Γ be a polypsonistic labor market under nonob-

servability. A wage ;w and the worker set Ŵ form an equilibrium if we have
• t ∈ Ŵ ⇔ s �w (t) = y and

• ;w = E
�
t : t ∈ Ŵ

�
.
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Thus, our definition of a polypsonistic labor market in equilibrium has

two requirements. At wage rate ;w, the agents who want to be employed are

employed and the other agents are not. This condition can also be written

as Ŵ = T ( ;w). The polypsonist’s expected payoff is zero. This condition

makes sure that no firm has an incentive to enter or leave the market.

By

;w = E
�
t : t ∈ Ŵ

�

= E
�
t : s �w (t) = y

�

= E [t : t ∈ T ( ;w)]
= E [t : ;w ≥ r (t)]

the two conditions can be summarized in one:

;w = E [t : ;w ≥ r (t)] . (XXII.1)

Thus, the equilibrium is characterized by a wage rate ;w such that the work-

ers, who want to be employed at that wage rate, have an average productiv-

ity of ;w. This fixed-point equation plays an important role in the following

sections.

2.4. Inefficient equilibria.

2.4.1. A class of examples. The inefficiency caused by adverse selection

can also occur if all workers should be employed. We consider the following

example:

• We have r (t) ≤ t for all t ∈ T, i.e., all agents should be employed.

• r is a monotonicly increasing function, i.e., productive workers have

better outside options.

The equilibrium condition XXII.1

;w = E [t : ;w ≥ r (t)]

can now be visualized as the intersection point of the average-productivity

curve E [t : r (t) ≤ w] and the 45-degree line (see fig. 2). You see the wage

at the abscissa. If the wage rate is at r (t), the agent with the lowest pro-

ductivity is employed and the average productivity is t ≥ r (t). By the

above assumptions, an increasing wage rate implies increasing opportunity

cost and also an increasing productivity. Of course, the average produc-

tivity of all employees, E [t : t ≤ t̄] , is below the productivity of the most

productive workers t. Fig. 2 represents the case r
�
t
�
> E [t : t ≤ t̄] . If the

firm(s) wanted to employ the most productive worker, also, the wage rate

would have to rise up to r
�
t
�
, so that the wage would be above the average

productivity.

Fig. 3 depicts the case r
�
t
�
< E [t : t ≤ t̄] . Here, there are not many

badly qualified workers so that the curve of average productivity is rather



2. A POLYPSONISTIC LABOR MARKET 551

w
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F����� 2. Adverse selection: first case
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F����� 3. Adverse selection: second case

steep. Despite asymmetric information, we might obtain an efficient out-

come. Although the wage r
�
t
�

is sufficient to employ all the workers, the

average productivity is above this wage rate. Entry of new firms drives up

the workers’ wage. Some of the firms may not be able to secure a worker for

themselves. However, this is not a problem because the firms do not make

any positive profit in equilibrium.

Consider, finally, fig. 4 where the market collapses wholesale. A numer-

ical example may help to understand the underlying mechanism:

• We have r (t) = αt, where 1
2 < α < 1.

• t is distributed equally on [0, 2].

In this case, we have

• r (t) = r (0) = 0 = t,
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w

( )[ ]wtrtE ≤:

[ ]tttE ≤:

( )tr
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t

F����� 4. Adverse selection: third case

• r (t) = αt < t for all t > 0 (i.e., all the agents should go to work)

• E [t : r (t) ≤ w] = 1
2
w
α < w.

• Why average productivity 1
2
w
α ?

— The most productive worker has reservation price w = r (t) =

αt and

— thus the productivity w
α .

3. A polypsonistic labor market with education

3.1. Introduction. Asymmetric information can lead to inefficient out-

comes as we have seen in the previous section. Signaling is an action un-

dertaken by the informed party. Just saying "I am a good type" does not

help, however. The reason is that bad types may have an incentive to claim

the same if the principal treats good types better than bad types. Useful

signals need to sort good and bad types. For this to happen, the incentives

to associate with one group or another need to depend on the types. We

use a simple two-type model to shed light on screening and signaling.

3.2. The market model. In rough terms, our model looks like this.

As in the previous model, labor is the only input and the many identical

firms have a binary unit demand for labor. We now assume that workers

need to work, but are free to choose the best wage offered to them.

The signaling/screening aspect refers to the educational effort the prospec-

tive workers exert. Workers come in two types, “good” and “bad”. We

assume that good workers suffer less from schooling. As we are focussing on

the informational function of education, we assume that education has no

effect on productivity.

Schooling and the cost of schooling are modeled in the following manner:
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• We have two groups of workers, the good ones with high produc-

tivity th > 0 and the bad ones with low productivity tl > 0.

• The workers’ time in schools and universities is denoted by a ≥ 0

(education). The workers have a disutility from schooling of c (t) a

where ch := c (th) refers to high-productivity workers and cl :=

c (tl) to those with low productivity. We assume cl > ch > 0.

We now proceed to the formal definition:

D�������
� XXII.5. A polypsonistic labor market with education is a

tuple Γ =
�
P, T, τ ,A, (ut)t∈N , uP

�
where

• P is the principal,

• T = {th, tl} is the set of types (agents),
• τ is a probability distribution on T with τh := τ (th) and τ l := τ (tl)

denoting the respective portions of workers,

• A = R+ is the action set for each agent with actions a ∈ A denoting

the number of school years,

• ut : R×A→ R is the payoff function for agent t, t ∈ {th, tl}, defined
by

ut (w, a) = w− c (t) a

and

• uP : {th, tl}×R→ R is the principal’s nonprobabilistic payoff func-
tion defined by

uP (t, w) = t−w

where, again, w stands for wage rate.

This is the general model of a polypsonistic labor market with education.

3.3. Observable productivity. If the productivity is readily observ-

able, the equilibirum wages are

w∗ (th) = th > τhth + τ ltl and

w∗ (tl) = tl < τhth + τ ltl

and every worker gets his marginal productivity. In that case, there is

no need to suffer the burden of education and we have a Pareto-efficient

outcome.

3.4. Unobservable productivity. Assume, now, that the productiv-

ities are not observable. We have two types of equilibria. Equilibria are

called separating if different types are treated differently, and pooling, if all

the types are treated the same.

We cannot obtain a separating equilibrium if the principals do not pay

different wages to agents of different education. By the zero-profit condition,

the wage rate offered to all agents is

w∗ = τhth + τ ltl
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In that case, all workers choose

a∗ = 0.

(w∗, a∗) is indeed an equilibrium irrespective of the sequence of events:

• either the principals offer the uniform wage rate first and then the

workers decide on a,

• or the workers first decide on a and then the principals offer a

uniform wage rate.

Thus, wage differentiation is necessary for a separating equilibrium. Note

that the good workers obtain less than their average productivity and the

bad workers obtain more. Therefore, the good workers have an incentive to

be screened or to signal their good quality.

