b

Systém Software

An Introductiun to
Systems Progra:nming

Third Edition
//(}' '\ Leland L. Beck
\I | bt San Diego State University
—

-f 5 . '!."w‘.".\it}n l
/6 #1a |
et J7it s 4
' |

: Addison
Wesley. |

Longman
/"""—'\s

An imprint of Addison Wesley Longman, Inc.

Reading, Massachusetts « Menlo Park, California « MNew York * Harlow, England
Den Mills, Ontario « Sydney « Mexico City « Madrid » Amsterdam

Chapter 1
Background

This chapter contains a variety of information that serves as background for
the material presented later. Section 1.1 gives a brief introduction to system
software and an overview of the structure of this book. Section 1.2 begins a
discussion of the relationships between system software and machine architec-
ture, which continues throughout the text. Section 1.3 describes the Simplified
Instructional Computer (SIC) that is used to present fundamental software
concepfs. Sections 1.4 and 1.5 provide an introduction to the architecture of
several computers that are used as examples throughout the text. Further in-
formation on most of the machine architecture topics discussed can be found
in Tabak (1995) and Patterson and Hennessy (1996).

Most of the material in this chapter is presented at a summary leve!, with
many details omitted. The level of detail given here is sufficient background
tor the remainder of the text. You should not attempt to memorize the material
in this chapter, or be overly concerned with minor paints. Instead, it is recom-
mended that you read through this material, and then use it for reference as
needed in later chapters. References are provided throughout the chapter for
readers who want further information.

1.1 INTRODUCTION

This text is an introduction to the design and implementation of system soft-
ware. System software consists of a variety of programs that support the opera-
tion of a computer. This software makes it possible for the user to focus on an
application or other problem to be solved, without needing to know the de-
tails _f hew the machine works internally.

When you tock your first programming course. you were already using
many differcul types of system software. You probably wrote programs in a
high-level language like C++ or Pascal, nsing a tex! editor to create and modify
the program. You translated these programs into machine language using a
compiier. The resulting machine language program was Joaded into memory
and prepared for execution by a loader or linker. You may have used a debugger
to help detect errors in the program.

Chapter 1 Background

" In later courses, you probably wrote programs in assembler Janguage. You

may have used macro instructions in these programs to read and write data,
or to perform other higher-level functions. You used an assembler, which prob-
ably included a macro processor, to translate these programs into machine lan-
guage. The transiated programs were prepared for execution by the loader or
linker, and may have been tested using the debugger.

You controlled all of these processes by interacting with the operating sys-
tent of the computer. If you were using a system like UNIX or DOS, you proba-
bly typed commands at a keyboard. If you were using a system like MacOS or
Windows, you probably specified commands with menus and a point-and-
click interface. In either case, the operating system took care of all the ma-
chine-level details for you. Your computer may have been connected to a
network, or may have been shared by other users. It may have had many dif-
ferent kinds of storage devices, and several ways of performing input and out-
put. However, you did not need to be concerned with these issues. You could
concentrate on what you wanted to do, without worrying about how it was
accomplished.

As you read this book, you will learn about several important types of sys-
tem software. You will come to understand the processes that were going on
“behind the scenes” as you used the computer in previous courses, By under-
sianding the system software, yoi will gain a deeper understanding of how
computers actually work. .

The major topics covered in this book are assemblers, loaders and linkers,
macro processors, compilers, and operating systems; each of Chapters 2
through 6 is devoted to one of these subjects, We also consider implementa-
tions of these types of software on several real machines. One central theme of
the book is the relationship between system software and machine architec-
ture: the design of an assembler, operating system, etc., is influenced by the ar-
chitecture of the machine on whicl it is to run. Some of these influences are
discussed in the next section; many other examples appear throughout the
text.

Chapter 7 contains a survey of some other important types of system soft-
ware: database management systems, text editors, and interactive debugging
systems. Chapter 8 contains an introduction to software engineering concepts
and techniques, focusing on the use of such methods in writing system soft-
ware. This chapter can be read at any time after the introduction to assemblers
in Section 2.1,

The depth of treatment in this text varies considerably from one topic to
another. The chapters on assemblers, loaders and linkers, and macro proces-
sors contain enough implementation details to prepare the reader to write
these types of software for a real computer. Compilers and operating systems,
an the other hand, are very large topics; each has, by itsell, been the subject of

1.2 System me.a#ﬁn and Mach.e Architecture

many complete books and courses. It is obviously impossible to provide a full
coverage of these subjects in a single chapter of any reasonable size. Instead,
we provide an introduction to the most important concepts and issues related
to compilers and operating systems, stressing the relationships between soft-
ware design and machine architecture. Other subtopics are discussed as space
permits, with references provided for readers who wish to explore these areas
further. Our goal is to provide a good overview of these subjects that can also
serve as background for students who will later take more advanced software
courses. This same approach is also applied to the other topics surveyed in
Chapter 7.

1.2 SYSTEM SOFTWARE AND
MACHINE ARCHITECTURE

One characteristic in which most system software differs from application soft-
ware is machine dependency. An application program is primarily concerned
with the solution of some problem, using the computer as a tool. The focus is
on the application, not on the computing system. System programs, on the
other hand, arc intended to support the operation and us2 of the coniputer it-
self, rather than any particular application. For this r2asni, 'they are usually =
lated to the architecture of the machine on which they are to run. For example,
assemblers translate mnemonic instructions into machine code; the instruction
formats, addressing modes, etc., are of direct concern in assembler design.
Similarly, compilers must generate machine language code, taking into ac-
count such hardware characteristics as the number and type of registers and
the machine instructions available. Operating systems are directly concerned
with the management of nearly all of the resources of a computing system.
Many other examples of such machine dependencies may be found through-
out this book.

On the other hand, there are some aspects of system software that do not
directly depend upon the type of computing system being supported. For
example, the general design and logic of an assembler is basically the same on
most computers. Some of the code optimization techniques used by compilers
are independent of the target machine (although there are also machine-
dependent optimizations). Likewise, the process of linking together indepen-
dently assembled subprogramns does not usuaily depend on the computer
being used. We will also see many examples of such machine-independent
features in the chapters that follow.

Because most system software is machine-dependent, we must inciude real
machines and real pieces of software in our study. However, most real com-
puters have certain characteristics that are unusual or even upique. It can be

Chapier 1 Background

difficult to distinguish between those features of the software that are truly
fundamental and those that depend solely on the idiosyncrasies of a particular
machine, To avoid this problem, we present the fundamental functions of each
piece of software through discussion of a Simplified Instructional Computer
(SIC). SIC is a hypothetical computer that has been carefully designed to in-
clude the hardware features most often found on real machines, while avoid-
ing unusual or irrelevant complexities. In this way, the central concepts of a
piece of systemn software can be clearly separated from the implementation de-
tails associated with a particular machine. This approach provides the reader
with a starting point from which to begin the design of system software for a
new or unfamiliar computer.

ch major chapter in this text first introduces the basic functions of
the type of system software being discussed. We then consider machine-
dependent and machine-independent extensions to these functions, and exam-
ples of implementations on actual machines. Specifically, the major chapters
are divided into the following sections:

1. Features that are fundamental, and that should be found in any
example of this type of software.

2. Features whose presence and character ar= closely related to the
machine architecture.

3. Other features that are commonly found in implementations of this
type of software, and that are relatively machine-independent.

4. Major design options for structuring a particular piece of software—
for example, single-pass versus multi-pass processing,

5. Examples of implementations on actual machines, stressing unusual
software features and those that are related to machine characteristics.

This chapter contains brief descriptions of SIC and of the real machines
that are used as examples. You are encouraged to reaa these descriptions now,
and refer to them as necessary when studying the examples in each chapter.

1.3 THE SIMPLIFIED INSTRUCTIONAL
COMPUTER (SiIC)

In this section we describe the architecture of cur Simplified Instructional
Computer (SIC). This machine has been designed to iliustrate the most com-
monly ¢ncountered hardware features 21d concepts, while avoiding most of
the idiosyacrasies that are often found in resl machines.

1.3 The Simplified Instructional Computer (SIC)

Like many other products, SIC comes in two versions: the standard model
and an XE version (XE stands for “extra equipment,” or perhaps “extra expen-
sive”). The two versions have been designed to be upward compatible—that is,
an object program for the standard SIC machine will also execute properly an
a SIC/XE system. (Such upward compatibility is often found on real comput-
ers that are closely related to one another.) Section 1.3.1 summarizes the stan-
dard features of SIC. Section 1.3.2 describes the additional features that are
included in SIC/XE. Section 1.3.3 presents simple examples of SIC and
SIC/XE programming. These examples are intended to help you become more
familiar with the SIC and SIC/XE instruction sets and assembler language.
Practice exercises in SIC and SIC/XE programming can be found at the end of
this chapter.

1.3.1 SIC Machine Architecture

Memory

Memory consists of 8-bil bytes; any 3 consecutive bytes form a word (24 bits).
All addresses on SIC are byte addresses; words are addressed by the location
of their lowest numbered bvte. There are a total of 32,768 (219) bytes in the
computer memory.

Registers

There are five registers, all of which have special uses. Each register is 24 bits
in length. The following table indicates the numbers, mnemonics, and uses of
these registers. (The numbering scheme has been chosen for compatibility
with the XE version of SIC.)

Mnemonic Number Special use

A 0 Accumulator; used for arithmetic operations

X 1 Index register; used for addressing

L 2 Linkage register; the Jump to Subroutine (JSUB)
instruction stores the retumn address
in this registe:

PC 8 Program counter; contains the aadress of the

next instruction to be fetched for execution

Status word; contains a variety of
information, including a Condition Code (CC)

2

e S TS S T T e,

Chapter 1 Background

Data Formats

Integers are stored as 24-bit binary numbers; 2's complement representation is
used for negative values. Characters are stored using their 8-bit ASCII oona
(see Appendix B). There is no floating-point hardware on the standard version
of SIC.

Instruction Formats
All machine instructions on the standard version of SIC have the following
24-bit format:

8 1 16
opcode X address

The flag bit x is used to indicate indexed-addressing mode.

Addressing Modes

There are two addressing modes available, indicated by the setung of the x bit
in the instruction. The following table describes how the target address is calcu-
lated from the address given in the instruction. Parentheses are used to indi-
cate the contents of a register or a memory location, For example, (X)
represents the contents of register X.

Mode Indication Target address calculation

Direct x=0 TA = address

Indexed x=1 TA = address + (X)
Instruction Set

SIC provides a basic set of instructions that are sufficient for most simple
tasks. These include instructions that load and store registers (LDA, LDX, STA,
STX, 2tc.), as well as integer arithmetic operations (ADD. SUS, MUL, DIV). All
arithmetic operations involve register A and a word in memory: with the result
being left in the register. There is an instruction (COMP) that 83??& the
value in register A with a word in memory; this instruction sets a condition code
CC to indicate the result (<, =, or >). Conditional jump instructions (JLT, JEQ,
JGT) can test the setting of CC, and jump accordingly. Two instructions are

13 The Simplified Instructional Computer (SIC)

provided for subroutine linkage. JSUB jumps to the subroutine, placing the
return address in register L; RSUB returns by jumping to the address con-
tained in register L.

Appendix A gives a complete list of all SIC (and SIC/XE) instructions, with
their operation codes and a specification of the function performed by each.

Input and Output

On the standard version of SIC, input and output are performed by transfer-
ring 1 byte at a time to or from the rightmost 8 bits of register A. Each device is
assigned a unique 8-bit code. There are three I/0 instructions, each of which
specifies the device code as an operand.

The Test Device (TD) instruction tests whether the addressed device is
ready to send or receive a byte of data. The condition code is set to indicate the
result of this test. (A setting of < means the device is ready to send or receive,
and = means the device is not ready.) A program needing to transfer data must
wait until the device is ready, then execute a Read Data (RD) or Write Data
(WD). This sequence must be repeated for each byte of data to be read or writ-
ten. The program shown in Fig. 2.1 (Chapter 2) illustrates this techniave for
performing 1/0,

1.3.2 SIC/XE Machine Architecture

Memory
The memory structure for SIC/XE is the same as that previously described for
SIC. However, the maximum memory available on a SIC/XE system is

1 megabyte (2?0 bytes). This increase leads to a change in instruction formats
and addressing modes.

Registers
The following additional registers are provided by SIC/XE:

Mnemonic Number Special use

B 3 Base register; used for addressing

S 4 General working register—no special use
T 5 * General working register—no special use
F A Floating-point accumulator (48 hits)

- S—

— e ———

Lq—.—-c ——t —t 4 3a

Chapter 1 Background

Data Formats

SIC/XE provides the same data formats as the standard version. In addition,
there is a 48-bit floating-point data type with the following format:

1 1 36
s| exponent fraction

The fraction is interpreted as a value between 0 and 1; that is, the assumed bi-
nary point is immediately before the high-order bit. For normatlized floating-
point numbers, the high-order bit of the fraction must be 1 The exponent is
interpreted as an unsigned binary number between 0 and 2047. If the exponent
has value ¢ and the fraction has value f, the absolute value of the number rep-
resented is

f*2le-1024)

The sign of the floating-point number is indicated by the value of s (0 =
positive, 1 = negative). A value of zero is represented by setting all bits
(including sign, exponent, and fraction) to 0.

instruction Formats

The larger memory available on SIC/XE means that an address will (in gen-
eral) no longer fit into a 15-bit field; thus the instruction format used on the
standard version of SIC is no longer suitable. There are two possible options—
either use some form of relative addressing, or extend the address field to 20
bits. Both of these options are included in SIC/XE (Formats 3 and 4 in the fol-
lowing description). In addition, SIC/XE provides some instructions that do
not reference memory at all. Formats 1 and 2 in the following description are
used for such instructions.

The new set of instruction formats is as follows. The settings of the flag bits
in Formats 3 and 4 are discussed under Addressing Modes. Bit ¢ is used to dis-
tinguish between Formats 3 and 4 (¢ = 0 means Format 3, ¢ = 1 mean¢ Format
4). Appendix A indicates the format to be used with each machine instruction,

Format 1 (1 byte):
g
op

1.3 The Simplified Instructional Computer (SIC)

Format 2 (2 bytes):

3 4 4
op n r2

Format 3 (3 bytes):

6 19 5419 12
op nit|{x{bipie disp

Format 4 (4 bytes):

6 2 5 . Y G 20
op nli|x|blple adaress

Addressing Modes

Two new relative addressing modes are available for use with instructions
assembled using Format 3. These are described in the following table:

Mecde Indication Target address calculation

Base relative b=1,p=0 TA=(B)+disp (0sdisp=4095)

Program-counter b=0,p=1 TA=(PC)+disp (-2048sdisps2047)
relative

For base relative addressing, the displacement field 4isy in a Format 3 instruc-
tion is interpreted as a 12-bit unsigned integer. {'or program-counter relative ad-
dressing, this field is interpreted as a 12-bit signed gnmmﬂ.. with negative
values represented in 2's complement notation. :

If bits b and p are both set to 0, the disp field from the Format 3 instruction
is taken to be the target address. For a Format 4 instruction, bits b and p are
normally set to 0, and the target address is taken from the address field of the
instruction, We will call this direct addressing, to distinguish it from the rela-
tive addressing mocdes described above.

Any of these addressing modes can alsc be combined with indexed ad-
dressing—if bit x i< set to 1, the term (X) is added in the target address calcula-
tioir. Notice that the standard version of the SIC machine uses only direct
addressing (with or without indexing).

10

Chapter 1 Background

Bits i and n in Formats 3 and 4 are used to specify how the target address is
used. If bit i =1 and n = (, the target address itself is used as the operand

" value; no memory reference is performed. This is called immediate addressing.

If bit i = 0 and n = 1, the word at the location given by the target address is
fetched; the value contained in this word is then taken as the address of the
operand value. This is called indirect addressing. If bits i and n are both 0 or
both 1, the target address is taken as the location of the operand; we will refer
to this as simple addressing. Indexing cannot be used with immediate or indi-
rect addressing modes.

Many authors use the term effective address to denote what we have called
the target address for an instruction. However, there is disagreement concern-
ing the meaning of effective address when referring to an instruction that uses
indirect addressing. To avoid confusion, we use the term target address
throughout this book.

SIC/XE instructions that specify neither immediate nor indirect addressing
are assembled with bits i and i both set to 1. Assemblers for the standard ver-
sion of SIC will, however, set the bits in both of these positions to 0. (This is be-
cause the 8-bit binary codes for all of the SIC instructions end in 00.) All
SIC /XE machines have a special hardware feature designed to provide the up-
ward compatibility mentioned earlier. If bits # and i are both 0, then bits b, p,
and ¢ are considered to be part of the address field of the instruction (rather
than flags indicating addressing modes). This makes Instruction Format 3
identical to the format used on the standard version of SIC, providing the de-
sired compatibility.

Figure 1.1 gives examples of the different addressing modes available on
SIC/XE. Figure 1.1(a) shows the contents of registers B, PC, and X, and of se-
lected memory locations, (All values are given in hexadecimal.) Figure 1.1(b)
gives the machine code for a series of LDA instructions. The target address
generated by each instruction, and the value that is loaded into register A, are
also shown. You should carefully examine these examples, being sure you un-
derstand the different addressing modes illustrated.

For ease of reference, all of the SIC/XE instruction formats and addressing
modes are summarized in Appendix A.

Instruction Sel

SIC/XE provides all of the instructions that are available on the slandard
version. In addition, there are instructions to load and store the new registers
(LDB, STB, etc.) and to perform floating-point arithmetic operations (ADDF,

1.3 The Simplified Instructionai Computer (SIC) 11
(B) = 008000
" .
. . (PC) = 003000
- .
- » (X) = CCA090
3030 | 003600
L] -
L .
. .
3600 103000 »
- -
- .
L .
- .
6390 03C303
- .
- .
- -
c303 003030
3 .
- .
(s)
Machine instruction Value
loaded
Hex Binary into
ol z Target registor
op n i x b p e disp/address address A
032600 090000 1 1 0o 0 1 ¢ 0110 D000 0000 3600 103000
Q3C00 000000 1 1 L 1 a4 o coll 0000 GOOO 639C 006303
022030 000000 1 O O © 1 0 0000 0011 OO0O 3030 103000
010030 000000 O 1 O O 0 O O0DC 0Dl QOO0 sC 000030
003600 000000 © © O © 1 LI 0l10 DOOD 7000 3600 ¢ 102200
0310C303 0Co000 1 1 0 o0 ¢ 1 CO0C L100 0011 0000 0011 c303 JO3030

®)

Figure 1.1 Examples of SIC/XE instructions and addressing modes.

TR

Chapter 1 Background

SUBE, MULF, DIVF). There are also instructions that take their operands from
registers. Besides the RMO (register move) instruction, these include
register-to-register arithmetic operations (ADDR, SUBR, MULR, DIVR). A spe-
cial supervisor call instruction (SVC) is provided. Executing this instruction
generates an interrupt that can be used for communication with the operating
system. (Supervisor calls and interrupts are discussed in Chapter 6.)

There are also several other new instructions. Appendix A gives a complete
list of all SIC/XE instructions, with their operation codes and a specification of
the function performed by each.

Input and Output

The 1/0 insiructions we discussed for SIC are also available on SIC/XE. In ad-
dition, there are /0 channels that can be used to perform input and output
while the CPU is executing other instructions. This allows overlap of comput-
ing and 1/0, resulting in more efficient system operation. The instructions
SIO, TIO, and HIO are used to start, test, and halt the operation of 1/O chan-
nels. (These concepts are discussed in detail in Chapter 6.)

1.23.2 82 Prozramming Fxam: 2s

This section presents simple examples of SIC and SIC/XE assembler language
programming. These examples are intended to help you become more familiar
with the SIC and SIC/XE instruction sets and assembler language. It is as-
sumed that the reader is already familiar with the assembler language of at
least one machine and with the basic ideas involved in assembly-level pro-
gramming.

The primary subject of this book is systems programming, not assembler
language programming. The following chapters contain discussions of various
types of system software, and in some cases SIC programs are used to illus-
trate the points being made. 1hus section contains material that may help you
to understand these examples more casily. However, it does not contain any
new material on system software or systems programming. Thus, this section
can be skipped without any loss of continuity..

Figure 1.2 contains examples of data riovement operations for SIC and
SIC/XE. There are no memorv-to-meinory move instructions; thus, all daia
movement must be done using registers. Figure 1.2(a) shows two examples of
data movement. In the first, a 3-byte word is moved by loading it into register
A and then storing the register at ihe decired destination. Exactly the seme
thing could be accomplished using register X (and the instructions LDX, STX)
or register L (LDL, STL). In the second example, a single byte of data is moved
using the instructions LDCH (Load Character) and STCH (Store Character).

1.3 The Simplified Inséructional Computer (SIC)

These instructions operate by loading or storing the rightmost 8-bit byte of
register A; the other bits in register A are not affected.

Figure 1.2(a) also shows four different ways of defining storage for data
items in the SIC assembler language. (These assembler directives are discussed
in more detail in Section 2.1.) The statement WORD reserves one word of stor-
age, which is initialized to a value defined in the operand field of the state-
ment. Thus the WORD statement in Fig. 1.2(a) defines a data word labeled
FIVE whose value is initialized to 5. The statement RESW reserves one or
more words of storage for use by the program. For example, the RESW state-
ment in Fig, 1.2(a) defines one word of storage labeled ALPHA, which will be
used to hold a value generated by the program.

The statements BYTE and RESB perform similar storage-definition func-
tions for data items that are characters instead of words. Thus in Fig. 1.2{z)
CHARZ is a 1-byte data item whose value is initialized to the character "2,
and C1 is a 1-byte variable with no initial value.

oA FIVE LOAD CONSTANT 5 INTO REGISTER A
STA ALPHA STCRE IN ALPHA

LOCH CHARZ LOAD CHARACTER ‘%2’ TNTO REGISTER A
STCH Ci STORE IN CHARACTER VARIABLE C1

ALPHA RESW CNE-WORD VARIABLE

1
FIVE WORD 5 ONE-WORD OCMSTANT
CHARZ BYTE cra’ ONE~BYTE CONSTANT
Cl RESB 1 CNE-EYTE VARIABLE
(a)
1oA 45 LOAD VALUE 5 INTO REGISTFR A
STA . ALPHA STORE IN ALPHA
1LDA 490 LOAD ASCTT CODE FOR ‘%’ INTO RES A
STCH oo | STORE IN CHARNCTER VARIAELE Cl

CNE-WORED VARIABLE
CNE-BYTE VARIABLE

(v}

Figure 1.2 Sampls data movement operations for (a) SIC and
_(b) SIC/XE.

13

14

Chapter 1 Background

The instructions shown in Fig. 1.2(a) would also work on SIC/XFE; how-
ever, they would not take advantage of the more advanced hardware features
available. Figure 1.2(b) shows the same two data-movement operations as
they might be written for SIC/XE. In this example, the value 5 is loaded into
register A using immediate addressing, The operand field for this instruction
contains the flag # (which specifies immediate addressing) and the data value
to be loaded. Similarly, the character “Z" is placed into register A by using im-
mediate addressing to load the value 90, which is the decimal value of the
ASCII code that is used internally to represent the chacacter “Z".

Figure 1.3(a) shows examples of arithmetic instructions for SIC. All arith-
metic operations are performed using register A, with the result being left in
register A. Thus this sequence of instructions stores the value (ALPHA + INCR
~1) in BETA and the value (GAMMA + INCR ~ 1) in DELTA.

Figure 1.3(b) illustrates how the same calculations could be performed on
SIC /XE. The value of INCR is loaded into register S initially, and the register-
to-register instruction ADDR is used to add this value to register A when itis
needed. This avoids having to fetch INCR from memory each time it is used in
a calculation, which may make the program more efficient. Immediate ad-
dressing is used for the constant 1 in the subtraction operations.

Looping and indexing operations are illustrated in Fig. 1.4. Figure 1.4(a)
shows a loop that copies one 11-byte character siring to another. The index
register (register X) is initialized to zero before the loop begins. Thus, during
the first execution of the Joop, the target address for the LDCH instruction will
be the address of the first byte of STR1. Similarly, the STCH instruction will
store the character being copied into the first byte of STR2. The next instruc-
tion, TIX, performs two functions. First it adds 1 to the value in register X, and
then it compares the new value of register X to the value of the operand (in
this case, the constant value 11). The condition code is set to indicate the result
of this comparison. The JLT instruction jumps if the condition code is set 1o
“less than.” Thus, the JLT causes a jump back to the beginning of the loop if
the new value in register X is less than 11.

During the second execution of the loop, register X will contain the value
1. Thus, the target address for the LDCH instruction will be the second byte of
STR1, and the target address for the STCH instruction will be the second byte
of STR2. The TIX instruction will again add 1 to the value in register X, and the
loop will continue in this way until all 11 bytes have been copied from STR1 to
STR2. Notice that after the TIX instruction is executed, the value in register X
is equal to the number of bytes that have already been copied.

Figure 1.4(b) shows the same loop as it might be written for SIC/XE. The
main difference is that the instruction, TIXR is used in place of TIX. TIXR
works exactly like TIX, except that the value used for comparison is taken
from another register (in this case, register T), not from memory. This makes

1.3 The Simplified Instructional Conprter (SIC)

the loop more efficient, because the value does not have to be fetched from
memory each time the loop is executed. Immediate addressing is used to ini-
tialize register T to the value 11 and to initialize register X to 0.

Lo ALPHA LOAD ALPHA INTO REGISTER A
ADD INCR ADD THE VALUE OF INCR
sUB ONE SUBTRACT 1
STA BETA STORE IN SETA
LDA GRMMA LOAD GAMMA TMTO REGISTER A
ADD TNCR ADD THE VALUE GF INCR
SuB ONE SUBTRACT 1
STA DELTA STORE IN DELTA
CNE WORD 1 ONE-WORD CCINSTANT
; ONE-WORD VARIABLES
ALFHA KESW 1
BETA RESW 1
GRAMMA RESW 1
DELTA RESW 1
NCP. RESW 1

*)

LDS INCR LOAD VALUE OF INCR INTO REGISTER S
LOA ALPHA LOAD ALPHA INTO REGISTER A

ALDR S.A ADD THE VALUE CF INCR

SUB il SUBTRACT 1

STA BETA STORE IN BETA

LDA GAMAA LOAD GAMMA INTO REGISTER A

ADDR S,A ACD THE VALUE OF INCR

SUB #1 SUBTRACT 1

STA DELTA STORE IN DELTA

. ONE WORD VARIABLES
ALFPHA RESW

1
BETA RESW 1
GAMMA RESW 1
DELTA HESW 1
INCR RESW 1

(&)
Figure 1.3 Sample ariftimetic operations for (2) 5iC ana (b) SIGXE.

15

16

Chap'er 1 -Background

Lox ZERO INITIALIZE INDEX REGISTER TO 0 .
MOVECH LDCH STR1, X LOAD CHARACTER FROM STR1 INTO REG A

STCH STR2,X STORE CHARACTER INTC STR2

X BLEVEN ADD 1 TO INDEX, OOMPARE RESULT TO 11

JLT MOVECH LOOP IF INDEX IS LESS THAN 11

BYTE C'TEST STRING' 11-BYTE STRING CONSTANT
STR2- RESB 11 1I-BYTE VARIAELE
ONE-WORD CONSTANTS
WORD 0
ELEVEN YIORD 11

(a)

#11 INITIALIZE REGISTER T TO 11

nr
LI #0 INITIALIZE INDEX REGISTER TO 0
MOVECH IDCH STRL,X LOAD CHARACTER FROM STRI INTO REG A
SICH STR2,X STORE CHARACTER INTO STR?
TCR 7T ADD 1 TO INDEX, COMPARE RESULT 7O 11
JuT MOVECH LOOP IF INDEX IS LESS THAN 11
STR1 BYTE C'TEST STRING' 11-BYTE STRING CONSTANT
STR2 RESB 1 11-BYTE VARIABLE
(b)
Figure 1.4 Sample looping and indexing operations for {a) SIC and
(b) SIC/XE.

Figure 1.5 containg another example of looping and indexing operations.
The variables ALPHA, BETA, and GAMMA are arrays of 100 words each. In
this case, the task of the loop is to add together the corresponding elements of
ALPHA and BETA, storing the re<ults in the elements of GAMMA. The gen-
eral principles of looping and .ndexing are the same as previously discussed.
However, the value in the index register must be incremented oy 3 for each it-
eration of this loop, because each iterarion processes a 2-byte (i.e., one-word)
element of the arrays. The TIX instruction always adds 1 to register X, so it is
not svitable for this program fragment. Instead, we use arithmetic and com-

" parisen instructions {0 handle the index value.

LDA ZERO
STA INDEX
ADDLP - Inx INDEX
LOA ALEHA, X
g gsk '
STA GAMMA, X
ioa INDEX
ATD THREE
STA INDEX
coMP K300
JLD ADDLP
TNDEX RESW 1
ALPHA RESW 100
BETA RESW 100
GAMMA. RESW 100
ZERO WORD 0
K300 WORD 300
THREE womp 3
ws 3
LT #300
DX #0
ADDLP Lo ALPHA, X
ADD BETA, X
STA CAMMA, X
ADOR §,X
COMER X, T
Jup ADDLP

ALPHA RESW 100
BETA RESY 100
GAMMA RESH 100

1.3 The Smplified Instructional Computer (SIC)

INITTALIZE INDEX VALUE TO 0

Egéggng
gggg?ﬁmgb
ALD WORD FROM BETR

STORE THE RESULT IN A WORD TN GRMp®
ADD 3 TO INDEX VALUE

grmwzggécwauoc
LOCP IF INDEX IS LESS THAN 300

ONE-WORD VARIABLE FOR INDEX VALUE
ARFAY VARIABLES--100 WORDS EACH

ONE-WORD CONSTANTS

(a)

INITIALIZE REGISTER S T0 3
INITIALIZE REGISTER T TO 300
gnggggndo
gégggw@.uﬂg)
ADD WORD FROM BETA
gﬁﬂmﬁ.ﬂhﬁ.?>8§§~§
ADD 3 TO INDEX VALUE
Ogsggﬂng.quco

LOOP IF INDEX VALUE IS LESS THAN 300

ARRAY VARIABLES--100 WORDS EACHE

(o)

Figure 1.5 Sample indexing and .oov_:o. operations for {a) SIC and

{d) SIiC/XE.

17

Chapter 1 Background

In Fig. 1.5(a), we define a variable INDEX that holds the value to be used
for indexing for each iteration of the loop. Thus, INDEX should be 0 for the
first iteration, 3 for the second, and so on. INDEX is initialized to 0 before the
start of the loop. The first instruction in the body of the loop loads the current
value of INDEX into register X so that it can be used for target address calcula-
tion. The next three instructions in the loop load a word from ALPHA, add the
corresponding word from BETA, and store the result in the corresponding
word of GAMMA. The value of INDEX is then loaded into register A, incre-
mented by 3, and stored back into INDEX. After being stored, the new value of
INDEX is still present in register A. This value is then compared to 300 (the
length of the arrays in bytes) to determine whether or not to terminate the
loop. If the value of INDEX is less than 300, then all bytes of the arrays have
not yet been processed. In that case, the JLT instruction causes a jump back to
the beginning of the loop, where the new value of INDEX is loaded into regis-
ter X.

This particular loop is cumbersome on SIC, because register A must be
used for adding the array elements together and also for incrementing the in-
dex value. The loop can be written much more efficiently for SIC/XE, as
shown in Fig. 1.5(b). In this example, the index value is kept permanently in
register X. The amount by which to increment the index value (3) is kept in
register S, and the register-to-register ADDR instruction is used to add this in-
crement to register X. Similarly, the value 300 is kept in register T, and the in-
struction COMPR is used to compare registers X and T in order to decide
when to terminate the loop.

Figure 1.6 shows a simple example of input and output on SIC; the same
instructions would also work on SIC/XE. (The more advanced input and out-
put facilities available on SIC/XE, such as 1/0O channels and interrupts, are
discussed in Chapter 6.) This program fragment reads 1 byte of data from de-
vice Fi and copie= it to device 05. The actual input of data is performed using
the RD (Read Data) instruction. The operand for the RD is a byte in memory
that contains the hexadecimal code for the input device (in this case, F1).
Executing the RD instruction transfers 1 byte of data from this device into the
rightmost byte of register A. If the input device is character-oriented (for ex-
ample, a keyboard), the value placed in register A is the ASCII code for the
character that was read.

