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A concise, accessible introduction to quantitative methods 
for economics and finance students, this textbook con-
tains lots of practical applications to show why maths is 
necessary and relevant to economics, as well as worked 
examples and exercises to help students learn and prepare 
for exams.

Introduces mathematical techniques in the context of  
 introductory economics, bridging the gap between the  
 two subjects 

Written in a friendly conversational style, but with  
 precise presentation of mathematics 

Explains applications in detail, enabling students to  
 learn how to put mathematics into practice 

Encourages students to develop confidence in their  
 numeracy skills by solving arithmetical problems  
 without a calculator 

Extensive provision of worked examples and exercises  
 to underpin the reader’s knowledge and learning 
 
‘This outstanding textbook is the by-product of lecture notes writ-
ten by a dedicated teacher. Mathematics is carefully exposited for 
first-year students, using familiar applications drawn from economics 
and finance. By working through the problems provided, students 
can overcome any fear they might have of mathematics to make it an 
enjoyable companion.’
Chris Jones is Associate Professor of Economics at Australian 
National University

‘In this well-written text, mathematical techniques are introduced 
together with basic economic ideas, underlining the fact that 
mathematics should not be treated separately, but is an integral and 
essential part of economics. The style is friendly and conversational, 
and the mathematical techniques are treated rigorously, with many 
clearly presented examples. Dr Asano is adept in pinpointing those 
areas that students find difficult, making this a very useful and 
comprehensive text for anyone undertaking the study of economics.’
Valerie Haggan-Ozaki, Faculty of Liberal Arts, Sophia University

‘Dr Asano is a renowned teacher, who transformed the course he has 
taught on this subject into a popular, albeit challenging, course that 
laid an excellent foundation for Economics majors. He has brought 
this style to this textbook and students will find it very thorough in its 
treatment of each topic, and find that they will learn by doing as much 
as by reading. Students new to economics will find the style easy to 
follow and this textbook will facilitate the teaching of this material for 
lecturers too.’ 
Martin Richardson, Professor of Economics, Australian National 
University
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An Introduction to
Mathematics for Economics

An Introduction to Mathematics for Economics introduces quantitative methods to students
of economics and finance in a succinct and accessible style. The introductory nature of
this textbook means a background in economics is not essential, as it aims to help students
appreciate that learning mathematics is relevant to their overall understanding of the
subject. Economic and financial applications are explained in detail before students learn
how mathematics can be used, enabling students to learn how to put mathematics into
practice. Starting with a revision of basic mathematical principles the second half of the
book introduces calculus, emphasising economic applications throughout. Appendices
on matrix algebra and difference/differential equations are included for the benefit of
more advanced students. Other features, including worked examples and exercises, help
to underpin the readers’ knowledge and learning. Akihito Asano has drawn upon his own
extensive teaching experience to create an unintimidating yet rigorous textbook.

Akihito Asano is Associate Professor of Economics at the Faculty of Liberal Arts, Sophia
University, Tokyo. He has previously held positions at the University of Melbourne and
the Australian National University (ANU). In 2008 he received the Award for Teaching
Excellence from the College of Business and Economics at the ANU. He currently teaches
introductory and intermediate microeconomics, international trade and introduction to
game theory to undergraduate students, and mathematical techniques in economics to
graduate students.
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Preface

This book is based on lecture notes I wrote for a first-year compulsory quantitative meth-
ods course in the Australian National University (ANU) over a period of seven years.
Before I started teaching the course in 2002, an encyclopaedic textbook on introductory
quantitative methods that had limited focus on economics was used. However, teaching
mathematics out of such a textbook to my students seemed ineffective because many of
them disliked studying mathematics unless they saw practical applications. Accordingly,
as an economist, I looked for other textbooks in mathematical economics. Many good
textbooks were available, but they were too advanced for an introductory course, in terms
of both mathematics and economics. Although they contained many applications to eco-
nomics, they usually assumed that students have learnt some introductory economics.
These applications are not straightforward for first-year students with little, if any, back-
ground in economics. I decided to write my own lecture notes given this unsatisfactory
situation.

Scope

The material in the main text ranges from a revision of high-school mathematics to appli-
cations of calculus (single-variate, multivariate and integral) to economics and finance.
For example: linear and quadratic functions are introduced in the context of demand and
supply analysis; geometric sequences, exponential and logarithmic functions are intro-
duced in the context of finance; single-variate calculus is explained in the course of
solving a firm’s profit maximisation problem; a consumer’s utility maximisation is used
to motivate introducing multivariate calculus; and integral calculus is explained in the
context of calculating the deadweight loss of taxation. The material can be taught in 13–
15 weeks (39–45 hours). To give some flexibility, matrix algebra and an introduction to
difference/differential equations are covered in appendices.

Features, approach and style

One of the distinctive features of this book is that, where possible, mathematical tech-
niques are introduced in the context of introductory economics. Many students tend to
dislike learning mathematics for its own sake, but this feature allows them to realise that
learning introductory mathematics is inevitable in studying economics. The book is self-
contained since no knowledge in economics or finance is assumed. Economic and financial
applications are explained in detail before students learn how mathematics can be used.
For example, in Chapter 4, various notions related to a competitive firm’s problem (from



xiv Preface

microeconomics principles) are explained. Then, motivated by this problem, differential
calculus is introduced. Of course the primary objective of the book is for students to learn
mathematical techniques, so economic ideas are not explained as comprehensively as in
other textbooks on introductory economics.

My notes were originally written as a self-contained workbook on maths applications.
The material in the workbook was not presented in an encyclopaedic way – because I
wanted to have something I could follow exactly – and was written in a conversational style
to make my students feel as if they were studying in my lectures. A typical encyclopaedic
quantitative methods textbook covers everything at length. It also means that such a
textbook tends to contain a lot of unnecessary detail, which I think is not a desirable
feature for an introductory textbook. The spirit of the workbook was ‘maths is used to
examine economics and finance’, and this textbook adopts the same philosophy and the
conversational style. I have tried to focus on mathematical ideas that are relevant to our
applications in economics and finance, and have tried to remove as much unnecessary
detail as possible.

I hope instructors find my approach useful in teaching an introductory quantitative
methods course and, where necessary, can provide their students with some details that
might be missing from this book – in terms of both economics and mathematics – in their
lectures, which I am sure will be appreciated.

Target audience

The book is aimed at first-year economics/finance students – with some high-school maths
but little (or even no) background in economics or finance – who are required to take a
quantitative methods (calculus) course in their degrees. Any other undergraduate student
and/or an MBA student who has no economics background, but who is required to take
a quantitative course in economics/finance in their degrees will also find the book useful.
Although almost no knowledge of economics and finance is required, it is assumed that
students have a knowledge of high-school mathematics up to single-variate calculus.

Calculator policy, etc.

The use of a calculator is strongly discouraged. Arithmetic required in this book is not
complicated enough to warrant the use of a calculator. Students who routinely use a
calculator – and have difficulty in their arithmetic – should try gradually restraining
themselves from relying on it. You won’t be able to have a good sense of numbers if
you keep relying on a calculator. Moreover, we use numbers everyday when we discuss
economics and finance, and it helps a lot to have good arithmetic in understanding what
other people are discussing.

Some might argue that a scientific calculator is necessary because sometimes a solution
may involve expressions such as

√
, log, etc. I have come across many students who

are used to – with the help of a scientific calculator – providing an approximate solution
to these expressions. I have also seen many students who tend to round numbers to two
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decimal places even when solutions are in fractions, e.g. instead of writing
1

30
, many tend

to write 0.03. On many occasions, from a practical point of view, providing an approximate
solution is permissible and could be better than providing an exact solution. For example,
if your boss asks you to provide him/her with a forecast of the economic growth rate of
a country for the next year, he/she is probably looking for an answer such as ‘2.83 per
cent (or even 2.8 per cent)’ rather than ‘2

√
2 per cent’. The rounding error in this case

will be considered trivial to your boss as well as to most people. And indeed, it is handy
to have a calculator in this case because it will tell you that 2

√
2 ≈ 2.828 427 (or even

more accurately). But what about rounding top 100-metre sprinters’ best records to zero
decimal places (in seconds)? It is not practical because too many athletes will be tied at
10 seconds and you won’t be able to tell the sprinter with the fastest record. On the other
hand, you would round top marathon runners’ best records because rounding them to zero
decimal places would be enough to rank them quite accurately. Using an approximate
solution is therefore considered practical and permissible depending on the context, and
at times a scientific calculator may be useful in getting the approximate solution.

However, there is a clear distinction between being practical and being precise, and the
latter aspect is more important when you study mathematics. In mathematics we tend to
carefully connect many dots to get to a solution. If every one of the dots is connected
imprecisely, the solution you arrive at might be quite different to the exact one (the
difference may still be trivial depending on the context, but that’s not the point here).
To be a good user of mathematics, it is important to conduct operations accurately and
obtain the exact solution at each of the required steps. In fact, in many cases, you will

find that only an exact solution exists. For example, when you end up with
a

b
, where a

and b are real numbers, there is no way that you can write it in decimals and round it to

a particular number of decimal places! For expressions such as 2
√

2,
1

30
and loge 2, it is

possible to provide approximate solutions, but leave them as they are. As far as learning
mathematics is concerned, what we care about most is whether you can actually get the
exact solution by following the correct steps. For this reason, you will not need to have a
scientific calculator (or even a simple calculator) to study this book.
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1 Demand and supply in competitive markets

The book centres around the demand and supply analysis in perfectly competitive
markets. To give you an overview of the book, in this chapter these ideas will be briefly
explained without the use of mathematics, primarily for readers who have little
knowledge of economics. I will also foreshadow various topics that will be covered in
the rest of this book and the mathematical techniques that might be used to examine
them. I hope it will motivate you to study the subsequent chapters.

Chapter goals By studying this chapter you will

(1) be able to conduct the demand and supply analysis without the use of mathematics;
and

(2) have a bird’s-eye view of this book.

1.1 Markets

Think about what you bought yesterday. The items you bought might include those that
are physically tangible, e.g. potato chips, vegetables and books, as well as those that are
intangible in nature such as ‘watching a movie in a cinema’ and ‘having a haircut at
a hairdresser’s’. Economists call tangible products such as potato chips and vegetables
goods, whereas they call intangible ones services.

Goods and services are traded in markets. If you have not studied economics before,
note that the word ‘markets’ is a technical term (a jargon) and may be different from
how you use it everyday. When you hear the term ‘market’ you might imagine something
like a fish market or a fruit market because we are familiar with these markets. But in
economics a ‘market’ is a much broader idea. For example, consider an ice-cream stand in
a football stadium. In economics, it constitutes a market for ice-cream because ice-cream
is traded at the stand. Another example of a market is book stores on the Internet (such as
Amazon.com) where books are traded. Essentially, the market for a good (or a service) is
a set of buyers and sellers who potentially engage in trading it, given a particular time and
a location.

Thousands of goods and services are traded in markets. In the following, we shall focus
on one of them – say, sausages – and examine how the price and quantity traded in the
sausage market are determined.



2 Demand and supply in competitive markets

1.1.1 Perfectly competitive markets

Suppose you are selling sausages. Imagine a situation where (a) many other sausage sellers
are around you and they all charge the same price; and (b) there are many people in the
market who are willing to pay that price to buy sausages. That is, so long as you charge
that price, people will buy as many sausage as you want to sell.

To think about how you might decide what price to charge, start with the situation where
you charge the same price as others. Now, would you consider charging a higher price?
Well, it is not a good idea because if you did, people would buy sausages from other sellers
and would not buy any sausages from you. Then, would you consider charging a lower
price? It is not a good idea, either. There are many people who buy sausages from you if
you charge the same price as others; so why would you want to do worse by charging a
lower price?

In this situation, it seems you have no option but to accept the price other sellers charge.
Why can you not affect the price of the sausage? It is because there are so many other
sausage sellers in the market. When your sausage supply is only a tiny proportion relative
to the size of the sausage market, you cannot change the price of the sausage by yourself.
Each of the sellers, including you, has no control over the price and hence accepts (takes)
the price that stands in the market. Economists call these sellers price takers. Similar
logic applies to buyers. If each of the sausage buyers is small compared to the size of the
entire market, then none of them has influence on the price of a sausage. Each buyer is a
price taker in such a situation. You are in this kind of situation when you are shopping in
the supermarket.

However, if you are in fresh food (e.g. fruit, vegetable, fish) markets when they are
about to close, you find that you have some ‘power’ to influence the prices of the goods. It
is very likely you can bargain the prices down. In such a case, buyers are not price takers.
An example of non-price taking behaviour on the seller’s side is found in a market where
there is only one seller. The seller is called a monopolist (or a monopoly) and it can set the
price as it likes (although the price is likely to be subject to government regulation). Even
when there is more than one seller in the market, each of them may have some control
over the price they can charge. In the above sausage example, even if there are many more
sausage sellers around you, if you supply sausages that are somewhat different from those
others provide – e.g. sightly bigger, spicier, healthier – then you can charge a higher price
than your competitors (and consumers who have particular tastes will pay more to buy
sausages from you).

In any event, in this book we will not focus on situations where sellers and/or buyers
have control over the price. It means that our focus will be the market where homogeneous
goods are traded. There are many sellers as well as many buyers in this market and hence
each of them behaves as a price taker. The market that satisfies these two conditions –
(a) homogeneous goods and (b) price taking sellers and buyers – is called the perfectly
competitive market. Now let us look at how buyers and sellers might behave when the
price of a sausage is given.
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1.5

1

0 1000 2000

Demand
schedule

B

A

Price of a sausage

Sausages

Figure 1.1 The market demand for sausages.

1.2 Demand and supply schedules

1.2.1 Market demand

The market demand schedule for sausages depicts, for each and every price of a sausage,
the quantity of sausages buyers in the market are willing to buy (in a particular time, per
day for example).

The market demand schedule for sausages is depicted in Figure 1.1. On the vertical axis
of the diagram, the sausage price is shown, whereas on the horizontal axis, the quantity
of sausages is shown. The diagram indicates that when the market price of sausage is
given as $1 (remember, buyers take this price as given), buyers wish to buy 2000 sausages
(Point A in Figure 1.1). In other words, the quantity demanded is 2000 when the price of
sausage is $1. Now suppose the price has risen to $1.50 (and again buyers must take this
new price as given), what will occur to the quantity of sausages buyers would like to buy?
You would think it’d go down, yes?

Now that sausages have become more expensive than before, buyers might want to
substitute the sausages and buy something else, such as pizzas. Such an effect is called
the substitution effect. In addition, an increase in the sausage price has effectively made
buyers poorer, if other things – prices of other goods and buyers’ income levels – are held
constant. We say that the buyers’ purchasing power has gone down. With lower purchasing
power, buyers tend to purchase less sausages.1 Such an effect is called the income effect.
Both these effects give rise to a decline in the quantity demanded when the price rises.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

1 To avoid confusion for readers who have studied introductory economics before, I note that I am assuming that a
sausage is a normal good. If you are unfamiliar with this notion, don’t worry about this footnote. It is not essential
for following the main text.
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The diagram captures these effects and shows that the quantity demanded has decreased
to 1000 when there is a 50-cent increase in the price (Point B in the figure). The demand
schedule for sausages can be constructed by going through this exercise for every price,
and you will end up obtaining a downward sloping schedule as in Figure 1.1. So an
important lesson that we have learnt here is that the demand schedule slopes downwards;
this is called the law of demand.

By how much does the buyers’ demand for sausages change when there is a change in
the price? Sausage sellers are interested in the answer to this question because it affects
their revenue from selling sausages. When all the sellers decided to raise the price by
50 cents, if the quantity of sausage demanded did not change, their revenue would increase.
However, as the law of demand suggests, they will not be able to sell as many sausages
as before, and hence it is unclear whether the revenue will rise or fall. In Chapter 2 we
introduce some basic mathematical concepts, which include functions. An example of a
function is the demand function, which mathematically represents the demand schedule
we have just discussed. The question as to the change in the sellers’ revenue is more
complex and we will have to put off the investigation until Chapters 4 and 5, where we
learn about differential calculus. Differential calculus is crucial in conducting economic
analysis. As an application of differential calculus, we will introduce price elasticity of
demand, which is closely related to the sellers’ revenue problem we have discussed above.

In fact, what is behind the demand schedule is more complex than you might think.
We briefly mentioned in the above discussion how buyers might choose a good over
another provided the prices for those goods and their income levels. It is easy to imagine
that a change in the price of a sausage will affect the quantity of sausages demanded,
but the prices of other goods and income levels are also important determinants of the
sausage demand. How does the consumer decides how much of each good to purchase?
In Chapter 6, we use this buyers’ consumption choice problem as a motivation to learn
the mathematical notion called multivariate calculus.

1.2.2 Market supply

The market supply schedule in Figure 1.2 depicts, for each and every price of a sausage,
the quantity sellers in the market are willing to provide (in a particular time, per day for
example).

As in the diagram for the demand schedule, we have price on the vertical axis and
quantity on the horizontal axis. The diagram indicates that when the market price is $1
(remember, sellers are price takers), they wish to sell 1000 sausages (Point C in Figure 1.2).
Another way to put it is that the quantity supplied is 1000 when the price of sausage is $1.
Now suppose the price rises to $1.50 (and again sellers take this new price as given), what
will happen to the quantity of sausages sellers would like to supply, holding other things –
such as sellers’ sausage production technology, how much it costs to hire a worker, etc. –
constant?

When everything else is held constant – in Latin, ceteris paribus – an increase in the
price of a sausage (by 50 cents in this case) will increase the quantity of sausages supplied
in the market. Not only will the existing suppliers want to supply more sausages than
before, but some new sellers who did not supply them before might find it worthwhile
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Figure 1.2 The market supply for sausages.

to supply them now that they each sell for $1.50. In the diagram it is shown that the
quantity of sausages supplied rises to 2000 when the price increases to $1.50 (Point D in
Figure 1.2). The supply schedule of sausages – the upward sloping schedule in Figure 1.2 –
can be constructed by obtaining the quantity supplied for all the other prices. The fact that
the supply schedule slopes upwards is called the law of supply.

As we learned in the beginning, there are many sellers in a competitive market and
each of them supplies sausages. It means that the market supply must be the sum of
the supply of these individual sellers. In Chapter 4 we will study an individual seller’s
decision making problem, which is to choose the quantity of supply given the price so as
to maximise profits. It is called the profit maximisation problem and we will learn how
to differentiate a function in the course of solving this problem. In Chapter 7 we will
demonstrate how we can aggregate the individual seller’s supply schedules to obtain the
market supply schedule.

1.3 Market equilibrium

Now let us put the two schedules together in Figure 1.3.
Both the market demand and supply schedules for sausages are depicted. Remember

that each of the buyers is a price taker and so is each of the sellers. The diagram indicates
that when the market price of a sausage is given as $1, buyers wish to buy 2000 sausages
(Point A in Figure 1.3), but sellers wish to sell 1000 sausages (Point C). The horizontal
distance CA (measured in sausages) is 1000 and it means the quantity demanded exceeds
the quantity supplied by 1000 sausages if the price is $1. We say that there is an excess
demand for them. We can also say that there is a shortage of sausages. What would you
expect to occur when there is excess demand?
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Well, you’d probably expect the price to rise. But how do we reconcile it with the price
taker assumption? The assumption is that each seller cannot raise the price because they
will lose all their sales given other sellers are not deviating from the current price. Here
the trick is to think as follows; we suppose all the sellers agree to increase the price by a
little bit at the same time. When sellers realise that there are desperate buyers who would
pay a bit more to buy sausages (rather than missing out on them), they decide to raise the
price as a group, which creates an upward pressure on the price. There will be an upward
pressure on the price from the buyers’ side as well. Namely, the buyers who do not want
to miss out on sausages will offer a higher price (if they can), which the sellers have no
reason to decline.

Let us see what might occur if the price is $1.50. Now buyers wish to buy 1000 sausages
(Point B), but sellers wish to sell 2000 sausages (Point D). So there is excess supply,
which is represented by the horizontal distance BD. The quantity supplied exceeds the
quantity demanded by 1000 sausages if the price is $1.50. This time there will be a
downward pressure on price. That is, realising the excess supply, buyers as a group bid
down the price, which sellers tend to accept so as to unload the excess supply.

We have looked at the cases where the amount buyers want to buy does not coincide
with the amount sellers would like to supply. Now focus on Point E in Figure 1.3 where
the price of a sausage is $1.25. The demand schedule indicates that buyers wish to buy
1500 whereas the supply schedule shows that sellers would like to provide 1500 to the
market. So under this price, the amount buyers want to buy coincides with the amount
sellers would like to supply. When this occurs we say that the sausage market clears
and that the market is in equilibrium. It is the situation where (a) each of the buyers
and sellers is doing what they want to do; and (b) the quantity demanded equals the
quantity supplied, i.e. the market clears. Unlike in the previous cases, buyers and sellers
have no reason to change their behaviour under this situation and hence the price and the
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quantity of sausages traded stay intact. Point E is called the equilibrium point and the
corresponding price and quantity are called the equilibrium price and the equilibrium
quantity, respectively.

What do you think might occur to the equilibrium price and quantity if the government
decides to collect a certain amount of a tax from the sellers per sausage sold? It seems
that sellers will suffer from this arrangement, but what about the sausage buyers? Will
there be any effect on them? It turns out that the buyers also tend to suffer from the tax,
despite the fact it is the sellers who pay the tax legally. To study the effect of the taxation,
we typically rely on the ideas of consumer surplus and producer surplus, which measure
the welfare of buyers and sellers, respectively, in dollars. To obtain these measures we
need to study how to obtain the area under the demand and supply schedules. We will
study the mathematical technique that allows us to do it – integral calculus – in Chapter 7.

1.4 Rest of this book

As foreshadowed above, the main economic applications that involve the use of calculus
will be covered in Chapters 4–7. However, it does not mean the next two chapters are
unimportant. Chapter 2 recaps some basic ideas in mathematics – numbers, equations,
functions, logic, etc. – and demand and supply analysis will be conducted in a more
mathematical fashion. In Chapter 3, some more ideas of basic mathematics – most notably,
the exponential function and the logarithmic function – will be studied in the context of
introductory finance. These chapters are completely free from the use of calculus and
will hopefully consolidate your mathematical background before you delve into the main
economic applications that utilise calculus in Chapters 4–7.



2 Basic mathematics

This chapter deals with some fundamental mathematical rules and ideas we will use
in the rest of the book. It is very important that you become comfortable with them.
Going through the basic material may be a tedious experience for you, but much of
the confusion in studying mathematics that I know appears to stem simply from a
lack of appreciation of these mathematical conventions (if so, what a pity. . . ), so I
will spend some time on them.1

To become a good user of a foreign language, we need to know some grammar
as well as a bit of slang of that language. Sometimes one gets lost completely during
conversations because of the use of slang. For example, if I received a letter saying,
‘There is a BBQ party; BYO’, I would bring my own drink since I know what BYO
means. However, some of you whose native language is not English may have to
consult with their dictionaries in order to figure out what BYO means.

Learning mathematics has a similar flavour. You will need to know the basic rules
as well as some advanced techniques that stand on them. As you don’t expect you can
master a foreign language overnight, you also should not expect that you can master
mathematics overnight. You will need to work hard in order to learn mathematics.
The reward from it, though, should be fairly large. If you have studied a foreign
language and have been able to communicate with people – who you otherwise
wouldn’t have been able to – using it, you know how fun and exciting it is.

OK then, put your head down and let’s go through the material together. If you
have a sound knowledge of high-school mathematics, you may be able to skip the
basic material and jump to Section 2.10 where we see how mathematics can be
applied to conduct the demand and supply analysis.

Chapter goals By studying this chapter you will

(1) recap basic ideas in mathematics that will be used in the rest of the book;
(2) be able to conduct demand and supply analysis (with mathematics);
(3) be able to carry out comparative static analysis and interpret its results; and
(4) be able to interpret implication statements, and explain the difference between

necessary and sufficient conditions.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

1 In writing this section, I have drawn a lot of material from M. Timbrell, Mathematics for Economists (Basil
Blackwell, 1985). I have also benefited a lot from R. G. Bartle and D. R. Sherbert, Introduction to Real Analysis
(Wiley, 1999).
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2.1 Numbers

To begin with, I will discuss numbers. The numbers we use to count things, i.e. 1, 2, 3, . . .

are called natural numbers (or positive integers). If we sum two natural numbers,
we have another natural number (say, 5 + 8 = 13). However, if we subtract one natural
number from a smaller one (say, 5 − 8), we end up with a negative of a natural number
(5 − 8 = −3). The negative of natural numbers, that is, −1, −2, −3 . . . are called negative
natural numbers (or negative integers). The set of these two types of numbers and zero
are called integers.

Now, what occurs if we multiply an integer by another? We obtain an inte-
ger. For example, 5 · 8 = 40 or 3 · (−7) = −21. Note that · in between two num-
bers implies a multiplication symbol ×, i.e. 5 · 8 = 5 × 8 = 40. Sometimes we even
omit ‘·’ if it is not confusing. For instance, if we multiply two numbers x and
y, we can write the product as x × y, x · y or xy. Of course, you should avoid
writing 58 to represent 5 · 8 because people will no doubt interpret it as ‘fifty-
eight’.

In any event, let’s turn to division. If we divide an integer by another (with one exception,
which we will see shortly), we obtain a different type of number called fraction. For

instance, 3 ÷ 2 = 3

2
. The set of fractions and integers is called rational numbers. We

will introduce other types of numbers in due course.

2.1.1 We cannot divide a number by zero!

Suppose you have $120 in your pocket and are thinking about going to a rugby game
in the local stadium. Tickets cost $12 per person. How many friends can you invite?
Well, 120 divided by 12 gives 10, so you can invite 9 people (10, if you are not
going with them). OK, but what if tickets cost $0? How can we divide 120 by 0?
Obviously there is no sensible number for this question, because you can choose any
number of people to take (so long as the stadium does not collapse because of over-
crowding!). Mathematics disallows imprecision as such by simply excluding the idea
of dividing a number by zero. Consider an expression x ÷ (y − z). This expression
is completely fine so long as y �= z. If y = z, then it becomes x ÷ 0, which is not
allowed.

2.1.2 Reciprocal

Consider a number x. So long as x �= 0 we can divide 1 by x to create a new number
1

x
.

It is called the reciprocal of x. You can see that x · 1

x
= 1, which says that the product of

a number and its reciprocal is unity.
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2.2 Fractions, decimal numbers and the use of a calculator

We have seen that all the rational numbers can be represented as the ratio of two integers,
but they can be represented in many different ways. For example:

3

10
= 30

100
,

5

16
= 3125

10 000
.

However, they can also be written as:

3

10
= 0.3,

5

16
= 0.3125.

These numbers, 0.3 or 0.3125, are called decimal numbers. The advantage of using

decimal numbers is that we can compare numbers very easily. It is obvious that
3

10
is

smaller than
5

16
, once we see that the former is 0.3 and the latter is 0.3125. However,

it is not really an advantage. We can always find any common denominator of the two
numbers and compare their numerators. In the above example, if we use 10 000 as the

denominator, the numerator for
3

10
is 3000, which is smaller than 3125, so we can reach

the same conclusion rather easily.
In contrast, the downside of using decimal numbers is quite notable, which I’d like to

emphasise. It is important to appreciate that many fractions actually do not have a nice
and short decimal number representation. For example:

1

3
= 0.333 33 . . .

You can see that 3 is repeating infinitely. This number can be represented as 0.3̇,
meaning that 3 is repeating. The representation is actually nice and short, but that is not
the point here, as you will see as you read through the rest of the section. This kind of
number is called an infinite decimal, whereas numbers such as 0.3 and 0.3125 are called
finite decimals.

A rational number is either a finite decimal or an infinite decimal that repeats. There
are some infinite decimal numbers that do not repeat. They cannot be represented by
any fraction of two integers and are called irrational numbers. Examples of irrational
numbers include: π,

√
2,

√
3, etc. It will be proven in Section 2.12 that

√
2 is an irrational

number.
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0− +

Figure 2.1 The real line.

The problem of using decimal numbers may be serious when it comes to operating a
calculator. I will go through an easy exercise to illustrate the point. It will tell us that we
need to be careful in using a calculator.

Question Calculate 39 × 1

18
× 1

13
.

Solution A (using fractions)

39 × 1

18
× 1

13
= 39

18 × 13
= 3

18
= 1

6
.

Solution B (using decimals)

39 × 0.055 55 . . . × 0.0769 . . .

= 39 × 0.06 × 0.08

= 0.1872.

Exercise 2.1 A pitfall of using decimal numbers in calculation.

Now,
1

6
= 0.1666 . . . and so you can see that the two methods yield different numbers.

Because the infinite decimals 0.055 55. . . and 0.0769. . . were rounded to two decimal
points, Solution B involves a rounding error. The error can be trivial or significant
depending on the context of the question of the focus, and a small discussion on this matter
is provided in the Preface of this book. To avoid the imprecision and, more importantly, to
become good with dealing with numbers, I encourage that you restrain yourselves from
using a calculator.

Let’s get back to the main issue. The numbers we have discussed so far are called the real
numbers. The real numbers are either rational or irrational numbers. Rational numbers
include integers because any integer divided by one is that integer and is represented as a

fraction (e.g. 5 = 5

1
). If we take zero at the centre, and measure positive real numbers as

the distance to the right and negative real numbers as the distance to the left, then we can
arrange all the real numbers on what we call the real line, as shown in Figure 2.1.

2.3 Some algebraic properties of real numbers

Numbers obey certain rules in mathematics as words do in language. There are some basic
rules concerning operations of addition (denoted by +) and multiplication (denoted by



12 Basic mathematics

× or ·) of real numbers.2 I’m sure that you have seen them in school at some stage, but
let me just give you a list of them to remind you. In the following, let x, y and z be real
numbers.

(1) Closure x + y and x · y are also real numbers.

(2) Communicative

x + y = y + x,

x · y = y · x.

(3) Associative

(x + y) + z = x + (y + z),

(x · y) · z = x · (y · z).

(4) Identity 0 is a real number such that x + 0 = x for all the real numbers x. 1 is a
real number such that x · 1 = x for all the real numbers x.

(5) Inverse For any real number x, there is a real number y such that x + y = 0,
where we write such y as −x. For any non-zero real number x, there is a real

number z such that x · z = 1 where we write such z as
1

x
(and you should realise

that this is the reciprocal explained earlier).

(6) Distributive

x · (y + z) = xy + xz,

x · (y − z) = xy − xz.

A quick remark for readers who have not studied mathematics for a long time. Recall
that operations inside brackets have to be conducted first. If there are no operations in
brackets, multiplications have to be conducted before additive operations.

2.4 Equalities, inequalities and intervals

Once we have established the real line, we can compare a real number with another one.
If a number x lies to the right (left) of a number y, then we say that x is greater (smaller,
respectively) than y, and express the relation as x > y (x < y, respectively). In contrast
to these inequalities, if numbers x and z lie at exactly the same position, we say that x is
equal to z, and we express the relation as x = z.

By combining these inequalities and equalities, we can describe intervals. For example,
0 < x < 1 implies that x can take any values between 0 and 1, not including either 0 or 1.
The expression x ∈ (0, 1) carries the same information. The interval where neither of the
end points is included is called an open interval. If both of the end points are included,
then the interval is called a closed interval. For example, 0 ≤ x ≤ 1 implies that x can take

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

2 Note that subtraction (denoted by −) and division (denoted by ÷) are their inverse operations, respectively.
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any values between 0 and 1, including both 0 and 1; x ∈ [0, 1] is an alternative expression
for this interval (notice the difference in the type of brackets used). If 0 ≤ x < 1, then
it implies that x can take any values between 0 and 1, including 0 but not including 1.
This is sometimes written as x ∈ [0, 1), and is called a half-open interval. Intervals that
contain ∞ are called infinite intervals. For example, to represent all the non-negative real
numbers, we can write 0 ≤ x < ∞ or x ∈ [0, ∞). The set of all the real numbers can be
written as −∞ < x < ∞ or x ∈ (−∞, ∞).

2.4.1 Absolute values

Now, it follows from the definitions of inequalities that −100 < 1 (it seems rather obvious,
but try explaining why it is so). However, if we were to measure the distance from the
centre of the real line, zero, clearly −100 is further away from zero than 1 is. In other
words, if we ignore the minus sign, −100 has a greater magnitude than 1 does. We use an
absolute value to show the magnitude of a number a, which is written as |a|. In the above
example, |−100| > |1|. The interval −2 < a < 2 can be expressed using the absolute
value as |a| < 2.

2.5 Powers

You will encounter the power of numbers in mathematics everywhere. Let us begin with
the definition of a power. If we multiply a number q by the same number, the expression
will be q × q. Another way of expressing it is q2, where the superscript 2 is a power
showing that two qs are to be multiplied together. In a sense, the power expression is
like slang in a language; expressing the same thing in a different way. Just like you need
to know slang to be an expert in a particular language, you need to know the power
expression if you want to communicate well with others using mathematics.

In any case, let us go through the following process to see if we can learn something
about the power expression. We know that multiplying a number by unity yield that
number itself, so let us express q2 as “a 1 multiplied by q twice,”

q2 ≡ 1 × q × q.

By the same token, we can define q to various powers:

q3 ≡ 1 × q × q × q,

q1 ≡ 1 × q,

q0 ≡ 1.

Two things are worth noting. First, q is actually q1 but the superscript 1 is omitted for
simplicity. Second, whatever the value q takes, we find that q0 = 1.

We can extend this analysis to division and find out what negative powers look like.
Namely, for non-zero q:

q−1 ≡ 1 ÷ q = 1

q
,

q−2 ≡ 1 ÷ q ÷ q = 1

q2
,
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and so,

q−m = 1

qm
.

Now we know that q−m is a reciprocal of qm.

2.5.1 The basic power rule

There is only one basic power rule you need to remember because other rules follow this
one. The important rule is:

qm · qn = qm+n. (2.1)

Question Simplify q4 · q3.

Solution

q4 · q3 = (q · q · q · q) · (q · q · q)

= q · q · q · q · q · q · q

= q4+3

= q7.

Exercise 2.2 Applying the power rule (2.1).

Now, using rule (2.1) we can deduce the following:

qm · q−n = qm+(−n) = qm−n.

Note that q−n = 1

qn
. Together, we have the following:

qm ÷ qn = qm

qn
= qm−n. (2.2)

Question Simplify q6 ÷ q3.

Solution

q6 ÷ q3 = q6

q3

= q · q · q · q · q · q

q · q · q

= q6−3

= q3.

Exercise 2.3 Applying the power rule (2.2).
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Suppose now that y = q4. What is y3 in terms of q? This can be solved by directly
applying the definition of the power:

y3 = (q4)3 = q4 · q4 · q4 = q4+4+4 = q4×3 = q12.

In general, we have: (
qm
)n = qmn. (2.3)

2.5.2 Non-integer powers, particularly
1
2

Up to this point, m and n were implicitly treated as integers and hence numbers were
raised to some integers. But numbers need not be raised to integers only and the power
rules can be applied for non-integers as well. To delve into this issue, let us look at the
following statement: qn = y. It follows from rule (2.3) that:

qn = y
1
n
×n =

(
y

1
n

)n

,

and hence:

q = y
1
n ≡ n

√
y.

The above identity says that ‘q is the nth root of y’.
There are two special (or frequently used) ns. When n = 2, we say ‘q is the square

root of y’. It follows from the convention that q2 is called q-squared. As you may know,
we can simply write it as q = √

y (instead of 2
√

y). In turn, when n = 3, we say ‘q is the
cube (or cubic) root of y’. It again follows from the convention that q3 is called q-cubed.

Two remarks should be made regarding this introduction of non-integer powers. First,
the number defined by a statement may not be unique. For example, 9 can be written
as 9 = 3 × 3 = 32 as well as 9 = (−3) × (−3) = (−3)2. So the statement q2 = 9 can
mean either q = 3 or q = −3. In general, we write it as q = ±3. Second, if we consider a
statement such as q2 = −16, we realise that there exists no ‘real’ number q that satisfies the
statement. Mathematicians get away with this problem by ‘imagining’ that such numbers
exist, and we introduce these imaginary numbers in the next section. But before that, let
me discuss a little about some conventions regarding the square root.

2.5.3 Some conventions on the square root

There are two conventions concerning the square root that I want you to follow. Using
a language metaphor, I would say that your mathematics will become more fluent by
following these conventions.

The first convention is the following. When we end up with an expression with a square
root of ‘a number multiplied by a squared number’, simplify the expression so that the
number inside the squared root cannot be expressed as ‘a number multiplied by a squared
number’. For example, do not leave the expression

√
4 as it is. It be expressed as

√
22 and

hence can be simplified to 2. A little more complicated example is
√

120. You should not
leave it as it is. This number can be (and should be) simplified to 2

√
30.



16 Basic mathematics

The second convention is relevant when you end up with a fraction and the denominator
includes a square root. If it occurs, do not leave the square root on the denominator. It is
considered fine (or fluent, if you like) to have squared roots on the numerator, but not on

the denominator. For example, when you end up with
1√
2

, then do not leave it. Multiplying

both the numerator and the denominator by the same number will not change the value
of the expression, so let us use

√
2 and see what occurs. The expression has now become√

2

2
or

1

2

√
2. You can easily see from this expression that it is ‘a half of

√
2’, where it is

hard to observe something meaningful from the expression
1√
2

, which contains a square

root on the denominator. The expressions
1√
2

and

√
2

2
are value-wise identical, but in

order to facilitate communication, we tend to use a more intuitively appealing expression.
Since we convert an irrational number on the denominator (

√
2) into a rational number

(2), we call this procedure rationalisation of the denominator.

2.6 An imaginary number and complex numbers

Suppose (or imagine) that there exists a number called i such that i2 = −1. Such a number
i is called an imaginary number. Then it follows:

(iy)2 = i2y2 = −y2.

Hence,

(±4i)2 = −16.

We have obtained the answer for the question q2 = −16: the answer is q = ±4i.

We use a combination of real and imaginary numbers, such as a + bi, d − ci,
q − 3i

4i − 7
.3

Such numbers are called complex numbers. We will not deal with these numbers in
introductory economics or finance (obviously they do not make any economic/financial
sense on the surface), but nevertheless, it is useful to have the knowledge of where these
numbers come from.

2.7 Factorisation: reducing polynomial expressions

We call an expression involving the addition of terms, each having a variable with an
unspecified value raised to a different power, a polynomial expression. A variable with
an unspecified value is called an unknown. The process of reducing polynomials to a

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

3 The last expression includes the imaginary number on the denominator. As we avoid having irrational numbers on
the denominator, we also avoid having imaginary numbers on the denominator. In this case, by multiplying both

the numerator and the denominator by 4i + 7 we can change the expression to
(3i − q)(4i + 7)

65
. It is most

unlikely that you will encounter this kind of expression in this book, and hence I will not delve into it any further.
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product of two (or simpler) expressions, or factors, is called factorisation. For example,
consider the expression 3x − 6, where x is the unknown. The expression can be reduced to
3(x − 2). Both 3 and x − 2 are factors of 3x − 6. In general, ax + ab = a(x + b), where
in the example a = 3 and b = −2.

There are some well-known rules for factorising polynomials when the highest power
the unknown is raised to is two. I list them in the following.

Rule 1 cdx2 + (ad + bc)x + ab = (cx + a)(dx + b).

Rule 2 x2 + (a + b)x + ab = (x + a)(x + b).

Rule 3 x2 + 2ax + a2 = (x + a)2.

Rule 4 x2 − 2ax + a2 = (x − a)2.

Rule 5 x2 − a2 = (x + a)(x − a).

Note that if you set c = 1 and d = 1 in Rule 1, you can obtain Rule 2. You can obtain
Rules 3–5 as special cases of Rule 2.

When the highest power is three, things become a little more complicated. Let us think
about the following polynomial expression:

2x3 − x2 − 2x + 1 = (x − 1)(2x − 1)(x + 1).

There is virtually only one tip you need to know in conducting this factorisation. That
is the following.

If you observe a particular number, say x∗, that reduces the expression to zero (i.e. the
expression becomes zero if you plug in x∗ to x), then you know that one of the factors
must be (x − x∗).

In the above expression, for example, if we plug in x∗ = 1 to x, then the expression
reduces to zero: 2(1)3 − (1)2 − 2 (1) + 1 = 2 − 1 − 2 + 1 = 0. Therefore, (x − 1) is one
of the factors of 2x3 − x2 − 2x + 1 as you can see.

Knowing the tip I have given above, however, is not enough. We know (x − 1) is one
of the factors of 2x3 − x2 − 2x + 1, but how can we verify that 2x3 − x2 − 2x + 1 can
be factorised as (x − 1)(2x − 1)(x + 1)? Once you find out one of the x∗s, you need to
carry out the rest of the factorisation. I demonstrate how it can be done in the following.

Question A Factorise 2x3 − x2 − 2x + 1.

Solution We already know that one of the factors is x − 1 so it must be true that:

2x3 − x2 − 2x + 1 = (x − 1)(some polynomial expression).
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What is ‘some polynomial expression’ in the above brackets? We know that the highest
power x is raised to in that expression is 2, because the product of it and x − 1 must
be 2x3 − x2 − 2x + 1, which contains an x3 term. Hence let us denote that polynomial
expression as ax2 + bx + c:

2x3 − x2 − 2x + 1 = (x − 1)(ax2 + bx + c).

If we expand the right hand side (RHS) of this equation, we have:

(x − 1)(ax2 + bx + c) = ax3 + (b − a)x2 + (c − b)x − c.

Now compare ax3 + (b − a)x2 + (c − b)x − c with 2x3 − x2 − 2x + 1, which need to
be equal. For them to be equal, it is obvious that a = 2 and c = −1. It follows that b = 1.
Therefore, we have obtained the polynomial expression we are looking for. It turns out to
be 2x2 + x − 1:

2x3 − x2 − 2x + 1 = (x − 1)(2x2 + x − 1).

However, we have not finished yet because 2x2 + x − 1 can be further factorised as
(2x − 1)(x + 1). So, in the end, we get:

2x3 − x2 − 2x + 1 = (x − 1)(2x − 1)(x + 1).

Question B Factorise 2x3 − 5x2 + 4x − 1.

Solution One of the factors is x − 1 because x = 1 reduces the above expression to
zero. So it must be true that:

2x3 − 5x2 + 4x − 1 = (x − 1)(ax2 + bx + c).

If we expand the right hand side (RHS) of this equation, we have:

(x − 1)(ax2 + bx + c) = ax3 + (b − a)x2 + (c − b)x − c.

By looking at ax3 + (b − a)x2 + (c − b)x − c and 2x3 − 5x2 + 4x − 1, we can deduce
that a = 2, c = 1, and b = −3. Accordingly, we have:

2x3 − x2 − 2x + 1 = (x − 1)(2x2 − 3x + 1).

Together with the fact that 2x2 − 3x + 1 = (2x − 1)(x − 1) we get:

2x3 − x2 − 2x + 1 = (x − 1)2(2x − 1).

Exercise 2.4 Factorisation.

Now that you know how to factorise, you can simplify many seemingly complicated

expressions, such as
2x3 − 5x2 + 4x − 1

2x3 − x2 − 2x + 1
.

2x3 − 5x2 + 4x − 1

2x3 − x2 − 2x + 1
= (x − 1)2(2x − 1)

(x − 1)(2x − 1)(x + 1)

= x − 1

x + 1
.
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2.8 Equations

An equality in which one or more unknowns appear is called an equation. We are interested
in solving an equation, which is assigning to the unknown(s) a value (or a set of values)

that satisfies the equality. For example, x = 1

2
is the simplest form of equations, but the

solution is so obvious (and hence it is not different from a mere statement). However,
2x − 1 = 0 is an alternative representation of that statement, and it is represented in the
form of what we call a linear equation.

2.8.1 A linear equation

We can solve an equation by applying the same operations on the both sides of equality,
because the relationship between the two sides will not be affected by such operations.

ax + b = 0, (2.4)

where a �= 0. Equation (2.4) is called the linear equation (because the highest power of x

is raised to is one). It is quite obvious that the solution to this equation is x = −b

a
. So, if

2x − 1 = 0, then x = 1

2
.

2.8.2 Higher order equations; in particular, a quadratic equation

Equations in which the highest power x is raised to is greater than 1, are called higher order
equations. If the highest power x is raised to is two, it is called a quadratic equation. If
the highest power x is raised to is three, then we call it a cubic equation. If the highest
power x is raised to is four, that equation is called a quartic equation (but you will hardly
see that in this book).

All these equations can be solved quite simply if they can be factorised. For example,
in Section 2.7, we showed the following factorisation:

2x3 − x2 − 2x + 1 = (x + 1)(x − 1)(2x − 1).

Hence if we have an equation 2x3 − x2 − 2x + 1 = 0, we can factorise the left hand
side (LHS) of the equation, and it becomes:

(x + 1)(x − 1)(2x − 1) = 0.

The LHS is equal to zero if x + 1 = 0, x − 1 = 0 or 2x − 1 = 0. Hence the xs that

solve the equation are x = −1, x = 1 and x = 1

2
.4

However, solving an equation will not be that easy all the time. Factorisation is not
always possible and, even if it is, sometimes it is very difficult to find factors by the
method we have discussed. Here we will discuss some techniques for solving the quadratic
equation and will introduce a simple rule.5 We start with the general form of the quadratic

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

4 You should now be able to see the reason why we could conclude that (x − x∗) is one of the factors of an
expression if x∗ reduces the value of it to zero.

5 For higher order equations other than the quadratic equation, there are no generally applicable rules except for
factorisation. When solutions cannot be found by hand, we can resort to numerical simulations.
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equation:

ax2 + bx + c = 0, (2.5)

where a �= 0. By conducting some basic operations, we can rearrange it as follows:

ax2 + bx + c = 0

x2 + b

a
x + c

a
= 0

x2 + b

a
x + b2

4a2︸ ︷︷ ︸
1st term

+ c

a
− b2

4a2︸ ︷︷ ︸
2nd term

= 0

(
x + b

2a

)2

︸ ︷︷ ︸
1st term

= b2 − 4ac

4a2︸ ︷︷ ︸
−2nd term

.

This procedure is called completing the square. On the third line of the above pro-

cedure, note that
b2

4a2
is added to the LHS of the equation to complete the square of(

x + b

2a

)
. Of course, to retain the equality, note also that

b2

4a2
is subtracted from the LHS

at the same time. In any event, once we complete the square, we can solve the equation:(
x + b

2a

)
= ±

√
b2 − 4ac

2a

x = −b ± √
b2 − 4ac

2a
.

Hence x = −b ± √
b2 − 4ac

2a
represents the solutions of any quadratic equation. One

thing to note here: there are two possible values for x, one when a positive root is used
in the above calculation, and the other when a negative root is used. One exception is
where b2 − 4ac = 0. In that case, the expression inside the square root is zero, and so x

collapses to x = − b

2a
. The value of the two solutions is identical in this case.

The solutions of the quadratic equation are often referred to as roots of the equation.
When b2 − 4ac = 0, we say that the equation has repeated roots. When b2 − 4ac > 0,
we say that the equation has two (distinct) real roots. I will give you some examples.

Question A Solve the following equation: x2 − 2x + 1 = 0.

Solution
x2 − 2x + 1 = 0

(x − 1)2 = 0

x = −(−2) ±
√

(−2)2 − 4 · 1 · 1

2

= 2 ± √
0

2
.

Either way we get x = 1.
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Question B Solve the following equation: x2 − 2x − 6 = 0.

Solution

x = −(−2) ±
√

(−2)2 − 4 · 1 · (−6)

2

= 2 ± √
4 + 24

2

= 2 ± √
28

2

= 2 ± 2
√

7

2
.

Therefore x = 1 ± √
7.

Exercise 2.5 Solving quadratic equations.

But what if b2 − 4ac < 0? Then, the value inside the square root is a negative number,
and we know that we cannot take the square root of a negative number unless we use
complex numbers (remember that i2 = −1). So the solution to this type of quadratic
equation involves the imaginary i, and we say that the equation has two complex roots.
Basically, when you find a negative number inside the square root, by definition of the
imaginary i, we can make the inside positive and put the i after the square root. The
following example should illustrate the point.

Question Solve the following equation: x2 − 2x + 8 = 0.

Solution

x = −(−2) ±
√

(−2)2 − 4 · 1 · 8

2

= 2 ± √
4 − 32

2

= 2 ± √−28

2

= 2 ± √
28i

2

= 2 ± 2
√

7i

2
.

Therefore x = 1 ± √
7i.

Exercise 2.6 Solving a quadratic equation that has two complex roots.
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The above three examples are related to the quadratic functions we will see in the next
section.

2.9 Functions

A variable y is said to be a function of another variable x if there is a rule that associates
with each possible value of x exactly one value y. For example, we can express the rule
that has to hold regarding the temperature in Centigrade (x) and the temperature in
Fahrenheit (y) as the following:

y = 9

5
x + 32. (2.6)

Here the temperature in Fahrenheit (y) is a function of the temperature in Centigrade
(x). It has to be emphasised that functions are defined for particular values of x. For
this example, the function is only true for x > −273 (because it is absolute zero, and a
temperature below that is not possible, as far as our knowledge is concerned). The set
of values that x can take is called the domain, and is an important part of the definition
of a function.6 If the domain is not specified, it generally means that x can be any real
numbers.

The corresponding set of values of y, when the domain is given, is called the range. In
the above temperature example, the range is y > −459.4.

As it was mentioned previously, we cannot divide any number by zero. Hence in

defining a function such as y = 1

x
, we need to be careful about specifying the domain.

This function is not defined when x = 0, so we should define it as:

y = 1

x
, x �= 0.

2.9.1 Implicit and inverse functions

In Equation (2.6), we defined the temperature in Fahrenheit (y) as a function of the
temperature in Centigrade (x), but we can do it the other way round as well. Namely, by

multiplying the both sides of Equation (2.6) by
5

9
and rearranging it, we obtain:

x = 5

9
(y − 32) , y > −459.4. (2.7)

If we denote Equation (2.6) by the mathematical statement y = f (x) (meaning that y is
a function of x), then Equation (2.7) can be written by the inverse function, x = f −1(y).
Note that f refers to the functional relationship between the argument x and the value of

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

6 In mathematics, the term set is used to describe any collection of distinct items, which are called elements. For
example, the ‘(French) suits of playing cards’ is a set that consists of four elements: spades, hearts, diamonds and
clubs. It is an example of a finite set whose number of elements is finite (four in this example). On the other hand,
the set of x that satisfies x > −273 contains an infinite number of elements. Such a set is called an infinite set.
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the function y, and f −1 refers to the reverse procedure necessary to return us to the value

of x. It is different from y−1, which simply means a reciprocal of y,
1

y
.

It is worth noting that an inverse function does not always exist. Even when it does,
finding it may be difficult. In our temperature example, it exists and was easy to find.

Equations (2.6) and (2.7) can also be written as the following:

5y − 9x − 160 = 0. (2.8)

It is not explicitly stated which variable is a function of the other, although it is implicit
in Equation (2.8). For this reason, this function is called an implicit function.

2.9.2 A little note on functional notation

You should become familiar with functional notation. In the previous subsection, I used
the mathematical statement y = f (x) to imply that y is a function of x; in which case, f (x)
is the function per se, and y is the value it takes for a given value of x. Sometimes we need
to consider many different functions. To distinguish one function from another, we use
different letters (symbols), for instance, C = g(Y ), A = φ(t), h = h(K). Note that in the
last one, h is used for both the function itself and the value it takes for a given value of K .
It may be confusing, but we sometimes do it to economise the use of letters and symbols.

When we consider the value taken by the function, say y = f (x), when x takes a
particular value a, we specify that value function takes as f (x = a), or more simply, f (a).
We shall attempt the following exercise to become familiar with functional notation.

Question Suppose f (x) = (2x − 1)3. Express f (0), f (1), f

(
a + 1

2

)
, and

f

(
−a + 1

2

)
. Show that f (0) · f

(
−a + 1

2

)
= f (1) · f

(
a + 1

2

)
.

Solution

f (0) = (0 − 1)3 = −1

f (1) = (2 − 1)3 = 1

f

(
a + 1

2

)
= (2a + 1 − 1)3 = 8a3

f

(
−a + 1

2

)
= (−2a + 1 − 1)3 = −8a3

f (0) · f

(
−a + 1

2

)
= (−1) · (−8a3) = 8a3,

f (1) · f

(
a + 1

2

)
= 1 · 8a3 = 8a3.

Exercise 2.7 Functional notation.
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Figure 2.2 The coordinate plane.

The last part of the solution to this exercise warrants a bit of explanation. You can show
that two expressions are equal (or not) in two ways. One is to calculate each expression
separately (as in the solution above) and check if the two expressions are identical. The
other is to calculate the difference between one expression and the other. If the difference
is zero, then you have shown that the two expressions are equal (otherwise you have shown
that they are not equal). Never start your solution by writing down the equality of the two
expressions, i.e. assuming that they are equal. If you assume something that you want to
show, then your answer is destined to be tautological.

2.9.3 Coordinate plane

Much of economic analysis relies on the use of diagrams on which various schedules,
such as demand and supply schedules, are drawn. In the following subsections (and in
Chapter 3), we will introduce various types of function and describe them on diagrams.
As a preparation, we will first establish the coordinate plane and related ideas.

Recall the real line we discussed previously. If we place another real line on top of it
and pivot one of them anti-clockwise around zero, then we have two real lines intersecting
perpendicularly at the zeros as in Figure 2.2. The plane made by these two lines (just
imagine placing a piece of paper on the two lines) is called the coordinate plane. The
horizontal line is called the horizontal axis and the other one is called the vertical axis.
The intersection of the two axes is called the origin.

Let us think of the case where x is taken on the horizontal axis and y is taken on the
vertical axis. When you draw the coordinate plane, it is important that you write down
what you take on the two axes. Otherwise people who see it have no idea what you are
trying to explain. Once you take the variables on the two axes, though, we can make the
full use of the convenient feature of the coordinate plane, i.e. we can represent all points
that lie on it. Take Point A in Figure 2.2 as an example. The question you ask is ‘what
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are the horizontal and the vertical distances to that point from the origin?’. The horizontal
distance is 5 and it is to the positive direction of x, and the vertical distance is 3, which is
again to the positive direction of y. So we can describe that point as (5, 3) or A(5, 3). The
horizontal distance comes first in the brackets and the vertical distance enters second.

What about B? The horizontal distance from the origin is 4 to the negative direction
of x, and the vertical distance is 3 to the negative direction of y. Hence Point B is
described as (−4, −3). All the points that lie on the plane can be described, like these
examples, by the coordinates or the ordered pair. It is called the ordered pair because
the order is important (first and second are italicised for that reason). Points C and D

on Figure 2.2 correspond to the ordered pairs (3, 5) and (−3, −4), respectively, and you
can see that they are different from Points A and B. Let me just note here that the
three words, ‘coordinates’, ‘ordered pair’ and ‘point’ will be used interchangeably in this
book.

The two axes divide the coordinate plane into four regions, which are called quadrants.
We often refer to the first quadrant in which all the points (x, y) display x > 0 and y > 0.
The position of each quadrant is given in Figure 2.2. In passing, points on either of the
axes do not belong to any quadrant.

2.9.4 Linear functions: a straight line

Suppose the function f (x) is given as

f (x) = ax + b, (2.9)

where a and b are the real numbers and a �= 0. This function is called the linear function.
If you take x on the horizontal axis and f (x) on the vertical axis and plot all points
(x, f (x)) on the coordinate plane, what will you come up with? The curve you see on the
coordinate plane is called the graph of this function. A little more formally, the graph of
a function is the set of all ordered pairs (x, f (x)).

In fact, the graph of a linear function is a straight line. Let me show you an example
of sketching a graph of a linear function. We use the following linear function: C(q) =
10q + 30. The coordinate plane we look at therefore is the (q, C(q)) plane.

First we can figure out the points where the function intersects the horizontal and
the vertical axes. They are called the horizontal intercept and the vertical intercept,
respectively. For the horizontal intercept, the value of the function is zero, so by solving
0 = 10q + 30 we get q = −3. So the horizontal intercept is (−3, 0). The vertical intercept
is (0, 30) because when q = 0, C(0) = 30. Why do we care about these intercepts? It is
because to determine a straight line, we only need to obtain two points that are on it, and
these intercepts are easy ones to obtain. In any event, we can now sketch the line we want,
as in Figure 2.3.

Note that, by specifying the two intercepts on the diagram, we are implicitly specifying
the slope of the function, which is a = 10. It is because we can figure out the slope of the
function from these two points. Namely, when the run of the function is 3, the rise of it
is 30. The slope of a line is given by the dividing the rise by the run, so we get 10 as the
slope.
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0

C(q)

q

30

−3

Figure 2.3 C(q) = 10q + 30.

0

p(q)

q

80

160

Figure 2.4 p(q) = −1

2
q + 80.

Now the graph of a different linear function p(q) = −1

2
q + 80 is given in Figure 2.4.

Can you graph the function by yourself? Which variables are on the axes?
Drawing a straight line that goes through the two intercepts works as long as b takes a

non-zero value. But when b = 0, the horizontal and vertical intercepts are identical – yes,
it is the origin – so it is obvious that you cannot graph the function in the same manner.
Since you know that the function goes through the origin in this case, one more thing you
need to specify in the graph is the slope of the function (which is a) (or another point that
the graph goes through, which will enable us to figure out the slope of the function). For
example, Figure 2.5 shows the graph of f (x) = x.