4. A polypsonistic labor market with education and screening

4.1. Sequence and strategies. According to fig. 1, screening is a

four-stage model:

(1) The principals choose wage contracts which specify the wage as a

function of schooling. While any function w : A→ R is open to the

principals a priori, we restrict attention to binary wage contracts

where a minimum schooling of some a+ leads to a high wage and a

schooling below a+ to a low wage. Since the principals are identical,

we can assume that they offer identical wage contracts.

(2) Nature chooses each worker’s type, th or tl. Thus, the principals

wage contracts cannot depend on the productivities.

(3) The workers decide about their education effort a ∈ A after learning

their type and after learning the wage functions.

(4) Finally, the workers decide which firm to choose. We do not explic-

itly model this last stage. We simply take it for granted that the

workers choose a firm with a maximal wage rate, given the years of

schooling.

As an extensive-form game, this game is one of perfect information.

The workers learn their types and the principals do not move after nature’s

decision. The sequence of events described above entails the strategies open

to the agents and the principals:

D�������
� XXII.6 (Screening strategies). Let Γ be a polypsonistic labor

market with education and screening. A principal strategy is a tuple sP =

(a+, wh, wl) from A× R×R that defines a wage function w : A → R given
by

w (a) =

)
wh, a ≥ a+

wl, a < a+
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An agent strategy is a function s : T ×A×R×R→ A, where

s




t����
type

, a+����
minimal

schooling

, wh����
high wage

, wl����
low wage




∈ A

is the educational effort chosen by the agent.

4.2. Separating equibria. We now deal with the conditions for a sep-

arating equilibrium (where different types are treated differently):

D�������
� XXII.7 (Screening equilibria). Let Γ be a polypsonistic labor

market with education and screening. The strategy combination (ŝP , ŝ) =

((â+, ŵh, ŵl) , ŝ) (with the principal strategy ŝP and the agent strategy ŝ) is

a separating equilibrium

• if the principal differentiates wages and maximizes his profits which
are zero, i.e., if ŝP = (â+, ŵh, ŵl) obeys ŵh = th and ŵl = tl,

• if the different types act differently:

ŝ
�
t, â+, ŵh, ŵl

�) ≥ a+, t = th
< a+ t = tl

and

• if the agents maximize their payoff, i.e., if

ŝ
�
t, a+, wh, wl

�
= argmax

a∈A

)
wh − c (t)a, a ≥ a+

wl − c (t)a, a < a+

holds for all (t, a+, wh, wl) ∈ T ×A×R×R.

Thus, in a separating screening equilibrium,

• the principals pay productivity wages and earn zero payoff,

• agent th chooses an education level equal to or higher than a+ while

agent tl goes to school for less than a+ years, and

• every agent chooses his number of school years in a payoff-maxi-

mizing fashion.

If (ŝP , ŝ) is a separating equilibrium, the third condition (the agent’s

payoff maximization) implies

ŝ
�
t, â+, ŵh, ŵl

�
=

)
a+, t = th
0, t = tl

(XXII.2)

for the second condition (differing actions by different types). This is im-

mediate by cl > 0 and ch > 0.
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We now need to make sure that the agents do indeed separate themselves.

Consider the highly-productive agent th. He prefers to follow eq. XXII.2 if

wh − cha
+

� �� �
The productive

agent’s payoff

in case of

extensive schooling

≥ wl − ch · 0� �� �
The productive

agent’s payoff

in case of

no schooling

or, solving for a+,

a+ ≤ wh −wl

ch
holds. This condition makes sure that the salary difference wh − wl out-

weights the productive type’s cost of education cha
+.

The unproductive agent tl is happy not to choose any education in case

of

wh − cla
+

� �� �
The unproductive

agent’s payoff

in case of

extensive schooling

≤ wl − cl · 0� �� �
The unproductive

agent’s payoff

in case of

no schooling

or, solving again for a+,

a+ ≥ wh −wl

cl
.

E������� XXII.1. What is the intuitive idea behind the above inequality?

Given the fact of separation, the third condition implies ŵh = th and

ŵl = tl. So far, we have identified necessary conditions for a separating

equilibrium. These are also sufficient:

L���� XXII.1 (Screening equilibria). Let Γ be a polypsonistic labor

market with education and screening. The separating equilibria (ŝP , ŝ) =

((â+, ŵh, ŵl) , ŝ) are given by

• ŝP = (â+, th, tl) where a
+ fulfills th−tl

cl
≤ a+ ≤ th−tl

ch
and

• ŝ defined by eq. XXII.2.

By cl > ch, the a+-interval is nonempty. Of course, the productive types

prefer a level of education at the lower end of this interval. Since education

has no productive function in this model, any a+ above wh−wl
cl

is Pareto

inefficient. If a principal fixes a higher a+ than other principals, the former

will not attract any worker.

It is not difficult to see that the lemma is true. Given the principals’

(minimal) level of a+ within the given range, the agents cannot do any better

than following eq. XXII.2. The productive workers choose a = a+ and the

unproductive ones choose a = 0.
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Note also that the equilibria specified in lemma XXII.1 are subgame

perfect. The agents choices are optimal given any principal strategy, not

just an equilibrium principal strategy.

E������� XXII.2. For ε > 0, consider the principals’ wage function

w∗ (a) =

6
th, a ≥ th−tl

cl
− ε

tl, a < th−tl
cl

− ε

Why can it not be part of any separating equilibrium?

In a somewhat similar fashion, a polypsonistic labor market with educa-

tion and signaling can also be constructed. In a suchlike model, the workers,

not the principals, are the first movers. Without going into any formal de-

tails, the productive workers can choose the minimum level of education

necessary to have unproductive agents shy away from education. Therefore,

the problem of inefficiency observed in the screening model, is absent with

signaling.

5. Revisiting the revelation principle

The informed agents have to bear the cost of education in the screening

and signaling models. Why is it not sufficient for the agents to just tell their

productivity?

Consider a message game where the wage depends on the types and

differs with the type, for example a high wage for the productive and a low

wage for the unproductive agent. Then, every agent has an incentive to

announce the high type. We know from the revelation principle that we can

construct a truthful message game that is as good as the game considered

here. The construction is simple. All the agents truthfully announce their

type and the mechanism transforms this truthful message into the message

"high productivity". Obviously, a separating equilibrium cannot be had in

a message game.

The reason why screening and signaling works is that different types

have different incentives to undergo the cost of schooling. “Actions speak

louder than words.”
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6. Topics and literature

The main topics in this chapter are

• adverse selection

• hidden characteristics

• labor market

• education

• screening

• signaling

• separating equilibrium

• pooling equilibrium

The German textbook (focussing on organization and management) by Kräkel

(2007) is to be recommended.

7. Solutions

Exercise XXII.1

By cla
+ ≥ wh−wl, the unproductive type’s cost of a+ years of schooling

is higher than the additionl wage obtainable by this effort.