Before the RD can be executed, however, the input device must be ready to
transimnit the data. For example, if the input device is a keyboard, the operator
must have typed a character. The program checks for this by using the TD
(Test Device) instruction. When the TD is executed, the staius of the addressed
device is tested and the condition code is set to indicate the result of this test.
If the device is ready to transmit data, the condition code is sef 10 “less than”;
if the device is not ready, the condition code is set to "e7ual.” As Fig. 16

13 The Simplified Instructional Computer (SIC)

INDEV TEST INPUT DEVICE

INLOOP D
JEQ INLOOP LOOP UNTIL DEVICE IS READY
RD INDEV READ ONE BYTE INTO REGISTER A
STCH DATA STORE BYTE THAT WAS READ
QUILD i) CUTDEV TEST QUTPUT DEVICE
JEQ CUTLP LOOP UNTIL DEVICE IS READY
LDCH DATA LOAD DATA BYTE INTO REGISTER A
WD CUTDEV YRITE ONE BYTE TO OUTPUT DEVICE
TNDEV BYTE X'21° INPUT DEVICE NUMBER
QUTDEV BYTE X‘05’ QUTPUT DEVICE NUMBER
DATA RESE 1 ONE-BYTE VARTABLE

Figure 1.6 Sample input and output operations for SIC.

illustrates, the program must execute the TD instruction and then check the
condition code by using 2 conditional jump. If the condition code is “equal”
{(device not ready), the program jvmps back i~ the TD instruction. This two-
instruction loop will continue until the device becomes ready; then the RD will
be executed.

Output is performed in the same way. First the program uses TD to check
whether the output device is ready to receive a byte of data, Then the byte to
be written is loaded into the rightmost byte of register A, and the WD (Write
Data) instruction is used to transmit it to the device.

Figure 1.7 shows how these instructions can be used to read a 100-byte
record from an input device into memory. The read operation in this example
is placed in a subroutine. This subroutine is called from the main program by
using the JSUB (Jump to Subroutine) instruction. At the end of the subroutine
there is an RSUB (Return from Subrouting) instiuction, which returns control
to the instruction that follows the JSUB.

The READ subroutine itself consists of a loop. Each execution of this loop
reads 1 byte of data from the input device, using the same techniques illus-
trated in Fig. 1.6. The bytes of data that are read are sto_ed in a 100-byte buffer
area labeled RECORD. The indexing and looping technigues that are used in
storing characters in this bufier are sssentially the same as those illustrated in
Fig. 1.4(a).

Figure 1.7{b} shows the same READ subzcutine as it might be written for
SIC/XE. The main differences from Fig. 1.7(a) are the use of immediate
addressing and the TiXR instruction, as was illustrated in Fig. 1.4(a).

19

Chapter 1 Background
JEUB READ
READ LD ZERO
RLOOP ™ INDEV
JEQ RLOOP
RD INDEV
STCH RECORD, X
TIX ¥i00
Jur RLOOP
RSUB

RECORD RESE 100

ZERD WORD Y

K100 WORD 100
JSUB READ
READ LoX W0
IDT #100
RLOOP T INDEV
JEQ RLOOP
RD INDEV
STCH RECORD, X
TR T
JUT RLOOP

INDEV BYTE X‘Fi-
RECORD RESB 100

CALL READ SUEROUTINE

SUBROUTINE TO READ 100-BYTE RECORD
INITIALIZE TNDEX REGISTER TO 0
TEST INPUT DEVICE

100® IF DEVICE IS BUSY

READ ONE BYTE INTO RESISTER A
STORE DATA BYTE INTO RECORD

ADD 1 TO INDEX AND COMPARE TO 100
LOOP IF INDEX IS LESS THAN 100
EXTT FROM SUBROUTINE

INPUT DEVICE NUMEER
100-BYTE BUFFER FOR INPUT RECORD
ONE-WORD CONSTANTS

(a)
CALL READ SUEROUTINE

SUBROUTINE TO READ 100-BYTE RECORD
INITIALIZE INDEX REGLSTER T0 0
INTTTALIZE REGISTER T 10 100

TEST INFUT DEVICE

LOoOP IF DEVICE IS BUSY

READ ONE BYTE INTO REGISTER A
STORE DATA BYTE INTO RECORD

ADD 1 TO INDEX AND COMPARE TO 100
LOOP IF INDEX IS LESS THAN 100
EXTT FROM SURROUTINE

TNPUT DEVICE NUMBER
1U0~BYTE BUFFER FOR INPUT RECORD

(b)

Figure 1.7 Sampie subroutine call end record input operaticns for

(a) SIC and (£) SIC/XE.

1.4 Traditionai (CISC) Machines

1.4 TRADITIONAL (CISC) MACHINES

This section introduces the architectures of two of the machines that will be
used as examples later in the text. Section 14.1 describes the VAX architecture,
and Section 1.4.2 describes the architecture of the Intel x36 family of proces-
SOTS.

The machines described in this section are classified as Complex Instruc-
tion Set Computers (CISC). CISC machines generally have a relatively large
and complicated instruction set, several different instruction formats and
lengths, and many different addressing modes. Thus the implementation of
such an architecture in hardware tends to be complex.

You may want to compare the examples in this section with the Reduced
Instruction Set Computer (RISC) examples in Section 1.5. Further discussion of
CISC versus RISC designs can be found in Tabak (1995).

1.4.1 VAX Architecture

The VAX family of computers was introduced by Digital Equipment
Corporation (DEC) in 1978. The VAX architecture was designed for compati-
bility with the earlier PDP-11 machines. A compatibility mode was provided at
the hardware level so that many PDP-11 programs could run unchanged on
the VAX. It was even possible for PDP-11 programs and VAX programs to
share the same machine in a multi-user environment,

This section summarizes some of the main characteristics of the VAX archi-
tecture. For further information, see Baase (1992).

Memory

The VAX memory consists of 8-bit bytes. All addresses used are byte ad-
dresses. Two consecutive bytes form a word; four bytes form a longword; eight
bytes form a quadword; sixteen bytes form an octaword. Some operations are
more efficient when operands are aligned in a particular way—for example, a
longword operand that begins at a byte address that is a multiple of 4.

All VAX programs operate in a virtual address space of 232 bytes, This vir-
tual memory allows programs to operate as though they had access to an ex-
tremely large memory, regardless of the amount of memory actually present
on the system. Routines in the operating system take care of the details of
memory management. We discuss virtual memory in connection with our
study of operating systems in Chapter 6. One half of the VAX virtual address
space is called system space; which contains the operating system, and is shared
by all programs. The other half of the address space is called process space, and

Chapter 1 Background

is defined separately for each program. A part of the process space containg

" stacks that are available to the program. Special registers and machine instruc-

tions aid in the use of these stacks.

Registers

There are 16 general-purpose registers on the VAX, denoted by R0 through
R15. Some of these registers, however, have special names and uses, All gen-
eral registers are 32 bits in length. Register R15 is the program counter, also
called PC. It is updated during instruction execution to point to the next in-
struction byte to be fetched. R14 is the stack poinfer SP, which points to the cur-
rent top of the stack in the program’s process space. Although it is possible to
use other registers for this purpose, hardware instructions that implicitly use
the stack always use SP. R13 is the frame pointer FP. VAX procedure call con-
ventions build a data structure called a stack frame, and place its address in
FP. R12 is the argument pointer AP. The procedure call convention uses AP to
pass a list of arguments associated with the call.

Registers R6 through R11 have no special functions, and are available for
general use by the program. Registers R0 through R5 are likewise available for
general use; however, these registers are also used bv some machine instruc-
tions. -

In addition to the general registers, there is a processor status longword
(PSL), which contains state variables and flags associated with a process. The
PSL includes, among many other items of information, a condition code and a
flag that specifies whether PDP-11 compatibility mode is being used by a
process. There are also a number of control registers that are used to support
various operating system functions.

Data Formats

Integers are stored as binary numbers in a byte, word, longword, quadword,
or octaword; 2's complement representation is used for negative valucs.
Characters are stored using their 8-bit ASCII codes.

There are four different floating-point data formats on the VAX, ranging in
length from 4 to 16 bytes. Two of these are compatible with those found on the
PDP-11, and are standard on all VAX processors, The other two are available
as options, and provide for an extended range of values by allowing more bits
in the exponent field. In each case, the principles ar: the same as those we dis-
cussed for SIC/XE: a floating-point value is represented as a fraction that is to
be muitiplied by a specified power of 2.

VAX processors provide a packed decimal data format. In this format, each
byte represents two decimal digits, with each digit encoded using 4 bits of the
byte. The sign is encoded in the last 4 bits. There is also a nuneric format that

14 Traditional (CISC) Maciines

is used to represent numeric values with one digit per byte. In this format, .;a
sign may appear either in the last byte, or as a separate byte v-m.om&:m the first
digit. These two variations are called fraling nimeric and. leading separate nu-
meric.

VAX also supports queues and variable-length bit strings. Data structures
such as these can, of course, be implemented on any machine; ro«qms.uv VAX
provides direct hardware support for them. There are single an.Zzn instruc-
tions that insert and remove entries in queues, and perform a variety of cpera-
tions on bi strings. The existence of such powerful machine instructions and
complex primitive data types is one of the more unusual features of the VAX
architecture.

Instruction Formats

VAX machine instructions use a variable-length instruction format. Each m_.p.
struction consists of an operation code (1 or 2 bytes) followed by up to six
operand specifiers, depending cn the type of instruction. Each oumn.:i mvm.n.mmn
designates one of the VAX addressing modes and gives any additional Sm.o?
mation necessary to locate the operand. (See the description of addressing
moces in the following section for further information.)

Addressing Modes

VAX provides a large number of addressing modes. With few exceptions, any
of these addtessing modes may be used with any instruction. The omm_.m?» it-
self may be in a register (register mode), or its address may be specified by a
regster (register deferred mode). If the operand address is in a register, the reg-
ister contents may be automatically incremented or decremented by the
operand length (autotncrement and autodecrement modes). There are several
base relative addressing modes, with displacement fields of different lengths;
when used with register PC, these become program-~counter relative modes,
All of these addressing modes may also include an index register, and many of
them are available in a form that specifies indirect addressing (called deferred
modes on VAX). In addition, there are immediate operands and several spe-
cial-purpose addressing modes. For furer details, see Baase (1992).

Instruction Set
One of the goals of the VA ¥ designers was to produce an instruction set that is

symmetric with respect to data type, Many instruction mnemonics are formed
by combining the following elements:

S=emgm— - i

"

e T
i s
Lo i

24

Qs.nw.« 1 Background

1. a prefix that specifies the type of operation,
2. a suffix that specifies the data type of the operands,

3. a modifier (on some instructions) that gives the number of operands
involved.

For example, the instruction ADDW2 is an add operation with two o%ﬁ.u:nw‘
each a word in length. Likewise, MULL3 is a multiply operation with three
lorgword operands, and CVTWL specifies a conversion from word to _ow.m.
werd. (In the latter case, a two-operand instruction is assumed.) For a typical
instruction, operands may be located in registers, in memory, or in the instruc-
tion itself (immediate addressing). The same machine instruction code is used,
regardless of operand locations. .

VAX provides all of the usual types of instructions for computation, data
movement and conversion, comparison, branching, etc. In addition, there are a
number of operations that are much more complex than the machine instruc-
tions found on most coinputers. These operations are, for the most part, hard-
ware realizations of frequently occurring sequences of code. They are
implemented as single instructions for efficiency and speed. For mxmu..v_w\ VAX
provides instructions to lead and siore multiple registers, wbn_ to B.&.:v&unm
G-2ves and variable " agth bii fields. There are ~leo powerful inctructions for
calling and returning from procedures. A single instruction saves a .mmz.waxm
set of registers, passes a list of arguments to the procedure, maintains the
stack, frame, and argument pointers, and sets a mask to enable error traps for
arithmetic operations. For further information on all of the VAX instructions,

see Baase (1992).

Input and Output

Input and output on the VAX are accomplished by 1/0 device controllers.
Zach conticllcr has a set of control/status and data registers, which are as-
signed locations in the physical address space. The portion of the address
space into which the device controller registers are mappe-l w called I/O space.

No special instructions are required to access registers in 1/0 space. An
1/0 device driver issues com:nands to the device controller by storing values
into the appropriate registers, exactly as if they were physical memory rk.s-
tions. Likewise, software routines may read these registers to obtain status in-
formation, The association of an address in I/O space with a physical register
in a device contzuller is handled by the memory management routines.

1.4 Traditionsl (CISC) Machines

1.4.2 Pentium Pro Architecture

The Pentium Pro microprocessor, introduced near the end of 1995, is the latest
in the Intel x86 family. Other recent microprocessors in this family are the
80486 and Pentium. Processors of the x86 family are presently used in a major-
ity of personal computers, and there is a vast amount of software for these
processors. It is expected that additional generations of the x85 family will be
developed in the future.

The various x86 processors differ in implementation details and operating
speed. However, they share the same basic architecture. Each succeeding gen-
eration has been designed to be compatible with the earlier versions. This sec-
tion contains an overview of the x86 architecture, which will serve as
background for the examples to be discussed later in the book. Further infor-
mation about the x86 family can be found in Intel (1995), Anderson and
Shanley (1995), and Tabak (1995).

Memory

Memory in the x86 architecture can be described in at least two different ways.
At the physical level, memory consists o/ 8-bit bytes. All addresses used are
byte addresses. Two consecutive bytes form a word; four bytes form a double-
word (also called a dword). Some operations are more efficient when operarcis
are aligned in a particular way—for example, a doubleword operand that be-
gins at a byte address that is a multiple of 4.

However, programmers usually view the x86 memory as a collection of
segments. From this point of view, an address consists of two parts—a segment
number and an offset that points to a byte within the segment. Segments can
be of different sizes, and are often used for different purposes. For example,
some seginents may contain executable instructions, and other segments may
be used to store data. Some data segments may be treated as stacks that can be
used to save register contents, pass parameters to subroutinss, and for other
purposes.

[tis not necessary for all of the segments used by a program to be in physi-
cal memory. In some cases, a segment can also be divided into pages. Some of
the pages of a segment may be in physical memory, while others may be
stored on disk. When an x86 instruction is executed, the hardware and the op-
erating system make sure that the needed byte of the segment is loaded into
physical memory. The segment/offset address specified by the programumer is
automatically translated into a physical byte address by the x86 Memory

' o S Sy -

26

Chapter 1 Background

Management Unit (MMU). Chapter 6 contains a brief discussion of methods
that can be used in this kind of address translation.

Registers

There are eight general-purpose registers, which are named EAX, EBX, ECX,
EDX, ESI, EDI, EBP, and ESP. Each general-purpose register is 32 bits long (i.e.,
one doubleword). Registers EAX, EBX, ECX, and EDX are generally used for
data manipulation; it is possible to access individual words or bytes from
these registers. The other four registers can also be used for data, but are more
commonly used to hold addresses. The general-purpose register set is identi-
cal for all members of the x86 family beginning with the 80386. This set is also
compatible with the more limited register sets found in earlier members of the
family.

There are also several different types of special-purpose registers in the x86
architecture. FIP is a 32-bit register that contains a pointer to the next instruc-
tion to be executed. FLAGS is a 32-bit register that contains many different bit
flags. Some of these flags indicate the status of the processor; cthers are used
to record the results of comparisons and arithmetic operations. There are also
six 16-bit segment registers that are used to locate segments in memory.
Segment register CS contains the address of the currently executing code seg-
ment, and S5 contains the address of the current stack segment. The other seg-
ment registers (DS, ES, FS, and GS) are used to indicate the addresses of data
segments.

Floating-point computations are performed using a special floating-point
unit (FPU). This unit contains eight 80-bit data registers and several other con-
trol and status registers.

All of the registers discussed so far are available to application programs.
There are also a number of registers that are used only by system programs
such as the operating system. Some of these registers are used by the MMU to
translate segment addresses into physical addresses. Others are used to con-
trol the operation of the processor, or to support debugging operations.

Data Formats

The x86 architecture provides for the storage of integers, floating-point values,
characters, and strings. Integers are normally stored as 8-, 16-, or 32-bit binary
numbers. Both signed and unsigned integers (also called ordinals) are sup-
ported; 2's complement is used for negative values. The FPU can also handle
64-bit signed integers. In memory, the least significant par! of a numeric value
is stored at the lowest-numbered address. (This is commonly called

1.4 Traditional (CISC) Machines

little-endian byte ordering, because the “little end” of the value comes first in
memory.)

Integers can also be stored in binary coded decimal (BCD). In the unpacked
BCD format, each byte represents one decimal digit. The value of this digit is
encoded (in binary) in the low-order 4 bits of the byte; the high-order bits are
normally zero. In the packed BCD format, each byte represents two decimal
digits, with each digit encoded using 4 bits of the byte.

There are three different floating-point data formats. The single-precision
format is 32 bits long. It stores 24 significant bits of the floating-point value,
and allows for a 7-bit exponent (power of 2). (The remaining bit is used to
store the sign of the floating-point value.) The double-precision format is 64
bits long. It stores 53 significant bits, and allows for'a 10-bit exponent. The
extended-precision format is 80 bits long It stores 64 significant bits, and
allows for a 15-bit exponent.

Characters are stored one per byte, using their 8-bit ASCII codes. Strings
may consist of bits, bytes, words, or doublewords; special instructions are
provided to handle each type of string.

instruction Formats

All el the 25 machi o inst_cions use vardabic.e of the same basic formi.
This format begins with optional prefixes containing flags that modify the op-
eration of the instruction. For example, some prefixes specify a repetition
count for an instruction. Others specify a segment register that is to be used
for addressing an operand (overriding the normal defauit assumptions made
by the hardware). Following the prefixes (if any) is an opcode (1 or 2 bytes);
some operations have difierent cpcodes, each specifying a different variant of
the operation. Following the opcode are a number of bytes that specify the
operands and addressing modes to be used. (Se= the description of addressing
modes in the next section for further information.)

The opcode is the only element that is always present in every instruction.
Other elements may or may not be present, and may be of different lengths,
depending on the operation and the operands involved. Thus, there are a large
number of different potential instruction formats, varving in length from
1byte to 10 bytes or more,

Addressing Modes

The x86€ architecture provides a large number of addressing medes. An
operand value may be specified as part of the instruction itself (immediats
mode), or it inay be in a vegister (register mode).

Chapter 1 Background

Operands stored in memory are often specified using variations of the gen-
eral target address calculation

TA = (base register) + (index register) * (scale factor) + displacement

Any general-purpose register may be used as a base register; any general-
purpose register except ESP can be used as an index register. The scale factor
may have the value 1,2, 4, or 8, and the displacement may be an 8-, 16-, or 32-
bit value. The base and index register numbers, scale, and displacement are
encoded as parts of the operand specifiers in the instruction. Various combina-
tions of these items may be omitted, resulting in eight different addressing
modes. The address of an operand in memory may also be specified as an m.v.
solute location (direct mode), or as a location relative to the EIP register (relative
mode).

Instruction Set

The x86 architecture has a large and complex instruction set, containing more
than 400 d:fferent machine instructions. An instruction may have zero, one,
two, o~ threo operands. There are register-to-register instructions, register-to-
memory instructions, and a few memory-to-memory instructions. In some
cases, operands may also be specified in the instruction as immediate values.

Most data movement and integer arithmetic instructions can use operands
that are 1, 2, or 4 bytes long. String manipulation instructions, which use repe-
tition prefixes, can deal directly with variable-length strings of bytes, Soam
or doublewords. There are many instructions that perform logical and bit ma-
nipulations, and support control of the processor and memory-management
systems. ,

The x86 architecture also includes special-purpose instructions to perform
operations frequently required in high-level programming F.uwnwmﬁlmo_..nx-
ample, entering and leaving procedures and checking subscript values against
the bounds of an array.

Input and Outpu.

input is performed by instructions that iznsier one byte, word, or double-
word at a time from an 170 port into register EAX. Cutput instructions trans-
fer one byte, word, or doubleword from EAX {0 an 1/O port. wovan.wmonﬂ
prefixes allow these instructions to transfer an entire string in a single
cperation.

1.5 RISC Machines

1.5 RISC MACHINES

This section introduces the architectures of three RISC machines that will be
used as examples later in the text. Section 1.5.1 describes the architecture of the
SPARC family of processors. Section 1.5.2 describes the PowerPC family of mi-
croprocessors for personal computers, Section 1.5.3 describes the architecture
of the Cray T3E supercomputing system.

All of these machines are examples of RISC (Reduced Instruction Set
Computers), in contrast to traditional CISC (Complex Instruction Set
Computer) implementations such as Pentium and VAX. The RISC concept, de-
veloped in the early 1980s, was intended to simplify the design of processors.
This simplified design can resuit in faster and less expensive processor devel-
opment, greater reliability, and faster instruction execution times.

In general, a RISC system is characterized by a standard, fixed instruction
length (usually equal to one machine word), and single-cycle execution of
most instructions, Memory access is usually done by load and store instruc-
tions only. All instructions except for load and store are register-to-register op-
erations. There are typically a relatively large number of general-purpose
registers. The number of machine instructions, instruction formats, and ad-
dressing modes is relatively small.

The discussions in the following sections will illustrate some of these RISC
characteristics. Further information about the RISC approach, including its ad-
vantages and disadvantages, can be found in Tabak (1995).

1.5.1 UltraSPARC Architecture

The UltraSPARC processor, announced by Sun Microsystems in 1995, is the
Iatest member of the SPARC family. Other members of this family include a
variety of SPARC and SuperSPARC processors. The original SPARC architec-
ture was developed in the mid-1980s, and has been implemented by a number
of manufacturers. The name SPARC stands for scalable processor architecture.
This architecture is intended to be suitable for a wide range of implementa-
tions, from microcomputers to supercomputers.

Although SPARC, SuperSPARC, and UltraSPARC architectures differ
slightly, they are upward compatible and share the same basic structure. This
section contains an overview of the UltraSPARC architecture, which will serve
as background for the examples to be discussed later in the book. Further in-
formation about the SPARC family can be found in Tabak (1955) and Sun
Microsyvstems (1995a).

b et

me

30

Chapter 1 Background

Memory

Memory consists of 8-bit bytes; all addresses used are byte addresses. Two
consecutive bytes form a halfword; four bytes form a word; eight bytes form a
doubleword. Halfwords are stored in memory beginning at byte addresses that
are multiples of 2. Similarly, words begin at addresses that are multiples of 4,
and doublewords at addresses that are multiples of &.

UltraSPARC programs can be written using a virtual address space of
264 bytes. This address space is divided into pages; multiple page sizes are sup-
ported. Some of the pages used by a program may be in physical memory,
while others may be stored on disk. When an instruction is executed, the hard-
ware and the operating system make sure that the needed page is loaded into
physical memory. The virtual addzess specified by the instruction is automati-
cally translated into a physical address by the UltraSPARC Memory Manage-
ment Unit (MMU). Chapter 6 contains a brief discussion of methods that can
be used in this kind of address translation.

Registers

The SPARC architecture includes a large register file that usually contains more
than 100 general-purpose registers. (The exact number varies from oné 'mple-
mentation to another.) However, any procedure can access only .2 rcgisters,
designated 10 through r31. The first eight of these registers (r0 through 17) are
global—that is, they can be accessed by all procedures on the system. (Register
10 always contains the value zero.)

The other 24 registers available to a procedure can be visualized as a win-
dow through which part of the register file can be seen. These windows over-
lap, S0 some registers in the register file are shared between procedures. For
example, registers 8 through r15 of a calling procedure are physically the
same registers as r24 through 131 of the called procedure. This facilitates the
passing of parameters,

The SPARC hardware manages the windows into the register file. If a set of
concurrently running procedures needs more windows than are physically
available, a “window overflow” interrupt occurs. The operating system must
then save the contents of some registers in the file (and restore them later) to
provide the additional windows that are needed.

In the original SPARC architecture, the general-purpose registers were
32 bits long. Laier implementations (including UltraSPARC) expanded these
registers to 64 bits. Some SPARC implementations provide several physically
different sets of global registers, for use by application procedures and by vari-
ous hardware and operating system functions.

Floating-point computations are performed using a special floating-point
unit (FPU). On UitraSPARC, this unit contains a file of 64 douvle-precision
floating-point registers, and several othar control and status registe:s.

—— e S et —

- -

1.5 RISC Machines

Besides these register files, there are a program counter PC (which contains
the address of the next instruction to be executed), condition code registers,
and a number of other control registers.

Data Formats

The UltraSPARC architecture provides for the storage of integers, floating-
point values, and characters. Integers are stored as 8-, 16-, 32-, or 64-bit binary
numbers. Botl signed and unsigned integers are supported; 2's complement is
used for negative values. In the original SPARC architecture, the most signifi-
cant part of a numeric value is storad at the lowest-numbered address. (This is
commontly called big-endian byte ordering, because the “big end” of the value
comes first in memory.) UltraSPARC supports both big-endian and little-
endian byte orderings.

There are three different floating-point data formats. The single-precision
format is 32 bits long. It stores 23 significant bits of the floating-point value,
and allows for an 8-bit exponent (power of 2). (The remaining bit is used to
store the sign of the floating-point value.) The double-precision format is
&4 bits long. It stores 52 significant bits, and allows for a 11-bit exponent. The
Guad-precision format stores 63 significant bits, and allows for a 15-bit expo-
nent.

Cinaracters a.e stored one per byte, using their 8-bit ASCil codes.

Instruction Formats

There are three basic instruction formats in the SPARC architecture. All of
these forriats are 32 bits long; the first 2 bits of the instruction word identify
which format is being used. Format 1 is used for the Call instruction. Format 2
is used for branch instructions (and one special instruction that enters a value
into a register). The remaining instructions use Format 3, which provides for
register loads and stores, and three-operand arithmetic operations.

The fixcld instiuctivn teogth i the SPARC architecture is typical of RISC
systems, and is intended to speed the process of instruction fetching and de-
coding. Compare this approach with the complex variable-length insiructions
found on CISC systems such as VAX and x86.

Addressing Modes

As in most architectures, an operand value may be specified as part of the in-
struction itself {fzimediate mode), or it may be in a register (register Jirect
mode). Operands in memory are addresse? using e of the feliowing three
modes:

31

32

Chapter 1 Background
Mode Target address calculation
PC-relative TA = (PC) + displacement {30 bits, signed]
Register indirect TA = (register) + displacement
with displacement [13 bits, signed|

Register indirect indexed TA= (register-1) + (register-2)

PC-relative mode is used only for branch instructions.
The relatively few addressing modes of SPARC allow for more efficient im-
plementations than the 10 or more modes found on CISC systems such as x86.

Instruction Set

The basic SPARC architecture has fewer than 100 machine instructions, reflect-
ing its RISC philosophy. (Compare this with the 300 to 400 instructions often
found in CISC systems.) The only instructions that access memory are loads
and stores. All other instructions are register-to-register operations.

Instruction execution on a SPARC system is pipelined—while one instruc-
tion is being executed, the next one is being fetched from memory and de-
coaed, In most cases, this tec uague spends lstruction execution However, an
ordinary branch instruction might cause the process to “stall.” The instruction
following the branch (which had already been fetched and decoded) would
have to be discarded without being executed.

To make the pipeline work more efficiently, SPARC branch instructions H.F.
cluding subroutine calls) are delayed branches. This means that the instruction
immediately following the branch instruction is actually executed before the
branch is taken. For example, in the instruction sequence

SUB R0, 11, %12
BA NEXT
MoV L1, w02

the MOV instruction is executed before the branch BA. This MOV instruction
is said to he 11 the delay slof of the branch. The programmer must take this
characteristic into account when writing an assembler language program.
Further discussicns and examplas of the use of delaved branches can be found
in Section 2.5.2.

The Ultr=SPARC architecture also includes special-purpose instructioas to
‘provide support for operating systems and optimizing compilers. For exam-
ple, high-baudwidti block load and store operations can be used to speed

L5 RISC Machires

common operating system functions. Communication in & multi-processor
system is facilitated by special “atomic” instructions that can execute without
allowing other memory accesses to intervene. Conditional move instructions
may allow a compiler to eliminate many branch instructions in order to opti-
mize program execution.

Input and Output

In the SPARC architecture, communication with 1/0 devices is accomplished
through memory. A range of memory locations is logically replaced by device
registers. Each I/O device has a unique address, or set of addresses, assigned
to it. When a load or store instruction refers to this device register area of
memory, the corresponding device is activated. Thus input and output can be
performed with the regular instruction set of the computer, and no special I/0
instructions are needed.

1.5.2 PowerPC Architecture

IBM first introduced the POWER architecture early in 1990 with the RS/6000.
(POWER is an acronym for Performance Optimization With Enhanced RISC))
It was soon realized that this architecture could form the basis for a new fam-
ily of powerful and low-cost microprocessors. In October 1991, IBM, Apple,
and Motorola formed an alliance to develop and market such microprocessors,
which were named PowerPC. The first products using PowerPC chips were
delivered near the end of 1993. Recent implementations of the PowerPC archi-
tecture include the PowerPC 601, 603, and 604; others are expected in the near
future.

As its name implies, PoworPC is a RISC architecture. As we shall see, it has
much in common with other RISC syster:s such as STARC. There are also a
few differences in philosophy, which we will note in the course of the discus-
sion. Thiz section contains an overview of the PowerPC architecture, which
will serve as background for the examples to be discussed later in the book.
Further information about PowerPC can be found in [BM (1994a) and Tabak
(1995).

Memory

Memory consists of 8-bit bytes; all addresses used are byte addresses. Two
consecutive bytes form a halfword; four bytes form a word; eight bytes form a
doubleword; sixteen bytes form a quadword. Many instructions may execute

Chapter 1 Bockground

more efficiently if operands are aligned at a starting address that is a multiple
of their length.

PowerPC programs can be written using a virtual address space of 264
bytes. This address space is divided into fixed-length segments, which are 256
megabytes long. Each segment is divided into pages, which are 4096 bytes
long. Some of the pages used by a program may be in physical memory, while
others may be stored on disk. When an instruction is executed, the hardware
and the operating system make sure that the needed page is loaded into physi-
cal memory. The virtual address specified by the instruction is automatically
translated into a physical address. Chapter 6 contains a brief discussion of
methods that can be used in this kind of address translation.

Registers

There are 22 general-purpose registers; designated GFRO through GPR31. In
the full PowerPC architecture, each register is 64 bits long. PowerPC can also
be implemented in a 32-bit subset, which uses 32-bit registers. The general-
purpose registers can be used to store and manipulate integer data and
addresses.

Floating-point computations are performed using a special floating-yuint
unit (FPU). This unit contains thirty two 64-bit floating-point registues, «nd &
status and control register.

A 32-bit condition register reflects the result of certain operations, and can
be used as a mechanism for testing and branching, This register is divided into
eight 4-bit subfields, named CRO through CR7. These subfields can be set and
tested individually by PowerPC instructions.

The PowerPC architecture includes a Link Register (LR) and a Count
Register (CR), which are used by some branch instructions. There is also a
Machine Status Register (MSR) and variety of other control and status regis-
ters, some of which are implementation dependent.

Data Formats

The PowerPC architecture provides for the storage of integers, floating-point
values, and characters. Integers are stored as 8-, 16, 32-, or 64-bit binary num-
bers. Both signed and unsigned integers are supported; 2's complement is
used for negative values. By default, the most significant part of a numeric
value is stored at the lowest-numbered address {big-endian byte ordering). It
is possible to select little-endian byte ordering by setting a bit in a control

register.

1.5 RISC Machimnes

There are two different floating-point data formats. The single-precision
format is 32 bits long. It stores 23 significant bits of the floating-point value,
and allows for an 8-bit exponent (power of 2). (The remaining bit is used to
store the sign of the floating-point value.) The double-precision format is
64 bits long. It stores 52 significant bits, and allows for a 11-bit exponent. -

Characters are stored one per byte, using their 8-bit ASCII codes.

Instruction Formats

There are seven basic instructicn formats in the PowerPC archilecture, some of
which have subforms. All of these formats are 32 bits long. Instructions must
be aligned beginning at a word bounaary (i.e, a byte address that is a multiple
of 4). The first 6 bits of the instruction word always specify the opcode; some
instruction formats also have an additional “extended opcode” field.

The fixed instruction length in the PowerPC architecture is typical of RISC
systems. The variety and complexity of instruction formats is greater than that
found on most RISC systems (such as SPARC). However, the fixed length
makes instruction decoding faster and simpler than on CISC systems like VAX
and x86.

Addressing Modes

As in most architectures, an operand value may be specified as part of the in-
struction itself (immediate mode), or it may be in a register (register divect
mode). The only instructions that address memory are load and store opera-
tions, and branch instructions.