You can see that the figure is not to scale. However, by specifying the coordinates (1, 1),
I can understand that the slope of the straight line is unity. This line is often referred to as
the 45-degree line. It is because the angle made by the horizontal axis and this line is 45
degrees. Since the graph is not to scale, the perceived angle is less than 45 degrees.

What happens when a = 0 in Equation (2.9)? It becomes f (x) = b. This says that the
function takes a value b no matter what the value of x is. In terms of the graph, the straight
line is parallel to the horizontal axis (the graph will coincide with the horizontal axis when
b = 0). On the other hand, the expression x = b means that x takes a value b no matter
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0

f (x)
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1

1

Figure 2.5 f (x) = x.

0

f (x)

x
3

4−

Figure 2.6 f (x) = −4 and x = 3.

what the value of y is. Hence, the graph of x = b is a straight line parallel to the vertical
axis (when b = 0, the line coincides with the vertical axis). Note that for this case y is not
a function of x (why?). In Figure 2.6 f (x) = −4 and x = 3 are depicted.

2.9.5 Quadratic functions: a parabola

Suppose the function f (x) is given as

f (x) = ax2 + bx + c, (2.10)

where a, b, and c are real numbers and a �= 0. This function is called the quadratic
function. The quadratic function as in Equation (2.10) can be represented by a parabola
on the coordinate plane, and it is important that you illustrate it properly. However, we
need to wait until Chapter 5 (when we study curve sketching) to discuss exactly why the
graph of a quadratic function displays a parabola, and so for the time being, let us just
accept that it does.

It turns out that a parabola will be symmetric about a vertical line, and the point where
this line cuts the parabola is called the vertex. It also turns out that the vertical line is

given by x = − b

2a
and that the vertex is given by the coordinates

(
− b

2a
, c − b2

4a

)
. To
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demonstrate them we begin with completing the square of Equation (2.10):

f (x) = ax2 + bx + c

= a

(
x2 + b

a
x

)
+ c

= a

(
x2 + b

a
x + b2

4a2

)
+
(

c − b2

4a

)

= a

(
x + b

2a

)2

︸ ︷︷ ︸
1st term

+
(

c − b2

4a

)
︸ ︷︷ ︸

2nd term

.

Now suppose a > 0. Then, f (x) takes the minimum value c − b2

4a
when x = − b

2a
.

Because, if x = − b

2a
, then the first term is equal to zero, which otherwise takes a positive

value. It is also easy to show that f (x) is symmetric about a vertical line x = − b

2a
, because

the function takes the same value f

(
− b

2a
± z

)
= az2 +

(
c − b2

4a

)
when x = − b

2a
+ z

and x = − b

2a
− z. In summary, we can deduce the following results.

The graph of the quadratic function f (x) = ax2 + bx + c, if a > 0,

(1) is a parabola that opens upwards;

(2) is symmetric about a vertical line x = − b

2a
; and

(3) takes a minimum at the vertex,

(
− b

2a
, c − b2

4a

)
.

Question Draw the graph of g(q) = q2 + 4q.

Solution First we complete the square:

g(q) = q2 + 4q

= (q2 + 4q + 4) − 4

= (q + 2)2 − 4.

So g(q) is a parabola that opens upwards and is symmetric about q = −2. g(−2) = −4,
so the vertex is (−2, −4).
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0

p(q)

q

q = −2

−4

−4 −2

You can see that there is one vertical intersect, (0, 0), which is the origin. It can be obtained
by setting q = 0. The origin is also one of the horizontal intersects, where the other one
is (−4, 0) because of the symmetric nature of the parabola. Alternatively, you can solve
g(q) = 0, i.e. q2 + 4q = 0 to obtain the horizontal intercepts.

Exercise 2.8 The graph of g(q) = q2 + 4q.

Now, by following the same logic as before, for the case where a < 0, we can state the
following.

The graph of the quadratic function f (x) = ax2 + bx + c, if a < 0,

(1) is a parabola that opens downwards;

(2) is symmetric about a vertical line x = − b

2a
; and

(3) takes a maximum at the vertex,

(
− b

2a
, c − b2

4a

)
.
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Question Draw the graph of p(q) = −1

2
q2 − 8q + 40.

Solution First we complete the square:

p(q) = −1

2
q2 − 8q + 40

= −1

2

(
q2 + 16q + 64

)+ 32 + 40

= −1

2
(q + 8)2 + 72.

So p(q) is a parabola that opens downwards and is symmetric about q = −8. p(−8) = 72,
so the vertex is (−8, 72).

0

p(q)

q−20 −8

q = −8

72

40

4

The vertical intercept is (0, 40). The horizontal intercepts can be obtained solving p(q) =
0. They are (−20, 0) and (4, 0).

Exercise 2.9 The graph of p(q) = −1

2
q2 − 8q + 40.

2.9.6 Quadratic functions and quadratic equations

Recall that quadratic equations can have two distinct roots, repeated roots or two complex
roots. Let us explain these three types of quadratic equations diagrammatically now
that we have learnt how to graph quadratic functions. To start with, consider the LHS
of the equations we saw in exercises in Subsection 2.8.2 as quadratic functions. That
is, we consider three functions: f (x) = x2 − 2x + 1, g(x) = x2 − 2x − 6 and h(x) =
x2 − 2x + 8. Taking x on the horizontal axis, we can draw the graphs of these three
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f (x)
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Figure 2.7 Diagrammatic representation of the solutions to a quadratic equation.

quadratic functions. An important point here is that solving these quadratic equations is
identical to obtaining the horizontal intercepts of the relevant quadratic functions (why?).

We can see in Figure 2.7 that the quadratic function may or may not have horizontal
intercepts. This corresponds to the fact that the quadratic equation may or may not have real
roots. For example, we have seen previously that the quadratic equation x2 − 2x + 8 =
0 does not have any real roots (it has two complex roots; see Subsection 2.8.2). The
corresponding quadratic function, h(x) = x2 − 2x + 8, as you can see in Figure 2.7, does
not have horizontal intercepts. The two horizontal intercepts of the quadratic function
g(x) = x2 − 2x − 6 are 1 − √

7 and 1 + √
7. You should recall that these are the solutions

to the quadratic equation x2 − 2x − 6 = 0.
Hence, in drawing the graph of a quadratic function, you should be able to specify not

only the vertical intercept, but also the horizontal intercepts (if they exist).

2.9.7 Rational functions

A function that is expressed as a ratio of two polynomial expressions is called a rational
function. For example,

f (x) = ax + b

cx2 + dx + e
,

where cx2 + dx + e �= 0 is a rational function, where the numerator is linear and the
denominator is quadratic.

The particular rational function we often use in economics is the function

f (x) = a

x
,

where a > 0 and x �= 0. The graph of this function turns out to be a rectangular
hyperbola, which we will draw in the next figure. We will again put off the discussion as
to why the graph shapes like that until Chapter 5.
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Figure 2.8 The graph of p(q) = 4

q
.

Denoting f (x) = y, note that the above function can be rearranged as xy = a. It means
the product of the two variables x and y is always constant at a. Note also that neither x

nor y can be zero (if either is zero, the product of the two can never be a positive number).
This means that the function never cuts the axes. Instead, the curve approaches the axes
asymptotically. That is, the curve will come closer and closer to the horizontal axis as
x becomes larger and larger; and will become closer and closer to the vertical axis as
y becomes larger and larger. In this case, the horizontal and vertical axes are called the
asymptotes of the function.

2.9.8 A function of a function

Consider a function y = f (t). In this, y is a function of t . Suppose that t is also a function
of another variable, say x, so we can write t = g(x). Then it is obvious that the value of
y now depends upon the value of x, and this relationship is expressed as y = f (g(x)).
The function defined this way is called a function of a function. We may also view it as a
decomposition of a function y = f (g(x)) into y = f (t) and t = g(x).

We can make two important remarks from the following exercise. First, the decompo-
sition of a function is unlikely to be unique. Second, the order in which you substitute
functions matters.

Question A Take two functions: y = f (t) = 2t2 and t = g(x) = 3x2. Express y in
terms of x.

Solution y = f (g(x)) = 2(3x2)2 = 2 · 9x4 = 18x4.

Question B Take two functions: y = h(t) = t and t = k(x) = 18x4. Express y in terms
of x.

Solution y = h(k(x)) = 18x4.
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f (x)
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Figure 2.9 Case-defined function.

Question C Take two functions: f (x) = 2x2 and g(x) = 3x2. Obtain f (g(x)) and
g(f (x)).

Solution The order you substitute functions matters.

f (g(x)) = 2(3x2)2 = 2 · 9x4 = 18x4.

g(f (x)) = 3(2x2)2 = 3 · 4x4 = 12x4.

Hence f (g(x)) �= g(f (x)).

Exercise 2.10 Decomposing y = f (x) = 18x4.

2.9.9 A case-defined function

The function f (x) might change its expression across various domains. For example, f (x)
may be a linear function when x takes negative values (x < 0), but quadratic otherwise
(x ≥ 0). Because we specify different functions for different cases (domains), we call them
case-defined functions. The graph of the following function is depicted in Figure 2.9.
Note that Point (0, 3) is represented by a white dot but a dark dot is used for Point (0, 0).
It means that the former is not part of the graph, but the latter is:

f (x) =
{

3 if x < 0,

x2 if x ≥ 0.

2.9.10 Functions of more than one variable: multivariate functions

Up till now, we have been dealing with a function of only one variable, which is called a
univariate function (or a single-variate function). However, there is no reason to think
that functions cannot depend upon more than one variable. Such functions are called
multivariate functions. For example, population density of a country (d) is a function of
population (N) and the area (T ) of the country:

d = a
N

T
,



34 Basic mathematics

where a > 0. We need this parameter in case we want to convert a unit into a different
one. The above relationship can be represented as d = f (N, T ). N and T are called
arguments of this function. More specifically, we say that N is the first argument and T

is the second argument.
To conclude this subsection, I note that a function can have more than two arguments. In

general, we can write y = f (x1, x2, . . . , xn). It means that y is a function of n arguments,
x1, x2, . . . , xn. We will discuss the multivariate function in the context of a consumer’s
utility maximisation problem in Chapter 6.

2.10 Simultaneous equations: the demand and supply analysis

Now we are able to discuss the demand and supply analysis using mathematics. As
explained briefly in Chapter 1, when we describe the quantity demanded for a good (q) as
a function of its price (p), it is called the demand function. The following is an example
of a linear demand function. Note that both q and p have a power of one:

q = 160 − 2p. (2.11)

You should be able to see that as the price of the good rise, the quantity demanded
declines. It is useful to solve Equation (2.11) for p, because in the demand–supply
diagram the price is usually taken on the vertical axis. The above equation can be written
as Equation (2.12), which we call the inverse demand function:

p = 80 − 1

2
q. (2.12)

Turning to the supply side, the supply function expresses the quantity of the good
supplied (q) as a function of its price (p). For example, if we postulate a linear relationship
between them, we may describe the supply function as follows:

q = −80 + 2p. (2.13)

If we solve Equation (2.13) for p, it becomes:

p = 40 + 1

2
q. (2.14)

This function is called the inverse supply function.
We saw in Chapter 1 that, in the competitive market for a particular good, demand and

supply interact with each other, and as a consequence the price and the quantity traded are
determined. We use the following numerical example to describe how they are determined.
In doing so, we will distinguish the quantity demanded from the quantity supplied; we
denote the former by qD and the latter by qS :

p = −qD + 5. (2.15)

p = 3qS − 7. (2.16)
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p

Figure 2.10 Inverse demand and inverse supply functions.

Equations (2.15) and (2.16) are the inverse demand function and the inverse supply
function, respectively.

In Figure 2.10, we can see that two curves intersect at Point E. This is where quantity
demanded (qD) is equal to quantity supplied (qS). As we discussed in Chapter 1, this point
is called equilibrium. The price that equates demand and supply is called the equilibrium
price and is often denoted by p∗.

I also explained in Chapter 1 that Point E is called equilibrium because there is no
incentive for any parties to move from it once the price is set there. The other side of the
same coin is that at any other price levels than p∗, incentives for both buyers and sellers
to move from the status quo exist. If you can explain the incentives, then you may skip
reading the following two paragraphs. Otherwise, let us recap them.

Suppose that the current price is above the equilibrium price, i.e. p > p∗. If this is
the case, as we can see in Figure 2.10, there is an excess supply of the good. Under
this situation, sellers tend to lower the price in order to unload extra goods, and at the
same time, buyers tend to bid the price down realising the excess supply. As a result,
qD will rise, qS will fall, and the excess supply will be reduced. The excess supply is
eliminated when the price equals p∗. On the other hand, if the current price is below
the equilibrium price, i.e. p < p∗, there is an excess demand of the product. This
shortage leads buyers to bid the price up. Sellers who realise the shortage will also
raise the price. The increase in the price will continue until it reaches the equilibrium
price.

In summary, at any price levels other than p∗, there are incentives for both buyers and
sellers to move (bid the price up/down). The only price where they have no incentive to
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move is p∗, which is the equilibrium price level where the quantity demanded is equal to
the quantity supplied.

Here, our objective is to explore how we go about achieving equilibrium. In equilibrium,
quantity demanded equals quantity supplied, so let us denote it by qD = qS = q. Then,
Equations (2.15) and (2.16) will become the following:{

p = −q + 5

p = 3q − 7.
(2.17)

We call this set of equations a system of two linear equations in the variables (or
unknowns) p and q. We need to find values of p and q that satisfy both equations
simultaneously. These are called solutions of the system. As we can see in the previous
diagram, a point of intersection gives a solution of this system.

Before we delve into obtaining the solution of this system of equations, let us discuss
the types of solution. If there are two linear equations and two unknowns, there are three
situations that may occur.

(1) Two lines may be the same. In this case, the coordinates of any points of the line
are a solution of the system: there are infinitely many solutions.

(2) Two lines may be parallel and have no points in common: there is no solution.
(3) Two lines may intersect at exactly one point. In this case, we say that this system

has a unique solution.

We will look at numerical examples for these three cases in turn.

Case 1 (Infinitely many solutions) Solve the following system of equations:{
y = 2x (2.18)

4x − 2y = 0. (2.19)

Note that Equation (2.19) reduces to y = 2x, which is Equation (2.18). So Equa-
tions (2.18) and (2.19) represent the same straight line and therefore ‘any points of
y = 2x’ are a solution of the system. The line y = 2x (and 4x − 2y = 0) is depicted in
Figure 2.11. You can also express the solution as ‘(x, y) = (k, 2k) for any real number k’.

Case 2 (No solution) Solve the following system of equations:{
y = 2x + 1 (2.20)

−2x + y = −4. (2.21)

These two equations are sketched in Figure 2.12. Notice that both equations have the
same slope but their vertical intercepts are different. Having the same slope means that
they are parallel to each other, and if they go through a different vertical intercept, then
we can conclude that they will never intersect. It means that there is no (x, y) that satisfies
both equations simultaneously. Hence, ‘no solution’ is the answer to the question.
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Figure 2.11 Infinitely many solutions.
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Figure 2.12 No solutions.
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Figure 2.13 A unique solution.

Case 3 (A unique solution) Solve the following system of equations:

{
y = −x + 5 (2.22)

y = 3x − 7. (2.23)

Note that this system is the same as system (2.17) (our demand and supply story)
except different variables are used. It is easy to obtain the solution of this system. If (x, y)
satisfies Equation (2.23), then y equals 3x − 7 so let us substitute 3x − 7 into y in the
other equation, namely Equation (2.22). It yields:

3x − 7 = −x + 5.

So x = 3 is the solution to this equation. Substituting x = 3 into Equation (2.22) (or into
Equation (2.23)), we get y = 2. Hence the solution to the above system is (x, y) = (3, 2).
This method of obtaining the solution of the system of two linear equations involves
eliminating the variable y by substituting y (expressed in terms of x and a constant) into
y of the other equation. Hence it is called the method of elimination by substitution.
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There is one more method you can use to obtain the solution of the system of two linear
equations. Consider the following system:{

2y − 3x = 8 (2.24)

−3y + 2x = −7. (2.25)

You could solve this system by using the method of elimination by substitution. For

example, if we solve Equation (2.24) for y, we get y = 1

2
(3x + 8). Substituting it into y

in Equation (2.25) will yield an equation in x only, and you can solve it for x. Some of you
might find taking these steps tedious, and for those of you, I introduce another method.

Let us multiply the both sides of Equation (2.24) by 3 (remember, multiplying the both
sides of the equality by the same number retains the equality). We also multiply the both
sides of Equation (2.25) by 2 (not 3). Then we get the following system:{

6y − 9x = 24

−6y + 4x = −14.

The reason we multiplied both sides of the two equations as above is to create the
terms 6y and −6y. Now consider adding each side of the two equations. On the LHS, we
have 6y − 9x + (−6y + 4x) = −5x (the 6ys cancel out and get eliminated). The RHS
is 24 + (−14) = 10, so we get −5x = 10. It follows that x = −2. Substituting it back
to one of Equations (2.24) or (2.25) yields y = 1. Hence the solution of the system is
(x, y) = (−2, 1). This method involves eliminating one variable by adding one equation
to the other, so it is called the method of elimination by addition. You can use either of
these two methods to solve a system of two linear equations.

In any event, let’s get back to our demand and supply analysis. By solving the simulta-
neous equation, we have shown that the equilibrium price for our problem is p∗ = 2. At
this price, demand is equal to supply (q∗ = 3). The important features of our problem are
that both of the equations are linear and that there is a unique solution.

However, in general, as we have seen, systems of equations may not have a solution,
or even when it exists, it may not be unique. Furthermore, in more complicated systems
(remember, we have looked only at a system of two linear equations), solutions may
be difficult to find. Linear equations are the easiest to solve, but there is no reason for
equations to be linear. In general, we cannot find analytical solutions for systems of non-
linear equations, and hence we often resort to numerical simulations. You need not worry
about this case in this book, but just be aware of the fact that there are a number of systems
of equations that are analytically unsolvable.

Some non-linear systems are, however, solvable. Let us look at the following demand
and supply model. Suppose that the inverse supply function of apples is described as
follows (we use the same notation as before):

p = qS + 2. (2.26)

Suppose also that the inverse demand function for apples is given by the following:

p = 8 − (qD)2. (2.27)

Note that p is linear in qS in the first equation, but is non-linear in qD in the second
one (p is a quadratic function of qD). When we determine the equilibrium levels of price
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Figure 2.14 A system of non-linear equations.

and quantity, we need to solve the following non-linear system of equations:{
p = q + 2
p = 8 − q2.

(2.28)

Question Use the method of elimination by substitution to solve the non-linear system
of equations given as above.

Solution Substituting the second equation into the first one yields:

8 − q2 = q + 2.

Rearranging this equation gives the following quadratic equation:

q2 + q − 6 = 0.

We can factorise it as follows:

(q + 3)(q − 2) = 0.

Therefore, q = 2, −3.

Exercise 2.11 A system of non-linear equations.

There are two solutions, q = 2 and q = −3. These correspond to Points E and F ,
respectively, in Figure 2.14. If you were doing a course in mathematics you may be able
to stop here. But we are studying economics and, in the current context, the latter solution
does not make any sense. The only relevant solution in this problem is q∗ = 2. The market
equilibrium level of price can be obtained by substituting this value back in to either
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Figure 2.15 A shift of the demand curve (schedule).

the inverse demand function or the inverse supply function: it should be easy to see that
p∗ = 4.

2.10.1 Comparative statics

Suppose that the inverse demand function for apples has changed to the new one as
follows:

p = 14 − (qD)2. (2.29)

Figure 2.15 depicts two demand schedules: Equations (2.27) and (2.29). You can see
the shift in the demand schedule to the right. Note that at each and every price, more
apples will be demanded.

Various events may cause the shift. An increase in buyers’ income may be one of them.
Keeping other things constant, with more income buyers may want to buy more apples
than before at each and every price of an apple. Another event that may give rise to the
rightward shift in the demand schedule is an increase in the price of bananas (not apples).
Suppose everything (including the price of apples and buyers’ income) remained the same
except for the price of bananas. If apples were close substitutes for bananas, people would
substitute away from bananas and would consume more apples (again at each and every
price of an apple).

One way to capture the effect of a change in the price of a substitute (or a change in
buyers’ income levels) is to change a parameter value of the inverse demand function.
What we are interested in is to know how this change in a parameter value affects the
equilibrium level of price and quantity. In general, we call this exercise comparative
static analysis: it examines how the equilibrium values of the variables in question might
change if one of the parameters in the question changed. We conduct comparative static
analysis below and see how the equilibrium price and quantity should be affected.
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Figure 2.16 Comparative statics.

Question Explain why the equilibrium price cannot stay the same if there is the change
in the demand as explained above. Obtain the new equilibrium price.

Solution If the price of apples stayed the same as the original equilibrium price, which
is 4, there would be an excess demand (or a shortage) of apples. This leads apple buyers
to bid the price up. Apple sellers who realise the shortage will also raise the price. The
increase in the price of apples will continue until the excess demand becomes zero, i.e.
until it reaches the new equilibrium price.

The new system of equations is {
p = q + 2

p = 14 − q2

Substituting the second equation into the first one yields:

14 − q2 = q + 2.

Rearranging this equation gives the following quadratic equation:

q2 + q − 12 = 0.

We can factorise it as follows:

(q + 4)(q − 3) = 0.

Therefore, q = 3, −4. We ignore the negative solution and hence q∗∗ = 3. The new
equilibrium price is p∗∗ = 5. This exercise is described in Figure 2.16.

Exercise 2.12 Comparative statics.
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2.11 Logic

In the course of your study of economics and finance, you will be required to construct
your argument in a logical manner, especially to prove that your argument is correct. Well,
it may sound trivial but doing so is not always easy. In closing this chapter, we briefly
study logic and proofs. What is discussed in this section may seem simple and easy in
the beginning, but please don’t be fooled by that. We shall cover some subtle issues that
require you to think carefully.

2.11.1 Statements

In the 2006 FIFA World Cup (WC2006), Australia played Japan in the group stage. I was
watching it on TV with my Australian friends and I was very excited when Japan scored
first in the first half. It looked (to me) as if Japan was never going to lose, so I said to my
friends, ‘I think the match won’t finish with 1-0, the final score will be 3-1’. What I meant
to say – but didn’t say – was ‘3-1 to Japan’, and my friends seemed to interpret it that
way. Well, in the end, to my disappointment, Australia scored three goals in the second
half and my friends were happy to tell me that ‘3-1, you were right!’.

‘Australia defeated Japan in WC2006.’

This is an example of a statement. When a declarative (objective) sentence can be
classified as either ‘true’ or ‘false’, but not both, we call it a statement. While the above
statement is indeed true, what about the following?

‘This textbook is great!!’

In an everyday conversation, you might call it a statement, but whether you think my
textbook is great is your personal (subjective) opinion. Therefore, in a mathematical sense,
it is not regarded as a statement. While I hope the above opinion is popular amongst the
readers, I shall introduce another one.

‘10 000 000 000 000 000 001 is a multiple of 7.’

Don’t worry if you cannot immediately tell whether it is true or false; perhaps none of
us can! But we know that it can not be both true and false. So long as we know that we
can classify it as either ‘true’ or ‘false’, we can call it a statement.

Some statements are sometimes true but false other times. For example, if we confine
x to be real numbers,

‘x2 = 4’

is true when x = ±2, but false otherwise (so the above statement is false if it is meant to
be for all the real xs).

Let us denote one statement by P and another statement by Q. We say that two
statements P and Q are logically equivalent if P is true (false) exactly when Q is
true (false, respectively). When P and Q are logically equivalent, we write P ≡ Q. For
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example,

‘x is Japan’ ≡ ‘x is beaten by Australia in WC2006’7

‘2x − 1 = 0’ ≡ ‘x = 1

2
’.

2.11.2 Combinations of statements

New statements can be created by combining some statements. For example, we can
negate a statement P by writing as follows

‘not P’ (or ¬P ).

This statement is called a negation of the statement P . Trivially, the above negation is
true when P is false (and is false when P is true).8

Now, consider the following statement:

‘x2 = 4’.

This statement is true if x = ±2, i.e. x has to be either 2 or −2 for the statement to be
true. This condition can be denoted by:

x = 2︸ ︷︷ ︸
P

or x = −2︸ ︷︷ ︸
Q

. (2.30)

If we let x = 2 be P and x = −2 be Q, statement (2.30) is called the disjunction
of P and Q. For the disjunction ‘P or Q’ to be true, either P or Q (or both) has to be
true. In contrast, when we have a statement ‘P and Q’ we call it the conjunction of
P and Q. For the conjunction to be true, both P and Q have to be true. For example,
the conjunction ‘100 < 1 and 100 < 1000’ is false (because ‘100 < 1’ is false) but the
disjunction ‘100 < 1 or 100 < 1000’ is true (because ‘100 < 1000’ is true).

2.11.3 Implications

Some combinations of statements are particularly important: you will use them frequently
in many disciplines that require analytical skills. They are called the implications. An
implication statement is denoted by:

P ⇒ Q,

and we read it as ‘P implies Q’ (or ‘Q is implied by P ’). For example, consider the
following:

‘If I am in Tasmania︸ ︷︷ ︸
P

, then I am in Australia︸ ︷︷ ︸
Q

’ (2.31)

or

‘I am in Tasmania︸ ︷︷ ︸
P

⇒ I am in Australia︸ ︷︷ ︸
Q

’.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

7 The only team Australia beat in WC2006 was Japan.
8 Using the negation twice we obtain P ≡ not(notP ). This is called the Principle of Double Negation.
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Statement P is called the hypothesis (or assumption), whereas statement Q is called
the conclusion of the implication. Suppose P is true, then you are in Tasmania, therefore
you must be in Australia, implying that Q is true. Therefore, statement (2.31) is true. It
would be false if Q were something like, ‘I am in Japan’.

2.11.4 Contrapositive and converse

It is known that the implication P ⇒ Q is logically equivalent to the following implication:

‘(notQ) ⇒ (notP )’.

It is called the contrapositive of P ⇒ Q. For example, the contrapositive of state-
ment (2.31) is:

‘If I am not in Australia︸ ︷︷ ︸
not Q

, then I am not in Tasmania︸ ︷︷ ︸
not P

’. (2.32)

The equivalence between a statement and its contrapositive is a very useful result, which
we shall see in the next section.

We can form another statement by exchanging P and Q in the implication P ⇒ Q,
that is:

‘Q ⇒ P ’.

It is called the converse of P ⇒ Q. Therefore the converse of statement (2.31) is:

‘If I am in Australia︸ ︷︷ ︸
Q

, then I am in Tasmania︸ ︷︷ ︸
P

’. (2.33)

You should realise that this statement (2.33) is not necessarily true, although (2.31) is
true. Indeed, you can be in Australia without being in Tasmania. So . . . , be careful. When
an implication is true, it does not necessarily mean that the converse of it is also true. It
probably sounds quite obvious now that you have read this section, but history tells us
that many students frequently get confused by directions of implications.

Of course, for some true implications, their converses may also be true. For example,
consider the following:

‘If x = y︸ ︷︷ ︸
P

, then x − y = 0︸ ︷︷ ︸
Q

’. (2.34)

Statement (2.34) is a true implication statement. In words, it says that if two numbers
are equal, the difference of the two numbers is zero. For this statement, the converse of it
is also true:

‘If x − y = 0︸ ︷︷ ︸
Q

, then x = y︸ ︷︷ ︸
P

’. (2.35)

In words, it says that if the difference of two numbers is zero, then the two numbers
are equal. When both P ⇒ Q and Q ⇒ P occur as above, we write it as P ⇔ Q and
read ‘P if and only if Q’. Some people use the expression ‘P iff Q’, where ‘iff’ stands
for ‘if and only if’. There is a significant distinction between ‘if’ and ‘iff’. In any case,
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‘P ⇔ Q’ is true exactly when statements P and Q are both true, or both false (convince
yourselves of this using statement (2.34)).

2.11.5 Necessary and sufficient conditions

When the statement ‘P ⇒ Q’ is true, we say that ‘P is a sufficient condition for Q’.
Consider an implication we saw previously:

‘If I am in Tasmania︸ ︷︷ ︸
P

, then I am in Australia︸ ︷︷ ︸
Q

’.

To be in Australia, you don’t really need to be in Tasmania. You can be in other
states/territories so long as it is in Australia. So, if I were to let someone else know that
you are in Australia, specifying the state Tasmania would not be absolutely necessary.
But if I say that you are in Tasmania, then that is sufficient for someone else to figure out
that you are in Australia.

When P ⇒ Q is true, we say that ‘Q is a necessary condition for P ’. For you to
be in Tasmania, you cannot be outside Australia. It is absolutely necessary that you are
in Australia. However, your being in Australia is not sufficient for me to conclude that
you are in Tasmania. You might be in Queensland, New South Wales, or in some other
states/territories.

Finally, when P ⇔ Q is true, we say that ‘P is a necessary and sufficient condition
for Q’ (or equivalently, we say ‘Q is a necessary and sufficient condition for P ’). You
should be able to apply this terminology to explain implications (2.34) and (2.35).

2.11.6 Quantifiers

We introduce quantifiers to close the section in logic. Consider the two following
statements:

‘For any real number x, x2 = 9.’
‘There exists a real number x such that x2 = 9.’

Whilst the former is false, the latter is true. As for the former statement, the word ‘any’
implies that the statement has to be true if we plug in any arbitrarily chosen real number
to x. If you choose x to be zero, since 0 �= 3, you can see that the statement is false.
Whereas for the latter statement, for it to be true, we just have to show the existence of a
real number that satisfies x2 = 9. Indeed, both x = 3 and x = −3 meet the statement.

The former statement involves the use of the universal quantifier ‘for every (or for
any)’, and hence the statement encompasses all the real numbers (and this is why the
statement is false: x = 0 is no good, for example). The latter statement, in contrast,
involves the phrase ‘there exists’, which is called the existential quantifier. This means
that statement is concerned with at least one real number (and this is why the statement is
true: x = 3 will do).

We can deduce important and strong lessons from the above example. If a statement
includes the universal quantifier, to show that the statement is false, it suffices to produce
a single counter example (for the statement ‘For any real number x, x2 = 9’, x = 0 is
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one of many counter examples). But when a statement includes the existential quantifier,
and you want to show that the statement is false, you need to show that every single
example fails to meet the statement (which is obviously more difficult). Mathematicians
use particular notation for these quantifiers. Whilst ∀ denotes ‘for every’ ∃ denotes ‘there
exists.’ Using them, we can rewrite the previous statements, respectively, as

‘∀x ∈ (−∞, ∞), x2= 9’

‘∃x ∈ (−∞, ∞), x2= 9’.

Let me conclude this section by saying that it is important to make a precise statement.
A statement ‘∃x, x2= −9’ reads ‘There exists an x such that x2 = −9’, but what kind
of number is x? If it means a real number, then the statement is false. But if it means a
complex number, then the statement is true because both x = 3i and x = −3i meet it.
Usually, we are concerned only about the real numbers (or just non-negative numbers) in
economics, and so long as everyone has that common ground, it may be fine to assume
that people will interpret x as a real number. But if you are unsure how things will be
interpreted, you had better specify all the details precisely. Had I said to my friends, ‘the
final score will be 3-1 to Japan’ then they wouldn’t have said to me, ‘you were right!’.
Instead, they would have said, ‘you were wrong mate, it was 3-1 to us!’ (but I am sure I
would’ve been equally upset).

2.12 Proofs

In this section, we introduce several ways to prove implications. To start with, we will
define some peculiar types of integers that we will use in our discussion.

Definition 2.1 (Even and odd numbers) An integer n is called an even number if
there is an integer m such that n = 2m. An integer that is not even is called an odd
integer and can be denoted by n = 2m + 1.

Definition 2.2 (Prime number) A natural number m (not including 1) is called a
prime number if whenever m can be written as the product m = a · b of two natural
numbers, then a = 1 or b = 1.

I think Definition 2.1 is straightforward to understand, but some readers may have
trouble understanding Definition 2.2. According to Definition 2.2, 4 is not a prime number.
This is because 4 can be written as the product 4 = 2 · 2, and for this product, neither
a = 1 nor b = 1 holds. Notice that ‘whenever’ in the definition is italicised: 4 can also
be written as the product 4 = 1 · 4, in which case a = 1, but for a number to be a prime
number, either a = 1 or b = 1 needs to occur whenever the number is written as the
product a · b. In contrast, 5 is a prime number because the only ways to write it as the
product are 5 = 1 · 5 and 5 = 5 · 1, and so either a = 1 or b = 1 will occur when 5 is
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written as a · b. More plainly put, a prime number has no divisors except for 1 and the
number itself.

Now, we go into the main story. Consider the following (implication) statement.

Let m be an even integer and p be any integer. Then m · p is an even integer. (2.36)

You think the statement is true (don’t you?), perhaps after trying out some numbers.
But how can you be absolutely sure that it is true? How can you rule out the possibility
that somebody comes to you with a counter example? The only way to be absolutely sure
that you are right is to prove that the statement is true. What do we mean by proving
(mathematically) that a particular statement is false (or true)?

A proof is a process of deducing an irrefutable conclusion from accepted assumptions.
These assumptions may come from three sources. Firstly, the assumptions may be given
specifically in the statement of the question. For example, statement (2.36) has two
assumptions. One is that m is an even integer and the other is that p is any integer.

Sometimes these assumptions together with a chain of logic may lead to the conclusion
you want. But when these assumptions are not enough, we need to introduce the second
group of assumptions. They are assumptions that are generally accepted as true – in
mathematics these are called axioms – and we use them without proving that they are
true. For instance, for any real numbers a, b and c, nobody will refuse accepting the
following four properties of equality.

a = b and b = c ⇒ a = c. (2.37)

a = b ⇒ a + c = b + c. (2.38)

a = b ⇒ a · c = b · c. (2.39)

a = b and c = d ⇒ a · c = b · d. (2.40)

Thirdly, statements that have been proven previously will be accepted as true by every-
one, so they can also be used as assumptions when necessary.

In the following, I demonstrate how we can prove statement (2.36) using a direct proof
(or the direct method). Subsequently I shall introduce a few other proof methods, which
you will frequently use.

2.12.1 Direct method

Suppose there are two statements P and Q, and you are sure that P implies Q, but you
cannot see immediately how Q necessarily occurs when P occurs. In statement (2.36), P

is ‘m is an even integer and p is an integer’ and Q is ‘m · p is an even integer’.
One way to prove P ⇒ Q is to make a detour. You may be able to see that P necessarily

leads to A, that is P ⇒ A. You may also be able to see that A will cause B, so A ⇒ B. You
are also convinced that Q will occur when B occurs, i.e. B ⇒ Q. You have completed a
string of statements as follows:

P ⇒ A ⇒ B ⇒ Q.
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By the Law of the Syllogism, you have P ⇒ Q and the proof is done.9

We shall see how this method is applied to the proof of statement (2.36). The statement
to be proven is called the proposition, and hence we will call it later, Proposition 2.1.
Before going into the proof of it, though, we need to state one result regarding the product
of two integers.

Lemma 2.1 Let a and b be integers. Then the product a · b is also an integer.

Non-essential propositions that are used to prove the main proposition are called
lemmas, and we will use Lemma 2.1. to prove the proposition in question.

Proposition 2.1 Let m be an even integer and p be any integer. Then m · p is an even
integer.

Before starting the proof, it is useful to write down all the assumptions (which are
specific to the statement):

m is an even integer

p is an integer.

Proof Because m is an even integer, there exists an integer q such that m = 2q (recall
the definition of an even integer).

Using Equation (2.39) (which is accepted by everybody), we have

m · p = (2q) · p.

Using the associative rule (which is accepted by everybody), we have

m · p = 2 · (q · p).

By definition of an even integer, we can say that m · p is an even integer (because q · p

is an integer due to Lemma 2.1). Q.E.D.

Note 1 Propositions that have been proven are called theorems. (So now the above
proposition can be called Theorem 2.1.)

Note 2 Q.E.D. stands for quod erat demonstrandum (in Latin it means ‘which was
to be demonstrated’. Write either Q.E.D. or put � (a black square) after the proof in
order to show that it is the end of the proof.

Exercise 2.13 Direct method.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

9 The Law of the Syllogism states that if both A ⇒ B and B ⇒ C are true, then A ⇒ C is true. Don’t worry about
the terminology. If you can construct the string of statements, then you can say that your proof is done.
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2.12.2 Contrapositive proofs

Sometimes proving a statement turns out to be a very simple task. Consider the follow-
ing proposition. Can you prove it? The key is to think about the contrapositive of the
proposition.

Proposition 2.2 Let m and p be integers, and suppose m · p is odd. Then both m and
p are odd.

Proof The contrapositive of the proposition is, ‘If at least one of the integers m and
p is even, then m · p is an even integer’. This is what we have proven in Section 2.12.1.
The proposition and the contrapositive are logically equivalent, and hence we have
proven that the proposition is true. �

Exercise 2.14 Contrapositive proof.

Since the above proposition has been proven, we can call it Theorem 2.2. Now, in the
theorem we can consider a special case where p = m. We have already shown that the
proposition is true including this special case, so it has to be true for this special case as
well. Let us write down the proposition when p = m (just replace p with m).

Proposition Let m and m be integers, and suppose m · m is odd. Then both m and m

are odd.

Clearly this proposition sounds a little clumsy, and so I rewrite it as follows.

Corollary 2.1 Let m be an integer, and suppose m2 is odd. Then m is odd.

Notice that the term, corollary, is used. It is a proposition that immediately follows
a theorem (without a need for proof because it is so trivial), or a special case of a
theorem as the one we just saw above. Unsurprisingly, you will not find any proof after
corollaries.

2.12.3 Proof by contradiction (indirect method)

You need to be especially comfortable with this method because it is perhaps the most
popularly and commonly used method of all (and hence you will surely encounter it in
your future studies). It is called proof by contradiction or reductio ad absurdum.

The idea of this method is the following. Suppose you want to prove P ⇒ Q. It may
sound ridiculous, but we start with supposing that Q is false. If such a supposition leads to a
contradiction of (1) P itself, (2) one of axioms, or (3) previously established propositions,
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then it must have been incorrect to have supposed that Q is false. Hence, if we find a
contradiction, then we can conclude that Q must be true.

I provide two illustrative examples of proof by contradiction in the following. In the
first example, I will show that the converse of Corollary 2.1 is also true (remember that
the converse of a true statement is not necessarily true). The proven converse statement
will be referred to as Lemma 2.2, because it will be used to prove the main result in
the second example. The second example is one of the classic examples of reductio ad
absurdum where

√
2 is proven to be irrational. I have tried to emphasise which of the

accepted assumptions I am using in each step even when it is trivial.

Lemma 2.2 Let m be an integer, and suppose m2 is even. Then m is even.

Proof We start with negating the conclusion. Suppose m is not even, that is suppose
m is odd.

Then there is an integer n such that m = 2n + 1 by definition of odd integers. Therefore,

m2 = (2n + 1)2 = 4n2 + 4n + 1.

This can be rearranged as:

m2 = 2(2n2 + 2n) + 1.

Since (2n2 + 2n) is an integer, this implies that m2 is odd (by definition).

But it contradicts to the assumption (of the lemma itself) that m2 is even.

Therefore our initial supposition was incorrect, and we have proven that m is even. �

Exercise 2.15 Proof by contradiction.

Theorem
√

2 is an irrational number.

Proof We again start with negating the conclusion. Suppose
√

2 is not irrational, that
is suppose

√
2 is rational (because it has to be either rational or irrational).

Then by the definition of rational numbers we can express
√

2 as a ratio of two
integers,

√
2 = m

n
.

More importantly, we can choose integers m and n, so that at least one of them is not
even. This is because when both of them are even, by definition of even integers, we
can factor 2 out of the numerator and the denominator of the fraction (and keep doing
that until one (or both) of them becomes odd). So, to summarise, we have:

√
2 = m

n
and at least one of m and n is not even.
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Now, using Equation (2.40):
√

2 ·
√

2 = m

n
· m

n
.

And so by the power rules:

2 = m2

n2
.

Using Equation (2.39), we have:

2n2 = m2. (2.41)

This implies that m2 is even by definition. By Lemma 2.2, m is even.

By definition of an even integer, we can express m using some integer p as:

m = 2p.

Again using Equation (2.40) we get,

m · m = (2p) · (2p).

Using the power rules as well as communicative and associative properties of the real
numbers, we get the following:

m2 = 2(2p2).

Applying Equation (2.37) to the above equation and Equation (2.41) (more simply,
substituting the above equation into Equation (2.41)) yields:

2n2 = 2(2p2).

Using Equation (2.39) we have

1

2
· 2n2 = 1

2
· 2(2p2).

So we have

n2 = 2p2.

This equation implies that n2 is even by definition. By Lemma 2.2, n is
even.

Together with the established result that m is even, we have both m and n even.
This is a contradiction because we have supposed that at least one of m and n is not
even.

Therefore our initial supposition was incorrect, and we have proven that
√

2 is
irrational. �

Exercise 2.16
√

2 is irrational.
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2.13 Additional exercises

1. (Numbers) Which of the following statements are true? Note that i is an imaginary
number.

(1) −4 is a rational number.

(2) i2 is an integer.

(3) 0 is an integer.

(4) −1

3
is a rational number.

2. (Elementary algebra, especially powers) Which of the following statements are
true?

(1)
1
x

y
= y

x
.

(2)
x + y

y + x
+ x − y

y − x
= 0.

(3)
x15 · x3

x15
= x3.

(4)

√
36√
9

= 2.

(5)
√

80 = 4
√

5.

(6) (−1)3 − (−3)2 + ( 3
√

5)3 = 13.

3. (Equalities, inequalities and intervals) Which of the following statements are
true?

(1) |−100| = |300 − 200|.
(2) x3 < 0 for any x < 0.

(3) x4 > 0 for any x ∈ (−∞, ∞).

(4) If x ∈ (−1, 7), then |x − 3| > 4.

(5) If x ∈ (−2, 6), then |x − 2| ≤ 4.

(6) (x − a)2 = −(a − x)2.

(7) (x − a)3 = −(a − x)3.

4. (Factorisation) Factorise the following polynomial expressions.

(1) x2 + 11x + 10.

(2) x2 + 6xy + 9y2.

(3) 9x2 + 3x − 2.

(4) xy − yz + zx − y2.

(5) x2 + 3xy + 9y − 9.
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(6) 2x3 + 11x2 − 7x − 6.

(7) x4 − x3 − 7x2 + x + 6.

5. (Functions) Which of the following statements are true?

(1) If f (x) = 2x, then f (2a − 3) − f (a + 1) = f (a − 4).

(2) If f (x) = 3x , then f (a + 1) − f (a − 2) = f (a).

(3) If f (x) = (−2)x , then
f (a − 1)

f (a − 4)
= 8.

6. (Equations) Where possible, solve the following equations (where relevant, con-
sider complex solutions).

(1) (2x − 1)(x − 3) = 0.

(2) x2 − 5x + 6 = 0.

(3) 3x2 + 5x − 2 = 0.

(4) x2 + 6x + 12 = 0.

(5) 5x2 − 6x + 2 = 0.

(6) x3 − 4x2 + 5x − 2 = 0.

(7) x3 − 2x2 + 2x − 1 = 0.

7. (Functions and equations) Let f (x) = 3x + 1 and g(x) = −x2 − x. Is it true that
f (g(x)) = g(f (x)) for any x ∈ (−∞, ∞)? If not, is there any particular real value
of x, which satisfies the above equation?

8. (Demand and supply model) For the following demand and supply functions of a
product, state the economically sensible values of price and quantity for which each
of them are defined. Draw the market diagram for this product with price shown
on the vertical axis. What are the equilibrium price and quantity? Carefully explain
why the price you obtained is the equilibrium price.{

qS = −5 + 3p,

qD = 20 − 2p.

9. (Demand and supply model) Consider the following demand and supply functions
for a product. {

qS = −5 + 3p,

qD = 9 − 2p2.

Draw the market diagram for this product with price shown on the vertical axis.
Find the economically meaningful solution for the equilibrium price and quantity.

10. (Comparative statics) Information on a coffee market is given as below:⎧⎨
⎩

qS = 20p − 100,

qD = 6000

p
,

where p is the price of coffee per tin and q is the quantity of coffee in tins.
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(a) Draw two functions on a diagram restricting your attention to p ∈ [0, ∞) and
q ∈ [0, ∞).

(b) Obtain the market equilibrium. What occurs if the price of coffee per tin
is $15?

(c) Suppose the demand function has changed to qD = 3000

p
. Provide an economic

explanation of this change and list a few reasons as to why it might have
occurred.

(d) Obtain the new market equilibrium. What would happen if the price of
coffee per tin stayed the same as the equilibrium price you obtained
in (b)?

11. (Logic) We want to make the following statements true. Fill in the (under-
lined) blank with ‘iff’ where possible. Otherwise, fill in the blank with ‘if’ or
‘only if’.

(1) x = 1 x2 = 1.

(2) 6x − 9 = 15 x = 4.

(3) x = −1 x2 + 2x + 1 = 0.

(4) x = √
25 x = 5.

(5) x(x + 6) < 0 x > −6.

(6) x2 > 9 |x| > 3.

(7) x2 < 49 x < 7.

(8) x(x2 + 1) = 0 x = 0.

(9) x2 > 0 x > 0.

(10) x2 + y2 = 0 xy = 0.

12. (Logic) Which of the following statements are equivalent to the following statement
in italics: If tennis is cancelled, then it is raining. [Note. We are not concerned about
the veracity of the statement.]

(a) If it is raining, then tennis is cancelled.

(b) It can be raining only if tennis is cancelled.

(c) If it is not raining, then tennis is not cancelled.

(d) A necessary condition for tennis to be cancelled is that it is raining.

(e) A sufficient condition for it to be raining is that tennis is cancelled.

(f) If tennis is not cancelled, then it is not raining.

13. (Proof) Using the direct method, prove the following statements.

(1) The sum of two odd numbers is even.

(2) The sum of an odd and an even number is odd.
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14. (Proof) Prove the following statements by contradiction.

(1) When we divide 29 people into 4 groups, at least one of the groups must consist
of 8 or more people.

(2) If x is rational, x + √
2 is irrational. [Hint. Use the fact that

√
2 is irrational,

which has been proven in the text.]



3 Financial mathematics

In this chapter, I will introduce some more ideas of basic mathematics including:
limits, summation, a geometric series (or the sum of a geometric sequence), the
exponential function and logarithms. For some readers these terms may not sound
relevant to either economics or finance, but it turns out that they can be powerful in
examining various problems in both economics and finance. For example, when we
buy a house, a car, or furniture, we may want to borrow money from a bank. Usually
borrowing involves a series of repayments and naturally we are interested in the
size of the repayments. How will interest be charged on these repayments? Financial
institutions often use a procedure that is called daily compounding in calculating
interest payments. By using mathematical techniques we learn in this chapter, it
turns out the payments can be calculated in a simple manner. Various other ideas in
finance will be introduced in this chapter while we go through some mathematics.

Chapter goals By studying this chapter you will

(1) become familiar with basic mathematical notions used in financial mathematics,
such as limits, summation, geometric series;

(2) be able to interpret exponential and logarithmic functions;
(3) be able to calculate the net present value of an investment project and make the

correct decision on whether to invest; and
(4) be able to use a time line to visualise an ordinary annuity and express it using the

geometric series.

3.1 Limits

We start with considering the following statement:

lim
x→a

f (x) = L. (3.1)

Equation (3.1) says that L is the limit of f (x) as x tends to a, where L and a are both
real numbers. It means that the value of the function f (x) becomes very close to L if x is
very close to a. You might notice that x can become closer to a either from smaller values
or from larger values. The former is called the left-hand limit and the latter is called the
right-hand limit, and they are expressed as Equations (3.2) and (3.3), respectively.

lim
x→a−

f (x) = L. (3.2)

lim
x→a+

f (x) = L. (3.3)
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1

1

2

(3.4)f (x)

0
x

Figure 3.1 Continuous function.

Equation (3.2) means that the value of the function f (x) becomes very close to L if x

becomes closer to a from smaller values. Likewise, Equation (3.3) means that the value
of the function f (x) becomes very close to L if x approaches a from larger values. Let us
see these notions by using some examples.

Let us consider the following function:

f (x) = x2 + 1. (3.4)

What is the limit of this function as x approaches 1? It is rather obvious, as f (x) is
defined at x = 1, i.e. f (1) = 2. It does not matter whether x becomes closer to 1 from
smaller values or larger values: the value of the function approaches 2. That is:

lim
x→1−

f (x) = lim
x→1+

f (x) = f (1) = 2. (3.5)

When the first two equalities of Equation (3.5) holds, we call that the function f (x) is
continuous at x = 1. More formally, continuity of a function can be defined as follows.

Definition 3.1 A function f (x) is continuous at x = a, where a is in the domain of
f , if the left- and right-hand limits at x = a exist and are equal, i.e.

lim
x→a

f (x) = lim
x→a−

f (x) = lim
x→a+

f (x),

and the limit as x tends to a equals the value of the function at that point, that is,

lim
x→a

f (x) = f (a).

As we can see in Figure 3.1, the function f (x) is continuous for all x. Roughly speaking,
continuous functions are those that can be drawn without removing a pen from paper.

Now, let us look at functions that are not continuous. Consider a function:

g(x) = x3 − x2 + x − 1

x − 1
, x �= 1. (3.6)
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1

1

2

(3.6)
g(x)

0
x

Figure 3.2 A function not continuous.

For an obvious reason, we cannot define the function when x = 1. So we are interested
in knowing the value this function approaches when x approaches 1. It turns out that both
the left- and right-hand limits at x = 1 exist and are 2.

When x �= 1, g(x) can be simplified to:

g(x) = (x − 1)(x2 + 1)

x − 1
= x2 + 1, x �= 1.

Therefore,

lim
x→1

g(x) = lim
x→1−

g(x) = lim
x→1+

g(x) = 2.

Hence lim
x→1

g(x) = 2, but, the function is not defined at x = 1, so we cannot say

lim
x→1

g(x) = g(1). The second part of the definition of continuity is violated, hence the

function is not continuous at x = 1. The graph of this function is depicted as in Figure 3.2.
You should realise that you need to remove your pen from the paper when you are exactly
at x = 1 because the parabola is disconnected there.

What about the following function?

h(x) = 1

x
, x �= 0. (3.7)

Again for an obvious reason, we cannot define the function when x = 0. We are
interested in knowing the value this function approaches when x approaches 0. We know
that when x approaches zero from values greater than zero, the value of the function
approaches positive infinity. However, if x approaches zero from values smaller than zero,
the value of the function approaches negative infinity. This is an example where the left-
and right-hand limits are not equal. That is, at x = 0,

lim
x→0−

h(x) �= lim
x→0+

h(x).

Hence, the first part of the definition of continuity is violated (in fact, the second part as
well), hence the function is not continuous at x = 0. The graph of this function is depicted
as in Figure 3.3.
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1
–1

–1
1

(3.7)

h(x)

x
0

Figure 3.3 Another function not continuous.

3.1.1 Limit rules

I now list the limit rules, which will be assumed knowledge in the rest of the book. Some
exercises (with the solution) are provided after the rules.

Limit rules If lim
x→a

f (x) = Lf and lim
x→a

g(x) = Lg , then we have the following.

Rule 1 lim
x→a

{f (x) + g(x)} = Lf + Lg. (3.8)

Rule 2 lim
x→a

{f (x) − g(x)} = Lf − Lg. (3.9)

Rule 3 lim
x→a

{f (x) · g(x)} = Lf · Lg. (3.10)

Rule 4 lim
x→a

{
f (x)
g(x)

}
= Lf

Lg
. (3.11)

Rule 5 lim
x→a

f (g(x)) = f (Lg). (3.12)

Here are some questions you can use to practise taking limits.

Question A Find lim
x→2

(x − 1)100.

Solution Well, you will need to spend hours to expand (x − 1)100 out, so let us think
differently. Just applying Equation (3.12) you get:

lim
x→2

(x − 1)100 =
[

lim
x→2

(x − 1)

]100

= 1100

= 1.
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Question B Find lim
x→3

x − 3

x3
.

Solution Applying Equation (3.11) yields:

lim
x→3

x − 3

x3
=

lim
x→3

(x − 3)

lim
x→3

x3

= 0

27
= 0.

Exercise 3.1 Applying the limit rules.

3.2 Summation

In economics or finance, it is common to add variables of our interest for particular time
periods, say the sum of your monthly pay in 2012. If we denote your pay for January by
w1, February by w2, and so on, then one way to represent the sum of your pay (W ) will
be the following:

W = w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8 + w9 + w10 + w11 + w12. (3.13)

However, it looks too cumbersome and we do not really want to write it this way every
time we need to. Hence, to represent the same idea, we use a summation operator

∑
.

Equation (3.13) can now be written as:

W =
12∑
t=1

wt. (3.14)

In Equation (3.14), the
12∑
t=1

symbol tells you to add wt for the values of t running from

t = 1 to t = 12, inclusive. This letter t is known to the running variable. For this case, t

is used for the running variable to represent ‘time’, but any symbol can be used as long as
it is well specified. Hence the following representation also carries the same information
as Equation (3.14):

W =
12∑
i=1

wi. (3.15)

In Equations (3.14) and (3.15), the lower limit of the summation operator is 1. However,
it can take any integer. The upper limit of the summation operator, 12 in Equations (3.14)
and (3.15), can be any natural number that is greater than the lower limit. For example,

the sum of your pay from July to September can be represented by
9∑

t=7

wt .
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3.2.1 Summation rules

Now I list the basic summation rules, which will be assumed knowledge in the rest of the
book. All these rules can be deduced by simply writing out sufficient terms, but doing
so is very tedious, and it may be better to have these rules in hand from the beginning.
Nevertheless, a question will be given that requires you to deduce the second rule, just to
emphasise that memorising the rules per se is not the point. This is followed by questions
in which you are asked to apply these rules.

Summation rules

Rule 1
n∑

i=1
c = nc.

(3.16)

Rule 2
n∑

i=1
cxi = c

n∑
i=1

xi. (3.17)

Rule 3
n∑

i=1
(xi ± yi) =

n∑
i=1

xi ±
n∑

i=1
yi. (3.18)

Rule 4
n∑

i=1
xi =

k∑
i=1

xi +
n∑

i=k+1
xi.

(3.19)

Rule 5
n∑

i=1
(xi ± yi)2 =

n∑
i=1

xi
2 ± 2

n∑
i=1

xiyi +
n∑

i=1
yi

2.
(3.20)

Question Deduce Equation (3.17).

Solution Simply writing out some terms will do:
n∑

i=1

cxi = cx1 + cx2 + cx3 + · · · + cxn−1 + cxn

= c(x1 + x2 + x3 + · · · + xn−1 + xn)

= c

n∑
i=1

xi.

Exercise 3.2 Deducing Equation (3.17).

Here are some questions for you to practise applying these rules.

Question A Provided that
n∑

i=1
xi = 4 and

n∑
i=1

xi
2 = 10, express

n∑
i=1

(xi + 2)2 in terms

of n.

Solution By applying Equation (3.20):
n∑

i=1

(xi + 2)2 =
n∑

i=1

xi
2 + 2

n∑
i=1

2xi +
n∑

i=1

4.
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By applying Equations (3.17) and (3.16):
n∑

i=1

(xi + 2)2 =
n∑

i=1

xi
2 + 2

n∑
i=1

2xi +
n∑

i=1

4

=
n∑

i=1

xi
2 + 4

n∑
i=1

xi + 4n.

Substituting in
n∑

i=1
xi = 4 and

n∑
i=1

xi
2 = 10 to this expression leads to the solution:

n∑
i=1

(xi + 2)2 =
n∑

i=1

xi
2 + 2

n∑
i=1

2xi +
n∑

i=1

4

=
n∑

i=1

xi
2 + 4

n∑
i=1

xi + 4n

= 10 + 4 · 4 + 4n

= 26 + 4n.

Question B Provided that
5∑

i=1
xi = 2,

10∑
i=6

xi = 4 and
10∑
i=1

xi
2 = 8, express

10∑
i=1

(xi + 2)2.

Solution Firstly, by applying Equation (3.19) to
5∑

i=1
xi = 2,

10∑
i=6

xi = 4, we get
10∑
i=1

= 6.

Now by applying Equation (3.20):

10∑
i=1

(xi + 2)2 =
10∑
i=1

xi
2 + 2

10∑
i=1

2xi +
10∑
i=1

4.

By applying Equations (3.17) and (3.16):
10∑
i=1

(xi + 2)2 =
10∑
i=1

xi
2 + 2

10∑
i=1

2xi +
10∑
i=1

4

=
10∑
i=1

xi
2 + 4

10∑
i=1

xi + 40.

Substituting
10∑
i=1

xi = 6 and
10∑
i=1

xi
2 = 8 into this expression leads to the solution:

10∑
i=1

(xi + 2)2 =
10∑
i=1

xi
2 + 2

10∑
i=1

2xi +
10∑
i=1

4

=
10∑
i=1

xi
2 + 4

10∑
i=1

xi + 40

= 8 + 4 · 6 + 40
= 72.

Exercise 3.3 Applying the summation rules.
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3.3 A geometric series

Now I shall introduce a new idea called a sequence, which is just a list of numbers. Let
us consider the following sequence:

2, 6, 18, 54, 162, . . .

If you examine these values, you will find the following.