Exercise XXII.2

Given this wage function, the low-productivity workers would not choose

a = 0 but rather a = th−tl
cl

− ε. This can be seen from

th −
�
th − tl
cl

− ε

�
cl

= th − (th − tl) + εcl

= tl + εcl

> tl + 0 · cl.
The productive types choose th−tl

cl
− ε a fortiori. Thus, we cannot have a

separating equilibrium with this education threshold level.



CHAPTER XXIII

Hidden action

1. Introduction

Pursuing asymmetric information,we now turn to hidden action. In this

chapter, the agent is to perform some task for the principal. Then, the fol-

lowing problem arises: the insuree may be careless about the insured object

once he has obtained the insurance. Another example: workers (or man-

agers) do not exert the high effort that the manager (or the owners) expect.

Thus, the asymmetry of information (has the worker exerted sufficient ef-

fort) occurs after the agent has been employed. This constellation is called

a principal-agent situation or principal-agent problem.

Indeed, the problem arises because the output is assumed to be a func-

tion of both the agent’s effort and of chance. Since the effort is not observ-

able, the payment to the agent (as specified in the contract) is a function of

the output, but not of effort. Consider fig. 1.

We use the hidden-action model to introduce the participation constraint

that has played no serious role in chapter XVIII on mechanism design or

chapter XXII on adverse selection.

Normally, the principal-agent problem is described as the principal’s

maximization problem subject to two conditions. The first is the agent’s

participation constraint. He enters into the contract only if he expects a

payoff higher than his reservation utility. Once employed, the agent chooses

among several actions. The action the principal would like to induce has to

be a best action given the contract and the probability distribution dictated

by nature. This second side condition is called incentive compatibility.

Principal-agent models typically assume that the principal is risk neutral

and the agent risk averse. Focusing on the distribution of risk, it is therefore

optimal that the agent does not bear any risk but obtains a fixed payment.

Principal
chooses the
contract.

Nature
chooses
the output.

Agent decides
whether to accept
the contract.

Principal-agent model

Agent decides
on effort level.

F����� 1. Hidden action

559
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However, in order to incite the agent not to be lazy, it may be necessary to

have the agent bear some risk.

We present the basic model in section 2. If the principal can observe the

agent’s action or deduce the action from the output, an efficient output is

possible; this is shown in section 4. We turn to the asymmetric-information

case in section 5. Finally, a special case, with only two outputs, is treated

in section 6.

2. The principal-agent model

We present a principal-agent model with one principal and one agent.

The employed agent (after agreeing to the contract proposed by the prin-

cipal) chooses an effort level e ∈ E and incurs cost of effort c (e) . His non-

probabilitstic payoff is w− c (e) where w is the wage rate. The agent is free

to reject the contract in which case he obtains a reservation utility denoted

by u. The principal’s nonprobabilistic payoff is x − w where x ∈ X is the

output or net profit accruing to the principal, i.e., his profit net of the wage

payable to the agent. In case of uncertainty (which we assume), the effort

e generates a probability distribution ξe on the set X of the principal’s net

profits. Thus, ξe is an element of Ξ, the set of probability distributions on

X. Thus, we have this definition:

D�������
� XXIII.1 (Principal-agent problem). A tuple Γ = ({P,A} ,
E,X, (ξe)e∈E , c, u

�
is called a principal-agent problem where

• P is the principal,

• A is the agent,

• E = R+ is the agent’s action set (his effort level),
• c : E → R is the agent’s cost-of-effort function,
• X is the output set or the set of net profits,

• ξe is the probability distribution on X generated by effort level e,

• the principal’s nonprobabilistic payoff is given by
x−w

with x ∈ X and wage rate w ∈ R,
• the agent’s nonprobabilistic payoff is given by

w − c (e)

and

• the agent’s reservation utility is u ∈ R.

3. Sequence, strategies, and solution strategy

According to fig. 1, the principal-agent problem is modeled as a four-

stage game:

(1) The principal chooses a wage function which specifies the wage as a

function of the output. This wage function is also called a contract.
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(2) The agent decides whether to accept the contract.

(3) The agent decides on his effort level.

(4) Nature chooses the output and thus the payoffs for both principal

and agent.

This sequence defines a game of perfect information (!) leading to the fol-

lowing strategies for the two players:

D�������
� XXIII.2 (Strategies). Let Γ be a principal-agent problem.

The principal’s strategy is a wage function sP = w : X → R. Let SP be

the set of those wage functions. The agent’s strategy is a function sA :

SP → {y, n} × E, where y means ("yes" or "accept") and n ("no" or

"decline") and refers to the agent’s participation decision. The set of those

strategies is denoted by SA. sA is sometimes written as
�
s
{y, n}
A , sEA

�
with

s
{y, n}
A (sP ) ∈ {y, n} and sEA (sP ) ∈ E.

The principal can foresee the agent’s reaction to any wage function he

offers. In particular, any wage function has the agent accept or reject the

contract and, in case of acceptance, choose a preferred effort level. Differ-

ently put: we look for a subgame-perfect equilibrium. Our solution strategy

to the principal-agent problem focuses on the effort level of an agent who

accepts a contract. Imagine that the principal aims for an effort level b ∈ E

(a best effort level). Then, the principal maximizes his payoff under two

conditions:

• the agent needs to prefer accepting the contract and exerting ef-

fort level b to not accepting the contract (this is the participation

constraint) and

• the agent needs to prefer effort level b to any other effort level e ∈ E

(the incentive constraint).

Thus, the two constraints (wage function, not just the one leading to effort

level b) are another expression of subgame perfection. Of course, the effort

level b might not be optimal from the principal’s point of view. After reiter-

ating the above maximization problem for all the effort levels e ∈ E open to

the agent, the principal can compare the respective payoffs and choose the

maximal one. Since any wage function leads to a specific effort level, this

solution strategy works.

4. Observable effort

Observability of effort may mean two different things. Either the prin-

cipal can directly observe the agent’s effort. Or the principal observes the

output and can deduce the effort unequivocally. Then, the principal can

propose a payment scheme with domain E or X, just as he pleases. We

assume domain X, in accordance with the above definition of the principal’s

strategy. Assume that the principal wants the agent to choose effort level
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b ∈ E. Then, his maximization problem is

max
w

(x (b)−w (x (b)))

subject to the side conditions

w (x (b))− c (b) ≥ u, participation constraint

w (x (b))− c (b) ≥ w (x (e))− c (e) for all e ∈ E, incentive constraint

There is no need to give more to the agent than the reservation utility;

w (x (b)) = u+ c (b) (XXIII.1)

is the minimal wage that fulfills the participation constraint. We consider

the incentive constraint shortly.

The optimal effort chosen by the principal (!) is

e∗ = argmax
e

(x (e)− (u+ c (e)))

where e∗ is obtainable (in good-natured problems) by

dx

de����
marginal output

!
=

dc

de����
marginal cost

.