Load and store operations use one of the following three addressing
modes:

Mode Targst address calculation
Register indirect TA = (register)

Register indirect with index ~ TA = (register-1) + (register-2)
Register indirect with TA = (registe., + displacement

immediate index {16 buts, signed]

The register numbers and displacement are encoded as part of the instruction.

35

Chapter 1 Backgrownd

Branch instructions use one of the following three addressing modes:

Mode Target address calculation
Absolute TA = actual address
Relative TA = current instruction address +

displacement [25 bits, signed|
Link Register TA = (LR)
Count Register TA = (CR)

The absolute address or displacement is encoded as part of the instruction.

Instruction Set

The PowerPC architecture has approximately 200 machine instructions. Some
instructions are more complex than those found in most RISC systems. For ex-
ample, load and store instructions may automatically update the index regis-
ter to contain the just-computed target address. There are floating-point
“multiply and add” instructions that take three input operands and perform 4
muliiphication « ol an 224i5un L, one instruction. Such instractions reflect the
PowerPC approach of using more powerful instructions, so fewer instructions
are required to perform a task. This is in contrast to the more usual RISC ap-
proach, which keeps instructions simple so they can be executed as fast as
possible.

In spite of this difference in philosophy, PowerPC is generally considered
to be a true RISC architecture. Further discussions of these issues can be found
in Smith and Weiss (1994).

Instruction execution on a PowerPC system is pipelined, as we discussed
for SPARC. However, the pipelining is mare sophisticated than on the original
SPARC systems, with branch prediction used to speed execution. A« & result,
the delayed branch technique we described for SPARC is not used on
PowerP’C (and most other modern architectures). Further discussion of
pipelining and brancii prediction can be found in Tabak (1995).

Inptt and Output

The PowerPC architecture provides two different methods for performing 1/0
vperations. In ene approach, segments in the virtual address space are
mapped onto an external address space (typically an /O bus). Segments that
are mapped in this way are called direct-store segments, This method is similar
to tne approach nsed in the SPARC architecture.

1.5 RISC Machnes

A reference to an address that is not in a direct-store segment represents a
normal virtual memory access. In this situation, 1/0 is performed using the
regular virtual memory management hardware and software.

1.5.3 Cray T3E Architecture

The T3E series of supercomputers was announced by Cray Research, Inc,, near
the end of 1995. The T3E is a massively parallel processing {(MPP) system, de-
signed for use on technical applications in scientific computing, The earlier
Cray T3D system had a similar (bui not identical) architecture,

A T3E system contains a large number of processing elements (PE),
arranged in a three-dimensional network as illustrated in Fig. 1.8. This net-
work provides a path for transferring data between processors. It also imple-
ments control functions that are used to synchronize the operation of the PEs
used by a program. The interconnect network is circular in each dimension.
Thus PEs at “opposite” ends of the three-dimensional array are adjacent with
respect to the network. This is illustrated by the dashed lines in Fig. 1.8; for
simplicity, most of these “circular” connections have been omitted from the
drawing,.

Each PE consists of a DEC Alpha EV5 RISC microprocessor (currently
model 21164), local memary, and performance-accelerating control logic devel-
oped by Cray. A T3E system may contain from 16 to 2048 processing elements.

This section contains an overview of the architecture of the T3E and the
DEC Alpha microprocessor, Sections 3,53 and 5.5.3 discuss some of the ways
programs can take advantage of the multiprocessor architecture of this ma-
chine. Further information about the T3E can be found in Cray Research
(1995¢). Further information about the DEC Alpha architecture can be found in
Sites (1992) and Tabak (1995).

Memory

Each processing element in the T3E has its own local memory with a capacity
of from 64 megabytes to 2 gigabytes. The local memory within each PE is part

. »— Inferconnect network
~

-

_ =< Processing elemant node

Figure 1.8 Overall T3E architecture,

37,

Chapier 1 Background

of a physically distributed, logically shared memory system. System memory
is physically distributed because each PE contains local memory. System mem-
ory is logically shared because the microprocessor in one PE can access the
memory of another PE without involving the microprocessor in that PE.

The memory within each processing element consists of 8-bit bytes; all
addresses used are byte addresses. Two consecutive bytes form a word; four
bytes form a longword; eight bytes form a quadiword. Many Alpha instructions
may execute more efficiently if operands are aligned at a starting address that
is a multiple of their length. The Alpha architecture supports 64-bit virtual
addresses.

Registers

The Alpha architecture includes 32 general-purpose registers, designated R0
through R31; R31 always contains the value zero. Each general-purpose regis-
ter is 64 bits long. These general-purpose registers can be used to storo and
manipulate integer data and addresses.

There are also 32 floating-point registers, designated F0 through F31; F31
always contains the value zero. Each floating-point register is 64 bits long.

In addition to the general-purpose and floating-point registers, there is 2
#4-bit program counter PC and several other status ana control registers.

Data Formats

The Alpha architecture provides for the storage of integers, floating-point val-
ues, and characters. Integers are stored as longwords or quadwords; 2's com-
plement is used for negative values, When interpreted as an integer, the bits of
a longword or quadword have steadily increasing significance beginning with
bit C (which 1s stored in ihe lowest-addressed byte).

There are two different types of ficating-point data formats in the Alpha
architecture. One group of three formats is includea for compatibiiity with the
VAX architecture, The other group consists of four IEEE standard formats,
which are compatible with those used on most modern systems.

Characters may be stored one per byte, using their 8-bit ASCII codes.
However, there are no byte load or store operations in the Alpha architecture;
crly longwords and quadwords can be transferred between a register and
memory. As a consequernce, characters that are to be manipulated scpararely
are usually stored one per longword.

1.5 RISC Machires

Instruction Formats

There are five basic instruction formats in the Alpha architecture, some of
which have subforms. All of these formats are 32 bits long. (As we have noted
before, this fixed length is typical of RISC systems.) The first 6 bits of the in-
struction word always specify the opcode; some instruction formats also have
an additional “function” field.

Addressing Modes

As in most architectures, an operand value may be specified as part of the in-
struction itself {(immediate mode), or it may be in a register (register direct
mode). As in most RISC systems, the only instructions that address memory
are load and store operations, and branch instructions.

Operands in memory are addressed using one of the following two modes:

Mode Target address calculation
PC-relative TA = (PC) + displacement {23 bits, signed)
legister indirect TA = {register) + displacement
with oo lacement [16bi%. Zigned!

Register indirect with displacement mode is used for load and store opera-
tions and for subroutine jumps. PC-relative mode is used for conditional and
unconditional branches.

Instruction Set

The Alpha architecture has approximately 130 machine instructions, reflecting
its RISC orientation. The instruction set is designed so that an implementation
of the architecture zan be as fast as possible. For example, there are no byle or
word load and store instructions. This means that the memory access interface
does not need to include shift-and-mask operations. Further discussion of this
approach can be found in Sud*h and Weiss (1594).

Input and Output

The T3E system oerforme (/0 through multiple ports into one or more 1/0
«nannels, which can be configured in a number of ways. These channels are

39

Charter 1 Backgrournid

integrated into the network that interconnects the processing nodes. A system
may be configured with up to one 1/0 channel for every eight PEs. All chan-
nels are accessible and controllable from all PEs,

Further information about this “scalable” 1/O architecture can be found in
Cray Research (1995c).

EXERCISES
Section 1.3

1. Write a sequence of instructions for SIC to set ALPHA equal to the
product of BETA and GAMMA. Assume that ALPHA, BETA, and
GAMMA are defined as in Fig. 1.3(a)-

2. Write a sequence of instructions for SIC/XE to set ALPHA equal to
4 * BETA - 9. Assume that ALPHA and BETA are defined as in Fig.
1.3(b). Use immediate addressing for the constants.

3. Write a sequence of instructions for SIC to set ALPHA equal to the
integer portion of BETA - GAMMA. Assunie that “LPHA and BETA
are defined as in Fig. 1.2{2)

4. Write a sequence of instructions for SIC/XE to divide BETA by
GAMMA, setting ALPHA to the integer portion of the quotient and
DELTA to the remainder. Use register-to-register instructions to make
the calculation as efficient as possible.

5. Write a sequence of instructions for SIC/XE to divide BETA hy
GAMMA, setting ALPHA to the value of the quotient, rounded to
the nearest integer. Use register-to-register instructions to make the
calculation as efficient as possible.

6. Write a sequence of instructions for S1C to clear a 20-byte string to all
blanks,
7. Write a sequence of instructions for SIC/XE to clear a 20-byte string

to all blanks. Use immediate addressing and register-to-register in-
structions to make the process as efficient as possible.

8 Suppose that ALPHA is au array of 100 words, as defined in Fig.
1.5(a). Write a sequence of instructions for SIC to set all 100 elements
of the array 0 0.

9. Suppose that ALPHA is an array of 100 words, as defined in Fig.
1.5/h). Write a sequence of instructions for SIC/XE to set ali 100

10.

11.

12

13.

elements of the array to 0. Use immediate addressing and register-to-
register instructions to make the process as efficient as possible.

ms_memm that RECORD contains a 100-byte record, as in Fig. 1.7(a).
Write a subroutine for SIC that will write this record onto device 05,

Suppose that RECORD contains a 100-byte record, as in Fig. 1.7(b).
Write a subroutine for SIC/XE that will write this record onto device
05. Use immediate addressing and register-to-register instructions to
make the subroutine as efficient as possible.

Write a subroutine for SIC that will read a record into a buffer, as in
Fig. 1.7(a). The record may be any length from 1 to 100 bytes. The
end of the record is marked with a “null” character (ASCII code 00).
The subroutine should place the length of the record read into a vari-
able named LENGTH,

Write a subroutine for SIC /XE that will read a record into a buffer, as
in Fig. 1.7(b). The record may be any length from 1 to 100 bytes. The
end of the record is marked with a “null” character (ASCII code 00).
The subroutine should place the length of the record read into a vari-
able named LENGTH. Use immediate addressirg and register-to-
register instructions to make the subroutine as efficient as possible.

41

Chapter 2

Assemblers

In this chapter we discuss the design and implementation of assemblers. There
are certain fundamental functions that any assembler must perform, such as
translating mnemonic operation codes to their machine language equivalents
and assigning machine addresses to symbolic labels used by the programmer.
If we consider only these fundamental functions, most assemblers are very
much alike.

Beyond this most basic level, however, the features and design of an as-
sembler depend heavily upon the source language it translates and the ma-
chine language it produces. One aspect uf this dependence is, of course, the
existence of different machine instruction formats and codes to accomplish
(for example) an ADD operation. As we shall see, there are also many subtler
ways that assemblers depend upon machine architecture. On the other hand,
there are some features of an assembler language {(and the corresponding as-
sembler) that have no direct relation to machine architecture—they are, in a
sense, arbitrary decisions made by the designers of the language.

We begin by considering the design of a basic assembler for the standard
version of our Simplified Instructional Computer (SIC). Section 2,1 introduces
the most fundamental operations performed by a typical assembler, and de-
scribes common ways of accomplishing these functions. The algorithms and
data structures that we describe are shared by almost all assemblers. Thus this
level of presentation gives us a starting point from which to approach the
study of more advanced assembler features. We can also use this basic stiuz-
ture as a framework from which to begin the design of an assembler for a com-
pletely new or unfamiliar machine.

In Section 2.2, we examine some typical extensions to the basic assembler
structure that might be dictated by hardware considerations, We do this by
discussing an assembler for the SIC/XE machine. Although this SIC 'XE as-
sembler certainly does not include ali possible hardware-dependent features,
it does contain some of the ones most commonly found in real machines. The
principles aad techniques should be easily applicable to other computers.

Section 2.3 presents a discussion of some of the most commonly encoun-
tered machine-independent assembler lang iage features and their implemen-
tation. Once again, our purpose is not to cover all possible opiions, but rather

b il .

Shadr 2 Asswmblers

to introduce concepts and techniques that can be used in new and unfamiliar
situations,

Section 2.4 examines some important alternative design schemes for an as-
sembler. These are features of an assembler that are not reflected in the assem-
bler language. For example, some assemblers process a source program in one
pass instead of two; other assemblers may make more than two passes. We are
concerned with the implementation of such assemblers, and also with the en-
vironments in which each might be useful.

Finally, in Section 2.5 we briefly consider some examples of actual assem-
blers for real machines. We do not attempt to discuss all aspects of these as-
semblers in detail. Instead, we focus on the most interesting features that are
introduced by hardware or software design decisions.

2.1 BASIC ASSEMBLER FUNCTIONS

Figure 2.1 shows an assembler language program for the basic version of SIC.
We use variations of this program throughout this chapter to show different
assembler foatures. The line numbers are for reference only and are not part of
the program. These .umbers also help L relate correspo..ding parts of differ-
ent versions of :he program, The nu.s toni. fnstruct~ae use ” ove i se intro-
duced in Section 1.3.1 and Appendix A. Indexed addressing is indicated by
adding the modifier X" following the operand (see line 160). Lines beginning
with “.” contain comments only.

In addition to the mnemonic machine instructions, we have used the fol-
lowing assembler dircctives:

START Specify name and starting address for the program.

END Indicate the end of the source program and (optionally) specify
the first executable instruction in the program.

BYTE Generate character or hexadecimal constant, occupying as
many bytes as needed to represent the constant.

WORD Generate one-word integer constant.

RESB Reserve the indicated number of bytes for a data area.

RESW Reserve the indicated number of words ior a data area.

The program contains a main routine that reads records from an input de-
vice (identified with device code F1) and copies them to an sutput device

(code 05). Thiz main routine calis subroutine RDREC 0 read a record inio a
buffer and subrovtine WRREC to write the recor. froim the bufiar to the cut-

Line

10

20
25

35
45
55

65
70
75

85

95
100
105
110
115
120
125
130
135
140
145
150
18%
160
165
170
175

185
180
195
200
205
210
215
220
228

- 2N
435
240
245
250
258

Source statement .
COoPY START
FIEST STL
CLOoP JSUB

LA
ooup
JED
Jeun
T
ENDFIL LN
STA
9 5
STA
JSUB
1oL
RSUB
bouls) BYTR
THREE WoRD
ZERD WORD
RETADR RESW
LENGTH RESW
BUFFER RESE
ROREC LK
LR,
RLOOP 1
JEQ
RD
cone
J=
STCH
X
JLT
EXIT s™
RSUB
INPUT BYTE
MAXLEN WORD
WRREC DY
WLOOD ™
JEQ
LDCH
o)
TIX
JLT
RSug
OYIPUT YTE
N

21 Basic Assembler Funcfions

COPY ¥ILE FROM INPUT 10 CUTRUT
SAVE RETURN ADDRSSS

READ INFUT RECORD

TEST FOR BOF (LENGTH = 0)

EXIT IF FOF FORND

WRITE OUTPUT RECORD
oop

INSERT 2D OF FILE MARKER

SET LEGTH = 3
WRITE ECF

GET RETURN ALTRESS
RETURN T0 CALLZR

LENGTH OF RECCRD
4026-BYTE BUFFZR AREA

SUBRCUTINE TO READ RECORD INTO BUFFER

CL=ZAS L00P COUNTER
CLZAR A TO ZERD
TEST INFUT DEVICE
LOOP UNTIL READY
READ CHARACTER INTO REGISTER A
TEST FOR END OF RECORD (X'0DY)
EXIT LOOP IF 20R
STORE CHARMCTER IN BUFFER
LOOP UNLESS MNAX LENGTH
HAS BEEN REACHED
SAVE RECORD L3NGTH
RETURN T2 CALLER
CODE FOR INPUT DEVICE

SUEROUTINE TO WRITE RECCRD FRCM BUFFER

CLEAR LCOOF COUNTER

TEST OUTRIT DEVICE

LOOP UNTIL READY

GET CHARACTER FROM BUFFER

WRTTE CHARACTER

LOOP UNTIL ALL CHARACTERS
HAVE BEEX WIITTEN

RETURN TO CALLER

CODE FOR QUTEFUT DEVICE

Figure 2.1 Zxaiple of a SIC assembler language program.

Chapter 2 Assemblers 21 Basic Assembler Functions

put device. Each subroutine must transfer the record one character at a time Line Loc Source statement Object code
because the only 1/0 instructions available are RD and WD. The buffer is nec-

S ic00 copy START 1oc0
essary _%.Q.:mm the 1/0 rates for Pm two devices, such as a disk and a slow B o o SR
printing terminal, may be very different. (In Chapter 6, we see how to use 15 1603 nSQ_ s JSUB Exmn_aﬂr:, 482039
channel programs and operating system calls on a SIC/XE system to accom- 20 1006 Lo LENGTH 001036
plish the same functions.) The end of each record is marked with a null charac- ww w”mw % ze) WMWMWM
ter (hexadecimal 00). If a record is longer than the length of the buffer {4096 3% 1o0e e .Sw.ﬂm_umn. 162061
bytes), only the first 4096 bytes are copied. (For simplidity, the program does 40 1012 J CLOOP 3C1003
not deal with error recovery when a record containing 4096 bytes or more is 45 1015 RDFIL LOA EOF 001022
end of the file to be copied is indicated by a zero-length record o e S RERe o
read.) The of the nile copied is indica y g rd, 55 1018 Ton il 01030
When the end of file is detected, the program writes EOF on the output device 50 1018 gra LENGIH 0c1036
and terminates by executing an RSUB instruction, We assume that this pro- &5 1021 JouB WRREC 482061
: 2 g 70 1024 LOL RETADR, 081033
gram was called by the operating system using a JSUB instruction; thus, the 7 1027 e 440000
RSUB will return control to the operating system. 80 1022 OF BYTE ol 454846
85 102p THREE WORD 3 000003
90 1030 ZERD WORD) 000000
. 95 1033 RESW 1
2.1.1 A Simple SIC Assembler ; 5 o mﬂ?x ;
105 1023 BUFFER RESE 4095
Figure 2.2 shows the same program as in Fig. 2.1, with the generated object 110 >
code for each statement. The column headed Loc gives the machine address s . SUBROUTINE TO READ RECORD INTO BUFFER
(in hexadecimal) for each part of the assembled program. We have .um.ch& 1.5 2038 ROREC o 2280 041030
that the program ctarts at address 1000. (In an actual assembler listing, of 130 WSa LDA PER) 001030
tread e 10 135 03F RLOOP ™ T EC205D
course, the comments would be retained; they have been eliminated here 45 St YA i
save space.))) > 145 2085 sl INPUT 082050
The translation of source program to object code requires us to accomplish 150 2048 COMP ZERO 281030
N . er 1 . 155 204D JBQ BT 302057
the following functions (not necessarily in the order given) e Sots % e
) . 165 2051 TIX MAXLEN 202058
1. Convert mnemonic operation codes to their machine language 170 2054 Jur RLOOP 38203F
. : 175 2057 EXIT STX LENGTH 101036
equivalents—e.g,, translate STL to 14 (line 10). Yas s s
2. Convert symbulic operands to their equivalent machine addresses— www WMWW INPUT BYTE X'Fl F1
: MAXLEN WORD
e.g., translate RETADR to 1033 (line 10). So8) il s
. . . 200 SUBROUTT
3, Build the machine instructions in the proper format, 508 . INE TO WRITE RECORD FROM BUFFER
; : : 210 2061 VWRREC LK ZERD 041030
4. Convert the data constants specified in the source program into their 215 2064 Wi D LOUTEUT E02079
internal machine representations—e.g., translate EQF to 454F46 (line 220 2067 JEQ WLOOP 302064
80). 225 2064 LDCH EUFFER, X 509039
230 206D wo QUTEUT DC2079
5, Write the ubject program and the assembly listing. 235 2070 ¢ LENCTH 201036
240 2073 JLT WLOOP 382064
> 245 2076 RSUB 40000
All of these functions except number 2 can easily be accomplished by sequen- 250 2079 CUTPUT EYTE %05 05
tial processing of the source program, one line at a time. The translation of 255 BN FIRST

addresses, however, piesents a problem. Consider the statement :
) Figure 2.2 Program from Flg. 2.1 with objec! code.

10 1000 FIRST STL RETADR 141033

48

Chapter 2 Assemtblers

This instruction contains a forward reference—that is, a reference to a label
(RETADR) that is defined later in the program. If we attempt to translate the
program line by line, we will be unable to process this statement because we
do not know the address that will be assigned to RETADR. Because of this,
most assemblers make two passes over the source program. The first pass
does little more than scan the source program for label definitions and assign
addresses (such as those in the Loc column in Fig. 2.2). The second pass per-
forms most of the actual translation previously described.

In addition to translating the instructions of the source program, the assem-
bler must process statements called assembler directives (or pseudo-instructions).
These statements are not translated into machine instructions Awié:mr ».rnv.
may have an effect on the object program). Instead, they provide instructions
to the assembler itself. Examples of assembler directives are statements like
BYTE and WORD, which direct the assembler to generate constants as part of
the object program, and RESB and RESW, which instruct the assembler to re-
serve memory locations without generating data values. The other »mwm:;w_m..
directives in our sample program are START, which specifics the starting
memory address for the object program, and END, which marks the end of the
vnqu.m—:—. . . VA -

Finally, the assembter must wiite ive gererated object code onto some out-
put device. THIs bl gragraiki Wil later k_ badad inte mem: . - for exsrubion.
The simple object prograin format we use contains three types of records:
Header, Text, and End. The Header record contains the program name, mﬁuz.
ing address, and length. Text records contain the translated c..m;. machine
code) instructions and data of the program, together with an indication of the
addresses where these are to be loaded. The End record marks the m:.a &. the
object program and specifies the add: 2ss in the program where execution is to
begin. (This is taken from the operand of the program’s END mﬁﬁ:@:r If no
operand is specified, the address of the first executable instruction is used,)

The formats we use for these records are as follows. The details of n_,ﬁ. for-
mats (column numbers, etc.) are arbitrary; however, the information contained
in these records must be present (in some form) in the object program.

Header record:
Col. 1 H
Col. 2-7 Prograia name

Col. 8-13 Starting address of object program (hexadecimal)
Col 14=19 Length of object program ia bytes (hexadecimal)

2.1 Basic Assembler Funclions

Text record:
Col. 1 T
Col. 2-7 Starling address for object code in this record(hexadecimal)
Col. 8-9 Length of object code in this record in bytes (hexadecimal)
Col. 10-69 Object code, represented in hexadecimal (2 columns per

byte of object code)
End record:
Col. 1 E
Col. 2-7 Address of first executable insiruction in object program
{(hexadecimal)

To avoid confusion, we have used the term column rather than byte to refer to
positions within object program records. This is not meant to imply the use of
any particular medium for the object program.

Figure 2.3 shows the object program corresponding to Fig. 2.2, using this
format. In this figure, and in the other object programs we display, the symbol
* is used to separate fields visually. Of course, such symbols are not present in
the actual object program. Note that there is no object code corresponding to
addresses 1033-2038. This storage is simply reserved by the loader for use by
the program during execution. (Chapter 3 contains a detailed discussion of the
operation of the Joader.)

We can now give a general description of the functions of the two passes of
our simple assembler.

BCOPY POL00OQOLOTA

.—.:oa —c°e>_— EL4 —Ouw%amonwfoopowaMw 103030101 wsaw.nc..-fwn 10030010240C¢1039001020

.n>oo 101EL ..ron —Ouo>oo 206 _>ou 103 u%ﬁacoo\,o 54F4 o\,oooec*oeoooc

foououo.,:%p—Ouo>oo~owo\mo»Oue‘mcu.vufowugvynouo"—ﬁuouomfmaooum,nnuowﬁuwuouq

.ﬂucuov w—m,-o—ewo%nooofmfoo ~0oo>Op —Ou&,nauﬂuo>uONocfaoo ouo\'cnun.ﬁo)un::o
ﬂeencw u>owq.;~co.>rncooo>0u
£001000

Figure 2.3 Object program correspanding fo Fig.2.2.

49

-

VA
-
RERA B L 2N

{ hifmn]

Chapter 2 Assemblers

Pass 1 (define symbols):
1. Assign addresses to all statements in the program.
2. Save the values (addresses) assigned to all labels for use in Pass 2.

3. Perform some processing of assembler directives. (This includes
processing that affects address assignment, such as determining
the length of data areas defined by BYTE, RESW, etc.)

Pass 2 (assemble instructions and generate object program):

1. Assemble instructions (translating operation codes and looking
up addresses).

2. Generate data values defined by BYTE, WORD, ete.
3. Perform processing of assembler directives not done during Pass 1.
4. Write the object program and the assembly listing.

In the next section we discuss these functions in more detail, describe the in-
ternal tables required by the assembler, and give an overall description of the
logic flow of each pass.

2.1.2 Assembler Algorithm and Data Structures

Our simple assembler uses two major internal data structures: the Operation
Code Table (OPTAB) and the Symbol Table (SYMTAB). OFTAB is used to look
up mnemonic operation codes and translate them to their machine language
equivalents. SYMTAB is used to store values (addresses) assigned to labels.

We also need a Location Counter LOCCTR. This is a variable that is used
to help in *he assignment of addresses. LOCCTR is initialized to the beginning
address specified in the START statement. After each source statement is
processed, the length of the assembled instruction or data area to be generated
is udded to LOCCTR. Thus whenever we reach a label in the source program,
the current value of LOCCTR gives the address to be associated with that
label.

The Operation Code Table must contain (at least) the mnemonic operation
code and its machine language equivalent. In more complex assemblers, this
table also contains information about instruction format and length. During
Pass 1, OPTAB is used to look up and validate operation codes in the source
program. In Fass 2. it is used to transiate the operation codes to machine lan-
guage. Actually, in our simple SIC assembler, both of these processes could be
done together in either Pass 1 or Pass 2. However, for a machine (such as
SIC/XE) that has instructions of different lengths, we must search OPTAB in

the first pass to find the instruction length for incrementing LOCCTR.

21 Basic Assembler Functions

Likewise, we must have the information from OPTAB in Pass 2 to tell us
which instruction format to use in assembling the instruction, and any pecu-
liarities of the object code instruction. We have chosen to retain this structure
in the current discussion because it is typical of most rea! assemblers.

OPTAB is usually organized as a hash table, with mnemonic operation
code as the key. (The information in OPTAB is, of course, predefined when the
assembler itself is written, rather than being loaded into the table at execution
time.) The hash table organization is particularly appropriate, since it provides
fast retrieval with a minimum of searching. In most cases, OPTAB is a static
table—that is, entries are not normally added to or deleted from it. In such
cases it is possible to design a special hashing function or other data structure
to give optimum performance for the particular set of keys being stored. Most
of the time, however, a general-purpose hashing method is used. Further in-
formation about the design and construction of hash tables may be found in
any good data structures text, such as Lewis and Denenberg (1991) or Knuth
(1973).

The symbol table (SYMTAB) includes the name and value (address) for
each label in the source program, together with flags to indicate error condi-
tions (e.g., a symbol defined in two different places). This table may also con-
tain other informaticn about the data area or instrurion labeled—for sxample,
its type or length. During Pacs 1 of the assambler '1hels qre ~nrere” (a5
SYMTAB as they are encountered in the source program, along with their as-
signed addresses (from LOCCTR). During Pass 2, symbols used as operands
are looked up in SYMTAB to obtain the addresses to be inserted in the assem-
bled instructions.

SYMTAB is usually organized as a hash table for efficiency of insertion and
retrieval. Since entries are rarely (if ever) deleted from this table, effi siency of
deletion is not an important consideration. Because SYMTAB is used heavily
throughout the assembly, care should be taken in the selection of a hashing
function, Programmers often select many labels that have similar characteris-
tics—for example, labels that start or end with the same characters (like
LOOP1, LOOP2, LOOFA) or are of the same length (like A, X, Y, Z). It is im-
portant that the hashing function used perform well with such non-random
keys. Division of the entire key by a prime table length often gives good
results.

It is possible for both passes of the assembler to read the original source
program as inpui. However, there is certain infarmation (such as location
counter values and error flags for statements) that can or should be communi-
cated between the two passes. For this reason. Pass 1 usually writes an infer-
mediate file that contains each source statement togetner with its assigned
address, error indicators, etc. This file is used as the input to Pass 2. This work-
ing copy of the source program can also be used to retain the maults of certain

51

Chapter 2 Assemblers

operations that may be performed during Pass 1 (such as scanning the
operand field for symbols and addressing flags), so these need not be per-
formed again during Pass 2. Similarly, pointers into OPTAB and SYMTAB may
be retained for each operation code and symbol used. This avoids the need to
repeat many of the table-searching operations.

Figures 2.4(a) and (b) show the logic flow of the two passes of our assem-
bler. Although described for the simple assembler we are discussing, this is
also the underlying logic for more complex two-pass assemblers that we con-
sider later. We assume for simplicity that the source lines are written in a fixed
format with fields LABEL, OPCODE, and OPERAND., If one of these fields
contains a character string that represents a number, we denote its numeric
value with the prefix # (for example, #{OPERANDY).

At this stage, it is very important for you to understand thoroughly the al-
gorithms in Fig. 2.4. You are strongly urged to follow through the logic in
these algorithms, applying them by hand to the program in Fig. 2.1 to produce
the object program of Fig. 2.3.

Much of the detail of the assembler logic has, of cuurse, been left out to
emphasize the overall structure and main concepts, You should think about
these details for yourself, and you should also attempt to identify those func-
tions of the assembler that shuald be implemented as separate procedures or
mModuies. (& at exadiiple, thic SpPra.Lss “search cymb - able” and “read input
line” might be good candidates for such implementation.) This kind of
thoughtful analysis should be done before you make any attempt to actually
implement an assembler or any other large piece of software.

Chapter 8 contains an introduction to software engineering tools and tech-
nigues, and illustrates the use of such techniques in designing and implement-
ing a simple assembler. You may want to read this material now to gain
further insight into how an assembler might be constructed.

2.2 MACHINE-DEPENDENT
ASSEMBLER FEATURES

In this section, we consider the design and implementation of an assembler for
the more complex XE version of SIC. In doing so, we examine the effect of the
extended hardware on the stracture and functions of the assembler. Many real
machines have certain architectural features that are similar to thore we con-
sider here. Thus our discussion applies in large part to these machines as well
as to SIC/XE.

Figure 2.5 shows the example program from Fig. 2.1 as i might be rev/rit-
ten to take advan.age of the SIC/XE inscruccn set, In our assemblar lan-
guage, indircct addressing is indicated by addiug tie prefix @ to the sperand

22 Machine-Dependent Assembler Features

Pass 1:

begin
read first ingut line
if OPCODE = ‘START' then
begin
save # [OPERAND] as starting address
initialize LOCUTR to starting address
write line to intermediate file
read next input line
end (if START)
else
initialize LOCCTR to O
while OPCODE ¥ 'END’ do

begin
if this is not a2 comment line then
begin
if there is a symbol in the LABEL field then
begin

search SYMTAE for LAESL
if fcund then
set error flag (duplicate symbol)
else
ingert (IABEL,LOCCTR) into SYMTAB
end (if symixl}
search OPTAR for CPCODE
if found then
add 3 {instruction length} to LOOCIR
elsa if OPCODE = "WORD' then
add 3 to LOCCIR
else if OPCODE = ‘RESW’ then
add 3 * i [OPERAND] to LOCCTR
else if OPCODE = '‘RESR’ then
add #[OFERAND] .: LOCCTR
else if OPCODE = ‘BYTE’ then
begin
find loncth of constant in butes
add length toe LOCCTR
end (if BYTE}
else
set error flag (invalid operation code)
end (if not a comment)
write line tc intormediate file
read next input line
end [whils not EAD)
write last line to intermediate file

save (LOCCTR - starting addresss) as program length
and (Pass 1) =

Figure 2.4(a) Algorithm for Pass 1 of assembler,
.