(1) The sequence starts with an initial value of 2; and
(2) the second value is equal to the initial value multiplied by 3, whilst the third value is

equal to the second value multiplied by 3, etc. The value of 3 is called the common
ratio.

More generally, let us denote the initial value and the common ratio by a and i,
respectively.1 Then the sequence (of n terms) can be written as follows:

a, ai, ai2, ai3, . . . , ain−2, ain−1.

This sequence is called a geometric sequence (or geometric progression) with com-
mon ratio i. Note that, for the last term, i is raised to n − 1 (not n), and it is because the
first term does not include i (or you can interpret that the first term is ai0, in which case
the last term should be ain−1 if the sequence consists of n terms).

The sum of the terms of the geometric sequence is called a geometric series. Here, let
us consider summing the first n terms of the geometric sequence:

a + ai + ai2 + ai3 + · · · + ain−2 + ain−1︸ ︷︷ ︸
n terms

.

The following shows the steps to obtain the geometric series (you should try remem-
bering the steps instead of the result per se; you can always reproduce the result if you are
on top of the relevant steps). Let us denote the geometric series of n terms by Z:

Z = a + ai + ai2 + ai3 + · · · + ain−2 + ain−1. (3.21)

Multiplying both sides of Equation (3.21) by i gives the following:

iZ = ai + ai2 + ai3 + ai4 + · · · + ain−1 + ain. (3.22)

Subtracting each side of Equation (3.22) from the corresponding side of Equation (3.22)
gives:

Z − iZ = a − ain.

Solving this equation for Z gives the following:

Z = a(1 − in)

1 − i
. (3.23)

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

1 Just a note to avoid possible confusion: the i used here is not the imaginary i we learnt in Chapter 2.
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Here’s a question to consolidate your understanding.

Question Find the sum of the geometric sequence {2, 6, 18, 54, 162}.
Solution A Just do it by hand . . .

2 + 6 + 18 + 54 + 162 = 20 + 60 + 162 = 242.

Solution B Alternatively, use the geometric series formula where a = 2, i = 3, and
n = 5.

Z = 2(1 − 35)

1 − 3
= 2

−2

(
1 − 35

) = (243 − 1) = 242.

Exercise 3.4 Geometric series.

We are now equipped with the basic mathematics to discuss some topics in finance.
Two more mathematical notions, however, will need to be introduced eventually.

3.4 Compound interest

Most of us borrow money when we purchase a car, a house, education, etc. Most businesses
borrow money when they purchase new equipment or just to keep up the daily operation
of their businesses. We call the amount of money we borrow the (original) principal.
When people borrow money, they have to agree to repay this amount – usually plus
some extra – in the future. This extra amount is called the interest. These terms are also
used when we invest money and earn interest, and our story indeed involves investing
money.

Consider the following situation. Suppose you have invested $100 at an interest rate of
10 per cent per annum. Suppose also that interest is compounded annually, i.e. the interest
earned by the principal is reinvested so that it, too, earns interest. How much will you
obtain by the end of the tenth year?

After one year, the value of investment will be the original principal ($100), plus the
interest on the principal ($100 × 0.1):

100 + 100 × 0.1 = $110.

So the interest for the second year is earned for $110, not just $100. At the end of the
second year, the value of investment will be the principal at the end of the first year ($110),
plus the interest on it ($110 × 0.1):

110 + 110 × 0.1 = $121.

It means that the principal increases each year by 10 per cent. The $121 represents
the original principal, plus all accrued interest, and is called the compound amount.
The difference between the compound amount and the original principal is called the
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compound interest. In this example, the compound interest (at the end of the second
year) is $121 − $100 = $21.

In general, the compound amount St of the principal P at the end of t years at the
rate of i (expressed as a fraction or decimal) compounded annually can be expressed as
follows.

(1) After the first year:

S1 = P + P i

= P (1 + i).

(2) After the second year:

S2 = S1 + S1i

= S1(1 + i)

= P (1 + i)(1 + i)

= P (1 + i)2.

(3) After the third year:

S3 = S2 + S2i

= S2(1 + i)

= P (1 + i)2(1 + i)

= P (1 + i)3.

...

...

(t) At the end of year t :

St = P (1 + i)t . (3.24)

Now try the following question.

Question What is the compound amount of $1000 invested at an annual rate of 6 per
cent for 6 years? What are the compound amount and the compound interest? You may
round your answer to two decimal places at the end of calculation.

Solution:

S6 = 1000 · (1 + 0.06)6 ≈ 1418.52.

S6 − P = 1000 · (1 + 0.06)6 − 1000 ≈ 418.52.

Exercise 3.5 Compound interest.
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3.4.1 What do we need to do if the compounding period is not annual?

Compounding may not necessarily take place annually. It may take place daily, monthly,
quarterly, etc. If compounding takes place quarterly (every three months), we say that
there are four interest periods or conversion periods per year. However, regardless of
how often compounding occurs, an interest rate is usually quoted as an annual rate, which
is called the nominal rate.

The periodic rate (of interest) is obtained by dividing the nominal rate by the num-
ber of conversion periods per year. For example, if the nominal rate is 8 per cent and

compounding occurs quarterly, the periodic rate is
8%

4
= 2%. In this chapter, unless oth-

erwise stated, all interest rates will be assumed to be nominal rates. We now can generalise
Equation (3.24).

The compound amount Sn of the principal P at the end of n interest periods
when the periodic rate is r (expressed as a fraction or decimal) can be expressed as
follows.

(1) After the first interest period:

S1 = P + Pr

= P (1 + r).

(2) After the second interest period:

S2 = S1 + S1r

= S1(1 + r)

= P (1 + r)(1 + r)

= P (1 + r)2.

(3) After the third interest period:

S3 = S2 + S2r

= S2(1 + r)

= P (1 + r)2(1 + r)

= P (1 + r)3

...

...

(n) At the end of nth interest period:

Sn = P (1 + r)n. (3.25)

Now try this one.
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Question What is the compound amount of $1000 invested at an annual rate of 6 per
cent compounded semi-annually for 6 years? What is the compound interest? You may
round your answer to two decimal places at the end of calculation.

Solution Observe that there are 12 interest periods (twice per year for 6 years) and the
periodic rate is 3 per cent.

S12 = 1000 ·
(

1 + 0.06

2

)6×2

= 1000 · (1 + 0.03)12 = 1425.76.

S12 − P = 1000 · (1 + 0.03)12 − 1000 = 425.76.

Exercise 3.6 Compound interest (but not annually).

We have seen that for a principal of $1000 at a nominal rate of 6 per cent over a period
of 6 years, annual compounding results in a compound interest of $418.52, and with semi-
annual compounding the compound interest is $425.76. So the important lesson here is:
for a given positive nominal rate, the more frequent the compounding, the greater is the
compound interest.

3.4.2 The effective rate of interest

If we invest $1000 (principal) at a nominal rate of 6 per cent compounded semi-annually
for one year, it will earn more than 6 per cent that year.

Question How much will you earn in the above situation?

Solution

S − P = P

(
1 + 0.06

2

)2

− P

= P (1.03)2 − P

= [(1.03)2 − 1
]
P

= (1.0609 − 1) P

= 0.0609P.

Exercise 3.7 The effective rate of interest.

As we show above the compound interest is 0.0609P , which is 6.09 per cent of P .
This means that 6.09 per cent is the rate of interest compounded annually that is actually
earned. We call this rate the effective rate of interest, or the yield. In other words, the
effective rate is just the rate of change in the principal over a period of one year. Hence we
have shown that the nominal rate of 6 per cent compounded semi-annually is equivalent
to an effective rate of 6.09 per cent.
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In fact, we can formally state the relationship between the effective rate and the nominal
rate in general. Suppose the principal is P and the nominal rate of i is compounded n

times a year. Then the compound amount after a year can be denoted by P

(
1 + i

n

)n

. If

we denote the effective rate by re, then by definition of the effective rate, P (1 + re) has to

equal P

(
1 + i

n

)n

. Therefore:

1 + re =
(

1 + i

n

)n

.

Solving this for re we get:

re =
(

1 + i

n

)n

− 1. (3.26)

Again, don’t just try remembering the result per se. You can always derive
Equation (3.26) by yourselves if you understand the notion of the effective rate. Under-
standing the idea is far more important. The effective rate is quite useful in comparing
different compounding methods with different nominal rates. If you convert those into the
effective rates, comparison becomes possible and we can see which one of the methods
will yield more interest in one year. Now you should be able to answer the following
question.

Question If you have a choice of investing money at 6.3 per cent compounded annually
or 6.125 per cent compounded quarterly, which one should you prefer? You may round
your answer (expressed as a percentage) to two decimal places at the end of calculation.

Solution

The effective rate for the first option:

re =
(

1 + 0.063

1

)1

− 1

= 0.063.

By definition, it is 6.3 per cent.

The effective rate for the second option:

re =
(

1 + 0.061 25

4

)4

− 1

=
(

4.061 25

4

)4

− 1

≈ 1.0627 − 1

= 0.0627.

It is 6.27 per cent. Hence the first option is preferred.

Exercise 3.8 Comparing the effective rates.
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3.5 The exponential function: how can we calculate the
compound amount of the principal if interest is compounded
continuously?

Question Express in terms of t the compound amount of $1000 invested for t years at
a nominal rate of 10 per cent if interest is compounded (1) annually (2) semi-annually (3)
quarterly (4) monthly (5) daily and (6) continuously.

(1) Annually:

S = 1000 × (1 + 0.1)t

= $1000(1.1)t .

(2) Semi-annually:

S = 1000 ×
(

1 + 0.1

2

)2t

= $1000(1.05)2t .

(3) Quarterly:

S = 1000 ×
(

1 + 0.1

4

)4t

= $1000(1.025)4t .

(4) Monthly:

S = 1000 ×
(

1 + 0.1

12

)12t

= 1000 ×
(

12.1

12

)12t

= $1000

(
121

120

)12t

.

(5) Daily

S = 1000 ×
(

1 + 0.1

365

)365t

= 1000 ×
(

365.1

365

)365t

= $1000

(
3651

3650

)365t

.

...

...
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(6) When m → ∞:

S = 1000 ×
(

1 + 0.1

m

)mt

= How much?

Exercise 3.9 Towards continuous compounding.

Our focus is (6): we want to obtain the value of S when m approaches infinity. We say
interest is compounded continuously in this case. Recall the idea of the limits introduced
in Section 3.1. Using the limit we can describe what we want:

S = lim
m→∞

{
1000 ×

(
1 + 0.1

m

)mt}
. (3.27)

How do we move on from here? We introduce a new mathematical idea to deal with

this problem. It will turn out that the term lim
k→∞

(
1 + 1

k

)k

has a lot to do with solving

this problem, so let us investigate it in detail. To begin with, it may be useful to see what

values

(
1 + 1

k

)k

takes for a given k.

As we can observe in Table 3.1,

(
1 + 1

k

)k

increases as k increases, but at a decreasing

rate. A Swiss mathematician Leonhard Euler found that

(
1 + 1

k

)k

approaches an irrational

number as k approaches infinity. The number is approximately equal to 2.718 28. In
mathematics it is denoted by e and referred to as Euler’s e.

lim
k→∞

(
1 + 1

k

)k

= e. (3.28)

We will discuss a little more about the function that involves Euler’s e later. For now,
let us get back to Equation (3.27) and solve for S. To use Equation (3.28), we rearrange
Equation (3.27) in the following manner and obtain Equation (3.29):

1000 ×
(

1 + 0.1

m

)mt

= 1000 ×
(

1 + 0.1

0.1k

)0.1kt

,

where k = 10m. Hence,

S = lim
m→∞

[
1000 ×

(
1 + 0.1

m

)mt]

= lim
k→∞

⎧⎨
⎩1000 ×

[(
1 + 1

k

)k
]0.1t

⎫⎬
⎭ . (3.29)
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Table 3.1. Values of

(
1 + 1

k

)k

.

k

(
1 + 1

k

)k

1

(
1 + 1

1

)1

= 21 = 2

2

(
1 + 1

2

)2

= 1.52 = 2.25

3

(
1 + 1

3

)3

= ( 4
3

)3 ≈ 2.37

4

(
1 + 1

4

)4

= 1.254 ≈ 2.44

...
...

...
...

100

(
1 + 1

100

)100

= 1.01100 ≈ 2.704 81

...
...

...
...

1000

(
1 + 1

1000

)1000

= 1.0011000 ≈ 2.716 92

...
...

...
...

Notice that k → ∞ in Equation (3.29). Since k = 10m, if m → ∞, then k → ∞.
Using the limit rules you learned in Section 3.1, we can boil Equation (3.29) down to
Equation (3.30):

S = lim
k→∞

⎧⎨
⎩1000 ×

[(
1 + 1

k

)k
]0.1t

⎫⎬
⎭

= 1000 × lim
k→∞

[(
1 + 1

k

)k
]0.1t

= 1000 ×
[

lim
k→∞

(
1 + 1

k

)k
]0.1t

. (3.30)

Finally, using the definition of e in Equation (3.28), we can obtain the compound amount
of $1000 compounded continuously at a nominal rate of 10 per cent over t years:

S = 1000 ×
[

lim
k→∞

(
1 + 1

k

)k
]0.1t

= 1000e0.1t . (3.31)
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The above analysis tells us the following: to obtain the compound amount S of a principal
of P dollars after t years when a nominal interest rate i is compounded continuously, we
need to calculate:

S = P lim
k→∞

[(
1 + 1

k

)k
]it

= Peit . (3.32)

Question What is the compound amount of $100 invested at a nominal rate of 5 per
cent compounded continuously for (a) 1 year (b) 5 years?

Solution

(a) S = 100e0.05.
(b) S = 100e0.25.

Exercise 3.10 The compound amount under continuous compounding.

3.5.1 The effective rate under continuous compounding

We can calculate the effective rate under continuous compounding as we derived
Equation (3.26). Recall that the effective rate is the equivalent rate compounded annually
(it shows the rate of change in the principal in a year). If we denote it by re, then the
principal P will accumulate to P (1 + re) after one year. By definition, this has to be equal
to the compound amount under continuous compounding for one year (t = 1) at a nominal
rate i, Pei .

P (1 + re) = Pei

1 + re = ei

re = ei − 1. (3.33)

Question Find the effective rate that corresponds to an annual rate of 5 per cent com-
pounded continuously.

Solution

re = e0.05 − 1.

Exercise 3.11 The effective rate under continuous compounding.

3.5.2 The natural exponential function

We have seen that the compound amount (S) of the principal (P ) under continuous
compounding is expressed using an irrational number e, e.g. S = Pe0.05t . Suppose the
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1

f (x)
f (x) = ex

x
0

Figure 3.4 A graph of the natural exponential function.

S
S = Pe0.05t

t

P

0

Figure 3.5 The compound amount increases at an increasing rate.
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principal P is given (so it is not a variable), and suppose we vary t to see how S changes.
Then we can see that S is a function of t (e is a number so it is not a variable). We have
not seen this type of function before, so let us discuss it a little.

Consider a function:

f (x) = αx, (3.34)

where α > 0, α �= 1, and if the exponent x is any real number, we call this function an
exponential function with base α. In financial mathematics, as we have seen, we are
particularly interested in the case where the base is equal to e. That is:

f (x) = ex. (3.35)

This function, which is the exponential function with base e, is called the natural
exponential function. The graph of the natural exponential function is depicted in
Figure 3.4.

The vertical intercept is (0, 1) because f (0) = e0 = 1. You can also see that as x

increases f (x) increases at an increasing rate. At this stage, it suffices to convince
yourself that the graph is shaped as illustrated in the figure, perhaps by plotting several
points (you can use the fact that e ≈ 2.7). We will learn how to properly sketch the
exponential function in Chapter 5.

What is more important is to relate the exponential function to our problem in finance.
As we have seen, the compound amount (S) of the principal (P ) under continuous com-
pounding at a nominal rate of 5 per cent is expressed as S = Pe0.05t . If we take t on the
horizontal axis and S on the vertical axis, the graph of S will look like the one in Figure 3.5.
S starts with the original principal P (when t = 0) and increases at an increasing rate as
t increases. Why at an increasing rate? It is just because the interest is compounded.

3.6 Logarithms: how many years will it take for my money
to double?

Recall that when we have a function y = f (x), the inverse function x = f −1(y) may
exist, and we saw in Section 2.9 that it can be found nicely in some cases (as in the
temperature example). What is the inverse function of the natural exponential function,
y = f (x) = ex? As yet, we have no device to express x in terms of y in this case, so we
shall introduce a new notion as follows:

x = logey. (3.36)

This function is called the logarithmic function with base e (remember, we were
looking at the exponential function with base e), or we just call it the natural logarithmic
function. It is an inverse function of y = ex .

Most of the time, we write x = logey in an alternative way:

x = ln y. (3.37)

In fact, we can also define logarithmic functions with other bases as follows.



76 Financial mathematics

Definition 3.2 The logarithmic function with base α, where α > 0 and α �= 1, is
denoted by logα and is defined by:

x = logαy if and only if y = αx.

Alternatively we can write:

x = logαy ⇔ y = αx. (3.38)

Let us do some simple exercises.

Question Obtain x.

(1) x = log216.

(2) x = log101.

(3) x = ln e2.

(4) x = ln 1.

Solution

(1)

x = log216
2x = 16
x = 4.

(2)

x = log101
10x = 1

x = 0.

(3)

x = ln e2

x = logee
2

ex = e2

x = 2.

(4)

x = ln 1
x = loge1

ex = 1
x = 0.

Exercise 3.12 Exponentials and logarithms.
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Two bases are commonly used for the logarithm. One is the one we have discussed, e,
the natural logarithm (ln). The other is 10. We call log10 the common logarithm (since
we use a decimal system of numbers, it is likely to be the most common value for the
base). Most scientific calculators will have the facilities of log10 and ln but, as discussed
in Preface, it is irrelevant in the spirit of the book. When you end up with expressions
including e and/or ln, leave it as long as further simplification is not possible.

3.6.1 Logarithm properties

The logarithmic function has many important properties. I will list those, and they will be
assumed knowledge for the rest of the book. I will show in the following exercise that the
first property must hold, but will leave the rest for you to show, since it can be done in a
similar fashion. Some exercises are provided after the list of properties.

Logarithm properties

Property 1

logax + logay = loga(xy). (3.39)

Property 2

logax − logay = loga

(
x

y

)
. (3.40)

Property 3

logax
b = blogax. (3.41)

Property 4

logax = (logab
) · (logbx

)
. (3.42)

Property 5

logax = 1

logxa
. (3.43)

Question Show that Equation (3.39) holds.

Solution Let logax = m and logay = n. So the LHS of Equation (3.39) is m + n. Note
also that am = x and an = y by the definition of the logarithm, and hence xy = aman =
am+n.

In the meantime, the RHS of Equation (3.39) is: loga(xy) = loga(am+n). By the definition
of the logarithm, it is equal to m + n.

Hence we have shown that the LHS and the RHS of Equation (3.39) are equal.

Exercise 3.13 Deducing Equation (3.39).
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Here are some exercises for you to get used to logarithms.

Question Express x in terms of a and b, provided that log102 = a and log103 = b.

(1) x = log102000.

(2) x = log10
1

9
.

Solution

(1)

x = log102000

= log102 + log10100

= a + 2.

(2)

x = log10
1

9
= log101 − log109

= 0 − log1032

= −2log103

= −2b.

Exercise 3.14 Logarithm calculation.

In passing, the graph of the natural logarithmic function y = ln x is depicted in
Figure 3.6. Again, at this stage, it suffices to convince yourself that the graph is shaped as
shown in the figure by plotting several points. We will learn how to properly sketch the
logarithmic function in Chapter 5. The horizontal intercept is (1,0) because ln 0 = 1. The
value of the function y increases as x increases but at a decreasing rate. If you imagine that
there is a mirror on the line y = x, the graph of the natural logarithmic function y = ln x

is a mirror image of its inverse function y = ex .

3.6.2 How many years will it take for my money to double?

Now that we know how to deal with the logarithms, we are able to tell how many years it
will take for our money to double, given the information about compounding. Let us think
how many years it will take for our money to double at the effective rate of 5 per cent.

Recall first that the effective rate is the equivalent rate compounded annually. If we
denote the principal by P , then the compound amount over t years can be written as
P (1 + 0.05)t . This has to be equal to twice as much as P , which is 2P , in which case:

2P = P (1 + 0.05)t . (3.44)
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1

1

y y = ex

y = x

y = ln x

x
0

Figure 3.6 A graph of the natural logarithmic function.

Rearranging this equation yields:

1.05t = 2. (3.45)

Taking (the natural) logarithms of the both sides of this equation yields:

ln 1.05t = ln 2. (3.46)

Now, using one of the logarithm properties, we rearrange the left hand side of this
equation in order to solve for t :

t ln 1.05 = ln 2. (3.47)

Hence:

t = ln 2

ln 1.05
(years). (3.48)

This is the answer and you can stop here. If you have a scientific calculator, you can
check that the value of t in (3.48) is roughly 14.21. Remember this value in reference to
the next exercise.

Question How many years will it take for our money to double if interest is compounded
quarterly at a nominal rate of 5 per cent?

Solution

2P = P

(
1 + 0.05

4

)4t

ln 2 = 4t ln 1.0125

t = ln 2

4 ln 1.0125
≈ 13.95.



80 Financial mathematics

The answer shows us that it will take (approximately) 13.95 years for our money to double
if interest is compounded quarterly at a nominal rate of 5 per cent. Recall that if interest is
compounded annually at 5 per cent (the example we saw above) it takes (approximately)
14.21 years for our money to double.

This finding is consistent with our discussion on the compound interest in the previous
section. Given a positive nominal rate, recall that, the more frequent the compounding, the
greater is the compound interest. It follows that, given a positive nominal rate, the more
frequent the compounding, the less time it will take for our money to double. Hence, in
this question, it does not take as long as 14.21 years to double our money.

Exercise 3.15 Doubling funds.

3.7 Present values

3.7.1 $100 today is different from $100 in two years’ time

If you have $100 today, you can deposit it in a savings account and earn interest. We have
seen that if the savings account pays 10 per cent compounded annually, by the end of the
second year your account is worth

$100 × (1 + 0.1)2 = $121.

It implies that $100 you receive today is worth more than $100 you may receive two years
later. In the above context, we say that $121 is the future value of $100, and $100 is the
present value of $121.

In general, for the periodic rate of r over n interest periods, the principal P will be
accumulated to the compound amount S = P (1 + r)n. Hence, by simply applying one of
the power rules, we can conclude that, for the periodic rate of r over n interest periods,
for the compound amount to be S, the principal P that must be invested is given by:

P = S(1 + r)−n. (3.49)

P is called the present value of S. The present value is sometimes referred to as the
present discounted value or just the discounted value. The process of converting the
future value into the present value is referred to as discounting.

Try the following simple question.

Question A Find the present value of $1000 due after three years if the interest rate is
8 per cent compounded quarterly. You may round your answer to two decimal places.

Solution

1000

(
1 + 0.08

4

)−12

= 1000(1.02)−12

≈ 788.49.
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Question B Suppose I owe you two sums of money: $1000, due in one year, and $600,
due in two years. What do you think of my following offer? ‘Instead, I’ll pay you $1450
today (because that’s better for you than receiving $1000 one year later and $600 two
years later).’ The interest rate of 8 per cent is compounded quarterly. You may round your
answer to two decimal places.

Solution

Using the present value (PV)

PV of the two sums = 1000(1 + 0.02)−4 + 600(1 + 0.02)−8

≈ 1435.94.

So it is better to accept the offer of $1450 today.

Using the future value (FV) at the end of the second year

FV of $1450 today = 1450 · (1 + 0.02)8

≈ 1698.91.

FV of the two sums = 600 + 1000 · (1 + 0.02)4

≈ 1682.43.

So, of course, we get the same result: it is better to accept the offer of $1450 today. It does
not matter at which time you evaluate the two options. You just need to make sure that
you compare their same time values.

Exercise 3.16 The present value and future value.

3.7.2 The net present value and cash flows

If a business investment generates payments in the future, these payments are called
cash flows. The net present value (NPV) of the cash flows is defined as the sum of
present values of the cash flows minus the principal (initial investment). If NPV > 0,
we conclude that the investment is profitable. The reasoning will be provided after the
following exercise.

Question A Suppose you invest $12 000 in a business that generates cash flows at the
end of years, 3, 4 and 5, as indicated in Table 3.2. Assume that if you deposit money with
a bank, interest is compounded annually at 7 per cent. Find the net present value (NPV)
of the cash flows. You may round your answer to two decimal places.

Solution

NPV = 5000(1.07)−3 + 4000(1.07)−4 + 4000(1.07)−5 − 12 000

= 9985.02 − 12 000 < 0.

Hence the investment is not profitable.
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Table 3.2. Cash flow schedule.

Year 3 4 5

Cash flows $5000 $4000 $4000

Question B Think about the same question as above, but assume instead that, if you
deposit money with a bank, interest is compounded annually at 2 per cent. Find the net
present value (NPV) of the cash flows. You may round your answer to two decimal places.

Solution

NPV = 5000(1.02)−3 + 4000(1.02)−4 + 4000(1.02)−5 − 12 000

= 12 029.92 − 12 000 > 0.

Hence the investment is profitable.

Exercise 3.17 Net present value.

In Question A, the investment turns out to be unprofitable (NPV < 0). Let us think
about why it is the case. What is your outside option? The only option given in the
question is to deposit your initial cash outlay at the bank. That is, if you didn’t invest in
this business, you could have earned 7 per cent compound interest for 5 years at the bank.
In other words, by investing in the business, you are forgoing an opportunity of earning
the interest return on your deposit at the bank. We say that there is an opportunity cost of
investing this money in the business, and it is equal to the interest return forgone. When
the nominal rate is 7 per cent, that cost turns out to be too large.

In contrast, in Question B, the investment turns out to be profitable (NPV > 0). It
shows that investing in this business is a cheaper way of producing that income stream
than depositing in the bank. The opportunity cost of investing in this business is forgo-
ing the interest return from the bank deposit, which is 2 per cent. This is considerably
lower than 7 per cent in Question A, and indeed it turns out that the opportunity cost
is low enough for you to prefer investing in the business rather than depositing in the
bank.

3.8 Annuities: what is the value of your home loan?

The major personal financial transactions in our lives involve a series of repayments
or payments. In finance, a series of repayments or payments is called an annuity. For
example, most people use a loan to purchase their home and then make a series of regular
repayments to pay off this loan. We call the value of this loan the present value of
an annuity. An opposite example can be found in a superannuation scheme. People
make regular payments (contributions), and on retirement they receive these payments
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time
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R(1 + r)–1

R(1 + r)–2

R(1 + r)–3

R(1 + r)–(n–2)

R(1 + r)–(n–1)

R(1 + r)–n

... ...

Figure 3.7 A time line 1.

and the interest on them. The total value of these payments and the interest is called the
future value of an annuity. In this section we will discuss these two types of annuity in
turn.

3.8.1 Present value of an ordinary annuity

Consider the following situation. You decided to use a loan to purchase your home at
the beginning of Period 1. You are now committed to make n times of repayments to
a bank. Each time, you are repaying R dollars. The repayments will start at the end of
Period 1, and will occur at the end of each period until the end of Period n. We say that
the term of this annuity is n periods and each of the n periods is called the repayment
period.

We also assume that compounding takes place at the end of each repayment period.
Such an annuity is called an ordinary annuity. When compounding takes place at the
beginning of each period, it is called an annuity due, but it is not going to be our
focus. Note that when compounding takes place at the end of each repayment period, the
compounding period and the repayment period coincide. In such a case, the annuity is
called a simple annuity. Whereas when these periods do not coincide – e.g. when you
make annual repayments when interest is compounded continuously – the annuity is called
a general annuity. We will not deal with general annuities in this book, so our focus in
the following will be ordinary simple annuity.

Now suppose the periodic rate is denoted by r . The present value of an annuity
(A) is the sum of the present values of all the repayments, which can be written as
follows:

A = R(1 + r)−1 + R(1 + r)−2 + R(1 + r)−3 + · · · + R(1 + r)−(n−1) + R(1 + r)−n.

(3.50)

The use of a time line helps you visualise this equation. In Figure 3.7, a time line
is drawn. It describes how all the repayments are discounted to their present values. R

repayed at the end of Period 1 is discounted back one period to R(1 + r)−1, R repayed at
the end of Period 2 is discounted back two periods to R(1 + r)−2, and so on. You can see
that the RHS of Equation (3.50) is merely the collection of them.

It can be observed that the right hand side of Equation (3.50) is the geometric series of
n terms with the initial value R(1 + r)−1 and the common ratio (1 + r)−1. So you should
be able to apply the geometric series formula and simplify Equation (3.50).
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Question Simplify Equation (3.50).

Solution

A = R(1 + r)−1
[
1 − (1 + r)−n

]
1 − (1 + r)−1

= R
[
1 − (1 + r)−n

]
(1 + r)

[
1 − (1 + r)−1

]
= R

[
1 − (1 + r)−n

]
(1 + r) − 1

= R · 1 − (1 + r)−n

r
.

Exercise 3.18 Simplifying Equation (3.50).

So, the present value A of an ordinary annuity of R dollars per repayment period for n

periods at the interest rate of r per period can be written as

A = R · 1 − (1 + r)−n

r
. (3.51)

Here’s an exercise for you.

Question Find the present value of an annuity of $50 per month for 3 years at an interest
rate of 6 per cent compounded monthly. You may round your answer to two decimal
places.

Solution Substituting in Equation (3.51), we set R = 50, r = 0.005, and n = 36. There-
fore:

A = 50 · 1 − (1 + 0.005)−36

0.005
≈ 1643.55 (dollars).

Exercise 3.19 The present value of an ordinary annuity.

3.8.2 Future value of an annuity

We turn to discuss the future value of an ordinary annuity. In short, it is the sum of the
compound amounts of all payments (we will visualise it shortly). Let us consider the
following situation.

You will deposit money in your savings account n times. Each time, you are depositing
D dollars. Suppose the periodic rate is denoted by r . The deposit will start at the end of



85 3.8 Annuities: what is the value of your home loan?

time

Now

DDDDDD

D(1 + r)
D(1 + r)2

D(1 + r)n–3

D(1 + r)n–2

D(1 + r)n–1

...

...
...

...

...

Figure 3.8 A time line 2.

Period 1, and will occur at the end of each period until the end of Period n. Compounding
takes place at the end of each period as we are looking at an ordinary annuity.

The future value of the annuity S can be written as follows:

S = D + D(1 + r) + D(1 + r)2 + D(1 + r)3 + · · · + D(1 + r)n−2 + D(1 + r)n−1.

(3.52)

Again the use of a time line helps you visualise this equation. In Figure 3.8 we describe
how all the repayments are discounted (forward) to their future values. We start with D

deposited at the end of Period n, which needs no discounting. D deposited at the end
of Period n − 1 is discounted forward one period to D(1 + r), D deposited at the end
of Period n − 2 is discounted forward two periods to D(1 + r)2, and so on. The RHS of
Equation (3.52) is merely the collection of these values discounted forward.

Again, S is the geometric series of n terms with the initial value D and the common
ratio (1 + r). Using the geometric series formula, you should be able to simplify S.

Question Simplify Equation (3.52).

Solution

S = D
[
1 − (1 + r)n

]
1 − (1 + r)

= D
[
1 − (1 + r)n

]
−r

= D
[
(1 + r)n − 1

]
r

.

Exercise 3.20 Simplifying Equation (3.52).

So the future value S of an ordinary annuity of D dollars per payment period for n

periods at the interest rate of r per period can be written as:

S = D · (1 + r)n − 1

r
. (3.53)

Here’s an exercise for you.
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Question Find the future value of an annuity of $50 at the end of every three months
for 3 years at an interest rate of 8 per cent compounded quarterly. What is the compound
interest? You may round your answer to two decimal places.

Solution

S = 50 · (1 + 0.02)12 − 1

0.02
≈ 670.60 (dollars).

Compound interest: 670.60 − 12 × 50 = 70.60.

Exercise 3.21 The future value of an ordinary annuity.

3.9 Perpetuity

Financial assets that yield regular payments for an infinite number of periods are called
perpetuities. An example of a perpetuity is a particular type of a bond. A bond is
a promise by the issuer to pay the holder a fixed sum (a redemption value) at a
specified maturity date and to make interest payments (coupon interest payments)
at regular intervals. So a bond that has no maturity date or redemption value and
which pays coupon interest forever is a perpetuity (we will look at this in the example
shortly).

In fact, a perpetuity can be considered as an ordinary annuity with an infinite duration.
Despite this, we can show that the present value of a perpetuity approaches a certain value,
R

r
. To check this, we use the present value formula as in Equation (3.51). The present

value of a perpetuity can be obtained by taking the limit, lim
n→∞ A:

lim
n→∞ A = R lim

n→∞
1 − (1 + r)−n

r

= R

r
lim

n→∞
[
1 − (1 + r)−n

]
= R

r
− R

r
lim

n→∞ (1 + r)−n

= R

r
− R

r
lim

n→∞
1

(1 + r)n
.

The second term of the RHS approaches zero because (1 + r) is greater
than unity (the denominator approaches infinity and the numerator is constant at
unity, so the ratio approaches zero). Therefore, the present value of a perpetuity

approaches
R

r
.
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Question Suppose the government guarantees that all holders of a bond will be paid
$100 at the end of each quarter forever. If interest of 8 per cent is compounded quarterly,
what are the future and the present values of this perpetuity?

Solution

PV = 100

0.02
= 5000.

Exercise 3.22 The present value of a perpetuity.

3.10 Additional exercises

1. (Limits) Find the following limits where possible.

(1) lim
x→2

x2 + x − 6

x − 2
.

(2) lim
x→∞

x2 + x − 6

x − 2
.

(3) lim
x→3

x − 3

x2 − 6x + 9
.

(4) lim
x→−2

x2 − 4

x2 + 12x + 20
.

(5) lim
x→∞

12x

x8 − 4x4 − 17
.

2. (Summations) Express the following sums using a summation operator.

(1) 1 + 3 + 5 + 7 + 9.

(2) 1 + 4 + 9 + 16 + 25 + 36 + · · · + n2.

(3) 2x + 4x2 + 8x3 + 16x4 + 32x5.

(4) ai1b1j + ai2b2j + · · · + ainbnj .

3. (The geometric series) Find the sum to infinity of the following series. [Hint. Do
it in two steps. Step 1: describe the sum assuming there are n terms. Step 2: think
what will happen to this sum when n approaches infinity, i.e. n → ∞.]

(1) 243, 81, 27, 9, 3, 1, . . .

(2) 1, 2, 4, 8, 16, 32, . . .

(3) 1,
1

1 + r
,

1

(1 + r)2 ,
1

(1 + r)3 , . . ., where r > 0.

(4)
1

1 + r
, − 1

(1 + r)2 ,
1

(1 + r)3 , − 1

(1 + r)4 , . . ., where r > 0.
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Table 3.3. Net cash flows.

Project Constant
End of year Cash flow PV at 5% PV at 10%

1 50
2 50
3 50
4 50
5 50

Project Increasing
End of year Cash flow PV at 5% PV at 10%

1 0
2 20
3 50
4 100
5 100

4. (The effective rate) What is the effective rate of interest? Denote the principal by
P , the nominal rate by i, and the number of compounding periods per year by n.
Carefully derive the effective rate re. If $2000 is accumulated to $6000 over a period
of 6 years in an account where interest is compounded daily, how can we obtain the
effective rate? You may use the following information at the end of your calculation:
3

1
6 ≈ 1.20.

5. (The effective rate and the nominal rate) If a major credit-card company has a
finance charge of 1 per cent per month on the outstanding debt, obtain the nominal
rate compounded monthly. Also, obtain the effective rate. You may use the following
information at the end of your calculation: 1.0112 ≈ 1.13.

6. (Doubling the money) How many years will it take for our money to double if
interest is compounded continuously at a nominal rate of 2 per cent? Express your
answer using the natural logarithm. Calculate it using the information that ln 2 ≈ 0.7.
How many years will it take for our money to double if interest is compounded
annually at the same nominal rate? Express it using the natural logarithm. Do
you expect this duration to be shorter than the one you obtained under continuous
compounding?

7. (Net present value) A firm has two investment projects, Constant and Increasing.
Cash flows that these projects will generate are given in Table 3.3. Calculate the
sum of the present value of cash flows for each project if interest is compounded
annually at (a) 5 per cent, and (b) 10 per cent. Suppose both projects require the
same amount of initial investment. Give advice to this firm as to which of these
projects is better to undertake under (a) and (b). Carefully explain your findings. In
calculating, you may round numbers to two decimal places for each of the present
values of cash flows.
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8. (Compound interest) The population growth rate in Fefmland for the 5 years
between 1999 and 2003 had been r1 per annum. Because of a change in policy
the population growth rate of Fefmland was r2 per annum for the 5 years between
2004 and 2008. Express the average population growth rate per annum over the
10-year period between 1999 and 2008 in terms of r1 and r2. Here, the average
population growth rate per annum, denoted by g, for the 10-year period is defined
by the following equation: P1998(1 + g)10 = P2008, where P1998 and P2008 are the
population of Fefmland in the beginning of 1999 and the end of 2008, respectively.

9. (Future value of an annuity) A company called Generous Insurance sells an
education policy to parents with new babies. If the nominal rate of 8 per cent is
compounded quarterly, what is the size of the payments that must be made by parents
at the end of each quarter (so the first payment is made 3 months after the child is
born), if they wish to receive $15 000 when their child turns 18? What will the size
of the payments be if those must be made at the beginning of each quarter?

10. (Perpetuity with increasing payments) Consider the situation where Nasty Bank
offers new-home buyers the option of making payments of continually increasing
size at the end of each period. That is, instead of payments of R, customers will
make payments of:

R, R(1 + g), R(1 + g)2, R(1 + g)3, . . . (IP)

Here, g is an increase in the size of the payment from one period to the next. For
example, if the payment increases by 1 per cent from one period to the next, then
g = 0.01. Assume that the periodic rate is r > 0 and r �= g.

Obtain the present value of a perpetuity when we have payments of an increasing
size as in (IP). [Hint. Recall we obtained the PV of an annuity in the main text when
payments are constant (Equations (3.50) and (3.51)). Using the same approach,
you need to derive the PV of an annuity when payments are increasing. Think
what Equation (3.50) will become if payments are increasing. And then, using the
geometric series formula, you can simplify the sum similar to Equation (3.51),
which should involve R, r , g and n. Then, take the limit of it when n approaches
infinity.] Does it depend on the relative size of r and g? What will the present value
be if g is zero? Explain.
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This chapter deals with differential calculus. Recall that we dealt with market supply
curves in previous chapters. They were generally assumed to be upward sloping (the
law of supply). In this chapter, we will derive an upward sloping supply schedule of a
firm both intuitively and mathematically. To this end, we will focus on a firm’s profit
maximisation problem that underlies it.

A firm is an institution that hires factors of production (inputs) and transforms
them into goods and services (outputs) using its production technology. Here we
consider a firm whose objective is to maximise its profits. Therefore we are interested
in obtaining the level of output that maximises the firm’s profits. In the course of
obtaining the profit maximising level of output, we will introduce differentiation,
which is the process of finding the derivative of a function, and will also foreshadow
some of the important mathematical notions related to curve sketching that will be
covered in the next chapter.

Chapter goals By studying this chapter you will

(1) be able to explain various notions regarding costs;
(2) be able to interpret what it means by differentiating a function; and
(3) be able to set up and solve the firm’s profit maximisation problem.

4.1 Cost function

As mentioned before, a firm is an institution that hires factors of production (inputs),
such as labour, machines and raw materials, and transforms them into goods and services
(outputs) by using their production technologies. Our focus will be profit maximising
firms, i.e. those whose objective is to maximise their profits. Througout this chapter, we
will also limit our analysis to the short run. A short run is the time period in which at least
one factor of production is fixed: for example, it is hard to imagine that a new factory is
built in a few days. Typically, capital (K) is fixed in the short run. Some other inputs, such
as labour and raw materials, can typically be changed in the short run. Here, we assume
that only one input is variable in the short run, which we call labour (L), and also assume
that only one good is produced. In passing, the other time frame economists frequently
use is the long run, where all factors of production including capital are variable, but this
time period is not of interest to us here.

To figure out the profits the firm might make, it has to know (a) how much its products
sell for at the market; and (b) how much it needs to pay to hire factor(s) of production.
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Table 4.1. Costs.

q T C FC V C

0 500 500 0
1 700 500 200
2 820 500 320
3 920 500 420
4 1040 500 540
5 1190 500 690
6 1390 500 890
7 1670 500 1170
8 2070 500 1570
9 2640 500 2140

10 3440 500 2940

Because our focus here is on the firms that produce one good using one input (labour), we
can rephrase it as follows; the firm has to know how much its product sells for at the market
and how much it needs to pay to hire labour. In this chapter, we make an assumption on
markets for both inputs and outputs (unless it is explicitly noted otherwise). Namely, we
assume that both the goods market and the labour market are competitive: since there are
so many parties involved in both of these markets, no single party has power to change
the price by itself. Under this situation, each party takes the market price as given. More
specifically, we assume that a firm sells its product at a product price (p) and hires the
labour it needs at its market price (w per hour).

Let q and c denote the amount of the good it produces and the total cost, respectively.
In the short run, the total cost consists of two parts: the fixed cost (FC) and the variable
cost (VC). The former is the cost of production that does not depend on the quantity of
production, i.e. the cost a firm incurs regardless of the production level. The latter is the
cost of production that varies with the quantity of production. Therefore:

c = FC + V C(q).

The notation V C(q) shows that the variable cost V C is a function of q (it depends on
q). Accordingly, the total cost also depends on q, so let us write the above relationship as
follows:

c = C(q) = FC + V C(q). (4.1)

C(q) is called the cost function: it is a function C that maps quantity of production q

to the total cost c.

4.1.1 A numerical example

Table 4.1 shows the various costs of a firm in goods production. Let us plot the information
on the following diagram.

The curve plotted in Figure 4.1 is called the total cost (TC) curve. The total cost curve
described in this figure can be found in most introductory economics textbooks, but some
of you might wonder what sort of production technology is represented by this total cost
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Table 4.2. The marginal cost.

q T C MC

0 500
1 700 200
2 820 120
3 920 100
4 1040 120
5 1190 150
6 1390 200
7 1670 280
8 2070 400
9 2640 570

10 3440 800

TC

TC

q
0

Figure 4.1 A rough sketch of the total cost curve.

curve. To answer this question, we will need to further investigate a firm’s production
technology. Let us first introduce some measures of costs.

4.2 The marginal cost and the average costs

The marginal cost (MC) of production is the change in the total cost when there is a
one-unit change in the quantity produced. For example, the marginal cost of increasing
production from q = 3 to q = 4 is $120 ($1040−$920). The marginal cost of increasing
production from q = 9 to q = 10 is $800 ($3440−$2640). Note that the marginal cost
differs according to the level of production. How does the marginal cost differ from one
level of production to another? We can see how the marginal cost changes in the final
column of Table 4.2.
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Table 4.3. The average cost and the average variable cost.

q T C AC AV C

0 500
1 700 700 200
2 820 410 160
3 920 307 140
4 1040 260 135
5 1190 238 138
6 1390 232 148
7 1670 239 167
8 2070 259 196
9 2640 293 238

10 3440 344 294

MC

MC

q
0

Figure 4.2 A rough sketch of the marginal cost curve.

We can observe that the marginal cost declines at low levels of production (until q = 3)
and then starts increasing. The graph that plots the marginal cost is called the marginal
cost curve. The above observation implies that the curve is U-shaped.

There are two other important measures of costs. The average total cost (AC), or just
the average cost, is simply the total cost of production (T C) divided by the quantity
produced (q). For example, the total cost of producing 4 units is $1040 so the average total
cost is $260 ($1040 divided by 4). The average cost changes according to quantity (see
the third column of Table 4.3). It declines initially (until q = 6) and then starts increasing.
It follows that the average cost curve is U-shaped as well.

The average variable cost (AVC) is simply the variable cost of production (V C)
divided by the quantity produced (q). For example, the variable cost of producing 3 units
is $420 so the average variable cost is $140 ($420 divided by 3). The average variable cost
also changes with the quantity of production (see the last column of Table 4.3). It declines
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AC, AVC

AC

q
0

AVC

Figure 4.3 A rough sketch of AC and AV C curves.

MC, AC, AVC

MC

AC
AVC

q0

Figure 4.4 A rough sketch of MC, AC and AV C curves.

initially (until q = 4) and then starts increasing. This implies that the average variable
cost curve is also U-shaped. These two curves are depicted in Figure 4.3.

Let us draw MC, AC and AV C curves on the same diagram (Figure 4.4). We have
already noted that the three curves are U-shaped. Besides, we should note the following
important facts.

(1) When the marginal cost (MC) is less than the average cost (AC), then AC is
declining. When MC is greater than AC, then AC is increasing.

(2) When the marginal cost (MC) is less than the average variable cost (AV C), then
AV C is declining. When MC is greater than AV C, then AV C is increasing.
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The relative positions of these three curves are important. We will prove these facts
mathematically later in this chapter, but let us try thinking about them intuitively first.

4.2.1 Intuitive explanation

The reason for the above relationship regarding MC, AC and AV C can be seen with an
analogy. Imagine that the average age of the students attending a particular class is 20.
Suppose one student comes in late and joins the class. Say this student’s age is 19. What
will happen to the average age of the students in this class? Our intuition suggests that the
average age should go down. The logic is simple: this student’s contribution to the total
number of the age in class is below the average (prior to him joining), so the average age
falls inevitably.

Some of you may wonder what the above story has to do with the relationship between
‘marginal’ and ‘average’. If so, you need to think what the ‘marginal age’ is in this context
(‘the average age’ is rather obvious). Recall that the marginal cost is the change in the
total costs when there is a one-unit change in the quantity produced. Then, likewise, we
can define the marginal age as the change in the total age (in the class) when one student
joins the class (i.e. a one-student increase). In the above story, you can see that 19 (the
new student’s age) is the marginal age because the total age of the class has gone up by
19 when this student has joined the class.

Thus, in the above story, the marginal age (which is 19) is less than the average age
(prior to him joining the class, which is 20). In this case, the average age of the class goes
down. On the other hand, if the student who joins is 21 instead of 19, then the scenario
will be the opposite. This student’s age of 21 is greater than the class average of 20, and
this above-average contribution by the student increases the average age of the class. In
other words, if the marginal age is greater than the average age, then the average age of
the class increases when a student with this age joins.

4.3 Production function

Now we get to answering the question we asked at the end of Section 4.1: what explains
the shape of the typical cost function? Throughout the discussion here, we call the variable
input labour (L) and the fixed input capital (K). It is obvious from Table 4.1 that the fixed
cost is $500, which means that to hire capital K the firm has paid $500. It is fixed, so this
firm has to pay $500 regardless of how much they produce. To change the level of output
in the short run, it can only vary the level of the other input, labour, which costs w per
unit. Our interest is to investigate the relationship between the level of output and the level
of labour input.

Note that this firm’s labour hiring cost corresponds exactly to its variable cost (V C),
because labour is the only input that is variable in the short run. Look at Table 4.4. It is
identical to Table 4.1 except for the final column where labour input is shown. Suppose
that it costs $10 to hire one hour of labour (w = 10). Then we can deduce the hours of
work (L) that are needed for each level of production (q). For example, in order to produce
one unit, the variable cost is $200. It means 20 (200 divided by 10) hours of labour are
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Table 4.4. Costs and labour input.

q T C FC V C L

0 500 500 0 0
1 700 500 200 20
2 820 500 320 32
3 920 500 420 42
4 1040 500 540 54
5 1190 500 690 69
6 1390 500 890 89
7 1670 500 1170 117
8 2070 500 1570 157
9 2640 500 2140 214

10 3440 500 2940 294

q
q(L)

L0

Figure 4.5 A rough sketch of the production function.

required. For 10-unit production, the variable cost is $2940, indicating that 294 (2940
divided by 10) hours have to be put in. Following the same steps, you should be able to
figure out how the final column of the table is constructed. The information in the first
and the last columns in the table gives us the production function: it shows how much
output can be produced for each amount of labour input:

q = f (L). (4.2)

Let us plot the information on a diagram; what does the production function look like?
Figure 4.5 shows the plot taking hours of work on the horizontal axis and the level of
output on the vertical axis.

We now introduce a new notion called the marginal product of labour. The
marginal product of labour is the change in the level of output caused by a one-
unit increase in labour. We cannot see the marginal product of labour from the table,
but can roughly observe on the diagram how it behaves. You should observe the
following.
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(1) At low levels of production, the marginal product of labour increases.
(2) At high levels of production, the marginal product of labour starts to decline.

The increasing marginal product of labour is also referred to as increasing returns to
labour whereas the decreasing marginal product of labour is often called diminishing
returns to labour.

The pattern of the marginal product of labour increasing up to a certain unit of production
then declining explains the pattern of the marginal cost decreasing up to a certain unit of
production then increasing (which is observed in Section 4.2: remember, the MC curve
is U-shaped). If the marginal product of labour is increasing, then the marginal cost is
decreasing, and vice versa.

In Section 4.1 we deferred answering the question: what sort of production technology
are we looking at? Let us think about the above pattern of the marginal product of labour.
For instance, consider working in a restaurant and, to start with, suppose you are the only
worker. As a sole worker, you have to do everything – taking orders, all the cooking,
serving, etc. – by yourself, yet still you are able to serve a certain number of customers in
a day. The marginal product of labour is equivalent to your output (i.e. an increase in the
restaurant’s total output). Now, if the restaurant hires another worker who has the same
skills, then you can imagine that the restaurant’s output in a day more than doubles. Why?
The new worker is as skillful as you are, so if both of you worked independently, then the
output should double. That is, the marginal product of the new worker (an increase in the
total output caused by the new worker) is the same as yours (i.e. your output when you
were the sole worker). But you and the new worker may be able to do better than working
independently; both of you can coordinate – e.g. one specialises in cooking and the other
in all the other things – and work more effectively as a team. In this case, the marginal
product (let me remind you again, it is an increase in the total output caused by the new
worker) is greater than yours (an increase in the total output caused by you when you were
the sole worker, i.e. your output before the new worker joined). A third worker may allow
making the kitchen (and hence the whole restaurant) work more efficiently; two workers
may be able to specialise in particular processes in the kitchen while another worker does
all the other things in the dining area. The marginal product of the third worker, in this
case, is greater than that of the second one.

You may be able to envisage the increasing marginal product described as above up to
some level of output but, as you might already have guessed, there may be an end to it;
i.e. the diminishing returns to labour may kick in at some stage. Any restaurant has its
capacity (it presumably depends on the size of the restaurant, which has to do with the
fixed costs) – both in the kitchen and in the dining area – and so the room for further
coordination between the workers becomes less and less. At some stage, an additional
worker may increase the total output (so the marginal product is positive) but this increase
in the total output may be less than that when the previous worker was hired. You may
even be able to imagine the case under which the marginal product is negative (i.e. the total
output decreases when the new worker is hired), although numbers provided in Table 4.4
do not consider this extreme situation.
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Table 4.5. The marginal
revenue and marginal cost.

q MR MC

3 210 100
4 210 120
5 210 150
6 210 200
7 210 280
8 210 400
9 210 570

10 210 800

The numbers provided in the tables in this chapter (and hence the shapes of the produc-
tion function and the cost function) represent the production technology described as in
the story above. In the following section, we will deduce an upward sloping supply curve
for a firm supposing that the firm’s production technology is of the above sort; but here is
a word of warning before moving on. If you encounter other tables that summarise some
production technology, they may not necessarily replicate the story described above. For
example, the table may represent the case where the marginal product of a particular input
is constant (see Question 2 in Section 4.8).

4.4 Firm’s supply curve

Now we are in a position to deduce an upward sloping supply curve of a firm. Checking
the validity of the following claim turns out to be (almost) equivalent to conducting this
task: a firm in a competitive market (that is, this firm takes the price as given) will choose
the quantity such that the price equals the marginal cost.1

Let us investigate why it is the case using our example. Suppose the price of a good
in a competitive market is $210. It means that if a firm increases the supply by one unit,
its revenue increases by $210 (because that one unit will sell for $210 for sure). This
extra revenue resulting from producing and selling one more unit is called the marginal
revenue. In a competitive market, the marginal revenue – denoted by MR – is the same
as the market price (p).

Look at Table 4.5. Suppose you are producing 3 units of output. Should you produce
another unit of output? The answer is YES. Because, by producing and selling another unit
of output, you will get $210 of marginal benefit, whereas the marginal cost of producing
that unit is only $120. You will gain $90 by producing another unit. Hence, it is not profit-
maximising to stop producing at 3 units of output. Then, is it profit-maximising for you to
stop at producing 4 units of output? The answer is NO. Because, again, by producing and
selling another unit of output (the fifth unit), you will get $210 of the marginal revenue,

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

1 I will shortly show that the claim is true only when the price is sufficiently high; hence there is a word ‘almost’ in
the brackets.
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Figure 4.6 A rough sketch of MC, AC and AV C curves.

but the marginal cost of producing that unit is only $150, and hence you will gain $60
(you can increase the profits by producing this unit!).

Let us jump to the end of this story. Suppose you are producing and selling 6 units of
output. Should you produce the seventh unit? The answer is NO. Because by producing
and selling that unit, you will obtain the marginal revenue of $210 (the market price), but
the marginal cost of producing that unit is $280. You will lose $70 by producing this unit,
so it is better for you to stop at the sixth unit production. The profit-maximising output is
therefore 6 units.

What the above analysis shows is that a firm increases quantity of production if the
marginal revenue is above the marginal cost, and it stops doing so when MR = MC.2

Hence the correctness of the initial claim is verified: a firm in a competitive market will
choose the quantity such that the price equals the marginal cost.

4.4.1 Not all parts of the MC curve are the supply curve

We have shown that the MC curve is, in fact, the supply curve of a firm in a competitive
market. The supply curve is the MC curve drawn on a space of (p, q) instead of (MC, q).
However, we need to be careful. Only some parts of the MC curve are the supply curve.
We will illustrate it here using Figure 4.4 of this chapter (we relabel it as Figure 4.6).

There are two important points in Figure 4.6. One is the intersection of MC and AC

curves. Let us denote this point by B. The other is the intersection of MC and AV C

curves. We denote this point by S. We take the price (as well) on the vertical axis, and
denote the price levels corresponding to Points B and S by pB and pS , respectively.

First, let us think what happens if the price of the good is above pB , that is p > pB . If
this is the case, a firm will produce because it makes positive profits. Why? Let us look at
a specific example: p = 400. Using Tables 4.2 and 4.3, we obtain Table 4.6.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

2 In the above example, MR = MC does not hold exactly because we are looking at a discrete case, i.e. the change
in production is possible by one unit at minimum. We will eventually look at a continuous case where the
production can be adjusted by an infinitesimally small amount.
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Table 4.6. Firm’s profit
maximisation when p = 400.

q MC AC AV C

3 100 307 140
4 120 260 135
5 150 238 138
6 200 232 148
7 280 239 167
8 400 259 196
9 570 293 238

10 800 344 294

p, MC, AC

MC
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p = 400

π = 1128

B
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D
E

q
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Figure 4.7 A firm makes positive profits: p > pB .

When p = 400, this firm will supply 8 units of output (because p = MC). What are
the profits? Profits are the difference between the total revenue and the total costs. The
total revenue is simply the quantity of output sold multiplied by the price per output, so it
is $3200. By definition, the total costs can be calculated by multiplying the average total
cost (AC) by quantity produced. The total costs are 8 × 259 = $2072. Hence this firm is
making positive profits of $1128. There is no problem for this firm to supply output where
p = MC. The situation can be depicted as in Figure 4.7. Note that the total revenue and the
total costs correspond to the rectangles ODEG and OAFG, respectively. Accordingly,
the profits are described by the rectangle ADEF .

Second, let us consider the case where the price of the good is pB , that is p = pB . In this
situation, it is easy to show that a firm will produce and is break-even. When p = pB , this
firm will choose to produce at Point B, where pB = MC. Denote this quantity by qB . At
this point, note that pB = AC also holds. The revenue of this firm is pBqB . The total costs
are AC multiplied by qB , so the firm makes the profits that equal pB · qB − AC · qB . This
expression collapses down to zero because we are looking at the point where pB = AC.
Since the firm is making zero profits (break-even), Point B in the diagram is referred to
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Table 4.7. Firm’s profit
maximisation when p = 200.

q MC AC AV C

3 100 307 140
4 120 260 135
5 150 238 138
6 200 232 148
7 280 239 167
8 400 259 196
9 570 293 238

10 800 344 294

p, MC, AC
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pB

qB

B

q0

Figure 4.8 A firm is break-even: p = pB .

as the break-even point. If the firm is break-even, then it will produce because it is better
than not producing. By choosing not to produce, this firm makes negative profits of $500
(fixed costs). Obviously, for this firm, break-even (recovering the fixed costs) is better
than making losses. The situation can be depicted in Figure 4.8. The rectangle OpBBqB

corresponds to both the total revenue and the total costs.
Third, what occurs if the price is below pB but above pS , that is pS < p < pB . If this

is the case, a firm will still produce despite making losses. Why is this the case? Let us
again look at a specific example: p = 200.