It is easy to achieve the incentive constraint. The principal needs to pay

a very low wage for outputs other than x (b) or efforts other than b. For

example, a boiling-in-oil contract sees to the incentive constraint:

w (x) =

)
u+ c (e∗) , x = x (e∗)
−∞ x �= x (e∗)

E������� XXIII.1. Instead of −∞, which is the maximal wage fulfilling
the incentive constraint for e∗?

The payoffs are x (e∗)− u− c (e∗) for the principal and u for the agent.

Thus, the higher the agent’s reservation utility, the lower the principal’s

payoff. The sum of the payoffs is x (e∗) − c (e∗) and hence the payoff that

the principal could achieve if he were his own agent.

Selling the production possibility to the agent is a second road to the

optimal solution. In that case, the agent obtains the residual income, i.e.,

the income minus the price of the business. Differently put, the agent is the

"residual claimant".

E������� XXIII.2. If the principal can make a take-it-or-leave-it offer,

which price will he charge?

5. Unobservable effort

5.1. The model. Given a principal-agent problem Γ = ({P,A} , E,X,
(ξe)e∈E , c, u

�
, we assume that the principal knows the probability distribu-

tion ξe generated by any effort level e ∈ E. In general, this knowledge plus

the specific output is not sufficient to reconstruct the effort level itself. Since
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(and if) the principal cannot observe the effort, he bases his wage payments

w on the output.

D�������
� XXIII.3 (Principal-agent model). Let Γ = ({P,A} , E,X,
(ξe)e∈E , c, u, u

�
be a principal-agent problem according to XXIII.1 with the

strategies defined in XXIII.2. The principal-agent model with n outputs is

given by

• the output set X = {x1, ..., xn} ,
• the principal’s utiliy function uP is given by uP (sP , sA) =

6 �
x∈X

ξsEA(sP )
(x) (x−w (x)) , s

{y, n}
A (sP ) = y

0, otherwise

• the agent’s utility function uA is given by uA (sP , sA) =

6 �
x∈X

ξsEA(sP )
(x)u (w (x))− c

�
sEA (sP )

�
, s

{y, n}
A (sP ) = y

u, otherwise

where u : R→ R (not uA) is a vNM utility function obeying u′ > 0

and u′′ < 0.

Note that the agent’s utility function uA is somewhat special in that

the cost of effort can be separated from the utility with respect to the wage

earnings. The agent is assumed to be risk averse.

We now try to solve the principal-agent model. The two side conditions

for action b ∈ E are

�
x∈X

ξb (x)u (w (x))− c (b) ≥ u, participation constraint�
x∈X

ξb (x)u (w (x))− c (b)

≥
�

x∈X
ξe (x)u (w (x))− c (e) for all e ∈ E,

incentive constraint

5.2. Applying the Lagrangean method to the participation con-

straint. In a first step, we assume that the incentive constraint poses no

problem. Let wi := w (xi) for all i = 1, ..., n. Then, the principal’s maxi-

mization problem is

max
w1,...,wn

n�

i=1

ξb (xi) (xi −wi)

subject to the participation constraint

n�

i=1

ξb (xi)u (wi)− c (b) ≥ u.
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The principal maximizes his payoff by fulfilling the participation constraint

as an equality. You know that such problems may be attacked by the La-

grangean method (see chapter VI). The Lagrangean of this problem is

L (w1, w2, ..., wn, λ)

=
n�

i=1

ξb (xi) (xi −wi) + λ

0
n�

i=1

ξb (xi)u (wi)− c (b)− u

1
.

The Lagrange multiplier λ > 0 indicates the additional payoff accruing to the

principal if the participation constraint is relaxed. Reducing the reservation

utility by one unit increases the principal’s payoff by

λ = −duP
du

which, as you know from pp. 144, is not quite, but basically correct.

The partial derivatives with respect to wi (i = 1, ..., n) yield

∂L

∂wi
= −ξb (xi)� �� �

wage payments increase

with probability ξb(xi)

+ λ ξb (xi)u
′ (wi)� �� �

participation constraint

is relaxed

!
= 0.

An increase of wi (i.e., in case of output xi) by one unit reduces the expected

profit by ξb (xi) because the wage payments are increased by one unit with

probability ξb (xi). This is the bad news. The good news is that a wage

increase eases the participation constraint by ξb (xi)u
′ (wi); multiply by λ

to obtain the profit increase.

In case of ξb (xi) > 0, we find u′ (wi)
!
= 1

λ . Thus, the wages are the same

for all outputs that matter. By u′′ < 0, u′ (wi)
!
= 1

λ means that the wage is

independent of the output. Hence, the risk averse agent is not exposed to

any risk at all.
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5.3. Applying the Kuhn-Tucker method to the incentive con-

straint. A constant wage is not optimal if the incentive constraint is bind-

ing. The principal’s optimization problem leads to the Lagrangean

L (w1, w2, ..., wn, λ, µ)

=
n�

i=1

ξb (xi) (xi −wi)

+λ

0
n�

i=1

ξb (xi)u (wi)− c (b)− u

1
(participation constraint)

+µe′

0
�

x∈X
ξb (x)u (w (x))− c (b)−

0
�

x∈X
ξe′ (x)u (w (x))− c

�
e′
�
11

+µe′′

0
�

x∈X
ξb (x)u (w (x))− c (b)−

0
�

x∈X
ξe′′ (x)u (w (x))− c

�
e′′
�
11

+... (all the other incentive constraints)

The Lagrange multipliers µe′ > 0, µe′′ > 0 reflect the principal’s marginal

payoff for relaxing the incentive constraint with respect to effort e′, e′′ etc.

We cannot, in general, be sure that all the incentive constraints are binding.

Kuhn-Tucker optimization theory says that the product

µe

0
�

x∈X
ξb (x)u (w (x))− c (b)−

0
�

x∈X
ξe (x)u (w (x))− c (e)

11

has to be equal to zero for every effort level e ∈ E. We differentiate the

Lagrange function with respect to xi to obtain

∂L

∂wi
= −ξb (xi)� �� �

wage payments increase

with probability ξb(xi)

+ λ ξb (xi)u
′ (wi)� �� �

participation constraint

is relaxed

+µe′

assumption: positive� �� �
(ξb (xi)− ξe′ (xi))u

′ (wi)� �� �
incentive constraint

is relaxed

+µe′′

assumption: negative� �� �
(ξb (xi)− ξe′′ (xi))u

′ (wi)� �� �
incentive constraint

is exacerbated

+ ...
!
= 0

Assume, now, µe′ > 0 and µe′′ > 0. Then, the restrictions are binding. If

we have ξb (xi)− ξe′ (xi) = 0, an increase in wi does not ease the incentive

constraint. However, ξb (xi) − ξe′ (xi) > 0 implies that a wage increase for
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output xi tends to make effort level b more attrative than effort level e′

because (ξb (xi)− ξe′ (xi))u
′ (wi) is greater than zero, too.