Chapter 2 Assemblers 2.2 Machine-Dependent Assembler Features

- o —

s, Lin Source statemeant
begin 5 cogy START COPY FILE FROM INPUT T0 CUTFUT
Pt Pl o St jaté Eile) 10 FIRST STL RETADR SAVE RETURN ADDRESS
read r.ﬁc : enmedia 12 e FLENGTH ESTABLISH BASE RECISTER
if OPCODE = ‘START' then i
begin
gin i At | 15 CLOOP HISUB RDREC READ INPUT RECORD
sanon Mnmnma.m . _ 20 Lo LENGTH TEST FOR EOF (LENGTH = 0)
read input line 25 covp #0
end (if START) 30 JED ENDEIL EXIT IF EOF FORD
write Header record to object program 35 +WISUB WEHREC WRITE OUTTVT RECORD
initialize first Text record 0 p
while OPOOLE # ‘END' do a5 ENDFIL Loa EOF INSERT END OF FILE MARKER
gﬂ S0 STA EUFZER
if this is not a comment line tken S5 Lo 5] SET LENGTH = 3
search OPTAR for OPCODE 65 +JSUB WRR3C WRITE EOF
i® founA then 70 3 GRETADR RETURN TO CALLER
begin B0 0¥ BYTE CEDP’
if there is a symbcl in OPERAND field then 95 RETADR RESW 1
begin 100 LENGTH RESW 1 LENGTH OF RECORD
search SYMTAR for OFERAND ”ww BUPFER RESB 4096 4026-BYTE SUFFER AREA
if found then 115 Y
store symbol value as operand address i . SUBROITINE TO READ RECORD INTO BUFFER
else - 125 RORED CLEAR X CLEAR LOOP COUNTER
beg < 130 CLEAR A CLEAZ A TO ZERO
store (as operanc address 132 CLEAR s il
set error flag (undefined symbol) 133 LD #409¢ i ’
_end 135 RLOD? ™ INFUT TEST INPUT DEVICE
end (if symbol} 140 JEQ RLOOP LOOE UNTIL READY
else 145 RO INPOT READ CHARACTER INTO REGISTER A
store 0 as operand addvess 150 CXMPR A8 TEST FOR END OF RECORD (X‘00*)
assesible the object code instruction 155 JEQ EXIT EXIT 1OOP IF BXR
end {if opcode found)) 160 SICH BUFFER, STORE CHARACTER IN BUFFER
else if OPCUDE = '‘BYTE’ or ‘WORD’ then 165 TIXR T LOOP UNLESS MAX LENGTH
convert constant to object code 170 JLT FLoce HAS BEEN REBACHED
if object code will not fit intc the current Text record than 175 BT STX LENGTH SAVE RECORD LECTH
begin 180 RSUB RETURN TO CALLER
write Text record to object program ww” T oo 2o A PIR: THEUT- DENICE
initi ext record :
initialize new T 200 : SUBROUTTINE TG WRITE RECORD FROSN BUFFzR
ond 205 e
add object code to Text record 210 WRREC ~ CLEAR X CLEAR LOOP COUNTER
mg.:.m non.ngn* 212 LoT LENGTH
write Hpnnm.ao “_..54 218 WLOOR ™ curlET TEST CUTPUT DEVICE
read next input line 220 JEO WLOOP LOOP UNTIL READY
end (whila not END) 228 LDCH BUFFER, X GET CHARACTER FROM BUFFER
write last Text record to obiect program 230 wo ouTEgs WRITE CHARAUIER
write End reccrd to objact program 235 TIXR T LOOP DNPIL ALL CHARACTERS
writa last listing line 240 JLT WLSOD HAVE BEEN WRIITEN
end (Pass 2) 245 RSUR RETURN TO CALLE®
250 QUTPUT BYTE E'05° CODE FCS CUTIUT DEVICE
255 D FIRST

Figure 2.4(b) Algorithm for Pass 2 of assembler.
Figure 2.5 Exampla of a SIC/XE program

Chapter 2 Assemblers

(see line 70). Immediate operands are denoted with the prefix # (lines 25, 55, .

133). Instructions that refer to memory are normally assembled using n...mﬁ.
the program-counter relative or the base relative mode. The assembler direc-
tive BASE (line 13) is used in conjunction with base relative addressing. (See
Section 2.2.1 for a discussion and examples.) If the displacements required for
both program-counter relative and base relative addressing are t00 large to fit
into a 3-byte instructior:, then the 4-byte extended format (Format 4) must be
used. The extended instruction format is specified with the prefix + added to
the opesation code in the source statement (see lines 15, 35, 65). It is the pro-
grammor's responsibility to specify this form of addressing when it is re-
%. . . .

The main differences between this version of the program and the version
in Fig. 2.1 involve the use of register-to-register instructions (in place of regis-
ter-to-memory instructions) wherever possible. For example, the statement on
line 150 is changed from COMP ZERO to COMPR AS. Similarly, line 165 is
changed from TIX MAXLEN to TIXR T. In addition, immediate and indirect
addressing have been used as much as possible (for example; lines 25, 55, and
70j.

; These changes take advantage of the more advanced SIC/XE Enr.mzog
to unprove the execution speed of the program. Register-to-register instruc-
sang = fasier thar the o . “sponding register-to-memory operations because
they are shorter, and, more importantly, because they do not require another
memory reference. (Fetching an operand from a register is much faster than re-
trieving it from main memory) Likewise, when using immediate addressing,
the operand is already present as part of the instruction and need not be
fetched from anywhere. The use of indirect addressing often avoids the need
for another instruction (as in the “return” operation on line 70). You may no-
tice that some of the changes require the addition of other instructions to the
program. For example, changing COMP to COMPR on line 150 forces us to
add the CLEAR instruction on line 132. This still results in an improvement in
exect:tion speed. The CLEAR is executed only once for each record read,
whereas the benefits of COMPR (as opposed to COMP) are realized for every
byte of data transferred.

In Section 2.2.1, we examine the assembly of this SIC /XE program, focus-
ing on the differences in the assembla *hat are required by the new addressing
modes, (You may want to briefly review the instruction formats wba target ad-
dress calenlations described in Section 1.3.2.) These changes are direct conse-
quences of the extended hardware functions,

Section 2.2.2 discusses an indirect consequence of the change tv SIC/XE,
The iarger main memory of SIC/XE means that we mav have zoom to load
snd run sevesal programs at the same time This kind of sharing of the ma-
chine belyyeen programs is called multiprogrammting. Such sharing often q.x..cmﬁ
in more procuctive use of the hardware. (We discuss this concept, and its

————— ———

22 Machine-Dependent Assembler Foatures

implications for operating systems, in Chapter 6.) To take full advantage of
this capability, however, we must be able to load programs into memory wher-
ever there is room, rather than specifying a fixed address at assembly time.
Section 2.2.2 introduces the idea of program relocation and discusses its impli-
cations for the assembler,

2.2.1 Instruction Formats and Addressing Modes

Figure 2.6 shows the object code generaled for each statement in the program
of Fig. 2.5. In this section we consider the translation of the source statcments,
paying particular attention to the handling of different instruction formats and
different addressing modes. Note that the START statement now specifies a
beginning program address of 0. As we discuss in the next section, this indi-
cates a relocatable program. For the purposes of instruction assembly, how-
ever, the program will be translated exactly as if it were really to be loaded at
machine address 0.

Translation of register-to-register instructions such as CLEAR (line 125)
and COMPR (line 150) presents no new problems. The assembler must simply
convert the mnemonic operation code to machine language (using OPTAB)
and change each register mnemonic to its numeric equivaient, This translation
is done during Pass 2, al the same point at which the other types of insiruc-
tions are assembled. The conversion of register mnemonics to numbers can be
done with a separate table; however, it is often convenient to use the symbol
table for this purpose. To do this, SYMTAB weuld be preloaded with the regis-
ter names (A, X, etc.) and their values (0, 1, etc.),

Maost of the register-to-memory instructions are assembled using either
program-counter relative or base relative addressing. The assembler must, in
either case, calculate a displacement to be assembled as part of the object in-
struction. This 1s computed so that the correct target addiess results when the
displacement is added to the contents of the program counter (PC) or the base
register (B). Of course, the resulting displacement must be small enough to fit
in the 12-bit field in the instruction. This means that the displacement must be
between 0 and 4095 (for base relative mode) or between 2048 and +2047 (for
program-counter relative mode}.

If neither program-counter relative nor base relative addressing can be
used (because the displacements are too large), then the 4-byte extended in-
struction format (Format 4) must be used. This 4-byte formal contains a 20-bit
address field, which is large enough to contain the full memory address, In

this case, (nere is no displacement to be calculated. For example, in the instruc-
ton *

15 GO06 CLOOP +JSUB RDREC 48101036

57

245
250
255

Loc Source statement

B

93 fsees - fugeigen

0
RETADR
FLENCTH
LEGTH
REREC
LENGTH
LY
ENDFTL
WRREC
cLoop
By
BUFFER
LX3
LENGTH
WAREC
GRETADR
C'EQF*
1
1
4096

SUBROUTINE 70 READ RECORD

1040 RLOOP

Object code

172020
692020

4B101036
032026
280000
332007
4810105D
IFIAFEC
032010
0r201%
010003
QF200D
4B810105D
3E2003
454746

INIO BUFFER

B41D
200
B44OD
75101000
E32029
322FFA
pB2013
A0D4
332008
57C003
B350
3B2FEA
134000
4F0000
Fi

SUBROUTINE TO WRITE RECORD FROM SUFFER

CLEAR X
105¢ Lo LENGTH
1082 WLOO? ™ OUTEUT
1065 JEQ WLOOP
1068 LDCH BUFFER, X
1948 WD ouTeoT
1NEE TIXR 7
107V JuLT WLOOP
1073 RSUB
10%7€ OOTPUT BYTE %'05'
20 FIRST

Figure 2.6 Program from Fig. 2.5 with object ooam\.u.

B41O
774000
E32011
332FFA
53C003
DF2008
8850
3IBAFEF
470000
05

© 2.2 Machine-Dependent Assembler Featutres

the operand address is 1036. This full address is stored in the instruction, with
bite set to 1 to indicate extended instruction format.

Note that the programmer must specify the extended format by using the
prefix + {as on line 15). If extended format is not specified, our assembler first
attempts to translate the instruction using program-counter relative address-
ing. If this is not possible (because the required displacement is out of range),
the assembler then attempts to use base relative addressing. If neither form of
relative aadressing is applicable and extended format is not specified, then the
instruction cannot be properly assemifzd. In this case, the assembler must
generate an erxor message.

We now examine the details of the displacement calculation for program-
counter relative and base relative addressing modes. The computation that the
assembler needs to perform is essentially the target address calculation in
reverse. You may want to review this from Section 1.3.2.

The instruction

10 0000 FIRST STL RETADR 17202D

is a typical example of program-counter relative assembly. During execution
of instructions on SIC (33 in most computers), the program counter is ad-

~ vanced @er eacis instruction is fotched and befors it is executed. Thus during

the execution ¢ the SiL instrucnoa, ¥ il contain the address of the rext in-
struction (that is, 0003). From the Loc column of the listing, we see that
RETADR (line 95) is assigned the address 0030. (The assembler would, of
course, get this address from SYMTARB,) The displacement we need in the in-
struction is 30 - 3 = 2D. At execution time, (he target address calculation per-
formed will be (PC) + disp, resulting in the correct address (0030), Note that
bit p is set to 1 to indicate program-counter relative addressing, making the
last 2 bytes of the instruction 202D. Also note that bits n and 1 are both set to 1,
indicating neither indirect nor imumediate addressing; this makes the first byte
17 instead of 14. (See Fig. 1.1 in Section 1.3.2 for a review of the location and
setting of the addressing mode bit £1gs.)
Another example of program-counter relative assembly is the instruction

40 017 J CLOOP 3F2FEC

Here the operand address is 0006 During instruction execution, the program
counte: will contain the address 00014, Thus the displacemeni requiced is
56— 1A =-14. This is represented (using 2's complament for negative numbers) in
a 12-bit field as FEC, which is ihe displacement assembled into the objc=t code.
The displacement calculation proces« tor base relative addressing is much
the same as for progre n-counivr velative acd.essing. The main daerence 15

59

Chapter 2 Assemblers

that the assembler knows what the contents of the program counter will be at
execution time. The base register, on the other hand, is under control of the
programmer. Therefore, the programmer must tell the assembler what the
base register will contain during execution of the program so that the assem-
bler can compute displacements. This is done in our example with the assem-
bler directive BASE. The statement BASE LENGTH (line 13) informs the
assembler that the base register will contain the address of LENGTH. The pre-
ceding instruction (LDB #LENGTH) loads this value into the register during
program execution. The assembler assumes for addressing purpases that reg-
ister B contains this address until it encounters another BASE statement. Later
in the program, it may be desirable to use register B for another purpose (for
example, as temporary storage for a data value). In such a case, the program-
mer must use another assembler directive (perhaps NOBASE) to inform the
assembler that the contents of the base register can no longer be relied upon
for addressing, .

It is important to understand that BASE and NOBASE are _mmmnBZm._. direc-
tives, and produce no executable code. The programmer must Ec&.‘..*m Emn_.sm.
tions that load the proper value into the base register during execution. If this
is not done properly, the target address calculation will not produce the correct
operand address.

Thc inc. _ction

160 1042 STCH BUFFER, X S7CD03
is a typical example of base relative assembly. According to »r.n BASE state-
ment, register B will contain 0033 (the address of LENGTH) m.c::.m 8.62205,
The address of BUFFER is 0036, Thus the displacement in the instruction must
be 36 - 33 = 3. Notice that bits x and b are set to 1 in the assembled instruction
to indicate indexed and base relative addressing. Another example is the in-
struction STX LENGTH on line 175. Here the displacement calculated is 0.
Notice the difference between the assembly of the instructions on lines 20
and 175. On line 20, LDA LENGTH is assembled with program-counter rela-
tive addressing. On line 175, STX LENGTH uses base relative mam_gm. as
noted previously. (If you calculate the program-counter RF.EE displacement
that would be require.. for the statement on line 175, you will see .n,.mﬂ it is too
large to fit into the 12-bit displacement field.) The statement on line 20 no&m
alsa have used base relative mode. In our assembler, however, we have arbi-
trarily chosen to attempt program-counter relative assembly first. -
The assembly of an instruction that specifies immediata mﬂgﬁw is sim-
pler because no memory reference is involved. AY (hal is necessary is to con-

vart the immediate onorand 1 its internal iepresentation and insert it into the

instruction, The instruction

2.2 Machine-Dependent Assembier Foatures

S5 0020 Lo #3 010003

is a typical example of this, with the operand stored in the ir struction as 003,
and bit 7 set to 1 to indicate immediate addressing. Another example can be
found in the instruction
133 103¢ +LDT #4096 75101000
In this case the operand (4096) is too large to fit into the 12-bit displacement
field, so the extended instruction format is called for. (If the operand were too
large even for this 20-bit address field, immediate addressing could not be
used.)

A different way of using immediate addressing is shown in the instruction

12 0003 LB PLENGTH 69202D

In this statement the immediate operand is the symbol LENGTH. Since the
value of this symbol is the address assigned to it, this immediate instruction has
the effect of loading register B with the address of LENGTH. Note kere that
we have combined program-counter relative addressing with immediate ad-
dressing. Although this may app.ar unusual, the interpretation is consistent
with our previous uses of immadiate operands. [n general, the taiget address
calculation is performed; then, if immediate mode is specified, the target ad-
dress (not the contents stored at that address) becomes the operand. (In the
LDA statement on line 55, for example, bits x, b, and p are ail 0. Thus the target
address is simply the displacement 003.)

The assembly of instructions that specify indirect addressing presents
nothing really new. The displacement is. computed in the usual way to pro-
duce the target address desired. Then bit n is set to indicate that the contents
siowed at this location represent the address of the operand, not the operand it-
self, Line 70 shows a statement that combines program-counter relative and
indirect addressing in this way.

2.2.2 Program Relocation

As we mentioned before, it is often desirable to have more than one program
at & time sharing the memory and other rescurces of the machine. If we knew
in advance exactly which programs were to be executed concurrently in this
way, we could assign addresses when the programs were assemibled so that
they would fit together withoui overlap or wasted space. Most of the time,
however, it is not practical to plan program execution this closely. (We vsually
do not know exactly when jobs will be submitted, exactly how long they will

61

Chapter 2 Assemblers

run, etc.) Because of this, it is desirable to be able to load a program into mem-
ory wherever there is room for it. In such a situation the actual starting ad-
dress of the program is not known until load time.

The program we considered in Section 2.1 is an example of an absolute
program (or absolute assembly). This program must be Joaded at address 1000
(the address that was specified at assembly time) in order to execute properly.
To see this, consider the instruction

55 101B Lo THREE 001020

from Fig. 2.2. In the object program (Fig. 2.3), this statement is translated as
00102D), specifying that register A is to be loaded from memory address 102D.
Suppose we attempt to load and execute the program at address 2630 instead
of address 1000. If we do this, address 102D will not contain the value that we
expect—in fact, it will probably be part of some other user’s program.

Obviously we need to make some change in the address portion of this in-
struction so we can load and execute our program at address 2000. On the
other hand, there are parts of the program (such as the constant 3 generated
from line 85) that should remain the same regardless of where the program is
loaded. Looking at the object code alone, it is in general not possible to tell
which values represent addresses and which represent constant data items.

Since the assembler does not know the actual location where the program
will be loaded, it cannot make the necessary changes in the addresses used by
the program. However, the assembler can identify for the loader those parts of
the object program that need modification. An object program that contains
the information necessary to perform this kind of modification is called a relo-
catable program.

To look at this in more detail, consider the program from Figs. 2.5 and 2.6.
In the preceding section, we assembled this program using a starting address
of 0000. Figure 2.7(a) shows this program loaded beginning at address 0000.
The JSUB instruction from line 15 is loaded at address 00C5. The address field
of this instruction contains 01036, which is the address of the instruction la-
beled RDREC. (These addresses are, of course, the same as those assigned by
the assembler.)

Now suppase that we want to load this program beginning at address
5000, as shown in Fig. 2.7(b). The address of the instruction labeled RDREC 1s
then 6036 Thus the JSUB instruction must be modified as shown to contain
this new address. Likewise, if we loaded the program beginning at address
7420 (Fig. 2.7¢), the JSUB instruction would need to be changed to 48108456 to
correspond to the new address of RDOREC.

.
-
‘mamdg

1638 | Bat0

1076

<—RDOREC

(a)

Section 2.2 Macltine-Dependent Assembler Features

(+JSUB RDREC)

5008

5078

(b)

Figure 2.7 Examples of program relocation.

am:MQSQ (+JSUB onmQ.
m.:om 4— RDREC
7420
i
oto0

4B108456

m:o”

(+JSUB RDREC)

“— RDREC

(€)

Note that no matter where the program is loaded, RDREC is always 1036
bytes past the starting address of the program. This means that we can solve
the relocation problem in the following way:

1. When the assembler generates the object code for the JSUB instruc-
tion we are considering, it will insert the address of RDREC relative co
the start of the program. (This is the reason *ve initialized the location
counter to 0 for the assembly.)

i~

The assembler will also produce a command for the loader, instruct-

ing it to add the heginning address of the program to the address
field in the JSUB instruction at load time.

Chapter2 Assemblers

The command for the loader, of course, must also be a part of the object pro-
gram. We can accomplish this with a Modification record having the following

format:

Modification record:
Col. 1 M
Col. 2-7 Starting location of the address field to be modified, rel-
ative to the beginning of the program (hexadecimal)
Col. 8-9 Length of the address field to be modified, in half-
bytes (hexadecimal)

The length is stored in half-bytes (rather than bytes) because the address
field to be modified may not occupy an integral number of bytes. (For exam-
ple, the address field in the JSUB instruction we considered above occupies 20
bits, which is 5 half-bytes.) The starting location is the location of the byte con-
taining the leftmost bits of the address field to be modified. If this field occu-
pies an odd number of half-bytes, it is assumed to begin in the middle of the
first byte at the starting location. These conventions are, of course, closely re-
lated to the architecture of SIC/XE. For other types of machines, the half-byte
approach might not be appropriace (see Exercise 2.2.9).

For the JSUB instruction we are using as an example, the Modification
record would be

MCO0DOTOS

This record specifies that the beginning address of the program is to be added
to a field that begins at address 000007 (relative to the start of the program)
and is 5 half-bytes in leagth. Thus in the assembled instruciion 4B101036, the
first 12 bits (4B1) will remain unchanged. The program load address will be
added to the last 20 bits (01036) to produce the correct operand address. (You
should check for yoursalf that this gives the results shown in Fig. 2.7.)

Exactly the same kind of relocation must be performed for the instructions
on lines 35 and 65 in Fig. 2.6. The rest of the instructions in the program, how-
ever, need not be modified when the program is loaded. In some cases this is
because the instruction operand is not a memory address at al! (e.g. CLEAR S
or LUA #3), In oiher cases no modification is needed because the cperand is
specified using program-counter relative or base relative addressing. for ea-
ample, the instruction on line 10 (STL RETADR) is assembled using program-
counter relative addressing with displacement 02D. No matter where the
program is loaded in memory, the word labeled RETADR will always be 2D

Sectin 2.2 Maclure-Dependent Assenbler Features

bytes away from the STL instruction; thus no instruction modification is
needed. When the STL is executed, the program counter will contain the (ac-
Ew: address of the next instruction. The target address calculation process
will then produce the correct {actual) operand address corresponding to
RETADR.

Similarly the distance between LENGTH and BUFFER will always be
3 bytes. Thus the displacement in the base relative instruction on line 160 will
be correct without modification. (The contents of the base register will, of
course, depend upon where the program is loaded. However, this will be
taken care of automatically when the program-counter relative instruction
LDB #1L.ENGTH is executed.)

By now it should be clear that the only parts of the program that require
modification at load time are those that specify direct (as opposed to relative)
addresges. For this SIC/XE program, the only such direct addresses are found
in extended format (4-byte) instructions. This is an advantage of relative ad-
dressing—if we were to attempt to relocate the program from Fig. 2.1, we
would find that almost every instruction required modification.

Figure 2.8 shows the complete object program corresponding to the source
program of Fig. 2.5, Note that the Text records are exactly the same as those
that would he produced by an absolute assembler (with program starting ad-
dress of 0). However, the load addresses in the Text records.are interpreted as
relative, rather than absolute, locations. (The same is, of course, true of the ad-
dresses in the Modification and End records.) There is one Modification record
for each address field that needs to be changed when the program is relocated
o.: this case, the three +SUB instructions). You should verify these Modifica-
o records yourself and make sure you understand the contents of each. In
Chapter 3 we consider in detail how the loader performs the required program
modification. It is important that you understand the concepts involved now,
however, because we build on these concepts in the next section.

HCOPY %oae°°>oo-0uq

ﬁaoooocx,—eku~o~o>ounone>bu—o~eufcu~o~®.~w0000>uuwoo AL -o-°ue>uu~m.mn>0u~o~o
d’oooo:r- u>e~uo-o>o~o°ou>c~uvooe>a-—o~0mu>uunoou>.. S4FLE
%o-ouf—ﬂuo.ﬁuao@moaﬁuuue-oaﬁ’nuuo. 9332FFADB20]JA00433200857C0038850
ﬁoo—ouu>~—wmu~ FEAL uaooos,am.o.«oe):%b~o>w 7400083201 _>uu~m.ﬂ¢munoo*cm.~oofuwuo
%0~cuﬁcﬁuunwnﬂpﬂoooo>ou

MG00G0705

%ooo~90u

¥000027,05

£000000

Figure 2.8 Object program corresponding to Fig. 2.6,

65

66

Chapter 2 Assemblers

2.3 MACHINE-INDEPENDENT
ASSEMBLER FEATURES

In this section, we discuss some common assembler features that are not
closely related to machine architecture. Of course, more advanced machines
tend to have more complex software; therefore the features we consider are
more likely to be found on larger and more complex machines. However, the
presence or absence of such capabilities is much more closely related to issues
such as programmer convenience and software environment than it is to
machine architecture.

In Section 2.3.1 we discuss the implementation of literals within an assem-
bler, including the required data structures and processing logic. Section 2.3.2
discusses two assembler directives (EQU and ORG) whose main function is
the definition of symbols. Section 2.3.3 briefly examines the use of eXpressions
in assembler language statements, and discusses the different types of expres-
sions and their evaluation and use. :

Tn Sections 2.3.4 and 2.3.5 we introduce the impartant topics of program
blocks and control sections. We discuss the reasons for providing such capabil-
ities and illustrate some different uses with examples, We also introduce a set
of assembler dicectives for supporting these features and discuss their imple-
inentation. =

2.3.1 Literals

It is often convenient for the programmer to be able to write the value of a
constant operand as a part of the instruction that uses it. This avoids having to
define the constant elsewhere in the program and make up a label for it. Such
an operand is called a literal because the value is stated “literally” in the in-
struction. The use of literals is illustrated by the program in Fig. 2.9. The object
code generated for the statements of tlis program is shown in Fig. 2.10, (This
program is a modification of the one in Fig. 2.5; other changes arc discussed
Jater in Section 2.3.)

In our assembler language notation, a literal is identified with the prefix =,
which is followed by a specification of the literal value, using the same nota-
tion as in the BYTE statement. Thus the literal in the statement

45 001x ENDFIL, LDK =Q'EJP" 032010

specifies a 3-byte operand whose value is the character string EOF. Likcwise
the statement

215 10€2 WLOCE Tw =¥'05° E52012

23 Machine-Independent Assembler Features

Line Source statement
3 copy START 0 COPY FILE FROM INPUT 10 CUTECT
10 FIRST STL RETADR SAVE RETURN ADCRESS
13 LOB YLENGTH ESTAELLSH BASE REGISTER
14 BASE LENGTH
15 CLOOP +JsSUs ROREC RPAD INPUT RECCRD
20 LDA LENGTE TEST FOR BOF (LNGTH = 0)
25 COMP 40
30 JEQ ENDPIL EXIT IF 2CF FOUND
35 +JEUB WRREC WRITE OUTFUT RECORD
0 J cLoop LOOP
45 ENCELL LA =G EOF INSERT END CF FILE MARKER
50 STA BUFFER.
55 LDA #3 , SBF LENGTH = 3
50 STR LENGTH
65 rJ5UB WRREC WRITE EOF
70 J @RETADR ABETURN TO CALLER
91 LTORG
95 RETADR RESW p
00 LENGTH RESN 3 LENGTH OF RICORD
105 DUFFER RESBE 4096 309¢-BYTE BUFFERL AREA
106 BUFEND QU *
wwm MANLEN 00 SUPEND-RUPFER MAXTNIN RECORD LENGTH
»ww . SUBROUTINE 10 READ RRACORD INTO BUFFER
125 RLREC CLEAR X

CLEXR LOOP COUNDER

IR kI S ennn n T TR

132 CLEAR s CLEAR S TO ZERD

133 «LDT SMAOCEN

135 RLOCP ™ INPUT TEST INFUT DEVICE

340 JER RLOCP LOOP (RITIL READY

145 D INPUT READ CHARACTER INTO REGISTER A
150 COMFR AS TEST FOR END OF RECORD (X*00')
155 JEQ EXIT EXIT 1OOP IF ECR

160 STCH BUFFER, X STCRE CHRRACTER IN BUFFER
165 TIXR T LOOP (MLESS MAX LENGTH
170 Ju’r RLOCP EAS BEEN REACHED

175 BXIT STX LENGTH SAVE RECORD LENGTH

180 RSUB RETURN TO CALLER

wmm INPUT BYTE X'F1' CCDE FOR INPUT DEVICE

me - SUSROUTINE TO WRITE RECORD FROM BUFFER

200 WRRED CLEAR X CLEAR LOOE CCUNTER

212 LoT LENGTH

215 WLOOE 10 =RV TEST CUTPUT DEVICE

mg JE WLOOZ LOGP UNTIL READY

225 LOCE BIIEPER, Y GE2T CHARACTER FROM =UPFZR
230 “Wo =x'03 WAT7E CUARRLTER

233 TIXR T LOOP MTIL ALL CHARACTERS
240 JLT WLOOZ HAVE BEEN WRITI=N

245 RSB RETURN 70 CALLER

255 ED FIRST

Sigure 2.9 Program ¢amonsiratine additional assembler feztures,

67

23 Machine-Independent Assemblor Featiires

€9

Line Loc Source statement Object code specifies a 1-byte literal with the hexadecimal value 05. The notation used for
5 0000 copY smar 0 literals varies from assembler to assembler; however, most assemblers use
10 0000 PIRST STL RETADR. 172020 - , some symbol (as we have us2d =) to make literal identification easier.
ww g werm a% Seae®D _ [t is important to understand the difference between a literal and an imme-
15 0006 CLOOP JSUB ROREC 48101036 _ diate operand. With immediate addressing, the operand value is assethbled as
20 000K LDA LENGTH i . part of the machine instruction, With a literal, the assembler generates the
ww Mwmw % .wzgd‘ 332007 specified value as a constant at some other memory location. The address of
35 0023 +WJSUB WRREC $810105D this generated constant is used as the target address for the machine instruc-
nw Mwww. —— Sn nmm.n%w wwwwmm tion. The effect of using a literal is exactly the same as if the programmer had
50 001D STA BUFFER 0F2016 defined the constant explicitly and used the label assigned to the constant as
55 0020 LOA .wh& = Mwmmmw the instruction operand. (In fact, the generated object code for lines 45 and 215
Mom Mwww &mwwm YERES 4B101050 in Fig. 2.10 is identical to the object code for the corresponding lines in
70 00ZA J GRETADR 3E2003 Fig. 2.6.) You should compare the object instructions generated for lines 45 and
93 12083 55 in Fig. 2.10 to make sure you understand how literals and immediate
002D . =C*EOF 454F46
9s 0030 RETADR RESW 1 operands are handled.
100 0033 LENGTH RESW 1 All of the literal operands used in a program are gathered together into
wmm MWWM MW...WW Mwwm e one or more [iteral pools. Norinally literals are placed into a pool 4t the end of
107 1000 MAXLEN EQU BUFEND-EUFFER the program. The assembly listing of a program containing literals usually in-
wwm . SURSCOTIIE O/ READ RECURS THTO BUFFER cludes a listing of this literal pool, which shows the assigned addresses and

120 : the generated data values. Such a literal pool listing is shown in Fig. 2.10 im-

125 1026 RUREC CLEAR w me mediately following the END statement. In this case. the pool consists of the
-Mw wm& M.M.ww s B440 single literal =X"05".

132 103C +LDT AMAXLEN 75101000 In some cases, however, it is desirable to place literals into a pool at some
135 l040 RICOF q.—wa b il other location in the object program. To allow this, we introduce the assembler
me wwu.w RO THPUT 82013 directive LTORG (line 93 in Fig. 2.9). When the assembler encounters a LTORG
150 1049 CMPR - A8 wwwwom statement, it creates a literal pool that contains all of the literal operands used
Www ww% umﬂoum %ﬁw.u 570003 since the previous LTORG (or the beginning of the program). This literal pool
165 1051 TDR T B850 is placed in the object program at the location where the LTORG directive was
170 1053 Jur RLOOP SB2FEA encountered (see Fig. 2.10). Of course, literals placed in a pool by LTORG will
www wmww e wﬁ oy ”wmwww not be repeated in the pool at the end of the program.

185 105C NEUT BYTE %X°FL’ Pl If we had not used the LTORG statement on line 93, the literal ~C’EOF’
www SUBROUTINE 10 WRITE RECORD FROM EUFFER would be placed in the pool at the end of the program. This iiteral pool would

205 g begin at address 1073. This means that the literal operand would be placed too
210 1020 WRREC CLERR X BA10 far away from the instruction referencing it to allow program-counter relative

174000 { ;

Www wuwm. WLOOR %a nw.m.umﬁ E32011 addressing. The problem, of course, is the large amount of storage reserved for
220 1065 JBQ VILOOP 332FFA BUFFER. By placing the literal pool before this buffer, we avoid having to use
225 1062 WG BOFFER,X amiehs extended format instructions when referring to the literals. The need for an as-
220 e WO =¥'U8 p=2008 ¢ 4 AR A GaTil s
235 et R T B850 sembler directive such as LIORG usually arises when it is desirable to keep
240 1070 Jur V0B Wwwmwm the literal operand close to the instruction that uses it

. wmw 1073 Ww—wu — Most assemblers recognize duplicate literals—that is, the same literal used

1076 . =% 08" 05 in more than one place in the program—and store only cne copy of the speci-
¥ fied data value. For example, the literal =X'05" is used in our program on lines
Figure 2.10 Program from Fig. 2.9 with object code.

Chapiei 2 Assemblers

215 and 230. However, only one data area with this value is generated. Both
instructions refer to the same address in the literal pool for their operand.

The easiest way to recognize duplicale literals is by comparison of the
character strings defining them (in this case, the string =X05"). wonﬁansm a
slight additional saving is possible if we look at the generated data value in-
stead of the defining expression. For example, the literals =C'EOQF’ and
=X'454F46' would specify identical operand values. The assembler might
avoid storing both literals if it recognized this equivalence. However, the bene-
fits realized in this way are usually not great enough to justify the additional
complexity in the assembler.

1§ we use the character string defining a literal to recognize duplicates, we
must be careful of literals whose value depends upon their location in the pro-
gram. Suppose, for example, that we allow literals that refer to the current
value of the location counter (often denoted by the symbol *). Such literals are
sometimes useful for loading base registers. For example, the statements

BASE .
LDB =

as the first lines of a program would lezd the begiraung 2-idress of the pro-
gezm into register B, This value would then be available “r hese =lative ad-
dressing.