Looking at Table 4.7 (whose information is again taken from Tables 4.2 and 4.3), we
can see that, when p = 200, this firm will supply 6 units of output (p = MC). What are
profits? The total revenue is $1200 whereas the total costs are 6 × 232 = $1392. Hence
this firm is making losses of $192. This firm, however, will supply 6 units to the market.
Again, it is because doing so is better than not producing, under which circumstances it
will end up making losses of $500. The situation can be described as in Figure 4.9. The
(negative) profits correspond to the rectangle ADFE.
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Figure 4.9 A firm makes losses but produces: pS < p < pB .

Fourth, what happens if the price is equal to pS , that is p = pS? If this is the case, a
firm will be indifferent between producing and not producing.3 Why?

When p = pS , the firm will choose to produce at Point S, where p = MC, so let us
denote the quantity by qS . At this point, note that p = AV C also holds. We know from
the previous analysis that the firm’s profits can be expressed as p · q − AC · q. In the
meantime, we also know that T C = V C + FC, so dividing both sides of this expression

by q gives us AC = AV C + FC

q
. Using this expression, the firm’s profits now become

p · q − AV C · q − FC.
Recall that p = AV C at Point S, so the first two terms of the expression for the profits

cancel out. It means that the firm’s profits are exactly the negative of the fixed costs, i.e.
the firm makes losses exactly equal to $500 if it produces at Point S (which is the best it
can do as long as it wants to produce). These losses are equivalent to the losses this firm
will make if they choose not to produce. Hence the firm is indifferent between producing
and not producing. The situation can be seen in Figure 4.10. By now you should be able
to verify that the (negative) profits are described by the rectangle pSADS.

Point S in Figure 4.10 is called the shutdown point because if the price goes below pS –
the final case – it is better for a firm not to produce (shutdown production). When p < pS ,
if a firm chooses to produce output where p = MC (the best the firm can do if they want
to produce), it makes losses, and the losses are greater than those under zero production.
Therefore, the firm will not supply in the case when p < pS . You should attempt Question 3
in Section 4.8 to verify the claim both algebraically and diagrammatically.

In summary, the MC curve is the supply curve of a firm in a competitive market, but
only the segment above the shutdown point (the intersection of MC and AV C curves) is
relevant. In other words, it is profit maximising for a firm to supply a quantity such that
price equals the marginal cost if p ≥ pS , but to supply zero if p < pS . A firm’s supply
curve is hence case-defined.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

3 In economics, if a firm is indifferent in producing and not producing, it is often assumed that it will produce.
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Figure 4.10 The shutdown point: p = pS .

Our next objective is to derive a firm’s supply function mathematically when its total
cost function is given. To this end, we will introduce some mathematical notions.

4.5 From a one-unit change to an infinitesimally small change

Up to the present, we have been discussing the change in costs of production when the
level of production has changed by one unit. Accordingly, we drew various curves we
looked at in previous subsections in a step-wise fashion. That is, all we could do was to
plot points and connect them.

Hereafter we will focus upon an infinitesimally small change in the level of production,
and investigate the corresponding change in the production costs.4 Focusing upon an
infinitesimally small change in q motivates us to draw those curves in a different – much
smoother – manner. Our first focus is the total cost curve for a firm.

Look at Figure 4.11. Consider that you are producing q0 units of the goods, i.e. our
attention is on Point A. Recall that the cost function is written as C(q), so the total
costs for that production level are written as C(q0). Suppose you increase production by
one unit, and now you are producing q1 units of the goods; obviously q1 = q0 + 1. At
this production level, the total costs are C(q1). The difference between these two costs,
C(q1) − C(q0), is the marginal cost when you are producing q0 units of this good. The
next diagram is the enlargement of the cost curve in Figure 4.11. The marginal cost at
Point A is equal to the distance BE.

On Figure 4.12, a straight line DJ is drawn. It is tangent to the cost curve at Point A.
We can see that the marginal cost at Point A, BE, consists of two parts: BD and DE. The

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

4 An example of an infinitesimally small change may be found in wine production. A one-unit increase in wine
production can mean an increase in production by 1 litre of wine. Now we are looking at an increase in
production, say by 400 millilitres of wine. We are ultimately interested in an increase in production by a drop (an
infinitesimally small change) of wine.
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Figure 4.11 The total cost curve.
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Figure 4.12 Enlargement of Figure 4.11.

important thing to note is that DE is, in fact, the slope of the tangent line DJ (why?).
Also notice that distance DE (slope of DJ ) is quite different from the marginal cost BE

(the size of the residual distance BD is large), which is in fact the slope of the secant line
AB. So, the above argument can be translated into the following: the slope of the secant
line AB (actual marginal cost at Point A) is different from the slope of the tangent line
DJ .

Now let us think about a smaller increase in production, say the production level
increases by less that one unit. In Figure 4.12, this is shown as a movement from Point A

to Point F . You should be able to realise that now the slope of the (new) secant line AF

is not so different from the slope of the tangent line DJ .
In other words, as we make the size of change in production smaller, the size of

the residual distance becomes smaller. Therefore, we have the following result. When a
change in production becomes infinitesimally small, the marginal cost equals the slope of
the tangent line at the point of production.

Now we will describe the above process mathematically. Let us use the new diagram
in Figure 4.13 so that we can see things clearly.
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Figure 4.13 Visualising differentiation.

Consider the following situation. Currently you are producing q0 units of the goods at
Point A and so the costs of production are C(q0). Suppose you increase production by
h units, and now you are producing q0 + h units of the goods. At this production level,
the total costs are C(q0 + h). The difference between these two costs is C(q0 + h) −
C(q0). If we divide this by the change in the level of production h, we obtain the ratio
C(q0 + h) − C(q0)

h
. Note that this expression gives the slope of the secant line AB.

Now, if we fix q0 and make h smaller and smaller until it approaches zero (becomes
infinitesimally small), then if it exists we denote the limit of this ratio

lim
h→0

C(q0 + h) − C(q0)

h

by C ′(q0). This expression is read ‘C prime q nought’. C ′(q0) is called the differential
coefficient of the function C(q) at q = q0. If we use q instead of q0, C ′(q0) becomes
C ′(q), which is called the derivative of the function C(q). We can obtain the derivative
of a function from the above definition:

C ′(q) = lim
h→0

C(q + h) − C(q)

h
. (4.3)

When you know the function C(q), the process of obtaining the derivative C ′(q) is
called differentiation. Recall that when a change in production becomes infinitesimally
small, the marginal cost equals the slope of the tangent line at the point of production. So,
in the context of the cost function, Equation (4.3) is just a mathematical representation of
the process of obtaining the marginal cost.

4.5.1 Differentiation rules

Before moving on to depict the marginal cost curve, let us list some rules of differentiation.
We use the following notation: a and b are constants, and f (x), g(x), and h(x) are
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differentiable functions of x.5 These rules can be derived from the definition of the
derivative, but the proofs are omitted.6 Some practice questions are provided after the
list of the rules and you should make sure you are on top of these. It is also strongly
recommended that you do the practice questions provided at the end of this chapter
(Section 4.8).

Differentiation rules

Rule 1 (The power rule) If f (x) = bxa , then

f ′(x) = baxa−1. (4.4)

Rule 2 (The sum rule) If f (x) = ag(x) ± bh(x), then

f ′(x) = ag′(x) ± bh′(x). (4.5)

Rule 3 (The product rule) If f (x) = g(x)h(x), then

f ′(x) = g′(x)h(x) + g(x)h′(x). (4.6)

Rule 4 (The quotient rule) If f (x) = g(x)

h(x)
, then

f ′(x) = g′(x)h(x) − g(x)h′(x)

[h(x)]2 . (4.7)

Rule 5 (The chain rule) If f (x) = g (h(x)), then

f ′(x) = g′ (h(x)) h′(x). (4.8)

Rule 6 (Derivative of e) If f (x) = ex , then

f ′(x) = ex. (4.9)

Rule 7 (Derivative of logarithm) If f (x) = lnx, then

f ′(x) = 1

x
. (4.10)

Note that the derivative of a constant is zero. That is, if f (x) = b then f ′(x) = 0. It
makes perfect sense as f (x) = b describes a horizontal line that intercepts (0, b) and so
its slope (the derivative) is clearly zero regardless of x.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

5 When we can obtain the derivative of a function, the function is said to be differentiable. The right hand side of
Equation (4.3) contains a limit. Obviously if the limit does not exist (recall we have seen some examples in
Chapter 3), the derivative is undefined. In such cases we say the function is not differentiable.

6 Interested readers should consult with some introductory textbooks in quantitative methods, e.g. E. F. Haeussler,
Jr., R. S. Paul and R. J. Wood, Introductory Mathematical Analysis, 12th edn (Pearson Education, 2008).
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Question 1 For the following f (x), obtain f ′(x).

(1) f (x) = 4x
1
2 .

(2) f (x) = 3x−1 + 5x2.

(3) f (x) = (3x2 + 1)(5x − 3).

(4) f (x) = 3x2 + 1

5x − 3
.

(5) f (x) = (3x2 + 1)4.

(6) f (x) = e5x.

(7) f (x) = ln(5x).

Solution

(1) f (x) = 4x
1
2

f ′(x) = 4 · 1

2
x

1
2 −1

= 2x− 1
2 .

(2) f (x) = 3x−1 + 5x2

f ′(x) = 3 · (−1)x−1−1 + 5 · 2x2−1

= −3x−2 + 10x.

(3) f (x) = (3x2 + 1)(5x − 3)

f ′(x) = (6x + 0)(5x − 3) + (3x2 + 1)(5 − 0)

= 6x(5x − 3) + 5(3x2 + 1)

= 45x2 − 18x + 5.

(4) f (x) = 3x2 + 1

5x − 3

f ′(x) = 6x(5x − 3) − 5(3x2 + 1)

(5x − 3)2

= 30x2 − 6x − 15x2 − 5

(5x − 3)2

= 15x2 − 6x − 5

(5x − 3)2
.



108 Differential calculus 1

(5) f (x) = (3x2 + 1)4

Set h(x) = 3x2 + 1 so h′(x) = 6x. Then,

f (h) = h4

f ′(h) = 4h3.

Therefore

f ′(x) = f ′(h) · h′(x)

= 4h3 · 6x

= 24x(3x2 + 1)3

because we set h(x) = 3x2 + 1.
(6) f (x) = e5x

Set h(x) = 5x so h′(x) = 5. Then,

f (h) = eh

f ′(h) = eh.

Therefore

f ′(x) = f ′(h) · h′(x)

= 5eh

= 5e5x.

(7) f (x) = ln(5x)

Note that f (x) = ln 5 + ln x and that ln 5 is a constant.

f ′(x) = 0 + 1

x

= 1

x
.

Exercise 4.1 Differentiation.

4.5.2 Drawing the MC curve

Now let us draw the MC curve corresponding to the total cost curve when we allow q

to change by an infinitesimally small amount. Look at Figure 4.14. The total cost curve
is already drawn in the top part. In the following I demonstrate how we relate the MC

curve to the T C curve step by step.

Step 1. In the top part of Figure 4.14, the total cost curve is depicted. As you can see,
slopes vary along this curve. We know that the marginal cost (for an infinitesimal change
in production) is equal to the slope of this curve, so it means the MC of production varies
according to the levels of production.

Step 2. In the bottom part of Figure 4.14, we draw the MC curve. The MC is shown on
the vertical axis. On the horizontal axis we have q corresponding to the qs taken on the top
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Figure 4.14 Drawing the MC curve.

diagram. In the bottom diagram we try to plot the values of the MC (i.e. the magnitudes
of the slopes of the T C curve) for all the levels of production.

Step 3. For example, take q = 0 (zero production) and q = q1. You can see that the
slope of the T C curve is greater at q = 0 than at q = q1. Say these slopes are 13 and
9, respectively. These numbers are plotted as the marginal costs for q = 0 and q = q1,
respectively, in the bottom diagram.
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Step 4. Do the same for q = q2 and q = q̂, and say the slopes of the T C curves at these
levels of q are 4 and 1, respectively. Plot these numbers in the bottom diagram.

Step 5. Moving from zero production to q = q̂, we can observe that the slope of the
total cost curve becomes smaller (flatter and flatter) and becomes the smallest when the
production level is q̂. It corresponds to the increasing marginal product of labour. It means
that the MC behaves in the same way, i.e. the MC in the bottom diagram decreases until q̂.

Step 6. From here the slope of the T C curve, i.e. the MC, starts increasing. For example,
take q = q3, q = q4 and q = q5. You can see that the slope of the T C curve becomes
greater as q rises. Say these slopes are 2, 8 and 20, respectively. These numbers are
plotted as the marginal costs for q = q3, q = q4 and q = q5, respectively, in the bottom
diagram. It corresponds to the fact that the diminishing marginal product of labour has
kicked in.

Step 7. The above steps explain how the seven dot points on the T C curve in the top
diagram correspond to the seven dot points in the lower diagram. For illustrative purposes,
only seven levels of production are taken, but we can consider conducting the same
operation for all the levels of q. It will result in the MC curve as in the bottom diagram.

We already know that the MC curve is the supply curve as long as the market price
is equal to or above the price of shutdown point. Therefore, in order to find a supply
curve for a firm, we need to do two things if its cost function is given: (a) differentiate the
cost function to obtain the MC; and (b) find the shutdown point. We will go through the
process in Section 4.7 but, in the meantime, we shall re-examine the important relationship
between the MC, AC and AV C curves we previously discussed, using differentiation.

4.6 The relative positions of MC , AC and AVC revisited

We have already discussed the importance of the relative positions of MC, AC, and AV C

curves.

(1) When the marginal cost (MC) is less than the average total cost (AC), then AC is
declining. When MC is greater than AC, then AC is increasing.

(2) When the marginal cost (MC) is less than the average variable cost (AV C), then
AV C is declining. When MC is greater than AV C, then AV C is increasing.

We have already given intuitive support for these claims, but can we prove them if we
allow q to change by an infinitesimally small amount? In the following we will prove the
first claim using the technique of differentiation. The second one is left as an additional
exercise at the end of the chapter (Section 4.8).

The proof of the first claim is as follows. Denote the average total cost by AC(q) and,

by definition, it is equal to
C(q)

q
. The slope of the AC curve is given by differentiating

AC(q) with respect to q:

AC ′(q) = C ′(q) · q − C(q)

q2
. (4.11)
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Now, suppose MC is greater than AC. That is:

C ′(q) >
C(q)

q
. (4.12)

Rearranging this yields:

C ′(q) · q − C(q) > 0. (4.13)

Getting back to Equation (4.11):

AC ′(q) = C ′(q) · q − C(q)

q2
. (4.14)

Given Equation (4.13), we know both the numerator and the denominator of the RHS of
Equation (4.14) are positive, meaning that the slope of the AC curve, AC ′(q), is positive.
Hence AC is increasing. Recall that we supposed that MC is greater than AC in order to
derive this result. Hence, we have shown that, when MC is greater than AC, then AC is
increasing. When MC is less than AC, you just need to change the direction of inequality
and the proof is done.

This claim should imply that when MC and AC are U-shaped, the marginal cost curve
cuts the minimum point of the AC curve. In fact, we can demonstrate it. Let us denote q

that corresponds to the minimum of AC curve by q̂. When q = q̂, the slope of AC is zero
i.e. AC ′(q̂) = 0. Therefore,

C ′(q̂) · q̂ − C(q̂)

q̂2
= 0. (4.15)

For this equation to hold, the numerator of the LHS of (4.15) has to equal zero. It
follows:

C ′(q̂) · q̂ − C(q̂) = 0. (4.16)

In turn, this implies that the following holds at the minimum of AC curve:

C ′(q̂) = C(q̂)

q̂
. (4.17)

Let us investigate Equation (4.17) carefully. The LHS is the marginal cost at q̂. The
RHS is the average cost at q̂. This means that the marginal cost curve cuts the minimum
of the AC curve.

4.7 Profit maximisation

Now let us show mathematically why the supply curve is identical to a segment of the
MC curve. Remember, when we arrived at that conclusion using a numerical example, it
was done by investigating a firm’s profit maximising behaviour. Hence, we do the same
here: we set up a firm’s profit maximisation problem in a mathematical fashion.

To begin with, denote a firm’s profits by π . Since profits are revenue less total costs:

π = π(q) = p · q − C(q). (4.18)

While the firm can control (decide) the quantity it supplies (q), since we assume a
competitive market, the price p is determined in the market and the firm has no control
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Figure 4.15 The q that maximises π(q).

over it. Because p is pre-determined we can consider that the profits are a function
of quantity q only, i.e. π = π(q) = p · q − C(q). Hereafter, let us call π(q) the profit
function in this book.7

When the firm attempts to maximise profits and q is the variable under control, we
write the firm’s profit maximisation problem as follows:

max
q

π(q). (4.19)

This expression simply means that our problem is to find the quantity q under which
the profit function π(q) is maximised. Here our objective is to maximise the profit func-
tion π(q), so π(q) is called the objective function. You write the objective function
to the right of ‘max’ so everyone knows what you want to maximise. To maximise the
objective function, what you control (choose) is the level of production q, so the vari-
able q is called the control variable or the choice variable. It is important to write the
control variable below ‘max’ so people know by which means you are maximising your
objective.

4.7.1 Solving the maximisation problem in general

For the time being, let us consider finding a maximum of a function in general. We will
come back to maximising the profit function in Section 4.7.4. We will keep using the
same notation, though, to preserve continuity in our discussion. Our problem here is to
maximise a function π(q) by choosing the level of q (but q and π(q) are not really related
to quantity and profits, respectively).

Let us start by describing the function π(q) diagrammatically, taking q on the horizontal
axis and π(q) on the vertical axis. If it has the shape illustrated as in Figure 4.15, the level
of q that maximises the function π(q) is obviously q∗.

Notice that at Point A, the tangent line to the function π(q) has the slope of zero. That
is, the differential coefficient of π(q) at q = q∗, π ′(q∗) is equal to zero. Therefore, if the

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

7 In economics the profit function actually refers to something else. For our purpose, though, it is convenient to have
a name for the function π = π (q) = pq − C(q), and so we shall borrow this terminology. The proper definition of
the profit function is a little beyond this book, and you need to wait until you are able to consult some advanced
microeconomics textbooks.
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shape of the function π(q) is as shown in Figure 4.15, we can obtain q that maximises
π(q) by going through the following procedure.

(1) Differentiating π(q) with respect to q;
(2) setting it equal to zero; and
(3) solving for q.

The condition you obtain at Step (2) above is called the first-order condition of the
maximisation problem. Here are a couple of practice questions.

Question A Suppose the function you want to maximise is given as π(q) = −1

2
q2 +

70q − 300. Obtain the q that maximises π(q).

Solution It can be obtained as follows:

(1) π ′(q) = −q + 70.

(2) π ′(q) = 0 ⇒ −q + 70 = 0.

The above is the first-order condition.

(3) q∗ = 70.

Question B Suppose the function you want to maximise is given as π(q) = 1

2
q2 −

70q + 300. Obtain q that maximises π(q).

Solution Let us follow the same steps:

(1) π ′(q) = q − 70.

(2) π ′(q) = 0 ⇒ q − 70 = 0.

The above is the first-order condition.

(3) q∗ = 70.

Exercise 4.2 First-order condition.

We will find the same q∗ in both questions in the above exercise. However, in the second
question, what we have actually obtained is the q that minimises π(q). What went wrong?

It is clear if we draw a diagram: π(q) = 1

2
q2 − 70q + 300 is drawn in Figure 4.16. As we

can see, its derivative π ′(q) takes the value zero when the function is minimised at Point
B!

This example shows that, to find the maximum of a function, obtaining the first-order
condition is not enough. What should we do then? What we need to do is to judge
mathematically whether we are looking at the top of the hill (Figure 4.15) or if we are
looking at the bottom of the valley (Figure 4.16).
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Figure 4.16 The q that minimises π(q).
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Figure 4.17 π ′′(q) > 0: slope is increasing.

The mathematical tool that gives us this information is called the second derivative.
The derivative we have been discussing is called the first derivative for the obvious
reason: we take the derivative of a function once. The second derivative can be obtained
by differentiating the first derivative, i.e. differentiating the original function twice. For
the function π = π(q), the first derivative is π ′(q), and we write the second derivative as
π ′′(q) (this is read ‘pi two prime q’).

What is the meaning of the second derivative of a function? Consider a function
π = π(q). Recall that the first derivative shows the change in π(q) due to an infinitesimally
small change in q. This is equal to the slope of π(q) at the point of our focus. Similarly,
the second derivative π ′′(q) shows the change in the slope when there is an infinitesimally
small change in q. To visualise it, look at Figure 4.17.

We can see that the slope of the function in Figure 4.17 is increasing (note the following
difference: as q increases the function π(q) itself first decreases then starts increasing,
but the slope of π(q) is increasing throughout). In other words, the change in the slope is
always positive for the function in Figure 4.17. As noted, the second derivative shows the
change in the slope, so it means π ′′(q) > 0. In such a case, we are looking at the bottom
of the valley, which we do not want to be doing in finding the q that maximises π(q).

We can tell the exact opposite story. Look at Figure 4.18. We can see that the slope of
the function is decreasing (again note the following difference: as q increases the function
π(q) itself first increases then starts decreasing, but the slope of π(q) is decreasing
throughout). In other words, the change in the slope is always negative for the function
in Figure 4.18, which implies π ′′(q) < 0. In such a case, we are looking at the top of the
hill, i.e. which is relevant in finding the q that maximises the function.

Now let us summarise the steps we need to follow in finding the q that maximises π(q).
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Figure 4.18 π ′′(q) < 0: slope is decreasing.

(1) Differentiate π(q) with respect to q;
(2) set it equal to zero (π ′(q) = 0: first-order condition);
(3) solve for q (q = q∗); and
(4) obtain the second derivative π ′′(q) and check that it is negative (finding the top of

the hill) when q = q∗.

The condition we obtain at Step (4) of the above is called the second-order condition
of the maximisation problem. Now let us redo the previous exercise.

Question A Suppose the function you want to maximise is given as π(q) = −1

2
q2 +

70q − 300. Obtain the q that maximises π(q).

Solution It can be obtained as follows:

(1) π ′(q) = −q + 70.

(2) π ′(q) = 0 ⇒ −q + 70 = 0.

The above is the first-order condition.

(3) q∗ = 70.

(4) π ′′(q) = −1 < 0.

The above is the second-order condition.

The second-order condition shows that the second derivative is negative regardless of the
value of q (there is only one hill). Therefore, the value we obtained in (3) is the q that
maximises the function (the top of the hill). Hence, q∗ = 70 is the answer.

Question B Suppose the function you want to maximise is given as π(q) = 1

2
q2 −

70q + 300. Obtain the (q) that maximises π(q).

Solution Following the same steps:

(1) π ′(q) = q − 70.

(2) π ′(q) = 0 ⇒ q − 70 = 0.
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Figure 4.19 Which q is the maximiser?

The above is the first-order condition.

(3) q∗ = 70.

(4) π ′′(q) = 1 > 0.

The above is the second-order condition.

The second-order condition shows that the second derivative is positive regardless of the
value of q (there is only one valley). Therefore, the value we obtained in (3) is the q

that minimises the function (the bottom of the valley). The second-order condition for the
maximisation problem is violated, and hence q∗ = 70 is not the answer.

Exercise 4.3 Second-order condition.

4.7.2 Maxima and minima

Unfortunately, the story does not end here. Suppose the function π(q) has a shape as
shown in Figure 4.19.

You can see that there are three values of q under which the derivative π ′(q) is equal to
zero. That is, the first-order condition will give us q∗, q∗∗ and q∗∗∗. If we check the second-
order condition, it will turn out that π ′′(q∗∗) > 0 and we can rule out q∗∗. However, the
second derivatives are negative for both q∗ and q∗∗∗, in which case both levels of quantity
give us the top of the hill. In this case, we need to compare the actual values of the function
under q∗ and q∗∗∗. As we can see from the diagram, π(q∗) is greater than π(q∗∗∗), so we
can conclude that q∗ maximises the function. In summary, the steps we need to follow in
solving the maximisation problem are as follows.

(1) Differentiate π(q) with respect to q.
(2) Set it equal to zero (π ′(q) = 0: first-order condition).
(3) Solve for q (q = q∗).
(4) Obtain the second derivative π ′′(q) and check that it is negative (finding the top of

the hill) when q = q∗.
(5) If there are two or more q∗s that satisfy both (3) and (4), calculate π(q∗) for each

q∗ and pick the q∗ that corresponds to the greatest π(q∗).
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Figure 4.20 A point of inflection.

Let us introduce some terminology here. Points A and C (top of the hill) are called the
local maxima. Point B (bottom of the valley) is called the local minimum. The reason
why we use ‘local’ is because it may be true only locally. That is, the point may not be the
maximum or minimum of the entire curve (function). It is true that Point C is a top of a
hill. If you look at qs that are close to Point C – in the neighbourhood of the point – there
are no higher points. However, π(q) takes higher values than that at Point C if you look
at qs that are further away from Point C.

The highest point of the entire curve is called the global maximum, which occurs in
our example when q = q∗ at Point A. So Point A is both the local and global maximum.

The lowest point on the entire curve is called the global minimum. There is no global
minimum in this example (why?).

4.7.3 Some exceptions

If the function is differentiable everywhere, setting the first derivative equal to zero usually
gives us either local maxima or local minima. However, there are exceptions. For example,
consider π(q) = q3. The first derivative is π ′(q) = 3q2. This is zero only when q = 0. But
it turns out that q = 0 is neither a local maximum nor a local minimum (see Figure 4.20).
We shall learn the nature of such a point – point of inflection – in the next chapter, but
the lesson for the time being is that when we use the first-order condition (setting the
first derivative equal to zero), we do not necessarily obtain a local maximum or a local
minimum. Note, the second derivative is f ′′(x) = 6x and when x = 0, f ′′(0) = 0. So,
when the second derivative is zero at some point, look out; a function may not take either
a local maximum or a local minimum at that point.8

The first-order condition may not be powerful in the case we refer to as the corner
solution. In Figure 4.21, if we look all values of q, the global maximum happens when

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

8 A word of caution: even when the second derivative is zero at some point (the first derivative is zero, of course), a
function may take a local maximum or a local minimum. To appreciate this point, do the question regarding the
point of inflection in Section 5.4 in the next chapter (after reading the relevant section in the next chapter).
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Figure 4.21 Local maximum outside the domain.

q = q∗∗. The global maximum value of π(q) is π(q∗∗). However, if the domain of the
function is q ≥ 0 (as in many economic problems), that answer becomes irrelevant. There
exists a local maximum q∗, and it is in the domain. However, this local maximum is NOT
the global maximum of this function in the domain. The global maximum occurs at the
boundary, when q = 0, as we can see in Figure 4.21. When the domain is restricted to
an interval, we might need to compare the local maximum values of the function with the
values at the boundaries. It is therefore often important to check the vertical intercept of
a function in many economic problems (as we tend to focus on non-negative numbers).

In summary, when we solve maximising (minimising) problems, we can usually follow
the five steps we previously discussed. However, there are some exceptional cases in
which we cannot simply follow them. Therefore the safest way to ensure that you are
doing the right thing is to draw a diagram, and we will discuss how accurately you can
do it – curve sketching – in the next chapter. But to close this section, let us come back to
solving the firm’s profit maximisation problem we put off solving earlier.

4.7.4 Solving profit maximisation

We start by setting up the profit maximisation problem:

max
q

π. (4.20)

Since the profits are the revenue minus the total costs:

max
q

[p · q − C(q)] , (4.21)

is the problem. We know the first-order condition of the maximisation problem is:

p − C ′(q) = 0. (4.22)

Rearranging this equation gives:

p = C ′(q). (4.23)

What does Equation (4.23) show? This equation is important. The LHS of
Equation (4.23) is the market price and the RHS of it is the marginal cost. Yes; we
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have just shown mathematically that, to maximise the profit, the firm supplies the quantity
such that the price equals the marginal cost.

The second-order condition of the maximisation problem is:

− C ′′(q) < 0. (4.24)

Rearranging this inequality gives:

C ′′(q) > 0. (4.25)

What does Equation (4.25) mean? It tells us that, if the firm is profit maximising by
producing a particular quantity q where p = MC(q), then at that q the marginal cost
should be increasing. Why? Because if the marginal cost is decreasing at the q where
p = MC(q) (the first-order condition is met), then the firm will gain from producing one
more unit at that q (the marginal revenue is p and the marginal cost will be less than p),
and so the q we are looking at is not a profit maximiser.

To complete the exercise, we need to consider the price below which this firm shuts
down. That is, the firm supplies output only if p is greater than or equal to the minimum
point of the average variable cost curve (shutdown point). Let us suppose that it happens
when q = q̂, so the minimum of the AV C is given by AV C(q̂).

Then, the quantity supplied is:

q =
{

q∗ such that p = C ′(q∗) if p ≥ AV C(q̂)

0 otherwise.

Let us follow this process by using a specific cost function. Try to do the next question
by yourself first and then follow the solution. You should also attempt a similar exercise
at the end of the chapter.

Question Consider a firm in a competitive market whose cost function is:

c = C(q) = 3q3 − 18q2 + 36q + 54,

where c is the total cost and q is the quantity of the goods this firm produces. The market
price of the goods per unit is denoted by p. Obtain the supply function of this firm.

Solution

The firm’s problem is described as follows:

max
q

π = max
q

[p · q − C(q)] .

The first-order condition is given as follows:

p − C ′(q) = 0.

Hence

p = 9q2 − 36q + 36

= 9(q − 2)2.
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The second-order condition is given as follows:

−C ′′(q) < 0.

It means that

18q − 36 > 0 ⇒ q > 2.

To obtain the supply function, we solve the first-order condition for q:

p = 9(q − 2)2

q − 2 = ±
√

p

3

q = 2 ±
√

p

3
.

Since p ≥ 0, q = 2 −
√

p

3
violates the second-order condition. Therefore

q = 2 +
√

p

3
.

Not all parts of this equation are the supply function. The firm produces only as far as they
can recover the variable costs, that is, they produce only when the market price is equal
to or greater than the minimum average variable cost (AV C):

AV C(q) = T C(q) − FC

q

= 3q3 − 18q2 + 36q

q

= 3q2 − 18q + 36.

The minimum of AV C can be obtained by taking the first derivative of AV C(q) and
setting it equal to zero:

AV C ′(q) = 0

6q − 18 = 0

q = 3.

This is a minimum because AV C ′′(q) = 6 > 0. The minimum of AV C occurs when
q = 3 and AV C(3) = 9.

Hence, this firm’s supply function is:

q =
{

2 +
√

p

3 if p ≥ 9

0 otherwise.

Exercise 4.4 Profit maximisation.
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Table 4.8. Linear cost function.

q T C V C MC AC AV C

0 10 N.A. N.A. N.A.
1 20
2 30
3 40 13.33
4 50 12.5
5 60
6 70 11.67
7 80 11.43
8 90 11.25
9 100 11.11

10 110

4.8 Additional exercises

1. (Marginal and average) Consider students as they walk into the student union.
Suppose the first student is 180 centimetres tall. The second and third are 175 and
170 centimetres tall, respectively. Draw a graph of the marginal and average height
of students in the student union, taking height on the vertical axis and number of
students on the horizontal axis, in order of their arrival. What do you notice about the
relationship between the marginal and the average height? Suppose the fourth student
coming into the student union is 180 centimetres tall. What occurs to the average
height?

2. (Marginal and average) Consider the production technology that is summarised in
Table 4.8. What is the magnitude of the fixed cost? Complete the table and plot MC,
AC and AV C on the same diagram (some of the numbers for AC have already been
calculated: you may round the numbers to two decimal places). Comment on the
relationship between their relative positions and the movements of AC and AV C.

3. (Production decision) Consider a competitive firm producing a particular good.
Verify both algebraically and diagrammatically that a firm will shut down (produce
zero) when the price of the good is below its shutdown price.

4. (Differentiation drills) Obtain the derivative of f (x).

(1) f (x) = −2.

(2) f (x) = x6.

(3) f (x) = 2x3 − 3x2 + 4x.

(4) f (x) = 3 − 2

3
x3 + 1

4
x2.

(5) f (x) = 1

12
x3(4 − x).
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(6) f (x) = 1

2
(x2 + x)(x2 − x).

(7) f (x) = (x − 1)(x2 + x + 1).

(8) f (x) = (x + 2)(x2 − 2x + 4).

(9) f (x) = (2x2 + 1)(x2 − 2x + 3).

(10) f (x) = (2x + 1)(x2 − x + 1).

(11) f (x) = 1

x2
.

(12) f (x) = 1

x3
.

(13) f (x) = x − 3

2x2 + 2
.

(14) f (x) = 1

4x − 3
.

(15) f (x) = 1

x
1
4

.

(16) f (x) = √
9 − x2.

(17) f (x) = 1

(3x − 2)2
.

(18) f (x) = (2x2 − 3x + 4)3.

(19) f (x) =
(

x − 1

x

)4

.

(20) f (x) = (4x − x2)
1
3 .

(21) f (x) = 3e−x .

(22) f (x) = 2xe−x .

(23) f (x) = −x2e−2x .

(24) f (x) = ln(3x + 2).

(25) f (x) = ln
x − 2

2x − 3
.

5. (The marginal cost and average variable cost) Prove the following claim mathe-
matically: when the average variable cost is decreasing (increasing), the marginal
cost is less (greater, respectively) than the average variable cost.

6. (Marginal and average again) Suppose we have a linear cost function:

C(q) = aq + b,

where a > 0 and b > 0.

(a) Express the marginal cost (MC) in terms of q.

(b) Express the average total cost (AC) in terms of q.

(c) Express the average variable cost (AV C) in terms of q.
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(d) Sketch the above three costs on a diagram. Can you find the differences with
(and/or the similarities to) the diagram we saw in the text?

7. (Profit maximisation) Consider a firm in competitive markets whose cost function
is as follows:

c = C(q) = 2 + (q − 1)3,

where c and q show the total costs and quantity of the product, respectively.

(a) Obtain the fixed cost (FC).

(b) Express the marginal cost (MC) in terms of q.

(c) Express the average variable cost (AV C) in terms of q.

(d) Sketch MC and AV C on the same diagram. You can restrict the domain to q ≥ 0.

(e) Denote the price of the product by p. Set up the firm’s maximisation problem and
obtain its supply function. Explain the first- and second-order conditions. Sketch
the supply curve on the diagram.
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As foreshadowed in the previous chapter, we will learn curve sketching technique
in this chapter. Mathematical ideas related to this technique include: maxima and
minima, a point of inflection, and curvature (or concavity). The question we did
not answer in Chapter 2 – why does the quadratic function have to shape like a
parabola? – will also become clear after you learn this technique.

In this chapter, we also introduce the idea of the differential of a function, which
is related to the derivative we learnt in the previous chapter. They are similar but
different notions and the distinction of them will become important especially in
Chapter 6 where we deal with multivariate calculus. We apply these two mathematical
ideas to discuss elasticity in the last section of this chapter. The price elasticity of
demand will be our particular focus.

Chapter goals By studying this chapter you will

(1) be able to use the differentiation technique to sketch various functions;
(2) be able to explain the difference between the derivative and the differential of a

function; and
(3) be able to calculate the price elasticity of demand using differentiation and appreciate

the economic information it carries.

5.1 Curve sketching

In the previous chapter, I emphasised the importance of drawing a diagram when we want
to find the global maximum or the global minimum of a function. Here, we study the way
to sketch a graph of a function that contains sufficient information of it. What we mean
by sufficient information will become clear after you have read this section.

Consider a firm in a competitive market whose cost function is as follows:

c = C(q) = 2q3 − 6q2 + 6q + 8,

where the notation is the same as in previous chapters. How can we sketch the graph of
this function? Important pieces of information you need to find (in general) are:

(1) intersection(s) of the function with the vertical axis,
(2) the first derivative, i.e. slopes,
(3) the second derivative i.e. curvature (or concavity),
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Table 5.1. Information for curve
sketching: Steps (1) and (2).

q · · · 0 · · · 1 · · ·
C ′(q) (slope) + + + 0 +

C(q) ↗ 8 ↗ 10 ↗

(4) intersection(s) of the function with the horizontal axis (if needed), and
(5) values of the function at the boundaries (if there are any).

Let us investigate them in turn.

5.1.1 Intersection(s) of the function with the vertical axis

Obtaining this information is straightforward. The value of the function when q = 0 is
C(0) = 8. It shows that the firm’s fixed costs are $8.

5.1.2 The first derivative, i.e. slope

C ′(q) = 6q2 − 12q + 6.

We can factorise it as follows:

C ′(q) = 6(q2 − 2q + 1) = 6(q − 1)2.

This implies the following:

C ′(q)

{
= 0 if q = 1

> 0 if q �= 1.

In other words, we know that the function is increasing (upward sloping, C ′(q) > 0)
everywhere except for the point where q = 1. When q = 1, the function has zero slope
and takes a value C(1) = 2 − 6 + 6 + 8 = 10.

The information we have so far can be summarised in Table 5.1 and Figure 5.1. In
Figure 5.1, we know that the curve goes through two points, (0, 8) and (1, 10). We also
know the slope of the curve is zero at (1,10) but is positive elsewhere. Together it seems
C(q) may look like the dashed curve in the figure. To be sure, though, we need to take the
second derivative because it provides us with information on curvature (or concavity) of
the function.

5.1.3 The second derivative, i.e. curvature (or concavity)

We begin with:

C ′′(q) = 12q − 12.
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1

C(q)

C′(1) = 0

q
0

10
8

Figure 5.1 Curve sketching: Steps (1) and (2).

C(q)

C(q)

C'(q
) =

 2

C'(q
) =

 1

q
0

A

B
C'(q) =

1
2

Any secant line lies below the arc

Figure 5.2 C ′′(q) < 0: slope is decreasing; strictly concave function (in this domain).

Factorising this equation yields the following:

C ′′(q) = 12(q − 1).

This implies the following:

C ′′(q)

⎧⎪⎨
⎪⎩

< 0 if q < 1

= 0 if q = 1

> 0 if q > 1.

The above information turns out to be valuable in sketching curves. When q < 1,
C ′′(q) < 0. This means that the slope of C(q) is decreasing in this domain (q < 1) as in
Figure 5.2. In such case, as we can see, any secant line, i.e. a line that connects two points
of the curve in this domain, lies below the arc made by those two points. For example, in
Figure 5.2, the secant line AB lies below the arc

�
AB. It is true so long as two points A and

B on the curve are picked in this domain.
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Table 5.2. Information for curve sketching: Steps (1), (2) and (3).

q · · · 0 · · · 1 · · ·
C ′(q) (slope) + + + 0 +

C(q) ↗ 8 ↗ 10 ↗
C ′′(q) (curvature) str. concave str. concave str. concave 0 str. convex

C(q)

C(q)

q
0

Any secant line lies
above the arc

C'(q) = 1
2

C'(q) = 1

C'(q) = 2

D

E

Figure 5.3 C ′′(q) > 0: slope is increasing; strictly convex function (in this domain).

If this is the case, the function is called strictly concave (in this domain). Alternatively,
we say that C(q) is a strictly concave function (in this domain).

On the other hand, C ′′(q) > 0 when q > 1. This means that the slope of C(q) is
increasing, as in Figure 5.3. In such a case, the opposite occurs. As we can see, any
secant line lies above the arc if the two points are picked on the curve in this domain. In
Figure 5.3, the secant line DE lies above the arc

�

DE. It is true so long as two points D

and E on the curve are chosen in this domain.
If this is the case, the function is called strictly convex (in this domain). Alternatively,

we say that C(q) is a strictly convex function (in this domain).
Now let us add these pieces of information to the table we had before. Table 5.2 tells

us that the function C(q) should look as shown in Figure 5.4.
Notice that the function is not strictly concave or strictly convex for all the domain.1

When a function is strictly convex (or concave) everywhere, we can drop the phrase ‘in
the domain’. Note also that the curvature of the function changes at Point F from strictly
concave to strictly convex. The point on which the curvature of a function changes is
called a point of inflection. It can be the case that the curvature changes from strictly
convex to strictly concave. At a point of inflection, it is always the case that the second
derivative is zero; in our example C ′′(q) = 0. However, the converse is not necessarily

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

1 We can say that the function is strictly concave in the domain, q < 1. We can also say that the function is strictly
convex in the domain, q > 1.
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0 q

8

10

1

C(q)

F

G
strictly convex

strictly concave

C''(q) = 0 : a point of inflection.
That is, at this point the 
curvature of the function
changes (in this case, from
strictly concave to strictly
convex).

Figure 5.4 Curve sketching: Steps (1), (2) and (3).

true. That is, at the point where the second derivative is zero, the curvature of the function
may not change. You should appreciate this relationship by attempting a question related
to the point of inflection at the end of the chapter (Section 5.4).

5.1.4 Intersection(s) of the function with the horizontal axis

OK; the next step. We can gather from Figure 5.4 that this curve will cut the horizontal
axis once (at Point G). Let us try obtaining that q. To do so, we set C(q) = 0:

2q3 − 6q2 + 6q + 8 = 0.

Dividing both sides of this equation by 2 yields:

q3 − 3q2 + 3q + 4 = 0.

The first three terms of the LHS may remind you of something; yes, this equation can
be rearranged to:

(q3 − 3q2 + 3q − 1) + 5 = 0.

Rearranging it further gives:

5 = −(q3 − 3q2 + 3q − 1)

5 = −(q − 1)3

5 = (1 − q)3

1 − q = 5
1
3

q = 1 − 5
1
3 .

Without a scientific calculator, this is as far as we can calculate (and so we leave it
there). Write this number on the diagram next to Point G. In some cases this step may be
important, but as you may have already noticed, in our example this step is redundant in
the sense that we do not worry the domain q < 0 (it does not make any economic sense).
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5.1.5 Obtaining the values of the function at the boundaries
(if there are any)

We have already done this final step. The domain in our problem is q ≥ 0, so the boundary
is q = 0. When q = 0, C(0) = 8. It is already written on the diagram, and so we are done.

To make sure you can sketch curves by yourself, try sketching the average cost (AC)
curve for the cost function c = C(q) = 2q3 − 6q2 + 6q + 8. What is the break-even level
output? I shall also provide some curve sketching exercises in Section 5.1.7.

5.1.6 Note: concave and strictly concave (convex and strictly convex)

It may be a good time to define what is meant by concave and convex (without the word
“strictly”). We already know what is meant by a strictly concave function. If the second
derivative of the function f (x) is negative, i.e. f ′′(x) < 0, then it is strictly concave. Let
us now weaken this condition by allowing an equality (=), that is, we make it f ′′(x) ≤ 0.
In other words, we allow the function f (x) to be either strictly concave (f ′′(x) < 0)
or linear (f ′′(x) = 0). If a function satisfies f ′′(x) ≤ 0, it is called a concave function.
Likewise, a convex function is defined by its second derivative satisfying f ′′(x) ≥ 0.
In a nutshell, we replace strict inequality (< or >) with weak inequality (≤ or ≥) in
order to get rid of ‘strictly’. By this definition, a linear function is both convex and
concave.

5.1.7 Curve sketching exercises

Some curve sketching exercises are provided below. The functions we saw in the previous
chapters – a quadratic function, an exponential function, and a logarithmic function – can
now be sketched properly using differentiation.

Question A Sketch f (x) = −1

2
x2 − 8x + 40 using the curve sketching technique.

Solution Taking the first and the second derivatives of f (x):

f ′(x) = −x − 8 and f ′′(x) = −1.

Also the vertical intercept is f (0) = 40. So we have Table 5.3.

Table 5.3. Information for curve sketching:

f (x) = −1

2
x2 − 8x + 40.

x · · · −8 · · · 0 · · ·
f ′(x) + 0 − − −
f (x) ↗ 72 ↘ 40 ↘
f ′′(x) str. concave
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Solving f (x) = 0 we get two vertical intercepts x = −20 and x = 4.

Therefore we can sketch f (x) as in Figure 5.5.

f (x)

72

40

4
0

–20

–8
x

f (x) =      x2 − 8x + 401
2

−

Figure 5.5 Curve sketching: f (x) = −1

2
x2 − 8x + 40.

Question B Sketch f (x) = 1

x
, x �= 0 using the curve sketching technique.

Solution Taking the first and the second derivatives of f (x):

f ′(x) = − 1

x2
and f ′′(x) = 2

x3
.

Therefore f ′(x) < 0 (downward sloping everywhere except at x = 0).

Also,

f ′′(x)

{
< 0 if x < 0,

> 0 if x > 0.

Now, f (0) and f ′(0) are undefined but we know the following:

lim
x→0+

f (x) = ∞ and lim
x→0+

f ′(x) = −∞.

Also, lim
x→0−

f (x) = −∞ and lim
x→0+

f ′(x) = −∞.

Furthermore, lim
x→∞ f (x) = 0 = lim

x→−∞ f (x).

Also, lim
x→∞ f ′(x) = 0 = lim

x→−∞ f ′(x).

Taking all these into account, we get Table 5.4.
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Table 5.4. Information for curve sketching: f (x) = 1

x
.

x −∞ · · · 0 · · · ∞
f ′(x) (0) − (−∞) (−∞) − (0)
f (x) (0) ↘ (−∞) (∞) ↘ (0)
f ′′(x) str. concave str. convex

Therefore we can sketch f (x) as in Figure 5.6.

f (x)

0
x

f (x) =
1
x

Figure 5.6 Curve sketching: f (x) = 1

x
.

Question C Sketch f (x) = x + 1

x
in the domain x > 0 using the curve sketching tech-

nique.

Solution Taking the first and the second derivatives of f (x):

f ′(x) = 1 − 1

x2
and f ′′(x) = 2

x3
.

f ′(x)

⎧⎨
⎩

< 0 if 0 < x < 1
= 0 if x = 1
> 0 if x > 1.

f ′′(x) > 0 for all x > 0.

We know lim
x→0+

f (x) = ∞.

We also know lim
x→0+

f ′(x) = −∞.
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Taking all these into account we get Table 5.5.

Table 5.5. Information for curve

sketching: f (x) = x + 1

x
.

x 0 · · · 1 · · · ∞
f ′(x) (−∞) − 0 + (1)
f (x) (∞) ↘ 2 ↗
f ′′(x) str. convex

Therefore we can sketch f (x) as in Figure 5.7.

f (x)

x
0

45°

2

1

f (x) = x +    , x > 01
x

Figure 5.7 Curve sketching: f (x) = x + 1

x
.

Note we also used the fact that lim
x→∞ f ′(x) = 1 to complete the sketching.

Question D Sketch f (x) = ex using the curve sketching technique.

Solution Taking the first and the second derivatives of f (x):

f ′(x) = ex and f ′′(x) = ex.

Therefore f ′(x) > 0 and f ′′(x) > 0 for all x.

We also know the following:

lim
x→−∞ f (x) = 0 and lim

x→−∞ f ′(x) = 0.

Taking all these as well as f (0) = 1 into account we get Table 5.6.
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Table 5.6. Information for curve sketching: f (x) = ex .

x −∞ · · · 0 · · ·
f ′(x) (0) + 1 +
f (x) (0) ↗ 1 ↗
f ′′(x) str. convex

Therefore we can sketch f (x) as in Figure 5.8.

f (x)

f (x) = ex

x
0

1

Figure 5.8 Curve sketching: f (x) = ex .

Question E Sketch f (x) = ln x, x > 0, using the curve sketching technique.

Solution Taking the first and the second derivatives of f (x):

f ′(x) = 1

x
and f ′′(x) = − 1

x2
.

Therefore f ′(x) > 0 and f ′′(x) < 0 for all x > 0.

We also know the following:

lim
x→0+

f (x) = −∞ and lim
x→0+

f ′(x) = ∞.

Note also that the horizontal intercept occurs at x = 1.

Taking all these into account we get Table 5.7.

Table 5.7. Information for curve sketching: f (x) = ln x.

x 0 · · · 1 · · ·
f ′(x) ∞ + 1 +
f (x) −∞ ↗ 0 ↗
f ′′(x) str. concave
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Therefore we can sketch f (x) as in Figure 5.9.

f(x)

f(x) = ln x, x > 0

x
10

Figure 5.9 Curve sketching: f (x) = ln x.

5.2 The differential

Before we move on to the next section to discuss elasticity, we introduce one more
mathematical notion. It is related to the derivative of the function, so we start with it. For
the cost function C(q), the definition of the derivative is given in Equation (4.3):

C ′(q) = lim
h→0

C(q + h) − C(q)

h
. (5.1)

We know that it shows the slope of the function C(q). Now, use �q instead of h in the
above definition. Recall that � is used to show a change in a variable, so �q means ‘a
change in q’:

C ′(q) = lim
�q→0

C(q + �q) − C(q)

�q
. (5.2)

The numerator of the RHS of this equation is a change in the function C(q) when q

changes by �q. So let us denote this by using � as �C(q). Now the definition of the
derivative becomes:

C ′(q) = lim
�q→0

�C(q)

�q
. (5.3)

The German mathematician Leibniz used the notation
dC(q)

dq
to express the limit of

�C(q)

�q
when �q → 0. Following this mathematical convention, Equation (5.3) can be
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A

B

D

E

qΔ
J

q
q0 q0 + Δq0

C(q0)

C(q0 + Δq)

C(q0 + Δq) – C(q0) = ΔC

c = C(q)
c

CΔ

dC

DE is called the differential of C(q) at q = q0 and
we use the notation dC. ΔC is approximated by
dC when Δq is infinitesimally small. 

When Δq is infinitesimally small
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differential of q.
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ε

Figure 5.10 Visualising the differential.

written as

C ′(q) = dC(q)

dq
. (5.4)

That is, � can be replaced by d at the limit where the change in q (�q) is infinitesimally
small. Note that c = C(q), so Equation (5.4) can also be written as the following:

C ′(q) = dC(q)

dq
= dc

dq
. (5.5)

Hence, C ′(q),
dC(q)

dq
, and

dc

dq
are all the same for the function c = C(q).

Now, look at Figure 5.10. Look at Point A, where q = q0, and consider a change in q,
�q. The tangent line at this point, DJ , has a slope of C ′(q0). The distance AE is �q.
Therefore, the distance DE can be obtained by multiplying them: DE = C ′(q0)�q. The
residual distance BD is denoted by a Greek symbol, ε (epsilon). So �C = C ′(q0)�q + ε.

Here is the new idea: C ′(q0)�q is called the differential of the function C(q) at q = q0,
and it is denoted by dC. It is the distance DE in the diagram. It follows that:

dC = C ′(q0)�q. (5.6)

Note that ε and C ′(q0)�q(= dC) both become smaller as �q becomes smaller, but the
former becomes smaller at a faster rate. To put it another way, when �q becomes very
tiny, ε becomes negligible and hence �C ≈ C ′(q0)�q = dC. In terms of economics, this
means that the change in the total costs �C can be approximated by the differential dC

at Point A if a change in quantity is very tiny. A very tiny change in q is described by the
notation dq instead of �q; dq is called the differential of q.

In this case, Equation (5.6) becomes:

dC = C ′(q0)dq. (5.7)
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To make it general, we replace q0 with q and obtain:

dC = C ′(q)dq. (5.8)

Dividing both sides by dq yields:

C ′(q) = dC

dq
. (5.9)

As you can see, the LHS of this equation is the derivative of C(q). Hence the important
conclusion can be stated as follows: the derivative of a single-variate function C(q) can
be expressed as the ratio of the differentials dC and dq. Whilst this statement is true
for single-variate functions such as c = C(q), it is not generally true for multivariate
functions, which we will deal with in Chapter 6.

5.3 Elasticity

We have studied the firm’s maximisation problem and have seen how differentiation could
be used in an economic context. In this section, we focus on an economic notion called
elasticity. Differentiation turns out to be a powerful tool in examining elasticity as well.

5.3.1 What is elasticity?

Elasticity is a notion that shows the responsiveness of a variable to a change in another
variable. Our focus here is the responsiveness of demand. Demand for a certain good
appears to respond to three variables in particular.

One is obviously the product’s own price. The law of demand tells us that if the own
price of the product increases (decreases), demand for that product decreases (increases,
respectively). How responsive is demand to a change in the own price? We measure the
responsiveness by the own price elasticity of demand. Before examining the own price
elasticity of demand, though, let us briefly discuss other variables to which demand may
respond.

Demand may respond to a change in the prices of other goods. An increase in the
price of Head tennis racquets may increase demand for Babolat tennis racquets, whilst an
increase in the price of tennis balls and tennis courts may decrease demand for Babolat
tennis racquets. Head racquets are called the substitutes to Babolat racquets, whereas
tennis balls and tennis courts are called complements to Babolat racquets. It is difficult
to imagine that a change in the price of a stapler influences demand for Babolat racquets:
a stapler neither substitutes nor complements Babolat racquets. The responsiveness of
demand for a good to a change in the price of another good is measured by the cross price
elasticity of demand.

Demand is likely to respond to a change in income. If an increase in income leads to an
increase in demand for goods, these goods are called normal goods. On the other hand,
if an increase in income causes a decrease in demand for goods, these goods are called
inferior goods. The responsiveness of demand to a change in income is measured by the
income elasticity of demand.



137 5.3 Elasticity

OK; now let us return to discussing the own price elasticity of demand (price elasticity
of demand, hereafter). It shows how responsive demand is to a change in the own price.
We usually use a Greek letter η (read eta) for elasticity. The definition of it is as follows:

η =
∣∣∣∣proportional change in quantity demanded

proportional change in the price

∣∣∣∣. (5.10)

It is defined as the absolute value of a ratio of proportional changes in quantity
demanded and the price. There are two important things to recognise: (1) we take the
absolute value; and (2) we take proportional changes (not just changes) in the price and
quantity. Why do we do these? Let us discuss the latter first; the former will be explained
later when we actually calculate the elasticity.

Why do we take proportional changes to describe the responsiveness? The reason
becomes clear if you think about the following situation. Think about two people: Kris
who has 30 cups of coffee a month, and Scott who only takes only one cup of coffee a
month. Suppose the price of coffee has decreased by a little and, as a result, Kris and Scott
have both increased demand for coffee by one cup: Kris takes 31 cups and Scott takes
two. Should we say that both people’s demands are equally responsive to the change in
price because they both increased demand for coffee by one cup? NO: because for Kris,
who has been drinking 30 cups a month, a one-cup increase in coffee is almost nothing,
whilst for Scott who has been having only one cup a month, drinking another cup implies
doubling the amount of caffeine ingestion. For the same price change, Scott has responded
much strongly. The above example shows that it is better to use the proportional change
in quantity demanded in order to measure the responsiveness. For the price change, we
can tell a similar story.

5.3.2 Elasticity is unit-free

Since we define elasticity by the ratio of the proportional changes, it does not matter which
units we use in measuring the price or quantity: this property is called ‘unit-free’. It can
be seen clearly by using an example. Think about two people: Kris who eats 6(kg) of rice
a month, and Scott who eats 6000(g) of rice a month (note that they eat equal amounts of
rice). Owing to a decrease in the price of rice, Kris and Scott now eat 9(kg) and 9000(g)
of rice, respectively. The change in demand for rice is 3 for Kris and 3000 for Scott. These
changes are the same in the reality, but the numbers are different according to the units
we use (kilograms or grams). This means that comparing changes in demand for different
goods is difficult because different units are used to count them.

However, when we calculate the proportional change in the above example, for Kris it

is 0.5

(
3

6

)
and for Scott it is 0.5

(
3000

6000

)
as well. In comparing proportional changes, the

units we use do not matter. This is same for prices. Comparing changes in the prices across
countries is difficult for an obvious reason: currency units are different across countries.
But if we take the proportional changes, we need not worry about units. We can compare
the price elasticity of demand across various people, goods, and countries.
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5.3.3 Calculating elasticity

Recall that the definition of the price elasticity of demand is:

η =
∣∣∣∣proportional change in quantity demanded

proportional change in the price

∣∣∣∣. (5.11)

We denote the current price and quantity by p0 and q0, respectively. Let us also denote
very tiny changes in the price and quantity by the differentials dp and dq. Proportional

changes in the price and quantity can then be described as
dp

p0
and

dq

q0
. Hence:

ηq0,p0 =
∣∣∣∣∣

dq

q0

dp

p0

∣∣∣∣∣ . (5.12)

Note that elasticity will be different according to the current price and quantity. So we
will put a subscript on η to show at which price and quantity we are evaluating elasticity.

Let us rearrange Equation (5.12). Multiply both the numerator and the denominator by
p0q0. Then it becomes:

ηq0,p0 =
∣∣∣∣dq

dp

p0

q0

∣∣∣∣. (5.13)

So, in order to obtain the price elasticity of demand, we need two pieces of information.

One is the current price and quantity (p0 and q0). The other is
dq

dp
, which is the ratio of two

differentials. We know that this ratio is equal to the differential coefficient q ′(p0) because
‘very tiny changes’ are the focus.

Suppose Shane’s demand for coffee is given by the following function:

q = 5 − 1

2
q. (5.14)

The first thing to note is that the differential coefficient q ′(p0) is the same for all p:

q ′(p) = dq

dp
= −1

2
. (5.15)

It does not depend on the value of p. It is because we have assumed a linear demand
function, as in Equation (5.14). Later we will focus upon another type of demand function
under which the differential coefficient q ′(p) changes according to the value of p. In any
case, let us calculate the price elasticity of demand for two particular cases.

Case A qA = 4 and pA = 2.

ηqA,pA
=
∣∣∣∣dq

dp

pA

qA

∣∣∣∣ =
∣∣∣∣−1

2

2

4

∣∣∣∣ =
∣∣∣∣−1

4

∣∣∣∣ = 1

4
.