Consider the assumption ξb (xi)− ξe′′ (xi) < 0. In that case, an increase

in wi makes it more difficult to fulfill the incentive constraint for e′′ because

e′′ leads to xi with a higher probability than b.

Assume the special case of two effort levels, b and e, only. Then, the

above maximization condition implies

−ξb (xi) + λξb (xi)u
′ (wi) + µe (ξb (xi)− ξe (xi))u

′ (wi)
!
= 0, then

[λξb (xi) + µe (ξb (xi)− ξe (xi))]u
′ (wi)

!
= ξb (xi)

and finally

u′ (wi)
!
=

ξb (xi)

λξb (xi) + µe (ξb (xi)− ξe (xi))
=

1

λ+ µe
ξb(xi)−ξe(xi)

ξb(xi)

.

Thus, in case of µe > 0 (incentive constraint binding), we get this intuitive

result: If action b brings about output xi with a greater probability than

action e (ξb (xi) − ξe (xi) > 0), wage wi should be relatively high in order

to give the agent an incentive to choose b rather than e. Formally, the

inequality implies that u′ (wi) is smaller for µe > 0 than for µe = 0. Just

sketch a concave vNM utility function so that you see why a small u′ implies

a large wi.

6. Special case: two outputs

6.1. The model. We now turn to the special case of two output levels

and two actions, only. The actions are denoted by e and b and the output

levels by x1 and x2. We assume

• Output x2 is higher than output x1 : x1 < x2,

• b makes x2 more likely than e : ξb (x2) > ξe (x2), and

• b is the principal’s preferred action.

E������� XXIII.3. Do x1 < x2 and ξb (x2) > ξe (x2) imply that the

principal aims for b rather than e?

Can you confirm the following proposition?

P�

����
� XXIII.1. If f is a strictly monotonically increasing func-

tion, f is injective. If, furthermore, f is convex, f−1 is convave.

In the above sections, we have the principal fix wages that depend on

the output, w = w (x) and we work with vNM utility u (w). In this section,

we assume that the principal fixes the vNM utility levels rather than the

wages. In order to achieve the vNM utility level u the principal needs to pay

the wage w (u) . Thus, w as a function of u is the inverse of u as a function of

w. In words: w (u) is the wage level necessary in order to give vNM utility

u to the agent. The inverse function w = u−1 exists because u is a strictly
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monotonically increasing function. Note that the vNM utility is understood

as a gross utility where the cost of effort still need to be subtracted. If u is

concave, w = u−1 is convex.

If, now, the principal aims at effort level b, his maximal payoff is

π (b) = max
u1,u2

ξb (x1) [x1 −w (u1)] + ξb (x2) [x2 −w (u2)]

subject to the two side conditions

ξb (x1)u1 + ξb (x2)u2 − c (b) ≥ u, part. c.

ξb (x1)u1 + ξb (x2)u2 − c (b) ≥ ξe (x1)u1 + ξe (x2)u2 − c (e) , inc. c.

The reason for all this trouble is that the graphical description turns out to

be easier. We can reformulate the side conditions:

u2 ≥ u+c(b)
ξb(x2)

− ξb(x1)
ξb(x2)

u1, participation constraint

u2 ≥ u1 +
c(b)−c(e)

ξb(x2)−ξe(x2)
, incentive constraint

E������� XXIII.4. Please, confirm the reformulation of the incentive

constraint. Hint: you can employ the assumption ξb (x2) > ξe (x2) and

ξe (x1) + ξe (x2) = 1 for all e ∈ E.

6.2. The indifference curves. Fig. 2 depicts the indiffrence curve for

effort level b and effort level e. Assuming a constant expected utility <u, the

indifference curve for effort level e is given by

<u = ξe (x1)u1 + ξe (x2)u2 − c (e)

or, after solving for u2,

u2 =
<u+ c (e)

ξe (x2)
− ξe (x1)

ξe (x2)
u1. (XXIII.2)

Analogously, we obtain the indifference curve for effort level b

u2 =
<u+ c (b)

ξb (x2)
− ξb (x1)

ξb (x2)
u1. (XXIII.3)

The slope of these indifference curves is readily interpreted. If the agent

foregoes one unit of u1 (in case of output x1), he needs ξe(x1)
ξe(x2)

or ξb(x1)
ξb(x2)

units

of u2 in order remain on the given indifference curve. By ξb (x2) > ξe (x2)

the indifference curves for b are flatter than those for e. The reason is that b

produces u2 with a higher probability than e. See fig. 2 for an illustration.

E������� XXIII.5. What is the relationship between the indifference

curves and the participation constraint for effort level b?

Fig. 3 depicts the participation-constraint line for effort level b and the

incentive-constraint line (for choosing b over e). The participation line is

negatively sloped. In order to move the agent to participate, the expected

utility has to be as high as the reservation utility. If the principal gives more

to the agent in one case, he can reduce the wage and the utility in the other

case.



568 XXIII. HIDDEN ACTION

1u

2u

indifference curve
effort level e

indifference curve
effort level b

F����� 2. The indifference curves for action e are steeper

than those for action b.

1u

2u

participation line
for effort level b

incentive line
for effort level b

( )
( )2x

bcu

bξ
+

( ) ( )
( ) ( )22 xx

ecbc

eb ξξ −
−

F����� 3. Both constraints are fulfilled in the the high-

lighted area.

The incentive line has slope 1 and lies above the 45◦- line if c (b)−c (e) > 0

holds and below if c (b)− c (e) < 0 is true. The positive slope ensures that

the utiliy difference u2 − u1 does not fall below c(b)−c(e)
ξb(x2)−ξe(x2)

.

In order to fulfill both constraints, the utility levels u1 and u2 have to

be chosen inside the highlighted area of fig. 3.

6.3. The principal’s iso-profit lines. We find the principal’s optimal

utility combination by adding the iso-profit lines to fig. 3. Considering the

principal’s profit

π (u1, u2) = ξb (x1) [x1 −w (u1)] + ξb (x2) [x2 −w (u2)] ,
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1u

2u

iso-profit lines

°45

participation line
for effort level b

F����� 4. An isoproft line touches the participation line at

u1 = u2

the slope of the iso-profit lines is given by

du2
du1

= −
∂π
∂u1
∂π
∂u2

= −ξb (x1)w
′ (u1)

ξb (x2)w
′ (u2)

, (XXIII.4)

(as you know from preference theory, see chapter IV).

Inspecting eq. XXIII.4, we observe:

(1) The iso-profit lines are negatively sloped because w′ (u1) and w′ (u2)
are positive.

(2) The nearer the iso-profit lines are to the origin, the higher the profit

they indicate.

(3) The iso-profit lines are convex: An increase in u1 leads to

• an increase in w′ (u1) (by the convexity of w),

• a decrease in u2 (by the negative slope of the iso-profit line)

and hence

• a decrease in w′ (u2) (again by the convexity of w)

so that the absolute value of the slope increases with u1.