Such a notation can, however, cause a problem with the detection of dupli-
cate literals. If a literal =* appeared on line 13 of our example program, it
would specify an operand with value 0003, If the same literal appeared on line
55, it would specify an operand with value 0020, In such a case, the literal
operands have identical names; however, they have different values, and both
must appear in the literal pool. The same problem arises if a literal refers to
any other item whose value changes between one point in the program and
another.

Now we are ready to describe how the assembler handles literal operands.
The basic data structure needed is a literal table LITTAB. For each literal used,
this table contains the literal name, the operand value and length, and the ad-
dress assigned to the operand when it is placed in a literal pool. LITTAB is of-
ten organized as a hash table, using the literal name or value as the key.

As each literal operand is recognized during Pass 1, the assembler searches
LITTAB for the specified literal name /or value). If the literal 1= already preseri
in the table, nc action is naeded; if it is not present, the Literal is added to LIT-
TAB (leaviug the address unassigned). When Pass 1 encounters a LTORG
statement or the end of the program, the assembler makes a scan of the literal
table. At this time each literai currently in the table is assigned an address (un-
less such an 23dress has already been filled in). As these addresses are as-

2.3 Machine-independent Assembler Features

signed, the location counter is updated to reflect the number of bytes occupied
by each literal.

During Pass 2, the operand address for use in generating object code is ob-
tained by searching LITTAB for each literal operand encountered. The data
values specified by the literals in each literal pool are inserted at the appropri-
ate places in the object program exactly as if these values had been generated
by BYTE or WORD statements. If a literal value represents an address in the
program (for example, a location counter value), the assembler must also gen-
erate the appropriate Modification record.

To be sure you understand how LITTAB is created and used by the assem-
bler, you may want to apply the procedure we just described to the source
staternents in Fig. 2.9. The object code and literal pools generated should be
the same as those in Fig. 2.10.

2.3.2 Symbol-Defining Statements

Up to this point the only user-defined symbols we have seen in assembler lan-
guage programs have appeared as labels on instructions or data areas. The
value of such a label is the address assigned to the statement on which it ap-
pears. Most assemblerc provide an assembler directive that allows the pro-
gr.oaner to define symbole o ol specty teu alues. The assembler directive
generally used is EQU (for “equate”). The general form of such a statement is

syrbol QU valua

This statement defines the given symbol (i.e., enters it into SYMTAB) and as-
signs to it the value specified. The value may be given as a constant or as any
expression involving constants and previously defined symbols. We discuss
the formation and use of expressions in the next section.

One common use of EQU is to establish symbolic names that can be used
for improved readability in place of numeric values. For example, on line 133
of the program in Fig. 2.5 we used the statement

+LDT #4096
to load the value 4096 into register T. This value represents the maximum-
length record we zoula read with subroutine RDREC. The meaning is not,

however, as clear as :t might be. If wa include the statement

HARLEN EQU 4596

Chapter 2 Assemblers

in the program, we can write line 133 as
+LO7 EMAXTEN

When the assembler encounters the EQU statement, it enters MAXLEN into
SYMTAB (with value 4096). During assembly of the LDT instruction, the as-
sembler searches SYMTAB for the symbol MAXLEN, using its value as the
operand in the instruction. The resulting object code is exactly the same as in
the original version of the instruction; however, the source statement is easier
to understand. Tt is also much easier to find and change the value of MAXLEN
if this becomes necessary—we would not have to search through the source
code looking for places where #4096 is used.

Another common use of EQU is in defining mnemonic names for registers.
We have assumed that our assembler recognizes standard mnemonics for rag-
isters—A, X, L, etc. Suppose, however, that the assembler expected register
numbers instead of names in an instruction like RMO. This would require the
programmer to write (for example) RMO 0,1 instead of RMO A, X. In such a
case the programmer could include a sequence of EQU statements like

2 BEQU o
X = b
L 20 2

These stalements cause the symbols A, X, L,... to be entered into SYMTAB with
their corresponding values 0, 1, 2,... . An instruction like RMO A, X would then
be allowed. The assembler would search SYMTAB, finding the values 0 and 1
for the symbols A and X, and assemble the instruction.

On a machine like SIC, there would be litile point in doing this—it is just
as easy to have the standard register mnemonics built into the assembler.
Furthermore, the standard names (base, index, etc.) reflect the usage of the
registers. Consider, however, a machine that has general-purpose registers.
These registers are typically designated by 0, 1, 2,... (or RO, R1, R2,...). In a par-
ticular program, however, some of these may be used as base registers, some
as index registers, some as accumylators, etc. Furthermore, this usage of regis-
ters changes from one program to the next. By writing statements like

BASE BT Rl
COUNT BCOU R2
INDEX B 83

the programmer can establish and use names that reflect the logical function
of the registers in the program.

23 Machive-Independent Assembler Features

There is another common assembler directive that can be used to indirectly

assign values to symbols. This directive is usually called ORG (for “origin®).
Its form is

aRrRG value

where talue is a constant or an expression involving constants and previously
defined symbols, When this statement is encountered during assembly of a
program, the assembler resets its location counter (LOCCTR) to the specified
value. Since the values of symbols used as labels are taken from LOCCTR, the
ORG statement will affect the values of all labels defined until the next ORG.
Of course the Iocation counter is used to control assignment of storage in
the object program; in most cases, altering its value would result in an incor-
rect assembly, Sometimes, however, ORG can be useful in label definition.
Suppose that we were defining a symbol table with the following structure:

SYMBOL VALUE FLAGS

STAB
{100 entrias)

e

In this table, the SYMBOL field contains a 6-byte user-definad symbol; VALUE
is a one-word representation of the value assigned 1o the symbol; FLAGS is a
2-byte field that specifies symbol type and other information.

We could reserve space for this table with the statement

STAS RESB 1100

We might want to refer to entries in the table using indexed addressing (plac-
ing in the index register the offset of the desired entry from the beginning of
the table). Of course, we want to be able to refer to the fields SYMBOL,
VALUE, and FLAGS individually, so we must also define these labels. One
way of doing this would be with EQU statements:

SYMBOL BWU STAB
VALUE B STAB+G
FLAMGS BQU STAB+9

73

Ciuptor 2 Astemblers

This would allow us to write, for example,

LDa VALUE, X

to fetch the VALUE ficld from the table entry indicated by the contents of reg-
ister X. However, this method of definition simply defines the labels; it does
not make the structure of the table as clear as it might be.

We can accomplish the same symbol definition using ORG in the following
way:

STAB RESE 1100
ORG STAB
SYMBOL RESB [
VALUE RESW 1
PLAGS RESB 2
ORG STAB+1100

The first ORG resets the location counter to the value of STAB (i.e, the begin-
ning address of the table). The label on the following RESE statement defines
SYMBOL to have the current value in LOCCTR; this is the same address as-
signed to SYMTAB LOCCTR is lhen ad anced so the Jabc! on the RESW state-
ment assigns t VALUE the addrezs (TTAB &% apd sram The result ’s a set of
Jabels with the same values as those defined with the EQU statements above.
This method of definition makes it clear, however, that each entry in STAB
consists of a 6-byte SYMBOL, foliowed by a one-word VALUE, followed by a
2-byte FLAGS.

The last ORG statement is very important. It sets LOCCTR back to its pre-
vious value—the address of the next unassigned byte of memory after the
table STAB. This is necessary so that any labels on subsequent statements,
which do not represent part of STAB, are assigned the proper addresses. In
some assemblers the previous value of LOCCTR is automatically remembered,
50 we can simply write

ORG

(with no value specified) to return to the normal use of LOCCTR.

The descriptions of the EQU and ORG statements contain restrictions that
are common to all symbol-defining assernbler directives. In the case of EQU,
ell symbols used on the right-hand side of the statement—that is, all terms
used to specify the vaiue of the new symbol—must have been defined previ-
ously in the program, Thus, the sequence :

AT PHA RESW 1
BETA EQU ALPHA

2.3 Mackine-Independent Assembler Foatures

would be allowed. whereas the sequence

BETA 25U ALPHA
ALPEA RESW 1

would not. The reason for this is the symbol definition process. In the second
example above, BETA cannot be assigned a value when it is encountered dur-
ing Pass 1 of the assembly (because ALPHA does not yet have a value).
However, our two-pass assembler design requires that all symbols be defined
during Pass 1.

A similar restriction applies to ORG: all symbols used to specify the new
location counter value must have been previously defined. Thus, for example,
the sequence

ORG ALPHA

BYTE1L RESE 1

BYTE2 RESB 1

BYTE3 RESB 1

ORG

ALPHA RESE 1
could no! ln proc=s=ad. L. this case, the assembler would not know (during
Pass 1; what value to assign to the location counter in response to the first
ORG statement. As a result, the symbols BYTE1, BYTE2, and BYTE3 could not
be assigned addresses during Pass 1.

It may appear that this restriction is a result of the particular way in which
we defined the two passes of our assembler. In fact, it is a more general prod-
uct of the forward-reference problem. You can easily see, for example, that the
sequence of statements

ALPHA B BETA
BETA =5 DEVLTA
DELTA RSSW 1

cannot be resclved by an ordinary :.c.o.vnmm assembler regardless of how the
work is divided between the passes. In Section 2.4.2, we briefly consider ways
of handling such sequences in a more complex assembler structure.

2.3.3 Expressions

Our previous examples of assembler language statements have used single
terms (labels, literals, etc.) as instruction operands. Most assemblers allow the

75

Chapter 2 Assembiers

use of expressions wherever such a single operand is permitted. Each such ex-
pression must, of course, be evaluated by the assembler to produce a single
operand address or value.

Assemblers generally allow arithmetic expressions formed according to
the normal rules using the operators +, -, *, and /. Division is usually defined
to produce an integer result. Individual terms in the expression may be con-
stants, user-defined symbols, or special terms. The most common such special
term is the current value of the location counter (often designated by *). This
term represents the value of the next unassigned memory location. Thus in
Fig. 2.9 the statement

106 BUFEND BQU A

gives BUFEND a value that is the address of the next byte after the buffer area.

In Section 2.2 we discussed the problem of program relocation. We saw
that some values in the object program are relative to the beginning of the pro-
gram, while others are absolule (independent of program location). Similarly,
the values of terms and expressions are either relative or absolute. A constant
is, of course, an absolute term. Labels on instructions and data areas, and ref-
erences to the location counter value, are relative terms. A symbol whose value
is given by EQU {or some similar assembler directive) may be either an ab-
colute term or a relative term depending upon the expression used to define
its value.

Expressions are classified as either absolute expressions or relative expressions
depending upon the type of value they produce. An expression that contains
only absolute terms is, of course, an absolute expression. However, absolute
expressions may also contain relative terms provided the relative terms occur
in pairs and the terms in each such pair have opposite signs. It is not necessary
that the paired terms be adjo"cat to each other in the expression; however, all
relative terms must be capable of being paired in this way. None of the relative
terms may enter into a multiplication or division operation.

A relative expression is one in which ali of the relative terms except one
can be paired as described above; the remaining unpaired relative term must
have a positive sign. As before, no relative term may enter into a multiplica-
tion or division operation. Expressions that do not meet the conditions given
for either absolute or relative expressions should be flagged by the assembler
as errors.

Although the rules given above may seem arbitrary, they are actually quite
reasonable, The expreszions that are legal under these definitions include ex-
acily those expressions whose value remains meaningful when the program is
relocated. A relative term or expression represents some value thal may be
written as (S+), where S is the starting address of the program and r is the

23 Machine-Independeni Assembler Features

value of the term or expression relative to the starting address. Thus a relative
term usually represents some location within the program. When relative
terms are paired with opposite signs, the dependency or. the program starting
address is canceled out; the result is an absolute value. Consider, for example,
the program of Fig. 2.9, In the statement

107 MAXLEN EQU BUFPEND-BUFFER

cmﬁ.owmZU and BUFFER are relative terms, each representing an address
SHE..S the program. However, the expression represents an absolute value: the
difference between the two addresses, which is the length of the buffer area in
bytes. Notice that the assembler listing in Fig. 2.10 shows the value calculated
for this expression (hexadecimal 1000) in the Loc column. This value does not
represent an address, as domost of the other entries in that column. However,
it does show the value that is associated with the symbol that appears in the
source statement (MAXLEN).

Expressions such as BUFEND + BUFFER, 100 - BUFFER, or 3 * BUFFER
represent neither absolute values nor locations within the program. The values
w. these expressions depend upon the program starting address in a way that
is unrelated to anything within the program itself. Because such expressions
are very uniikely to be of any use, they ars consideres arrors.

To determine the type of an expression, we wst neep track of the #—pe o €
all symbols defined in the program. For this purpose we need a :mm. in the
symbol table to indicate type of value (absolute or relative) in addition to the

value itself. Thus for the program of Fig. 2.10, some of the symbol table entries
might be

Symbol Type Value
RETADR R 0030
BUFFER R 0036
BUFEND R 1026
MAXLEN A 1000

With this information the assembler can easily determine the type of each ex-
pression used as an operand and generate Modification -ecords in the object
program for relative values. :

In Section 2.3.5 we consider programs that consist of several parts that can
be relocated independently of each other. As we discuss in the later sectior,

our rules for determining the type of an expression must be modified in such
instances.

Chapter 2 Assemblers A 2.3 Maciine-Independent Assembler Features 79
2.3.4 Program Blocks Line Source statement
5 COPY START 0 COPY PILE FROM INPUT TO OUTPUT

In all of the examples we have seen so far the program being assembled was ww FIRST wm.a RETRIR SAVE RETURM ACORBSS
treated as a unit. The source programs logically contained subroutines, data R iy ol R a0}
areas, etc. However, they were handled by the assembler as one entity, result- ww oo .mzﬂu

; ; in this obi 1 T IP BOF

ing in a single block of object code. Within this object program the generated 4 e i B s e
machine instructions and data appeared in the same order as they were writ- 40 J CLooP Loop

ten in the source program. MM ENDFIL % «C!BOP INSERT END OF FILE MARKER

Many assemblers provide features that allow more flexible handling of the | 55 LDA 3 SET SENGTH = 3

source and object programs. Some features allow the generated machine in- % % LENGTH it

structions and data to appear in the object program in a different order from | 70 o owmg_ e RETURN 10 CALLER

the corresponding source statements. Other features result in the creation of N p— %. mcks

several independent parts of the object program. These parts maintain their 100 LENGTH HESW 1 LINOTH OF RECORD

identity and are handled separately by the loader. We use the term program www ncmm CBIXS

blocks to refer to segments of code that are rearranged within a single object ‘ 106 ggm.m_?nma i 4095 ummwm,wﬁﬁmmm >m.wmm.y
program unit, and control sections to refer to segments that are translated into 7 usxeEm 9 BUFEND-BUFFER MAXIMUM RECORD LENGTH
Smmvgmm:. object program EEM.. (This terminology is, unfortunately, far wwm - s R p—

from uniform. As a matter of fact, in some systems the same assembler lan- wwo 3

guage feature is used to accomplish both of these logically different functions.) e USE

In this section we consider the use of program blocks and how they are han- 2130 SmR A CLEAR wbwm AN.M.MQ

dled by the assembler. Section 2.3.5 discusses control s=ctions and their uses, , 1. R i~ ol CLEAR § TO ZERD

Figure 2.11 shows our example program as it might be written using pro- 135 RLoOP o iy TEST INFUT DEVICE

gram blocks. In this case three blocks are used. The first (unnamed) program wnm aho REOOP NMW UNTIL wN“E "

; a INPUT CHARACTER INIO REGISTER A
block contains the executable instructions of the program. The second (named 150 COMPR AS TEST POR END OF RECORD (X’00°)
CDATA) contains all data areas that are a few words or less in length. The WMW JEQ EXIT EXIT LOCP IF ECR
third (named CBLKS) contains all &ﬁ.mawm that ao:m.m" of F_..wﬂ blocks of g msaaw_! Wamnm.x .,....._%wu QESQ% IN BUFFER
memory. Some possible reasons for making such a division are discussed later 170 JLT RLOOP HAS BEEN REACHED
in this section. www EXIT WW*B LENGTH SAVE RECORD LENGTH

The assembler directive USE indicates which portions of the source pro- 183 USE CDATA L
gram belong to the various blocks. At the beginning of the program, state- . BYTE x'FL CODE FOR INFUT DEVICE
ments are assumed to be part of the unnamed (default) block; if no USE 200 . SUBROUTINE TO WRITE RBECORD FROM BUFFER
statements are included, the entire program belongs to this single block. The Wmm . -
USE statement on line 92 signals the beginning of the block named CDATA. 210 WRREC CLEAR X LEAR 1009 COUITER
Source statements are associated with this block until the USE statement on WWW .Unwn LENGTH
line 103, which begins the block named CBLKS. The USE statement may also Tn e s sl B
indicate a continuation of a previously begun block. Thus the statement on .mmw LOCH BUFFER, X GET CHARACTER FROM BUFFER
line 123 resumes the default block, and the statemment on line 183 resumes the 738 .i...w% X0 Wwwﬁpﬂmmﬂm;mrdwn@ws ARRS
block named CDATA. 240 Jur veoe IAVE BEES WRITTEG

As we can see, each program block may actually contain several separate wmw % RETUEN 10 CALLER
segments of the source program, The asserbler will (logically) rearrange these 253 LTORG
segments to gather together the pieces of each block. These blocks will then be e BN FIRIT
assigned addresses in the object program, with the blocks appearing in the Figure 2,11 Example of a program with multiple program blacks,

Chapter 2 Assemblers
Line Loc¢/Block Source statement Object code
same order in which they were first begun in the source program. The result is 5 0000 © oY START 0
the same as if the programmer had physically rearranged the source state- Wm “Mww. u % wm.m J.axlﬁg wwwww
ments to group together all the source lines belonging to each block. | 20 0006 © Lo LENGTH 032060
The assembler accomplishes this logical rearrangement of code by main- ww Muwm m oovp 0 wwmﬁ
taining, during Pass 1, a separate location counter for each program block. The 3 e o i3 Ll o]
location counter for a block is initialized to 0 when the block is first begun. The 40 0012 0 J CLOOE IP2PEE
) § R tching to another _ &5 0015 0 ENDFIL LOA =C'ECF’ 032055
current value of this location counter is saved when switching 50 0018 0 STA SUFFER 0F2058
block, and the saved value is restored when resuming a previous block. Thus 55 oole 0 LOA # 010003
during _vnfmm 1 each label in the program is assigned an address that is relative M MMWM.. w W.Wm :r%ﬂi mmmww ‘
to the start of the block that contains it. When labels are entered into the sym- _ b 0024 O 3 GRETADR 32032
bol table, the block name or number is stored along with the assigned relative ww Mnmn m P, ﬁ m??
address. At the end of Pass 1 the latest value of the location counter for mmn” 100 0003 1 Pyedorioni o 1
block indicates the length of that block. The assembler can then assign to eac 105 0000 3 BeFER AEse 4096
block a starting address in the object program (beginning with relative loca- # 10€ 1000 2 BOFEND) g
tion 0). .. 107 1000 MAXLEN a3 BUFEND-BUFFER
For code generation during Pass 2, the assembler needs the address for . H) SUBROUTINE 70 READ RECORD INTO BUFFER
each symbol relative to the start of the object program (not the start of an indi- 120
vidual program block). This is easily found from the information in SYMTAB. 123 %037 0 RDREC con X 3410
The assembler simply adds the location of the symbol, relative to the start of 130 0029 0 CLEAR A B400
its nlock, to the assigned block starting address. mw %ww M +m'.w§ ._mra.-z wmum i
Figuar 2 2.12 denwnst . 1es this process applied to Sur Emnmw.ﬂ.ﬂam‘ma The 135 003: © Abie o i s fecrsa
column headed Loc/Block shows the relative address (within a program 140 0034 0 JED RLOCE 332FFA
block) assigned to each source line and a block number indicating s.?mv.go. wuw %ww m szmz >u._mm 3 wwwomuu
gram block is involved (0 = default block, 1 = CDATA, 2 = CBLKS). This is es- 155 003c © JE) EXIT 332008
sentially the same information that is stored in SYMTAB for each mv.:.co_. wmm muww m .w.uM St ol wm%nw
Notice that the value of the symbol MAXLEN (line 107) is shown without a 170 0044 0 aur RIOOP 3B2FEA
block number. This indicates that MAXLEN is an absolute symbol, whose www wunw M BXIT wﬂw LENGTH ”wwmww
value is not relative to the start of any program block. 183 0006 1 pines CTATR
At the end of Pass 1 the assembler constructs a table that contains the start- www 0006 1 INFUT EYTE X'F1° F1
ing addresses and lengths for all blocks. For our sample program, this table 200 ” SUBROUTINE TO WRITE RECORD FROM BUFFER
looks like 208 .
268 004D 0 use
210 004D 0 VIRREC CLEAR x B4L0
Block name Block number Address Length 212 004F 0O or . . 01
215 2052 0 WLOoR 1D =X"05° B3201B
0000 0066 220 0055 0 JE WLOOP 332FFA
(default) 0 228 0058 0 LOCH BUFFER, X 53A016
0066 230 0058 0 o =X"05" DF2012
CDATA 1 oo 23g 00SE 0 R T B850
240 0060 @ Jur HLOOP 3B2FEF
CBLKS 2 0071 1000 245 0063 0 RSUB 470000
252 0007 1 USE COATA
253 LTORE
N ider the instruction 0067 1 » =C’ BOF A54F46
ow consider mstrucio ' goon 1 * X' 05! 05
255 5] FIRST
20 0096 O 108 LENGTH 032060

Figure 2,12 Program from Fig. 2.11 with object code.

. -

Chapter 2 Assemblers

SYMTAB shows the value of the operand (the symbol LENGTEH) as relative lo~
" cation 0003 within program block 1 (CDATA). The starting address for CDATA
is 0066, Thus the desired target address for this instruction is 0003 + 0066 =
0069. The instruction is to be assembled using program-counter relative ad-
dressing. When the instruction is executed, the program counter contains the
address of the following instruction (line 25). The address of this instruction is
relative location 0009 within the default block. Since the default block starts at
location 0000, this address is simply 0009. Thus the required displacement is
0069 — 0009 = 60. The calculation of the other addresses during Pass 2 follows a
similar pattern.

We can immediately see that the separation of the program into blocks has
considerably reduced our addressing problems. Because the large buffer area
is moved to the end of the object program, we no longer need to use extended
format instructions on lines 15, 35, and 65. Furthermore, the base register is no
longer necessary; we have deleted the LDB and BASE statements previously
on lines 13 and 14. The problem of placement of literals (and literal refcrences)
in the program is also much more easily solved. We simply include a LTORG
statement in the CDATA biock to be sure that the literals are placed ahead of
any large data areas.

Of course the use of program blocks has not accomplished anything we
could not have done by rearranging the statements of the source program. For
example, program readability is often improved if the definitions of data areas
are placed in the source program close to the statements that reference them.
This could be accomplished in a long subroutine (without using program
blocks) by simply inserting data areas in any convenient position. However,
the programmer would need to provide Jump instructions to branch around
the storage thus reserved.

In the situation just discussed, machine considerations suggested that the
parts of the object program appear in memory in a particular order. On the
other hand, human factors suggested that the source program should be in a
different order. The use of program blocks is one way of satisfying hoth of
these requirements, with the assembler providing the required reorganization.

It is not necessary to physically rearrange the generated code in the object
program to place the pieces of each program block together. The assembler can
simply write the object code as it is generated during Pass 2 and insert the
proper load address in each Text record. These load addresses will, of course,
reflect the starting address of the block as well as the relative location of the
code within the block. This process is illustrated in Fig. 2.13. The first two Text
records are generated from the source program lines 5 through 70. When the
USE statement on line 92 is recognized, the assembler writes out the current
Text tecord (even though there is still room leftin it). The assembler then pre-
pares to begin a new Text record for the new program block. As it happens, the
statements on lines 95 through 105 result in no generated code, so no new Text

2.3 Machine-Independent Assembler Features

Jmuomn %oooeo%opou 1

TO00000IE] 7206 u>a 5202 fouuoo 9z oooo&%uuooﬁ»-wou*-»&-%uuou.ﬂoww omo\,o 10003

H>°oo°- Nyoo)cnnooa\founone.aunnnzﬁ

TO000271LE4 1084 Oo\maoo\@u 101 oo&munoufuunmm%u»Ouu‘oQfuu»eofu 7A02E5850

.—.>ooooa»>oe>uun FEAL j201 n>> FOO00

ﬂoaooaﬂﬂo _.>-._

ﬂooocaﬂuaﬁm —o>u 7201 wfnuuoufu uu-&m uho—o%nuonu%o mo)uuu FERAF0000
100006 a—ofa S4F460S

ﬂvaooooo b

Figure 2.13 Object program corresponding to Fig. 2.11.

records are created. The next two Text records come from lines 125 through
180. This time the statements that belong to the next program block do result
in the generation of object code. The fifth Text record contains the single byte
of data from line 185. The sixth Text record resumes the default program block
and the rest of the object program continues in similar fashion.

It does not matter that the Text records of the object program are not in se-
quence by address; the loader will simply lcad the obiect code from each
record at thz Indicated addrcss. When this loading is completed, the generated
code ‘rors the defoult Wack wil' c~cupy rela*ive I, ons 0020 through 0065;
the generated code and reserved storage for CDATA will occupy locations
0066 through 0070; and the storage reserved for CBLKS will occupy locations
0071 through 1070. Figure 2.14 traces the blocks of the example program
through this process of assembly and loading. Notice that the program seg-
ments marked CDATA(1) and CBLKS(1) are not actually present in the object
program. Because of the way the addresses are assigned, storage will automat-
ically be reserved for these areas when the program is loaded.

You should carefully examine the generated code in Fig. 2.12, and work
through the assembly of several more instructions to be sure you understand
how the assembler handles multiple program blocks. To understand how the
pieces of each program block are gathered together, you may also want to sim-
ulate (by hand) the loading of the object program of Fig. 2,13,

2.3.5 Control Sections and Program Linking

In this section. we discuss the handling of programs that consist of multiple
control sections. A conirol section is a part of the program that maintains its
identity after assembly; each such control section can be loaded and relocated
independently of the others. Differsnt contro! sections are most often used for
subroutines or ather logical subdivisions of a progiam. The programmer can
ass2mble, lvad, and munipulate each of these control sections separacely. The

-

Chapter 2 Assemblers

. Program loaded
Source program Object program In memory Ak
Line acdress
5 0000
\ Default(l) p———————p1 Dofault(1)
Detault(1) ; 0027
Default(2) p—————p| Defaull(2)
70
05 004D
COATA(1) sl Defaurt(3)
i Detault(3)
105| CBLKS{1) a 0066
doe CDATA(1)
CDATA(3) / COATAR) | 0%
Ootauit(2) CDATA(3) ”W
180
185 COATA(2)
215
GBLKS(1
Detault(3) / sl
245
CDATA(2)
1070

Figure 2.14 Program blocks from Fig. 2.11 traced through the assem-
bly and loading processes.

resulting flexibility is a major benefit of using control sections. We consider ex-
amples of this when we discuss linkage editors in Chapter 3.

When control sections form logically related parts of a program, it is neces-
sary to provide some means for linking them together. For example, instruc-
tions in one control section might need to refer to instructions or data located
in another section. Because control sections are independently loaded and re-
located, the assembler is unable to process these references in the usual way.
The assembler has no idea where any other control section will be located at
execution time. Such references between control sections are called externai ref~
zrences. The assembler generates information for each external reference that
will allow the loaccr to perform the required linking. In this section we de-
scribe how external references are handled by our assembler. Chapter 3 dis-
cusses in detail how the aciuai lirking is performed.

Section 2.3 Mochinie-Independent Assembler Featurss

Figure 2.15 shows our example program as it might be written using multi-
ple control sections. In this case there are three control sections: one for the
main program and one for each subroutine. The START statement identifies
the beginning of the assembly and gives a name (COPY) to the first control
section. The first section continues until the CSECT statement on line 109. This
assembler directive signals the start of a new control section named RDREC.
Similarly, the CSECT statement on line 193 begins the control section named
WRREC. The assembler establishes a separate location counter (beginning at
0) for each control section, just as it does for program blocks.

Control sections differ from program blocks in that they are handled sepa-
rately by the assembler. (It is not even necessary for all control sections in a
program to be assembled at the same time,) Symbols that are defined in one
control section may not be used directly by another control section; they must
be identified as external references for the loader to handle. Figure 2,15 shows
the use of two assembler directives to identify such references; EXTDEF (exter-
nal definition) and EXTREF (external reference). The EXTDEF statement in a
control section names symbols, called external symbols, that are defined in this
cuntrol section and may be used by other sections. Control section names (in
this case COPY, RDREC, and WRREC) do not need to be named in an EXTDEF
statement because they are automatically considered to be external symbols.
The EXTREF statemest names symbols that are used in this centrol section
and are defined elsewhere. For example, the symbols EUTFER, BUFEND, and
LENGTH are defined in the control section named COPY and made available
to the other sections by the EXTDEF statement on line 6. The third control sec-
tion (WRREC) uses two of these symbols, as specified in its EXTREF statement
{line 207). The order in which symbols are listed in the EXTDEF and EXTREF
statements is not significant.

Now we are ready to look at how external references are handled by the
assembler. Figure 2.16 shows the generated object code for each statement in
the program. Consider first the instruction

15 0003 CLOOP +JSUB RDREC 4as10000c0

The cperand (RDREC) is named in the EXTREF statement for the control sec-
tion, so this is an external reference. The assembler has no idea where the con-
trol section containing RDREC will be loaded, so it cannot assemble the
address for this instruction. Instead the assembler inserts an address of zero
and passes information to the loader, which will cause the proper address to
be inserted at load time. The address of RDREC wili have no predictable rela-
tionship to anything in this control section; therefore relative addressing is not
possible. Thus an extended format instruction must be used to provide room
for the actual address to be inserted. This is true of any instruction whose
operand involves an external reference.