Case B qB = 1 and pB = 8.

ηqB,pB
=
∣∣∣∣dq

dp

pB

qB

∣∣∣∣ =
∣∣∣∣−1

2

8

1

∣∣∣∣ = ∣∣−4
∣∣ = 4.
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At this point, demand is elastic because
η = 4, which is greater than unity.

0
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q54
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At this point, demand is inelastic because η = 1/4, 
which is less than unity.

The slope of this demand curve dp/dq is –2. What
we need is not this figure. Instead, we need the
reciprocal of the slope of the demand curve.
dq/dp = –1/2, in order to calculate elasticity.

Demand
Curve

Figure 5.11 Price elasticity of demand.

Now it is clear why we use the absolute value in calculating elasticity. It is simple:
because the differential coefficient is generally negative (the law of demand), and the price
and quantity are always non-negative, we need to take the absolute to obtain a non-negative
number that explains responsiveness of demand.2

Here is some terminology you need to remember. In Case A, elasticity is less than unity.
At such a point where a proportional change in the price exceeds a proportional change
in demand, we say that demand is inelastic to a change in the price. In contrast, in Case
B, elasticity is greater than unity. At such a point where a proportional change in demand
exceeds a proportional change in the price, we say that demand is elastic to a change in
the price. When the proportional changes are identical, i.e. when elasticity equals unity,
we call that demand is unitary elastic to a change in the price (at which price and quantity
will it occur?).

Figure 5.11 describes the above example. Points A and B correspond to Cases A and B,
respectively. As we can see, elasticity is generally not constant along the demand curve.
Hence, in general, we cannot describe the responsiveness of demand as in the following
statement: ‘This demand curve is elastic (inelastic)’. This is a typical misunderstanding
a number of students have. Instead, we should say, ‘At Point B (A), demand is elastic
(inelastic, respectively)’. We need to specify the point of our focus because elasticity
changes from a point to another in general.3

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

2 As you may have noticed, taking the absolute value in calculating elasticity has no conceptual merit (it is merely a
means of obtaining a non-negative number). Indeed, it is usually only at an introductory level of economics that
we take the absolute value and, from the intermediate level onwards, the price elasticity is usually left as a
negative number.

3 There exist demands whose own price elasticity is constant at all points; we shall see those shortly. There also
exist demands whose own price elasticity changes along the curve but are elastic (inelastic) at all points. For these
demands, a statement ‘The demand is elastic (inelastic)’ makes sense and is correct, but if your particular focus is
at some consumption point, then you had better say explicitly that ‘The demand is elastic (inelastic) at this point’.
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Area (1) + (5) shows total expenditure
when p = p

1 and q = q
1
.

0

p

q

p0 A

Area (4) + (5) shows total expenditure 
when p = p

0 and q = q
0
.

A tiny increase in the price:

Elastic: η > 1, (4) > (1) ⇔ Total expenditure falls.
Inelastic: η < 1, (1) > (4) ⇔ Total expenditure rises.
Unitary elastic: η = 1, (1) = (4) ⇔ Total expenditure
does not change
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Figure 5.12 Price elasticity and total expenditure.

Another typical misunderstanding concerns the slope of the demand curve. Diagram-

matically you might consider the slope of the demand curve to be
dp

dq
, because we take

the price on the vertical axis. You must note, though, that
dp

dq
is the same as the derivative

of the inverse supply function. What we need in calculating elasticity is
dq

dp
, which is the

reciprocal of the slope of the demand curve.

5.3.4 Important economic information we can obtain from elasticity

We have seen that if elasticity is greater (less) than unity at a particular point of a demand
curve, the demand is called elastic (inelastic, respectively) at that point. It turns out that
elasticity carries important economic information: the direction of the change in total
expenditure due to a change in the price. In order to explain the relationship between
elasticity and total expenditure in a diagram, we take small changes in the price and
quantity. Denote them by �p and �q, respectively.

We examine whether Shane’s demand is elastic at Point A. At Point A, Shane consumes
q0 observing the price level p0. Shane’s total expenditure for this good is p0q0. It is
represented by the area (4) + (5) in Figure 5.12.

Say the price has increased by �p to p1 and, as a result, Shane’s demand has fallen by
�q to q1. Shane’s total expenditure for this good has changed to p1q1. It is represented
by the area (1) + (5) in the above diagram. The change in total expenditure on this good
is (1) − (4). The relationship between a change in total expenditure and sizes of areas can
be summarised as follows:

Expenditure increases ⇔ Area (1) > Area (4),

Expenditure decreases ⇔ Area (1) < Area (4).
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Recall that the price elasticity of demand is defined as the absolute value of a ratio of
proportional changes in demand and the price. In this case,

η =
∣∣∣∣proportional change in quantity demanded

proportional change in the price

∣∣∣∣
=
∣∣∣∣

�q

q0

�p

p0

∣∣∣∣
=
∣∣∣∣�qp0

�pq0

∣∣∣∣
=
∣∣∣∣ (4)

(1)+(2)+(3)

∣∣∣∣.
Notice that the area (2) + (3) is equal to �p�q. Two variables �p and �q themselves

are small, and hence the product of these two tiny variables is even smaller and negligible.
It follows that elasticity can be written as follows:

η ≈
∣∣∣∣ (4)

(1)

∣∣∣∣.
Elastic demand implies that η > 1, in which case Area (1) < Area (4). It means that

total expenditure has fallen when the price has risen by �p. On the other hand, if total
expenditure has increased when the price has risen by a little, we can conclude that demand
is inelastic: Area (1) > Area (4), then η < 1. For unitary elastic demand, Area (4) should
equal Area (1) as η = 1. It implies that total expenditure has not changed by a change in
the price.

Intuitively, we can explain the relationship as follows. When the price rises, if the
quantity demanded stayed the same, total expenditure would unambiguously increase.
In reality, for a downward sloping demand schedule, the quantity demanded decreases,
but an increase in the price has an effect in increasing total expenditure (for the quantity
sold): let us call it the ‘price effect’. The ‘price effect’ is represented by Area (1) in
Figure 5.12. On the other hand, when the quantity demanded decreases, if the price
stayed the same, total expenditure would unambiguously decrease. In reality, a decrease
in the quantity demanded is brought about by an increase in the price, but let us call this
unambiguous effect in decreasing total expenditure the ‘quantity effect’. The ‘quantity
effect’ is represented by Area (4) in the same figure. When the ‘quantity effect’ dominates
the ‘price effect’, total expenditure decreases. A domination of the ‘quantity effect’ means
that demand is responsive to a change in price. Thus at such a point, we have elastic
demand. On the other hand, when the ‘price effect’ is dominant, total expenditure rises.
It occurs when demand does not respond that much to a change in the price, implying
demand is inelastic.

As we have discussed, the change in price, elasticity and the change in total expenditure
are closely related: if we have information on two of these three things, we can deduce
what happens on the other one.
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5.3.5 The constant elasticity demand function

For the following demand function, it turns out that the price elasticity of demand is
constant:

q = Apε. (5.16)

Why will the price elasticity be constant for this type of demand function? We will
show it in two ways in the following. In passing, in Equation (5.16), ε has to be negative
for the law of the demand to hold (why?). (This is an additional exercise.)

Question Obtain the price elasticity of demand for q = Apε, where ε < 0.

Solution A

q = Apε

dq

dp
= Aεpε−1

= εApεp−1

= ε
q

p
.

Hence,
dq

dp
evaluated at q = q0 and p = p0 is ε

q0

p0
.

The price elasticity of demand (at the point where q = q0 and p = p0) is defined as

ηq0,p0 =
∣∣∣∣dq

dp

p0

q0

∣∣∣∣,
where

dq

dp
is evaluated at q = q0 and p = p0.

Therefore,

ηq0,p0 =
∣∣∣∣dq

dp

p0

q0

∣∣∣∣ =
∣∣∣∣ε q0

p0

p0

q0

∣∣∣∣ = |ε|.

Exercise 5.1 Constant price elasticity of demand.

We have just shown that, for this demand function, the price elasticity of demand at
q = q0 and p = p0 does not depend upon values of the price and quantity: it is a constant
|ε|.

The second solution, of course, yields the same result, but contains important
techniques that you will frequently encounter in later year units in economics and
econometrics.

The trick is taking the logarithm of both sides of the demand function:

ln q = ln A + ε ln p. (5.17)



143 5.3 Elasticity

Set ln A = B. Then Equation (5.17) becomes:

ln q = B + ε ln p. (5.18)

The demand function in a form of Equation (5.18) is called the log-linear demand
function. It is because, in Equation (5.18), the RHS is a linear function of ln p. When
the LHS is a logarithm, which is the case here (ln q), the function is sometimes called
a log-log function, rather casually. Equation (5.18) is merely a log transformation of
Equation (5.16) (i.e. taking the logarithms of both sides of Equation (5.16)), and hence
both the equations represent the same demand behaviour. Hence the previous question
can be rephrased as the following.

Question Obtain the price elasticity of demand for ln q = B + ε ln p, where ε < 0.

Solution B

Differentiating ln q with respect to ln p yields:

d ln q

d ln p
= ε. (5.19)

In the meantime, note that
d ln q

dq
= 1

q
and

d ln p

dp
= 1

p
. These imply that d ln q = dq

q

and d ln p = dp

p
.

Equation (5.19) can therefore be written as:

dq

q

dp

p

= ε. (5.20)

The absolute value of the LHS of Equation (5.20) is the definition of the price elasticity
of demand:

η =
∣∣∣∣

dq

q

dp

p

∣∣∣∣ = |ε|.

Exercise 5.2 Constant price elasticity of demand (after the log transformation).

This solution is important. It demonstrates that elasticity can be shown as the ratio of
two differentials of the logarithms. It explains why elasticity is constant along the demand
curve if the demand function is log-log. If you encounter the log-log function in the
future – presumably when you study econometrics – you should always recall the above
solution.

5.3.6 The second law of the demand

The responsiveness of demand to a change in price is unlikely to be constant over time.
In fact, it is likely to increase over time. Why? Consider the following example. Suppose
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Figure 5.13 Elasticity increases over time: the second law of the demand.

the price of oil increased (the major increases occurred twice in the 1970s; which are
known as the 1973 oil crisis and the 1979 energy crisis). How would the demand for oil
be affected? An increase in the price of oil would be transmitted to an increase in the
price of petroleum, and it would bring about reduced mileage driven in motor vehicles. It
would also be likely that temperature and duration of oil heating would be reduced. These
changes in consumer behaviour have therefore lowered the quantity of oil demanded. It
is represented in Figure 5.13 as the movement along the short-run demand schedule. The
price of oil has increased from p0 to p1 and demand for oil has responded by �qSR (from
q0 to qSR

1 ).
These effects are likely to be bigger in the long run. In the long run, smaller cars

with more efficient engines will become available, and people will start driving them
instead of driving less efficient cars that consume a lot of petroleum. As for heat-
ing, people tend to swap from rather expensive oil heating to cheaper heating (electric,
gas, etc.).

In general, consumers prefer changing their consumption patterns gradually. Even if
they preferred changing it quickly, supply may not keep up with it. As a result, demand
tends to change more responsively to a change in the price in a longer run. This demand
behaviour is called the second law of the demand. The change in the long run is repre-
sented by the movement along the long-run demand schedule. Following the increase in
the price of oil from p0 to p1, the quantity of oil demanded responded by �qLR (from q0

to qLR
1 ).

5.4 Additional exercises

1. (Curve sketching) Sketch the graph of the following functions (in the specified
domain). Does any x correspond to a local maximum, a local minimum or a point
of inflection? Does a global maximum or a global minimum exist in each of the
functions?

(1) f (x) = 4x + 3

x2 + 1
, x ∈ (−∞, ∞).
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(2) f (x) = x ln x, x ∈ (0, ∞).

(3) f (x) = (x − 1)3(x − 6)2, x ∈ (−∞, ∞).

(4) f (x) = 100 − e−x2
, x ∈ (−∞, ∞).

2. (Point of inflection) Sketch f (x) = x3 as well as g(x) = x4. Obtain any x that
satisfies f ′′(x) = 0. Do they correspond to a point of inflection?

3. (Profit maximisation) Consider a firm in competitive markets whose cost function
is as follows:

c = C(q) = 3q3 − 18q2 + 36q + 54,

where c and q show the total costs and quantity of the product, respectively. Note that
the set up is the same as Exercise 4.4 in Chapter 4.

(a) Denoting the price of the product by p, write down the profit function in terms
of q.

(b) Sketch the profit function when p = 1.

(c) Sketch the profit function when p = 3.

(d) According to your graphs, what are the profit maximising levels of output in
parts (b) and (c)? Check if your answers are consistent with the solution in
Exercise 4.4 in Chapter 4.

4. (The differential) Consider a firm in competitive markets whose cost function is as
follows:

c = C(q) = 3 + (q − 1)3,

where c and q show the total costs and quantity of the product, respectively.

(a) Obtain the fixed cost (FC).

(b) (b) Express the marginal cost (MC) in terms of q.

(c) Suppose currently this firm is producing at q = 4. Obtain the marginal cost of
production using your result from part (b).

(d) What is the extra cost to produce the fifth unit? In other words, what is the actual
difference between C(5) and C(4)?

(e) Compare your results in parts (c) and (d). Are they identical? If so, why? If not,
explain why not.

5. (Elasticity) Suppose the market demand for coffee is given as p = 1

q + 1
.

(a) Restricting the domain to q ≥ 0, carefully sketch the market demand curve,
taking price on the vertical axis.

(b) When q = 10, by what percentage will the demand for coffee decrease if there
is an increase of 1 per cent in the price of coffee?

(c) True, false or uncertain? ‘The demand for coffee is always elastic in this problem.’
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6. (Elasticity and total revenue) Estimates of the own price elasticity of demand for
bottles of water in the Tokyo Cricket Ground (TCG) is less than unity at the current
price. With the help of a diagram (you may suppose a linear demand), comment
carefully on the veracity (true, false or uncertain?) of the following statement. ‘The
TCG will collect less revenue from selling bottles of water by marginally lowering
the price.’
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In Chapter 4, our focus was the firm that maximises its profits. We set up the profit
maximisation problem for a firm in a competitive market, and derived its supply
function. In doing so, we obtained the first- and second-order conditions, which
involved obtaining the first and second derivatives of the profit function, respectively.

In turn, this chapter deals with the consumer’s problem. Similar mathematical
techniques to those we used in examining the firm’s profit maximisation problem will
be introduced. The main difference is that, here, we will control two variables instead
of one. Recall that, in the firm’s maximisation problem, the quantity produced (q) is
the only variable that the firm could control, and hence it required differentiating
the profit function with respect to one variable (q). In this chapter, we deal with
two goods on which a consumer can spend his/her limited income. How should the
consumer allocate his/her income to the consumption of each of the goods?

Our fundamental assumption about consumers’ behaviour is that they choose a
combination of goods they consume so as to maximise their satisfaction. We express
the degree of satisfaction by using the term ‘utility’, whose unit of measurement
is a ‘util’. We consider a consumer who makes a decision on how much of which
goods he/she consumes so as to maximise his/her utility. Our main objective in this
chapter is to find the bundle of goods that maximises a consumer’s utility, when
he/she has a limited amount of income. This problem is known as the constrained
optimisation, because he/she faces a constraint in maximising his/her utility. In this
particular problem, the constraint is called the budget constraint. We will first discuss
a simpler version of this problem, the unconstrained optimisation with two variables,
and discuss how we can find the local maximum and the local minimum. Then, three
methods of solving the consumer’s utility maximisation problem will be explained.
The method that has no particular name will be covered first, because it contains a
lot of economic intuition and because it is diagrammatically appealing. The second
method is called the substitution method, and you will see that our problem will be
reduced to the single-variate problem we studied in Chapter 4. The third method is
frequently used in various economic applications and is called the Lagrange multiplier
method. Unsurprisingly, these methods yield the same result.

Chapter goals By studying this chapter you will

(1) be able to partially differentiate the utility function to calculate the marginal utility
of a particular good;

(2) be able to visualise how the utility function relates to indifference curves as well as
marginal utilities;



148 Multivariate calculus

0

u

x

Utility function: u = U(x)

1

1
MU

MU

3

9

A
Any secant line lies below the
curve: ⇔ Utility function is
strictly concave

Marginal utility decreases as x increases.
⇔ The law of diminishing marginal
utility

Figure 6.1 Utility function (for one good).

(3) be able to explain the economic meaning of the marginal rate of substitution and
calculate it using the implicit differentiation;

(4) be able to solve the unconstrained optimisation problem;
(5) be able to solve the solve the utility maximisation problem using three different

methods; and
(6) be able to explain how the individual demand schedule is derived from the con-

sumer’s utility maximising behaviour.

6.1 The utility function

6.1.1 The utility function for one good

The one-good case is simple. Consider a good that is beneficial for you (goods that are bad
for you – for example, pollution – are sometimes called ‘bads’ in economics, in passing).
In this case, the more you consume that good, the more utility (satisfaction) you obtain. In
economics, the utility function is used to show the degree of satisfaction a person obtains
from consuming a bundle of goods. The utility function shows numerical values of utility
a person obtains by consuming a bundle of goods.

Let us draw the utility function. We have the level of utility (u) on the vertical axis and
quantity of the good (x) on the horizontal axis. The more you consume, the higher the
utility, so the curve is upward sloping. Note that we are just abstracting from the reality and
discussing levels of consumption that are relevant. For many goods, if you consume too
much (having 100 pints of beer), your utility may start decreasing, but we don’t consider
the levels of consumption as such. In any case, the utility function u = U (x) is illustrated
in Figure 6.1.

On the diagram in the figure, a person consumes 9 units of the good (at Point A).
The graph indicates that the level of utility he/she obtains from that consumption is 3
(utils). Consider that a person consumes one more unit of the good. The additional utility
this person obtains from this unit is called the marginal utility. For example, if utility
increases from 3 to 3.1, then the marginal utility is 0.1.
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When we consider an infinitesimally small change in x (imagine that the utility function
is a smooth curve), the marginal utility equals the slope of the line that is tangent to the
utility function at the point of consumption. It is the same argument as in Chapter 4 where
we discussed the cost function and the marginal cost. The slope of the utility function is
obtained by taking the first derivative of the utility function, which is U ′(x). The function
is always upward sloping, so U ′(x) > 0 for all x > 0.

Look at the diagram. I have deliberately drawn the graph so that the marginal utility
decreases as quantity consumed increases. It means that the previous unit of consumption
gives you larger satisfaction than the current unit. Imagine that you very much want to
drink beer. The first pint is precious, and you appreciate it a lot. You may appreciate
the second pint, but perhaps not as much as the first one. The third pint still gives you
some satisfaction because you like beer, but not as much as the previous pint. This pattern
displayed by the marginal utility is called the law of diminishing marginal utility.

Mathematically, the law of diminishing marginal utility simply implies that the slope
of the utility function U ′(x) decreases as x increases. It means that the second derivative
U ′′(x) is negative for all x > 0. In turn, U ′′(x) < 0 implies that the utility function U (x)
is strictly concave. You can see this because any secant line of the utility function lies
under the curve. Let us use some numbers to consolidate these ideas.

Question Obtain the utility and marginal utility if a person is consuming 25 units of a
good (x = 25) and his/her utility function is given as u = U (x) = √

x. Check that the law
of diminishing marginal utility holds if x > 0.

Solution U (x) = √
x so U ′(x) = 1

2
√

x
.

U (25) =
√

25 = 5.

U ′(25) = 1

2
√

25

= 1

2 · 5

= 1

10
.

Finally, U ′′(x) = − 1

4x
√

x
. This expression is negative for all x > 0.

Exercise 6.1 The law of diminishing marginal utility.

6.1.2 The two-good case

Now we focus on an individual who consumes two goods. This individual’s objective is to
find a bundle of the two goods that maximises his/her utility. To begin with, we introduce
some notation. We consider Good 1 and Good 2 and denote the levels of consumption by
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x1 and x2. The bundle this consumer chooses will be denoted by a combination of the two
goods, (x1, x2).

We know that an individual consumes either zero or a positive amount of each good. That
is, x1 ≥ 0 and x2 ≥ 0. It implies that all the possible combinations of the two goods can be
described on the first quadrant (including the points on the adjacent axes) of the coordinate
plane, where x1 and x2 are taken on the horizontal and vertical axes, respectively.

In Figure 6.2, three consumption bundles are indicated (Points A, B and C). For
example, on Point A, this person consumes 3 units of Good 1 and 2 units of Good 2.

For all the possible consumption bundles, a person is supposed to have ‘taste’. For
instance, if both goods give positive utility (i.e. if they are not the ‘bads’), this person
will rank Point B ahead of Point A (why?). However, for this person, the choice between
Point A and Point C is rather difficult. On Point A this person consumes more units of
Good 1 than on Point C, but on Point C he/she consumes more units of Good 2 than on
Point A. We will assume that this person can rank these two bundles, i.e. can tell which
one is better (or can tell they are equally desirable). The ranking is really up to this
consumer’s taste over the two goods.

The taste over the consumption of the goods is called preferences in economics. In the
following, we show that a person’s preferences can be represented by the utility function.
If we denote a bundle of goods and utility by (x1, x2) and u, respectively, the utility
function is written as follows:

u = U (x1, x2). (6.1)

This function simply means that utility that a person obtains depends on the amounts of
Good 1 and Good 2 that he/she consumes. Think about two bundles (x̃1, x̃2) and (x̂1, x̂2).
Let us denote the levels of utility that correspond to these bundles by ũ and û, respectively.
Then using the utility function, we can write:

ũ = U (x̃1, x̃2) and û = U (x̂1, x̂2).

If we compare ũ and û, and if ũ > û, we say that a consumer (strictly) prefers Bundle
(x̃1, x̃2) to Bundle (x̂1, x̂2), and vice versa. When ũ = û, we say that a consumer is
indifferent between Bundle (x̃1, x̃2) and Bundle (x̂1, x̂2). The function U represents this
person’s preferences this way.
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6.2 Indifference curves

Let us consider the situation where a consumer is choosing a particular consumption
bundle (x̄1, x̄2) and is obtaining utility ū. Now let us look for other consumption bundles
that might give the same utility level ū.

Suppose consumption of both Good 1 and Good 2 provides a person with positive
utility. It means that if consumption on Good 1 falls, to keep the utility level constant at
ū, consumption on Good 2 has to rise. Likewise, even if consumption on Good 2 falls,
if consumption on Good 1 rises by some appropriate amount, a person can keep his/her
utility level constant at ū. Therefore, the set of consumption bundles that provides a person
with the utility level ū will be expressed as a downward sloping curve Ī that cuts Point A,
(x̄1, x̄2), as in Figure 6.3.

All the consumption bundles on Curve Ī give the same utility level ū to the consumer,
and hence for this consumer all the points on Curve Ī are indifferent. For this reason,
Curve Ī is called the indifference curve.

An indefinite number of indifference curves exists. For example, Curve Ĩ illustrated in
Figure 6.3 gives the same utility as the consumption bundle (x̃1, x̃2) at Point B. We have
postulated that consumption of both Good 1 and Good 2 provides a person with positive
utility. Under this assumption, an indifference curve that lies further to the top-right than
another corresponds to the higher level of utility. A diagram that illustrates a collection of
indifference curves is called an indifference map.

6.3 The marginal utility for the two-good case

We have discussed the marginal utility for the one-good case. For the two-good case, it is
not as simple. We are looking at two goods now, and there is an important thing for you
to remember for the rest of the discussion. When we talk about the marginal utility of one
good, we keep the level of consumption of the other good intact.

Let us again consider the situation where a consumer is choosing a particular consump-
tion bundle (x̄1, x̄2) and is obtaining utility ū. We keep x̄2 intact and consider a change
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in the consumption of Good 1 only. That is, we are concerned only about points on the
dotted line horizontal to the x1-axis that goes through Point A in Figure 6.3.

In Figure 6.4, two diagrams are depicted. The left one shows that a consumer’s utility
increases as x1 rises, holding x2 = x̄2. Here, the marginal utility of Good 1 is defined as an
incremental change in utility when the Good 1 consumption increases by an infinitesimally
small amount, holding the Good 2 consumption constant. It is the slope of the curve
u = U (x1, x̄2) at the level of x1 in question. It is normally assumed that the marginal
utility of Good 1 declines as the Good 1 consumption x1 rises (the law of diminishing
marginal utility), as illustrated in the figure.

We introduce a new mathematical notion here, to express the slope of this curve, i.e.
the marginal utility of one good holding the other constant. Consider a small change in
x1, �x1. Then the slope of the curve u = U (x1, x̄2) can be expressed as

lim
�x1→0

U (x1 + �x1, x̄2) − U (x1, x̄2)

�x1
. (6.2)

We call this expression the partial derivative of the function U (x1, x2) with respect

to x1 (when x2 = x̄2). We use either
∂u

∂x1

∣∣∣∣
x2=x̄2

,
∂U (x1, x̄2)

∂x1
,

∂U

∂x1

∣∣∣∣
x2=x̄2

or U1 (x1, x̄2) to

show the partial derivative of U (x1, x2) with respect to x1 (when x2 = x̄2). That is:

lim
�x1→0

U (x1 + �x1, x̄2) − U (x1, x̄2)

�x1
= U1 (x1, x̄2) (6.3)

= ∂U (x1, x̄2)

∂x1

= ∂U

∂x1

∣∣∣∣
x2=x̄2

= ∂u

∂x1

∣∣∣∣
x2=x̄2

.

The process of obtaining the partial derivative with respect to x1 is called the partial
differentiation with respect to x1.
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Likewise, the partial derivative of u = U (x1, x2) with respect to x2 (when x1 = x̄1) is:

lim
�x2→0

U (x̄1, x2 + �x2) − U (x̄1, x2)

�x2
= U2 (x̄1, x2) (6.4)

= ∂U (x̄1, x2)

∂x2

= ∂U

∂x2

∣∣∣∣
x1=x̄1

= ∂u

∂x2

∣∣∣∣
x1=x̄1

.

Let’s go through some problems to consolidate the ideas.

Question Obtain the partial derivative of the function u = U (x1, x2) = √
x1

√
x2 with

respect to x1 and x2, when x1 = 25, x2 = 100. How do they change if x2 = 1?

Solution The trick to obtaining the partial derivative is to view a variable that is not
the focus as a constant, and to take the derivative with respect to the focussed variable.
For instance, for the partial derivative with respect to x1, we view x2 as a constant, and
differentiate the function with respect to x1:

∂U (x1, x2)

∂x1
= √

x2
d
√

x1

dx
= √

x2
1

2
√

x1
=

√
x2

2
√

x1
.

Evaluating this at x1 = 25, x2 = 100 gives:

∂U (x1, x2)

∂x1

∣∣∣∣
x1=25,x2=100

=
√

100

2
√

25
= 10

2 · 5
= 1.

If x1 = 25, x2 = 1:

∂U (x1, x2)

∂x1

∣∣∣∣
x1=25,x2=1

=
√

1

2
√

25
= 1

2 · 5
= 1

10
.

The partial derivative has gone down from 1 to
1

10
. Roughly speaking, it means that the

26th unit of x1 when x2 = 100 gives an additional utility of 1, whereas when x2 = 1, the

additional utility is only
1

10
. We can infer that the consumer enjoys an extra unit of x1

more when he/she has more x2.

What about the partial derivative with respect to x2?

∂U (x1, x2)

∂x2
= √

x1
d
√

x2

dx2
= √

x1
1

2
√

x2
=

√
x1

2
√

x2
.
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Evaluating this at x1 = 25, x2 = 100 gives:

∂U (x1, x2)

∂x2

∣∣∣∣
x1=25,x2=100

=
√

25

2
√

100
= 5

2 · 10
= 1

4
.

If x1 = 25, x2 = 1:

∂U (x1, x2)

∂x2

∣∣∣∣
x1=25,x2=1

=
√

25

2
√

1
= 5

2 · 1
= 5

2
.

The partial derivative has gone up from
1

4
to

5

2
. Roughly speaking, it means that the 101st

unit of x2 when x1 = 25 gives an additional utility of
1

4
, whereas the additional utility from

the second unit of x2 is much higher. We can infer that the law of diminishing marginal
utility holds for x2.

Exercise 6.2 The partial derivatives and the marginal utility.

An important thing to notice in this example is that the partial derivative with respect to
a certain variable is a function not only of the variable itself but also of the other variable.
That is, the marginal utility of a good depends upon both Good 1 consumption and
Good 2 consumption.

6.3.1 The relationship between indifference curves and the utility function

In Figure 6.5, the utility function u = U (x1, x2) is depicted. As we can see, it is shown in
three-dimensional (3D) space because the relationship between three variables x1, x2 and
u is the focus. The utility function is shown as a three-dimensional object, which looks
like a mountain (with no summit).

Let me explain the diagram. Imagine that a person chooses a consumption bundle
(x̄1, x̄2) at Point A on the x1x2-plane. The level of utility that he/she obtains is shown by
the distance AA′, which is ū (in the context of the mountain, the utility level is measured
by the altitude). A contour (labelled H̄ ) that passes Point A′ is drawn on the diagram. Any
points on this contour give the person the same utility ū because the contour is made by
cutting the mountain horizontally (to the x1x2-plane) at Point A′. The indifference curve
can be obtained by projecting the contour to the x1x2-plane. The two-dimensional version
of this diagram is Figure 6.3. We can easily work out that an indifference curve that lies
further to the top-right than another corresponds to a higher level of utility.

6.3.2 The relationship between the marginal utility and the utility function

We have discussed previously that the marginal utility of one good can be obtained by
taking the partial derivative of the utility function with respect to that good. What does
it mean diagrammatically in relation to the utility function? Recall that, in obtaining the
partial derivative with respect to one good, we hold the consumption of the other good
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Figure 6.6 The utility function and the marginal utility.

constant. It motivates us to cut the 3D object at x2 = x̄2 vertically to the (x1, x2)-space. A
surface will appear on the 3D object (see the shaded surface in Figure 6.6).

The edge of this surface shows the curve u = U (x1, x̄2). It shows how utility changes
according to the level of x1 holding x2 constant at x̄2. Therefore, the slope of this curve
shows the marginal utility of Good 1. What we have drawn on this surface is the same as
what we drew in Figure 6.4 (the one on the left).
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6.3.3 The second-order partial derivatives

We can think about cutting the utility function vertically at different x2s, and in that
case the partial derivative of u = U (x1, x2) with respect to x1 can be written simply

as
∂u

∂x1
. We call this partial derivative the first-order partial derivative, since we partially

differentiate u with respect to one of the arguments only once. We might consider further
differentiating it with respect to the same argument, x1, and as you might guess, it will
show the curvature (concavity) of the function u = U (x1, x2) (in the direction of x1). We
define the second-order partial derivative of u = U (x1, x2) with respect to x1 as the
following:

∂
(

∂u
∂x1

)
∂x1

= ∂2u

∂x2
1

= U11 (x1, x2) . (6.5)

Likewise, the second-order partial derivative of u = U (x1, x2) with respect to x2 is:

∂
(

∂u
∂x2

)
∂x2

= ∂2u

∂x2
2

= U22 (x1, x2) . (6.6)

We can actually differentiate the first-order partial derivative with respect to another

argument. In u = U (x1, x2), we can first differentiate it with respect to x1 and obtain
∂u

∂x1
,

and then differentiate that with respect to x2. This is called the (second-order) cross-partial
derivative and we denote it by the following:

∂
(

∂u
∂x1

)
∂x2

= ∂2u

∂x2∂x1
= U12 (x1, x2) . (6.7)

If we differentiate u = U (x1, x2) with respect to x2 first and then differentiate the
resulting function with respect to x1, we obtain the other cross-partial derivative:

∂
(

∂u
∂x2

)
∂x1

= ∂2u

∂x1∂x2
= U21 (x1, x2) . (6.8)

When both U1 (x1, x2) and U2 (x1, x2) are continuously differentiable, it is known
that these cross-partial derivatives are identical.1 It is called Young’s Theorem: when
U1 (x1, x2) and U2 (x1, x2) are continuously differentiable,

U12 (x1, x2) = U21 (x1, x2) . (6.9)

This implies that it does not matter which way you calculate the cross-partial derivatives.
Here’s an exercise.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

1 We say that a function is continuously differentiable when (i) all the partial derivatives exist; and (ii) they are
continuous.
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Question Consider u = U (x1, x2) = x2
1 + x1x2 + x2

2 . Obtain the second-order partial
derivatives and cross-partial derivatives. Verify that Young’s Theorem holds.

Solution

U1 (x1, x2) = 2x1 + x2,

U2 (x1, x2) = 2x2 + x1.

Hence,

U11 (x1, x2) = 2,

U22 (x1, x2) = 2,

and

U12 (x1, x2) = 1,

U21 (x1, x2) = 1.

Therefore,

U12 (x1, x2) = U21 (x1, x2) .

Exercise 6.3 The second-order partial derivatives and cross-partial derivatives.

6.4 The marginal rate of substitution

In Figure 6.7, an indifference curve Ī is depicted. Let us focus on Point A where a person
consumes (x̄1, x̄2). Suppose that we take one unit of Good 1 away from this person. It will
lower his/her utility. However, this person would be able to retain his/her utility if we gave
him/her an appropriate amount of Good 2, �x2. In other words, if you were this consumer,
you would be willing to substitute �x2 for one unit of Good 1 (because it would keep your
utility level the same). For this reason, we call �x2 the marginal rate of substitution
of Good 1 for Good 2. Put it another way, the marginal rate of substitution of Good 1
for Good 2 shows how much the consumer values the last unit of Good 1 in terms of
Good 2. Hereafter, we will just call it the marginal rate of substitution, and denote it by
MRS12.

Now think about an infinitesimally small change in Good 1. Then, the marginal rate of
substitution can be shown by the absolute value of the slope of the indifference curve at
the point of consumption.

The important thing to note here is that MRS12 changes along the indifference curve. If
the indifference curve is shaped as illustrated on the diagram in Figure 6.7, the marginal
rate of substitution decreases as consumption on Good 1 increases. The marginal rate of
substitution at Point B is less than that at Point A. It makes sense because at Point B this
person consumes Good 1 more than at Point A, so MRS12 that shows the value of (the last
unit of) Good 1 in terms of Good 2 should be lower. In economics, this property on MRS12

is called the law of the diminishing marginal rate of substitution. In mathematics, we
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say that the indifference curve is strictly convex to the origin. That is, if the indifference
curve is decreasing, and also, if it is strictly convex, the law of the diminishing MRS

holds.

6.4.1 The relationship between the marginal utility and the marginal rate
of substitution

There is an important relationship between the marginal utility and the marginal rate
of substitution. As we have seen, the marginal rate of substitution (MRS12) is the
amount of Good 2 required to just compensate for an infinitesimally small decrease in
Good 1. When Good 1 decreases by an infinitesimally small amount, holding Good 2

consumption constant, the level of utility of a consumer decreases by
∂U

∂x1
.

A one-unit increase in Good 2 increases the level of utility of a consumer by
∂U

∂x2
, and

hence in order to increase the level of utility by one, Good 2 should increase by
1

∂U/∂x2
units. It follows that, in order to compensate for an infinitesimally small decrease in Good 1,

Good 2 should increase by
∂U/∂x1

∂U/∂x2
units.

We have established an important relationship between the marginal utility and the
marginal rate of substitution:

MRS12 = ∂U/∂x1

∂U/∂x2
. (6.10)

This equation implies that the marginal rate of substitution of Good 1 for Good 2 is
equal to the ratio of the marginal utility of Good 1 and the marginal utility of Good 2.

Question Assume a utility function u = U (x1, x2) = √
x1 · x2. What is the level of

utility when x1 = 25, x2 = 1? Calculate the marginal utility of Good 1 and Good 2 when
x1 = 25, x2 = 1. What is the marginal rate of substitution of Good 1 for Good 2 at that
point? Does the law of diminishing marginal utility hold?
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Solution

We have

u = U (25, 1) =
√

25 · 1 = 5 × 1 = 5,

∂U (x1, x2)

∂x1
= x2

d
√

x1

dx
= x2

1

2
√

x1
= x2

2
√

x1
,

∂2U (x1, x2)

∂x2
1

= − x2

4x1
√

x1

.

The law of diminishing marginal utility of Good 1 holds because U11 < 0, for all x1 > 0
and x2 > 0.

Now evaluating the marginal utility of Good 1 at x1 = 25 and x2 = 1 gives:

∂U (x1, x2)

∂x1

∣∣∣∣
x1=25,x2=1

= 1

2
√

25
= 1

2 · 5
= 1

10
,

∂U (x1, x2)

∂x2
= √

x1
dx2

dx2
= √

x1.

The marginal utility of Good 2 does not depend on the Good 2 consumption, so it is
obvious that the law of diminishing marginal utility of Good 2 does not hold.

Evaluating the marginal utility of Good 2 at x1 = 25 and x2 = 1 gives:

∂U (x1, x2)

∂x2

∣∣∣∣
x1=25,x2=1

=
√

25 = 5,

MRS12 = ∂U/∂x1

∂U/∂x2
= x2/2

√
x1√

x1
= x2

2x1
.

Evaluating MRS at x1 = 25 and x2 = 1 gives:

MRS12 = 1

50
.

Exercise 6.4 The marginal rate of substitution and the marginal utility.

6.5 Total differentiation and implicit differentiation

In the previous section, we derived the relationship between the marginal rate of sub-
stitution and the marginal utility, as in Equation (6.10). Here we will derive the same
relationship by using a different mathematical technique. This section also deals with
some more new mathematical notions that we will use later in solving the consumer’s
utility maximisation problem.
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6.5.1 Total differential and total differentiation

Recall that, in Chapter 4, we defined the differential of a single-variate function C(q) as
the following:

dC = C ′(q)dq.

It means the effect of a tiny change in q upon C is given by the product of the derivative
of the function C ′(q) and the differential dq.

A similar idea for a multivariate function u = U (x1, x2) can be expressed: if we have a
very tiny change in x1, which we denote by dx1, the consequent change in the value of u

is given by:

du = ∂U (x1, x2)

∂x1
dx1. (6.11)

Note that we use the partial derivative with respect to x1,
∂U (x1, x2)

∂x1
. Equation (6.11),

if it held, would be written as:

du

dx1
= U1, (6.12)

which relates to our statement at the end of Section 5.2: the derivative (in this case, the
partial derivative on the RHS) of a function can be expressed as the ratio of the differentials.
In Equation (6.12), the partial derivative U1 is expressed as the ratio of the differentials
du and dx1. However, Equation (6.11) (or (6.12)) will not generally hold. That is, the
ratio of the differentials, du and dx1, and the partial derivative U1 are different, with some
exceptions. I show why it is the case in the following.

Since there are two arguments to the function u = U (x1, x2), in addition to a change
in x1, we need to consider a small change in x2. Let us denote this change in x2 as dx2

(the differential of x2). Multiplying this differential by
∂U (x1, x2)

∂x2
gives us the effect of

the change in x2 on u, and together with the effect of the change in x1 on u, we obtain the
total effect on u:

du = ∂U (x1, x2)

∂x1
dx1 + ∂U (x1, x2)

∂x2
dx2. (6.13)

We call du in Equation (6.13) the total differential of the function u = U (x1, x2). It
is the sum of the marginal changes in all the arguments of the function, multiplied by
the corresponding partial derivatives. The technique of taking the total differential of a
function is called total differentiation.

Now let us divide both sides of Equation (6.13) by dx1:

du

dx1
= ∂U (x1, x2)

∂x1
+ ∂U (x1, x2)

∂x2

dx2

dx1
. (6.14)

The LHS of Equation (6.14) is called the total derivative of the function u = U (x1, x2)
with respect to x1. It is the ratio of the two differentials du and dx1. As we can see, it
equals the RHS of Equation (6.14), which consists of two terms. The first term is the
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partial derivative of u with respect to x1,
∂U (x1, x2)

∂x1
, and the second is

∂U (x1, x2)

∂x2

dx2

dx1
.

What this equation says is important. It says that the effect of a tiny change in x1 upon
u can be decomposed into two things. The first term shows the ‘direct effect’ of a tiny

change in x1 upon u (because when we take the partial derivative,
∂U (x1, x2)

∂x1
, we are

holding x2 constant), whereas the second term shows an “indirect effect” of a tiny change
in x1 upon u through a change in x2. Therefore, so long as the indirect effect is not zero,
the total derivative, i.e. the ratio of the differentials, and the partial derivative are different.

Let us see intuitively what we have done. For this purpose I will use Equation (6.13)
and Figure 6.8 (which is essentially the same as Figure 6.6).

The (total) differential du measures the change in the level of utility (or the change in
the altitude of where you are standing on the 3D object), as a consequence of changing
consumption by an infinitesimally small amount in any direction. That is, here, we are
no longer constrained to move only in the direction of x1 or in the direction of x2. For
example, we can move somewhere in between the directions of x1 and x2.

6.5.2 Implicit differentiation

Total differentiation is very useful: it can be used to differentiate single-variate functions,
which would be rather cumbersome to handle in the usual way. For example, to calculate
dy

dx
for an implicit function:

y2 + x = 0, (6.15)

we can write this as:

x = −y2. (6.16)
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Hence:

dx

dy
= −2y. (6.17)

Since
dy

dx
= 1

dx/dy
,

dy

dx
= − 1

2y
. (6.18)

An alternative approach is called implicit differentiation. It involves applying the total
differentiation to the implicit function and goes as follows. First, we regard y2 + x as a
function of x and y, which we express by using the following notation:

f = F (x, y) = y2 + x = 0. (6.19)

Taking the total differentials (recall Equation (6.13)) gives the following:

df = ∂F (x, y)

∂x
dx + ∂F (x, y)

∂y
dy. (6.20)

In this equation, df has to be zero because f always equals zero (remember, df is a
tiny movement in f . If f = 0 always hold, then df has to be zero). Therefore:

0 = ∂F (x, y)

∂x
dx + ∂F (x, y)

∂y
dy. (6.21)

This expression boils down to:

dy

dx
= −

∂F (x,y)
∂x

∂F (x,y)
∂y

= − 1

2y
. (6.22)

which is the same as what we have got in Equation (6.18).
Now, think about the indifference curve corresponding to a certain level of utility, ū,

that is:

u = U (x1, x2) = ū. (6.23)

Suppose we have tiny changes in x1 and x2 along this indifference curve (meaning that
we are not moving off the curve). Since we consider changes along the same indifference
curve, u = ū, and so du = 0:

du = ∂U (x1, x2)

∂x1
dx1 + ∂U (x1, x2)

∂x2
dx2 = 0. (6.24)

This expression boils down to:

− dx2

dx1
= ∂U/∂x1

∂U/∂x2
. (6.25)
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Using the fact that the marginal rate of substitution (MRS12) is the absolute value of
the slope of the indifference curve at the point of consumption (see Figure 6.9), we can
conclude that:

MRS12 = ∂U/∂x1

∂U/∂x2
. (6.26)

Now let us go through a question on the implicit differentiation to consolidate the
understanding.

Question Consider x2 − y2 = 6. Obtain
dy

dx
.

Solution Let f be the following:

f = F (x, y) = x2 − y2 = 6.

Taking the total differentials (recall Equation (6.13)) gives the following:

df = ∂F (x, y)

∂x
dx + ∂F (x, y)

∂y
dy.

In this equation, df has to be zero because f always equals 6. Therefore:

0 = ∂F (x, y)

∂x
dx + ∂F (x, y)

∂y
dy.

This expression boils down to:

dy

dx
= −

∂F (x,y)
∂x

∂F (x,y)
∂y

= − 2x

(−2y)
= x

y
.

Exercise 6.5 Implicit differentiation.



164 Multivariate calculus

0

A

x1
x2

x1
* x2

*

f (x1
*, x2

*)

f (x1, x2)

Figure 6.10 Local maximum.

6.6 Maxima and minima revisited

In Chapter 4, we discussed how we should go about solving the maximisation (minimi-
sation) problem for a single-variate function. What are the procedures if the function is
bi-variate? Recalling that we used the first and second derivatives in Chapter 4, some of
you may think about using the first- and second-order partial derivatives in the same way.
It’s great if you think like that, but the problem turns out to be much more complicated.

Forget about the utility maximisation problem for a while, and consider finding the
maximum/minimum of a general function, f (x1, x2). This problem is referred to as the
unconstrained optimisation problem because you can choose any (x1, x2) to max-
imise/minimise the function; that is, you are not constrained to choose from particular
combinations of (x1, x2). In contrast, in the utility maximisation problem, which we come
back to later, you can’t choose any (x1, x2) because you have a limited budget. For now,
however, you are allowed to choose any combination of (x1, x2).

Look at Figure 6.10. As you can see, the maximum of the function is achieved at
Point A, and (x∗

1 , x∗
2 ) is the optimal combination of x1 and x2. Let us think about the

mathematical properties at Point A. What has to be true at Point A?
Firstly, it has to be the case that if we draw a plane (the shaded parallelogram) that

is tangent to the function, it has to be parallel to the (x1, x2) plane (also shaded). This
is analogous to the single-variable case where we could draw a horizontal line at the
maximum. In the mathematics context, it means the following.

Allow x1 and x2 to move simultaneously by an infinitesimally small amount from Point
A (both directions as the arrows suggest on the diagram). It corresponds to taking the total
differential of the function:

df = ∂f (x1, x2)

∂x1
dx1 + ∂f (x1, x2)

∂x2
dx2, (6.27)
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where dx1 and dx2 correspond to the changes in x1 and x2. For Point A to be the local
maximum, the total differential df must be zero, for any small movements dx1 and dx2

(because it is on the top; not going up or down). It follows that both the partial derivatives
in Equation (6.27) must be zero.

However, as we can guess, this property is not enough. As in the one-variable case, we
can find the exact opposite case, where we find the local minimum of a function by using
the same condition. That situation is depicted in Figure 6.11, where Point B is the local
minimum of the function.

In any case, we find one of the conditions for the local maximum/minimum of a
bi-variate function:

∂f (x1, x2)

∂x1
= ∂f (x1, x2)

∂x2
= 0. (6.28)

At the local maximum/minimum, the above set of equations has to hold. It constitutes
the first-order conditions for the local maximum/minimum. Now, go back to Figure 6.10,
where the local maximum is depicted. The second thing that has to be true at Point A is
that the function is at the local maximum in both directions x1 and x2. It is the same as
saying that both of the second-order partial derivatives of the function are negative:

∂2f (x1, x2)

∂x2
1

< 0,
∂2f (x1, x2)

∂x2
2

< 0. (6.29)

Likewise, in Figure 6.11, the opposite has to hold at the local minimum, Point B:

∂2f (x1, x2)

∂x2
1

> 0,
∂2f (x1, x2)

∂x2
2

> 0. (6.30)

They are parts of the second-order conditions for the local maximum and local mini-
mum, respectively.

In passing, I have depicted in Figure 6.12 a special case, where the first-order conditions
are met but, for the second-order conditions (those so far covered), one of the partial
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derivatives is positive, and the other is negative. Point C corresponds to such a case, where
it is the local minimum in the direction of x1, but is the local maximum in the direction of
x2. Mathematically,

∂2f (x1, x2)

∂x2
1

> 0,
∂2f (x1, x2)

∂x2
2

< 0. (6.31)

Such a point is referred to as a saddle point, for obvious reasons.
Let us return to the second-order conditions for the local minimum, i.e. (6.30). I have

said that they are parts of the conditions. Indeed, we can find a counter-example in which
these conditions are satisfied at a point, yet the point is neither a local maximum nor a
local minimum. I will demonstrate this case in the following.

Consider the following function:

y = f (x1, x2) = x2
1 + 10x1x2 + x2

2 . (6.32)

The first-order conditions are:

∂f (x1, x2)

∂x1
= 2x1 + 10x2 = 0, (6.33)

∂f (x1, x2)

∂x2
= 10x1 + 2x2 = 0. (6.34)

The only combination of x1 and x2 that simultaneously satisfies Equations (6.33)
and (6.34) is (x∗

1 , x∗
2 ) = (0, 0). To check whether this point is the local maximum, local

minimum or a saddle point, we investigate the second-order conditions:

∂2f (x1, x2)

∂x2
1

= 2 > 0,
∂2f (x1, x2)

∂x2
2

= 2 > 0. (6.35)

Equation (6.35) implies that (x∗
1 , x∗

2 ) = (0, 0) is the local minimum (see (6.30)), and the
value of the function at that point is y = f (0, 0) = 0. However, consider a real number a

and take a point (x1, x2) = (−a, a). Substituting this point into Equation (6.32) yields the
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following:

f (−a, a) = a2 − 10a2 + a2 = −8a2. (6.36)

Note that lim
a→0

f (−a, a) = 0, which means f (−a, a) approaches 0 as a becomes closer

to zero. But, more importantly, f (−a, a) approaches 0 from negative values. Looking at
it from the other way, it implies that a movement from (0, 0) to (−a, a) will lower the
value of the function, which suffices in showing that (0, 0) is not the local minimum. It is
not a local maximum either, in passing (try using (a, a) instead of (−a, a) to verify this
claim).

It turns out that, for the point we find using the first- and second-order conditions (that
have been introduced so far) to be either the local maximum or the local minimum, the
following relationship has to be satisfied at the point in question:

∂2f (x1, x2)

∂x1
2

· ∂2f (x1, x2)

∂x2
2

>

[
∂2f (x1, x2)

∂x2∂x1

]2

, (6.37)

or, more concisely,

f11 · f22 > f 2
12. (6.38)

This expression completes the second-order conditions. The derivation of this condi-
tion will not be given here, to maintain the flow of our discussion. If you are interested in
the derivation, see Appendix A. In the meantime, we will just check that this condition is
not met for the problem we just investigated. For f (x1, x2) = x1

2 + 10x1x2 + x2
2:

∂2f (x1, x2)

∂x2∂x1
= 10. (6.39)

The RHS of (6.37) is 100, whereas the LHS is 4. Hence (6.37) (or (6.38)) is violated.

Question (The profit maximisation problem with two inputs) Think about applying
what we have learnt to the profit maximisation problem. Although we maintain the
assumption of the competitive input and output markets, the setup here is slightly different
from that in Chapter 4. That is, we have two inputs of production, instead of one. Denoting
the level of production by q, the production function of the firm can be expressed as
follows:

q = f (K, L), (6.40)

where L is labour and K is the number of robots. Since there are two inputs the firm
want to choose the optimal K and L, not just the output, q. In the case where K does
not exist (as in Chapter 4), controlling L meant the same as controlling q. But here, the
firm can control K as well as L, and different combinations of K and L might result in
producing the same amount of q. In that case, the firm would want to choose the most
efficient combination of K and L to produce that amount. Hence, we consider the firm
that tries maximising the profits by choosing the amount of both robots (K) and labour
(L). Let us denote the price of the good, a robot and labour by p > 0, r > 0, and w > 0,
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respectively. Then the profits of the firm can be expressed as:

π(K, L) = pf (K, L) − rK − wL. (6.41)

Notice that π(K, L) is expressed as a function of K and L: but not π(q) as it was in
Chapter 4. Also we are assuming that the fixed cost of production is zero. Now we can
mathematically represent the profit maximisation problem as follows:

Max
K,L

π(K, L). (6.42)

Now, the question is the following: if the production function is given as (6.43) and inputs
prices are given as r = 2 and w = 1, solve the profit maximisation problem and obtain
the amounts of the inputs that the firm hires:

f (K, L) = K
1
3 L

1
3 . (6.43)

Solution

Max
K,L

π(K, L) = Max
K,L

[pf (K, L) − 2K − L] .

The first-order conditions are:

p
∂f (K, L)

∂K
= 2,

p
∂f (K, L)

∂L
= 1.

These equations imply the following:

1

3
pK− 2

3 L
1
3 = 2,

1

3
pK

1
3 L− 2

3 = 1.

Solving the above for K and L, the input combination that satisfies the first-order condi-
tions is, (

K∗, L∗) =
(

p3

108
,
p3

54

)
.

To check this combination is the true local (and global) maximum, we check the second-
order conditions:

∂2π

∂K2
< 0,

∂2π

∂L2
< 0,

∂2π

∂K2
· ∂2π

∂L2
−
[

∂2π

∂L∂K

]2

> 0.
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Calculating the LHS of these, we have:

∂2π

∂K2
= −2

9
pK− 5

3 L
1
3 ,

∂2π

∂L2
= −2

9
pK

1
3 L− 5

3 ,

∂2π

∂K2
· ∂2π

∂L2
−
[

∂2π

∂L∂K

]2

= 1

9
pK− 2

3 L− 2
3 .

Therefore, given p > 0, the second-order conditions are satisfied for any K > 0 and L > 0(
and so of course they are satisfied at the point of concern (K∗, L∗) = ( p3

108 ,
p3

54

))
:

−2

9
pK− 5

3 L
1
3 < 0, ∀K > 0, L > 0,

−2

9
pK

1
3 L− 5

3 < 0, ∀K > 0, L > 0,

1

9
pK− 2

3 L− 2
3 > 0, ∀K > 0, L > 0.

The maximised profits are:

π(K∗, L∗) = pf (K∗, L∗) − 2K∗ − L∗

= p

[(
p3

108

) 1
3
(

p3

54

) 1
3
]

− 2
p3

108
− p3

54

= 1

18
p3 − 1

27
p3

= 1

54
p3.

Exercise 6.6 The profit maximisation with two inputs.

6.7 The utility maximisation problem: constrained
optimisation

Now we go back to solving the consumer’s utility maximisation problem. This problem
is different from the maximisation problem we investigated in the previous section, in
the sense that here the consumer will face the constraint: as we know, our budget is
limited. Here we will discuss how a consumer makes his/her consumption decisions based
on his/her preferences (represented by his/her utility function), given his/her limited
income. Because we are looking at a situation where a consumer’s utility maximisation
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Figure 6.13 The budget constraint.

behaviour is constrained by his/her limited income, the problem is called the constrained
optimisation. If there were only one good, the problem would be simple. A person will
use all of his/her income for that good. Our focus is the consumer’s behaviour when there
are two goods.2

We continue denoting Good 1 consumption and Good 2 consumption by x1 and x2,
respectively. We introduce some new notation. We denote the prices of Good 1 and Good
2 by p1 > 0 and p2 > 0, respectively. The income level is denoted by M > 0. We assume
that the consumer is a price taker so he/she cannot influence p1 or p2.

The consumer’s total expenditure p1x1 + p2x2 has to be within his/her income. He/she
need not use up all his/her income, but suppose that he/she does not save and spends all
his/her income on the two goods. Then x1 and x2 have to satisfy the following relationship,
which is called the consumer’s budget constraint:

p1x1 + p2x2 = M. (6.44)

The segment DD′ in Figure 6.13 shows the budget constraint. If the person does not

consume Good 1 at all, he/she consumes
M

p2
units of Good 2 (Point D). On the other hand,

if he/she does not consume Good 2 at all, he/she consumes
M

p1
units of Good 1 (Point D′).

All possible combinations of x1 and x2 are on the segment DD′. For this reason, the line
connecting Points D and D′ is called the budget line.

Point A is on the budget line, satisfying the budget constraint (Equation (6.44)). Point
B is inside the budget line, meaning that this bundle is feasible, but not all income is used.
All points outside the budget line, such as Point C, correspond to combinations of x1 and
x2 that are infeasible.

How does a consumer whose preferences are represented by the utility function u =
U (x1, x2) choose the optimal consumption bundle (x∗

1 , x∗
2 )? He/she cannot choose the

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

2 The mathematical techniques we will learn for the two-good case can be applied to the cases with more than two
goods as well. It suffices to have two goods to illustrate the trade-off a consumer faces – to consume more of one
good, he/she needs to give up some of the other – when his/her income is limited. Looking at the two-good case
also allows us to interpret important ideas diagrammatically.



171 6.7 The utility maximisation problem: constrained optimisation

0

A

B
C

D

D′

x2

x1x1
*

x2
*

Figure 6.14 Utility maximisation occurs at Point A.

bundle freely, i.e. it has to be on the budget line DD′ in Figure 6.13. Hence the consumer
will choose the bundle (x∗

1 , x∗
2 ) that is on the budget line, to maximise his/her utility.

More mathematically (formally), the consumer’s utility maximisation problem is writ-
ten as follows: the consumer maximises u = U (x1, x2) subject to the budget constraint
p1x1 + p2x2 = M:

Max
x1,x2

U (x1, x2)

s.t. p1x1 + p2x2 = M.
(6.45)

Equation (6.45) is the formal representation of the consumer’s utility maximisation
problem, where ‘s.t.’ stands for ‘subject to’. From here, our focus is how we go about
solving this problem. First, we take an intuitive approach and discuss what should be true,
and then we apply different methods to solving the same problem. Unsurprisingly, these
methods give the same result.

Look at Figure 6.14. The budget line is given by DD′. Which point on the budget
line will the consumer choose? Consider Point B. At Point B, the budget line and the
indifference curve intersect. It is on the budget line, but will not maximise the consumer’s
utility. Why? Because there exists Point A, which is also on the budget line, and is on the
indifference curve that corresponds to a higher level of utility (it is just a diagrammatical
explanation; we will provide an economic explanation shortly).

At Point A, the indifference curve is tangent to the budget line. Does any point exist on
the budget line that gives higher utility to the consumer than this point? No, there doesn’t.
Point C is on the indifference curve that gives higher utility than Point A, but is outside
the budget line: such points are infeasible. Therefore, this consumer will choose the utility
maximising bundle (x∗

1 , x∗
2 ) at Point A.