(4) In the special case of u1 = u2 (along the 45◦- line), the iso-profit

line’s slope is −ξb(x1)
ξb(x2)

. Compare with eq. XXIII.3 to find that

along the 45◦- line the iso-profit line’s slopes equal the slopes of the

agent’s indifference curves, both for action b.

6.4. Solving the principal-agent problem. Fig. 4 shows how an

iso-profit line touches the agent’s participation constraint. If incentive com-

patibility is not an issue, the same wage should be chosen for both outputs.

Then, the agent obtains the wage necessary to make him participate.

Comparing figures 4 and 3 makes clear that a utility combination along

the 45-degree line may not always fulfill the incentive constaint. We need

to consider two cases:
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1u

2u

participation line
for effort level b

iso-profit lines

°45

incentive line
for effort level b

F����� 5. The first-best solution is obtained despite asym-

metric information

• If u1 +
c(b)−c(e)

ξb(x2)−ξe(x2)
≤ u1 holds, the incentive line is below the 45◦-

line and we have cb ≤ ce. Then, it is easy to fulfill the incentive

constraint because the agent’s cost for b are lower than for e. In

this case, the incentive constraint does not prevent Pareto efficiency.

Fig. 5 depicts this first-best situation.

• In contrast, fig. 6 depicts the situation with u1+
c(b)−c(e)

ξb(x2)−ξe(x2)
> u1,

i.e., cb > ce. Here, the incentive line lies above the 45-degree line

and the optimal risk sharing at u1 = u2 is not possible. For reasons

of incentive compatibility, the agent has to bear a part of the risk.

Sufficiently high wage differences give him the incentive to choose

the costly effort b. This is the second-best solution. Given the

problem caused by moral hazard, the utility combination indicated

in the figure, is the best solution obtainable.

E������� XXIII.6. Can you show that the first-best solution is realizable

if the agent is risk neutral? Hint: Examine the principal’s iso-profit lines.

E������� XXIII.7. Consider the following example (taken from Milgrom

& Roberts 1992, pp. 200-203):

• We have two outputs 10 and 30.
• The agent has two effort levels, 1 and 2. Effort level 2 makes output
30 more likely than effort level 1 :

Effort level Output x = 10 Output x = 30

e = 1 ξ1 (10) = 2/3 ξ1 (30) = 1/3

e = 2 ξ2 (10) = 1/3 ξ2 (30) = 2/3

• The agent is risk averse with vNM utility function u (w, e) = √
w−

(e− 1) . Note that the vNM utility includes the cost of effort. The

reservation utility is u = 1.
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1u

2u

participation line
for effort level b

iso-profit lines

°45

incentive line
for effort level b

F����� 6. The incentive-compatibility constraint is binding

• The principal has the profit function π given by π (w, x) = x−w.

• In case of unobservable effort, the principal’s wage function is given
by w (10) ≡ wl, w (30) ≡ wh.

Solve the principal-agent problem by going through these questions:

(1) Observable effort:

• If the principal aims for e = 1, what is his optimal wage func-

tion?

• If the principal aims for e = 2, what is his optimal wage func-

tion?

• Should the principal aim for effort level 1 or 2?
(2) Unobservable effort, e = 2

• Write down the participation constraint in terms of √wl and√
wh.

• Write down the incentive constraint in terms of √wl and
√
wh.

• Depict the two constraints by putting √wl on the abscissa and√
wh on the ordinate.

• Determine wl and wh!

(3) Unobservable effort, e = 1

Is the principal’s profit higher for e = 1 than for e = 2?

(4) What is the optimal contract for these probabilities:

Effort level Output x = 10 Output x = 30

e = 1 ξ1 (10) = 2/3 ξ1 (30) = 1/3

e = 2 ξ2 (10) = 0 ξ2 (30) = 1

7. More complex principal-agent structures

So far, we consider two-tier principal-agent structures. Tirole (1986)

points to three-tier structures. An agent has to perform a task for the



572 XXIII. HIDDEN ACTION

principal who uses the services of an intermediate supervisor. Consider

these examples:

principal supervisor agent

production unit manager foreman worker

regulation government regulating authority firm

PhD procedure faculty council professor PhD stud.

professorship ministry of educ. dean/rector professor

For reasons of time, competence or cost efficiency,

• the principal cannot directly supervise the agent (otherwise, the

second layer becomes superfluous) and

• the supervisor cannot take on the the role of the principal (other-

wise, the principal could sell his firm to the supervisor).

The principal cannot always be sure that the supervisor acts in his interests:

• Sometimes, the agent’s achievements reflect on the supervisor. This

may explain why some doctoral theses gain too much praise.

• The supervisor and the agent collude against the principal. For ex-

ample, the supervisor (secretly) announces the controlling activity

he is to perform shortly. Then, the bad information unagreeable to

both parties cannot be generated.

• Often, secret side payments play a role.
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8. Topics and literature

The main topics in this chapter are

• hidden actions

• participation constraint

• incentive constraint

• effort

The German textbook (focussing on organization and management) by Kräkel

(2007) is to be recommended.

9. Solutions

Exercise XXIII.1

If the agent chooses e∗, his payoff is w (x (e∗))− c (e∗), while any other

effort e yields the payoff w (e) − c (e) . In order to guarantee w (x (e∗)) −
c (e∗) ≥ w (e)− c (e) for all e ∈ E, we need

w (e) ≤ w (x (e∗))− c (e∗) + c (e)

= u+ c (e∗)− c (e∗) + c (e) (see eq. XXIII.1, p. 562)

= u+ c (e) for all e ∈ E.

Exercise XXIII.2

Given the price F for the business, the agent who exerts effort e ∈ E,

obtains

x (e)− F − c (e)

which, again, is given by dx
de

!
= dc

de . The agent will not buy the business unless

we have

x (e∗)− F − c (e∗) ≥ u or

⇐⇒ F ≤ x (e∗)− c (e∗)− u.

Thus, the principal can ask for the price x (e∗)− c (e∗)−u. His payoff is the

same as in the main text.

Exercise XXIII.3

No. The agent’s cost for b may be considerably higher than the agent’s

cost for e. Since the principal needs to observe the participation constraint,

b may make a very high wage necessary.

Exercise XXIII.4

From

ξb (x1)u1 + ξb (x2)u2 − c (b) ≥ ξe (x1)u1 + ξe (x2)u2 − c (e)

we obtain

(ξb (x2)− ξe (x2))u2 ≥ (ξe (x1)− ξb (x1))u1 + c (b)− c (e)
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and by ξb (x2)− ξe (x2) = ξe (x1)− ξb (x1) the desired inequality

u2 ≥ u1 +
c (b)− c (e)

ξb (x2)− ξe (x2)
.

Exercise XXIII.5

The participation constraint for b is given by u2 ≥ u+c(b)
ξb(x2)

− ξb(x1)
ξb(x2)

u1.