85

1l

Line Source statement Line Loc Source statement Object code -
5 (OFY START 0 ©oP¥ FILE FROM INPUT TO OUTPUT 5 0000 cory START 0
P EXIOES BUEFER, BUFEND, LENGTH 6 EXTDEF HUFFER, BUFEND, LENGTH
7 EXTREF ROREC, WRREC 7 EXTREF RDREC,WRREC
10 FIRST STL RETADR SAVE RETURN ADDRESS 10 0000 FIRST ST RETALR 172027
15 CLooP +JSUR ROREC READ INPUT RECORD 15 0003 CIO0P +J3UB RDREC 48100000
20 Lo LENGTH TEST FOR BOF (LENGTH = 0} 20 0007 DR LENGTH 032023
25 ooMP Y0 25 O00A coMp 0 290000
30 JEQ ENDFIL EXIT IF BOF FORID 30 000D JEQ ENDFIL 3132007
s +JI5UB WRREC WRITE OUTPUT RECORD 35 0010 +JISUB WRREC 4B100000
40 J CLOGY Loo? 40 0014 CLOOP IF2FEC
45 ENDFIL s - =C'EOF’ INSERT END OF FILE MARKER 45 0017 ENCFIL LDA BOR 032016
55 AN 3 SET LENGTH = 3 S5 001D LDA 3 010003
60 STA LENGTH &0 LOZY sra LENGTH OF200A
&5 +ISUB WRREC WRITE BEOF 65 0023 +JSUB WRKEC 48100000
70 J @RETAIR RETURN TO CALLER 70 0o27 J GRETADR IR2000
a5 RETADR RESW 1 5 002a RETAUR RESW 1
100 LENGTH RESW 1 LENGTH OF RECCRD _ 100 002D LENGTH RESW 1
103 LIORG 103 UIORS
105 EBUFFER RESB 4096 4096-BYTE BUFFER AREA 0030 . oC* 20F 154546
106 BUFEND BQU * 105 003z BUFFER RESS 4096
107 MAXLEN BQU BUPEND-BUEFFER 106 1033 BUFEND EQU *
107 1000 MANLEN BEQU EUFEND-BUFFER
o ws o e e
115 . SUBROUTINE TO READ RECCRD INTO BUFFER 110 :
120 . 115 SUSROUTINE TO RSAD RECORD INTO BUFFER
122 EXTREF BUFFER, LERGTH, BUFEND 120
130 LEAR A CLEAT A "0 ZERO 1.5 0e09 CLEAR X 2410
132 SLEAR [CLEAR £ TO ZERO 130 0002 ~BAR A B400
133 Lor MAXLEN 1s. Ui CLEAR S 3440
135 RI0OP ™ TNPUT TEST INPUT DEVICE 133 0006 LoT MAXLEN 77201F
140 JED RLOOP LOOP UNTIL RERDY 135 0009 RILCOP ™ NPT 232018
145 RD INPUT READ CHARACTER INTO REGISTER A 140 000C JEQ RLOOP 1329%
150 COMPR A8 TEST FOR END OF RECORD (X’007) 145 000F 2D T DB201S
155 JEQ EXIT EXIT 10OP IF EOR 150 0012 COMPR A, S A004
160 STCH BUFFER STORE CHARACTER IN BUFFER _ 155 0014 JE EXIT 332000
165 DR T LOOF UNLESS MAX LENGTH 160 0017 +STCH BUFFER, X 57900000
170 Jur RLOTP HAS BEEN REACHED 165 001B TLER T 8350
175 BQaT STX LENGTH SAVE RECORD LENGTH 170 001D K17 RLOOP IBIFEY
180 RSUB RETURN TO CALLER 175 0020 EXIT +STX LENGTH 13100000
=38 IFPUT BYTE X FLY CODE POR INFUT DEVICE 180 0024 RSTE 4F0000
190 MAXLEN WORD BUFEND- BUFFER 185 0027 BT BYTE R n
190 0028 MAXLEN WORD BUFEND- BUFFER 000000
www §...§n 135 600 WL CSECT
200 i SUBROUTINE TO WRITS RECORD FROM BUFFER www ;
205 . . 208 SUBROUTINE T0 WRITE RECORD FROM BUFFER
207 EXTRES LENGTH, BUFFER s
210 CLEAR ® CLEAR LOOP COUNTER EXTREF LENGTH, BUFFER
212 LDT LENCTH 210 0000 CLEAR ¥ B410
215 WLOOP ™ X' 05’ TEST OUTPUT DEVICE 212 a00e +LDT LENGTH 77100000
229 JEQ WLOOP LOOF UNTIL READY , 215 0005 WLOOP ™ =X 05" b
225 +LDCH BUFFER, ¥ GET CHARACTER PRCH BUFFER =20 0500 TE0 WLOLE I32EFa
230 Wo =X"05" WRITE CHARACTER w»m 0oC +LICH BUFFER, X ©3600000
238 TIXR T LOCF UNPIL ALL CHARACTERS uwo 0010 Wo X' 05 062008
240 Jur VILOOF _ EAVE BEEN WRITTEN 35 0013 TR T B850
245 REUB RETURN TO CALLER 240 901> STT |, wWLooe K IBZFEE
255 =0 PIRST mmm 0018 RSUB 4EO520
A =01 FIRST
9018 = 08" 3

Figure 2.15 lllustration of contrul sections and program finking.

o Figure 2.16 Program from Fig. 2.15 with object code.

il

Chapter 2 Assemblers

Similarly, the instruction
160 0017 +STCH BUFFER, X 57900000

makes an external reference to BUFFER. The instruction is assembled using
extended format with an address of zero. The ¥ bit is set to 1 to indicate in-
dexed addressing, as specified by the instruction. The statement

190 0028 MAXLEN WORD BUFEND-BUFFER 000000

is only slightly different. Here the value of the data word to be generated is
specified by an expression involving two external references: BUFEND and
BUFFER. As before, the assembler stores this value as zero. When the program
is loaded, the loader will add to this data area the address of BUFEND and
subtract from it the address of BUFFER, which results in the desired value.

Note the difference between the handling of the expression on line 190 and
the similar expression on line 107. The symbols BUFEND and BUFFER are
defined in the same control section with the EQU statement on line 107, Thus
the value of the expression can be calculated immediately by the assembler.
This could not be done for line 190; BUFEND and BUFFER are defined in an-
other control section, so their values are unknown at assembly time.

As we can see from the above discussion, the assembler must remember
(via entries in SYMTAB) in which control section a symbol is defined. Any
attempt to refer to a symbol in another control section must be flagged as an
error unless the symbol is identified (using EXTREF) as an external reference.
The assembler must also allow the same symbol to be used in different control
sections. For example, the conflicting definitions of MAXLEN on lines 107 and
190 should cause no problem. A reference to MAXLEN in the control section
COPY would use the definition on line 107, whereas a reference to MAXT FN
in RDREC would use the definition on line 190.

So far we have seen how the assembler leaves room in the object code for
the values of external symbols. The assembler must also include iniormation
in the object program that will cause the loader to insert the proper values
where they are required. We need two new record types in the object program
‘and a change in a previously defined record type. As before, the exact format
of these records is arbitrary; however, the same information must be passed to
the loader in come form.

The two new record types are Define and Refer. A Define record gives in-
formation about external symbois that are defined in this control section—that
is, symbols named by EXTDEF. A Refer record lists symbols that are used as

""" exter-ual references by the control section—that is, symbols named by EXTREE

The formats of these records are as follows.

Section 2.3 Machine-Independent Assembler Featurs

Define record:
Col.1 D
Col. 2-7 Name of external symbol defined in this control section
Col. 8-13 Relative address of symbol within this control section

(hexadecimal)
Col. 14~73 Repeat information in Col. 213 for other external
symbols
Refer record:
Col 1 R
Col. 2-7 Name of external symbol referred to in this control
section

Col. 8-73 Names of other external reference symbols

....:m other information needed for program linking is added to the
Modification record type. The new format is as follows.

Modification record (revised):

Col. 1 M

Col. 2-7 Starting address of the field to be modified, relative to
the beginning of the control section (hexadecimal)

Col. 8-9 Length of the field to be modified, in half-bytes (hexa-
decimal)

Col. 10 Modification flag (+ or =)

Col 11-16 External symbol whose value is to be added to or sub-
tracted from the indicated field

The first three items in this record are the same as previously discussed. The
two new items specify the modification to be performed: adding or subtract-
ing the value of some external symbol. The symbol used for modification may
be defined either in this control section or in another one.

Figure 2,17 shows the object program corresponding to the source in Fig.
2.16. Notice that there is a separate mmmn of object _vBmM_.ﬂm records (from mgﬂwwn
through End) for each control section. The records for each control section are
exactly the same as they would be if the sections were assembled separately.

The Define and Refer records for each control section include the symbols
named in the EXTDEF and EXTREF statements. In the case of Define, the
Bno.a also indicates the relative address of each external symbol within the
confrel section. For EXTREF symbols, no address information is available.
These symbols are simply named in the Refer record.

—

89

90

Chapter 2 Asseniblers

:%owu %ooooe%o-.wuu

aﬁewwn%ooou*ueﬁuxﬁoo“Ouu&.uunugooouo

nrwunnn &nwun
%00000\.—&’—“»0»0&:oOooﬁounanwmoooooruu~°o~>au~ocooamwuwﬂﬁ%uuo:.,o-.no—o
.foooo—Wa@.o~Oco¥om~coiw—o°oo®%unooo

d‘,oooou.w.a#uauio

%oceafa&“nuunn

z%ooo— fo&....cwxno

x\@oacnfoﬁonwnun

n%aocgu

Jﬁeﬂun Soo oeﬁoeoanu

Jmcnqmﬂ.uznam%cmnzd
uroooaoo% ﬁ-a 1 o%ooa»-aro% 7201 —»uuNo—-a... 32FFADE 201 gOofuu »ecfuwoooooc%a 50

.—roooou u>cf.; 2FESL 31 ooooe% FO00 .w.~ ~>oooooo

00001 §05+BUFFER
HO0U02 105+ LENGTH
M0002806+BUFEND
¥D0002806~BUFFER
E

HWNRREC %ococﬁeooo ic

-L.Nzn.—-%cwm.uw

uroooooo% o>-» 1 o>q 7 nccocfnuno 1 ~>uu 2FFAS uoooooﬁonwoofnu 50382 wun%wo ooc>ou
vrceooo u>°umvrnzo.—.n

J@ooooﬂou\qwemnmw

E

Figure 2.17 Object program coresponding to Fig. 2.15.

Now let us examine the process involved in linking up external references,
beginning with the source statements we discussed previously. The address
field for the JSUB instruction on line 15 begins at relative address 0004, Its ini-
tial value in the object program is zero. The Modification record

MOD000405+RIREC
in control'section COPY specifies that the address of RDREC is to be added to

this field, thus producing the correct machine instruction for execution. The
other two Modificatior. records in COPY perform similar functions for the

2.3 Machine-Independent Assembler Features

instructions on lines 35 and 65. Likewise, the first Modification record in con-
trol section RDREC fills in the proper address for the external reference on
line 160.

The handling of the data word generated by line 190 is only slightly differ-
ent. The value of this word is to be BUFEND-BUFFER, where both BUFEND
and BUFFER are defined in another control section. The assembler generates
an initial value of zero for this word (located at relative address 0028 within
control section RDREC). The last two Modification records in RDREC direct
tvat the address of BUPEND be added to this field, and the address of
BUFFER be subtracted from it. This computation, performed at load time, re-
sults in the desired value for the data word.

In Chapter 3 we discuss in detail how the required modifications are per-
formed by the loader. At this time, however, you should be sure that you un-
derstand the concepts involved in the linking process. You should carefully
examine the other Modification records in Fig. 2.17, and reconstruct for your-
self how they were generated from the source program statements.

Note that the revised Modification record may still be used to perform pro-
gram relocation. In the case of relocation, the modification required is adding
the beginning address of the control section to certain fields in the object pro-
gram. The symbol usec as the name of the control section has as its value the
reouired address Since the control section name is automatically an external
svmbol, it is available for use in Modification records, Lhus, for example, the
Modification records from Fig. 2.8 are changed from

M0OQ009705
MO0001405
¥00002705

to

M00000705+008Y
40000 1L05+008Y
M0O0002705+C0FY

In this way, exactly the same mechanism can be used for program relocation
and for program linking. Ther€ are more examples in the next chapter.

The existence of multiple control sections that can be relocated indepen-
dentiy of ona another makes the handling of expressions slightly more compli-
catel. Cur earlier definitions required that all of the relative terms in an
expressicn be paired (for ai absolute expression), or that all except one be
peired (for a relative expression). We must now extend this restriction to spec-
ify tha: coth terms in each pair must be relatve within the same cortrol sec-

91

Chapter 2 Assemblers

tion. The reason is simple—if the two terms represent relative locations in the
same control section, their difference is an absolute value (regardless of where
the control section is located). On the other hand, if they are in different con-
trol sections, their difference has a value that is unpredictable (and therefore
probably useless). For example, the expression

BUFEISD-BUFFER

has as its value the length of BUFFER in bytes. On the other hand, the value of
the expression

RDREC~COPY

is the difference in the load addresses of the two control sections. This value
depends on the way run-time storage is allocated; it is unlikely to be of any
use whatsoever to an application program.]

When an expression involves external references, the assembler cannot in
general determine whether or not the expression is legal. The pairing of rela-
tive terms to test legality cannot be done without knowing which of the terms
occur in the same control sections, and this is unknown at assembly time. In
s::ck a cace, tha assembler evaluates all of the terms it can, and combines these
to form an initial expression value. It also generates Modification records so
the loader can finish the evaluation. The loader can then check the expression
for errors. We discuss this further in Chapter 3 when we examine the design of

a linking loader.

2.4 ASSEMBLER DESIGN OPTIONS

In this section we discuss two alternatives to the standard two-pass assembler
logic. Section 2.4.1 describes the structure and logic of one-pass assemblers.
These assemblers are used when it is necessary or desirable to avoid a second
pass over the source program. Section 2.4.2 introduces the notion of a multi-
pass assembler, an extension to the two-pass logic that allows an assembler to
handle forward references during symbol definition.

2.4.1 Cne-Fass Assemblers

In this section we examine the structure and design of oie-pass assemblers. As
we discussed in Section: 2.1, the main problem in trying to.assemble a program
in. one pass involves forward references. Instruction operands often are sym-
bols that have not yet bean defined in the source program. Thus the assembler
does ner know what address to insert in the translated instruction.

24 Assembler Desien Opiions

It is easy to eliminate forward references to data items; we can simply re-
quire that all such areas be defined in the source program before they are ref-
erenced. This restriction is not too severe. The programmer merely places all
storage reservation statements at the start of the program rather than at the
end, Unfortunately, forward references to labels on instructions cannot be
eliminated as easily. The logic of the program often requires a forward jump—
for example, in escaping from a loop after testing some condition. Requiring
that the programmer eliminate all such forward jumps would be much too re-
strictive and inconvenient. Therefore, the assembler must make some special
provision for handling forward references. To reduce the size of the problem,
many one-pass assemblers do, however, prohibit (or at least discourage) for-
ward references to data items.

There are two main types of one-pass assembler. One type produces object
code directly in memory for immediate execution; the other type produces the
usual kind of object program for later execution. We uce the program in Fig.
2.18 to illustrate our discussion of both types. This example is the same as in
Fig. 2.2, with all data item definitions placed ahead of the code that references
them. The generated object code shown in Fig, 2.18 is for reference only; we
will discuss how each type of one-pass assembler would actually generate the
object program required.

We first discuss one-pass assemblers that generate their object code in
memory for immediate execution. No object program is written out, and no
loader is needed. This kind of load-and-go assembler is useful in a system that
is oriented toward program development and testing. A university computing
system for student use is a typical example of such an environment. In such a
system, a large fraction of the tota! workload consists of program translation.
Because programs are re-assembled nearly every time they are run, efficicncy
of the assembly process is an important consideration. A load-and-go assem-
bler avoids the overhead of writing the object program out and reading it back
in. This can be accomplished with either a one- or a two-pass assembler.
However, a one-pass assembler also avoids the overhead of an additional pass
over the source program.

Because the object program is produced in memory rather than being writ-
ten out on secondary storage, the handling of forward references becomes less
difficult. The assembler simply generates object code instructions as it scans
the source program. If an instruction operand is a symbol that has not yet been
defined, the operand address is omitted when the instruction is assembled.
The symbol used as an operand is entered into the symbol table (unless such
an entry is already present). This entry is flagged to indicate that the symbol is
undefined. The address of the operand field of the instruction that refers to the
undefined symbol is adced to a list of forward references asscciated with the
symbol table entry. When the definition for a symbol is encountered, the for-
ward reference list for that symbol is scanned (if one exists), and the proper
address is inserted into any instructions previously generated.

.
L-‘ W SR R e L

94

Chapter 2 Assemblers

:

e W W N

110
115
120
121
122
124
125
130
135
140
145
150
1585
160
165
170
175
180
195
200
205
206
207
210
215
220
225
230
235
240
245
255

1000
1000
1003
1006
1009
100C
100F

200F
2012
2015
2018
2018
2018
2021
2024
2027
202A
202D
2030
2033
2035

20339
2032

203D
2040
2043
2046
2048
204C
204F
2052
2055
2058
2058
205E

2061

20862
2065
2068
2068
206E
2071
2074
20M

Source statement
QoEY START 1000
EOF BYTE C' B0’
THREE WORD 3
ZERO . WORD 4]
RETADR RESW 1
LENGTH RESW 1
BUFFER RESB 4096
FIRST STL RETADR
CLOOP JSUB RDREC
LDA LENGTH
covp ZERD
JEQ ENDFIL
JsSuB WRREC
S CLOOF
ENDFIL LDR BOF
STA BUFFER
LOA THREE
STA LENGTH
JSUB WRREC
oL RETADR
RSUB

EXIT

SUEROUTINE TO READ RECORD INTO BUFFER

BYTE
wWorD

LOX
LDA
D

JEQ

EELEERE

HEECEELI:

xbab
4056

ZERQ

© “FIRST

Object code

454746
000003
000000

141009
48203D
00100C
281006
302024
482062
302012
001000
0Cl00F
001003
(CLlo0C
482062
081009
420000

Fl
AT

0410086
001006
E02039
302043
DB2039
281006
302058
54900F
2C203A
382042
10100C
4co009

041006
£02061
302065
SUSOCF
DC2061
2C100C
382065
4C0000

Figure 2.18 Sample program for a one-nass assembler.

24 Assembler Design Options

An example should help to make this process clear. Figure 2.1%(a) shows
the object code and symbol table entries as they would be after scanning line
40 of the program in Fig. 2.18. The first forward reference occurred on line 15.
Since the operand (RDREC) was not yet defined, the instruction was assem-
bled with no value assigned as the operand address (denoted in the figure by

-—). RDREC was then entered into SYMTARB as an undefined symbol (indi-
cated by *); the address of the operand field of the instruction (2013) was in-
serted in a list associated with RDREC. A similar process was followed with
the instructions on lines 30 and 35.

Now consider Fig. 2.19(b), which corresponds to the situation after scan-
ning line 160. Some of the forward references have been resolved by this time,
while others have been added. When the symbol ENDFIL was defined (line
45), the assembler placed its value in the SYMTAB entry; it then inserted this
value into the instruction operand field (at address 201C) as directed by the
forward reference list. From this point on, any references to ENDFIL would
not be forward references, and would not be entered into a list. Similarly, the
definition of ROREC (line 125) resulted in the filling in of the operand address
at location 2013. Meanwhile, two new forward references have been added: to
WRREC (line 65) and EXIT (line 155). You should continue tracing through
this process to the end of the program to show yourself that all of the forward

Memory

b

address Contents Symbol Value

1000 454F4600 00030000 OOXXXXXX XXXXXXXX LENGTH | 100C
—o.wo XXXNKAKX XAXRXXNN XAXAXXKNX KARKAXKKK ADREC »_o- -_nSu_o

- THREE

mmwo XXXXXXXK ~XXXRXRXX ~XXXXKXXX XXxxxx14 ZERO [1006
%mw Wwwﬁ —00100C 28100630 ——48— ey £ = R:mmn

2 EOF 1000
" ENDFIL | * | »~ 201C 1 0

RETADR | 1009

BUFFER | 100F

CLOOP |2012

FIRST 200F

" Figure 2.19(a) Object coge in memory and symbol table mazww for
ihe progiam in Fig. 2.18 after scanning line 40.

95

- ————

—— e e ey e ——— YN SRRRRT)

I Symbol Value :mmgnr when the external storage is slow or is inconvenient to use Nn =Mon6

. other reason, One-pass assemblers that produce object programs w a

Adrass Compss LENGTH | 100C slightly different procedure from that previously aNné&. Forward refer-

1000 454F4600 00030000 OOXXXXXX XXXXXXXX ROREC | 203D ences are entered into lists as before, Now, however, when the definition of a

el TRee | 1003 symbol is encountered, instructions that made forward references to that sym-

- SO P vo.H may no longer be nﬁm._»En in memory for Bo&m@ao:u In m»:ﬁ.»r they

. will already have been written out as part of a Text record in the object pro-

2010 10084820 3000100C iyl WRARD (o [oT—roery® el gram, In this case the assembler must generate another Text record with the

2020 —3C2012 00L000OC 100FO010 030C100C EOF 1000 i correct operand address. When the program is loaded, this address will be in-
2030 48-——08 10094C00 0OF10010 00041006 serted into the instruction by the action of the loader.

2040 001006E0 20333020 43082039 28100630 s catnl Koo . Figure 220 illustrates this process. The second Text record contains the ob-

»owo A RETADR | 7009 ject code generated from lines 10 through 40 in Fig. 2.18. The operand ad-

. BUFFER | 100F dresses for the instructions on lines 15, 30, and 35 have been generated as

. 0000. When the definition of ENDFIL on line 45 is encountered, the assembler

el ol _ generates the third Text record. This record specifies that the value 2024 (the

FIRST | 200F address of ENDFIL) is to be loaded at location 201C (the operand address field

MAXLEN | 2034 of tae JEQ instruction on line 30). When the program is loaded, therefore, the

value 2024 will replace the 0000 previously loaded. The other forward refer-

it O ences in the program are handled in exactly the same way. In effect, the ser-

EXIT *| 2050 & vices of the loader are being used to complete forward references that could

RLOOP | 2043 not be bandled by the assembler. Of course, the object program records must

be kept in their original order when they are presented to the loader.

In this section we considered only simple one-pass assemblers that han-

Figure 2.13(b) Object code In memory and symbol table entries for dled absolute programs. Fm.»n:naoa.owm.sam were assumed to be single sym-

the program in Fig. 2.18 after scanning line 160. bols, and the assembled instructions contained the actual (not relative)

addresses of the operands. More advanced assembler features such as literals
references will be filled in properly. At the end of the program, any SYMTAB

entries that are still marked with * indicate undefined symbols. These should e Bl e el
u st 1001000094547 4600000300000
be m‘vﬂm&%w SMommn.om m.ﬂ.v» w b RTTDRD i TOG2005151410094800000010062810063000004800003¢2012
en ’
the value of the 5P0205GDI024
uoh_“..n“a erM Rahnma ¢ ,:mauﬂne%mmﬂwﬂmmw§>wmmﬂ jumps to this lo- 1002024190010000C100E0010630C1 DOC43000008 10094 CO00GF 1001000
symbol named In the END s IRST) 7002013022030
E : y A
Eco&m to begin mxmn:wws of ﬁ%ﬂwﬁ%%ﬂ I, P 10020351504 1006001006£0203930204 308203928100630000054900£2C2034382043
used an absolute pro beca Y. 25 1002050022055
assembler, the actual address must be known at assembly time. Of course it is %oenouﬁomc.eo?oooo 05
not necessary for this address to be specified by the programmer; it might be %oo»o.u,omés Ui
assigned by the system. In either case, however, the assembly process would o _”Sme o
. . forad initialized to the actual program "
be .Jo same—the location counter would be initialized to prg 10020621804 1006E0206130206550900FDC20612C100CI820654C0000
starting address. £Q0200F

One-pass assemblers that produce object programs as outpul are often

used on systems where externzl working-storage devices (for the intermediate Figure 2.26 Object program from one-pass assembler for program
file between the two passes) are not available. Such assemblers may also be in Fig. 2.18.

98

Chapter 2 Assemblers

were not allowed. You are encouraged to think about ways of removing some
of these restrictions (see the Exercises for this section for some suggestions).

2.4.2 Multi-Pass Assemblers

In our discussion of the EQU assembler directive, we required that any symbol
used on the right-hand side (i.e,, in the expression giving the value of the new
symbol) be defined previously in the source program. A similar requirement
was imposed for ORG. As a matter of fact, such a restriction is normally
applied to all assembler directives that (directly or indirectly) define symbols.

The reason for this is the symbol definition process in a two-pass assem-
bler. Consider, for example, the sequence

ALFHA BU BETA
BETA BOU DELTA
DELTA RESW 1

The symbol BETA cannot be assigned a value when it is encountered during
the first pess because DELTA has not yet been defined. As a result, ALPHA
cannot be evaiuatc.d during the second pass. This wneais that any assembier
that makes oily t:v0’sequential pussc. ove. S 50U D Progi T candt resdlve
such a sequence of definitions.

Restrictions such as prohibiting forward references in symbol definition
are not normally a serious inconvenience for the programmer. As a matter of
fact, such forward references tend to create difficulty for a person reading the
program as well as for the assembler. Nevertheless, some assemblers are de-
signed to eliminate the need for such restrictions. The general solution is a
multi-pass assembler that can make as many passes as are needed to process
the definitions of symbols. It is not necessary for such an assembler to make
more than two passes over the entire program. Instead, the portions of the
program that involve forward references in symbeol definition are saved dur-
ing Pass 1. Additional passes ihrough these stored definitiuns aie made ds the
assembly progresses. This process is followed by a normal Pass 2.

There are several ways of accomplishing the task outlined above. The
method we describe involves storing those symbol definitions that involve for-
ward references in the symbol table. This table also indicates which symbols
are dependent on the values of others, to facilitata symbe! evaluation

Figure 2.21{a} shows a sequence of symbol-defining stalements that in-
volve forward references; the other parts of the source program ate not impor-
tant for our discussion, and have been omitted. The foliowing parts of Fig. 2.21
show information in the symbo! table as it might appear after processing each
of the source statements shown,

Figure 2.21() displays symbal table entrics resulling from Fass 1 process-
ing of the statement

24 Assembler Design Options

HALFSZ EQU MAXLEN/2 .

MAXLEN has not yet been defined, so no value for HALFSZ can be com-
puted. The defining expression for HALFSZ is stored in the symbol table in
place of its value. The entry &1 indicates that one symbol in the defining ex-
pression is undefined. In an actual implementation, of course, this definition
might be stored at some other location. SYMTAB would then simply contain a
pointer to the defining expression. The symbol MAXLEN is also entered in the
symbol table, with the flag “ identifying it as undefined. Assodated with this
entry is a list of the symbols whose values depend on MAXLEN (in this case,
HALFSZ). (Note the similarity to the way we handled forward references in a
one-pass assembler.)

1 HALFSZ BQU MAXLEN/2
2 MAXLEN BQU BUFEND-BUFFER
3 FREVET 2QU BUFFER-1

4 BUFFER RESB 4056

5 EUFEND 20U »
{a)
HALFSZ |&1| MAXLEN? o
MAXLEN | # o HALFSZ |0
()

Figurs 2.27 Example of multi-pass assembler operation,

00

Chapter 2 Assemblers

Figure 2.21 (contd)

BUFEND | * o MAXLEN

HALFSZ |&1| MAXLEN/2 °

MAXLEN |&2| BUFEND-BUFFER o-t—p{ HALFSZ

BUFFER |* o MAXLEN
(c)

BUFEND | ¢ o> MAXLEN

HALFSZ |&1| MAXLEN/2 0

PREVBT |&1| BUFFER-1 o

MAXLEN |&2| BUFEND-BUFFER o HALFSZ

BUFFER | * o MAXLEN PREVBT
()

2.4 Assembler Design Options

BUFEND | % MAXLEN | @
HALFSZ |&1| MAXLEN/2

PREVBT (1033

MAXLEN |&1| BUFEND-BUFFER HALFSZ | @

BUFFER

1084

(e)

BUFEND

HALFSZ

PREVBT

1033

MAXLEN

1000

BUFFER

1034

Figure 221 (cond)

U]

§ 1|

Chopier 2 Assamblers

The same procedure is followed with the definition of MAXLEN [see

' Fig. 221(c)]. In this case there are two undefined symbols involved in the defi-

nition: BUFEND and BUFFER. Both of these are entered into SYMTAB with
lists indicating the dependence of MAXLEN upon them. Similarly, the defini-
tion of PREVBT causes this symbol to be added to the list of dependencies on
BUFFER [as shown in Fig. 2.21{d)].

So far we have simply been saving symbol definitions for later processing.
The definition of BUFFER on line 4 lets us begin evaluation of some of these
symbols. Let us assume that when line 4 is read, the lotation counter contains
the hexadecimal value 1034. This address is stored as the value of BUFFER.
The assembler then examines the list of symbols that are dependent on
BUFFER. The symbol table entry for the first symbol in this list (MAXLEN)
shows that it depends on two currently undefined symbols; therefore,
MAXLEN cannot be evaluated immediately. Instead, the &2 is changed to &1
to show that only one symbol in the definition (BUFEND) remains undefined.
The other symbol in the list (PREVBT) can be evaluated because it depends
only on BUFFER. The value of the defining expression for PREVET is calcu-
lated and stored in SYMTAB. The result is shown in Fig. 2.21(e].

The remainder of the processing follows the same pattern. When BUFEND
is defined by line 5, its value ic entered ints the symbol table. The list associ-
ated with CUFEND then directs the assembler tc evaluate MAXLEN, and en-
tering a value for MAXLEN causes iie evaluaion oi the symbol i its list
(HALFSZ). As shown in Fig. 2.21{f), this completes the symbol definition
process. If any symbols remained undefined at the end of the program, the as-
sembler would flag them as errors.

The procedure we have just described applies to symbols defined by as-
sembler directives like EQU. You are encouraged to think about how this
method could be modified to allow forward relerences in ORG statements as
well.

2.5 IMPLEMENTATION EXAMPLES

We discussed many of the most common assembler features in the preceding
sections. However, the variety of machines and assembler languages is very
great. Most assemblers have at least some unusual features that are related to
machine architecture or language design. In this section we disciss three ex-
amples of assemblers for real machines. We are obviously unable to give 2 full
description of any of these in the space available. Instead we focus on some of
the most interesting or unusual features of each assembler. We are also partic-
ularly interested in areas where the assembler design ciffers from the basic al-
gorithm and data structures described earlier.

2.5 [mplementation Examples

The assembler examples we discuss are for the Pentium (x86), SPARC, and
PowerPC architectures. You may want to review the descriptions of these
architectures in Chapter 1 before proceeding. -

2.5.1 MASM Assembler

This section describes some of the features of the Microsoft MASM assembler
for Pentium and other x86 systems. Further information about MASM can be
found in Barkakati (1992). .

As we discussed in Section 1.4.2, the programmer of an x86 system views
memory as a collection of segments. An MASM assembler language program
is written as a collection of segments. Each segment is defined as belonging to
a particular class, corresponding to its contents, Commonly used classes are
CODE, DATA, CONST, and STACK.

During program execution, segments are addressed via the x86 segment
registers. In most cases, code segments are addressed using register CS, and
stack segments are addressed using register 8S. These segment registers are
automatically set by the system loader when a program is loaded for execu-
tion. Register CS is set to indicate the segment that contains the m.»nw.& _.mwn_
specified in the END statement of the program. Register S is set to indicate
(e last stack segment processed by the loader.

Data segments (including constant segments) are normally addressed us-
ing DS, ES, FS, or GS. The segment register to be used can be specified explic-
itly by the programmer (by writing it as part of the assembler language
instruction). If the programmer does not specify a segment register, one is se-
lected by the assembler.

By default, the assembler assumes that all references to data segments Eo
register DS, This assumption can be changed by the assembler directive
ASSUME. For example, the directive

ASSUME ES:DATASEG2

tells the assembler to assume that register ES indicates the segment
DATASEG2. Thus, any references to labels that are defined in DATASEG2 will
be assembled using register ES. It is also possible to collect several segments
into a group and use ASSUME to associate a segment register with the group.

Kegisters DS, ES, FS and GS must be loaded by the program before they
can be used to address data segments. For example, the instructions

MoV AX, DRTASBEG2
MoV ES,AX

103

. . m.

Chapter 2 Assemblers

would set ES to indicate the data segment DATASEG2. Notice the similarities
between the ASSUME directive and the BASE directive we discussed for
SIC/XE. The BASE directive tells a SIC/XE assembler the contents of register
B; the programmer must provide executable instructions to load this value
into the register. Likewise, ASSUME tells MASM the contents of a segment
register; the programmer must provide instructions to load this register when
the program is executed.

Jump instructions are assembled in two different ways, depending on
whether the target of the jump is in the same code segment as the jump in-
struction. A near jumip is a jump to a target in the same code segment; a far jump
is a jump to a target in a different code segment. A near jump is assembled us-
ing the current code segment register CS. A far jump must be assembled using
a different segment register, which is specified in an instruction prefix. The as-
sembled machine instruction for a near jump occupies 2 or 3 bytes (depending
upon whether the jump address is within 128 bytes of the current instruction),
The assembled instruction for a far jump requires 5 bytes.

Forward references to labels in the source program can cause problems.
For example, consider a jump instruction like

JaP TARGET

If the definition of the label TARGET occurs in the program before the JMP in-
struction, the assembler can tell whether this is a near jump or a far jump.
However, if this is a forward reference to TARGET, the assembler does not
know how many bytes to reserve for the instruction.

By default, MASM assumes that a forward jump is a near jump. If the tar-
get of the jump is in another code segment, the programmer must warn the
assembler by writing

JMP FAR PIR TARGET

If the jump address is within 128 bytes of the current instruction, the program-
mer can specify the shorter (2-byte) near jump by writing

)13 SHORT TARGET

1f the JMP to TARGET is 3 far jump, and the programmer does not specify FAR
PTR, a probiem occurs. During Pass 1, the assembler reserves 3 bytes for the
jump instruction. However, the actual assembled instruction requires 5 bytes.
In the earlier versions of MASM, this caused an assembly error (called a phase

2.5 Implementation Exatples

error). In later versions of MASM, the assembler can repeat Pass 1 to generate
the correct location counter values.

Notice the similarities between the far jump and the forward references in
SIC/XE that require the use of extended format instructions.

There are also many other situations in which the length of an assembled
instruction depends on the operands that are used. For example, the operands
of an ADD instruction may be registers, memory locations, or immediate
operands. Immediate operands may occupy from 1 to 4 bytes in the instruc-
tion. An operand that specifies a memory location may take varying amounts
of space in the instruction, depending upon the location of the operand.