We have checked that the consumer chooses the point where the indifference curve is
tangent to the budget line. We know that the absolute value of the slope of the budget

line is
p1

p2
. We also know that the absolute value of the slope of the indifference curve

is the marginal rate of substitution MRS12. Therefore, the consumer chooses the point
where:

MRS12 = p1

p2
. (6.46)
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Note that this equation can be written as follows using the fact that MRS12 = ∂U/∂x1

∂U/∂x2
:

∂U/∂x1

∂U/∂x2
= p1

p2
. (6.47)

What is the economic intuition behind this equation? Let us call Good 1 and Good 2
hamburger and meat pie, respectively. Suppose that the price per hamburger and the price
per meat pie are the same at $2, so the price ratio is 1. Look at Point B on the diagram
in Figure 6.14. At this point, MRS12 is greater than 1 (the slope of indifference curve is
steeper), say 2. It means that for the consumer, one hamburger is valued equivalent to two
meat pies. Put it another way, the consumer’s utility will be unchanged if he/she gives up
two meat pies and obtains one hamburger. There is an opportunity for this consumer to
get higher utility: this consumer can sell two meat pies and obtain $4; use $2 out of $4 to
buy one hamburger, which will maintain the original level of utility; and he/she still has
$2 in his/her pocket (this $2 can be used to buy either a hamburger or a meat pie, which
makes this consumer’s utility higher than the original level).

As shown above, if the marginal rate of substitution is different from the price ratio
(e.g. at Point B), the consumer can always find another bundle of goods that gives him/her
the higher level of utility. If the consumer is maximising his/her utility, it has to be the
case that Equation (6.46) holds.

Before you are persuaded by the argument, don’t forget the following. The above
argument is valid only if the indifference curves are strictly convex to the origin. It
means that the indifference curve (1) is always downward sloping; and (2) is strictly
convex. In other words, we can use this method only if the law of diminishing marginal
rate of substitution holds. Figure 6.15 illustrates the situation where the marginal rate
of substitution is increasing (so the indifference curves are strictly concave towards the
origin). In this is the case, finding the bundle that satisfies Equation (6.46) does not lead the
consumer to maximise his/her utility. In Figure 6.15, Point A corresponds to that point, but
it is obvious that Bundle B corresponds to higher utility. Since Bundle B is on the budget
line, we showed that Point A is not optimal (in fact, it will minimise this consumer’s
utility). Checking the curvature of indifference curves is equivalent to checking whether
the second-order condition is satisfied.

Let us try the next question to consolidate our understanding.
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Question Consider an agent who consumes Good 1 and Good 2. We denote the amount
of those goods by x1 and x2, respectively. The utility function of this agent is given by

u = U (x1, x2) = x
1
2
1 x

1
2
2 . This agent has an income of 12 and does not save. If the prices of

the two goods are p1 = 2 and p2 = 1, respectively, what is the bundle of goods this agent
chooses to consume?

Solution The first step is to check if the indifference curves are strictly convex towards
the origin.

u = x
1
2
1 x

1
2
2 .

Solving for x2 we have:

x2 = u2

x1
.

It shows the indifference curve for a certain utility level, u. So let us denote it by the
following:

I (x1) = u2

x1
.

Note that u > 0 for all x1 > 0 and x2 > 0. For any utility level u > 0, the indifference
curve is convex towards the origin because it is decreasing in x1 and strictly convex in x1.
That is, ∀x1 > 0:

I ′(x1) = − u2

x1
2

< 0,

I ′′(x1) = 2u2

x1
3

> 0.

Since indifference curves are convex towards the origin, we can use the method we have
just learnt. Let’s write down the marginal utility of two goods first:

∂U

∂x1
=

√
x2

2
√

x1
,

∂U

∂x2
=

√
x1

2
√

x2
.

Then we can obtain the marginal rate of substitution:

MRS12 = ∂U/∂x1

∂U/∂x2
=

√
x2/2

√
x1√

x1/2
√

x2
= x2

x1
.

The utility maximising consumer will choose the bundle where the marginal rate of
substitution and the price ratio are equal:

MRS12 = p1

p2
⇔ x2

x1
= p1

p2
= 2,
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which collapses to

x2 = 2x1.

The budget constraint this consumer faces is: 2x1 + x2 = 12. Solving the following system
of equations gives us the solution:{

x2 = 2x1

2x1 + x2 = 12
⇒
{

x∗
1 = 3

x∗
2 = 6.

Exercise 6.7 Solving the utility maximisation problem using MRS12 = p1

p2
.

It turns out that we can solve the above problem by using different methods. In the
following section, we will study the substitution method, which reduces the two-variable
problem into a one-variable problem. Hence, it has a flavour of the optimisation problem
we discussed in Chapter 4.

6.8 The substitution method

Let us try solving the same problem as in the previous exercise, but by using a different
method. Consider a price taking consumer who spends his/her income only on Good 1
and Good 2. We denote these goods by x1 and x2, respectively. The utility function of this
person is given by u = U (x1, x2) = x1

1
2 x2

1
2 . The person has an income of 12 and does not

save. If the prices of Good 1 and Good 2 are p1 = 2 and p2 = 1, respectively, what is the
bundle of the goods he/she chooses to consume?

The first step in this method is to write down the budget constraint:

2x1 + x2 = 12. (6.48)

Secondly, we solve this equation for one of the variables; here let’s take x2:

x2 = 12 − 2x1. (6.49)

Thirdly, substitute x2 into the utility function U (x1, x2) = x
1
2
1 x

1
2
2 :

U (x1) = x
1
2
1 (12 − 2x1)

1
2 . (6.50)

Now the maximisation problem involves only one variable x1, so we can use the same
technique we used for the profit maximisation problem in Chapter 4:

Max
x1

[
x

1
2
1 (12 − 2x1)

1
2

]
. (6.51)

The first-order condition is:
√

12 − 2x1

2
√

x1
−

√
x1√

12 − 2x1
= 0. (6.52)
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Solving this equation we get x1 = 3, and substituting x1 = 3 into the budget constraint
yields x2 = 6.

Hence the first-order condition suggests the following solution:{
x∗

1 = 3

x∗
2 = 6.

(6.53)

But what we have found may be a local minimum. We need to check the second-order
condition as we did in the profit maximisation problem. As we know, the second-order
condition for a local maximum is:

U ′′(x1
∗) < 0. (6.54)

The second-order partial derivative of (6.50) is, after tedious calculation,

U ′′(x1) = − 36

(12x1 − 2x2
1 )

3
2

. (6.55)

Hence, when x1 = x1
∗ = 3:

U ′′(3) = −
√

2

3
< 0. (6.56)

The second-order condition for a local maximum is satisfied. In fact, U ′′(x1) < 0 for all
x1 ∈ (0, 6) (note x1 cannot be greater than 6 because of the budget), so x1

∗ = 3 is a local
maximum as well as a global maximum. So we conclude that the bundle (x∗

1 , x∗
2 ) = (3, 6)

is the utility maximiser.
This method is called the substitution method because we substitute the budget con-

straint into the utility function (the function we want to maximise) in the beginning. The
substitution method may be appealing to you since it reduces a bi-variate problem into
a seemingly simple single-variate problem. However, the downside is computation: it is
usually tedious.

Question Choose (x1, x2) to maximise y = x1x2 subject to the constraint 4x1 + x2 = 4.
Use the substitution method.

Solution First we solve the constraint for x2:

x2 = 4 − 4x1.

Substituting it into the objective function, we get:

y = f (x1) = x1(4 − 4x1).

The first-order condition for a local maximum is:

f ′(x1) = 4 − 8x1 = 0.

Here x1 = 1

2
satisfies the condition. The second-order condition for a local maximum is:

f ′′(x1) < 0.
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This inequality is satisfied for x1 = 1

2
as well as for all x1 (because f ′′(x1) = −8 whatever

x1 is), hence it is a local and global maximum. Therefore, x∗
1 = 1

2
. Substituting this back

to the constraint gives x∗
2 = 2.

Exercise 6.8 Solving the utility maximisation problem by using the substitution
method.

6.9 The Lagrange multiplier method

Now we will look at the Lagrange multiplier method, which is used in a wide range of
economic applications. Unfortunately, though, it is simply beyond the scope of this book
to discuss why this method works, and so I shall resort to a cook-book approach. For the
target audience of this book, just becoming familiar with the method and becoming able
to solve constrained optimisation problems by using this method will be sufficient, at least
for the moment.3

We go through solving the same problem as in the previous two sections. Consider
a price taking individual who consumes Good 1 and Good 2. We denote the amount
of those goods by x1 and x2, respectively. The utility function of this agent is given by

U (x1, x2) = x
1
2
1 x

1
2
2 . This individual has $12 and does not save. If the prices of Good 1

and Good 2 are p1 = 2 and p2 = 1, respectively, what is the bundle of the goods he/she
chooses?

We know the budget constraint can be written as 2x1 + x2 = 12 but, in employing the
Lagrange multiplier method, we want to express the constraint in the way that the whole
expression equals zero. That is:

g(x1, x2) = 2x1 + x2 − 12 = 0. (6.57)

Note that, for a reason that will become clear later, we have denoted 2x1 + x2 − 12
(which has to be zero all the time) by g(x1, x2), a function of two variables.

Now let us introduce a new function, which is called the Lagrangian:

L = U (x1, x2) − λg(x1, x2). (6.58)

The Lagrangian consists of two parts. The first part is the utility function we want
to maximise: we have learnt that this is called the objective function. From the objective
function, we subtract the second part, which is the product of λ (a Greek letter, lambda) and
the budget constraint. This new variable λ is called the Lagrange multiplier. Substituting
the utility function and the budget constraint into Equation (6.58) yields the following:

L = x
1
2
1 x

1
2
2 − λ(2x1 + x2 − 12). (6.59)

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

3 If you would like to further your study in economics, though, I strongly recommend that you consult a more
advanced book in quantitative methods and learn why this method works. For example, see K. Sydsaeter and P.
Hammond, Essential Mathematics for Economic Analysis, 3rd edn (Prentice Hall, 2008).
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Now our problem is to maximise this Lagrangian by controlling the three variables,
x1, x2 and λ.4 It is an unconstrained optimisation problem and the first-order conditions
consist of the following three equations:

∂L

∂x1
= 0, (6.60)

∂L

∂x2
= 0, (6.61)

∂L

∂λ
= 0. (6.62)

They can be written respectively as:

1

2

(
x2

x1

) 1
2

− 2λ = 0, (6.63)

1

2

(
x1

x2

) 1
2

− λ = 0, (6.64)

2x1 + x2 − 12 = 0. (6.65)

Note that Equation (6.65) is the same as the budget constraint (6.57). From Equa-
tions (6.63) and (6.64) we can eliminate λ and obtain the following:

x2 = 2x1. (6.66)

Substituting it into Equation (6.65), we can obtain that x∗
1 = 3 and x∗

2 = 6. Substituting

them into Equation (6.63) gives λ∗ =
√

2

4
.5

As in the previous two methods, we need to discuss the second-order condition. Unfor-
tunately, there is no good diagrammatical explanation to convey the intuition for this
condition. Here, we will just state the condition for a maximum:

2 · ∂2L

∂x2∂x1
· ∂g(x1, x2)

∂x1
· ∂g(x1, x2)

∂x2
>

∂2L

∂x2
1

·
[
∂g(x1, x2)

∂x2

]2

+ ∂2L

∂x2
2

·
[
∂g(x1, x2)

∂x1

]2

(6.67)

or, more concisely,

2 · L12 · g1 · g2 > L11 · g2
2 + L22 · g2

1 . (6.68)

For a minimum, we just need to reverse the direction of the above inequality.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

4 Careful readers may have realised that I converted the original constrained optimisation problem to a new
unconstrained optimisation problem that involves the Lagrangian multiplier. As mentioned earlier, it is beyond the
scope of this book to discuss why the solutions to the two problems coincide.

5 The λ∗ we obtained here is called the marginal utility of income. It says that an infinitesimal increase in the

consumer’s income will increase the (maximised) utility by
√

2
4 utils. Unfortunately, it is again outside the scope of

this book to demonstrate why λ∗ represents the marginal utility of income (interested readers should consult with
the reference in footnote 3 of this chapter), but it is a useful result to know in any case.
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Question Verify that the second-order condition is met for the above problem.

Solution Let us write down the information that is necessary to calculate the LHS and
the RHS of Equation (6.67):

∂2L

∂x2∂x1
= 1

4

(
1

x1x2

) 1
2

,

∂g(x1, x2)

∂x1
= 2,

∂g(x1, x2)

∂x2
= 1,

∂2L

∂x2
1

= − 1

4x1

(
x2

x1

) 1
2

,

∂2L

∂x2
2

= − 1

4x2

(
x1

x2

) 1
2

.

If we show that the difference between the LHS and the RHS of (6.67) is positive, then
we have done the job:

LHS − RHS =
(

1

x1x2

) 1
2

−
[
− 1

4x1

(
x2

x1

) 1
2

− 1

x2

(
x1

x2

) 1
2

]

=
(

1

x1x2

) 1
2

+ 1

4x1

(
x2

x1

) 1
2

+ 1

x2

(
x1

x2

) 1
2

.

This expression is positive for all x1 > 0 and x2 > 0.

Exercise 6.9 The second-order condition for the Lagrange multiplier method.

Question Choose (x1, x2) to maximise y = x1x2 subject to the constraint 4x1 + x2 = 4.
Use the Lagrange multiplier method.

Solution First, we set up the Lagrangian, where the constraint is g(x1, x2) = 4x1 + x2 −
4 = 0:

L = x1x2 − λ(4x1 + x2 − 4).

The first-order conditions are:

x2 − 4λ = 0,

x1 − λ = 0,

4x1 + x2 − 4 = 0.
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We can eliminate λ by using the first two equations:

x2 = 4x1.

Substituting x2 into the third equation yields:

8x1 = 4.

Hence, (x∗
1 , x∗

2 , λ∗) =
(

1

2
, 2,

1

2

)
satisfies these condition.

To check the second-order condition, we list the necessary pieces of information:

∂2L

∂x2∂x1
= 1,

∂g(x1, x2)

∂x1
= 4,

∂g(x1, x2)

∂x2
= 1,

∂2L

∂x2
1

= 0,

∂2L

∂x2
2

= 0.

Hence the RHS of Equation (6.67) is zero. The LHS is always 8, so (6.67) always holds,

and (x∗
1 , x∗

2 ) =
(

1

2
, 2

)
is therefore a global maximum.

Exercise 6.10 The substitution method and the Lagrange multiplier method.

6.10 The individual demand function

To conclude this chapter, I’d like to talk a bit about the individual demand function.
Recall the consumer’s utility maximisation problem we discussed in the previous three
sections. A price taking individual whose preferences are represented by the utility function

U (x) = x
1
2
1 x

1
2
2 allocates $12 to buying only two goods, Good 1 and Good 2. We figured out

that when p1 = 2 and p2 = 1, the bundle of the goods he/she chooses is (x∗
1 , x∗

2 ) = (3, 6).
Let us put this question slightly differently. Fix Good 2’s price p2 = 1 and the con-

sumer’s income M = 12. We already know that, when p1 = 2, the consumer’s demand
for Good 1 is x1 = 3, but how does it change when p1 takes other values? To answer this
question, I will consider the following maximisation problem:

Max
x1,x2

U (x1, x2)

s.t. p1x1 + x2 = 12,
(6.69)

where U (x) = x
1
2
1 x

1
2
2 .
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Figure 6.16 The individual demand schedule.

I will leave this problem as an exercise for you, but the utility maximising x1 will be

x∗
1 = 6

p1
. Note that it is consistent with our previous analysis. That is, when p1 = 2 we

can get x∗
1 = 3. For other prices, we get different values of x∗

1 . For example, when p1 = 1,
x∗

1 = 4; and when p1 = 3, x∗
1 = 2. Since x∗

1 varies as p1 changes, let us express it as a
function of p1:

x∗
1 = x1(p1) = 6

p1
. (6.70)

This function is called the individual demand function for Good 1. It shows a con-
sumer’s demand for Good 1 in terms of its price, given prices of other goods (in this case,
the price of Good 2) and his/her income.

The graph of the individual demand function for Good 1 is illustrated in the bottom
diagram in Figure 6.16. By applying the curve sketching technique you learnt in Chapter 5,
you ought be able to sketch the graph of this function, taking x1(p1) on the horizontal axis
and p1 on the vertical axis. Three combinations of the price and the quantity demanded
are shown in the figure: Points A, B and C. These points correspond to Points A′, B ′ and
C ′, respectively, on the top diagram in the same figure.

In the top diagram, x1 and x2 are taken on the axes, the x1-axis is common to both
diagrams in that figure. The line that goes through D and D′ shows the budget line when
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p = 2. Because the price of Good 2 is equal to unity, (the absolute value of) the slope
of the budget line represents the price of Good 1, p1. The consumer chooses Point A′ to
maximise his/her utility and the quantity of x1 demanded is hence x∗ = 3. When the price
of Good 1 goes down to p1 = 1, then the budget line pivots around Point D to the right to
DE. Now the slope of the budget line is equal to unity, and the utility maximising bundle
is Point B ′ where x∗ = 4. In contrast, the budget line pivots around Point D to the left to
DF when the price of Good 1 goes up to p1 = 3. The corresponding quantity of Good 1
demanded at this price is x∗ = 2 (Point C ′).

Likewise, if you pivot the budget line around Point D (meaning you are changing p1,
but holding both p2 and M constant), you can figure out the quantity of Good 1 this
consumer will demand for each and every p1 > 0 (other than those we already looked
at), given p2 = 1 and M = 12. The graph of x1(p1) is the collection of the (p1, x(p1))
obtained through this procedure.

Now consider another exercise: how will the individual demand function for Good 1
change if the consumer’s income is M = 24? The utility maximisation problem for this
consumer when M = 24 is expressed as:

Max
x1,x2

U (x1, x2)

s.t. p1x1 + x2 = 24,
(6.71)

where U (x) = x
1
2
1 x

1
2
2 .

Again I will leave this problem for you to solve, but you should find the solution to be:

x̂1(p1) = 12

p1
. (6.72)

In the bottom diagram of Figure 6.16, x̂1(p1) is illustrated as a dashed schedule. You
can see that the individual demand schedule for Good 1 has shifted to the right when
the consumer’s income has risen. In other words, the quantity of Good 1 demanded
by this consumer is greater for each and every price of Good 1 when he/she has more
income. Check that this exercise conforms to the comparative static analysis we studied
in Section 2.10.

Now we are almost done with uncovering what is behind the demand and supply
analysis. In this chapter, we have derived the individual demand function by solving
a consumer’s utility maximisation problem. Recall also that in Chapter 4 we derived
the individual firm’s supply function by solving its profit maximisation problem. The
(market) demand function we used in Section 2.10 as well as in Chapter 1 can be obtained
by aggregating all the consumers’ individual demand functions. Likewise, the (market)
supply function is the sum of all the firms’ supply functions. One of the topics we will
cover in the next chapter is the aggregation of these individual schedules.

In any case, hopefully by now you realise that the demand and supply schedules
we looked at in Section 2.10 as well as in Chapter 1 did not come from nowhere. On
the contrary, the utility maximisation by each of the consumers in the market and the
profit maximisation by each of the producers in the market give rise to these schedules,
respectively.
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6.11 Additional exercises

1. (Marginal utility with one good) Pat consumes only one good; this is called rice.
The level of utility Pat obtains by rice consumption is shown by the following utility

function: u = U (x) = 1

4
x2, where u is the level of utility and x is the amount of rice

(kg).

(a) Carefully sketch Pat’s utility function. Restrict the domain to x ≥ 0.

(b) What is the marginal utility of rice when Pat consumes 10 kg of rice?

(c) What is the marginal utility of rice when Pat consumes 40 kg of rice?

(d) Does the law of the diminishing marginal utility hold if x > 0? What does it
imply in terms of the curvature of the utility function?

2. (Marginal utility with two goods) Imagine a person whose eating behaviour is rather
extreme, that is, he eats only two things, rice and miso-soup. Denote the consumption
of these two goods by xR and xM , respectively. The person’s utility level is given by
the following: u = U (xR, xM ) = x2

RxM . Answer the following questions.

(a) Suppose the utility level this consumer obtains is 16. Under this situation, express
xM in terms of xR .

(b) Sketch on the (xR, xM ) coordinate plane the curve you obtained in part (a), using
the curve sketching technique. Briefly explain what it shows.

(c) Obtain the marginal utility of each of the two goods. What is the marginal utility
of rice when this person chooses (xR, xM ) = (2, 1)?

(d) How does your answer to part (c) change if the person chooses (xR, xM ) = (4, 1)?
Explain carefully the comparison of the two situations.

3. (The marginal rate of substitution) Consider the situation described in Question
2. Obtain the marginal rate of substitution of rice for miso-soup (MRSRM ) for the
person, and evaluate it at (xR, xM ) = (4, 1). It turns out that, in the market to which
the person has access, rice and miso-soup are traded one-to-one. That is, one unit
of rice can buy one unit of miso-soup. Assuming that the consumer has no left-
over income when that bundle is chosen, comment on the veracity of the following
statement: ‘The bundle cannot be utility maximising for this consumer’.

4. (Total differentiation) For each equation, use the total differential to approximate
the change in y when there are changes in x and z as specified.

(1) y = x3 + 3x − 1

2
z2 − 2xz, where x = 1, z = 2, �x = −2, �z = −1.

(2) y = ln x2 − 4x3 + xz, where x = 1, z = 2, �x = 1, �z = −1.

(3) y = xz + e
z
3 , where x = 0, z = 3, �x = 1, �z = −1.

5. (Maxima and minima) For each of the following functions, find a set of (u, v) that
satisfies the first-order conditions for a local maximum/minimum. Check whether
each of the (u, v) you have found corresponds to a local maximum, a local minimum,
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or a saddle point. One of the second-order conditions for a local maximum/minimum
is g11 · g22 > (g12)2.

(1) g(u, v) = 160u + 60v − 3u2 − 2v2 − 4uv.

(2) g(u, v) = uv − u2 − v2.

(3) g(u, v) = 1

3
u3 + 1

3
v3 − uv.

(4) g(u, v) = eu+v + eu−v − 2u.

6. (The substitution method) Answer the following problems.

(1) Maximise y = 6x1 + 3x1x2 subject to x1 + x2 = 10, using the substitution
method.

(2) Maximise y = −x1
√

x2 subject to 2x1 + x2 = 12, using the substitution method.

(3) Maximise y = 2x1 + x2
2 subject to x2

1 + x2
2 = 4, using the substitution method.

7. (Consumer’s utility maximisation problem) Harry consumes only two goods,
apples and bananas. Denote his consumption of these two goods by A and B, respec-
tively. A utility maximiser, Harry’s utility level is given by the following utility
function: u = U (A, B) = A

1
3 B

2
3 . In the market, apples and bananas are both sold at

$1 per unit, so pA = 1 and pB = 1. Harry’s income is $300 and he does not save.
Solve Harry’s utility maximisation problem using the substitution method. Make sure
that you check the second-order condition for a maximum.

8. (Consumer’s utility maximisation problem) Solve the utility maximisation prob-
lems described by Equation (6.69) and (6.71) using the Lagrange multiplier method.
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Our main aim in this chapter is to study the welfare effects of taxation. The govern-
ment levies tax on various goods, and we would like to evaluate how our well-being
might be affected by the taxation. To this end, we ought to discuss a notions called
consumer surplus and producer surplus. They measure consumers’ and producers’
well-being in terms of dollars.

As will become clear in the following sections, measuring consumer surplus or
producer surplus involves calculating the area in between the demand and supply
schedules. As long as both curves are linear, there is no problem because we all know
how to calculate the area of a triangle. However, if one (or both) of the demand
and supply schedules is (are) non-linear, we need to introduce a certain mathematical
technique that allows us to calculate the area in question. This technique is called
integral calculus. We begin by studying this technique in the following two sections,
which will be followed by its application to finance where I introduce more elaborate
techniques called integration by substitution and integration by parts.

We then discuss the demand and supply analysis from a different point of view.
More specifically, we will give a different interpretation to the demand and supply
schedules we discussed in Chapter 1. It will be the basis of explaining the notion of
surplus. We will also study how to aggregate an individual demand (supply) schedules
to obtain the market demand (supply, respectively) schedule. I then demonstrate how
we can incorporate taxation into the demand and supply analysis. It will be shown
that taxation lowers the total surplus in the market. This loss shows the inefficiency
in the market and is called the deadweight loss of taxation.

Chapter goals By studying this chapter you will

(1) be able to calculate an anti-derivative of a function (where possible);
(2) be able to calculate the area of an area under a curve (where possible);
(3) be able to explain consumer surplus and producer surplus;
(4) be able to carry out demand and supply analysis in the presence of taxation; and
(5) be able to integrate demand and supply functions to calculate the deadweight loss

of taxation.

7.1 An anti-derivative and the indefinite integral

Consider a function f (x) = 4x and a function F (x) = 2x2 + 6. If we differentiate

F (x) = 2x2 + 6 with respect to x, we get 4x, that is
dF (x)

dx
= f (x) or F ′(x) = f (x).
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4x

Derivative

Anti-derivatives

...
...

...

2x2 + 6
2x2 − 4

2x2 + 100
2x2

Figure 7.1 The derivative and anti-derivatives.

When such a relationship holds between two functions, F (x) is called an anti-derivative
of f (x).

You may notice that there are many anti-derivatives of f (x) = 4x. For example, aside
from F (x) = 2x2 + 6, 2x2 − 4, 2x2 + 100, 2x2, (and so on) are all anti-derivatives of
f (x) = 4x (see Figure 7.1).

As we can see, the anti-derivatives of a function differ only by a constant. It is
because the derivative of any constant is zero. If we denote a constant by C, then all
anti-derivatives of 4x can be written as 2x2 + C (C can be 6, −4, 100, 0, or whatever
constant).

Therefore, 2x2 + C is the general representation of anti-derivatives of 4x. In mathe-
matics, we denote the relationship as follows:

∫
4xdx = 2x2 + C. (7.1)

The LHS is ‘the indefinite integral of 4x with respect to x’. The symbol
∫

is called

the integral sign, and 4x and C are called the integrand and the constant of integration,
respectively. Do not forget to place dx after the integrand, which shows the variable of
the focus: in this case, x is the variable of integration.

More generally, if any anti-derivative of a function f (x) is F (x), then:

∫
f (x)dx = F (x) + C, (7.2)

where C is a constant. When we know f (x), to integrate simply means the process of

finding
∫

f (x)dx.

7.1.1 Integration rules (the indefinite integral)

Let me list some rules of the indefinite integral in the following. We use the following
notation: k and n are constants, and f (x), g(x) are anti-differentiable functions of x. You
are expected to be able to apply these rules to solve problems. Some examples are provided
after the list of the rules.
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Rule 1 ∫
kxndx = k

∫
xndx = kxn+1

n + 1
+ C. (7.3)

Rule 2 ∫
1

x
dx = ln |x| + C. (7.4)

Rule 3 ∫
exdx = ex + C. (7.5)

Rule 4 ∫
[f (x) ± g(x)]dx =

∫
f (x)dx ±

∫
g(x)dx. (7.6)

Question Obtain the following indefinite integrals.

(1)
∫

xdx.

(2)
∫

4dx.

(3)
∫ [

4x − 3x2
]
dx.

Solution

(1) ∫
xdx = 1

2
x2 + C.

(2) ∫
4dx = 4x + C.

(3) ∫ [
4x − 3x2

]
dx =

∫
4xdx −

∫
3x2dx

= 4
∫

xdx − 3
∫

x2dx

= 4

(
1

2
x2 + C1

)
− 3

(
1

3
x3 + C2

)
= 2x2 − x3 + 4C1 − 3C2

= −x3 + 2x2 + C,

where C = 4C1 − 3C2.

Exercise 7.1 Indefinite integral.
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x
0

f (x)

a b

Figure 7.2 The definite integral.

7.2 The fundamental theorem of integral calculus

Consider a function f (x). Suppose f (x) is continuous and f (x) ≥ 0 on the interval from
x = a to x = b, where a < b as in Figure 7.2.

We denote the area of the region below the function and above the x-axis from x = a

to x = b by the following formula: ∫ b

a

f (x)dx. (7.7)

The above is called the definite integral (as opposed to the indefinite integral) of f (x)
on the interval from x = a to x = b. The numbers a and b are called limits of integration,
where in this case a is the lower limit and b is the upper limit. As in the indefinite integral,
f (x) is called the integrand and x is the variable of integration (note that dx is placed
after f (x)).

If f (x) is continuous on the interval from x = a to x = b and F (x) is any anti-derivative
of f (x) on that interval, it is known that the following relationship holds:∫ b

a

f (x)dx = F (b) − F (a). (7.8)

This relationship in (7.8) is known as the fundamental theorem of integral calcu-
lus.1 To find

∫ b

a
f (x)dx, we need (1) to find an anti-derivative of f (x), which is F (x);

(2) to find F (b) and F (a); and (3) to subtract the latter from the former. If f (x) is non-
negative (f (x) ≥ 0) on the interval from x = a to x = b, by following these three steps,
we can obtain the area of the region below the function and above the x-axis from x = a

to x = b.
Usually, F (b) − F (a) is expressed by the notation [F (x)]ba . That is:

F (b) − F (a) = [F (x)]ba . (7.9)

Now I list some rules of the definite integral and then give some numerical examples.
Notation is the same as in the previous rules.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

1 We do not delve into the discussion of this theorem in this book. Interested readers should consult some
introductory textbooks in quantitative methods, e.g. Haeussler, Jr. et al., Introductory Mathematical Analysis.
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Rule 5 ∫ b

a

kf (x)dx = k

∫ b

a

f (x)dx. (7.10)

Rule 6 ∫ b

a

[f (x) ± g(x)]dx =
∫ b

a

f (x)dx ±
∫ b

a

g(x)dx. (7.11)

Rule 7 ∫ b

a

f (x)dx =
∫ c

a

f (x)dx +
∫ b

c

f (x)dx. (7.12)

Question A Obtain the area of the region bounded by the curve f (x) = √
x, the x-axis,

and the line x = 1.

Solution It is always useful to draw a diagram so that we can visualise what we are
doing.

x

f (x)

0 1

1

f(x) =   x 

We want to calculate the area of the shaded region. We need to calculate the definite
integral of f (x) = √

x on the interval from 0 to 1:

S =
∫ 1

0

√
xdx.

An anti-derivative of f (x) = √
x is F (x) = 2

3
x

3
2 . Therefore, from the fundamental theo-

rem of integral calculus, we have:

S =
∫ 1

0

√
xdx

=
[

2

3
x

3
2

]1

0

= 2

3
− 0

= 2

3
.

Question B Obtain the area of the region bounded by the curve f (x) = √
x, the y-axis,

and the line y = 1.
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Solution 1 Do not be tricked by the question. It appears similar to the previous question
but the area we want is different from the previous one. What we want to obtain now is
the area of the following shaded region.

x

f (x)

0 1

1

f (x) =   x 

We already know that the area of the region bounded by the curve f (x) = √
x, the x-axis,

and the line x = 1 is
2

3
(Question A). We also know that the area of the square with a side

equal to 1 is unity. So, obviously, the area of the shaded region is 1 − 2

3
= 1

3
. Although the

area can be obtained this way, for the future purpose, it is important to study an alternative
solution.

Solution 2 (important alternative solution) Let us denote f (x) by y. Then, we can
rearrange the function as follows (by taking the square): y2 = x. And then, flip the diagram
so that it looks like the following:

x

y0 1

1

x = y2 

What we need to do is to obtain the definite integral of x = y2 on the interval from y = 0
to y = 1, but note that the variable of integration is y, not x.

S =
∫ 1

0
y2dy

=
[

1

3
y3

]1

0

= 1

3
− 0

= 1

3
.

Of course, we have got the same result.

Exercise 7.2 Calculating the area of the region under a curve
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0

$

Year (t)
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R(1 + r)−1

R(1 + r)−2

R(1 + r)−3

Figure 7.3 The present value of an ordinary annuity.

7.3 Application of integration to finance: the present value of a
continuous annuity

Recall the mathematics of finance that we studied in Chapter 3. One of the notions we
studied is an ordinary annuity. An ordinary annuity is regular payments (or repayments)
made at the end of each period. The present value of an annuity is the sum of the present
values of all the payments (or repayments). We know how to obtain it if the periodic rate
r and the amount of each payment R are given.

Now, we introduce a special case of this annuity, which is called a continuous annuity.
Payments are now made continuously over the time from t = 0 to t = T . How can we
calculate the present value of this annuity when interest is compounded continuously at a
nominal rate r (we did not do this in Chapter 3)?

To see this problem, let us consider a discrete case first, and consider there are three peri-
ods. When the three payments of R dollars are made at the end of each year, and the peri-
odic rate is r , then the present value of this annuity is: A = R(1 + r)−1 + R(1 + r)−2 +
R(1 + r)−3. Note that A is equal to the area of the shaded region in Figure 7.3.

Now think what happens to the area if payments and compounding occur continuously
until the end of Year 3. In Chapter 3, we have shown that the compound amount R of a
principal of P dollars after t years at a nominal interest rate r compounded continuously is:

R = Pert . (7.13)

Solving for P we get:

P = Re−rt . (7.14)

Therefore, under continuous compounding at a nominal interest rate r , the present value
P (for the payment R made in t) is given by P = Re−rt . Let us draw this present value
function in Figure 7.4.

Now I think you can guess the region that represents the present value of a continuous
annuity. Yes: it is the region under the present value function and above the t-axis on the
interval from 0 to 3, which is shown in Figure 7.5.

We know how to obtain the area of the shaded region. It is equivalent to the definite
integral of P = Re−rt on the interval from 0 to 3. That is:

A =
∫ 3

0
Re−rt dt. (7.15)
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0 1 2 3
Year (t)

Re−r

Re−2r

P = Re−rtRe−3r

P

R

Figure 7.4 The present value of continuous payments.

0 1 2 3
Year (t)

P = Re−rt

P
R

Figure 7.5 The present value of a continuous annuity.

In order to obtain A, we need to know how to obtain the definite integral of e−rt with
respect to t . This is not straightforward, but there is a simple trick: let −rt be some other
variable, say s, that is, we set −rt = s. Why? Because we know how to obtain the definite
integral of es with respect to s (because we know an anti-derivative of es is es). So let us
substitute −rt = s into (7.15) (R is a constant so it can be put outside the integral; see
Equation (7.10)):

A = R

∫ t=3

t=0
esdt. (7.16)

Now, look at the definite integral. The integrand is a function of s but the variable of
integration is t . Also the upper and the lower limits of integration are both given in terms
of t . So we need to convert both the variable of integration and limits of integration into
s. How can we convert them? It can be simply done by going back to the trick, ‘−rt = s’.
When t = 0, s = 0. When t = 3, s = −3r . Use these as the lower and the upper limits of
integration, respectively:

A = R

∫ s=−3r

s=0
esdt. (7.17)

Now both the integrand and the limits of integration are in terms of s, but we still have
the variable of integration in terms of t , and this needs to be corrected. Again we go back
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to the trick equation, which can be rearranged as t = −1

r
s. Totally differentiating this

equation yields:

dt = −1

r
ds. (7.18)

Now, substitute Equation (7.18) into Equation (7.17) to get the following (r is a constant
so it can be put outside the integral):

A = −R

r

∫ −3r

0
esds. (7.19)

Therefore (recalling that the anti-derivative of es is es):

A = −R

r

[
es
]−3r

0

= −R

r

(
e−3r − 1

)
.

The technique described above is called integration by substitution. We substituted s

for −rt in the beginning (which I called the ‘trick’). We should not forget the following
point: we also need to convert both the limits of integration and the variable of integration
to the variable substituted.

Here’s an example.

Question Consider a continuous annuity of $1000 for 10 years. Find the present value
of this continuous annuity at a nominal rate of 10 per cent.

Solution

A =
∫ 10

0
1000e−0.1t dt

= 1000
∫ s=−1

s=0
esdt

= −10 000
[
es
]−1

0

= −10 000
[
e−1 − 1

]
= 10 000

(
1 − 1

e

)
.

Exercise 7.3 Calculating the present value of a continuous annuity.

7.3.1 Integration by parts

In the above analysis, continuous payments are constant to be R. What if continuous
payments are not constant, say they keep increasing over time? Instead of assuming the
payment of R at time t , let us assume that the payment at time t is Rt . Then the present
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value of a continuous annuity over three years is:

A =
∫ 3

0
Rte−rt dt. (7.20)

This definite integral can be solved by applying the rule called integration by parts:

∫ b

a

f ′(t)g(t)dt = [f (t)g(t)]ba −
∫ b

a

f (t)g′(t)dt. (7.21)

You need not remember this rule because it is derived readily by integrating the both
sides of Equation (4.6) in Chapter 4, which is the product rule of differentiation:

d

dx
[f (x)g(x)] = f ′(x)g(x) + f (x)g′(x)∫

d

dx
[f (x)g(x)] dx =

∫
f ′(x)g(x)dx +

∫
f (x)g′(x)dx

f (x)g(x) =
∫

f ′(x)g(x)dx +
∫

f (x)g′(x)dx∫
f ′(x)g(x)dx = f (x)g(x) −

∫
f (x)g′(x)dx.

It can be applied to the definite integral as shown in Equation (7.21). Anyway, try going
through a couple of questions.

Question A Obtain
∫ 3

1
ln tdt .

Solution Set f (t) = t and g(t) = ln t . Then f ′(t) = 1 and g′(t) = 1

t
.

∫ 3

1
ln tdt =

∫ 3

1
1 · ln tdt

= [t ln t]3
1 −

∫ 3

1
t
1

t
dt

= [t ln t]3
1 −

∫ 3

1
dt

= [t ln t]3
1 − [t]3

1

= (3 ln 3 − ln 1) − (3 − 1)

= 3 ln 3 − 2.

Question B Obtain
∫ 1

0
tetdt .



194 Integral calculus

Solution Set f (t) = et and g(t) = t . Then f ′(t) = ex and g′(t) = 1.∫ 1

0
tetdt =

∫ 1

0
et tdt

= [et t
]1

0 −
∫ 1

0

(
et · 1

)
dt

= (e − 0) − [et
]1

0

= e − (e − 1)

= 1.

Exercise 7.4 Integration by parts.

Now let us use integration by parts to obtain the continuous annuity of the increasing
payments we have discussed (Equation (7.20)).

Question Obtain A =
∫ 3

0
Rte−rt dt .

Solution First, we use integration by substitution. Let −rt = s hence t = −1

r
s and

dt = −1

r
ds. Substituting these into the equation above, we obtain (also notice the changes

in the limits of integration):

A = R

∫ −3r

0

(
−1

r
s

)
es

(
−ds

r

)

= R

r2

∫ −3r

0
sesds.

Now we use integration by parts. Set f (s) = es and g(s) = s. Then f ′(s) = es and
g′(s) = 1.

A = R

r2

∫ −3r

0
sesds

= R

r2

{[
ses
]−3r

0 −
∫ −3r

0
esds

}

= R

r2

{
−3re−3r − [es

]−3r

0

}
= R

r2

[−3re−3r − (e−3r − 1
)]

= R

r2

[
1 − e−3r (3r + 1)

]
.

Exercise 7.5 Integration by parts.
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For example, if a nominal rate is 10 per cent (i = 0.1), then the present value of this
annuity is:

A = 100R
[
1 − 1.3e−0.3

]
.

Now that we have studied all the basic integration techniques, let us move on to the
main topic of this chapter: examining the effect of taxation.

7.4 Demand and supply analysis revisited

7.4.1 The individual supply and market supply

In Chapter 4, we looked at a particular firm’s profit maximising problem and saw what
the supply schedule of the firm looks like. We have shown that the short-run supply
schedule of an individual firm in a competitive market is identical to its marginal cost
curve (above the shutdown price). The market supply schedule we discussed in Chapter 1
can be obtained by summing up individual firms’ supply schedules for each and every
price. Adding the individual supplies of the firms mathematically can be tricky at times,
and to see why, let us look at the simplest case where there are two firms who sell apples in
the competitive market. But remember, although there are only two firms, we still maintain
the assumption of the competitive market; that is, these two firms take the price as given
(if you are not comfortable with the assumption, then you can consider that there are two
groups of firms).

Firm A’s supply schedule of apples qA ≥ 0 is given by the following demand function:

qA = −1 + 2p, (7.22)

where p > 0 is the price of apples.
Likewise, Firm B’s supply schedule of apples qB ≥ 0 is:

qB = −6 + 3p. (7.23)

Shall we add these two supplies and obtain the market supply q? We obtain

q = qA + qB = −7 + 5p. (7.24)

Is this correct? In fact, there’s something wrong going on. . . Look at Figure 7.6, in which
three diagrams are drawn side by side. On the first diagram, Firm A’s supply schedule

is depicted. It says that the firm does not supply any apples if the price is below
1

2
. The

middle diagram shows Firm B’s supply schedule, which tells us that it does not supply any
apple if unless the price is above 2 (it suggests Firm B is employing an inferior production
technology). In any case, the market supply schedule is depicted on the third diagram. An
important thing to note first is that the aggregate supply of apples for the prices below 2
is identical to Firm A’s individual supply (of course, because Firm B supplies no apples).
When the price is above 2, then Firm B starts supplying according to Equation (7.23).
For example, when p = 3, Firm A supplies qA = 5 and Firm B supplies qB = 3, and
hence the market supply is q = qA + qB = 8 when p = 3. Diagrammatically, we added
individual supplies horizontally at that price. If you go through the same procedure –



196 Integral calculus

0 3

3

2

5

p

A’s supply schedule

qA
1
2

2

0 3

3

p

B’s supply schedule

qB
0 3

K
3

2

8

p

Market supply schedule

q

1
2

Figure 7.6 Adding supply schedules (horizontally).

adding individual supplies – for each and every price, you will obtain the market supply
schedule.

Then, the slope of the market supply schedule when p > 2 will be flatter than it is when
p < 2, because Firm B’s (positive) supply is added horizontally on to Firm A’s supply.
So the market supply schedule should have a “kink” at Point K when p = 2. Given our
analysis using the diagrams, it is now quite obvious that Equation (7.24) does not represent
the market supply schedule because it is a linear function that has no kink.

Now let us discuss how we go about obtaining the market supply schedule algebraically.

Recall that neither firm’s supply function is defined if p <
1

2
. That is, both firms’ supply

will be negative (but it has to be non-negative). What it means is that, if p <
1

2
, neither

firm supplies and hence the market supply is zero.

If
1

2
≤ p < 2, the market supply consists of Firm A’s supply only, which implies:

q = −1 + 2p if
1

2
≤ p < 2. (7.25)

If p ≥ 2, the market supply consists of supplies of both Firms A and B, therefore,

q = −7 + 5p if p ≥ 2. (7.26)

We can summarise the above as the following:

q =

⎧⎪⎪⎨
⎪⎪⎩

0 if p < 1
2 ,

−1 + 2p if 1
2 ≤ p < 2,

−7 + 5p if p ≥ 2.

(7.27)

This case-defined function is the kinked market supply schedule depicted on the third
diagram in Figure 7.6. It is tempting to add two individual supply functions (7.22)
and (7.23) to get Equation (7.24), because it is a straightforward procedure. However,
by examining Equation (7.24) and the diagrams in Figure 7.6 together, we have realised
that something has gone wrong. This example tells us that, when we examine economic
problems, we should always take a mathematical result carefully and think if it really
makes sense. It also makes us realise the importance of visualising our results using
diagrams.



197 7.4 Demand and supply analysis revisited

7.4.2 The vertical interpretation of the supply schedule

Perhaps you are used to interpreting the supply schedule in the following way: it shows
the quantity of the good supplied when the price is given. Namely, starting on the ver-
tical axis with a particular price, we go horizontally to the right until we hit the sup-
ply schedule, and then go downwards to find the quantity of the good supplied. Both
the individual and market supply schedules can be read this way. For example, in Fig-
ure 7.6, when p = 3, Firms A and B supplies qA = 5 and qB = 3, respectively, and
the market supply is q = 8. Some textbooks call it the horizontal interpretation of
the market supply schedule. Indeed, I explained the market supply schedule this way in
Chapter 1.

Some textbooks also emphasise a different way of interpreting the supply schedule,
which is called the vertical interpretation. For this interpretation, we start with a partic-
ular quantity supplied (by an individual firm or by the market), and go vertically until we
hit the corresponding supply schedule. As discussed many times previously, the short-run
supply schedule of an individual firm in a competitive market is identical to its marginal
cost schedule (above the shutdown price). So the height of the supply schedule represents
the incremental cost of further supplying an infinitesimally small amount of this good.
To put it another way, the height of the supply schedule represents the marginal cost of
supplying the good.

Let us look at an example. In the above story of the apple market, the two firms’
supply schedules and market supply schedules are represented by Equations (7.22), (7.23)
and (7.27), respectively. Suppose there is no apple supplied in the market, q = 0. Then
the first bit of an apple should be supplied by Firm A who has a lower marginal cost,

and the marginal cost of supplying the next apple for Firm A is $
1

2
. By looking at the

third diagram, you can see that when q = 0 the cost of supplying the next apple to the

market is $
1

2
, because Firm A will be the supplier of it. When the quantity of apples

supplied in the market is q = 8, then both firms are supplying with qA = 5 and qB = 3.
By looking at the third diagram, we know that the cost of supplying the next apple to the
market is $3, i.e. MC(8) = 3. It is the same as both firms’ marginal cost when qA = 5
and qB = 3, which shows that either of these two firms can be the supplier of that next
apple.

7.4.3 Producer surplus

Given the vertical interpretation of the supply schedule, it is straightforward to understand
the surplus that accrues to the suppliers. Figure 7.7 replicates Figure 7.6, except that some
regions are shaded and that they are now labelled as marginal cost schedules. Suppose the
price of an apple is p = 3, so qA = 5, qB = 3 and q = 8.

Now look at the diagram for Firm A: p = 3 is what Firm A receives per apple sold
whereas the height of Firm A’s marginal cost schedule shows how much it costs for it
to produce another bit of an apple. So the vertical difference between the horizontal line
p = 3 and the marginal cost schedule can be considered to be the surplus Firm A makes
by selling 5 apples. By the same token, the surplus Firm B makes by selling 3 apples is
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Figure 7.7 Producer surplus.

represented by the shaded region, Area CDE, on the second diagram in the same figure.
In total, two firms will make surplus represented by the shaded region in the third diagram
(verify it by yourselves). It is the surplus that producers as a whole make, and for that
reason, the region below the price above the market supply schedule is called the producer
surplus.

As explained above, if the market price of apples is given as p = 3, Firm B’s surplus is
defined as Area CDE. We can also see from the middle diagram in Figure 7.7 that it is the
difference between Firm B’s total revenue (Area OCEF ) and Area ODEF . Note that
Firm B’s supply schedule is its marginal cost schedule, which we denote by C ′

B(q), where
CB(q) is Firm B’s cost function. Using the fundamental theorem of integral calculus, we
can obtain Area ODEF :

ODEF =
∫ 3

0
C ′

B(q)dq

= [CB(q)]3
0

= CB(3) − CB(0).

CB(3) is Firm B’s total costs of producing 3 apples and CB(0) is the fixed cost, so
Area ODEF represents Firm B’s total variable cost of producing 3 apples. In general,
therefore, when Firm B produces q∗

B given p∗, if we denote its surplus by PSB :

PSB = p∗q∗
B︸ ︷︷ ︸

Revenue

− [CB(q∗
B) − CB(0)

]︸ ︷︷ ︸
Total variable cost

. (7.28)

If we ignore the fixed cost CB(0), Firm B’s surplus (PSB) is equal to its profits from the
producing and selling q∗ apples. The producer surplus on the third diagram of Figure 7.7
therefore is equal to the sum of the profits of the all sellers (in this case, Firms A and B)
if both firms’ fixed costs are zero.

So far, we have postulated only two apple sellers in the competitive market, but if it
consists of a number of different sellers, then you can imagine that the market supply
schedule has no kinks (like Point K in Figure 7.6) and becomes a smooth schedule as in
Figure 7.8. Producer surplus is the shaded region on the diagram.

Now, let me give you a numerical example.
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Figure 7.8 Producer surplus when the market supply schedule is smooth.

Question The market supply of apples is found to be the following: q = 4p − 4, where
q and p are quantity and the price of apples, respectively. The market price of apples is
$2. Obtain the producer surplus in the apple market.

Solution 1 When the price is 2, 4 apples are supplied. Solving the supply function for
p gives the inverse supply function as follows:

p = 1

4
q + 1.

Diagrammatically, the situation can be described as the following.

0 4 q

2

1

Supply (MC) schedule
p

This problem is straightforward. Since the supply curve is linear, the producer surplus is
a triangle (where base = 1 and height = 4, or the other way round). The producer surplus
is 2.

Let us use the integration technique to obtain the same area. (If the supply curve is non-
linear, you need to use it. Most of the time this is the case, so we might as well practise it
now.)

Solution 2 The total revenue is 8 (p∗ = 2 and q∗ = 4). The area under the supply curve
is obtained by calculating the definite integral of the inverse supply function on the interval
from 0 to 4: ∫ 4

0

(
1

4
q + 1

)
dq =

[
1

8
q2 + q

]4

0

= 2 + 4

= 6.
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Hence:

PS = 8 − 6 = 2.

Solution 3 (quicker alternative solution) We can obtain the producer surplus by cal-
culating the definite integral of the supply function on the interval from 1 to 2 (notice that
the variable of integration is p):

PS =
∫ 2

1
(4p − 4) dp

= [2p2 − 4p
]2

1

= (8 − 8) − (2 − 4)

= 0 − (−2)

= 2.

Exercise 7.6 Obtaining the producer surplus.

7.4.4 The change in producer surplus

As we discussed previously, a particular firm’s surplus (PS∗), when the price and quantity
are p∗ and q∗, respectively, can be written as

PS∗ = p∗q∗ − [C(q∗) − C(0)
]
, (7.29)

where C(q) is its cost function. As discussed before, it is approximately equal to the firm’s
profits, but is different because of the fixed cost. Consider that the price and quantity have
changed to p∗∗ and q∗∗, respectively, and now firm’s surplus changes to (PS∗∗), which is
expressed as follows:

PS∗∗ = p∗∗q∗∗ − [C(q∗∗) − C(0)
]
. (7.30)

The difference is:

PS∗∗ − PS∗ = p∗∗q∗∗ − [C(q∗∗) − C(0)
]− [p∗q∗ − (C(q∗) − C(0)

)]
= p∗∗q∗∗ − C(q∗∗) − [p∗q∗ − C(q∗)

]
= π(q∗∗) − π(q∗). (7.31)

So, we can state the following. A firm’s surplus per se does not exactly represent its
profits (because of the fixed cost), but the change in the surplus exactly represents the
change in the profits (because the fixed cost cancels out). It is true at the market level. That
is, the producer surplus per se does not measure the profits of the firms’ in the market,
but the change in producer surplus exactly measures the change in the profits the firms in
the market raise. Hence, using the change in producer surplus to measure the change in
producers’ welfare is indeed relevant. The shaded region in Figure 7.9 shows the change
in producer surplus when the price of the product changes from p∗ to p∗∗.
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Figure 7.9 The change in producer surplus.
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Figure 7.10 Individual and market demand schedules.

7.4.5 The vertical interpretation of the demand schedule

Now we turn to discuss the demand side. Suppose there are only two consumers in the
apple market.

Consumer A’s demand for apples qA ≥ 0 is given by the following demand function:

qA = 10 − p, (7.32)

where p > 0 is the price of apples. Likewise, Consumer B’s demand for apples qB ≥ 0
is:

qB = 5 − p. (7.33)

If we add the two consumers’ demands for apples horizontally, it gives us the market
demand schedule for apples. Figure 7.10 describes three demand schedules. The first two
are for Consumer A and Consumer B, respectively, and the third one is the market demand
schedule. As you can see, the market demand schedule has a kink at Point K . We already
discussed how the aggregation of individual schedules can be done algebraically – in the
context of obtaining the market supply schedule – so I will leave that task for you as an
exercise.

Recall that we can interpret supply schedules in two different ways. We can interpret
demand schedules in horizontal and vertical ways as well. The horizontal interpretation
of the demand schedule is this: the schedule shows the quantity of the good demanded
when the price is given. Namely, starting on the vertical axis with a particular price, we go
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horizontally to the right until we hit the demand schedule, and then go downwards to find
the quantity of the good demanded. Both the individual and market demand schedules can
be interpreted this way. For example, in Figure 7.10, when p = 3, Consumers A and B
demand qA = 7 and qB = 2, respectively, and the market demand is q = 9. It is the way
I explained the market demand schedule in Chapter 1, and perhaps you are comfortable
with interpreting it this way.

To explain the vertical interpretation, though, we need to introduce a new idea. Suppose
Consumer A has no apple at present, i.e. qA = 0. What is the maximum amount of money
he/she is willing to give up to get the first bite of an apple? We know the consumer is
unwilling to pay more than $10 for the first bite because the demand is zero if the price
is above $10. When the price of an apple is, say, $5, he/she will buy 5 apples so he must
be willing to sacrifice at least $5 per apple for the first bite. Following this logic, you
can deduce that the amount of money he/she is willing to give up for the very first bite
of an apple is exactly $10 per apple, which is the height of his/her demand schedule at
qA = 0. The height of Consumer A’s demand schedule becomes smaller as his/her apple
consumption qA increases, showing that the maximum amount of money he/she wishes
to sacrifice decreases as his/her apple consumption increases. For example, at qA = 5, i.e.
he/she has already had 5 apples, he/she is willing to pay $5 per apple to have the next bite.
In other word, his/her valuation of that bite of an apple is $5.

In any case, the preceding discussion implies that the height of consumer’s demand
schedule shows his/her marginal willingness to pay (MWTP) or marginal valuation
(MV) of the good in question. The notion is applicable to the market demand sched-
ule. The height of the market demand schedule shows the marginal valuation of the
good in question for the market participants. Interpreting the demand schedule this
way is the key to understanding the surplus consumers make by buying goods in the
market.2

To consolidate the understanding, let us use some numbers to describe the idea. Consider
Figure 7.10, and suppose the price an apple is p = 3 and hence the quantity of apples
demanded in the market is q = 9. Note that Consumers A and B buy qA = 7 and qB = 2,
respectively. By looking at the third diagram in the figure, we know that the marginal
valuation of an apple for the market participants is $3 per apple, i.e. MV (9) = 3. There
are two market participants, so for each of them, the value of this next bite must be $3 per
apple. If you look at two consumers’ marginal valuations when qA = 7 and qB = 2, they
are indeed equal to $3 per apple, i.e. each of them is willing to pay a maximum of $3 per
apple to have the next bite of an apple.

7.4.6 Consumer surplus

Now the difference between what the consumer is willing to pay (marginal valuation)
and what he/she actually has to pay (market price) can be considered as that consumer’s

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

2 Strictly speaking, only under certain circumstances are these two interpretations consistent with each other. The
demand schedule derived following the horizontal interpretation is called the Marshallian (or uncompensated)
demand schedule whereas the one that is derived by the vertical interpretation is called the Hicksian (or
compensated) demand schedule. We will just assume that these two schedules are identical in this book, but
interested readers can consult textbooks in intermediate microeconomics to study this further.
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Figure 7.11 Consumer surplus.

surplus. For example, when the price of an apple is p = 3, Consumer A chooses qA = 7.
What he has to pay to get 7 apples is $21, which is represented by the area ODEF on the
first diagram in Figure 7.10. In contrast, in total, he/she willing to pay the dollar amount
represented by the area under his/her MV schedule, OCEF . That is the sum of his/her
marginal valuation over qA = 0 to qA = 7 and is called the total valuation (TV) (or total
willingness to pay (TWTP)). The difference is the surplus for this consumer and it is
represented by the area of the shaded region, CDE. Similarly the shaded region on the
second diagram shows the surplus for Consumer B.

The shaded region in the market diagram shows the sum of the surplus of the two
consumers. It is the area below the MV schedule (the market demand schedule) above
the price. Because it represents the surplus created by the consumers in the market, it is
called the consumer surplus. If there are a number of consumers in the apple market, the
market demand schedule becomes smooth without any kink, as shown in Figure 7.11.

Now we know what the consumer surplus is and how it is represented on the diagram.
The next step is to obtain the area of the consumer surplus when the demand function is
given. Two questions are given in the following: one deals with the linear demand whereas
the other deals with the non-linear demand.

Question A The market demand for apples is found to be the following: q = 10 − p,
where q and p are quantity and the price of apples, respectively. The market price of
apples is $4. Obtain the consumer surplus.

Solution When the price is 4, 6 apples are demanded. We can show this diagrammati-
cally.

0

4
A

10

6 q

p

Demand (MV) schedule



204 Integral calculus

Calculating the area of the triangle gives the consumer surplus:

6 × 6 × 1

2
= $18.

Note We measure welfare in terms of money. That is, the unit we use for surplus is
‘dollar’ (because we multiply ‘apple’ by ‘$ per apple’).

Question B The market demand for apples is found to be the following: q = 10 − p2,
where q and p are quantity and the price of apples, respectively. The market price of
apples is $2. Obtain the consumer surplus.

Solution When the price is 2, 6 apples are demanded. Diagrammatically, the situation
can be described as follows.