These are all those utility combinations (u1, u2) that lie on or above the

indifference curve with constant utility <u = u.

Exercise XXIII.6

In case of risk neutrality, we have a linear vNM utility function. The

inverse w (u) is linear, also. Thus, we obtain w′ (u1) = w′ (u2) and the slope

− ξb(x1)
ξb(x2)

of the principal’s isoprofit lines. One of these isoprofit lines lies on

the participation line. Since risk-bearing by the agent is no problem in case

of risk neutrality, any point on the participation line that also fulfills the

incentive constraint will do.

Exercise XXIII.7

(1) Observable effort:

• If the principal aims for e = 1, he needs to take care of the

participation constraint, only:

√
w − (e− 1) ≥ u.

The wage rate w = 1 fulfilling this constaint automatically

takes care of the incentive problem.

• In case of observable effort, it is easy to force e = 2. The

wage rate of we=2 = 4 guarantees the participation constraint√
we=2 − (2− 1) ≥ 1. The incentive constraint is

√
we=2 −

(2− 1) ≥ √
we=1 − (1− 1) which can be rewritten as

√
we=1 ≤ √

we=2 − 1

=
√
4− 1

= 1.

Thus, the wage function

w =

)
4, e = 2

1, e = 1

is optimal.

• e = 1 and w = 1 implies the expected profit

π (e = 1) =
2

3
· 10 + 1

3
· 30− 1

=
47

3
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while e = 2 and w = 4 leads to

π (e = 2) =
1

3
· 10 + 2

3
· 30− 4

=
58

3

>
47

3
.

The principal should aim for e = 2.

(2) Unobservable effort, e = 2

In case of unobservability, the wage needs to be a function of output,

not effort. wl is the wage for the low output 10 and wh is the wage

for the high output 30.

• The agent’s participation constraint for the high effort 2 is

1

3
u (wl, 2) +

2

3
u (wh, 2)

=
1

3
(
√
wl − 1) +

2

3
(
√
wh − 1)

=
1

3

√
wl +

2

3

√
wh − 1

≥ 1,

or
√
wh ≥ 3− 1

2

√
wl.

• The incentive constraint for effort 2 rather than 1 is

1

3

√
wl +

2

3

√
wh − 1

=
1

3
u (wl, 2) +

2

3
u (wh, 2)

≥ 2

3
u (wl, 1) +

1

3
u (wh, 1)

=
2

3

√
wl +

1

3

√
wh,

which can also be written as

√
wh ≥ 3 +

√
wl.

• Participation and incentive constraints are depicted in fig. 7.

• From fig. 7, we learn that the principal should not pay a

positive wage to the agent in case of x = 10. We have
√
wh = 3

and
√
wl = 0 or the wage function

w =

)
9, x = 30

0, x = 10
.
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lw

hw

631

4

3

1

2
participation line
for effort level 2

incentive line

F����� 7. Participation and incentive constraints in our

simple example

The principal’s profit is

π (e = 2) =
1

3
· (10− 0) +

2

3
· (30− 9)

=
52

3
.

(3) Unobservable effort, e = 1

Very similar to the case of observable effort, if the effort level 1 is

aimed for, the incentive constraint is no problem. We know that

w = 1 fulfills the participation constraint and leads to the profit
47
3 . By 52

3 > 47
3 the principal should go for e = 2. Note 58

3 > 52
3 ,

i.e., observability leads to a higher profit. After all, e = 2 is a

second-best solution, only.

(4) The new probabilities reduce the principal’s uncertainty. The high

effort precludes the low output. Here, a boiling-in-oil contract is

optimal:

w =

)
4, x = 30

0, x = 10

fulfills the participation constraint because the agent has the (ex-

pected) payoff
√
4− (2− 1) = 1 = ū. Effort level e = 1 leads to the

expected utility 2
3

√
0 + 1

3

√
4 = 2

3 < 1.
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output maximization problem, 222

over-insurance, 152

own-price effect, 179, 180

owner-manager firm, 234

ownership vector, 231

parameter, 131

Pareto

efficiency, 363

improvement, 363—365, 370

inferior, 253

optimality, 362—364, 366—375,

487—493

superiority, 363, 364

Pareto efficiency, 386—388

Pareto optimality, 386—388, 505, 506

Pareto, Vilfredo, 363

partial derivative, 74, 75

participation constraint, 559, 561—567

partition, 29

payoff, 250

mixed strategy, 260

payoff function, 251

defined, 31

payoff vector, 384

defined, 384

perfect competition, 287, 290—292,

298—300, 371, 372, 529

perfect complements, 201

utility function, 67

perfect information, 31, 320

defined, 41

perfect recall, 40, 41

perfect substitutes

household optimum, 129

utility function, 67

permutation, 390

player-select function, 319

police game, 262, 263

polypsonistic labor market, 549

defined, 548

education, 552—554

education and screening, 554—557

equilibrium, 549, 550, 552
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labor supply, 549

profit function, 549

zero-profit condition, 549

pooling equilibrium, 553

positioning game, 328—330

accomodated entry, 331

defined, 327

deterred entry, 331, 332

equilibrium, 328

positive theory, 486, 487, 502—504

positive-(semi)definite, 173

possibility of inaction, 197, 198, 225

power set, 13, 14

preference axioms, 91—93

preference relation, 61—63, 91, 140

defined, 61

preferences, 53—70, 72—77

price competition, 276—278, 335

accomondated entry, 277, 279

blockaded entry, 277—279

deterred entry, 277, 279

optimal, 334, 335

profit, 276

sequential, 329

simultaneous pricing game, 276

price correlation test, 520

price differentiation, 275

first-degree, 275, 282, 287, 288

third-degree, 275, 288, 289

price discrimination

first-degree, 372

price elasticity of demand, 136, 274,

282, 327

defined, 136

price-consumption curve, 132, 133

pricing game, 343—345, 352, 355

equlibrium, 346

very compact form, 344

principal agent theory, 544, 545,

547—550, 552—557, 559—564,

566—569, 571, 572

principal-agent problem, 560, 561

defined, 560

observable effort, 562

strategy, 561

two outputs, 566—571

unobservable effort, 562—564, 566—572

prisoners’ dilemma, 251—253, 257, 433

infinite repetition, 350, 351

repeated, 352, 354, 355

two-stage, 343—346, 350

probability distribution, 15

producer’s rent, 227, 228

product differentiation, 325, 327, 328,

330—332

horizontal, 325

vertical (quality), 325

production function, 201—205, 223, 224

defined, 200

production optimality, 487, 488

production plan, 196

production possibilty frontier, 204

production set, 195, 199—201, 204, 205,

217—219, 225

axioms, 195, 197—199

defined, 195, 197

production theory, 195

production vector, 196

profit, 217

average definition, 282

defined, 217, 229

function, 327

marginal definition, 282

net, 235, 236

output space, 225

profit function, 236

profit maximization, 230, 231, 235—237,

282

first-order condition, 229, 274, 288,

289, 293, 313, 369

first-order condition , 226

input space, 228, 229

output space, 225—227

perfect competition, 291

profit-maximizing

price, 272, 275, 284, 286

quantity, 281, 284—286

prohibitive price, 134

properly mixed strategy, 259

public good, 375

function, 462

problem, 462—465

purification, 432, 433

quantity competition, 292, 293, 332,

333, 335

accomodated entry, 293

blockaded entry, 300

deterred entry, 300

optimal, 333, 334

sequential, 313, 315—318

simultaneous quantity game, 293
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function, 71—73, 141, 142, 205—207