This means that Pass 1 of an x86 assembler must be considerably more
complex than Pass 1 of a SIC assembler. The first pass of the x86 assembler
must analyze the operands of an instruction, in addition to looking at the op-
eration code. The operation code table must also be more complicated, since it
must contain information on which addressing modes are valid for each
operand.

Segments in an MASM source program can be written in more than one
part. If a SEGMENT directive specifies the same name as 2 previously defined
segment, it is considered to be a continuation of that segment. All of the parts
of a segment are gathered together by the assembly process. Thus, segmints
can perform a similar function to the program blocks we discussed for
SIC/XE.

References between segments that are assembled together are automati-
cally handied by the assembler. External references between separately assem-
bled modules must be handled by the linker. The MASM directive PUBLIC
has approximately the same function as the SIC/XE directive EXTDEF. The
MASM directive EXTRN has approximately the same function as EXTREF. We
will consider the action of the linker in more detail in the next chapter.

The object program from MASM may be in several different formats, to
allow easy and efficient execution of the program in a variety of operating
environments. MASM can also produce an instruction timing listing that
shows the number of clock cycles required to execute each machine nstruc-
tion. This allows the programmer to exercise a great deal of control in optimiz-
ing timing-critical sections of code.

2.5.2 SPARC Assembler

This section describes some of the features of the 5un0S SPARC assembler.
Further information about this assembler can be found in Sun Microsystems
(1994a).

105

Chapter 2 Assemblers

ASPARC assembler language program is divided into units called sectiorts.
The assembler provides a set of predefined section names. Some examples of
these are

TEXT Executable instructionss
DATA Initialized read /write data
RODATA Read-only data

BSS Uninitialized data areas.

It is also possible to define other sections, specifying section atiributes such as
“executable” and “writeable.”

The programmer can switch between sections at any time in the source
program by using assembler directives. The assembler maintains a separate lo-
cation counter for each named section. Each time the assembler switches to a
different section, it also switches to the location counter associated with that
section. In this way, sections are similar to the program blocks we discussed
for SIC. However, references between different sections are resoived by the
lirker, not by the assembler

By default, synibols used in a gource program are assumed to be local io
that programn. (Huwever, a section may tre.ly reter to locai symbols defined in
another section of the same program.) Symbols that are used in linking sepa-
rately assembled programs may be declared to be either global or weak. A
global symbol is either a symbol that is defined in the program and made ac-
cessible to others, or a symbol that is referenced in a program and defined ex-
ternally. (Notice that this combines the functions of the EXTDEF and EXTREF
directives we discussed for SIC.) A weak symbol is similar to a global symbol.
However, the definition of a weak symbol may be overridden by a global sym-
bol with the same name. Also, weak symbols may remain undefined when the
program is linked, without causing an error.

The object file written by the SPARC assembler contains translated ver-
sions of the segments of the program and a list of relocation and linking opera-
. tions that need to be performed. References between different segments of the
same program are resolved when the program is linked. The object program
also includes a symbol table that describes the symbols used during relozation
and linking (global symbols. weak symbols, and secticn names).

SPARC assembler ianguage has an unusual feature that is directly relared
to the machine architecture. As we discussed in Section 1.5.1, SPARC branch
instructions (including subroutine calls) are delayed branches. The instruction
immediately following a branch instruction is actually executed before the
branch i¢ taken. For example, in th:e instruction sequence

25 hnplementation Examples

P L0, 10
BLE Loop
ADD §L2, R3I, B4

the ADD instruction is executed before the conditional branch BLE. This ADD
instruction is said to be in the delay slot of the branch; it is executed regardless
of whether or not the conditional branch is taken.

To simplify debugging, SPARC assembly language programmers often
place NOP (no-cperation) instructions in delay slots when a program is writ-
ten. The code is later rearranged to move useful instructions into the delay
slots. For example, the instruction sequence illustrated above might originally

"have be¢n

LOOP:

ADD L2, %L3, 34
CHp 410, 1C

ELE LOoP

Em

Meving the ADD instruction into the delay slot would produce the version
discussed earlier. {(Notice that the CMP instruction could not be moved into
the delay slot, because it sets the condition codes that must be tested by the
BLE)

However, there is another possibility. Suppose that the original version of
the loop had been

LOOP: ADD $L2, 33, 4
oMp .0, 10
BLE LooP
NOP

Now the ADD instruction is logically the first instruction in the loop. It could
still be moved into the delay slot, as previously described. However, this
would create a problem. On the last execution of the loop, the ADD in¢truction
(which is the beginning of the next loop iteration) should not be executed.

The SPARC architecture defines a solution to this problem. A conditional
branch instruction like BLE can be annuiled. [f 2 branch is annulled, the in-
structicn in its delay slot is executed if the branch is taken, but not executed if
the branch is not taken. Annulled branches are indicated in SPARC assembler

107

108

Chapter 2 Assemblers

language by writing “,A" following the operation code. Thus the loop just dis-

cussed could be rewritten as
LOOP:
CHP &L0, 10
ELE,A LOOP
ADD %L2, 8L3, %14

The SPARC assembler provides warning messages to alert the programmer to
possible problems with delay slots. For example, a label on an instruction in a
delay slot usually indicates an error. A segment that ends with a branch in-
struction (with nothing in the delay slot) is also likely to be incorrect. Before
the branch is executed, the machine will attempt to execute whatever happens
to be stored at the memory location immediately following the branch.

2.5.3 AIX Assembler

This section describes some of che features of the AIX assembler for PowerPC
and other similar systems. Further information about this assembler can be
found in TBM (1994b).

The AIX assembler includes support for various models of PowerPC mi-
croprocessors, as well as earlier machines that implement the original POWER
architecture. The programmer can declare which architecture is being used
with the assembler directive MACHINE. The assembler automatically checks
for POWER or PowerPC instructions that are not valid for the specified envi-
ronment. When the object program is generated, the assembler includes a flag
that indicates which processors are capable of running the program. This flag
depends on which instructions are actually used in the program, not on the
MACHINE directive. For example, a PowerPC program that contains only in-
structions that are also in the original POWER architecture would be exe-
cutable on either type of system.

As we discussed in Section 1.5.2, PowerPC load and store instructions use
a base register and a displacement value to specify an address in memory. Any
of the general-purpose registers (except GPRO) can be used as a base register.
Decisions about which registers to use in this way ace left to the programumer.
In a long program, it is not unusual to have several different base registers in
use ai the same time. The programmer specifies which registers are available
for use as base registers, and the contenis of these registers, with the USING

25 Implementution Exampies

assembler directive. This is similar in function to the BASE statement in our
SIC/XE assembler language. Thus the statements

JUSING LENGTH, 1
JUSING BUFFER, 4

would identify GPR1 and GFPR4 as base registers. GPR1 would be assumed to
contain the address of LENGTH, and GPR4 would be assumed to contain the
address of BUFFER. As with SIC/XE, the programmer must prowide instruc-
tions to place these values into the registers at execution time. Additional
JUSING statements may appear at any point in the program. If a base register
is to be used later for some other purpose, the programmer indicates with the
.DROP statement that this register is no longer available for addressing
purposes.

This additional fexibility in register usage means more work for the as-
sembler. A base register table is used to remember which of the general-purpose
registers are currently available as base registers, and what base addresses
they contain. Processing a .USING statement causes an entry to be made in
this table (or an existing entry to be modified); processing a .DROP statement
removes the corresponding table entry. For each instruction whose operand is
an address in memoiy the assembler scans the table to find a base regrictor that
can be used to address that operand. [f more than one register can e used, the
assembler selects the base register that results in the smallest signed displace-
ment. If no suitable base register is available, the instruction cannot be assem-
bled. The process of displacement calculation is the same as we described for
SIC/XE.

The AIX assembler language also allows the programmer to write base
registers and displacements explicitly in the source program. For example, the
instruction

L 2,8(4)

specifies an operand address that is 8 bytes past the address contained in
GPR4. This form of addressing may be useful when some register is known to
contain the starting address of a table or data record, and the programmer
wishes to refer to a fixed location within that table or record. The assembler
simply inserts the specifio! valies into the object code instruction: in this case
base register GPR4 and displacement 8. The base register table is not invelved,
and the register used in this way need not have appeared in a .USING state-
meiit.

109

Chapler 2 Assemblers

An AIX assembler language program can be divided into control sections
' using the .CSECT assembler directive. Each control section has an associated
storage mapping class that describes the kind of data it contains, Some of the
most commonly used storage mapping classes are PR (executable instruc-
tions), RO (read-only data), RW (read/write data), and BS (uninitialized
read /write data). AIX control sections combine some of the features of the SIC
control sections and program blocks that we discussed in Section 2.3. One con-
trol section may consist of several different parts of the source program. These
parts are gathered together by the assembler, as with SIC program blocks. The
control sections themselves remain separate after assembly, and are handled
independently by the loader or linkage editor.

The AIX assembler language provides a special type of control section
called a duirtmy section. Data items included in a dummy section do not actu-
ally become part of the object program; they serve only to define labels within
the section. Dummy sections are most commonly used to describe the layout
of a record or table that is defined externally. The labels define symbols that
can be used to address fields in the record or table (after an appropriate base
register is established). AIX also provides comimon blocks, which are uninitial-
ized blocks of storage that can be shared between independently assembled
programs.

Linking « ¢ cont o] sectivns can be . _omplished using methads Jike the
ones we discussed for SIC. The assembler directive GLOBL makes a symbol
available to the linker, and the directive .EXTERN declares that a symbol is
defined in another source module. These directives are essentially the same as
the SIC directives EXTDEF and EXTREFE. Expressions that involve relocatable
and external symbols are classified and handled using rules similar to those
discussed in Sec'ions 2.3.3 and 2.3.5.

The AIX assembler also provides a different method for linking control sec-
tions. By using assembler directives, the programmer can create a table of con-
tents (TOC) for the assembled program. The TOC contains addresses of control
sections and global symbols defined within the control sections. To refer to one
of these symbols, the program retrieves the needed address from the TOC, and
then uses that address to refer to the needed data item or procedure. (Some
types of frequently used data items can be stored directly in the TOC for effi-
ciency of retrieval) If all references to external syu:bols are done in this way,
then the TOC entries are the only parts of the program involved in relocation
and linking when the program is lcaded.

The AIX assembler itse¥f has a two-pass structure similar to the one we dis-
cussed for SIC, However, there are some significant differences. The first pass
of the AIX assembier writes a listing file that contains warnings and eiror mes-
sages. If erroi- are found duwing the first pass, Cie assemiler terminates and

— .IL

Exercises

does not continue to the second pass. In this case, the assembly listing contains
only errors that could be detected during Pass 1.

If no errors are detected during the first pass, the assembler proceeds to
Pass 2. The second pass reads the source program again, instead of using an
intermediate file as we discussed for SIC. This means that location counter val-
ues must be recalculated during Pass 2, It also means that any warning mes-
sages that were generated during Pass 1 (but were not serious enough to
terminate the assembly) are lost. The assembly listing will contain only errors
and warnings that are generated during Pass 2.

Assembled control sections arz placed into the object program according to
their storage mapping class. Executable instructions, read-only data, and vari-
ous kinds of debugging tables are assigned to an object program section
named .TEXT. Read/write data and TOC entries are assigned to an object pro-
gram section named .DATA, Uninitialized data is assigned to a section named
.BSS. When the object program is generated, the assembler first writes all of
the .-TEXT contral sections, followed by all of the .DATA control sections ex-
cept for the TOC. The TOC is written after the other .DATA control sections.
Relocation and linking operations are specified by entries in a relocation table,
similar to the Modification records we discussed for SIC.

EXERCISES
Section 2.1

L. Apply the algorithu described in Fig. 2.4 to assemble the source pro-
gram in Fig. 2.1. Your results should be the same as those shown in

Figs. 22 and 2.3,
2. Apply the aigorithm described in Fig. 2.4 to azsemble the following

SIC source program:

SUM START 4000

FIRST LDX ZERO
LDA ZERO

LOOP ADD TABLE, X
TIX CCUNT
Jur LooP
STA TOTAL
RSUB

TABLE KESW 2000

couny RESW 1

ZERO WORD e

TOTAL RESW 1
END FIRST

111

-

Chapter 2 Assemblers

3. As mentioned in the text, a number of operations in the algorithm of
Fig- 2.4 are not explicitly spelled out. (One example would be scan-
ning the instruction operand field for the modifier “,X".) List as
many of these implied operations as you can, and think about how
they might be implemented.

4. Suppose that you are to write a “disassembler”—that is, a system
program that takes an ordinary object program as input and pro-
duces a listing of the source version of the program. What tables and
data structures would be required, and how would they be used?
How many passes would be needed? What problems would arise in
recreating the source program?

5. Many assemblers use free-format input. Labels must start in Column
1 of the source statement, but other fields (opcode, operands, com-
ments) may begin in any column. The various fields are separated by
blanks. How could our assembler logic be modified to allow this?

6. The algorithm in Fig. 2.4 provides for the detection of some assembly
errors; however, there are many more such errors that might occur.
List error conditions that might arise during the assembly of a SIC
program. When and how would each type of error be detected, and
what action should the assembler take for each?

7. Suppose that the SIC assembler language is changed to include a
new form of the RESB statement, such as

RESE n'c’

which reserves 1t bytes of memory and initializes all of these bytes to
the chasacter ‘c’. For example, line 105 in Fig. 2.5 could be changed to

BUFFER RFSB 4096° °

This feature could be implemented by simply generating the re-
quired number of bytes in Text records. However, this could lead to a
large increase in the size of the object program—for example, the ob-
ject program in Fig. 2.8 would be about 40 times its previous size.
Propose a way to implement this new form of RESB without such a
large increase in object program size.

8. Suppose that you have a two-pass assembler that is writien accord-
ing to the algorithm in Fig, 24. In the case of a duplicate symbol,

Exercises 113

this assembler wouid give an error message only for the second (i.e.,
duplicate) definition. For example, it would give an error message

only for line 5 of the program below.

1 P3 START 1000
2 Lo ALFHA
3 STA ALPHA
4 ALPHA RESW 1

5 ALFHA VIORD 0

6 END

Suppose that you want to change the assembler to give error mes-
sages for all definitions of a doubly defined symbol (e.g., lines 4 and
5), and also for all references to a doubly defined symbol (e.g., lines 2
and 3). Describe the changes you would make to accomplish this. In
making this modification, you should change the existing assembler
as little as possible,

. Suppose thal you have a bwu-pass a-sanble G318 writien acead-

ing to the algorithm in Fig. 2.4. You want to change this assembler so
that it gives a warning message for labels that are not referenced in
the program, as illustrated by the following example.

3 START 1000
Loa DELUTA
ADO HETA
LOOP STA DELTA
Warning: label is never referenced
RSUB
ALPHA RESWN i
Warning: label is never referenced
BETA RESW 1
DELTA RESW 1
END

The warning messages should appear in the assembly listing directly
below the line that contains the unreferenced label, as shown above.
Describe the changes you would make in the asscmbler to add rhis

e e —

R —~——

114 Chapter 2 Assemblers Cxercises 115

6. Modify the algorithm described in Fig. 2.4 to handle relocatable pro-
grams. How would these modifications be reflected in the assembler
designs discussed in Chapter 8?

7. Suppose that you are writing a disassembler for SIC/XE (see Exercise
214.) How would your disassembler deal with the various address-
ing modes and instruction formats?

new diagnostic feature. In making this modification, you should
change the existing assembler as little as possible.

Section 2.2

1. Could the assembler decide for itself which instructions need to be 8. Qur discussion of SIC/XE Format 4 instructions specified that the
“assembled using extended format? (This would avoid the necessity 20-bit "address” field should contain the actual target address, and

for the programmer to code + in such instructions.)

2. As we have described it, the BASE statement simply gives informa-

tion to the assembler. The programmer must also write an instruction
like LDB to load the correct value into the base register. Could the as-
sembler automatically generate the LDB instruction from the BASE
statement? If so, what would be the advantages and disadvantages
of doing this?

. Generate the object code for each statement in the following SIC/XE
program:

that addressing mode bits b and p should be set to 0. (Thatis, the in-
structicn should contain a direct address—it should not use base rel-
ative or program-counter relative addressing.)

However, it would be pessible to use program-counter relative ad-
dressing with Format 4. In that case, the “address” field would actu-
ally contain a displacement, and bit p would be set to 1. For example,
the instruction on line 15 in Fig. 2.6 could be assembled as

0006 CILCOP +ISUB RDREC 4B30102C

(using program-counter relative addressing with displacement

o - ART 0 102C).
FIRST Lo 0 What would be the advantages (if any) of assembling Format 4
Loe 0 mstructions in this way? What would be the disadvantages (if any)?
s WIS ER Are there any situations in which it would not be possible to assem-
BASE TRARLEZ A { . .
tiip e TABLE, X ble a Format 4 instruction using program-counter relative address-
ADD TABLEZ , X ing?
TIX COONT 9. Our Modification record format is well suited for SIC/XE programs
gLr Loop becarce all address fields in instructions and data words fall neatly
+STR TOTAL into half-bytes. What sort of Modification record could we use if this
% . were not the case (that is, if address fields could begin anywhere
Qx!ghu Sy 2000 within a byte ard could be of any length)?
TABLE? RESW 2000 10. Suppose that we made the program in Fig. 2.1 a relocatable program.
TOTAL RESW 1 This program is written for the standard version of SIC, so all operand
=D FIRST

_ Gererate the complete object program for the source program given
in Exercise 3.

. Modify the algorithm described in Fig. 2.4 to handle ail of the
SIC/XE addressing modes discussed. How would these modifica-
uwons be refiected in the assembler designs discussed i Chapter 87

addresses are actual addresses, and there is only one instruction for-
mat. Nearly every instruction in the object program would need to
have its operand address modified at load time This wou'd mean a
large number nf Modification records (more than doubling the size of
the object program). How could we include the required relocaticn
information without this large increase in object program size?

16

Chapter 2 Assemblers

11.

12

Suppaose that you are writing an assembler for a machine that has
only program-counter relative addressing. (That is, there are no di-
rect-addressing instruction formats and no base relative addressing.)
Suppose that you wish to assemble an instruction whose operand is
an absolute address in memory—for example,

1A 100

to load register A from address (hexadecimal) 160 in memory. How
might such an instruction be assembled in a relocatable program?
What relocation operations would be required?

Suppose that you are writing an assembler for a machine on which
the length of an assembled instruction depends upon the type of the
operand, Consider, for example, the following three fragments of
code:

a. ADD ALFHA

ALPHA IDC I(3}

b. ADD ALPHA

ALPHA DO F(3.1)

C. ADD ALPHA

ALPEA IC D(3.14159)

In case (a), ALPHA is an integer operand; the ADD instruction gener-
ates 2 bytes of object code. In case (b), ALPHA is a single-precision
floating-point operand; the ADD instruction generates 3 bytes of ob-
ject code. In case (c), ALPHA is a double-precision floating-point
operand; the ADD instruction generates 4 bytes of object code.

What special problems does such a machine present for an assem-
bler? Briefly describe how you would solve these problems—that is,
how your assembler for this machine would be different from the
assembler structure descrived in Section 2.1

i 4

Exercises

Section 2.3

1.
2

w

Modify the algarithm described in Fig. 2.4 to handle literals.

In the program of Fig. 2.9, could we have used literals on lines 135
and 145? Why might we prefer nof to use a literal here?

With a minor extension to our literal notation, we could write the in-
struction on line 55 of Fig. 2.9 as

LA =sW'3°

specifying as the literal operand a word with the value 3. Would this
be a good idea?

Immediate operands and literals are both ways of specifying an
operand value in a source statement. What are the advantages and
disadvantages of each? When might each be preferable to the other?

Suppose that you have a two-pass SIC/XE assembler that does not
support literals. Now you want to modify the assembler to handle
literals. However, you want to place the literal pool at the beginning
of the assen bled program, nut at the end as is commonly Jdone. (You
do not heve tu wouy cwooet LLORG statenents- -, our assembler
should always piace all literals in a pool at the beginning of the pro-
gram.) Describe how you could accomplish this. If possible, you
should do so without adding another pass to the assembler. Be sure
to describe any data structures that you may need, and explain how
they are used in the assembler.

Suppose we made the following changes to the program in Fig. 2.9:
a, Delete the LTORG statement on line 93.
b. Change the statement on line 45 to +LDA....

¢. Change the operands on lines 135 and 145 to use literals (and
delete line 185).

Show the resulting object code for lines 45, 135, 145, 215, and 230.
Also show the literal pool with addresses and data values. Note: you
do not need to retranslate the entire program tc do this

Assume that the symbols ALPHA and BETA are labels in a source
program. What is the difference between the following two
sequences of statements?

117

118

Chapter 2 Assemblers

8.

io.

11.

12,

13.

14

a. LDA2 ALPHA-BETA
b. LDA ALPHA
SUB BETA

What is the difference between the following sequences of state-
ments?

a. LDA #3
b. THREE EQU 3

LDA #THREE
¢. THREE EQU 3

LDA THREE

Modify the algorithm described in Fig. 2.4 to handle multiple pro-
gram blocks.

Modify the algorithm described in Fig. 2.4 to handle multiple control
. Mons,

Suppose ail the features we described in Section 2.3 were to be im-
plemented in an assembler. How would the symbol table required be
different from the one discussed in Section 2.1?

Which of the features described in Section 2.3 would create addi-
tional problems in the writing of a disassembler (see Exercise 2.1.4)7
Describe these problems, and discuss possible solutions.

When different control sections are assembled together, some refer-
ences between them could be handled by the assembler (instead of
being passed on to the loader). In the program of Fig. 2.15, for exam-
ple, the expression on line 190 could be evaluated directly by the as-
sembler because its symbol table contains all of the required
information. What would be the advantages and disadvantages of
doing thi<? -

In the program of Fig. 2.i1, suppose we used only two program
blocks: the defauit block and CBLKS. Assume that the data items in
CDATA are to be included in the default block. What changes in the
~vurce program would accomplish this? Show the object program
(corresponding to Tig. 2.13) that wouid result,

15, Suppose that for some reason it is desirable to separate the parts of

16.

17.

an assembler language program that require initialization (e.g., in-
structions and data items defined with WORD or BYTE) from the
parts that do not require initialization (e.g., storage reserved with
RESW or RESB). Thus, when the program is loaded for execution it
should look like

Instructions and
initialized data items

Reserved storage
(uninitialized data items)

Suppose that it is considered too restrictive to require the program-
mer to perform this separation. Instead, the assembler should take
the source program statements in whatever order they are written,
and automatically perform the rearrangement as described above.

Describe a way in which this separation of the program could be ac-
complished by a two-pass assembler.

Suppose LENGTH is defined as in the program cf Fig. 2.9. What
would be the difference between the following sequences of state-
ments?

a. LDA LENGTH
sUBs #1

b. LDA LENGTH~1

Referring to the definitions of symbols in Fig. 2.10, give the value,
type, and intuitive meaning (if any) of each of the following expres-
sions:

a. BUFFER-FIRST

b. BUFFER+4095

C¢. MAXLEN-1

d. BUFFER+MAYLEN-1
€. BUFFER-MAXLEN

f. 2*LENGTH

119

Chapter 2 Assemnblers

18.

19,

21

g 2*MAXLEN-1

h. MAXLEN-BUFFER

i. FIRST+BUFFER

j. FIRST-BUFFER+BUFEND

In the program of Fig. 2.9, what is the advantage of writing (on line
107)

MAXLEN BN BUFEND-BUFFER
instead of

MAXLEN EQU 4096 7
In the program of Fig. 2.15, could we change line 190 to

MAXLEN BRI BUFERD-EUFFER
and line 133 to
+LOT BMAXTEN

as we did in Fig. 2.97

The assembler could simply assume that any reference to a symbol
not defined within a control section is an external reference. This
change would eliminate the need for the EXTREF statement. Would
this be a good idea?

How could an assembler that allows external references avoid the
need for an EXTDEF statement? What would be the advantages and
disadvantages of doing this?

The assembler could automatically use extended format for instruc-
tions whose operands involve external references. This would elimi-
nate the need for the programmer {o code + in such statements. What
weuld be the advantages and disadvantages of doing this?

. On some systems, control sections can be composed of several differ-

ent parts, just as program blocks can. What problems does this pose
for the assembler? How might these problems be solved?

]

Exercises

24, Assume thal the symbols RDREC and COPY are defined as in Fig,
2.15. According to our rules, the expression

RDREC-COPY

would be illegal (that is, the assembler and/or the loader would re-
ject it). Suppose that for some reason the program really needs the
value of this expression. How could such a thing be accomplished
without changing ihe rules for expressions?

25. We discussed & large number of assembler directives, and many
more could be implemented in an actual assembler. Checking for
them one at a time using comparizons might be quite inefficient.
How could we use a table, pechaps similar to OPTAB, to speed
recognition and handling of assembler directives? (Hint: the answer
to this problem may depend upon the language in which the assem-
bler itself is writter.)

26. Other than the listing of the source program with generated object
code, what assembler outputs might be useful to the programmer?
Suggest some optional listings that might be generated and discuss
any data structures or algorithms involved in producing them.

Section 2.4

1. The process of fixing up a few forward references should involve
less overhead than making a complete second pass of the source
program. Why don’t all assemblers use the one-pass technique for

efficiency?
2. Suppose we wanted our assembler to produce a cross-reference list-
ing for all symbols used in the program. For the program of Fig. 2.5,

such a listing might look like

Symbol Defined on line Used on lines
CorY 5

BIRST 10 255

CLOOP 15 49

ENOFTL 48 30

BT 80 45

RETADR 95 10,70

LENGTH 100 12,13,22,60,175,212

Chapter 2 Assemblers

10.

How might this be done by the assembler? Indicate changes to the
logic and tables discussed in Section 2.1 that would be required.

Could a one-pass assembler produce a relocatable object program
and handle external references? Describe the processing logic that
would be involved and identify any potential difficulties.

How could literals be implemented in a one-pass assembler?

We discussed one-pass assemblers as though instruction operands
could only be single symbols. How could a one-pass assembler han-
dle an instruction like

JEQ ENDETL43

where ENDFIL has not yet been defined?
Outline the logic flow for a simple one-pass load-and-go assembler.

Using the methods outlined in Chapter 8, develop a modular design
for a one-pass assembler that produces object code in memory.

Suppose that an instruction involving a forward reference is to be as-
sembled using progran-counter relative addressing. How might this
be handled by a one-pass assembler?

The process of fixing up forward references in a one-pass assembler
that produces an object program is very similar to the linking process
described in Section 2.3.5. Why didn’t we just use Modification
records to fix up the forward references?

How could we extend the methods of Section 2.4.2 to handle forward
references in ORG statements?

Section 2.5

1.

-
<

Consider the description of the VAX architecture in Section 1.4.1.
"What characteristics would you expect to find in a VAX assembler?

. Consider the description of the T3E aichitecture in Section 1.5.3.

What charactenstics would you expect to find in a T2E assembler?

Chapter 3
Loaders and Linkers

As we have seen, an object program contains translated instructions and data
values from the source program, and specifies addresses in memory where
these items are to be lpaded. Our discussions in Chapter 2 introduced the fol-

lowing three processes:

1. Loading, which brings the object program into memory for execution.

2. Relocation, which modifies the object program so that it can be loaded
at an address different from the location originally specified (see
Section 2.2.2).

3. Linking, which combines two or more separate object programs and
supplies the information needed to allow references between them
(see Section 2.3.5).

A loader is a system program that performs the loading function. Many
loaders also support relocation and linking. Some systems have a linker (or
linkage editor) to perform the linking operations and a separate loader to han-
dle relocation and loading. In most cases all the program translators (i.e., as-
semblers and compilers) on a particular system produce object programs in
the same format. Thus one system loader or linker can be used regardless of
the original source programming language.

Tn this chapter we study the design and implementation of loaders and
linkers. For simplicity we often use the term loader in place of loader and/or
linker. Because the processes of assembly and loading are closely related, this
chapter is similar in structure to the preceding one. Many of the same exam-
ples used in our study of assemblers are carried forward in this chapter.
During our discussion of assemblers, we studied a number of features and ca-
pabilities that are of concern to both the assembler and the loader. In the pre-
sent chapter we encounter many of the same concepts again. This time, of
course, we are primarily concerned with the operation of the leader; however,
it is important to remember the close connect:ons between program transla-
tion and loading.

Chapter 3 Loaders and Lutkers

As in the preceding chapter, we begin by discussing the most basic soft-
ware function—in this case, loading an object program into memory for execu-
tion. Section 3.1 presents the design of an absolute loader and illustrates its
operation. Such a loader might be found on a simple SIC machine that uses
the sort of assembler described in Section 2.1

Section 3.2 examines the issues of relocation and linking from the loader’s
point of view. We consider some possible alternatives for object program rep-
resentation and examine how these are related to issues of machine architec-
ture. We also present the design of a linking leader, a more advanced type of
loader that is typical of those found on most modern computing systems.

Section 3.3 presents & selection of commonly encountered loader features
that are not directly related to machine architecture. As before, our purpose is
not to cover all possible options, but to introduce some of the concepts and
techniques most frequently found in loaders.

Section 3.4 discusses alternative ways of accomplishing loader functions.
We consider the various times at which relocation and linking can be per-
formed, and the advantages and disadvantages associated with each. In this
context we study linkage editors (which perform linking before loading) and
dynamic linking schemes (which delay linking until exerution time).

Finally, in Section 3.5 we briefly discuss some exampies of 2ctual loaders
and linkers. As before, we are primarily concernad with zspects of each: piece
of software that are related to hardware or software design decisions.

3.1 BASIC LOADER FUNCTIONS

In this section we discuss the most fundamental functions of a loader—bring-
ing an object program into memory and starting its execution. You are proba-
bly already familiar with how these basic functions are performed. This
section is intended as a review to set the stage for our later discussion of more
advanced loader functions. Section 3.1.1 discusses the furictions and design of
an absolute loader and gives the outline of an algorithm for such a loader.
Section 3.1.2 presents an example of a very simple absolute loader for SIC/XE,
to clarify the coding techniques that are involved.

3.1.1 Dasign of an Absolute Loader

We consider the design of an absolute loader that might be used with the sort
of assembler described in Section 2.1. The object program format used is the
same as that described in Section 2.1.1. An example of such an object program
1s shown in Fig. 3.1(a).

3.1 Basic Loader Functions

HLOFY 00100000 1674

70010001 m,ur_ouu>pm~oua>o°~ouo>~o~0u.rwo~o~u>aunoo —%o-oow,oo-en%nuou*ac—onu
foca DLEL50C10 uo>oa~ea _>°a —Ou&.&noooo\,ﬁua Fé4 o\,ococo u__'oooooo

n>oo~ouo>—§0& 1030001030E0205D30203503205028 aauc>uo~°uu>uan°uo>nnnOufuo~oum
a>oc~°v~>~ m,-o—cuozpnoocfw foo —ooc>o. _0uo>u0uo~o:ucneofuooeuw,unnou&mn 1036
foonowu‘fowuunoofnoocoﬂcu

5001000
{s) Object program

address Contents

0000 ZXXXXKXX AXAXAXXX XXXXXXXX XXXXXRKXX
oDn10 AXXKXRAN HXNXXAAX JAXXAAAAN XXAANXXXXX

- . L3 - -
E
- - . . .

OFFO AXAXXXKEX RXAXXXXAN AAAAANAX XXRXXXKX
14103348 203900J0 36281030 3010154
1010 20613C10 03001024 0©C103%00 102p0CIC
1020 36482061 0810334C 0000434F 45000002
1030 000000XY XXXXXXXK AXXAXKKX RXXXXXXX +—COPY

2030 Kxxxexxxx exxxxxxx xx041030 001030EC
7040 20<n307 IFDB20SD 28103030 20575490
2050 392C205& 38203F10 10384C00 OCOFLOOIC
2060 00041030 E0207930 20645090 39DC2079
2070 | 2C103638 20644C00 O00O0Yxxxx xXXXXXXX
2080 HEXXXXAX XXXKXXEX XAAXAXXX XEXANXXX

- . - . -
- . - . .
- . - . .

(b) Program loaded in memory

Figure 3.1 Loading of an absolute program.

Because our loader does not need to perform such functions as linking and
program relocation, its operation is very simple. All functions are accom-
plished in a single pass. The Header record is checked to verify that the correct
program has been presented for loading (and that it will fit into the available
memory). As each Text record is read, the object code it contains is moved to
the indicated address in memory. When the End record is encountered, the
loader jumps to the specified address to begin execution of the loaded pro-
gram. Figure 2.1(b; shows a representaticn ¢f the program from Fig. 3.1(a) at-
ter loading. The contents of memory locations for which there is no Text record
are shown as xxxx. This indicates that the previous contents of these locations
remain unchanged.