0

2

106 q

p

10

Demand (MV) schedule

We can obtain the consumer surplus by calculating the definite integral of the demand
function on the interval from 2 to

√
10 (notice that the variable of integration is p):

CS =
∫ √

10

2

[
10 − p2

]
dp

=
[

10p − 1

3
p3

]√
10

2

= 10
√

10 − 10

3

√
10 − 20 + 8

3

= 20

3

√
10 − 52

3

= 4

3

(
5
√

10 − 13
)

.

Exercise 7.7 Calculating the consumer surplus.

7.4.7 Total economic surplus

Now let us put the consumer surplus and the producer surplus together. In Figure 7.12,
market demand and market supply schedules for apples are drawn. The market equilibrium
occurs at Point A, where demand equals supply.
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Figure 7.12 Total surplus.

At equilibrium, the market price is p∗ and q∗ units of apples are traded. Under this
situation, the consumer surplus is CAp∗ and the producer surplus is Bp∗A. So in total,
if the market operates, it will create a surplus that is equal to the sum of the consumer
surplus and the producer surplus, ABC. We call this the total economics surplus and we
use it as the measure of welfare.

Question The market demand schedule for apples is found to be the following: q =
8 − p2, where q and p are quantity and the price of apples, respectively. The market
supply schedule of apples is given as follows: q = 4p − 4. Obtain the equilibrium market
price of apples and the total economic surplus created in this market.

Solution Let us obtain the market price first. At equilibrium, demand equals supply:

8 − p2 = 4p − 4

p2 + 4p − 12 = 0

(p + 6)(p − 2) = 0

p = −6, 2.

The market price has to be non-negative, so p∗ = 2.

When the market price is 2, quantity of apples traded is 4. The market diagram can be
drawn as follows.

0 q
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84

2 2
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The producer surplus is easy to calculate because the supply curve is linear:

PS = 2.

To calculate the consumer surplus, we calculate the definite integral of the demand function
q = 8 − p2 on the interval from 2 to 2

√
2 (notice that the variable of integration is p):

CS =
∫ 2

√
2

2

(
8 − p2

)
dp

=
[

8p − 1

3
p3

]2
√

2

2

=
(

16
√

2 − 16

3

√
2

)
−
(

16 − 8

3

)

= 32

3

√
2 − 40

3
.

Therefore, the total economic surplus W is:

W = CS + PS

= 32

3

√
2 − 40

3
+ 2

= 32

3

√
2 − 34

3

= 2

3

(
16

√
2 − 17

)
.

Exercise 7.8 Obtaining the total welfare.

7.5 The deadweight loss of taxation

Previously we have seen the total economic surplus created in the competitive market,
where the equilibrium price is determined at the point where demand equals supply. In this
section, we will see what occurs to the total economic surplus in the presence of taxation.

7.5.1 The economic incidence of tax

Let us look at the market for beer. Suppose the government decides to introduce a produc-
tion tax on beer that is sold. It means that the government taxes the producers (suppliers)
of beer. Let us say the tax is T dollars per bottle. Suppliers are legally liable to pay the
tax, but it does not mean that they bear the entire tax burden: some burden will be passed
on to the consumers unless we assume specific type of demand and/or supply schedules.
Let us see why.

In Figure 7.13, Point E shows the equilibrium of the beer market without the tax. The
equilibrium price of beer per bottle is p∗ and q∗ bottles are traded. To illustrate the story
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Figure 7.14 The economic incidence of a production tax.

clearly, let us introduce another idea called the shelf price, pm. The shelf (or market)
price is the price that is written on the tag of the beer, so it shows the dollar amount that
the buyer actually hands over to the seller. When there is no tax, the shelf price is equal
to p∗, so you might wonder why we need pm for this discussion, but it will become clear
why I introduced it.

Now let us think what occurs when the production tax of T is levied. Remember that
beer suppliers will produce so long as the price they receive exceeds their marginal cost
of production. So, when the production tax is present, they produce so long as (pm − T )
exceeds the marginal cost of production.

Suppose that the suppliers bear the entire tax burden, that is, the shelf price stays the
same at p∗ = pm. It means consumers pay the same price even after the introduction
of this tax, and so they bear no tax burden. Then, the quantity of beer demanded will
stay the same at q∗ (of course, because they are facing the same price as before), whereas
the suppliers choose quantity q∗∗ (where pm − T = MC(q∗∗)). There will be an excess
demand for beer (distance q∗∗q∗). It means that the shelf price has got to rise. The simple
intuition is: when suppliers are taxed, the market supply falls, which drives up the shelf
price.

Now we know that the shelf price must rise, but by how much? Let us think about it
by using a diagram. Since the new shelf price has to clear the beer market, it has to be
determined at the level pm illustrated in Figure 7.14.

Because consumers are not legally liable to pay the tax, pm is all they have to pay per
bottle of beer: we call this the consumer price pC . As we can observe, pC is higher than
the original price p∗. It means that although consumers are not legally liable to pay the
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Figure 7.15 The deadweight loss (DWL) of taxation.

tax, they bear part of the tax burden. Demand for beer is qT when the consumer price is
pC (Point D where pC = MV (qT )).

Suppliers of beer, when they sell beer, receive pm per bottle from the consumer, but
they have to pay T dollars per bottle to the government. Hence, what they receive per
bottle after paying the tax is pP = pm − T : we call this price the producer price. When
the producer price is pP , the supply of beer is qT (point W , where pP = MC(qT )). The
beer market clears and hence the new shelf price, pm, illustrated in Figure 7.14 represents
the equilibrium price under the tax.

The equilibrium level of quantity after the introduction of tax is qT , where the difference
between MV (= pC) and MC (= pP ) is T . The tax creates this wedge between the demand
(MV) and supply (MC) schedules in the equilibrium and we call it the tax wedge. Both
consumers and producers bear the tax burden. The shelf price is equal to the consumer
price when producers are legally liable to pay the tax.

7.5.2 The welfare effects of the tax

Before the introduction of the production tax, the total economic surplus the beer market
created is represented by the area CBL in Figure 7.15. Let us discuss how the total
economic surplus changes after the introduction of the tax.

As we have seen, when the tax is levied, the shelf price rises and the quantity traded
in the market decreases. In Figure 7.15, new consumer surplus and producer surplus
are depicted. Consumers are facing the higher price pC and are consuming less, and
hence the consumer surplus has decreased. The consumer surplus under the tax is rep-
resented by the area CpCD. Producers are facing the lower price pP and are producing
less, and hence the producer surplus has become smaller. The producer surplus under
the tax is represented by the area pP BW. The area pCpP WLD shows the burden of
the tax on consumers and producers. But part of this burden may be transferred back
to the market participants. That is, by taxing the producers, the government raises the
tax revenue, which is represented by the area pCpP WD. Let us assume this transfer
actually occurs. Then, the total economic surplus under the tax is the sum of the consumer
surplus, the producer surplus and the government’s tax revenue. It is represented by the
area CBWD.

We can see that the introduction of a production tax lowers the welfare by the area
DWL. Here DWL is the excess burden of the tax on consumers and producers in
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this market, often referred to as the deadweight loss of taxation. Notice that on the
interval from q = qT to q = q∗, MV > MC. It means consumers value beer more than is
required for producers to supply. When there is no tax, the equilibrium level of quantity is
q∗ where MV = MC. As we can understand from Figure 7.15, the total economic surplus
in this market is maximised when q = q∗, where MV = MC. However, because of the
production tax, production of beer stops at q = qT < q∗, where MV �= MC. Because the
provision of beer is less than the level that maximises the total economic surplus, we say
that there is under-provision (or under-production) of beer.

Let me give you some examples of calculating the deadweight loss mathematically.

Question A (linear D&S) Assume that the inverse demand function for a particular
good is given as follows: p = 1000 − q. The inverse supply function for this good is
known as the following: p = q. Obtain the deadweight loss when a production tax of $30
per unit is levied. How much tax revenue does the government raise?

Solution We start with drawing a diagram as usual.
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Without the tax, equilibrium is (p∗, q∗) = (500, 500). We need to find qT at which MV −
MC = 30:

1000 − qT − 30 = qT

qT = 485.

When q = qT = 485, the consumer price and the producer price are pC = 515 and
pP = 485, respectively. So the deadweight loss (DWL) and the tax revenue (T R) are:

DWL = 30 × 15 × 1

2
= 225,

T R = 30 × 485 = 14550 (dollars).

Question B (linear D&S, but more elastic supply) Assume that the inverse demand
function for a particular good is given as follows: p = 1000 − q (this is the same as
in Question A). The inverse supply function for this good is known as the follow-

ing: p = 1

5
q + 400. Obtain the deadweight loss when a production tax of $30 per unit

is levied.



210 Integral calculus

Solution Notice that everything is the same as in Question A except for the inverse
supply function. Without the tax, equilibrium is (p∗, q∗) = (500, 500), which is the same
as in Question A.
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We again need to find qT at which MV − MC = 30:

1000 − qT − 30 = 1

5
qT + 400

qT = 475.

When q = qT = 475, the consumer price and the producer price are pC = 525 and
pP = 495, respectively.

DWL = 30 × 25 × 1

2
= 375.

T R = 30 × 475 = 14250 (dollars).

Observation These questions give us an important lesson. Comparing Questions A and
B, we can see that more of burden is pushed down on to consumers in Question B. This is
because the producer surplus became much less in Question B. In Question A, there was
greater producer surplus to absorb the tax.

We can also see that the excess burden (the deadweight loss) is greater in Question B.
That is, there is further under-provision of the good in Question B. Note that qT = 475 in
Question B, which is 25 units less than q∗ = 500, where qT = 485 in Question A, which
is 15 units less than q∗ = 500. It also implies that the government is collecting more tax
in Question A. By introducing the same tax (that is, a production tax of $30 per unit), in
Question A, the government can collect more tax and there is less under-provision of the
good. It appears that if the demand curves are the same, the government should tax the
good that has a steeper supply curve.

This statement can be rewritten using the price elasticity we have studied. Let us define
the price elasticity of supply μ as follows:

μ = proportional change in quantity supplied

proportional change in the price
.
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Mathematically, the price elasticity of supply at (p0, q0) is (remember, we need to measure
elasticity at a certain point):

μq0,p0 = dq/q0

dp/p0
.

Is supply more or less elastic at Point L in Question A? It is less elastic. At Point L, in
both examples, (p∗, q∗) = (500, 500). So substituting these into the formula gives:

μ500,500 = dq

dp

∣∣∣∣
500,500

,

where
dq

dp
is the reciprocal of

dp

dq
(the slope of the supply schedule with q on the horizontal

axis). For Question A:

μ500,500 = dq

dp

∣∣∣∣
500,500

= 1.

For Question B:

μ500,500 = dq

dp

∣∣∣∣
500,500

= 5.

Now let me restate what we have observed: (everything else being the same) the govern-
ment should tax the good whose elasticity is lower (less responsive to the change in the
price). There will be less under-provision and hence the deadweight loss will be lower.

In the both questions, the demand schedules were the same. Of course, the difference in
demand schedule is important, too. We shall see it in the next subsection as well as in one
of the additional exercises at the end of the chapter.

Exercise 7.9 Obtaining the total welfare.

7.5.3 Obtaining the market equilibrium with a tax with perfectly
inelastic demand

Let us investigate a special case where the demand is perfectly inelastic, i.e. the demand
is constant (the demand schedule is hence vertical). If a production tax is levied, who will
bear the tax burden? We proceed as we have done previously, except that we now suppose
that both consumers and producers bear some of the tax burden.

In Figure 7.16, Point E shows equilibrium of the market before the tax is levied. The
equilibrium price (and the shelf price) of beer per bottle is p∗, and q∗ bottles are traded.
Now suppose that the production tax of T is levied, and both consumers and producers
bear some of the tax burden. Then, the shelf price increases to pm, but increases by less
than T . It implies that, whilst the consumers’ demand will be unchanged at q∗ – reflecting
the infinitely elastic nature of the demand – the suppliers choose quantity q∗∗ (where
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Figure 7.16 There will be an excess demand if producers bear the tax burden.
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Figure 7.17 The market clears if consumers bear the entire tax burden.

pm − T = MC(q∗∗)). There will be an excess demand for the good (distance q∗∗q∗), and
so pm cannot be the equilibrium shelf price.

In this case, as long as the producer price is below the original shelf price (that is, the
price before the tax is levied), producers will supply less than q∗. Then we know there
will be an excess demand because the demand is always q∗. What it says is that producers
cannot bear the tax burden for the market to clear. Consequently we let the consumers
bear the entire tax burden (see Figure 7.17 from here on), that is, the shelf price (which
is equal to the consumer price) goes up by exactly the amount of the production tax,
pC = pm = p∗ + T , and the producers get pP = p∗ per unit (so the producer price is
unchanged after the production tax). Therefore the equilibrium shelf price is p = pm. At
this price, the producers supply q∗ = qT , which consumers are willing to buy at the price
p = pm = pC . This situation is depicted in Figure 7.17.

We saw that when the demand is perfectly inelastic, consumers bear the entire tax burden
(even though producers are legally liable to pay the tax, they pass the entire tax burden
on to the consumers). There is good intuition for this result. Recall that, in the previous
exercise, we related the size of the consumer/producer surplus to the economic incidence
of the tax (i.e. who bears the burden). In the above case where the demand is perfectly
inelastic, technically speaking, consumer surplus is infinite (although realistically, we
should envisage that the demand eventually decreases as the price increases), whereas
producers have limited surplus. It means that consumers do not mind bearing the tax
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burden at all (because they have infinite surplus anyway) but producers do. That is why
the entire burden is borne by consumers.

Is there a deadweight loss of taxation in this case? No, there shouldn’t be because there is
no under-provision of the good in this case. If you look at each of the surplus measures, you
can convince yourselves that it must be true. The producer surplus is unchanged because
the price the producer receives and the quantity traded are unchanged. The consumer
surplus decreases just by the tax revenue the government collected. So, in this example,
the tax merely creates the wealth transfers from the consumers to the government. In one
of the additional exercises you will see the opposite case, where producers bear the entire
tax burden.

7.5.4 Obtaining the deadweight loss with non-linear demand

To conclude this section, let me give you an example to obtain the deadweight loss when
one (or both) of the demand and supply curves is (are) non-linear (we need to use the
integration technique).

Question (non-linear D&S) Assume that the inverse demand function for a particular

good is given as follows: p = 1000

q
(q > 0). The inverse supply function for this good is

known as follows: p = 10q (q ≥ 0). Obtain the deadweight loss when a production tax
of $150 per unit is levied.

Solution First, let us obtain market equilibrium when there is no tax:

1000

q
= 10q

q2 = 100

q∗ = 10.

p∗ = 102 = 100.

So (p∗, q∗) = (100, 10). The diagram looks like this.

0

L

q

p

D

W

100

Supply (MC) schedule

Demand (MV) schedule

pC = 200

pP = 50

qT = 5 q* = 10
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We need to find qT at which MV − MC = 150:

1000

qT
− 150 = 10qT

10
(
qT
)2 + 150qT − 1000 = 0(
qT
)2 + 15qT − 100 = 0(

qT + 20
) (

qT − 5
) = 0.

Ignoring the negative root, we get qT = 5. When q = qT = 5, the consumer price and the
producer price are pC = 200 and pP = 50, respectively:

DWL = DqT q∗L − WqT q∗L.

The second term of the RHS is the area of a trapezoid:

WqT q∗L = (50 + 100) × 5 × 1

2
= 375.

The first term is the area under the demand curve and above the q-axis on the interval
from 5 to 10:

DqT q∗L =
∫ 10

5

1000

q
dq

= 1000
∫ 10

5

1

q
dq

= 1000 [ln q]10
5

= 1000(ln 10 − ln 5)

= 1000 ln 2.

Therefore:

DWL = 1000 ln 2 − 375.

Exercise 7.10 Obtaining the total welfare.

7.6 Additional exercises

1. (Anti-derivatives) Answer the following questions.

(1) The marginal cost of producing a certain good is given as MC(q) = 0.06q2 −
6q + 175. Take the anti-derivative of this function (denote a constant of integra-
tion by F ). What does the anti-derivative represent in this context? Determine
F when it costs 672.02 to produce one unit of this good.
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(2) Consider a consumer whose level of utility depends on his consumption of x.

The marginal utility is given as MU (x) = 1

2
√

x
. Take the anti-derivative of this

function (denote a constant of integration by C). What does the anti-derivative
represent in this context? Determine C if this utility turns out to be 1 util when
x = 1.

2. (The area under the curve) In the following, use a definite integral to find the
area of the region bounded by the given curve, the x-axis, and the given lines. Sketch
the area of the region on a diagram.

(1) y = 1

x
, x = 1, x = 2.

(2) y = √
x − 1, x = 4, x = 9.

(3) y = −(x − 2)2 + 4.

(4) y = 1

2
ex , x = 0, x = 3.

3. (Integration by parts) Obtain the following definite integrals using integration
by parts.

(1)
∫ e

1

ln x√
x

dx. [Hint. Set f (x) = 2
√

x and g(x) = ln x.]

(2)
∫ e

1
ln xdx. [Hint. Set f (x) = x and g(x) = ln x.]

(3)
∫ e

1
x ln xdx. [Hint. Set f (x) = 1

2
x2 and g(x) = ln x.]

4. (Integration by substitution) Obtain the following definite integral using inte-
gration by substitution.

(1)
∫ a

0
xe−cx2

dx. [Hint. Set s = −cx2.]

(2)
∫ e

1

1 + ln x

x
dx. [Hint. Set s = 1 + ln x.]

(3)
∫ 1

0
(3x − 1)5dx. [Hint. Set s = 3x − 1.]

(4)
∫ 1

0
x(3x2 − 1)

5
dx. [Hint. Set s = 3x2 − 1.]

5. (Continuous annuity) The nominal rate is 10 per cent. Obtain the present value
of a continuous (ordinary) annuity whose payments start now and finish at the end
of Year 10 when:

(a) payments are constant at R = 800; and

(b) payments change according to the following rule: R = 800t , where t represents
time.
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6. (Market supply) The supply of ‘duck-basil-rice’, also known as DBR, on any
particular day comprises supplies from three price-taking chefs, A, B and C.

Denoting the price of DBR by p, Chef A’s supply function for one day is given as:

qA =
{

p − 12 if p ≥ 12,

0 if 0 ≤ p < 12.

Chef B’s supply function for one day is:

qB =
{

p − 20 if p ≥ 20,

0 if 0 ≤ p < 20.

Chef C is a perfectionist and so he can supply no more than 5 DBRs per day. He
does not care about money so much, and he supplies 5 DBRs for any price so long
as it is no less than $5 per DBR. However, if it turns out that he gets less than $5 per
DBR, he takes it as an insult to his cooking and stops supplying DBR completely.

(a) Specify the daily DBR supply function for Chef C, qC .

(b) Sketch the daily DBR supply schedule for each of the chefs separately.

(c) Obtain the daily market supply of DBR.

(d) Sketch it on a diagram.

7. (Obtaining consumer surplus) A society’s demand for a certain good is given as
q = 10 − 2

√
p. Answer the following questions.

(a) Sketch the demand curve on a diagram focusing your attention to 0 ≤ q ≤ 10.

(b) Calculate the consumer surplus when the market price is p∗ = 1.

(c) Calculate the consumer surplus when the market price is p∗∗ = 4.

(d) What is the change in the consumer surplus when the market price changes
from p∗ = 1 to p∗∗ = 4?

8. (Obtaining producer surplus) An inverse market supply function for a certain
good is given as p = q3/2 + 6. Answer the following questions.

(a) Sketch the supply curve on a diagram, focusing your attention to q ≥ 0.

(b) Calculate the producer surplus when the market price is p∗ = 7.

(c) Calculate the producer surplus when the market price is p∗∗ = 70.

(d) What is the change in the producer surplus when the market price changes from
p∗ = 7 to p∗∗ = 70?

9. (Calculating surplus for non-linear demand and supply) A market demand
function for a certain good is given as q = 12 − 2

√
p. An inverse market supply

function for the same good is given as p = q2. Answer the following questions.

(a) Obtain market equilibrium for this good.

(b) Calculate the consumer surplus, producer surplus and total surplus.
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10. (DWL with different price elasticities of demand) Consider a production tax of
$2 per unit.

(a) Calculate the economic incidence and the welfare effects of this tax when
demand for the good is qD = −p + 20 and the supply of the good is qS = p.

(b) How does your answer change if the demand for the good is qD = −1

2
p + 15?

(c) Compare your results for part (a) and part (b). Carefully explain the difference
(if any) in the deadweight loss.

11. (DWL with the perfectly price elastic demand) Consider the same tax and the
supply of the good as in the previous question. Now suppose that the demand
schedule is horizontal to the q-axis at p = 10. More specifically, if the price is
above 10, there is no demand, but if the price is below 10, the demand is infinite.
[Note. This is the case where the demand is perfectly elastic, i.e. the response to a
change in the price at p = 10 is infinite.]

(a) Calculate the economic incidence and the welfare effects of the tax.

(b) Who bears the tax burden and why? Is the deadweight loss different from the
one you calculated in part (a) in the previous question? Explain your answer
referring to the price elasticity of demand.
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Matrix algebra

In Chapter 2 we learnt how to find a solution to a system of two linear equations with two
unknowns x1 and x2. Consider the following system:{

a11x1 + a12x2 = b1

a21x1 + a22x2 = b2.
(A.1)

If a unique solution exists, then it must be that a11a22 − a12a21 �= 0 and the solution is(
x∗

1 , x∗
2

) =
(

b1a22 − b2a12

a11a22 − a12a21
,

b2a11 − b1a21

a11a22 − a12a21

)
. You can verify the solution by applying

the method of elimination by addition (or substitution) to Equation (A.1).
In turn, consider a solution to the following linear equation:

ax = b. (A.2)

If a = 0 and b = 0, then x has infinitely many solutions (because x can be any number),
but if a = 0 and b �= 0, then the equation obviously has no solution. When a �= 0, to obtain
the x that solves the above equation we divide both sides of it by a, or in other words,
multiply both sides of it by the inverse of a, a−1:

a−1ax = a−1(−b) (A.3)

x = −b

a
.

Is there a way to solve Equation (A.1) as we solve Equation (A.2)? In this appendix
we will introduce a new idea, which makes it possible for us to solve Equation (A.1) as
if we are solving a simple linear equation such as Equation (A.2). Let me foreshadow
this process a little bit in a casual manner. We will later see that Equation (A.1) can be
described as:

Ax = b, (A.4)

where A, x and b show the collection of as, xs and bs, respectively. More specifically,
they are described as follows:

A =
(

a11 a12

a21 a22

)
, x =

(
x1

x2

)
, b =

(
b1

b2

)
.

In the above expressions, A is called a (two-by-two) matrix and the x and b are each
called a (column) vector. Once we express Equation (A.1) as Equation (A.4), it looks like
we can employ the same strategy we used to solve Equation (A.2). That is, we would like



219 A.1 Matrices and vectors

to find the inverse of A and multiply it on both sides of Equation (A.4):

A−1Ax = A−1b

x = A−1b,

where A−1 denotes the inverse of A. It turns out that we can obtain the solution x as above
if the inverse matrix A−1 exists.

If you have never seen matrices before, you may be finding it difficult to understand
what I’m talking about. There are many things that are unclear. What is meant by the
inverse of a matrix? What are matrices in any case? Well, don’t worry, we will learn them
in the rest of the appendix.

A.1 Matrices and vectors

Suppose a firm hires three workers, i = 1, 2, 3. If we denote worker i’s monthly pay from
January to April by wij where j = 1, 2, 3, 4, the pay information can be expressed using
the following array of numbers:

W =
⎛
⎝w11 w12 w13 w14

w21 w22 w23 w24

w31 w32 w33 w34

⎞
⎠ . (A.5)

An array of numbers such as W is called a matrix. In W there are three rows that
correspond to workers and four columns that correspond to months, so we call it a 3 × 4
(three-by-four) matrix. In general, if the matrix has m rows and n columns, then we say
its size (or dimension) is m-by-n and call it an m × n matrix. Each of the wij s in W is
called an entry (or element).

If the firm wants to know how much it paid to each of their workers in a particular
month, say in February, it can focus on the second column of W:

wi2 =
⎛
⎝w12

w22

w32

⎞
⎠ . (A.6)

We can see that wi2 contains only one column. Such a matrix is called a column matrix,
or more commonly, a column vector. The firm may want to know how much it paid to a
particular worker, say Worker 3. In that case, then the third row of W is the focus:

w3j = (w31 w32 w33 w34
)
. (A.7)

Here, w3j consists of one row only and such a matrix is known to a row matrix or a
row vector.

We say that two matrices are equal if and only if (a) they have the same size; and (b)
all corresponding entries are equal. That is, for m × n matrices A and B, we have:

A = B if and only if aij = bij for all i and j. (A.8)
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A.1.1 The transpose of a matrix

If we interchange rows and columns of W we obtain the following:

W′ =

⎛
⎜⎜⎝

w11 w21 w31

w12 w22 w23

w13 w23 w33

w14 w24 w34

⎞
⎟⎟⎠ . (A.9)

Notice now W is shown with a prime symbol and has become W′. The prime indicates
that rows and columns of the original matrix are interchanged. The matrix W′ is called
the transpose of W. Some people use a superscript T to denote the same thing, that is,
W′ = WT. Note that the size of the transpose W′ (4 × 3) is different from the size of the
original matrix W (3 × 4). Quite obviously, we have (W′)′ = W.

A.1.2 Special matrices

When we transpose an m × n matrix, we get an n × m matrix. The sizes of the two
matrices differ if m �= n but if m = n the sizes are the same. When m = n a matrix is

called a square matrix of order m (or n). For example,

(
a11 a12

a21 a22

)
is a square matrix of

order 2.
A matrix that is equal to its transpose is called a symmetric matrix. It is obvious that

a symmetric matrix needs to be a square matrix (because otherwise the transpose has

a different size). For example,

(
1 1
1 2

)
is a symmetric matrix but neither

(
1 0
1 2

)
nor(

1 0 0
0 0 1

)
is.

Let’s consider a symmetric matrix of order n, Wn. The entries wii , i = 1, . . . , n are
called the main diagonal entries (or more casually the main diagonals). A diagonal
matrix is a square matrix all of whose off-diagonal entries – i.e. wij , i �= j – are zero.

For example,

(
1 0
0 2

)
and

⎛
⎝w11 0 0

0 w22 0
0 0 w33

⎞
⎠ are diagonal matrices but

(
0 1
0 0

)
is not.

A special case of the diagonal matrix is when all the main diagonals are unity. In this
case we have an identity matrix, which we usually denote by In, where n shows the order

of the matrix. For example, I2 =
(

1 0
0 1

)
and I3 =

⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠ are identity matrices of

order 2 and order 3, respectively. The identity matrix in matrix algebra is like ‘one’ in
(ordinary) algebra and we shall see how it is used shortly.

A zero matrix in matrix algebra is like ‘zero’ in (ordinary) algebra. It is a matrix all of
whose entries are zero. We usually denote it by O. The zero matrix does not have to be a
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square matrix, e.g. O2,3 =
(

0 0 0
0 0 0

)
is a 2 × 3 zero matrix. Most of time our focus will

be a zero square matrix On of order n such as O2 =
(

0 0
0 0

)
and O3 =

⎛
⎝0 0 0

0 0 0
0 0 0

⎞
⎠.

A.1.3 Matrix addition and scalar multiplication

Suppose the three workers we previously discussed were employed in another firm for the
same duration of time. We denote the pay information for that firm by a different 3 × 4
matrix X:

X =
⎛
⎝x11 x12 x13 x14

x21 x22 x23 x24

x31 x32 x33 x34

⎞
⎠ . (A.10)

In this case – when the size of two matrices are the same – it makes sense to add the
two matrices to obtain each worker’s aggregate pay for each of the months. It can be done
simply by adding each of the corresponding entries in the two matrices. Denoting the sum

of the two matrices by Y =
⎛
⎝y11 y12 y13 y14

y21 y22 y23 y24

y31 y32 y33 y34

⎞
⎠, we can write:

Y = W + X =
⎛
⎝w11 + x11 w12 + x12 w13 + x13 w14 + x14

w21 + x21 w22 + x22 w23 + x23 w24 + x24

w31 + x31 w32 + x32 w33 + x33 w34 + x34

⎞
⎠ . (A.11)

For example, in March, Worker 2 earned y23, which is the sum of his pay from two
firms w23 + x23.

Subtracting operations can be conducted similarly. For example, suppose the
information on the rents three workers paid each month is summarised by R =⎛
⎝r11 r12 r13 r14

r21 r22 r23 r24

r31 r32 r33 r34

⎞
⎠, where rij is the rent Worker i paid in Month j . Then the money

that was left in workers’ pockets each month after they paid their rents are given by

Z =
⎛
⎝z11 z12 z13 z14

z21 z22 z23 z24

z31 z32 z33 z34

⎞
⎠, where:

Z = Y − R =
⎛
⎝y11 − r11 y12 − r12 y13 − r13 y14 − r14

y21 − r21 y22 − r22 y23 − r23 y24 − r24

y31 − r31 y32 − r32 y33 − r33 y34 − r34

⎞
⎠ . (A.12)

For example, in April, Worker 1 had z14 in his pocket after paying his rent, which
is the difference between his aggregate pay for April and his April rent y14 − r14. As
shown above, so long as the sizes of two matrices are the same, you can add them and also
subtract one from the other. When these operations are possible, two matrices are said to be
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conformable. You cannot add two matrices (or subtract one matrix from the other) if they

are not conformable. For example, there is no solution to, say,

(
1 0
0 1

)
+
(

1 0 1
0 1 0

)
.

There may be some cases where you have to scale up (or down) all entries in a matrix
by the same number. For example, suppose each of the workers got a discount on their
rents by 10 per cent from January to April. The reduced rents they paid are obtained by
scaling down the matrix R by 10 per cent, and we write it as 0.9R, or equivalently, R0.9.
More specifically,

D =
⎛
⎝d11 d12 d13 d14

d21 d22 d23 d24

d31 d32 d33 d34

⎞
⎠ = 0.9

⎛
⎝r11 r12 r13 r14

r21 r22 r23 r24

r31 r32 r33 r34

⎞
⎠

=
⎛
⎝0.9r11 0.9r12 0.9r13 0.9r14

0.9r21 0.9r22 0.9r23 0.9r24

0.9r31 0.9r32 0.9r33 0.9r34

⎞
⎠ (A.13)

=
⎛
⎝r11 r12 r13 r14

r21 r22 r23 r24

r31 r32 r33 r34

⎞
⎠ 0.9,

where D is the matrix whose entries show the discounted rents. For example, d32 is the
discounted rent Worker 3 paid in February, which is 90 per cent of the normal rent he
would have paid in the same month (without the discount). The single number used
to scale the matrix – in the above case, 0.9 – is called a scalar, and therefore this
operation is called the scalar multiplication. As stated above, θR = Rθ , where θ is a
scalar.

As in (ordinary) algebra, scalar multiplication has to be conducted before matrix
addition (or subtraction) unless the latter operation is in brackets. So quite obviously,
θY − D �= θ(Y − D). The LHS says ‘conduct scalar multiplication θY first then subtract
D’ whereas the RHS says ‘subtract D from Y first then multiply the difference by θ’. The
subtraction need not be carried out first, however, even when you encounter an expression
such as θ(Y − D). Another way to calculate it is – just as you would do in (ordinary)
algebra – to distribute θ to each of the matrices as follows before taking the difference:
θ(Y − D) = θY − θD.

Now let us go through some exercises to consolidate our understanding.

Question Given X =
(

1 1
1 2

)
, Y =

(
1 0
1 2

)
and Z =

(−1 −2
3 1

)
, obtain the

following:

(1) X + Y, (2) X + Z′, (3) 2X + Y, (4) 3(X + Y) − 2Z.
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Solution

(1)

X + Y =
(

1 1
1 2

)
+
(

1 0
1 2

)

=
(

1 + 1 1 + 0
1 + 1 2 + 2

)

=
(

2 1
2 4

)
.

(2)

X + Z′ =
(

1 1
1 2

)
+
(−1 3

−2 1

)

=
(

1 − 1 1 + 3
1 − 2 2 + 1

)

=
(

0 4
−1 3

)
.

(3)

2X + Y = 2

(
1 1
1 2

)
+
(

1 0
1 2

)

=
(

2 2
2 4

)
+
(

1 0
1 2

)

=
(

2 + 1 2 + 0
2 + 1 4 + 2

)

=
(

3 2
3 6

)
.

(4)

3(X + Y) − 2Z = 3

((
1 1
1 2

)
+
(

1 0
1 2

))
− 2

(−1 −2
3 1

)

= 3

(
2 1
2 4

)
−
(−2 −4

6 2

)

=
(

6 3
6 12

)
−
(−2 −4

6 2

)

=
(

6 − (−2) 3 − (−4)
6 − 6 12 − 2

)

=
(

8 7
0 10

)
.
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(4) Alternatively,

3(X + Y) − 2Z = 3

(
1 1
1 2

)
+ 3

(
1 0
1 2

)
− 2

(−1 −2
3 1

)

=
(

3 3
3 6

)
+
(

3 0
3 6

)
−
(−2 −4

6 2

)

=
(

3 + 3 − (−2) 3 + 0 − (−4)
3 + 3 − 6 6 + 6 − 2

)

=
(

8 7
0 10

)
.

Exercise A.1 Basic matrix operations.

A.1.4 Matrix multiplication

Let us think about four shops that deal with three goods, pencils, erasers and notebooks.
The price information for these goods in each of the shops is given in Table A.1.

If you buy 3 pencils, an eraser and 4 notebooks in Shop A, your expenditure will
be: 1 · 3 + (0.5) · 1 + 2 · 4 = 11.5 (dollars). Using matrices (vectors), this calculation is
expressed as follows:

(
1 0.5 2

)⎛⎝3
1
4

⎞
⎠ , (A.14)

so

(
1 0.5 2

)⎛⎝3
1
4

⎞
⎠ = 1 · 3 + (0.5) · 1 + 2 · 4 = 11.5. (A.15)

By the same token, your expenditure if you buy 3 pens, an eraser and 4 notebooks in
Shops B, C and D can be expressed, respectively, as:

(
1.2 0.5 1.8

)⎛⎝3
1
4

⎞
⎠ = (1.2) · 3 + (0.5) · 1 + (1.8) · 4 = 11.3, (A.16)

(
0.8 0.5 2.5

)⎛⎝3
1
4

⎞
⎠ = (0.8) · 3 + (0.5) · 1 + (2.5) · 4 = 12.9, (A.17)
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Table A.1. The price
information on three goods.

Shop Pencil Eraser Notebook

A 1 0.5 2
B 1.2 0.5 1.8
C 0.8 0.5 2.5
D 1.5 0.5 1.5

and

(
1.5 0.5 1.5

)⎛⎝3
1
4

⎞
⎠ = (1.5) · 3 + (0.5) · 1 + (1.5) · 4 = 11. (A.18)

The product of two vectors of the same order is called their inner product. In the above
examples, the order of the vectors is three, but we can generalise the idea to the inner

product of two n-dimensional vectors. For p′ = (p1 · · · pn

)
and q =

⎛
⎜⎝q1

...
qn

⎞
⎟⎠, the inner

product p′q is:

(
p1 · · · pn

)⎛⎜⎝q1
...

qn

⎞
⎟⎠ = p1q1 + · · · + pnqn =

n∑
i=1

piqi. (A.19)

Putting Equations (A.15), (A.16), (A.17) and (A.18) together, we can summarise the
expenditure information as follows:⎛

⎜⎜⎝
1 0.5 2

1.2 0.5 1.8
0.8 0.5 2.5
1.5 0.5 1.5

⎞
⎟⎟⎠
⎛
⎝3

1
4

⎞
⎠ =

⎛
⎜⎜⎝

11.5
11.3
12.9
11

⎞
⎟⎟⎠ , (A.20)

or

Pq1 = x1, (A.21)

where P =

⎛
⎜⎜⎝

1 0.5 2
1.2 0.5 1.8
0.8 0.5 2.5
1.5 0.5 1.5

⎞
⎟⎟⎠, q1 =

⎛
⎝3

1
4

⎞
⎠ and x1 =

⎛
⎜⎜⎝

11.5
11.3
12.9
11

⎞
⎟⎟⎠.

Now suppose that another person buys 5 pencils, 2 erasers and 10 notebooks from

these shops. Let us denote these quantities by q2 =
⎛
⎝ 5

2
10

⎞
⎠. Then this person’s expenditure
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information can be represented by:⎛
⎜⎜⎝

1 0.5 2
1.2 0.5 1.8
0.8 0.5 2.5
1.5 0.5 1.5

⎞
⎟⎟⎠
⎛
⎝ 5

2
10

⎞
⎠ =

⎛
⎜⎜⎝

26
25
30

23.5

⎞
⎟⎟⎠ , (A.22)

or

Pq2 = x2. (A.23)

Putting Equations (A.20) and (A.22) together, the expenditure information for you and
another person can be summarised as follows:⎛

⎜⎜⎝
1 0.5 2

1.2 0.5 1.8
0.8 0.5 2.5
1.5 0.5 1.5

⎞
⎟⎟⎠
⎛
⎝3 5

1 2
4 10

⎞
⎠ =

⎛
⎜⎜⎝

11.5 26
11.3 25
12.9 30
11 23.5

⎞
⎟⎟⎠ , (A.24)

or

PQ = X, (A.25)

where Q =
⎛
⎝3 5

1 2
4 10

⎞
⎠ = (q1 q2

)
and X =

⎛
⎜⎜⎝

11.5 26
11.3 25
12.9 30
11 23.5

⎞
⎟⎟⎠ = (x1 x2

)
. Check that the

information on quantity and expenditure for you is given in the first column of Q and X,
respectively, and the same is done for the other person in the second column.

Now we have obtained the product PQ of the two matrices P and Q, which is X. Notice
that xij of X is the inner product of Row i of P and Column j of Q. For example, to
calculate x21 (your expenditure when you use Shop B), the relevant row of P is 2 and the
relevant column of Q is 1, as shown below:⎛

⎜⎜⎝
1 0.5 2

1.2 0.5 1.8
0.8 0.5 2.5
1.5 0.5 1.5

⎞
⎟⎟⎠
⎛
⎝3 5

1 2
4 10

⎞
⎠ =

⎛
⎜⎜⎝

11.5 26
11.3 25
12.9 30
11 23.5

⎞
⎟⎟⎠ , (A.26)

and to calculate x32 (the other person’s expenditure when Shop C is used), the relevant
row of P is 3 and the relevant column of Q is 2 as shown below:⎛

⎜⎜⎝
1 0.5 2

1.2 0.5 1.8
0.8 0.5 2.5
1.5 0.5 1.5

⎞
⎟⎟⎠
⎛
⎝3 5

1 2
4 10

⎞
⎠ =

⎛
⎜⎜⎝

11.5 26
11.3 25
12.9 30
11 23.5

⎞
⎟⎟⎠ . (A.27)

You should make sure that you can calculate all the other entries of X as above. Because
of the way each of the entries is calculated, the product of the two matrices PQ can be
defined if and only if the number of columns of P is the same as the number of rows of Q.
We say that P and Q are conformable. In our example, we have a 4 × 3 matrix P and a



227 A.1 Matrices and vectors

3 × 2 matrix Q. Therefore, PQ is defined. Notice that the 3 in our example is the number
of the goods. It just means that, to define the total expenditure on goods properly, we need
to have equal number of prices and quantities. For example, if you only have the price
for a pencil, then you won’t be able to calculate the expenditure when you buy pencils,
erasers and notebooks.

Note also that the size of the product PQ is 4 × 2. The number of rows is the same as P
and the number of columns is same as Q. In general, the product of the two matrices PQ,
for an m × n matrix P and an n × p matrix Q, is an m × p matrix.

Let us do some exercises.

Question Given X =
(

1 1
1 2

)
, Y =

(
1 0
1 2

)
and Z =

(−1 −2
3 1

)
, obtain the

following:

(1) XY, (2) YX, (3) YZ, (4) ZY.

Solution

(1)

XY =
(

1 1
1 2

)(
1 0
1 2

)

=
(

1 + 1 0 + 2
1 + 2 0 + 4

)

=
(

2 2
3 4

)
.

(2)

YX =
(

1 0
1 2

)(
1 1
1 2

)

=
(

1 + 0 1 + 0
1 + 2 1 + 4

)

=
(

1 1
3 5

)
.

(3)

YZ =
(

1 0
1 2

)(−1 −2
3 1

)

=
(−1 + 0 −2 + 0

−1 + 6 −2 + 2

)

=
(−1 −2

5 0

)
.
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(4)

ZY =
(−1 −2

3 1

)(
1 0
1 2

)

=
(−1 − 2 0 − 4

3 + 1 0 + 2

)

=
(−3 −4

4 2

)
.

Exercise A.2 Matrix multiplication.

As you can see in the above exercises, XY �= YX and YZ �= ZY. There is no
communicative property in matrix multiplication in general. Therefore when we talk
about the product of two matrices X and Y, it can mean two different things, XY and
YX. To avoid this ambiguity, to indicate XY we say that Y is pre-multiplied by X.
Alternatively we can say that X is post-multiplied by Y.

Although the communicative property does not hold in matrix multiplication, associa-
tive and distributive properties do just as in multiplication of numbers. That is, provided
all operations are defined, we have:

(XY)Z = X(YZ),

and

X (Y ± Z) = XY ± XZ

(X ± Y) Z = XZ ± YZ.

We have just seen the order of matrix multiplication matters, but for some square
matrices, it doesn’t. The following cases are worth mentioning. Firstly, when a square
matrix X is multiplied twice, obviously we have XX = XX! The product of two Xs is
denoted by X2 and we say that X is raised to the power of 2. Secondly, when a square
matrix X is pre-multiplied (or post-multiplied) by an identity matrix of the same order,
we have XI = IX = X. As mentioned before, the identity matrix hence plays a role like
‘one’ in (ordinary) algebra. Thirdly, when a square matrix X is pre-multiplied (or post-
multiplied) by a zero matrix of the same order, we have XO = OX = O. It is just like a
‘zero’ in (ordinary) algebra. Regardless of whether X is pre-multiplied or post-multiplied
by O, the product is a zero matrix.

A.2 An inverse of a matrix and the determinant: solving a system
of equations

From here onwards, we focus only on square matrices because we deal with them most
in studying economics or econometrics. In particular, our primary focus will be 2 × 2
matrices.
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A.2.1 An inverse matrix

In (ordinary) algebra, a reciprocal of a number x, for x �= 0, is defined as
1

x
, so the product

of the number and its reciprocal is unity. An inverse of a matrix plays a similar role in
matrix algebra. That is, an inverse matrix of a square matrix X of order n is, where defined,
the square matrix X−1 such that XX−1 = X−1X = In.

Let us try to obtain an inverse matrix of X =
(

x11 x12

x21 x22

)
. Suppose that the inverse

matrix exists and denote it by A =
(

a11 a12

a21 a22

)
. Then, by definition, we have XA = I2,

or equivalently: (
x11 x12

x21 x22

)(
a11 a12

a21 a22

)
=
(

1 0
0 1

)
.

It follows that: ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x11a11 + x12a21 = 1, (A.28)

x11a12 + x12a22 = 0, (A.29)

x21a11 + x22a21 = 0, (A.30)

x21a12 + x22a22 = 1. (A.31)

Using Equations (A.28) and (A.30), we can eliminate a21 to obtain the following:

(x11x22 − x12x21)a11 = x22. (A.32)

Likewise, using Equations (A.28)–(A.31), we can obtain the following three equations:

(x11x22 − x12x21)a12 = −x12, (A.33)

(x11x22 − x12x21)a21 = −x21, (A.34)

(x11x22 − x12x21)a22 = x11. (A.35)

So, when (x11x22 − x12x21) �= 0;

a11 = x22

x11x22 − x12x21
,

a12 = − x12

x11x22 − x12x21
,

a21 = − x21

x11x22 − x12x21
,

a22 = x11

x11x22 − x12x21
.

That is, when (x11x22 − x12x21) �= 0 the inverse matrix of X exists and it is:

X−1 = 1

x11x22 − x12x21

(
x22 −x12

−x21 x11

)
. (A.36)

However, when (x11x22 − x12x21) = 0, Equations (A.32)–(A.35) suggest that a11 =
a12 = a21 = a22 = 0, which contradicts Equations (A.28) and (A.30). Hence the inverse
matrix of X does not exist when (x11x22 − x12x21) = 0.
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Question Obtain the inverse matrix for each of the following matrices: X =
(

1 1
1 2

)
,

Y =
(

1 0
1 2

)
and Z =

(−1 −2
3 1

)
.

Solution

(1)

X−1 = 1

1 · 2 − 1 · 1

(
2 −1

−1 1

)
.

=
(

2 −1
−1 1

)
.

(2)

Y−1 = 1

1 · 2 − 0 · 1

(
2 0

−1 1

)
.

=
(

1 0
− 1

2
1
2

)
.

(3)

Z−1 = 1

(−1) · 1 − (−2) · 3

(
1 2

−3 −1

)
.

=
( 1

5
2
5

− 3
5 − 1

5

)
.

Exercise A.3 Obtaining the inverse matrix (2 × 2).

A.2.2 The determinant

The term x11x22 − x12x21 is called the determinant of a 2 × 2 matrix X =
(

x11 x12

x21 x22

)
.

We denote it by |X| or

∣∣∣∣x11 x12

x21 x22

∣∣∣∣. You might encounter the notation detX or det

(
x11 x12

x21 x22

)
in other books, which respectively mean the same thing. Now we can summarise our
finding on the inverse matrix as follows.

Consider a 2 × 2 matrix X =
(

x11 x12

x21 x22

)
. The inverse matrix X−1 exists if and only if

|X| �= 0 and:

X−1 = 1

|X|
(

x22 −x12

−x21 x11

)
. (A.37)



231 A.2 An inverse of a matrix and the determinant

When the determinant of a matrix is non-zero – i.e. when the inverse matrix exists –
the matrix is called non-singular. A matrix is called singular, on the other hand, when
the determinant is zero (so the inverse matrix is undefined).

In passing, the determinant of a 1 × 1 matrix – which is a scalar – x is defined as
|x| = x. That is, it is defined as the matrix (scalar) itself. This definition makes sense

because, when x = 0, its reciprocal (inverse)
1

x
is undefined and we can’t find a unique

solution to ax = b.

A.2.3 Solving a system of equations

Now we are ready to solve the system of Equations (A.1) we saw in the beginning of this
appendix. Let me write the system again:

{
a11x1 + a12x2 = b1

a21x1 + a22x2 = b2.
(A.38)

It should be straightforward by now that the above system can be represented by the
following:

Ax = b, (A.39)

where A, x and b are defined as follows:

A =
(

a11 a12

a21 a22

)
, x =

(
x1

x2

)
, b =

(
b1

b2

)
.

To solve for x we can pre-multiply the both sides of Equation (A.39) by A−1, if it exists.
That is, if A−1 exists, then there will be a unique solution x∗ to Equation (A.39), which is:

x∗ = A−1b. (A.40)

However, if A−1 does not exist, then it means that (A.39) has either (i) infinitely
many solutions or (ii) no solution. Let us see each of these cases using examples from
Section 2.10 in the main text.

Question Solve the following systems of equations.

(1) (Same as Equations (2.18) and (2.19)){
y = 2x (A.41)

4x − 2y = 0. (A.42)
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(2) (Same as Equations (2.20) and (2.21)){
y = 2x + 1 (A.43)

−2x + y = −4. (A.44)

(3) (Same as Equations (2.22) and (2.23)){
y = −x + 5 (A.45)

y = 3x − 7. (A.46)

Solution

(1) The equations can be rearranged as follows:{
2x − y = 0

4x − 2y = 0.

Using matrices they can be represented as:(
2 −1
4 −2

)(
x

y

)
=
(

0
0

)
.

The inverse matrix of

(
2 −1
4 −2

)
does not exist because

∣∣∣∣2 −1
4 −2

∣∣∣∣ = 2 · (−2) − (−1) · 4 = 0.

The two equations in fact are identical and hence any (x, y) that satisfy one equation will
satisfy the other. Therefore, there are infinitely many solutions.

(2) The equations can be rearranged as follows:{
2x − y = −1

2x − y = 4.

Using matrices they can be represented as:(
2 −1
2 −1

)(
x

y

)
=
(−1

4

)
.

The inverse matrix of

(
2 −1
2 −1

)
does not exist because

∣∣∣∣2 −1
2 −1

∣∣∣∣ = 2 · (−1) − (−1) · 2 = 0.

The two equations are parallel in this case (they have the same slope but have different
vertical intercepts) and hence there is no (x, y) that satisfies both equations simultane-
ously. There is no solution.

(3) The equations can be rearranged as follows:{
x + y = 5

3x − y = 7.

Using matrices they can be represented as:(
1 1
3 −1

)(
x

y

)
=
(

5
7

)
. (A.47)
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The inverse matrix of

(
1 1
3 −1

)
exists because

∣∣∣∣1 1
3 −1

∣∣∣∣ = 1 · (−1) − 1 · 3 = −4. The

inverse matrix is:

1

−4

(−1 −1
−3 1

)
= 1

4

(
1 1
3 −1

)
.

So by pre-multiplying this matrix on both sides of Equation (A.47), we get:(
x

y

)
= 1

4

(
1 1
3 −1

)(
5
7

)

= 1

4

(
1 · 5 + 1 · 7

3 · 5 + (−1) · 7

)

= 1

4

(
12
8

)

=
(

3
2

)
.

Hence the system has a unique solution (x∗, y∗) = (3, 2).

Exercise A.4 Solving simultaneous equations using matrices 1.

To conclude the section, let us try solving another problem taken from Section 2.10.

Question Solve the following system of simultaneous equations (same as Equations
(2.24) and (2.25)):

{
2y − 3x = 8

−3y + 2x = −7.

Solution

The equations can be rearranged as follows:{ −3x + 2y = 8

2x − 3y = −7.

Using matrices they can be represented as:(−3 2
2 −3

)(
x

y

)
=
(

8
−7

)
. (A.48)

The inverse matrix of

(−3 2
2 −3

)
exists because

∣∣∣∣−3 2
2 −3

∣∣∣∣ = (−3) · (−3) − 2 · 2 = 5. The

inverse matrix is:

1

5

(−3 −2
−2 −3

)
= −1

5

(
3 2
2 3

)
.
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So by pre-multiplying this matrix on both sides of Equation (A.48), we get:(
x

y

)
= −1

5

(
3 2
2 3

)(
8

−7

)

= −1

5

(
3 · 8 + 2 · (−7)
2 · 8 + 3 · (−7)

)

= −1

5

(
10
−5

)

=
(−2

1

)
.

Hence the system has a unique solution (x∗, y∗) = (−2, 1).

Exercise A.5 Solving simultaneous equations using matrices 2.

A.3 An unconstrained optimisation problem

In Section 6.6, we discussed how to solve an unconstrained optimisation problem. We saw
that the first-order conditions for a local maximum/minimum of the bi-variate function
f (x1, x2) are:

∂f (x1, x2)

∂x1
= ∂f (x1, x2)

∂x2
= 0. (A.49)

The second-order conditions for a local maximum are:

∂2f (x1, x2)

∂x2
1

< 0,
∂2f (x1, x2)

∂x2
2

< 0, (A.50)

and:

∂2f (x1, x2)

∂x1
2

· ∂2f (x1, x2)

∂x2
2

>

[
∂2f (x1, x2)

∂x2∂x1

]2

. (A.51)

For a local minimum A.50 is replaced with the following two inequalities:

∂2f (x1, x2)

∂x2
1

> 0,
∂2f (x1, x2)

∂x2
2

> 0. (A.52)

Equations (A.49), (A.50) and (A.52) made sense intuitively, but the justification
for (A.51) was hard to provide. In this section, I will show you where (A.51) has come
from. In addition, I will represent these conditions by using matrices because the use
of them helps us to intuitively understand the second-order conditions for a local maxi-
mum/minimum of functions with more than two variables.
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A.3.1 Representing unconstrained optimisation using matrices

Consider finding a local maximum (or a minimum) of y = f (x1, x2). Taking the total
differential of y = f (x1, x2) we get:

dy = ∂f (x1, x2)

∂x1
dx1 + ∂f (x1, x2)

∂x2
dx2. (A.53)

Using matrices (or vectors in this case), we can write Equation (A.53) as:

dy =
(

∂f (x1,x2)
∂x1

∂f (x1,x2)
∂x2

)(
dx1

dx2

)
. (A.54)

For a local maximum (or a minimum), we need to have dy = 0 for any vector

(
dx1

dx2

)
,

so it is necessary that: (
∂f (x1,x2)

∂x1

∂f (x1,x2)
∂x2

)
= (0 0

)
. (A.55)

Hence the first-order condition for a local maximum/minimum is represented by (A.55),
which is essentially the same as (A.49). Now, let us think about the second-order conditions
for a local maximum. The second-order conditions for a local maximum given by (A.50)
say that f (x1, x2) must be strictly concave at the local maximum with respect to each of
x1 and x2. That is, they require that the point in question be the local maximum in each of
the directions x1 and x2. However, we should really consider all the directions to which
(x1, x2) can move other than these two directions. For example, we can consider moving
a bit towards both the directions x1 and x2 from the point in question. If f (x1, x2) is not
strictly concave (say it is strictly convex) in that direction, even when it is strictly concave
in each of the directions x1 and x2, the point in question cannot not be a local maximum
because moving a little bit to that direction will increase the value of f (x1, x2). If we make
sure that the function is strictly concave in all the directions, i.e. 360 degrees in this case,
then we can say the point in question is a local maximum. This argument explains why
we need (A.51) in addition to (A.50).

The same argument applies to the second-order conditions for a local minimum. The
second-order conditions for a local minimum given by (A.52) say that f (x1, x2) must
be strictly convex at the local minimum with respect to each of x1 and x2. However, as
discussed for a local maximum, we ought to make sure that the function is strictly convex
in all the directions. Otherwise we cannot guarantee that the point in question is a local
maximum.

To think about the curvature of f (x1, x2), we take the total differential of Equa-
tion (A.53). It is called the second-order total differential, which is denoted by d2y,
because we totally differentiate the total differential dy. The total differential dy we have
discussed in the main text (and just before in Equation (A.53)) is therefore sometimes
called the first-order total differential. Bearing in mind that the two partial derivatives
are functions of both x1 and x2, let us totally differentiate Equation (A.53) to get the
second-order total differential of y = f (x1, x2):

d(dy) ≡ d2y = f11dx2
1 + f21dx2dx1 + f12dx1dx2 + f22dx2

2 . (A.56)
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We can use the second-order total differential to assess the curvature of f (x1, x2) in the
same way that we use the second derivative f ′′(x) to judge the curvature of a univariate
function f (x). Recall that f (x) is strictly concave if and only if f ′′(x) < 0. It turns out
that a bi-variate function f (x1, x2) is strictly concave if and only if the second-order total
differential is negative for all (dx1, dx2) �= (0, 0). On the other hand, a bi-variate function
f (x1, x2) is strictly convex if and only if the second-order total differential is positive for
all (dx1, dx2) �= (0, 0). They are important results so let us highlight them as follows:

� y = f (x1, x2) is strictly concave ⇔ d2y < 0∀(dx1, dx2) �= (0, 0); and
� y = f (x1, x2) is strictly convex ⇔ d2y > 0∀(dx1, dx2) �= (0, 0).

Now, using matrices we can write Equation (A.56) as:

d2y = (dx1 dx2
) (f11 f12

f21 f22

)(
dx1

dx2

)
, (A.57)

or:

d2y = x′Hx, (A.58)

where x =
(

dx1

dx2

)
and H =

(
f11 f12

f21 f22

)
.

H’s entry for row i and column j , for i, j = 1, 2, is fij , which is obtained by partially
differentiating f (x1, x2) with respect to xi , then xj . Such a matrix is called the Hessian
matrix of f (x1, x2). Note also that, by Young’s Theorem, f21 = f12, so H is a symmetric
matrix and Equation (A.56) can be written as:

d2y = f11dx2
1 + 2f12dx1dx2 + f22dx2

2 , (A.59)

or:

d2y = x′Fx, (A.60)

where F =
(

f11 f12

f12 f22

)
.

A.3.2 The second-order condition for a local maximum/minimum

By rearranging Equation (A.59), let us investigate the necessary and sufficient condition
for d2y < 0. We begin with completing the square on the RHS of Equation (A.60):

d2y = f11dx2
1 + 2f12dx1dx2 + f22dx2

2

= f11

(
dx1 + f12

f11
dx2

)2

− f 2
12

f11
dx2

2 + f22dx2
2

= f11

(
dx1 + f12

f11
dx2

)2

+ 1

f11

(
f11f22 − f 2

12

)
dx2

2 .
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Both

(
dx1 + f12

f11
dx2

)2

and dx2
2 are non-negative (and at least one of them is positive

for (dx1, dx2) �= (0, 0)), so it is easy to see that it is sufficient to have both f11 < 0 and
f11f22 − f 2

12 > 0 for d2y < 0. That is:

f11 < 0 and f11f22 − f 2
12 > 0 ⇒ d2y < 0. (A.61)

But is it necessary to have both f11 < 0 and f11f22 − f 2
12 > 0? Indeed it is. Suppose

that when d2y < 0 we have f11 ≥ 0. But, for dx2 = 0 and dx1 �= 0, we have d2y =
f11dx2

1 ≥ 0. It contradicts d2y < 0, so for d2y < 0 it is necessary that f11 < 0. Also
suppose that when d2y < 0 we have f11f22 − f 2

12 ≥ 0. But for (dx1, dx2) such that dx1 +
f12

f11
dx2 = 0, we have d2y ≥ 0 (note that we have already verified f11 < 0 is necessary).