utility function, 71—74

quasi-convexity, 147—150

quasi-fixed cost, 225

quasi-linear utility function, 186

Ramsey pricing, 527

rank order, 390, 391

rate of concentration, 520—522

rationalizability, 20

defined, 20

reaction curve, 295, 300, 313, 314

reaction function, 293, 294, 317, 328,

330

real numbers, 12

recommendation game, 434—436, 458

defined, 433

reduced profit function, 313, 325, 328,

329

reflexivity, 59

preference relation, 61

relation, 59, 60

complete, 59

defined, 59

reflexive, 59

symmetric, 59

transitive, 59

relative price-cost margin, 275, 287, 299

relevant market, 519, 520

repeated game, 343, 346, 349, 350, 352,

354, 355

equilibrium, 348—351

finite, 347

infinite, 348

punishment, 355

reservation price, 254

reservation utility, 560, 562

reservation wage, 548

returns to scale

constant, 210, 223

decreasing, 210

increasing, 210, 224

nondecreasing, 198, 199

nonincreasing, 197—199

revealed profit maximization, 218, 219

revelation principle, 451, 458—461, 557

theorem, 459

revenue, 274

Ricardo, David, 370

risk aversion, 96—100, 105, 107

risk neutrality, 96, 97, 100

risk premium, 98

risk-loving, 96, 97, 99

Roth, Alvin, 381, 382

Roy’s identity, 167, 171

Rubinstein bargaining model, 411—417

equilibrium, 412—417

saturation quantity

defined, 134

scale elasticity

defined, 210

Schumpeter, Joseph, 511—513, 530

screening, 545, 554—557

strategies, 554

second theorem of welfare economics,

493, 505, 506, 515

second-order stochastic dominance,

104—107

second-price auction, 253, 254, 439, 440

Selten, Reinhard, 247, 249

separating equilibrium, 553—557

defined, 555

separation function of markets, 237, 238

separation property, 201, 202

sequence, 57, 58, 71

defined, 57

set, 10

setup cost, 198

shadow price, 146, 164

Shapley value, 389—392, 396

axioms, 392—394

defined, 391

Shapley, Lloyd, 381, 382, 389

Shepard’s lemma, 166, 170, 171, 175,

179, 223

short run supply function, 226, 227

short-run cost function, 224

short-run cost minimization, 224

signaling, 545

simple game, 394—398

defined, 394

simple lottery, 85—87

Slutsky equation

contingent consumption, 181, 182

endowment budget, 167, 180, 181

intertemporal consumption, 181

leisure vs. consumption, 181

money budget, 167, 178, 179

Smith, Adam, 529

social choice function, 456, 457, 462
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implementation, 457

truthful implementation, 458—461

social choice problem, 455—459, 461—465

mechanism function, 457

solution concepts, 386

algorithm, 386

axiom, 386

core, 388, 389

correspondence, 385

Pareto efficiency, 386—388

Shapley value, 389—394

solution function, 385

solution theory, 139, 140, 228

uniqueness, 141, 142, 228

Spence, A. Michael, 545, 546

SSNIP-Test, 520

St. Petersburg lottery, 88—90

St. Petersburg paradox, 88

Stackelberg

equilibrium, 317

follower, 313

follower effect, 318

game, 313, 315, 316, 318, 323, 324

leader, 313

model, 313

point, 314, 334

profit-maximizing quantity, 313

quantity, 317

strategy, 315

tree, 315, 317

very compact form, 323

stag hunt, 250, 258, 307, 308

stage node, 322, 347, 348

state of the world, 7

Stiglitz, Joseph E., 545, 546

strategic complements, 328

strategic effect

cost leadership, 297

export subsidy, 333

positioning game, 331, 332

strategic form, 9, 249—263, 276, 293

defined, 8

finite, 263—265

game, 265, 266

strategic substitutes, 293

strategic trade policy, 332, 333, 335, 336

strategy, 38, 253—257

best, 258

defined, 31

imperfect information, 37

mixed, 259, 260

pure, 259, 260

strategy combination, 252

number, 263

strategy set, 8

strict preference, 61

strictly convex set, 63

structure-conduct-performance

paradigm, 522, 523

subgame, 321, 322

subgame perfection, 412—417

subgame-perfect Nash equilibrium, 320,

324, 325, 348—350, 354, 355

subset, 10, 13

substitutes, 135, 175, 176

defined, 132, 175

strategic, 293

substitution effect, 176—179, 181

subtree, 32, 38, 44

defined, 32, 34, 35, 37—42, 44

imperfect information, 38

subtree perfection, 32, 35, 36

sunk cost, 225

supply curve

long run, 227

short run, 227

supply function

defined, 226

long run, 226, 227

short run, 226, 227

supply-side substitutes, 520

symmetric

equilibria, 299

symmetric game

defined, 399

symmetry

axiom, 392, 393

defined, 393

take-it-or-leave-it game, 319

theory of the firm, 118, 140, 220, 222,

229, 230

threshold type, 431, 432

tit for tat, 345

trail provoked by a strategy, 31

transformation curve, 204, 238, 370, 371

transitivity, 59

axiom, 91, 93

preference relation, 61

tuple, 10

UN Security Council, 397, 398

Shapley value, 398
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uniqueness, 141, 142

utility frontier, 366

utility function, 66—68, 70—72

defined, 67

existence, 68—71

quasi-concave, 71—73

uniqueness, 67, 68

utility maximization, 235—237

utility maximization vs. profit

maximization, 222

variable, 131

variable cost, 225

vector space of goods, 53—57

vector space of goods and inputs, 195

vector summation, 384, 385

very compact form, 322—324

pricing game, 344

veto player, 395, 396

Vickrey auction, 253, 254
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von Mises, Ludwig, 508, 509

von Neumann Morgenstern utility

function, 93, 94, 96—100
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wage function, 235

wage line, 237

Walras allocation, 490—493, 500

Walras equilibrium, 471, 478, 479, 486,

488—490
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existence, 479, 481—484

Walras’ law, 130, 138, 476

weighted voting game, 397, 398

welfare, 332

loss, 291

maximizing quantity, 291

maximum, 333

welfare theory, 290—292

Williamson’s naive tradeoff model, 526,
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worse set, 62

production function, 200
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