Chapter 3 Loaders and Linkers

Figure 3.2 shows an algorithm for the absolute loader we have discussed.
'Although this process is extremely simple, there is one aspect that deserves
comment. In our object program, each byte of assembled code is given using
its hexadecimal representation in character form. For example, the machine
operation code for an STL instruction would be represented by the pair of char-
acters "1” and “4". When these are read by the loader (as part of the object pro-
gram), they will occupy two bytes of memory. In the instruction as loaded for
execution, however, this operation code must be stored in a singie byte with
hexadecimul value 14, Thus each pair of bytes from the object program record
must be packed together into one byte during loading. It is very important to
realize that in Fig. 3.1(a), each printed character represents one byie of the ob-
ject program record. In Fig. 3.1(b), on the other hand, each printed character
represents one hexadecimal digit in memory (i.e., a half-byte).

This method of representing an object program is inefficient in terms of
both space and execution time. Therefore, most machines store object pro-
grams in a binary form, with each byte of object code stored as a single byte in
the object program. In this type of representation, of course, a byte may con-
tain any binary value. We must be sure that our file and device conventions do
not cause some of the object program bytes to be interpreted as control charac-
ters. For example, the convention described in Section 2.1—indicating the end
of a rzcord with 2 byte containing hexadecimal 00—would clearly be unsuit-
able for use with a binary object program.

Obviously object programs stored in binary form do not lend themselves
well to printing or to reading by human beings. Therefore, we continue to use
character representations of object programs in our examples in this book.

begin
read Header record
verify program name and length
read first Text recoxd
while record type # ‘E’ do
begin
{if object code is in character form, convert into
internal representation}
move obhject code to specified location in merory
read next object program record
end
Jume to address specified in Bod record
end

Figure 3.2 Algorithm for an absolite loader, :

3.1 Basic Loader Tunctions

3.1.2 A Simple Bootstrap Loader

When a computer is first turned on or restarted, a special type of absolute
loader, called a bootstrap loader, is executed. This bootstrap loads the first pro-
gram to be run by the computer—usually an operating system. (Bootstrap
loaders are discussed in more detail in Section 3.4.3.) In this section, we exam-
ine a very simple bootstrap loader for SIC/XE. In spite of its simplicity, this
program illustrates almost all of the logic and coding techniques that are used
in an absolute loader. 1

Figure 3.3 shows the source code for our bootstrap loader. The bootstrap it-
self begins at address 0 in the memory of the machine. It loads the operating
system {or some other program) starting at address 80. Because this loader is
used in a unique situation (the initial program load for the system), the pro-
gram to be loaded can be represented in a very simple format. Each byte of ob-
ject code to be loaded is represented on device Fl as two hexadecimal digits
(just as it is in a Text record of a SIC object program). However, there is no
Header record, End record, er control information (such as addresses or
lengths). The object code from device F1 is always loaded into consecutive
bytes of memory, starting at address 80. After all of the object code from device
F1 has been loaded, the bootstrap jumps to address 80, which begins the exe-
cution of the program that was loaded.

Much of the work of the bootstrap loader is performed by the subroutine
GETC. This subryutine reads one character from device F1 and converts it
from the ASCII character code to the value of the hexadecimal digit that is rep-
resented by that character. For example, the ASCII code for the character “0”
(hexadecimal 30) is converted to the numeric value (. Likewise, the ASCII
codes for “1” through “9” (hexadecimal 31 through 39) are converted to the
numeric values 1 through 9, and the codes for “A” through “F” (hexadecimal
41 through 46) are converted to the values 10 through 15. This is accomplished
by subtracting 48 (hexadecimal 30) from the character codes for “0” through
“9", ana subtracting 55 (hexadecimal 37) from the codes for “A” through “F".
The subroutine GETC jumps to address 80 when an end-of-file (hexadecimal
0M) is read from device F1. It skips all other input characters that have ASCII
codes less than hexadecimal 30, This causes the bootstrap to ignore any control
bytes (such as end-of-line) that are read.

The main loop of the bootstrap keeps the address of the next memory loca-
tion to be loaded in register X. GETC is used to read and convert a pair of
characters from device F1 (representing 1 byte of object code to be loaded).
These two hexadecimal digit values are combined into a single byte by shift-
Ing tize firsi one left 4 bit positions and adding the second to it. The resulting
byte is stored at the address currently in register X, using a STCH instruction
that refers to location 0 using indexed addressing. The TIXR instruction is then

used to add-1 to the value i register X. (Because we are not interested in the

result of the comparison performed by TIXR, register X is also used as the sec-
ond operand for this instruction.)

127

T e A A e 2t S A 2t 3 3 ——mm

T

Chapler 3 Loaders and Linkers

BOOT START 0 BOOTSTRAP LOADER FOR SIC/XE

. THIS BOOTSTRAP READS OBJECT CODE FROM DEVICE F1 AND ENTERS IT

. INTO MEMORY STARTING AT ACDRESS B0 (HEXADECIMAL). AFTER ALL OF
. THE CODE FROM DEVF1 HAS BEEN SEEN ENTERED INTO MEMORY, THE
. BOOTSTRAP EXECUTES A JUMP TO ADDRESS 80 TO BEGIN EXECUTION OF

. THE PROGRAM JUST LOADED. RBEGISTER X CONTAINS THE NEXT ADDRESS

. TO BE LOADED.
CLEAR A CLEAR REGISTER A TO ZERO
LoX 4128 INITIALIZE REGISTER X TO HEX 80

LOOP JSUR GETC READ HEX DIGIT FROM PROGRAM BEING LOADED
RMO A,S SAVE IN REGISTER S
SHIFTL S.4 MOVE TO HIGH-ORDER 4 BITS OF BYTE
JSUB GETC GET NEXT HEX DIGIT
ADDR S,A COMBINE DIGITS TO FORM ONE BYTE
STCH 0,X STORE AT ADDRESS IN REGISTER X
TR XX ADD I TO MEMORY ADDRESS BEING LOADED
J Loop LOCP UNTIL END OF INFUT IS REACHED

. SUBROUTINE TO READ ONE CHARACTER FROM INFUT DEVICE AND

. CONVERT 17 FROM ASCII CODE TG HEXADECIMAL DIGIT VAIUE. THE
. CONVERTED LIGIT VALUE IS RETURNED IN REGISTER A. WHEN AN

. END-OF-FILE IS READ, CONTROL IS TRANSFERRED TO THE SITARTIMNG
. ADDRESS (H=X 80).

TEST INPUT DEVICE
LOOP UNTIL READY

GETC T INPOT

RD INPUT READ CHARACTER
covp #é IF CHARACTER IS HEX 04 (END OF FILE),
JEQ 80 JUMP TO START OF PROGRAM JUST LOADED
P #48 COMPARE TO HEX 30 (CHARACTER ‘0°)
JLT GETC SKIP CHARACTERS LESS THAN ‘0’
g2 it48 SUBTRACT HEX 30 FROM ASCII CODE
cove #10 IF RESULT IS5 LESS THAN 10, CONVERSION IS
JLT RETURN COMPLETE, OTHERWISE, SUBTRACT 7 MORE
SUB €7 (FOR HEX DIGITE ’'A’ THROUGH 'F’)
RETURN RSUR RETURN TO CALLER
INeoT BYTE X’F1’ CODE FOR INFUT DEVICE
B Looe

Figure 3.3 Bootstrap loader for SIC/XE.

You should work through the execution of this bootstrap routine by hand
with several bytes of sample input, keeping track of the exact contents of all
registers and memory locations as you go. This will help you become famihar
with the machine-level details of how loading is performed.

For simplicity, the bootstrap routine in Fig. 3.3 does not do any error check-
ing it assumes that its input is correct. You are encouraged fo think about the

3.2 Machine-Dependent Loader Features

different kinds of error conditions that might arise during the loading, and
how these could be handled.

3.2 MACHINE-DEPENDENT LOADER FEATURES

The absolute loader described in Section 3.1 is certainly simple and efficient;
however, this scheme has several potential disadvantages. One of the most ob-
vious is the need for the programmer to specify (when the program is assem-
bled) the actual address at which it will be loaded into memory. If we are
considering a very simple computer with a small memory (such as the stan-
dard version of SIC), this does not create much difficulty. There is only room
to run one program at a time, and the starting address for this single user pro-
gram is known in advance. On a larger and more advanced machine (such as
SIC/XE), the situation is not quite as easy. We would often like to run several
independent programs together, sharing memory (and other system resources)
between them. This means that we do not know in advance where a program
will be loaded. Efficient sharing of the machine requires that we write relocat-
able programs instead of absolute ones.

Writing abcolute programs also makes it difficult to use subroutine li-
braries e‘fi-iently. Most such libraries (for example, scientific or mathematical
packages) contain many more subroutines than will be used by any one pro-
gram. To make efficient use of memary, it is important to be able to select and
load exactly those routines that are needed. This could not be done effectively
if all of the subroutines had preassigned absolute addresses.

In this section we consider the design and implementation of a more com-
plex loader. The loader we present is one that is suitable for use on a SIC/XE
system and is typical of those that are found on most modern computers. This
loader provides for program relocation and linking, as well as for the simple
loading functions described in the preceding section. As part of our discus-
sion, we examine the effect of machine architecture on the design of the loader.

The need for program relocation is an indirect consequence of the change
to larger and more powerful computers. The way relocation is implemented in
a loader is also dependent upon machine characteristics. Section 3.2.1 dis-
cusses these dependencies by examining different implementation techniques
and the circumstar zes :n which they might be used.

Section 3.2.2 examines program linking from the lnader’s point of view.
Linking is not a machine-dependent [unciion in the sense that relocation is;
nowever, the same implementation techniques are often used for these (wo
functions. In additicn, the process of iinking usually involves relocation of
some of the routines being linked together. (Seg, tor example, the previous dis-

Cussica Concerning (e use ot subroutine librarics.) For these reasons we dis- -

cuss linking togather with relocation in this section.

130

Chapter 3 Loaders and Linkers

Section 3.2.3 discusses the data structures used by a typical linking (and re-
locating) loader, and gives a description of the processing logic involved. The
algorithm presented here serves as a starting point for discussion of some of
the more advanced loader features in the following sections.

3.2.1 Relocation

Loaders that allow for program relocation are called relocating loaders or refative
loaders. The concept of program relocation was introduced in Section 2.2.2; you
may want to briefly review that discussion before reading further. In this
section we discuss two methods for specifying relocation as part of the object
program.

The first method we discuss is essentially the same as that introduced in
Chapter 2. A Modification record is used to describe each part of the object
code that must be changed when the program is relocated. (The format of the
Modification record is given in Section 2.3.5.) Figure 2.4 shows a SIC/XE pro-
gram we use to illustrate this first method of specifying relocation. The pro-
gram is the same as the one in Fig, 2.6; it is reproduced here for convenience.
Most of the instructions in this program use relative or immediate addressing,
The only portions of the assembled program that contain actual addresses are
the extended format instructions on lines 15, 35, and 65. Thus these are the
only items whose values are affected by relocation

Figure 3.5 displays the object program corresponding to the source in
Fig.3.4. Notice that there is one Modification record for each value that must
be changed during relocation (in this case, the three instructions previously
mentioned). Each Modification record specifies the starting address and length
of the field whose value is to be altered. It then describes the modification to
be performed. In this example, all modifications ac the value of the symbol
COPY, which represents the starting address of the program. The algorithm
the loader uses to perform these modifications is discussed in Section 3.2.3.
More examples of relocation specified in this manner appear in the next sec-
tion when we examine the relationship between relocation and linking.

The Modification record scheme is a convenient means for specifying pro-
gram relocation; however, it is not well suited for use with all machine archi-
tectures, Consider, for example, the program in Fig. 3.6. This is a relocatable
piogram written for the standard version of SIC. The important difference
between this exampie and the one in Fig. 34 is that the standard SIC machine
does 110t use relative addressing. In this program the addresses in all the in-

structions except RSUB ruust be modified when the program is relocated. This

would require 31 Modification records, which results in an object program
more than hwice as large as the one in Fig. 3.5.

Line

10
12
13
15

25

30

35

40

45

50

55

60

65

70

80

95
100
105
110
115
120
125
130
132
133
135
140
145
150
155
160
165
170
175
180
185
195
200
205
210
212
215
220
225
230
235
244
245
250
255

Loc

06000
0000
0003

0006
nooa
Doodp
oole
o013
0017
001a
nolp
020
ooz3
0026
0022
cozp
0030
0033
0026

1036
1038
103a
103¢
1040
1043
1046

104B
104E
1051
1053
1056
1039
105C

105D
105F
1062
1065
1068
1068
L0GE
1070
1073
1076

Source statement

QOFY START 0

FIRST STL RETADR

CLOOP +JSUB RDREC

LDA
coe #0
JEQ
+JSUB
J
ENDEIL LDA BOF
STA
LDa #3
STA
wISUB
J
EOF BYTE
RETADR REEW 1
LENGTH RESW 1
BUFFER RESB 2086
RDREC CLEAR X
CILEAR A
CLEXMR S
+L0T #2096
RLOOP ™D
JEQ
RD
COMER A, S
JEQ EXIT
STCH
TIXR T
JLT
EXTT STX
ESUB
BYTE X'Fl

ANPUT

WLOOP ™ COUTFUT
JEQ WLCOP
LDCH BUTFER, X
WD OUTFUT
TIXR T
JLr WLOOP
RSUB

CUTPUT BYTE X’'05*
END FIRST

3.2 Machme-Depondent Loader Features

Object code

17202D
69202D

4B101036
032026
230000
332007
42101050
3F2FEC
032010
0F2016
010003
0F200D0
4210105D
382003
454F46

B410
B4CO
B44D
75101000
E32019
332FFA
DB2013
A004
332008
57C003
BESD
3B2FEA
134000
4r0000

B410
774000
E32011
332FFA
530003
DF2008
B85C
IB2FEF
4F0020
08

Figure 3.4 Example of a SIC/XE program (from Fig. 2.6).

131

I~

Chapter 3 Loaders and Linkers e ._i " 32 Machine-Dependent Loader Features

-
BCORY POD00COO1077 Line Loc Source statement Object code
£000000} D17202069202D43101036032026290000332007481010553F2FEC032010 " — Gy B
T00001D130F20160100030F200B4810105D3E2003454F46 19 0000 FIRST STL RETADR 140033
10010361084 1084003440751 01000E320193 u:..w%-no-*Sofuu»ooﬂuagu»:uo 15 0003 CLOOP JSUB RDREC 481039
10010331D382FEA1 340004700008 134 107 74000832011 332FFAS3CO0IDF200438 50 20 0006 L LENGTH 000036
A A 25 0009 COMP ZERO 280030
1001070073B2FEF4F000005 30 000e T8 e
¥D0000705+COPY 35 O00F JSUB WRREC 481061
HDODO140S+COPY 40 0012 J croop 3C0003
45 0015 ENDPIL LOA ' 000022
¥000027,05+COPY o ik iz <o
£000000 58 0018 oA THREE 000020
50 001 STA LENGTH 0C003s6
re 3. h Medification records. 65 0021 JSUB WRREC 422061
Figure 3.5 Object program with relocation by i o i e . ol
75 0027 RSUB 4C0000
On a machine that primarily uses direct addressing and has a fixed instruc- MM wwmw EOF ma!._.mxc mmom MMMMMM
tion format, it is often more mmmnwﬁ.: to m_vam:w relocation using a different 90 0010 nmzo_ isi i 2 000000
technique. Figure 3.7 shows this method applied to our SIC program example. 95 0032 RETADR RESW 1
There are no Modification records. The Text records are the same as before ex- wwm mMma LENGTH RESW 1
cept that there is a relocation bit associated with each word of object code. Since 110 ¥ SETRe B R
all SIC instructions occupy one word, this means that there is one relocation 115 s SUBROJTINE TO READ RECORD INTO EUFPER
bit ior each possibie instruction. The relocation bits are gathered together into 120 . :
a bit mask following the length indicator in each Text record. In Fig, 3.7 this g i R e gwwww
mask is represented (in character form) as three hexadecimal digits. These 138 103F RLOOP T INPUT £01055
characters are underlined for easier identification in the figure. . 140 1042 JEQ RLOOP 30103F
If the relocation bit corresponding to a word of object code is set to 1, the 145 1045 RD TNFUT 081050
; i S e e AR R e o e s 150 1048 COMP ZERO 280030
program’s starting address ra.,.o adde Woed wiven progr 155 104E JEQ forpe 301057
located. A bit value of 0 indicates that no modification is necessary. If a Text 150 104E SICH BUFFER,X 545039
record contains fewer than 12 words of object code, the bits corresponding to NMN 1051 TIX MAXLEN 2C10SE
unused words are set to 0. Thus the bit mask FFC (representing the bit string w,m wmw“ e %.u._n. Koo wwwwwm
111111111109} in the first Text record specifies that all 10 words of object code 180 105a RSUS 4CH000
are to be modified during relocation. These words contain the instructions cor- Ww 1050 INFUT BYTE X'Fl’ £l
responding to lines 10 through 53 in Fig. 3.6, The mask E00 in the second Text e A REIEE BD: A0S 001000
record specifies that the first three words are to be modified. The remainder of 200 : SUBROUTINE TO WRITE RECCRD FROM SUFFER
the object code in this record represents data constants (and the RSUB instruc- | 205 .
tion) and thus does not require modification. o 1062 WRREC LI ZERC 040030
NG ek tha cbleat cod 215 1064 WLOOP D OUTFUT E01079
The other Text records follow the same pattern. Note that object code 220 1067 I g 301064
generated from the LDX instruction on line 210 begins a new Text record even 225 106A Lo BUFFER, X 508039
though there is room fo: it in the preceding record. This occurs because each u.m 106D o ouIPUT DC107¢
relocation bit is associated with a 3-byte segment of object code in the Text “ a3 e TIX LFNGTH 2C0036
Tooecs : b . : | 240 1073 Jur LOOP 381064
record. Anv value that is to be modified during relocation must coincide with : 245 107e 0B 200000
one of these 3-byte segments so that it corresponds to a relocation bit. The as- 250 107 OUTFUT BYTE & o' LS
sembled LDX instruction does require modification because of the dirert ad- 295 BD FIRST
dress. However, if it were placed in the preceding Text record, it wouid not be Floirs 80 Rekantiie proormions sissland SIC wething:

134

Chapter 3 Loaders and Linkers 4

BCOPY Jooooooo 1074

ﬂ)ooocao>.. NE Loo2 u>mo ~Ow0>0000u0>n woogwuooo 1 ms.ro —oaVuoooa*occou»%noowo%cOQno
.n>o°oo 1 J,- quoouo‘.&Q ~°m~>o¢°°uu>p ooooo% S54F4 m\faoooo«,oooooo

100 ~0uo>~w.mh|n’anouo>oooew&,no—ouv>vo-cuﬂvo 105D28003030105 u)UhOOuw\mo_oumvmw—cuw
H>oc~ovwroE~oocuo%ﬂoan@,mfoouaoo

1001 06 11 Eob°ouo\mo»0wo>uo-oofuouOum,uo:: w>n0°°u¢um-oo bh nocoﬁnvu

£0G0000

Figure 3.7 Object program with relocation by bit mask.

properly aligned to correspond to a relocation bit because of the I-byte data .
value generated from line 185. Therefore, this instruction must begin a new ,
Text record in the object program,
You should carefully examine the remainder of the object program in Fig,
3.7. Make sure you understand how the relocation bits are generated by the as-
sembler and used by the loader.)
Some computers provide a hardware relocation capability that eliminates
some of the need for the loader to perform program relocation. For example,
some such machines consider all memory references to be relative to the be-
ginning of the user’s assigned area of memory. The conversion of these rela-
tive ad.. sses to actual addresses is performed a< the program is executad,
{We discuss this further when we study memory management in Chapter 6.)
As the next section illustrates, however, the loader must still handle relocation
of subprograms in connection with linking.

SON—

3.2.2 Program Linking

The basic concepts involved in program linking were introduced in Section
2.3.5. Before proceeding you may want to review that discussion and the ex-
amples in that section. In this section we consider more complex examples of
crtornal references between programs and examine the relationship between
relocation and linking. The next section gives an algorithm for a linking and
relocating loader.

Figure 2.15 in Section 2.3.5 showed a program made up of three control
sections. These -ontrol sections could be assembled together (that is, in the
saune invocation of the assembler), or they could be assembled independently
of one another. In either case, however, they would appear as sepaiate seg-
ments of object code after assembly (see Fig. 2.17). The progranuner has a nat-
ural inlination to think of a program as a logical entity that combines all of
ihe related control sections. From the ioader’s point of view, however, there is
no such thing as a program in this sense—there are only control secticns that

ol

32 Machine-Dependent Loader Features

are to be linked, relocated, and loaded. The loader has no way of knowing
(and no need to know) which control sections were assembled at the same

‘time.

Consider the three (separately assembled) programs in Fig. 3.8, each of
which consists of a single control section. Each program contains a list of items
(LISTA, LISTB, LISTC); the ends of these lists are marked by the labels ENDA,
ENDB, ENDC. The labels on the beginnings and ends of the lists are external
symbols (that is, they are available for use in linking). Note that each program
contains exactly the same set of references to these external symbols. Three of
these are instruction operands (REF1 through REF3), and the others are the
values of data words (REF4 through REFS). In considering this example, we
examine the differences in the way these identical expressions are handled
within the three programs. This emphasizes the relationship between the relo-
cation and linking processes. To focus on these issues, we have not attempted
to make these programs appear realistic. All portions of the programs not in-
volved in the relocation and linking process are omitted. The same applies to
the generated object programs shown in Fig. 3.9.

Consider first the reference marked REF1. For the first program (PROGA),
REF1 is simply a reference to a label within the program. It 1s assembled in the
usual way as a program-counter relative instruction. No modification for relo-
cation or linking is necessary. In PROGB, on the other hand, the same operand
refers to an external symbol. The assembler uses an extended-format instruc-
tion with address field set to 00000. The object program for PROGB (see Fig.
39) contains a Modification record instructing the loader to add the value of
the symbol LISTA to this address field when the program is linked. This refer-
ence is handled in exactly the same way for PROGC.

The reference marked REF2 is processed in a similar manner. For PROGA,
the operand expression consists of an external reference plus a constant. The
assembler stores the value of the constant in the address field of the instruc-
tion and a Modification record directs the loader to add to this fieid the value
of LISTB. In PROGB, the same expression is simply a local reference and is as-
sembled using a program-counter relative insiruction with no relocation or
linking required.

REF3 is an immediate operand whose value is to be the difference between
ENDA and LISTA (that is, the length of the list in bytes). In PROGA, the as-
sembler has all of the information necessary to compute this value. During the
assembly of PROCB (and PROGC), however, the values of the labels are un-
known. In these programs, the expression must be assemblea as an external
reference (with two Modification records) even though the fina! result will be
an absolute value independent of the locations at which the programs ae
loaded.

135.

Chapter 3 Leader's and Linkers

Loc

0000

0020
0023
0027

0040

0054
0054
00s7
005A
005D
0060

0000

G036
GC3A
003D

0060

€070
0070
0073
c076
0079
007C

PROGA

REPF1
REF2
REF3

LISTA

REF4
REF5
R¥F6

REFE

REF1

LISTB

ENC8
REF4
REFS
REFG
REF7
REFS

Figure 3.8 Sample programs illustrating linking 2nd ralocation

Source statement

START 0
EXTDEF LISTA,ENDA
EXTREF LISTS, ENDB, LISTC, ENDC

Lon LISTA
+LDOT LISTB+4
Lo H#ENDA-LISTA

A
WORD ENDA-LISTA+LISTC
WORD ENDC-LISTC-10
WORD ENDC-LISTC+LISTA-1
WORD EXDA-LISTA-{ENDB-LISTE)
WORD LISTB-LISTA

BD REF1
Source statement
START 0

EXTDEF LISTB, ENDB
EXTREF LISTA,ENDA, LISTC, ENDC

4H.huy LISTA
IOT LISTE+4
JLDK AENDA-LISTA

o I

BgU v

WOERD ENDA~-LISTA+LISTC

WORD ENDC-LISTC-10

WORD BIDC-LISTC+LISTA-1

vORD EDA-LISTA- (ENDB-LISTE)
woRn LISTB-LIESTA

D

Object code

032010
77100004
050014

000014
FFFFE6
0CDO3F
000014
FFEFCO

Object code

03100000
772027
05100000

Gcoo0a
FFTFFQ
FFEFFF
FFFFF0
000060

3.2 Machine-Dependent Loader Features 137

Loc Source statement Object code
0000 PROGC SPART O

EXTDEF LISTC,ENDC

EXTREF LISTA, MDA, LISTB, ENDB
0018 REF1 +LDA LISTA 03100000
0olc REF2 +10T _ LISTE+4 77100004

4ERDA-LISTA 05100000

0020 REF3 +LDX

0030 LISTC B

0042 BODC QU

0042 REF4 WoRD
0045 REFS WORD
0048 REF6 WICRD
004B REF7 WORD
Q04E REFS WORD

ENDA-LISTA+LISTC
ENDC~L1STC-10
ENDC-LISTC+LISTA-1
ENDA-LISTA- (ENDB-LISTB)
LIST2-LISTA

Figure 3.8 (contd)

ROGA 00000000063
ISTA POOOACENDA 00054

1STS ERDB owrﬁ.n JNDC

.
ﬁ.eoocno)o%wwc 1B77100004050014

cooewoncoounnnnaoow-.oooo-wnw-o_u
yooonw%rnmﬂwﬁ b ¥

0005406+L15TC

%833? SEDC
0005704-LISTC
000S5ADE+ENDC
000S Wl—.umﬂn

aaom +PROGA
eoou ~ENDB
0005 rumq.
0006 +ruua-
0306036~ R0OCA
0002

Figure 3.9 Objecl programs corresponding te Fig. 3.8.

000030
000008
000011
000000
0600000

Chapter 3 Louders and Linkers A

BOCE Q00000000077

1STH Q00060ENDR 00070

ISTA ENDA ISTC ENXDC
.
.

10000360803100006772027,05100000
-

-
0007GYEDOCOOGY FFFFGF FFFEEFFFFFO000060
¥90003 f y.wsm._.m. WIS
0003EDSTENDA
. %88% ~LISTA
KDO0O7CHEFENDA

0007006-LISTA
00074D6+LISTC
0007306+ENLC
0007305-LISTC
0DO7BOAFERDC
0007606-LISTC
00078DEFLISTA
0007908+ ENDA
0007906-LISTA
0007CO6FPROCE
KO007OE-LISTA

BLISTC DOOOIENDC DO0042

KPROCC POO00GOOOCS)
ALISTE M.:: < ISTB c=0B
.

.
T0000180C031000007710000405100000

.
Y0000420£00003000000800001 1000000000000
(D000 190 SF+LISTA “
0001 BUSILISTS ‘
0002 [0 S+ENDA
0002105-LISTA
0004 2D 6+ENDA
0004206-L1STA
0004206+PROGC
0004806 +LISTA
0004 BO6FERDA
(00004 RO6-LISTA
0004 B06~ENDE

0004 BOGILISTE
umgo. FLISTE
400004 ,-LISTA

Figure 3.9 (cont?)

The remaining references illustrate a variety of other poesibilities. The gen-
eral approach taken is for the assembier to evaluate 2= much of the mxﬁamm_o:
a¢ i* can. The remaining lerms .re passed ox to the loader via Modification
records. To see this. consider REF4. The assembler for PROGA can evaluate all

_ad

3.2 Machine-Dependent Loader Features

of the expression in REF4 except for the value of LISTC. This results in an ini-
tial value of (hexadecimal) 000014 and one Modification record. However, the
same expression in PROGB contains no terms that can be evaluated by the as-
sembler. The object code therefore contains an initial value of 000000 and three
Modification records. For PROGC, the assembler can supply the value of
LISTC relative to the beginning of the program (but not the actual address,
which is not known until the program is loaded). The initial value of this data
word contains the relative address of LISTC (hexadecimal 0D0030). Modifica-
tion records instruct the loader to add the beginning address of the.program
(i.e., the value of PROGC), to add the value of ENDA, and to subtract the
value of LISTA. Thus the expression in REF4 represents a simple external ref-
erence for PROGA, a more complicated external reference for PROGB, and a
combination of relocation and external references for PROGC.

You should work through references REFS through REFS for yourself to be
sure you understand how the object code and Modification records in Fig, 3.9
were generated.

Figure 3.10(a) shows these three programs as they might appear in mem-
ory after loading and linking. PROGA has been loaded starting at address
4000, with PROGB and PROGC immediately following. Note that each of
REF4 through REFS has resulted (after relocation and linking is performed) in
the same value in each of the three programs. This is as it should be, since the
same source expression appeared in each program.

For example, the value for reference REF4 in PROGA is located at address
4054 (the beginning address of PROGA plus 0054, the relative address of REF4
within PROGA). Figure 3.10(b) shows the details of how this value is com-
puted. The initial value (from the Text record) is 000014, To this is added the
address assigned to LISTC, which is 4112 (the beginning address of PROGC
plus 30). In PROGB, the value for REF4 is located at relative address 70 (actual
address 40D3). To the initial value (000000), the loader adds the values of
ENDA (4054) and LISTC (4112), and subtracts the value i LISTA (4040). The
result, 004126, is the same as was obtained in PROGA. Similarly, the computa-
don for REF4 in PROGC results in the same value. The same is also true for
each of the other references REF5 through REFS.

For the references that are instruction operands, the calculated values after
loading do not always appear to be equal. This is because there is an addi-
tional address calculation step involved for program-counter relative (or base
relative) instructions. In these cases it is the farget addresses that are the same.
For example, in FROCA the reference REF! is a program-counter relative in-
struction with displacement (01D. When this instruction is executed, the pro-
gram counter contains the value 4023 (the actual address of the next
instruction). The resulting target address is 4040. No relocation is necessary for
this instruction since the program counter will always contain the actual (not

139

Chapter 3 Loaders and Linkers

relative) address of the next instruction. We could also 95* o.m this process as
automatically providing the needed relocation at execution time 93:%.— the
target address calculation. In PROGB, on the other hand, reference REF1 is an
extended format instruction that contains a direct {actual) address. This ad-
dress, after linking, is 4040—the same as the target address for the same refer-
in PROGA.

mbn“””- should work through the details of the other references to see that the
target addresses (for REF2 and REF3) or the data values (for REF5 through
REFS) are the same in each of the three programs. You do not need to worry
about how these calculations are actually performed by the loader Gmﬁ:ma.&a
algorithm and data structures for doing this are &mncmm».a in the next section.
It is important, however, that you understand the calculations to be v.ﬂ?nsa.
and that you are able to carry out the computations by hand (following the in-
structions that are contained in the object programs}.

Memory
addrass Contents
0000 AXEXXXAK XXXXAXAX XXXAXAXA KXXXRXXX
& . - " “
.
IFF0 AEXAAXN A EAAXXXXX XXXXXXAL NERXXXXE
6000 [ececccos cessesese eessssss sesssses
B010 Jececessse osccccese osessaser ooosRcel
4020 |03201D77 104GC705 O00lAsses ecvcsces e PROGA
4030 l-vascese sevoscce gonseses esecasnne
80 locecesne FALBRESSS Sppasmas -RQP® 090
”wuo 00412600 O00DBD0A0 51000004
4060 00008Y,. cccceces cssvsssse sesscene
§070 [iervename: ossassas ¢oessnde -wdbosnsi
08B0 Jisisnvess @reesess shesvapm sawAesee
4090 |sevenens everenen .«031040 ao.zna»uulvwomm
40A0
4080
40C0
40D0
4DED
4070
4100 |40C70510 0014.... cessssss ssessess 4—PROGC
'ﬁbo OOOOOOOOOOOOOOOOOOOOOOOO TR
4120 Jesesness |
4130 AXELXXXXX XXXAAXXE XXAXXXXX
4140 YEXXXXKE XAXXXXXX AXFXXXXX XAAXAXXX
. -
: : : : :

Figure 3.10(a) Programs from Fig. 3.8 after linking and loading.

Sa i o

3.2 Machine-Dependent Loader Features

Object programs
PROGA

Memory contents

%

(REF4)
SOQ -000....0@...000000.00

(Actual address
\ of LISTC)
/
\ Load addresses
\ PROGA
/ PROGB

Figure 3.10(b) Relocation and linking operations performed on REF4
from PROGA.

3.2.3 Algorith<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>