It contradicts d2y < 0, so for d2y < 0 it is also necessary that f11f22 − f 2
12 > 0. Hence

we have the necessary and sufficient condition for d2y < 0:

f11 < 0 and f11f22 − f 2
12 > 0 ⇔ d2y < 0. (A.62)

Therefore, the second-order conditions for a local maximum are:

f11 < 0 and f11f22 − f 2
12 > 0. (A.63)

You might wonder why f22 < 0 (the second inequality in (A.50)) does not appear.
In fact, it is implied by (A.63). Notice that when f11 < 0, for f11f22 − f 2

12 > 0 to hold
f22 < 0 is necessary. Listing f22 < 0 as one of the second-order conditions is therefore
redundant (although it is not incorrect to list it). Despite its redundancy, it was listed
in Section 6.6 because my intention there was to graphically explain the second-order
conditions.

In any event, you should be able to verify that the second-order conditions for a local
minimum are:

f11 > 0 and f11f22 − f 2
12 > 0, (A.64)

which are consistent with what we saw in Section 6.6. Note that we have f11f22 − f 2
12 > 0

regardless of whether we look for a local maximum or a local minimum.

A.3.3 Quadratic forms and the definiteness of a matrix

Let me now explain the second-order conditions by using matrices. Look at (A.60). The
sign of d2y depends on the product of the matrices x′Fx, which is called the quadratic
form. Given a matrix F (which depends on the function in question f (x1, x2)), the value
of the quadratic form depends on x. That is, in general, the quadratic form may be positive,
negative or a zero, depending on x. However, for the point that satisfies the first-order
condition to be a local maximum, we would like the quadratic form to be negative for any
x �= 0. For a local minimum, on the other hand, we would like the quadratic form to be
positive for any x �= 0.

When x′Fx < 0 for any x �= 0, then we say that the quadratic form is negative definite
and that F is a negative definite matrix. On the other hand, when x′Fx > 0 for any x �= 0,
then we say that the quadratic form is positive definite and that F is a positive definite
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matrix. Hence, using the terminology in matrix algebra, the second-order condition for
a local maximum (minimum) is that: F evaluated at the point in question be negative
(positive, respectively) definite. The only problem then, is how to tell whether F is positive
definite or negative definite. Well, this job has already been done in the previous subsection!

F =
(

f11 f12

f12 f22

)
is:

� negative definite if and only if f11 < 0 and f11f22 − f 2
12 > 0; and

� positive definite if and only if f11 > 0 and f11f22 − f 2
12 > 0.

A.3.4 Principal submatrices and principal minors: Unconstrained optimisation
that involves many variables

The job of finding the second-order condition can be done, as demonstrated in Subsec-
tion A.3.2, without the use of matrices. Hence you might wonder why I have bothered
to represent the same idea using matrices in Subsection A.3.3. In describing the second-
order condition for a local maximum/minimum of a bi-variate function f (x1, x2), yes,
there seems to be no point using matrices. However, when the function has more than
two arguments, the second-order conditions become extremely messy. The use of matri-
ces expedites representing the conditions and also helps to interpret them naturally as an
extension of the simplest case (which deals with a function of only two variables). It is
beyond the scope of this appendix to deal with optimisation problems that require the use
of matrices bigger than 2 × 2, but I hope that the following discussion at least makes you
realise how useful matrices are.1

Suppose we have an n × n matrix. Think about deleting certain rows and the corre-

sponding columns of that matrix. For example, for a 3 × 3 matrix X =
⎛
⎝x11 x12 x13

x21 x22 x23

x31 x32 x33

⎞
⎠,

we can delete row 1 and column 1 to get

(
x22 x23

x32 x33

)
. Deleting row 2 and column 2, we

get

(
x11 x13

x31 x33

)
and

(
x11 x12

x21 x22

)
can be obtained if we delete row 3 and column 3.

We can delete two rows and the corresponding columns. It yields three matrices –
in fact, they are scalars – x11, x22 and x33. It is trivial, but by deleting zero rows and

columns we have the original matrix

⎛
⎝x11 x12 x13

x21 x22 x23

x31 x32 x33

⎞
⎠. So, in the end, this process yields

seven matrices that are called the principal submatrices. For example, x22 is a principal

submatrix of order 1 and

(
x22 x23

x32 x33

)
is a principal submatrix of order 2. The determinant

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

1 If you would like to study this topic further I recommend that you consult more advanced textbooks in quantitative
methods in economics, such as C. P. Simon and L. Blume, Mathematics for Economists (Norton, 1994).
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of these principal submatrices are called principal minors. For example,

∣∣∣∣x22 x23

x32 x33

∣∣∣∣ is a

principal minor of order 2.
Amongst the principal submatrices, important ones are those that are obtained by delet-

ing the last k rows and columns of the matrix, where k = 0, 1, . . . , n − 1. For example,
for the 3 × 3 matrix X, by deleting the last 0 rows and columns, we obviously have X

itself; by deleting the last one row and the corresponding column, we have

(
x11 x12

x21 x22

)
;

and by deleting the last two rows and the corresponding columns, we have x11.

Note that x11,

(
x11 x12

x21 x22

)
and

⎛
⎝x11 x12 x13

x21 x22 x23

x31 x32 x33

⎞
⎠ are called leading principal subma-

trices. The determinant of a leading principal submatrix is called the leading principal
minor.

Now look at the familiar 2 × 2 matrix F =
(

f11 f12

f12 f22

)
. There are two leading principal

minors: |f11| and

∣∣∣∣f11 f12

f12 f22

∣∣∣∣. Notice that |f11| = f11 and

∣∣∣∣f11 f12

f12 f22

∣∣∣∣ = f11f22 − f 2
12, both

of which appear in the definition of the definiteness of F. Therefore, denoting the leading

principal minors by F1 = |f11| and F2 =
∣∣∣∣f11 f12

f12 f22

∣∣∣∣, we have the following result.

F =
(

f11 f12

f12 f22

)
is:

� negative definite if and only if F1 < 0 and F2 > 0; and
� positive definite if and only if F1 > 0 and F2 > 0.

Now think about a function of n variables f (x1, x2, . . . , xn) so that F =⎛
⎜⎝f11 · · · f1n

...
. . .

...
fn1 · · · fnn

⎞
⎟⎠. It is natural to extend the definition of positive/negative definite-

ness to the n × n symmetric matrix, and indeed it is known that it depends on signs of the

leading principal minors. Denoting the leading principle minor by Fk =

∣∣∣∣∣∣∣
f11 · · · f1k

...
. . .

...
fk1 · · · fkk

∣∣∣∣∣∣∣,
k = 1, . . . , n, the following is well established.

A symmetric matrix F =

⎛
⎜⎝f11 · · · f1n

...
. . .

...
fn1 · · · fnn

⎞
⎟⎠ is:

� negative definite if and only if F1 < 0, F2 > 0, F3 < 0, F4 > 0 and so on; and
� positive definite if and only if F1 > 0, F2 > 0, F3 > 0, F4 > 0 and so on.
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In other words, the necessary and sufficient condition for a symmetric matrix F to be
negative definite is that its leading principal minors alternate in sign, starting with negative
(i.e. F1 < 0); and the necessary and sufficient condition for a symmetric matrix F to be
positive definite is that all of its leading principal minors be positive.

It is extremely difficult to visualise the curvature of a function of n variables, but we can
naturally extend the two-variable case where we used the second-order total differential
d2y to assess the curvature of f (x1, x2). For f (x1, . . . , xn) we can define the second-order
total differential:

d2y = f11dx1 + f12dx2 + · · · + f1ndxn + · · · + fn1dx1 + fn2dx2 + · · · + fnndxn,

(A.65)
or:

d2y = x′Fx, (A.66)

where x′ = (dx1 dx2 · · · dxn

)
.

Just as in the two-variable case, we can focus on the sign of the second-order total
derivative to assess the curvature of f (x1, . . . , xn):

� f (x1, . . . , xn) is strictly concave ⇔ d2y < 0∀x′ �= 0′; and
� f (x1, . . . , xn) is strictly convex ⇔ d2y > 0∀x′ �= 0′.

From Equation (A.66) d2y < 0∀x′ �= 0′ clearly implies (and is implied by) the negative
definiteness of F, and d2y > 0∀x′ �= 0′ implies (and is implied by) the positive definiteness
of F. Hence, we now know that the necessary and sufficient condition for f (x1, . . . , xn)
to be strictly concave (convex) is that F be negative (positive) definite.

When we wish to find a local maximum/minimum of f (x1, . . . , xn), for a point that
satisfies the first-order condition to be a local maximum/minimum, we need to check the
curvature of the function in the neighbourhood of that point. Just as in the two-variable
case, we require the function to be strictly concave (convex) in the neighbourhood of
the point for it to be a local maximum (or minimum, respectively). We also know that
the curvature of the function is summarised by the definiteness of the Hessian matrix F.
That is, f (x1, . . . , xn) is strictly concave (convex) if and only if F is negative (positive,
respectively) definite. Hence the second-order condition for the unconstrained optimisation
problem involving n variables can be succinctly summarised as follows.

Consider f (x1, x2, . . . , xn) and a point that satisfies the first-order condition for a local
maximum/minimum. The point is:

� a local maximum if and only if F evaluated at that point is negative definite; and
� a local minimum if and only if F evaluated at that point is positive definite.

Of course, obtaining the leading principle minors of order n, where n > 2, by hand
can be a tedious task, which involves calculating the determinant of order n > 2 (but
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there are ways to do it). It is left for interested readers to investigate in other textbooks in
quantitative methods.2

To close this appendix, let us do the following exercise. It is the same as Exercise 6.6,
but try answering the question using matrices.

Question (The profit maximisation problem with two inputs) Consider a profit max-
imising competitive firm that produces a certain good denoted by q. The production
function is given as

q = f (K, L) = K
1
3 L

1
3 ,

where K and L denote robots and labour, respectively. Suppose that the price of a robot
is r = 2 and that labour costs w = 1 per unit. Denoting the good’s price by p, solve the
profit maximisation problem to obtain the amounts of the inputs that the firm hires.

Solution

Max
K,L

π(K, L) = Max
K,L

[pf (K, L) − 2K − L].

The first-order condition is: (
∂π(K,L)

∂K

∂π(K,L)
∂L

) = (0 0
)
.

Or equivalently,

p
∂f (K, L)

∂K
= 2,

p
∂f (K, L)

∂L
= 1.

These equations imply the following:

1

3
pK− 2

3 L
1
3 = 2,

1

3
pK

1
3 L− 2

3 = 1.

Solving the above for K and L, the input combination that satisfies the first-order condi-
tions is (

K∗, L∗) =
(

p3

108
,
p3

54

)
.

To check this combination is the true local (and global) maximum, we check the second-
order condition. That is, we need to verify that the Hessian matrix of π(K, L) is negative

definite, i.e. we want to check |π1| < 0 and

∣∣∣∣π11 π12

π21 π22

∣∣∣∣ > 0.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

2 Ibid.



242 Matrix algebra

Or equivalently,

∂2π

∂K2
< 0; and

∂2π

∂K2
· ∂2π

∂L2
−
[

∂2π

∂L∂K

]2

> 0.

Calculating the LHS of them, we have:

∂2π

∂K2
= −2

9
pK− 5

3 L
1
3 ,

∂2π

∂K2
· ∂2π

∂L2
−
[

∂2π

∂L∂K

]2

= 1

9
pK− 2

3 L− 2
3 .

Therefore, given p > 0, the the Hessian matrix of π(K, L) is negative definite for all
K > 0 and L > 0 (and so of course they are satisfied at the point in question ). So

(K∗, L∗) =
(

p3

108 ,
p3

54

)
is the local (and global) maximum.

Exercise A.6 The profit maximisation with two inputs.



B Appendix B

An introduction to difference and
differential equations

We have dealt with market equilibrium in various sections of the main text. Our focus
has been the mathematical representation of market equilibrium for a particular good –
the price level and the quantity traded in the market when they are settled – per se. We
did give a verbal explanation as to how the price adjusts when there is excess demand
(or excess supply) in the market, but we did not pay much attention to the mathematical
representation of the price adjustment process. This appendix provides an introduction to
difference and differential equations that will allow us to shed light on such dynamics.

We will start by introducing the cobweb model of price adjustment, which describes the
dynamics of the price adjustment. In our example, it turns out the price adjustment can be
represented by a linear first-order autonomous difference equation in terms of the price.
We will study how to solve this type of difference equation in general. In turn, the linear
first-order autonomous differential equation – a continuous-time version of the same form
of difference equation – will be introduced and examined in the context of the demand
and supply analysis.

B.1 The cobweb model of price adjustment

One of the implicit assumptions in the demand and supply analysis is that sellers make
their supply decisions after they know the price of the good. But in reality, in most markets
sellers tend to be in the situation where they must commit to a supply decision before
they know the price of the good in question. What are the implications of this lag on the
dynamics of the market price over time?

To think about this matter, let us start by specifying the demand function:

qD
t = 100 − 10pt , (B.1)

where qD
t is the quantity of the good demanded in Period t and pt is the market price that

prevails in Period t . It is important to notice that there is a subscript t on each variable,
indicating that it is time-dependent. For example, qD

1 is the quantity demanded in Period
1, and p2 is the price that prevails in the market in Period 2. In reality, time is continuous
but here we assume that it evolves discretely. Under this framework, the market clears
once per fixed period of time.

In any case, solving (B.1) for pt the inverse demand function can be written as follows:

pt = 10 − 1

10
qD

t . (B.2)

Now suppose that the supply decisions are made one period before the goods reach the
market. It implies that the supply reaching the market in Period t is decided in Period



244 An introduction to difference and differential equations

Table B.1. The evolutions of pt

and qt (stable case; p0 = 2).

Period (t) qt pt

1 35 6.5
2 57.5 4.25
3 46.25 5.375
4 51.875 4.8125
5 49.0625 5.093 75
6 50.46875 4.953 125
...

...
...

Steady state q̄ = 50 p̄ = 5

t − 1 on the basis of what sellers expect the price to be in the next period. To make the
story simple, let us assume that sellers expect the next period price to equal the current
price. Then we can assume the supply function as follows:

qS
t = 25 + 5pt−1. (B.3)

This relationship shows that the quantity supplied in period t , qS
t , depends on the

previous period price pt−1 (because sellers believe that the current price will be the same
as in the previous period). Accordingly, the inverse supply function is:

pS
t−1 = −5 + 1

5
pt . (B.4)

Now, let us suppose that sellers realise that the price in Period 0 is equal to 2, i.e. p0 = 2.
What will happen to the quantity supplied in Period 1? We can use Equation (B.3): by
setting t = 1 and substituting p0 = 2, we can get qS

1 = 35.
So in Period 0, the sellers will commit to producing 35 units of the good, which will be

supplied to the market in Period 1. Therefore the Period 1 supply is fixed to 35 units at this
moment. Accordingly, for the market to clear in Period 1, the quantity demanded must be
qD

1 = 35 (otherwise, there exists excess demand or excess supply). Equation (B.2) will
give us the market clearing level of the price in Period 1: by setting t = 1 and substituting
qD

1 = 35 we can get p1 = 6.5.
Now in Period 1, sellers realise that the price is p1 = 6.5 (not 20 as they expected).

When this information is given to sellers, they adjust their expectation and now expect that
the price in Period 2 will be p2 = 6.5. Therefore, the quantity supplied in Period 2 will
be qS

2 = 57.5. Accordingly the market clearing level of price in Period 2 can be obtained
by substituting t = 2 in Equation (B.2) and substituting qD

2 = 57.5: we get p2 = 4.25.
Likewise, the quantity supplied in Period 3 will be determined according to Equa-

tion (B.3) (with suppliers expecting p3 = 4.25) as qS
3 = 46.25. The market clearing level

of price in Period 3 can be obtained by setting t = 3 in Equation (B.2) and substituting
qD

3 = 46.25: we get p3 = 5.375.
We can follow the above procedure forever, but let us summarise the evolution of pt

and qt over time in Table B.1 (note that p0 = 2).
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Figure B.1 The cobweb model of price adjustment (stable case; p0 = 2).

The movements in pt and qt can also be described by using Figure B.1.
This model is called the cobweb model of price adjustment, because the path that (p, q)

follows in each period towards Point E looks like a cobweb. Point E is the intersection of
the demand and supply schedules in the figure. It shows the steady state (equilibrium)
of this model because once the price is set at that level, it will rest at that level for all the
subsequent periods. In terms of equations, we can obtain the steady state levels of price
and quantity by setting qD

t = qS
t = q̄ and pt = pt−1 = p̄ in Equations (B.1) and (B.3),

and then solving for p̄ and q̄ simultaneously. Consequently the steady state values of price
and quantity turn out to be (p̄, q̄) = (5, 50).

Given the initial price p0 = 2, in each period, the price that prevails in the market is
either above or below p̄ and, as time goes on, it approaches the steady state price level
p̄ = 5. We say that the cobweb model is stable when the price converges to its steady
state level over time.

Note that if the initial price is different, say p0 = 1, the price will still converge to
p̄ = 5, but the path the price follows will be different to the one we just saw. The table
and figure for this path are provided in Table B.2 and Figure B.2, respectively. You can
see clearly that the price converges to p̄ = 5 but the path is different from the one we saw
before.

It is also important to understand that not all cobweb models are stable. Suppose instead
a different supply function is given as follows:

qS
t = 10 + 20pt−1. (B.5)

With the same demand function, for the initial price p0 = 2.9, we can follow the same
procedure as before to determine the evolutions of pt and qt over time. The evolutions of
pt and qt are given in Table B.3.
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Table B.2. The evolutions of pt

and qt (stable case; p0 = 1).

Period (t) qt pt

1 30 7
2 60 4
3 35 6.5
4 57.5 4.25
5 40 6
6 55 4.5
...

...
...

Equilibrium q̄ = 50 p̄ = 5

Table B.3. The evolutions of pt

and qt (unstable case).

Period (t) qt pt

1 68 2.9
2 74 3.2
3 62 3.8
4 86 1.4
5 38 6.2
...

...
...

Steady state q̄ = 70 p̄ = 3
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Figure B.2 The cobweb model of price adjustment (stable case; p0 = 1).
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Figure B.3 The cobweb model of price adjustment (unstable case).

The corresponding diagram is provided in Figure B.3.
We can observe that the price is moving further and further away from its steady state

level p̄ = 3 over time. When the price does not converge to its steady state level, we say
that the cobweb model is unstable.

Is there a way to determine whether a cobweb model is stable or unstable? It turns
out that the model’s stability depends on the slopes of the demand and supply sched-
ules. More specifically, a cobweb model is stable (unstable) if and only if the absolute
value of the slope of the supply schedule is greater (less) than the absolute value of
the slope of the demand schedule. The equivalent statement using algebra is given as
follows.

The following cobweb model: {
qD

t = A + Bpt

qS
t = F + Gpt−1

� is stable if and only if |B| > |G|
(

or equivalently

∣∣∣∣GB
∣∣∣∣ < 1

)
; and

� is unstable if and only if |B| < |G|
(

or equivalently

∣∣∣∣GB
∣∣∣∣ > 1

)
.

We will verify this statement in the following two sections where the cobweb model
is discussed in the context of the linear first-order autonomous difference and differential
equations.
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B.2 The linear first-order autonomous difference equation

Let’s think about the following cobweb model:{
qD

t = A + Bpt

qS
t = F + Gpt−1.

(B.6)

In each period, the market must clear so we must have qD
t = qS

t for all t . It means that

A + Bpt = F + Gpt−1,

and by rearranging this equation we get

pt = G

B
pt−1 + F − A

B
. (B.7)

You can see that the price of the good in Period t , pt , is expressed as a function of the
price of the good in the previous period, pt−1. When the largest difference in time periods
for the variable in question – in this case p – is one time period as in Equation (B.7),
such an equation is called the first-order difference equation in p. Note also that, in
Equation (B.7), (a) pt is linear in pt−1, and (b) terms that contain t do not appear. For
these reasons, Equation (B.7) is called the linear first-order autonomous difference
equation.

Of course, difference equations may take other forms. For example, when the largest
difference in time periods for the variable in question is two, then that equation is called
the second-order difference equation. If pt is non-linear in pt−1 (or pt−2, pt−3, etc.),
then it becomes a non-linear differential equation. In Equation (B.7), all parameters are
constant over time, so time t does not explicitly appear in the equation. If they depend on
time (or if there is any term that includes t explicitly), then the equation becomes a non-
autonomous difference equation. These equations are not our focus in this appendix.1

For our cobweb model analysis, it suffices to discuss the solution to the linear first-order
autonomous difference equation.

B.2.1 Solution to a linear first-order autonomous difference equation

What do we mean by the solution to a difference equation, or to solve a difference equation,
such as Equation (B.7)? To think about this matter, let us set A = 100, B = −10, F = 25
and G = 5 to match the cobweb model we discussed in the beginning of this appendix:

pt = −1

2
pt−1 + 15

2
. (B.8)

Substituting t = 1 into this equation we get:

p1 = −1

2
p0 + 15

2
.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

1 If you’d like to study differential equations further, you should consult more advanced textbooks on quantitative
methods in economics. For example, see Simon and Blume, Mathematics for Economists.
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So if we know p0, then we can calculate the value of p1 straight away. Indeed if p0 = 2,
then p1 = 6.5. You can check that it is consistent with what we have in Table B.1. Now,
if we substitute t = 2 into Equation (B.8) we get:

p2 = −1

2
p1 + 15

2
.

Hence, likewise, if we know p1, then we the value of p2 can be obtained by just
substituting the value of p1 into the above equation. As we have already calculated that
p1 = 6.5 (if p0 = 2), we know that p2 = 4.25.

What will be the value of p100? In principle, we can go through this process 100 times
to obtain p100. But what happens if you are required to obtain p10 000? It surely takes a
long time to obtain it and you may wonder if pt can be expressed as a function of t (so all
you have to do is substitute t = 10 000 into it). It turns out that there exists such a function
and it is expressed as follows:

pt = −3

(
−1

2

)t

+ 5. (B.9)

In the next subsection, we will learn how to obtain this function, but let me continue
discussing this story a little more. What will the path of pt be if the initial price is given
by p0 = 1 – instead of p0 = 2 – in Equation (B.8)? This case corresponds to Table B.2
and we know p1 = 7, p2 = 4 and so on. We can obtain the evolution of pt for this case
step by step like we did above, but is there a function that represents the evolution of the
price in terms of t? It turns out that such a function exists and it is:

pt = −4

(
−1

2

)t

+ 5. (B.10)

A different initial price gives a different path of pt , which follows Equation (B.8). For
example, Equations (B.9) and (B.10) are two of the different paths of pt that conform to
Equation (B.8). Since we can think about infinitely many p0, there are infinitely many
paths of pt that conform to Equation (B.8). It turns out that all the paths of pt that conform
to Equation (B.8) can be represented by

pt = C

(
−1

2

)t

+ 5, (B.11)

where C is a constant. You can see that setting C = −3 (C = −4) reduces it to
Equation (B.9) ((B.10), respectively). It is easy to check that this equation conforms
to Equation (B.8).

If pt is expressed as Equation (B.11), then pt−1 = C

(
−1

2

)t−1

+ 5.

In the meantime, Equation (B.8) can be rearranged as:

pt + 1

2
pt−1 − 15

2
= 0.
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The LHS of this equation when pt = C

(
−1

2

)t

+ 5 and pt−1 = C

(
−1

2

)t−1

+ 5 is:

pt + 1

2
pt−1 − 15

2
= C

(
−1

2

)t

+ 5 + 1

2

[
C

(
−1

2

)t−1

+ 5

]
− 15

2

= C

(
−1

2

)t

+ 10

2
+ (−1) ·

(
−1

2

)
· C

(
−1

2

)t−1

+ 5

2
− 15

2

= C

(
−1

2

)t

− C

(
−1

2

)t

+ 10

2
+ 5

2
− 15

2
= 0.

So we have shown that Equation (B.8) always holds when pt = C

(
−1

2

)t

+ 5.

We call the equation pt = C

(
−1

2

)t

+ 5 the general solution to the difference

equation (B.8). Solving a difference equation means finding the general solution to
the equation, i.e. obtaining all the paths of the variable in question, which conform to
the difference equation. In most problems in economics, however, the initial value
of the variable in question is given, and hence we can typically specify the value of
C in the general solution, i.e. we are interested only in obtaining the unique path of the
variable, which begins with the specified value. This solution is called the unique solution
to the difference equation (with the initial value).

B.2.2 Obtaining the general solution

Let me explain how to obtain the general solution to a linear first-order autonomous
difference equation. Consider the following difference equation:

pt = apt−1 + b, (B.12)

where a and b are constants. It can be rearranged as:

pt − apt−1 = b. (B.13)

The solution method will be in two parts and the general solution turns out to be the
sum of the solutions we obtain in these parts. We explain them in turn.

Solution to the homogeneous form

pt − apt−1 = 0. (B.14)

Equation (B.14) is called the homogeneous form of the difference equation (B.13). We
will first try to find the (general) solution to this equation and will denote it by ph

t .
Converting Equation (B.14) into a polynomial expression does the trick. That is, let

us set pt = Cxt , where C is a constant. Then pt−1 = Cxt−1. Substituting these into
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Equation (B.14) we get:

Cxt−1(x − a) = 0.

Both C = 0 and x = 0 are trivial solutions, so we must have x = a. Recall that we set
pt = Cxt , so with x = a, we get the solution to the homogeneous form (B.14) as:

ph
t = Cat . (B.15)

Now let us look at the second part of the solution.

Particular solution

The particular solution to the difference equation (B.13) is any solution that solves that
equation. If a constant that satisfies p̄ = pt = pt−1 exists in Equation (B.13), then you
can solve for such a p̄ and use it as the particular solution. Indeed, when a �= 1 you can

get p
p
t = p̄ = b

1 − a
, where p

p
t means the particular solution.

Notice that when a = 1 this method does not work. When a = 1, pt will never equal
pt−1 so we need a different way to find the particular solution. Since we know the particular
solution will not be a constant, let us assume it depends on t linearly. That is, let us assume
that p

p
t = αt , where α is a constant. Then p

p

t−1 = α(t − 1) so substituting these into
Equation (B.13) (with a = 1) we have:

αt − α(t − 1) = b.

It implies that α = b and so the particular solution is p
p
t = bt .

General solution

The general solution to a difference equation is given by adding (a) the solution to the
homogeneous form of that equation, and (b) the particular solution to that equation. That
is, pt = ph

t + p
p
t .

Hence for Equation (B.12) (or equivalently (B.13)) we have:

pt =
⎧⎨
⎩Cat + b

1 − a
if a �= 1,

C + bt if a = 1.

(B.16)

In (B.16), the constant C is unspecified, i.e. the solution covers all the paths of pt .
However, when the initial value p0 is given, then it is possible to specify the value of C.
That is, for the case a �= 0 in (B.16) we have:

p0 = Ca0 + b

1 − a
,

which means that C = p0 − b

1 − a
. Likewise when a = 1, we have C = p0.
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So, when the initial value p0 is given we can get the unique solution to the difference
equation:

pt =

⎧⎪⎨
⎪⎩
(

p0 − b

1 − a

)
at + b

1 − a
if a �= 1,

p0 + bt if a = 1.

(B.17)

Let us do some exercise to get used to going through the above steps.

Question A Solve pt = −1

2
pt−1 + 15

2
when p0 = 2.

[Note. This question corresponds to the case where A = 100, B = −10, F = 25 and
G = 5 in Equation (B.6). The price path is also described in Table B.1 and Figure B.1.]

Solution The homogeneous form of the equation is

pt + 1

2
pt−1 = 0.

Setting pt = Cat , we get:

Cat + 1

2
Cat−1 = 0.

This equation implies a = −1

2
. So the solution to the homogeneous form of the equation

is

ph
t = C

(
−1

2

)t

.

In the meantime, the particular solution can be obtained by setting p̄ = pt = pt−1 in the
equation in question. We get p̄ = 5 and use it as the particular solution, p

p
t .

Therefore, the general solution is:

pt = ph
t + p

p
t = C

(
−1

2

)t

+ 5.

Since we know that p0 = 2, it follows that:

p0 = 2 = C + 5,

which means that C = −3. So the unique solution to the difference equation is:

pt = −3

(
−1

2

)t

+ 5.

Question B Solve pt = −2pt−1 + 9 when p0 = 2.9.

[Note. This question corresponds to the case where A = 100, B = −10, F = 10 and
G = 20 in Equation (B.6). The price path is also described in Table B.3 and Figure B.3.]
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Solution The homogeneous form of the equation is

pt + 2pt−1 = 0.

Setting pt = Cat , we get:

Cat + 2Cat−1 = 0.

This equation implies a = −2. So the solution to the homogeneous form of the equation
is:

ph
t = C(−2)t .

In the meantime, the particular solution can be obtained by setting p̄ = pt = pt−1 in the
equation in question. We get p̄ = 3 and use it as the particular solution, p

p
t .

Therefore, the general solution is:

pt = ph
t + p

p
t = C (−2)t + 3.

Since we know that p0 = 2.9, it follows that:

p0 = 2.9 = C + 3,

which means that C = − 1

10
. So the unique solution to the difference equation is:

pt = − 1

10
(−2)t + 3.

Exercise B.1 Solving linear first-order autonomous difference equations.

B.2.3 The steady state and convergence

Now we are in a position to verify the claim we made about the stability of the cobweb
model. Let us consider the cobweb model as in Equation (B.6). The steady state of the

model, where both p and q come to rest, exists if and only if
G

B
�= 1. Denoting the steady

state value of price by p̄, we can obtain p̄ by setting p̄ = pt = pt−1 in Equation (B.7).

We get p̄ = F − A

B − G
.

Does the price converges to this steady state value as in Figure B.1? Or does it diverge
from it as illustrated in Figure B.3? To examine this matter, let us look at the difference
equation (B.7), which we have obtained from our cobweb model. The unique solution
to that equation given p0 shows the paths of the price in our cobweb model over t . We
know the unique solution to Equation (B.7) is the following (you can easily verify that it
is consistent with the solutions in Exercise B.1):

pt =

⎧⎪⎪⎨
⎪⎪⎩
(

p0 − F − A

B − G

)(
G

B

)t

+ F − A

B − G
if

G

B
�= 1,

p0 + F − A

B
t if

G

B
= 1.

(B.18)
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We will focus on the case where the steady state exists, i.e. when
G

B
�= 1. Using the

fact that p̄ = F − A

B − G
when

G

B
�= 1, we can rewrite Equation (B.18) as follows:

pt = (p0 − p̄)

(
G

B

)t

+ p̄ if
G

B
�= 1. (B.19)

So whether pt converges to p̄ (of course if p0 is different from p̄) depends solely on the

value of
G

B
. If

∣∣∣∣GB
∣∣∣∣ < 1, then lim

t→∞

(
G

B

)t

= 0. For example, if
G

B
= −1

2
(corresponding

to Question A in Exercise B.1), then you can see below that the magnitude of

(
−1

2

)t

becomes smaller and smaller:

−1

2
,

1

4
, −1

8
,

1

16
, − 1

32
,

1

64
, − 1

128
,

1

256
, . . .

Therefore, if

∣∣∣∣GB
∣∣∣∣ < 1:

lim
t→∞ pt = lim

t→∞ (p0 − p̄)

(
G

B

)t

+ lim
t→∞ p̄

= (p0 − p̄) lim
t→∞

(
G

B

)t

+ p̄

= (p0 − p̄) · 0 + p̄

= p̄.

You can see that pt approaches p̄ because the first term of the RHS of Equation (B.19)

becomes closer and closer to zero. You can also see that, when
G

B
= −1

2
, whilst the

magnitude of the first term decreases, it alternates in sign. For this reason, pt converges
to p̄ in oscillation. In fact, we can state that we have convergence in oscillation if

−1 <
G

B
< 0.

In contrast, if

∣∣∣∣GB
∣∣∣∣ > 1, then lim

t→∞

(
G

B

)t

�= 0. For example, if
G

B
= −2 (corresponding

to Question B in Exercise B.1), then you can see below that the magnitude of (−2)t

becomes larger and larger:

−2, 4, −8, 16, −32, 64, −128, 256, . . .

Since the magnitude of the first term of Equation (B.19) increases, pt does not converge

to p̄ when

∣∣∣∣GB
∣∣∣∣ > 1. When

G

B
= −2, pt moves away from p̄ in an oscillating fashion.

More generally, we have divergence in oscillation if
G

B
< −1.

If 0 <
G

B
< 1 we know pt converges to p̄ from the previous analysis, but the path does

not oscillate. In this case, we have monotonic convergence, i.e. pt will approach p̄ either
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from above or below monotonically. On the other hand, we have monotonic divergence

when
G

B
> 1.

B.3 The linear first-order autonomous differential equation

In the difference equations we looked at in the previous section, our focus was how the
variable in question changes between discrete time periods such as years, months, etc.
In other words, time was modelled discretely, but we can model it continuously as well.
Here we take the duration of such a period to be infinitesimally small, i.e. we consider an
instantaneous change in the variable. Consider the following model where the variable of
focus is the price, p:

ṗ = θ
(
qD − qS

)
, θ > 0. (B.20)

where ṗ ≡ dp

dt
is the time derivative of p and shows the instantaneous change in p. The

quantity demanded and the quantity supplied are given by qD and qS , respectively, and
both of them depend on p (specified shortly). Equation (B.20) says that when there is
excess demand

(
qD − qS

)
> 0, the price will instantaneously adjust upwards because θ –

which represents the speed of the price adjustment; the greater θ is, the faster the price
adjusts – is also positive. On the other hand, when there is excess supply

(
qD − qS

)
< 0,

the price will fall instantaneously. Hence Equation (B.20) is consistent with the demand
and supply analysis we discussed in the various parts of the main text. When the price
is at the level where the market clears, i.e.

(
qD − qS

) = 0, we have ṗ = 0, so the price
comes to rest. This price level is called the steady state price level.

Now, let’s suppose that the demand and supply functions are given as follows, at all
times: {

qD = A + Bp

qS = F + Gp,

where A, B, F and G are constants. Substituting these into Equation (B.20), we get:

ṗ = θ(B − G)p + θ(A − F ). (B.21)

Setting a = θ(B − G) and b = θ(A − F ), it reduces to

ṗ = ap + b. (B.22)

Equation (B.22) contains the time derivative ṗ, hence it is called the differential
equation. Note also that, in Equation (B.22), (a) ṗ is linear in p, (b) the time derivative
that has the highest order is ṗ (the first-order time derivative), and (c) t does not explicitly
appear, e.g. a and b are constant over time. For these reasons, respectively, Equation (B.22)
is called the linear first-order autonomous differential equation in p. As is the case
for difference equations, differential equations can take other forms. For example, ṗ may
not be linear in p, in which case such an equation is called the non-linear differential
equation. When the the time derivative that has the highest order is p̈ (the second-order
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time derivative), then the equation is called the second-order differential equation.
When t appears in the equation explicitly, e.g. a and/or b may be time-dependent and so
they are a(t) and/or b(t), then we have a non-autonomous differential equation. Our
focus in this appendix will be the linear first-order autonomous differential equation as in
Equation (B.22).2

B.3.1 Obtaining the general solution to a linear first-order autonomous
differential equation

The same method we used to obtain the solution to the same form of the difference equation
applies. Namely, we will first obtain the (general) solution to the homogeneous form of
the differential equation. Then we will obtain the particular solution of the differential
equation. The general solution to the differential equation turns out to be the sum of these
solutions. Let us look at them in turn.

Solution to the homogeneous form

We have:

ṗ − ap = 0. (B.23)

Equation (B.23) is called the homogeneous form of the differential equation B.22. We
will first find the (general) solution to this equation and will denote it by ph.

We can solve Equation (B.23) for p by applying the integration technique. That is:

ṗ = ap

1

p

dp

dt
= a∫

1

p

dp

dt
dt =

∫
adt∫

1

p
dp =

∫
adt

ln p = at + C1,

where C1 is a constant of integration. Solving this equation for p, we get the solution to
the homogeneous form ph:

ph = Ceat , (B.24)

where C = eC1 .

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

2 If you are interested in different forms of (and obviously more advanced) differential equations, you should
consult more advanced textbooks in quantitative methods in economics. See, for example, Simon and Blume,
Mathematics for Economists.
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Particular solution

The idea of the particular solution to the differential equation (B.22) is the same as in
the case for solving difference equations: it is any solution that solves that equation. You
can use the steady state value of p in Equation (B.22), p̄, as the particular solution when
it exists. The steady state exists when a �= 0 and you can obtain p̄ by setting ṗ = 0 in

Equation (B.22).3 We get pp = p̄ = −b

a
. Because the time derivative of pp is zero, it is

easy to see that pp = −b

a
satisfies Equation (B.22) (and hence we know it is actually the

particular solution).

General solution

As said before, the general solution to a differential equation is given by the sum of (a)
the solution to the homogeneous form of that equation, and (b) the particular solution to
that equation. That is, p = ph + pp.

Hence for Equation (B.22) we have:

p =
⎧⎨
⎩Ceat − b

a
if a �= 0,

C + bt if a = 0.

(B.25)

As in the general solution to a difference equation, in Equation (B.25), the constant
C is unspecified. Therefore this solution covers all the paths of p, which depend on the
initial value p(0). When p(0) is given, we can nail down the value of C. That is, for the
case a �= 0 in Equation (B.25), we have

p(0) = Ce0 − b

a
,

which means that C = p(0) + b

a
. Likewise when a = 0, we have C = p(0).

So, when the initial value p0 is given, the unique solution to the differential equa-
tion (B.22) is:

p =

⎧⎪⎨
⎪⎩
(

p(0) + b

a

)
eat − b

a
if a �= 0,

p(0) + bt if a = 0.

(B.26)

Let us do some exercises to get used to going through the above steps.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

3 When a = 0 then the general solution to Equation (B.22) can be obtained simply by taking the integral of both
sides of the equation: p = C + bt if a = 0.
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Question A Solve ṗ = −3p + 15 when p0 = 2.

[Note. This question corresponds to the case where A = 100, B = −10, F = 25, G = 5

and θ = 1

5
in Equation (B.21).]

Solution The homogeneous form of the equation is:

ṗ + 3p = 0.

After rearranging this equation we can integrate both sides by t :

ṗ = −3p

1

p

dp

dt
= −3

∫
1

p

dp

dt
dt =

∫
(−3)dt

∫
1

p
dp =

∫
(−3)dt

ln p = −3t + C1,

where C1 is a constant of integration. So the solution to the homogeneous form of the
equation is:

ph = Ce−3t ,

where C = eC1 .

In the meantime, the particular solution can be obtained by setting ṗ = 0 in the equation
in question. We get p̄ = 5 and use it as the particular solution, pp.

The general solution, therefore, is:

p = ph + pp = Ce−3t + 5.

Since we know that p(0) = 2, it follows that:

p(0) = 2 = C + 5,

which means that C = −3. So the unique solution to the differential equation is:

p = −3e−3t + 5.

Question B Solve ṗ = 3p − 15 when p0 = 2.

[Note. This question corresponds to the case where A = 100, B = −10, F = 175, G =
−25 and θ = 1

5
in Equation (B.21).]
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Solution The homogeneous form of the equation is:

ṗ − 3p = 0.

After rearranging this equation we can integrate both sides by t :

ṗ = 3p

1

p

dp

dt
= 3

∫
1

p

dp

dt
dt =

∫
3dt

∫
1

p
dp =

∫
3dt

ln p = 3t + C1,

where C1 is a constant of integration. So the solution to the homogeneous form of the
equation is:

ph = Ce3t ,

where C = eC1 .

In the meantime, the particular solution can be obtained by setting ṗ = 0 in the equation
in question. We get p̄ = 5 and use it as the particular solution, pp.

The general solution, therefore, is:

p = ph + pp = Ce3t + 5.

Since we know that p(0) = 2, it follows that:

p(0) = 2 = C + 5,

which means that C = −3. So the unique solution to the differential equation is:

p = −3e3t + 5.

Exercise B.2 Solving linear first-order autonomous differential equations.

B.3.2 The steady state and convergence

Now let us focus on the case where the steady state exists for Equation (B.22). The steady

state value of p is p̄ = −b

a
and so the unique solution to Equation (B.22), given p0, can

be rearranged as:

p = (p(0) − p̄) eat + p̄. (B.27)
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E

Excess demand

Excess supply

Supply schedule

Demand schedule
q

0

p

q

p

Figure B.4 The demand and supply model (unstable case).

If the first term of the RHS of the equation tends to zero as t goes to infinity, then we
have p converging to its steady state value p̄. Whether (p(0) − p̄) eat converges to zero
depends on the value of a. For p to converge to p̄ it is necessary (and sufficient) to have
a < 0; and otherwise we have divergence from p̄ (unless p0 = p̄ of course).

Bearing this result in mind, let us examine the demand and supply model. When
the steady state exists, i.e. B − G �= 0, the unique solution to Equation (B.21), given
p(0), is:

p =
(

p(0) + A − F

B − G

)
eθ(B−G)t − A − F

B − G
. (B.28)

Since p̄ = −A − F

B − G
, it can be written as:

p = (p(0) − p̄) eθ(B−G)t + p̄. (B.29)

Given θ > 0 (by assumption), whether p converges to p̄ depends on the sign of B − G.
For convergence we need to have B − G < 0, i.e. G > B. For a downward sloping demand
schedule and an upward sloping supply schedule, we have B < 0 and G > 0, respectively,
so the necessary and sufficient condition for convergence will be met for sure. For p(0)
the market price will converge to its steady state level p̄. We say that the steady state
is stable when convergence occurs. Question A in Exercise B.2 (B = −10 and G = 5)
corresponds to this case.

In contrast, when we have G < B, the price diverges from p̄ unless p(0) = p̄. We say
such a steady state is unstable. The relevant situation can be observed in Question B in
Exercise B.2 (B = −10 and G = −25). As you might have noticed, in this case both the
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demand and supply schedules are downward sloping as depicted in Figure B.4.4 Note also
that G < B means that the supply schedule is flatter than the demand schedule.

You can see in the figure that when the initial price is above p̄, there is excess demand.
In this model, as specified in Equation (B.20), when there is excess demand the price
adjusts upwards. So the price moves away from the steady state level (and never comes
back). On the other hand, if the initial price turns out to be below p̄, there is excess supply.
The price moves downwards according to Equation (B.20) and so we observe divergence
from p̄ as well. The steady state illustrated in Figure B.4 is unstable because the price
never reverts to its steady state unless the initial value happens to coincide with it.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

4 We have not dealt with a downward sloping supply schedule throughout this book. What might give rise to it? It is
difficult to provide a proper explanation without using some knowledge from intermediate microeconomics, but
you can imagine the following case to get a sufficient idea. Suppose you are supplying your labour (q hours per
day) and the price you get paid is the hourly wage (p). Suppose at the current wage, you are working 8 hours per
day. If the wage increased, would you work more? On one hand, the rise in the wage makes working more
attractive (than spending your time on other things), but on the other hand, it means you needn’t work as much as
before to make the same earnings. If the latter factor outweighed the former, then your labour supply would be less
at the higher wage.
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e, see Euler’s e
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annuity, 82–6
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annuity due, 83
anti-derivative, 185
argument, 34
assumption, see hypothesis
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average cost, 93
average cost curve, 93
average total cost, see average cost
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axiom, 48
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exponential function, 75
logarithmic function, 75

bond, 86
boundary, 118, 129
break-even point, 101
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budget line, 170

case-defined function, 33
cash flows, 81
choice variable, see control variable
closed interval, 12
cobweb model of price adjustment, 243, 245
column vector, 219
common logarithm, 77
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comparative static analysis, 41
comparative statics, see comparative static analysis
compensated demand schedule, see Hicksian

demand schedule
complements, 136
completing the square, 20, 28
complex number, 16
compound amount, 65
compound interest, 66
concave, 129
concave function, 129
concavity, 125
conclusion, 45
conformable

matrix addition, 222
matrix multiplication, 226

conjunction, 44
constant elasticity demand function, 142
constant of integration, 185
constrained optimisation, 170

utility maximisation problem, 171
consumer price, 207
consumer surplus, 203
continuous, 58
continuous annuity, 190
continuous compounding, 70–3
continuously differentiable, 156
contrapositive, 45
contrapositive proof, 50
control variable, 112
convergence in oscillation, 254
converse, 45
conversion period, see interest period
convex, 129
convex function, 129
coordinate plane, 24
coordinates, 25
corner solution, 117
corollary, 50
cost function, 91
counter example, 46
coupon interest, 86
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cross price elasticity of demand, 136
cross-partial derivative, 156
cube root, 15
cubic equation, 19
cubic root, see cube root
curvature, 125
curve sketching, 124–9

deadweight loss of taxation, 206, 209
decimal number, 10
definite integral, 187

rules of, 187
demand and supply analysis, 1–7
demand function, 34
derivative, 105, see also differentiation

and differential, 134–6
determinant, 230
diagonal matrix, 220
difference equation, 243–55
differentiable, 106

continuously, 156
differential, 135, 160
differential coefficient, 105
differential equation, 255–61
differentiation, 105

rules of, 105
differentiation rules, 105
diminishing returns to labour, 97
direct method, see direct proof
direct proof, 48
discounted value, see present value
discounting, 80
disjunction, 44
domain, 22

economic incidence of tax, 206–8
effective rate, 68
elastic, 139
elasticity, 136–44
element

matrix, 219
set, 22

elimination by addition, 39
elimination by substitution, 38
equal

matrix, 219
real line, 12

equation, 19–22
equilibrium, 6, 35
equilibrium price, 7, 35

equilibrium quantity, 7
Euler’s e, 71
even number, 47
excess burden, 208, see also deadweight loss of

taxation
excess demand, 5, 35
excess supply, 6, 35
existential quantifier, 46
exponential function, 70–5

factor
polynomial expression, 17
production, see input

factorisation, 17–19
rules of, 17

feasible, 170
finite set, 22
firm, 90
first derivative, 114, see also derivative
first quadrant, 25
first-order condition, 113, 165

n-variable unconstrained optimisation, 234–5
one-variable unconstrained optimisation, 113
two-variable unconstrained optimisation, 165

first-order difference equation, 248
first-order partial derivative, 156, see also partial

derivative
first-order total differential, 235, see also total

differential
fixed cost, 91
for any, see universal quantifier
for every, see universal quantifier
fraction, 9
function, 22–34
functional notation, 23
fundamental theorem of integral calculus, 187
future value, 80

of an annuity, 83, 84–6

general annuity, 83
general solution, 250, 257

to the difference equation, 250
to the differential equation, 257

geometric progression, see geometric sequence
geometric sequence, 64
geometric series, 64
global maximum, 117
global minimum, 117
good, 1
graph, 25
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half-open interval, 13
Hessian matrix, 236
Hicksian demand schedule, 202
homogeneous form, 250, 256

of the difference equation, 250
of the differential equation, 256

horizontal axis, 24
horizontal intercept, 25
horizontal interpretation

demand schedule, 201
supply schedule, 197

hypothesis, 45

identity matrix, 220
if and only if, 45
iff, see if and only if
imaginary number, 15, 16
implication, 44
implicit differentiation, 162
implicit function, 23
implies, 44
income effect, 3
income elasticity of demand, 136
increasing returns to labour, 97
indefinite integral, 185

rules of, 185
indifference between two bundles,

150
indifference curve, 151
indifference map, 151
individual demand function, 180
inelastic, 139
inequality, 12
infeasible, 170
inferior goods, 136
infinite decimal, 10
infinite interval, 13
infinite set, 22
infinitely many solutions

system of equations, 36
infinitesimally small change, 103
initial value

difference equation, 250
differential equation, 257
sequence, 64

inner product, 225
input, 90
integer, 9
integral calculus, 184
integral sign, 185

integrand
definite integral, 187
indefinite integral, 185

integration by parts, 193
integration by substitution, 192
integration rules, 185, 187
interest, 65
interest period, 67
interval

definite integral, 187
inequality, 12

inverse demand function, 34
inverse function, 22
inverse matrix, 229
inverse supply function, 34
irrational number, 10
is implied by, see implies

Lagrange multiplier, 176
marginal utility of income, 177

Lagrange multiplier method, 176
Lagrangian, 176
law of demand, 4
law of diminishing marginal utility, 149
law of supply, 5
law of the diminishing marginal rate of substitution,

157
Law of the Syllogism, 49
leading principal minor, 239
leading principal submatrices, 239
left-hand limit, 57
legally liable

production tax, 206
lemma, 49
limit, 57

rules of, 60
limits of integration, 187
linear equation, 19
linear first-order autonomous difference equation,

248
linear first-order autonomous differential equation,

255
linear function, 25, 129
local maxima, 117
local minimum, 117
log transformation, 143, see also taking the

logarithms
log-linear demand function, 143
log-log function, 143
logarithmic function, 75–8
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logarithmic functions
properties of, 77

logarithms, see logarithmic function
logic, 43
logically equivalent, 43
long run, 90
lower limit

definite integral, 187
summation, 61

main diagonal entries, 220
main diagonals, 220
marginal and average cost curves, 95,

110
marginal cost, 92

vertical interpretation, 197
marginal cost curve, 93

infinitesimally small change, 108
marginal product of labour, 96
marginal rate of substitution, 157

law of the diminishing, 157
marginal revenue, 98
marginal utility, 148, 152

law of diminishing, 149
one good, 148
two goods, 152

marginal utility of income, 177
marginal valuation, 202
marginal willingness to pay, 202
market, 1

clears, 6
market demand schedule, 3
market supply schedule, 4
Marshallian demand schedule, 202
matrix, 219
matrix addition, 221
matrix multiplication, 224–8
maturity date, 86
monopolist, 2
monopoly, see monopolist
monotonic convergence, 254
monotonic divergence, 255
multivariate function, 33

natural exponential function, 75
natural logarithmic function, 75
natural number, 9
necessary and sufficient condition, 46
necessary condition, 46
negation, 44

negative definite, 237
negative integer, see negative natural number
negative natural number, 9
net present value, 81
no solution

system of equations, 36
nominal rate, 67
non-autonomous difference equation, 248
non-autonomous differential equation, 256
non-linear difference equation, 248
non-linear differential equation, 255
non-singular, 231
normal goods, 136
numbers, 9–11, 16

objective function, 112
odd number, 47
open interval, 12
opportunity cost, 82
order of a matrix, 220
ordered pair, see coordinates
ordinary annuity, 83
ordinary simple annuity, 83
origin, 24
original principal, see principal
outputs, 90
own price elasticity of demand, see price elasticity of

demand

parabola, 27
parameter, 34
partial derivative, 152
partial differentiation, 152
particular solution

to the difference equation, 251
to the differential equation, 257

perfectly competitive market, 2
periodic rate, 67
perpetuity, 86
point of inflection, 127
polynomial expression, 16
positive definite, 237
positive integer, see natural number
post-multiplied, 228
power, 13–16

rules of, 14
pre-multiplied, 228
preferences, 150
prefers to, 150
present discounted value, see present value
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present value, 80
of an annuity, 82–4
of continuous annuity, 190

price elasticity of demand, 137
and expenditure, 140–1
elastic, 139
inelastic, 139
unitary elastic, 139

price taker, 2
prime number, 47
principal, 65
principal minor, 239
principal submatrix, 238
principle of double negation, 44
producer price, 208
producer surplus, 198

change in, 200
production function, 96
production tax, 206
profit function, 112
profit maximisation problem,

112
proof, 43, 47–52
proof by contradition, 50
proposition, 49

Q.E.D., 49
quadrant, 25
quadratic equation, 19
quadratic form, 237
quadratic function, 27–31
quantifier, 46
quartic equation, 19

range, 22
rational function, 31
rational number, 9
rationalisation of the denominator,

16
real line, 11
real number, 11

properties of, 11
reciprocal, 9
rectangular hyperbola, 31
redemption value, 86
repayment period, 83
right-hand limit, 57
root, 15
rounding error, 11

row vector, 219
running variable, 61

s.t., 171
saddle point, 166
scalar, 222
scalar multiplication, 221, 222
secant line, 126
second derivative, 114
second law of the demand, 144
second-order condition

n-variable unconstrained optimisation, 234–41
one-variable unconstrained optimisation, 115
two-variable unconstrained optimisation, 167

second-order difference equation, 248
second-order differential equation, 256
second-order partial derivative, 156
second-order total differential, 235
sequence, 64
service, 1
set, 22
shelf price, 207
short run, 90
shortage, see excess demand
shutdown point, 102
simple annuity, 83
single-variate function, see univariate function
singular, 231
size of a matrix, 219
slope, 25
solutions

system of equations, 36–41
square matrix, 220
square root, 15
statement, 43
steady state, 245, 253, 255

of the difference equation, 253
of the differential equation, 255, 259

stable, 260
unstable, 260

strictly concave, 127
utility function, 149

strictly concave function, 127
strictly convex, 127

to the origin, 158, 172
strictly convex function, 127
substitutes, 136
substitution effect, 3
substitution method, 175
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sufficient condition, 46
summation, 61

rules of, 62
summation operator, 61
supply function, 34
symmetric matrix, 220
system of

non-linear equations, 40
two linear equations, 36

taking the logarithms, 79
tax revenue, 208
tax wedge, 208
term of an annuity, 83
theorem, 49
there exists, see existential quantifier
time line, 83
total cost, 91
total cost curve, 91
total derivative, 160
total differential, 160, 235
total differentiation, 160
total economic surplus, 205
total valuation, 203
total willingness to pay, 203
transpose of a matrix, 220

uncompensated demand schedule, see Marshallian
demand schedule

unconstrained optimisation, 164
profit maximisation problem, 167

under-production, see under-provision
under-provision, 209
unique solution, 250, 257

system of equations, 36
to the difference equation, 250
to the differential equation, 257

unit-free, 137
unitary elastic, 139
univariate function, 33
universal quantifier, 46
unknown, 16
upper limit

definite integral, 187
summation, 61

util, 147
utility, 147
utility function, 148
utility maximisation problem, 171

variable cost, 91
variable of integration

definite integral, 187
indefinite integral, 185

vertex, 27
vertical axis, 24
vertical intercept, 25
vertical interpretation

demand schedule, 202
supply schedule, 197

welfare effects of tax, 208–9

yield, see effective rate
Young’s Theorem, 156

zero, 9
zero matrix, 220


	Cover
	An Introduction to Mathematics for Economics
	Contents
	List of illustrations
	List of tables
	Preface
	Acknowledgements
	1 Demand and supply in competitive markets
	1.1 Markets
	1.2 Demand and supply schedules
	1.3 Market equilibrium
	1.4 Rest of this book

	2 Basic mathematics
	2.1 Numbers
	2.2 Fractions, decimal numbers and the use of a calculator
	2.3 Some algebraic properties of real numbers
	2.4 Equalities, inequalities and intervals
	2.5 Powers
	2.6 An imaginary number and complex numbers
	2.7 Factorisation: reducing polynomial expressions
	2.8 Equations
	2.9 Functions
	2.10 Simultaneous equations: the demand and supply analysis
	2.11 Logic
	2.12 Proofs
	2.13 Additional exercises

	3 Financial mathematics
	3.1 Limits
	3.2 Summation
	3.3 A geometric series
	3.4 Compound interest
	3.5 The exponential function: how can we calculate the compound amount of the principal if interest is compounded continuously?
	3.6 Logarithms: how many years will it take for my money to double?
	3.7 Present values
	3.8 Annuities: what is the value of your home loan?
	3.9 Perpetuity
	3.10 Additional exercises

	4 Differential calculus 1
	4.1 Cost function
	4.2 The marginal cost and the average costs
	4.3 Production function
	4.4 Firm’s supply curve
	4.5 From a one-unit change to an infinitesimally small change
	4.6 The relative positions of MC, AC and AV C revisited
	4.7 Profit maximisation
	4.8 Additional exercises

	5 Differential calculus 2
	5.1 Curve sketching
	5.2 The differential
	5.3 Elasticity
	5.4 Additional exercises

	6 Multivariate calculus
	6.1 The utility function
	6.2 Indifference curves
	6.3 The marginal utility for the two-good case
	6.4 The marginal rate of substitution
	6.5 Total differentiation and implicit differentiation
	6.6 Maxima and minima revisited
	6.7 The utility maximisation problem: constrained optimisation
	6.8 The substitution method
	6.9 The Lagrange multiplier method
	6.10 The individual demand function
	6.11 Additional exercises

	7 Integral calculus
	7.1 An anti-derivative and the indefinite integral
	7.2 The fundamental theorem of integral calculus
	7.3 Application of integration to finance: the present value of a continuous annuity
	7.4 Demand and supply analysis revisited
	7.5 The deadweight loss of taxation
	7.6 Additional exercises

	Appendix A Matrix algebra
	A.1 Matrices and vectors
	A.2 An inverse of a matrix and the determinant: solving a system of equations
	A.3 An unconstrained optimisation problem

	Appendix B An introduction to difference and differential equations
	B.1 The cobweb model of price adjustment
	B.2 The linear first-order autonomous difference equation
	B.3 The linear first-order autonomous differential equation

	Index


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


